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Preface

Reinforcement Learning (RL) is oft en referred to as a branch of artifi cial intelligence 
and has been one of the central topics in a broad range of scientifi c fi elds for the last 
two decades. Understanding of RL is expected to provide a systematic understanding 
of adaptive behaviors, including simple classical and operant conditioning of animals 
as well as all complex social and economical human behaviors that are designed to 
maximize benefi ts; and is also useful in machine learning and robotics. RL aims to fi nd 
an appropriate mapping from situations to actions in which a certain reward is maxi-
mized. It can be defi ned as a class of problem solving approaches in which the learner 
(agent) learns through a series of trial-and-error searches and delayed rewards. The 
purpose is to maximize not just the immediate reward, but also the cumulative reward 
in the long run, such that the agent can learn to approximate an optimal behavioral 
strategy by continuously interacting with the environment. This allows the agent to 
work in a previously unknown environment by learning about it gradually. Hence, it 
is closely related to various scientifi c domains as Optimization, Vision, Robotic and 
Control, Theoretical Computer Science, etc.

This book brings together many diff erent aspects of the current research on several 
fi elds associated to Reinforcement Learning. Based on 24 Chapters, it covers a very 
broad variety of topics in Reinforcement Learning and their application in autono-
mous systems. A set of chapters in this book provide a general overview of RL while 
other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-
Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and 
Industrial Logistic. Much of this work has been published in refereed journals and 
conference proceedings and these papers have been modifi ed and edited for content 
and style.

This book shows that RL is a very dynamic area in terms of theory and application. The 
fi eld of RL has been growing rapidly, producing a wide variety of learning algorithms 
for diff erent applications. There is also a very extensive literature on RL, and to give 
a complete bibliography and a historical account of the research that led to the pres-
ent form would have been impossible. It is thus inevitable that some topics have been 
treated in less detail than others. 



X Preface

I would like to thank all contributors to this book for their research and eff ort. I hope 
you will enjoy reading this book and get many helpful ideas and overviews for your 
own study.

Abdelhamid Mellouk
Network &Telecom Dept and LiSSi Laboratory

 University Paris-Est Creteil (UPEC), IUT Creteil/Vitry, 
France
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Wireless Networks Inductive Routing  
Based on Reinforcement Learning Paradigms 

Abdelhamid Mellouk  
Network &Telecom Dept and LiSSi Laboratory 

University Paris-Est Creteil (UPEC), IUT Creteil/Vitry, 
France  

1. Introduction      
Wireless networks, especially Sensor ones (WSN), are a promising technology to monitor 
and collect specific measures in any environment. Several applications have already been 
envisioned, in a wide range of areas such as military, commercial, emergency, biology and 
health care applications. A sensor is a physical component able to accomplish three tasks: 
identify a physical quantity, treat any such information, and transmit this information to a 
sink (Kumar et al., 2008; Buford et al., 2009; Olfati-Saber et al., 2007).  
Needs for QoS to guarantee the quality of real time services must take into account not only 
the static network parameters but also the dynamic ones.  Therefore, QoS measures should 
be introduced to the network so that quality of real time services can be guaranteed. The 
most popular formulation of the optimal distributed routing problem in a data network is 
based on a multicommodity flow optimization whereby a separate objective function is 
minimized with respect to the types of flow subjected to multicommodity flow constraints. 
Given the complexity of this problem, due to the diversity of the QoS constraints, we focus 
our attention in this paper on bio-inspired QoS routing policies based on the Reinforcement 
Learning paradigm applied to Wireless Sensor Networks.  
Many research works focus on the optimization of the energy consumption in sensor 
networks, as it directly affects the network lifetime. Routing protocols were proposed to 
minimize energy consumption while providing the necessary coverage and connectivity for 
the nodes to send data to the sink. Other routing protocols have also been proposed in WSN 
to improve other QoS constraints such as delay.  
The problem here is that the complexity of routing protocols increases dramatically with the 
integration of more than one QoS parameter. Indeed, determining a QoS route that satisfies 
two or more non-correlated constraints (for example, delay and bandwidth) is an NP-
complete problem (Mellouk et al., 2007), because the Multi-Constrained Optimal path 
problem cannot be solved in polynomial time. Therefore, research focus has shifted to the 
development of pseudopolynomial time algorithms, heuristics, and approximation 
algorithms for multi-constrained QoS paths. 
In this chapter, we present an accurate description of the current state-of-the-art and give an 
overview of our work in the use of reinforcement learning concepts focused on Wireless 
Sensor Networks. We focus our attention by developing systems based on this paradigm 
called AMDR and EDAR. Basically, these inductive approaches selects routes based on flow 
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QoS requirements and network resource availability. After developing in section 2 the 
concept of routing in wireless sensor networks, we present in section 3 the family of 
inductive approaches. After, we present in two sections our works based on reinforcement 
learning approaches. Last section concludes and gives some perspectives of this work. 

2. Routing problem in Wireless Sensor Networks 
Goal aspects that are identified as more suitable to optimize in WSNs are QoS metrics. 
Sensor nodes essentially move small amounts of data (bits) from one place to another. 
Therefore, equilibrium should be defined in QoS and energy consumption, to obtain 
meaningful information of data transmitted. Energy efficiency is an evident optimization 
metric in WSNs. More generally, several routing protocols in WSNs are influenced by 
several factors: 
Minimum life of the system: In some cases, no human intervention is possible. Batteries of 
sensors can not be changed; the lifetime of the network must be maximized. 
Fault tolerance: Sensor network should be tolerant to nodes failures so as the network 
routes information through other nodes. 
Delay: Delay metric must be taken into account for real-time applications to ensure that data 
arrives on time. 
Scalability: Routing protocols must be extendable, even with several thousand nodes. 
Coverage: In WSN, each sensor node obtains a certain view of the environment. This latter 
is limited both in range and in accuracy (fig. 1); it can only cover a limited physical area of 
the environment. Hence, area coverage is also an important design parameter in WSNs. 
Each node receives a local view of its environment, limited by its scope and accuracy. The 
coverage of a large area is composed by the union of several smaller coverages.  
Connectivity: Most WSNs have high density of sensors, thus precluding isolation of nodes. 
However, deployment, mobility and failures vary the topology of the network, so 
connectivity is not always assured (Tran et al., 2008).  
Quality of Service: In some applications, data should be delivered within certain period of 
time from the moment it is sensed; otherwise the data will be useless. Therefore bounded 
latency for data delivery is another condition for time-constrained applications. However, in 
many applications, energy saving -which is directly related to the network’s lifetime- is 
considered relatively more important than the quality of the transmitted data. As the energy 
gets depleted, the network may be required to reduce the quality of the results in order to 
reduce energy dissipation in nodes and hence lengthen network lifetime. Hence, energy-
aware routing protocols are required to capture this requirement. 
 

 
Fig. 1. Radius of reception of a sensor node.  
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To ensure these aspects, one can find two methods to routing information from a sensor 
network to a sink: 
Reactive (requested): If one wants to have the network status at a time t, the sink broadcasts a 
request throughout the network so that sensors send their latest information back to the 
sink. The information is then forwarded in multi-hop manner to the sink (Shearer, 2008).  
Proactive (periodical): The network is monitored to detect any changes, sending broadcasts 
periodically to the sink, following an event in the network such as a sudden change in 
temperature and movement. Sensors near the event then back the information recorded and 
route it to the sink (Lu & Sheu, 2007). 
Otherwise, depending on the network structure, routing can be divided into flat-based 
routing, hierarchical-based routing, and location-based routing. All these protocols can be 
classified into multi-path based, query-based, negotiation-based, QoS-based, or coherent-
based routing techniques depending on the protocol operation.  
Below, we present some QoS routing protocols:  
QoS_AODV (Perkins et al., 2000): The link cost used in this protocol is formulated as a 
function which takes into account node’s energy consumed and error rate. Based on an 
extended version of Dijkstra's algorithm, the protocol establishes a list of paths with 
minimal cost. Then, the one with the best cost is selected [10],[13]. This protocol uses 
hierarchical routing; it divides the network into clusters. Each cluster consists of sensor 
nodes and one cluster head. The cluster head retrieves data from the cluster and sends it to 
the sink. QoS routing is done locally in each cluster.  
Sequential Assignment Routing (SAR) (Ok et al., 2009): SAR manages multi-paths in a 
routing table which attempts to achieve energy efficiency and fault tolerance. SAR considers 
trees of QoS criteria during the exploration of routing paths, the energy resource on each 
path and the priority level of each packet. By using these trees, multiple paths of the sensors 
are well trained. One of these paths is chosen depending on energy resources and QoS of 
path. SAR maintains multiple paths from nodes to sink [9]. High overhead is generated to 
maintain tables and states at each sensor. 
Energy Aware Routing (EAR) (Shah & Rabaey, 2002): EAR is a reactive routing protocol 
designed to increase the lifetime of sensor networks. Like EDAR, the sink searches and 
maintains multiple paths to the destinations, and assigns a probability to each of these 
paths. The probability of a node is set to be inversely proportional to its cost in terms of 
energy. When a node routes a packet, it chooses one of the available paths according to their 
probabilities. Therefore, packets can be routed along different paths and the nodes’ energy 
will be fairly consumed among the different nodes. This technique keeps a node from being 
over-utilized, which would quickly lead to energy starvation.  
SPEED (Ok et al., 2009): This protocol provides a time limit beyond which the information is 
not taken into account. It introduces the concept of "real time" in wireless sensor networks. 
Its purpose is to ensure a certain speed for each packet in the network. Each application 
considers the end-to-end delay of packets by dividing the distance from the sink by the 
speed of packet before deciding to accept or reject a packet. Here, each node maintains 
information of its neighbors and uses geographic information to find the paths. SPEED can 
avoid congestion under heavy network load. 

3. State dependent routing approaches 
Modern communication networks is becoming a large complex distributed system 
composed by higher interoperating complex sub-systems based on several dynamic 



 Advances in Reinforcement Learning 

 

4 

parameters. The drivers of this growth have included changes in technology and changes in 
regulation. In this context, the famous methodology approach that allows us to formulate 
this problem is dynamic programming which, however, is very complex to be solved 
exactly. The most popular formulation of the optimal distributed routing problem in a data 
network is based on a multicommodity flow optimization whereby a separable objective 
function is minimized with respect to the types of flow subject to multicommodity  flow 
constraints (Gallager, 1977; Ozdaglar & Bertsekas, 2003). In order to design adaptive 
algorithms for dynamic networks routing problems, many of works are largely oriented and 
based on the Reinforcement Learning (RL) notion (Sutton & Barto, 1997). The salient feature 
of RL algorithms is the nature of their routing table entries which are probabilistic. In such 
algorithms, to improve the routing decision quality, a router tries out different links to see if 
they produce good routes. This mode of operation is called exploration. Information learnt 
during this exploration phase is used to take future decisions. This mode of operation is 
called exploitation. Both exploration and exploitation phases are necessary for effective 
routing and the choice of the outgoing interface is the action taken by the router. In RL 
algorithms, those learning and evaluation modes are assumed to happen continually. Note 
that, the RL algorithms assigns credit to actions based on reinforcement from the 
environment (Fig 2). 
 

 
Fig. 2. Agent’s learning from the environment. 

 In the case where such credit assignment is conducted systematically over large number of 
routing decisions, so that all actions have been sufficiently explored, RL algorithms 
converge to solve stochastic shortest path routing problems. Finally, algorithms for RL are 
distributed algorithms that take into account the dynamics of the network where initially no 
model of the network dynamics is assumed to be given. Then, the RL algorithm has to 
sample, estimate and build the model of pertinent aspects of the environment. 
Many of works has done to  investigate the use of inductive approaches based on artificial 
neuronal intelligence together with biologically inspired techniques such as reinforcement 
learning and genetic algorithms, to control network behavior in real-time so as to provide 
users with the QoS that they request, and to improve network provide robustness and 
resilience.  
For example, we can note the following approaches based on RL paradigm: 
Q-Routing approach- In this technique (Boyan & Littman, 1994), each node makes its 
routing decision based on the local routing information, represented as a table of Q values 
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which estimate the quality of the alternative routes. These values are updated each time the 
node sends a packet to one of its neighbors. However, when a Q value is not updated for a 
long time, it does not necessarily reflect the current state of the network and hence a routing 
decision based on such an unreliable Q value will not be accurate. The update rule in Q-
Routing does not take into account the reliability of the estimated or updated Q value 
because it depends on the traffic pattern, and load levels. In fact, most of the Q values in the 
network are unreliable. For this purpose, other algorithms have been proposed like 
Confidence based Q-Routing (CQ-Routing) or Confidence based Dual Reinforcement Q-
Routing (DRQ-Routing). 
Cognitive Packet Networks (CPN)- CPNs (Gelenbe et al., 2002) are based on random neural 
networks. These are store-and-forward packet networks in which intelligence is constructed 
into the packets, rather than at the routers or in the high-level protocols. CPN is then a 
reliable packet network infrastructure, which incorporates packet loss and delays directly 
into user QoS criteria and use these criteria to conduct routing. Cognitive packet networks 
carry three major types of packets: smart packets, dumb packets and acknowledgments 
(ACK). Smart or cognitive packets route themselves, they learn to avoid link and node 
failures and congestion and to avoid being lost. They learn from their own observations 
about the network and/or from the experience of other packets. They rely minimally on 
routers. The major drawback of algorithms based on cognitive packet networks is the 
convergence time, which is very important when the network is heavily loaded. 
Swarm Ant Colony Optimization (AntNet)- Ants routing algorithms (Dorigo & Stüzle, 
2004) are inspired by dynamics of how ant colonies learn the shortest route to food source 
using very little state and computation. Instead of having fixed next-hop value, the routing 
table will have multiple next-hop choices for a destination, with each candidate associated 
with a possibility, which indicates the goodness of choosing this hop as the next hop in 
favor to form the shortest path. Given a specified source node and destination node, the 
source node will send out some kind of ant packets based on the possibility entries on its 
own routing table. Those ants will explore the routes in the network. They can memory the 
hops they have passed. When an ant packet reaches the destination node, the ant packet will 
return to the source node along the same route. Along the way back to the destination node, 
the ant packet will change the routing table for every node it passes by. The rules of 
updating the routing tables are: increase the possibility of the hop it comes from while 
decrease the possibilities of other candidates. Ants approach is immune to the sub-optimal 
route problem since it explores, at all times, all paths of the network. Although, the traffic 
generated by ant algorithms is more important than the traffic of the concurrent approaches.  
AntHocNet (Di Caro et al., 2005) is an algorithm for routing in mobile ad hoc networks. It is 
a hybrid algorithm, which combines reactive route setup with proactive route probing, 
maintenance and improvement. It does not maintain routes to all possible destinations at all 
times but only sets up paths when they are needed at the start of a data session. This is done 
in a reactive route setup phase, where ant agents called reactive forward ants are launched 
by the source in order to find multiple paths to the destination, and backward ants return to 
the source to set up the paths in the form of pheromone tables indicating their respective 
quality. After the route setup, data packets are routed stochastically over the different paths 
following these pheromone tables. While the data session is going on, the paths are 
monitored, maintained and improved proactively using different agents, called proactive 
forward ants. 
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BeeAdHoc (Wedde et al., 2005) is a new routing algorithm for energy efficient routing in 
mobile ad hoc networks. This algorithm is inspired by the foraging principles of honey bees. 
The algorithm utilizes Essentialy two types of agents, scouts and foragers, for doing routing 
in mobile ad hoc networks. BeeAdHoc is a reactive source routing algorithm and it 
consumes less energy as compared to existing state-of-theart routing algorithms because it 
utilizes less control packets to do routing. 
KOQRA (Mellouk et al., 2008; Mellouk et al., 2009) is an adaptive routing algorithm that 
improves the Quality of Service in terms of cost link path and end-to-end delay. This 
algorithm is based on a Dijkstra multipath routing approach combined with the Q-routing 
reinforcement learning. The learning algorithm is based on founding K best paths in terms 
of cumulative link cost and the optimization of the average delivery time on these paths. A 
load balancing policy depending on a dynamical traffic path probability distribution 
function is also introduced. 

4. AMDR protocol: Adaptive Mean Delay Routing protocol 
Our first proposal, called “AMDR” (Adaptive Mean Delay Routing), is based on an adaptive 
approach using mean delay estimated proactively by each node. AMDR is built around two 
modules: Delay Estimation Module (DEM) and Adaptive Routing Module (ARM). In order 
to optimize delay in mobile ad hoc networks, it’s necessary to be able to evaluate delay in 
accurate way. We consider in DEM, the IEEE 802.11 protocol, which is considered to be the 
most popular MAC protocol in MANET.  
DEM calculates proactively mean delay at each node without any packets exchange. The 
ARM will then exploit mean delay value. It uses two exploration agents to discover best 
available routes between a given pair of nodes (s, d).  Exploration agents gather mean delay 
information available at each visited node and calculate the overall delay between source 
and destination. According to delay value gathered, a reinforcement signal is calculated and 
probabilistic routing tables are updated at each intermediate node using an appropriate 
reinforcement signal.   
ARM ensures an adaptive routing based on estimated mean delay. It combines, on demand 
approach used at starting phase of exploration process (generation of the first exploration 
packet for the destination) with proactive approach in order to continue the exploration 
process even a route is already available for the destination. Proactive exploration keeps 
AMDR more reactive by having more recent information about network state.  

4.1 Delay Estimation Model (DEM) 
In order to optimize delay in mobile ad hoc networks, it’s necessary to be able to evaluate 
delay in an accurate way. We propose in this section to estimate one-hop delay in ad hoc 
networks. It’s well known that node delay depends greatly on MAC layer protocol. We 
consider in our study, the particular case of IEEE 802.11 protocol.  
Our Delay Estimation Model (DEM) is based on Little’s theorem (Little, 1961). Each mobile 
node, in DEM, is considered as a buffer. Packets arrive to the buffer in Poisson distribution 
with parameter λ. Each mobile node has a single server performing channel access.  
Thus, a mobile node is seen as a discrete time M/G/1 queue (Saaty, 1961). According to 
Little’s theorem, node delay corresponds to mean response delay defined as fellow:  
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• λ: arriving rate of data packets to the buffer 
• b: represents mean service time needed to transmit a data packet with success including 

retransmission delays 
• σ:  represents server’s rate occupation, it’s equal to λb 
• M2: is the second moment of service time distribution. 
The generator function of delay service defined in (Meraihi, 2005) is noted B(z, L,p,k), (L : 
packet size, p : collision rate and k: backoff stage). This generator function can be defined in 
recursive manner as fellow: 

 ( ) ( ) ( )( ), , , , , 1 * , , ,2xB z L p k T z k L p p B z L p k= − +  (2) 

Tx(z,k,L) is a transmission delay of a data packet (packet size: L). B(z, L, p, 2k) function is 
invoked in case of collision with a probability p. In order to differentiate link’s delays, we 
know that collision rate p is different from one neighbor to another. Thus, collision rate 
becomes a very important parameter for mean delay estimation.  

4.2 Adaptive Routing Module (ARM) 
AMDR uses two kinds of agents: Forward Exploration Packets (FEP) and Backward 
Exploration Packets (BEP).  Routing in AMDR is determined by simple interactions between 
forward and backward exploration agents. Forward agents report network delay conditions 
to the backward ones. ARM consists of three parts: 

4.2.1 Neighborhood discovery 
Each mobile node has to detect the neighbor nodes with which it has a direct link. For this, 
each node broadcasts periodically Hello messages, containing the list of known neighbors and 
their link status. The link status can be either symmetric (if communication is possible in 
both directions) or asymmetric (if communication is possible only in one direction). Thus, 
Hello messages enable each node to detect its one-hop neighbors, as well as its two-hop 
neighbors (the neighbors of its neighbors). The Hello messages are received by all one-hop 
neighbors, but are forwarded only by a set of nodes calculated by an appropriate 
optimization-flooding algorithm.  

4.2.2 Exploration process  
So, FEP agents do not perform any updates of routing tables. They only gather the useful 
information that will be used to generate backward agents. BEP agents update routing 
tables of intermediate nodes using new available mean delay information. New probabilities 
are calculated according to a reinforcement-learning signal. 
Forward agent explores the paths of the network, for the first time in reactive manner, but it 
continues exploration process proactively.  
FEP agents create a probability distribution entry at each node for all its delay-MPR 
neighbours. Backward agents are sent to propagate the information collected by forward 
agents through the network, and to adjust the routing table entries.  Probabilistic routing 
tables are used in AMDR. Each routing table entry has the following form (Fig. 3): 
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Dest (Next1, p1) (Next2, p2) ….. (Nextn, pn) 

Fig. 3. AMDR’s routing table entry. 

When a new traffic arrives at source node s, periodically this node generates a Forward 
Exploration Packet called FEP. The FEP packet is then sent to the destination in broadcast 
manner. Each forward agent packet contains the following informations: Source node address, 
Destination node address, Next hop address, Stack of visiting nodes, Total_Delay.  
If the entry of the current destination does not exist when the forward agent is created, then 
a routing table entry is immediately created. The stack field contains the addresses of nodes 
traversed by forward agent packet and their mean delay. The FEP sending algorithm is the 
following: 
 
Algorithm (Send FEP) 

At Each  T_interval_seconds Do 
Begin 

 Generate a FEP 
 If any entry for this destination Then 

Create an entry with uniform probabilities.  
End If 

Broadcast the FEP 
End 

End (Send FEP)  
 
When a FEP arrives to a node i, it checks if the address of the node i is not equal to the 
destination address contained in the FEP agent then the FEP packet will be forwarded. FEP 
packets are forwarded according to the following algorithm: 
 
Algorithm (Receive FEP) 

If any entry for this destination Then 
Create an entry with uniform probabilities 

Else If  my_adress ≠ dest_adress Then 
If  FEP not already received Then 

Store address of the current node, 
Recover the available mean delay,  
Broadcast FEP, 

Else  
Send BEP 

End If 
End If 

End (forward FEP)  
 
Backward Exploration Packet 
As soon as a forward agent FEP reaches its destination, a backward agent called BEP is 
generated and the forward agent FEP is destroyed. BEP inherits then the stack and the total 
delay information contained in the forward agent. We define five options for our algorithm 
in order to reply to a FEP agent. The algorithm of sending a BEP packet depends on the 
chosen option. The five options considered in our protocol are: 
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Reply to All: for each reception of a FEP packet, the destination node generates a BEP packet 
which retraces the inverse path of the FEP packet. In this case, the delay information is not 
used and the overhead generated is very important.  
Reply to First: Only one BEP agent is generated for a FEP packet. It’s the case of 
instantaneous delay because the first FEP arriving to destination has the best instantaneous 
delay. The mean delay module is not exploited. It’s the same approach used in the AntNet. 
The overhead is reduced but any guarantee to have the best delay paths.  
Reply to N: We define an integer N, stored at each node, while N is positive the destination 
reply by generating a BEP. It is an intermediate solution between Reply to all and Reply to 
First (N=1). The variable N is decremented when a BEP is sent. The overhead is more 
important than The Reply to First option.  
Reply to the Best: We save at each node the information of the best delay called 
Node.Total_delay. When the first FEP arrives to the destination, Node.Total_delay takes the 
value of total delay of the FEP packet. When another FEP arrives, we compare its 
FEP.Total_delay with the Node.Total_delay, and we reply only if the FEP has a delay better or 
equal to the Node.Total_delay. In such manner, we are sure that we adjust routing tables 
according to the best delay. We have a guarantee of the best delay with reduced overhead.  
If the FEP_Total_delay is equal or less than a fixed value D, the BEP is generated and sent to 
the source of the FEP. The algorithm of sending a BEP is the following:    
 
Algorithm (send BEP) 

Select Case Option 
Case: Reply to All 

Genarate BEP 
BEP.Total_Delay=0, 
BEP.dest = FEP.src, 
Send BEP 

Case: Reply to first 
If (First (FEP) ) Then 

Genarate BEP 
BEP.Total_Delay=0, 
BEP.dest = FEP.src, 
 Send BEP 

endIf 
Case: Reply to N 
If (N>0) Then 

Genarate BEP 
BEP.Total_Delay=0, 
BEP.dest = FEP.src, 
Send BEP, 
N=N-1 

endIf 
Case: Reply to Best 
If (FEP.Total_Delay <= Node.Total_Delay) Then 

Genarate BEP 
BEP.Total_Delay=0, 
BEP.dest = FEP.src, 
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Send BEP, 
Node.Total_Delay= FEP.Total_Delay, 

endIf 
Case: Reply to Delay Constraint (D) 
If (FEP.Total_Delayl <= D) Then 

Genarate BEP 
BEP.Total_Delay=0, 
BEP.dest = FEP.src, 
Send BEP, 

End If 
End (Send BEP) 
 
Backward Exploration Packet retraces the inverse path traversed by the FEP packet.  In 
other words, unlike FEP packets, a BEP packet is sent in a unicast manner because it must 
take the same path of its FEP generator. During its trip, the BEP agent calculates the total 
mean delay of its route and uses this new delay to adjust the probabilistic routing table of 
each intermediate node. The algorithm of forwarding BEP agent is the following: 
 
Algorithm (Receive BEP) 

If  (my_address = BEP.dest)  Then 
Update probabilistic routing table 

Else 
Update probabilistic routing table 
Forward BEP 

End If 
End (forward BEP) 

4.3 Reinforcement updating routing tables 
Routing tables are updated when a BEP agent is received. This phase can take many forms, 
and we have chosen updating rules based on (Baras & Mehta, 2003). Since routing table is 
calculated, data packets are then routed according to the highest probabilities in the routing 
tables.  
Unlike on demand routing protocols, there is no guarantee to route all packets on the same 
route due to the proactive exploration. A positive reinforcement r+ will be allotted to node f 
visited by the BEP agent, when a negative reinforcement r- will be allotted to the all 
remaining neighbours called n. Let: 
• pfd, the last probability that node f choose node d as next neighbour.  
• pnd, the last probabilities allotted to the other neighbours (n≠f). 
• r, the reinforcement signal which is computed dynamically according to the delay 

information gathered by the BEP agent.  
We assume that D is the delay and μ it’s mean (first moment). The value of r indicates the 
delay quality and is computed according to the following rules: 

 ( ) f 1
           

1,else
i DD

r
αμα μ <⎧⎪= ⎨

⎪⎩
 (3) 
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α is a parameter of delay quality defining the interval of delays to be considered as good 
ones. We apply a correction strategy on r in order to take into account the reliability of D.  
For example, in the case where α=2, we tend to reinforce more a link when r is less than 0.5, 
by reducing the r value. In the other case (r> 0.5), the link is penalized by increasing the r 
value.  
The value reinforcement signal r+ is a positive reinforcement applied to the current node 
and the punished r- is a negative reinforcement applied to the remaining MPR neighbours. 

 
( ) ( )
( )

1 * 1

1 *

fd

nd

r r p

r r p

+

−

= − −

= − −
 (4) 

BEP makes changes to the probability values at the intermediate and final node according to 
the following update rules: 

 fd fd

nd nd

p p r

p p r

+

−

← +

← −
 (5) 

4.4 Flooding Optimization Algorithm 
To improve AMDR performance, we introduce a new Flooding Optimization Algorithm 
(FOA), in order to reduce the overhead generated by the broadcast process. FOA is a delay 
oriented MPR selection algorithm. Using FOA, we guarantee a reduced overhead generated 
by exploration agents because FEP agents are forwarded, only, by delay-MPR neighbours 
selected by FOA.  
FOA takes into account the mean delay available at each node. The delay-MPR selection is 
inspired by bandwidth-MPR algorithm proposed in [9]. Unlike bandwidth-MPR algorithm, 
FOA defines only one kind of MPRs called delay-MPR. Delay-MPR selection algorithm is 
composed of the following steps: 
1. A node Ni selects, first, all its neighbours that    are the only neighbours of a two hop 

node from Ni. 
2. Sort the remaining one-hop delay neighbours in increasing order of mean delay. 
3. Consider each one-hop neighbour in that order: this neighbour is selected as MPR if it 

covers at least one two-hop neighbour that has not yet been covered by the previous 
MPR. 

4. Mark all the selected node neighbours as covered and repeat step 3 until all two-hop 
neighbours are covered. 

4.5 Performance evaluation 
We use NS-2 simulator to implement and test AMDR protocol. DEM implementation is 
based on three informations: collision probability τ, channel capacity C and traffic rate λ. 
Collision probability is calculated using sequence number of ‘Hello’ messages. 
We present in the rest of this section three scenarios of simulation. In the first scenario, we 
define a static topology of 8 nodes. In order to compare AMDR’s performances to both 
reactive and proactive protocols, we used DOLSR [1] and have extended AODV 
implementation available on NS-2 in order to be delay oriented routing protocol, noted here 
QAODV.  We have chosen AMDR Reply to Best option for comparisons. 
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Fixed Scenario 
The following table summarizes the simulation environment: 
 

Routing QAODV, AMDR, DOLSR 
MAC Layer 802.11 
Bandwidth 11Mb/s 
TERRAIN 1000m,1000m 
Nodes 8 
Simulation time 1000 sec 
Data traffic Exponential 

Table 1. Simulation settings fixed scenario 

At first, in scenario 1, we generate a traffic between nodes ‘0’ and ‘5’. Few times later, we 
add a new traffic between node ‘2’ and node ‘3’.  
In a second scenario, we keep the same configuration and we inject simultaneously a third 
set of traffic between nodes ‘4’ and ‘1’, as showed in figure 4. We compare for each 
simulation the trace files for each routing protocol. 
  

 
Fig. 4. Topology of fixed scenarios 
The comparison of the end-to-end delay realized by QAODV, AMDR and DOLSR protocols 
is shown on figure 5. We can observe that, at first DOLSR realizes best delays when AMDR 
and QAODV show a large initial delay, which is necessary for routes to be set up. After 
initialisation stage, AMDR shows more adaptation to changes in the network load. It 
realizes the best end-to-end delay followed by QAODV and at last DOLSR. 
 

         
Fig. 5. Packets delay comparison in fixed scenarios (scenario1 & 2) 

On the other hand, comparing loss rate performances of the three protocols shows in figure 
6, that DOLSR realizes the best performances followed by AMDR and then QAODV.  
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AMDR performance is justified by keeping alternative paths used when the actual path is 
broken. Any additional delay is need to route waiting traffics and deliverance ratio is well 
improved than QAODV. In term of generated overhead, DOLSR was the most important 
followed by AMDR and QAODV. We explain this by the proactive exploration process used 
by AMDR, even a route is already established. The difference between overhead of AMDR 
and QAODV is not very important due to the flooding optimization mechanism used in 
AMDR. 
 

 
Fig. 6. Loss rate comparison in fixed scenario  
Mobility scenario 
We study now mobility impact on AMDR and compare its performances with DOLSR and 
QAODV. We define a random topology of 50 nodes. Table 2 summarizes the simulation 
setting parameters. We started with a low traffic rate and increase it periodically. After each 
simulation, we calculate the end-to-end delay realized by each protocol. 
 

Traffic model Exponential 
Surface of simulation 1000m,1000m 
Packets size  512 byte 
Bandwidth  1Mbs 
Mobility rate 5m /s , 10m/s 
Number of connections 5, 10, 15, 20, 25 
Packets rate 5 packets/s 
Simulation duration  500 s 

Table 2. Simulation settings scenario 2 
Figure 7 summarizes our comparison. We can observe that in low load conditions, there is 
no difference in end-to-end delays. However, more the network is loaded more AMDR is 
better in term of delay. Such performance is justified by the easier adaptation of AMDR to 
changes in the network load. 
 

 
Fig. 7.a Packets delay comparison for low mobility scenario 
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Fig. 7.b Packets delay comparison for high mobility scenario 
Comparing loss rate performance between QAODV, AMDR and DOLSR, shows in figure 8 
that both AMDR and DOLSR have, in a low loaded network, the same performance when 
QAODV realises the best performance.  
However, in a high loaded network (case of 20 or 25 connections), QAODV becomes less 
good than AMDR and DOLSR. We justify such results by the adaptation of AMDR to load 
changes when AODV needs more route request function. We can also observe from mobility 
scenarios that in high mobility rate conditions, AMDR becomes more interesting than 
DOLSR and QAODV. 
 

 
Fig. 8.a Loss rate comparison for low mobility scenario 

 

 
Fig. 8.b Loss rate comparison for high mobility scenario 

5. EDAR protocol : Energy and Delay efficient Adaptive Routing protocol 
EDAR is our second proposal in this chapter. EDAR is based on adaptive approaches; its 
objective is to find the best path in terms of energy consumed and end-to-end delay. It 
assumes that at each node, information about the residual energy, the energy consumed and 
the average delay links are available even before the route is requested. We assume that 
these estimates are made during the discovery of neighbors by an external mechanism 
independent of routing process.  
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Our proposal is also considered as a hybrid protocol; it combines the concept of on-demand 
route search, and the proactive exploration concept. This joint mechanism in the exploration 
phase allows to EDAR to find alternative routes missed in the first phase. For this, EDAR is 
based on two explorer agents: Int-E-Route (Interest Exploration Route) and Resp-E-Route 
(Response Exploration Route). The first one, generated at the sink when this one demands a 
request, is available in the network to find routes to the source node. To limit overhead 
generated by route discovery, we use an optimized distribution mechanism based on Multi 
Point Relay (MPR) OLSR protocol (Nguyen & Minet, 2007).  
Of these two explorer agents, one is sent by the sink to a node, and the other is sent by the 
node in response to the first one. The arrival of an Int-E-Route agent to the source node 
initiates the creation of the second agent, Resp-E-Route. This latter takes the reverse path 
followed by the first Int-E-Route agent. 

5.1 EDAR’s agents 
5.1.1 Int-E-Route agent 
We use the mechanism of periodic “Hello” messages to discover neighbors. Each node 
broadcasts Hello messages, containing a list of its neighbors and the links state with its 
symmetrical neighbors, asymmetrical or lost. “Hello” messages are received by its one-hop 
neighbors and will not be relayed; each node is able to know its one- and two-hop 
neighbors. A message is sent in broadcast and will not be relayed (the distribution is local).  
This latter is composed by: (1) a list of addresses of its symmetrical neighbors, and (2) a list 
of addresses of its asymmetrical neighbors. There is a neighbor table in each node of the 
network. Fig. 9 describes the content of this table.  
 

 
Fig. 9. EDAR’s Neighbors table. 

When a “Hello” message is received by a neighbor, if a node finds its own address in the 
asymmetrical list, then it declares that this link is valid. A node is considered as a neighbor if 
and only if the collision rate of “Hello” packets sent to it, is below a certain threshold fixed 
initially.  
Whenever Int-E-Route gets through an intermediate node, it retrieves its address and the 
information of its residual energy, energy consumed on the link and the average delay. Int-
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E-Route packets are sent periodically as the route to this node is requested. This period is 
defined by the exploration interval which is calculated by simulation (for our scenarios, this 
value started with 10 seconds). Thus, at each iteration, a new packet Int-E-Route with a new 
sequence number is created and sent in the same manner as the first Int-E-route. 
This agent is sent in broadcast to all one-hop neighbors nodes. To reduce the overhead 
generated by route exploration, only MPRE nodes will be allowed to relay this packet.  
Int-E-Route recovers energy consumed and delay with its neighbors and stores it in its 
memory. The sequence number of the packet does not change. This process continues until 
Int-E-Route arrives to the source node. 
The cost of the path from the source to sink is calculated as follows. 
Let the minimal residual energy of each node be a parameter fixed beforehand (it 
corresponds to the energy required to send a fixed volume of information): 

 rE ε≥  (6) 

where Er represents the residual energy and  the threshold of minimum energy for all active 
nodes before sending all data. 
The cost of a node i for a link between nodes i and j is computed as: 

 Cost of node Cost of link
i

j j j j
i i iCQE QDγ θ= = +  (7) 

where: 

 cost
1

=
K

j j
j

f h C
=
∑  (8)  

• cQE  is the cost of energy consumed on link (i, j), 
• QD represents the cost of mean delay on link (i, j),   
• γ and θ are tuneable parameters, with γ θ  to give more importance to the energy 

metric. 
The cost function can be completed as the cost of path as follows:  
C is a scalable vector for QoS metrics, and K represents the number of QoS criteria 
considered in the routing process.  
The cost of the whole path constructed with N nodes between the source node and the sink 
is: 

 
1 1

1 1
Cost of path = 

i

N N

C i
i i

QE QDγ θ
− −

= =
+∑ ∑  (9) 

5.1.2 EDAR’s exploration mechanism 
In our EDAR proposal, we used the same mechanism as OLSR (Nguyen & Minet, 2007by 
replacing the cost function by the energy cost stored in the neighbors table (fig. 9). So, the 
choice of MPRE for each node will be based on the links that offer the best cost estimated 
locally. The algorithm for selecting MPRE should be summarized as follows:  
• Each node Ni of the network as MPRE chooses among its neighbors for one-hop, all the 

nodes up to a neighbor with two-hops.  
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• Each node selects as MPRE node that has the best link cost. In the case of equality 
between two nodes, the one that covers more than two-hop neighbors is chosen. This 
step is repeated until all neighbors at two hops are covered. 

5.1.3 EDAR’s Resp-E-Route agent 
Agent Resp-E-Route updates routing tables based on information in the neighbors tables over 
all nodes crossed. This update consists of readjustment of link costs associated with each 
entry in routing table and generated by source node upon reception of Int-E-Route packet. It 
retrieves all information gathered by the packet Int-E-Route at the sink. The Packet Resp-E-
Route is sent in unicast mode and takes the opposite route borrowed by the packet Int-E-
Route. The source node generates packets Resp-E-Route on the basis of information on total 
cost of path followed by the packets Int-E-Route. When the arrival of the first packet Int-E-
Route to source node is happen, the variable “best cost path” is used to store the cost of the 
path. At each arrival Int-E-Route packet to the source node, the cost of path calculated for 
this route is compared with the lowest cost path saved in the variable “best cost route”. If 
there is a better path, the traffic will switch to this one. Each Resp-E-Route packet retraces 
exactly the same path taken by the Int-E-route packet which is at the origin of the path. At 
each passage trough the intermediate node, it compares its address with the destination 
address of sink Resp-E-Route packet to verify if it reaches the destination. 

5.1.4 EDAR’s updating and calculating routing table 
Routing process consist to find the path with minimum cost in order to minimize 
simultaneously node energy consumed on all paths and the end-to-end delay between sink 
and source node. The fundamental problem is to update the link cost; the algorithm that we 
propose is adaptive and is based on routing tables maintained at each node. When a route is 
requested, the node controls its routing table if there is an entry that corresponds to 
requested node. If no entry appears for that node, the node creates an entry and initializes 
the cost of links; evenly distributed over all its neighbors MPRE.  
These costs are updated during transition from the agent Resp-E-Route based on information 
of links cost retrieved by visiting all nodes on the route. The link costs are updated as 
follows: 

 j j
ci iCost of node Cost of link QE QDγ θ= = +  (10) 

The new costs at ( )t tδ+  in the node i on the link (i, j) is: 
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and 
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Where: 
( )

i

j
cE t : Energy consumption in the node i on the link (i, j) at a time t. 
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( )
i

j
cD t : Link delay in the node i on the link (i, j) at a time t. 

We refresh then the new cost of the path based on equation (4) and continues iteratively the 
update process. 
Finally, the variable “Best cost route” is updated as follow: 

 
1 1

1 1
Best cost route = Max 
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N N

c i
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5.2 Performance evaluation 
This section first describes our simulation setup and the metrics we used to evaluate EDAR. 
Then, it presents the results obtained under three scenarios designed to compare EDAR with 
three other protocols (section 2):  QoS_AODV, SAR and EAR. In the case of QoS_AODV, we 
have modified the original algorithm in order to use the energy metric for the choice of the 
paths. Our extension takes into account the end-to-end delay and replaces the bandwidth 
metric with the energy consumed along the path.  

5.2.1 Simulation setup and metrics  
We use NS-2 for our simulations. We randomly distribute 100 nodes on a 200x200m area. 
The nodes send 35 bytes messages at a maximum of 200 kbps.  The initial energy for each 
node is 5J. For each scenario, we run 10 simulations with a topology chosen at random. Each 
run lasts 300 seconds. Finally, we set γ to 0.75 and θ to 0.25, to give more importance to the 
energy metric.  
For the evaluation, we stress the four protocols (QoS_AODV, SAR and EAR and EDAR) by 
varying mobility network conditions. Varying each network parameter allows to study a 
different feature of the routing algorithms. Highly mobile nodes will test the algorithm’s 
ability to quickly detect route failures and establish new ones. For each mobility scenario, 
we increase one of these network parameters to force network congestion and energy 
starvation. We expect that the different protocols will react and behave differently to protect 
the network’s lifetime, while guaranteeing  a good QoS.  
To this end, we are interested in three metrics to evaluate EDAR and compare it to the other 
protocols. These metrics were carefully chosen in order to give a broad idea of the 
improvements achieved by our protocol:  
• The Energy consumption represents the energy (in mJ) spent by the nodes to route the 

packets to the sink. It includes both data packets and signalling packet. Energy 
consumption has a direct impact on the lifetime of a sensor network.  

• The End-to-end delay is the time for a packet to reach the sink. It includes the time spent 
to discover the routes, as well as the time spent in the nodes queues and in the air. This 
metric represents the global response time of the network, and depends on the protocol 
efficiency is terms of the number of congested nodes and stability.  

• The Delivery rate is the number of lost packets divided by the number of packets sent. 
This metric represents the reliability of the protocol in terms of packet delivery.  

5.2.2 Results  
Our study concerns the evaluation of the protocols for an increasing mobility of the 
deployed sensors. The first case shows the protocol’s behaviour when nodes are completely 
static (0 m/s), and we consider extreme cases where nodes move at up to 30 m/s.  
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Fig. 9.  Mean delay for various mobility patterns 
Fig. 9 plots the mean end-to-end delay achieved by all four protocols under various speeds 
of the nodes. In the case of a static topology, the results for all protocols are quite similar. 
However, increasing the mobility reveals a clear difference in the protocols’ efficiency. The 
plot indicates that, for speeds above 5 m/s, the performances of Qos_AODV and SAR 
degrade quickly (the delay increases from 2000 to 5000 ms), while EAR and EDAR keep 
delivering packets on a reasonable delay, for a speed up to 10 ms/s. Still, our protocol resists 
better to increasingly harder conditions.   
 

         
Fig. 10. Mean energy consumption for various mobility patterns 
 

        
Fig. 11. Mean delivery rate for various mobility patterns 
When nodes are mobile, topology changes are frequent. These changes cause a frequent loss 
of the currently selected best paths, therefore triggering route discovery phases more 
frequently. Discovery phases generate additional control traffic, consuming more energy 
and bandwidth. As a result, resources for data traffic are reduced, and the nodes quickly 
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consume their energy. To study this effect, Fig. 10 plots the energy consumption when 
nodes move at various speeds. The dynamics clearly have less impact on EDAR, which 
takes advantage of its improved reactive capabilities when compared to the other protocols. 
Indeed, the choice of both energy-saving and low delay nodes dramatically reduces the 
energy consumption. Routing tables are probabilistic in EDAR; several paths may be 
selected to reach a destination. Therefore, if a node’s neighbours change, the mechanism of 
adjusting probabilities can be adapted almost instantly to degradation performance on the 
selected path. Furthermore, nodes mobility can lead to the creation of new routes involving 
nodes with a high residual energy. EDAR quickly detects and selects these high quality 
nodes, thus allowing it to resist more efficiently to frequent route changes. 
Finally, Fig.11 considers the mean delivery rate achieved when the mobility increases. 
Under a static scenario, all protocols achieve a very good delivery rate, EDAR being the only 
one higher than 90%. As expected, the delivery rate dramatically decreases with an 
increasing mobility, but the decrease is less significant for adaptive protocols, especially for 
EDAR. For a speed of 10 m/s, EDAR still achieves a delivery rate greater than 60%, while 
SAR and Qos_AODV are well below 50%. Packet losses occur more frequently as the 
network dynamicity increases, because routing protocols have to face the problem of 
recomputing new routes all the time. During this phase, no routes are known to reach the 
destination, and the nodes have no choice but dropping the packets. However, thanks to 
EDAR’s exploration process and its probabilistic nature, it is able to quickly reallocate a new 
route, thus decreasing the time when no route is available.  

6. Conclusion 
QoS management in networking has been a topic of extensive research in a last decade. As 
the Internet network is managed on a best effort packet routing, QoS assurance has always 
been an open issue. Because the majority of past Internet applications (email, web browsing, 
etc.) do not used strong QoS needs, this issue is somewhat made less urgent in the past. 
Today, with the development of network real-time application and the convergence of voice 
and data over heterogeneous networks, it is necessary to develop a high quality control 
mechanism to check the network traffic load and ensure QoS requirements. Constraints 
imposed by QoS requirements, such as bandwidth, delay, or loss, are referred to as QoS 
constraints, and the associated routing is referred to as QoS routing which is a part of 
Constrained-Based Routing (CBR). Therefore, with the wide emergence of real time 
applications in mobile and sensor networks, QoS guarantees become increasingly required. 
Therefore, protocols designed for MANETs and WSNs should be involved in satisfying 
application requirements while optimizing network resources use. A considerable amount 
of research has been done recently in order to ensure QoS routing in mobile ad hoc 
networks. Several multi-hop routing protocols have been developed. In addition to 
proactive, reactive and hybrid approaches, often used by the most known routing protocols, 
adaptive routing protocols which are by nature oriented QoS have already proved their 
success in wired networks. They are based on reinforcement learning mechanisms and 
mainly built around exploration agents having for task to discover routes and gather 
information about the state of visited links. However, for a network node to be able to make 
an optimal routing decision, according to relevant performance criteria, it requires not only 
up-to-date and complete knowledge of the state of the entire network but also an accurate 
prediction of the network dynamics during propagation of the message through the 
network. This problem is naturally formulated as a dynamic programming problem, which, 
however, is too complex to be solved exactly. Reinforcement learning (RL) is used to 
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approximate the value function of dynamic programming. In these algorithms, the 
environment is modeled as stochastic, so routing algorithms can take into account the 
dynamics of the network. However no model of dynamics is assumed to be given.  
In this chapter, we have focused in first part our attention in some special kind of 
Constrained Based Routing in mobile networks which we called Q○S self-optimization 
Routing. It is shown from simulation results that combining proactive exploration agents 
with the on-demand route discovery mechanism, our AMDR routing protocol would give 
reduced end-to-end delay and route discovery latency with high connectivity. This is 
ensured due to the availability of alternative routes in our algorithm. The alone case where 
our approach can provide more important delay is the first connection where any route is 
yet established. On the other hand, the use of delay-MPR mechanism, guarantees that the 
overhead generated will be reduced. From simulation results we can estimate that AMDR 
realizes best performance than adaptive routing protocols based on swarm intelligence 
using instantaneous delay. 
Secondary, we study the use of reinforcement leaning in EDAR protocol in the case of 
Wireless Sensor Networks. We presented a new way to make adaptive routing with quality 
of service in order to improve the end-to-end delay and increase the lifetime of a delay 
tolerant network. Our protocol, called EDAR, explores the network and chooses the best 
path routing in terms of energy and delay to route information based on reinforcement 
learning paradigm. For that, an explorer agent is used and learns from past experiences to 
choose the next path; data is always sent over the best path. Our approach offers advantages 
compared with other classical approaches. In particular, it reduces much better the energy 
consumed required for information sent, updates routing and network exploration more 
reactively. The proposed algorithm takes into account the network state in a better way than 
the classical approaches do. Also, our protocol is well-suited for a dynamic mobile 
environment., especially in Delay Tolerant Networks.  
Finally, extensions of the framework for using these techniques across hybrid networks to 
achieve end-to-end QoS needs to be investigated, in particular on large scalable networks. 
Another challenging area concerns the composite metric used in routing packets (especially 
residual bandwidth) which is so complex and the conditioning of different models in order 
to take into account other parameters like the information type of each flow packet (real-
time, VBR, …).  
In Final, we show in this chapter that an adaptive algorithm based on RL that 
simultaneously processes an observation and learns to perform better is a good way to 
consider time evolving networks. Such adaptive algorithms are very useful in tracking a 
phenomenon that evolves over time. 
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1. Introduction    
With the rapid development of the information techniques and Internet, and their popular 
application, the research results based on CSCW became the key techniques to build the 
enterprise information infrastructure (Raybourn & Newman, 2002).The computer based 
on cooperative work environments is playing the more and more important role in the 
business behavior of the enterprise today. Especially, the CSCW contains a lot of 
computation-intensive tasks and they need to be processed in some high performance 
computes. On the other hand, Intranet is more and more extended and a great number of 
cheap personal computers are distributed everywhere, but the utilization rate of their 
resources is very low. The researches of papers (Markatos & Dramitions, 1996) 
(Acharya&Setia, 1998) point out that many resources are idle in most network 
environments at a certain time. Even it is the busiest time of a day, still one third of their 
workstations aren’t used completely. So, the paper (Chen & Na, 2006) proposed a 
framework which is how to collect and use the idle computing resources of CSCW 
environment that composed of multi-clusters connected by Intranet. It uses the idle 
computing resources in CSCW environment to construct a Visual Computational System 
(VCE). VCE can support two kinds of migration computations: (1) the Serial Task based 
on Migration (STM); (2) the Task based on Data Parallel Computation (TDPC). For 
adapting these heterogeneous and dynamic environments, we use the Grid (Foster & 
Kesselman, 1999) techniques and multi-agent (Osawa, 1993) (Wooldridge, 2002) 
techniques, and collect the idle resources of CSCW environment to construct multi-cluster 
grid (MCG). Because the migration of computing task and the dynamic changes of the idle 
resources in MCG, the intelligence of computing agents for raising the utilization rate of 
idle resource becomes very important. So, the effective learning model of agents is the key 
technique in multi-cluster grid. There are a lot of researches about agent learning 
(Kaelbling et al., 1996)( Sutton, 1988)( Watkins & Dayan,1992)( Rummery&Niranjan, 
1994)( Horiuchi&Katai, 1999) nowadays. It includes two aspects: passive learning and 
active learning. The main theory of active learning is the reinforcement learning. At the 
same time, the agent organization learning (Zambonelli et al., 2000) (Zambonelli et al., 
2001) model become another focus. The problem of distributed and cooperative multi-
agent learning is studied through complex fuzzy theory in the paper (Berenji&Vengerov, 
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2000). But all these methods can’t satisfy the need of dynamic multi-cluster grid. 
Especially, owing to the migration of the cooperative computing team, which is a group of 
cooperative computing agent to support data parallel computing, and the dynamic 
changes of grid idle resources, the cooperative learning model is very important for 
cooperative computing. 
This chapter proposed a cooperative learning model of agents in multi-cluster grid that is 
composed of many computer-clusters connected by Intranet. By using the idle resource state 
of computer and the cooperative idle resource state, the state space is constructed; by using 
the sub-actions, the action space is built; through the state space and the action space, we 
construct dynamic rule space; through the reinforcement learning, the dynamic rule is 
revised. This model can support the grid computing and pervasive computing based on 
task-migratory mechanism, and it can fit the heterogeneous and dynamic network 
Environment. The experimental results show that this model can increase the percentage of 
the resources utilization in CSCW environment. 

2. VCE 
We collect and use the idle computing resources of CSCW environment to construct a Visual 
Computational System (VCE).There are two kinds of migration computations in VCE. The 
first is STM (Serial Task based on Migration). This kind of the task is the traditional serial 
task, and its description is based on the task packet. By delivering the task packet in CSCW 
environment, the task is executed by the computational service agents running on many idle 
computers in CSCW. The computational process is that the task packet is migrated for 
executing. The second is TDPC (the Task based on Data Parallel Computation). Making use 
of the overlapped size of segments of idle time of some computers in CSCW networks, we 
cluster these computers to become some Logical Computer Clusters (LCC), and each LCC is 
composed of the computers whose segments of the idle time are homology. So TDPC is the 
task running on LCC of CSCW environment. 
In order to support the migration computations of VCE, a Grid Computation Environment 
was designed and implemented. It includes six parts and the architecture is presented as 
Figure 1.  
CSCW is the traditional cooperative design system. Grid Computation Environment only 
concerns the Role Space (RS) and the Work Flow Space (WFS) of CSCW. PCE (Physical 
Computational Environment) is the physical computational environment of CSCW, and it is 
composed of many computer clusters connected by Internet or Intranet. PCE is the physical 
basis of CSCW, SDS, VCE and MAS. The single computational node (SC) and logical 
computer cluster (LCC) compose VCE which support STM and TDPC, and SC and LCC are 
called computational component (CC). The core of Grid Computation Environment is MAS 
(Multi-Agent System) which is composed of multi-Agents system.MAS can manage the Grid 
resources, do match works between the two kinds of the migration computations and 
computational component of VCE and execute computation. As we can see from Figure 1, 
MAS include four sub-systems, which are TAS (Task Agent System), SAS (Service Agent 
System), RAS (Resource Agent System) and MCAS (Matching Agent System). The four 
agent sub-systems of MAS communicate with each other by four shared data tables, and 
these tables are the task table (TT), the Service Table (ST), the Resource Management Table 
(RMT), and the Running Service Table (RST).TT is the set of all computing tasks whose state 
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is “Committed”. ST is the set of all computational services. RMT is the set of all 
computational components of VCE. RST is the set of all binding elements, and a binding 
element is a binding relation among the computing tasks, the computational services and 
the computational components.TAS receives the computing tasks from the users of RS and 
commits them to the table TT, and then monitors their states. When the computing tasks 
were “Completed”, TAS delivers their results to the original user or WFS.SAS receives the 
computational services from the users of RS, then SAS checks up their legitimacy and 
register them to ST, and saves their service code to SDS. SDS can store the data of Grid 
Computation Environment and all computational classes. The MCAS, whose function is the 
match work between the migration computations and the computational components, runs 
on the Master of Grid Computation Environment.The main functions of RAS are the 
computational resources management, VCE monitor and the task scheduler. Master is a 
special computer, and it controls Grid Computation Environment. 
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Fig. 1. Architecture of Grid Computation Environment 
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3. Architecture of MCG 
In order to simplify the problem, we construct MCG (Multi-cluster grid) which is the 
simplification of Grid Computation Environment. MCG is composed of the idle computing 
resources of CSCW environment and support the computation-intensive tasks of CSCW. 
The Computation-Intensive Task needs very long time to run, and also needs high 
performance computer to support, such as the finite element analysis. For the description of 
learning model, we introduce some definitions: 
Computing Node (CN) is defined as CN (id, CT, Am, AS), where id denotes the identifier of 
CN; CT denotes the type of computing node; Am denotes the main control agent of CN; AS is 
the set of agents running on CN. 
Computer cluster (CC) is defined as CC (Ma, CS), where Ma denotes the main computer of 
CC; CS= {CN1, CN2…CNp} denotes the set of all computing nodes which CC includes;  
Computing Agent (CA) is defined as CA (id, PRG, BDI, KS, CE), where id denotes the 
identifier of CA; PRG denotes the executable program set of CA; BDI is the description of its 
BDI; KS is its knowledge set; CE is its configuration environment. 
CA is the basic element of executing computation task and support STM. If CA could 
complete the task independently, we call it the independent computing agent (ICA). If CA 
couldn’t complete the task independently, and it must cooperate with others, we call it the 
cooperative computing agent (CCA). 
Cooperation Computing Team (CCT) is defined as CCT (id, Am, CAS, BDI, CKS, CCE), 
where id denotes the identifier of CCT; Am denotes the main control agent of CCT; CAS 
denotes the set of all cooperative computing agents which CCT includes; BDI is the 
description of its BDI; CKS is its knowledge set. CCE is its configuration environment. CCT 
can support the TDPC in the logical computer cluster. 
Global Computing Group (GCG) is defined as GCG (id, Am, ICAS, CCTS, GKS, GCE), 
where id denotes the identifier of GCG; Am denotes the main control agent of GCG; ICAS 
denotes the set of ICA which GCG includes; CCTS denotes the set of CCT which GCG 
includes; GKS is its knowledge set. GCE is its configuration environment. 
Multi-cluster grid (MCG) is defined as MCG (Ma, CCS, N,R, GCG), where Ma denotes the 
main computer of MCG; CCS denotes the set of all computer clusters which MCG includes; 
N is the connection network set of MCG; R is the rules of connections; GCG is the global 
computing group.  
Many tasks are executed together in GCG during the same time, and the tasks are calculated 
by a lot of ICAs or CCTs.   

4. Rule descriptions 
For the description of learning model, we introduce some definitions at first, and then 
described the organization method for the multi-agent rules. 
A basic Rule (br) is defined as br (id, rul, MRS), where id denotes its identifier; rul denotes 
the formalization description of br; MRS denotes the meta-rule set for revising br. 
Basic Rule Set (BRS) is the set of all the basic rules which GCG includes. 
The state information in MCG can be decided by the scale of its idle computing resource, the 
computing task information, and the shared resource information. The state conception is 
described as follows: 
A state (st) is defined as st (id, sort, CSET), where id denotes the state identifier; sort denotes 
the sort of this state; CSET= (c1,c2…ck) denotes its condition vector. The number of the 
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condition elements which condition vector includes is k, and all states of the same sort have 
the same value of k. If the condition vector of a state only includes single computing node 
information, this state can be called the independent state; if the condition vector of a state 
includes the complex information about many computing nodes, shared network, etc., this 
state can be called the cooperative state. All states in MCG formed the state space (SSP). 
An action (Ac) is defined as ac (id, µ, AcDes, Revis), where id denotes the action identifier; 
AcDes denotes the formalization description for this action. Revis is the set of revised 
strategies. 
A sub-Action of ac can be defined as ac (id, µ, AcDes(µ), Revis), where id denotes the action 
identifier; µ is a decimal and 0<µ<1, and µ denotes the sub-action factor; AcDes(µ) denotes 
the formalization description for this sub-action. Revis is the set of revised strategies that 
make AcDes become stronger or weaker through the factor µ, and the revised result is 
AcDes(µ). So, a sub-action can be generated based on its father action ac and can be presented 
as ac (µ). All actions and their all sub-actions in MCG formed the action space (ASP). 
Dynamic Rule (dr) is defined as dr(id ,st, ac, br, w, sta, life), where id denotes the rule 
identifier; st∈ SSP, ac∈ASP, br∈ BRS; sta is the state of dr, and sta∈ {“Naive”, “Trainable”, 
“Stable”}; “Naive” denotes that the dr is a new rule; “Trainable” denotes that the dr is revised 
rule; “Stable” denotes that the dr is a mature rule; w denotes the weight value of dr; life 
denotes the value of its life. The dr means that if the state is st then do sub-action ac (µ).If the 
state of dr is independent state, the dr is called the independent rule; if the state of dr is 
cooperative state, the dr is called the cooperative rule. The formed process of the dynamic rule 
and the relations between st, ac and dr are presented in Figure 2. All the rules in MCG 
formed the rule space (RSP). RSP, ASP and SSP formed GKS of GCG. 
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Fig. 2. The relations between st, ac and dr 
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If dr is a dynamic rule and dr.w>MaxWeight, and MaxWeight is a constant in MCG, we call dr 
the static rule (sr). Its state is “Static”. 
If dr is a dynamic rule and dr.w<MinWeight, and MinWeight is a constant in MCG, we call dr 
the castoff rule (cr). Its state is “Castoff”. 
The state graph of rules is presented in Figure 3. 
The dynamic knowledge is the set of all the dynamic rules in MCG. The static knowledge is 
the set of all the static rules in MCG. The basic knowledge can be formed by passive 
learning. For adjusting the dynamic knowledge established by the basic knowledge, we can 
revise them through the reinforcement learning and the multi-agent cooperation during the 
computing process. 
Task (TSK) is defined as TSK (id, DAT, AS), where id denotes the identifier of TSK; DAT 
denotes the data set; AS is the set of agents which execute TSK. 
 

Dynamic Rule

Basic Rule

Static Rule 

Naive
Stable

Trainable

Castoff 
Rule 

MRS

 
Fig. 3. State graph of rules 

5. Description of learning model 
5.1 Initialization of knowledge 
Algorithm1 (Initialization of basic rules)  
(1)The users construct the BRS through MRS and initialize the state space SSP; 
(2)Construct the initialization action space ASP: 

Decide the action set TMP by users; 
Set ASP=φ; 
While TMP≠φ Do 
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Get an action ac from TMP; 
Set µ=1; 
Construct the AcDes and Revis for ac by users; 
Set AcDes(µ) =AcDes; 
Construct the sub-action ac (µ); 
ASP=ASP+ {ac (µ)}; 
TMP=TMP-{ac}; 

End while; 
(3)Construct the initialization rule space RSP: 

TMP=SSP;  
RSP=φ; 
While TMP≠φ Do 

Get a state st from TMP; 
Choose a sub-action ac (µ) from RSP through the st.sort by users; 
Construct a new dynamic rule dr: 

{dr.st=st; 
dr.ac=ac (µ); 
dr.w=0; 
dr.sta=“Naive”; 
dr.life=0; 
} 

Add the dr to RSP; 
TMP=TMP-{st}; 

End while; 
(4)Output RSP, ASP and SSP; 
(5)End. 

For fitting the variety of computing device resources, the dynamic rules must be generated 
and the process is described as follows: 

Algorithm2 (Generation of dynamic rules)  
Input: a new state st (id, sort, CSET), RSP, ASP and SSP; 
Output: the new RSP, SSP and ASP;  
(1)Get the sort of st and save it to TmpSort;  
(2)Get all states with the same sort of TmpSort from SSP, and form the state set SubSSP; 
(3)Construct condition relation matrix: 

Suppose that TmpSort sort state has k conditions, and the number of the elements in 
SubSSP is m; these condition vectors are (c11, c12…c1k), (c21,c22…c2k)… (cm1,cm2…cmk) and 
the condition vector of st is (cm+1,1,cm+1,2…cm+1,k); All cij(1≤i≤m+1, 1≤j≤k) are integer and 
can be defined by real applications; 
Construct a (m+1) xk matrix CM= {cij| (1≤i≤m+1, 1≤j≤k)} by using all condition vectors 
of states in SubSSP; 

(4)Construct the fuzzy matrix FM= { fij| (1≤i≤m+1, 1≤j≤m+1)}, where 
fii=1; 
fij=1-β（w1| ri1 – rj1|+w2| ri2 – rj2|+…+wk|rik – rjk|）， 
when i≠j, 0＜β＜1, w1+ w2+ …+wk=1, and wl>0 (1≤l≤k); 

(5)Construct the fuzzy equivalence matrix (please refer the document (Zadeh, 1975)): 
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Repeat do   
FT=FM: FM; //:  is the operation theorem to take the maximum and minimum. 
If FT=FM, then go to (4); 
FM=FT; 

End repeat; 
(6)Calculate the th-cut matrix FMth according to the threshold th , and th∈  [0, Z1] or th∈  
[Z1, Z2] or th∈  [Z2, Z3] or th∈  [Z3,1],0≤Z1≤Z2≤Z3≤1,where Z3 is the minimum of the 
effective threshold, Z2 is the minimum of the average threshold, Z1 is the minimum of the 
artificial threshold; (Refer to step (9)) 
(7)Divide the FM into several equivalent classes SFM1∪ SFM2∪ …SFMe according to FMth; 
The element number of every equivalent class must be greater than 1, and it can decrease 
the value of th; 
(8)Choose the equivalent class SFM that includes the condition of st; 

Form the candidate rule set CRSET from RSP through SFM; 
(9)/*effective threshold*/ 
{ 
If th∈  [Z3,1], then  

{Get the dynamic rule dr which has the maximum weight in CRSET; 
Construct a new dynamic rule ndr through st and dr;  
RSP=RSP+ {ndr}; 
SSP=SSP+ {st} 
 }; 

/*average threshold*/ 
If th∈ [Z2, Z3), then  

{Calculate the avm=average (dr.µ| dr∈CRSET); 
Search a dynamic rule sdr which satisfies |avm-sdr.µ| ≤ε (sdr∈CRSET and 0≤ε≤1); 
If sdr existed, then 

Construct a new dynamic rule ndr according to st and sdr;  
Else 
{Build a new sub-action nac(µ)according to ac, avm and Revis, Where µ=avm; 
Construct a new dynamic rule ndr according to st and nac(µ); 
} 

RSP=RSP+ {ndr}; 
SSP=SSP+ {st}; 
ASP=ASP+ {nac (µ)}  
}; 

/*artificial threshold*/ 
If th∈ [Z1, Z2) or th∈ [0, Z1), then  

{Calculate the avm=average (dr.µ| dr∈CRSET); 
Build a new sub-action nac(µ) through ac and avm by users, Where µ=avm;   
Construct a new dynamic rule ndr through st and nac(µ);  
}; 

RSP=RSP+ {ndr}; 
SSP=SSP+ {st}; 
ASP=ASP+ {nac(µ)}; 
}. 
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5.2 Life and weight of dynamic rule 
According to the algorithm2, the dynamic rule is constructed, and it must be adjusted when 
the TSK is calculated. The adjusting mechanism can adopt the reinforcement learning, and 
the resources utilization rate of TSK can be considered as the reinforcement function. 
Algorithm3 (Adjusting weight and life for rules) 
Suppose that Y1 is the castoff threshold, and Y2 is the mature threshold; Q(urt) is the 
reinforcement function and Q(urt)>0, and urt is the resources utilization rate; MaxWeight is the 
maximum of the rule weight, and MinWeight is the minimum of the rule weight, and let 
MinWeight<Y1<Y2<MaxWeight; MaxLife is the maximum of life value. 
(1)Suppose that a computing agent CA adopted a dynamic rule dr of CA.KS;  
dr.life+ +; /* increase the value of life */ 
Wait for the urt from the computing system; 
(2)If urt>0, then 
dr.w=dr.w+ Q(urt); /*increase weight*/ 
If urt<0, then 

dr.w=dr.w-Q(urt); /*decrease weight*/ 
(3)If dr.w>MaxWeight, then 
dr.w=MaxWeight;  
If dr.w<MinWeight, then 

dr.w=MinWeight; 
(4)If dr.w<Y1 and dr.life>MaxLife, then 

dr.sta= “Castoff”; /*Castoff rule */ 
(5)If Y2<dr.w<MaxWeight, then 

dr.sta=“Stable”; /*Stable rule */ 
(6)If dr.w>= MaxWeight, then 

dr.sta= “Static”; /*Static rule */ 
(7)If Y1<dr.w<Y2, then 

dr.sta= “Trainable”; /*Trainable rule */ 
(8)If  MinWeight<dr.w<Y1, then 

dr.sta=“Naive”; /*Naive rule */ 
(9)End.   

When the learning and executing process runs for a long time, the dynamic knowledge is 
excessive and it will reduce the searching efficiency. So, it needs the artificial adjustment for 
dynamic knowledge to reduce the number of the rules. The process is omitted. 
The dynamic cooperation knowledge of CCT usually uses shared resources, such as the 
network bandwidth, so the value of urt is the average resources utilization rate of CCT.  

5.3 Learning in migration process 
In order to persist and improve the global knowledge in MCG , the main control agents Am 
in CN, CCT and GCG get the shared organization knowledge through the organization 
learning (Zambonelli et al., 2000)(Zambonelli et al., 2001). Owing to the agent migration in 
MCG, the running environments of ICA and CCT are in the dynamic change. For fitting the 
change, the migration learning of the organization is very important. 
Algorithm4 (Migration learning of ICA) 
An ICA running on the computing node CNi must be migrated to the computing node CNj, 
so the migration learning process is presented as follows: 
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(1)ICA commits its KS to Am in CNi, and Am saves the KS; 
(2)ICA asks for a new computing node CNj from MCG and consults with Am of CNj, and 
migrates into CNj; 
(3)ICA gets the current state set CSS in CNj and searches the corresponding dynamic rule 
form RSP according to CSS, then refreshes it’s KS: 

TMP=CSS; 
OTHER=φ; 
While TMP≠φ Do 

Get a state st from TMP; 
Search a dynamic rule dr from RSP by st; 
If dr≠φ, then /* successful*/ 

Add dr to ICA.KS; 
TMP=TMP-{st}; 

Else 
TMP=TMP-{st}; 
OTHER=OTHER+{st}; 

End if; 
End while 

(4)If OTHER≠φ, then  
While OTHER≠φ Do 

Get a state st from OTHER; 
Start the algorithm2 to generate a new dynamic rule ndr above st; 
Add ndr to ICA.KS; 
OTHER=OTHER-{st}; 

End while; 
End if; 

(5)CNi and CNj report their KS and CE to RSP, ASP and SSP in GCG; 
(6)ICA continues executing and learning on CNj;  

Algorithm5 (Migration learning of CCT) 
Suppose that CCT(id, Am, CAS, BDI, CKS, CCE) is a cooperation computing team running on 
the computer cluster CCi, CAS=MIG∪ NMIG, where MIG is the set of the computing agents 
that will be migrated; NIMG is the set of the non-migration computing agents. The 
migration learning process is as follows: 
(1)All the computing agents of MIG migrate to their new computing nodes respectively and 
learn the new knowledge according to the algorithm4; 
(2)All CA∈MIG∪ NMIG commit their state information to Am; Am calculates the new 
cooperative state information set CISET; 
(3)If CISET≠φ then 

Am generates a new dynamic set NRSET according to CISET, and the process is similar 
to the step (3) (4) in aglorithm4. 
Am refreshes CCT.CKS; 

End if; 
(4)CCT start the calculation work in a new environment; 
(5)End. 
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5.4 Learning process of GCG 
Algorithm6 (GCG learning process) 
(1)GCG calls the algorithm1 to do initialization work; 
(2)GCG receives a task TSK; 
(3)GCG allots a computing device PE (that is a CN or a CC) for TSK, and starts the 
computing agents for TSK; 
(4)While TSK is not finished Do 

All computing agents cooperative calculate the TSK; 
If TSK must be migrated, then 

Start the migration learning algorithm (4 and 5); 
Calculate the resource utilization rate urt; 
Start the algorithm3 to adjust the weight and life of dynamic rules; 
Refresh ASP, SSP, and RSP; 

End if; 
End while; 

(5)End. 

6. Experiments 
We construct a MCG that is composed of 12 computers and 3 computer-clusters that 
connected by Intranet. The independent state of the computer can be decided by its idle 
CPU resource, idle memory resource, idle disk resource and idle net adapter resource, so, 
the condition vector of the state is (CPU, memory, disk, net adapter). The cooperative state of 
CCT can be decided by the CCT scale, the bandwidth of CCT, the total idle CPU of CCT, the 
total idle memory, the total idle disk of CCT and the total net adapter power. The ASP is the 
strategy set, such as the buffer size, the size of basic communication unit and the 
synchronous time, etc. The computing tasks provided by MCG are the matrix operations 
and the linear programming. The CCT algorithms (Parallel algorithms based on computer 
cluster) for the matrix operations and the linear programming are given. The Intranet clock 
is synchronous by GTS protocol. The initial basic rules include 24 rules for ICA and 7 rules 
for CCT and the parameter values are as follows: MaxLife=43200(s), Y1=15, Y2=80, Y3=0.3 
,Z1 =0, Z2=0.6,Z3=0.9, MaxWeight=100 and MinWeight=0. The experiment includes seven 
times and each time has 12 hours, and the total time is 84 hours.  The tests adopt a random 
function to choose some tasks (the matrix operation, the linear programming and their 
parallel edition) in each time. In order to make the tasks migrate as far as possible in the 
MCG, We make use of the random migration function RandMigration() and form the 
migration strategy during the test processes. Through the average values of the test 
information, we observe the learning results of this model. The experiment results are as 
follows: 
The changes of the average resource utilization rate of MCG along with the learning process 
have been tested. The thick solid line means the utilization rate distribution in the figure 
4(a). This test result shows that this model can raise the resource utilization rate of MCG. 
The changes of the number of new dynamic rules which are generated during the learning 
process have been tested. The solid line means the distribution of the dynamic rules whose 
state is always the “Naive” during their life period in the figure 4(a). The dotted line means 
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the distribution of the “Trainable” dynamic rules whose state has become the “Stable” during 
their life period. The test results show that the learning efficiency of this model increases 
gradually along with the learning process. 
The number of the artificial adjustment has been counted. The solid line means the 
distribution of the number during the tests in the figure 4(b). This test result shows that the 
number of artificial adjustments decreases gradually along with learning process. 
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% 
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t 
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Fig. 4. The results of tests 

7. Conclusions 
In order to support the computation-intensive tasks, we collect the idle computational 
resources of CSCW environment to construct the multi-cluster grid. Because of the 
heterogeneous resources, the state of the idle computing resources changes in the process of 
the computing and the task migration. For fitting the state changes, the dynamic rule 
mechanisms of agents are proposed. According to the Grid techniques, Computing Agent, 
Cooperation Computing Team, the state space, the action space, the dynamic rule space, the 
reinforcement learning and so on, a cooperative learning model of agent was designed and 
implemented in this chapter. In the multi-cluster environment, using resources effectively is 
very difficult for the grid computing, however, a good learning model can improve the 
intelligence of multi-agent and also can raise the resources utilization rate. We do the 
experiment and the results prove that the cooperative learning model of agent which is 
introduced in this chapter can not only improve the intelligence of multi-agent, but also 
increase the utilization rate of idle resources in CSCW. 
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1. Introduction 
Two principles for coordination of large-scale systems, namely Interaction Prediction 
Principle and Interaction Balance Principle were postulated by Mesarovic et al. [1], [2] to 
provide guidance in synthesizing structures for multi-level or hierarchical control of large-
scale systems and obtain the optimal solution. Hierarchical structures are feasible structures 
which reduce the complexity of large-scale control systems and improve the solution 
through decomposition, coordination and parallel processing [3]-[6]. In two-level 
hierarchical approaches, the overall system is first decomposed into several interactive sub-
systems, at the first level, where the optimization problem is redefined for each one of them. 
The interactions between these sub-systems, at the first level, and the coordinator, at the 
second level, called the coordination parameters, are used so that the overall solution is 
obtained. In compare to centralized approaches, where the whole problem is considered for 
the solution at once, the computational efforts in hierarchical approaches are based on sub-
problems, having smaller order, requiring less computational time, in addition to the 
coordination strategy. 
The Goal Coordination based on Interaction Balance Principle approach of Mesarovic et al. 
has already been applied to large-scale systems and the results are reported in [3]- [5]. In 
applying  the  Interaction  Balance Principle, the supremal controller modifies the infimal 
(i.e. first-level) performance functions, compares the interface inputs  (interactions) 
demanded by the infimal controllers and those which actually occur, then provides new 
performance modifications whenever the error is observed as being outside the acceptable 
bounds. A brief description of the Goal Coordination and Interaction Balance Principle is 
presented in the following section. Although a more detailed discussion of this principle can 
be found in [1] ,[2] and also, voluminous literature on large-scale systems theories and 
applications including survey articles, textbooks and monographs can be found in  [6]-[12]. 
Based on Interaction Balance Principle, a new goal coordination scheme, as a foundation for 
intelligent coordination of large-scale systems is postulated in this chapter. The approach is 
formulated in an intelligent manner such that it provides the update of the coordination 
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parameters so to reduce the coordination errors directly and improve the convergence rate 
of the solution. The proposed scheme is a neuro-fuzzy based reinforcement learning 
approach which can be used to synthesize a new supervisory coordination strategy for  the 
overall two-level large-scale systems, in which the sub-systems, at the first level of 
hierarchy, and also the overall process control objectives are considered as optimization 
problems. So with the aim of optimization, the control problem is first decomposed into m 
sub-problems at the first level, where each sub-problem can be solved using a neuro-
regulator. The neural networks which are capable of learning and reconstructing non-linear 
mappings could also be used for modeling each corresponding sub-system. By using the 
new methodology which is based on a Fuzzy Goal Coordination System and Reinforcement 
Learning; using TSK model, a critic vector and the gradient of the interaction errors 
(difference between the actual interactions and the optimum calculated interaction values) 
and also their rate of changes, appropriate change of coordination parameters are generated 
at the second level and the coordination of the overall large-scale system is done. The 
proposed scheme results in faster reduction of the interaction errors, which finally vanish to 
zero.  
This chapter is organized into several sections. In Section 2, the problem formulation and 
control problems are defined. Also a brief review of the classical Goal Coordination and 
Interaction Balance Principle is presented.  In Section 3, decomposition of the overall large-
scale system into m sub-problems and modelling each corresponding subsystem is done. In 
Section 4, the first level sub-problems are solved with neuro-regulators, and in Section 5, the 
new Fuzzy Goal Coordination System based Reinforcement Learning is presented to 
generate the appropriate change of coordination parameters. In Section 6, the efficacy and 
advantages of the proposed approach is demonstrated in an open-loop power system 
consisting of a synchronous machine connected to an infinite bus bar through a transformer 
and a transmission line. It is shown how the convergence of the interaction errors exceeds 
substantially those obtained using the classical goal coordination method. Finally, Section 7 
contains some concluding remarks. 

2. Statement of the problem 
As it was mentioned in the Introduction, two cases arise as how the coordination might be 
effected and the infimal control problems can be defined. In this chapter, a new approach for 
coordination of large-scale systems based on Interaction Balance Principle, which is more 
convergent than the previously suggested classical methods, has been presented. 

2.1 Goal coordination and Interaction Balance Principle 
Let B be a given set such that each β in B specifies, for each i=1,…, m, a performance 
function Giβ :Ui × Zi × Xi → V which is a modification of the original Gi. Let the mapping giβ 
be defined on Ui × Zi  in terms of Pi and GiB. For each β in B, the infimal control problems is 
to find a pair ( )ˆ ˆ

i piU ,Z  in Ui × Zi such that 

 ( ) (ˆ ˆ )
×

=i β i pi i β i ig U ,Z min g U ,Z
i iU Z

, (1) 

where minimization is over both sets Ui and Zi ;  the interface inputs are treated as free 
variables. Let β in B be given; let ( ) , ...., )ˆ ˆ (β β1 mZ Z  be the interface inputs required by the 
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infimal controllers to achieve local optimum; let ( ) , ...., )(β β1 mZ Z  be the interface inputs that 
occur if the control ( )  [ ( ) , ...., )]ˆ ˆ ˆ (β β β= 1 mU U U  is implemented, then the overall optimum is 
achieved if the actual interface inputs are precisely those required by local optimization  

 ( )  Z )ˆ (β β=i iZ  (2) 

for each i = 1 , … , m (Interaction Balance Principle). If the Interaction Balance principle 
applies, the supremal control problem is to find β  in B such that ˆ ( ) ( ) 0i i ie Z B Z B= − = , for 
each  i = 1 , … , m. The application of the Interaction Balance Principle is shown in Fig. 1.  
 

β β

P1 P

C C1 2

2

C 0

ee 1 2

Z Z1 2(   )(   )β β

Z1(   ) (   )Z2β βˆ ˆ

U Uˆ ˆ21 β β(   ) (   )

 
Fig. 1. Application of Interaction Balance Principle for coordination of two sub-problems. 
Now, let us suppose that we have a general non-linear dynamic system described by the 
following state space equation 

 ( )[ ] [ ] [ ]+ =X k 1 F X k ,U k  (3a) 

 [0] oX X=  (3b) 

where X is the state vector, U is the control vector and F is a continuously double 
differentiable analytical vector function which is going to be replaced by 2m neural models  
to describe  the  actual  dynamics  of  m  sub-systems  and their interactions. The initial state 
Xo is also assumed to be known. 
Now, the problem is to find U which minimizes the cost function given by  

 [ ]( ) [ ] [ ]( )1
0

1 ,
n

n k
k

J G X n G X k U k+
=

= + + ∑  (4) 

where Gk  is in general, a scalar non-linear function of its arguments. 

3. Decomposition of the overall problem into m sub-problems  
Let us assume that the overall system comprises of m interconnected sub-systems. We 
assume that the sub-systems themselves can be described by non-linear state space 
equations of the following form  
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 [ 1] ( [ ], [ ], [ ])i i i i iX k F X k U k Z k+ =  (5a) 

 0[0]i iX X=  (5b) 

where Xi  is the state, Ui  is the control and Zi  is the interaction input of the ith sub-system 
that is assumed to be a non-linear function of the states of the m sub-systems 

 1[ ] ( [ ]) ( [ ],... , [ ])i i i mZ k H X k H X k X k= =  (6) 

In Goal Coordination method, it is necessary for non-linear functions Hi to be separable. So 
the interaction variables iZ  must be defined in such a way that iH  functions to be 
separable, i.e. 

 1
1

[ ] ( [ ], ... , [ ]) ( [ ])
m

i i m ij j
j

Z k H X k X k H X k
=

= = ∑  (7) 

The interaction relations which can be expressed as Z[k] = H(X[k]) are considered to be the 
optimization constraints. So the Lagrangian can be defined as 

 [ ]( ) [ ] [ ]( ) [ ] [ ]( )
1

1
0 0

1 , [ ] ( )
n n

T
n k

k k
L G X n G X k U k k Z k H X kβ

+

+
= =

= + + + −∑ ∑  (8) 

where β[k]’s are the Lagrange multipliers that we refer to them as the coordination 
parameters. Now, since the interaction function H(X[k]) is separable, the Lagrangian can be 
decomposed as  

 
1

m

i
i

L L
=

= ∑  (9a) 

where 

 ( )
1

1

0 0 1

[ 1], [ 1] ( [ ], [ ], [ ]) [ ] [ ] [ ] ( [ ])
n

n n m

i i i i ik i i i i i j ji i
k k j

L G X n Z n G X k U k Z k k Z k k H X kβ β
+

+

= = =

= + + + + −
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ∑  (9b) 

So the overall problem can be decomposed into m first level sub-problems of the following 
form 

 

( )
1

0, ,

1

0 1

min [ 1], [ 1] ( [ ], [ ], [ ])

[ ] [ ] [ ] ( [ ])

n

i i i

n

i i i i ik i i i
kX U Z

n m

i i j ji i
k j

L G X n Z n G X k U k Z k

k Z k k H X kβ β

+
=

+

= =

= + + +

⎛ ⎞
⎜ ⎟+ −
⎜ ⎟
⎝ ⎠

∑

∑ ∑
 (9b) 

. . [ 1] ( [ ], [ ], [ ])i i i i is t X k F X k U k Z k+ =  

 0[0]i iX X=  (10) 

and also one second level problem expressed as: 
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Updating the coordination parameters [ ]i kβ  such that the interaction errors; Zi[k] – Hi (Xi[k] 
, … , Xm[k]) , become zero (Interaction Balance Principle). 
Remark. In general, H(.) can be considered as a function of X[k] and U[k]. 

3.1 Modeling the corresponding sub-systems with neural networks 
It should be noted that the dynamics of each sub-system and its interactions which are 
denoted by Fi and Hij , respectively, could also be replaced by neural network models. So in 
this case, they can be denoted by NFi  and  NHij , respectively.   

 [ ] ( [ ] [ ] [ ]) ( [ ] [ ] [ ])+ = Δi i i i i i i i iX k 1 F X k ,U k ,Z k NF X k ,U k , Z k  (11) 

 ( [ ])Δ ( [ ] [ ]) ( [ ])[ ]
=

= = ∑
m

i i i 1 m ij j
j 1

Z k H X k NH X k ,...,X k NH X k  (12) 

The first step in identification of the sub-systems is to provide the training data using the 
actual system. To generate the training data, random inputs are applied to the actual system 
and the resulting state values, in addition to the input data are used for training the neural 
models.  

4. Optimizing the first level sub-problems with neuro-regulators 
In this approach, the first level sub-problems could be optimized with neuro-regulators [13]. 
The optimal control and interaction of each sub-system will be generated by non-linear 
feedback functions of the following forms 

 [ ] ( [ ], )i Ui i UiU k NR X k W= ;  0,1,...,k n=  (13) 

 [ ] ( [ ], )i Zi ZiZ k NR X k W= ;  0,1,..., 1k n= +  (14) 

where UiNR and ZiNR  could be considered as multilayer perceptron (MLP) neural networks, 
and UiW and ZiW  are their parameters including weights and biases, respectively.   
Now, the new Lagrangian Li can be defined as follows 

 

( )

( )

1
0

1

0 1

0

0

[ 1], [ 1] ( [ ], [ ], [ ])

[ ] [ ] [ ] ( [ ])

[ ] [ 1] ( [ ], [ ], [ ])

[ ]( [ ] ( [ ]; ))

[ ]( [ ] ( [ ];

n

n

i i i i ik i i i
k

n m

i i j ji i
k j

n

i i i i i i
k

n

Ui i Ui i Ui
k

Zi i Zi i Z

L G X n Z n G X k U k Z k

k Z k k H X k

k X k F X k U k Z k

k U k NR X k W

k Z k NR X k W

β β

λ

μ

μ

+
=

+

= =

=

=

= + + +

⎛ ⎞
⎜ ⎟+ −
⎜ ⎟
⎝ ⎠

+ + −

+ −

+ −

∑

∑ ∑

∑

∑
1

0
))

n

i
k

+

=
∑

 (15) 

where λi[k] , μUi[k] and μZi[k]  are the Lagrange multipliers.  
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Thus, the necessary conditions for optimality become   

  [ ] [ ] 0
[ ] [ ] [ ]
i ik ik

i Ui
i i i

L G F k k
U k U k U k
∂ ∂ ∂ λ μ

∂ ∂ ∂
= − + = ;  0,1,...,k n=  (16) 

 1 [ 1] 0
[ 1] [ 1]

nii
Zi

i i

GL n
Z n Z n

∂∂ μ
∂ ∂

+= + + =
+ +

 (17) 

 [ ] [ ] 0
[ ] [ ] [ ]
i ik ik

i Zi
i i i

L G F k k
Z k Z k Z k
∂ ∂ ∂ λ μ

∂ ∂ ∂
= − + = ;  0,1,...,k n=  (18) 

 1 1[ ] [ 1] 0
[ 1] [ 1] [ 1]

nii Zn
i Zi

i i i

GL NRn n
X n X n X n

∂∂ ∂λ μ
∂ ∂ ∂

+ += + − + =
+ + +

 (19) 

 [ 1] [ ] [ ] [ ] 0
[ ] [ ] [ ] [ ] [ ]
i ik ik U k Zk

i i U i Zi
i i i i i

L G F NR NR
k k k k

X k X k X k X k X k
∂ ∂ ∂ ∂ ∂

λ λ μ μ
∂ ∂ ∂ ∂ ∂

= + − − − − = ;  1,2,...,k n=  (20) 

where 

 ( [ ], [ ], [ ])ik i i i piG G X k U k Z k=  (21) 

 ( [ ], [ ], [ ])ik i i i piF F X k U k Z k=  (22) 

 ( [ ]; )U k U k i UiNR NR X k W=  (23) 

 ( [ ]; )Zk Zk i ZiNR NR X k W=  (24) 

Now to train the neuro-regulators; NRUi and NRZi , based on preceding optimality conditions, 
the following algorithm can be suggested 
1.        Choose initial small values for neuro-regulator parameters, namely WUi   and    WZi . 
2.        Using initial state 0iX  and equations (3), (13) and (14), find the values of 

 [1], [2],..., [ 1]i i iX X X n + , [0], [2],... , [ ]i i iU U U n , and [0], ... , [ 1]i iZ Z n +  . 
3.        Calculate [ ]i kλ , [ ]Ui kμ , [ ]Zi kμ  for , 1, ... ,0k n n= − , by using the following necessary 

 conditions , backward in time; 

 1[ 1]
[ 1]

ni
Zi

i

G
n

Z n
∂

μ
∂

++ = −
+

 (25) 

 1 1[ ] [ 1]
[ 1] [ 1]

ni Zn
i Zi

i i

G NRn n
X n X n
∂ ∂λ μ

∂ ∂
+ += − + +
+ +

 (26) 

 [ ] [ ]
[ ] [ ]
ik ik

Ui i
i i

F Gk k
U k U k
∂ ∂μ λ
∂ ∂

= − ;   , 1 ,... ,0k n n= −  (27) 
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 [ ] [ ]
[ ] [ ]
ik ik

Zi i
i i

F Gk k
Z k Z k
∂ ∂μ λ
∂ ∂

= − ;   , 1 ,... ,0k n n= −  (28) 

 [ 1] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
ik U k Zk ik

i i Ui Zi
i i i i

F NR NR Gk k k k
X k X k X k X k
∂ ∂ ∂ ∂λ λ μ μ

∂ ∂ ∂ ∂
− = + + − ;  , 1 ,... ,1k n n= −  (29) 

4. Calculate i

Ui

L
W
∂
∂

 and i

Zi

L
W
∂
∂

 for , 1 ,... ,0k n n= −  , using [ ]Ui kμ  and [ ]Zi kμ  

 
0

[ ]
n

i Uk
Ui

Ui Uik

L NR k
W W

μ
=

∂ ∂
=

∂ ∂∑  (30) 

 
0

[ ]
n

i Zk
Zi

Zi Zik

L NR k
W W

μ
=

∂ ∂
=

∂ ∂∑  (31) 

5. Update WUi and WZi , by adding i
Ui U

Ui

LW
W
∂η
∂

Δ = −  and   i
Zi Z

Zi

LW
W
∂η
∂

Δ = −  to the prior 

values of WUi and WZi .  

6. If  i i

Ui Zi

L L
W W
∂ ∂ ε
∂ ∂

+ <  stop the algorithm, else go to step (2). 

Remark. We should indicate that, in case the use of neural networks and neuro-regulators 
are not of interest, then the modelling and optimization process at the first level, can be 
easily done using the same approach as explained in Ref. [14]-[16]. 

5. Reinforcement Learning  
To evaluate the operation of the fuzzy goal coordination system, with the use of 
reinforcement learning, we define a critic vector [17] and develop a method to train the new 
coordination strategy. The training is based on minimizing the energy of the critic vector. In 
this approach, we use both the errors and the rate of errors to increase the speed of 
convergence of the coordination algorithm. 

5.1 Designing the critic vector 
The critic vector includes m critic signals, where each of them evaluates the operation of the 
corresponding sub-system.  The  value  of each  critic  signal  is  in  the  range of [-1 , 1] and 
is expressed by a fuzzy system of  the following form 

 [ ] ( [ ], [ ]) ;     1,2,... ,i i i ir k R e k d k i m= =  (32) 

where iR  is the fuzzy system, [ ]ie k  is the interaction error and [ ]id k  is the rate of error, 
defined by 

 [ ] [ ] [ ]i i ie k Z k Z k∗= −  (33a) 

 ( ) ( ) ( 1)[ ] [ ] [ ] - [ ]l l l
i i i id k d k e k e k −=  (33b) 

also l  is the iteration index. 
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The fuzzy system iR  can now be defined by the fuzzy sets and rules as follows; 

 
1 1 1

( , )

           
                                                  
                                                  
                                                  

r R e d

if e is E and d is D then r R

=

=
⋅ ⋅
⋅ ⋅
⋅

         M M Mif e is E and d is D then r R
⋅

=

 (34) 

where jR  is a  real value in the range of 

 1 1jR− ≤ ≤  ;  1,2,...,j M=  (35) 

The relation of r with e and d can also be given by the following fuzzy inference system 

 
1

1

( ) ( )
( , )

( ) ( )

M

j j j
j

M

j j
j

E e D d R
r R e d

E e D d

μ μ

μ μ

=

=

⋅

= =
⋅

∑

∑
 (36) 

where jEμ  and  jDμ  are  the  membership  functions  of jE and jD , respectively. 

5.2 Updating the coordination parameters  
To update the coordination parameters, we use a fuzzy system that calculates the variation 
of the coordination parameters as follows 
 

 [ ] ( [ ], [ ])k S e k d kβΔ =  (37) 
 

where S is a fuzzy system based on Takagi-Sugeno-Kang (TSK) model [18], [19]  and in this 
case, is defined by the fuzzy sets and rules as follows; 
 

 
1 1 1 1 1

( , )

                                                                          
                                                                          
       

s S e d

if e is A and d is B then s a e b d c v

=

= + +
⋅ ⋅
⋅ ⋅
⋅                                                                    

N N N N Nif e is A and d is B then s a e b d c v

⋅

= + +

 (38) 
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where 

 [ 1 1 .... 1 ]T
m

v = . (39) 

Also jA  and jB  are the m dimensional fuzzy sets, expressed as 

 1 2 ...j j j jmA A A A= × × ×  (40) 

 1 2 ...j j j jmB B B B= × × ×  (41) 

where their membership functions are given by    

 1 1 2 2( ) ( ) ( ) ( )j j j jm mA e A e A e A eμ μ μ μ= ⋅ ⋅ ⋅  (42) 

 1 1 2 2( ) ( ) ( ) ( )j j j jm mB d B d B d B dμ μ μ μ= ⋅ ⋅ ⋅  (43) 

also 

 1 2[ , ,..., ]Tme e e e=  (44) 

 1 2[ , ,..., ]Tmd d d d= , (45) 

where jkAμ  and jkBμ  are the membership functions of jkA  and jkB , respectively. 
Moreover,  ja  , jb  and jc   are real constant parameters. 
To summarize, the relation of s  with e  and d  is given by the following fuzzy inference 
system; 

 1

1

( ) ( ). ( )
( , )

( ) ( )

N

j j j j j
j

N

j j
j

A e B d a e b d c v
s S e d

A e B d

μ μ

μ μ

=

=

⋅ + +

= =
⋅

∑

∑
 (46) 

5.3 Training the fuzzy goal coordination system 
The aim of training is to minimize the energy of the critic vector related to the system 
parameters; ja  , jb  and jc  , where 

 
1

0

1 [ ] [ ]
2

n
T

k
E r k r k

+

=
= ∑  (47) 

also 

 1 2[ ] [ [ ], [ ],..., [ ] ]Tmr k r k r k r k=  (48) 

Now to update the fuzzy system parameters, we use the following updating rule 
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1

0

[ ] . [ ]
Tn

k

E r kW r k
W W
∂ ∂η η
∂ ∂

+

=

Δ = − = − ∑  (49) 

where η is the training rate coefficient, and W can be considered as each of the fuzzy system 
parameters, given by 

 ;, , 1,2,...,j j jW a b c j N= =  (50) 

Now, using the chain rule, we can write 

 [ ] [ ] [ ] [ ] [ ]
[ ] [ ]

r k r k e k r k d k
W e k W d k W

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

= ⋅ + ⋅  (51) 

So to calculate the right side of this equation, we need to calculate  

and[ ] [ ] [ ] [ ], ,
[ ] [ ]

r k e k r k d k
e k W d k W

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

, where  

 1

1

( [ ]). ( [ ])
[ ] ( [ ], [ ])
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M

j i j i j
j i

i i i M
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j i j i
j

E e k D d k R
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=

=
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∑

∑

 . (52) 

Hence, we have  

 1 1
2

( [ ]). ( [ ]) ( [ ]) ( [ ])
[ ]
[ ]

M M

j i j i j i j i j i
j ji

i i i

E e k D d k R NUM E e k D d k
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 (53) 

and 

 1 1
2

( [ ]) ( [ ]) ( [ ]). ( [ ])
[ ]
[ ]

M M

j i j i j i j i j i
j ji

i i i

E e k D d k R NUM E e k D d k
r k
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μ μ μ μ
∂
∂

= =

′ ′

= −
∑ ∑

 (54) 

where (.)jEμ ′  and (.)jDμ ′  denote the derivatives of the corresponding membership 
functions, respectively. Therefore 
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2

[ ]
[ ]

[ ]
[ ][ ]
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[ ]
[ ]

0

0 m

m

r k
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⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (55) 



A Reinforcement Learning Approach to  
Intelligent Goal Coordination of Two-Level Large-Scale Control Systems   

 

47 

and 
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2

2

[ ]
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[ ]
[ ][ ]

[ ]
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (56) 

The gradient of the interaction errors related to the system parameters is also given by  

 
[ ] [ ][ ] [ ] [ ] [ ]

[ ]
k ke k e k D k T k

W k W W
∂ β ∂ β∂ ∂

∂ ∂ β ∂ ∂
Δ

= ⋅ = Δ  (57) 

where [ ][ ]
[ ]

e kD k
k

∂
∂ β

, as given in Appendix.    

Now in order to calculate  
[ ]k

W
∂ β
∂
Δ

, since we have 

 1

1

( [ ]) ( [ ])( [ ] [ ] )
[ ] ( [ ], [ ])

( [ ]) ( [ ])

N

j j j j j
j

N

j j
j

A e k B d k a e k b d k c v
NUMk S e k d k
DEN A e k B d k

μ μ

β
μ μ

=

=

+ +

Δ = Δ =
∑

∑
 (58) 

Thus we get 

 
( [ ]). ( [ ]) [ ][ ] j j

j

A e k B d k e kk
a DEN

μ μ∂ β
∂
Δ

=  (59) 

 
( [ ]). ( [ ]) [ ][ ] j j

j

A e k B d k d kk
b DEN

μ μ∂ β
∂
Δ

=  (60) 

 
( [ ]). ( [ ])[ ] j j

j

A e k B d k vk
c DEN

μ μ∂ β
∂
Δ

=  , (61) 

where [ ]e k  and [ ]d k  are the values in the previous iteration i.e., ( 1)[ ] le k −  and ( 1)[ ] ld k −  . 

Now to calculate  [ ]d k
W

∂
∂

 , since we have 

 ( ) ( ) ( 1)[ ] [ ] [ ]l l ld k e k e k −= −  , (62a) 
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according to the definition of [ ]T k , we get 

 ( ) ( 1)[ ] [ ] [ ]l ld k T k T k
W

∂
∂

−= −  (62b) 

So we can  calculate E
W
∂
∂

 .  

The fuzzy system parameters can now be updated using the following updating rule 

 
1

0

[ ] [ ]
Tn

k

E r kW r k
W W
∂ ∂η η
∂ ∂

+

=
Δ = − = − ∑  (63a) 

where 

 , , ; 1,2,... , .j j jW a b c j N= =  (63b) 

Now, considering W as the fuzzy system parameters, we can update the coordination 
parameters with the following rule 

 [ ] ( [ ], [ ]; )k S e k d k WβΔ =  (64) 

where W is the updated value, given by 

 ( 1) ( ) ( 1)l l lW W W+ += + Δ  (65) 

Thus, we can write 

 
( 1) ( ) ( 1)

( ) ( ) ( ) ( 1)

[ ] [ ] [ ]

[ ] ( [ ] , [ ] ; )

l l l

l l l l

k k k

k S e k d k W

β β β

β

+ +

+

= + Δ

= +
 (66) 

The various steps of the new coordination algorithm based on Interaction Balance Principle 
using Fuzzy Goal Coordination System based Reinforcement Learning, can now be 
summarized as follows:  
1. Choose initial values for  β   and W.  
2. Solve the first level sub-problems using neuro-regulators (or the gradient technique, as 

described in [14], [15]).  

3. Calculate the gradient matrices e∂
∂ β

and [ ]D k . Then update W and consequently update 

the coordination parameters  β , using the Fuzzy Goal Coordination System. 
4. Calculate the sum-squared error. If it is smaller than a small constant stop the 

algorithm, else go to step (2). 
The new goal coordination strategy based on Fuzzy Goal Coordination System, Neural 
Modeling, Neuro-Regulators and Reinforcement Learning is shown in Fig. 2. 

6. Simulation results 
The application of this approach is demonstrated on an open-loop power system, consisting 
of a synchronous machine connected to an infinite bus bar through a transformer and a 
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transmission line. For this system, Iyer and Cory [20], [4] have derived a sixth order non-
linear dynamical model. The optimization problem is to minimize a cost function of the 
following form 

 
1

22

0
( [ ] ) ( [ ] )

2

fK

f fQ Rk

TJ X k X U k U
−

=

⎡ ⎤= − + −⎢ ⎥⎣ ⎦∑  (67) 

where Q and R  are the weighting matrices, with appropriate dimensions and definiteness. 
Now, the system can be decomposed into two sub-systems of orders 4 and 2, respectively, 
using the following sate vectors 

 1 2 3 41[ ] [ [ ] [ ] [ ] [ ]]TX k X k X k X k X k=  (68) 

 5 62[ ] [ [ ] [ ]]TX k X k X k= , (69) 
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Fig. 2. Intelligent goal coordination strategy based on fuzzy goal coordination system and 
reinforcement learning.  
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Fig. 3. Optimal control actions of sub-systems 1 and 2. Solid: The new goal coordination 
approach; Dot: classical method. 
and four neural networks, as represented below, to model these two sub-systems and their 
interaction generators 

 
11 11 1 1[ 1] ( [ ], [ ], [ ], )FX k NF X k U k Z k W+ Δ  (70) 

 
22 22 2 2[ 1] ( [ ], [ ], [ ], )FX k NF X k U k Z k W+ Δ  (71) 

 
111 1 2[ ] ( [ ], [ ], )HZ k NH X k X k WΔ  (72) 
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222 1 2[ ] ( [ ], [ ], )HZ k NH X k X k WΔ  (73) 

In this example, for describing the fuzzy system iR defined in (34) and also the Fuzzy Goal 
Coordination System defined in (38), triangular membership functions are used for fuzzy 
sets jE and jD , and also Gaussian membership functions are used for fuzzy sets jA and jB , 
respectively. 
The resulting optimum control actions, state trajectories and the plot of the norm of the 
interaction errors, using the proposed approach and the classical goal coordination method 
are all shown in Figs. 3-5. 
The results of using the goal coordination approach based on the proposed intelligent 
coordination strategy shows that the interaction errors vanish rapidly. The advantage of this 
method is its faster convergence rate in compare to the classical method. This is mainly 
because of using the new strategy which the update of the coordination parameters directly 
causes the reduction of the coordination error with the fuzzy goal coordination system 
based reinforcement learning. 
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Fig. 4. Optimal state trajectories of sub-system 1. Solid: The new goal coordination approach; 
Dot: classical method. 

7. Conclusion 
In this chapter, a new intelligent approach for goal coordination of two-level large-scale 
control systems is presented. At the first level, sub-systems are modelled using neural 
networks, while the corresponding sub-problems are solved using neuro-regulators. Fuzzy 
Goal Coordination System based Reinforcement Learning is also used at the second level, to 
coordinate the overall large-scale control system. The fuzzy goal coordination system learns 
its dynamics through minimization of an energy function defined by a critic vector. The 
minimization process is done using the gradient of interaction errors, while in addition, both 
the critic vector and fuzzy goal coordination system use the variation of errors (rate of 
errors) to update their  parameters. 
As it can be seen, the proposed goal coordination approach, in compare to the classical one, 
results in much faster reduction of the interaction prediction errors.  
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Fig. 5. Optimal state trajectories of sub-system 2. Solid: The new goal coordination approach; 
Dot: classical method. 
 

 
Fig. 6. Comparison between the norm of interaction errors using the proposed approach and 
the classical method. Solid: The new goal coordination approach; Dot: classical method. 
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With an extended version of the model coordination approach presented in [21], and the 
proposed goal coordination strategy of this chapter, the interaction prediction approach 
(mixed method) [22], [23], can also be extended to a new intelligent interaction prediction 
strategy. 

8. Appendix 

In the sequel, the elements of the matrix eD
β
∂
∂

 will be calculated  

 
*e Z Z

β β β
∂ ∂ ∂

= −
∂ ∂ ∂

 (74) 

where, 
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 (75) 

and 
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 (76)  
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Now using the optimization of the first level, we have 
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where the corresponding variations can also be written as  
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or equivalently,  

 

0

0

0

0

xx xu x xz x
i i i i i i i i i

ux uu u uz u
i i i i i i i i i

x u z
i i i i i i i i i

zx zu z zz z
i i i i i i i i i

L X L U L L Z L

L X L U L L Z L

L X L U L L Z L

L X L U L L Z L

λ β

λ β

λ λ λλ λ λβ

λ β

δ δ δλ δ δβ

δ δ δλ δ δβ

δ δ δλ δ δβ

δ δ δλ δ δβ

⎧ + + + + =
⎪
⎪ + + + + =⎪
⎨

+ + + + =⎪
⎪

+ + + + =⎪⎩

 (80) 

which can be summarized as 
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In (83), the matrices 11iM , 12iM , 21iM , 22iM , 31iM , 11ZiT , 21ZiT , 31ZiT , 2i jTβ , 3i jTβ  and 
ZiD  can be find in Appendix of [22]. 

Now using (7), we can write 
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also iZδ  can be written as 
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Therefore, by using the following definitions 
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and using (81), (84) and (85), for each subsystem, we obtain 
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Now, for the overall system we have 
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and using (89), it can be concluded that 
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Therefore, by substituting (91) in (89), we obtain 
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and as a result 
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1. Introduction

New technologies bring a multiplicity of new possibilities for users to work with computers.
Not only are spaces more and more equipped with stationary computers or notebooks,
but more and more users carry mobile devices with them (smart-phones, personal digital
assistants, etc.). Ubiquitous computing aims at creating smart environments where devices
are dynamically linked in order to provide new services to users and new human-machine
interaction possibilities. The most profound technologies are those that disappear. They weave
themselves into the fabric of everyday life until they are indistinguishable from it (Weiser, 1991). This
network of devices must perceive the context in order to understand and anticipate the user’s
needs. Devices should be able to execute actions that help the user to fulfill his goal or that
simply accommodate him. Actions depend on the user’s context and, in particular, on the
situation within the context. The context is represented by a graph of situations (Crowley
et al., 2002). This graph and the associated actions reflect the user’s work habits. Therefore it
should be specified by the user him-self. However, this is a complex and fastidious task.
The objective of this work is to construct automatically a context model by applying
reinforcement learning techniques. Rewards are given by the user when expressing his degree
of satisfaction towards actions proposed by the system. A default context model is used from
the beginning in order to have a consistent initial behavior. This model is then adapted to each
particular user in a way that maximizes the user’s satisfaction towards the system’s actions.
The ambient intelligence application domain imposes constraints that we had to consider for
the selected reinforcement learning approach.
We will first introduce the Ambient Intelligence application domain and the associated
constraints. We will then present a qualitative user study conducted to validate our
hypothesis. We will motivate our reinforcement learning algorithm selection and present
the way we have modified it to fulfill our particular constraints. We will then present
experimental results.

2. Pro-active ambient intelligence

Our research domain is Pro-active Ambient Intelligence applications development. We have
decided to use reinforcement learning as a paradigm to let the end user adapt the application’s
behavior to his own needs. In this section, we will briefly present the Ambient Intelligence
domain to motivate this choice and to introduce the particular constraints we have to manage.
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2.1 Ubiquitous computing: Weiser’s vision
In the late 1980s and early 1990s, Xerox PARC researcher Mark Weiser developed the
concept of ubiquitous computing presented in his seminal paper: The Computer for the 21st
Century (Weiser, 1991). He characterized the computer evolution in three main eras:

1. mainframes: a central processing unit shared by a group of users,

2. personal computers: one central unit per user,

3. mobility: several processing units per user, following his movements.

The integration of computing devices into everyday environments has been one of the
predominant trends over the last decade. Cell phones, PDAs and laptop computers
as well as WLAN networks have become part of almost every household. This trend
enables computer-everywhere environments. The objective is to make computers not only
user-friendly but also invisible to the user. Interaction with them should be possible in forms
that people are naturally comfortable with:

“The most profound technologies are those that disappear. They weave themselves into
the fabric of everyday life until they are indistinguishable from it.”

Some of the first ubiquitous applications were the tabs, pads and boards developed by Xerox
PARC between 1988 and 1994 (Adams et al., 1993). Other examples can be found from the
Things That Think1 consortium of the MIT Media Lab. This group is inventing tomorrow’s
artifacts by embedding computers in everyday life objects.
In 1995, Weiser has introduced the new notion of calm computing. Calm computing is an
approach that engages both the center and the periphery of our attention. Our attention can
move from one to another. When we drive a car, our center of attention is on the road and
the noise of the engine is on the periphery. If this noise is unusual, our attention will instantly
move from the center to the periphery. Periphery can inform without overwhelming, center
allows to get control.
The multiplication of computing devices goes also with a proliferation of interconnected
sensors. These sensors can measure physical parameters (temperature, humidity, light, etc.).
They can also be software probes as for instance the next appointment in his diary, the arrival
of a new email. Ambient Intelligence (or AmI) is the conjunction of ubiquitous computing
and artificial intelligence. The goal is to exploit the perception capacities of all these sensors to
analyze the environment, users and activities and allow the system to react to the current
context. Ambient Intelligence concept has been first defined in 1998 by Philips in their
reflection on the future of consumer electronic equipments. Among the very first applications,
we can cite the Coen Intelligent Room (Coen, 1998), the Abowd eClass Project (Abowd et al.,
1996) or the Mozer Adaptive House (Michaël, 1998).
In the rest of this chapter, we will consider pro-active Ambient Intelligence applications, as
defined by Salovaara and Oulasvirta (Salovaara & Oulasvirta, 2004):

“. . . the concept proactive refers to two critical features of a system: 1) that the system is
working on behalf of (or pro) the user, and 2) is taking initiative autonomously, without
user’s explicit command.”

1http://ttt.media.mit.edu
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2.2 Where are we now?
Since 2000, the number of computer devices in our personal and professional life has
exploded: personal computers, smart-phones, PDAs, video game consoles connected to
the Internet etc. Weiser’s vision of ubiquitous computing has been partly achieved (the
multiplication of CPUs around us). But pro-active Ambient Intelligence applications are still
in the laboratories and did not reach everyday life. What are the difficulties?
There are many. Some of them are directly inherited from “classical” Artificial Intelligence,
as for instance the frame problem: how should we model the environment (context model) and
how shall we update this model based on the sensors’ values (Lueg, 2002)? In this chapter, we
will focus on the important problem of the user’s confidence in his proactive applications.
User’s confidence in an automated system is a common problem that is not limited to Ambient
Intelligence. In particular, Muir and Morray have shown in the field of process automation
that the user’s trust in an automatic system is directly related to the user’s perception of
the skill of that system (Muir & Moray, 1996). The end user should not underestimate or
overestimate the capabilities of that system to optimally use it (calibration of trust).
One way to establish this trust relation is to let the system expose its internal behavior to
the end user. This is what Bellotti and Edwards named the intelligibility (Bellotti & Edwards,
2001):

“Context-aware systems that seek to act upon what they infer about the context must
be able to represent to their users what they know, how they know it, and what they are
doing about it.”

Cheverst (Cheverst et al., 2005) talked about comprehensibility to suggest that the user should
be able to look inside the device (like a glass box) to examine its inner working. In particular,
comprehensibility reduces the fear of having a system doing something “in our back” (Abowd
& Mynatt, 2000). Comprehensibility is also associated to scrutability, which refers to the ability
for a user to interrogate his user model to understand the system’s behavior. As stated by
Kay (Kay et al., 2003), scrutability is contradictory with the invisible computer concept as
defined by Weiser, but it seems to be necessary to gain the user’s acceptance.
Based on scrutability and on the level of system control versus user control (pro-activity),
Cheverst is categorizing the various Ambient Intelligence applications. In figure 1 adapted
from his article, the gray circle characterizes the kind of applications we want to develop.
Developing a pro-active Ambient Intelligence application is a complex task. It cannot be
supported only by the developer or the end user. Pattie Maes argued that to gain trust,
the end user must be involved in the specification of the system’s behavior, but he usually
cannot directly program it (Maes, 1994). User’s habits are also evolving through time (Byun
& Cheverst, 2001), implying repeated modifications of the application. Machine learning
has been proposed as a possible solution for those problems. In particular, Remagnino
(Remagnino & Foresti, 2005) thinks that the future of Ambient Intelligence is correlated to
machine learning researches because associations between sensory outputs and intelligent
behavior are too complex to be hand-coded.
We have presented in this section a brief introduction on Ambient Computing. We have
focused on particular characteristics that those applications must exhibit to gain user’s
acceptance. This gives us some constraints that must be considered for building our assistant.
To validate those constraints, we have first conducted a user study that we will present in the
next section.
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Fig. 1. Two-dimensional design space spanning control and scrutability dimensions, adapted
from (Cheverst et al., 2005): the gray circle characterizes the applications we are considering.

3. User study

The goal of this user study was to measure the expectations and needs of users with regard
to an ambient personal assistant. Subjects were 26 active persons, 12 women and 14 men,
distributed in age categories as follows: 9 subjects between 18 and 25, 7 between 26 and 40, 7
between 40 and 60, and 3 over 60. None of the subjects had advanced knowledge in computer
science.

3.1 Description
The study was based on ∼1 hour interviews with every subject. The interviewer followed
a predefined script. The script started with a few open questions about information
and communication technologies to evaluate the subject’s general knowledge, but also his
perception and his uses of such technologies. Then, the interviewer presented our ubiquitous
system using a model (an interactive power point presentation: some of the slides are shown
figure 2). This interacting powerpoint was exposing a simple scenario about the user’s
laptop. The scenario starts in the morning and the user is at home, browsing for movies
and restaurants (figure 2(a)). When he arrives at work, the laptop automatically switches to
the user’s “work” setting (figure 2(b)). Then, the assistant turns the user’s cellphone to vibrate
and displays a message about this action. The user can ask for an explanation about this action
and choose to undo it or select another action for this situation (figure 2(c)). At the end of the
day, the system switched back to the “home” setting. The interviewer explained also orally
other examples of services that could be offered by the assistant.
After the presentation, the subject was asked for his opinion about such a system. He could
freely express the advantages and drawbacks of what he saw and the situations in which he
thought the assistant was particularly useful or interesting. This gave him the opportunity
to talk about ubiquitous assistants in general and about what their usage implies for his
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(a) Slide 1 (b) Slide 2 (c) Slide 5

Fig. 2. A few slides from the model used to present our system to the subjects.

everyday life. Another goal of the conversation was to determine the acceptability of the
system. The interviewer asked the following questions:

– “If the assistant learns badly, if it offers you wrong services at wrong times, what would be
your reaction?”

– “If the assistant makes mistakes, but you know that he is learning to adapt to your behavior,
would you give him a chance?”

– “Would you accept to spend some time to answer questions to make the assistant learn
more quickly?”

– “What would you gain from getting an explanation about the assistant’s decisions?”

We were also interested in finding out if the subjects would feel observed and fear that their
privacy was in jeopardy. If they would not bring the subject up themselves, we would ask
questions about this.

3.2 Results
After analyzing all the interviews, it appeared that 44% of subjects were interested in our
assistant, and 13% were conquered. Interested persons share the same profile: they are very
active, very busy in their professional as well as personal lives, they suffer from cognitive
overload and would appreciate some help to organize their schedule. Other noticeable
observations standing out from the interviews are the following:

– Having a learning assistant is considered as a plus by users. In fact, subjects felt a learning
system would be more reliable since it would respond to their own training.

– Users prefer a gradual training versus a heavy configuration at the beginning.

– This training must indeed be simple and pleasant (“one click”).

– The initial learning phase must be short (one to three weeks).

– It is absolutely necessary for the assistant to be able to explain its decisions. This aspect was
particularly discussed by (Bellotti & Edwards, 2001).

– The amount of interactions wanted between the user and the assistant varies from one
subject to another. Some accept only to give one-click rewards while others would be happy
to give more inputs to the system. This confirms that people are interested in engaging
systems, as stated by (Rogers, 2006). For those users, we could add an optional debriefing
phase where the assistant goes through the learned behavior and the user corrects or
approves it.
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– Mistakes made by the system are accepted to some extent as long as the user knows that
the system is learning and as the system is useful enough to the user. But errors must not
have critical consequences. Users always want to remain in control, to have the last word
over the system and even have a “red button” to stop the whole system at any time.

– Some subjects pointed out that the assistant could even reveal to them their own automatic
and subconscious customs.

– A recurrent worry expressed by interviewees is the fear of becoming dependant of a
system that cares for them and becoming unable of living without it (what if the system
is broken-down?).

This user study justifies our ubiquitous assistant since a sizeable part of interviewed subjects
were prone to using it. Points listed above give us constraints to respect in our system. They
will be listed in the next paragraph.

3.3 Our constraints
Based on the Ambient Intelligence presentation (section 2) and this user study, we will now
present the constraints we have considered for our approach.
We want to build a personal assistant whose behavior is learned from user inputs. We have to
respect several constraints:

(a) The system must not be a black box. As detailed in (Bellotti & Edwards, 2001), a
context-aware system can not pretend to understand all of the user’s context, thus it must
be responsible about its limitations. It must be able to explain to the user what it knows,
how it knows it, and what it is doing about it. The user will trust the assistant (even if it
fails) if he can understand its internal functioning.

(b) The training is going to be performed by the user thus it must be simple, non intrusive
and it must not put a burden on the user.

(c) The learning should be Life-Long learning to continuously track the user’s changes of
preferences.

(d) The training period must be short, unless the user changes preferences.

(e) The system must have an initial behavior that is not incoherent.

We have been exploring in a previous work a supervised learning approach for
situation ↔ action association (Brdiczka, 2007) for a virtual assistant. Another example is
the a CAPpella system (Dey et al., 2004). Even if they produce some promising results, both
approaches are based on an off-line annotation of recorded data. This annotation process
can be quite painful for the end user and because of the off-line nature of the process, it
is performed “out of context”. To overcome these limitations, we have been considering
Reinforcement Learning as a solution for getting “in context” qualitative (not too intrusive)
feedback from the user.

4. Reinforcement learning: a quick overview

4.1 Definition
Reinforcement learning (Sutton, 1988; Sutton & Barto, 1998) is an approach where an agent
acts in an environment and learns from its previous experiences to maximize the sum of
rewards received from its action selection. The reward is classically a continuous function
between −1 and 1. 1 corresponds to satisfaction, −1 disapproval and 0 means no opinion.
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In reinforcement learning approaches, the environment is typically modeled as a Markov
Decision Process (or MDP). A Markov Decision Process is defined by 〈S ,A,R,P〉:
– S is the set of all possible states of the environment.

– A is the list of possible actions.

– R : S × A × S → [−1; 1] is the reward function. R(s, a, s′) indicates the opportunity to
choose action a in situation s.

– P : S ×A×S → [0; 1] is the transition function modeling the environment. P(s, a, s′) gives
the probability of being in situation s′ when applying action a in situation s. The Markov
property specifies that the next situation depends only on the current situation and action
and is not based on previous situations.

With Markov Decision Processes (and so, with classical reinforcement learning approaches),
the current state must be completely known. The environment’s evolution may be stochastic
(hence the probabilistic transition function), but it must be stationary: the probabilistic law
must not change over time.
An agent has a policy function π : S → A, proposing an action for every situation: the
agent’s behavior. This policy function can be evaluated using a value function Vπ(s). This
value function computes the expected discounted future rewards received by the agent being
currently in state s and applying its policy π. This value function is expressed by the following
equation:

Vπ(s) = E

{
∞

∑
k=0

γkrt+k+1|st = s

}
with 0 < γ < 1 (1)

The goal is to build an optimal policy π∗ maximizing the corresponding value function Vπ∗
.

This optimal value function is the solution of the recursive Bellman’s equation (equation 3):

Vπ∗
(s) = maxa

(
E

{
∞

∑
k=0

γkrt+k+1|st = s

})
(2)

= maxa

(
∑
s′
P(s, a, s′)(R(s, a, s′) + γVπ∗

(s′))
)

(3)

Once the optimal value function is determined, the optimal policy is directly calculated with:

π∗(s) = argmaxa

(
∑
s′
P(s, a, s′)(R(s, a, s′) + γV∗(s′))

)
(4)

If we have a model of the environment (the P and R functions of the corresponding Markov
Decision Process), the Bellman equation is fully determined. The optimal strategy can be
found using dynamic programming. It is an off-line optimization problem.
If the environment model is unknown, there are two main categories of approaches:

Model-Free : no explicit model of the environment is constructed. The optimal strategy is
built as a result of the agent’s interactions with its environment. Some examples of
Model-Free approaches are: Q-Learning (Watkins & Dayan, 1992), SARSA (Rummery
& Niranjan, 1994), Actor-Critic etc.

Model-Based : a model of the environment is constructed (learning phase) and then
exploited (planning phase) to build the optimal strategy. This is for instance the Dyna
approach (Sutton, 1991) that we will present in subsection 4.4.
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4.2 Examples
Reinforcement learning application domain covers a lot of ground, from robotics to industrial
manufacturing or combinatorial search problems such as computer game playing. We will
present some examples involving pro-active agents interacting with an end-user.
Robyn Kozierok and Pattie Maes (Kozierok & Maes, 1993) have proposed in 1993 an agent
helping the user to schedule meetings (agenda assistant). One of the very interesting aspects
of this approach is the smooth control transfer from the end user to the agent. This smooth
transition allows a progressive trust relation establishment, an important step for the system
acceptance. The agent’s learning is a combination of memory based and reinforcement
learning. The agent is first observing the end user, recording every situation ↔ action
association. When a new situation is detected, the agent extracts from its database the closest
previously observed situation and the associated action. If the proposed action is incorrect,
reinforcement learning is used to try to correct it. This approach combines two important
properties: establishing a trust relationship with the user based on a smooth control transfer
and consolidating this relationship with an intelligible model. If the agent is choosing a wrong
action, the system tells the user the reasons for its choice and the user can explain why this is
incorrect. One of its main drawbacks is the simplicity of the situation model (well suited for
the agenda problem).
Another example is Walker’s application of reinforcement learning to dialog selection in a
spoken dialog system for emails (Walker, 2000). The agent must learn to optimally vocally
interact with the end user to quickly provide him the right information. The difficulty of this
application is the complexity of the state space: 13 discrete variables that can take between 2
and 4 different values each. The authors recommend to reduce the state space to significantly
improve the system’s performances. This state space reduction is done by searching for
irrelevant variables in the learning process.

4.3 The Markovian hypothesis
Our learning agent perceives the environment’s state. This environment is both “physical”
(user entering a room, . . . ) and “computer based” (new email arriving, agenda alarm, . . . ).
In our problem, the agent is not the only acting entity modifying the environment. The
environment is modified by external elements, out of the agent’s control. The end user is one
of those elements: for instance, he enters or leaves his office, triggering localization events,
sends emails, etc. All those actions modify the environment. They are motivated by the
user’s internal state. The agent would need to access this internal state to fully understand
and predict the environment’s evolution. As this is not possible, the agent has only a partial
perception of the environment.

4.3.1 Partial environment perception
An agent in a Markov Decision Problem that has only a partial perception of its environment
breaks the Markov hypothesis. Let us consider for instance the classical maze problem. If the
robot has an exact perception of its state in the environment (position and nearest obstacles),
it might be able to correctly decide its next action to reach the goal (see top part of figure 3). If
it has a partial perception (the nearest obstacles for instance), there is an ambiguity on its real
position: it cannot decide anymore what to do based on the current perceived state (see bottom
part of figure 3). The Markov hypothesis is no more true: it needs to remember previous states
and actions to disambiguate its current position. The action selection is no more based solely
on the current state.
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(a) The robot has a complete perception of its state

(b) The robot perceives only surrounding obstacles

Fig. 3. Consequences of having a complete or partial state observation

When an agent has only a partial access to the current state, Markov Decision Processes
are then replaced by Partially Observable Markov Decision Processes2 (Aström, 1965). In a
Partially Observable Markov Decision Process approach, the agent does not know its real
state s but it only has access to an observation o. It then acts based on an estimated state
b (belief state) defined by a probability distribution on S (all states). A Partially Observable
Markov Decision Process is a non-Markovian process which can be reduced to a Markovian
process on a continuous state space: the belief space. The belief space is the space which, from
the probability of being in each state and an action, gives the new probability of being in each
state (for a quick introduction, see for example (POMDPs for Dummies: Page 5, 1999)).
Partially Observable Markov Decision Processes are used in particular for multi-agent
problems. In a multi-agent system, each agent has access to its internal state, to the external
environment state but has no perception of the other agents’ internal state: each agent has

2POMDP
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a partial view of the global system’s state (Littman, 1994). If each agent is governed by a
Partially Observable Markov Decision Process, we talk of Decentralized Partially Observable
Markov Decision Process or DEC-POMDP.
Solving a Partially Observable Markov Decision Process problem is p-space
hard (Papadimitriou & Tsitsiklis, 1987). There are some approximate solutions: (Pineau
et al., 2003), (Spaan & Vlassis, 2005) or (Smith & Simmons, 2005) for instance. But it remains
very difficult, especially with convergence speed constraints imposed by the end user being
in the loop.

4.3.2 Non Markovian stationary or Markovian non stationary?
Considering the end-user as part of the environment, our learning agent problem can be
naturally modeled as a Partially Observable Markov Decision Process. The agent cannot
perceive the end-user’s internal state, responsible for the user’s actions and part of the
environment evolution. As stated by Buffet in his PhD (Buffet, 2003), our system is non
Markovian and stationary. It is stationary because:

– the environment without the user can be considered as stationary (the rules of evolution are
not changing);

– the end user might introduce a non stationary aspect (his behavior is evolving through time)
but this non stationary part is embedded in the non observable part.

We could also consider that the end-user is not part of the agent’s environment. The agent has
a full perception of the state: the problem is now Markovian but it is no more stationary. The
end user is a “disruptive” element, causing non deterministic environment state changes. As
we have seen in subsection 4.1, a non deterministic evolution of the environment is compatible
with a Markov Decision Process as long as the probabilistic evolution law is not changing
(stationary). In our case, the non stationary part corresponds to the end-user’s behavior
evolution. We can consider that this behavior evolution is slow and that our problem is locally
stationary. If the agent’s learning speed is much faster that the user behavior’s evolution, then
the agent can track user evolutions and constantly adapt to them.
As we have explained in the previous section, Partially Observable Markov Decision Process
approaches are difficult. We have preferred to use a more classical Markov Decision Process
approach, selecting the second solution: the end user is seen as a “disruptive” element, outside
of the agent’s environment.

4.4 Reducing user’s burden: indirect reinforcement learning
Reinforcement learning approaches need a lot of steps to converge. For instance, the
backgammon agent had to play 1.5 million games to learn (Kaelbling, 2004). In a
reinforcement learning approach, the agent is building its policy through interaction with its
environment. If this environment is virtual (like for the Backgammon game), the convergence
time (due to a high number of learning steps) can be partly reduced by parallelizing the
algorithm for instance or by using faster processors. But in a real environment, especially
if the end-user is part of the learning step giving for instance the rewards, the bottleneck is not
the processor speed but the end-user himself who can quickly get bored.
To limit end-user’s interactions, indirect reinforcement learns a real world model that can
be used by the agent as a “virtual playground” to produce as many off-line experiments as
necessary. The world model allows imaginary experiments as defined by Craik (Craik, 1943).
The world model is a transformation S × A → S. Building a world model is a life-long
learning process. The agent is repeatedly updating its world model based on new available
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Fig. 4. The Dyna architecture: the agent is learning either on the real world or the world
model

observations (s, a, s′) coming from the real environment (supervised learning). Because it is a
life long process, the world model can track evolutions of the real environment. Building an
optimal policy (planning phase) is a quick process, exploiting the current world model.
Indirect reinforcement learning approaches have been introduced by Sutton with the Dyna
architecture (Sutton, 1991). The Dyna system is composed of three asynchronous tasks:

1. learn a world model

2. build a policy from this world model

3. build a policy from the real world interactions (not using the world model).

The first task is executed in parallel with the two others. The agent is acting and learning
either in the real world or in the world model (Dyna switch) as illustrated in figure 4.

5. Our approach

5.1 Indirect reinforcement learning adaptation
As stated in section 3.3, learning the user preferences must not be a burden on the end-user.
The system has to learn quickly and without over-soliciting the user. Indirect reinforcement
learning, presented section 4.4, proposes a solution by using a world models. Applying
Dyna implies describing two parts: interactions with the user in the real environment and
the non-interactive learning part using world models.
In the interactive part, the system perceives events from the environment through its sensors.
The internal representation of the environment’s state is updated accordingly (see section 5.2
for further details on state representation). As a reaction to the state change (caused by the

detected event), the system selects an action to be executed through its actuators.
The non-interactive part consists in running episodes of Q-Learning in the world model
(composed of a transition function and a reward function). Instead of sending actions to the
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real environment, we query the transition function for the next state given the last action and
state. Similarly, the reward function returns us the expected reward for action a in state s.
Those functions have to be representative of the real environment’s dynamics, which are not
fixed but evolving over time. Acquiring them through supervised learning seems appropriate.
This learning will be a life-long process in order to keep the models up-to-date with the
environment. The learning of the transition function is described section 5.3.1 and the learning
of the reward function is the concern of section 5.3.2.

5.2 Internal state representation
One of our constraints defined section 3.3 concerns the intelligibility of the agent (constraint a).
The internal functioning of the system should be transparent to the user for him to trust the
agent. The modelling choice of environment states should take this constraint into account.
We chose to represent a state as a set of predicates. Each predicate represents a relevant part
of the environment. Zero-order predicates would not provide a sufficiently informative
description of the environment because of its complexity. We use first-order predicates,
defined with arguments which can take any value or no value. A state is a particular
assignment of argument values, which may be null. These predicates are described below.

alarm(title, hour, minute) A reminder fired by the user’s agenda.
xActivity(machine, isActive) The activity of the X server of a machine.
inOffice(user, office) Indicates the office that a user is in, if known, null otherwise.
absent(user) States that a user is currently absent from his office.
hasUnreadMail(from, to, subject, body) The latest new email received by the user.
entrance(isAlone, friendlyName, btAddress) Expresses that a bluetooth device just entered the user’s
office. isAlone tells if the user was alone or not before the event.
exit(isAlone, friendlyName, btAddress) Someone just left the user’s office.
task(taskName) The task that the user is currently working on.
user(login), userOffice(office, login), userMachine(machine, login) The main user of the assistant, his
office and main personal computer (not meant to be modified).
computerState(machine, isScreenLocked, isMusicPaused) Describes the state of the user’s computer
regarding the screen saver and the music.

An example would be the state:

alarm(minute=<null>, title=<null>, hour=<null>);
xActivity(isActive=<null>, machine=<null>);
inOffice(office=<null>, user=<null>);
absent(user=<null>);
hasUnreadMail(from=<null>, to=<null>, body=<null>,

subject=<null>);
entrance(isAlone=<null>, friendlyName=<null>,

btAddress=<null>);
exit(isAlone=false, friendlyName=Sonia,

btAddress=00:12:47:C9:F2:AC);
task(taskName=<null>);
screenLocked(machine=<null>, isLocked=<null>);
musicPaused(isPaused=<null>, machine=<null>);
user(login=zaidenbe);
userOffice(office=E214, login=zaidenbe);
userMachine(login=zaidenbe, machine=hyperion);

In this example, the main user is zaidenbe and a bluetooth device just left the office.
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Each predicate is endowed with a timestamp accounting for the number of steps since the
last value change. Among other things, this is used to maintain integrity of states, e.g. the
predicate alarm can keep a value only for one step and only one of inOffice and absent can
have non-null values.
Our states contain free values. Therefore, our state space is very large. This exact information
is not always relevant for choosing an action. The user might wish for the music to stop
when anyone enters the office, but to be informed of emails only from his boss. As soon
as we observe the state “Bob entered the office”, we have an estimated behavior for the state
“someone entered the office”, which is more satisfying for the user. We generalize states in the
behavior definition by replacing values with wildcards: “<+>” means any value but “<null>”
and “<*>” means any value.
In this manner, an action is associated to a “super-state” encompassing numerous actual states.
A generalized state may be split when it is relevant to distinguish between encompassed,
more particular, states. This splitting can be done offline, by analyzing the history of rewards
and detecting persistent inconsistencies of user rewards for a state. This aspect has not been
further studied yet.

5.3 World model
The world model is intended to replace the real world in part of the actions executed for
exploration, as shown figure 4. In classical reinforcement learning, the world model takes as
input an action executed by the agent and the state that the world was in at the time the action
was chosen. The output of the model is the state of the environment after the action and the
expected reward (see section 4.4).
In our case, as explained section 4.3.2, the environment state is modified by actions from the
agent as well as by exterior events generated by the user. Our world model takes as input the
current state and an action or an event.
The world model is composed of the transition and reward functions P and R. We modify
slightly the classical definition given section 4.1 by the following definition of the transition
function: P : S × O × S → [0; 1], where O = A ∪ E represents the set of occurrences, an
occurrence being an action or an event (E is the set of events), as illustrated figures 5(a)
and 5(b).
The world model is automatically acquired using supervised learning based on real
interactions examples. The system records every state, event and reward and action, and uses
these examples for supervised learning as described in sections 5.3.1 and 5.3.2.

(a) The classical world model (b) Our world model

Fig. 5. World model definition
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Algorithm 1: The supervised learning of the transition function.

Input: A set of examples {s, o, s′}
Output: P
foreach example {s, o, s′} do

if a transformation t that obtains s′ from s with the occurrence o, can be found then
Increase the probability of t;

else
Create a transformation starting with s, having the action a or a generic event created
from e and ending in s′, with a low probability;
Decrease the probability of any other transformation t′ that matches the starting state
s and the occurrence o but whose ending state is different from s′;

5.3.1 Supervised learning of the transition function
In our case, the transition function P(s,o, s′) gives the probability of being in situation s′ when
applying action a, or perceiving event e (where o is an occurrence a or e), in situation s. We
modeled our transition function as a set of transformations. Each transformation includes a
starting state st, an occurrence ot, a probability pt and the modifications that will be applied
on the observed starting state to compute the next state Mt = {mt

i , i ∈ [1; n]}.
A modification operates on an predicate’s argument. It can erase the argument’s value, set
a given value, copy the value of one of predicate’s a argument into one of predicate’s b

argument. The transformation can also be to reset the timestamp. We denote a transformation
by t(st, ot, pt, Mt).
In the same way as we factorize states for the behavior definition (see section 5.2), we use
generic transformations in order to reduce the size of the transition function. The starting
state st is a generalized state, defined with wildcards (for instance, “some entered the office”,
no matter what the other argument values are).
The transition function is initialized using common sense, and it is enriched by the supervised
learning algorithm 1. For instance, consider: st = <*>, which matches any state, at =
lockScreen, the action of activating the screen saver. The transformation would be to set
to true argument isScreenLocked of predicate computerState, indicating that the screen
is locked in the next state. When new examples confirm knowledge already included in
the model, they strengthen the corresponding transformation. If an example contradicts the
existing model, we decrease slowly the probability of the concerned transformation. As a
consequence, if this example is an outlier, it will not disturb the model too much. If it is a sign
of an actual change, then it will be observed again and will slowly change the model.
This model has a generalization ability since we create new transformations with generic
starting states. This accelerated the learning of preferences because we make most use of
each example. Having seen one example with the starting state “Bob entered the office”, we
have a transformation for all states where someone enters the office. This transformation can
efficiently be used during offline reinforcement learning.

5.3.2 Supervised learning of the reward function
The reward function R(s, a, s′) indicates the opportunity of choosing action a in situation s.
Similarly to the model for the transition function, the model for the reward function is a set of
entries, each entry being defined by a starting state se, an action ae and a numerical reward re.
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Algorithm 2: The supervised learning of the reward function.

Input: A set of examples {s, a, r}
Output: R
foreach example {s, a, r} do

if an entry e = {se, ae, re} such as s matches se and a = ae, can be found then
Update e, set re = mix(r, re), where mix is a merging function;

else
Add a new entry e = {s, a, r} to the reward model;

The given reward usually depends only on a subset of the predicates defining a state. For
example if in the starting state the user was typing on his computer and the action is to lock
the screen, the reward should be quite negative and does not depend on the presence of other
people or on the state of the music player. The starting state se may be a generalized state,
indicating only relevant filtering constraints. Though, during learning we cannot determine
automatically which predicate is relevant for a given reward, since the reward depends on the
internal state of the user. The reward model, as well as the transition model, is initialized using
common sense. Only these initial entries have generalized starting states. New entries are
created with the exact perceived state, without generalization. The model is then learned with
the supervised learning algorithm 2. The merging function used in algorithm 2 amalgamates
a newly received reward with the one present in the model for the entry corresponding to the
current example. As for the transition function, we want the reward model to evolve smoothly
and to be stable. We define mix(r, re) = 0.3r + 0.7re. If the user changes his reward because
he changes his preferences, the model will slowly follow the change. If a given reward is
inconsistent for another reason, the model will not undergo an unwanted change.
Having numerous user rewards makes the reward model more reliable, but users do not
always give rewards. To increase the number of examples, it is possible to infer indirect
rewards. For instance, if the user immediately refuses a service proposed by the assistant,
for example by closing the mail client opened automatically, we deduce a negative reward.
The magnitude of values for indirect rewards is limited to take into account their uncertainty.

5.4 Offline reinforcement learning
The behavior learning is done completely offline, in a non interactive manner. We use a
classical algorithm for reinforcement learning: the Q-Learning algorithm (Watkins & Dayan,
1992), and we modify it slightly to match our pattern “event-action” (see algorithm 3). Unlike
classical Dyna (section 4.4), we use only the world model for learning the behavior. The user
acts in the real world and interaction histories are stored for learning the world model. In this
way, we can completely separate the learned behavior from the used behavior at a given point
in time. The user, who is confronted with the behavior of the assistant, implicity learns his
own internal model of the assistant, as he does with every system he uses. If this behavior is
constantly updated, the user might get destabilized and lose trust (see constraint a section 3.3
). If the learned behavior is not the same as the one used for interactions, it becomes possible
to warn the user before replacing the online behavior by the newly updated one.
In algorithm 3, k is the number of iterations of an episode. Each episode starts in an initial state
which can be either an empty state (all arguments are <null>) or a randomly generated state,
or a state randomly chosen from history. The two latter options enable a better exploration

73Reinforcement Learning of User Preferences for a Ubiquitous Personal Assistant



16 Advances in Reinforcement Learning

of the state space than the first option. Starting from a random state that has never been
observed makes sense only because our transition model has a generalization ability. It can
estimate a transition from a state never seen during learning (section 5.3.1). Starting from a
state encountered during interaction allows to make most use of observed experience. During
episodes, events cause state transitions. Likewise, events can be randomly generated or
selected from history. Generating unseen events enables better exploration whereas using
observed events strengthens past experience.
The world model is initialized using common sense. Before activating the assistant, we run
initial episodes of Q-Learning (algorithm 3) to “convert” the initial world model into an initial
behavior, to respect constraint e defined section 3.3.

6. Experimental results

6.1 Learning an initial behavior
As mentioned section 5.4, before starting to act, the assistant learns an initial behavior from a
given initial world model. For these initial episodes of Q-Learning (algorithm 3) there are four
parameters introduced section 5.4 to fix: the number of episodes, the number of iterations of
each episode (k), the choice of the initial state and the choice of events during episodes. We
ran initial episodes with different options. First, we found that it was more efficient to select
both initial states and events randomly from history. Then, we ran 100 episodes of 10, 25, 50
and 100 iterations each and computed a grade for every behavior obtained after an episode.
The results are shown figure 6.
The grade of a behavior is for the most part its correspondence to what the user wants. The
experimenter who gave the initial rewards is presented with the best action in each state and
indicates whether this actions is the one he expected. In a much smaller proportion, the grade
takes into account the number of states where the system has an estimation of the action to
select. It allows to keep behaviors that have performed enough states explorations (that is, the
selected action will not be random in more states).

Algorithm 3: An episode of Q-Learning run during the planing stage by the assistant.
Input: P , R
Select an initial state s;
for i from 1 to k do

Choose an event e;
Send the current state s and the event e to the world model and receive an estimation of
the next state s′:
s′ ← maxs′∈SP(s′ |s, e);
Select an action a = π(s′);
Send s′ and a to the world model and receive estimations of the next state s′′ and the
reward r:
s′′ ← maxs′′∈SP(s′′ |s′, a), r ←R(s′, a);
Apply a reinforcement learning method on the hypothetical experience 〈s′, s′′, a, r〉:
Q(s′, a)← Q(s′, a) + α(r + γmaxa′ Q(s′′, a′)− Q(s′, a));
s ← s′′;
i ← i + 1;
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Fig. 6. Initial episodes with events and initial states randomly selected from history.

The curves figure 6 show that the more episodes we run, and the longer the episodes, the
better the behavior. But this figure does not show the computation time needed for each point
in the curves. Episodes with 100 iterations take twice as long as episodes with 50 iterations
whereas the grade is only approximately 1.1 times higher in the end. Hence, we choose to
keep k = 50 iterations per episode. The same principle applies to the number of episodes.
During the first 50 episodes, the grade raises notably. The last 50 episodes take, again, twice
as long and result in a grade only 1.2 times higher. Therefore, the assistant can start acting
after 50 episodes of 50 iterations, its behavior will be acceptably good. Anyway, after this
initial learning, episodes are run regularly and the behavior continues enhancing. This result
is presented section 6.2.

6.2 Learning user preferences during interactions
Once an initial behavior was acquired, we performed an experience to measure the efficiency
of learning during the “normal” life of the assistant with its user. The role of the user was
taken by a human experimenter and consisted in “generating” real life events, such as leaving
and entering the office, receiving emails and reminders, having other people coming in and
out of the office, playing or pausing the music and starting and stopping the screensaver.
To send these events to the assistant, the experimenter used a graphical interface, facilitating
him the experience. He was also in charge of giving rewards to the assistant. For that, the
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Fig. 7. Grades of behaviors produced by the reinforcement learning algorithm.

experimenter had a goal behavior in mind and gave rewards mostly consistent with this
goal. Like a normal user, the experimenter did not give rewards for all actions. During these
interactions, at regular time intervals, reinforcement learning episodes were executed and the
resulting behavior was evaluated by the experimenter. As previously, he was interviewed
about the best action in every state and answered whether this action was the one he had in
mind or not. The resulting grades are shown figure 7.
The periods in figure 7 where the curve is rising correspond to periods where user events
were new to the assistant (they were not included in the initial world model). The curve is flat
when the learned behavior is optimal for the time being.
Figure 8 shows an example where the experimenter changed his mind on a part of the
expected behavior. The grade drops and then the system adapts to the new reinforcements.

7. Conclusion

The aim of this research is to investigate Ambient Intelligence systems and their acceptability
by users. We exploit a ubiquitous system to provide personalized, context-aware services
to users. The personalization of the system is achieved by learning user preferences during
interactions. We proposed a reinforcement learning method corresponding to the pattern
“event-action” existing in ubiquitous systems. The classical reinforcement learning or indirect
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Fig. 8. Grades of behaviors produced by the reinforcement learning algorithm. Example of
preference change.

reinforcement learning is not adapted directly to real world applications where the user is in
the loop. We conducted a user study in order to validate the relevance of such an application
and reveal constraints for the acceptability of such a system. We adapted existing methods
to those requirements and developed a prototype showing the correct functioning of our
ubiquitous assistant.
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1. Introduction 
Multi-agent systems are the systems in which several interacting, intelligent agents pursue 
some set of goals or perform some set of tasks (Wooldridge, 2000). In multi-agents systems, 
each agent must behave independently according to its states and environments, and, if 
necessary, must cooperate with other agents in order to perform a given task. Multi-agent 
systems have more robustness and flexibility than conventional centralized management 
one. However, it is difficult to beforehand predict the action of the agent and give the action 
rule for the multi-agent systems, because the interaction between agents is complicated.  
The acquisition of an autonomous agent’s intellectual action rule is a very interesting topic. 
Recently, extensive research has been done on models such as Robocap (Stone & eloso, 1996, 
Matsubara et al., 1998). Studying computation models of cooperative structure to 
accomplish a given task is known to be a difficult problem (Jeong & Lee, 1997).In the field of 
self-learning reactive systems, it is not even desirable to have a clear idea of a computational 
model. Thus, being adaptable, autonomous agents imply minimally pre-programmed systems. 
Numerous studies regarding autonomous agents in the multi-agent systems have been 
conducted. Nolfi and Foreano (Nolfi & Floreano, 1998) simulated a pursuit system with two 
agents (predator and prey) in real environments. They evolved both agents reciprocally 
using a genetic algorithm. Jim and Lee (Jim & Lee, 2000) evolved the autonomous agents 
with a genetic algorithm. Zhou (Zhou, 2002) used both a fuzzy controller and a genetic 
algorithm. The fuzzy function displayed the position of the agent, and the genetic algorithm 
was used for learning. Fujita and Matsuo (Fujita & Matsuo, 2005) learned the autonomous 
agent using reinforcement learning. The reinforcement learning method involves 
developing an agent’s behavior by means of the interrelationship with the environment and 
resulting reinforcement signals. The reinforcement learning method can guarantee learning 
and adaptability without precise pre-knowledge about the environment. 
In this chapter, we focused on the problem of “trash collection”, in which multiple agents 
collect all trash as quickly as possible. The goal is for multiple agents to learn to accomplish 
a task by interacting with the environment and acquiring cooperative behavior rules. 
Therefore, for a multi-agent system, we discuss how to acquire the rules of cooperative 
action to solve problems effectively.  
First we used a genetic algorithm as a method of acquiring the rules for an agent. Individual 
coding (definition of the rule) methods are performed, and the learning efficiency is 
evaluated.  
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Second, we construct the learning agent using the Q-learning which is a representative 
technique of reinforcement learning. Q-learning is a method to let an agent learn from 
delayed reward and punishment. It is designed to find a policy that maximizes for all states. 
The decision policy is represented by a function. The action vale function is shares among 
agents.  
The third, we concentrate on an application of Multi-agent systems to disaster relief using 
Q-learning. We constructed a simplified disaster relief multi-agent system and acquired 
action rules by Q-learning. We then observe how the autonomous agents obtain their action 
rules and examined the influence of the learning situations on the system. Moreover, we 
discuss how the system was influenced by learning situation and the view information of 
the agent. 

2. Cooperative action of multi-agent 
2.1 Cooperative action of agents 
When multiple autonomous agents exist, the environment changes from static to dynamic, 
compared to the case of an individual agent. An agent engaged in cooperative action 
decides its actions by referring to not only its own information and purpose, but to those of 
other agents as well (Jennings et al., 1998).  
Multi-agent systems enable problems to be solved more efficiently. In addition, multi-agent 
systems can solve problems that may be impossible for individual agents to solve, because 
multi-agents have one common aim and can adjust to their environment and perform 
cooperative actions. Occasionally, in order to proceed with a task in a changing 
environment, multi-agents must judge precise situations in order to make adaptive moves. 
In order to realize cooperative action, it is necessary to perform actions based on the rule 
that working as a group takes priority over the actions of the individual. Generally 
speaking, individual action is natural, whereas group action is acquired by learning to 
accomplish goals through cooperative actions.  
Multi-agents are not always advantageous. For example, if multiple agents in the same 
environment act independently, then the situation that each agent has to deal with becomes 
more complex because each agent has to consider the other agents movements before 
performing an action. If an agent tries to perform an autonomously decided action, the 
agent may not be able to perform the action as planned because of disturbances caused by 
the other agents. Changes to the environment caused by the actions of other agents may 
make understanding the environment difficult for the agents. 

2.2 Establishment of the problems environment 
This chapter considers the “trash collection” problem, in which trash is placed on a field of 
fixed size and agents must collect the trash as fast as possible. 
As in Figure 1, the field is divided into N × N lattice. Agents are denoted by ● symbols, and 
trash is denoted by the ■ symbols.  
In the trash collection problem, the actions of agents are defined as follows: 
i. The action of an agent is determined once per unit time. 
ii. An agent can move to an adjoining lattice, where up-and-down and right-and-left are 

connected per unit time. 
iii. An agent collects the trash when the agent has the same position as the trash. 
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Fig. 1. An example of the problem environment 
For the trash collection problem, an example of agent actions is shown in Figure 2 for 
cooperative behavior and non-cooperative behavior. If the priority of each agent is to act to 
increase individual profit, by collecting as much trash as possible, then the agents are 
expected to act as shown in Figure 2(a). However, if each agent has a complete 
understanding of the entire situation and has the priority of collecting all of the trash as fast 
as possible, then agents are efficient and act as shown in Figure 2(b). In this case, the priority 
action of an agent is called cooperative action. The goal of the present study is to have 
agents acquire, through learning, the rules that are necessary to take cooperative action.   
 

                   
                            (a) Non-cooperative action                (b) Cooperative action 

Fig. 2. Example of agent action 

3. Acquisition of cooperative rule using GA 
In this section, we use a genetic algorithm (GA) to acquire the cooperative action rule 
(Goldberg, 1989, Holland, 1975). The number of steps taken to collect all of the trash is used 
to evaluate the rule. We used a GA, which agents use to decide actions, to evolve and 
acquire the cooperative rules needed.  

3.1 Structure of the system 
The system to acquire the cooperative rules is described by the action rules of agents. An 
agent realizes the state from the field’s information, compares the state with the internal 
rules, and then decides on its next action. The renewal of the rules is carried by GA. The 
structure of the system is as follows: 
1. Development of the field - arrange the decided number of pieces of trash and agents on 

the established field. 
2. Each agent determines its next move - each agent decides the direction of its next move 

based on the situation of the field, the internal rules and knowledge. 
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3. Movement of agents - all agents move simultaneously. A piece of trash is collected if an 
agent occupies the same position. 

4. Repeat Items (2) ~ (3) until all of the trash is collected. Repetition of Items (2) ~ (3) is 
considered as one step. 

5. When collection is completed, evaluate the actions of the agents based on the number of 
steps required to complete the action. Agents also learn on the basis of this evaluation. 

6. The experiment is continued by returning to Item (1), and agents continue to learn.  

3.2 Acquisition of cooperative rule by GA 
The behavior of each agent is governed by a rule. A rule is a condition-action rule of the 
form. The condition part of the rule represents the situation of the field (the arrangement of 
agents and trash). The action part of the rule indicates the piece of trash toward which the 
agent moves at the next time step. 
An agent compares the present state of the field with the action part of the rules and decides 
a rule that is closest to the present state of the field. An agent executes the decided action.  
Because multiple agents are present in a dynamic environment, it is necessary for each agent 
to have the ability to learn from the environment in order to develop cooperative action. In 
this section, the acquisition of cooperative rules is performed using a GA. We propose two 
methods of individual representation are as follows:  
Representation Method 1: one rule for one individual 
This representation method takes one rule as a single individual, as shown in Table 1.  
 

Next Movement:
Agent1 Agent2 Trash1 Trash2

The No. Trash
Agent1 Agent2 Trash1 Trash2 watch

etc.
Agent1 Agent2 Trash1 Trash2

Distance from Agent B

Distance from Agent A

Distance from Agent C

 
Table 1. Structure of the individual by Representation Method 1 

The condition part of the rule represents the assumed field state at a distance. That is to say, 
each agent identifies the positions of agents to a central agent. The action part is the 
hamming distance from the central agent to each trash and to others agents rearranged in 
order of ascending proximity. The action part represents the piece of trash toward which the 
agent will move next. 
Representation Method 2: Multiple rules for one individual 
The form of a rule is as described in Method 1; however, one individual consists of a group 
of rules (Table 2). 
Evaluation of the individual 
Representation Method 1 takes one rule as a single individual for GA. An agent chooses a 
rule from the population consisting of such individuals and decides its next move. For the 
population of individuals, genetic operations, such as crossover, mutation and selection, are 
performed. The evaluation of each individual agent is based on that next move and the time 
required to finish collecting one piece of trash. The evaluation value of the individual agent 
is given a constant value when an agent applies the rule and collects one piece of trash. Once 
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Table 2. Structure of the individual by Representation Method 2 

collection is completed, the result is compared to the previous collection and the required 
number of steps is evaluated. The fewer the steps, the better the result. 
For Representation Method 2, an agent has some individual (group of rules). Evaluation of 
individuals is performed based in the decrease in the number of steps required for collection 
compared to the previous collection by giving in proportion to the degree. Trash collection 
is performed once by one individual, and each individual is evaluated by changing the 
individual used for the trash collection. After finishing the evaluation of all individuals, a 
GA is selected based on the above evaluation.   

3.3 Results and discussion 
Using the representation method of the proposed individual, the acquisition of the 
cooperative action of the multi-agent system was attempted using a GA. In the experiment, 
the size of the field was 15 × 15. There were 15 pieces of trash and three agents. The average 
results for 20 repetitions until all of the trash was collected by the agents for the same initial 
distribution are shown below.  
An example experimental result 
An experimental result is shown in Figure 3. In this result, the agents are denoted by ● and 
pieces of trash are denoted by ■, and the lines indicate the tracks of agents.  
When the cooperative action is learned using the Representation Method 1, each agent had 
50 rules. In other words, the population size of the GA is 50. The number of steps required 
in order to collect all trash differs in every generation, but fluctuates in the range from 20 to 
60 steps. That is because there are different rules taken for every generation by the GA. The 
shortest step of 20 was obtained by trial-and-error. As a result of the learning using the GA, 
this elite individual could be obtained in approximately 30 generations (Xie, 2006). 
In Representation Methods 2, each agent has 10 rule groups. In short, the population size of 
the GA is 10. One rule group consists of 50 rules. That is, the results for the number of steps 
required for 10 individuals fluctuate in the range from 20 to 50 steps, which is fewer than 
that for Representation Method 1. 

4. Cooperative behavior acquisition using Q-learning 
In this section, we discuss the cooperative behavior acquisition of agents using the Q-
learning which is a representative technique of reinforcement learning. Q-learning is a 
method to let an agent learn from delayed reward and punishment. It is designed to find a 
policy that maximizes for all states. 

Next Movement:
Agent1 Agent2 Trash1 Trash2

The No. Trash
Agent1 Agent2 Trash1 Trash2 watch

etc.
Agent1 Agent2 Trash1 Trash2

Rule １
Distance from Agent A

Distance from Agent B

Distance from Agent C

Individual 1
Rule 1
Rule 2
Rule 3
・ ・ ・
Rule n
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Fig. 3. An example experimental result 

4.1 Agent and environment 
The agent decides the action based on the condition of perceived environment, and some 
changes are caused environment by the action. Therefore, agent and environment are 
relationships of the interaction. 
An accessible environment is one in which the agent can obtain complete, accurate, up-to-
date information about the environment’s state. Most moderately complex environments are 
inaccessible. The more accessible can environment is, the simpler it is to build agent to 
operate in it (Alex et al., 2005). In the meantime, when the environments are inaccessible, the 
information which can be perceived from the environment is limited, and it is inaccurate, 
and it entails delay. 
When there is only one the agent, the environment is static. However, it is not always static 
for the environment, when other agent exists. Because, the condition of the environment 
may be due to be changed by other agent. 

4.2 The composition of agents 
In this section, the composition and each function of the agent are described. The structure 
of an agent is shown in Figure 4. The figure has shown each component of the agent, and the 
transmission of information has been expressed in the arrow. First, the agent perceives the 
condition of the environment in the detector. Next, the rule is compared with the condition 
that it was perceived by the acting decider, and the action is decided. Finally, the action is 
carried out in effector. 
The detector of the agent can't always perceive the condition of the environment completely. 
It is similar to there being a limit at the human visual acuity. Therefore, an agent can 
perceive only a part of condition of the environment or the state just in the neighborhood.  
The whole environment and the environment which an agent perceived are respectively 
shown in Figure 5 and Figure 6. Figure 5 shows whole of the arranged field of agents. The 
round sign is an agent, and the number is the label of the agent in Figure 6. The frame which 
each agent is enclosed with is the range that an agent can perceive, and it is the range that it 
has been limited. Figure 6 is the environment which each agent perceived. The symbol X is 
an agent itself, and the number is other agents. 
The conditions (position) of all the agents are included in the whole environment as like 
Figure 5. An agent 1 and an agent 2 perceive the respectively different environment.  
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Fig. 4. Composition of an agent 
 

 
Fig. 5. The whole environment 
 

 
Fig. 6. The environment which each agent perceives 

However, though each agent is located in the different environment, an agent 3 and an 
agent 4 perceive it as a condition of the same environment. This problem is called the 
imperfect perception problem, and it becomes one of the important problems in the agent 
design. It is considered that the visual field range of the agent is increased in order to avoid 
this problem. 
The behavior of each agent is governed. A rule is a condition-action rule of form. The 
condition part of the rule represents the situation of the environment which the defector 
perceives. The action part of the rule indicates the action of the agent. When the number of 
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patterns of the condition of an environment which the defector perceives increases, the 
number of rules increases. An example of the condition-action rules is shown in Table 3. 
 

Situation of environment action
200000000000X000000010020 up
002000010000X000000020000 down
000000000000X000000002000 left
002000000000X000000001000 right
000000000000X000002000000 down  

Table 3. An example of rules 

The effector decides the action by the rule. For example, if the condition of the environment 
was perceived with “000000000000X000002000000”, the action to the “down” is chosen on 
the action of the agent in Table 3 rules. 

4.3 Q-Learning 
A prominent algorithm in reinforcement learning is the Q-Learning. In an environment of 
finite Markov decision process (MDP), the goal is to find the optimal policy in each state 
visited to maximize the value of a performance metric, e.g , long-run discounted reward 
using Q-Learning (Schleiffer, 2005).  
A policy defines the action in every state visited. Let A denote the set of actions allowed and 
let S denote the set of states. We will assume that both A and S are finite. Let rt+1 denote the 
immediate reward earned in going from state st to state st+1, when action at ∈ A is selected in 
state st, and let γ denote the discounting factor. Then with st as the starting state, for the 
policy π, the total discounted reward - generally referred to as discounted reward - is 
defined as (Bradtkes & Duff, 1994, Parr & Russell, 1998):  

 2 1 1
1 2 3

1

T t
T k

t t t t T t k
k

R r r r r r rπ γ γ γ
−

− −
+ + + +

=
= + + + + = ∑  (1) 

where T denotes the finished time of the system. If the Markov chain associated with the 
policy π is irreducible and a periodic, the discounted reward, tRπ , is independent of the 
starting state st.  
 In Q-Learning, which can be implemented in simulators or in real time, the algorithm 
iterates are the so-called Q-factors. Q(s,a) will denote the Q-factor for state s ∈ S and a ∈ A. 
The updating in Q-Learning is asynchronous. One iteration of the algorithm is associated 
with each state transition in the simulator. In one transition, only one Q-factor is updated. 
Let Q(s,a) denote the Q-factor for state s and action a. When the system transitions from state 
st to state st+1 and at denotes the action chosen in state st, then the Q-factor for state st and 
action at is updated as follows: 

 ( ) ( ) ( ) ( )1 1, , max , ,t t t t t t t t
a

Q s a Q s a r Q s a Q s aα γ+ +
⎡ ⎤

← + + −⎢ ⎥
⎢ ⎥⎣ ⎦

 (2) 

where 0 ≤ α ≤ 1, which denotes a step-size parameter in the iteration, must satisfy some 
standard stochastic-approximation conditions, and all other Q-factors are kept unchanged. 
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Theoretically, the algorithm is allowed to run for infinitely many iterations until the Q-
factors converge.  

4.4 Action acquisition by Q-learning  
The action-value function is renewed in which the agent acts. When an agent pick up a 
trash, the reward which affects the renewal of the action value is given for the agent. And, 
the field is initializes, when all trashes on the field are picked up. But, action-value function 
and agent learning number of step would not be initialized. It is repeated to learning 
number of step decided. 
The flow of the trash collection agent learning is as follows.   
 

 
 

The trash collection carries out the action based on action-value function. Action rule of 
trash collection agent is shown as Table 4. Action part is replaced with the action-value 
function. 
The action of the agent is decided by the value of action-value function moved to the each 
direction. For example, the action is decided by the each value of Q(B, up), Q(B, down), Q(B, 
left) and Q(B, right) when the state of the environment is B. As a method for deciding the action 
from these four values, there are two techniques are as follows (Watkins, 1989, Bridle, 1990): 
1. ε-greedy policies 
It is a method that most of time they choose an action that has maximal estimated action 
value, but with probability ε they instead select at random. That is, all nongreedy action are 
given the minimal probability of selection, and the remaining bulk of the probability is 
given to the greedy action. 
Although ε-greedy action selection is an effective and popular means of balancing 
exploration and exploitation in reinforcement learning, one drawback is that when it 
explores it chooses equally among all action. This means that it is as likely to choose the 
worst-appearing action as it is to choose the next-to-best action.  
2. Softmax policies 
It is a method to vary the action probabilities as a graded function of estimated value. The 
greedy action is still given the highest selection probability, but all the others are ranked and 
weighted according to their value estimates. 

Initialize Q(s, a) arbitrarily 
  Initialize state of field 
 (Arrange initial position of agents and trash) 
Loop (until decided step){ 

Decide randomly action a, then act 
IF（pick up a trash） 

 r=M (M is any positive number)  
ELSE 

 r=0 (don’t pick up) 
Acquire present state s 
Acquire next state s’ 
Acquire max Q(s’, a’) in the next state 
Renew Q-factor  

( ) ( ) ( ) ( )( ), 1 , max ,Q s a Q s a r Q s aα α γ ′ ′← − + +  

    IF（All trashes on the field are picked up） 
 Initialize state of field 
} 
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up down left right
A Q(A, up) Q(A, Q(A, left) Q(A, right)
B Q(B, up) Q(B, Q(B, left) Q(B, right)

Z Q(Z, up) Q(Z, Q(Z, left) Q(Z, right)

state
action-value function

 
Table 4. Environment ‘s state and action-value 

4.5 Experiment results and discussion 
Using the system as has been mentioned in 4.2, the experiment on the learning of the agent 
was carried out. The size of the field was 15×15. There were 10 pieces of trash and five 
agents. An agent moves to the one square of relative position in 1 step. And, each agent has 
the ability of perceiving the condition of the environment of the circumference of 2 squares. 
It is called a task that the trash is picked up.  The reward is given, when each agent picked 
up the trash. And, action-value function Q is shared between each agents.  
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Fig. 7. Comparison policies 

The effect of ε-greedy policies and softmax policies on the learning of the agent is shown in 
the Figure 7. The task completion step decreases with the increase of the learning step, when 
ε-greedy policies were used. However, it reversely increases on the task completion step, 
when the softmax policies were used. This is because the action value to each direction is 
equalized with the increase of the learning step, and the difference of the probability moved 
to the each direction decreased using the softmax policies. 
The effects of step-size parameter, reward size and discount-rate parameter in update Q-
factor were examined. 
The step-size parameter shows which degree is renewed when the learning-value function is 
updated. It is a small positive fraction which influences the rate of learning. The range of the 
step-size is from 0.1 to 1. Learning results of different step-size α = 0.1, 0.4 and 0.7 were 
shown in Figure 8. In Figure 8, when step-size α is 0.4, there are smaller tasks completion 
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steps than α is 0.1. However, in Figure 8, the learning has not been very much stabilized in 
the time of step-size 0.7. From this fact, it was proven that it can not skillfully learn when the 
step-size too is greatly set.  
The reward size is a value given when the agent picked up a trash. It is shown in Figure 9 as 
a result of the learning as the reward size is set to 10, 100 and 1000. In this Figure, it was 
proven that the reward size does not affect the learning. Then in this chapter, we use the 
same reward size value for all experiments. It seems to be important to give the reward than 
its value. 
The discount rate shows the degree of reference of Q-factor in next state. The learning 
results are shown in Figure 10 as the discount rate was set from 0.1 to 0.9. It was proven that 
it could not learn skillfully, when the discount rate is too small. 
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Fig. 8. Step-size comparison 
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Fig. 9. Comparison of reward size 
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Fig. 10. Comparison of discount rate 

5. Disaster relief multi-agent systems using Q-learning 
In this section, we concentrate on an application of Multi-agent systems to disaster relief 
using Q-learning. We constructed a simplified disaster relief multi-agent system and 
acquired action rules by Q-learning. We then observe how the autonomous agents obtain 
their action rules and examined the influence of the learning situations on the system. 
Moreover, we discuss how the system was influenced by learning situation and the view 
information of the agent. 

5.1 Disaster relief multi-agent systems 
We consider the “disaster relief” problem, in which the injured are placed on a field of fixed 
size and agents must rescue the injured persons as fast as possible. It aims to rescue the 
injured person efficiently as the whole system when the agent is achieving own target. This 
can be considered as a multi-agent system (Xie & Okazaki, 2008). 

5.2 Representation of the perceived environment 
An agent has constant view in the disaster relief multi-agent system. The agent can perceive 
the surrounding environment and can recognize other agents and injured individuals 
within its range of vision. When an agent has a visual field N, it is assumed that the agent 
can move N steps.  
An example within the range of vision is shown in Figure 11 Agent 1’s visual field is 2, and 
Agent 1 can recognize two injured individuals within its visual field.  
In the disaster relief multi-agent system, in order to handle visual field information that the 
agent receives from the environment by reinforcement learning, it is necessary that pattern 
is provided of visual field information by replacing with the numerical value. The agent 
expresses the information of other agents and injured individuals within its visual field 
range numerically and arranges this information in a fixed order. This string is called the 
visual field pattern.  
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■

 
 

Fig. 11. Range of vision of an agent 
 
 

 
Fig. 12. Creation of visual field information pattern 

The technique for creating the pattern of the visual field information is shown in Figure 12. 
First, Agent 1 perceives the relative position of the other agents and injured individuals in a 
fixed order, and the coordinates of Agent 1 are assumed to be (0, 0). In this example, the 
relative positions and patterns are as follows: 

at (-2,0)  an injured person (P) >> -20P 

at (0,-2)  an injured person (P) >>0-2P 

at (+1,-1)  other agent 2 (A) >>1-1A 

The string -20P0-2P1-1A is the visual field pattern in proportion to recognized visual field 
information that there are some injured individuals and other agents. Here, the visual field 
range is limited to 9. Compared to the case in which the information of all masses in the 
visual field range is acquired, there is the merit in which the string of the visual field pattern 
shortens on this technique.  
In reinforcement learning, the wider the range of the vision pattern, the more information 
can be recognized. However, reinforcement learning has some disadvantages in that the 
number of states of the visual field pattern increase and the learning speed is decreased.  

position of agent 1 is centered at (0,0)

visual filed pattern:  -20P0-2P1-1A

coordinate (-2, 0)    P (injured) 
coordinate (0, -2)    P (injured) 
coordinate (1, -1)    A (agent 2)

X

Y

➁
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5.3 Experiment and discussion 
In the disaster relief multi-agent system constructed using Q-learning, experiment and 
consideration are carried out by changing the learning conditions. One movement of the 
agent is set to correspond to one step, and all agents are assumed to move simultaneously. 
The action value functions are shared between agents. In all of the experiments, the field 
size is 10×10, the number of rescue agents is three, the step size α is 0.1, the discount rate γ is 
0.9, the probability ε is 0.1, and the number of iterations is 100. 

5.3.1 Effect of number of learning iterations 
The relationship between the number of steps, which depended on the rescue, and the 
number of injured individuals that are rescued varied with the number of learning iterations 
of the agent, as shown in Figure 13. Figure 13 shows the learning results for 10, 100, 1,000, 
and 10,000 learning iterations. There were 10 injured individuals and three agents. In one 
step, each agent moves one square to an adjacent position, namely, up, down, right, or left. 
The visual field of each agent is 2. 
The horizontal axis shows the number of individuals rescued, and the vertical axis shows 
the number of steps, which depends on the specific conditions of the rescue. As the number 
of learning iterations increases, the number of steps required in order to effect a rescue 
decreases. This is an effect by the learning of agents. Moreover, the number of steps required 
to effect rescue increased rapidly, when the number of injured individuals exceeded eight. 
Since there is no information that agent is obtained and agents choose the random action, 
when the injured were in visual field outside of all agents. 
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Fig. 13. Effect of number of learning iterations 

5.3.2 Density of the injured 
The relationship between number of steps required for rescue and the rescue rate of injured 
individuals is shown in Figure 14, where the injured of the different density were arranged. 
The number of learning iterations is 10,000, the visual field is 3, and number of injured 
individuals is 5, 10, and 20. 
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Fig. 14. Effect of density of injured 
In Figure 14, the horizontal axis shows the rescue rate, i.e., the ratio of the number of 
individuals rescued to the total number of injured individuals in the entire field. The 
experimental results revealed that the number of steps necessary to effect a rescue increased 
as the number of injured individuals increased. The frequency with which the rescue agent 
moves on the field is considered to have increased as the number of injured individuals 
increased. 

5.3.3 Visual field range 
When the visual field range of the agent is changed, the relationship between the number of 
individuals rescued and the number of steps required for rescue is shown in Figure 15. The 
experimental conditions assume that the number of iterations if 10,000, the number of 
injured is 10, and the visual field range is varied as 2, 3, and 4. 
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This figure shows that the fewest steps in which all injured individuals could be rescued 
occurred when the visual field range was 4. This is because the visual field range of the 
rescue agent is wide, and the situation in which injured individuals are located outside the 
visual fields of all rescue agents rarely occurs. However, in some cases, a visual field range 
of 2 allowed the quickest rescue when the number of injured individuals was small. The 
reason for this is that the visual field pattern number decreased, because the visual field 
range is narrow, and a more accurate action value function could be obtained. Moreover, it 
became a result of combining both characteristics of visual field range 2, 4 in visual field 
range of 3. 

5.3.4 Acquisition of the cooperation action rule 
It is possible that the agent efficiently rescued after it carried out Q-learning because the 
cooperation action was accurately carried out between agents. To confirm the cooperative 
behavior of agents, a number of action rules acquired from the action value function were 
examined after 10,000 learning iterations (Figure 16).  
In this Figure, agents are denoted by ● symbols, and the injured individuals are denoted by 
■ symbols. In rule 1, for Agent 1, the probability of moving to the left, where nearest injured 
individual 1 is located, increased most. However, in rule 2, the probabilities of moving 
toward the bottom and the right, where an injured individual 2 is located, were highest, 
because another agent, Agent 2, is positioned near the other injured individual 1. As a result, 
Agent 1 performed a cooperation action. 
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Fig. 16. Example of an action rule 

6. Conclusions 
In this chapter, we attempted to acquire a cooperative action rule for agents through the use 
of a GA and Q-Learning, and carried out an application of Multi-agent system to disaster 
relief by Q-Learning. 
We used two representation methods to describe individual agents and to learn cooperative 
action through a GA. We used the GA based on the fact that each agent acts cooperatively 
by learning to finish trash collection as fast as possible without any indication. However, 
further research on the individual evaluation of GA and crossover methods is required. The 
rule and individual of the present study are intended to learn the most efficient action in 
response the arrangement of the field by repeating tasks using the same arrangement. 
However, this makes the learned rules less efficient if the arrangement of the field is 
different than that used in training. At this stage, we were not able to determine clearly 
whether agents engaged in cooperative action.  
We use the Q-Learning based on the fact that the action-value is high when agents will act 
cooperatively, and each agent acts cooperatively by learning to finish trash collection as fast 
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as possible without any indication. The task completion step decreases with the increase of 
the learning step, when ε-greedy policies were used. However, it reversely increases on the 
task completion step, when the softmax policies were used. This is because the action value 
to each direction is equalized with the increase of the learning step, and the difference of the 
probability moved to the each direction decreased using the softmax policies. In present, the 
number of states is very large because all the environments where the agent appeared under 
learning are used. In future research, we intend to improve the representation methods of 
action rule to solve that problem. 
In the disaster relief multi-agent system, the number of steps required to effect the rescue of 
an injured individual decreased with the increase in the number of learning iterations. This 
is considered to be the effect of the learning of agents. However, the number of steps, which 
depends on the rescue situation, increased rapidly when the number of injured individuals 
in the field decreased. When the injured individuals are outside the visual field of all rescue 
agents, there is no information available to the agents, and so the agents perform random 
actions. The effect of density and visual field range of the injured individuals on the system 
was also examined. The number of environment patterns becomes large because, at present, 
all of the environments that the agent considers during learning are considered. In the 
future, the number of environment patterns should be decreased. 

7. References 
Wooldridge, M. (2000). Intelligent Agent, in: Multiagent Systems, Gernard Weiss, 27-73, The 

MIT Press, 0262731312, Cambridge, Massachusetts 
Stone, P. & eloso, M. (1996). Using Machine learning in the Soccer Server, Proc. of IROS-96 

Workshop on Robocup 
Matsubara, H.; Frank, I. & Tanaka, K. (1998). Automatic Soccer Commentary and RoboCup, 

The 2nd Proceedings of RoboCap Workshop 
Jeong, K. & Lee, J. (1997). Evolving cooperative mobile robots using a modified genetic 

algorithm, Robotics and Autonomous Systems, Vol. 21, 197-205 
Nolfi, S. & Floreano, D. (1998). Co-evolving predator and prey robts: do ‘arm races‘ arise in 

artificial evolution? Artificial Life 4 (4) , 311-335 
Jim, K.C. & Lee, C. (2000). Talkin helps: evolving communicating robots for the predator- 

prey pursuit problem, Artificial Life, No.6, 237-254 
Zhou, C. (2002). Robot learning with GA-based Fuzzy reinforcement learning agents, 

Information Science, Vol. 145, 45-68  
Fujita, K. & Matsuo, H. (2005). Multi-Agent Reinforcement Learning with the Partly High-

Dimensional State Space, The transactions of the institute of electronics, information and 
communication engineers, Vol. J88-D-I No.4, 864-872 

Jennings, N.R.; Sycara, K. & Wooldridge, M. (1998). A roadmap of agent research and 
development, Autonomous Agent and Multi-Agent Systems, 1:7-38 

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning, 
0201157675, Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA 

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems, Univ. of Michigan Press 
Xie, M.C. (2006). Cooperative Behavior Rule Acquisition for Multi-Agent systems Using a 

Genetic Algorithm, Proceedings of the IASTED International Conference on Advances in 
Computer Science and Technology, pp.124-128 



 Advances in Reinforcement Learning 

 

98 

Alex, V.; Conradie, E. & Aldrich, C. (2005). Development of neurocontrollers with 
evolutionary reinforcement learning, Computers & Chemical Engineering Vol.30, 1-
17 

Schleiffer, R. (2005). An intelligent agent model, European Journal of Operational Research, 
Vol.166, No.1, pp.666-693 

Bradtkes, S. J. & Duff, M. O. (1994). Reinforcement Learning Method for Continuous- Time 
Markov Decision Problems, Advances in Neural Information Processing Systems 7, 
pp.393-400 

Parr, R. & Russell, S. (1998). Reinforcement Learning with Hierarchies of Machines, Advances 
in Neural Information Processing Systems 10, pp.1043-1049 

Watkins, C. H. (1989). Learning from Delayed Rewards, Ph.D. thesis, Cambridge University 
Bridle, J. S. (1990). Training stochastic model recognition algorithms as networks can lead to 

maximum mutual information estimates of parameters, Advances in Neural 
Information Processing Systems: Proceedings of the 1989 Conference, pp.211-217 

Xie, M.C.& Okazaki, K. (2008). Application of Multi-Agent Systems to Disaster Relief Using 
Q-Learnin, Proceedings of the IASTED International Conference on Software Engineering 
and Applications ,pp.143‐147 



0

Emergence of Intelligence Through Reinforcement
Learning with a Neural Network

Katsunari Shibata
Oita University

Japan

1. Introduction

“There exist many robots who faithfully execute given programs describing the way of image
recognition, action planning, control and so forth. Can we call them intelligent robots?”
In this chapter, the author who has had the above skepticism describes the possibility of
the emergence of intelligence or higher functions by the combination of Reinforcement
Learning (RL) and a Neural Network (NN), reviewing his works up to now.

2. What is necessary in emergence of intelligence(1)(2)

If one student solves a very difficult problem without any difficulties facing a blackboard in
a classroom, he/she looks very intelligent. However, if the student wrote the solution just
as his/her mother had directed to him/her, the student cannot answer questions about the
solution process, and cannot solve even similar or easier problems. Further interaction shows
up less flexibility in his/her knowledge. When we see a humanoid robot is walking fast and
smoothly, or when we see a communication robot responds appropriately to our talking, the
robot looks an existence with intelligence. However, until now, the author has never met a
robot who looks intelligent even after a long interaction with it. Why can’t we provide enough
knowledge for a robot to be really intelligent like humans?
When we compare the processing system between humans and robots, a big difference
can be noticed easily. Our brain is massively parallel and cohesively flexible, while the
robot process is usually modularized, sequential and not so flexible as shown in Fig. 1.
As mentioned later, the massive parallelism and cohesive flexibility seem the origin of our
very flexible behaviors considering many factors simultaneously without suffering from
the “Frame Problem”(3)(4). The keys to figuring out the cause of the big difference are
“modularization” and “consciousness”, the author thinks.
When we survey the brain research and robotics research, we notice that the common
fundamental strategy “functional modularization” lies in both. In the brain research,
identification of the role of each area or region seems to be its destination. While, in the
robotics research, the process is divided into some functional modules, such as recognition
and control, and by sophisticating each functional module, high-functionality is realized in
total.
At present, each developed function does not seem so flexible. Furthermore, as for the higher
functions, unlike recognition that is located close to sensors, and unlike control that is located
close to actuators, they are not located close to sensors or actuators. Therefore, either “what

6



2 Advances in Reinforcement Learning

Image 
Processing 

Recognition 
Action 

Planning 

modularized, sequential, and not flexible 

sensor motor 

massively parallel 

cohesively flexible 
&

sequential and linguistic

Control 

Fig. 1. Comparison of processing between humans and robots. The robot process is
developed based on the understanding of the brain function through consciousness.

are the inputs” or “what are the outputs” is not predefined, and the both have to be designed
by humans. However, since in higher functions such as language acquisition and formation of
novel concept, very flexible function acquisition is required, it is difficult to decide even what
are the inputs or what are the outputs in advance. Then the flexibility is deeply impaired when
some definition of inputs and outputs are given. Accordingly, it is very difficult to develop a
flexible higher function separately. The fundamental problem seems to lie in the isolation of
each function from the system according to the “functional modularization” approach.
Why do we manage to modularize the entire process? It seems natural that researchers think
the brain is too big to understand or develop. The fact that the brain seems to be divided
into some areas by some major sulci probably promotes the modularization especially in the
brain research. However, the author focuses on another more fundamental reason. That is
the gap between the “brain” and “consciousness”. It is said that the brain is a massively
parallel system consisted of tens of billions or a hundred billion of neurons. We can see many
reports showing that the flexibility of the brain is beyond expectation(5). Among them, a
recent report is very impressive that the neuronal circuit remodeling for recovery after stroke
spreads to the contralateral cortical hemisphere(6). On the other hand, our ”consciousness”
that is generated in the ”brain” is sequential and its representation seems linguistic. So, it is
difficult to represent and understand the function of the brain exactly as a massively parallel
and very flexible system. Then by seeing the brain or brain functions through the frame of
functional module, we reduce the amount of information, and try to understand it roughly
by representing it linguistically. Thus, in the robot process that is designed in our conscious
world, the functional modules are usually arranged in series as shown in Fig. 1.
Accordingly, it is thought to be impossible to understand the brain completely as long as
through consciousness. However, since we do not notice the subconscious massively parallel
processing directly, but notice only what we can see through consciousness, we cannot help
but consider what we understand through the consciousness is all the processes that the brain
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is doing. We assume that since the brain is “doing”, the brain must be able to “understand”
what the brain is doing. Then we expect that the brain will be understood by understanding
each module individually, and also expect that human-like robots will be developed by
building-block of sophisticated functional modules.
The existence of subconscious processes is undisputed even from the fact that the response
of each “orientation selectivity cell” cannot be perceived. The phenomena such as “optical
illusion” or “choice blindness”(7) can be considered as a result of the gap between “brain” and
“consciousness”. When we walk up non-moving escalator stairs, although we understand
that the escalator is not moving, we feel very strange as if we are pushed forward. This
suggests the existence of subconscious compensation for the influence of escalator motion that
occurs only when we are on an escalator. When we type a keyboard, many types of mistypings
surprise us: neighbor key typing, character-order confusing, similar-pronunciation typing,
similar-meaning word confusion and so forth. That suggests that our brain processing is more
parallel than we think though we assume it difficult for our brain to consider many things in
parallel because our consciousness is not parallel but sequential.
Even though imaging and electrical recording of brain activities might provide us sufficient
information to understand the exact brain function, we would not be able to understand it by
our sequential consciousness. The same output as our brain produces may be reproduced
from the information, but complete reconstruction including flexibility is difficult to be
realized, and without “understanding”, “transfer” to robots must be impossible.
From the above discussion, in the research of intelligence or higher-functions, it is essential
to notice that understanding the brain exactly or developing human-like robots based on
the biased understanding is impossible. We have to drastically change the direction of
research. That is the first point of this chapter. Furthermore, to realize the comprehensive
human-like process including the subconscious one, it is required to introduce a massively
parallel and very flexible learning system that can learn in harmony as a whole. This is the
second point.
Unlike the conventional sequential systems, Brooks advocated to introduce a parallel
architecture and “Subsumption architecture” has been proposed(8). The agile and flexible
motion produced by the architecture has made a certain role to avoid the “Frame
Problem”(3)(4). However, he claimed the importance of understanding of complicated
systems by the decomposition of them into parts. He suggests that functional modules called
“layer” are arranged in parallel, and interfaces between layers are designed. However, as he
mentioned by himself, the difficulties in interface design and scalability towards complicated
systems are standing against us as a big wall.
Thinking again what a robot process should be, it should generate appropriate actuator
outputs for achieving some purpose referring to its sensor signals; that is ”optimization” of the
process from sensors to actuators under some criterion. If, as mentioned, the understanding
through “consciousness” is limited actually, by prioritizing human understanding, it
constrains robot’s functions and diminishes its flexibility unexpectedly.
For example, in action planning of robots or in explaining human arm movement(9), the
term “desired trajectory” appears very often. The author thinks that the concept of “desired
trajectory” emerges for human understanding. As the above example of the virtual force
perceived on non-moving escalators, even for motion control, subconscious parallel and
flexible processing must be performed in our human brain. In the case of human arm
movement, commands for muscle fibers are the final output. So the entire process to move an
arm is the process from sensors to muscle fibers. The inputs include not only the signals

101Emergence of Intelligence Through Reinforcement Learning with a Neural Network



4 Advances in Reinforcement Learning

from muscle spindles, but also visual signals and so on, and the final commands should
be produced by considering many factors in parallel. Our brain is so intelligent that the
concept of “desired trajectory” is yielded to understand the motion control easily through
“consciousness”, and the method of feedback control to achieve the desired trajectory has
been developed. The author believes that the direct learning of the final actuator commands
using a parallel learning system with many sensor inputs leads to acquisition of more flexible
control from the viewpoint of the degrees of freedom. The author knows that the approach of
giving a desired trajectory to each servo motor makes the design of biped robot walking easy,
and actually, the author has not yet realized that a biped robot learns appropriate final motor
commands for walking using non-servo motors. Nevertheless, the author conjectures that to
realize flexible and agile motion control, a parallel learning system that learns appropriate
final actuator commands is required. The feedback control does not need the desired
trajectories, but needs the utilization of sensor signals to generate appropriate motions. That
should be included in the parallel processing that is acquired or modified through learning.
Unless humans develop a robot’s process manually, “optimization” of the process should be
put before “understandability” for humans. To generate better behaviors under given sensor
signals, appropriate recognition from these sensor signals and memorization of necessary
information also should be required. Accordingly, the optimization is not just “optimization of
parameters”, but as a result, it has a possibility that a variety of functions emerge as necessary.
If the optimization is the purpose of the system, avoiding the freedom and flexibility being
spoiled by human interference, harmonious “optimization” of the whole system under a
uniform criterion is preferable.
However, if the optimized system works only for the past experienced situations and does not
work for future unknown situations, learning has no meaning. We will never receive exactly
the same sensor signals as those we receive now. Nevertheless, in many cases, by making use
of our past experiences, we can behave appropriately. This is our very superior ability, and it
is essential to realize the ability to develop a robot with human-like intelligence. For that, the
key issue is “abstraction” and “generalization” on the abstract space.
It is difficult to define the “abstraction” exactly, but it can be taken as extraction of important
information and compression by cutting out unnecessary information. By ignoring trivial
differences, the acquired knowledge becomes valid for other similar situations. Brooks has
stated that “abstraction” is the essence of intelligence and the hard part of the problems being
solved(8). For example, when we let a robot learn to hit back a tennis ball, first we may
provide the position and size of the ball in the camera image to the robot. It is an essence
of intelligence to discover that such information is important, but we usually provide it to
the robot peremptorily. Suppose that to return the serve exactly as the robot intends, it is
important to consider a subtle movement of the opponent’s racket in his/her serve motion.
It is difficult to discover the fact through learning from a huge amount of sensor signals.
However, if the images are preprocessed and only the ball position and size in the image
are extracted and given, there is no way left for the robot to discover the importance of
opponent movement by itself. As an alternative, if all pieces of information are given, it
is inevitable to introduce a parallel and flexible system in which learning enables to extract
meaningful information from huge amount of input signals. That has a possibility to solve
the “Frame Problem” fundamentally, even though the problem remains; how to discover
important information effectively.
A big problem in “abstraction” is how the criterion for “what is important information” is
decided. “The degree of reproduction” of the original information from the compressed
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one can be considered easily. Concretely, the introduction of a sandglass(bottleneck)-type
neural network(10)(11), and utilization of principal component analysis can be considered. A
non-linear method(12), and the way of considering temporal relation(13)(14)(15) have been
also proposed. However, it may not match the purpose of the system, and drastic reduction
of information quantity through abstraction process cannot be expected because the huge
amount of sensor signals has to be reproduced. Back to basics, it is desirable that the criterion
for “abstraction” matches the criterion of “optimization” of the system. In other words, the
way of “abstraction” should be acquired in the “optimization” of the system.
From the discussions, the third point in this chapter is to put “optimization” of the system
before the “understandability” for humans, and to optimize the whole of the massively
parallel and cohesively flexible system under one uniform criterion. Furthermore, to
eliminate too much interference by humans and to leave the intelligence development to
the “optimization” by themselves are included in the third point.

3. Marriage of reinforcement learning (RL) and neural network (NN)

The author has proposed the system that is consisted of one neural network (NN) from
sensors to actuators, and is trained by the training signals generated based on reinforcement
learning (RL). The NN is a parallel and flexible system. The NN requires training signals for
learning, but if the training signals are given by humans, they become a constraint on the
system optimization, and the NN cannot learn functions beyond what humans provides. RL
can generate the training signals autonomously, and the NN can optimize the entire system
flexibly and purposively based on the signals. Therefore, the system is optimized in total
to generate appropriate motions for getting more reward and less punishment and also to
evaluate states or actions appropriately. Sometimes it acquires unexpected abilities because of
being free from the constraints that are unwillingly produced by its designer.
On the other hand, RL is usually taken as a learning for actions that appropriately generates
the mapping from a sensor space to an action space. By introducing a NN, not only non-linear
function approximation, but also acquisition of various function, including recognition and
control, through learning to generate better actions are expected. When introducing a
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Fig. 2. The proposed learning system that is consisted of one neural network (NN) from
sensors to actuators, and that is trained based on reinforcement learning (RL). Emergence of
necessary functions based on the parallel and cohesively flexible learning is expected.
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recurrent NN, functions that need memory or dynamics are expected to emerge. Thanking
to its parallel and flexible learning system, flexible response to the real world considering
various things in parallel is expected.
Comparing with the subsumption architecture that requires prior design of interactions
among modules, flexibility, parallelism and harmony are stronger in the proposed system.
The entire system changes flexibly, purposively and in harmony, and the interactions
between neurons are formed autonomously. That is expected to solve the ”Frame Problem”
fundamentally. It is also expected that in the hidden neurons, meaningful information is
extracted among a huge amount of inputs, and the abstraction is consistent with the system
optimization. Furthermore, from the viewpoint of higher functions, since the inside of the NN
changes very flexibly, it is possible that necessary functions emerge without prior definition
of “what higher function should be developed”, “what signals are inputs” or “what signals
are outputs” of the higher function.
It is considered that “symbol emergence” and “logical thinking” is the most typical higher
functions of humans. Symbol processing has been separately considered from pattern
processing, linking to the difference of function between right and left hemispheres of the
brain(16). NNs have been considered as a system for pattern processing. The idea has
disturbed the investigation of symbol processing with a NN. Until now, it is not clear how
these functions emerge, or which kind of necessity drives the emergence of these functions.
However, if symbol processing emerges in an artificial NN with sensory signal inputs, it is
expected that the clear boundary between symbols and patterns disappears, and the “Symbol
Grounding Problem”(17) is solved. It might be no doubt that the human brain, which is
consisted of a natural NN, realizes our logical thinking. Even though it is said that the function
of the right hemisphere is different from that of the left one, one hemisphere looks very similar
to the other.
At present, in RL, a NN is positioned mainly as a nonlinear function approximator to avoid the
“curse of dimensionality” problem(18), and the expectation towards purposive and flexible
function emergence based on parallel processing has not been seen. A NN was used in an
inverted pendulum task(19) and Backgammon game(20), but since the instability in RL was
pointed in 1995(21), function approximators with local representation units such as NGnet
(Normalized Gaussian network)(22) are used in many cases(23). In the famous book as a sort
of bible of RL(18), little space is devoted for the NN.
However, the very autonomous and flexible learning of the NN is surprising. Even
though each neuron performs output computation and learning (weight modification) in a
uniform way, the autonomous division of roles among hidden neurons through learning and
purposive acquisition of necessary internal representation to realize required input-output
relations make us feel the possibility of not only function approximation, but also function
emergence and “intelligence”.
As mentioned, it is said that the combination of RL and a NN destabilizes the learning(21).
In RBF network(24) including NGnet(22) or tile coding (CMAC)(25)(26), since a continuous
space is divided softly into local states, learning is performed only in one of the local states
and that makes learning stable. However, on the other hand, they have no way to represent
more global states that integrate the local states. The sigmoid-based regular NN has an
ability to reconstruct a useful state space by integrating input signals each of which represents
local information, and through the generalization on the internal state space, the knowledge
acquired in past experiences can be utilized in other situations(27)(28).
The author shows that when each input signal represents local information, learning becomes
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stable even using a regular sigmoid-type NN(29). Sensor signals such as visual signals
originally represent local information, and so learning is stable when sensor signals are the
inputs of the NN. On the contrary, when the sensor signals are put into a NN after converting
them to a global representation, learning sometimes became unstable. If the input signals
represent local information, a new state space that is good for computing the outputs is
reconstructed in the hidden layer flexibly and purposively by integrating the input signals.
Therefore, both learning stability and flexible acquisition of internal representation can be
realized. For the case that input signals represent global information, Gauss-Sigmoid NN
has been proposed where the input signals are passed to the sigmoid-type regular NN after
localization by a Gaussian layer(30).
On the other hand, in the recent researches of learning-based intelligence, “prediction” of
a future state from the past and present states and actions has been focused on because
it can be learned autonomously by using the actual future state as the training signals
(13)(31)(32)(14)(33). However, it is difficult and also seems meaningless to predict all
of the huge amount of sensor signals. Then it becomes a big problem how to decide
“what information at what timing should be predicted”. This is similar to the previous
discussion about “abstraction”. A way to discover the prediction target from the aspect
of linear independence has been proposed(34). However, same as the discussion about
“abstraction”, thinking about the purposive property and consistency with the system
purpose, “prediction” should be considered in RL. The author’s group shows that through
learning a prediction-required task using a recurrent NN, the function of “prediction”
emerges(35) as described later.
Next, how to learn a NN based on RL is described. In the case of actor-critic(36), one
critic output unit and the same number of actor output units as the actuators are prepared.
Actuators are operated actually according to the sum of the actor outputs Oa(St) for the
sensor signal inputs St and random numbers rndt as trial and error factors. Then the training
signals for critic output Tct and for actor outputs Tat are computed using the reward rt+1
obtained by the motion and critic output Oc(St+1) for the new sensor signals St+1 as

Tct = Oc(St) + r̂t = rt+1 + γOc(St+1) (1)

Tat = Oa(St) + αr̂trndt (2)

r̂t = rt+1 + γOc(St+1)− Oc(St) (3)

where r̂ indicates TD-error, γ indicates a discount factor and α indicates a constant. After that,
the sensor signals St at the time t are provided as inputs again, and the NN is trained by the
BP (Error Back Propagation) learning(10) using the training signals as above. If the neural
network is recurrent-type, BPTT(Back Propagation Through Time)(10) can be used.
On the other hand, in the case of Q-learning(37), the same number of output units as
the actions are prepared in the NN, and each output Oa(St) is used as the Q-value for
the corresponding action a. Using the maximum Q-value for the new sensor signals St+1
perceived after the selected action at, the training signal for the output for the action at at the
time t as

Tat ,t = rt+1 + γ(max
a

Oa(St+1)). (4)

Then, after input of the sensor signals St and forward computation, only the output for the
selected action at is trained. When the value range of critic, actor or Q-values is different from
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(a) head rotation task (b) walkling task

Fig. 3. Two learning tasks using two AIBO robots.

the value range of the NN output, linear transformation can be applied. The learning is very
simple and general, and can be widely applied to various tasks.

4. Some examples of learning

In this section, some examples are introduced in each of which emergence of recognition in
a real-world-like environment, memory, prediction, abstraction or communication is aimed.
To purely see the abilities and limitations of function emergence, the author has intentionally
insisted in “learning from scratch”. Therefore, the required functions are still very simple, but
it is confirmed that various functions except for logical thinking emerge in a NN through RL
almost from scratch. It must be the honest impression for the readers who read this chapter
up here that only by connecting from sensors to actuators by a flat NN and training it very
simply and generally only from a scalar reinforcement signal, it is just too much for a robot
or agent to solve a difficult task or to acquire higher functions from scratch. The author are
pleased if the readers feel a new tide that is different from the previous approach in robotics
research, and the possibility of function emergence by the couple of RL and a NN. In order
to see them from the viewpoint of function emergence, the readers are asked to focus on the
ratio of acquired function versus prior knowledge and also the flexibility of the function. The
feasibility of the proposed approach and method will be discussed in the next section. The
details of the following examples can be referred to the reference for each.

4.1 Learning of flexible recognition in a real-world-like environment
We executed two experiments using two AIBO robots as shown in Fig.3. In one of them(2)
that is named “head rotation task”, two AIBOs were put face-to-face as shown in Fig.3(a). The
head can be one of 9 discrete states with the interval of 5 degree. The AIBO can take one of
the three actions: “rotate right”, “rotate left” and “bark”. When it barks capturing the other
AIBO at the center of the image, a reward is given, on the other hand, when it barks in the
other 8 states, a penalty is given. In the second task(38) named “walking task”, the AIBO is
put randomly at each trial, and walks as shown in Fig.3(b). When it kisses the other AIBO,
a reward is given, and on the other hand, when it loses the other AIBO, a penalty is given.
The action can be one of the three actions: “go forward”, “turn right”, and “turn left”. In this
task, state space is continuous, and the orientation and size of the other AIBO in the image are
varied.
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As shown in Fig. 4 that is for the case of walking task, the 52 × 40 pixel color image that is
captured by the camera mounted at the nose of the AIBO are the input of the NN in both
tasks. A total of 6240 signals are given as inputs without any information about the pixel
location. The NN has 5 layers, and the numbers of neurons are 6240-600-150-40-3 from the
input layer to the output layer. The network is trained by the training signals generated based
on Q-learning. The lighting condition and background are changed during learning. Figure 5
shows some sample images in the second task. Since no information about the task is given
and no knowledge to recognize the AIBO is given, it is expected for the readers to understand
that the learning is not so easy.
The success rate reached more than 90% in the first task after 20,000 episodes of learning,
and around 80 or 90% in the second task after 4,000 episodes of learning with additional
learning using the experienced episode. Of course, that is far inferior than when a human
do the same task, but it is interesting that without giving any knowledge about the task or
image recognition, image recognition of the AIBO can be acquired to some extent through the
learning with only reward and punishment. What are even more interesting can be found in
the analysis of the internal representation of the NN.
At first, the 6240 connection weights from the input neurons to each of the 600 lowest hidden
neurons were observed as a color image with 52× 40 pixels. When the weights are normalized
to a value from 0 to 255, the image looks almost random because of the random initial weights.
Then the weight change during learning is normalized to a value from 0 to 255. For example,
when the connection weight from the red signal of a pixel increases through learning, the
corresponding pixel looks redder, and when it decreases, the pixel looks less red. Figure 6
(a) shows some images each of which represents the change of the connection weights to
one of the 600 lowest hidden neurons in the head rotation task. In the head rotation task,
one or more AIBO’s figures can be found in the image although there are two ways of the
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Fig. 4. The learning system and flow of the signals in the AIBO walking task.
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(a) (b) (c)

Fig. 5. Variety of images whose pixel values are directly put into a NN as input signals (2).

view of AIBO; positive one and negative one. Because the AIBO is located at only one of
the 9 locations, it seems natural that AIBO figures can be found in the image, but the place
where the AIBO figure appears is different among the hidden neurons. In (a-1), the neuron
seems to detect the AIBO at the left of the image, and in (a-5), the neuron seems to contribute
to make a contrast whether the AIBO is located at the center or not. It is interesting that
autonomous division of roles among hidden neurons emerged just through RL. It is possible
that the contrast by simultaneous existence of positive and negative figures contributes to
eliminating the influence of lighting condition.
Figure 6 (b) shows the weight change from the view of a middle hidden neuron. The image is
the average of the images of 600 lowest hidden neurons weighted by the connection weights
from the lowest hidden neurons to the middle hidden neuron. In many of the images of
middle hidden neurons, AIBO figure looks fatter. It is possible that that absorbs the inaccurate
head control of AIBO due to the use of a real robot.

(a-1) (a-2) (a-3)

(a-5)(a-4)

negative positive posi posi

(b)

fat AIBO

positive positive positive

(c-2)(c-1) (c-3)

598 311 322

102

negative

54

thin
line

wide
area

Fig. 6. Images to represent weight change in some hidden neurons during RL. (a) weight
change in 5 lowest hidden neurons during the head rotation task, (b) weight change in a
middle hidden neuron during the head rotation task, (c) weight change in 3 middle hidden
neurons during the walking task.
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Fig. 7. To see the change of internal representation through RL in the head rotation task, after
supervised learning of 2 learning patterns, which are surrounded by a red frame in this
figure, the output for 10 test patterns are compared between the NN after RL and that before
RL. After RL, the output depends deeply on whether the AIBO exists or not, while before RL,
the output depends on the brightness and background.
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In the case of walking task, most of the weight images for the lowest hidden neurons are very
vague, and in some of them, various vague AIBO figure can be found. Figure 6 (c) shows
weight images for 3 middle hidden neurons. Unlike the case of head-rotation task, black and
white thin line arranged one above the other can be seen in many images. In this task, since
the location and orientation of the target AIBO are not limited, the walking AIBO seems to
learn to recognize the target AIBO more effectively by focusing the black area of its face and
the white area around its chin or of its body. The neurons as shown in Fig. (c-1)(c-2) seem
to contribute to detecting lateral location of AIBO. While the neuron as shown in Fig. (c-3),
which has a wide dark-blue area and wide white area, seems to contribute to detecting that the
AIBO is closely located, because when the AIBO is close to the other AIBO, the face occupies
a wide area of the camera image as shown in Figure 5(c).
It is interesting that the acquired way to recognize the AIBO is different between the two
tasks. In the head rotation task, the recognition seems based on pattern matching, while in the
walking task, it seems based on feature extraction.
One more analysis about the internal representation is reported. Here, the acquisition
of internal representation of AIBO recognition not depending on the light condition or
background is shown in the head rotation task. After RL, one output neuron is added with
all the connection weights from the highest hidden neurons being 0.0. As shown in Fig. 7,
12 images are prepared. In the supervised learning phase, 2 images are presented alternately,
and the network is trained by supervised learning with the training signal 0.4 for one image
and -0.4 for the other. The output function of each hidden and output neuron is a sigmoid
function whose value ranges from -0.5 to 0.5. One of the images is taken in daytime and
bright, and the other is taken at night under fluorescent light and dark, and the background
is also different. In the bright image, the AIBO exists in the center, and in the dark one, there
is no AIBO. In 6 images, there is the AIBO at the center, and in the other 6 images there is no
AIBO. Each of the 6 images with AIBO has a corresponding image in the other 6 images. The
corresponding images are captured with the same lighting condition and background, and
only the difference is whether the AIBO exists or not. In the 6 images, each 3 images have
the same background, but different lighting condition. 3 lighting conditions are “daytime”,
“daytime with blind” and “night”. The output of the NN is observed when each of 12 images
is given as inputs. For comparison, the output is also observed when using the NN before RL.
Figure 7 shows the output for the 12 images. After RL, the output changes mainly according
to whether the AIBO exists or not, while before RL, the outputs is not influenced so much by
the existence of the AIBO but is influenced by the lighting conditions and background. When
the lighting condition or background is different between two images, the distance between
them becomes larger than when the existence of AIBO is different. This result suggests that
through RL, the NN acquired the internal representation of AIBO recognition not depending
on the lighting conditions and backgrounds.

4.2 Learning of memory with a recurrent neural network (RNN)(39)
Next, learning of a memory-required task using a recurrent neural network (RNN) is reported.
In this task, a wheel-type robot can get a reward when it goes to the correct one of two possible
goals. One switch and two goals are located randomly, and the robot can perceive two flag
signals only on the switch. When the flag1 is one, the correct goal is goal1, and on the other
hand, when the flag2 is one, the correct goal is goal2. The inputs of the NN are the signals
representing angle and distance to each of the switch and goals, distance to the wall, and also
two flag signals. For the continuous motion, actor-critic is employed, and for the necessity of
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Fig. 9. The change of the outputs of critic and a type 1 hidden neuron during the episode as
shown in Fig. 8.

keeping the flag signals, a RNN is used. When it collides with the wall, when the robot comes
to the goal without going to the switch, and also when it comes to the incorrect goal, a penalty
is given to the robot.
After learning, the robot went to the switch at first, and then went to the correct goal that
was known from the flag signals on the switch. When the output of each hidden neuron was
observed, three types of hidden neurons that contribute to memory of necessary information
could be found. Type1 neurons kept the flag1 signal, type2 neurons kept the flag2 signal,
and type3 neurons kept either of the flag1 or flag2 signal is one. After the robot perceived
that the flag1 was one on the switch, the output of one of the type1 neurons was reset to the
initial value on the way to the goal1. Then the output soon returned to the value representing
that the flag1 signal was one. That represents that a fixed-point attractor was formed through
learning; in other words, associative memory function emerged through learning.
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When some outputs of hidden neurons were manipulated, the robot showed interesting
behaviors as shown in Fig. 8. The outputs of all the hidden neurons after perceiving flag1
being one were stored on the way to the goal1. At the next episode, the robot began to
move from the same location with the same arrangement of switch and goals as the previous
episode, but in this episode, the flag2 was on. After perceiving the flag signals on the switch,
the robot approached the goal2. On the way to the goal2, the outputs of the hidden neurons
were swapped by the ones stored on the way to the goal1 at the previous episode. Then the
robot changed its traveling direction suddenly to the goal1. However, in this case, the goal1
was not the real goal, the robot could not get a reward and the episode did not terminate even
though the robot reached the goal1. Surprisingly, the robot then went to the switch again, and
finally went to the goal2 after perceiving the flag signals again. The NN during the behavior
was investigated. As shown in Fig. 9 (a), the critic output decreased suddenly when the robot
arrived at the goal1 as if the robot understood the goal1 is not the real goal. As shown in
Fig. 9(b), a type 1 neuron kept a high value after the value swapping, but when it reaches the
goal1, the value decreased suddenly. It is interesting to remind us the person who returns to
check something again when they get worried.

4.3 Learning of prediction(35)
The next example shows the emergence of prediction and memory of continuous information
through RL. In this task, as shown in Fig. 10, an object starts from the left end (x = 0) of
the area, and its velocity and angle to go are decided randomly at each episode. The object
can be seen until it reaches x = 3, but it often becomes invisible at x > 3 or a part of x > 3.
The velocity of the object is decreased when it reflects at a wall. The agent moves along the
line of x = 6, and decides the timing to catch the object. As input, the agent can receive the
signals representing the object or the agent location locally. When the object cannot be seen,
the signals for the object location are all 0.0. The agent can choose one of four possible actions;
those are “go up”, “go down”, “stay” and “catch the object”. If the agent can catch the object at
the place close to the object, the agent can get a reward. The reward is larger when the object
is closer to the agent. When it selects catch action away from the object, or does not select
catch action before the object reaches the right end of the area, a small penalty is imposed to
the agent. In this case, a RNN and Q-learning are used.
After learning, the agent became to catch the object appropriately even though the average
reward was a little bit less than the ideal value. It is thought that the complete mechanism of
prediction and memory cannot be understood easily, but a possible mechanism was found.

agent

object

start

x = 0 x = 3 x = 6 x = 7.5

θ

Fig. 10. Prediction task. The object velocity and traveling direction are randomly chosen at
each episode, and the object becomes invisible in the range of x > 3 or a part of the range.
The agent has to predict the object motion to catch it at an appropriate place and timing.
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Fig. 11. Abstraction task. One of the two sensors and one of the two motor sets are randomly
chosen at each episode. Learning is done for 3 of 4 combinations and the performance of
s2-m2 combination is observed.

The agent detected the velocity in the x-direction from the period of staying specific area just
before x = 3. The predicted value that should be memorized until the agent catches the object
is not binary. If the memorized information is binary, the RNN can learn to memorize it by
forming a bistable dynamics. However, in this case, it was observed that hidden neurons
represent non-binary information for a while, and then relay it to the other neurons until the
memorized information is utilized. Similar memory function also emerged in the learning of
deterministic exploration task(40).

4.4 Learning of abstraction and knowledge transfer(41)
As mentioned before, one of the human’s superior functions is abstraction and knowledge
transfer. In our life, completely the same situation or sensor signals at present will never
appear in the future. Nevertheless, we can behave appropriately in many cases utilizing our
past experiences.
Then a simple task as shown in Fig. 11 is introduced to show the purposive abstraction clearly.
An agent has two sensors s1 and s2, and two motor sets m1 and m2. Either sensor can perceive
the positional relation of the object from the goal though the way of perception is different
between the two sensors. In the same way, either motor set can control the object location
though the way of control is different between the two motor sets. At each episode, one
sensor and one motor set are selected randomly. The sensor signals from the non-selected
sensor are all 0.0. From the view of NN, even though the positional relation of the object and
goal is completely the same, the sensor signals from the two sensors are completely different.
When the object reaches the goal area, the agent can get a reward.
Three of four sensor-motor combinations are used alternately in learning. The other
combination s2-m2 is not used in learning, but just the performance is observed. Figure
12 shows the learning curve. The performance of s2-m2 combination is getting better even
though no learning is done for the combination. When two of the four combinations were
used in learning, the performance of either of the non-trained combinations did not get better.
Through the learning for s1-m1 and s2-m1 combinations, the common representation not
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Fig. 12. Learning curve for 4 sensor-motor combinations. The performance is getting better
for the s2-m2 combination for which no learning is done.

depending on the used sensor can be obtained in the hidden layer because when the desired
output is similar, the hidden representation becomes similar after learning even though input
signals are different(27)(28). Furthermore, through the learning for s1-m2 combination, the
mapping from the common representation to the motor set m2 can be acquired. Since the
conventional abstraction methods(10)-(15) abstract input signals by watching only the input
signals or the time series of them as mentioned, this purposive abstraction obtained by the
proposed method cannot be acquired by the conventional ones.

4.5 Learning of communication and binarization of signals(42)
Last report is concerning about one of the typical higher functions: communication. As shown
in Fig. 13, one of two agents can transmit two continuous-valued signals sequentially based
on the perceived location of the other agent, but cannot move by itself. The other agent
can receive the transmitted signals and move, but it cannot see the other agent. When they
meet, that means the receiver agent reaches close to the transmitter agent, they can both get a
reward. They are in one-dimensional space, and the receiver agent can reach the transmitter
in one step from anywhere when it takes an appropriate motion. As shown in Fig. 14, each
of them has a RNN, and the network works to generate two sequential signals or to generate
appropriate motion from the two sequential signals received. Furthermore, some noise is
added to the communication signals. If the noise level is large, the information of the original
signals is lost when the signal has an analog representation.

noise

C0C1

transmitter
receiver

0.0 1.0

signals

Fig. 13. Communication learning task. Two signals are transmitted sequentially, and the
receiver moves according to the signals. Random noise is added to the signals.
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After learning, they could meet in one step in almost all cases. Figure 15 shows two
communication signals generated by the transmitter as a function of the receiver’s location in
two cases when no noise is added and when a large level of noise is added. It is interesting that
when the agents learned in the noisy environment, the signals get to have an almost binary
representation even though no one told them to binarize the signals. If the representation
is binary, the original signal before adding the noise can be restored. In this task, division
of the receiver’s location into 4 states is enough to generate a motion to reach the goal in
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Fig. 15. Communication signals acquired through learning. In the case of large noise level(b),
the signals have almost binary representation. That means that 2bit serial communication
was established through RL.
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one step. The sequential two signals represent different information, and the 4 states are
represented by the combination of two binary communication signals. The receiver also
generates appropriate motions according to the received sequential two signals. It can be said
that 2bit serial communication emerged by RL of communication in a noisy environment.

5. Discussions, conclusions and future works

In this chapter, the author has advocated the introduction of parallel and flexible learning
system and also the priority on optimization rather than understanding. As a concrete
framework, it has been proposed that a neural network (NN) connects from sensors to
actuators, and reinforcement learning (RL) trains the NN. The author hopes that through
the above examples, the readers have felt a difference from the general approaches in
conventional robotics research. From the viewpoint of the ratio of acquired functions vs. the
prior knowledge, it is more than expected that even though only a scalar signal as reward and
punishment is given except for sensor signals, various functions emerge flexibly, purposively
and in harmony by the marriage of RL and a NN. Especially, in the communication-learning
task, the gap between the reward for meeting and the establishment of two-bit serial
communication is very interesting.
On the other hand, it is also true that the acquired abilities of robots or agents in the above
examples have not yet reached the level to compare to human abilities and are insufficient
from what the author claimed magnificently in the former part of this chapter. When we,
humans, solve some difficult problem, we try to solve it by thinking logically, and a good
idea often comes up suddenly. To realize such kind of intelligent and effective processing,
an additional breakthrough may have to be waited for. However, the author still believes
the proposed approach, which are introduction of parallel and flexible learning system and
priority on optimization rather than understanding, is not wrong as a fundamental base to
realize higher functions avoiding “Frame Problem” or “Symbol Grounding Problem”.
The tallest wall that the author can see towards the higher functions is “symbol emergence”
and “logical thinking”. If it is assumed that symbols are equal to discrete representations,
as shown in the communication-learning example(42), noise tolerance can be the necessity
for the symbol emergence especially when communication is considered. The result that the
two sequential signals are used to represent a piece of information makes the author feel the
extensibility to the emergence of word or language. It is not impossible to consider that logical
thinking is internalized communication, in other words, the communication from oneself to
oneself, and logical thinking may not emerge before the communication with others is learned.
If so, the noise tolerance can be the origin of symbol emergence.
Logical thinking has an important role; that is problem solving on a very high-level abstraction
space. But, the author cannot imagine that from the necessity of such problem solving,
logical thinking emerges. However, it is possible that forming of fixed-point attractors or
chaos dynamics promotes symbol emergence. The dynamics makes only small number of
isolated internal representations more stable, and on the contrary, makes the other most
representations less stable. The author has suggested that fixed-point attractors are formed
adaptively and purposively in a recurrent neural network (RNN) through learning(43). Tani’s
group has shown some pioneering works in which dynamics of RNN is introduced in robotics
research(44).
By introducing a RNN, the function of memory and state evaluation considering past state
can be dealt with. However, the author feels the necessity to think more about the time axis
in RL. For example, stochastic motion or action selection is usually done for exploration at
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each step in RL, but exploration should be designed considering the time axis. Temporal
abstraction(45), improvement of the learning ability of RNN, and more flexible operation of
time axis also should be considered more. One idea the author think now is that the state is
not periodically sampled, but more event-based framework is introduced.
Recently, many works suggest that even newborn baby has much talent(46)(47), and it is
a well-known fact that a horse can stand up soon after its birth. Furthermore, nowadays,
the author has felt the limitation of the “learning from scratch” approach to develop higher
functions. At least, our brain does not have a flat structure, but is structured, and the artificial
neuron model used here is far simpler than our biological real neuron. The requirement of
some modularized structure may be suggested to achieve coexistence of multiple dynamics
such as talking while walking. Probably, initial knowledge should be introduced considering
that it harms the flexibility as little as possible. The initial knowledge includes initial structure
and connection weights, and also constraint of learning process.
Next, let us discuss the biological aspect. It is often said that RL is employed in the basal
ganglia(48) and it is also said that the basal ganglia contributes action selection or decision
making. Along the idea of function emergence by the couple of RL and a NN, author
thinks that RL is highly possible to work in wider area including the frontal lobe, though the
coexistence with another learning is not denied. Functions in the brain should be purposive,
and RL can realize purposive function emergence. As for the NNs, the difference between
artificial NN and biological NN was as mentioned. The author knows there are many
negative opinions to Error Back Propagation (BP) learning when it is considered whether our
brain employs BP or not. However, effective and harmonious learning and the autonomous
and purposive division of roles in the network deeply thank to BP, in the authors’ works.
Furthermore, the author thinks that the studies of neurotrophic factors such as NGF(49)
suggest us the existence of some backward signal flow for learning in our brain.
In the use of NN in RL, a difficulty has been pointed out(50), but the author does not think
it so difficult if you prepare input signals in a local representation. However, when a RNN is
used, it is a little bit difficult to adjust learning rate and bias to each neuron. Usually, learning
rate should be small for feedback connections, and the bias should be 0 for the neurons in
a loop. Setting self-feedback connection weights to be 4.0 often makes learning of memory
easy and stable when a sigmoid function whose value range is from -0.5 to 0.5 or 0.0 to
1.0 is used as the output function. The symmetrical value range such as from -0.5 to 0.5 is
good for stable learning. BPTT and RTRL are popular learning algorithms for RNNs, but
are not practical from the viewpoint of computational cost and required memory capacity
even though it is implemented in a parallel hardware. More practical learning algorithm with
O(n2) computational cost and O(n2) required memory capacity is waited for(51)(52).
The author also thinks that towards realization of higher functions, “growing and developing
from a simple form to a complicated one” should be the basic approach on behalf of
“functional modularization”. NNs are very flexible and very suitable for the approach.
There is also a possibility that a NN structure flexibly and purposively changes according
to learning(53)(54). However, it must be a difficult problem to design the growth and
development. Introduction of evolutionary process may be inevitable.
Finally, the author would like to propose the necessity of supervision and discussion about
this kind of research, considering the possibility of the emergence of out-of-control robots or
systems(55).
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1. Introduction

The reinforcement learning is a sub-area of machine learning concerned with how an agent
ought to take actions in an environment so as to maximize some notion of long-term
reward(Sutton & Barto, 1998). Reinforcement learning algorithms attempt to find a policy
that maps states of the world to the actions the agent ought to take in those states.
Temporal Difference (TD) learning is one of the reinforcement learning algorithm. The TD
learning is a combination of Monte Carlo ideas and dynamic programming (DP) ideas. TD
resembles a Monte Carlo method because it learns by sampling the environment according to
some policy. TD is related to dynamic programming techniques because it approximates its
current estimate based on previously learned estimates. The actor-critic method(Witten, 1977)
is the method based on the TD learning, and consists of two parts; (1) actor which selects the
action and (2) critic which evaluate the action and the state.
On the other hand, neural networks are drawing much attention as a method to realize
flexible information processing. Neural networks consider neuron groups of the brain in the
creature, and imitate these neurons technologically. Neural networks have some features,
especially one of the important features is that the networks can learn to acquire the ability of
information processing. The flexible information processing ability of the neural network and
the adaptive learning ability of the reinforcement learning are combined, some reinforcement
learning method using neural networks are proposed(Shibata et al., 2001; Ishii et al., 2005;
Shimizu and Osana, 2008).
In this research, we propose the reinforcement learning method using Kohonen Feature Map
Probabilistic Associative Memory based on Weights Distribution (KFMPAM-WD)(Osana,
2009). The proposed method is based on the actor-critic method, and the actor is realized by
the KFMPAM-WD. The KFMPAM-WD is based on the self-organizing feature map(Kohonen,
1994), and it can realize successive learning and one-to-many associations. The proposed
method makes use of this property in order to realize the learning during the practice of task.

2. Kohonen feature map probabilistic associative memory based on weights
distribution

Here, we explain the Kohonen Feature Map Probabilistic Associative Memory based on
Weights Distribution (KFMPAM-WD)(Koike and Osana, 2010) which is used in the proposed
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Input/Output-Layer

Map-Layer

Fig. 1. Structure of KFMPAM-WD.

method.

2.1 Structure
Figure 1 shows the structure of the KFMPAM-WD. As shown in Fig.1, the KFMPAM-WD has
two layers; (1) Input/Output(I/O)-Layer and (2) Map-Layer, and the I/O-Layer is divided
into some parts.

2.2 Learning process
In the learning algorithm of the KFMPAM-WD, the connection weights are learned as follows:

(1) The initial values of weights are chosen randomly.

(2) The Euclidean distance between the learning vector X(p) and the connection weights
vector Wi, d(X(p),Wi) is calculated.

d(X(p),Wi) =

√√√√ M

∑
k=1

(X(p)
k −Wik)

2 (1)

(3) If d(X(p),Wi) > θt is satisfied for all neurons, the input pattern X(p) is regarded as an
unknown pattern. If the input pattern is regarded as a known pattern, go to (8).

(4) The neuron which is the center of the learning area r is determined as follows:

r = argmin
i : Diz+Dzi<diz

(for ∀z∈F)

d(X(p),Wi) (2)

where F is the set of the neurons whose connection weights are fixed. diz is the distance
between the neuron i and the neuron z whose connection weights are fixed. In the
KFMPAM-WD, the Map-Layer is treated as torus, so the distance between the neurons
i and j dij is given by

dij =
√
(dxij)

2 + (dyij)
2 (3)
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dxij =

{
xj − xi, (|xj − xi | ≤ xmax/2)
−sgn(xj − xi)(xmax − |xj − xi|), (otherwise)

(4)

dyij =

{
yj − yi, (|yj − yi| ≤ ymax/2)
−sgn(yj − yi)(ymax − |yj − yi|), (otherwise)

(5)

where xi and yi are the coordinates of the neuron i in the Map-Layer, xj and yj are the
coordinates of the neuron j in the Map-Layer, and xmax and ymax are width and height of
the Map-Layer. In Eq.(2), Dij is the radius of the ellipse area whose center is the neuron i
for the direction to the neuron j, and is given by

Dij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√√√√ ai2bi
2

bi
2 +mij

2ai2
(mij

2 + 1), (dxij �= 0 and dyij �= 0)

ai, (dyij = 0)

bi, (dxij = 0)

(6)

where ai is the long radius of the ellipse area whose center is the neuron i and bi is the
short radius of the ellipse area whose center is the neuron i. In the KFMPAM-WD, ai and
bi can be set for each training pattern. mij is the slope of the line through the neurons i and
j, and is given by

mij =
dyij
dxij

(dxij �= 0). (7)

In Eq.(2), the neuron whose Euclidean distance between its connection weights and the
learning vector is minimum in the neurons which can be take areas without overlaps to
the areas corresponding to the patterns which are already trained. In Eq.(2), the size of the
area for the learning vector are used as ai and bi.

(5) If d(X(p),Wr) > θt is satisfied, the connection weights of the neurons in the ellipse whose
center is the neuron r are updated as follows:

Wi(t+ 1) =

{
Wi(t) + α(t)(X(p) −Wi(t)), (dri ≤ Dri)

Wi(t), (otherwise)
(8)

where α(t) is the learning rate and is given by

α(t) =
−α0(t− T)

T .
(9)

α0 is the initial value of α(t) and T is the upper limit of the learning iterations.

(6) (5) is iterated until d(X(p),Wr) ≤ θt is satisfied.

(7) The connection weights of the neuron r Wr are fixed.

(8) (2)∼(7) are iterated when a new pattern set is given.
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2.3 Recall process
In the recall process of the KFMPAM-WD, when the pattern X is given to the I/O-Layer, the
output of the neuron i in the Map-Layer, xmap

i is calculated by

xmap
i =

{
1, (i = r)
0, (otherwise)

(10)

where r is selected randomly from the neurons which satisfy

1
Nin ∑

k∈C
g(Xk −Wik) > θmap (11)

where θmap is the threshold of the neuron in the Map-Layer, and g(·) is given by

g(b) =

{
1, (|b|< θd)

0, (otherwise).
(12)

In the KFMPAM-WD, one of the neurons whose connection weights are similar to the input
pattern are selected randomly as the winner neuron. So, the probabilistic association can be
realized based on the weights distribution. For example, if the training patterns including
the common term such as {X,Y1}, {X,Y2} are memorized, and the number of the neurons
whose connection weights are similar to the pattern pair {X,Y1} is larger than the number
of the neurons whose connection weights are similar to the pattern pair {X,Y2}, then the
probability that the pattern pair {X,Y1} is recalled is higher than the probability that the
pattern pair {X,Y2} is recalled.
When the binary pattern X is given to the I/O-Layer, the output of the neuron k in the
I/O-Layer xiok is given by

xiok =

{
1, (Wrk ≥ θiob )

0, (otherwise)
(13)

where θiob is the threshold of the neurons in the I/O-Layer.
When the analog pattern X is given to the I/O-Layer, the output of the neuron k in the
I/O-Layer xiok is given by

xiok =Wrk. (14)

3. Reinforcement learning using Kohonen feature map probabilistic associative
memory based on weights distribution

Here, we explain the proposed reinforcement learning method using Kohonen Feature Map
Probabilistic Associative Memory based on Weights Distribution (KFMPAM-WD)(Osana,
2009).

3.1 Outline
In the proposed method, the actor in the Actor-Critic(Witten, 1977) is realized by the
KFMPAM-WD. In this research, the I/O-Layer in the KFMPAM-WD is divided into two parts
corresponding to the state s and the action a, and the actions for the states are memorized.
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actor

environment

agent

(TD error)

critic

state action

reward

Fig. 2. Flow of Proposed Method.

In this method, the critic receives the states which are obtained from the environment, the
state is estimated and the value function is updated. Moreover, the critic outputs Temporal
Difference (TD) error to the actor. The KFMPAM-WD which behaves as the actor (we call
this “actor network”) is trained based on the TD error, and selects the action from the state of
environment. Figure 2 shows the flow of the proposed method.

3.2 Actor network
In the proposed method, the actor in the Actor-Critic(Witten, 1977) is realized by the
KFMPAM-WD.

3.2.1 Dynamics
In the actor network, when the state s is given to the I/O-Layer, the corresponding action
a is recalled. In the proposed method, the other action is also selected randomly (random
selection), and the more desirable action from the recalled action and the action selected in the
random selection is chosen as the action finally.
When the pattern X is given to the network, the output of the neuron i in the Map-Layer at
the time t xmap

i (t) is given by Eq.(10), and the output of the neuron k in the I/O-Layer at the
time t xiok (t) is given by Eq.(13) or Eq.(14). In the actor network, only the state information is
given, so the input pattern is given by

X = (s(t),0)T (15)

where s(t) is the state at the time t.

3.2.2 Learning
The actor network is trained based on the TD error from the critic.
The learning vector at the time t X(t) is given by the state s(t) and the corresponding action
a(t) as follows.

X(t) = (s(t), a(t))T (16)

(1) When action is recalled by actor network
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When the pair of the state and the selected action are memorized in the actor network, the area
size corresponding to the pair is updated. If the TD error is larger than 0, the area is expanded.
If the TD error is smaller than 0, the area is reduced.
(1-1) When state and action are stored
(a) When TD error is larger than 0
When the TD error is larger than 0, the area including the fired neuron whose center is the
neuron z is expanded.

a(new)z ←

{
a(old)z + Δa+, (a(old)z + Δa+ ≤ amax)

a(old)z , (otherwise)
(17)

b(new)z ←

{
b(old)z + Δb+, (b(old)z + Δb+ ≤ bmax)

b(old)z , (otherwise)
(18)

where Δa+, Δb+ are the increment of az and bz, and amax, bmax are the maximum of az and bz.
The connection weights are updated as follows.

Wi(t+ 1) =

{
Wi(t) + α(t)(X(tr)(t)−Wi(t)), (dzi < Dzi)

Wi(t), (otherwise)
(19)

where dzi is the distance between the neuron i and the neuron z, and Dzi is the radius of the
ellipse area whose center is the neuron z for the direction to the neuron i.
(b) When TD error is smaller than 0
When the TD error is smaller than 0, the area including the fired neuron whose center is the
neuron z is reduced.

a(new)z ←

{
0, (a(new)z < 0 or b(new)z < 0)

a(old)z − Δa−, (otherwise)
(20)

b(new)z ←

{
0, (a(new)z < 0 or b(new)z < 0)

b(old)z − Δb−, (otherwise)
(21)

where Δa−, Δb− are the decrement of az and bz. If a
(new)
z or b(new)z becomes smaller than 0, the

connection weights of neuron z are unlocked and a(new)z and b(new)z are set to 0.
The connection weights are updated as follows.

Wi(t+ 1) =

{
R, (Dzi

a f ter
< dzi ≤ Dzi

be f ore)

Wi(t), (otherwise)
(22)

where R is random value. Dzi
be f ore is the radius of the ellipse areawhose center is the neuron z

for the direction to the neuron i before the area update, and Dzi
a f ter is the radius of the ellipse

area whose center is the neuron z for the direction to the neuron i after the area update.
(1-2) When state and action are not stored
When the fired neuron is not in the areas corresponding to the stored pairs of state and action
and the TD error is larger than 0, the recalled pair of state and action is regarded as an unstored
data and is memorized as a new pattern.
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The connection weights are updated as follows.

Wi(t+ 1) =

{
Wi(t) + α(t)(X(tr)(t)−Wi(t)), (dri ≤ Dri)

Wi(t), (otherwise)
(23)

where r is the center neuron of the new area, and aini, bini are the initial radius of ellipse area.
(2) When action is selected by random selection and TD error is larger than 0
When the pair of the state and the selected action are not memorized in the actor network and
the TD error is larger than 0, the pair is trained as new pattern.

3.3 Reinforcement learning using KFMPAM-WD
The flow of the proposed reinforcement learning method using KFMPAM-WD is as follows:

(1) The initial values of weights in the actor network are chosen randomly.
(2) The agent observes the environment s(t), and the actor a(t) is selected by the actor

network or the random selection.
(3) The state s(t) transits to the s(t+ 1) by action a(t).
(4) The critic receives the reward r(s(t+ 1)) from the environment s(t+ 1), and outputs the

TD error δ to the actor.

δ = r(s(t+ 1)) + γV(s(t+ 1))−V(s(t)) (24)

where γ (0≤ γ ≤ 1) is the decay parameter, and V(s(t)) is the value function for the state
s(t).

(5) The eligibility et(s) is updated.

e(s)←

{
γλe(s) (ifs �= s(t+ 1))
γλe(s) + 1 (ifs= s(t+ 1))

(25)

where γ (0≤ γ ≤ 1) is the decay parameter, and λ is the trace decay parameter.
(6) All values for states V(s) are updated based on the eligibility et(s) (s ∈ S).

V(s)← V(s) + ξδet(s) (26)

where ξ (0≤ ξ ≤ 1) is the learning rate.
(7) The connection weights in the actor network are updated based on the TD error (See 3.2.2).
(8) Back to (2).

4. Computer experiment results

Here, we show the computer experiment results to demonstrate the effectiveness of the
proposed method.

4.1 Probablistic assocaition ability of KFMPAM-WD
Here, we examined the probabilistic association ability of the Kohonen Feature
Map Probabilistic Associative Memory based on Weights Distribution (KFMPAM-WD)
(Koike and Osana, 2010) which is used in the proposedmethod. The experiments were carried
out in the KFMPAM-WD which has 800 neurons in the I/O-Layer and 400 neurons in the
Map-Layer.
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cat crow

penguin

duck

dog bear

lion

panda

(a) Binary Patterns

crow chick

hen

penguin

lion bear

monkey

raccoon

(b) Analog Patterns

Fig. 3. Training Pattern Pairs.

Here, we show the association result of the KFMPAM-WD for binary and analog patterns.
Figure 3 shows examples of stored pattern pairs. Figure 4 (a)∼(c) show a part of the
association result of the KFMPAM-WD when “cat” was given during t =1∼500. As shown
in this figure, the KFMPAM-WD could recall the corresponding patterns (“duck” (t = 1),
“penguin” (t = 3),“crow” (t = 4)). Figure 4 (d)∼(f) show a part of the association result
of the KFMPAM-WD when “dog” was given during t = 501 ∼ 1000. As shown in this
figure, the proposedmodel could recall the corresponding patterns (“panda” (t= 501), “lion”
(t = 502),“bear” (t= 505)).
Figure 5 shows the same association result by the direction cosine between the output pattern
and each stored pattern.
Figure 6 (a)∼(c) show a part of the association result of the KFMPAM-WD when “crow”
was given during t =1∼500. As shown in this figure, the KFMPAM-WD could recall the
corresponding patterns (“hen” (t = 1), “penguin” (t = 2),“chick” (t = 3)). Figure 6 (d)∼(f)
show a part of the association result of the KFMPAM-WD when “lion” was given during
t = 501 ∼ 1000. As shown in this figure, the proposed model could recall the corresponding
patterns (“raccoon dog” (t= 501), “bear” (t = 503),“monkey” (t= 504)).
Figure 7 shows the same association result by the direction cosine between the output pattern
and each stored pattern.
Figure 8 shows an example of the area representation in the Map-Layer for the training set
shown in Fig.3. In this figure, light blue or green areas show area representation for each
training pattern, and the red neurons show the weight-fixed neurons.
Tables 1 and 2 show the relation between the area size and the number of recall time. As
shown in these tables, the KFMPAM-WD can realize probabilistic association based on the
area size (that is, weights distribution).

(a) t = 1 (b) t = 3 (c) t= 4 (d) t = 501 (e) t = 502 (f) t= 505

Fig. 4. Association Result (Binary Pattern).
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(a) cat–penguin
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(b) cat–crow
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(c) cat–duck
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(d) dog–lion
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(e) dog–bear
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(f) dog–panda

Fig. 5. Association Result (Direction Cosine).

(a) t = 1 (b) t = 2 (c) t= 3 (d) t = 501 (e) t = 503 (f) t= 504

Fig. 6. Association Result (Analog Pattern).
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(a) crow–hen
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(b) crow–chick
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(c) crow–penguin
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(d) lion–monkey
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(e) lion–bear
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(f) lion–raccoon dog

Fig. 7. Association Result (Direction Cosine).
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cat-duck

cat-crow

cat -
    penguin

dog-lion

dog-bear

dog-panda

(a) Binary Pattern.

cat-duck

cat-crow

cat -
    penguin

dog-lion

dog-bear

dog-panda

(b) Analog Pattern.

Fig. 8. Area Representation for Training Set in Fig.3.

Input Pattern Output Pattern Area Size Recall Time
penguin 11 85

cat crow 23 157
duck 33 258
lion 11 80

dog bear 23 166
panda 33 254

Table 1. Relation between Area Size and Recall Time (Binary Pattern).

Input Pattern Output Pattern Area Size Recall Time
hen 11 67

crow chick 23 179
penguin 33 254
monkey 11 82

lion bear 23 161
raccoon dog 33 257

Table 2. Relation between Area Size and Recall Time (Analog Pattern).
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4.2 Path-finding problem
We applied the proposed method to the path-finding problem. In this experiment, a agent
moves from the start point (S) to the goal point (G). The agent can observe the states of three
cells in the lattice, and can move forward/left/right. As the positive reward, we gave 3 when
the agent arrives at the goal and 2 when the agent moves. And as the negative reward, we
gave −1 when the agent hits against the wall. Table 3 shows experimental conditions. Figure
9 shows an example of maps (and the trained route (arrow)).

Parameters for Reinforcement Learning
Decay Parameter γ 0.7
Trace Decay Parameter λ 0.33
Learning Rate ξ 0.33
Parameters for Actor Network (Learning)

Random Value R 0.0< R < 1.0
Initial Long Radius aini 2.5
Initial Short Radius bini 1.5
Increment of Area Size Δa+z 0.01
Decrement of Area Size Δa−z 0.1
Lower Limit of Long Radius azmax 4.0
Lower Limit of Short Radius bzmax 3.0
Lower Limit of Long Radius azmin 0.0
Lower Limit of Short Radius bzmin 0.0
Weight Update Number Tmax 200
Threshold for Learning θl 10−7

Parameters for Actor Network (Recall)
Threshold of Neurons in Map-Layer θ

map
b 0.01

Threshold of Neurons in I/O-Layer θinb 0.5

Table 3. Experimental Conditions.

4.2.1 Transition of number of steps
Figure 10 shows the transition of number of steps from the start to the goal. As shown in these
figures, the agent can learn the route from the start to the goal by the proposed method.

4.2.2 Trained relation between state and action
Figure 11 shows an example of the trained relation between the state and the action. As
shown these figures, the agent can learn the relation between state and action by the proposed
method.

4.2.3 Variation of action selection method
Figure 12 shows the variation of the action selection method in the proposed method. As
shown in these figures, at the beginning of the learning, the random selection is used
frequently. After the learning, the action which is selected by the actor network is used
frequently.
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4.2.4 Use of learning information in similar environment
Here, we examined in the actor network that learns in the Map 2. Figure 13 (a) shows the
transition of steps in theMap 3. As shown in this figure, the agent learn to reach the goal in few
steps when the actor network that learns in the environment of the Map 2 in advance. Figure
13 (b) shows the variation of the action selection method in this experiment. Figure 14 shows
the an example of the trained relation between the state and the action in this experiment.

G

Number of Steps : 9

S

G

Number of Steps : 9

S

(a) Map 1 (b) Map 2

G

Number of Steps : 12

S

G

Number of Steps : 14

S

(c) Map 3 (d) Map 4

G

Number of Steps : 24

S

(e) Map 5

Fig. 9. Map and Trained Route.

5. Conclusion

In this research, we have proposed the reinforcement learning method using Kohonen
Feature Map Probabilistic Associative Memory based on Weights Distribution. The proposed
method is based on the actor-critic method, and the actor is realized by the Kohonen Feature
Map Probabilistic Associative Memory based on Weights Distribution. We carried out a
series of computer experiments, and confirmed the effectiveness of the proposed method in
path-finding problem.
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Fig. 10. Transition of Steps.
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forward leftforward forward right

(a) Map 1

right forwardforward forward left right

(b) Map 2

forward leftforward right left forward

(c) Map 3

left forward right

(d) Map 4

left forwardright forward

(e) Map 5

Fig. 11. An example of Trained Relation between State and Action.
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Fig. 12. Variation of Action Selection Method.
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Fig. 13. Use of Learning Information in Similar Environment.

135
Reinforcement Learning using Kohonen Feature Map
Probabilistic Associative Memory based on Weights Distribution



16 Advances in Reinforcement Learning

right leftforward forward forward right

Fig. 14. An example of Trained Relation between State and Action (Map 2→Map 3).
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1. Introduction 
In field of robot learning (Kaplan et al., 2002), interactive reinforcement learning method in 
that reward function denoting goal is given interactively has worked to establish the 
communication between a human and the pet robot AIBO. The main feature of this method 
is the interactive reward function setup which was fixed and build-in function in the main 
feature of previous reinforcement learning methods. So the user can sophisticate 
reinforcement learner’s behavior sequences incrementally. 
Shaping (Konidaris & Barto, 2006; Ng et al., 1999) is the theoretical framework of such 
interactive reinforcement learning methods. Shaping is to accelerate the learning of complex 
behavior sequences. It guides learning to the main goal by adding shaping reward functions 
as subgoals. Previous shaping methods (Marthi, 2007; Ng et al., 1999) have three 
assumptions on reward functions as following; 
1. Main goal is given or known for the designer. 
2. Subgoals are assumed as shaping rewards those are generated by potential function to 

the main goal (Marthi, 2007). 
3. Shaping rewards are policy invariant (not affecting the optimal policy of the main goal) 

(Ng et al., 1999). 
However, these assumptions will not be true on interactive reinforcement learning with an 
end-user. Main reason is that it is not easy to keep these assumptions while the end-user 
gives rewards for the reinforcement learning agent. It is that the reward function may not be 
fixed for the learner if an end-user changes his/her mind or his/her preference. However, 
most of previous reinforcement learning methods assumes that the reward function is fixed 
and the optimal solution is unique, so they will be useless in interactive reinforcement 
learning with an end-user.  
To solve this, it is necessary for the learner to estimate the user's preference and to consider 
its changes. This paper proposes a new method how to match an end-user's preference 
solution with the learner's recommended solution. Our method consists of three ideas. First, 
we assume every-visit-optimality as the optimality criterion of preference for most of end-
users. Including this, section 2 describes an overview of interactive reinforcement learning 
in our research. Second, to cover the end-user's preference changes after the reward function 
is given by the end-user, interactive LC-learning prepares various policies (Satoh & 
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Yamaguchi, 2006) by generating variations of the reward function under every-visit-
optimality. It is described in section 3. Third, we propose coarse to fine recommendation strategy 
for guiding the end-user's current preference among various policies in section 4. 
To examine these ideas, we perform the experiment with twenty subjects to evaluate the 
effectiveness of our method. As the experimental results, first, a majority of subjects prefer 
each every-visit plan (visiting all goals) than the optimal plan. Second, the majority of them 
prefer shorter plans, and the minority of them prefer longer plans. We discuss the reason why 
the end-users' preferences are divided into two groups. These are described in section 5. In 
section 6, the search ability of interactive LC-learning in a stochastic domain is evaluated. 
Section 7 describes relations between our proposed solutions and current research issues on 
recommendation systems. Finally, section 8 discusses our conclusions and future work.  

2. Interactive reinforcement learning 
This section describes the characteristics on interactive reinforcement learning in our 
research, and shows the overview of our system. 

2.1 Interactive reinforcement learning with human 
Table1 shows the characteristics on interactive reinforcement learning. In reinforcement 
learning, an optimal solution is decided by the reward function and the optimality criteria. 
In standard reinforcement learning, an optimal solution is fixed since both the reward 
function and the optimality criteria are fixed. On the other hand, in interactive 
reinforcement learning, an optimal solution may change according to the interactive reward 
function. Furthermore, in interactive reinforcement learning with human, various optimal 
solutions will occur since the optimality criteria depend on human's preference. 
Then the objective of this research is to recommend preferable solutions of each user. The 
main problem is how to guide to estimate the user’s preference? Our solution consists of 
two ideas. One is to prepare various solutions by every-visit-optimality (Satoh & Yamaguchi, 
2006), another is the coarse to fine recommendation strategy (Yamaguchi & Nishimura, 2008). 
 

Type of 
reinforcement learning an optimal solution reward function optimality criteria 

standard fixed fixed fixed 
interactive may change interactive fixed 

interactive with human various optimal may change human's preference 

Table 1. Characteristics on interactive reinforcement learning 

2.2 Overview of the plan recommendation system 
Fig. 1 shows an overview of the plan recommendation system. When a user input several 
goals to visit constantly as his/her preference goals, they are converted to the set of rewards 
in the plan recommendation block for the input of interactive LC-learning (Satoh & 
Yamaguchi, 2006) block. After various policies are prepared, each policy is output as a round 
plan for recommendation to the user. The user comes into focus on his/her preference 
criteria through the interactive recommendation process. The interactive recommendation 
will finish after the user decides the preference plan. Next section, interactive LC-Learning 
block is described. 
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Fig. 1. The plan recommendation system 

2.3 Interactive LC-Learning block 
Fig. 2 shows an overview of interactive LC-Learning (Satoh & Yamaguchi, 2006) block that is 
extended model-based reinforcement learning. In Fig. 2, our learning agent consists of three 
blocks those are model identification block, optimality criterion block and policy search 
block. The details of these blocks are described in following section. The novelty of our 
method lies in optimality criterion as every-visit-optimality and the method of policy search 
collecting various policies. 

 
Fig. 2. Interactive LC-Learning block 

2.3.1 Model identification 
In model identification block, the state transition probabilities P(s’|s,a) and reward function 
R(s,a) are estimated incrementally by observing a sequence of (s,a,r). Note that s is an 
observed state, a is an executed action, and Rw is an acquired reward. This estimated model 
is generally assumed Markov Decision Processes (MDP) (Puterman, 2006). MDP model is 
defined by following four elements. 
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1. Set of states: 0 1 2{ , , , , }nS s s s s=  
2. Set of actions: 0 1 2{ , , , , }mA a a a a=  
3. State transition probabilities: P(s’|s,a) probability of occurring state s’ when execute 

action a at state s. 
4. Reward function: R(s,a) acquired reward when execute action a at state s. 

2.3.2 Optimality criterion 
Optimality criterion block defines the optimality of the learning policy. In this research, a 
policy which maximizes average reward is defined as an optimal policy. Eq. (1) shows the 
definition of average reward. 

 ( ) ( )
1

0

1lim
N

tN t
g s E r s

N
π π

−

→∞ =

⎛ ⎞
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⎝ ⎠
∑  (1) 

where N  is the number of step, ( )r sπ
τ  is the expected value of reward that an agent 

acquired at step t  where policy is π  and initial state is s  and ( )E  denotes the expected 
value. To simplify, we use gain-optimality criterion in LC-Learning (Konda et al., 2002a). In 
that, average reward can be calculated by both the expected length of a reward acquisition 
cycle and the expected sum of the rewards in the cycle.  
Then we introduce every-visit-optimality as the new learning criterion based on average 
reward. Every-visit-optimal policy is the optimal policy that visits every reward in the reward 
function. For example, if the reward function has two rewards, the every-visit-optimal policy 
is the largest average reward one which visits both two rewards. Fig.3 shows the example of 
an every-visit-optimal policy with two rewards.  

 
Fig. 3. An Every-visit-optimal policy with two rewards 

2.3.3 Policy search 
Policy search block searches every-visit-optimal policies on an identified model according to 
optimality of policies. Each policy is converted to a round plan by extracting a cycle. The 
detail of this block is described in next section. 

3. Preparing various round plans 
This section describes the definition of various round plans and the method for searching 
various policies. 
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3.1 Illustrated example 
To begin with, we show an illustrated example. Fig.4 shows an overview of preparing 
various round plans within two rewards. When a MDP has two rewards as shown in Fig.4 
(a), then 22 –1, three kinds of every-visit-optimal policies are prepared (Fig.4 (b)). Each 
policy is converted to a round plan by extracting a reward acquisition cycle (Fig.4 (c)), since 
each policy is consists of a reward acquisition cycle and some transit passes. 
 

 
Fig. 4. Overview of preparing various round plans  

3.2 Definition of various round plans by every-visit-optimality 
Various round plans are defined by following steps. 
1. Enumerate the all subsets of the reward function. 
2. Search an every-visit-optimal policy for each subset of the reward function. 
3. Collect all every-visit-optimal policies and convert them into round plans. 
Fig. 5 illustrates the process for searching various round plans. When a reward function is 
identified as {Rw1, Rw2}, enumerated subsets of the function are {Rw1}, {Rw2}, {Rw1, Rw2} in 
step 1. Then an every-visit-optimal policy is decided for each subset of the reward function in 
step 2. At last, these every-visit-optimal policies are collected as various round plans. The 
number of plans in the various round plans is 2r –1, where r is the number of rewards in the 
model.  

3.3 Searching various policies 
This section describes our various policies search method by interactive LC-Learning (Satoh & 
Yamaguchi, 2006). LC-Learning (Konda et al., 2002a; Konda et al., 2002b) is one of the 
average reward model-based reinforcement learning methods (Mahadevan, 1996). The 
features of LC-Learning are following;  
1. Breadth search of an optimal policy started by each reward rule.  
2. Calculating average reward by a reward acquisition cycle of each policy. 
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Fig. 5. Process for searching various round plans 
 

Search Reward 
Acquisition Policies 

Calculate 
Average Reward 

Policies 

Classify Policies 
by Reward Subset 

Every-visit-optimal Policies

Policies 
with AvRw

Model

Decide every-visit 
-optimal Policies 

P &
AvRw

P &
AvRw

P &
AvRw

ev
OP

ev
OP

ev
OP

Identified Model

Search Reward 
Acquisition Policies 

Calculate 
Average Reward 

Policies 

Decide 
an Optimal Policy 

An Optimal Policy

Policies 
with AvRw

Optimal
Policy 

Model

Extended

(1) 

(2) 

(3) 

(1) 

(2) 

(3-a) 

Identified Model

(a) Standard LC- Learning   (b) Interactive LC-Learning 

(3-b)

 
Fig. 6. Algorithm for preparing various policies 



How to Recommend Preferable Solutions of a User in Interactive Reinforcement Learning?   

 

143 

Fig. 6 (a) shows standard LC-Learning algorithm. Previous LC-Learning decides an optimal-
policy by following three steps. 
1. Search policies that have a reward acquisition cycle. 
2. Calculate average reward of searched policies. 
3. Decide an optimal policy that has the maximum average reward. 
Fig. 6 (b) shows algorithm for interactive LC-Learning. Major differences from standard LC-
Learning are following; 
1. Collecting various policies by every-visit-optimality 
2. A stochastic version based on occurring probability 
3. Adaptable for incremental reward addition 
Next, we describe the three steps for interactive LC-Learning as shown in Fig.6 (b). 
(1) Search reward acquisition policies 

In this step, reward acquisition policies are searched by converting a MDP into the tree 
structures where reward acquisition rules are root rule. We show an illustrated example. 
Fig. 7 shows a MDP model with two rewards r1 and r2. It is converted into two tree 
structures. Fig. 8 shows two trees. First, a tree from reward r1 as shown in Fig. 8 (a) is 
generated, then a tree from reward r2 as shown in Fig. 8 (b) is generated. In a tree structure, 
a policy is a path from a root node to the state that is same state to the root node. In a path, 
an expanded state that is same state to the previous node is pruned since it means a local 
cycle. In Fig.8, node D and B are pruned states. 
Fig. 9 shows all reward acquisition policies in Fig. 7. In a stochastic environment, several 
rules branch stochastically. In such case, a path from parent node of a stochastic rule to the 
state that is already extracted is part of a policy that contains the stochastic rule. The policy 
12 in Fig.9 is an example of this.  

(2) Calculate average reward 

In this step, average reward of each policy is calculated by using occurring probability of each 
state of the policy. Occurring probability of a state is expected value of the number of 
transiting the state during the agent transit from the initial state to the initial state. Eq. (2) 
shows definition of the occurring probability of state sj where initial state is si. Occurring 
probability of each state is calculated approximately by value iteration using eq. (2). 

A B

C D

r1

r2  
Fig. 7. An example of MDP model 
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The average reward of policies is calculated by eq. (3) using occurring probability calculated 
by eq. (2). 
(3’-1) Classify policies by reward subset 

In this step, all policies searched by step 1 are classified by acquisition reward set. 

(3’-2) Decide every-visit-optimal policies 

In this step, an every-visit-optimal policy is decided for each group classified in step (3’-1). Each 
every-visit-optimal policy is a policy that had maximum average reward in the each group. 

4. Plan recommendation 
This section describes the plan recommendation system and the coarse to fine recommendation 
strategy (Yamaguchi & Nishimura, 2008). In this section, a goal is a reward to be acquired, 
and a plan means a cycle that acquires at least one reward in a policy. 

4.1 Grouping various plans by the visited goals 
After preparing various round plans in section 3.3, they are merged into group by the 
number of acquired reward. Fig. 10 shows grouping various plans by the number of visited 
goals. When three goals are input by a user, they are converted into three kinds of reward as 
Rw1, Rw2, and Rw3. Then, Group1 in Fig. 10 holds various plans acquiring only one reward 
among Rw1, Rw2, or Rw3. Group2 holds various plans acquiring two kinds of reward 
among Rw1, Rw2, or Rw3, and Group3 holds various plans acquiring Rw1, Rw2, and Rw3. 

 
Fig. 10. Grouping various plans 

4.2 Coarse to fine recommendation strategy 
After grouping various plans by the number of visited goals, they are presented to the user 
sequentially for selecting the most preferable plan. We call the way to decide this order as 
recommendation strategy. In this paper, we propose coarse to fine recommendation strategy 
that consists of two steps, coarse recommendation step and fine recommendation step. 

(1) Coarse recommendation step 

For the user, the aim of this step is to select a preferable group. To support the user’s 
decision, the system recommends a representative plan in each selected group to the user. 
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Fig. 11 shows a coarse recommendation sequence when a user changes his/her preferable 
group as Group1, Group2, and Group3 sequentially. When the user selects a group, the 
system presents the representative plan in the group as the recommended plan. 
 

 
Fig. 11. Coarse recommendation 
(2) Fine recommendation step 

For the user, the aim of this step is to decide the most preferable plan in the selected group 
in previous step. To support the user’s decision, the system recommends plans among 
his/her selected group to the user. Fig. 12 shows a fine recommendation sequence after the 
user selects his/her preferable group as Group2. In each group, plans are ordered according 
to the length of a plan. 
 

 
Fig. 12. Fine recommendation in the selected group 

5. Experiment 
We perform the experiment with twenty subjects from 19 to 21 years old to evaluate the 
effectiveness of our method. 
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5.1 The round-trip plan task 
Fig. 13 shows the round-trip plan Recommendation task in Hokkaido. For a subject, this task 
is executed by following steps. 
1. Each subject selects four cities to visit. Various round-trip plans are recommended. 
2. The subject decides the most preferred round-trip plan among them. The task for a 
subject is to decide the most preferred round-trip plan after selecting four cities to visit 
among eighteen cities. The task for the system is to estimate the preferable round-trip plans 
to each user and to recommend them sequentially. 

 
Fig. 13. The round-trip plan Recommendation task 

5.2 Experimental results 
Fig.14 shows the result of the most preferred plans of each twenty subjects. Horizontal axis 
is the number of visited cities (goals), and vertical axis is the number of subjects. The 
summary of the experimental result is as follows. First, the majority of subjects prefer each 
every-visit plan (visit all four cities) than the optimal plan. Second, majority prefers shorter 
plans, and minority prefers longer plans. Then we focus on these two points. 
First point is the effectiveness of every-visit criterion. After selecting four cities, 15 (three-
quarter) subjects preferred every-visit plans those visit selected four cities. In contrast, only 5 
subjects preferred optimal plans with shorter length, yet these plans do not visit all four 
cities. This suggests that the every-visit criterion is preferable to the optimality criterion for 
human learners. 
Second point is that the users' preferences are divided into two groups, shorter plans, or 
longer plans. We look more closely the preference for every-visit plans among 15 subjects. 
Among them, 10 (two-thirds) subjects preferred shorter (every-visit-optimal) plans, and 5 
(third) subjects preferred longer (every-visit-non-optimal) plans. Among all 20 subjects, they 
indicate a similar tendency. Table 2 shows the summary of the experimental result. In table 
2, a majority of subjects prefer shorter plans those are either optimal or every-visit-optimal, a 
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minority of subjects prefer longer plans those are every-visit-non-optimal. The reason why the 
end-users' preferences are divided into two groups will be discussed in the next section. 

 
Fig. 14. The result of the most preferred plans 
 

every-visit plan 
optimal plan 

every-visit-optimal every-visit-non-optimal 
short shorter long 

5 10 5 

Table 2. Summary of the most preferred plans 

5.3 Discussions 
(1) Why the end-users' preferences are divided? 

We discuss the reason why the end-users' preferences are divided into two groups. Fig. 15 
shows one of the every-visit-optimal plans those major subjects preferred. According to the 
results of the questionnaire survey, a majority of subjects selected an every-visit-optimal plan 
have less knowledge on Hokkaido (or no experience to visit Hokkaido).  
In contrast, a minority of subjects selected every-visit-non-optimal plans those have additional 
cities to visit by the plan recommendation. Fig. 16 shows one of the every-visit-non-optimal 
plans the minority of subjects preferred. According to the results of the questionnaire 
survey, a majority of subjects selected an every-visit-non-optimal plan have much knowledge 
or interest on Hokkaido.  
It suggests that the preference of a user depends on the degree of the user’s background 
knowledge of the task. In other word, the change of the end-users' preference by the 
recommendation occurs whether they have the background knowledge of the task or not. 
Note that in our current plan recommendation system, no background knowledge on the 
recommended round-trip plan except Fig. 13 is presented to each subject. If any information 
about recommended plan is provided, we expect that the result on preference change of 
these two kinds of subjects will differ. 
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Fig. 15. One of the every-visit-optimal plans 

 
Fig. 16. One of the every-visit-non-optimal plans 
(2) The search ability of interactive LC-learning 
The computing time of the round-trip plan task in Fig. 13 including graphical output by 
interactive LC-learning is no more than one second or less per user input, since it is a 
deterministic MDP model. So we summarize the search ability of LC-Learning in a 
stochastic case (Satoh & Yamaguchi, 2006).  
We compare two kinds of search abilities of LC-Learning to that of Modified-PIA 
(Puterman, 2006). First, the search cost of LC-Learning increases linearly when the number 
of rewards increases linearly. However, the search cost of Modified-PIA increases 
nonlinearly when the number of rewards increases linearly. Besides, Modified-PIA collects 
no every-visit optimal policy when the number of rewards is more than three. These suggest 
that our method is better than previous reinforcement learning methods for interactive 
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reinforcement learning in which many rewards are added incrementally. We go into the 
comparative experiments in detail in section 6. 
(3) Every-visit-optimality in a non-deterministic environment 

In a stochastic environment, every-visit-optimality is defined as p-every-visit-optimality where 
each reward is visited stochastically by not less than probability p (0 < p =< 1). It can be 
calculated by occurring probability of each rewarded rule described in section 3.3 (2). Note 
that 1-every-visit-optimality is that each reward is visited deterministically even in a 
stochastic environment. 

6. Evaluating the search ability of interactive LC-learning 
To evaluate the effectiveness of interactive LC-learning in a stochastic domain, comparative 
experiments with preprocessed Modified-PIA are performed when the number of rewards 
increases. We compare the two kinds of search abilities as follows. 
1. The search cost for every-visit optimal policies 
2. The number of collected every-visit-optimal policies 

6.1 Preprocess for Modified-PIA 
Modified-PIA(Puterman, 2006) is one of the model-based reinforcement learning methods 
based on PIA modified for the average reward. However Modified-PIA is the method to 
search an optimal policy. So it is not valid to compare the search cost of the Modified-PIA 
and LC-Learning that searches various policies. To enable to search various policies by 
Modified-PIA, following preprocess is added. Fig. 17 shows the preprocessed Modified-PIA. 
1. Enumerate the models those contain the subset of reward set of the original model. 
2. Search an optimal policy for each subset of the reward function using Modified-PIA. 
3. Collect optimal policies. 

 
Fig. 17. The preprocessed Modified-PIA 
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6.2 Experimental setup 
We use a hundred of MDP models those consist of randomly set state transition probability 
and reward function for experimental stochastic environment, in which the number of 
rewards is varied among 1 to 10, the number of states is 10 and the number of actions is 4. 
As the measure of the search cost, we used the iteration count in calculating the occurring 
probability of state for LC-Learning and we used the iteration count in calculating the value 
function for Modified-PIA. 

6.3 The search cost for every-visit-optimal policies  
To begin with, the search cost for every-visit-optimal policies is evaluated. Fig. 18 shows the 
comparative search cost when the number of rewards increases. The result indicates that the 
tendency of search cost of LC-Learning is linear and one of Modified-PIA is non-linear when 
the number of rewards increases.  
Then we discuss the theoretical search cost. In Modified-PIA, MDP models those contain the 
subset of reward set of an original MDP are made and an optimal policy for each MDP is 
searched. So original Modified-PIA is performed 2r-1 times where r is the number of 
rewards. After one reward is added, incremental search cost is following. 

 (2r+1-1) – (2r-1) = 2r (4) 

Eq. (4) means that the search cost of Modified-PIA increases nonlinearly when the number 
of rewards increases. In contrast, in LC-Learning, the number of tree structure increase 
linearly when the number of rewards is increase. So it is considered that the search cost of 
LC-Learning increase linearly when the number of rewards increase. 
 
 

 
 

Fig. 18. Search cost when the number of rewards increases 
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6.4 The number of collected every-visit-optimal policies 
To evaluate the effectiveness of interactive LC-learning, another search ability is compared 
with preprocessed Modified-PIA. Note that the experimental setup is same as the setup 
described in section 6.2. Fig. 19 shows the number of collected every-visit-optimal policies. 
Compared with LC-learning collecting all every-visit-optimal policies, the number of collected 
every-visit-optimal policies by preprocessed Modified-PIA is smaller than LC-learning.  
Then, carefully analyzing the case of six rewards, Fig. 20 shows the rate of collected every-
visit-optimal policies, that is percentage of LC-learning of preprocessed Modified-PIA. It  
 

 
Fig. 19. The number of collected every-visit-optimal policies 

 
Fig. 20. The rate of collected every-visit-optimal policies 
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shows that preprocessed Modified-PIA collects no every-visit-optimal policy when the 
number of rewards is more than three. 
Then we discuss the reason why the number of collected every-visit-optimal policies by 
preprocessed Modified-PIA is smaller than LC-learning. Since preprocessed Modified-PIA is 
based on the standard optimality, it searches an optimal policy in each MDP with the subset 
of reward set of the original model as shown in Fig.17. It means that preprocessed Modified-
PIA finds an every-visit-optimal policy only if it is same as the optimal policy in each MDP 
model. As the number of rewards increases, the rate of every-visit-optimal policy that is same 
as the optimal policy decreases. In other words, the distinction between two criteria becomes 
larger according to the number of rewards increases. 
Since most previous reinforcement learning methods including Modified-PIA are based on 
the standard optimality criterion, they only learn an optimal policy. Therefore, under every-
visit-optimality criterion, our method is better than previous reinforcement learning methods 
for interactive reinforcement learning in which many rewards are added incrementally.  

7. Related works on recommender systems 
This section describes relations between our proposed solutions and current research issues 
on recommendation systems. The main feature of our recommendation system is interactive 
and adaptable recommendation for human users by interactive reinforcement learning. 
First, we describe two major problems on traditional recommenders. Second, interactive 
recommendation system called Conversational Recommender is summarized. At last, 
adaptive recommenders with learning ability are described.  

7.1 Major problems on traditional recommenders 
Main objective of recommender systems is to provide people with recommendations of 
items, they will appreciate based on their past preferences. Major approach is collaborative 
filtering, whether user-based or item-based (Sarwar et al., 2001) such as by Amazon.com. 
The common feature is that similarity is computed for users or items, based on their past 
preferences. 
However, there are two major issues. First issue is the similar recommendations problem 
(Ziegler et al., 2005) in that many recommendations seem to be "similar" with respect to 
content. It is because of lack of novelty, serendipity (Murakami et al., 2007) and diversity of 
recommendations. Second issue is the preference change problem (Yamaguchi et al., 2009) 
that is inability to capture the user's preference change during the recommendation. It often 
occurs when the user is a beginner or a light user. For the first issue, there are two kinds of 
previous solutions. One is topic diversification (Ziegler et al., 2005) that is designed to 
balance and diversify personalized recommendation lists for user's full range of interests in 
specific topics. Another is visualizing the feature space (Hijikata et al., 2006) for editing a 
user's profile to search the different items on it by the user. However, these solutions do not 
directly considering a user's preference change. To solve this, this paper assumes a user's 
preference change as two-axes space, coarse and fine axes.  

7.2 Interactive recommendation systems 
Traditional recommenders are simple and non-interactive since they only decide which 
product to recommend to the user. So it is hard to support for recommending more complex 
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products such as travel products (Mahmood et al., 2009). Therefore, conversational 
recommender systems (Bridge et al., 2006) have been proposed to support more natural and 
interactive processes. Typical interactive recommendation is the following two strategies 
(Mahmood et al., 2008):  
1. Ask the user in detail about her preferences. 
2. Propose a set of products to the user and exploit the user feedback to refine future 

recommendations.  
A major limitation of this approach is that there could be a large number of conversational 
but rigid strategies for a given recommendation task (Mahmood et al., 2008). 

7.3 Adaptive recommenders with learning ability 
There are several adaptive recommenders using reinforcement learning. Most of them observe 
a user's behavior such as products the user viewed or selected, then learn the user's decision 
processes or preferences. To improve the rigid strategies for conversational recommenders, 
learning personalized interaction strategies for conversational recommender systems has been 
proposed (Mahmood & Ricci, 2008; Mahmood & Ricci, 2009; Mahmood et al., 2009). 
Major difference from them, the feature of our approach is adaptable recommendation for 
human users by passive recommendation strategy called coarse to fine recommendation. 
Adaptable recommendation means that during our recommendation, a user can select these 
two steps (coarse step or fine step) as his/her likes before deciding the most preferable plan. 

8. Conclusions 
In this paper, we proposed a new method of interactive LC-learning for recommending 
preferable solutions of a user.  
1. Every-visit-optimality as the optimality criterion of preference for most of end-users was 

assumed.  
2. To cover the end-user's preference changes after the reward function is given by the 

end-user, interactive LC-learning prepared various policies by generating variations of 
the reward function under every-visit-optimality.  

3. For guiding the end-user's current preference among various policies, coarse to fine 
recommendation strategy was proposed. 

As the experimental results, first, the majority of subjects preferred each every-visit plan 
(visiting all goals) than the optimal plan. Second, majority preferred shorter plans, and 
minority prefers longer plans. We discussed the reason why the end-users' preferences are 
divided into two groups. Then, the search ability of interactive LC-learning in a stochastic 
domain was evaluated. 
The future work is to assist a user for deciding the most preference plan to make his/herself 
known the potential preference of the user. To realize this idea, we are evaluating passive 
recommendation by visualizing the coarse to fine recommendation space and the history of the 
recommendation of it (Yamaguchi et al., 2009). 
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1. Introduction 
Reinforcement learning (Houk et al., 1995; Sutton & Barto, 1998; Schultz, 2002) has been one 
of the central topics in a broad range of scientific fields for the last two decades. 
Understanding of reinforcement learning  is expected to provide a systematic understanding 
of adaptive behaviors, including simple classical and operant conditioning of animals 
(Waelti et al., 2001; Richmond et al., 2003; Satoh et al., 2003; Graybiel, 2005; Samejima et al., 
2005; Hikosaka et al., 2006) as well as all complex social and economical human behaviors 
that are desinged to maximize benefits (Montague & Berns, 2002); and is also useful in 
machine learning and robotics (Tesauro, 1994). 
Reinforcement learning, whether performed by living organisms or computational models,  
involves choosing a behavior that is expected to yield the maximal reward and then revising 
this prediction so as to minimize the reward prediction error (Schultz, 2002), which is the 
difference between the predicted and actual reward.  
Recent neurophysiological studies have shown that midbrain dopamine neurons encode the 
reward prediction error signal (Schultz et al., 1997; Hollerman & Schultz, 1998; Waelti et al., 
2001; Fiorillo et al., 2003; Nakahara et al., 2004; Morris et al., 2006) and that the striatum 
(Hollerman & Schultz, 1998; Hikosaka et al., 2006) and cerebral cortices (Watanabe, 1996; 
Lee & Seo, 2007) use this signal to perform reinforcement learning with dopamine-induced 
synaptic plasticity (Reynolds et al., 2001; Wickens et al., 2003). Thus, computing the reward 
prediction error is one of the most essential aspects of reinforcement learning, however the 
identity of the neural structures that provide the signal s to the midbrain dopamine neurons 
and the mechanism by which the ‘reward prediction error’ is computed remain rather 
elusive. The pedunculopontine tegmental nucleus (PPTN) of the midbrain feeds strong 
excitatory inputs to dopamine neurons in the midbrain, and receives reward-related signals 
from various areas including the cerebral cortices and the striatum. We hypothesize that the 
PPTN is the key structure for computing the reward prediction error. To test this 
hypothesis, we recorded the activity of PPTN neurons in monkeys performing a saccade 
task for a juice reward (Kobayashi et al., 2002; Okada et al., 2009).  
In the most recent study (Okada et al., 2009), we used multiple analytical approaches, 
including receiver operating characteristic (ROC) analysis (Lusted, 1978), mutual 
information (Werner & Mountcastle, 1963; Schreiner et al., 1978; Kitazawa et al., 1998), and 
correlation analyses to examine neuronal responses in the PPTN neurons in monkeys 
performing saccade tasks, during which the magnitudes of rewards were predicted in 
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normal and reversed fashions. All analyses consistently indicated the existence of two 
neuronal groups, one signalling the expected reward magnitude predicted from the visual 
stimulus and the other signalling the magnitude of the actual reward, both necessary and 
sufficient pieces of information for computing the reward prediction error. The reward 
prediction error may be directly computed by subtracting the signals encoded by the two 
PPTN neuronal groups, or alternatively, by adding the time derivatives of the reward 
prediction signals to the actual reward signals, as originally hypothesized by the temporal 
difference reinforcement learning model. Thus, we concluded that the PPTN is indeed a key 
structure for computing of the reward prediction error. 

2. Background 
2.1 Classical view of the PPTN 
The cholinergic system is one of the most important modulatory neurotransmitter systems 
in the brain, and controls neuronal activity that depends on selective attention. Anatomical 
and physiological evidence supports the idea of a 'cholinergic component' of conscious 
awareness (Perry et al., 1999). The PPTN in the brainstem contains both cholinergic 
(Mesulam et al., 1983) and non-cholinergic neurons (Jones & Beaudet, 1987; Clements & 
Grant, 1990; Spann & Grofova, 1992; Ford et al., 1995; Takakusaki et al., 1996; Wang & 
Morales, 2009), but is one of the major sources of cholinergic projections in the brainstem 
(Mesulam et al., 1983). The PPTN is thought to be the central part of the reticular activating 
system (Garcia-Rill, 1991), which provides background excitation for several sensory and 
motor systems essential for automatic control of movement (Takakusaki et al., 2004), 
perception and cognitive processes (Steckler et al., 1994). It has long been known that the 
PPTN is a crucial element in the regulation of the rhythms in the cortex (Steriade et al., 1990) 
that are associated with wakefulness and rapid eye movement sleep (Leonard & Llinas, 
1994). 
Anatomically, the PPTN has reciprocal connections with the basal ganglia: the subthalamic 
nucleus, the globus pallidus, and the substantia nigra (Edley & Graybiel, 1983; Lavoie & 
Parent, 1994), and more recently, was argued to form a part of the basal ganglia (Mena-
Segovia et al., 2004). Further, the PPTN also has reciprocal connections with 
catecholaminergic systems in the brainstem: the locus coeruleus (noradrenergic) (Garcia-
Rill, 1991; Garcia-Rill et al., 1995) and the dorsal raphe nucleus (serotonergic) (Steininger et 
al., 1992; Honda & Semba, 1994; Kayama & Koyama, 2003). This basal ganglia-PPTN-
catecholaminergic complex was proposed to play an important role in gating movement, 
controlling several forms of attentional behavior (Garcia-Rill, 1991) and the reinforcement 
process (Doya, 2002). Despite these abundant anatomical findings, however, the functional 
importance of the PPTN is not yet fully understood. 

2.2 The possible role of the PPTN in reinforcement process 
Several of lesion and drug administration studies on rodents indicate that the PPTN is 
involved in various reinforcement processes (Bechara & van der Kooy, 1989; Kippin & van 
der Kooy, 2003; Alderson et al., 2006; Winn, 2006; Wilson et al., 2009). According to a 
physiological study in operantly conditioned cats, the PPTN relays either a reward or a 
salient event signal (Dormont et al., 1998). Anatomically, the PPTN receives reward input 
from the lateral hypothalamus (Semba & Fibiger, 1992) and the limbic cortex (Chiba et al., 
2001). Conversely, the PPTN abundantly projects to midbrain dopamine neurons of the 
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substantia nigra pars compacta and ventral tegmental area (Beckstead et al., 1979; Jackson & 
Crossman, 1983; Beninato & Spencer, 1987; Charara et al., 1996), which encode a reward 
prediction error signal for reinforcement learning (Schultz, 1998).  
The PPTN is one of the strongest excitatory input sources for the dopamine neurons 
(Matsumura, 2005). These afferent PPTN neurons release glutamate and acetylcholine to 
target neurons, make glutamatergic and cholinergic synaptic connections with dopamine 
neurons in the midbrain (Scarnati et al., 1986; Futami et al., 1995; Takakusaki et al., 1996). In 
the rat, electrical stimulation of the PPTN induces a time-locked burst in dopamine neurons 
(Lokwan et al., 1999; Floresco et al., 2003), and chemical or electrical stimulation of the PPTN 
increases dopamine release in the striatum (Chapman et al., 1997; Forster & Blaha, 2003; 
Miller & Blaha, 2004). Other electrophysiological experiments have shown that 
acethylcholine acts through both nicotinic and muscarinic receptors to depolarize dopamine 
neurons and to alter their firing pattern (Calabresi et al., 1989; Lacey et al., 1990; Gronier & 
Rasmussen, 1998; Sorenson et al., 1998). Thus, PPTN activity and acethylcholine provided 
by the PPTN can facilitate the burst firing in dopamine neuron (Mena-Segovia et al., 2008) 
and appear to do so via muscarinic (Kitai et al., 1999; Scroggs et al., 2001) and nicotinic 
(Grenhoff et al., 1986; Pidoplichko et al., 1997; Sorenson et al., 1998; Yamashita & Isa, 2003) 
acethylcholine receptor activation. In addition, some of the effects induced by PPTN 
stimulation can be blocked by administration of the muscarinic acethylcholine receptor 
agonist carbachol into the PPTN (Chapman et al., 1997). This finding is consistent with the 
fact that cholinergic neurons in the PPTN express the inhibitory muscarinic autoreceptors 
(Yeomans, 1995) and suggests that activation of these receptors inhibits cholinergic inputs to 
the dopamine neurons (Tzavara et al., 2004; Chen et al., 2006). 
Furthermore, midbrain dopamine neurons are dysfunctional following excitotoxic lesioning 
of the PPTN (Blaha & Winn, 1993). A number of studies have found impairments in learning 
following excitotoxic lesions of the PPTN (Fujimoto et al., 1989; Fujimoto et al., 1992; Steckler 
et al., 1994; Inglis et al., 2000; Alderson et al., 2002). Thus, abundant anatomical, 
electrophysiological and pharmacological studies of slice and whole animal preparations 
indicate that the PPTN receives signals from the reward related structures including the 
cerebral cortices and the striatum (Winn et al., 1997) and provides strong excitatory inputs to 
the dopamine neurons (Clements & Grant, 1990; Blaha & Winn, 1993; Futami et al., 1995; 
Oakman et al., 1995; Blaha et al., 1996; Conde et al., 1998; Dormont et al., 1998; Mena-
Segovia et al., 2004; Pan & Hyland, 2005; Mena-Segovia et al., 2008). Interestingly, the 
dopamine/acethylcholine interaction seems to be mutual (Scarnati et al., 1987); dopmine 
neurons in the substantia nigra pars compacta tproject back to PPTN neurons, affecting their 
excitability. Even though the dopaminergic input to the PPTN is low compared with the 
massive cholinergic innervation of the dopamine neurons (Semba & Fibiger, 1992; Grofova 
& Zhou, 1998; Ichinohe et al., 2000), dopamine released within the PPTN may play an 
important part in controlling its activity (Steiniger & Kretschmer, 2003). 
Therefore, it is plausible that the PPTN provides important information for computing 
reward prediction error by the dopamine neurons. Recent studies (Matsumura et al., 1997; 
Pan & Hyland, 2005) reported that the PPTN encodes sensory or motor rather than reward 
information of task events. However, using a visually guided saccade task requiring the 
animal to shift its gaze from a fixation to a saccade target, we demonstrated the existence of 
two groups of neurons within the PPTN, one whose resposes to presentation of the fixation 
target to initiate the task were correlated with the success and failure of individual task 
trials, and another that was responsive to the reward delivery (Kobayashi et al., 2002). 



 Advances in Reinforcement Learning 

 

160 

We hypothesized that the task performance-related neurons signal the reward prediction 
and the reward delivery-related neurons signal the reward outcome. This hypothesis was 
tested in monkeys by studying the activity of PPTN neurons during visually guided saccade 
tasks that were rewarded with different amonts of juice that were cued by the shape of the 
fixation target (Okada et al., 2009). 

3. Responses of PPTN neurons to different reward magnitude 
3.1 Effect of reward prediction on behavior and neuronal activity of PPTN 
In this study, Japanese monkeys were trained on a visually guided saccade task that 
required them to maintain fixation on a central fixation target, and to make a horizontal 
saccade to a peripheral saccade target that was presented after the disappearance of the 
fixation target (Fig. 1A). Correct trials were rewarded randomly with either one or three  
 

 
Fig. 1. Two-valued reward, visually guided saccade task.  
A. Schimatic of screen views for the two-valued visually guided saccade task. A fixation 
target (square or circle) was presented for 400-1000 ms. A saccade target was presented to the 
left or the right of the fixation target (eccentricity, 10°) 300-500ms after fixation target offset. 
The monkey was required to maintain fixation on the fixation target during the entire time it 
was presented, and to then make a saccade to the saccade target within 500 ms after saccade 
target onset. They were rewarded for successful trials with  either one or three drop of juice 
in a quasirandom fashion.  
B. Mean reaction times on the the fixation target. Error bars = SEM, * indicates p<0.001 
(Student’s t-test).  
C. Photomicrograph of a coronal section through midbrain of one monkey  showing 
electrode tracks and the lesion (within the circle) marking the recording site in the PPTN. 
Figures were modified from our recent paper (Okada et al., 2009). 
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drops of juice; the amount (large or small) being cued at the outset by the shape of the initial 
central fixation target (square or circle, respectively).  
The behavior of the monkeys was influenced by the reward value expectation, the 
percentage of successful trial being significantly higher for large rewards than for small 
ones. In the unsuccesful  trials, three types of errors occured: monkeys failed to fixate on the 
fixation target (fixation error), they failed to maintain fixation until the appearance of the 
saccade target (fixation hold error), and they failed to make a saccade towards the saccade 
target (saccade error). The reaction time to fixate on the the fixation target  was significantly 
shorter in the successful than in the unsuccesuful ones. There was also a systematic 
difference in the reaction time within the successful trials: those associated with large 
rewards were significantly shorter than those for small rewards (Fig. 1B). 
One hundred fifty-three PPTN neurons (see, recording sites in Fig. 1C) exhibited significant 
responses to one or more task events. Of these, 30 neurons exhibited increased firing around 
the time of the onset of the fixation target, with significant dependency on the magnitude of 
the predicted reward (fixation target neurons), and 15 neurons exhibited increased firing only 
around the time of the reward delivery with significant dependency on the reward 
magnitude of the current reward (reward delivery neurons). 
Figures 2A, B show raster displays and spike density functions for a representative fixation 
target neuron. This neuron showed elevated firing throughout the trial that was greater 
when the cued reward was large: compare the red raster lines and traces (large reward) with 
the green (small rewards). The population plot for the 30 fixation target neurons (Fig. 2C) 
indicates that the differences in responses to the large and small reward cues generally 
began to emerge about 100 ms after the cue was presented (the 1st dotted line), even though 
there were non-differential responses before the onset of the fixation target/cue, presumably 
in anticipation of its appearance. Note that the differential responses extended throughout 
the working memory period following offset of the fixation target/cue and lasted until and 
even after reward delivery (3rd dotted line), almost unaffected by other task events, such as 
the onset of the peripheral saccade target (black bars in Fig. 2A, 2nd dotted line in Fig. 2C) 
and the saccade to the saccade target (inverted triangles in Fig. 2A). 
In contrast, reward delivery neurons were almost unresponsive jst before the reward was 
delivered, when they discharged transiently, reaching a peak discharge rate shortly after 
reward delivery and then rapidly declining back to baseline (Figs. 2E, F). In trial with larger 
rewards, the discharge rate of the transient response reached a higher peak at a slightly later 
time and took a few hundred milliseconds longer to decay back to baseline than did that 
during small reward trials. 
The clear suggestion here is that the differential dependencies of the fixation target and 
reward delivery neurons in encode the magnitudes of the predicted and current rewards, 
respectively. Further, we analyzed the precision for neuronal activity to encode the reward 
magnitude in two ways; 1) by ROC analysis  for discrimination between the small and large 
rewards; 2) by mutual information analysis to estimate the information contained in the 
spike discharges with respect to the magnitude of the reward (Werner & Mountcastle, 1963; 
Schreiner et al., 1978; Kitazawa et al., 1998) where. These two analyses were conducted 
using a sliding time window of 200 ms moved in 1 ms steps. 
First, the reliability with which the activity of individual neurons encoded large or small 
reward was estimated by deriving an ROC value (cumulative probability of the ROC curve) 
that measures the accuracy by which an ideal observer could correctly distinguish between 
large and small reward from the neuronal signal: 
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Fig. 2. Responses of the fixation target and the reward delivery neurons to task events.  
A, B, a rastergram and peri-task event spike density function for activities of a 
representative fixation target neuron over 10 successive trials, aligned to the onsetof the 
fixation target. Red and green rasters (A) and traces (B) indicate large and small reward 
trials, respectively. In (A) blue squares and circles indicate fixation target onset,  black bars 
onset of the saccade target, blue triangles saccade onset and the blue lines the times at which 
large (three bars) and small (one bar) rewards were delivered. C, The population spike 
density function for the 30 fixation target neurons. Responses are aligned to fixation target 
and saccade target onsets and the moment of reward delivery (vertical dotted lines). Large 
and small reward trials are indicated once again with red and green, respectively, as above, 
and thick horizontal bars above indicate the durations of the respective events. D-F, a 
similar rastergram (D) and response histogram (E) for a representative reward delivery 
neuron and the population response histograms (F) for the 15 reward delivery neurons. 
Formats are the same as in A-C. Figures were modified from our recent paper (Okada et al., 
2009). 
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x  denotes the neuronal activity sampled through the moving window. ( )p x  and ( )q x  
denote the probability distributions for a ideal observer to answer whether the reward is 
large or  small, respectively; ( )P x  and ( )Q x  denote the cumulative probability of these 
functions. ( )P Q  represents an ROC curve, and the ROC value is the area under the ROC 
curve evaluated as ∫

1

0
( )P Q dQ , and Q  is the cumulative probability function for small 

reward trials that was taken as the reference distribution.  
In principle, ROC analysis evaluates the reliability with which an ideal observer can tell 
whether the reward is large or small from the noisy signal in terms of statistical significance 
of the signal difference between the two rewards in comparison with the baseline noise. 
Therefore, an ROC value = 0.5 and > 0.56 imply that the answer is 50 and 95 % correct, 
respectively. 
Second, the information capacity for the PPTN neuronal ensemble to signal reward 
magnitude during the three task periods was estimated via mutual information analysis 
where: 
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L , S  and N  denote numbers of large and small reward and total trials respectively. High  
and Low  denote the numbers of trials where the neuronal response was larger and smaller 
than the median response for all trials, respectively. Therefore 1l  and 2l  and 1s  and 2s  
represent large and small reward trials where the neuronal response was larger and smaller 
than the median response, respectively. Mutual information plots for individual neurons 
evaluate the information capacity for the neurons to express the reward magnitude in terms 
of a response correlation with the reward magnitude, and cumulative plots evaluate that for 
the ensemble neurons for an ideal case where the individual neuronal responses are 
perfectly independent.  
Therefore, these two analyses estimate different aspects of neuronal signal precision, 
although they are related. Our ROC methods estimate the signal significance in comparison 
with the baseline noise, and the mutual information analysis evaluates the signal precision 
in terms of signal correlation with the reward magnitude. 
We conducted an ROC analysis on the 45 fixation target and reward delivery neurons to 
estimate how reliably the discharges of the individual neurons indicated whether the 
reward was large or small. ROC values for the fixation target neurons (top 30 rows in Fig. 
3A) started out near the chance level (ROC value = 0.5) and generally first acquired 
significance (ROC value > 0.56) during the fixation target/cue period. Most fixation target 
neurons continued to show significant ROC values through the working memory periods 
after the fixation target/cue disappeared, albeit with some substantial fluctuations, and 
more than half of them remained above the chance level even after reward delivery. The 
ROC values of the reward delivery neurons (the bottom rows in Fig. 3A), on the other hand,   
did not rise above chance level until after reward delivery, and then only transiently. Thus, 
the ROC analysis reinforced the idea that the fixation target neurons convey information 
about the magnitude of the predicted reward during the cue and working memory periods 
as well as up to and beyond the time of reward delivery and the reward delivery neurons 
convey information about the magnitude of the current reward only after it has been 
delivered. The free reward paradigm experiment also supports this view(Okada et al., 2009). 
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We obtained further support for this view by computing the mutual information (Kitazawa 
et al., 1998) in the responses about the magnitude of the reward (large or small). The 
cumulative plots of the mutual information conveyed by the individual fixation target 
neurons (cyan traces in Fig. 3B) indicated that the information grew rapidly during the 
fixation target/cue period, peaked roughly as the fixation target/cue disappeared, and then 
declined thereafter during the working memory period, but did not reach baseline in most 
neurons until after the reward was delivered, as did the ROC values. The mutual 
information conveyed by the individual reward delivery neurons (black traces in Fig. 3B) 
generally did not rise above the null level until after reward delivery, when it showed an 
abrupt substantial increase often lasting more than half a second. 

 
Fig. 3. Receiver operating characteristic (ROC) and mutual information analyses of 
responses in the fixation target and reward delivery neurons.  
A, Pseudo color plots of the instantaneous ROC values (sliding time window, 200 ms) for 
large and small rewards indicated by activities in each of the 30 fixation target and 15 
reward delivery neurons. The plots are aligned to fixation target onset and saccade target 
onset, and reward delivery (dotted lines) and ordered according to the neuronal ROC value 
after reward delivery. A white horizontal line indicates the border between the fixation 
target and reward delivery neurons. B, Cumulative plots of mutual information about 
reward amounts encoded by the 30 fixation target (cyan traces) and 15 reward delivery 
(black traces) neurons. A thick horizontal white bar indicates the duration of the respective 
neuronal type. Time axes in A and B are broken to align the responses to the onset of 
fixation, saccade target and reward delivery. Figures were modified from our recent paper 
(Okada et al., 2009). 

Further insights were obtained by recording the activities of fixation target and reward 
delivery neurons in a context reversal paradigm, in which the meaning of the fixation 
target/cue was suddenly reversed while recording from a given neuron so that squares and 
circles indicated large and small rewards, respectively, in the first 10 trials and the opposite 
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in the next 10 trials. The responses of the fixation target neurons during both the fixation 
target/cue period (Fig. 4A) and the subsequent working memory period (the maintenance 
period of reward prediction) (Fig. 4B) clearly reflected the context reversal with a delay of 
one trial, the net result being that by the second trial after the context reversal the cue 
predicting the larger reward was again associated with the higher discharge rate (i.e., one-
trial learning). In contrast, the responses of the reward delivery neurons did not change after 
the reversal, so that larger rewards were still associated with larger neuronal responses even 
on the first trial after the context reversal (Fig. 4C). 

 
Fig. 4. Effects of context reversal on the responses of fixation target and reward delivery 
neurons. A, Responses of the fixation target neurons to fixation target (squares and circles) 
presentation (mean responses of 200-600 ms after fixation target on, fixation target/cue 
period) before and after reversal of fixation target context (from squares and circles for large 
and small rewards in the initial 10 trials to squares and circles for small and large rewards in 
the last 10 trials). B, Similar to A, but for responses after fixation target offset (maintenance 
period of reward prediction, 200-600 ms after fixation target off). C, Similar to A and B but 
for the responses of the reward delivery neurons to reward delivery (200-600 ms after 
reward delivery, post reward delivery period) to large and small rewards. Responses were 
estimated as the average firing frequency normalized for the peak responses of the 
individual neurons. Error bars indicate standard error of mean. Figures were modified from 
our recent paper (Okada et al., 2009). 
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3.2 Correlation of fixation target response with behavioral performance 
In a previous study on visually guided saccade task with single-value rewards we 
demonstrated that PPTN neuronal responses were stronger during trials that were 
successfully completed (Kobayashi et al., 2002). Therefore we questioned whether the 
reward prediction signaled by the fixation target neuronal response might also be related to 
the motivation of the monkey to perform the task. We tested this in the two-value reward 
task by studying the correlation of the fixation target responses of the the reward 
magnitude-dependent fixation target neurons with the task performance. Figure 5 shows the 
comparison of representative and ensemble fixation target neuronal responses to large and 
small rewards across fixation error, fixation-hold error, and successful trials. This 
representative neuron (Fig. 5A) showed no significant increase in its activity during the 
entire period of the fixation error trials, during which the animal failed to fixate on the 
target. Conversely, in the fixation hold error trials during which the animal did initially 
fixate on the target but failed to maintain the fixation, the activity increased during the pre-
cue period (onset, -100 ms from fixation target presentation) and declined roughly at the 
time of the fixation break (200 ms, cf. the upward arrow in the cyan eye movement trace of 
Fig. 5A). The pre-cue period response during thsese trials was reward magnitude-
independent in that the responses during the large and small reward trials were nearly 
equal, while the response was magnitude-dependent during the cue period, being larger for 
large reward trials than for small reward ones (cf. the red and green spike density traces 
before the dotted line with those after the line in Fig. 5A). In the successful trials, the fixation 
target period responses also consisted of a reward magnitude-independent component 
during the pre-cue period that matched that for the fixation hold error trials (cf. cyan spike 
density trace with the red and green spike density traces of Fig. 5A). A late reward 
magnitude-dependent component that emerged during the fixation target/cue period, was 
much stronger than that in the fixation hold error trials and was sustained across the 
maintenance period until the postreward delivery period. The ensemble response for the 
fixation target neurons also showed a similar tendency as that of the representative neuron 
(Fig. 5B). The pre-cue period response was virtually absent in the fixation error trials, but 
there were significant pre-cue period responses in the fixation hold error and the successful 
trials. The magnitude-dependent response in the fixation hold error trials was small and 
transient, while that in the successful trials was much larger and was sustained until the 
post-reward delivery period. 
The fact that the reward magnitude-independent pre-cue period response was absent in the 
fixation error trials and commonly present in both the fixation hold error and the successful 
trials indicates that it may reflect the monkey’s motivation to fixate on the fixation target in 
anticipation of its presentation. Although the task intervals were quasi-randomized, 
monkeys appared to be able to anticipate the onset of the fixation target and to be motivated 
to fixate on the target in both the fixation hold error and the successful trials prior to fixation 
target onset, but were probably not motivated to do so in the fixation error trials. 
In addition, these findings indicate that the activities of the 52 reward magnitude-
independent neurons also signal the early component of the motivational drive to fixate on 
the fixation target in an almost equal fashion as that of the reward magnitude-dependent 
fixation target neurons (Fig. 5C). 
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Fig. 5. Fixation target neuronal responses in unsuccessful and successful trials of the two-
valued visually guided saccade task. A, (top and middle) Rastergram and spike density 
functions of a representative reward magnitude-dependent fixation target neuronal 
response over five success, fixation hold error and fixation error trials with normal cue 
(bottom) eye positions in a single representative case of each of the four trial categories. 
Upward arrow indicates the time of the fixation break. Two horizontal dotted lines indicate 
the fixation window within which the monkey was required to maintain eye position. B, 
Population spike density function of 30 reward magnitude-dependent fixation target 
neurons averaged for fixation error (black solid trace), fixation hold error (solid red and 
solid green traces for trial with large and small reward cues), and successful trials (dotted 
red and dotted green traces for trial with large and small reward cues), aligned to fixation 
target onset, saccade target onset and reward delivery. The spike density is the population 
average normalized for the peaks of the mean individual neuronal responses. C, Population 
spike density functions of 52 reward magnitude-independent neurons following the same 
format as (B). Figures were modified from our recent paper (Okada et al., 2009). 
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4. Computation of reward prediction error in dopamine neurons with input 
from the PPTN 
4.1 PPTN neuronal activity for predicted and actual reward 
We previously demonstrated that PPTN activity in the fixation period of a simple visually-
guided saccade task predicted task outcome (Kobayashi et al., 2002). In the two-valued 
reward visually guided saccade task just described, we revealed new functional aspects of 
PPTN activity. The temporal profiles of the activities of fixation target and reward delivery 
neurons in this task indicated that these functional neuronal classes may encode the 
predicted and actual reward magnitudes, respectively. ROC analysis of the magnitude-
dependent fixation target and reward delivery neuronal responses in our task revealed that 
most fixation target and reward delivery neurons reliably signaled whether reward is large 
or small. Mutual information analysis further showed that fixation target and reward 
delivery neurons signaled reward magnitude with high precision (maximum information 
capacities of 2.6 and 3.5 bits, corresponding to 0.04 and 0.25 bits/neuron), comparable to 
those reported for the sensory (0.2 bits/neuron (Gochin et al., 1994)) and motor systems 
(0.05 bits/neuron (Kitazawa et al., 1998)). The high information capacities of fixation target 
and reward delivery neurons imply that they are potentially capable of differentiating 6 and 
11 levels of reward magnitude, respectively. Mutual information analysis also showed that 
fixation target neurons conveyed information about predicted reward magnitude 
throughout the cue and maintenance periods, with no significant attenuation until the 
reward delivery neurons signaled actual reward magnitude. 
Finally, the fixation target neurons responded to changes in the cue-reward contingency 
within two trials, rapidly revising their prediction of reward magnitude following changes 
in cue shape. These results are consistent with a role of fixation target neurons in reward 
prediction error computation in reinforcement learning. Conversely, the responses of the 
reward delivery neurons were based on the magnitude of the rewards delivered, regardless 
of cue shape. These results are consistent with reward delivery neurons signalling the 
magnitude of the delivered reward. 

4.2 PPTN neuronal activity for motivation 
Consistent with previous lesion (Conde et al., 1998) and recording studies (Kobayashi et al., 
2002), PPTN (the fixation target) neurons may also signal motivation to perform a given 
task, the monkey’s reaction times to fixate on the fixation and saccade targets were 
significantly correlated with their subsequent successful/unsuccessful completion of the 
task, and the responses of the fixation target neurons were significantly smaller in the 
fixation error trials than in the successful trials. 
We also found a significant number of reward magnitude-independent fixation target 
neurons whose responses were significantly correlated with the successful/unsuccessful 
completion of the task (Fig. 5C). The functional implication of the reward magnitude-
independent fixation target neurons remains unclear, but they may represent the timestamp 
of the reward expectation (Pan & Hyland, 2005). The neurons responsive to reward delivery 
also included reward magnitude-dependent and -independent groups;  however, none of 
these reward delivery neurons showed a response correlation with the 
successful/unsuccessful completion of the task, which is consistent with the view that they 
monitor the time and magnitude of the actual task reward. Finally, the responses of the 
reward magnitude-dependent fixation target and reward delivery neurons did not signal 
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only the reward magnitude but also the timestamps of reward expectation like those found 
in the reward magnitude-independent fixation target and reward delivery neurons; this was 
reflected in the anticipatory responses preceding the onset of the fixation target and reward 
delivery. 

4.3 Possible source of the fixation target response 
We demonstrated neuronal activity within the PPTN in response to the appearence of a 
fixation target that was predictive of the animal's performance on the task (Fig. 5) 
(Kobayashi et al., 2002). This activity appeared to be related to motivation level, reward 
prediction and conditioned sensory responses. This last association is consistent with a 
previous study in cats showing that neuronal activity in the PPTN was elicited during 
classical conditioning tasks in response to the conditioned stimulus (Dormont et al., 1998). 
Our result further suggests that the salience of the conditioned stimulus in the particular 
task (i.e. fixation target onset in the visually guided saccade task) was influenced by the 
monkey’s motivation for performing the task. Thus, PPTN neurons may comprise a 
substrate, whose role is to transform a sensory cue into a behavioral action. If this 
hypothesis is correct, it is quite reasonable to expect the response of a given neuron to a cue 
in a cue-reward association task are modulated by the magnitude of the expected reward. 
From where does the PPTN receive this motivational or reward prediction signal? The 
fixation target neurons may receive the signals of reward prediction from the orbitofrontal 
cortex (Tremblay & Schultz, 1999; Hikosaka & Watanabe, 2000; Roesch & Olson, 2004; 
Simmons & Richmond, 2008), prefrontal cortex (Kitazawa et al., 1998; Leon & Shadlen, 1999; 
Roesch & Olson, 2003; Kennerley & Wallis, 2009; Luk & Wallis, 2009), cingulated cortex 
(Cornwall et al., 1990), striatum (Mena-Segovia et al., 2004; Hikosaka et al., 2006; Winn, 
2006) or hippocampus (Yang & Mogenson, 1987).  
We propose that the signals travel via 1) the ventral striatum-ventral pallidum pathway, 
which receives input mainly from the limbic cortex (Yang & Mogenson, 1987; Schultz et al., 
1992; Brown et al., 1999), 2) the amygdala and the subthalamic nucleus (Semba & Fibiger, 
1992), and 3) the cerebral cortices. Recently, Matsumura has emphasized the functional role 
of cortical input to the PPTN in the integration mechanism of limbic-motor control 
(Matsumura, 2005). 
The dopamine neurons respond to expected, unexpected and salient sensory events with 
short latency, but little is known about the sensory systems underlying this response 
(Ljungberg et al., 1992). Studies of rats, cats and primates indicate that neurons in the 
superior colliculus, relaying visual information, make direct synaptic contacts with 
dopamine neurons in the substantia nigra (Comoli et al., 2003; McHaffie et al., 2006; May et 
al., 2009). In addition to the inputs of the substantia nigra via the superior colliculus, the 
dopamine neurons are also innervated by neurons, as described above. Furthermore, as the 
PPTN also receives input from the superior colliculus (Huerta & Harting, 1982; Redgrave et 
al., 1987; May & Porter, 1992). We propose that the PPTN may also relay visual information 
to dopamine neurons. We showed that PPTN neurons exhibited responses to the fixation 
target (a salient visual stimulus) that varied with subsequent performance of the task (Fig. 
5). The responses of some of these neurons occurred with short latency (about 100ms), 
similar to the reported latency of dopamine neurons to the cue signal (50-120 ms, 
(Mirenowicz & Schultz, 1994; Schultz, 1998)). There have been only a few studies examining 
visual responses of PPTN neurons. Pan & Hyland (2005), reported visual responses of PPTN 
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neurons in rats, which had a mean response latency to the onset of a light stimulus of 70 ms, 
but they observed no variable visual responses for reward prediction (Pan & Hyland, 2005). 
In contrast to these results, a population of our recorded PPTN neurons in primates 
responded differentially to a visual stimulus with dependent on motivational state. Our 
results may be closer to another study of PPTN neurons in cats, whose conditioned cue 
responses occurred with a short latency (Dormont et al., 1998). Further studies are needed to 
examine the effect of reward prediction on the short latency response to salient stimulus in 
the PPTN (Stewart & Dommett, 2006). 
Interestingly, similar to the cholinergic structure PPTN, the noradrenergic locus coeruleus 
has been implicated in responses to both salient and motivational sensory events. Locus 
coeruleus neurons were phasically activated prior to behavioral responses on both correct 
and incorrect trials, but were not activated by stimuli that failed to elicit lever responses or 
by lever movements outside the task (Clayton et al., 2004). In contrast to the locus coeruleus 
neurons, we observed a sustained, tonic activity in the PPTN during the task. Recent 
pharmacological studies suggest that another monoaminergic neurotransmitter, serotonin, is 
also involved in reward processing. Nakamura and colleagues showed that serotonergic 
neurons in the dorsal raphe nucleus were tonically modulated by the size of expected 
reward with either a large- or small-reward preference, and after reward delivery, they were 
tonically modulated by the size of the received reward (Nakamura et al., 2008). Thus, dorsal 
raphe nucleus neurons also encode the expected and received reward value, albeit, in a 
different pattern than the PPTN neurons. There are reciprocal mutual, inhibitory 
interactions between PPTN, locus coeruleus, and dorsal raphe nucleus neurons (Koyama & 
Kayama, 1993). Thus, we should compare the reward-related activities of neurons in these 
area while controlling arousal, motivation, and learning. 

4.4 Possible primary reward signal in the PPTN 
In the PPTN, we observed transient reward responses for free reward and reward during 
the two-valued reward task(Okada et al., 2009). The reward delivery neurons may receive 
the actual reward signals from the lateral hypothalamus (Rolls et al., 1980; Fukuda et al., 
1986; Nakamura & Ono, 1986). This pathway directly excites the PPTN (Semba & Fibiger, 
1992), which responds with a brief burst and then accommodates or habituates (Takakusaki 
et al., 1997; Dormont et al., 1998). This brief burst, in turn, directly excites the midbrain 
dopamine neurons via cholinergic and glutamatergic projections (Conde, 1992) and thereby 
causes a phasic burst in dopamine neurons projecting to the striatum (Gerfen, 1992) for 
actual reward. We plan to examine whether the response properties of the PPTN fulfill the 
necessary features of a primary reward signal (i.e., whether the activity is related to reward 
occurrence, to value coding, and shows no adaptation under a fully learned condition). 

4.5 Computation of reward prediction error signal in dopamine neurons 
As described above, dopamine neurons have unique firing patterns related to the predicted 
volume and actual times of reward (Hollerman & Schultz, 1998; Schultz, 1998). 
Computational models (Houk et al., 1995; Montague et al., 1996; Schultz et al., 1997; Berns & 
Sejnowski, 1998; Suri & Schultz, 1998; Contreras-Vidal & Schultz, 1999) of dopamine firing 
have noted similarities between the response patterns of dopamine neurons and well-known 
learning algorithms, especially temporal difference reinforcement learning algorithms 
(Montague et al., 1996; Schultz et al., 1997; Suri & Schultz, 1998). The temporal difference 
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model uses fast-sustained excitatory reward prediction and delayed slow-sustained 
inhibitory pluse signals in dopamine neurons, a sustained tonic reward prediction pulse 
originating from the striatum is temporally differentiated to produce an onset burst 
followed by an offset suppression. In the model the neurons in the striatum (the striosome) 
provide a significant source of GABAergic inhibition to dopamine neurons (Gerfen, 1992), 
and the fast excitatory, reward-predicting signals are derived via a double inhibition 
mechanism to dopamine neurons (matriosome-pallidum-dopamine neuron pathway (Houk 
et al., 1995)). Thus, the polysynaptic double inhibition pathway and monosynaptic direct 
inhibition may provide temporal differentiation of reward prediction in dopamine neurons. 
However, the model may not be realistic, because it is assumed that (1) the polysynaptic, net 
excitatory signal is faster than the direct monosynaptic inhibitory signal, and (2) the double 
inhibition pathway is required to strongly excite burst activity in dopamine neurons in 
response to a conditioned cue. A significant difference between the model we will propose, 
derived from the present findings, and the previous model is the source of excitation for 
dopamine neurons (Contreras-Vidal & Schultz, 1999). We propose that the excitatory PPTN 
neurons may send both a tonic reward prediction signal and a transient current  reward 
signal to dopamine neurons. 
Interestingly, the predictive and actual reward responses of the fixation target and reward 
delivery neurons follow comparable time courses to those supposed for the value function 
and the actual reward signals, respectively, in the temporal difference model of 
reinforcement learning (Houk et al., 1995; Schultz et al., 1997; Doya, 2000; Suri, 2002; 
Laurent, 2008). Therefore, the reward prediction error may be computed in the dopamine 
neurons from the fixation target and reward delivery signals, using the temporal difference 
algorithm, (Doya, 2000). 
It is known from the classical conditioning paradigm of reinforcement learning that 
dopamine neurons show transient excitatory responses to cue presentation but not to 
reward delivery, and inhibitory responses to reward omission at the expected reward 
delivery time (Brown et al., 1999; Contreras-Vidal & Schultz, 1999; Doya, 2000; Fiorillo et al., 
2008). The fixation target neuronal response that slowly rises at fixation target/cue 
presentation may be conveyed to the dopamine neurons, transformed by temporal 
differentiation of the temporal difference mechanism as transient excitatory (Lokwan et al., 
1999) and inhibitory signals timed at fixation target presentation and reward delivery, 
respectively, and summed with the actual reward signals of the reward delivery neurons, 
for computation of reward prediction errors.  
The excitatory transients impinge on the dopamine neurons in the absence of neuronal 
reward delivery signals, producing a sharp cue response, while upon reward delivery, the 
inhibitory transients are summed with the excitatory actual reward signals for computation 
of the reward prediction error, producing no response when the reward prediction matches 
with the actual one (Tobler et al., 2003; Fiorillo et al., 2008). 
In our recent study, the fixation target responses in the PPTN do not primarily explain this 
inhibitory omission response of the dopamine neurons, as the responses of the majority of 
the fixation target neurons were shutdown at the actual, rather than the expected, reward 
delivery timing in the temporal reward omission experiments (Okada et al., 2009). 
Therefore, they would feed the inhibitory transients to the dopamine neurons through the 
temporal difference mechanism, at the time of the actual rather than the expected reward. 
However, a minority of fixation target neurons, whose responses were terminated at the 
time of the expected reward delivery (Okada et al., 2009), could convey the inhibitory 
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transients to the dopamine neurons, producing the inhibitory omission response. It is 
possible that the former and latter fixation target neurons, whose responses were shutdown 
at the times of the actual and expected rewards, respectively, represent the value functions 
V(t) and V(t+1) for the current and predicted task events (Houk et al., 1995; Sutton & Barto, 
1998; Doya, 2000). Furthermore GABAergic axon terminals originating from the PPTN were 
observed in the midbrain (Charara et al., 1996), these inhibitory connections may inhibit 
dopamine neurons and generate the inhibitory reward omission response. Alternatively, the 
inhibitory reward signals may be sent to the dopamine neurons from other neuronal 
structures such as the striosome (Brown et al., 1999; Contreras-Vidal & Schultz, 1999), 
ventral pallidum (Wu et al., 1996), habenula (Matsumoto & Hikosaka, 2007) and 
rostromedial tegmental nucleus (Jhou et al., 2009). 
Finally, we present our hypothesis of how the PPTN drives dopamine neurons to compute 
the reward prediction error signal (Fig. 6). Our recent observations support the view that the 
fixation target and reward delivery neurons signal the predicted and actual reward 
magnitude, respectively. The prolonged response of the fixation target neurons indicates 
that they may maintain the signals of the predicted reward from the time of cue 
presentation until the reward delivery neurons signal the actual reward magnitude.  
This study revealed that the strong excitatory inputs exerted by the PPTN on midbrain 
dopamine neurons (Mena-Segovia et al., 2004; Pan & Hyland, 2005; Winn, 2006) convey the 
memory of the predicted reward and the signals of the actual reward, two essential elements 
needed for computing the reward prediction error. The high information capacities of the 
fixation target and reward delivery neurons to signal the reward magnitude may help the 
dopamine neurons to accurately compute the reward prediction error and to efficiently 
execute reinforcement learning. 

 
Fig. 6. Possible PPTN neuronal circuit for exciting dopamine neurons in reinforcement 
learning. 
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Computation of the reward prediction error requires a temporal memory of the predicted 
reward (established at cue onset and sustained until reward delivery) and a comparison of 
the actual reward with the predicted one. The reward predictive structures (cerebral cortex 
and striatum) may learn the cue-reward magnitude contingency during the training and 
task periods as a synaptic memory and recall that memory as the signals of the predicted 
reward magnitude at the time of cue presentation. These signals would then be transferred 
to the fixation target neurons and stored as working memory (Compte, 2006) of the reward 
prediction until the time of reward delivery. Thus, the PPTN is an important center, 
providing information of both reward prediction and actual reward to dopamine neurons. 
Moreover, our study addresses the broader science of memory: we demonstrated that the 
memory of the task reward is recalled as neuronal activity signaling the predicted reward 
magnitude, which is then compared with neuronal activity signaling the actual reward 
magnitude. To our knowledge, the mechanism whereby past memories, engrammed in 
synaptic efficacy, are decoded into dynamic neural activity for comparison with the current 
neuronal activity, remains totally unexplored, in spite of the fact that the inverse process of 
encoding the firing rate of current neural events into synaptic efficacy has been extensively 
studied by plasticity researchers. Thus, our study is the first demonstration that structural 
memories of past experience are decoded into dynamic neural activity and compared with 
that for the present experience. And moreover, that the PPTN is the site where both signals 
are simultaneously represented. 
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1. Introduction 
Designing an algorithm to build a program to solve all forms of problems is an attractive 
idea. The programmers don’t need to spend efforts on figuring out an optimal way to solve 
the problem, the algorithm itself will explore the problem and automatically finds the 
solution to the problem. This amazing feature of automatic programming is what makes 
reinforcement learning so appealing, and have the potential to apply on virtually every 
single task of our world. Reinforcement learning is a general framework to find an optimal 
solution for the given task. Its generalization reduces the effort of programmers on mapping 
a specific task into a reinforcement learning problem, but this feature is also the main 
performance bottleneck of reinforcement learning. Since there are not many constraints 
within the framework, the search space of the policy is exponentially proportional to the 
dimension of the state space. When mapping a high dimensional problem into a 
reinforcement learning problem, the conventional reinforcement learning algorithm 
becomes infeasible. Most of the real world problems are high-dimensional, and it is the 
major limitation for reinforcement learning. Therefore, how to find a way to reduce the 
search space and improve the search efficiency is the most important challenge. 
On dealing with a high dimensionality problem, there are two common approaches to 
improve the performance. One is to reduce the dimensionality; the other is to find a better 
optimization algorithm. The first approach has drawn much attention in recent years, and 
many interesting works have been proposed this way to boost the performance of 
reinforcement learning. This article is going to review some recent advances in the 
dimensionality reduction approach. 
Approaches for dimensionality reduction can be classified into two categories. One is value 
function approximation, and the other is abstraction. The first category approximate the 
utility function as a specific form of function, usually linear function, and the optimization 
of value function becomes much more efficient when dealing with linear functions. This 
approximation not only reduces the cost of optimization, but also provides the abilities to 
dealing with continuous-variable problems and generalizing the original policy to similar 
problems. The second category identifies the structure of the problem, represent the 
problem with higher-level concepts, and remove irrelevant parameters. Approaches within 
this category identify the sub-spaces of the state space that do not need to include other sub-
spaces when solving the problem. For example, on solving a “make-coffee” problem, we can 
divide the problem into two sub-problems “reach the coffee maker” and “cook coffee with 
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coffee maker”. This article is going to talk a little bit on the value function approximation, 
and the main focus is to review some recent advances in abstractions. 
Abstraction approaches require determining sub-problems, and the sub-problems are also 
known as subtasks. On representing the original problem with subtasks, the program then 
can make decision among these subtasks instead of low-level actions. The new 
representation scales down the complexity of the problem. The problems remain to solve are 
how to identify these subtasks and how to learn policies of them. The second task depends 
on the first task: we need to construct subtasks so that to learn their policies. One way to 
implement this framework is to construct subtasks and define sub-policies manually. When 
a problem is divided into several sub-problems, it is usually easy for a programmer to 
implement the sub-policies, so the approach can be practical for simple problems. But when 
dealing with large-scale decision making problems, programming these sub-policies 
becomes effort demanding, and identifying a good set of subtasks is difficult if not 
impossible. This leads to the issue of how to identify these subtasks. Many algorithms have 
been proposed to attack this problem, but the complexity of these algorithms is proportional 
to the complexity of the problem, so they become impractical for challenging problems. 
How to automate these processes remains an open problem. 
Even subtasks are constructed, the sub-policy learning problem is still critical. Adding sub- 
tasks to the original problem actually increases the complexity, so simply applying the 
conventional reinforcement learning algorithms provides no benefit. Except for 
implementing the sub-policies manually, the benefit of constructing subtasks comes from 
the potential for dimension reductions. (1) A subtask can be shared among solving different 
sub-problems and can save the time for learning redundant subtasks. (2) It is much easier to 
find irrelevant parameters within a subtask. An object can be relevant in one task and 
irrelevant in others; separates the problem into different subtasks allow the specific task to 
remove the parameters for that object. Removing irrelevant parameters reduces the 
dimensionality of the problems. Therefore, despite of subgoal identification issue, we will 
also talk about dimension reductions among subtasks. 
The second section introduces existing frameworks for representing subtasks. The third 
section reviews existing works for subtask discovery. The fourth section discusses the issue 
of dimension reduction among subtasks. And the conclusions are given in the last section. 

2. Subtask representation 
We start the introduction for subtask representation from a widely used model, the option 
framework Sutton et al. (1999). The option framework defines a subtask as an option. Each 
option consists of three components, initiation set, terminal conditions, and the option 
policy function. The initiation set determines what states the option can be applied, the 
terminal conditions specify when the option will be terminated, and the option policy 
corresponds to the sub-policy of that subtask. An initiation set and terminal conditions 
define the scope of a subtask. The defined options are added to the action list of policies, 
and the decision maker can choose to apply these temporally-extended actions instead of 
trying a sequence of one-step actions. This approach define a general framework for 
defining a subtask, and the component of a subtask is simple. Due to such modulation, the 
option framework is widely used representation discovery algorithms. 
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The framework of hierarchies of abstract machines (HAM) Andre & Russell (2000); Parr & 
Russell (1997) is another classic approach for hierarchically structuring a task. The 
framework composes policies as hierarchies of stochastic finite-state machines. The root 
layer decision maker decides what subtask to be performed, and each subtask is one or a 
collection of predefined control programs. The control programs can be a simple task like 
moving an arm to a specific position, and the policy learning addresses how to use these 
abstract actions to perform the task and ignores low-level controls. The control programs are 
easy to be implemented, and the combination reduces the complexity of policy learning. 
One major difference between HAMs and option frameworks is that HAMs restrict the 
available choices of actions, while option framework augments the action set. Therefore, 
HAMs construct a more compact representation for policies. On the other hand, HAMs 
require more domain knowledge to define the precise architecture, and applying this 
framework is more challenging for subtask identification algorithms. 
There are two kinds of design to learn the policy with subtasks. One is recursive optimality, 
the other is hierarchical optimality. In recursive optimality, each subtask performs its task 
without considering the context of its parent. On the other hand, the hierarchical optimality 
recognizes the fact that many tasks have to consider the hierarchy relation. For example, for 
driving to a specific point, whether you want to stop at that point or will keep driving to the 
other destination influences the driving behavior; you will decelerate before reaching the 
point in the former case, but will keep driving in an efficient speed in the latter case. Thus, 
the recursive optimality is a local optimal solution compared to hierarchical optimality. 
The reason to seek recursive optimality is that this kind of design removes the dependency 
of a subtask to its parent. Without considering the context in which a subtask is executed, it 
is much easier to share and re-use subtasks. The design provides a more compact 
representation for a task, and the idea is proposed by Dietterich (2000). The algorithm, 
MAXQ, separates the utility values of performing the subtask and the utility within current 
task after the subtask is terminated (completion value): Qi(s, a) = Va(s)+Ci(s, a) where Vi(s) is 
the expected cumulative rewards for executing action a on state s, and Ci(s, a) is the expected 
cumulative rewards before subtask i ends. With this form of value function decomposition 
and ignoring the long term expected utility after the current task, the hierarchical utility 
function can be computed by a compact recursive function call. Each subtask is an 
independent process–its execution does not need to consider the exterior variables, or the 
global states. Therefore, a subtask can be implemented as a function call. The concise and 
compact features of MAXQ lead to subsequent works Andre & Russell (2002); Marthi et al. 
(2006) that adopt the design of value function decomposition and extend it to achieve 
hierarchical optimality. 
In sequential decision making, a common approach is to model the entire task with Markov 
decision processes (MDPs). An MPD , , ,a a

ss ssS A P R′ ′< > is composed of a set of states S, a set of 
actions A, a transition function specifying the transition probability from s to s′ with action a, 
and a reward function specifying the reward from s to s′ with action a. In MDPs, the action 
execution is represented by only the sequence of these actions, and the performance time  
of each action is ignored. In hierarchical reinforcement learning, each subtask may take 
various amount of time, and ignoring the time factor becomes sub-optimal when making 
decisions. The semi-Markov decision process (SMDP) is a framework that extend MDPs to 
consider temporal-effect. Each action has an additional time variable, and the utility of an 
action is its expected utility over time. The Bellman equation for calculating utility values 
becomes 
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Fig. 1. The second eigenvector of the graph Laplacian on a 9-room example. Spectral graph 
theory has been widely applied in subgoal identification algorithms and value function 
approximation like Proto-value functions Mahadevan & Maggioni (2007). 
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The policy function evaluates the utility of an action with the consideration of its various 
executing time, and fits the execution criterion of the subtask. Thus, this is the main model 
applied in hierarchical reinforcement learning. 

3. Subtask identification 
The fundamental works about hierarchical representation relies on manual definition for 
sub-tasks. This kind of design requires sufficient prior knowledge about a task, and its 
optimality depends on the proper construction of the hierarchical structure. Although 
hierarchical reinforcement learning framework provides an efficient formulation on a 
complex problem, the manual design requirement limits its flexibility. In many cases, we 
could only acquire partial solutions in problem solving that do not provide complete 
information for deciding a policy for states that the problem solver had not visited. These 
action sequences contain information for dimension reduction for the hierarchical 
reinforcement learning framework. The design of a HRL algorithm includes two processes, 
hierarchical control construction and abstractions. To formulate HRL automatically is to 
provide methods for performing these two processes with associated learning algorithms. 
This leads to researches on subtask identification and dimension reduction. 
Subtask identification processes are interpreted as subgoal identification processes. Once 
subgoals are identified, subtasks are formulated to pursue these subgoals, and these subgoal 
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states are the terminal conditions, and subtask policies aim for reaching the subgoals. The 
existing algorithms for subgoal identification can be classified into three types: (1) 
Identifying subgoals as states that are most relevant to a task. (2) Identifying subgoals as 
states that provide an easy access to the neighbor regions. (3) Constructing subtasks based 
on factored state space. The first case identifies subgoals as states with a high visit frequency 
and reward gradient Digney (1998) or as highly-visited states based on only successful 
trajectories McGovern & Barto (2001). Şimşek & Barto (2004) uses relative novelty as a 
metric to classify subgoals and non-subgoal states. 
The second case defined decomposition states as access states or bottlenecks that is similar 
to the graph cut in graph theory. Thus, to identify bottlenecks, Menache et al. (2002) applied 
graph cut based on conventional network flow analysis to the whole state transition graph. 
Chiu & Soo (2007) use a flooding algorithm to transmit network flow between starting 
position and terminal position of problem solver, and take states with local maximum flood 
value as subgoals. Şimşek & Barto (2008) took similar idea that their approach calculates the 
density of shortest paths through state nodes, which is called betweenness in their work, and 
choose states with local maximum density as subgoals. 
Şimşek et al. (2005) applied normalized cut based on spectral clustering approach Shi & 
Malik (2000) to the state transition graph updated through newly observations. The graph 
cut itself only provides binary separation, so they took part of state space for analysis to 
reduce computation complexity, and may find different results on different trials. Chiu & 
Soo (2010) also adopt spectral graph theory, but instead of using graph cut result, they take 
the smoothness property of the spectral theory. With the spectral analysis, the edges with 
local maximum differences are considered bottleneck edges, and their connecting nodes are 
bottleneck states. Mannor et al. (2004) proposed a clustering method to identify blocks 
which are densely connected inside but weakly connected in between. The algorithm also 
finds multiple separations. 
HEXQ Hengst (2002) evaluates the updating frequencies of variables to rank their hierarchy. 
The idea is that variables which change often tend to be at lower level of hierarchy, just as 
variables in the inner loop will change more often. The framework constructs options based 
on the projected graph. The heuristic considers one variable at a time, and can not model 
causal relations with more than one variable. Thus, Jonsson & Barto (2006) and Mehta et al. 
(2008) took dynamic Bayesian network to model the causal relation. Their work requires a 
pre-constructed dynamic Bayesian network. 
Most of works for subgoal identifications are based on discrete domains. Konidaris & Barto 
(2009) proposed skill chaining to find options in continuous domain. The idea is similar to 
the LQR-tree mechanism which builds a tree gradually via sampling points in the state 
space, and finds a trajectory to link to the tree. Skill chaining takes other options’ boundary 
as terminal states and creates a new option to link to the existing option sets. 

4. Redundancy reduction 
Identifying subgoals from a problem only completes the half job. The benefit of constructing 
hierarchical reinforcement learning is its potential for redundancy reduction, and it is easier 
for a programmer to implement the subtask policies. Redundancy reduction scaled down 
the complexity of a problem in order to help the learning process, which can be done by 
eliminating irrelevant parameters for decision making. Givan et al. (2003) proposed a notion 
of equivalence in which states can be merged without losing optimality. The states are 
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aggregated together if they have the same rewards and state transitions. The approach is 
applied on factored representation, and is guaranteed to be optimal. In the work of 
constructing basis functions for hierarchical reinforcement learning Osentoski & Mahadevan 
(2010), they used a graph reduction method to merge nodes connected to the same set of 
vertices, having the same edge labels, and a subset of their variables are the same. 
Jong & Stone (2005) proposed a statistical hypothesis-testing approach to evaluate the 
relevance of state parameters. The method took the p-value of a single state to represent the 
overall projection result on a projected state. The algorithm defines the irrelevance of a state 
parameter if there is an action that is optimal among states that differ within only the 
parameter. Then all states projecting onto that state could share a unique optimal decision 
making without the state parameter, and the state parameters of this projection is 
apparently irrelevant. The irrelevant parameter analysis requires an optimal value function 
to determine the relevance of state parameters for decision making. Thus, the analysis can 
not help current problem, but the derived knowledge can be applied on similar problems to 
remove irrelevant parameters. The approach is applied on general MDPs, but it does not 
guarantee the optimality of abstractions. 
Chiu & Soo (2010) proposed to use analysis of variance to derive irrelevant parameters from 
incomplete data, namely, a partial near-optimal solution. They defined irrelevant state 
parameters as parameters that do not affect the policy function. In other words, the value 
distribution of a policy function should be at least similar if not exactly identical among 
states that differ only on that state parameter. The similarity of distributions is compared via 
the variance analysis. The analysis estimates the policy function value distribution of a state 
and its projected states, and takes the mean and variance from the value distribution of the 
projected states onto that state. It estimates the approximate distribution before the value 
function is exactly calculated. 

5. Conclusions 
We survey some recent works about subgoal identification and redundancy reduction. 
Conventional reinforcement learning algorithms runs in polynomial time, but for most of the 
problems, this cost is not practical. Hierarchical reinforcement learning is one of the 
approaches to make this framework infeasible. The abstraction mechanism in hierarchical 
reinforcement learning not only plays the role of dimension reduction. Via assigning low level 
works to some simple programs, the new framework maps the problem into a architecture 
that closer to the style that human used to adopt for problem solving. Hierarchical 
reinforcement learning brings another thought of design for the programmer to define the 
problem, which makes problem solving much easier. Hierarchical reinforcement learning 
depends on temporal-extended actions, and there are many existing works proposed for 
constructing these actions. These works improve the performance of reinforcement learning to 
some extent, but the gains are not significant enough to scale down most of the complex 
problems. A good way to construct a compact reinforcement learning is an open problem, and 
is an important issue required further focus in the field of reinforcement learning. 
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1. Introduction 
In this chapter, a way to realize intellectualization of robots (called “agents” here) is 
considered. We intend to achieve this by mimicing an intellectual way of human. Human 
learns many kinds of things from incidents driven by own actions and reflects them on the 
subsequent action as own experiences. These experiences are memorized in his/her brain 
and recollected and reused if necessary. In other words, human is not good at doing 
anything at first, but he/she will memory the meaningful things among his/her own 
experiences,  at the same time oblivious of other memories without understood by him/her. 
He/She will accumulate knowledge gotten by experiences, and will make use of them when 
encounters unexperienced things.  
The subject in this chapter is to realize the things mentioned above on agents. To be specific, 
the agent will be equipped with three main functions: “learning” taking out of the 
meaningful things from through experiences with trial and error, “memorization” 
memorizing the above meaningful things, and “the ability of associative recollection and its 
appropriate use” suitable for the situation. Of course, when it doesn’t have such appropriate 
memories, the agent will learn them additively and moreover memorize them as new 
experiences. Repeating these processes, the agent will be more intellectual. In this 
intellectualization, there are a few models related to subject mentioned above, e.g., K-series 
model and their  discrete KA–series model (D. Harter et al., 2005 [1]) and DARWIN X-series 
models (J. L. Krichmar et al., 2005 [2]). K-series and KA-series models have been developped 
by R. Kozuma and his colleagues. Their models are equipped with chaotic neurodynamics, 
which is very important to realize the brain model, hippocampal model and supervised 
learnimg ability. DARWIN X-series models have been developped by Edelman and his 
colleagues since 1981. Their models are also equipped with hippocampal model of spatial, 
episodic, and associative meory model. These two series models intend to realize the brain 
faithfully. 
We have studied about this theme since 2006 [3] ~ [8]. This time our proposed model is not 
necessarily to realize the human brain faithfully, and intends to realize intellectualization of 
the agent functionally. At first we will introduce “reinforcement learning (RL, Sutton et al., 
1998 [9])”, as experienced learning through trial and error, which is a learning algorithm 
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based on calculation of reward and penalty given through mutual action between the agent 
and the environment, and which is commonly executed in living things.  
In the reinforcement learning, memorizing the environment and the agent’s action 
corresponding to it as short term memory (STM), the agent will take out the meaningful 
thing from them, then it will memorize its refined information as long term memory (LTM). 
As a medium of this LTM, we will introduce Chaotic Neural Networks (CNNs, Aihara et al., 
1997 [10][11]) which is generally acknowledged to be an associative memory model of the 
brain. The memory structure takes the form of the adaptive hierarchical memory structure 
so as to deal with the increase of information. The structure consists of CNNs in 
consideration of the adjustment to non-MDP (Markov Decision Process) environment. When 
the agent is placed in a certain environment, the agent will search the appropriate 
experienced information in LTM. In such case of searching, as the mechanism of memory 
search, we introduce self-organizing maps (SOM, T. Kohonen, 2001 [12]) to find the 
appropriate experience. In fact, during the agent’s exploration of the information adapting 
to the environment, the time series environmental information is necessary, so, we use the 
feedback SOM that its output is feedback to input layer to deal with the time series 
information. The whole structure of the our proposed system is shown in Fig. 1. To show the 
example of realization of the agent composed of functions mentioned above and the 
effectiveness of these methods, we carried out the simulation applied to the goal-oriented 
maze problem shown in Figs. 11,14.  
As a result, it was verified that the agent constructed by our proposed idea would work well 
by making use of the experienced information, refer to Fig. 14, in unexperienced large scale 
goal-oriented maze problems and it got the goal in just about shortest steps. See Fig. 14.  

2. Proposed system structure  
The proposed system consists of three parts: memory, learning and discrimination. The 
memory consists of short-term memory (STM) and long-term memory (LTM). Figure 1 
shows these overall structure. 
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Fig. 1. Structure of the proposed RL embedded agent with adaptive hierarchical memory  
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Learning sector: actor-critic system is adopted. It learns the choice of appropriate actions to 
maximize the total predictive rewards obtained over the future considering the environmental 
information s(t) and reward r(t) as  a result of executing action a(t). Memory sector: memory 
setor consists of short-term-momory (STM) and long-term momory (LTM). Here, STM: it 
memorizes the learned path of the information (environmental information and its 
corresponding action) obtained in Learning sector. Unnecessary information is forgotten and 
only useful information is stored. LTM: it memorizes only the enough sophisticated and useful 
experience in STM. Environment discrimination sector: environment discrimination sector 
consists of initial operation part and environment discrimination part. This sector plays the 
role that the agent examines the environment through the agent‘s own behaviors and selects 
the memorized infromation in LTM corresponding to the current environment.  
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Fig. 2. The construction of the actor-critic system 

3. Actor-critic reinforcement learning 
Reinforcement learning (RL, Sutton et al., 1998 [9]), as experienced learning through trial and 
error, which is a learning algorithm based on calculation of reward and penalty given 
through mutual action between the agent and the environment, and which is commonly 
executed in living things. The actor-critic method is one of representative reinforcement 
learning methods. We adopt it because of its flexibility to deal with both continuous and 
discrete state-action space environment. The structure of the actor-critic reinforcement 
learning system is shown in Fig. 2. The actor plays a role of a controller and the critic plays 
role of an  evaluator in control field. Noise plays a part of roles to search the optimal action. 

3.1 Structure and learning of critic 
3.1.1 Structure of critic 
Figure 3 shows the structure of the actor. The function of the critic is calculation of P(t): the 
prediction value of sum of the discounted rewards that will be gotten over the future. Of 
course, if the value of P(t) becomes bigger, the performance of the system becomes better.  
These are shortly explained as follows: 
The sum of the discounted rewards that will be gotten over the future is defined as V(t). 

 ( ) ( )
0

n

l
V t r t lγ

∞

=
≡ ⋅ +∑ , (1) 

where γ (0≤γ<1) is a constant parameter called discount rate. 
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Equation (1) is rewritten as 

 ( ) ( ) ( )1V t r t V tγ= + + . (2)  

Here the prediction value of V(t) is defined as P(t). 
The prediction error ( )r̂ t  is expressed as follows: 

 ( ) ( ) ( ) ( )ˆ ˆ 1tr t r r t P t P tγ= = + + − . (3) 

The parameters of the critic are adjusted to reduce this prediction error ( )r̂ t . In our case the 
prediction value P(t) is calculated as an output of a radial basis function neural network 
(RBFN) such as, 

 ( )
0

( )
J

c c
j j

j
P t y tω

=
= ∑ , (4) 
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Here, ( ) : thc
jy t j node’s output of the middle layer of the critic at time t , c

jω : the weight 
of thj output of the middle layer of the critic, ( ) :is t i th state of the environment at time t , 

ijm and ijσ : center and dispersion in the i th input of j th node basis function, respectively, 
J : the number of nodes in the middle layer of the critic, n : the number of the states of the 

system  (see Fig. 3). 

3.1.2 Learning of parameters of critic 
Learning of parameters of the critic is done by using commonly used back propagation 
method which makes prediction error ( )r̂ t  go to zero. Updating rule of parameters are as 
follows: 

 
2ˆ

, ( 1, , )c t
i c c

i

r i Jω η
ω
∂

Δ = − ⋅ =
∂

. (6) 

Here cη  is a small positive value of learning coefficient. 

3.2. Structure and learning of actor 
3.2.1 Structure of actor 
Figure 4 shows the structure of the actor. The actor plays the role of controller and outputs the 
control signal, action ( )a t , to the environment. The actor basically also consists of radial basis 
function networks. The thj basis function of the middle layer node of the actor is as follows: 

 2 2

1
( ) exp ( ( ) ) /

n
a
j i ij ij

i
y t s t m σ

=

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∑  , (7) 

 ( ) ( ) ( )
1

( ) , ( 1, , )
J

a
k kj j

j
a t u t y t n t k Kω

=
= = + =∑ . (8) 



A Reinforcement Learning System Embedded Agent  
with Neural Network-Based Adaptive Hierarchical Memory Structure   

 

193 

Here : tha
jy j node’s output of the middle layer of the actor, ijm and ijσ : center and 

dispersion in thi input of thj node basis function of the actor, respectively, K: the number of 
the actions, ( )n t : additive noise, ku : representative value of thk  action, kjω : connection 
weight from thj node of the middle layer to thk  output node. The action selection method 
to choose the representative ku among all the candidates of actions is described at section 3.3. 

3.2.2 Noise generator 
Noise generator let selection of the output of the actor have diversity by making use of the 
noise. It comes to realize the learning of the trial and error according to the results of 
performance of the system by executing the selected action. Generation of the noise n(t) is as 
follows: 

 ( ) ( )( )min 1,exp(t tn t n noise P t= = ⋅ − , (9) 

where tnoise is uniform random number of [ ]1 , 1− , min ( ⋅ ): minimum of ⋅ . As the ( )P t  
will be bigger (this means that the selected action goes close to the optimal action), the noise 
will be smaller. This leads to the stable learning of the actor. 

3.2.3 Learning of parameters of actor 
Parameters of the actor, ( 1,... , 1, , )a

kj k K j Jω = = , are adjusted by using the results of 
executing the output of the actor, i.e., the prediction error t̂r  and noise. k is the number of 
the selected and executed actions at the previous time. 

 ( )ˆ .a k
kj a t t a

kj

u tn rΔω η
ω

∂
= ⋅ ⋅ ⋅

∂
 (10) 

( 0)aη > is the learning coefficient. Equation (10) means that ˆ( )t tn r− ⋅  is considered as an 
error, a

kjω  is adjusted as opposite to sign of ˆ( )t tn r− ⋅ . In other words, as a result of executing 
( )ku t , e.g., if the sign of the additive noise is positive and the sign of the prediction error is 

positive, positive additive noise is sucess, so the value of a
kjω  should be increased (see Eq. 

(8)), and vice versa. 
 

 
Fig. 3. Structure of the critic 



 Advances in Reinforcement Learning 

 

194 

 
Fig. 4. Structure of the actor 

3.3 Action selection method 
The action bu  at time t is selected stochastically using Gibbs distribution Eq. (11). 
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Here, ( )( )|bP a ts : selection probability of b th action bu , T : a positive constant called 
temperature constant. 

4. Hierarchical memory system 
4.1 Associative Chaotic Neural Network (ACNN) 
Chaotic Neural Network (CNN) has been developped by Aihara et al., 1997 [10][11] ), which  
is generally acknowledged to be an associative memory model of the brain. CNN is 
constructed with chaotic neuron models that have refractory and continuous output value. 
Its useful usage is as an associative memory network named ACNN. The followings are the 
dynamics of ACNN. 

 ( 1) ( ( 1) ( 1))i i ix t f v t z t+ = + + + , (12) 

 ( 1) ( ) ( )i r i i iv t k v t x t aα+ = ⋅ − ⋅ + , (13) 
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( )ix t : output of the ith neuron at step t, ( )iv t : internal state with respect to refractory of the 
ith neuron at step t, ( )iz t : internal state of the ith neuron with respect to mutual operation at 
step t, ( )f ⋅ : sigmoid function, ijω : connection weight from jth neuron to ith neuron, p

ix : ith 
element of pth stored pattern, rk : damping coefficient on refractory, fk : damping 
coefficient on feedback,α : constant parameter, ia : compound parameter with threshold 
and external input of ith neuron, , 1, ,i j L= , L : the number of neurons in the CNN, U : the 
number of the stored patterns. 

4.2  Network control 
The dynamics of ACNN behaves chaotically or no-chaotically according to the value of the 
damping coefficient on refractory kr. We would like the network to behave chaotically at 
first and to converge to one of the stored patterns when the state of the network becomes 
close to one of the stored patterns. Here, to realize this, we define  network control as the 
control which makes transition of network from chaotic state to non-chaotic one by 
changing of the specified parameter kr and vice versa. The network control algorithm of 
ACNN is shown in Fig. 5. The change of states of ACNN is defined  by ∆x(t), total change of 
internal state x(t) temporally, and when ∆x(t) is less than a predefined threshold value θ, the 
chaotic retrieval of ACNN is stopped by changing values of the parameter kr  into small one. 
As a result, the network converges to a stored pattern near the current network state.   
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Fig. 5. Flow of the network control algorithm 
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4.3   Mutual associative type ACNN (MACNN) 
4.3.1 Short-Term Memory (STM) 
We make use of ACNN as a mutual associative memory system, called MACNN, namely, 
auto-associative memory matrix Ws is constructed with environmental inputs s(t) and their 
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corresponding actions a(t) (refer to Fig. 6) . When s(t) is set as a part of the initial states of the 
ACNN, the ACNN retrieves a(t) with s(t) and l(t), using the way of the described operation 
at 4.2. l is a random vector to weaken the correlation between s(t) and a(t). The update 
equation of the memory matrix Ws is described as Eq. (16), here, λs is a forgetting coefficient, 
and ηs is a learning coefficient. λs is set to small, because that at the initial and middle learning 
stage Ws is not important. In case that these s, l, a are applied to MACNN, i.e., Eqs. (12) to (15), 
s, l, a are corresponding to xi(t)(i=1,..., L) through Eq. (15), its matrix type, Eq. (16). 

 
Tnew old T T T T

S s S SW W a aλ η ⎡ ⎤ ⎡ ⎤= ⋅ + ⎣ ⎦ ⎣ ⎦s l s l . (16) 

STM as one unit consists of plural MACNNs, and one MACNN memorizes information for 
one environmental state and action patterns (see Fig. 7). For example, STM has path 
information from start to goal on only one maze searching problem. 
 

Environment

 
Fig. 7. Adaptive hierarchical memory structure  

4.3.2 Long-Term Memory (LTM) 
LTM consists of plural units. LTM memorizes enough refined information in STM as one 
unit (refer to Fig. 7). For example, when actor-critic learning has accomplished for a certain 
maze problem, information in LTM is updated as follows:  In case that the current maze 
problem has not been experienced, the stored matrix WL is set by Eq. (17) : 

 L SW W= . (17) 

In case that the current maze has been experienced and present learning is additive learning, 
the stored matrix is updated by Eq. (18); 
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 new old
L L L L SW W Wλ η= ⋅ + . (18) 

Lλ is a forgetting coefficient, and Lη  is a learning coefficient. Lλ is set to large value as same 
as one of Lη  so as not to forget previous stored patterns. 

4.4 Adaptive hierarchical memory structure 
Fig. 7 shows the whole configuration of the adaptive hierarchical memory structure. When 
an environmental state is given to the agent, at first it is sent to LTM for confirming 
whether it already exists in the memory or not. If it is the same as the stored information, 
the recalled action corresponding to it is executed, otherwise, it is used to learn at the actor-
critic system. After learning the pair of the enough refined and trained environmental state 
s and action a in STM is sent to LTM to be stored. If it comes to be different from the stored 
pattern on the way to use, information about it in LTM is used to relearn at the actor-critic 
system in STM. 

5. Discrimination of the environment  
The information that the agent got through its own experienced and momorized is used to 
discriminate whether it is applicable to the current environment, or not. In this section, the 
structure of the environment discrimination and how to discriminate it are explained. The 
discrimination of environment is composed of the initial operation part and the memory 
selection part.   

5.1 Initial operation  
To decide whether the agent has the momory corrresponding to the current environment, 
the agent behaves with next features, 
i. The agent behaves predefined ninit steps randomly without use of its own memory. 
ii. The agent behaves according to two rules: One is that the agent does not return back to 

the paths which the agent passed during this initial operation, the other is that the agent 
does not strike the wall. These rules make the speedy search and collection of the 
information of the agent possible.   

5.2 Discrimination of the environment using feedback SOM 
The agent discriminates the environment by the feedback SOM. The feedback SOM consists 
of three layers: input layer, competition layer and output feedback layer. The sturucture of 
the feedback SOM is shown in Fig. 8. At first the agent investigates the evironment by 
executing the initial operation. In the initial opereation, during the ninit steps, the winner 
occurs every each steps, i.e., the number of ninit comes into winners. Using these data, the 
agent discriminates the environment. Concretely the agent gets these data for all the 
environment the agent faced and memorizes the time series of winners. When the agent is 
placed at the undiscriminated situation, the agent begins the initial operation and gets the 
above data and compares them with memorized data that is refined about specified 
environment through the actor-critic learning. If two data agree, after then the agent 
behaves using the memorized data, especially, action. In the opposite case, the agent begins 
learning about the current environment using the actor-critic system. The algorithm of the 
feedback SOM to get the time series data of the winners for each step of the initial operation 
about the environment is as follows: 
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Fig. 8. The used feedback SOM 
Algorithm of the feedback SOM 
Step 1. Set  random small values to the connenction weights 

( 1, , , 1, , )jiw j M i n M= = + . 

Step 2. Give the input signal to the input layer as follows: 

 
1 1

( ) { ( ), ( ); ( 1)}
{ ( ), , ( ), ( ); ( 1), , ( 1)},n M

I t t a t t
s t s t a t h t h t

β
β β

= −
= ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ −

s h
 (19) 

where ( )I t  : input vector at time t, ( )is t : ith observation data from environment, 
( )jh t : feedaback data from competition at time, β  is a positive constant 

representing the rate of considering the history information, n : the number of 
environmental states, M : the number of outputs of the competition layer. 

Step 3. Calculate the distance jd between the input vector and all the neurons in the 
competitive layer at time t. 

 
1

2

1
( ( ) ) , ( 1, , ).

n M
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Step 4. Find the neuron j∗  (called the winner  neuron) which has the smallest distance 
jd ∗ and calculate iy as follows : 

 
1

* arg min

1,       * .
( )

0,        *

jj M

j

j d

j j
y t

j j

≤ ≤
=

=⎧
= ⎨ ≠⎩

 (21) 

Step 5. Calculate the output of neurons in the output feedback layer as follows : 

 ( ) (1 ) ( ) ( 1)j j jh t y t h tγ γ= − + − , (22) 

where γ  is a positive constant retaining the past information. 
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Step 6. Update the values of connection weights of the winner neuron and around it as 
follows : 

 
2

( ) ( 1) ( , *){ ( ) ( 1)}
|| *||( , *) exp( )

j j jw k w k j j I t w k
j jj j

η

σ

= − + Λ − −

−
Λ = −

, (23) 

Step 7. where wj(k): jth connection weight vector in the competition layer, η is a positive 
learning coefficient, k is repetition number of renewal of the weights, and σ is 
deviation from the center and then σ become smaller according to progress of the 
learning. 

Step 8. Repeat Step 2 to Step 6 until the predefined times is over. 

5.3 Selection of the memorized information corresponding to the current environment 
Figure 9 shows the flow of the memorized environment selection in the case of ninit = 5. In the 
figure, during ninit = 5 steps, the number 1 and number 3 of the memorized  environments 
were selected three times at time t, t-3, t-4 and two times at time t-1, t-2, respectively.  
Threshold set algorithm of the memorized environment selection  
Step 1. After learning of the feedback SOM, give the environment to the feedback SOM 

again to decide the value of threshold. 
Step 2. Repeat the initial operation ( initn=  steps) repeatn  times and get the data of 

init repeatn n×  neurons which won. 
Step 3. Record the number of firing (winning) times of each neuron in the neurons of 

competition layer in init repeatn n×  data. 
Step 4. Repeat from Step 1 to Step 3 until finishing of records of above firing times for all 

environments.  
Step 5. Fix the threshold (threshold_win) to decide whether the winner neuron corresponding 

memorized environment is adopted or not as a winner neuron.  
Selection algorithm of the environment in the memorized environments in LTM 
Step 1. Put the agent on the start point in the environment. 
Step 2. Start the initial operation (ninit steps) and get the information of the observation and 

action at the each 1 step operation. 
Step 3. Decide the winner neuron by the above information for each step. 
Step 4. Calculate each total number of winner neurons  which are corresponding to  each 

memorized environment as follows: 
 

     Comparison the winner neuron in the current environment with the winner neuron  
in the memorized environment. 
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:
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.
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Step 5. Repeat from Step 3 to Step 4 until the agent finishes the initial operation of ninit steps. 
Step 6. Select the maximum count for each memorized environment 
Step 7. Distinguish whether the ith memorized environment with the selected count is able 

to correspond to the current environment by next process: 
 

( _ )

, 8,

, .
_

iif count threshold count

the agent may have the memory corresponding to the current

environment go to Step

else
the agent may not have the memory corresponding to the current
environment go to learning process.

threshold c

≥

:
.  

ount: threshold to distinguish whether the selected
memorized environment is adopted or not  

 

Step 8. Request the tender of MACNN unit corresponding to the current environment. 
Step 9. Start the recollection by the MACNN unit. 
Step 10. When the behavior by recollection using MACNN failed, that is, the agent goes into 

the wall or goes over the predefined steps before arrival of the goal, Go Step 2. 
Note: In the simulation of the next section, initn , repeatn , _threshold win  and _threshold count  
are set to  5, 30, 10 , 4, respectively 
 

       : winner neuron 

V 
V 

V
VV

V 

Pointer to the LTM memorizing  information of the 
environments in the case of the memory size = 5 

 

1 2 3 4 5

4−t  3−t 2−t 1−t t

Projection to the SOM

data from output 
feedback  layer 

action 
(code) 

states of the 
environment 

 
Fig. 9. Flow of the memorized environment  selection in the case of ninit=5 

6. Simulation 
In this study, our proposed method is applied for the agent to find, memorize, recollect and 
reuse the optimal paths of the plural small and large scale mazes. 

6.1 Simulation condition 
An agent can perceive whether there is aisle or not at the forward, right-forward, left-
forward, right, and left as the state s of the environment (refer to Fig. 10). An agent can 
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move 1 lattice to forward, back, left, and right as action a (see Table 1). Therefore in actor-
critic, a state s of the environment consists of 20 inputs (n = 5 directions ×4 lattice in Fig. 10) 
in Fig. 8. The content of an input is defined as the distance from the agent to wall, and has 
value of 1, 2, 3, and 4. In the case that there is a wall next to the agent, the content of input is 
value 1, and so on. The number of kinds of action a is 4 (= K in Fig. 4). The number of hidden 
nodes of RBFN is equal to 32 (=J) in Fig. 3 and 4. And the number of units l is equal to 21 in 
Fig. 6. When the agent gets the goal, it is given the reward, 1.0. For the case of a collision 
with wall, reward is -1.0, and for each action except for collision is - 0.1. Flow of the whole 
algorithm of the simulation is shown in Table 2. 
 

 up down left right 
code 1000 0100 0010 0001 

Table 1. Action and its code taken by the agent 

 
Flow of  the whole algorithm of the simulation 

Step 1 : Set the maze to the agent. 
Step 2 : Begin the initial operation ( ninit. steps ). 
Step 3 : Distinguish whether the memorized environment selected by the result of the  
              initial opereation is adopted or not. 
In the case of existence of  
the appropriate memorized environment 

In the case of absence of  
the appropriate memorized environment 

Step4 : Start the behavior using the  
selected unit memory in LTM. 

Step 4 : Switch to learn the maze by actor- 
critic method. 

Arrival to the 
goal 

Failure of 
recollecction 

Step 5 : Switch to learn the MACNN and 
the feedback SOM by use of the data of 
learning sector (Step 4). 

Step 5 : End of  
          the process     

Step 5 : Go back to 
 Step 2 

Step 6: Set the label of the winner neuron 
to select the memrized  
environment .  

Step 6 : Go back to Step 1 Step 7 : Go back to Step 1. 

Table 2. Flow of the whole algorithm of the simulation 

 
       

       

       

   A    

       
             

Fig. 10. Ability of perception and action of the agent 
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6.2 Parameters used in the simulation 
Parameters used in this simulation are shown in Table 3-4. These parameters are decided by 
trial and error. The number of mutual retrieval Systems(MACNNs) is 11 in STM and call 
this layers  1  
unit memory structure (see Fig. 7). LTM has 4 units type memory structure to memorize 4 
mazes (see Figs. 7 and 11). Table 1 shows the number of kinds of actions and their codes 
taken by the agent. 
 

Parameters used in actor-critic 
σ . width coefficient 0.1 aη . learning coefficient 0.7 

cη . learning coefficient 0.7 γ . discount rate 0.85 

T . temperature 
coefficient   

0.4 (within 3steps) T . temperature 
coefficient 

0.1 (more than 3 
steps) 

Forgetting and Learning coefficients used in memory sector 

Sλ . forgetting coefficient  

for STM 

0.89 Sη . learning coefficient  

for STM 

1.00 

Lλ . forgetting coefficient  

for LTM 

1.00 Lη . learning coefficient  

for LTM 

1.00 

Network control parameters of MACNN 
 Chaos /Non-chaos  Chaos /Non-chaos 
α . constant parameter  10.0/1.00 rk . damping coefficient 

of refractory 

 0.99/0.10 

ε . a steepness parameter 5.0/5.0 fk
.
 damping coefficient 

of feedback 

 0.30/030 

a . compound parameter 3.0/3.0     -       - - 

Table 3. Parameters used in the simulations 
 

Feedback SOM 
The number of nodes in the 

input layer 20+4+40 

The number of nodes in the 
competitive layer 40 

The number of nodes in the 
state layer 40 

β .: the rate of considering 
the past information 3.0 

γ .: forgetting rate 0.7 

η . learning coefficient 0.5 → 0.0 (linear 
transformation) 

σ :  width coefficient 0.0 → 1.0  (linear  
transformation ) 

Table 4.  Parameters of the feedback SOM used in the simulations 
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6.3 Simulations and results 
6.3.1 Confirmation of learning and recollection in the case of a simple small scale 
maze 
At first we confirm by a simple small scale maze whether learning and recollection in our 
proposed system work well or not. We gave the agent a maze as shown in Fig. 11(a), and let 
the agent learn and memorize it. In Fig. 11(a), S means the start position of the agent and G 
means the goal position. I means the position where the agent begins the initial operation. 
Its numbered place (cell) means the position where each environment was found in LTM.  
Where, ■ means wall recognized as value 1, □ means aisle recognized as value 0 by the 
agent. The result of the simulation using the maze 1 as a simple small scale maze, the agent 
reached the goal through the shortest path as the real line with arrow shown in Fig. 11(a). 
Let us explain how the maze was solved by the agent concretely as follows: 
The whole algorithm until the agent reaches to the goal in case that maze 1 is given, as 
follows: 
Step 1. Give the maze 1 to the agent which does not learn and memorize anything. 
Step 2. Switch to the learning sector because of no learned and memorized mazes, and the 

agent learns the maze 1 by the actor-critic method. As a result, the memory 
corresponding to the maze 1 is generated as the number 1 of the memory in LTM.  

Step 3. The agent learns the MACNN and the feedback SOM by use of the results of 
learning at Step 2. 

Step 4. The agent executes the initial operation (ninit=5 steps) nrepeat(=30) times and records 
the winner neuron number for the maze 1.  

Step 5. The agent begins on the initial operation again for maze 1. 
Step 6. The agent inputs the data gotten from the initial operation to the discrimination of 

environment sector. As a result of the discrimination, the agent gets the memory 1 
(maze 1).  

Step 7. The agent begins the recollection using the memory 1, i.e. MACNN1. It reaches the 
goal at shortest steps. 

6.3.2  Generation and discrimination of plural simple small scale mazes 
We consider four simple small scale mazes as shown in Fig. 11(a) to (d). At first the agent 
learns and memorizes the maze 1 by the way mentioned above 6.3.1, next we gave the agent 
the maze 2 as shown in Fig. 11(b). For the maze 2, after the agent executed the initial 
operation, the agent judged the memory 1 (maze 1) could not be used since the memory 1 is 
not corresponding to the current maze, it switched to the learning sector and memorized the 
maze 2 as memory 2 in LTM (refer to Table 2). Similarly, maze 3 and 4 are learned and 
memorized as memory 3 and 4 in LTM.  
The winner neuron numbers at the each initial operation step when given the environment 
the same as the memory are shown in Fig. 12. In Fig. 12, it is found that though there are 
only four memories, the winner neuron numbers are overlapping in spite of the difference 
of the environments each other. Next, we check the differences of the Hamming distance 
between above 4 mazes each other. As mentioned at 6.3.1, ■ means wall recognized as value 
1, □ means aisle recognized as value 0 by the agent. There is 15 bits (5 different directions 
times 3 different distances) in the perception range of the agent. The Hamming distance 
between the four mazes is shown in Table 5. From Table 5, it is found that there is no 
overlapping environments. However we encountered an example of the failure of the 
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agent’s taking the goal like following. After learning and memorizing above 4 mazes, we 
gave the agent maze 4 again. The situation of the failure case is shown in Fig. 13. 
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c) Experienced maze 3 memorized in LTM d) Experienced maze 4 memorized in LTM 

Fig. 11. Learned and memorized paths of the agent on the each maze.  
This cause may be considered as follows: When the agent starts from start point S, it can 
select two directions, i.e., up and left, the agent can take move to. When the agent executes 
the initial operation, in other words, when the winner neuron numbers at the each initial 
operation are set first, if the selection rate of the upward step of the agent are biased, the 
upward direction are selected mainly, after memorizing of their data in LTM. However, 
when the agent begins the initial operation and the steps to the left are mainly selected, the 
winner neuron count had become less than the value of the threshold_count (refer to 5.3). 
Though the agent has the memory corresponding to the current maze, the agent judged that 
the agent does’t have the experience of the current maze because of the small value of the 
threshold_count, and as a result, it switched to the learning sector. To solve this problem, the 
number of steps on the initial operation should be increased and the threshold_count  is 
appropriately decided. 
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Fig. 12. The winner neuron numbers at the each initial operation step when given the 
environment the same as the memory 
 

 maze  2 maze  3 maze  4 
maze  1              6            6             6 
maze  2             6             6 
maze  3               2 
a) At step 1 

 maze  2 maze  3 maze  4 
maze  1              8            4             8 
maze  2             6             8 
maze  3               8 
b) At step 2 

 maze  2 maze  3 maze  4 
maze  1               8           10            10 
maze  2              2              6 
maze  3                4 
c) At step 3 

 maze  2 maze  3 maze  4 
maze  1             10             10            10 
maze  2                6              8 
maze  3                6 
d) At step 4 

 maze  2 maze  3 maze  4 
maze  1               8               4               2 
maze  2              10             10 
maze  3                 4 
e) At step 5 

Table 5. Hamming distance of each other of the four mazes on the initial 5 steps 
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Fig. 13. The moving path in the case of failure 

6.3.3 In the case of a large-scale maze 
The large scale maze to be solved by the agent is shown in Fig. 14. This maze is constructed by 
using the four mazes shown in Fig. 11. In this maze, the shortest steps, i.e., optimal steps is 108. 
Before the agent tries to explore this maze, the agent learned and memorized above four 
mazes orderly. In the Figure, × means the position where the agent failed the choice of the 
memorized information in LTM, i.e., the action corresponding to the current environment 
under use of the learned and memorized environment. The number shows the memory 
number the agent selected using the initila operation. In a lot of the agent’s trials to this maze, 
the steps until the agent got the goal is between 110 and 140. Because of the exploring steps at 
the initial operation process, they are more than the shortest steps. As a result, it is said that  it 
may be possible the agent  with our proposed system could reach the goal in any case of 
environments, by additive learning and memorizing for the unknown environment. 

7.  Conclusions 
Living things learn many kinds of things from incidents driven by own actions and reflects 
them on the subsequent action as own experiences. These experiences are memorized in 
their brain and recollected and reused if necessary. They will accumulate knowledge gotten 
by experiences, and will make use of them when encounters unexperienced things.  
The subject in this research was to realize the things mentioned above on an agent. In this 
research, we tried let the agent equip with three main functions: “learning”, i.e., reinforcement 
learning commonly used by living things, “memorization”, and “the ability of associative 
recollection and its appropriate use” suitable for the situation, i.e., chaotic neural network.  
This time we realized a part of subjects of above functions on the agent. However, a lot of  
unsolved problem are still left. One of them is too difficult to decide the various kinds of 
parameters and thresholds approproately.  Another one is to utilize the ability of feedback 
SOM well. SOM has the feature that input patterns similar to each other are placed in the 
SOM retaining the neighboring relationship. This is useful in the case of existing observation 
together with noise because that actually almost all observation data include noises. In such 
cases, making use of this characteristic of feedback SOM, the agent may realize things 
mentioned before.   
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Fig. 14. The path the agent found and memorized in LTM on the large scale goal searching 
problem using the experienced mazes shown in Fig. 11. 
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1. Introduction  
Acquisition of unique robotic motions by machine learning is a very attractive research 
theme in the field of robotics. So far, various learning algorithms—e.g., adaptive learning, 
neural network (NN) system, genetic algorithm (GA), etc.—have been proposed and 
applied to the robot to achieve a target. It depends on the persons, but the learning method 
can be classified roughly into supervised and unsupervised learning (Mitchell, 1997). In 
supervised learning, the ideal output for target task is available as a teacher signal, and the 
learning basically proceeds to produce a function that gives an optimal output to the input; 
the abovementioned learning methods belong to supervised learning. Thus, the learning 
results should be always within the scope of our expectation. While, the teacher signal is not 
specifically given in unsupervised learning. Since the designers do not need to know the 
optimal (or desired) solution, there is a possibility that unexpected solution can be found in 
the learning process. This article especially discusses the application of unsupervised 
learning to produce robotic motions. 
One of the most typical unsupervised learning is reinforcement learning that is a 
evolutionary computation (Kaelbling et al., 1996; Sutton & Barto, 1998). The concept of this 
learning method originally comes from the behavioral psychology (Skinner, 1968). As seen 
in animal evolution, it is expecting that applying this learning method to the robot would 
have a tremendous potential to find unique robotic motions beyond our expectation. In fact, 
many reports related to the application of reinforcement learning can be found in the field of 
robotics (Mahadevan & Conell, 1992; Doya, 1996; Asada et al, 1996; Mataric, 1997; Kalmar et 
al., 1998; Kimura & Kobayashi, 1999; Kimura et al., 2001, Peters et al., 2003; Nishimura et al., 
2005). For example, Doya has succeeded in the acquistion of robotic walking (Doya, 1996). 
Kimura et al. have demonstrated that reinforcement learning enables the effective 
advancement motions of mobile robots with several degrees of freedom (Kimura & 
Kobayashi, 1999; Kimura et al., 2001). As a unique challenge, Nishimura et al. achieved a 
swing-up control of a real Acrobot—a two-link robot with a single actuator between the  
links—due to the switching rules of multiple controllers obtained by reinforcement learning 
(Nishimura et al., 2005). Among these studies, Q-learning, which is a method of 
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reinforcement learning, is widely used to obtain robotic motions. Our previous studies have 
also introduced Q-learning to acquire the robotic motions, e.g., advancement motions of a 
caterpillar-shaped robot and a starfish-shaped robot (Yamashina et al., 2006; Motoyama et 
al., 2006), gymnast-like giant-swing motion of a humanoid robot (Hara et al., 2009), etc. 
However, most of the conventional studies have discussed the mathematical aspect such as 
the learning speed, the convergence of learning, etc. Very few studies have focused on the 
robotic evolution in the learning process or physical factor underlying the learned motions. 
The authors believe that to examine these factors is also challenging to reveal how the robots 
evolve their motions in the learning process.  
This article discusses how the mobile robots can acquire optimal primitive motions through 
Q-learning (Hara et al., 2006; Jung et al., 2006). First, Q-learning is performed to acquire an 
advancement motion by using a caterpillar-shaped robot. Based on the learning results, 
motion forms consisting of a few actions, which appeared or disappeared in the learning 
process, are discussed in order to find the key factor (effective action) for performing the 
advancement motion. In addition to this, the environmental effect on the learning results is 
examined so as to reveal how the robot acquires the optimal motion form when the 
environment is changed. As the second step, the acquisition of a two-dimensional motion by 
Q-learning is attempted with a starfish-shaped robot. In the planar motion, not only 
translational motions in X and Y directions but also yawing motion should be included in 
the reward; in this case, the yawing angle have to be measured by some external sensor. 
However, this article proposes Q-learning with a simple reward manipulation, in which the 
yawing angle is included as a factor of translational motions. Through this challenge, the 
authors demonstrate the advantage of the proposed method and explore the possibility of 
simple reward manipulation to produce attractive planer motions. 

2. Q-learning algorithm 
Q-learning is one of reinforcement learning methods and widely used in the field of 
robotics. In Q-learning, an agent selects an action from all the possible actions in a state 
following some policy—a mapping of probability selecting action—and causes an 
interaction with an environment at a certain time. A reward based on the interaction and the 
target task is allocated to the selected action from the environment as a scalar value. At this 
time, the agent renews the database due to the given reward. Repeating this process, the 
action values are renewed and stored in each state. After the learning, an optimal motion for 
the desired task can be realized by just selecting the actions with the highest action value in 
each state. In Q-learning, the convergence to the optimal solution is promised as long as the 
series of learning process follows Markov Decision Process (MDP). The equation is simply 
expressed as follow: 

 1t , t t , t t t , t , ta
Q(s a ) Q(s a ) [r maxQ(s a) Q(s a )]α γ +← + + −  (1) 

 

where Q(st, at) is action-value function when the agent selects an action at in a state st at time 
t. α and γ represent learning rate and discount rate, respectively. α (0 < α < 1) dominates the 
learning responsiveness (speed); basically, a value near 1 is selected. On the other hand, γ is 
related to the convergence of learning. In general, Q-learning can be considered as a 
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learning method to maximize the expected value of reward that will be received in the 
future. However, the rewards which will be given from the environment in the future are 
basically unknown. So, the future rewards should be estimated by using the discount rate γ, 
as shown in equation (2): 

 2
1 2 3 1

0

k
t t t t t k

k
R r r r rγ γ γ

∞

+ + + + +
=

= + + ⋅ ⋅⋅ = ∑  (2) 

 

Without the discount rate, the agent gets interested in only the immediate rewards and this 
causes the myopic action selection. Therefore, the introduction of the discount rate enables 
Q-learning with a long-term view. Ideally, an eigenvalue near 1 is used for the discount rate, 
but it is pointed out that the duration until the convergence of learning becomes longer if 
the value is too close to 1 (Schewartz, 1993; Mahadevan, 1996). Hence, the discount rate is 
set at 0.8 or 0.9 in this article. 
In previous studies, several augmented Q-learning methods have been proposed and 
discussed in order to improve the learning performance (Konda et al., 2003; Mori et al., 2005; 
Peter & Shaal, 2008; Juang & Lu., 2009; Rucksties et al., 2010). For example, Mori et al. 
demonstrated that the application of Actor–Critic using a policy gradient method is effective 
to the learning of CPG-Actor-Critic model even if a high-order state space is configured 
(Mori et al., 2005). Peters and Schaal proposed Natural Actor-Critic expanding the idea of 
Actor–Critic using a policy gradient method (Peter & Shaal, 2008). However, in this article, 
the simplest Q-learning algorithm is applied to mobile robots in order to achieve robotic 
primitive motions with as minimum information as possible and to facilitate the discussion 
of how the robots acquire the primitive motion in such the condition. 

3. Experimental system 
3.1 Mobile robots 
As mentioned above, this article introduces the acquisition of advancement and planar 
motions generated by Q-learning. In Q-learning for the advancement motion, a simple 
caterpillar-shaped robot is designed and employed. The caterpillar-shaped robot comprises 
four actuators (AI-Motor, Megarobotics Co., Ltd.) as shown in Fig. 1. In this robot, two 
actuators on both the tips are enabled; the others are completely fixed under the position 
control. On the other hand, a starfish-shaped robot, which has four enabled AI-Motors as 
shown in Fig. 2, is applied in Q-learning for acquiring the planar motion. In these robots, the 
motor commands are communicated between a computer and each AI-Motor via RS232C 
interface.  

3.2 Experimental system 
A schematic diagram of experimental system is shown in Fig. 3. In the experimental system, 
a function that provides rewards based on the robotic actions to these robots is required in 
order to renew the action-value function in each state. To perform Q-learning of the 
advancement and planar motions, it is necessary to measure the robotic travel distance in 
each leaning step by using some external sensor such as a motion capture system. In this 
article, a position sensitive detector (PSD) system (C5949, Hamamatsu Photonics) is   
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Fig. 1. Caterpillar-shaped robot for Q-learning of advancement motion: only the AI-Motors 
at both the sides are enabled 

 
Fig. 2. Starfish-shaped robot for Q-learning of two-dimensional motions: all the AI-Motors 
(legs) are enabled 

 
Fig. 3. A schematic diagram of experimental system: PSD system is used for motion-tracking 
of mobile robots 
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employed. The PSD system comprises a charge coupled device (CCD) camera, light-emitting 
diode (LED) targets, and an amplifier. In the PSD system, the CCD camera detects the LED 
targets which have individual IDs and the amplifier sends the two-dimensional position of 
each LED target to the computer as a voltage value; maximum 7 LED targets can be detected 
as analogue data at the same time. In Q-learning with the caterpillar-shaped robot, the CCD 
camera is fixed on the ground to enable tracking the LED targets attached on the side of the 
robot. Whereas, in Q-learning with the starfish-shaped robot, the CCD camera is attached on 
the ceiling to take a panoramic view of robotic two-dimensional motions. Two LED targets 
are attached on the top of the starfish-shaped robot; one is for measuring the robotic center 
position, and the other that is a bit shifted from the center of robot is for calculating the 
yawing angle. 

3.3 Off-line Q-learning simulator based on reward database 
In Q-learning, a considerable number of learning steps is required to reach an optimal 
solution. The long-term learning often causes the fatigue breakdown and the performance 
degradation in the real robot. In addition, the possibility that the mobile robots jump out of 
the motion-tracking-enabled area is quite high in the long-term learning; once the mobile 
robot gets out of the area, Q-learning has to be stopped immediately, and resumed after 
resetting the mobile robot within the motion-tracking-enabled area. So, the use of off-line 
learning is desired to facilitate Q-learning and to shorten the learning time. In general, 
robotic simulator is used instead of real robot to shorten the learning time. However, the 
robotic simulator has a technical issue related to the model error. The model error can be 
decreased by precisely configuring the robotic parameter in the simulator, but it causes the 
increase in the computational time (simulation time). Hence, this article proposes an off-line 
Q-learning simulator based on reward databases, which involving the real information of 
interaction between the robot and the environment. Here, the concept of reward-database-
based Q-learning is introduced. 
A flow chart of off-line Q-learning simulator is shown in Fig. 4. First, as for the reward 
database, ID numbers are assigned to all the action patterns and all the state transitions are 
performed among all the IDs several times by actually using robots. In parallel, some 
physical quantity related to the target motion, such as a travel distance and a yawing angle, 
all over the transition states are measured several times. The measured physical quantities 
are averaged by the number of times that the robot took the same state transition, and the 
averaged values are stored into a database as a representative reward data; the reward data 
is normalized at this time. In Q-learning with the real robots, the interaction between the 
robot and the environment must be simulated to allocate a reward to a selected action in 
each state to renew the action-value function. However, in the proposed method, once the 
reward database is established, the robot is not needed anymore because the reward 
database includes all the real interactions and related physical quantities. Hence, the 
proposed method can omit the computation of the interaction. In Q-learning with the 
reward database, a reward is just referred from the database depending on the state 
transition, and uses the selected reward to renew the action-value function. This is an 
advantage of the proposed method for the conventional methods with the robotic simulator 
although the preliminary experiment is needed; the conventional methods require the 
computation of the interaction every learning step. 
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rt
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Fig. 4. A flow chart of off-line Q-learning using the reward database 

4. Analysis of robotic advancement motions generated in Q-learning 
4.1 Acquisition of advancement motion with the caterpillar-shaped robot 
Q-learning is applied to acquire advancement motion of caterpillar-shaped robot. In this Q-
learning travel distance, which is the representative data averaged by 10000 step-actions, 
from a state to the next state is given as reward. The action patterns of the caterpillar-shaped 
robot are shown in Fig. 5; the two-enabled motors at both the sides are controlled at 5 
positions (0, ±26, and ±52 deg), respectively. The caterpillar-shaped robot randomly selects 
one of 25 actions in a learning step—random action policy. Totally, 625 (52 × 52) state 
transitions can be selected in the learning. The learning rate and discount rate are configured 
at 0.9 and 0.8, respectively. Under these experimental conditions, Q-learning is performed in 
the proposed off-line simulator. 
Fig. 6 shows the transitions of travel distances per a leaning step when only the highest Q-
values are selected, i.e., when the caterpillar-shaped robot takes the greedy action; the blue, 
red, and green lines—in this experiment, Q-learning was performed three times—
respectively indicate the relationships between the learning steps and the averaged distance 
traveled by the caterpillar-shaped robot in a step. From Fig. 6, it should be noted that the 
three trials finally reach the same performance (about 4.3 mm travel distance in a step) with 
the similar profile. This result also implies the good learning convergence and repeatability; 
all Q-learning are converged at around the 5000 learning steps in this case. 
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Fig. 5. Action patterns of caterpillar-shaped robot: 52 action patterns in each side 
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Fig. 6. Relationships between the number of learning step and averaged distance traveled by 
the caterpillar-shaped robot in a step under Q-learning conditions α = 0.9 and γ = 0.8 

4.2 Transition of motion forms during Q-learning 
When the caterpillar-shaped robot takes the greedy actions after Q-learning, a series of 
robotic actions defined by the ID numbers appear as an optimal motion. This article defines 
this series of robotic actions as “motion form”. The motion forms consisting of a loop of a 
few actions appear with different patterns during Q-learning. Here, the transition of motion 
forms is analyzed to reveal how the caterpillar-shaped robot acquires an optimal 
advancement motion through the interaction with the environment. To achieve this, the 
motion forms are observed by extracting the learning results every 100 step until 5000 steps. 
Through the observation, it is found that four representative motion forms, as shown in Fig. 
7, appear and disappear until the caterpillar-shaped robot reaches an optimal motion form. 
The number written over the robotic figure is the ID number that is allocated to the states in 
the database. Each motion form comprises a few actions and these actions are periodically 
repeated in the advancement motion. Note that these motion forms except the optimal 
motion form are not necessarily observed at the same timing when performing Q-learning 
several times because the random action policy is applied to the robot in this experiment; 
different environments and different learning parameters would cause other motion forms. 
However, since these four motion forms are frequently taken in Q-learning, this article 
discusses the transition of these motion forms. 
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Fig. 7. Representative motion forms frequently observed in Q-learning under the conditions 
of α = 0.9 and γ = 0.8: Type D is the optimal motion form which brings the most effective 
advancement motion to the caterpillar-shaped robot 

Fig. 8 shows a representative transition of motion forms until the caterpillar-shaped robot 
acquires an optimal motion form. In this learning, the optimal motion forms for the 
advancement motion is Type D consisting of three states (ID: 2, 14, and 20). In the early 
process of Q-learning, Type A, B, and C repeatedly appear and disappear until 800 steps; 
sometimes these motion forms are combined each other. From 800 steps to 4800 steps, major 
change in the motion form is not observed as shown in Fig. 8. In this phase, the states 14 and 
20 are almost fixed and the subsequent state was changed variously. Through the several 
transitions, finally, the motion form is converged to the optimal motion form—Type D. 
Focusing on the transition, Q-learning might be divided into two phases based on 800 
steps— early and later learning phases. In the early stage, the caterpillar-shaped robot 
attempts to establish some rough frameworks of motion forms for effectively performing the 
advancement motion. On the other hand, it seems that the robot selects a possible candidate 
from several key motion forms and performs the fine adjustment in the later phase. This 
implies the evolutionary feature of Q-learning. 
Here is the discussion about the transition of motion forms. In general, the rewards possess 
the following relationships: 

 1 2 3 1n nr r r r r −> > > ⋅ ⋅ ⋅ > >  (3) 

In a finite state, Q-learning is considered as a problem that finds out a group of actions that 
maximize the expected value of discount return Rt. Ideally, only the actions that have the 
highest Q-value should be selected in each state to maximize the expected value of Rt. 
However, the robot cannot take only the actions with the highest Q-value because of the 
finite space. So, the robot also has to select the actions with lower Q-value in some states to 
maximize Rt. Under this constraint, the robot attempts to find out a group of actions—
motion form—with a maximum expected value of Rt. This is a big feature of unsupervised  
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Fig. 8. A representative transition of motion forms during Q-learning process 

learning; such the process cannot be found in supervised learning. Here, from equations (1) 
and (2), it should be noted that the discount rate γ significantly affects the transition of 
motion forms. In fact, our previous studies demonstrated that it is easier to produce the 
optimal motion form with a very few actions when γ is configured at a large value; vice 
versa, an inverse result is observed when γ is a smaller value (Yamashina et al., 2006; 
Motoyama et al., 2006). Hence, it is assumed that the discount rate is a significant factor to 
generate the series of motion forms in the learning process. 

4.3 Environmental effect on the optimal motion form 
As the next step, the environmental effect on the optimal motion form is investigated to 
know how Q-learning adapts to the environmental change. It is expected that Q-learning is 
performed involving the environmental change in the interaction and generates a motion 
form optimized to the given environment. In this article, ascending and descending tasks 
are tried by changing the inclination of floor, as shown in Fig. 9. The inclination is adjusted 
at ±5 deg in each task. A carpet made of the same fiber, which is used on the flat floor in the 
experiment of section 4.1, is attached on the slope so as to make the friction property 
between the caterpillar-shaped robot and the slope the same. Under this condition, 
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Ascending task Descending task  
Fig. 9. Environmental changes in Q-learning: ascending and descending ±5 deg slopes 
 

 
Fig. 10. Optimal motion forms in the three environments 

Q-learning with the same learning parameters in section 4.1 was performed. Fig. 10 compares 
the optimal motion forms generated in the three environments—flat floor, uphill, and 
downhill. Here, let's define these optimal motion forms as normal-type, ascending-type, and 
descending-type motion forms, respectively. As expected, the caterpillar-shaped robot 
acquires different optimal motin forms. This implies that the caterpillar-shaped robot has 
learned the effective advancement motion in the individual environments. 
The performance of each motion form is examined by comparing the travel distance in each 
result. The cumulative travel distances over 20 steps are shown in Fig. 11. Figs. 11 (a) and (b) 
show the results on the uphill and the downhill, respectively. In the case of uphill, the 
caterpillar-shaped robot could advance when applying the normal-type and ascending-type 
motion forms, whereas the robot slipped on the slope toward the opposite direction during 
the descending-type motion form; in this case, the ascending-type motion form 
demonstrated the best performance. Here, these optimal motion forms are analyzed to 
reveal the key factor for ascending the uphill. In the ascending task, it is considered that 
generating the force against the gravity and keeping the friction force not to slip on the slope 
would be very important. Focusing on the normal-type and ascending-type motion forms, it 
should be noted that the rear part pushes the caterpillar-shaped robot when the state is 
shifted from 14 to the next state—20 in the normal-type motion form and 21 in the 
ascending-type motion form. Such the state transition cannot be found during the 
descending-type motion form. As for the advancement motion on the uphill, this pushing 
action might be needed to produce the propulsion in the caterpillar-shaped robot. In adition,  
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(a) Environment: Uphill 
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(b) Environment: Downhill 

Fig. 11. Performance of optimal motion forms in several environmental conditions 

the comparison of the normal-type and ascending-type motion forms tells us that the contact 
area between the robot and the slope is a bit larger in the ascending-type motion form after 
the pushing action. So, it results in larger friction force during the ascendig-type motion 
form and it would enable the caterpillar-shaped robot to advacne without slipping on the 
slope. This difference might produce the different performances of advancement motion in 
the normal-type and ascending-type motion forms, as shown in the blue and red lines in Fig. 
11 (a). Hence, these results imply that the pushing action and large contact area after the 
pushing action are necessary to make the robot effectively ascend the slope. On the other 
hand, in the case of downhill, the robot can take advantage of slip to make a large step. In 
this case, it is considered that the dynamic motion and less friction force would be effective 
to descend the slope. The descending-type motion form shows the best performance among 
the three types as expected. In this motion form, the shape like a bridge is formed (23 and 
24) and it is broken at the next state (1 and 2); this series of actions could be considered as a 
jumping. This jumping-like motion could produce the dynamic advancement motion with 
less friction and lead to a good performance, as shown in Fig. 11 (b). 
Thus, this section demonstrated that Q-learning could find out the most optimal motion 
form that is peculiar to the environment. In addition, the analysis of the motion forms 
implies that the learned motion form is reasonable from a viewpoint of robotic kinematics. 
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5. Acquisition of robotic planar motion by Q-learning 
5.1 Advancement motions of the starfish-shaped robot in X and Y directions 
The starfish-shaped robot can basically select two actions in the horizontal and vertical 
directions (X and Y directions). Here, the performances of advancement motions on the flat 
floor in the two directions are introduced. Regarding Q-learning, four enabled motors are 
controlled at 3 positions (0 and ±52 deg), as shown in Fig. 12. Similar to Q-learning in the 
caterpillar-shaped robot, the random action policy is taken; in a learning step, the starfish-
shaped robot randomly selects one of 81 actions. Totally, 6561 (34 × 34) state transitions are 
selectable. Under the conditions α = 0.9 and γ = 0.9, Q-learning, whose reward databases are 
based on the travel distances averaged by 10000 step-actions in each direction, is performed 
in the proposed off-line simulator. Fig. 13 shows the optimal motion form in the X direction; 
in the Y direction, the optimal motion form becomes the same as that in the X direction that 
rotated by 90 deg. The transitions of travel distances in a learning step and the robotic 
trajectories within 20 steps are shown in Figs. 14 and 15, respectively.  
As shown in Fig. 14, the performances in both the directions are almost the same. Here, the 
most noteworthy point is the magnitude of distance traveled in one step. The travel distance 
by the starfish-shaped robot (about 9.0 mm) is twice as long as that of caterpillar-shaped 
robot (about 4.3 mm) although each motor takes only the three positions. 
 

 
Fig. 12. Action patterns of starfish-shaped robot: 34 action patterns in each leg 
 

Swing legs

 
Fig. 13. Optimal motion form for the advancement motion in the X direction 
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Fig. 14. Relationships between the number of learning step and averaged distance traveled 
by the starfish-shaped robot per a step under Q-learning conditions α = 0.9 and γ = 0.9 
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Fig. 15. Trajectories of the starfish-shaped robot in the horizontal and vertical directions 

This difference would come from the availability of side legs (right and left motors); without 
the side legs, it can be considered that Q-learning of the starfish-shaped robot is almost the 
same as that of the caterpillar-shaped robot. Focusing on the motion form, it should be noted 
that the front and rear motors are driven for the advancement motion, whereas the right and 
left motors are used for helping the advancement motion. That is, it is thought that the motions 
of side legs prevent the starfish-shaped robot from slipping on the flat floor or moving 
backward. In fact, if the optimal motion form is performed without side legs, the travel 
distance in one step becomes significantly short. Therefore, these results imply that the 
starfish-shaped robot skillfully employed the advantage of the swing legs. 

5.2 Planar motion by a reward manipulation 
To achieve planar motion, the rewards should be configured at least including the 
horizontal and vertical positions and yawing angle of the starfish-shaped robot. The use of 
these parameters would make Q-learning complicated and it is not intuitive anymore. In 
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this article, the possibility of producing a planar motion by a reward manipulation is 
discussed. Concretely, the advancement motion in an oblique direction is challenged by 
simply manipulating the normalized reward databases for the horizontal and vertical 
motions, i.e., rx and ry obtained in the experiment of section 5.1. This challenge can be 
realized only in Q-learning based on the reward database; Q-learning with the robotic 
simulator cannot allow this. In the reward manipulation, the following equation is 
employed to make a new reward database rnew: 

 yx www rrr ⋅−±= ))(sgn(new 1  (4) 

where w (−1 ≤ w ≤ 1) is a weight parameter that determines the priority of the two rewards. 
sgn(w) represents the sign of the weight parameter. In this experiment, w is set at ±0.5 in order 
to achieve the advancement motions in the directions of 45 deg and 225 deg with respect to the 
horizontal direction. Based on rnew, Q-learning is performed in each condition by means of the 
proposed off-line simulator. Fig. 16 shows the trajectories of the starfish-shaped robot traveled 
within 20 steps. The results show that the starfish-shaped robot could approximately advance 
in the directions that the authors aimed at although the directions were not able to be 
completely corresponding to the requested directions. Also, this demonstrates the possibility 
of the proposed reward manipulation to generate several planar motions. In general, the 
acquired Q-values should be completely renewed due to the coherence of the rewards when 
the agent learns new tasks, i.e., the agent cannot acquire multiple actions at a time due to the 
oblivion of the knowledge. Therefore, the proposed method might bring a breakthrough in 
generating multiple and novel motions through Q-learning. 
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Fig. 16. Trajectories of starfish-shaped robot in the direction of 45 deg and 225 deg after Q-
learning based on new reward databases manipulated by rx and ry 

6. Conclusion 
In this article, the authors have focused on the key factors of robotic motions generated in Q-
learning process. First, an off-line learning simulator based on the reward databases was 
proposed to facilitate Q-learning. Then, Q-learning was performed in the caterpillar-shaped 
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robot to generate the advancement motion. The observation of learning process implied that 
some key motion forms appear or disappear in the early learning phase and Q-learning 
adjusts them to an optimal motion form in the later learning phase. In addition, the effect of 
environmental changes on the optimal motion form was discussed by using an uphill 
condition and a downhill condition. Even if the environment was changed, Q-learning 
resulted in the motion forms which are optimized for the individual environment. As the 
next step, the planar motion by the starfish-shaped robot was tried. The results in the 
horizontal and vertical actions demonstrated that the starfish-shaped robot skillfully used 
their advantage (side legs) to enable longer travel distance. In addition, a reward 
manipulation with multiple reward databases was proposed to produce the planar motions. 
The application implied that there is potential to yield unique robotic motions. 

7. Future works 
This article discussed the motion forms yielded during Q-learning by using a caterpillar-
shaped robot and a starfish-shaped robot. In our future work, the authors will examine the 
acquisition process of a gymnast-like giant-swing motion by a compact humanoid robot and 
explore the key factor. Through these attempts, the authors aim at having a much better 
understanding of evolutionary aspect of Q-learning. 
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1. Introduction 
The term ‘homing’ refers to the ability of an agent – either animal or robot - to find a known 
goal location. It is often used in the context of animal behaviour, for example when a bird or 
mammal returns ‘home’ after foraging for food, or when a bee returns to its hive. Visual 
homing, as the expression suggests, is the act of finding a home location using vision. 
Generally it is performed by comparing the image currently in view with ‘snapshot’ images 
of the home stored in the memory of the agent. A movement decision is then taken to try 
and match the current and snapshot images (Nehmzow 2000).  
A skill that plays a critical role in achieving robot autonomy is the ability to learn to operate 
in previously unknown environments (Arkin 1998; Murphy 2000; Nehmzow 2000). 
Furthermore, learning to home in unknown environments is a particularly desirable 
capability. If the process was automated and straightforward to apply, it could be used to 
enable a robot to reach any location in any environment, and potentially replace many 
existing computationally intensive homing and navigation algorithms. Numerous models 
have been proposed in the literature to allow mobile robots to navigate and home in a wide 
range of environments. Some focus on learning (Kaelbling, Littman et al. 1998; Nehmzow 
2000; Asadpour and Siegwart 2004; Szenher 2005; Vardy and Moller 2005), whilst others 
focus on the successful application of a model or algorithm for a specific environment and 
ignore the learning problem (Simmons and Koenig 1995; Thrun 2000.; Tomatis, Nourbakhsh 
et al. 2001).  
Robotic often borrow conceptual mechanisms from animal homing and navigation 
strategies described in neuroscience or cognition literature (Anderson 1977; Cartwright and 
Collett 1987). Algorithms based on the snapshot model use various strategies for finding 
features within images and establishing correspondence between them in order to 
determine home direction (Cartwright and Collett 1987; Weber, Venkatesh et al. 1999; Vardy 
and Moller 2005). Block matching, for example, takes a block of pixels from the current view 
image and searches for the best matching block in stored images within a fixed search radius 
(Vardy and Oppacher 2005). 
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Most robot homing models proposed in the literature have the limitations of either 
depending upon landmarks (Argyros, Bekris et al. 2001; Weber, Wermter et al. 2004; Muse, 
Weber et al. 2006), which makes them environment-specific, or requiring pre-processing 
stages, in order for them to learn or perform the task (Szenher 2005; Vardy 2006). These 
assumptions restrict the employability of such models in a useful and practical way. 
Moreover, new findings in cognition suggest that humans are able to home in the absence of 
feature-based landmark information (Gillner, Weiß et al. 2008). This biological evidence 
suggests that in principle at least the limitations described are unnecessarily imposed on 
existing models. 
This chapter describes a new visual homing model that does not require either landmarks or 
pre-processing stages. To eliminate the landmarks requirement, and similarly to what 
(Ulrich and Nourbakhsh 2000) have devised to do localization, a new measure that 
quantifies the overall similarity between a current view and a stored snapshot is used to aid 
the homing model. To eliminate the pre-processing requirement it was necessary to employ 
a general learning process capable of capturing the specific characteristics of any 
environment, without the need to customise the model architecture. Reinforcement learning 
(RL) provides such a capability, and tackling visual homing based on RL coupled with 
radial basis features and whole image measure forms the first novelty of the work.  
RL has been used previously in robot navigation and control, including several models 
inspired by biological findings (Weber, Wermter et al. 2004; Sheynikhovich, Chavarriaga et 
al. 2005). However some of those models lack the generality and/or practicality, and some 
are restricted to their environment; the model proposed by (Weber, Wermter et al. 2004; 
Muse, Weber et al. 2006; Weber, Muse et al. 2006), for example, depends on object 
recognition of a landmark in the environment to achieve the task.  Therefore, the aim of the 
work described in this chapter was to exploit the capability of RL as much as possible by 
general model design, as well as by using a whole image measure. RL advocates a general 
learning approach that avoids human intervention of supervised learning and, unlike 
unsupervised learning, has a specific problem-related target that should be met. 
Furthermore, since RL deals with reward and punishment it has strong ties with biological 
systems, making it suitable for the homing problem. Whilst environment-dynamics or map-
building may be necessary for more complex or interactive forms of navigation or 
localization, visual homing based on model-free learning can offer an adaptive form of local 
homing. In addition, although the immediate execution of model-based navigation can be 
successful (Thrun, Liu et al. 2004; Thrun, Burgard et al. 2005), RL techniques have the 
advantage of being model-free i.e. no knowledge needed about the environment. The agent 
learns the task by learning the best policy that allows it to collect the largest sum of rewards 
from its environment according to the environment dynamics. 
The second novelty of this work is related to enhancing the performance of the an existing 
RL method. Reinforcement learning with function approximation has been shown in some 
cases to learn slowly (Bhatnagar, Sutton et al. 2007). Bootstrapping methods like temporal 
difference (TD) (Sutton 1988) although was proved to be faster than other RL methods, such 
as residual gradient established by Baird (Baird 1995), it can still be slow ((Schoknecht and 
Merke 2003). Slowness in TD methods can occur due to different reasons. The frequent 
cause is when the state space is big, high-dimensional or continuous. In this case, it is hard 
to maintain the value of each state in a tabular form. Even when the state space is 
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approximated in some way, using artificial neural networks (ANN) for example, the 
learning process can become slow because it is still difficult to generalize in such huge 
spaces. In order for TD to converge when used for prediction, all states should be visited 
frequently enough. For large state spaces this means that convergence may involve many 
steps and will become slow. 
Numerical techniques have been used with RL methods to speed up its performance. For 
example, (Ziv and Shimkin 2005) used a multi-grid framework which is originated in 
numerical analysis to enhance the iterative solution of linear equations. Whilst, others 
attempted to speed up RL methods performance in multi-agent scenario, (Zhang, Abdallah 
et al. 2008), by using a supervised approach combined with RL to enhance the model 
performance. TD can be speed up by using it with other gradient types. In (Bhatnagar, 
Sutton et al. 2007), for example, TD along with the natural gradient has been used to boost 
learning. 
(Falas and Stafylopatis 2001; Falas and Stafylopatis 2002) have used conjugate gradient with 
TD. Their early experiments confirmed that using such a combination can enhance the 
performance of TD. Nevertheless, no formal theoretical study has been conducted which 
disclose the intrinsic properties of such a combination.  The present work is an attempt to fill 
this gap. It uncover an interseting property of combining TD method with the conjugate 
gradient which simplifies the implementation of the conjugate TD. 
The chapter is structured as follows. Firstly an overview of TD and function approximation 
is presented, followed by the deduction of the TD-conj learning and its novel equivalency 
property. Then a detail describtion of the novel visual homing model and its components is 
presneted. The results of extensive simulations and experimental comparisons are shown, 
followed by conclusions and recommendations for further work. 

2. TD and function approximation 

When function approximation techniques are used to learn a parametric estimate of the 
value function ( )V sπ , ( )t tV s  should be expressed in terms of some parameters tθ

G
. The 

mean squared error performance function can be used to drive the learning process: 

 
2

( ) ( ) ( ) ( )t t t
s S

F MSE pr s V s V sπθ
∈

⎡ ⎤= = −⎣ ⎦∑
G

 (1) 

pr is a probability distribution weighting the errors 2( )tEr s  of each state, and expresses the 
fact that better estimates should be obtained for more frequent states where: 

 
22( ) ( ) ( )t tEr s V s V sπ⎡ ⎤= −⎣ ⎦  (2) 

The function tF  needs to be minimized in order to find a global optimal solution *θ
G

that best 
approximates the value function.  For on-policy learning if the sample trajectories are being 
drawn according to pr through real or simulated experience, then the update rule can be 
written as: 

 1
1
2t t t tdθ θ α+ = +

GG G
 (3) 
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td
G

 is a vector that drives the search for *θ
G

in the direction that minimizes the error function 
2( )tEr s , and 0 1tα< ≤  is a step size. Normally going opposite to the gradient of a function 

leads the way to its local minimum. The gradient tgG  of the error 2( )tEr s  can be written as: 

 2( ) 2 ( ) ( ) ( )
t tt t t t t t t tg Er s V s V s V sπ

θ θ
⎡ ⎤= ∇ = − ⋅∇⎣ ⎦

G GG  (4) 

Therefore, when td
G

 is directed opposite to tgG , i.e. t td g= −
G G  , we get the gradient descent 

update rule: 

 1 ( ) ( ) ( )
tt t t t t t t tV s V s V sπ

θθ θ α+ ⎡ ⎤= + − ⋅∇⎣ ⎦
G

G G
 (5) 

It should be noted that this rule allows us to obtain an estimate of the value function 
through simulated or real experience in a supervised learning (SL) fashion. However, even 
for such samples the value function Vπ  can be hard to be known in a priori. If the target 
value function Vπ  of policy π  is not available, and instead some other approximation of it 
is, then an approximated form of rule (5) can be realized. For example, replacing 

1

1

i
t t i

i
R rγ

∞
−

+
=

= ∑  by Vπ  for an infinite horizon case produces the Monte Carlo update 

[ ]1 ( ) ( )
tt t t t t t t tR V s V sθθ θ α+ = + − ⋅∇ G

G G
. By its definition tR  is an unbiased estimate for ( )tV sπ , 

hence this rule is guaranteed to converge to a local minima. However, this rule requires 
waiting until the end of the task to obtain the quantity Rt to perform the update. This 
demand can be highly restrictive for the practical application of such rule. On other hand, if 

the n-step return ( ) 1

1
( )

n
n i n

t t i t t n
i

R r V sγ γ−
+ +

=
= +∑  is used to approximate ( )tV sπ , then from (5) 

we obtain the rule ( )
1 ( ) ( )

t

n
t t t t t t t tR V s V sθθ θ α+ ⎡ ⎤= + − ⋅∇⎣ ⎦

G
G G

 which is less restrictive and of more 

practical interest than rule (5) since it requires only to wait n steps to obtain ( )n
tR . Likewise, 

any averaged mixture of ( )n
tR  (such as (1) (3)1 1

2 2t tR R+ ) can be used, as long as the 
coefficients sum up to 1. An important example of such averages is the sum 

( )1

1
(1 ) nn

t t
n

R Rλ λ λ
∞

−

=
= − ∑  which also can be used to get the update rule: 

 1 ( ) ( )
tt t t t t t t tR V s V sλ

θθ θ α+ ⎡ ⎤= + − ⋅∇⎣ ⎦
G

G G
 (6) 

 

Unfortunately, however, ( )n
tR  (and any of its averages including tRλ ) is a biased 

approximation of ( )tV sπ  for the very reason that makes it practical (which is not waiting 
until the end of the task to obtain ( )tV sπ ). Hence rule (6) does not necessary converge to a 
local optimum solution *θ

G
 of the error function tF . The resultant update rule (6) is in fact 

the forward view of the TD(λ) method where no guarantee of reaching *θ
G

 immediately 
follows. Instead, under some conditions, and when linear function approximation are used, 
then the former rule is guaranteed to converge to a solution θ∞

G
 that satisfies (Tsitsiklis and 

Van Roy 1997) *
1 1
2 2

1
( ) ( )

1
MSE MSE

γλ
θ θ

γ
∞

−
≤

−

G G . 
The theoretical forward view of the TD updates involves the quantity tRλ  which is, in 
practice, still hard to be available because it needs to look many steps ahead in the future. 
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Therefore, it can be replaced by the mechanistic backward view involving eligibility traces. 
It can be proved that both updates are equivalent for the off-line learning case (Sutton and 
Barto 1998) even when λ varies from one step to the other as long as [0,1]λ ∈ . The update 
rules of TD with eligibility traces, denoted as TD(λ) are: 

 1t t t t teθ θ α δ+ = + ⋅
G G G  (7) 

 1 ( )
tt t t te e V sθγλ −= + ∇ GG G  (8) 

 1 1( ) ( )t t t t t tr V s V sδ γ+ += + −  (9) 

It can be realized that the forward and backward rules become identical for TD(0). In 
addition, the gradient can be approximated as: 

 2 ( )
tt t t tg V sθδ= ⋅ ∇ GG  (10) 

If linear neural network is used to approximate ( )t tV s , then it can be written as 
( ) T T

t t t t t tV s ϕ θ θ ϕ= =
G GG G . In this case, we obtain the update rule: 

 1t t te eγλ φ−= +
GG G  (11) 

It should be noted that all of the former rules starting from (4) depend on the gradient 
decent update. When the quantity ( )tV sπ  was replaced by some approximation the rules 
became impure gradient decent rule. Nevertheless, such rules can still be called gradient 
decent update rules since they are derived according to it. Rules that uses its own 
approximation of ( )tV sπ  are called bootstrapping rules. In particular, TD(0) update is a 
bootstrapping method since it uses the term 1 1( )t t tr V sγ+ ++  which involves its own 
approximation of the value of the next state to approximate ( )tV sπ . In addition, the gradient 

tgG  can be approximated in different ways. For example, if we approximate ( )tV sπ  by 
1 1( )t t tr V sγ+ ++  first then calculate the gradient we get the residual gradient temporal 

difference, which in turn can be combined with TD update in a weight averaged fashion to 
get the residual TD (Baird 1995). 

3. TD and conjugate gradient function approximation 
3.1 Conjugate gradient extension of TD 
We turn our attention now for an extension of TD(λ) learning using function approximation. 
We will direct the search for the optimal points of the error function 2( )tEr s  along the 
conjugate direction instead of the gradient direction. By doing so an increase in the 
performance is expected. In fact, more precisely a decrease of the number of steps to reach 
optimality is expected. This is especially true for cases where the number of distinctive 
eigenvalues of the matrix H (matrix of second derivatives of the performance function) is 
less than n the number of parameters θ

G
. To direct the search along the conjugate gradient 

direction, pG  should be constructed as follows: 

 1t t t tp g pβ −= − +
G G G  (12) 
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0pG  is initiated to the gradient of the error (Hagan, Demuth et al. 1996; Nocedal and Wright 
2006); 0 0p g= −

G G . Rule (12) ensures that all tp t∀
G  are orthogonal to 1 1t t tg g g− −Δ = −

G G G . This can 
be realized by choosing the scalar tβ  to satisfy the orthogonality condition: 

 1
1 1 1 1

1 1
0 0 ( ) 0

T
T T t t

t t t t t t t t t T
t t

g gg p g p g g p
g p

β β −
− − − −

− −

Δ
Δ ⋅ = ⇒ Δ = ⇒Δ − + = ⇒ =

Δ

G GG G G G G G G
G G  (13) 

 

In fact, the scalar βt can be chosen in different ways that should produce equivalent results 
for the quadratic error functions (Hagan, Demuth et al. 1996), the most common choices are: 

 ( ) 1

1 1

T
HS t t

t T
t t

g g
g p

β −

− −

Δ
=

Δ

G G
G G  (14) 

 ( )

1 1

T
FR t t

t T
t t

g g
g g

β
− −

=
G G
G G  (15) 

 ( ) 1

1 1

T
PR t t

t T
t t

g g
g g

β −

− −

Δ
=

G G
G G  (16) 

due to Hestenes and Steifel, Fletcher and Reeves, and Polak and Ribiere respectively. 
From equation (4) the conjugate gradient rule (12) can be rewritten as follows: 

 12 ( ) ( ) ( )
tt t t t t t t tp V s V s V s pπ

θ β −⎡ ⎤= − ⋅∇ +⎣ ⎦
GG G  (17) 

By substituting in (3) we obtain the pure conjugate gradient general update rule: 

 1 1
1 2 ( ) ( ) ( )
2 tt t t t t t t t t tV s V s V s pπ

θθ θ α β+ −
⎡ ⎤⎡ ⎤= + − ∇ +⎣ ⎦⎣ ⎦

G
G G G  (18) 

3.2 Forward view of conjugate gradient TD  
Similar to TD(λ) update rule (6), we can approximate the quantity ( )tV sπ  by tRλ , which  
does not guarantee convergence, because it is not unbiased (for λ < 1), nevertheless it is 
more practical. Hence, we get the theoretical forward view of TD-conj(λ); the TD(λ) 
conjugate gradient update rules: 

 12 ( ) ( )
tt t t t t t t tp R V s V s pλ

θ β −⎡ ⎤= − ⋅ ∇ +⎣ ⎦
GG G  (19) 

 1 1
1( ) ( )
2tt t t t t t t t t tR V s V s pλ

θθ θ α β+ −
⎡ ⎤⎡ ⎤= + − ∇ +⎢ ⎥⎣ ⎦⎣ ⎦

G
G G G  (20) 

If  the estimate 1 1( )t t tr V sγ+ ++ is used to estimate ( )tV sπ  (as in TD(0)), then we can obtain 
the TD-conj(0) update rules; where rules (19) and (20) are estimated as: 

 12 ( )
tt t t t t tp V s pθδ β −= ⋅ ∇ +GG G  (21) 
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 1 1
1( )
2tt t t t t t t tV s pθθ θ α δ β+ −

⎡ ⎤= + ∇ +⎢ ⎥⎣ ⎦
G

G G G  (22) 

 

It should be noted again that those rules are not pure conjugate gradient but nevertheless 
we call them as such since they are derived according to the conjugate gradient rules. 

3.3 Equivalency of TD(λ t≠0) and TD-conj(λ=0) 
Theorem 1: 
TD-conj(0) is equivalent to a special class of TD( tλ ) that is denoted as TD( ( )conj

tλ ), under the 

condition: ( ) 10 1;conj t t
t

t
tβ δλ

γ δ
−≤ = ≤ ∀ , regardless of the approximation used. The equivalency 

is denoted as TD-conj(0) ≡ TD( ( )conj
tλ ) and the bound condition is called the equivalency 

condition. 
Proof: 
We will proof that TD-conj(0) is equivalent to a backward view of a certain class of TD( tλ ), 
denoted as TD( ( )conj

tλ ). Hence, by the virtue of the equivalency of the backward and forward 
views of all TD(λt) for the off-line case, the theorem follows. For the on-line case the 
equivalency is restricted to the backward view of TD( ( )conj

tλ ). 
The update rule (22) can be rewritten in the following form: 
 

 1 1( )
2t

t
t t t t t t t

t
V s pθ

βθ θ α δ
δ+ −

⎡ ⎤
= + ∇ +⎢ ⎥

⎣ ⎦
G

G G G  (23) 

 

where it is assumed that 0tδ ≠  because otherwise it means that we reached an equilibrium 
point for ( )t tV s , meaning the rule has converged and there is no need to apply any learning 
rule any more. Now we introduce the conjugate eligibility traces vector ( )conj

teG  that is defined 
as follows: 

 ( ) 1
2

conj
t t

t
e p

δ
=

G G  (24) 

By substituting (21) in (24) we have that 

 ( )
1( )

2t

conj t
t t t t

t
e V s pθ

β
δ −= ∇ +GG G  (25) 

From (25) we proceed in two directions. First, by substituting (25) in (23) we obtain an 
update rule identical to rule (11): 

 ( )
1

conj
t t t t teθ θ α δ+ = +
G G G  (26) 

Second, from (24) we have that:  

 ( )
1 1 12 conj

t t tp eδ− − −=
G G  (27) 
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Hence, by substituting (27) in (25) we obtain: 

 ( )( ) 1
1( )

t

conjconj t
t t t t t

t
e V s eθ

δ β
δ

−
−= ∇ +GG G  (28) 

By conveniently defining: 

 ( ) 1conj t
t t

t

δγλ β
δ

−=  (29) 

we acquire an update rule for the conjugate eligibility traces ( )conj
teG that is similar to rule (8): 

 ( )( ) ( )
1 ( )

t

conjconj conj
t t t tte e V sθγλ −= + ∇ GG G  (30) 

 

Rules (26) and (30) are almost identical to rules (8) and (9) except that λ is variable in (29). 
Hence, they show that TD-conj(0) method can be equivalent to a backward update of TD(λ) 
method with a variable λ. In addition, rule (29) establishes a canonical way of varying λ; 
where we have: 

 ( ) 1conj t t
t

t

β δλ
γ δ

−=  (31) 

The only restriction we have is that there is no immediate guarantee that ( ) [0,1]conj
tλ ∈ . 

Hence, the condition for full equivalency is that ( )conj
tλ satisfies: 

 ( ) 10 1conj t t
t

t

β δλ
γ δ

−≤ = ≤  (32) 

According to (31) and by substituting (14), (15) and (16) we obtain the following different 
ways of calculating ( )conj

tλ : 
 

 
( )

( )
1 1 11( )1

( )
1 1 1 11

( ) ( ) ( )

( ) ( )

t t t

t t

T
t t t t t t t tconj

t T conj
t t t t t t t

V s V s V s

V s V s e

θ θ θ

θ θ

δ δ
λ

γ δ δ

− − −−

− − − −−

⋅∇ − ⋅ ∇ ∇
=

⋅∇ − ⋅∇

G G G

G G G  (33) 

 

2

( )2
2

1 1 11

( )

( )

t

t

t t t tconj
t

t t t

V s

V s

θ

θ

δ
λ

γδ − − −−

∇
=

∇

G

G
 (34) 

 
( )1 1 11( )3

2
1 1 11

( ) ( ) ( )

( )

t t t

t

T
t t t t t t t tconj

t

t t t

V s V s V s

V s

θ θ θ

θ

δ δ
λ

γδ

− − −−

− − −−

⋅∇ − ⋅∇ ∇
=

∇

G G G

G
 (35) 

which proves our theorem □. 
There are few things to be realized from Theorem 1: 
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( )conj
tλ  should be viewed as a more general form of λ which can magnify or shrink the trace 

according to how much it has confidence in its estimation. TD with variable λ has not been 
studied before (Sutton and Barto 1998), and ( )conj

tλ  gives for the first time a canonical way to 
vary λ depending on conjugate gradient directions.   
From (31) it can be realized that both tδ  and 1tδ −  are involved in the calculations of the 
eligibility traces. This means that the division cancels the direct effect of an error δ  and 
leaves the relative rate-of-changes between consequent steps of this error to play the big role 
in changing ( )conj

tλ  according to (31).  
Since [0,1]γ ∈  and ( )conj

tλ  should satisfy that ( ) [0,1]conj
tλ ∈ , so as the term ( )conj

tγλ  should 
satisfy ( )0 1conj

tγλ≤ ≤ . Therefore, condition (32) can be made more succinct: 

 10 1t
t

t

δβ γ
δ

−≤ ≤ ≤  (36) 

The initial eligibility trace is: 

 ( )
0 0 0 00

0 0

1 1 2 ( )
2 2 t

conje p V sθδ
δ δ

= = ∇ GG G ( )
0 00 ( )

t

conje V sθ⇒ = ∇ GG  (37) 

 

From an application point of view, it suffices for ( )conj
tλ  value to be forced to this condition 

whenever its value goes beyond 1 or less than 0:  

 0)0(,1)1( )()()()( ←⇒<←⇒> conj
t

conj
t

conj
t

conj
t ifif λλλλ  (38) 

If ( )t tV s is approximated by a linear approximation ( ) T
t t t tV s θ ϕ=

G G  then:  ( )
t t t tV sθ ϕ∇ =G G , in this 

case we have from (30) that: 

 ( )( ) ( )
1

conjconj conj
t t t te eγλ φ−= +

GG G  (39) 
 

λ can be defined by substituting ( )
t t t tV sθ φ∇ =G

G
 in (33), (34) and (35) respectively as follows: 

( )
( )

( )2
1 11 1( ) ( ) ( )1 2 3

2 2
1 11 1 1 11

, ,

T T
t t t t tt t t t t t tconj conj conj

t t tT
t tt t t t tt t e

δ φ δ φ φ δ φ δ φ δ φ φ
λ λ λ

δ φ δ φδ φ δ φ

− −− −

− −− − − −−

− −
= = =

−

G G G G G G G

G GG G G  (40) 

Any method that depends on TD updates such as Sarsa or Q-learning can take advantage of 
these new findings and use the new update rules of TD-conj(0). 
This concludes our study of the properties of TD-conj(0) method and we move next to the 
model. 

4. The visual homing Sarsa-conj(0) model 
For visual homing it is assumed that the image at each time step represents the current state, 
and the state space S is the set of all images, or views, that can be taken for any location 
(with specific orientation) in the environment. This complex state space has two problems. 
Firstly, each state is of high dimensionality, i.e. it is represented by a large number of pixels. 
Secondly, the state space is huge, and a policy cannot be learned directly for each state. 



Advances in Reinforcement Learning 

 

234 

Instead, a feature representation of the states is used to reduce the high-dimensionality of 
the state space and to gain the advantages of coding that allows a parameterized 
representation to be used for the value function (Stone, Sutton et al. 2005). In turn, 
parameterization permits learning a general value function representation that can easily 
accommodate for new unvisited states by generalization. Eventually, this helps to solve the 
second problem of having to deal with a huge state space. 
The feature representation can reduce the high-dimensionality problem simply by reducing 
the number of components needed to represent the views. Hence, reducing dimensionality 
is normally carried out at the cost of less distinctiveness for states belonging to a huge space. 
Therefore, the features representation of the state space, when successful, strikes a good 
balance between distinctiveness of states and reduced dimensionality. This assumption is of 
importance towards the realization of any RL model with a high-dimensional states 
problem. 
 

4.1 State representation and home information 
One representation that maintains an acceptable level of distinctiveness and reduces the 
high-dimensionality of images is the histogram. A histogram of an image is a vector of 
components, each of which contains the number of pixels that belong to a certain range of 
intensity values. The significance of histograms is that they map a large two-dimensional 
matrix to a smaller one-dimensional vector. This effectively encodes the input state space 
into a coarser feature space. Therefore, if the RGB (Red, Green, and Blue) representation of 
colour is used for an image the histogram of each colour channel is a vector of components, 
each of which is the number of pixels that lie in the component's interval. The interval each 
component represents is called the bin, and according to a pre-specified bin size of the range 
of the pixel values, a pre-specified number of bins will be obtained.  
A histogram does not preserve the distinctiveness of the image, i.e. two different images can 
have the same histogram, especially when low granularity bin intervals are chosen. 
Nevertheless, histograms have been found to be widely acceptable and useful in image 
processing and image retrieval applications (Rubner and et al. 2000). Other representations 
are possible, such as the one given by the Earth Mover's Distance (Rubner and et al. 2000). 
However, such mapping is not necessary for the problem here since the model will be 
dealing with a unified image dimension throughout its working life, because its images are 
captured by the same robot camera. 
The feature representation approach does not give a direct indication of the distance to the 
goal location. Although the assumption that the goal location is always in the robot's field of 
view will not be made, by comparing the current view with the goal view(s) the properties 
of distinctiveness, distance and orientation can be embodied to an extent in the RL model. 
Since the home location can be approached from different directions, the way it is 
represented should accommodate for those directions. Therefore, a home (or goal) location 
is defined by m snapshots called the stored views. A few snapshots (normally 3m ≥ ) of the 
home location are taken at the start of the learning stage, each from the same fixed distance 
but from a different angle. These snapshots define the home location and are the only 
information required to allow the agent to learn to reach its home location starting from any 
arbitrary position in the environment (including those from which it cannot see the home, 
i.e. the agent should be able to reach a hidden goal location). Fig. 1 shows a sample of a 
three-view representation of a goal location taken in a simulated environment. 
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Fig. 1. Sample of a three-view representation taken from three different angles for a goal 
location with their associated histograms in a simulated environment. 

4.2 Features vectors and radial basis representation 
A histogram of each channel of the current view is taken and compared with those of the 
stored views through a radial basis function (RBF) component. This provides the features 
space : nSΦ → ℜ  representation (41) which is used with the Sarsa-conj algorithm, described 
later: 

 ( ) ( ) ( )( )2

2

( ) ( , )
( , ) exp

ˆ2 i

i t i
i t

h s c h v c j
s c jφ

σ

⎛ ⎞−⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 (41) 

 

Index t stands for the time step j for the jth stored view, and c is the index of the channel, 
where the RGB representation of images is used. Accordingly, ( , )v c j  is the channel c image 
of the jth stored view, ( )( , )ih v c j  is histogram bin i of image ( , )v c j , and ( )( )i th s c  is 
histogram bin i of channel c of the current (t) view. The number of bins will have an effect 
on the structure and richness of this representation and hence on the model. It should be 
noted that the radial basis feature extraction used here differs from the radial basis feature 
extraction used in (Tsitsiklis and Van Roy 1996). The difference is in the extraction process 
and not in the form. In their feature extraction, certain points is are normally chosen from 
the input space nℜ  to construct a linear combination of radial basis functions. Those points 
in that representation are replaced in this work by the bins themselves. 
Further, the variance of each bin will be substituted by a global average of the variances of 
those bins. 
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 2 2

1
ˆ (1 1) ( )i

T

i
t

T h tσ Δ
=

= − ∑  (42) 

 ( ) ( )( )22( ) ( ) ( , )i i t ih t h s c h v c jΔ = −  (43) 
 

where T is the total number of time steps. To normalize the feature representation the scaled 
histogram bins ( )( ) /i th s c H  are used, assuming that n is the number of features we have: 
 

 ( ) ( )( , ) ( )n n
i i ti ih v c j h s c H= =∑ ∑  (44) 

 

where it can be realized that H  is a constant and is equal to the number of all pixels taken 
for a view. Hence, the final form of the feature calculation is: 
 

 ( ) ( ) ( )( )2

2 2

( ) ( , )
( , ) exp

ˆ2
i t i

i t
h s c h v c j

s c j
H

φ
σ

⎛ ⎞−⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 (45) 

 

It should be noted that this feature representation has the advantage of being in the interval 
[0 1], which will be beneficial for the reasons discussed in the next section. 
The feature vector of the current view (state) is a union of all of the features for each channel 
and each stored view, as follows: 
 

 ( )
3

1
1 1 1

( ) ( , ) ( , , , , )
m B

t i t i n
j c i

s s c jϕ φ φ φ
= = =

Φ = =⊕⊕⊕ … …  (46) 

 

where m is the number of stored views for the goal location, 3 channels are used, and B is 
the number of bins to be considered. Since an RGB image with values in the range of [0 255] 
for each pixel will be used, the dimension of the feature space is given by: 
 

 256( ( ) 1)n C B m C round m
b

= × × = × + ×  (47) 

 

where b is the bin’s size and 3C =  is the number of channels. Different bin sizes give 
different dimensions, which in turn give different numbers of parametersθ

G
that will be used 

to approximate the value function.  

4.3 NRB similarity measure and the termination condition 
To measure the similarity between two images, the sum of all the Normalized Radial Basis 
(NRB) features defined above can be taken and then divided by the feature dimension. The 
resultant quantity is scaled to 1 and it expresses the overall belief that the two images are 
identical:  
 

 ( )1( ) n
t tiiNRB s s nφ

=
= ∑

G
 (48) 
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For simplicity the notation ( )tNRB s  and tNRB  will be used interchangeably. Other 
measures can be used (Rubner and et al. 2000). In previous work the Jeffery divergence 
measure was used (Altahhan Burn, et al. 2008). However the above simpler measure was 
adopted because it is computationally more efficient for the proposed model since it only 
requires an extra sum and a division operations. JDM has its own logarithmic calculation 
which cost additional computations. 
Another benefit of NRB is that it is scaled to 1 – a uniform measure can be interpreted more 
intuitively.  On the other hand, it is impractical to scale Jeffery Divergence Measure because 
although the maximum is known to be 0 there is no direct indication of the minimum. Fig. 2 
demonstrates the behaviour of NRB; the robot was placed in front of a goal location and the 
view was stored. The robot then has been let to rotate in its place form -90° (left) to 
+90° (right); in each time step the current view has been taken and compared with the stored 
view and their NRB value was plotted. As expected the normal distribution shape of those 
NRB values provide evidence for its suitability. 
 

 steps 

NRB 
values  

 
 

(a)          (b) 

Fig. 2. (a): Current view of agent camera. (b) The plotted values of the normalized radial 
bases similarity measure of a sample π rotation.  

An episode describes the collective steps of an agent starting from any location and 
navigating in the environment until it reaches the home location. The agent is assumed to 
finish an episode and be at the home location (final state) if its similarity measure indicates 
with high certainty upperψ  that its current view is similar to one of the stored views. This 
specifies the episode termination condition of the model. 
 

( )t upperIf NRB s ψ≥ ⇒  Terminate Episode 
 

Similarly, the agent is assumed to be in the neighbourhood of the home location with the 
desired orientation ( )t lowerIf NRB s ψ≥  where upper lowerψ ψ≥ . This situation is called home-at-
perspective and the interval [ , ]upper lowerψ ψ  is called the home-at-perspective confidence 
interval. 
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4.4 The action space 
In order to avoid the complexity of dealing with a set of actions each with infinite resolution 
speed values (which in effect turns into an infinite number of actions), the two differential 
wheel speeds of the agent are assumed to be set to particular values, so that a set of three 
actions with fixed values is obtained. The set of actions is A = [Left_Forward, Right_Forward, 
Go_Forward]. The acceleration of continuous action space cannot be obtained using this 
limited set of actions. Nevertheless, by using actions with a small differential speed ( i.e. 
small thrust rotation angle) the model can still get the effect of continuous rotation by 
repeating the same action as needed. This is done at the cost of more action steps.  
A different set of actions than the limited one used here could be used to enhance the 
performance. For example, another three actions [Left_Forward, Right_Forward, Go_Forward] 
with double the speed could be added, although more training would be a normal 
requirement in this case. One can also add a layer to generalize towards other actions by 
enforcing a Gaussian activation around the selected action and fade it for other actions, as in 
(Lazaric, Restelli et al. 2007). In this work, however, the action set was kept to a minimum to 
concentrate on the effect of other components of the model. 

4.5 The reward function 
The reward function r depends on which similarity or dissimilarity function was used, and 
it consists of three parts: 

 1cost+NRB t tr NRB NRB−= Δ +  (49) 
 

The main part is the cost, which is set to -1 for each step taken by the robot without reaching 
the home location. The other two parts are to augment the reward signal to provide better 
performance. They are: 
Approaching the goal reward. This is the maximum increase in similarity between the 
current step and the previous step. This signal is called the differential similarity signal and 
it is defined as:  

 ( )1 1t t tNRB NRB NRB− −Δ = −  (50) 
 

The Position signal, which is simply expressed by the current similarity NRBt. Thus, as the 
current location differs less from the home location, this reward will increase. Hence, the 
reward can be rewritten in the following form: 
 
 

 1cost+2NRB t tr NRB NRB −= −  (51) 
 

The two additional reward components above will be considered only if the similarity of t 
and t-1 steps are both beyond the threshold lowerψ  to ensure that home-at-perspective is 
satisfied in both steps. This threshold is empirically determined, and is introduced merely to 
enhance the performance. 

4.6 Variable eligibility traces and update rule for TD(λt(conj)) 
An eligibility trace constitutes a mechanism for temporal credit assignment. It indicates that 
the memory parameters associated with the action are eligible for undergoing learning 
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changes (Sutton and Barto 1998). For visual homing, the eligibility trace for the current 
action a is constructed from the feature vectors encountered so far. More specifically, it is the 
discounted sum of the feature vectors of the images that the robot has seen previously when 
the very same action a had been taken. The eligibility trace for other actions which have not 
been taken while in the current state is simply its previous trace but discounted, i.e. those 
actions are now less accredited, as demonstrated in the following equation. 
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 (52) 

 

λ is the discount rate for eligibility traces teG  and γ  is the rewards discount rate . The 
eligibility trace components do not comply with the unit interval i.e. each component can be 
more than 1. The reward function also does not comply with the unit interval. The update 
rule that uses the eligibility trace and the episodically changed learning rate epα  is as 
follows: 

 ( ) ( ) ( )t t ep t t ta a aα δ← + ⋅ ⋅θ θ e
G G G

 (53) 

As it was shown above and in (Altahhan 2008) the conjugate gradient TD-conj(0) method is 
translated through an equivalency theorem into a TD(λ) method with variable λ denoted as 
TD( ( )conj

tλ ) with the condition that ( )0 1conj
tλ≤ ≤ . Therefore, to employ conjugate gradient 

TD, equation (52) can be applied to obtain the eligibility traces for TD-conj. The only 
difference is that λ is varying according to one of the following possible forms: 
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TD-conj(0) (and any algorithm that depends on it such as Sarsa-conj(0) (Altahhan 2008) is a 
family of algorithms, not because its λ is changed automatically from one step to the other, 
but because λ can be varied using different types of formulae. Some of those formulae are 
outlined in (25) for linear function approximation. 
In addition, those values of ( )conj

tλ  that do not satisfy ( )0 1conj
tλ≤ ≤ , can be forced according 

to the following:  
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The eligibility traces can be written as: 
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For episodic tasks γ can be set to 1 (absence). Finally the update rule is identical to (52), 
where the conjugate eligibility trace is used instead of the fixed λ eligibility trace: 

 ( )( ) ( ) ( )conj
t t ep t t ta a aα δ← + ⋅ ⋅θ θ e

G G G  (56) 
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4.7 The policy used to generate actions 
A combination of the ε-greedy policy and Gibbs soft-max (Sutton and Barto 1998) policy is 
used to pick up an action and to strike a balance between exploration and exploitation. 

 ( , ( )) ( , ( )) Pr( , ( ))Gibbs i t i t i ta s Gibbs a s a sεπ ϕ ϕ ϕ+ = +
JG JG JG

 (57) 

Using ε-greedy probability allows exploration to be increased as needed by initially setting ε 
to a high value then decreasing it through episodes. 
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The Gibbs soft-max probability given by equation (59) enforces the chances of picking the 
action with the highest value when the differences between the values of it and the 
remaining actions are large, i.e. it helps in increasing the chances of picking the action with 
the highest action-value function when the robot is sure that this value is the right one.  

 

( )

( )
1

exp ( )
( , ( ))

exp ( )

T
t i

i t A
T

t j
j

s a
Gibbs a s

s a

φ θ

φ θ

φ

=

⋅
=

⋅

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦∑

G
G

G

 

(59) 

4.8 The learning method 
The last model component to be discussed is the learning algorithm. The basis of the model 
learning algorithm is the Sarsa(λ) control algorithm with linear function approximation 
(Sutton and Barto 1998). However, this algorithm was adapted to use the TD-conj(0) instead 
of the TD(λ) update rules. Hence, it was denoted as Sarsa-conj(0). From a theoretical point of 
view, TD-conj(0)– and any algorithm depending on its update such as Sarsa-conj(0) – uses 
the conjugate gradient direction in conjunction with TD(0) update. While, from an algorithm 
implementation point of view, according to the equivalency theorem, TD-conj(0) and Sarsa-
conj(0) have the same skeleton of TD(λ) and Sarsa(λ) (Sutton and Barto 1998) with the 
difference that TD-conj(0) and Sarsa-conj(0) use the variable eligibility traces ( )conj

tλ  
(Altahhan 2008). The benefit of using TD-conj(0) update is to optimize the learning process 
(in terms of speed and performance) by optimizing the depth of the credit assignment 
process according to the conjugate directions, purely through automatically varying λ in 
each time step instead of assigning a fixed value to λ manually for the duration of the 
learning process. 
Sarsa is an on-policy bootstrapping algorithm that has the properties of (a) being suitable for 
control, (b) providing function approximation capabilities to deal with huge state space, and 
(c) applying on-line learning. These three properties are considered ideal for the visual robot 
homing (VRH) problem. The ultimate goal for VRH is to control the robot to achieve the 
homing task, the state space is huge because of the visual input, and on-line learning was 
chosen because of its higher practicality and usability in real world situations than off-line 
learning. 
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Fig. 3. Dynamic-policy Sarsa-conj(0) control, with RBF features extraction, linear action-value 
function approximation and Policy Improvement. The approximate Q is implicitly a function 
of θ
G

. ( )conj
tλ  can be assigned to any of the three forms calculated in the preceding step. 

The action-value function was used to express the policy, i.e. this model uses a critic to 
induce the policy. Actor-critic algorithms could be used, which have the advantage of 
simplicity, but the disadvantage of high variance in the TD error (Konda and Tsitsiklis 
2000). This can cause both high fluctuation in the values of the TD error and divergence. 
This limitation was addressed in this model by carefully designing a suitable scheme to 
balance exploration and exploitation according to a combination of Gibbs distribution and ε-
greedy policy. The Gibbs exponential distribution has some important properties which 
helped in realizing the convergence. According to (Peters, Vijayakumar et al. 2005) it helps 
the TD error to lie in accordance with the natural gradient.  
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In that sense this model is a hybrid model. Like any action-value model it uses the action-
value function to induce the policy, but not in a fixed way. It also changes the policy 
preferences (in each step or episode) towards a more greedy policy like any actor-critic 
model. So it combines with and varies between action-value and actor-critic models. It is felt 
that this hybrid structure has its own advantages and disadvantages, and the convergence 
properties of such algorithms need to be studied further in the future. 
TD-conj(0) learns on-line through interaction with software modules that feed it with the robot 
visual sensors (whether from simulation or from a real robot). The algorithm coded as a 
controller returns the chosen action to be taken by the robot, and updates its policy through 
updating its set of parameters used to approximate the action-value function Q. Three linear 
networks are used to approximate the action-value function for the three actions.  

Aia ia
n

ia
i

ia
i ,..1),,,,()( )()()(

1)( == θθθ ……
G
θ  

The current image was passed through an RBF layer, which provides the feature vector 
),,,,()( 1 nits φφφ ……G

=φ . The robot was left to run through several episodes. After each 
episode the learning rate was decreased, and the policy was improved further through 
general policy improvement theorem (GPI).  The overall algorithm is shown in Fig. 3.  
The learning rate was the same used by (Boyan 1999) 

 episoden
n

ep +
+

⋅=
0

0
0

1αα
 

(60) 

This rate starts with the same value as 0α  then is reduced exponentially from episode to 
episode until the final episode. n0 is a constant that specifies how quickly epα is reduced. It 
should be noted that the policy is changing during the learning phase. The learning 
algorithm evaluates the same policy that it generates the samples from, i.e. it is an on-policy 
algorithm. It uses the same assumption of the general policy improvement principle to 
anticipate that even when the policy is being changed (improved towards a more greedy 
policy) the process should lead to convergence to optimal policy. It moves all the way from 
being arbitrarily stochastic to becoming only ε-greedy stochastic. 

5. Experimental results 
The model was applied using a simulated Khepera (Floreano and Mondada 1998) robot in 
Webots™ (Michel 2004) simulation software. The real Khepera is a miniature robot, 70 mm 
in diameter and 30 mm in height, and is provided with 8 infra-red sensors for reactive 
behaviour, as well as a colour camera extension. 
A (1.15 m x 1 m) simulated environment has been used as a test bed for the model. The task 
is to learn to navigate from any location in the environment to a home location (without 
using any specific object or landmark). For training, the robot always starts from the same 
location, where it cannot see the home location, and the end state is the target location. After 
learning the robot can be placed in any part of the environment and should be able to find 
the home location. 
Fig. 4 shows the environment used. The home is assumed to be in front of the television set. 
A cone and ball of different colours are included to enrich and add more texture to the home 
location. It should be re-emphasized that no object recognition techniques were used, only 
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the whole image measure. This allows the model to be applied to any environment with no 
constraints and with minimal prior information about the home. The controller was 
developed using a combination of C++ code and Matlab Engine code.  
 

 

Target locations Khepera robot in its starting location 

 
Fig. 4. A snapshot of the realistic simulated environment. 
The robot starts by taking three (m=3) snapshots for the goal location. It then undergoes a 
specific number (EP) of episodes that are collectively called a run-set or simply a run. In 
each episode the robot starts from a specific location and is left to navigate until it reaches 
the home location. The robot starts with a random policy, and should finish a run set with 
an optimised learned policy.  

5.1 Practical settings of the model parameters 
Table 1 summarises the various constants and parameters used in the Sarsa-conj(0) algorithm 
and their values/initial values and updates. Each run lasts for 500 episodes (EP=500), and the 
findings are averaged over 10 runs to insure validity of the results. The feature space 
parameters were chosen to be b=3, m=3. Hence, n = 3×(round(256/3)+1)×3 = 774. This middle 
value for b, which gives a medium feature size (and hence medium learning parameters 
dimension), together with the relatively small number of stored views (m=3), were chosen 
mainly to demonstrate and compare the different algorithms on average model settings. 
However, different setting could have been chosen. 
The initial learning rate was set to ( ) ( ) ( ) ( ) 6

0 1 1 1 500 1 1000 2 10EP n −= × ≈ × = ×α  in 
accordance with the features size and the number of episodes. This is to divide the learning 
between all features and all episodes to allow for good generalization and stochastic 
variations. The learning rate was decreased further from one episode to another, equation 
(59), to facilitate learning and to prevent divergence of the policy parameters θ

G
 (Tsitsiklis 
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and Van Roy 1997) (especially due to the fact that the policy itself is changing). Although 
factor ( )conj

tλ  in TD-conj(0) is a counterpart of fixed λ in conventional TD(λ), in contrast with 
λ it varies from one step to another to achieve better results. The discount constant was set 
to 1γ = , i.e. the rewards sum does not need to be discounted through time because it is 
bounded,  given that the task ends after reaching the final state at time T. 
 

Symbol Value Description 

EP 500 Number of episodes in each run 

α0 6
0 2 10 (1 ) (1 )EP n−= × ≈ ×α  Initial learning rate 

αep ( ) ( )( )0 0 01ep n EP n EP ep= × + × +α α  Episode learning rate 

n0 75%EP Start episode for decreasing αep 

0ε  0.5 Initial exploration rate 

epε  ( ) ( )( )0 0 01ep n EP n EP ep= × + × +ε ε  Episodic exploration rate 

n0ε 50%EP Start episode for decreasing εep 

γ 1 The reward discount factor 

m 3 Number of snapshots of the home 

b 3 Features histograms bin size 

Table 1. The model different parameters, their values and their description. 

,upper lowerψ ψ  are determined empirically and were set to 0.96 and 0.94 respectively when 
using the NRB measure and b=m=3. These setting simply indicate that to terminate the 
episode the agent should be ≥ 96% sure (using the NRB similarity measure) that its current 
view corresponds with one (or more) of the stored views in order to assume that it has 
reached the home location. Furthermore, they indicate that the agent should be ≥ 94% sure 
that its current view is similar to the stored views to assume that it is in the home-at-
perspective region. 

5.2 Convergence results 
Fig. 5. shows the learning plots for the TD-conj(0) ≡ TD( conj

tλ ) where the 1 conj
tλ  was used. 

Convergence is evident by the exponential shape of all of the plots. In particular the 
cumulative rewards converged to an acceptable value. The steps plot resonates with the 
rewards plot, i.e. the agent attains gradually good performance in terms of cumulative 
rewards and steps-per-episode. The cumulative changes made to the policy parameters 
have also a regular exponential shape, which suggests the minimization of required learning 
from one episode to another. It should be noted that although the learning rate is decreased 
through episodes, if the model were not converging then more learning could have occurred 
in later episodes, which would have deformed the shape of the changes in the policy 
parameters plot.  
λ can take any value in the [0 , 1] interval. It has been shown by (Sutton and Barto 1998) that 
the best performance for TD(λ) is expected to be when λ has a high value close to 1, such as 
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0.8 or 0.9 depending on the problem. λ=1 is not a good candidate as it approximates Monte 
Carlo methods and has noticeably inferior performance than smaller values (Sutton and 
Barto 1998). It should also be noted that the whole point of the suggested TD-conj(0) method 
is to optimize and automate the selection of λ in each step to allow TD to perform better and 
avoid trying different values for λ. 
 

 
Fig. 5. TD(1λt(conj)) algorithm’s performance (a) The cumulative rewards. (b) The number of 
steps. (c): The cumulative changes of the learning parameters. 
Fig. 6. shows that the learning rate decreased per episode. The exploration factor rate was 
decreased using a similar method. The overall actual exploration versus exploitation 
percentage is shown in Fig. 6(c). The Temporal error for a sample episode is shown in Fig. 
6(d). Fig. 6(e) shows the trace decay factor 1λt(conj) for the same sample episode. It can be seen 
that for 1λt(conj) , most of the values are above 0.5. As has been stated in the Equivalency 
Theorem, there is no guarantee that λt(conj) satisfies the condition 0 ≤ λt(conj) ≤ 1. Nevertheless, 
for most of the values this form of λt(conj) does satisfy this condition. For those values that did 
not, it is sufficient to apply the following rule on them: 

 0)0(,1)1( )()()()( ←⇒<←⇒> conj
t

conj
t

conj
t

conj
t ifif λλλλ  (61) 

It should be noted that better performance could have been achieved by the following rule: 

 0)0(,1)1( )()()()( ←⇒<−←⇒> conj
t

conj
t

conj
t

conj
t ifif λλξλλ  (62) 

However, using this rule would mean that the results shown for TD(λt(conj)) might have been  
affected by the higher performance expected for TD update when λt(conj) is close (but not equal) 
 

a 

b 

c 
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Fig. 6. TD(1λt(conj)) algorithm internal variables (a): The learning rate. (b): the exploration 
factor rate. (c): the overall exploration versus exploitation. (d)): the temporal error for a 
sample episode. (e): the trace decay factor λt(conj) 

to 1. This is because for one single update at some time step t TD(λ) and TD(λt(conj)) are 
identical for the same λt(conj) value. It is the collective variation from one TD(λ) update to 
another at each time step that makes TD(λt(conj)) different from TD(λ). Therefore, better 
performance could have been achieved by following rule (62). Hence the performance of 
TD(λt(conj)) could be questionable and shaken when this rule is used. Few values did not satisfy 
the Equivalency Theorem condition - the percentage was 0.0058% for TD(1λt(conj)). To show the 
path taken by the robot in each episode, the Global Positioning System (GPS) was used to 
register the robot positions (but not to aid the homing process in any way). Fig. 7. shows the 
evident improvements that took place during the different learning stages. 

5.3 Action space and setting exploitation versus exploration 
Since action space is finite, and to avoid fluctuation and overshoot in the robot behaviour, 
low wheel speeds were adopted for these actions. This in turn required setting the 
exploration to a relatively high rate (almost 50%) during the early episodes. It was then 
dropped gradually through episodes, in order to make sure that most of the potential paths 
were sufficiently visited. Setting exploration high also helps to decrease the number of 
episodes needed before reaching an acceptable performance. This explains the exponential 
appearance of the different learning curves. 
The features variance also played a role in the exploration/exploitation rates. This was 
because 2

0σ̂  was initialized in the first episode with ( )2 imσ , the variance of the goal 

a

b

c

d 

e 
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location snapshots, then it was updated in subsequent episodes until it was stable. This 
encourages the agent to explore the environment more in the first episode than any other, 
which results in big differences between the first and the rest of the episodes. Therefore, it 
should be noted that all of the episodic figures have been plotted excluding the first episode, 
to prevent the graphs from being unnecessarily mis-scaled. 
 

b

a

c

d

 
Fig. 7. TD(1λt(conj)) algorithm performance for the homing problem (a, b, c): GPS plots for 
early, middle and last episodes, they show the trajectory improvement that took place during 
learning. (d): the timing plot of the 10 run sets (trials). 

6. TD(λt
(conj))  and TD(λ) comparisons study 

6.1 Rewards comparison 
Fig. 8. shows the fitted curves for the rewards plots of the different TD(λ) and TD(λt(conj)) 
algorithms. It summarizes the experiments conducted on the model and its various 
algorithms in terms of the gained rewards. The model uses Sarsa(λ), and Sarsa(λt(conj)), 
algorithms with a dynamic-policy. It should be recalled that the only difference between the 
two algorithms is that one uses TD(λ) update and the other uses TD(λt(conj)) update. 
Therefore, the comparisons highlight the differences between TD(λ) and TD(λt(conj)) updates, 
and the collective study highlights the dynamic-policy algorithm behaviour. 
Several interesting points can be realized in this figure: The three TD(λt(conj)) algorithms 
climb quicker and earlier (50-150 episodes) than the five TD(λ) algorithms then: TD(1λt(conj)) 
and TD(2λt(conj)) keeps a steady performance to finally dominate the rest of the algorithms. 
While, although the fastest (during the first 150 episodes), TD(3λt(conj)) deteriorates after that. 
TD(λ) algorithms performances varied but they were slower and in general performed 
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Fig. 8. Overall comparisons of different TD(λ) methods for λ = 0, 0.4, 0.8 and TD(λt(conj)) for 
1λt(conj), 2λt(conj) and 3λt(conj) using the fitted returns curves for 10 runs each with 500 episodes. 

worse than TD(λt(conj)) algorithms: TD(0.4) climbed quickly and its performances declined 
slightly at the late episodes (after 350 episodes). TD(0) did the same but was slower. 
TD(0.95, 0.8) climbed slowly but kept a steady improvement until they came exactly under 
TD(1λt(conj)) and TD(2λt(conj)). TD(0.9) performed slightly better than TD(λt(conj)) at a middle 
stage (150-350), then it declined after that. TD(0.9) was similar to TD(3λt(conj)) although it was 
slower at the rise and the fall. 
Therefore, for the fastest but short term performance TD(3λt(conj)) is a good candidate. For a 
slower and good performance on the middle run TD(0.9) might still be a good choice. For a 
slower and long term performance TD(0.8) and TD(0.95) is a good choice.  
For both the fastest and best overall performance in the long term TD(1λt(conj)) and TD(2λt(conj)) 
are the best choices. Nevertheless, those findings are guidelines and even for the tackled 
problem they do not tell the whole story. As will be shown in the following section, other 
performance measure can further give a better picture about those algorithms. 

6.2 Comparisons beyond the rewards 
Fig. 9. summarizes different comparisons between the different algorithms using averages 
of different performance measures for the same run sets mentioned in the previous section.  

6.2.1 The figure structure 
The set of algorithms that uses TD(λ) updates is shown in blue dots (connected), while the 
set of the new proposed TD(λt(conj)) is shown in red squares (not connected). Each measure 
has been demonstrated in an independent plot. The horizontal axes were chosen to be the λ 
value for TD(λ), while for TD(λt(conj)) there is no specific value for λ as it is varying from one 
step to another (therefore disconnected). However, for the purpose of comparing TD(1λt(conj)), 
TD(2λt(conj)) and TD(3λt(conj)) algorithms, their measures were chosen to be correlate with 
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TD(0.8), TD(0.9) and TD(0.95) respectively. The arrow to the left of each plot refers to the 
direction of good performance. The figure is divided horizontally into two collections; one 
that is concerned with the during-learning measures and contains six plots distributed along 
two rows and three columns. The other collection is concerned with the after-learning 
measures and contains three plots that are distributed over one row. 
The first row of the during-learning collection contains measures that are RL related such as 
the rewards and the parameters changes. The second row of the first collection is associated 
with the problem under consideration, i.e. the homing task. For testing purposes, the 
optimal route of the homing task can be designated in the studied environment. The 
difference between the current and the desired positions can be used to calculate the root 
mean squared error (RMS) of each time step, which are then summed to form the RMS for 
each episode, and those in turn can be summed to form the run set RMS. Two different 
performance measures were proposed using the GPS; their results are included in the 
second row of the figure. The first depends on the angular difference between the current 
and the desired orientations and is called the angular RMS. The second depends on the 
difference between the current and the desired movement vectors, and is called vectorial 
RMS. All of these measures was taken during learning (performing 500 episodes) hence the 
name. All of the during-learning measures in this figure were averaged over 10 run sets 
each with 500 episodes. 
The second collection are measures that have been taken after the agent finished the 500 
(learning episodes) ×10 (run sets); where it was left to go through 100 episodes without any 
learning. In those episodes the two policy components (Gibbs and ε-greedy) were restricted 
to an ε-greedy component only and the policy parameters used are the averaged parameters 
of all of the previous 10 run sets (performed during-learning). The Gibbs component was 
added initially to allow the agent to explore the second best guess more often than the third 
guess (action). Nevertheless, keeping this component after learning would increase the 
arbitrariness and exploration of the policy which is not desired anymore therefore it was 
removed. 
The three measures in the after-learning collection are related to the number of steps needed 
to complete the task. The steps average measures the average number of steps needed by the 
agent to complete the task. Another two scales measures the rate of successes of achieving 
the task within a pre-specified number of steps (175 and 185 steps1). 

6.2.2 The algorithms assessment 
To assess the performance of the algorithms TD(λ) algorithms will be analyzed first then the 
focus is switched to TD(λt(conj)). Apparently, when the blue dots are examined in the first 
row, it can be seen that (a and b) appears to have a theme for TD(λ); the number of steps and 
the accumulated rewards both have a soft peak. The best TD(λ) algorithm is TD(0.9). This 
suggests that the peak of TD(λ) for the particular studied homing task is near that value. 
During-learning TD(0.9) could collect the most rewards in the least number of steps, 
however it caused more changes than the rest (except for TD(0.95)). 
When the red squares are examined in the first row of plots it can be seen that TD(1λt(conj)) 
and TD(2λt(conj)) performed best in terms of the gained rewards (as was already pointed out 
in the previous subsection). What is more, they incurred less changes than any other 
algorithm which is an important advantage over other algorithms. 
                                                 
1 These two numbers were around the least number of steps that could be realized by the agent without 
highly restricting its path, they were empirically specified 
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Fig. 9. Overall comparisons of different TD(λ) methods for λ = 0, 0.4, 0.8, 0.9, 0.95 and 
TD(λt(conj)) for 1λt(conj), 2λt(conj) and 3λt(conj). The arrows refer to the direction of better 
performance. 
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6.2.3 Calculations efficiency and depth of the blame 
There are some interesting points to note when examining the changes in the policy 
parameters. Mean Δθ appears to have a theme for TD(λ); the changes to θ increase with λ. 
When the Mean Δθ is compared for the best two algorithms (during learning) TD(1λt(conj)) 
and TD(λ=0.9), it can be seen that TD(1λt(conj)) caused less changes to the learning parameters 
but still outperformed TD(λ=0.9). TD(1λt(conj)) avoids the unnecessary changes for the policy 
parameters and hence avoids fluctuations of performance during learning. It only 
performed the necessary changes. On the other hand TD(λ=0.9) always ‘blames’ the 
previous states trace equally for all steps (because λ is fixed) and maximally (because λ=0.9 
has a high value). TD(1λt(conj)) gets the right balance between deep and shallow blame (credit) 
assignment by varying the deepness of the trace of states to be blamed and incurs changes 
according to the conjugate gradient of the TD error. 

6.2.4 Time efficiency  
The execution time Mean(Time) provides even more information than Mean Δθ. Both 
TD(1λt(conj)) and TD(λ=0.9) have almost identical execution times, although  the execution 
time for TD(1λt(conj)) was initially anticipated to be more than any TD(λ) because of the extra 
time for calculating λt(conj). This means that with no extra time cost or overhead TD(1λt(conj)) 
achieved the best performance, which are considered to be important results. 
TD(2λt(conj)) performed next best, after TD(1λt(conj)), according to the Mean(RT) and Mean(T) 
performance measures, but not in terms of policy parameters changes or execution time; for 
those, TD(λ=0.9) still performed better. This means that this form of 2λt(conj) achieved better 
performance than λ=0.9, but at the cost of extra changes to the policy parameters, and 
incurred extra time overhead for doing so. 

6.2.5 ε-Greedy divergence 
ε-greedy divergence is a divergence that occurs after learning when the agent changes from 
the decreasing ε-greedy-Gibbs policy to a fixed ε-greedy policy. It has occurred sometimes 
especially when the agent had to switch from the reinforcement learning behaviour to the 
reactive behaviour near the walls and obstacles. For example the TD(λ=0.9) and TD(2λt(conj)) 
diverged in this way. Also using the walls more is the likely cause that made the RMS(w) of 
TD(0.95) to beat the RMS(w) of TD(0.4). 

7. Summary and conclusion 
So Who Wins? In summary, TD(1λt(conj)) outperformed all of the described algorithms during 
learning, while TD(3λt(conj)) outperformed all of the described algorithms after learning. 
TD(1λt(conj)) and TD(2λt(conj)) suite more a gradual learning process while TD(3λt(conj)) suits 
quick and more aggressive learning process. TD(1λt(conj)) might still be preferred over the 
other updates because it preformed collectively best in all of the proposed measures (during 
and after learning). This demonstrates that using the historically oldest form of conjugate 
factor β to calculate 1λt(conj), proposed by Hestenes and Steifel, has performed the best of the 
three proposed TD(λt(conj)) algorithms. The likely reason is that this form of λt(conj) uses the 
preceding eligibility trace in its denominator, equation (40), not only the current and 
previous gradients.  
The TD-conj methods has the important advantage over TD(λ) of automatically setting the 
learning variable λt(conj) equivalent to λ in TD(λ), without the need to manually try different λ 
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values. This is the most important contribution of this new method which has been verified 
by the experimental comparisons. TD-conj gives a canonical way of automatically setting λ 
to the value which yields the best overall performance. 
Conclusions and future work 
A new robust learning model for visual robot homing (VRH) has been developed, which 
reduces the amount of required a priori knowledge and the constraints associated with the 
robot’s operating environment. This was achieved by employing a reinforcement learning 
method for control and appropriate linear neural networks, in combination with a reward 
signal and termination condition based on a whole image measure. 
The proposed model is an attempt to address the lack of models for homing that are fully 
adaptive to any environment in which a robot operates. It does not require human 
intervention in the learning process, nor does it assume that those environments should be 
artificially adapted for the sake of the robot. This study shows that visual homing based on 
RL and whole image techniques can offer generality and automated learning properties. 
There are various aspects of novelty, but the two main ones are concerned with the learning 
method and the model. The new TD-conj method is used in an existing RL control 
algorithm, namely Sarsa. The algorithm is applied in a novel RL model designed for visual 
robot homing.  
The use of a whole image measure as a means of termination and to augment the reward 
signal coming from the environment is one element of novelty. The simple NRB is a newly 
established measure shown to be effective. This conforms with the latest findings in 
cognition which asserts that landmarks are not necessary for homing (Gillner, Weiß et al. 
2008). The home location is defined through m snapshots. This, together with the use of a 
whole image measure, allows for robust task execution with minimal required knowledge 
about the target location and its environment. 
Furthermore, it was realized that there is a need to boost RL algorithms that use function 
approximation.  A new family of RL methods, TD-conj(λ), has been established (Altahhan 
2008) by using the conjugate gradient direction instead of the gradient direction in the 
conventional TD(λ) with function approximation. Since TD-conj(0) is proved to be 
equivalent to TD(λ) where λ is variable and is denoted as λt(conj)(Altahhan 2008), this family 
is used in the proposed model as the learning algorithm. 
Some of the advantages of the novel method and model can be summarized in the following 
points. Simplicity of learning: the robot can learn to perform its visual homing (sub-
navigation) task in a simple way, without a long process of map building. Only limited 
storage of information is required in the form of m stored views. No pre- or manual 
processing is required. No a priori knowledge about the environment is needed in the form 
of landmarks. An important advantage of the proposed model over MDP model-based 
approaches is that abduction of the robot is solved directly, i.e. the robot can find its way 
and recover after it has been displaced from its current position and put in a totally different 
position. Other models that use algorithms such as the particle filter (Thrun, Burgard et al. 
2005) can recover from this problem but not as quickly as the proposed model. This is 
because the current view, alone, gives enough information for the trained neural network to 
decide immediately on which action to take, while multimode filters (such as the particle 
filter, or an unscented Kalman filter) may take two or more steps to know where the agent 
is, and then to take a suitable action depending on its location.  
In future research, a number of enhancements are planned to the model. Although setting 
up a suitable exploration/exploitation was automated in the model and required only the 
specification of ε0 and n0ε prior to execution, finding the best balance between these 
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parameters will be a topic for future research. Finally, reducing the number of the learning 
parameters is another issue that is being investigated. 
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1. Introduction

Reinforcement learning (RL) algorithms are representative active learning algorithms that
can be used to decide suitable actions on the basis of experience, simulations, and searches
(Sutton & Barto, 1998; Kaelbling et al., 1998). The use of RL algorithms for the development
of practical intelligent controllers for autonomous robots and multiagent systems has been
investigated; such controllers help in realizing autonomous adaptability on the basis of
the information obtained through experience. For example, in our previous studies on
autonomous robot systems such as an intelligent wheelchair, we used RL algorithms for an
agent in order to learn how to avoid obstacles and evolve cooperative behavior with other
robots (Hamagami & Hirata, 2004; 2005). Furthermore, RL has been widely used to solve the
elevator dispatching problem (Crites & Barto, 1996), air-conditioning management problem
(Dalamagkidisa et al., 2007), process control problem (S.Syafiie et al., 2008), etc.
However, in most cases, RL algorithms have been successfully used only in ideal situations
that are based on Markov decision processes (MDPs). MDP environments are controllable
dynamic systemswhose state transitions depend on the previous state and the action selected.
On the other hand, because of the limited number of dimensions and/or low accuracy of
the sensors used, real-world environments are considered to be partially observable MDPs
(POMDPs). In a POMDP environment, the agent faces a serious problem called perceptual
aliasing, i.e., the agent cannot distinguish multiple states from one another on the basis of
perceptual inputs. Some representative approaches have been adopted to solve this problem
(Mccallum, 1995; Wiering & Schmidhuber, 1996; Singh et al., 2003; Hamagami et al., 2002).
The most direct representative approach involves the use of the memory of contexts called
episodes to disambiguate the current state and to keep track of information about the previous
state (Mccallum, 1995). The use of this memory-based approach can ensure high learning
performance if the environment is stable and the agent has sufficient memory. However,
since most real-world environments belong to the dynamic class, the memory of experience
has to be revised frequently. Therefore, the revised algorithm often becomes complex and
task-dependent.
Another approach for addressing perceptual aliasing involves treatment of the environment
as a hierarchical structure (Wiering & Schmidhuber, 1996). In this case, the environment
is divided into small sets without perceptual aliasing, so that the agent can individually
learn each small set. This approach is effective when the agent knows how to divide the
environment into sets with non-aliasing states. However, the agent must learn to divide the
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environment accurately and to apply a suitable policy to each divided set. This process is
time-consuming.
In this paper, we introduce a new RL algorithm developed by using a complex-valued
function that represents each state-action value as a complex value. The most important
advantage of using complex values in RL is to use time series information. This simple
extension allows for compensation of the perceptual aliasing problem and ensures that mobile
robots exhibit intelligent behavior in the real world. The complex-valued RL algorithm
has two practical advantages. First, it can be easily combined with conventional simple
algorithms such as Q-learning and Profit Sharing; this is because the proposed algorithm uses
the same framework as do the aforementioned conventional algorithms. Second, the proposed
algorithm does not memorize episodes of experience directly, i.e., the learning/control system
does not require a large memory space.
In the remainder of this paper, we describe the basic idea of complex-valued reinforcement.
In this study, we extend this idea to conventional RL algorithms such as Q-learning and Profit
Sharing. We also perform simulation experiments to demonstrate the effectiveness of the
method in environments involving perceptual aliasing problems.

2. Reinforcment learning with complex-valued function

2.1 Basic idea
Complex-valued neural networks (CVNNs) (Hirose, 2003) are extensions of conventional
real-valued neural networks. In a CVNN, the inputs, outputs, and parameters such as weights
and thresholds are expressed as complex numbers, and hence, the activation function is
inevitably a complex-valued function. The advantage of such a network is that it allows one
to represent the context dependence of information on the basis of both amplitude and phase
structure. The amplitude corresponds to the energy, while the phase represents time lag and
time lead.
The idea of complex-valued RL has been proposed on the basis of the abovementioned
features of CVNNs. In other words, similar to the case of a CVNN, the complex values used
in complex-valued reinforcement learning (CVRL) are expansions of the real values in used
ordinary RL. One of the reasons for introducing complex values in RL is to compensate for
perceptual aliasing by employing the phase representing the context in which the behavior is
observed.
In CVRL, the value function or action-value function is defined as a complex value. Although
we discuss only action-value functions in the following sections, the same ideamay be applied
to state-value functions as well. These complex values are revised by the proposed learning
algorithm, whose framework is almost the same as that of a conventional algorithm. The main
difference between the proposed algorithm and a conventional algorithm is that the former
shifts the phase during the exploration of the environment.
The proposed RL algorithm does not select the best action but returns the most appropriate
action for the given context. This properness is evaluated by using a complex-valued
action-value function and an internal reference value that holds the context of the agent.
The context is a series of observations and actions which the agent has obtained and taken.
A complex-valued action value function is a function of state and action but not of time.
The internal reference value is time-dependent and is updated step-by-step. Namely, our
algorithm separates a time-dependent value function into two parts: a complex-valued action
value function and an internal reference value.
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In the following sections, we describe more specific algorithms that use the complex-valued
function based on Q-learning and PS.

2.2 Basic implementations
2.2.1 Complex-valued Q-learning
Q-learning is a typical RL algorithm that learns the manner in which an environment state can
be identified (C.J.C.H.Watkins, 1989). Q(s, a) indicates the expected value of the reward when
an agent selects action a at state s. In the learning phase, Q(s, a) is revised as follows:

Q(st, at)← (1− α)Q(st, at) + α(r+ γmax
a′

Q(st+1, a
′)) (1)

where α denotes the learning rate; γ, the discount rate; and r, the reward.
The agent decides the next action on the basis of a function named policy. Policy is defined as a
probability distribution over the action set for a given agent state. In this study, the Boltzmann
policy, which gives probability of selecting action according to the Boltzmann distribution, is
employed as a softmax policy.

π(st, a) =
exp(Q(st, a)/T)

∑a′∈A(st) exp(Q(st, a′)/T)
(2)

where T denotes a scale parameter that controls randomness of the policy.
As mentioned above, the agent cannot observe its state directly in POMDPs. The agent can
obtain the observation value x instead of the state s. Therefore, the value function is defined
as a function of a pair of x and a.
The proposed algorithm named Q̇-learning causes the action-value function to expand to a
complex value as follows:

Q̇(xt , at) ← (1− α)Q̇(xt , at) + α(rt+1 + γQ̇(t)
max)β̇ (3)

Q̇(t)
max = Q̇(xt+1, a) (4)

a = argmax
a′∈A(xt+1)

(
Re
[
Q̇(xt+1, a

′) İt
])

(5)

The dot mark ( ˙ ) indicates that the value is complex. β̇ is the degree of rotation of the phase.

Q̇(t)
max is the most appropriate complex-valued action-value in the given context. İt indicates

the complex conjugate of the internal reference value İt. In this study, we assume that the
agent receives a positive reward if it reaches the terminal state.
We employ the following equation to determine the value of İt.

İt= Q̇(xt, at)/β̇ t≥ 0 (6)

(6) shows that Q̇-value and the rotational amount give the internal reference value used in
the next action selection. When this equation is employed, the phase difference between the
internal reference value and the selected action value becomes zero in the MDP environment.
For the first action selection, we cannot determine the internal reference value since there is no
previously selected action value. Therefore, we employ the following heuristics to determine
the internal reference value.

İ−1 = Q̇(x0, a) (7)

a = argmax
a′∈A(x0)

∣∣Q̇(x0, a′)
∣∣ (8)
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internal reference
value

observation action

Action values
in complex numbers

Boltzmann policy
in complex numbers Q-learning

.

Agent

Environment

reward

Fig. 1. Complex-valued reinforcement learning using Q̇-learning and Boltzmann policy.

Furthermore, in order to improve the learning efficiency, we use the concept of eligibility trace
(A.G.Barto et al., 1983).

Q̇(xt−k, at−k)← (1− α)Q̇(xt−k, at−k) + α(rt+1 + γQ̇(t)
max)u̇(k) (9)

where u̇(k) denotes an eligibility parameter. In this study, we employ

u̇(k) = β̇k+1. (10)

where k = 0,1, · · · , and Ne − 1 is the index used for updating the action-values. Ne is the
number of traces. Equation (9) is reduced to (3) if Ne = 1.
In order to select an action, the agent evaluates the action according to the stochastic policy, as
follows:

π İt−1
(xt, a) =

exp
(
Re
[
Q̇(xt, a) İt−1

]
/T
)

∑a′∈A(xt) exp
(
Re
[
Q̇(xt, a′) İt−1

]
/T
) (11)

With this Boltzmann selection, there is a higher probability of the agent choosing the action
corresponding to the Q̇-value, which not only has a greater norm |Q̇| but is also closer in phase
to İt−1. Figure 1 shows an overview of our algorithm.
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2.2.2 Complex-valued profit sharing
based on the method of learning experience reinforcement. The basic idea of this learning is
to share profits on the basis of the evaluation value for action selection v(s, a) when the agent
receives a reward and to reinforce the successful episodes.

v(st, at)← v(st , at) + ft (t=W − 1,W − 2, · · · ,0) (12)

ft =

{
r (t =W − 1)
γ ft+1 (t=W − 2,W − 3, · · · ,0) (13)

where ft denotes the reinforcement function;W, the length of the episode; and γ, the discount
rate.
Then, simple complex-valued profit sharing(scPS) is defined as the extension of these
functions, as follows:

vvv(xt, at) ← vvv(xt, at) + fff t (14)

(t=W − 1,W − 2, · · · ,0)

fff t =

{
r (t=W − 1)
γejωt fff t+1 (t =W − 2,W − 3, · · · ,0)

(15)

where W is the length of each episode. In this section, variables represented in bold face
denote that they are complex.
Fig. 2 shows a comparison of the conventional function ft and the complex-valued function fff t.
Similar to ft, fff t is attenuated, and the plot of the complex-valued function is a spiral around
the time axis. The continuity of the phase on the spiral is expected to represent a context
in which the agent receives a reward. In other words, depending on whether the context
phase is continuous or not, the agent can identify identical state-action pairs that would cause
perceptual aliasing. After learning, the following probability provides the agent’s action. We

employ a roulette selection scheme V(xt, a) = Re
[
vvv(xt, a)iii(t)

]
. Since in the roulette selection

scheme, every weight of the action is considered to be positive, a subset of the action set is
considered:

Asub(xt) = {a ∈ A(xt)|V(xt, a) ≥ 0} (16)

and the policy is defined as follows:

P(xt , a) =

⎧⎪⎨
⎪⎩

V(xt,a)δ(xt,a)

∑a′∈Asub(xt)

(
V(xt,a′)

) for |Asub(xt)| > 0

1
|A(xt)|

otherwise
(17)

δ(x, a) =

{
1 if a ∈ Asub(xt)
0 otherwise (18)

Equation (17) provides a roulette selection scheme in which actions s.t. V(x, a) < 0. If all the
actions are ignored, the agent chooses an action with the equal probability.
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Fig. 2. An example of the complex-valued reinforcement function fff for scPS.

iii represents an internal reference value that is expressed as follows:

iii(t) =

⎧⎨
⎩

exp(jθ0) (t= 0)
exp

(
j
(
θ0 + ∑t

k=1 (−ωk−1)
))

(t= 1,2, · · · ,W − 1)
(19)

where θ0 represents the initial phase iii(0).

2.3 Advanced implementations
2.3.1 Multiple action values
The aim of CVRL is to solve the perceptual aliasing problem by using the context of the agent.
As described below, some of the experimental results obtained support the fact that CVRL
can be successfully used to solve the perceptual aliasing problem. However, it is not possible
for the agent to re-visit given a state many times and take the same action every time in that
state. This is because that the internal reference value changes from the ideal value. Figure
3 illustrates this problem from the point of view of the action values. Figure 3(a) shows an
example of the complex-valued action value corresponding to an observation. In Fig.3(b),
the horizontal axis represents the phase of the internal reference value and the vertical axis
represents effectiveness of the action values in the context. We assume that action a1 is the
suitable action. When the internal reference value is in area A or C, the probability of action
a1 being selected is high. However, as mentioned above, the internal reference value is so
revised that the phase of the value varies along the horizontal axis in each step. In this case,
the agent chooses the undesired action a0 when the phase of the internal reference value is in
area B.
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phase of 
reference value

real part of 
inner product

(a) Action values

Im

Re

(b) Plot of phase of reference value vs real part of inner product

A B C

Fig. 3. Relation between conventional complex-valued action values and internal reference
value (| İ| is normalized)

In order to resolve this problem, the use of multiple action values has been proposed
(Shibuya & Hamagami, 2009). In this case, we assignmultiple values to each action. Formally,
we consider a virtual action set A+(x) for the original action set A(x) and assume that
there exists a corresponding action in A(x) for every action in A+(x). We define action
values for the virtual actions. The agent uses the virtual action set A+(x) for computing
the value function. Namely, the value function is defined on the X × A(x). The agent
executes an original action with respect to the virtual action. Although A+(x) can be learnt
from the agent-environment interaction, we set A+(x) by using a priori knowledge. In this
study, we multiply the action values by an experimental parameter named multiple degree.
For example, when we use 2 as the multiple degree, the agent uses the virtual action set
A+(x) = {a00, a01, a10, a11} for the original action set A(x) = {a0, a1}. Figure 4 shows the case

phase of 
reference value

Im

Re

real part of 
inner product

(a) Action values (b) Plot of phase of reference value vs. real part of inner product

D E F G

Fig. 4. Relation between multiple complex-valued action values and the internal reference
value (| İ| is normalized)
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Re

Im

X

xi

x1

x2

Fig. 5. Idea of conventional complex-valued reinforcement learning.

of that multiple action value is employed. In Fig. 4(b), horizontal and vertical axis is same as
Fig.3(b). Action a10 is taken in the area D or G. Action a11 is taken in the area E. In this way, a
method of multipe actoin value contributes to widen area where a1 is taken.
An important advantage of using multiple action values is that it is not necessary to update
the method of obtaining the action values, and hence, only virtual action values need to be
determined.

2.3.2 Complex-valued RBF network for continuous environment
For using RL in real-world applications, it is important that continuous state spaces are
efficiently handled. Fuchida et al. showed that in the case of (real-valued) RL, continuous state
spaces can be efficiently handled without the need for mesh size parameters if the continuous
action value function is approximated by using the radial basis function (RBF) (Fuchida et al.,
2000; Samejima & T.Omori, 1999; Li & Duckett, 2005). In this section, approximation of the
complex-valued action value function for continuous action spaces with perceptual aliasing
is discussed, as shown in Fig.6. The aforementioned approximation method enables the
treatment of the continuous state space without discretization in complex-valued RL.
In this section, we assume that an observation is a vector in the vector space R

M. We employ

Re

Im

X

Fig. 6. Idea of complex-valued reinforcement learning using a complex-valued RBF network.
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two RBF networks corresponding to two components of Q̇(xxx, a): a real part and an imaginary
part. The complex-valued action value function is then represented as follows:

Q̇(xxx, a) = QRe(xxx, a) + jQIm(xxx, a) (20)

QRe(xxx, a) =
Na

∑
n=1

ωRe,a,nφRe,a,n(xxx) (21)

φRe,a,n(xxx) =
M

∏
m=1

exp

(
−
(xm − μRe,a,n,m)

2

σ2
Re,a,n,m

)
(22)

QIm(xxx, a) =
Na

∑
n=1

ωIm,a,nφIm,a,n(xxx) (23)

φIm,a,n(xxx) =
M

∏
m=1

exp

(
−
(xm − μIm,a,n,m)

2

σ2
Im,a,n,m

)
(24)

Note that n is the index of the RBF, and m is the dimension index; φRe,a,n and φIm,a,n are
the RBFs. Na is the number of RBFs in each component. ωRe,a,n and ωIm,a,n are the weight
parameters. σRe,a,n and σIm,a,n are the variance parameters. μRe,a,n,m and μIm,a,n,m are the mean
parameters. In this section, variables represented in bold face denote that they are vector.

δ̇t = (rt+1 + γQ̇(t)
max)β̇− Q̇(xxxt, at) (25)

= δRe,t + jδIm,t (26)

1. Real part

ωRe,a,n← ωRe,a,n + αωδRe,tφRe,a,n(xxxt) (27)

σRe,a,n,m← σRe,a,n,m

+ασδRe,tωRe,a,n

×
(xt,m − μRe,a,n,m)

2

σ3
Re,a,n,m

φRe,a,n(xxxt) (28)

μRe,a,n,m← μRe,a,n,m

+αμδRe,tωRe,a,n

×
xt,m − μRe,a,n,m

σRe,a,n,m
φRe,a,n(xxxt) (29)

2. Imaginary part

ωIm,a,n← ωIm,a,n + αωδIm,tφIm,a,n(xxxt) (30)

σIm,a,n,m← σIm,a,n,m

+ασδIm,tωIm,a,n

×
(xt,m − μIm,a,n,m)

2

σ3
Im,a,n,m

φIm,a,n(xxxt) (31)
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6b

1b 5

1a 2a 3 4a

6a

8 4b7

6c

4c112b9b

109a

Start Goal

Fig. 7. Maze problems involving perceptual aliasings. Each cell is a state of the agent. The
number on a cell indicates the observation. That is, the agent cannot distinguish between
state 2a and 2b.

μIm,a,n,m← μIm,a,n,m

+αμδIm,tωIm,a,n

×
xt,m − μIm,a,n,m

σIm,a,n,m
φIm,a,n(xxxt) (32)

The method of updating the complex-valued RBF network is the same as that of updating the
RBF network.

3. Experiments and results

Three simple experiments are conducted to evaluate the algorithms by using the proposed
complex-valued functions. First, Q̇-learning is used to solve simplemaze problems associated
with perceptual aliasing Then, Miyazaki’s environment (Miyazaki & Kobayashi, 2003) is
learnt in the case of scPS. Finally, an experiment in a chained state environment which is useful
type of environment for evaluating various intervals of perceptual aliasings is conducted for
the multiple action values.

3.1 Maze problems
Figure 7 shows the maze environment involving a certain degree of perceptual aliasing. An
agent starts from the cell marked “Start” and attempts to reach the cell marked “Goal.”
However, the agent cannot distinguish between some of the cells in the maze because the
sensors detect only the existence of the walls around the agent. Thus, the agent faces a serious
problem of having to change its action according to the context.
Q-learning, Q(λ)(Sutton & Barto, 1998), Q̇-learning (Ne = 1) and Q̇-learning (Ne = 2) are
evaluated in the maze. The parameter conditions are shown in Table 1. The agent can choose
an action from north, east, south, or west but cannot choose the action that makes it move
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Fig. 8. Result in the POMDPs maze. This graph shows average steps over 1000 learning.

toward the walls. The agent obtains an r value of 100 if it achieves the goal. Each learning
action consists of 100 episodes, and each episode consists of a series of steps from the start to
the goal. If the agent cannot achieve the goal within 5000 steps, we restart the learning. Figure
8 shows the average number of steps in the POMDP environment shown in Fig.7. None of
the algorithms are restarted in this case. In Q-learning and Q(λ), the average number of steps
begins to increase after approximately 30 episodes because of the effect of perceptual aliasing.
A greater number of steps are required in Q̇-learning (Ne = 1) than in randomwalk. In contrast
to these algorithms, the Q̇-learning (Ne = 2) curve shows a sharp descent, and the number of
learning steps converges to 12.

Q-learning, Q(λ)
α 0.001 × ( 500 - episode )
γ 0.9
T 100 × (1.0/(1+episode))
λ 0.9 (for Q(λ))

Q̇-learning
α 0.25
β̇ exp(jπ/6)
γ 0.9
T 20
Ne 1 (eligibility trace is not used)

2 (eligibility trace is used)

Table 1. experimental parameters for the maze tasks.
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Figure 9 shows the acquired typical action sequence from the point of view of using the
context. Figure 9(a) shows the case of using Q-learning. The two state-action pairs in the
initial state cannot reach the goal because of the perceptual aliasing between 6a, 6b, and 6c.
For instance, if the agent has learnt to choose north in the initial state, the agent tries to choose
north in the state 6a. However, the north action in this state 6a is not suitable. The agent
has to learn this contradiction. Figure 9(b) shows the case of using Q̇-learning . In contrast
to the case of Q-learning, both the state-action pairs in the initial state in Q̇-learning can
reach the goal. Furthermore, we can see that the number of state-action pairs that can reach
the goal is greater in Q̇-learning than in Q-learning. Since Q̇-learning employs the idea of
context, action selection depends on the history of the state-action pair. Context-based action
selection involves the use of the internal reference value shown in (6) and (7) and depends
on the previous state-action pair only. Thus, the proposed method enables the agent to take
a context-dependent action to achieve the goal even if several perceptual aliasing problems
exist.

3.2 Miyazaki’s environment
We compare scPS, PS-r*, and Q̇-learning in Miyazaki’s simulation
experiment(Miyazaki & Kobayashi, 2003), as shown in Fig.10. The agent obtains the
same observation Z in four states Za, Zb, Zc, Zd. Thus, we conclude that the agent obtains
identical observations in n states S1,S2, · · · ,Sn. In other words, n in the figure indicates the
number of states that the agent can distinguish between. When the agent takes action a in
state X, it reaches state S1 with probability p or state X with probability 1 − p. The agent
repeatedly takes an action from the initial state X to the terminal state Zd. The agent obtains
the reward 100 iff the agent take action b at the state Zd. We employ the parameters n= 7 and
p = 0.9. We set the minimum number of steps from the start to the goal as 12.

G G

(a) Q-learning (b) Q-learning
.

Fig. 9. Acquired action sequences. White and black bullets show the state-action pairs that
can or cannot reach the goal, respectively. The location of a bullet is directly indicative of the
corresponding action. For example, a bullet located in the upper region of a cell indicates the
state-action pair of the cell and north action.
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Fig. 10. Miyazaki’s simulation environment (Miyazaki & Kobayashi, 2003).

 0

 10

 20

 30

 40

 50

0  5000  10000  15000  20000

scPS

PS-r*

random

Q-learning

N
u

m
b

e
r 

o
f 
s
te

p
s
 t
o

 t
h

e
 g

o
a

l

Number of steps

.

Fig. 11. Learning performance in Miyazaki’s environment. The horizontal axis indicates the
number of action selection. The vertical axis indicates the average number of steps if the
agent uses the policy in each step.

We perform a total of 50 experiments, each of which consists of 20000 action selection steps.
The experimental parameters are shown in Table 2.

scPS
initial evaluation values 1.0× 10−10

discount factor γ 0.5
phase change ω[deg] 30

PS-r*
initial evaluation values 0.8

significance level α 0.05
Q̇-learning

initial action values 0.0
learning rate α 0.8
phase rotation β̇ ejπ/6

discount factor γ 0.9
number of traces Ne 3

Table 2. Parameter setting for Miyazaki’s experiment.
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The results of our experiments are shown in Fig.11. From the results, scPS a acquires suitable
policy for a short term. Table 2 shows that state transition and series of selected actions
acquired by the policy in the case of scPS. Between states X and S7, the phase of the selected
complex-valued evaluation value rotates by 30 degree. The phases of the selected evaluation
values are almost equal to the phase of the internal reference value at a given time. From Za
to Zc, the selected evaluation values remain unchanged since the same evaluation value is
selected. However, the internal reference value changes continuously. This causes the agent
to take another action in state Zd. In this experiment, the agent learns V(Z, a) > V(Z,b) for
Z = Za,Zb,Zc and V(Z, a) < V(Z,b) for Z = Zd.

3.3 Chained state problems
Figure 12 shows an example of a simulation environment performed to evaluate the multiple
action values. In Fig. 12, s0, s1, · · · , s7 denote the states of the agent. States s0 and s7 are the
initial state and terminal state, respectively. The agent’s objective is to learn to go from the
start s0 to the goal s7. a0 and a1 denote the actions. Note that the agent is required to take
action a1 in all the states in order to achieve the goal s7.
The agent obtains a reward r if it achieves the goal s7. We assume that the state transition and
observation are both deterministic. Additionally, we assume the state space and observation
space to be both finite and countable. We compare the performance of Q̇-learning with and
without the multiple complex-valued action value. The multiplexing degree is employed is
2. In each experiment, we consider all possible types of aliasing. Namely, each experiment
comprises a series of sub-experiments ranging from no aliasing (the agent can distinguish
all the states.) to full aliasing (the agent is confused and cannot distinguish between any of

x a argvvv [deg] argiii [deg]
X a 337.5 337.5
S1 a 309.5 307.5
S2 a 279.5 277.5
S3 a 249.5 247.5
S4 a 219.6 217.5
S5 a 189.4 187.5
S6 a 159.4 157.5
S7 a 128.6 127.5
Za a 50.2 97.5
Zb a 50.2 67.5
Zc a 50.2 37.5
Zd b 0.7 7.5

Table 3. Comparison between the phase of complex-valued evaluation values and the phase
of the internal reference value.

s1 s2s0 s4

a1 a1

a0 a0

a0

a0

a1

s3

a1

a0

s5

a0

a1

s6

a0

a1

s7

a1

Fig. 12. An eight-state environment.
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the states). In order to identify a task, we define certain observation patterns. An observation
pattern is a set of relationships between the states and the observations and is represented by a
sequence of numbers from the observation of the initial state to the observation of the terminal
state. The appearance of the same sequence of numbers is indicative of perceptual aliasing.
We ignore the numerical values in the pattern and simply focus on whether the values are
the “same or different.” For instance, the observation pattern 0-1-2-3-4-5-6-7 indicates that
there is no perceptual aliasing, while 0-0-0-0-0-0-0-0 implies that the agent confuses between
all the states; further, 0-1-2-3-4-0-5-6 implies that the agent confuses between s0 and s5. We
perform five learning experiments in each observation pattern. Each learning action consists
of 100 episodes, each of which consists of a series of steps from the start to the goal; here,
each transition is called a step. The other experimental parameters are shown in Table 4. It is
difficult for the Q̇-learning agent to take the same action in several states where the obtained
observation is the same. For example, we assume that the agent cannot distinguish between
s0 and s5. In other words, the agent can distinguish between all the states except for the s0/s5
pair. The internal reference value in the s0 stage differs from that in the s5 stage because
either (6) or (7) is used to move the internal reference value in the complex plane at each step.
Because of this difference, the agent takes different actions. When the same action is suitable
for the abovementioned two states, CVRL is effective. However, when the actions suitable for
the two states are different, CVRL is ineffective.
Figure 13 shows the average learning curves in each environment. The number of steps in the
conventional method converges to 15, while the number of steps in the multiple action value
method converges to approximately 9.1. These results reveal that fewer steps are required in
the case of Q̇-learning with the multiple action value method than in the case of Q̇-learning
without the multiple action value method. We use the average number of steps in the final
episode. We define the scores of the proposed method and conventional method as fm and fs,
respectively. We evaluate the learning performance on the basis of the ratio fm/ fs.
Figure 14 shows the experimental results. The vertical axis on the left indicates the final
number of average steps fm & fs, while the vertical axis on the right indicates the ratio fm/ fs.
The horizontal axis indicates the tasks sorted on the basis of the ratio fm/ fs. We group the
observation patterns under three classes on the basis of the fm/fs value. Classes 1, 2, and 3
are sets of observation patterns for which fm/ fs < 1, fm/ fs = 1, and fm/ fs > 1, respectively.
We show the typical examples for each class in Table 5. Classes 1, 2, and 3 account for 32%,
59%, and 9.1% of the total number of observation patterns, respectively.
In class 1, the proposed method is superior to the conventional method. The observation
patterns in this class are characterized on the basis of the time interval between the perceptual
aliasing states. Every third or fourth state appearing in a given time interval is found to be a
perceptual aliasing state. The results show that the use of multiple action values enables the
agent to show a suitable behavior.

Q̇-learning
α 0.25
β̇ exp(jπ/6)
γ 0.9
T 20
Ne 2
r 100.0

Table 4. Experimental parameters for chained state environment.
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Fig. 13. Simulation results obtained for eight-state environment.

In class 2, the proposed method is as efficient as the conventional method. An observation
pattern 0-1-2-3-4-5-6-7, which represents no perceptual aliasing, is included in this class.
Another observation pattern 0-0-0-0-0-0-0, which represents that the agent confuses all the
states, is also included in this class. Consequently, the performance of Q̇-learning depends on
the time intervals between the perceptual states and not on the number of perceptual states
alone.
In class 3, the conventional method is superior to the proposed method. In the case of the
conventional method, the observation patterns require a greater number of episodes to acquire
a suitable behavior in class 3 than in class 2. We conducted an additional experiment with 500
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Fig. 14. Rules for interaction between complex-valued action values and internal reference
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Fig. 15. Mountain car task.

episodes in the observation patterns of this class (shown in Table 5). The experimental results
show that fm = 7.0 in the three observation patterns. Therefore, we assume that the proposed
method requires a greater number of episodes than does the conventional method; this is
probably because of the greater number of action values in the former case.
As mentioned above, the proposedmethod can be used to improve the learning performance.
On the other hand, it causes to increase the number of episodes.

3.4 Mountain car task with perceptual aliasing
We compare the method based on the complex-valued RBF network with three conventional
methods, that is, random walk, dQ-learning without the RBF network, and Q-learning with
the RBF network. We conduct a simulation experiment involving a mountain car task. The
agent that uses Q̇-learning without the RBF network divides the state space into 10 equal
parts.

observation pattern fm fs fm/ fs
0-1-2-3-0-4-0-4 7.0 147.8 0.047

class 1 0-1-2-3-4-1-5-4 7.0 125.0 0.056
0-1-2-3-4-0-5-5 7.0 118.6 0.059
0-1-2-0-3-4-2-4 7.0 7.0 1.0

class 2 0-0-0-0-0-0-0-0 7.0 7.0 1.0
0-1-2-3-4-5-6-7 7.0 7.0 1.0
0-0-1-2-3-1-1-2 54.0 7.0 7.7

class 3 0-1-2-3-2-1-0-1 57.2 7.0 8.2
0-1-2-1-0-0-0-3 60.8 7.0 8.7

Table 5. Comparison of performance of the proposed method and that of the conventional
method. discount rate γ 0.7

reward r 100
Boltzmann temperature T 150/(1+episode)

learning rate of μ αμ 0.001
learning rate of σ ασ 0.001
learning rate of ω αω 0.001

Table 6. Parameters for Q-learning with RBF network.
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discount rate γ 0.7
reward r 100

Boltzmann temperature T 0.5
rotational value of phase β̇ exp(1j[deg])

learning rate α 0.1
discreted state number D 10 at even intervals

Table 7. Parameters for Q̇-learning

Figure 15 shows the mountain car task. The possible actions for an agent that controls the car
are forward(a=+1), neutral(a=0) and reverse(a=-1). The agent aims to reach the goal from the
start. However, the output power is not sufficiently high for the car to climb up the anterior
mountain in one trip. Therefore, the car should climb a posterior mountain and climb the
anterior mountain swiftly. The agent observes only the position of the car. The subsequent
state is derived from the following equation:

v ← v+ 0.001a− 0.0025cos(3x) (33)

x ← x+ v (34)

Note that x(−1.2 ≤ x ≤ 0.5) and v(−0.07 ≤ v ≤ 0.07) indicate the position and velocity of
the car, respectively. The agent obtains a reward if and only if the car reaches the goal.
Tables 6, 7 and 8 show the parameters for Q-learning with the RBF network, Q̇-learning ,
and complex-valued RBF network, respectively. Each step corresponds to an action of the car,
and each episode consists of a series of steps from the start to the goal. One learning action
consists of 300 episodes.

discount rate γ 0.7
reward r 100

Boltzmann temperature T 0.5
rotational value of phase β̇ exp(1j[deg])

learning rate of μ αμ 0.001
learning rate of σ ασ 0.001
learning rate of ω αω 0.01

Table 8. Parameters for complex-valued RBF network

Figure 16 shows the average number of steps for 20 learnings. The horizontal axis indicates
the number of episodes, and the vertical axis indicates the number of steps from the start to
the goal. Since Q-learning cannot be used to address perceptual aliasing, the results show
that the learning behavior is better in the case of Q̇-learning without the RBF network than
in the case of Q-learning with the RBF network. The result also shows that the use of the
complex-valued RBF network in these methods enables the agent to learn the best behavior
quickly. When the RBF network is used, the learning efficiency is improved because the value
function is extrapolated to the unsampled states.

4. Conclusion and future plans

A new reinforcement learning algorithm that uses complex-valued functions is proposed.
This algorithm can be used to expand typical learning algorithms such as Q-learning and
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Fig. 16. Simulation result obtained for mountain car task with perceptual aliasing.

profit sharing and can allow for an agent to deal with time series or context. From the results
of simulation experiments, we confirm that the algorithms generate redundant contexts to
compensate for perceptual aliasing.
In the future, we plan to expand the proposed learning algorithm and compare the
performance of this algorithm with that of other reinforcement learning algorithms. We also
plan to make the following improvements to the proposed learning method:

– Implementation of the phase of the internal reference value as a time-varying function so
that the method can be used in a dynamic environment

– Extension of the method to more complex and high-dimensional space

– Improvement of the method so that it can be applied to real autonomous robots in an
uncertain environment
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1. Introduction 
Recent progress in the theory of neural networks played a major role in the development of 
new tools and techniques for modelling, identification and control of complex nonlinear 
dynamic systems. Intelligent control, with a special focus on neuro-control has been used 
successfully to solve difficult real control problems which are nonlinear, noisy and relatively 
complex. This is due to the fact that neural networks have an inherent ability to learn from 
input-output data and approximate an arbitrarily nonlinear function well. The inclusion of 
semi-linear sigmoid activation functions offers nonlinear mapping ability for solving highly 
nonlinear control problems (Omatu et al., 1995).  
A large number of identification and control structures have been proposed on the basis of 
neural networks in recent years (Jain & Medsker, 1999). Most of the developed neural 
networks use a feed-forward structure along with the back-propagation training algorithm. 
Recently, more research interest is given to recurrent networks with special application to 
dynamic systems. A Recurrent Neural Network (RNN) exhibits internal memory due to its 
feedback structure, which gives the network the possibility of retaining information to be 
used later. By their inherent characteristic of memorizing past information, for long or short-
term periods, RNNs are good candidates for nonlinear system identification and control 
(Narendra & Pathasarathy, 1990). 
Although control theory has made great advances in the last few decades, which has led to 
many sophisticated control schemes, PID control remains the most popular type of control 
being used in industry today. This popularity is partly due to the fact that PID controllers 
have simple structures that are easily implemented. On-line self-tuning PID controller offer 
an advantage for plants that have uncertain dynamics, time varying parameters, and 
nonlinearities. Recently a lot of attentions have been focused on neural based PID controller, 
and many efforts have been done to investigate different aspects of deploying neural 
networks in the area of adaptive PID control (Puskorius & Feldkamp, 1993), (Saikalis, 2001) 
The concept of adaptive PID control was introduced to compensate the drawbacks of the 
fixed-gains PID controller. For example, if the operating point of a process is changed due to 
disturbances, there is a need to adjust the controller parameters manually in order to keep 
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the optimal settings. Usually this procedure known as tuning is difficult and time 
consuming for systems with interacting loops. In addition to these difficulties, the 
conventional PID tuning methods have major drawbacks. For example, the Ziegler-Nichols 
(Astrom & Wittenmark, 1989) tuning method is sensitive to disturbances because of its 
reliance on open loop experiments. The tuning method proposed by Nishikawa (Nishikawa 
et al. 1989) requires man-machine interaction in which the operator needs to generate input 
signals every time the parameters have to be modified in order to adapt to changes in the 
process dynamics. Adaptive controller with the ability of self-tuning is therefore the ideal 
solution to all these difficulties. 
Substantial research effort is also ongoing in the general area of adaptive control with neural 
networks, both in designing structures and learning algorithms (Chang et al. 2003), (Kuc & 
Gie, 2000), (Ranger & Desbiens, 2003), (Liu, 2001), (Mandic & Chamers, 2001). The design 
and implementation of adaptive control for nonlinear dynamic systems is challenging and 
extremely difficult. In most cases, developing adaptive control strategies depend on the 
particular information of the nonlinear structure of the plant that needs to be controlled. 
Neural networks with the ability to deal with nonlinearities can be used to develop an 
adaptive controller for unknown systems. If the relationship between the input and the 
output of an unknown nonlinear plant is modeled by an appropriate neural network, the 
model obtained can be used to construct a proper controller. The whole procedure of 
training and construction of a neural based controller can be implemented on-line. The 
neural network model is updated by measured plant input and output data and then the 
controller parameters are directly tuned using the updated model. 
 

 
Fig. 1.1 Adaptive PID with RNN based emulator 

In this chapter RNNs are used in system modeling and in the design of an adaptive PID 
controller for nonlinear electromechanical systems such as servo drives in robot 
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manipulators. The design of a servo drive system represents a difficult problem in most 
cases because of troublesome characteristics such as severe friction nonlinearities, variable 
parameters, time–varying process dynamics and unobservable system states and 
disturbances.  
The proposed adaptive control scheme studied in this chapter is based on a RNN-PID 
controller combined with a RNN system emulator as shown in Fig. 1.1 (Dhaouadi & Jafari, 
2007). The RNN-PID controller is designed based on the discrete equations of the PID 
controller transfer function. The parameters Kp, Ki and Kd of the partially connected RNN are 
regarded as the gains of the PID controller. These gains are not fixed, but can be adjusted 
on-line based on an adaptation law so as to achieve the desired control objectives. The plant 
direct model is constructed with the RNN emulator as shown in Fig. 1. The network is tuned 
online to provide the Jacobian coefficients of the system which are needed to adapt the PID 
gains. The self-tuning RNN will be trained using the gradient decent RTRL algorithm, (Kuc 
& Gie, 2000). The training of the RNN emulator will be first performed off-line so as to learn 
the dynamics of the plant and will be next optimized on-line.  
Such control approach can be classified as indirect adaptive control, as the parameters of the 
plant model are adapted and control is computed based on the current model, rather than 
directly adapting the controller parameters. 
Global asymptotic stability of the closed loop system is a challenging problem. Absolute 
stability analysis of RNN in general is investigated via Linear Matrix Inequality (LMI) 
(Barbanov & Prokhorov 2002). Barabanov and Prokhorov derived a sufficient condition for 
the network parameters which guarantees the absolute stability of RNN in a general form. 
The method is based on the sector condition. Barabanov and Prokhorov introduced later a 
new algorithm for global asymptotic stability of nonlinear discrete-time systems (Barbanov 
& Prokhorov, 2003). The new method, for reduction of a dissipativity domain of a discrete-
time system, approximates level surface of Lyapunov function. In this paper, we develop a 
criterion to prove the stability of the RNN-PID controller in the sense of Lyapunov.  
In summary, the analysis presented in this chapter shows that appropriately structured 
recurrent neural networks can provide conveniently parameterized dynamic models of 
nonlinear systems for use in adaptive PID control. The main features of the proposed new 
adaptive PID controller are 
• Compensation of different process and unmodelled uncertainties, 
• Simple to configure since it does not require a process model. 
• Could track changes of process dynamics on-line. 
• Has all the properties of PID control. 
The chapter is organized as follows: section 1 gives a literature review and introduces a 
general overview of the control methodology used. The main contribution of this work is 
represented in section 2 where an adaptive RNN-PID controller is developed for Reference 
Model Control.  Stability analysis of the designed controller is investigated via Lyapunov 
theory in section 3. Finally, discussion of simulation results and conclusions are given in 
section 4. 

2. Adaptive RNN-PID design 
The PID controller is one of the most useful and familiar controller used in industry. PI and 
PID controllers have been proven to be remarkably effective in regulating a wide range of 
processes. However, the PID controller may give low performance when dealing with 
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highly nonlinear and uncertain systems. The abilities of neural networks in dealing with 
nonlinear dynamical systems make them a viable alternative approach to deal with complex 
systems. RNNs will be used next to develop an adaptive PID controller which is robust to 
system parameters variation and uncertain dynamics. 
In this section, we will develop an adaptive RNN based PID controller for nonlinear 
dynamic systems. The parameters of the proposed RNN-PID controller are adjusted on-line. 
A single-axis servomechanism is used as a case study to study the performance of the PID 
controller and validate the proposed adaptive control scheme. 

2.1 Discrete-time PID controller 
The design of the RNN based PID controller starts by deriving the discrete-time PID 
equation. From this difference equation the network can be designed accordingly. The 
general PID transfer function in the s-domain is given by 

 
( )
( ) 1

i
p d

KU s sK K
E s s sτ

⎛ ⎞= + + ⎜ ⎟+⎝ ⎠
. (2.1) 

For practical applications, an approximate derivative term is introduced to reduce the effect 
of measurement noise. Next, the discrete-time representation of the PID controller is 
obtained by mapping the transfer function from the s-domain to the z-domain using the 
bilinear transformation. 
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The discrete-time control signal u(n) is derived from the error signal e(n) as follows. 
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where  v(n) is the integral term, and w(n) is the derivative term. 
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The difference equation of the integral term v(n) is 

 ( ) ( 1) [ ( ) ( 1)]
2
Tv n v n e n e n= − + + − ,  (2.7) 

Similarly, 
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Defining 

 0 2 Tα τ= +  and 1 2 Tα τ= −  (2.9) 

The difference equation of the approximate derivative term is 
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This equation is written next in a modified form through a change of variables. Let’s define
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The PID derivative gain will be therefore changed accordingly 
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2.2 RNN controller design 
Combining the derived discrete-time equations (2.5-2.12) of the PID controller, the 
corresponding recurrent neural network can be designed accordingly. The input to the 
network is the error signal and the output of the network is the control signal. There are 
several ways of designing the network architecture to represent the PID controller. In our 
approach, a partially connected recurrent neural network is used with a single hidden layer 
and three hidden neurons as shown in Fig. 2.1. The activation function is assumed to be 
linear. The feedback connections between the neurons in the hidden layer have one 
sampling time delay. The network parameters are clustered in three matrices Whi,  Rh, Wch. 
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where, hiW  represents the RNN gains between the input layer and the hidden layer,  chW  
represents the RNN gains between the hidden layer and the output layer, and hR  represents 
the RNN feedback gains between the neurons in the hidden layer. T is the sampling time, 
and pK , iK  and dK  are the controller gains. 
One of the major advantages of the designed network is the simplicity of the designed 
controller. The training procedure of the proposed controller is relatively easy due to the 
linearity of the activation functions. 
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Fig. 2.1 Partially connected RNN-based PID controller 

2.3 PID update equations 

As it is shown in Fig. 2.1, the network includes four weights pK , iK , 
0

2 dK
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, and 1

0

α
α

,  which 

need to be tuned. The rest of the weights are fixed. The network output can be computed 
using the forward equations as follows   
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where the gains α and dK∗  are defined by 
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The training algorithm of the RNN-PID controller is based on the gradient descent method 
and uses the output error signal ( )e n , which is the difference between the actual RNN 
output and the desired output. 

 ( ) ( ) ( )n d n u nε = −  (2.19) 

For offline training, the data set ( ( ), ( ))n d nε  is generated from the simulated PID control 
system and is used to train the RNN.  The performance index to be minimized is the sum of 
squares of errors ( )sqE n of the training data set.  
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1

1( ) ( )
2

N

sq
n

E n nε
=

= ∑  (2.20) 

According to the gradient-descent method, the weights are updated by performing the 
following derivations. 
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( )

( 1) ( ) sqE n
n nα α η

α

∂
+ = −

∂
 (2.24) 

where η is the learning ratio. The chain rule is used to back propagate the error to find the 
terms to minimize the performance index. The derivative of the sum squares errors with 
respect to the network parameters can be written as 

 1
( ) ( )( ) ( ) ( )sq

p p

E n u nn n O n
K K

ε ε
∂ ∂

= − = −
∂ ∂

 (2.25) 

 2
( ) ( )( ) ( ) ( )sq

i i

E n u nn n O n
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ε ε
∂ ∂

= − = −
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 (2.26) 

 3*

( ) ( )( ) ( ) ( )sq
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E n u nn n O n
K K
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∂ ∂
= − = −

∂ ∂
 (2.27) 

 * 3( ) ( )( )( ) ( )sq
d

E n O nu nn n Kε ε
α α α

∂ ∂∂
= − = −

∂ ∂ ∂
 (2.28) 

Based on the normal RTRL algorithm the derivative terms in equations 2.25-2.28 will be 
computed recursively at every time step and the network parameters are updated 
accordingly. 

2.4 Adaptive PID controller 
This section presents two direct and indirect adaptive control schemes for a PID controller 
using RNN. The first control scheme is based on one neural network to implement the 
RNN-PID, and the system Jacobian is computed by approximation. In the second control 
scheme, an RNN emulator is added to the system for the exact computation of the system 
Jacobian. 
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2.4.1 Adaptive PID controller without emulator 
In the first control scheme, we consider only a RNN-PID controller in the system as shown 
in Fig. 2.2. According to the desired response of the system, the reference model is chosen to 
obtain the desired settling time and damping characteristics. The RNN-PID controller is 
trained first off-line and is placed next in series with the system for on-line tuning. The 
system output is fed-back to be compared with the reference signal and form the error e1(k). 
This error is the input signal to the RNN-PID controller. On the other hand the system 
output is compared with the reference model output to form the second error e2(k). By 
minimizing this error the system response will become closer to the model response. This 
minimization is done by tuning the RNN-PID parameters as discussed in the following 
section. 

2.4.1.1 Update equations 
The adaptation procedure of the PID controller is quite different from that done in off-line 
learning. Here the error which needs to be minimized is not immediately after the network. 
The objective here is to minimize the performance index function 

 2
2

1( ) ( )
2

I n e n=  (2.29) 

To be able to do this minimization, we need to differentiate (2.29) with respect to the 
network parameters. By applying the chain rule  

 2
( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) p
p p p
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y k u nK K K∗

∂∂ ∂ ∂ ∂
= × × = −
∂ ∂∂ ∂ ∂

 (2.32) 

 2
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( ) ( ) p
y nI n I n u n u ne n J n

y n u nα α α
∂∂ ∂ ∂ ∂

= × × = −
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 (2.33) 

where ( )pJ n  is the system Jacobian. The terms ( ) ( ) ( ),  ,  ,
p i d

u n u n u n
K K K∗

∂ ∂ ∂
∂ ∂ ∂

and ( )u n
α

∂
∂

 can be 

calculated similar to equation 2.25-2.28 in section 2.3.  
The major difference between the above difference equations and the off-line training 
equations is the multiplication with two additional terms which are ( ) ( )2  and pe n J n . This is 
due to the fact that the error which needs to be minimized is not placed immediately after 
the network. Here the plant is placed between the error and the network. So the error 
should be back-propagated through the plant to reach to the networks parameters. This 
error back propagation through the plant requires the knowledge of the system Jacobian

( )pJ n . 
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Fig. 2.2 Adaptive PID without emulator 
2.4.1.2 System Jacobian 
For MIMO system with n inputs and m outputs, the Jacobian is defined by the following 
matrix equation. 
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where [ ]1 2
T

ny y y y=  is the output vector and  [ ]1 2
T

nu u u u=  is the input vector to the 
system.  
In this work, because we are dealing with only one input and one output, the  
system Jacobian is a scalar. One way to approximate this term is by taking the ratio of the 
difference between the current and previous input/output signals of the system. This 
approximation can be considered to be sufficiently precise if the sampling time is made 
sufficiently small.   
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∂ − −
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 (2.35) 

An alternative way to compute the Jacobian more accurately is by building an emulator of 
the system. This will be discussed in section 2.4.2. 
With this approximation, the system Jacobian is used in (2.30)-(2.33) to perform the RNN-
PID gains tuning and minimize the reference model error in the least squares sense. 

2.4.1.3 Reference model difference equation 
In the system simulation, the reference model is generated on-line within the control 
algorithm, so we need to find the difference equation for the desired model. Our desired 
model here is a second order model. With the general transfer function 
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The overall difference equation will be 

 [ ]1 2

0 0 0

1 ( ) 2 ( 1) ( 2)( ) ( 1) ( 2) m m mrm rm rm
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c c c
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where mr  and rmy are the input and output of the model and 
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= − +  

2.4.1.4 Simulation results with constant mass 
To verify the performance of the adaptive RNN-PID controller and check whether it can 
force the servomechanism response to follow the reference model system, a multi-level step 
input signal is applied as shown in Figure 2.3. 
Figure 2.3 shows the input signal and the system response before adaptation, and Figure 2.4 
shows the response after 100 iterations. The sum of squares of errors is also illustrated in 
Figure 2.4. These Figures show clearly that the controller gains are adequately tuned to force 
the system output to follow closely the reference model output. 
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Fig. 2.3 Input signal and initial system response 
 

 
Fig. 2.4 System responses and sum of squares of errors after 100 iterations 

The system parameters and are summarized in Table 2.1. 
 

Simulation Parameters 

Simulation Time t  9 sec 
Sampling Time ST  0.001 sec 
Reference Time Constant rmτ  0.2 sec 
Damping Coefficient ξ  1 
Mass M  2 Kg 
Length L  0.2 m 
Damping Coefficient B  1 

Table 2.1 Simulation parameters for the adaptive PID controller with constant mass 

The PID gains variation during the last cycle after 100 iterations is shown in Figure 2.5. It 
is shown that the gains, Ki, Kd*, andα, have stabilized to nearly constant values, while the 
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gain Kp is continuously tuned around an optimum value as the reference signal is 
changed. 
 

       
 

       
Fig. 2.5 PID gains variation for last iteration 

2.4.2 Adaptive PID controller with emulator 
Usually, back-propagating the error through the hybrid system results in some errors due to 
the approximation of the system Jacobian. To avoid these errors it is better to model the 
plant with a neural network. This neural network is called an emulator. By adding a neuro-
emulator in parallel with the plant, the emulator will be trained to learn the dynamics of the 
system. So by having an RNN based plant, the system Jacobian can be computed more 
accurately. The emulator will be trained first off-line to make sure the RNN model is very 
close to the actual system. Next, the emulator will be trained on-line and will be used to 
compute the system Jacobian. 
The servomechanism under consideration is of a second order type. The corresponding 
difference equation will include inputs and outputs delayed with two sampling times. We 
need therefore to construct a recurrent network which can memorize inputs and outputs up 
to two samples back in time. Figure 2.6 shows the proposed RNN to represent the 
pendulum system. In this partially connected network there are no recurrent connections 
between the output layer and the input layer. The only connections are between the output 
layer and the hidden layer and some internal connections within the hidden layers. The 
input signal includes only the current signal x(n) and the delayed signal x(n-1). 
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Fig. 2.6 RNN Architecture for Pendulum Identification  
Figure 2.7 shows the general layout of the complete control system. As we can see from this 
figure the RNN based emulator is placed in parallel with the plant and is trained on-line to 
allow the computation of the system Jacobian. 
 

 
Fig. 2.7 Adaptive PID with RNN based emulator 

2.4.3 Jacobian computation 
For the exact calculation of the system Jacobian, there is a need to differentiate the plant 
output ( )y k with respect to the control signal ( )kτ . According to Figure 2.7, the forward 
equations of the emulator are written as 
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By differentiating (2.44) with respect to ( )kτ  
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To compute ( 1)
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 another approximation is used  
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≈
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 (2.48) 

Using (2.48), the terms in (2.46) and (2.47) are calculated recursively and are used to 
determinethe system Jacobian with a better approximation. The accuracy of the Jacobian 
depends on how good the emulator is trained. Consequently the overall performance of the 
controller will be improved. 
With the RNN based emulator, the update equations are the same as those derived in the 
previous section. Because the controller and emulator are both tuned on-line during each 
iteration, it is better to make the emulator training procedure faster than the controller.  This 
will help to increase the PID controller performance. 
The flowchart of the program adaptive PID controller algorithm with an RNN based 
emulator is shown in Figure 2.8. The program starts with some initializations such as 
allocating random weights, learning ratio and momentum term. Initially ( )kτ  which is the 
control signal, is assumed to be zero. ( )kτ  is feeding system and emulator to generate 

( )sysy k  and ( )sysy k .  Based on these two values 3( )E k is calculated. The input signal is sent to 
the reference model to generate ( )rmy k . Based on the difference between ( )rmy k  and ( )sysy k , 

2( )E k  is calculated. Finally ( )sysy k  is compared with the reference point to form 1( )E k . By 
finding all errors the RTRL adaptation mechanism will tune the parameters accordingly. 
After adaptation and before executing the program for the next sample , the old values are 
updated. This procedure is repeated till the total number of samples is reached. The whole 
procedure is again executed for the given number of iterations. 
Figure 2.9 shows the initial system response before tuning and Figure 2.10 show the results 
after adaptation. Due to the better approximation of the Jacobian the controller tuning is faster. 
The simulation parameters are shown in Table 2.2.  Since the control scheme is based on two 
separate RNN’s that are tuned online the stability of overall system becomes a main issue. 
Each RNN with its inherent feed-back connections may cause one the networks to be 
unstable. Instability of one the networks make the whole control system to become unstable. 
The brief stability analysis of the designed controller will be discussed in section 3.  
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Simulation Parameters
Simulation Time t 9 sec
Sampling Time Ts 0.001 sec
Reference Time Constant τrm 0.2 sec 
Damping Coefficient ξ 1
Mass M 2 Kg
Length L 0.2 m
Damping Coefficient B 1

Controller Parameters
Controller Gain Kp 7.2464
Controller Gain Ki 18.8667
Controller Gain Kd* 0.7668
Controller parameter α 0.1826
Learning ratio η 1e-5
Momentum term ϑ 0.06

Emulator Parameters
Learning ratio η 0.09
Momentum term ϑ 0

Table 2.2 Simulation parameters for the adaptive PID controller with emulator 
 

 
Fig. 2.8 Control program flowchart 
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Fig. 2.9 Input signal and initial system response 

 
 

 
Fig. 2.10 Results after adaptation with 0.2rmτ =  sec 

2.4.4 Robot arm control 
A one-degree of freedom robot arm can be modelled as a pendulum system with a 
servomechanism at the joint. Controlling the robot arm position with variable load is a 
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challenging problem. In this section, the RNN based PID controller will be deployed to 
control the robot arm to follow a desired trajectory which consists of moving a load from 
one location to another location as shown in Figure 2.11. 
 

       
Fig. 2.11 Robot arm desired velocity and position 
Assume that the robot arm starts to move from the 0º initial position. During the first 2 
seconds the arm velocity will increase with a constant slope in the positive direction. In the 
next two seconds the velocity becomes constant which means the arm will move at constant 
velocity in the same direction. In the third two seconds when the arm is close to the target, it 
needs to decelerate or decrease its velocity. In the next two seconds the arm should stop 
(velocity become zero) to pick an object. Then this procedure will be repeated in the 
opposite direction till reaching to the initial position. As it can be observed form Figure 2.12 
which illustrates the system response without adaptation, at t=6 sec there is a disturbance 
applied to the system by picking up an object. It is assumed that the object mass is 10% of 
the initial system mass. 
 

 
Fig. 2.12 Initial system response with disturbance 

Our goal here is to verify whether the designed RNN based PID controller can tune its 
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the arm is moving. If the controller is capable to control the arm for the desired trajectory 
with the consideration of mass disturbance, it means that our designed adaptive PID 
controller works fine. As it is shown in Figure 2.13 after 2 iterations the sum of squares of 
errors which was initially 1042 reaches to 0.092. The PID gains are successfully adapted in 
order to make the robot arm follow the desired trajectory. 
 

      
 

      
 

      
 

Fig. 2.13 Results after adaptation 
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3. Stability analysis 
Global Asymptotic Stability (GAS) is a desired goal in designing any control system. 
However, this desired goal may not be easily achieved for systems involved with RNN. The 
inherent feedback properties of RNN make the analysis of this kind of systems complex.  
Several researches have been done to derive necessary and sufficient conditions for stability 
of RNN. Suykens (Suykens 2002) derived a necessary and sufficient condition for global 
stability of a specific class of RNN. The weak point of his criterion was due to the 
elimination of biases in the stability analysis. Barabanov and Prokhorov (Barbanov & 
Prokhorov 2002) observed that ignoring biases not only severely limits the mapping 
capabilities of RNN but also almost always results in extremely conservative stability 
criterion. They used the Linear Matrix Inequality (LMI) approach to derive a sufficient 
condition for the absolute stability of a given RNN. Their criterion was more useful 
compared to (Suykens 2002) due to the consideration of biases but still was not efficient. The 
derivation could not confirm the stability of many stable systems which are actually globally 
stable. Barabanov and Prokhorov later on proposed a new method of stability by 
approximating Lyapunov surface (Barbanov & Prokhorov 2003). The new method which is 
based on the reduction of a dissipativity domain can be applied to all bounded and 
differentiable systems. The proposed method can give the largest space of stable RNN 
parameters compared to all the previous studies. 
The designed RNN-PID controller in this work is fairly easy for stability analysis because  
of using linear functions in the hidden layer. In this section we will put the RNN-PID 
controller dynamics into a state equation to derive the stability criterion.  
Denote the output of the controller (control signal) as y(k) and the input to the controller 
(error) u(k). Define the output of the hidden layer as the state vector (shown in Figure 3.1) 
 

 
Fig. 3.1 RNN based PID controller in state space form  
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System (3.2) is considered to be slowly varying if ║∆u(k)║ is sufficiently small. Considering 
the slow change in the rate of u(k) then the above system would be globally asymptotically 
stable if and only if the eigenvalues satisfy the following condition 

 | | 1,   1,2,3i iλ < =  (3.4) 

Where iλ  is the thi  eigenvalue of A . The eigenvalue of A  are 1
1 2 3

0
0, 1, αλ λ λ

α
= = = . Since 

one of the eigenvalue is located on the unit circle then the designed controller cannot be 
asymptotically stable. However the controller can be stable in the sense of Lyapunov if and 
only if  

 1

0
1 1α

α
− ≤ ≤  (3.5) 

Substituting for α0 and  α1 from equation (2.9) the stability criterion for the controller can be 
written as  

 2 2 2T T Tτ τ τ− − ≤ − + ≤ +  (3.6) 

4. Conclusion 
This work investigates the application of artificial neural networks for system identification 
and control of nonlinear dynamic systems with a special focus on Recurrent Neural 
Networks (RNNs). This work mainly focused on developing a RNN-based adaptive PID 
controller. The corresponding algorithms are developed and tested. 
The adaptive controller was designed to compensate the drawbacks of the conventional 
PID controller in controlling nonlinear dynamic systems. Two major control approaches 
have been verified. First, when the plant is known and we have some information about it 
in advance. The second control approach assumes a completely unknown plant. The 
comprehensive control approach for the second case contains two RNNs.  One of them 
acts as a controller and the other one as an emulator. It has been shown that the control 
system with two networks is more efficient, reliable and accurate. However, with the 
RNN it has been observed that the system becomes more sensitive which needs careful 
tuning of the learning ratio and momentum terms. 
In this research, the significant contribution is in the development of the RNN based 
controller with the self-tuning ability. Controlling unknown complex systems is a 
challenging problem, especially when the black-box system is highly nonlinear and the 
output is contaminated with disturbances. The authors have shown the power of RNNs to 
overcome these difficulties.  
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In the tuning process of the RNN-based controller with emulator, it is found that increasing 
the learning ratio and momentum term minimizes the error faster, but may deteriorate the 
network stability.  
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1. Introduction    
The applications of robot are very extended and have already become classic in different 
branches of mass industrial production such as welding, painting by spraying, antirust 
protection, etc. Though the operations performed by robots in these fields are very complex, 
the operations of assembly are even more complex. In fact, robot assembly operations 
involve the process of direct solving the conflicting situations being not within the classic 
repetitive work.  
Investigations treating typical assembly duties started forty years ago (Bohman, 1994). In the 
meantime, it was offered a series of control mechanism of mating date. Performing 
assemblies depends on sensation of and appropriate reaction to the forces of contact 
between mating components date (Wei, 2001).  
It is shown that with the intelligent techniques, example components can be assembled 
faster, gentle and more reliably. In order to create robot behaviours that are similarly 
intelligent, we seek inspiration from human strategies date (Chan, 1995). The working 
theory is that the human accomplishes an assembly in phases, with a defined behaviour and 
a subgoal in each phase. The human changes behaviours according to events that occur 
during the assembly and the behaviour is consistent between the events. The human’s 
strategy is similar to a discrete event system in that the human progresses through a series 
of behavioural states separated by recognizable physical events.  
In achieving acceptably fast robot behavior with assuring contact stability, many promising 
intelligent-control methods have been investigated in order to learn unstructured 
uncertainties in robot manipulators date (Chan, 1995), (Miyazaki et al., 1993), (Brignone et 
al., 2001). For example, (Newman et al., 2001) work describes intelligent mechanical 
assembly system. First phase for assembly is blind search. In this phase multiple parameters 
are assigned to rotational search attractor. If sensors register force values higher then 
thresholds, new parameters are assigned. Intelligent layer is represented on 22-dimensional 
space of trajectories, and based on blind search parameters (correct and incorrect) neural 
network is made. Correct assembly path is chosen by using form of Genetic algorithm 
search, so the new vectors are evolved from most successful “parents”. Using this process, 
the robot was allowed to generate and test its own program modifications. 
The primary source of difficulty in automated assembly is the uncertainty in the relative 
position of the parts being assembled (Vaaler, 1991). The crucial thing in robot assembly is 
how to enable a robot to accomplish a task successfully in spite of the inevitable uncertainties 
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(Xiao & Zhang, 1995). Often a robot motion may fail and result in some unintended contact 
between the part held by the robot and the environment. There are generally three types of 
approaches to tackle this problem. One is to model the effect of uncertainties in the off-line 
planning process, but computability is the crucial issue. A different approach is to rely on–
line sensing to identify errors caused by uncertainties in a motion process and to replann the 
motion in real-time based on sensed information The third approach is to use task-
dependent knowledge to obtain efficient strategies for specific tasks rader than focusing on 
generic strategies independent of tasks.  
(Xiao & Zhang, 1995) introduced a systematic replanning approach which consisted of 
patch-planning based on contact analyses and motion strategy planning based on 
constraints on nominal and uncertainty parameters of sensing and motion. In order to test 
the effectiveness of the replanning approach, they have developed a general geometric 
simulator SimRep on a SUN SPAR@ Station which implements the replanning algorithms, 
allows flexible design of task environments and modeling of nominal and uncertainty 
parameters to run the algorithms and simulates the kinematics’ robot motions guided by the 
replanning algorithms in the presence of uncertainties. 
In our paper, we present the complex robot assembly of miniature parts in the example of 
mating the gears of one multistage planetary speed reducer. Assembly of tube over the 
planetary gears was noticed as the most difficult problem of overall assembly and 
favourable influence of vibration and rotation movement on compensation of tolerance was 
also observed. There were extensive experimental complex investigations made for the 
purpose of finding the optimum solution, because many parameters had to be specified in 
order to complete assembly process in defined real-time. But, tuning those parameters 
through experimental discovering for improved performance was time consuming process.  
The main contribution of this work is the use of a task replanning approach in combination 
with robot learning from experimental setup. We propose neural network based learning 
which gives us new successful vibration solutions for each stage of reducer. With this 
extended optimal vibration values as source information, we introduce Deterministic search 
strategy in scope of Robot Assembly Replanning Agent. 

2. Machine learning 
Machine learning usually refers to the changes in systems that perform tasks associate 
with artificial intelligence date. The changes might be either enhancement to already 
performing systems or synthesis of new system. A learning method is an algorithm 
(usually implemented in software) that estimates an unknown mapping between a systems 
input and outputs from the available data set. Learning is required when these mappings 
cannot be determined completely in advanced because of a priory uncertainty date (Farrell 
& Baker, 1993). 
Generally speaking, there are two types of learning: supervised and unsupervised. These 
algorithms vary in their goals, in the available training data sets, in the learning strategies 
and representation of data. 
Supervised learning requires a trainer, who supplies the input-output training instances. 
The learning system adapts its parameters by some algorithms to generate the desired 
output patterns from a given input pattern. In absence of trainers, the desired output for a 
given input instance is not known, and consequently the learner has to adapt its parameters 
autonomously. Such type of learning is termed unsupervised learning.  
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When the data are preprocessed and when we know what kind of learning task is defined 
for our application, it is important to make decision about the application of one or more of 
machine learning approaches. The most frequently used techniques include statistical 
methods (involve Bayesian inference), symbolic, inductive learning algorithms (decision 
building tree), cluster analysis, multiple-layered, feed-forward neural networks such as 
Backpropagation networks, fuzzy logic and evolution-based genetic algorithms (Kantardzic, 
2001). These techniques are robust in their ability to analyze user queries, identify users' 
information needs and suggest alternatives for search.  

3. Robot learning 
Over the last few years, a number of studies were reported concerning machine learning 
and how it has been applied to help robots to improve their operational capabilities. Typical 
“things” that are learnt by robots are “how” to perform various behaviors: obstacle 
avoidance, navigation problems, planning robot control, etc. Imitation learning has helped 
significantly to start learning with reasonable initial behaviour. 
It is difficult to define a coherent experimental method for robot learning (Wyatt et al., 1999). 
That is partly because the robot’s behaviour may be the product of the robot’s learning 
algorithm, it’s  initial knowledge, some property of the it’s sensors, limited training time, 
stochastic actions, real-time responses, online learning, the environment or of an interaction 
between some subset of these. All of this makes it very difficult to interpret results. The 
robot learning experiments must be designed so as to generate meaningful results in the face 
of such complexity. 
Essentially, we can define the robot learning as one of learning a policy function π from 
some set of sensory states S to some set of actions A. In order words, a task-dependent 
control policy π maps a continuous-valued state vector x of a controlled system and its 
environment, possibly in a time t dependent way, to a continuous-valued control vector u: 

 ( , , )u x tπ θ=  (1) 

The parameter vector θ contains the problem-specific parameters in the policy π that need to 
be adjusted by the learning system. Examples of policy functions include desired control 
behaviours for mobile robots, such as avoiding obstacles, following walls, moving a robot 
arm to pick up some object. 
Approaches to robot learning can be classified using three dimensions: direct versus indirect 
control, the used learning method and the class of tasks in question (Schaal, Atkenson, 2010). 
How the control policy is learned, can be proceed in many different ways. Assuming that 
the model equation (1) is unknown, one classical approach is to learn these models using 
methods of function approximation and then compute a controller based on the estimated 
model, which is often discussed as the certainty-equivalence principle in the adaptive 
control. Such techniques are summarized under the name model-based learning, or indirect 
learning or internal model learning. Alternatively, model-free learning of the policy is possible 
given an optimization or reward criterion, usually using methods from optimal control or 
reinforcement learning. Such model-free learning is also known as direct learning, since the 
policy is learned directly, i.e., without a detour through model identification. 
From the viewpoint of machine learning, robot learning can be classified as supervised 
learning, reinforcement learning, learning modularizations or learning feature representations that 
subserve learning. 
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We can distinguish two supervised paradigms, inductive concept learning and explanation-
based learning (Mahadevan, 1996). Inductive concept learning, assumes that a teacher 
presents examples of the target function for the robot. In this paradigm, the temporal credit 
assignment problem is non-existent, since the teacher is essentially telling the robot what 
action to perform, in some situation. In explanation-based learning, the teacher not only 
supplies the robot with example of the target function, but also provides a domain theory 
for determining the range of sensory situations over which the example action is useful. It 
can be a logical function or a neural network, or even an approximate qualitative physics 
based theory. 
The unsupervised paradigms involve reinforcement learning and evolutionary learning. In 
reinforcement learning, the learner does not explicitly know the input-output instances, but it 
receives some form of feedback from its environment. The feedback signals help the learner 
to decide whether its action on the environment is rewarding or punishable. The learner 
thus adapts its parameters based on the states (rewarding/punishable) of its actions. 
Intuitively, RL is a process of trial and error, combined with learning. There are several 
popular methods of approaching model-free robot learning. Value function-based methods 
are discussed in the context of actor-critic methods, temporal difference (TD) learning and Q 
learning. A novel wave of algorithms avoids value functions and focuses on directly 
learning the policy, either with gradient methods or probability methods. 
The evolutionary learning is very similar to reinforcement learning, in that the robot is only 
provided with a scalar feedback signal, but the differences is in term of learning (online vs. 
offline), etc. 
It is useful too to distinguish between several general classes of motor tasks that could be 
the goal of learning. Regulator tasks keep the system at a particular set point of operation-a 
typical example is a balancing a pole on a finger tip or standing upright on two legs. 
Tracking tasks require the control system to follow a given desired trajectory within the 
abilities of the control system. Discrete movement tasks, also called one-shot tasks, are defined 
by achieving a particular goal at which the motor skill terminates (basketball foul shot). 
Periodic movement tasks are typical in domain of locomotion. The complex  movement tasks are 
composed of sequencing and superimposing simpler motor skills, e.g. leading to complex 
manipulation skills like assembling a bookshelf etc. 
In order to achieve faster and reliable above specified complex robot assembly process in 
this research, we validate the results concerning the robotic assembly by introducing of 
learning strategies. First, the supervised (neural network) based learning is capable to 
reproduce the training data and to form clutter of adjustable vibrations for assembly 
process. Second, the unsupervised form of learning is used to reach a goal matting point 
using minimal path searching actions. It is equipped with reinforcement signal detection, 
which can measure physical aspect of mating process (model-free learning). The robot 
moves with reward in case of tolerance compensation. In case of jamming, Robot Assembly 
Replanning Agent uses this signal as error detection in system and replanns actions in order 
to achieve a goal position.  

4. Planning agents 
Intelligent agents are able to perceive their environment and respond in a timely fashion to 
changes that occur in it in order to satisfy their design objectives (Wooldridge, 2008). They 
are able to exhibit goal-directed behaviour by taking the initiative in order to satisfy their 
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design objectives. But for non-functional systems, the simple model of goal-directed 
programming is not acceptable, as it makes some important limiting assumptions. In 
particular, it assumes that the environment does change and if the assumptions underlying 
the procedure become false while the procedure is executing, then the behaviour of the 
procedure may not be defined and it will be crash. In such environment, blindly executing a 
procedure without regard is poor strategy. In such dynamic environments, an agent must be 
reactive, i.e. it must be responsive to events that occur in its environment.  
Building purely goal-directed systems is not hard, but it is hard building a system that 
achieves balance goal-directed and reactive behaviour. The agents must achieve their goals 
systematically using complex procedure-like patterns of action. 
We assume that the environment may be in any of a finite set E of discrete, instantaneous 
states:  

 { }', ,...E e e=  (2) 

Agents are assumed to have a finite repertoire of possible actions available to them, which 
transform the state of the environment 

 { }0 1, ,...cA a a=  (3) 

A run r of the agent in an environment is thus a sequence of interleaved environment states 
and actions: 

 
0 3 11 2

0 1 2 3: ...
na a aa a

nr e e e e e
−

→ → → → →  (4) 

We model agents as functions which map runs to actions: 

 : E
g CA R A→  (5) 

where RE is subset of these that end with environment state. 
Means-ends reasoning is the process of deciding how to achieve an end using the available 
means (actions that can perform). Means-ends reasoning is known as planning.  
A planner is system that takes as input the following: representation of a goal, the current 
state of the environment and the actions available to the agent. As output, a planning 
algorithm generate a plan P. A plan P is a sequence of actions: 

 { }1 ,... nP a a=  (6) 

Many agents must have reactive role in order to achieve goal, i.e. agent must replann. In this 
case agent has next structure: 

 { }' ' '
1 1, , ...i i nP a a a a+=  (7) 

In practical reasoning agents, the plan function is implemented by giving the agent a plan 
library. The plan library is a collection of plans, which an agent designer gives to an agent. 
The control cycle of decision-making process of agent is a loop, in which the agent 
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continually observes the world, decides what intention to achieve, uses means-ends 
reasoning to find a plan to achieve these intentions and execute the plan (replann). 
Learning has an advantage that it allows the agents to initially operate in unknown 
environments and to become more competent than its initial knowledge alone might allow. 
The agent decides on actions based on the current environmental state and through 
feedback in terms of the desirability of the action (reward), learns from interaction with the 
environment.  
Examples of reaching a desired goal, avoiding obstacles, self-collisions, etc. using a 
combination of robot learning and task replanning are presented in (Banjanović-
Mehmedovic, et.al., 2008), (Ekvall & Kragic, 2008). 

5. Robot assembly system 
5.1 Assembly system 
The main difficulty in assembly of planetary speed reducers is the installation of tube over 
planetary wheels. Namely, the teeth of all three planetary wheels must be mated with 
toothed tube. Fig. 1. presents a). only one stage of planetary reducer, and b). planetary speed 
reducer (cross-section 20mm, height five degrees 36mm), which has been used for 
experiments. 
 

 
Fig. 1. One stage of planetary reducer, b). View inside of planetary speed reducer. 

 In this research has not been considered the complete assembly of each part of planetary 
reducer but only the process of connecting the toothed tube to five-stage planetary reducer. 
By solving the problem of assembly the gears, there will be no problem to realise complete 
assembly of planetary speed reducer.  
For the process of assembly, the vertical-articulated robot with six-degrees of freedom, type 
S-420i of the firm FANUC has been used, completed by vibration module (Fig. 2.), 
developed at Fraunhofer- Institut für Produktionstechnik and Automatisierung (IPA) in 
Stuttgart, Germany. Total form of movement should be produced by vibration module to 
allow the fastest possible way of mating the tube with base part of planetary reducer 
respectively to compensate tolerance by vibration (Schweigert, 1995).  
According to the functioning the individual systems of tolerance compensation can be 
divided into (Bernhart & Steck, 1992): 
• controllable (active) system for tolerance compensation in which, on base of sensor 

information on tolerance, the correction of movement is made for the purpose of 
tolerance compensation 



Robotic Assembly Replanning Agent Based on Neural Network Adjusted Vibration Parameters 

 

303 

• uncontrollable (passive) system for tolerance compensation in which the orientation of 
external parts is achieved by the means of advanced determined strategy of searching 
or forced by connection forces 

• combination of above two cases. 
For this system of assembly (Banjanovic-Mehmedovic, 1999), the passive mechanism of 
tolerance compensation has been used with specially adjusted vibration of installation tools. 
The assembly process starts with gripe positioning together with toothed tube exactly 5mm 
above the base part of planetary reducer and than moving in direction of negative z-axis in 
order to start assembly (Fig. 2.). 
 

   
Fig. 2. Particular phases of assembly process. 

The analysis of assembly process shows that movement based on vibration and rotation act 
positively on the course of process. Vibration module should be able to produce vibration in 
x- and y- direction, and rotation around the z-axis. Sensors (inductive sensor of passed way 
and vicinity) necessary in process of assembly ware mounted on vibration module. There 
was a special controlling card developed for control by step-motor and magnets for 
generating vibrations on vibration module. 

5.2 Search strategy 
The complex systems are often modelled according to either state-based or an event-based 
paradigm. While in state-based model, the system is characterized by states and states 
changes, in the latter case is characterized by event (actions) that can be performed to move 
from one state to another (H.ter Beek et.al., 2008). 
Transition system is described with quadruple (S,s0,AC, R), where S is set of states, s0 is 
initial state, A are transition from one state to another and R is transition relation. In our 
research, we used this concept in order to describe the relationships between the parts being 
assembled. Namely, the states are assembly parameters–vibration amplitudes and 
frequencies for each planetary reducer stage and transition action are used to move through 
assembly process from one stage to another of planetary reducer. 
During the robot assembly of two or more parts we encounter the problem of tolerance 
compensation. For automatic assembly the tolerance is especially difficult problem because 
in process of mating it must be compensated but it takes time and requires corresponding 
algorithms.  
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In order to compensate tolerance during robot assembly, we use the ‘search strategy’, which 
adjusted amplitudes and frequencies to optimal values gained from experimental 
experience (amplitude of upper plate, amplitude of down plate, frequency of upper plate, 
frequency of down plate) (Fig. 3.). In case of jamming from different physical reasons 
(position, friction, force etc.), robot returned to beginning of current reducer stage, where 
the jamming was made. The search strategy tried three times to continue assembly process 
with another optimal assembly vibration parameter stage set values. It exploited the 
technique of blind search in optimal parameter space with repeated trials at manipulation 
tasks. When the jamming has been overcome, robot kept moving until it reached the final 
point in assembly. On the opposite, flashing of red lamp informed the personnel that there 
has been a jamming. 
 

Replanning Algorithm 
using Random 
Optimal Values 

Goal point in 
z-direction

Optimal Values for 
each phase from 

Robot 
Experiments

Planning Parameter 
Strategy

(Dynamic effects of 
uncertainties )

Particular Phase Goal 
Achived

No Task 
achived

Phase Task

Robot Assembly 
Failure

2 times

 
Fig. 3. Search strategy in experimental robot assembly. 

There were extensive experimental complex investigations made for the purpose of finding 
the optimum solution, because many parameters had to be specified in order to complete 
assembly process in defined real-time. But, tuning those parameters through experimental 
discovering for improved performance is time consuming process.  
The search strategy involved in assembly experiments exploited the technique of blind 
search of optimal vibration values in repeated trials in each stage. If selected optimal value 
is in discontinuity area, then the path between one selected optimal stage parameter set and 
another will be outside of cone (Fig. 4.). 
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Fig. 4. Transition problems between states inside Search Strategy. 
In this case, the tolerance compensation isn’t achieved, because position tolerance of some 
stage D is greater than admitted position tolerance D0. What is solution for this? In order the 
path between two phases would be in cone towards stable tolerance compensation, we need 
deterministic transition action (directed path between vibration states based on minimal path 
finding).  
To make this search strategy more intelligent, additional learning software was created to 
enable improvements of performance.  

6. Robot assembly replanning agent 
Today robot need to react to stochastic and dynamic environments, i.e., they need to learn how 
to optimally adapt to uncertainty and unforeseen changes (Schaal&Atkenson, 2010). The robot 
learning covers a rather large field, from learning to perceive, to plan, to make decisions etc.  
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Fig. 5. Robot Assembly Replanning Agent. 
Learning control is concerned with learning control in simulated or actual physical robots. It 
refers to the process of acquiring a control strategy for a particular control system and 
particular task by trial and error. 
Task planning is the problem of finding a sequence of actions to reach a desired goal state. 
This is a classical AI problem that is commonly formalized using a suitable language to 
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represent task relevant actions, states and constraints (Ekvall & Kragic, 2008). The robot has 
to be able to plan the demonstrated task before executing it if the state of the environment 
has changed after the demonstration took place. The objects to be manipulated are not 
necessarily at the same positions as during the demonstration and thus the robot may be 
facing a particular starting configuration it has never seen before. 
In this paper, we present a learning method in combination with robot path 
planning/replanning agent system. The performance of this method is demonstrated on a 
simulated robot assembly through intelligent agent system (Fig. 5.). We propose neural 
network based learning which gives us new successful vibration solutions for each stage of 
reducer. With this extended vibration parameters as source information for 
Planning/Replanning Task, we introduce advanced search strategy of robot assembly. 
In the replanning scheme, the error model is used to model various dynamic effects of 
uncertainties and physical constraints by jamming. Combing the efforts of the planner and 
learned optimal values, the replanner is expected to guarantee that agent system enters the 
region of convergence of its final target location. 

6.1 Neural network based vibration parameters learning 
The artificial neural networks (ANN), with their remarkable ability to derive meaning from 
complicated or imprecise data, can be used to extract patterns and detect trends that are too 
complex to be noticed by either humans or other computer techniques. A trained neural 
network can be thought of as an "expert" in the category of information it has been given to 
analyze. This expert can then be used to provide projections given new situations of interest 
and answer to question “what if” (Stergiou & Siganos, 1996). Another reason that justifies 
the use of ANN technology, is the ability of ANNs to provide fusion of different information 
in order to learn complex relationships among the individual values, which would 
otherwise be lost if the values were individually analyzed. 
There exist many types of neural networks, but the basic principles are very similar. Each 
neuron in the network is able to receive input signals, to process them and to send an output 
signal. The neural network has the power of a universal approximator, i.e., it can realize an 
arbitrary mapping of one vector space onto another vector space. The main advantage of 
neural networks is that they are able to use some a priori unknown information hidden in 
data, but they aren’t able to extract it. Process of ‘capturing’ the unknown information is 
called ‘learning of neural network’ or ‘training of neural network’. In mathematical 
formalism to learn means to adjust the free parameters (synaptic weight coefficients and 
bias levels) in such a way that some conditions are fulfilled  (Svozil et al., 1997). 
Neural network based learning is used in this research to generate wider scope of 
parameters in order to improve the robot behaviour. The parameter vector θ contains the 
problem-specific parameters in the policy π that need to be adjusted by the learning system. 
The amplitude and frequencies vibration data is collected during assembly experiments and 
is used as sources of information for the learning algorithm.  

 ( ), , , ru x t A fπ=  (8) 

By starting the robot work, vibration module vibrated with determined amplitude (to +/-
2mm) and frequency (to max. 10Hz) for each stage of reducer. For those experiments, the 
vibration figure horizontal EIGHT (Fig. 6) is used (the frequency ratio between down and 
above plate is fD/fU=2). 
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As optimum values of amplitudes of down and above plate that were valid for all stages of 
reducer are AD=AU=0.8mm. From experiments, we gained that smaller frequencies of 
vibration were better (fD/fU=4/2 or 6/3) for 1-2 stage (counting of stages starts from up to 
down), while for each next stage the assembly process was made better with higher 
frequencies (fD/fU=8/4 or 10/5). 
 

 
a) 

 
b) 

Fig. 6. Vibration figure-EIGHT: a) (1-2 stage; fD/fU=4/2 AD/AU=1.4/1.4); b) (3-4 stage; 
fD/fU=10/5 AD/AU=0.5/0.5). 
Multi-layer feed-forward neural networks (MLF), trained with a back-propagation learning 
algorithm, are the most popular neural networks. In our research we used MLF neural 
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network contains 10 tansig neurons in hidden layer and 1 purelin neuron in its output layer. 
The feed-forward neural networks were formed and tested for each stage of assembly 
process. Each one was initialized with random amplitudes AU=AD=Ai between 0 and 2 and 
frequencies values fi between 0 through 4. Namely, the range of the frequencies measurement 
is normalized by mapping from frequencies ratio fD/fU=(4/2, 6/3, 8/4,10/5) onto the range 
of the state frequencies values (0 through 4). To training the MLF network, we used 35 
vibrations sets for each 5 phases of assembly. The mean square errors (MSE) during the 
training of 5 MLF networks were achieved for 7-10 epochs. Two thousand data points were 
taken as a testing sample. 
The following picture (Fig. 7.) presents network’s trying to learn the new optimal stage 
vibration sets indicated by their respective picture. Each frame consists of the network's 
training true regions (circles mark) and network's training bad regions (rectangle marks). 
 

  

  

 

 

 Fig. 7. Results of neural network training for all 5 stages 
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The results show that the scope of adjusted vibration parameters obtained from autonomous 
learning is extended in respect to adjusted vibration sets from experimental robot assembly. 
We can see that critical moment in assembly process is second phase, which presents 
medium clutter position of optimal vibration parameter sets through stages. Phases 2 
presents discontinuity between first and third phase in clutter space. It can be reason for 
advanced form of planning/replanning too. 

6.2 Advanced replanning strategy 
The problem with applied search strategy in experiments was in case of behaviour 
switching (case of assembly jamming). The search strategy tried to continue assembly 
process with another optimal, but blind chosen parameter state value. With updated search 
strategy, named Deterministic search strategy, we propose next paradigm: 
1. In order to have deterministic transition action (DTA), minimal distance is used between 
vibration state sets. DTA finds minimal distance vector from selected optimal value (A(i),f(i)), 
i=1,..N from current extended vibration state s(k) gained from learning process towards next 
vibration state s(k+1).  

 ( ) ( ) ( )( )min ( ), ( ) ( 1), ( 1) , 1,..4path o o i iV k A k f k A k f k k= − + + =  (9) 

The minimal path between two phase is in cone and we have compensated tolerance 
(D<D0), see Fig. 8. 
2. In case of jamming (in our simulator: error event signal), we propose Replanning Algorithm 
with Learned Optimal values, which offers new plan for path tracking during simulation of robot 
assembly. Fig. 8. presents next situation: system detect error event during second state of 
assembly and strategy try to continue assembly process with another optimal set value 
(A2’,f2’) from state s(2). This another value is optimal parameter value, with mean value of 
distance from state s(1) to state s(2). We make enough offset from this critical optimal point to 
another optimal solution. After that, strategy establishes action between values (A2’, f2’) and 
(A3’, f3’). 
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Fig. 8. Deterministic search strategy uses minimization of transition path between states and 
recovery parameter algorithm in case of jamming. 
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To demonstrate the validity of this paradigm, we present test results obtained by 
implementation of Robot Assembly Replanning Agent in Matlab. We use random start point 
in vibration parameter space (1.0,1.0), but system detects error event signal and tries 
assembly with new start vibration value (1.53, 1.27) (Fig. 9.). 
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Fig. 9. Presentation of advanced search strategy in case of detecting error event signals. 
In case of detecting of error event signal in second state, deterministic search strategy tries 
instead optimal value (0.52,2.72) to continue assembly process with another optimal 
assembly vibration parameter stage set value (0.49, 3.19). New transition action is made 
from this new optimal value from current state with minimal path distance towards optimal 
vibration parameter stage set in next state. But here, system detects new error event and 
tries assembly instead (0.52,3.14) with (0.36,3.42), until it reaches the final point in assembly 
simulation process.  

7. Conclusion 
There is enough space for investigation in this class of robot assembly search strategy, 
because the selection of assembly strategy is based on inspiration from human strategies. As 
an example of robot assembly, it was researched the complex assembly of toothed tube over 
planetary gears. Important contribution of paper is combination replanning task approach 
with learning approach in order to accommodate the uncertainty in complex assembly of 
tube over planetary gears. Two form of learning are proposed in state and action domain. 



Robotic Assembly Replanning Agent Based on Neural Network Adjusted Vibration Parameters 

 

311 

First, supervised neural network based learning is used to generate wider scope of state 
parameters in order to improve the robot behaviour. Second, the unsupervised learning is 
used to reach a goal matting point. Using Deterministic search strategy based on minimal 
path tracking as transition action between vibration states and replanning of actions in case 
of error signal detection in system, it is possible to involve intelligent control of robot 
assembly. Simulations were performed in domain of robot assembly to demonstrate 
usefulness of the presented method. Robotic provides an excellent test-bench for studying 
different techniques of computational intelligence. 
Recent trends in robot learning are to use trajectory-based optimal control techniques and 
reinforcement learning to scale complex robotic systems. Future work in domain of 
replanning agent is research with genetic based replanning agent in order to  accelerate the 
optimization speed of path planning technique. 
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1. Introduction 
Adaptive/Approximate Dynamic Programming (ADP) is the class of methods that provide 
online solution to optimal control problems while making use of measured information 
from the system and using computation in a forward in time fashion, as opposed to the 
backward in time procedure that is characterizing the classical Dynamic Programming 
approach (Bellman, 2003). These methods were initially developed for systems with finite 
state and action spaces and are based on Sutton’s temporal difference learning (Sutton, 
1988), Werbos’ Heuristic Dynamic Programming (HDP) (Werbos, 1992), and Watkins’ Q-
learning (Watkins, 1989).  
The applicability of these online learning methods to real world problems is enabled by 
approximation tools and theory. The value that is associated with a given admissible control 
policy will be determined using value function approximation, online learning techniques, 
and data measured from the system. A control policy is determined based on the 
information on the control performance encapsulated in the value function approximator. 
Given the universal approximation property of neural networks (Hornik et al., 1990), they 
are generally used in the reinforcement learning literature for representation of value 
functions (Werbos, 1992), (Bertsekas and Tsitsiklis, 1996), (Prokhorov and Wunsch, 1997), 
(Hanselmann et al., 2007). Another type of approximation structure is a linear combination 
of a basis set of functions and it has been used in (Beard et al., 1997), (Abu-Khalaf et al., 
2006), (Vrabie et al. 2009). 
The approximation structure used for performance estimation, endowed with learning 
capabilities, is often referred to as a critic. Critic structures provide performance information 
to the control structure that computes the input of the system. The performance information 
from the critic is used in learning procedures to determine improved action policies. The 
methods that make use of critic structures to determine online optimal behaviour strategies 
are also referred to as adaptive critics (Prokhorov and Wunsch, 1997), (Al-Tamimi et al., 
2007), (Kulkarni & Venayagamoorthy, 2010). 
Most of the previous research on continuous-time reinforcement learning algorithms that 
provide an online approach to the solution of optimal control problems, assumed that the 
dynamical system is affected only by a single control strategy. In a game theory setup, the 
controlled system is affected by a number of control inputs, computed by different controllers 
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that try to optimize individual performance functions. In these situations the control problem 
is formulated with the purpose of finding the set of control policies that are admissible, i.e. 
control policies that guarantee the stability of the controlled dynamical system, and minimize 
the individual performance functions in a Nash equilibrium sense. This kind of solution is 
characterized by the fact that any change in the policy of any given player (in the space of 
admissible policies) will result in a worse performance for that player, relative to the 
performance that it receives by means of the Nash equilibrium solution policy.  
Nash differential games have been originally introduced in (Starr & Ho, 1969). Their study is 
highly relevant as they have a number of potential applications in control engineering and 
economics (see e.g. (Abou-Kandil et al., 2003); (Engwerda, 2005)). The underlying game 
theory formulation appears also in the study of coupled large scale systems (Mukaidani, 
2007-a), e.g. networking and wireless communication systems (Shah, 1998). 
This chapter is presenting an Adaptive Dynamic Programming (ADP) algorithm, 
formulated using the continuous-time mathematical framework, that provides, in an online 
manner, the Nash equilibrium solution of two-player nonzero-sum differential games with 
linear dynamics and infinite horizon quadratic cost. The main advantage of this ADP 
approach consists in the fact that neither of the two participants in the game makes use of 
explicit knowledge on the model of the drift dynamics of the system that they influence 
through their behavior policy. This means that the two players will learn online the most 
effective behavior policies that correspond to the Nash equilibrium while using no explicit 
knowledge on the drift dynamics of the differential game. This results in two clear benefits 
when compared with model based procedures:  
- conducting identification experiments for finding the drift term that describes the 

system dynamics is not required, while this lack of knowledge does not have any 
impact on the obtained equilibrium solution,  

- the resulting equilibrium behavior policies of the two players will not be affected by 
any error differences between the dynamics of a model of the system and the dynamics 
of the real system. 

For the case when the system has linear dynamics and the cost indices are quadratic and have 
infinite horizon, it is known that finding the Nash equilibrium to the game problem is 
equivalent with calculating the solution of a set of coupled algebraic Riccati equations (ARE) 
(see e.g. (Starr and Ho, 1969), (Abou-Kandil et al., 2003), (Basar and Olsder, 1999), (Engwerda, 
2005)). The solution of the coupled ARE has been approached in (Cherfi et al., 2005-a), (Cherfi 
et al., 2005-b), (Jungers et al., 2007), (Freiling, 1996), (Li and Gajic, 1995) by means of iterative 
procedures. These algorithms construct sequences of cost functions, or matrices, which 
converge to the equilibrium solution of the game. In the case of (Cherfi et al., 2005-a), (Cherfi et 
al., 2005-b), (Freiling et al., 1996), and (Jungers et al., 2007), convergence results of these 
procedures are still to be determined. It is important to note that all above mentioned 
algorithms require exact and complete knowledge of the system dynamics and the solution is 
obtained by means of offline iterative computation procedures.  
An ADP procedure that provides solution to the Hamilton-Jacobi-Isaacs equation, associated 
with the two-player zero-sum nonlinear differential game, has been introduced in (Wei and 
Zhang, 2008). The ADP algorithm involves calculation of two sequences of cost functions, the 
upper and lower performance indices, sequences that converge to the saddle point solution of 
the game. The adaptive critic structure that is required for learning the saddle point solution is 
comprised by four action networks and two critic networks. The requirement of full 
knowledge on the system dynamics is still present in the case of that algorithm.  
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The result presented in this chapter is the first reinforcement learning approach to the 
saddle point solution of a two player nonzero-sum differential game. By virtue of the online 
ADP method, that makes use of the integral reinforcement learning (IRL) approach (Vrabie 
et al., 2009), exact knowledge of part of the system dynamics is not required. To our 
knowledge, there exists no ADP algorithm that provides the Nash equilibrium solution of 
the two-player nonzero-sum differential game in an online fashion and without using 
complete information on the model of the dynamical system to be controlled. 
The main traits of this new online procedure are the following:  
- It involves the use of ADP techniques that will determine the Nash equilibrium solution 

of the game in an online data-based procedure that does not require full knowledge of 
the system dynamics. 

- It is the online version of a mathematical algorithm that solves the underlying set of 
coupled algebraic Riccati equations of the game problem. The equivalent algorithm 
makes use of offline procedures and requires full knowledge of the system dynamics to 
determine the Nash equilibrium of the game.  

In this ADP approach both game players are actively learning and improving their policy. 
The algorithm is built on interplay between  
- a learning phase, and  
- a policy update step.  
During the learning phase each of the players is learning the value function that it associates 
with the use of a given pair of admissible policies. Both players are learning simultaneously. 
During the policy update step both players are changing their feedback control policies in 
the sense of performance improvement. That means that each player will change its policy 
such that it will minimize his cost in front of the previous policy of their opponent.  
For learning the value that each player associates with a given admissible pair of control 
policies we will use value function approximation. In this chapter we will consider the case 
in which the critic is represented as a linear combination of a set of basis functions which 
spans the space of value functions to be approximated, see e.g. (Beard et al., 1997). The 
learning technique that is here employed for value function approximation uses the concept 
of minimization of the temporal difference error and has been described in (Vrabie, 2009). 
The objective of this chapter is to present an online algorithm that makes use of ADP 
techniques to provide the solution to the two-player differential nonzero-sum game. It 
will also show that the foundation of the novel online procedure that will be described 
here is the mathematical result introduced in (Li and Gajic, 1995). That algorithm involves 
solving a sequence of Lyapunov equations in order to build a sequence of control policies 
that converges to the Nash equilibrium solution of the game, and thus requires full 
knowledge on the system dynamics. Herein we will show how, by means of ADP 
techniques, the solution of these game optimal control problems can be obtained in an 
online fashion, using measured data from the system, and reduced information on the 
system dynamics.  
We begin our investigation by providing the formulation of the two player nonzero-sum 
game problem. We then provide an overview of the online integral reinforcement learning 
(IRL) method that can be used online to determine the value associated with a given pair of 
admissible control strategies. In Section 3 we describe the online method that provides the 
Nash equilibrium solution of the two-player nonzero-sum game. The adaptive critic 
structure associated with the online solution of the game will also be discussed. It will be 
important to note that in this case, each of the two players will make use of a critic structure 
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that will use reinforcement learning ideas to learn online the value that the player associates 
with a given admissible control strategy. Section 4 will investigate the convergence 
properties of the online reinforcement learning algorithm. It will be shown that the ADP 
procedure introduced in this chapter is theoretically equivalent with the iterative procedure 
introduced in (Li & Gajic, 1995), and thus has the same convergence properties. A 
formulation of the algorithm in the form of a quasi-Newton method will also be provided. 
Section 5 will present a simulation result. 

2. Preliminaries 
2.1 Problem formulation 
We consider the system described by the equation: 

 1 1 2 2

0 0( )
x Ax B u B u

x t x
= + +

=
 (1) 

where , imn
ix u∈ ∈ for 1,2i = , and A , 1B  and 2B  are matrices of appropriate dimensions.  

Each player i , 1, 2i = , desires to determine the feedback control strategy i iu K x=  such that 
the quadratic performance index, where 0, 0( ), 0i ij iiQ R i j R≥ ≥ ≠ > , 

 
0

1 1 1 2 2 2
1 ( )
2

T T T
i i i i

t

J x Q x u R u u R u dτ
∞

= + +∫  (2) 

is minimized. 
Definition 1  
A feedback control pair 1 2( , )u u  is admissible if the dynamics of the closed loop system (1) 
are stable and the performance indices (2) calculated for the given control pair have finite 
values.  
The two-player game problem is defined as follows: 
Given the continuous-time system (1), the cost functions , 1, 2iJ i =  defined by (2), and the set 
of admissible control inputs 1 2m mU ⊂ × , determine the state-feedback admissible control 
policies such that the closed loop system is stable and the cost functions attain the minimum 
possible value.  
These control strategies corresponds to the Nash equilibrium of the two-player differential 
game. Thus, the pair of feedback control policies that is sought, denoted 1 2( , )u u∗ ∗ , satisfies 
the following relations for any admissible control pair 1 2( , )u u U∈  

 
* * *

1 1 2 1 1 2
* * *
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For 1,2i =  and 1,2j j i= ≠ , let us define the minimum cost function by: 

 *( ) min ( , , )
i i

n
i i i ju U

V x J u u x x
∈

= ∀ ∈ . (4) 

Assuming that the optimal value function is differentialble, we can then write two coupled 
equations, for , 1,2,i j j i= ≠ , 
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that we shall refer to as the Hamilton-Jacobi-Bellman equations.  
After performing the minimization in (5) we obtain that the two elements of the closed loop 
optimal control pair 1 2( , )u u∗ ∗  will have the state feedback form  

 1 * * 1,2T
i ii i i iu R B P x K x i∗ −= − = =  (6) 

where the values of the two matrices * , 1,2iP i =  satisfy the necessary conditions for finding 
the Nash equilibrium, i.e. the two matrices * , 1,2iP i =  must be positive definite solutions to 
the coupled algebraic Riccati equations (ARE) 
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T

N P P A P P A Q P S P P S P P S P P S P

N P P A P P A Q P S P P S P P S P P S P

+ + + − − − =

+ + + − − − =
 (7) 

where 1 , 1,2T
i i ii iS B R B i−= =  and 1 1 ,T

ij j jj ij jj jS B R R R B− −=  , 1,2,i j j i= ≠ . 
Finding Nash equilibrium solutions of the game 1 2( , )u u∗ ∗ , defined through (6) by the pair of 
matrices 1 2( , )P P∗ ∗ , resumes to finding solutions to the coupled AREs (7) such that the closed 
loop system dynamics will be stable, i.e. 1 1 2 2A S P S P∗ ∗− −  is Hurwitz. 

2.2 Integral reinforcement learning 
The online iterative procedure that will be presented in Section 3 relies heavily on value 
function estimation. Thus the goal of this section is to briefly present the online procedure, 
introduced in (Vrabie et al., 2009), that uses reinforcement learning ideas to find the value of 
the parameters of the infinite horizon cost associated with a quadratic cost function such 
as , 1, 2iJ i = . We refer to this online method as integral reinforcement learning (IRL). 
As stated above, the procedure presented herein is used to find the value of the parameters 
of the infinite horizon cost associated with a cost function that has a quadratic nature, such 
as , 1, 2iJ i = . To bring the general theoretical concept into specific, let us formulate the 
following problem: Given the dynamical system (1) and an admissible pair of linear state-
feedback control policies 2 1 21( , ) ( , )u u K x K x U= ⊂ , determine the parameters of the infinite 
horizon cost function iJ , that player i associates with this admissible control pair. 
Before giving an online procedure for solving this problem one needs to choose a parametric 
representation for the value function to be determined. In this particular case the cost 
functions are quadratic and the control policies have linear state-feedback structure. Thus a 
quadratic representation in the initial state can provide an exact representation for each of 
the two cost functions. One can write: 

 
0

0 0
1
2

T T
i i i

t

J x Px x Q xdτ
∞

= = ∫  (8) 

where 1 1 1 2 2 2
T T

i i i iQ Q K R K K R K= + + , i 1,2= . 
After choosing a parametric representation for the value function one has to determine the 
values of its parameters, namely the matrix iP . The integral reinforcement learning algorithm 
that will be used for finding the parameters of the value function, i.e. the value of the matrix 

iP , is based on the following equation that is satisfied for every time sample 0 0T >  
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0

0 0

t T
T T T
t i t i t T i t T

t

x P x x Q x d x Pxτ τ τ
+

+ += +∫  (9) 

where xτ  denotes the state of the system described by 1 1 2 2( )x A B K B K x= + +  with initial 
condition tx , and 

0t Tx +  is the value of the state at time 0t T+ . 
The online implementation of the algorithm is given next. 
The solution of (9) consists of the value of the matrix iP  that is parameterizing the cost 
function. The quadratic cost functions will be written as:  

 T T
t i t i tx Px p x=  (10) 

where tx  denotes the Kronecker product quadratic polynomial basis vector with the 
elements ( ) ( ){ } 1, ; ,k l k n l k n

x t x t
= =

 and ( )p v P=  with ( ).v  a vector valued matrix function that 
acts on symmetric matrices and returns a column vector by stacking the elements of the 
diagonal and upper triangular part of the symmetric matrix into a vector, where the off-
diagonal elements are taken as 2 ijP , (Brewer, 1978). Denote the integral reinforcement over 
the time interval [ ]0,t t T+  by: 

 
0

1 2( , , )
t T

T
t i

t

d x K K x Q x dτ τ τ
+

≡ ∫ . (11)  

Based on these notations and structures, (9) is rewritten as: 

 
0 1 2( ) ( , , )T

i t t T tp x x d x K K+− = . (12) 

In (12) the vector of unknown parameters is ip  and 
0t t Tx x +−  acts as a regression vector. 

The right hand side target integral reinforcement function is measured based on the state 
trajectories over the time interval 0[ , ]t t T+ . 
The parameter vector ip  is found by minimizing, in the least-squares sense, the error 
between the target expected cost over the finite horizon, and the measured cost, 

1 2( , , )td x K K . Thus the sought parameters satisfy  

 
0

2
1 2arg min( ( , , ) ( ))T

i t t t Tp d x K K x x
η

η += − − . (13) 

The solution can be obtained online based on data measured along the trajectories of the 
system, and using batch least squares or the recursive least squares algorithm. 
It is important to note that this online algorithm for value function approximation is a data-
based approach that uses reinforcement learning ideas. Also, this value function 
approximation technique does not require explicit knowledge of the model of the controlled 
system’s drift dynamics, i.e. matrix A, or input to state matrices B1, B2 . 

3. Online iterative algorithm that solves the coupled algebraic Riccati 
equations of the nonzero-sum game 
3.1 Initialization of the online algorithm 
Before we proceed with the description of the online algorithm, we give a necessary 
assumption. 
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Assumption 1 The triples ( , , )i iA B Q , 1, 2i =  are stabilizable and detectable. 
Under this assumption one can reasonably say that initial state feedback control strategies 

(0) (0) 1,2i iu K x i= =  exist such that closed loop system matrix (0) (0)
1 21 2A B K B K− −  is 

Hurwitz.  
A procedure for obtaininig the two controllers such that the closed loop system is stable is 
described next. The procedure has two steps and it can be execute in an online manner 
without using knowledge on the drift dynamics of the system (1), i.e. without knowing the 
matrix A. 
Step 1 
Let Player 2 use the “no control” policy corresponding to 2( ) 0u x = , and determine the 
optimal control strategy of Player 1 with respect to the cost index 1J .  
This is a classical linear quadratic regulation problem and the optimal control strategy will 
have the form (0) (0) (0)1

11 1 11 1( ) Tu x K x R B P x−= = −  where (0)
1P is the solution of the ARE 

 (0) (0) (0) (0)1
1 1 1 1 1 11 1 1 0T TA P P A Q P B R B P−+ + − = . (14) 

Note that the solution of this single player optimal control problem can be obtained by 
solving (14) by means of the online ADP technique introduced in (Vrabie et al., 2009), 
without using any knowledge on the drift dynamics described by matrix A .  
For completeness we outline the procedure herein. 
a. We start from the assumption that an initial stabilizing state-feedback control policy 

(00) (00)
1 1( )u x K x= −  is available such that the matrix describing the closed loop system 

(00)
1 1A B K−  is Hurwitz. 

b. For 0,k k≥ ∈Ν , determine the value function defined as: 

 ( )
0

(0, 1) (0, ) (0, )
0 1 0 1 1 11 1

1 ( ) ( )
2

k k kT T

t

x P x x Q K R K x dτ τ τ
∞

+ = +∫ , (15) 

function that is associated with the use of the stabilizing state-feedback controller 
(0, ) (0, ) (0, )1

1 1 11 1 1( )k k kTu x K x R B P x−= − = − , where 0 (0)x x=  is an initial state. 

The sequence of matrices (0, )
1

kP , 0,k k≥ ∈Ν  can be determined using integral 
reinforcement learning, as described in Section 2.2, using discrete-time data measured from 
the system and without using any knowledge on the dynamics of the system (1). 
Finding this value via de online model free algorithm is equivalent with solving the 
Lyapunov equation  

 (0, ) (0, 1) (0, 1) (0, ) (0, ) (0, )
1 1 1 1 1 1 1 1 11 1( ) ( ) 0k k k k k kTA B K P P A B K Q K R K+ +− + − + + = , (16) 

equation that requires complete knowledge on the model of the system. 
c. The iterative procedure described in b) has as result a convergent sequence of positive 

definite matrices, as shown in (Kleinman, 1968), such that (0, ) (0)
1 1

k
k

P P
→∞
→ . A stop 

criterion can be defined as: 

 (0, 1) (0, )
1 1

k kP P ε+ − ≤  (17) 



 Advances in Reinforcement Learning 

 

320 

or:  

 (0, ) (0, ) (0, ) (0, )1
1 1 1 1 1 11 1 1

k k k kT TA P P A Q P B R B P ε−+ + − ≤ , (18) 

for a prespecified value of , where ║║ denotes a matrix norm. The latter expression, 
although it requires knowledge of the system dynamics, can be checked using online 
measured data and equation (12) such as 

 ( ) 0

(0, ) (0, )
11 ( ) ( , ,0)

Tk k
t t T tp x x d x K ε+− − ≤  (19) 

The result is that the dynamics of the system (1) with the control pair (0)
1( ( ),0)u x  are stable, 

i.e. (0)
1 1A S P−  is Hurwitz. 

Step 2  
Let Player 1 use the stabilizing control policy (0) (0)

1 1( )u x K x= , and determine the optimal 
control strategy of Player 2 with respect to the cost index 2J .  
Again, this is a classical linear quadratic regulation problem and the optimal control strategy 
will have the form (0) (0) (0)1

22 2 22 2( ) Tu x K x R B P x−= = −  where (0)
2P is the solution of the ARE 

 (0) (0) (0) (0) 1
1 1 1 1 2 1 21 1 2 22 2( ) ( ) 0T TA S P P P A S P Q P S P PB R B P−− + − + + − = . (20) 

Similarly to Step 1, the solution of this single player optimal control problem can be 
obtained by means of the online ADP IRL technique, introduced in (Vrabie et al., 2009) and 
outlined above, without using any knowledge on the drift dynamics of the system described 
by the matrix A. 
The resulting control pair (0) (0)

1 2( ( ), ( ))u x u x  is admissible, i.e. (0) (0)
1 21 2A S P S P− −  is Hurwitz. 

At this point we are in the possession of an initial admissible pair of feedback control 
strategies (0) (0) (0) (0)

1 2 1 2( , ) ( , ),u u K x K x=  that we shall also represent by (0) (0)
1 2( , )P P .  

It is worth noting that the Step 1 above can also be executed with respect to Player 2, 
followed by Step 2 that will now be relative to Player 1. Also in this case, a pair of 
admissible control policies will be obtained.  
In the following we formulate the iterative algorithm that learns online the Nash 
equilibrium solution of the two-player zero-sum differential game. At every step of the 
iterative procedure each player uses reinforcement learning to estimate the infinite horizon 
value function that it associates with the current admissible control pair. Following the 
value function estimation procedure each of the two players makes a decision to improve its 
control policy. The end result is an online algorithm which leads to the saddle point solution 
of the differential game while neither of the two players uses any knowledge on the drift 
dynamics of the environment.  

3.2 Online partially model free algorithm for solving the nonzero-sum differential 
game 
Initialization 
Start with initial matrices (0) (0)

1 2( , )P P  such that  (0) (0)
1 21 2A S P S P− −  is Hurwitz (i.e. initial 

control policies for both players are available such that the closed loop dynamics of the 
system are stable). Let 0k = . 
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Itterative procedure 
For 0,k k≥ ∈Ν , let two critic structures use the integral reinforcement learning procedure 
described in Section 2.2 to determine the value that each of the two players is associating 
with the control policies described by the matrix pair ( ) ( )

1 2( , )k kP P . Namely each of the two 
critics will determine the matrices ( 1) , 1,2, 0k

iP i k+ = ≥  that satisfy 

 
0

( )( 1)
0 0

1
2

kkT T
ii

t

x P x x Q xdτ
∞

+ = ∫  (21) 

where ( ) ( ) ( ) ( ) ( ) 1,2,
k k k k k

i i i iji i j jQ Q P S P P S P i j i= + + = ≠ . 

Each of the two players will update their control policies such that the new control policy 
pair is characterized by ( 1) ( 1)

1 2( , )k kP P+ + , i.e. 

 
( 1) ( 1) ( 1)1

11 1 11 2
( 1) ( 1) ( 1)1

22 2 22 2

( )

( )

k k kT

k k kT

u x K x R B P x

u x K x R B P x

+ + +−

+ + +−

= = −

= = −
. (22) 

Stop criterion 
Stop the online algorithm when the following criterion is satisfied for a specified value of 
the number ε  

 ( 1) ( 1) ( 1) ( 1)
1 21 2 1 2max( ( , ) , ( , ) )k k k kN P P N P P ε+ + + + ≤ , (23) 

where  denotes a matrix norm. The latter expression can be checked using online 
measured data and the following relation 

 ( ) ( )0 0

( 1) ( 1)( 1) ( 1) ( 1) ( 1)
1 2 1 21 2( ) ( , , ), ( ) ( , , )

T Tk kk k k k
t t T t t t T tp x x d x K K p x x d x K K ε

+ ++ + + +
+ +

⎛ ⎞
− − − − ≤⎜ ⎟

⎝ ⎠
. (24) 

3.3 Adaptive critic structure for solving the two-player Nash differential game 
The adaptive critic structure that represents the implementation of this algorithm is given in 
Figure 1. 
 

Learning procedure

x
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Fig. 1. Adaptive critic structure for the ADP game with IRL. 
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An important aspect that is revealed by the adaptive critic structure is the fact that this ADP 
algorithm is now using three time scales:  
a. the continuous-time scale, represented by the full lines, that is connected with the 

continuous-time dynamics of the system and the continuous-time computation 
performed by the two players; 

b. a discrete time scale given by T0. This time scale is connected with the online learning 
procedure that is based on discrete-time measured data; 

c. a slower, discrete-time scale that is a multiple of T0. This time scale, indicated by the 
dashed lines, is connected with the update procedure of the control policies of the two 
players. The update procedure is performed only after the value function learning 
procedure, that uses integral reinforcement information, has converged. 

The values of the time periods T0 can be variable and are controlled by the two learning 
critics. Each critic will output a matrix ( ) , 1,2k

iP i = , in a synchronous fashion, after both 
online learning algorithms for the value functions have converged. Each controller will use 
the information from its corresponding critic to calculate and then implement a new control 
policy. 
From the perspective of two-player games, the proposed online algorithm can be presented 
as follows: 
Initialization 
Let the initial policy of Player 2 be zero (00)

2 0u = .  
Let Player 1 determine its optimal control policy (0) (0)1

11 1 11
TK R B P−= −  in an online 

optimization procedure while Player 2 is not playing the game.  
Let Player 2 determine its optimal control policy (0) (0)1

22 2 22
TK R B P−= −  in an online 

optimization procedure while Player 1 is playing the game using (0)
1K . 

Iterative procedure 
For 0k ≥ , let both players determine online, using the integral reinforcement learning 
procedure, the values that they associate with the use of the policy pair ( ) ( )

1 2( , )k kK K , namely 
the pair of matrices ( 1) ( 1)

1 2( , )k kP P+ + . 
Let both players update their control policies using  

 ( 1) ( 1)1k kT
ii i iiK R B P+ +−= − . (25) 

Stop criterion  
Let both players stop this iterative procedure when there is no change in the control policies 
is observed at two successive steps (i.e. the Nash equilibrium has been obtained and both 
players can not further improve their cost function by changing their behavior policy). 

4. Analysis of the online learning algorithm 
In this section we are providing an analysis for the online algorithm that was introduced in 
section 3.  

4.1 Mathematical formulation of the online algorithm 
Using the notation ( ) ( )( )

1 21 2
k kkA A S P S P= − − , it can be shown that equations (21) can be 

written as:  

 ( ) ( )( 1) ( 1)( ) ( )T kk kk k
ii iA P P A Q+ ++ = −  (26) 
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where 1,2i = . 
Thus the online algorithm described in Section 3.2 is equivalent with the following 
procedure: 
Initialization 
Start with initial matrices (0) (0)

1 2( , )P P  such that  (0) (0)
1 21 2A S P S P− −  is Hurwitz.  

Iterative procedure  
For 0,k k≥ ∈Ν , solve the Lyapunov equations (25). 
Stop criterion 
Stop the online algorithm when the criterion (23) is satisfied for a user specified value of ε .  
This offline algorithm that uses iterations on Lyapunov equations has been proposed and 
analysed in (Li & Gajic, 1995) and its convergence has been further discussed in (Mukaidani, 
2006) and (Mukaidani, 2007-b). Considering the mathematical equivalence between the 
algorithm introduced in (Li & Gajic, 1995) and the online procedure based on reinforcement 
learning that we proposed in Section 3, we can conclude that the online, partially model 
free, algorithm that we presented herein has the same convergence properties. 

4.2 Analysis of the online algorithm 
It is interesting to see that, similarly to the Newton method proposed in (Kleinman, 1968) for 
solving the classical continuous-time algebraic Riccati equation, the algorithm presented in 
this chapter relies on iterations on Lyapunov equations. However, the online procedure 
introduced here, and its underlying algorithm, is not a Newton method for finding the 
solution of the coupled ARE given in (7). This shall be clarified by means of the next two 
propositions. 
First let us look at the formulation of the Newton method that determines the unique 
positive definite solution of the classical continuous-time algebraic Riccati equation 

 1 0T TA P PA Q PBR B P−+ + − = . (27) 

Denote with ( )kRic P  the matrix valued function defined as 

 1( ) T T
k k k k kRic P A P P A Q P BR B P−= + + −  (28) 

and let '
kPRic denote the Frechet derivative of ( )kRic P  taken with respect to kP . The matrix 

function '
kPRic , evaluated at a given matrix M, will thus be  

 ' 1 1( ) ( ) ( )
k

T T T
P k kRic M A BR B P M M A BR B P− −= − + − . (29) 

Proposition 1 The unique positive solution of (27) can be determined by Newton’s method 
given by: 

 
1

' 1
1 1( ) ( )

kk k P kP P Ric Ric P
−

−
− −= − , (30) 

provided that the initial matrix 0P  is such that 1
0

TA BR B P−−  is Hurwitz; and considering 
that the regular conditions for existence and uniqueness of positive definite solution are 
satisfied.  For a proof see (Vrabie et al., 2009). 
Next we will use the same mathematical tools to provide formulation to the algorithm used 
herein. 
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Consider the notations introduced in (7) for the two coupled algebraic Riccati equations, and 
let ( )

1

'
1 kPN  and ( )

2

'
2 kPN  denote the Frechet derivatives of ( ) ( )

1 1 2( , )k kN P P  and ( ) ( )
2 1 2( , )k kN P P , 

taken with respect to ( )
1

kP  and respectively ( )
2

kP , such that  

 
( )
1

( )
2

( ) ( )'
1

( ) ( )'
2

( ) ( )

( ) ( )

k

k

k kT
P

k kT
P

N M A M MA

N M A M MA

= +

= +
, (31) 

where ( ) ( ) ( )
2 2 1 1

k k kA A S P S P= − − . 
Proposition 2 Consider that the regular conditions for existence and uniqueness of 
solution of the infinite horizon nonzero-sum differential game with quadratic 
performance are satisfied. Then, provided that an initial pair (0) (0)

1 2( , )P P  is such that 
(0) (0) (0)

2 2 1 1A A S P S P= − −  is Hurwitz, the online algorithm described in Section 3.2, that 
provides the Nash equilibrium solution of (7), can be formulated as the following quasi-
Newton method  

 
( )
1

( )
2

( 1) ( ) ( ) ( )' 1
1 11 1 1 2

( 1) ( ) ( ) ( )' 1
2 22 2 1 2

( ) ( , )

( ) ( , )

k

k

k k k k
P

k k k k
P

P P N N P P

P P N N P P

+ −

+ −

= −

= −
. (32) 

Proof We first show that the two equations (26) 

 ( ) ( )( 1) ( 1)( ) ( )T kk kk k
ii iA P P A Q+ ++ = −  (33) 

can be written in the form:  

 ( 1) ( ) ( ) ( ) ( 1) ( ) ( ) ( )
11 1 1 1 1 2( ) ( ) ( ) ( , ) 0k k k k k k k kTP P A A P P N P P+ +− + − + =  (34) 

and respectively:  

 ( 1) ( ) ( ) ( ) ( 1) ( ) ( ) ( )
22 2 2 2 1 2( ) ( ) ( ) ( , ) 0k k k k k k k kTP P A A P P N P P+ +− + − + = . (35) 

For i=1, we write (33) as: 

 ( ) ( 1) ( 1) ( ) ( ) ( ) ( )( ) ( )
1 1 121 1 1 1 2 2( )

T k k k k k kk kA P P A Q P S P P S P+ ++ = − + + . (36) 

Using the definition of ( ) ( )
1 1 2( , )k kN P P  we can write: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 1 21 2 1 2 1 1 1 2
( ) ( ) ( ) ( )

1 12 12 2 1 1

( , ) ( ) ( )k k k k k k k kT

k k k k

N P P A S P S P P P A S P S P

Q P S P P S P

= − − + − − +

+ + +
 (37) 

and thus we have  

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 12 11 2 1 1 2 2 1 1( , )

Tk k k k k k k k k kN P P A P P A Q P S P P S P− − = + + . (38) 
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Adding equations (36) and (38) we obtain 

 ( ) ( ) ( )( 1) ( ) ( ) ( ) ( 1) ( ) ( ) ( )
11 1 1 1 1 2( , ) 0

Tk k k k k k k kP P A A P P N P P+ +− + − + = . (39) 

Similarly, for i=2, one can obtain (35) using (33) and the definition of ( ) ( )
2 1 2( , )k kN P P . 

Using (31) we write 

 ( ) ( )( )
1

( 1) ( ) ( 1) ( ) ( 1) ( )( ) ( )'
1 1 1 1 1 1 1( ) ( )k

k k k k k kk kT
PN P P A P P P P A+ + +− = − + −  (40) 

and thus (39) becomes 

 ( )
1

( 1) ( ) ( ) ( )'
1 11 1 1 2( ) ( , )k

k k k k
PN P P N P P+ − = − , (41) 

and the sequence of matrices { }( )
1

kP  will be determined using the iterative relation  

 ( )
1

( 1) ( ) ( ) ( )' 1
1 11 1 1 2( ) ( , )k

k k k k
PP P N N P P+ −= − . (42) 

In a similar fashion we can show that the sequence of matrices { }( )
2

kP  is the result of the 
iterative procedure  ( )

2

( 1) ( ) ( ) ( )' 1
2 22 2 1 2( ) ( , )k

k k k k
PP P N N P P+ −= − .    

5. Simulation result for the online algorithm 
This section presents the results that were obtained in simulation while finding the state-
feedback controllers that correspond to the Nash equilibrium solution of the differential 
game.  
Here we considered the system used in Example 1 in (Jungers et al., 2007). The purpose of the 
design method is to allow the two players to determine by means of online measurements and 
reinforcement learning techniques the control strategies that satisfy the equilibrium 
characterized by (3). It is important to emphasize that the equilibrium result will be obtained 
without making use of any knowledge on the drift dynamics of the system, matrix A. 
The matrices of the model of the plant, that are used in this simulation are:  

 

-0.0366    0.0271    0.0188   -0.4555
0.0482   -1.0100    0.0024   -4.0208
0.1002    0.2855   -0.7070    1.3229

      0             0       1.0000         0

nomA

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (43) 

 
[ ]
[ ]

1

2

0.4422    3.0447    -5.52   0

0.1761   -7.5922    4.99    0

T

T

B

B

=

=
 (44) 

The following cost function parameters were chosen 1 (3.5;2;4;5)Q diag= , 
2 (1.5;6;3;1)Q diag= , 11 1R = , 22 2R = , 12 0.25R = , 21 0.6R = . 

For the purpose of demonstrating the online learning algorithm the closed loop system was 
excited with an initial condition, the initial state of the system being [ ]0 0   0   0   1x = . The 
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simulation was conducted using data obtained from the system at every 0.2s. The value of 
the stop criterion ε  was 610− .  
The algorithm was initialized using the matrices (0) , 1,2iP i =  that were calculated using the 
initialization procedure that was outlined above. It is important to mention here that the two 
admissible control policies (0) , 1,2iK i =  corresponding to the solutions (0) , 1,2iP i =  can also 
be determined online by means of the online policy iteration algorithm introduced in 
(Vrabie et al., 2009), a procedure that does not require knowledge on the drift dynamics of 
the system, namely matrix A. 
In order to solve online for the values of the ( ) , 1,2k

iP i = , a least-squares problem of the sort 
described in Section 2.2 was set up before each iteration step in the online algorithm. Since 
there are 10 independent elements in the symmetric matrices ( ) , 1,2k

iP i =  the setup of the 
least-squares problem requires at least 10 measurements of the cost function associated with 
the given control policy and measurements of the system’s states at the beginning and the 
end of each time interval, provided that there is enough excitation in the system. Here we 
chose to solve a least squares problem after a set of 15 data samples was acquired and thus 
the policy of the controller was updated every 3 sec.  
Figure 2 and Figure 3 present the evolution of the parameters of the value of the game seen 
by Player 1 and Player 2 respectively. 
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Fig. 2. Convergence of the cost function of Player 1 using the ADP method with integral 
reinforcement learning technique. 

The matrices that are characterizing the equilibrium solution were obtained in simulation 
after 7 iteration steps. These are: 

 (7)
1

7.6586    0.6438    0.6398   -3.0831
0.6438    0.2878    0.2855   -0.0945
0.6398    0.2855    0.5620    0.2270

-3.0831   -0.0945    0.2270    6.6987

P

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (45) 
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and 

 (7)
2

3.4579    0.1568    0.2047   -1.8480
0.1568    0.6235    0.2889   -0.0711
0.2047    0.2889    0.4014    0.0729

-1.8480   -0.0711    0.0729    3.7850

P

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (46) 
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Fig. 3. Convergence of the cost function of Player 2 using the ADP method with integral 
reinforcement learning technique 

The same results have been obtained in (Freiling et al., 1996) by means of a different iterative 
method. 
The two saddle point control policies are:  

 (7)
1 [ 1.8151   0.4150    1.9501    2.9041]K = −  (47) 

and 

 (7)
2 [ 0.22    1.6323    0.0772   0.2891]K = − − . (48) 

It is important to note that the ADP online gaming method described in Section 3, uses 
measurements from the system and does not require any knowledge of the matrix A. 
Nonetheless, the resulting solution is close to the exact solution of the game problem that 
can be obtained via numerical methods that require an exact model of the system. 

6. Conclusion 
This chapter introduced an online data-based approach that makes use of reinforcement 
learning techniques to determine in an online fashion the solution of the two-player 
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nonzero-sum differential game with linear dynamics. The algorithm is suitable for online 
implementation and furthermore does not require exact knowledge of the system drift 
dynamics given by matrix A.  
The two participants in the continuous-time differential game are competing in real-time 
and the feedback Nash control strategies will be determined based on online measured data 
from the system. The algorithm is built on interplay between a learning phase, where each 
of the players is learning online the value that they associate with a given set of play 
policies, and a policy update step, performed by each of the payers towards decreasing the 
value of their cost. The players are learning concurrently.  
It was shown that the online procedure is based on a mathematical algorithm that solves 
offline the coupled ARE associated with the differential game problem and involves 
iterations on Lyapunov equations to build a sequence of controllers. The Lyapunov 
equations that appear at each step of the iteration are solved online using measured data by 
means of an integral reinforcement learning procedure.  
Here we considered the infinite horizon, state-feedback, linear-quadratic case of the 
problem. Ideas related with the extension of this result to the more general case of a game 
with nonlinear dynamics will be pursued in detail in a future research. Also, herein we 
restricted the discussion to the case of two-player games. However it is straightforward to 
formulate the ADP algorithm for the general case with N players. 
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1. Introduction  
Games provide an ideal environment in which to study computational intelligence, offering 
a range of challenging and engaging problems. Game theory (Tijs, 2003) captures the 
behavior in which a player’s success in selecting strategies depends on the choices of other 
players. One goal of game theory techniques is to find (saddle point) equilibria, in which 
each player has an outcome that cannot be improved by unilaterally changing his strategy 
(e.g. Nash equilibrium). The H∞ control problem is a minimax optimization problem, and 
hence a zero-sum game where the controller is a minimizing player and the disturbance a 
maximizing one. Since the work of George Zames in the early 1980s, H∞ techniques have 
been used in control systems, for sensitivity reduction and disturbance rejection. This 
chapter is concerned with 2-player zero-sum games that are related to the H∞ control 
problem, as formulated by (Basar & Olsder, 1999; Basar & Bernard, 1995; Van Der Shaft, 
1992).   
Game theory and H-infinity solutions rely on solving the Hamilton-Jacobi-Isaacs (HJI) 
equations, which in the zero-sum linear quadratic case reduce to the generalized game 
algebraic Riccati equation (GARE).  In the nonlinear case the HJI equations are difficult or 
impossible to solve, and may not have global analytic solutions even in simple cases (e.g. 
scalar system, bilinear in input and state). Solution methods are generally offline and 
generate fixed control policies that are then implemented in online controllers in real time.   
In this chapter we provide methods for online gaming, that is for solution of 2-player zero-
sum infinite horizon games online, through learning the saddle point strategies in real-time.  
The dynamics may be nonlinear in continuous-time and are assumed known. A novel 
neural network adaptive control technique is given that is based on reinforcement learning 
techniques, whereby the control and disturbance policies are tuned online using data 
generated in real time along the system trajectories.  Also tuned is a ‘critic’ approximator 
structure whose function is to identify the value or outcome of the current control and 
disturbance policies.  Based on this value estimate, the policies are continuously updated.  
This is a sort of indirect adaptive control algorithm, yet, due to the direct form dependence 
of the policies on the learned value, it is affected online as direct (‘optimal’) adaptive control. 
Reinforcement learning (RL) is a class of methods used in machine learning to methodically 
modify the actions of an agent based on observed responses from its environment (Doya, 
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2001; Doya et al 2001; Howard, 1960; Barto et al 2004; Sutton & Barto, 1998). The RL methods 
have been developed starting from learning mechanisms observed in mammals. Every 
decision-making organism interacts with its environment and uses those interactions to 
improve its own actions in order to maximize the positive effect of its limited available 
resources; this in turn leads to better survival chances. RL is a means of learning optimal 
behaviors by observing the response from the environment to non-optimal control policies. In 
engineering terms, RL refers to the learning approach of an actor or agent which modifies its 
actions, or control policies, based on stimuli received in response to its interaction with its 
environment. This learning can be extended along two dimensions: i) nature of interaction 
(competitive or collaborative) and ii) the number of decision makers (single or multi agent). 
In view of the advantages offered by the RL methods, a recent objective of control systems 
researchers is to introduce and develop RL techniques which result in optimal feedback 
controllers for dynamical systems that can be described in terms of ordinary differential or 
difference equations. These involve a computational intelligence technique known as Policy 
Iteration (PI) (Howard, 1960; Sutton & Barto, 1998; D. Vrabie et al, 2009), which refers to a 
class of algorithms built as a two-step iteration: policy evaluation and policy improvement. PI 
provides effective means of learning solutions to HJ equations online. In control theoretic 
terms, the PI algorithm amounts to learning the solution to a nonlinear Lyapunov equation, 
and then updating the policy through minimizing a Hamiltonian function. PI has primarily 
been developed for discrete-time systems, and online implementation for control systems 
has been developed through approximation of the value function based on work by 
(Bertsekas & Tsitsiklis, 1996) and (Werbos, 1974; Werbos 1992). Recently, online policy 
iteration methods for continuous-time systems have been developed by (D. Vrabie et al, 
2009). 
In recent work (Vamvoudakis & Lewis, 2010), we developed an online approximate solution 
method based on PI for the (1-player) infinite horizon optimal control problem for 
continuous-time nonlinear systems with known dynamics. This is an optimal adaptive 
controller that uses two adaptive structures, one for the value (cost) function and one for the 
control policy.  The two structures are tuned simultaneously online to learn the solution of 
the HJ equation and the optimal policy.   
This chapter presents an optimal adaptive control method that converges online to the 
solution to the 2-player differential game (and hence the solution of the bounded L2 gain 
problem). Three approximator structures are used. Parameter update laws are given to tune 
critic, actor, and disturbance neural networks simultaneously online to converge to the 
solution to the HJ equation and the saddle point policies, while also guaranteeing closed-
loop stability.  Rigorous proofs of performance and convergence are given. 
The chapter is organized as follows. Section 2 reviews the formulation of the two-player 
zero-sum differential game. A policy iteration algorithm is given to solve the HJI equation 
by successive solutions on nonlinear Lyapunov-like equations. This essentially extends 
Kleinman’s algorithm to nonlinear zero-sum differential games. Section 3 develops the 
synchronous zero-sum game PI algorithm.  Care is needed to develop suitable approximator 
structures for online solution of zero-sum games. First a suitable ‘critic’ approximator 
structure is developed for the value function and its tuning method is pinned down. A 
persistence of excitation is needed to guarantee proper convergence. Next, suitable ‘actor’ 
approximator structures are developed for the control and disturbance policies.  Finally in 
section 4, the main result is presented in Theorem 2, which shows how to tune all three 
approximators simultaneously by using measurements along the system trajectories in real 
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time and Theorem 3, which proves exponential convergence to the critic neural network and 
convergence to the approximate Nash solution. Proofs using Lyapunov techniques 
guarantee convergence and closed-loop stability. Section 5 presents simulation examples 
that show the effectiveness of the online synchronous zero-sum game CT PI algorithm in 
learning the optimal value, control and disturbance for both linear and nonlinear systems.  
Interestingly, a simulation example shows that the two-player online game converges faster 
than an equivalent online 1-player (optimal control) problem when all the neural networks 
are tuned simultaneously in real time.  Therefore, it is indicated that one learns faster if one 
has an opponent and uses synchronous policy iteration techniques. 

2. Background: Two player differential game, and policy iteration 
In this section is presented a background review of 2-player zero-sum differential games.  
The objective is to lay a foundation for the structure needed in subsequent sections for 
online solution of these problems in real-time.  In this regard, the Policy Iteration Algorithm 
for 2-player games presented at the end of this section is key. 
Consider the nonlinear time-invariant affine in the input dynamical system given by 

 ( ) ( ) ( ) ( ) ( )x f x g x u x k x d x= + +   (1) 

where state ( ) nx t ∈ , control ( ) mu x ∈ , and disturbance ( ) qd x ∈ ,  Assume that ( )f x  is 
locally Lipschitz, ( ) ff x b x< , and (0) 0f =  so that 0x =  is an equilibrium point of the 
system. Furthermore take ( ), ( )g x k x as continuous. 
Define the performance index (Lewis & Syrmos, 1995) 

 ( )22

0 0
( (0), , ) ( ) ( , , )TJ x u d Q x u Ru d dt r x u d dtγ

∞ ∞
= + − ≡∫ ∫  (2) 

for ( ) 0Q x ≥ , 0TR R= > , 22( , , ) ( ) Tr x u d Q x u Ru dγ= + − and * 0γ γ≥ ≥ , where *γ is the 
smallest γ for which the system is stabilized (Van  Der Shaft, 1992).  For feedback policies 

( )u x  and disturbance policies ( )d x , define the value or cost of the policies as  

 ( )22( ( ), , ) ( ) T

t
V x t u d Q x u Ru d dtγ

∞
= + −∫  (3) 

When the value is finite, a differential equivalent to this is the nonlinear Lyapunov-like 
equation 

 ( )0 ( , , ) ( ( ) ( ) ( ) ( ) ( )), (0) 0Tr x u d V f x g x u x k x d x V= + ∇ + + =  (4)  

where nV V x R∇ = ∂ ∂ ∈  is the (transposed) gradient and the Hamiltonian is 

 ( )( , , , ) ( , , ) ( ( ) ( ) ( ) ( ) )TH x V u d r x u d V f x g x u x k x d∇ = + ∇ + +  (5) 

For feedback policies (Basar & Bernard, 1995), a solution ( ) 0V x ≥  to (4) is the value (5) for 
given feedback policy ( )u x and disturbance policy ( )d x . 
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2.1 Two player zero-sum differential games and Nash equilibrium 
Define the 2-player zero-sum differential game (Basar & Bernard, 1995; Basar & Olsder, 
1999) 

 ( )2* 2

0
( (0)) min max ( (0), , ) minmax ( ) T

u ud d
V x J x u d Q x u Ru d dtγ

∞
= = + −∫  (6) 

subject to the dynamical constraints (1). Thus, u is the minimizing player and d is the 
maximizing one. This 2-player optimal control problem has a unique solution if a game 
theoretic saddle point exists, i.e., if the Nash condition holds 

 min max ( (0), , ) maxmin ( (0), , )
u ud d

J x u d J x u d=  (7) 

To this game is associated the Hamilton-Jacobi-Isaacs (HJI) equation 

1
2

1 10 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), (0) 0
4 4

T T T T TQ x V x f x V x g x R g x V x V x kk V x V
γ

−= + ∇ − ∇ ∇ + ∇ ∇ =  (8) 

Given a solution *( ) 0 : nV x ≥ →  to the HJI (8), denote the associated control and 
disturbance as  

 * 1 *1
2 ( )Tu R g x V−= − ∇  (9) 

 * *
2

1 ( )
2

Td k x V
γ

= ∇  (10) 

and write 

* * 1
2

1 10 ( , , , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
4 4

T T T T TH x V u d Q x V x f x V x g x R g x V x V x kk V x
γ

−= ∇ = +∇ − ∇ ∇ + ∇ ∇  (11)  

Note that global solutions to the HJI (11) may not exist.  Moreover, if they do, they may not 
be smooth.  For a discussion on viscosity solutions to the HJI, see (Ball & Helton, 1996; Bardi 
& Capuzzo-Dolcetta, 1997; Basar & Bernard, 1995). The HJI equation (11) may have more 
than one nonnegative local smooth solution ( ) 0V x ≥ . A minimal nonnegative solution 

( ) 0aV x ≥  is one such that there exists no other nonnegative solution ( ) 0V x ≥  such that 
( ) ( ) 0aV x V x≥ ≥ . Linearize the system (1) about the origin to obtain the Generalized ARE 

(See Section IV.A).  Of the nonnegative solutions to the GARE, select the one corresponding 
to the stable invariant manifold of the Hamiltonian matrix. Then, the minimum nonnegative 
solution of the HJI is the one having this stabilizing GARE solution as its Hessian matrix 
evaluated at the origin (Van Der Shaft, 1992).  
It is shown in (Basar & Bernard, 1995) that if *( )V x is the minimum non-negative solution to 
the HJI (11) and (1) is locally detectable, then (9), (10) given in terms of *( )V x are in Nash 
equilibrium solution to the zero-sum game and *( )V x is its value. 

2.2 Policy iteration solution of the HJI equation 
The HJI equation (11) is usually intractable to solve directly.  One can solve the HJI iteratively 
using one of several algorithms that are built on iterative solutions of the Lyapunov equation 
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(4). Included are (Feng et al. 2009) which uses an inner loop with iterations on the control, and 
(Abu-Khalaf, Lewis, 2008; Abu-Khalaf et al. , 2006; Van Der Shaft, 1992) which uses an inner 
loop with iterations on the disturbance. These are in effect extensions of Kleinman’s algorithm 
(Kleinman, 1968) to nonlinear 2-player games. The complementarity of these algorithms is 
shown in (Vrabie, 2009).  Here, we shall use the latter algorithm (e.g. (Abu-Khalaf, Lewis, 2008; 
Abu-Khalaf et al., 2006; Van Der Shaft, 1992)). 

Policy Iteration (PI) Algorithm for 2-Player Zero-Sum Differential Games (Van Der Shaft, 
1992) 

Initialization: Start with a stabilizing feedback control policy 0u  
1. For 0,1,...j =  given ju  

2. For 0,1,...i =  set 0 0d = , solve for ( ( ))i
jV x t , 1id +  using 

 
220 ( ) ( )( )iT i T i

j j j jQ x V x f gu kd u Ru dγ= + ∇ + + + −  (12) 

 1
2

1arg max[ ( , , , )] ( )
2

i i T i
j j j

d
d H x V u d k x V

γ
+ = ∇ = ∇  (13) 

On convergence, set 1( ) ( )i
j jV x V x+ =  

3. Update the control policy using  

 11
1 1 12arg min[ ( , ), , ] ( )T

j j j
u

u H x V u d R g x V−
+ + += ∇ = − ∇  (14)  

Go to 1. 
 ■ 

Nota Bene:  In practice, the iterations in i and j are continued until some convergence 
criterion is met, e.g. 1i i

j jV V+ −  or, respectively 1j jV V+ −  is small enough in some suitable 
norm. 
Given a feedback policy ( )u x , write the Hamilton-Jacobi (HJ) equation  

 ( ) 2
10 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), (0) 0

4
T T T TQ x V x f x g x u x u x Ru x V x kk V x V

γ
= + ∇ + + + ∇ ∇ =  (15) 

for fixed ( )u x . The minimal non negative solution ( )V x to this equation is the so-called 
available storage for the given ( )u x  (Van Der Shaft, 1992). Note that the inner loop of this 
algorithm finds the available storage for ju , where it exists. 
Assuming that the available storage at each index j is smooth on a  local domain of validity, 
the convergence of this algorithm to the minimal nonnegative solution to the HJI equation is 
shown in (Abu-Khalaf & Lewis, 2008; Van Der Shaft, 1992). Under these assumptions, the 
existence of smooth solutions at each step to the Lyapunov-like equation (12) was further 
shown in (Abu-Khalaf et al., 2006). Also shown was the asymptotic stability of 
( )i

jf gu kd+ +  at each step.  In fact, the inner loop yields 1( ) ( ),i i
j jV x V x x+ ≥ ∀  while the outer 

loop yields 1( ) ( ),j jV x V x x+ ≤ ∀  until convergence to *V . 
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Note that this algorithm relies on successive solutions of nonlinear Lyapunov-like equations 
(12). As such, the discussion surrounding (4) shows that the algorithm finds the value 

( ( ))i
jV x t  of successive control policy/disturbance policy pairs. 

3. Approximator structure and solution of the Lyapunov equation 
The PI Algorithm is a sequential algorithm that solves the HJI equation (11) and finds the 
Nash solution * *( , )u d based on sequential solutions of the nonlinear Lyapunov equation 
(12). That is, while the disturbance policy is being updated, the feedback policy is held 
constant.  In this section, we use PI to lay a rigorous foundation for the NN approximator 
structure required on-line solution of the 2-player zero-sum differential game in real time.  In the 
next section, this structure will be used to develop an adaptive control algorithm of novel 
form that converges to the ZS game solution.  It is important to define the neural network 
structures and the NN estimation errors properly or such an adaptive algorithm cannot be 
developed.   
The PI algorithm itself is not implemented in this chapter.  Instead, here one implements 
both loops, the outer feedback control update loop and the inner disturbance update loop, 
simultaneously using neural network learning implemented as differential equations for 
tuning the weights, while simultaneously keeping track of and learning the value 

( ( ), , )V x t u d  (3) of the current control and disturbance by solution of the Lyapunov equation 
(4)/(12). We call this synchronous PI for zero-sum games. 

3.1 Value function approximation: Critic Neural Network Structure 
This chapter uses nonlinear approximator structures (e.g. neural networks) for Value 
Function Approximation (VFA) (Bertsekas & Tsitsiklis, 1996; Werbos, 1974; Werbos, 1992), 
therefore sacrificing some representational accuracy in order to make the representation 
manageable in practice. Sacrificing accuracy in the representation of the value function is 
not so critical, since the ultimate goal is to find a good policy and not necessarily an accurate 
value function.  Based on the structure of the PI algorithm in Section IIB, VFA for online 2-
player games requires three approximators, which are taken as neural networks (NN), one 
for the value function, one for the feedback control policy, and one for the disturbance 
policy. These are motivated respectively by the need to solve equations (12), (14), and (13). 
To solve equation (12), we use VFA, which here requires approximation in Sobolev norm 
(Adams & Fournier, 2003), that is, approximation of the value ( )V x  as well as its gradient 

( )V x∇ .  The following definition describes uniform convergence that is needed later. 
Definition 2. (uniform convergence).  A sequence of functions { }np  converges uniformly to 

p if 0, ( ) : sup ( ) ( ) , ( )nN p x p x n Nε ε ε ε∀ > ∃ − < > . 
Assumption 1. For each feedback control and disturbance policy the nonlinear Lyapunov 
equation (12) has a smooth local solution ( ) 0V x ≥ .   
According to the Weierstrass higher-order approximation Theorem (Abu-Khalaf & Lewis, 
2005; Finlayson, 1990; Hornik et al., 1990), there exists a complete independent basis set 
{ ( )}i xϕ  such that the solution ( )V x  to (4) and its gradient are uniformly approximated, that 
is, there exist coefficients ci such that 

1 1 1
( ) ( ) ( ) ( )

N

i i i i i i
i i i N

V x c x c x c xϕ ϕ ϕ
∞ ∞

= = = +
= = +∑ ∑ ∑  
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 1 1
1

( ) ( ) ( )T
i i

i N
V x C x c xφ ϕ

∞

= +
≡ + ∑  (16) 

 
1 1 1

( ) ( ) ( )( ) N
i i i

i i i
i i i N

x x xV x c c c
x x x x

ϕ ϕ ϕ∞ ∞

= = = +

∂ ∂ ∂∂
= = +

∂ ∂ ∂ ∂∑ ∑ ∑  (17) 

where 1 1 2( ) [ ( ) ( ) ( )] :T n N
Nx x x xφ ϕ ϕ ϕ= → , and the second terms in these equations 

converge uniformly to zero as N →∞ . Specifically, the linear subspace generated by the 
basis set is dense in the Sobolev norm 1,W ∞  (Adams, Fournier, 2003).   
Therefore, assume there exist NN weights 1W  such that the value function ( )V x  is 
approximated as  

 1 1( ) ( ) ( )TV x W x xφ ε= +  (18) 

with 1( ) : n Nxφ →  the NN activation function vector, N the number of neurons in the 
hidden layer, and ( )xε  the NN approximation error. For approximation in Sobolev space, 
the NN activation functions { ( ) : 1, }i x i Nϕ =  should be selected so that { ( ) : 1, }i x iϕ = ∞  
provides a complete independent basis set such that ( )V x  and its derivative are uniformly 
approximated, e.g., additionally 

 1
1 1 1

( ) T
TV x W W

x x x
φ ε φ ε∂ ∂ ∂⎛ ⎞= + = ∇ +∇⎜ ⎟∂ ∂ ∂⎝ ⎠

 (19) 

Then, as the number of hidden-layer neurons N →∞ , the approximation errors 
0, 0ε ε→ ∇ →  uniformly (Abu-Khalaf & Lewis, 2005; Finlayson, 1990). In addition, for 

fixed N, the NN approximation errors ( ),xε and ε∇  are bounded by constants locally 
(Hornik et al., 1990).  
We refer to the NN with weights 1W  that performs VFA as the critic NN. 
Standard usage of the Weierstrass high-order approximation Theorem uses polynomial 
approximation. However, non-polynomial basis sets have been considered in the literature 
(e.g. (Hornik et al., 1990; Sandberg, 1997)).  The NN approximation literature has considered 
a variety of activation functions including sigmoids, tanh, radial basis functions, etc.   
Using the NN VFA, considering fixed feedback and disturbance policies ( ( )), ( ( ))u x t d x t , 
equation (4) becomes 

 22
1 1 1( , , , ) ( ) ( ( ) ( ) ( ) ( ) ( ))T T

HH x W u d Q x u Ru d W f x g x u x k x d xγ φ ε= + − + ∇ + + =   (20)  

where the residual error is 

( ) ( )T
H f gu kdε ε= − ∇ + +  

 1 1 1
1

( ) ( ) ( )( )T
i i

i N
C W f gu kd c x f gu kdφ ϕ

∞

= +
= − − ∇ + + − ∇ + +∑  (21) 

Under the Lipschitz assumption on the dynamics, this residual error is bounded locally. 
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The following Proposition has been shown in (Abu-Khalaf & Lewis, 2005; Abu-Khalaf & 
Lewis, 2008).   
Define v  as the magnitude of a scalar v, x  as the vector norm of a vector x, and 2 as the 
induced matrix 2-norm. 
Proposition 1. For any policies ( ( )), ( ( ))u x t d x t  the least-squares solution to (20) exists and is 
unique for each N. Denote this solution as 1W  and define 

 1 1 1( ) ( )TV x W xφ=  (22) 

Then, as N →∞ : 
a. sup 0Hε →  

b. 1 1 2sup 0W C− →  

c. 1sup 0V V− →  

d. 1sup 0V V∇ −∇ →  
  ■ 

This result shows that 1( )V x converges uniformly in Sobolev norm 1,W ∞  (Adams & 
Fournier, 2003) to the exact solution ( )V x to (4) as N →∞ , and the weights 1W converge to 
the first N of the weights, 1C , which exactly solve (4).  
The effect of the approximation error on the HJI equation (8) is 

1
1 1 1 1 1 1 1 1 1 12

1 1( ) ( ) ( ) ( ) ( ) ( ) ( )
4 4

T T T T T T T
HJIQ x W x f x W x g x R g x W W x kk Wϕ ϕ ϕ ϕ ϕ ε

γ
−+ ∇ − ∇ ∇ + ∇ ∇ = (23) 

where the residual error due to the function approximation error is 

2 2
1 11 1 1 1

1 1 1 12 4 2 4
T T T T T T T T T

HJI f W gR g gR g W kk kk
γ γ

ε ε ϕ ε ε ε ϕ ε ε ε− −≡ −∇ + ∇ ∇ + ∇ ∇ − ∇ ∇ − ∇ ∇  (24) 

It was also shown in (Abu-Khalaf & Lewis, 2005; Abu-Khalaf & Lewis, 2008) that this error 
converges uniformly to zero as the number of hidden layer units N increases. That is, 

0, ( ) : sup , ( )HJIN N Nε ε ε ε ε∀ > ∃ < > . 

3.2 Tuning and convergence of the critic neural network 
In this section are addressed the tuning and convergence of the critic NN weights when 
fixed feedback control and disturbance policies are prescribed. Therefore, the focus is on 
solving the nonlinear Lyapunov-like equation (4) (e.g. (12)) for a fixed feedback policy u and 
fixed disturbance policy d.  
In fact, this amounts to the design of an observer for the value function. Therefore, this algorithm 
is consistent with adaptive control approaches which first design an observer for the system 
state and unknown dynamics, and then use this observer in the design of a feedback control. 
The ideal weights of the critic NN, 1W  which provide the best approximate solution for (20) 
are unknown. Therefore, the output of the critic neural network is  

 1 1
ˆˆ ( ) ( )TV x W xφ=  (25) 
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where 1Ŵ  are the current estimated values of 1W . The approximate nonlinear Lyapunov-
like equation is then 

 22
1 1 1 1

ˆ ˆ( , , , ) ( ) ( )T TH x W u d W f gu kd Q x u Ru d eφ γ= ∇ + + + + − =  (26) 

with 1e  a residual equation error.  In view of Proposition 1, define the critic weight 
estimation error  

1 1 1
ˆW W W= − .   

Then,  

1 1 1( ) .T
He W f guφ ε= − ∇ + +  

Given any feedback control policy u, it is desired to select 1Ŵ  to minimize the squared 
residual error 

1
1 1 12 .TE e e=  

Then 1 1
ˆ ( )W t W→  and 1 He ε→ . Select the tuning law for the critic weights as the 

normalized gradient descent algorithm  

 221 1
1 1 1 1 12

1 11

ˆ ˆ[ ]ˆ (1 )
T TEW a a W h h u Ru d

W
σ σ γ
σ σ

Τ
Τ

∂
= − = − + + −

+∂
 (27) 

where 1 1( )f gu kdσ φ= ∇ + + . This is a nonstandard modified Levenberg-Marquardt 

algorithm where 2
1 1( 1)Tσ σ +  is used for normalization instead of 1 1( 1)Tσ σ + . This is 

required in the theorem proofs, where one needs both appearances of 1 1 1/(1 )Tσ σ σ+  in (27) 
to be bounded (Ioannou & Fidan, 2006; Tao, 2003). 
Note that, from (20), 

 22
1 1( ) ( ) .T T

HQ x u Ru d W f gu kdγ ϕ ε+ − = − ∇ + + +  (28) 

Substituting (28) in (27) and, with the notation 

 1 1 1 1/( 1)Tσ σ σ σ= + , 1 11 T
sm σ σ= +  (29) 

we obtain the dynamics of the critic weight estimation error as 

 1 1 1 1 1 1 1 .H

s
W a W a

m
εσ σ σΤ= − +  (30) 

To guarantee convergence of 1Ŵ  to 1W , the next Persistence of Excitation (PE) assumption 
and associated technical lemmas are required. 
Persistence of Excitation (PE) Assumption. Let the signal 1σ  be persistently exciting over 
the interval [ , ]t t T+ , i.e. there exist constants 1 0β > , 2 0β > , 0Τ >  such that, for all t, 
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 1 0 1 1 2( ) ( ) .
t T

t
S dβ σ τ σ τ τ β

+
ΤΙ ≤ ≡ ≤ Ι∫  (31) 

with Ι  the identity matrix of appropriate dimensions. 
The PE assumption is needed in adaptive control if one desires to perform system 
identification using e.g. RLS (Ioannou & Fidan, 2006; Tao, 2003). It is needed here because 
one effectively desires to identify the critic parameters to approximate ( )V x . 
The properties of tuning algorithm (27) are given in the subsequent results.  They are proven 
in (Vamvoudakis & Lewis, 2010). 
Technical Lemma 1. Consider the error dynamics system with output defined as 

1 1 1 1 1 1 1
H

s
W a W a

m
εσ σ σΤ= − +   

 1 1
Ty Wσ= .  (32) 

The PE condition (31) is equivalent to the uniform complete observability (UCO) (Lewis, 
Jagannathan, Yesildirek, 1999) of this system, that is there exist constants 3 0β > , 4 0β > , 

0Τ >  such that, for all t, 

  3 1 1 1 4( , ) ( ) ( ) ( , ) .
t T

T

t
S t t dβ τ σ τ σ τ τ τ β

+
ΤΙ ≤ ≡ Φ Φ ≤ Ι∫  (33) 

with 1 0 0 1( , ),t t t tΦ ≤  the state transition matrix of (32) and Ι  the identity matrix of 
appropriate dimensions. 

■ 
Technical Lemma 2. Consider the error dynamics system (32). Let the signal 1σ  be 
persistently exciting.  Then: 
a. The system (32) is exponentially stable. In fact if 0Hε =  then ( ) (0)kTW k e Wα−Τ ≤  

with  

 1 3
1 ln( 1 2 )aα β= − −
Τ

.  (34) 

b. Let maxHε ε≤ and maxy y≤ .  Then 1W converges exponentially to the residual set 

 ( ){ }2
1 max 2 1 max max

1
( )W t y a y

β
δβ ε

β
Τ

⎡ ⎤≤ + +⎣ ⎦ .  (35) 

where δ is a positive constant of the order of 1. 
■ 

The next result shows that the tuning algorithm (27) is effective under the PE condition, in 
that the weights 1Ŵ  converge to the actual unknown weights 1W  which solve the 
nonlinear Lyapunov-like equation (20) in a least-squares sense for the given feedback and 
disturbance policies ( ( )), ( ( ))u x t d x t . That is, (25) converges close to the actual value function 
of the current policies.  The proof is in (Vamvoudakis & Lewis, 2010). 
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Theorem 1. Let ( ( )), ( ( ))u x t d x t  be any bounded policies. Let tuning for the critic NN be 
provided by (27) and assume that 1σ  is persistently exciting. Let the residual error in (20) be 
bounded maxHε ε< . Then the critic parameter error converges exponentially with decay 
factor given by (34) to the residual set  

  { }2
1 2 1 max

1
( ) 1 2 .W t a

β
δβ ε

β
Τ

≤ +⎡ ⎤⎣ ⎦  (36) 

   ■ 
Remark 1. Note that, as N →∞ , 0Hε →  uniformly (Abu-Khalaf & Lewis, 2005; Abu-Khalaf 
& Lewis, 2008). This means that maxε  decreases as the number of hidden layer neurons in 
(25) increases. 
Remark 2. This theorem requires the assumption that the feedback policy ( ( ))u x t  and the 
disturbance policy ( ( ))d x t are bounded, since the policies appear in (21). In the upcoming 
Theorems 2 and 3 this restriction is removed. 

3.3 Action and disturbance neural network 
It is important to define the neural network structure and the NN estimation errors properly 
for the control and disturbance or an adaptive algorithm cannot be developed. To determine 
a rigorously justified form for the actor and the disturbance NN, consider one step of the 
Policy Iteration algorithm (12)-(14). Suppose that the solution V(x) to the nonlinear 
Lyapunov equation (12) for given control and disturbance policies is smooth and given by 
(16). Then, according to (17) and (13), (14) one has for the policy and the disturbance 
updates: 

 1

1

1 ( ) ( )
2

T
i i

i
u R g x c xϕ

∞
−

=
= − ∇∑  (37) 

 2
1

1 ( ) ( )
2

T
i i

i
d k x c xϕ

γ

∞

=
= ∇∑   (38) 

for some unknown coefficients ci. Then one has the following result. 
The following proposition is proved in (Abu-Khalaf & Lewis, 2008) for constrained inputs. 
Non-constrained inputs are easier to prove. 
Proposition 2. Let the least-squares solution to (20) be W1 and define 

 1 1
1 1 1 1

1 1( ) ( ) ( ) ( )
2 2

T T Tu R g x V x R g x x Wφ− −= − ∇ = − ∇   (39) 

 1 1 1 12 2
1 1( ) ( ) ( ) ( )

2 2
T T Td k x V x k x x Wφ

γ γ
= ∇ = ∇  (40) 

with V1 defined in (22). Then, as N →∞ : 
a. 1sup 0u u− →  

b. 1sup 0d d− →  
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c. There exists a number of NN hidden layer neurons N0 such that 1u  and 1d stabilize the 
system (1) for N>N0. 

 ■ 
In light of this result, the ideal feedback and disturbance policy updates are taken as (39), 
(40) with 1W  unknown. Therefore, define the feedback policy in the form of an action 
neural network which computes the control input in the structured form  

 11
1 22

ˆˆ( ) ( ) ,T Tu x R g x Wφ−= − ∇  (41) 

where 2Ŵ  denotes the current estimated values of the ideal NN weights 1W . Define the 
actor NN estimation error as 

 2 1 2
ˆW W W= −  (42)  

Likewise, define the disturbance in the form of a disturbance neural network which 
computes the disturbance input in the structured form  

 2
1

1 32
ˆ ˆ( ) ( ) ,T Td x k x W

γ
φ= ∇   (43) 

where 3Ŵ  denotes the current estimated values of the ideal NN weights 1W .  Define the 
disturbance NN estimation error as 

 3 1 3
ˆW W W= −  (44) 

4. Online solution of 2-player zero-sum games using neural networks  
This section presents our main results. An online adaptive PI algorithm is given for online 
solution of the zero-sum game problem which involves simultaneous, or synchronous, 
tuning of critic, actor, and disturbance neural networks. That is, the weights of all three 
neural networks are tuned at the same time. This approach is a version of Generalized 
Policy Iteration (GPI), as introduced in (Sutton & Barto, 1998). In the standard Policy 
Iteration algorithm (12)-(14), the critic and actor NNs are tuned sequentially, e.g. one at a 
time, with the weights of the other NNs being held constant. By contrast, we tune all NN 
simultaneously in real-time. 
The next definition and facts complete the machinery required for the main results. 
Definition 3. (Lewis, Jagannathan, Yesildirek, 1999)  (UUB) A time signal ( )tζ is said to be 
uniformly ultimately bounded (UUB) if there exists a compact set nS ⊂ so that for all 

(0) Sζ ∈  there exists a bound B and a time ( , (0))T B ζ  such that ( )t Bζ ≤  for all 0 .t t T≥ +  
Facts 1.  

a. (.), (.)g k are bounded by constants: 

( ) , ( )g kg x b k x b< <  

b. The NN approximation error and its gradient are bounded locally so that 

bεε < , 
x

bεε∇ <  
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c. The NN activation functions and their gradients are bounded locally  so that 

φφ <1( )x b , φφ∇ <1( )
x

x b  

 ■ 
The main Theorems are now given, which provide the tuning laws for the actor, critic and 
disturbance neural networks that guarantee convergence of the synchronous online zero-
sum game PI algorithm in real-time to the game saddle point solution, while guaranteeing 
closed-loop stability. 
Theorem 2. System stability and convergence of NN weights. Let the dynamics be given 
by (1), the critic NN be given by (25), the control input be given by actor NN (41) and the 
disturbance input be given by disturbance NN (43). Let tuning for the critic NN be provided 
by 

 
222

1 1 2 12
2 2

ˆˆ ˆ ˆ ˆ[ ( ) ]
( 1)

T T
TW a W Q x d u Ruσ σ γ

σ σ
= − + − +

+
 (45) 

where 2 1
ˆˆ( )f gu kdσ φ= ∇ + + . Let the actor NN be tuned as 

 12 2 2 2 1 2 1 2 1
1ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )
4

T TW F W F W D x W m x Wα σ⎧ ⎫= − − −⎨ ⎬
⎩ ⎭

 (46) 

and the disturbance NN be tuned as 

 ( )3 3 4 3 3 2 1 1 3 12
1ˆ ˆ ˆ ˆ ˆ( )

4
T TW F W F W x W m Wα σ

γ

⎧ ⎫⎪ ⎪= − − + Ε⎨ ⎬
⎪ ⎪⎩ ⎭

  (47) 

where 1
1 1 1 1 1 1( ) ( ) ( ) ( ) ( ), ( ) ( ) ( )T T T TD x x g x R g x x E x x kk xφ φ φ φ−≡ ∇ ∇ ≡ ∇ ∇ , 2

2
2 2( 1)Tm σ

σ σ
≡

+
,  

and 1 2 3 40, 0, 0, 0F F F F> > > >  are tuning parameters. Let Facts 1 hold and let ( ) 0Q x > .  

Suppose that 2 2 2 2/( 1)Tσ σ σ σ= +  is persistently exciting. Let the tuning parameters be 
selected as detailed in the proof. Then there exists an N0 such that, for the number of hidden 
layer units 0N N>  the closed-loop system state, the critic NN error 1W , the actor NN error 

2W and the disturbance NN error 3W  are UUB.   
Proof:  See appendix. 

■ 
Remark 3.  See the comments following equation (24). Let 0ε >  and let N0 be the number of 
hidden layer units above which sup HJIε ε< . In the proof it is seen that the theorem holds 
for 0N N> .   
Remark 4. The theorem shows that PE is needed for proper identification of the value 
function by the critic NN, and that nonstandard tuning algorithms are required for the actor 
and the disturbance NN to guarantee stability.   
Remark 5. The assumption ( ) 0Q x >  is sufficient but not necessary for this result. If this 
condition is replaced by zero state observability, the proof still goes through, however it is 
tedious and does not add insight. The method used would be the technique used in the 
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proof of technical Lemma 2 Part a in (Vamvoudakis & Lewis), or the standard methods of 
(Ioannou & Fidan, 2006; Tao, 2003). 
Remark 6. The tuning parameters 1 2 3 4, , ,F F F F  in (46), and (47) must be selected to make the 
matrix M in (A.10) positive definite.  
Theorem 3. Exponential Convergence and Nash equilibrium. Suppose the hypotheses of 
Theorem 1 and Theorem 2,. Then Theorem 1 holds with  

2 2 11
max 2 32

1 1 1
4 4s s s

DW W
m m m

ε ε
γ

Ε
> − +   

where 2 2 1T
sm σ σ= + , so that exponential convergence of 1Ŵ  to the approximate optimal 

critic value 1W  is obtained. Then:  
a. 1 1 1

ˆˆ ˆ( , , , )H x W u d  is UUB. That is, 1Ŵ  converges to the approximate HJI solution, the 
value of the ZS game. Where  

 1
1 1 1

1 ˆˆ ( ) ( )
2

T Tu R g x x Wφ−= − ∇  (48) 

 1 1 12
1ˆ ˆ( ) ( )

2
T Td k x x Wφ

γ
= ∇   (49)  

b. ˆˆ( ), ( )u x d x  (see (41) and (43)) converges to the approximate Nash equilibrium solution of 
the ZS game. 

Proof. Consider the UUB weights 1W , 2W  and 3W as proved in Theorem 2.  
a. The approximate HJI equation is 

 1 1 1 1 1 1 1 1 12
1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( )
4 4

T T T
HJIH x W Q x W x f x W D W W E Wϕ ε

γ
= + ∇ − + −  (50) 

After adding zero we have 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 2
1 1 1 1ˆ ˆ ˆ( , ) ( ) ( )
4 2 4 2

T T T T T
HJIH x W W x f x W D W W D W W E W W E Wϕ ε

γ γ
= ∇ − − + + −  (51) 

But 

 1 1 1Ŵ W W= − +  (52) 

After taking norms in (52) and letting 1 1maxW W< one has  

 1 1 1 1 1 1 maxŴ W W W W W W= − + ≤ + ≤ +  (53) 

Now (51) becomes by taking into account (53), 

( )2
1 1 1 1 1 1 1 1 max

1 1ˆ( , ) ( ) ( )
4 2

H x W W x f x W D W D W Wϕ≤ ∇ − − +  
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                                                 ( )2
1 1 1 1 1 max2 2

1 1
4 2 HJIW E W E W W ε
γ γ

+ + + +  (54) 

Let Facts 1 hold and also sup HJIε ε<  then (54) becomes 

 
( )
( )

φ

ε
γ γ

≤ + + +

+ + + +

2
1 1 1 1 1 1 1 max

2
1 1 1 1 1 max2 2

1 1ˆ( , )
4 2

1 1
4 2

x fH x W b b W x W D W D W W

W E W E W W
 (55) 

All the signals on the right hand side of (55) are UUB. So 1
ˆ( , )H x W  is UUB and 

convergence to the approximate HJI solution is obtained. 
b. According to Theorem 1 and equations (39), (40) and (41), (43), 1û u−  and 1d̂ d−  are 

UUB because 2 1Ŵ W− and 3 1Ŵ W− are UUB 
So the pair ˆˆ( ), ( )u x d x  gives the Nash equilibrium solution of the zero-sum game. 
This completes the proof. 

  ■ 
Remark 7.  The theorems make no mention of finding the minimum nonnegative solution to 
the HJI. However they do guarantee convergence to a solution ( ( ), ( ))u x d x such that 
( ( ) ( ) ( ) ( ) ( ))f x g x u x k x d x+ +  is stable. This is only accomplished by the minimal nonnegative 
HJI solution. Practical implementation, in view of the Policy Iteration Algorithm, would 
start with initial weights of zero in the disturbance NN (43).  NN usage suggests starting 
with the initial control NN weights in (41) randomly selected and nonzero. 
Note that the dynamics is required to be known to implement this algorithm in that 

2 1
ˆˆ( )f gu kdσ φ= ∇ + + , 1( )D x , 1( )E x  and (41), (43) depend on f(x), g(x), k(x). 

5. Simulations 

Here we present simulations of a linear and a nonlinear system to show that the game can 
be solved ONLINE by learning in real time, using the method of this chapter. We also 
present Simulation B to show that that one learns FASTER if one has an opponent. That is, 
the two-player online game converges faster than an equivalent online 1-player (optimal control) 
problem when all the NNs are tuned online in real time. 

5.1 Linear system 
Consider the continuous-time F16 aircraft plant with quadratic cost function used in 
(Stevens & Lewis, 2003). The system state vector is [ ]ex qα δ= , where α  denotes the 
angle of attack, q  is the pitch rate and eδ  is the elevator deflection angle. The control input 
is the elevator actuator voltage and the disturbance is wind gusts on angle of attack. One has 
the dynamics x Ax Bu Kd= + + , 

 
1.01887 0.90506 0.00215 0 1

0.82225 1.07741 0.17555 0 0
0 0 1 1 0

x x u d
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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where Q  and R  in the cost function are identity matrices of appropriate dimensions and 
5γ = . In this linear case the solution of the HJI equation is given by the solution of the game 

algebraic Riccati equation (GARE) 

1
2

1 0T T TA P PA Q PBR B P PKK P
γ

−+ + − + =  

Since the value is quadratic in the LQR case, the critic NN basis set 1( )xφ  was selected as the 
quadratic vector in the state components x x⊗  with ⊗  the Kronecker product.  Redundant 
terms were removed to leave ( 1) / 2 6n n + =  components. Solving the GARE gives the 
parameters of the optimal critic as  *

1 [1.6573    1.3954   -0.1661 1.6573   -0.1804 0.4371]TW =  
which are the components of the Riccati solution matrix P. 
The synchronous zero-sum game PI algorithm is implemented as in Theorem 2. PE was 
ensured by adding a small probing noise to the control and the disturbance input. Figure 1 
shows the critic parameters, denoted by 1 1 2 3 4 5 6

ˆ [ ]Tc c c c c cW W W W W W W=  
converging to the optimal values. In fact after 600s the critic parameters converged to 

1
ˆ ( ) [1.7090    1.3303   -0.1629  1.7354   -0.1730 0.4468] .T

fW t =  The actor parameters after 600s 
converge to the values of 2

ˆ ( ) [1.7090    1.3303   -0.1629  1.7354   -0.1730 0.4468] .T
fW t =  The 

disturbance parameters after 600s converge to the values of 

3
ˆ ( ) [1.7090    1.3303   -0.1629  1.7354   -0.1730 0.4468] .T

fW t =  
Then, the actor NN is given as 
 

1

2 1

3 111
2 2

2

3 2

3

2 0 0 1.7090
0 1.3303

0
0 -0.1629ˆ ( ) 0

1.73540 2 0
1

-0.17300
0.44680 0 2

T

T

x
x x
x x

u x R
x

x x
x

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥= − ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

. 

 

Then, the disturbance NN is given as 
 

2

1

2 1

3 11
2 2

3 2

3

2 0 0 1.7090
0 1.3303

0
0 -0.1629ˆ( ) 0

1.73540 2 0
1

-0.17300
0.44680 0 2

T

T

x
x x
x x

d x
x

x x
x

γ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

. 

 

The evolution of the system states is presented in Figure 2. One can see that after 300s 
convergence of the NN weights in critic, actor and disturbance has occurred. 
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Fig. 1. Convergence of the critic parameters to the parameters of the optimal critic. 
 

 
Fig. 2. Evolution of the system states for the duration of the experinment. 

5.2 Single player linear system 
The purpose of this example is to show that one learns FASTER if one has an opponent.  
That is, the online two-player game converges faster than an equivalent online 1-player 
(optimal control) problem. In this example, we use the method for online solution of the 
optimal control problem presented in (Vamvoudakis & Lewis, 2010). That is, Theorem 2 
without the disturbance NN (47). 
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Consider the continuous-time F16 aircraft plant described before but with 0.d =  Solving the 
ARE with Q  and R   identity matrices of appropriate dimensions, gives the parameters of 
the optimal critic as 

*
1 [1.4245    1.1682   -0.1352  1.4361   -0.1516  0.4329]TW = . 

Figure 3 shows the critic parameters, denoted by 1 1 2 3 4 5 6
ˆ [ ]Tc c c c c cW W W W W W W=  

converging to the optimal values. In fact after 800s the critic parameters converged to 
1

ˆ ( ) [1.4270    1.1654   -0.1367  1.4387   -0.1496 0.4323] .T
fW t =  The actor parameters after 800s 

converge to the values of 2
ˆ ( ) [1.4270    1.1654   -0.1367  1.4387   -0.1496 0.4323] .T

fW t =  
In comparison with part A, it is very clear that the two-player zero-sum game algorithm has 
faster convergence skills than the single-player game (e.g. optimal control problem) by a 
factor of two. As a conclusion the critic NN learns faster when there is an oponent for the 
control input, namely a disturbance.  

 
Fig. 3. Convergence of the critic parameters to the parameters of the optimal critic. 

5.3 Nonlinear system 
Consider the following affine in control input nonlinear system, with a quadratic cost 
constructed as in (Nevistic & Primbs, 1996; D. Vrabie, Vamvoudakis & Lewis, 2009)  

2( ) ( ) ( ) ,x f x g x u k x d x= + + ∈  

where 

3 3 2 2
1 2 2 2

1 2

1 1

1

2

1

10.25 ( ) 0.25 (sin )( ) cos(2 ) 2 (4 ) 2

0 0
 ( ) , ( ) .

cos(2 ) 2 (4 ) 2(sin )

x x
f x x x

g x k x

x x

x

x x

x

γ

− +⎡ ⎤
⎢ ⎥= ⎢ ⎥+ − +
⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥+ +

−

⎣ ⎦ ⎣ ⎦

− +
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One selects 
1 0

, 1, 8.
0 1

Q R γ
⎡ ⎤

= = =⎢ ⎥
⎣ ⎦

 

The optimal value function is * 4 2
1 2

1 1( )
4 2

V x x x= +  the optimal control signal is 

*
1 2( ) (cos(2 ) 2)u x x x= − +  and *

1 22
1( ) (sin(4 ) 2)d x x x
γ

= + . 

One selects the critic NN vector activation function as  

2 2 4 4
1 1 2 1 2( ) [          ]x x x x xϕ =  

Figure 4 shows the critic parameters, denoted by  

1 1 2 3 4
ˆ [ ]Tc c c cW W W W W=  

by using the synchronous zero-sum game algorithm. After convergence at about 80s have 

 1
ˆ ( ) [0.0008    0.4999    0.2429    0.0032]TfW t =  

The actor parameters after 80s converge to the values of  

2
ˆ ( ) [0.0008    0.4999    0.2429    0.0032] ,T

fW t =  

and the disturbance parameters after 300s converge to the values of  

3
ˆ ( ) [0.0008    0.4999    0.2429    0.0032] .T

fW t =  

So that the actor NN  

1

211
2 32

1 1
3
2

2 0 0.0008
0 20 0.4999ˆ ( ) 0cos(2 ) 2 4 0.2429

0.00320 4

T

T
x

x
u x R

x x

x

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥= − ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 

also converged to the optimal control, and the disturbance NN  

2

1

21
32 1 1

3
2

2 0 0.0008
0 20 0.4999ˆ( ) 0sin(4 ) 2 4 0.2429

0.00320 4

T

T
x

x
d x

x x

x

γ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 

also converged to the optimal disturbance. 
The evolution of the system states is presented in Figure 5. Figure 6 shows the optimal value 
function. The identified value function given by 1 1 1

ˆˆ ( ) ( )TV x W xφ=  is virtually 
indistinguishable from the exact solution and so is not plotted.  In fact, Figure 7 shows the 3-
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D plot of the difference between the approximated value function and the optimal one. This 
error is close to zero. Good approximation of the actual value function is being evolved. 
Figure 8 shows the 3-D plot of the difference between the approximated control, by using 
the online algorithm, and the optimal one. This error is close to zero.  
Finally Figure 9 shows the 3-D plot of the difference between the approximated disturbance, 
by using the online algorithm, and the optimal one. This error is close to zero.  
 

 
Fig. 4. Convergence of the critic parameters. 
 

 
Fig. 5. Evolution of the system states. 
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Fig. 6. Optimal Value function. 

 
 

 
 
 

Fig. 7. 3D plot of the approximation error for the value function. 
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Fig. 8. 3D plot of the approximation error for the control. 

 
 

 
 

 

Fig. 9. 3D plot of the approximation error for the disturbance. 
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6. Appendix 
Proof for Theorem 2: The convergence proof is based on Lyapunov analysis. 
We consider the Lyapunov function 

 1 1 1
1 1 1 2 2 2 3 3 3

1 1 1( ) ( ) ( ) ( ) ( ).
2 2 2

T T TL t V x tr W a W tr W a W tr W a W− − −= + + +  (A.1) 

The derivative of the Lyapunov function is given by 

 1 1 1
1 1 1 2 2 2 3 3 3( ) ( ) T T TL x V x W W W W W Wα α α− − −= + + +  (A.2) 

First term is, 

  
φ

γ

ε φ φ
γ

−

⎛ ⎞
= ∇ − +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

+ ∇ − ∇ + ∇⎜ ⎟⎜ ⎟
⎝ ⎠

1 1 1 2 1 32

1
1 2 1 32

1 1ˆ ˆ( ) ( ) ( ) ( )
2 2

1 1ˆ ˆ( ) ( ) ( ) ( )
2 2

T

T T T T T

V x W f x D x W E x W

x f x g x R g x W kk W

. 

Then 

 ( )
( )

φ ε
γ

φ

ε
γ γ

⎛ ⎞
= ∇ − + +⎜ ⎟⎜ ⎟

⎝ ⎠

= ∇ + − −

− − + Ε +

1 1 1 2 1 3 12

1 11 1 1 1 2 1 1

1 11 1 3 1 1 12 2

1 1ˆ ˆ( ) ( ) ( ) ( ) ( )
2 2

1 1ˆ( ) ( ) ( )
2 2

1 1ˆ( ) ( ) ( )
2 2

T

T T T

T T

V x W f x D x W E x W x

W f x W D x W W W D x W

W E x W W W x W x

 

1 1 1 11 1 1 2 1 1 1 3 1 1 12 2

1 11 1 1 2 1 3 12

1 1 1 1( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2

1 1( ) ( ) ( )
2 2

T T T T T

T T T

W f x W D x W W D x W W E x W W x W x

W W D x W W E x W x

φ ε
γ γ

σ ε
γ

= ∇ + − − + Ε +

= + − +
 

 

where 1
1 1 2 1 32

1 1ˆ ˆ( ) ( ) ( )( ( ) ( ) ( ) ).
2 2

T T T T Tx x x f x g x R g x W kk Wε ε ε φ φ
γ

−≡ = ∇ − ∇ + ∇   

From the HJI equation 1 11 1 1 1 1 12
1 1( ) ( ) ( ) .
4 4

T T T T
HJIW h h W D x W W E x W xσ ε

γ
= − − + +  

Then 

1 1 1 1 1 1 1 1 2 1 1 3 12 2
1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )
4 24 2

T T T T T
V HJIL x h h W D x W W D x W W E x W W E x W x xε ε

γ γ
= − − + + − + +  

 1 1 2 1 1 3 12
1 1( ) ( ) ( ) ( ).
2 2

T T
VL x W D x W W E x W xε

γ
≡ + − +   (A.3)   
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where 1 1 1 1 1 1 12
1 1( ) ( ) ( ) ( ) ( )
4 4

T T T
V HJIL x h h W D x W W D x W x xε ε

γ
= − − + + +   

Second term is, 

( )
1 1 2 1 11 1 1 1 1 1 1 2 1 2 2 3 32 2

2 2

1 1ˆ ˆ ˆ ˆ ˆ( ( ) )
4 41

T T T T T

T
L W W W W Q x W D W W Wσα α α σ

γσ σ

− −= = + + − Ε
+

 

( )
2 11 1 2 1 2 1 2 3 32 2

2 2

1 1( ( ) ( ))
4 41

T T T T
HJI

T
L W W W D x W W W xσ σ ε

γσ σ
= − + − Ε +

+
 

( )
2 11 1 2 1 2 3 32 2

2 2

1 1( )
4 1

T T T

T
L W W D x W W Wσ

γσ σ

⎛ ⎞
= + − Ε⎜ ⎟⎜ ⎟

⎝ ⎠+
  (A.4) 

where 
( )

( )2
1 1 2 12

2 2

( )
1

T T
HJI

T
L W W xσ σ ε

σ σ
= − +

+
1 2 2 1

( )HJIT T

s

x
W W

m
ε

σ σ
⎛ ⎞

= − +⎜ ⎟⎜ ⎟
⎝ ⎠

. 

By adding the terms of (A.3) and (A.4) we have 

( )

1 1 1 1 1 1 1 1 2 1 1 3 12 2

1 12 11 2 1 2 1 2 3 3 2 2 2 3 3 32 2
2 2

1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
4 24 2

1 1( ( ) ( ))
4 41

T T T T
HJI

T T T T T T
HJI

T

L x Q x W D x W W E x W W D x W W E x W x x

W W W D x W W W x W W W W

ε ε
γ γ

σ σ ε α α
γσ σ

− −

= − − + + − + +

+ − + − Ε + + +
+

 

σ σε

σ σ σ
γ

σ σ
γ γ

= + + − +

+ + −

− − + −

2 2
1 1 2 1 1 1 2 1 1 1

2 2 2
2 1 2 1 2 1 2 1 3 1 1 12

2 2
3 1 3 1 3 1 3 1 2 1 12 2

1 1( ) ( ) ( ) ( ) ( )
4 4

1 1 1ˆ ˆ( ) ( ) ( )
4 4 4

1 1 1 1ˆ ˆ( ) ( ) ( )
24 4 2

T T
T T

V
s s

T T T
T T T

s s s
T T

T T T

s s

L x L L x x W D x W W W D x W W
m m

W D x W W W D x W W W E x W W
m m m

W E x W W W E x W W W D x W
m m γ

Ε13 12 ( )TW x W

 

 σ α α
γ

− −+ − −1 12
3 1 1 1 2 2 2 3 3 32

1 ˆ ˆ( )
4

T
T T T

s
W E x W W W W W W

m
 (A.5) 

where 2
2

2 2 1T
σσ

σ σ
=

+
and 2 2 1T

sm σ σ= + . 

 

In order to select the update law for the action neural networks, write (A.5) as 

2
1 12 21 111 1 2 2 2 2 1 3 3 3 1 3 14 4

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
T T

T T
V

s s
L x L L x W W D x W W W W x W W

m mγ

σ σε α α− −⎡ ⎤ ⎡ ⎤
= + + − − − + Ε⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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2 2 2
2 1 1 2 1 1 1 2 1 1 1 2 1 1 2

1 1 1 1( ) ( ) ( ) ( )
2 4 4 4

T T
T T T T

s s s
W D x W W D x W W W D x W W W D x W W

m m m
σ σ σ

+ + − +  

σ σ σ
γ γ γ γ

− Ε − Ε + Ε − Ε2 2 2
3 1 1 3 1 1 1 3 1 1 1 3 1 1 32 2 2 2

1 1 1 1( ) ( ) ( ) ( )
2 4 4 4

T T
T T T T

s s s
W x W W x W W W x W W W x W W

m m m
 

Now define the actor tuning law as 

 ( )2 2 2 2 1 2 1 1 2 1
1ˆ ˆ ˆ ˆ ˆ( )
4

T TW F W F W D x W m Wα σ⎧ ⎫= − − −⎨ ⎬
⎩ ⎭

  (A.6) 

and the disturbance tuning law as 

 ( )3 3 4 3 3 2 1 1 3 12
1ˆ ˆ ˆ ˆ ˆ( )

4
T TW F W F W x W m Wα σ

γ

⎧ ⎫⎪ ⎪= − − + Ε⎨ ⎬
⎪ ⎪⎩ ⎭

.  (A.7) 

This adds to L  the terms 

2 2 1 2 2 2 2 1 2 1 2 1 2 1

3 4 1 3 4 3 3 3 2 1 3 3 2 1

T T T T T T

T T T T T T

W F W W F W W F W W F W

W F W W F W W F W W F W

σ σ

σ σ

− − +

+ − − +
 

Overall 

1 1 1 1 1 1 1 2 2 1 12

2 2
2 1 1 2 1 1 1 2 1 1 1

( )1 1( ) ( ) ( ) ( ) ( ) ( )
4 4

1 1 1( ) ( ) ( )
2 4 4

HJIT T T T
HJI

s
T T

T T T

s s

x
L x Q x W D x W W E x W x W W x

m

W D x W W D x W W W D x W W
m m

ε
ε σ σ ε

γ

σ σ

⎛ ⎞
= − − + + + − + +⎜ ⎟⎜ ⎟

⎝ ⎠

+ + −

 

2 2
2 1 1 2 3 1 1 3 1 1 32 2

2 2
3 1 1 1 3 1 1 12 2

1 1 1( ) ( ) ( )
4 2 4

1 1( ) ( )
4 4

T T T

s s
T T

T T

s s

W D x W W W x W W x W W
m m

W x W W W x W W
m m

σ σ
γ γ

σ σ
γ γ

+ − Ε − Ε

− Ε + Ε
 

2 2 1 2 2 2 2 1 2 1 2 1 2 1
T T T T T TW F W W F W W F W W F Wσ σ+ − − +   

 3 4 1 3 4 3 3 3 2 1 3 3 2 1
T T T T T TW F W W F W W F W W F Wσ σ+ − − +  (A.8) 

Now it is desired to introduce norm bounds.  It is easy to show that under the Facts 1 

 ( ) ( )2
2 21 1

1 min 1 2 1 32 2
( ) ( )

x x x x xf g kx b b x b b b R W W b b b W Wε ε φ ε φγ
ε σ< + + + +  

Also since ( ) 0Q x > there exists q such that ( )Tx qx Q x< locally. It is shown in (Abu-Khalaf & 
Lewis, 2008; Abu-Khalaf et al. 2006) that HJIε  converges to zero uniformly as N increases.  



 Advances in Reinforcement Learning 

 

356 

Select 0ε >  and 0( )N ε  such that sup HJIε ε<  (see comments after (24)). Then assuming 

0N N> and writing in terms of  2 1

2

3

x

W
Z

W

W

σ Τ

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

, (A.8) becomes 

2

2 2 2 21 1
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1 1( ) ( ) || || ( ) || ||
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ε σ
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⎢ ⎥

⎛ ⎞⎢ ⎥⎛ ⎞
⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥

⎢ ⎥⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥
⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
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 (A.9) 

Define 
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     (A.10) 
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2

2 2 2 21 1
1 1 1 1 1 min 12 2 2

1 1( ) ( ) || || ( ) || ||
4 4 x x x xg kc W D x W E x W b b b R W b b bε ϕ ε φγ

σ
γ

= + + +   

Let the parameters be chosen such that 0M > . Now (A.9) becomes 

2
min( )L Z M d Z cσ ε< − + + +  

Completing the squares, the Lyapunov derivative is negative if  

 
2

2
min minmin

.
2 ( ) ( )4 ( ) Z

d d cZ B
M MM

ε
σ σσ

+
> + + ≡  (A.11) 

It is now straightforward to demonstrate that if L exceeds a certain bound, then, L  is 
negative. Therefore, according to the standard Lyapunov extension theorem (Lewis, 
Jagannathan, Yesildirek, 1999) the analysis above demonstrates that the state and the 
weights are UUB. 
To show this from (A.1), one has,   

2 2 22
min 1 2 3

1 2 3
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P x W W W L
a a a
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Equation (A.13) is equivalent to 

min 1 max 2( ) ( )T TZ S Z L Z S Zσ σ≤ ≤  
Then  

2 2
min 1 max 2( ) ( )S Z L S Zσ σ≤ ≤ .  

Therefore, 
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implies (A.11). 
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Note that condition (A.11) holds if the norm of any component of Z exceeds the bound, i.e. 
specifically Zx B> or 2 1 ZW Bσ Τ > or 2 ZW B>  or 3 ZW B> (Khalil, 1996). 
Now consider the error dynamics and the output as in Technical Lemmas 1, 2 and assume 

2σ is persistently exciting  

1 1 11 1 2 2 1 1 2 2 1 2 3 32 2 2( )
4 4

HJI T T

s s s

a aW a W a W D x W W W
m m m

ε
σ σ σ

γ
Τ= − + + − Ε   

 2 1
Ty Wσ= .  (A.15) 

Then Theorem 1 is true with  

 
2 2 12 1

1 max 2 32
1 1 1
4 4

T

s s s s

DW W W
m m m m
σ ε ε

γ
Ε

> > − +  

This provides an effective practical bound for 2 1
TWσ .  

This completes the proof. 
■ 
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1. Introduction 
Production scheduling plays an important role in improving efficiency and reducing cost. 
One of its core technologies is the establishment of an effective scheduling model and its 
corresponding optimization algorithms. However, most researches focus on scheduling 
optimization in static environment, less concern of the uncertainty and complexity in the 
real job-shop. It must be different from the exact solution if some situations are ignored or 
not considered in scheduling problem such as changing processing time, uncertain 
capability of storage, possibility of human decision, unpredicted accident and so on.  
Inchoate research on FJSP (Flexible Job-Shop Scheduling Problem) concentrated on the 
simple application of integer programming and simulation, which can hardly be used to 
solve the complex scheduling problem. With the development of related fields and theory of 
optimization, a great many methods and techniques have been adopted into JSP. 
Operational research predigests the JSP into a mathematical programming model, using 
branch-and-bound method and dynamic programming algorithm to realize optimization or 
approximate optimization. However, OR only suits to simple scheduling problem (Philips et 
al., 1987). Based on theory of control, Gershwin and his fellows expatiate comprehensively 
the adoption of theory of control in manufacturing system. Limited to the capability of 
modeling, a lot of predigestion to the environment is a must; the practice to get the optimum 
solution expands with a exponential characteristic (Juanqi, 1998). AI (Artificial Intelligence) 
is a combination of all the methods for JSP, which aim at enhancing the intelligence of 
scheduling method. It can smooth the disadvantages of mathematical programming and 
simulation. Based on the system status and deterministic objective of optimization, effective 
heuristic research and concurrent fuzzy reasoning are conducted to choose the optimum 
solution and support online decision. Nevertheless, AI is weak in adapting to new 
environment, and there are 3 main limitations of this method: low speed of operation, 
insensitive to asynchronisic event in the environment, the system can’t be universally 
adopted (Juanqi, 1998). In a job-shop DEDS (Discrete Event Dynamic System), the JSP can be 
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solved by its parsing model and method, such as Petri net. The Petri net can precisely reflect 
the characteristics of discrete and stochastic etc. in job-shop scheduling (Hongsen, 1994). But 
it’s hard to present a model when the principle and methodology are complex. The 
complexity of manufacturing system makes it hard to express and analyze by a precise 
analytical model. While simulation can provide an ideal model for quantitative evaluation 
to guide the scheduling (Law, 1986). Whereas, the experimental characteristic make it hard 
to figure out the general rule, and the value and credibility of the result have much to do 
with the simulation model, simulation method and the data input. Uncertain theory has also 
been adopted into the scheduling problem for its stochastic and fuzzy characteristics 
(Zhaoqiang & Yiren, 2002). Just as AI, it needs a long development cycle time as well as 
abundant experience etc. Soft computing is also widely adopted into scheduling, such as 
genetic algorithm (Croee & Tadei, 1995), Tabu searching (Taillard, 1990), simulated 
annealing (Van Laarhoven, 1992), neural network (Foo & Takefuji, 1998), particle swarm 
optimization etc. Based on the aforementioned methodologies, we can find that each 
method has its own limit, so researchers start to combine the approximate algorithms to 
solve scheduling problem. This paper proposed a compounding method which syncretises 
simulation and soft computing to solve FJSP (flexible job-shop scheduling problem) under 
uncertain environment.  
As the execution layer between the ERP/MRPII for planning and job-shop layer for 
operation and control, MES (Manufacturing Execution System) focuses on how to 
optimize the job-shop scheduling (Shuxia, 2004). The essence of scheduling is a decision 
making constrained by multi-objectives and multi-priorities. The multi-objectives here 
focuses on the combination of less production time, less total cost and equilibrium of 
production ability while the multi-constraints focuses on the constraints of process route, 
machines and delivery time of order in which the priorities differ on different types of 
work pieces. 
Information is the basis of decision making. The scheduling models in previous research 
are proposed with all the information deterministically given, for example, taking the 
process time of the work piece on specific machine as deterministic information without 
considering the priority. Actually, the stochastic information floods the real job-shop, 
which makes getting the satisfied scheduling a difficult job. In recent years, job-shop 
scheduling in uncertain environment gradually arouses the attention of researchers, such 
as study on scheduling problem with fuzzy characteristic. However, in discrete event 
dynamic system, more parameters are suited to be described by stochastic variable rather 
than fuzzy variable, such as the process time of work piece, the frequency of machine 
fault and the interval of order, which can be thought to obey an exponential distribution 
(Peigen, 1998), so it is of great significance to study scheduling under stochastic 
constraints. 
In this paper, describing the uncertain information in the real job-shops with several 
stochastic variables, a stochastic multi-objectives and multi-priorities programming model 
for Flexible job-shop scheduling is proposed, in which Time, Cost and Equilibrium serve as 
the three basic objectives for scheduling. The credibility of the delivery time of different 
types of work pieces serve as the scheduling constraints. In order to obtain the approximate 
optimum solution, a hybrid intelligent algorithm which combines Stochastic Simulation 
(SS), Neural Network (NN) with Genetic Algorithm (GA) is proposed. The feasibility of the 
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model and its corresponding hybrid intelligent algorithm is validated through some 
instances. 

2. The stochastic programming model with chance-constraint 
Generally, job-shop problem is depicted by a non-linear programming model. If certain 
stochastic factors being taken into account, the programming model would differ from the 
classical model. The concept of chance-constraint and stochastic programming proposed by 
Liu (Baoding et al., 2003) is depicted as follows: 
Assume that X is a decision-making vector; E is a stochastic vector with deterministic 
distribution. There are r objective functions decided by X and E:fi (X, E), 1≤i≤r, constrained 
to p constrained function: gj (X, E), 1≤j≤p. The objective functions and constrained functions 
are stochastic, so they can be depicted only by the credibility as follows: P{ gj (X, E)≤0}≥αj, 
1≤j≤p, P represent the probability of the stochastic event gj (X, E)≤0 , αj is the credibility. If 
the objective of programming is to minimize fi (X, E), 1≤i≤r, choose βi as the credibility, the 
objective function would be:  

min
,1

. .   { ( , ) }
i

i i i

f
i r

s t P f X E f β

⎧⎪ ≤ ≤⎨
≤ ≥⎪⎩

 

Above all, the stochastic programming model with multi-chance-constraints and multi 
objectives is: 
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1 2[ , ,..., ]rf f f  stands for the weighted sum of the r variables. 

3. Multi-objectives and multi-priorities flexible job-shop scheduling strategy 
In the Flexible job-shop with several pieces of machines, after receiving the production order 
assigned by the planning section, production process would be arranged and optimized by 
reasonable scheduling. The scheduling parameter can be depicted by the mathematical format: 
There are m pieces of machine available: {R1,R2,….Rm}  
There are n work pieces’ task included in the order:{T1, T2,…Tm} Ti(1≤i≤n) is a operation 
sequence decided by the process route programming, which includes Ki (1≤Ki≤m) operations 
and recorded as follows: Ti = {OPi1, OPi2,…,OPiK}, each operation OPik can be processed on 
several machines, and operation on each machine Rj would take you certain time and cost, 
time function be depicted as et(OP, R), cost function be depicted as ec(OP, R). In the 
uncertain informative environment, when operation OPik(1≤i≤n, 1≤k≤Ki ) is being processed 
on machine Rj (1≤j≤m), et(OPik,Rj) and ec(OPik, Rj) are two stochastic constants with 
deterministic distribution, else et(OPik,Rj)= ec(OPik, Rj)≡0. 
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3.1 Work piece priority and chance constraint 
 

On the premise of following the demand of process route, MES would assign appropriate 
machine for each operation of each work piece, making sure that the delivery time of order 
can be met. That is to say, the delivery time is a key constraint in scheduling. As the 
production order is formed by a consideration of customer order, enterprise planning and 
operation. The tasks included in the order can be divided into many priorities for many 
factors such as importance of customer, quantity of order, and the degree of emergency of 
the requirement. For example, if we divide the work pieces into two group, in one of which 
the delivery time should be precisely met (called critical work piece) while there can be a 
flexible space in the other group of work pieces (called ordinary work piece). On this 
condition, the job-shop resources should satisfy the needs of critical work pieces on first 
hand to meet the delivery time. The remained resources can then be assigned to the 
ordinary work pieces. Literature 4 adopted by-directional scheduling strategy, for the 
critical work piece, reverse order scheduling is adopted, while for the ordinary work piece, 
sequential scheduling is adopted. However, for uncertain environment in which processing 
time is stochastic, this strategy for scheduling will bring out many problems. That means the 
result of the scheduling can hardly meet the delivery time. 
In real job-shop, the processing time of work piece on each machine is a stochastic variable 
obeying certain distribution (exponential distribution in general), that leads to the stochastic 
characteristic of the production cycle of work piece. We can describe the constraint of 
delivery time as a chance constraint. The priority of the work pieces can be divided into r 
subclasses by a high-low order (the element in the same subclass share the same priority): 
S1,S2,…,Sr, each subclass has the corresponding credibility of meeting delivery time: 

1 2 1 2, ,... ( ... )r rα α α α α α> > > . The delivery time of each task is deterministic as: dt1,dt2,…,dtn, 
the real production cycle time of each task( including the total processing time and total 
waiting time) can be calculated and depicted as pt1,pt2,…,ptn. The delivery constraint 
described by chance constraint is: 

 , { 0} ,1 ,1i j i i jT S P pt dt i n j rα∀ ∈ − ≤ ≥ ≤ ≤ ≤ ≤  (1) 

There would be a queue waiting when several work pieces are assigned to the same 
machine, the sequence of processing should be determined by the principle of scheduling. 
Generally, FIFS (first in first serviced) principle is adopted. Towards different priorities, 
serving the task with higher priority on first hand is more reasonable to actual demand. At 
this moment, if there is a queue on a machine waiting for processing while a piece is being 
processed, after it is processed, the piece in queue with highest priority should be chosen to 
be processed. The piece of longer waiting time should be processed first within the same 
priority. 

3.2 Proposing a multi-objectives function 
Shorter production time and lower cost is two basic objectives. For an order to be scheduled, 
with the complexity of process route of each component differing from others, we can aim at 
minimize the total production cycle time of the task for all work pieces. η  as the credibility, 
the time objective function can be depicted by chance constraint as follows: 
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Meanwhile, we can aim at minimizing the total production cost of the task for all work 
pieces, taking γ  as credibility. The cost objective function can be depicted by chance 
constraint as follows:     
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Another objective of scheduling is the equilibrium of the schedule, which has long been 
ignored. According to a schedule, if the average load of machine is floating dramatically, we 
call it an unbalanced scheduling. The disequilibrium of scheduling would cause a loss in 
coping with the emergency. We introduce the standard deviation in statistics to quantify the 
equilibrium of scheduling, dividing the whole production cycle time into several isometric 
time segment, figure out the total working time of the machine in each time segment, than 
calculate the standard deviation between this total working time and average working time. 
The smaller the standard deviation, the better the equilibrium of the schedule is. 
Assume that the production cycle time is OT, obviously, 

1
max ii n

OT pt
≤ ≤

= , divide OT into N 

isometric time segments, in each of which the total processing time of all the machines is 

(1 )sRT s NΔ ≤ ≤ , the standard deviation is 2 2
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the objective of equilibrium of schedule is depicted as: 
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3.3 Stochastic programming model of job-shop scheduling with multi-objectives and 
multi-priorities 
The process route of each work piece and the machines available for each operation are 
known according to (1) (2) (3) (4), the machines available to operation OPik is 

1 2{ , ,..., }ikH
ik ik ik ikAR R R R= , including  Hik  elements, the principle for scheduling of task 

waiting in queue is Higher Priority First Served. The stochastic programming model of job-
shop scheduling in uncertain environment is proposed as follows: 
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 (5) 

4. The design and implementation of hybrid intelligent algorithm 
4.1 Basic procedures of hybrid intelligent algorithm 
Model (5) is too complex to be solved by traditional algorithm, so we adopt the hybrid 
intelligence which syncretizes stochastic simulation, neural network, genetic algorithm and 
other critical techniques. The algorithm includes 3 major steps: 
Step 1. based on the quantity and capability of machine in job-shop, as well as the 

distribution characteristics of stochastic variables as time and cost etc. Present a 
simulation model; collect quantities of data samples by simulating. 

Step 2. Present the three-layer feed-forward neural networks, use the samples acquired in 
simulation to weight-train the neural network to approach the stochastic functions 
in model(5). 

Step 3. apply the genetic algorithm to solve the optimization problem, including definition of 
rules for chromosome coding/encoding, initialization and selection of population, the 
calculation and evaluation of individual fitness, crossover and mutation etc. The 
calculation of individual fitness will utilize the trained neural network in step2. 

4.2 Stochastic simulations 
Stochastic simulations( Monte Carlo simulation) is one of the  stochastic system modeling 
techniques focuses on sample test, the sample of the stochastic variables is based on their 
probabilistic distribution. There are a lot of complex calculations for probabilities of 
stochastic variables in model (5), as for the complexity of multi-priorities scheduling, even a 
schedule sequence is determined, the stochastic variables such as the completion period of 
each work piece can not be expressed by a explicit. So the stochastic simulation should be 
integrated with simulation analysis to get the approximate sample data. 
According to experience, we can assume the operation time et(OPik,Rj) comply with the 
exponential distribution with λikj as its exponent, depicted as:  

et(OPik,Rj)~exp(λikj). 

The cost of processing is influenced by many uncertain factors, ec(OPik,Rj) can be assumed 
to comply with normal distribution depicted as: 

ec(OPik,Rj)~ 2( , )ikj ikjμ σΝ . 
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Given a schedule sequence (the concrete machine for each operation) and a group of 
deterministic sample values for all stochastic variables, which work pieces are being 
processed is available on theory. Therefore, to present stochastic simulation model on 
platform of SIMUL8, then run simulation and statistically analyze the critical data acquired, 
including:  
1. Production time of each work piece pti 

2. The processing cost of each work piece 
1

( , )
iK

ik j
k

ec OP R
=
∑  

3. The total working time of all devices in each time segment (N segment in all) is sRTΔ  

4.3 Neural network approach to the stochastic functions 
Take the schedule sequence as Vector Y, the four constraints in model (5) can be depicted by 
Y’s stochastic function, definition as the following n+3 functions:  
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The stochastic simulation provides abundant data samples, which are used to train a neural 
network to approach the n+3 uncertain functions in (6). The neural network is three-layer 
feed-forward with 

1

n

i
i

K
=
∑  input neurons (data input is Y), 18 hidden layer neurons and n+3 

output neurons (data output are U1(Y), U2(Y), U3(Y), ( )
4
iU (Y)). 

4.4 Genetic algorithm of multi-objectives optimization 
Coding, encoding of chromosome and initialization of population. Besides being simple, 
the principle for coding of chromosome should also assure any of the chromosomes can get 
a permissive schedule sequence by encoding. Permissive means meeting the requirements 
of constraints of process route and process machine. Here designed a coding method for 
positive integer: 
The total length of coding is, each bit represents an operation: the first bit represents the first 
operation of work piece 1, the second bit represents the second operation of work piece 1,…, 
the K1+1 represents the first operation of work piece 2, the rest may be deduced by analogy. 
If bit j represents operation k of work piece of I, the range of value for bit j is [1,Hik], Hik  
represents the number of machine available for operation k of work piece i. Looking on the 
coding principle, once given the collection of machine for each operation and the accurate 
process time, each chromosome can be precisely mapped into a schedule sequence, 
meanwhile the process details (when and where) of each operation can be calculated which 
is solely determined. Also, during the initialization of population, once length bits stochastic 
positive integers are created with value-range of each bit in [1,Hik], the coding of 
chromosome is permissive. 
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The calculation and evaluation of fitness. Individual fitness can be calculated using the 
trained neural network, if we take 

1
i

n

i
K

=
∑  bits coding of random chromosomes as the input of 

neural network, n+3 output would be acquired. Contraposing data output first prove 
whether ( )

4 ( ) ,i
j i jU Y T Sα≥ ∈  is right, if not, the delivery time can not be satisfied which 

means the schedule is not donable. The fitness of chromosome is 0, the corresponding 
individual being eliminated. Else when ( )

4 ( ) ,i
j i jU Y T Sα≥ ∈  proves to be true, then U1(Y), 

U2(Y) and U3(Y) can figure out , ,pt ec rt , giving the weight of the three objectives(time, cost 
and equilibrium) w1,w2,w3 on preferential relationship, then calculate 1 2 3w pt w ec w rt+ + , the 
smaller the value, the higher the individual fitness is. 
Operator of cross and mutation. The cross between two parents is operated as follows: 
exchange the codes presenting the same operation sequence in two chromosomes, and then 
we will get two sons. 
The mutation process is as fig. 2, bit j of parent’s chromosome mutates stochastically by 
certain probability. Notes: if bit j stands for the operation k of work piece I, the value range 
of bit j after mutation is [1,Hik]. 
 

Work piece 1 Work piece2 Work piece n  Work piece1 Work piece2 Work piece n

Son

 Parent  2 1 4 2 1 3 2 3 … 1 1 2    1 1 2 1 

 2 1 4 2 … 1 1 2    1 1 2 1 

2 4 3 1 …

…

2 3 2

2 3 21 3 2 3 2 4 3 1

1

1

2

2  

 
Fig. 1. Process of crossing 
 

 Parent 

Work Piece 1 Work Piece 2 Work Piece n

2 1 4 2 2     4  23  ……

2 1 4 2 2     4 22 ……  1 1 2

1 1 2

Son

 
Fig. 2. Process map of mutation 

5. Case study 
We apply our study to a car manufacturing enterprise. The mold   job-shop accepts the 
orders for manufacturing of molds, which include orders from both enterprise itself and 
other company. The manufacturing resources in the job-shop is enough with all necessary 
machine for mold processing, which include lathe, milling machine, grinding machine, 
numeral control machine, process center, electric discharge machine etc.(the serial number 
of machines are R1,R2,…,R35). Table 1 shows a piece of production order, which includes 3 
work pieces waiting for process with delivery time of 270,300,320 respectively. The delivery 
time of work piece 1 and 2 should be strictly met with credibility99%, while work piece 3 is 
more flexible with a 50% credibility to meet the delivery time. So, there are two priorities of 
scheduling. Three work pieces have fixed process route, each operation has many devices 
available for processing which differ in time and cost. According to experience and 
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historical statistically analysis, the time and cost spent on each machine for one operation 
are stochastic variables. The time comply with exponential distribution while cost obeys 
normal distribution, whose parameters are shown in table 1. Take “R2/20/(18,6)”as an 
example, it means work piece being processed on machine R2 with processing time obeying 
exponential distribution exp(20), cost obeying normal distribution N(18,6). We need to 
schedule for the order and implement optimum scheduling. 
 

Class of machine available Work 
piece Operation 

Resource1 Resource2 Resource3 
Lathing R2/20/(18,6) R3/25/(17,5)  
Milling R7/35/(39,1) R8/30/(45,2) R10/40/(37,1) 
Surface process R30/100/(125,8) R31/90/(140,6) R32/110/(120,8) 
Lineation,Drilling 
Assembling,Adjustment R20/40/(50,4) R22/42/(55,3)  

Work 
piece 1 

Line incision R17/40/(45,4) R18/45/(49,3)  
Lathing R2/25/(19,2) R3/33/(18,2) R5/30/(18,1) 
Drilling,Milling R8/40/(55,4) R10/50/(50,3)  
Surface process R30/70/(85,8) R31/67/(90,6)  
Grinding R25/50/(60,6) R26/52/(60,5)  

Work 
piece 2 

Repairing Assembling R20/100/(110,10) R21/115/(117,10) R22/110/(121,9) 
Milling R8/60/(102,5) R9/70/(85,7) R11/55/(127,9) 
Surface process R31/50/(93,6) R32/60/(55,2) R33/58/(60,2) 
Electrode NC process R35/33/(36,4) R30/30/(42,3)  
Electric-charge Process R19/40/(50,4) R16/39/(60,4)  

Work 
piece 3 

Repairing ,assembling R21/160/(220,12) R22/150/(240,10)  

Table 1. Operations and machines available for work pieces 

First, present a stochastic programming model, believable probabilities are: 

1 20.8, 0.99, 0.5η γ ν α α= = = = =  

Then use hybrid intelligent algorithm with weights of three objectives being 1/3 
respectively to solve the problem. Get 200 groups of data samples through stochastic 
simulation (each group of data should be acquired by 500 times simulation), train the neural 
network with these data (15 input units, 18 hidden layer units and 6 output units), and 
calculate the weight. Finally, using genetic algorithm to find the optimum solution with 15 
bits code, cross rate 0.5 and mutation rate 0.01. After 30 generations’ evolution, the result of 
schedule is as follows:  
Work piece 1(2,7,30,22,17), work piece 2(5,8,30,25,20), work piece 3(8,32,35,19,22). The 
numbers in the bracket represent the serial number of machine for each operation. 
According to experience, this schedule sequence is a approximate optimum solution which 
has satisfied the requirements of all the chance constraints. 
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6. Conclusions 
After analyzing the stochastic factors as time and cost in production process, we have 
proposed stochastic programming model based on chance constraints to describe the multi-
priorities Flexible Job-Shop Scheduling problem aiming at objectives of shorter production 
time, lower cost and equilibrium of schedule. The advantage of this model is that it reflects 
the stochastic condition in real job-shop and proposes a hybrid intelligent algorithm which 
syncretizes many critical techniques such as the stochastic simulation, neural network and 
genetic algorithm etc., finally, a case study shows that our study can be applied to FJSP to 
get a approximate optimum solution. 
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1. Introduction     
Unmanned vehicles like Unmanned Aerial Vehicles (UAV) and Unmanned Ground 
Vehicles (UGV) are mechanical devices capable of moving in some environment with a 
certain degree of autonomy. These vehicles use IMU (Inertial Measurement Unit), high 
precision GPS RTK (Global Positioning Systems, Real-Time Kinematics), encoders, compass, 
and tilt sensors, to position them self and follow waypoints. A picture of a vehicle with these 
characteristics is shown in Figure 1. Its use is becoming more frequent for both intensive and 
extensive agriculture, in the precision agriculture context. For example, in USA or Argentina 
with millions of arable hectares is essential to have autonomous farm machines for handling 
and managing growth, quality, and yield of the crops. 
 

 
Fig. 1. Prototype of a UGV equipped with a number of sensors. This prototype belongs to 
the Instituto the Automática of the Universidad Nacional de San Juan. 

                                                 
1 dpatino@inaut.unsj.edu.ar 
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The environment where these vehicles are used can be classified as: 
• Structured or partially structured when it is well known and the motion can be planned 

in advance. In general, this is the case of navigation and guide of mobile robots.  
• Not structured, when there are uncertainties which imply some on-line planning of the 

motion, this is the case of navigation and guide of robotic aerial vehicles.   
In general, the objective of controlling the autonomous vehicles implies solving the 
problems of sensing, path planning and kinematic and dynamic control. Autonomy of a 
vehicle is related to determine its own position and velocity without external aids. 
Autonomy is very important to certain military vehicles and to civil vehicles operating in 
areas of inadequate radio-navigation coverage. Regarding the trajectory planning, there are 
many approaches (Aicardi et al., 1995). Many works have been published on the control of 
autonomous vehicles, mainly in the UGV or mobile robots. Some of them propose stable 
control algorithms which are based on Lyapunov theory (Singh & Fuller, 2001). Others have 
focused on optimization planning and control (Kuwata et al., 2005) and (Patiño et al., 2008). 
In this paper we propose the use of ACDs to design autonomously an optimal path 
planning and control strategy for robotic unmanned vehicles, in particular for a mobile 
robot, following a previous work (Liu & Patiño, 1999a), and (Liu & Patiño, 1999b). 
We consider a mobile robot with two actuated wheels and the autonomous control system is 
designed for kinematic and dynamic model. The kinematic mobile robot model for the so-
called kinematic wheels under the nonholonomic constrain of pure rolling and nonslipping, is 
given by, 

  q S(q)v(t )=� , (1)                  

Where 3q(t ),q(t)∈ℜ�  are defined as 

 T Tq [x,y , ] , q [x,y , ]θ θ= = �� � � , (2) 

x(t),y(t),  and 3(t )θ ∈ℜ  denote the linear position, and orientation respectively of the center 
of mass of the mobile vehicle; x(t),y(t),� �  denote the Cartesian components of the linear 
velocity of the vehicle;  (t ),θ� denotes the angular velocity of the mobile robot; the matrix 

3 2S(q) ,×∈ℜ  is defined as, 

 
0
0

0 1

cos( )
S(q) sin( )

θ
θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, (3) 

and the velocity vector 2v(t) ,∈ℜ  is defined as 

 T
lv [v ,w]= , (4) 

with lv ∈ℜ  denoting the constant straight line velocity, and w(t)∈ℜ  is the angular velocity 
of the mobile robot. 
Considering the dynamics of the car-driving device which contains a dc motor, a dc 
amplifier, and a gear transmission system, 

 2 R
Kaw w

s bs a
= ⋅

+ +
, (5) 
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where Rw ∈ℜ , is the reference angular velocity, and K,a,b +∈ℜ   are the car-driving device 
parameters. 
The state of the mobile vehicle is given by (cf. Figure 1) the coordinates of the robot (x,y) , 
the orientation of the vehicle, θ , and the actual turning rate of the robot, θ� . The control 
signal is the desired turning rate of the mobile vehicle, Rw . 

1.2 Control problem formulation 
As was previously defined, the reference trajectory is generated via a reference vehicle 
which moves according to the following dynamic trajectory, 

 R Rq S(q )v(t)=� , (6) 

Where S( )⋅  was defined in (3), 3T
R R R Rq [x ,y , ]θ= ∈ℜ  is the desired time-varying position 

and orientation trajectory, and 2T
R l lv [v ,w ]= ∈ℜ  is the reference time-varying velocity. 

With regard to (5), it is assumed that the signal Rv (t )  is constructed to produce the desired 
motion, and that Rv (t ) , Rv (t )� , Rq (t) ,  and Rq (t)�  are bounded for all time. 
In general the vehicle motion control can be classified in: i) Positioning without prescribing 
orientation: in this case a final destination point is specified; ii) Positioning with prescribed 
orientation: in this case a destination point has to be achieved with a desired orientation; 
and iii) Path following: here, the path is defined through a sequence of waypoints.  
In the first experiment, the control objective is limited to the first case, that is, given a 
reference point located at the workspace, R R(x ,y ) , and considering the vehicle dynamical 
model, it is desired to obtain autonomously a sequence of optimal control actions (values of the 
turning rate) such that the vehicle achieves the target point as fast as possible (cf. Figure 2), 
and with minimum energy consumption. Since the mobile robot´s speed, lv , is taken as 
constant, minimum-time control is equivalent to shortest-path control. 
The design of the control system will be based on adaptive critic designs, in particular HDP 
(Werbos, 1992) and (Bellman, 1957). Next Section shows the background material needed for 
the present work.  

θ

x

y

Reference Trajectory

X

)(tcp

Y

ry

rx

rθ
)(tqr

 
Fig. 1. The state of the unmanned ground vehicle. 
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GATE

 
Fig. 2. The gate for the unmanned ground vehicle to go through. 

2. Background in adaptive critic designs 
2.1 Introduction to dynamic programming 
Suppose that it is given a discrete-time nonlinear (time-varying) system, 

 1x(k ) F[x(k),u(k),k]+ = , (7) 

where, nx∈ℜ  represents the (complete) state vector of the system and mu∈ℜ  denotes the 
control action. Suppose that it is desired to minimize for (7) a performance index (or cost), 

 k i

k i
J[x(i ),i] U[x(k),u(k),k],γ

∞
−

=

= ∑  (8) 

where  U  is called the utility function or local cost function,  and γ  is the discount factor 
with 0 1γ≤ ≤ . Note that J  is dependent on the initial time i  and the state x(i) , and it is 
referred to as the cost-to-go of the state x(i) . The objective is to choose the control sequence 

1u( k),k i ,i ,= + …  so that the J  function (the cost) in (8) is minimized. The cost in this case 
accumulates indefinitely; these kinds of problems are referred to as infinite horizon problems 
in Dynamic Programming. On the other hand, in finite horizon problems, the cost will 
accumulate over a finite number of steps. Dynamic programming is based on Bellman’s 
principle of optimality, (Lewis & Syrnos, 1995), (Prokhorov & Wunsch, 1997), and establishes 
that an optimal (control) policy has the property that no matter what previous decisions (i.e., 
controls) have been, the remaining decisions must constitute an optimal policy with regard 
to the state resulting from those previous decisions. 
Suppose that we have computed the optimal cost 1 1*J [x(k ),k ]+ + , from time 1k +  to the 
terminal time for possible states 1x(k )+ , and that we have also found the optimal control 
sequences from time 1k +  on. The optimal cost results when the optimal control sequence 

1 2* *u (k ),u (k ),...+ + , is applied to the system with initial state 1x(k )+ . Note that the 
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optimal control sequence depends on 1x(k )+ . If we apply an arbitrary control u(k) at time 
k  and then use the known optimal control sequence from 1( k )+ on, the resulting cost will 
be 

 1 1*J[x(k),k] U[x(k),u(k),k] J [x( k ),k ]γ= + + + , 

where, x(k)  is the state at time k  and  is determined by (2). According to Bellman, the 
optimal cost from time k  on is equal to 

 
( )1 1

*
u( k )

*
u( k )

J [x(k),k] min J[x(k),k]

min U[x(k),u(k),k] J [x(k ),k ] .γ

= =

= + + +
 (9) 

The optimal control *u (k)  at time k  is the u(k) that achieves the minimum. Equation (9) is 
the principle of optimality for discrete-time systems. Its importance lies in the fact that it 
allows us to optimize over only one control vector at a time by working backward in time. 
Dynamic programming is a very useful tool in solving optimization and optimal control 
problems. In particular, it can easily be applied to nonlinear systems with constraints on the 
control and state variables, and arbitrary performance indexes. 

2.2 Adaptive critic designs 
In the computations in (9), whenever one knows the function J  and the model F in (7), it is 
a simple problem in function minimization to pick the actions *u (k) which minimize J . 
However, due to the backward numerical process required, it is too computationally 
expensive to determine the exact J  function for most real problems, even when the scales of 
the problems are considered to be small. Therefore, approximation methods are demanding 
in practice when performing dynamic programming (Werbos, 1992), (Bellman, 1957), 
(Balakrishnan & Biega, 1995).  
Instead of solving for the value of J function for every possible state, one can use a function 
approximation structure such as a neural network to approximate the J function. There are 
three basic methods proposed in the literature for approximating the dynamic programming. 
They are collectively called Adaptive Critic Designs, which include Heuristic Dynamic 
Programming (HDP), Dual Heuristic Programming (DHP), and Globalized Dual Heuristic 
Programming (GDIHP) (Bellman, 1957), (Werbos, 1990), (Balakrishnan & Biega, 1995). 
A typical adaptive critic design consists of three modules —Critic, Model, and Action. The 
present work considers the case where each module is a neural network; the designs in this 
case are referred to as neural network--based adaptive critic designs. The following 
introduces the HDP. In HDP (Werbos, 1990), (Werbos, 1992), (Lewis & Syrnos, 1995), 
(Balakrishnan & Biega, 1995, the critic network output estimates J function in equation (7). 
This is done by minimizing the following error measure over time, 

 2
1 1

1 1
2k k

E E (k) [ J( k) U(k) J( k )]γ= = − − +∑ ∑  (10) 

where, CJ(k) J[x(k),t ,W ]=   and CW represents the parameters of the critic network. The 
function U  is chosen as a utility function which indicates the performance of the overall 
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system (see examples in (Balakrishnan & Biega, 1995), (Werbos, 1990)). It is usually a 
function of x(k) , u(k) , and k , i.e., U( k) [x(k),u(k),k]=   . When 1 0E ( k) = for all k , (10) 
implies that 

 
1

1 2 l k

l k

J( k ) U( k) J( k )

U(k) [U(k ) J( k )] U(k)

γ

γ γ γ
∞

−

=

= + + =

= + + + + = =∑…
 (11)                       

which is exactly the same as in dynamic programming [cf. (8)]. In Eq. (11), it is assumed that 
J( k ) < ∞  which can usually be guaranteed by choosing the discount factor γ  such that 
0 1γ< < . The training samples for the critic network are obtained over a trajectory starting 
from 00x( ) x=  at 0k = .The trajectory can be either over a fixed number of time steps [e.g., 
300 consecutive points] or from 0k =  until the final state is reached. The training process 
will be repeated until no more weight update is needed. 
The weight update, during the pth training iteration, is given by 

 

1 1
1

1 1

( p ) ( p)
C ,i C ,i ( p)

C ,i

( p)
C ,i ( p)

C ,i

E ( k)W W
W

J(k)W [ J( k) U(k) J( k )]
W

η

η γ

+ ∂
= − =

∂

∂
= − − − +

∂

 (12) 

where, 1 0η >  is the learning rate and C ,iW , the ith component of CW . Note that the 
gradient method is used in (12) and that the pth corresponds to certain time instant k  [hence 
the use 1E ( k)  in (12)]. The weight update can also be performed in batch mode, e.g., after 
the completion of each trajectory. The model network in an adaptive critic design predicts 

1x(k )+  given x(k)  and u(k) ; it is needed for the computation of 

11 1 1 ( p )
CJ( k ) J[x(k ),k ,W ]−+ = + +  

in (12) for the weight update. The model network learns the mapping given in equation (7); 
it is trained previously off-line (Werbos, 1992), (Bellman, 1957), (Balakrishnan & Biega, 
1995), or trained in parallel with the critic and action networks. Here, 1J( k )+ is calculated 
using 1( p )

CW − and its dependence on ( p)
CW   is not considered, according to (Liu & Patiño, 

1999a). After the critic network’s training is finished, the action network’s training starts 
with the objective of minimizing 1J( k )+ . The action network generates an action signal 

Au(k) [x(k),k ,W ]= ; its training follows a similar procedure to the one for the critic 
network’s training. The training process will be repeated until no more weight update is 
needed while keeping the critic network’s weights fixed. During the pth training iteration, 
the weight update is given by 

 

1
1

1
1 1

1

11
1

( p ) ( p)
A,i A,i ( p)

A,i
n m

j( p) k
A,i ( p)

j kj k A,i

J( k )W W
W

x (k )J( k ) u (k)W
x (k ) u (k) W

α

α

+

= =

∂ +
= − =

∂

∂ +∂ + ∂
= − ⋅

∂ + ∂ ∂
∑ ∑

 (13) 
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where, 1 0α > . Again, the model network is required for the computation of i kx ( k ) u (k)∂ ∂  
in the above weight update. It can be seen in (13) that information is propagated backward 
through the critic network to the model network and then to the action network, as if three 
networks formed one large feedforward network. After action network‘s training cycle is 
completed, one may check its performance, then stop or continue the training procedure 
entering the critic network’s training cycle again, if the performance is not acceptable yet. 
It is emphasized that in the methods described above, the knowledge of desired target 
values for the function J and the action signal u(k) is not required in the neural net-work 
training. In conventional applications of neural networks for function approximation, the 
knowledge of the desired target values of the function to be approximated is required. It 
should also be emphasized that the nature of the present methodology is to iteratively build 
a link between present actions and future consequences via an estimate of the utility 
function J. 

3. Main results 

A simulation study has been carried out using the mobile vehicle model presented in 
Section I. The set of parameters for this vehicle model used are the following: 0 45K .= ,  

102 6a .= , 9 21b .= , 0 2vl . m / s= . The three networks (critic, action, and model) are all 
implemented using multilayer feedforward neural networks. Each neural network has six 
inputs, R R(x ,y ,x,y , ,w)θ , where Rx and Ry  denote the desired target gate. The critic 
network output J , the action network output Rw , and the model network is trained 
according to equation (1) and (5). The training samples for the critic network are obtained 
over trajectories starting from 0 0 5x( ) .=  at 0k = , initial position of the vehicle, and a 
reference point located at position 8 3 5( m, . m) . 
The discount factor is chosen as 0 8.γ = , and the utility function is chosen as 

( )2 2 21
2 RU(k) q x (k) y ( k) rw (k)⎡ ⎤= + +⎣ ⎦

� �  

 

where, Rx x x= −� and Ry y y= −�  are position errors with respect to the target point (x,y) , 
and 0q > and 0r > are positive weight constants. As described previously, the training 
takes place in two stage: the training of model network, and then the training of critic 
network and action network. The objective for the training of the critic network is to match 
J( k)  with 1U(k) J( k )γ+ + . The objective for the training of the action network la minimize 

1J( k )+ . The procedures for the training of critic and action networks are similar, and they 
are repeated iteratively. Figure 3 shows the result for the mobile vehicle when reaching the 
reference point, after 10 trials (learning cycles), and Figure 4 passing through one gate from 
two different initial conditions. Figure 5 shows the result for the mobile vehicle through two 
gates. 
A second simulation study was performed using the kinematic model of both the robot and 
the reference trajectory virtual robot. In his case the mathematical model of the systems are 
defined as in Equations (1), (2) and (3) under the non-holonomic restriction  
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 1 y(t )(t ) tan
x(t)

θ −=
�
�

. (14) 

In this case both the linear and angular velocities are variable, and the mobile robot follows 
a reference trajectory given by the equations 

 
r r r

r r r

r r

x v cos
y v sin

θ
θ

θ ω

=
=

=

�
�
�

. (15) 

Once the reference trajectory is stated, the tracking error can be defined as (Kanayama et al. 
1990) 
 

 
Fig. 3. Result for passing through the gate. 
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Fig. 4. Result for passing through one gate from two different initial conditions. 
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Fig. 5. Result for passing through two gates. 
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−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, (16) 

and combining equations (1), (14) and (15), the tracking error model is 

 
e e r r e

e e r e

e r

x y v v cos
y x v sin

ω θ
ω θ

θ ω ω

= − +
= − +

= −

�
�
�

. (17) 

Figure 6 shows all the variables presented in the previous equations. 
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Fig. 6.  Representation of the robot and virtual robot state variables. 
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For the sake of simplicity, a new set of coordinates is chosen, defined as 
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Finally, equation (16) can be written as  
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With this change of coordinates the tracking problem is turned into a regulation one. 
In this experiment the control action is given by 
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Figure 7 shows the overall block diagram of the control system. 
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Fig. 7. Block diagram of the control system. 

The virtual robot describes a circular trajectory given by the equations: 
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Where 0 0c c(x ,y ) ( , )= is the center of the trajectory, 0 5R .= is the radius, 0 2c .=  and t is the 
time. 
The utility function given for this experiment is  

( )1
2

T TU(k) x (k)Qx( k) u (k)Ru(k)⎡ ⎤= +⎣ ⎦
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The experience begins with a K matrix stable but not adjusted, given the results shown in 
Figures 8 and 9. 
After 11 iterations of the training algorithm, the control system guides the robot to track the 
reference trajectory, as can be seen in Figures 10 and 11. 
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Fig. 8 Reference trajectory and initial performance of the robot.  
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Fig. 9. Linear and angular velocity for the first trial. 
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Fig. 10. Performance of the control system after 11 training iterations. 



Adaptive Critic Designs-Based Autonomous Unmanned Vehicles Navigation:  
Application to Robotic Farm Vehicles   

 

383 

 

0 100 200 300 400 500 600
0.1

0.15

0.2

0.25
Li

ne
ar

 V
el

oc
ity

 ν

 

 

0 100 200 300 400 500 600
-0.4

-0.2

0

0.2

0.4

samples

A
ng

ul
ar

 V
el

oc
ity

 ω

 

 

Reference
Robot

Reference
Robot

 
 

Fig. 11. Linear and angular velocity after 11 training iterations. 

4. Conclusions 
A solution to the problem of generating autonomously optimal control action sequence for a 
mobile robot control based on Adaptive Critic Designs approach has been presented. The 
proposed controller based on adaptive critic designs learns to guide the robot to a final point 
autonomously. It has been shown that using this technique we can obtain near optimal 
control actions which requires no external training data and gives an optimal control law for 
the entire range of operation. This work is extensible to UAV, assuming that is flying at a 
constant altitude, so the mission will be restricted to a planar motion around of a target 
point, and the kinematic equation of motion is similar to a UGV, see (Patiño et al., 20008). 
Future directions of research will be oriented to reach a final point with orientation with 
application to UAV. In addition, the problem of obstacle avoidance will be addressed. It will 
be also researched with other structures as DHP and GDHP, to use different local cost 
functions, and to consolidate formally a systematic design principle. From a theoretical 
point of view the efforts will be placed on the robustness issues of optimal control systems 
using adaptive critic designs. 
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1. Introduction     
Many autonomous tasks can be considered as having to satisfy multiple goals 
simultaneously. In particular, Autonomous Vehicle (AV) navigation can be considered as a 
task having to satisfy at least two goals in an environment. The first goal is to plan a path for 
an agent to move from an origin to a destination that takes the shortest number of 
navigation steps. If the environment is static and the destination is stationary, then this 
shortest path is constant and can be planned in advance if the environment is known a 
priori, or estimated as the agent explores the environment if it is initially unknown. If the 
environment or the destination is dynamically changing, then the shortest path is no longer 
constant. This problem may still be considered as a path planning issue if the environment 
at each sampled time is known. However, the problem is more appropriately dealt with by 
incorporating a second goal that aims to avoid collisions between the agent and its 
neighboring obstacles while executing an overall shortest path strategy towards the 
destination. The collision avoidance (CA) problem has been well studied in the context of 
static known or unknown environments (Latombe, 1991; Ge & Cui, 2000; Oriolo et al., 1998; 
Ye et al., 2003). In the case of dynamic environments (DE) (Stentz, 1994; Stentz, 1995; Yang & 
Meng, 2003; Minguez & Minguez, 2004; Minguez, 2005), the focus at present is on dynamic 
environment (DE) that is slowly changing with fairly low obstacle density. 
In theory, if the agent samples the environment fast enough, any environment would appear 
as a static environment and the navigation problem can be solved using existing solutions 
for static environments. In practice, this condition is difficult to achieve particularly when 
obstacles are moving at speeds higher than the agent or sampling rate is low. To deal with 
this situation, an obvious approach is to explicitly consider obstacle motions. Fiorini & 
Shiller (Fiorini & Shiller, 1998) proposed the concept of Velocity Obstacles that enables 
obstacle motions between two time steps to be considered in their formulation. Like other 
similar algorithms (Mucientes e al., 2001; Yamamoto et al., 2001; Feng et al., 2004; Qu et al., 
2004), they assumed that objects move in a constant velocity. Shiller et al. (Shiller et al., 2001; 
Large et al., 2002) further proposed the non-linear velocity obstacle concept which assumes 
that obstacles can have variable speed. Moreover, they described the obstacles’ trajectories 
using circular approximation. Although it may not always capture the correct movement of 
obstacles, it is an attempt to predict obstacle motions between two time steps. Similarly, 
Zhu’s hidden Markov model (Zhu, 1991) and Miura’s probabilistic model (Miura et al., 
1999) also attempted the same. The idea of considering obstacles motion within two time 
steps explicitly proves to be vital in enhancing the agent’s CA ability in reality. Motivated by 



 Advances in Reinforcement Learning 

 

386 

this idea, we propose in this chapter a new approach, which incorporates two major features 
that are not found in solutions for static environments: (1) actions performed by obstacles 
are taken into account when the agent determines its own action; and (2) reinforcement 
learning is adopted by the agent to handle destination seeking (DS) and obstacle actions. 
Reinforcement Learning (RL) (Sutton & Barto, 1998) aims to find an appropriate mapping from 
situations to actions in which a certain reward is maximized. It can be defined as a class of 
problem solving approaches in which the learner (agent) learns through a series of trial-and-
error searches and delayed rewards (Sutton & Barto, 1998; Kaelbling, 1993; Kaelbling et al., 
1996; Sutton, 1992). The purpose is to maximize not just the immediate reward, but also the 
cumulative reward in the long run, such that the agent can learn to approximate an optimal 
behavioral strategy by continuously interacting with the environment. This allows the agent to 
work in a previously unknown environment by learning about it gradually. In fact, RL has 
been applied in various CA related problems (Er & Deng, 2005; Huang et al., 2005; Yoon & 
Sim, 2005) in static environments. For RL to work in a DE containing multiple agents, the 
consideration of actions of other agents/obstacles in the environment becomes necessary 
(Littman, 2001). For example, Team Q-learning (QL) (Littman, 2001; Boutilier, 1996) considered 
the actions of all the agents in a team and focused on the fully cooperative game in which all 
agents try to maximize a single reward function together. For agents that do not share the 
same reward function, Claus and Boutilier (Claus & Boutilier, 1998) proposed the used of JAL. 
Their results showed that by taking into account the actions of another agent, JAL performs 
somewhat better than the traditional QL. However, JAL depends crucially on the strategy 
adopted by the other agents and it assumes that other agents maintain the same strategy 
throughout the game. While this assumption may not be valid, Hu and Wellman proposed 
Nash Q-learning (Hu & Wellman, 2004) which focuses on a general sum game that the agents 
are not necessarily working cooperatively. Nash equilibrium is used for the agent to adopt a 
strategy which is the best response to the other’s strategy. This approach requires the agent to 
learn others Q-value by assuming that the agent can observe other’s rewards.  
In this chapter, we propose an improved QL method called Double Action Q-Learning 
(DAQL) (Ngai & Yung, 2005a; Ngai & Yung, 2005b) that similarly considers the agent’s own 
action and other agents’ actions simultaneously. Instead of assuming that the rewards of other 
agents can be observed, we use a probabilistic approach to predict their actions, so that they 
may work cooperatively, competitively or independently. Based on this, we further develop it 
into a solution for the two goal navigation problem in a dynamically changing environment, 
and generalize it for solving multiple goal problems. The solution uses DAQL when it is 
required to consider the responses of other moving agents/obstacles. If agent action would not 
cause the destination to move, then QL (Watkins & Dayan, 1992) would suffice for DS. Given 
two actions from two goals, a proportional goal fusion function is employed to maintain a 
balance in the final action decision. Extensive simulations of the proposed method in 
environments with single constant speed obstacle to multiple obstacles at variable speed and 
directions indicate that the proposed method is able to (1) deal with single obstacle at any 
speed and directions; (2) deal with two obstacles approaching from different directions; (3) 
cope with large sensor noise; (4) navigate in high obstacle density and high relative velocity 
environments. Detailed comparison with the Artificial Potential Field method (Ratering & 
Gini, 1995) reveals that the proposed method improves path time and the number of collision-
free episodes by 20.6% and 23.6% on average, and 27.8% and 115.6% at best, respectively. 
The rest of this chapter is organized as follows: Section 2 introduces the concept of the 
proposed DAQL-enabled reinforcement learning framework. Section 3 describes the 
implementation method of the proposed framework in solving the autonomous vehicle 
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navigation problem. Section 4 presents the simulation procedures and results with 
comparisons with related method. Finally, conclusions are given in Section 5. 

2. DAQL-enabled multiple goal reinforcement learning 
2.1 General overview 
Autonomous navigation is inherently a multiple goal problem involving destination 
seeking, collision avoidance, lane/wall following and others. Fig. 1 depicts the concept of 
multiple goal Reinforcement Learning with totally G goals. A multiple-goal scenario can be 
generalized such that both conventional QL and DAQL can be used for learning depending 
on the nature of the environment. The individual Q-values are eventually fused to produce 
a final action. For instance, limit the vehicle navigation problem to two goals: DS and CA. If 
obstacles and destination are non-stationary, then both goals can be dealt with by DAQL, 
whereas if they are all stationary, then QL suffice. Here, this general concept is illustrated by 
assuming that the destination is stationary and the obstacles are mobile. As such, QL is used 
for DS and DAQL is used for CA. 
 

 
Fig. 1. Concept of multiple goal reinforcement learning. 

2.2 Reinforcement learning framework 
An effective tool for mapping states (that describe the environment) to actions (that are 
taken by an agent) and carrying out appropriate optimization (based on a value function) is 
the Markov Decision Process (MDP) model. It is a model for sequential decision making 
under uncertainty. In an MDP, the transition probability and the reward function are 
determined by the current state and the action selected by the agent only (Puterman, 1994). 
It can be explained by considering a specific time instant of an agent and its environment as 
depicted in Fig. 2. At each time step t, the agent observes the state st∈S, where S is the set of 
possible states, then chooses an action at∈A(st), where A(st) is the set of actions available in st, 
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based on st and an exploration policy (e.g. greedy policy). The action causes the 
environment to change to a new state (st+1) according to a transition probability, 

' 1Pr{ '| , }a
ss t t tP s s s s a a+= = = = . At the end of a sampling time T, the environment returns a 

reward or penalty to the agent according to a reward function, 
' 1 1{ | , , '}a

ss t t t tR E r a a s s s s+ += = = = . The agent then faces a similar situation in the next time 
instant. 
 

 
Fig. 2. State diagram of the MDP model given that st=s, st+1=s’, and at=a. 

In RL, the value function is introduced to estimate the value for the agent to be in a given 
state. It is the expected infinite discounted sum of reward that the agent will gain as follows 
(Sutton & Barto, 1998): 
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where Eπ{} is the expected value when policy π is adopted and Rt is the discounted sum of 
future rewards; γ is the discounting factor and rt+k+1 is the reward (or penalty) received at time 
(t+k+1). Policy π is a mapping from each state-action pair to the probability π(s,a) of taking 
action a when in state s. To solve the RL task, an optimal policy should be determined that 
would result in an at with the highest expected discounted reward from s to the end of the 
episode. The optimal value function corresponding to the optimal policy is then achieved by 
maximizing the value function that represents the expected infinite discounted sum of reward: 
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The corresponding action-value function is given as: 
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and the optimal action-value function is given as: 
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2.3 Q-learning 
Q-Learning (Watkins & Dayan, 1992) is one of the efficient methods for solving the RL 
problem through the action-value function in Eqt. (4). In QL, the agent chooses at according 
to policy π and the Q-values corresponding to state st. After performing action at in state st 
and making the transition to state st+1, it receives an immediate reward (or penalty) rt+1. It 
then updates the Q-values for at in st using the Q-values of the new state, st+1, and the 
reward rt+1 as given by the update rule: 

s s’'
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QL has been proven to converge to optimal action-value with probability one if each action 
is executed in each state an infinite number of times (Kaelbling et al., 1996; Watkins & 
Dayan, 1992), and works reasonably well in single agent environment, where the agent is 
the only object that is able to evoke a state transition. 

2.4 Double action Q-learning 
In general, it is fair to assume that a DE consists of static obstacles (e.g. walls) and dynamic 
agents/obstacles. In this case, the assumption that state transition is solely caused by an 
agent is not exactly appropriate (Littman, 2001; Boutilier, 1995; Claus & Boutilier, 1998). In 
other words, state transition in a DE may be caused by the action taken by the agent, 
a1t∈A1(st), and a collective action taken by the other agents/obstacles, a2t∈A2(st), where A1(st) 
and A2(st) are the set of actions available in st for the agent and the obstacle in the 
environment respectively. Fig. 3 depicts a new MDP that reflects this relationship, whereas 
a2t describes the action performed by an obstacle. The net state transition at each time step is 
the result of all the action pairs taken together. 
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Fig. 3. State diagram of the new MDP model given that st=t, st+1=s’, a1t=a1, and a2t=a2. 

The seven parameters of the new MDP are: T, st, st+1, a1t, a2t, 
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t t t tssP s s s s a a a a+= = = = =  is the transition probability from s to s’, when the 
agent takes action a1 and the environment takes action a2; and 
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In this new model, state changes when either (or both) the agent or the environment has 
taken its action. To reflect the fact that state transition is now determined by a1 and a2, the 
new value function is formulated below: 
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where 1 2, {}Eπ π   represents the expected value when policy π1 is adopted by the agent and 
policy π2 is adopted by the environment. Similarly, there exists an optimal value function 
when an optimal policy pair π1 and π2 is applied. Although there may be more than one pair, 
we called all the optimal pairs π1* and π2*. They have the optimal value function V*(s) 
defined as: 
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The corresponding optimal action-value function is given as: 
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Using the same technique as QL, the function Q*(st,a1t,a2t) can be updated continuously that 
fulfils the purpose of RL. The QL type update rule for the new MDP model is given below: 

 
1 2

1 1

1 2 1 2 * 1 2 1 2
1 1 1

,
( , , ) ( , , ) max ( , , ) ( , , )

t t
t t t t t t t t t t t t

a a
Q s a a Q s a a r Q s a a Q s a aα γ

+ +
+ + +

⎡ ⎤
← + + −⎢ ⎥

⎢ ⎥⎣ ⎦
 (9) 

Although a2t is involved in calculating Eqt. (7), (8) & (9), it is inherently uncontrollable by 
the agent and therefore maximizing a2t in (7) and a2t+1 in (8) & (9) is meaningless. Instead, an 
approximation to the optimal action-value function by using the observed a2t+1 is found and 
maximizing Eqt. (8) by a1t+1 subsequently. As such, the new update rule for DAQL is: 
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where st, a1t are known in t, a2t , st+1, and rt+1 are known in t+1, and a2t+1 can only be known in 
t+2. Therefore, the learning is delayed by two time steps when compared with conventional 
QL, but with a2t and a2t+1 appropriately included. 
When comparing Eqt. (5) with (10), the difference between DAQL and QL is that action a2t 
has been explicitly specified in the update rule. The optimal value function as a result of 
maximizing a1t only, while a2t is considered explicitly but unknown is given below: 
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The corresponding optimal action-value function is: 
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It can be seen that Eqt. (4) is a special case of Eqt. (12). The DAQL formulation learns the 
expected Q-values by maximizing the future Q-values with a1t over actual a2t+1 through time 
iterations. Therefore, if the current state is known and a2t can be predicted, a1t can be selected 
by using proper exploration policy (e.g. greedy policy): 

 
1
t

1 1 2

a
arg  max( ( , , ))t t t ta Q s a a=  (13) 

To predict obstacles’ action, an AR model is applied, which allows the calculation of the 
expected Q-value. In case that other obstacles’ actions are not predictable, such as when they 
move randomly, we assumed that a2t has equal probability in taking any of the |A2(s)| 
actions. 

2.5 Goal fusion 
The purpose of goal fusion (GF) is to derive a single final action from the actions of different 
goals. Available methods for the coordination of goals include simple summation or switch 
of action value function (Uchibe et al., 1996), mixtures of local experts by supervised 
learning (Jacobs et al., 1991), and multiple model based reinforcement learning (Doya et al., 
2002). Here, we adopt a modified summation method to coordinate multiple goals. A GF 
function based on this is formulated as follow: 
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 (14) 

Where β1+β2+…+βG=1, G is the number of goals to be achieved and Q1(a1t),…,QG(a1t) are the 
Q-values of the G goals respectively. The importance of the goals with respect to the whole 
task is represented by the value of β. A more important goal is represented by a larger β 
while a less important goal is represented by a smaller β. 

3. Autonomous navigation through moving obstacles 
3.1 Geometrical relations between agent and environment 
The control variables of the agent and the ith obstacle at time t are depicted in Fig.4. It is 
assumed that there are N moving obstacles in the environment and that obstacle distances 
can be sensed by distance sensors on the agent, which have a minimum and maximum 
detectable distance of ds,min (10cm) and ds,max (500cm) respectively. Further assume that only 
M obstacles in the environment can be detected, where M≤N. The location of the ith obstacle 
is denoted by distance di∈Do where Do=[ds,min, ds,max]⊂ℜ and angle θi∈Θ where Θ=[0,2π]⊂ℜ. 
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We assume that the agent is  ddest∈ℜ+ away from the destination and is at an angle  φ∈Θ. The 
four parameters: di, θi, ddest, and φ are quantized into states. The state set for the relative 
location of the destination is ldest∈Ldest where ( ){ }, |  and dest dest dest dest qL d d Dϕ ϕ= ∈ ∈Θ� �� � , 
Ddest={i|i=0,1,…,11} and  Θq={j|j=0,1,…,15}. The state set for obstacle location is si∈Si where  

( ){ }, |  and i i i i q i qS d d Dθ θ= ∈ ∈Θ� �� � , Dq={k|k=0,1,…,9} and  Θq ={j|j=0,1,…,15}. Quantization is 
achieved as follows and depicted in Fig. 5 for φ and θi: 
 
 

Destination 
ddest 

x 

ψ  

av :  Velocity of agent 

θa:  Heading angle of agent 
ddest : Distance between agent and destination 
ψ :  Angle between agent and destination 

id : Distance between agent and the ith obstacle 

iq : Angle of di w. r. t. the horizontal axis.  

iov ,
: Velocity of the ith obstacle 

io,q : Heading angle the ith obstacle 

io,d : Relative heading angle of the ith obstacle w. r. t. di.id  

av  
 

θa 

iq  

io,q  
io,d  iov ,  

y 

ith obstacle 

Agent 

 
Fig. 4. Control variables of agent and the ith obstacle. 

 
Fig. 5. Quantization of φ  and iθ   into φ�  and iθ�  respectively. 
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There are altogether 192 states for Ldest and 160 states for Si. The output actions are given by 
a∈A  where A={(|va|,θa)||va|∈Va and θa∈Θ}, Va={m×vmax/5|m=0,1,...,15}, 
Θa={nπ/8|n=0,1,…,15}, and vmax is the maximum agent speed. For  avK =0, the agent is at rest 
despite of θa, resulting in only 81 actions. For DAQL, we assume that obstacles have speed 
vo∈ℜ+  and heading angle θo∈Θ. They are quantized to a2i∈Ao where 

( ){ }, |   and o o o o q o qA v v Vθ θ= ∈ ∈Θ� �� � ,  Vq={l|l=0,1,...,10}, and  Θq ={j|j=0,1,…,15}. Quantization 
is achieved as follows: 
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where there are altogether 161 actions for each obstacle as observed by the agent. The 
concept of factored MDP (Boutilier et al., 2000; Guestrin et al. 2001) can be applied if 
necessary to reduce the number of states required. 

3.2 Destination seeking 
For convenience, destination is assumed stationary here, otherwise actions performed by the 
moving destination may be considered as in the case of obstacles, which the same DAQL 
formulation applies. 
 

 
Fig. 6. Change in ddest from t-1 to t. 
The purpose of using reinforcement learning in destination seeking is for the agent to learn the 
limitation of the underlying vehicle mechanics such as limited acceleration and deceleration. 
The crux of the QL formulation for DS is that the agent is punished if its trajectory towards the 
destination contains more steps than necessary. With reference to Fig. 6, let us define 
Δddest=ddest,t-1-ddest,t, where ddest,t-1 is the distance between the agent and destination at t-1, ddest,t is 
the distance at t; and the agent travels at va from t-1 to t. If the agent performs a shortest path 
maneuver, then |va|T=Δddest, otherwise |va|T>Δddest and the worst case is when the agent has 
moved away from the destination, i.e., Δddest=-|va|T. Let us define dextra as: 

 extra a destd v T d= − Δ  (21) 

ddest,t-1

ddest,t av Destination 
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where 0≤dextra≤2|va|T. The normalized reward function of the agent is thus defined as: 

 , ,max( ) /( )DS t dest extra ar d d v T= Δ −  (22) 

where -3≤rDS,t≤1. In Eqt. (22), dextra is a penalty to the agent in order to ensure that it follows 
the shortest path to travel to the destination. The reward function is further shifted to 
1≤rDS,t≤0 by rDS,t←(rDS,t -1)/4, so that the Q-values calculated are in line with those from CA. 
By using the QL update rule, the agent can learn to use the most appropriate action in the 
current state to reach the destination using the most direct path, as depicted in Fig. 7. 
 

 
Fig. 7. QL for destination seeking. 

3.3 Collision avoidance 
Given multiple mobile obstacles in the environment, DAQL is most applicable here. The 
reward function adopted by DAQL represents punishment (-1) to the agent when collision 
occurs: 

 , ,
0 if no collision occured
1 if collision occuredCA i tr

⎧
= ⎨−⎩

 (23) 

When rCA,i,t is available, the agent uses the DAQL update rule to learn CA, as depicted in Fig. 8. 
Given obstacles’ actions in two time steps (t-2 & t-1), the agent updates its Q-values 
(qi(si,t,a1t,a2i,t)) at t. If there are M obstacles that are detectable by the agent, the DAQL update 
rule is applied M times and the results are combined based the parallel learning concept 
introduced by Laurent & Piat (Laurent & Piat, 2001; Laurent & Piat, 2002). Their proposal of 
taking the sum of all the Q-values from all the obstacles is used, as oppose to taking the 
maximum Q-value over all the obstacles, as given in the following: 

 1 1 2
, ,( ) ( , , )CA t i i t t i t

i
Q a q s a a=∑  (24) 

where QCA(a1t) is the overall Q-value set for the entire obstacle population when the agent 
takes a1t; qi(si,t,a1t,a2i,t) is the Q-value set due to the ith obstacle; si,t is the state of the ith obstacle 
observed by the agent at time t; and a2i,t is the action performed by the ith obstacle at t. Since 
all M obstacles share a single set of Q-values, the Q-values are updated M times in one time 
step. As a2t is not known at t, it has to be predicted, which can be treated independently 
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from RL, i.e. the agent predicts from the environment’s historical information, or it can be 
based on concepts (rules learn from examples) and instances (pools of examples). To 
incorporate the predicted a2t, Eqt. (24) is modified as follows: 

 2
,2

,

1 1 2
, ,( ) ( , , )

i t
i t

i t i i t t i ta
a

q a p q s a a=∑  (25) 

 1 1( ) ( )CA t i t
i

Q a q a=∑  (26) 

where 2
,i tap  is the probability that the environment takes action a2i,t. The expected value of 

the overall Q-value is obtained by summing the product of the Q-value of each obstacle 
when they take action a2i,t with their probability of occurrence. The combined Q-value for 
the entire DE, QCA(a1t), is the summation of Q-values of each obstacle. 
 

 
Fig. 8. DAQL for single obstacle. 

3.4 Prediction 
To predict a2i,t , a linear prediction technique based on the autoregressive (AR) model is 
adopted. We assume that the accelerations of obstacles are slowly changing in the time interval 
T between two time steps. A 1st order AR model (Kehtarnavaz & Li, 1988; Ye, 1999) is used to 
model the acceleration ai(t): 

 ,( ) ( 1) ( )i i t ia t B a t e t= − +  (27) 

where e(t) is the prediction error and Bi,t is a time-dependent coefficient and is estimated 
adaptively according to the new distance measurements. The acceleration is thus 
approximated by a combination of velocity and position representations: 
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2
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1       {[ ( ) ( 1)] [ ( 1) ( 2)]}

1        [ ( ) 2 ( 1) ( 2)]

i i i
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i i i
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r t r t r t r t
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r t r t r t
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= − − − − − −
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where vi(t) and ri(t) are the velocity and position of the ith obstacle at time step t, 
respectively. Substituting Eqt. (28) into (27) gives a 3rd order AR model: 
 

 , , ,( ) (2 ) ( 1) (2 1) ( 2) ( 3) ( )i i t i i t i i t ir t B r t B r t B r t e t− + − + + − − − =  (29) 
 

Therefore, the next position of the ith obstacle at time t+1 can be predicted by the following 
equation if the coefficient Bi,t is known: 
 

 2
,

ˆˆ ( 1) ( ) ( ) ( )i i k i t kr t r t v t T B a t T+ = + +  (30) 
 

where ,
ˆ

i tB  is time-dependent and is updated by the adaptive algorithm in (Shensa, 1981). 
The coefficient ,

ˆ
i tB  can thus be determined by the following equations: 

 1
, , ,

ˆ
i t i t i tB R−= Δ  (31) 

 , , 1 ( ) ( 1)T
i t i t k ka t a tλ −Δ = Δ + −  (32) 

 , , 1 ( 1) ( 1)T
i t i t k kR R a t a tλ −= + − −  (33) 

 

where 0<λ≤1 is a weighting factor close to 1. Since ak(t), Δk,t, Rk,t and λ are all known, ,
ˆ

i tB   
can be predicted and thus ˆ ( 1)ir t +  can be predicted, from which the action performed by the 
ith obstacle at t can be predicted and the probability 2

,i tap   can be determined. A probability 
of 1 is given to the predicted action and 0 is given to all other actions. 

3.5 Fusion of DS and CA 
Given two sets of Q values from DS and CA, they are combined by using β - a parameter 
that varies between 0 and 1, to balance the influence of the two goals, as given in Eqt. (34), 
where QCA( a1t)) and QDS(a1t) are normalized. 
 

 

1 1
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1 1
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CA t DS t

final t
CA DS
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Q a Q aQ a
Q a Q a

β β= − +
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 (34) 

 

For β closer to 1, Qfinal(a1t) is biased towards DS, giving the agent better DS performance but 
poorer CA performance. Conversely, for β closer to 0, Qfinal(a1t) is biased towards CA, giving 
the agent poorer DS performance but better CA performance. The final decision of the agent 
is made by using the ε-greedy policy as shown in Eqt. (35). Fig. 9 and Fig. 10 depict the 
functional diagram and pseudo code of the proposed method respectively for multiple 
obstacles. 
 

 1
t

1
1 a

arg  max ( ) with probability 1-

random with probability 
t

final tQ a
a

ε

ε

⎧⎪= ⎨
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 (35) 
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Fig. 9. Functional diagram of the proposed method. 

 

 
Fig. 10. Pseudo code of the proposed method. 

 

Initialize qi(s,a1,a2) arbitrarily  
Repeat (for each episode) 
 Initialize a1, a2, r, ldest, si, and si’ 
 Repeat (for each step of episode): 
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  Choose a1’ from s using policy derived from 1( ')finalQ a  

  Take action a1’ using ε-greedy exploration policy 
  Observe the new state ldest’, si’’, r’ and a2

i’ 
 Determine the action a2

i that have been performed by the ith obstacle 
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  ldest ← ldest’, si ← si’, si’ ← si’’, a1 ← a1’, a2 ← a2’, rCA,i ← rCA,i’ 
 until ldest’ is terminal 
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4. Simulations and results 
4.1 Simulation conditions 
In this simulation, length has unit of cm and time has unit of second. The agent and 
obstacles are assumed to be circular with diameter of 100 cm, and the environment is 
2500×2500 (cm2), as depicted in Fig. 11. The numbers in the figure represent the location of 
the agents and targets in every 10 s. The maximum speed of the agent (va,max) is assumed to 
be 50 cm/s, with a maximum acceleration and deceleration of 20 cm/s-2. The agent is 
required to start from rest, and decelerate to 0 cm/s when it reaches the destination. 
To acquire environmental information, a sensor simulator has been implemented to 
measure distances between agent and obstacles. The sensor simulator can produce either 
accurate or erratic distance measurements of up to 500 cm, at T interval (typically 1s) to 
simulate practical sensor limitations. The other parameters are set as follows: α for both DS 
and CA learning is set to 0.6 for faster update of Q-values; γ is set to 0.9 for CA and 0.1 for 
DS; β of 0.1 is set to have strong bias towards CA, in the expense of longer path; ε is set 0.5 
for DS and 0.1 for CA. 
 

 
Fig. 11. Simulation environment. 

4.2 Factors affecting navigation performance 
The factors that affect an agent’s performance in a DE are: relative velocity, relative heading 
angle; separation; and obstacle density. They define the bounds within which the agent can 
navigate without collision from an origin to a destination. The relative velocity of obstacle as 
observed by the agent can be defined as: , , ,max ,maxr i o i av v v= −K K K , where , ,maxo ivK  and ,maxavK  are 
velocity vectors of the ith obstacle (Oi) and agent (A) respectively. In essence, ,r ivK   represents 
the rate of change in separation between A and Oi. Given  , heading angle of Oi w.r.t. the line 
joining the centres of Oi and A, and δa, heading angle of A as depicted in Fig.12, relative 
heading angle is defined as ψ=π-(δa+δo,i). It should be noted that ψ equals π when A and Oi 
are moving towards each other, -π when A and Oi are moving away from each other, and 0 
when both are moving in the same direction. Let di be the separation between A and Oi. It 
determines the priority A would adopt when considering Oi among other obstacles. If ds,max 
is the maximum sensor measurement range of A, and if ds,max<di then Oi simple does not 
exist from A’s point of view. Obstacle density can be defined as D=Nπro2/(Aenv-πra2), where N 
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is the number of obstacle in the environment and Aenv is the area of the closed environment. 
We also assume that the obstacles are identical and have a radius of ro, and A has a radius of 
ra. Given Aenv=25002, ro=ra=50, D=0.00125N. 
 
 

 
Fig. 12. Heading angles of Oi and A. 

4.3 Training for destination seeking 
First, the agent was trained by randomly generated origin and destination (O-D) pairs in the 
environment without obstacles, where each training episode consisted of the agent 
successfully travelled from O to D. Second, 100 episodes were used to train the agent to obtain 
a set of Q-values and another 100 episodes of different O-D pairs were used to evaluate the 
path length versus the shortest path based on the trained Q-values without learning and 
exploration. Step 2 was repeated 100 times to get an average performance over 10,000 
episodes. Fig.13 depicts the mean % difference between the actual and the shortest paths.  
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Fig. 13. Percentage difference in path length. 
It can be seen that given sufficient training, the agent achieves a path difference of 3-4%. This is 
so because of the discrete actions the agent adopted in the simulation. In Fig.13, the data are 
curve fitted with a 6th order polynomial (solid line), from which a cost function is applied to 
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max,avK  : Velocity of A 
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determine the optimal number of training required. The cost function is defined as 
C=f(x)×ln(E) and plotted in Fig. 14, where f(x) is the polynomial function for the mean % 
difference and E is the number of episodes. From Fig. 14, minimum cost is achieved when the 
number of training episodes is around 1500. The Q-values for DS that correspond to this are 
used in all subsequent simulations. 
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Fig. 14. Cost function. 

4.4 Training for collision avoidance 
For different environmental factors, we trained the agent with Q-values for CA set to zeros 
initially for 10000 episodes in each case. After training, simulation results are obtained by 
allowing the agent to maneuver in an environment with the same set of environmental 
factors without learning and exploration. When obstacles are present, the agent travels 
between a fixed OD pair. The agent learnt from the rewards or punishments when it 
interacted with the obstacle. When the agent reached the destination, an episode was 
terminated and the agent and obstacle were returned to their origins for the next episode. 
Furthermore, to illustrate the behavior of the agent in a more complex environment which 
involves multiple sets of different environmental factors at the same time, environments 
with randomly moving obstacles are constructed. Q-values for CA are set to zeros initially 
and the agent is trained for 10000 episodes in each test case. After training, simulation 
results are obtained by allowing the agent to maneuver in the same environment without 
learning ability and exploration. In each training episode, the agent was required to travel to 
a fixed destination from a fixed origin through the crowd of randomly moving obstacles 
which were randomly placed in the environment, and the termination condition was the 
same as before. 

4.5 Obstacles at constant velocity 
This simulation investigates how the agent reacts to one or more obstacles at constant 
velocity with an initial separation of larger than 500 cm. The AR model in Section 3.4 was 
used for obstacle action prediction. For one obstacle, two vo values and two ψ were 
considered: 50 cm/s and 100 cm/s; and π and ¾π. The simulation was repeated for vo=50 
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cm/s when two obstacles were present at different heading angles. It was also repeated for a 
group of obstacles having the same heading angle. These cases are tabulated in Tables 1 to 3.  
 

Case ψ (rad) vo (cm/s) ,r ivK  (cm/s) 
A π  50 100 
B π  100 150 
C 3 / 4π  50 92.39 
D 3 / 4π  100 139.90 

Table 1. Summary of simulation parameters with ONE obstacle. 
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Fig. 15. Simulation results of Cases A and B. 

1. Cases A and B: The obstacle moved directly towards the agent at different velocities 
respectively, as depicted in Fig. 15. For Case A, the obstacle moved at the same speed as the 
agent. The agent maintained at a maximum speed until the obstacle was within range. It 
responded appropriately as seen from its Velocity and Heading angle profiles. The agent 
responded with a gradual change in heading angle to avoid collision. It remained at the 
changed course for a while before converging to the destination. For Case B, as the obstacle 
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moved faster than the agent, the agent responded earlier with a larger change in velocity. As 
the CA event ended faster, the agent in Case B reached the destination earlier. 
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Fig. 16. Simulation results of cases C and D. 

2. Cases C and D: The obstacle crossed path with the agent at an angle of ¾π, as depicted in 
Fig. 16. For Case C, when obstacle speed is the same as the agent, the agent moved to the 
right slightly to let the obstacle pass. For Case D, the agent responded earlier and also 
decided to let the obstacle passed first. As the obstacle moved faster in this case, the velocity 
and heading angle changes of the agent were larger. 
 

Case ψ (rad) vo (cm/s) ,r ivK  (cm/s) 

Obstacle 1 3 / 4π  50 92.39 
E 

Obstacle 2 3 / 4π  50 92.39 
Obstacle 1 /2π  50 70.71 

F 
Obstacle 2 /2π  50 70.71 

Table 2. Summary of simulation parameters with TWO obstacles. 
3. Cases E and F: To deal with two obstacles simultaneously. The obstacles moved at speed 
vo=50 cm/s in both cases, but at different heading angles. Case E, as depicted in Fig. 17(a-c), 
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consists of two obstacles moved at an intersecting angle of ¾π with respect to the agent. As 
can be seen from its V and H profiles, there are two responses: one at t=23s when Obstacle 1 
approached the agent first, and one at t=29s when Obstacle 2 followed. The speed changes 
in both responses were minor, while the agent stepped backward in the first instance to 
avoid collision. For Case F, two obstacles moved perpendicularly to the agent as depicted in 
Fig. 17(d-f). There were two distinct responses (at t=9s and 22s), both of which required 
slowing down and change in heading angle to let the obstacle pass first. 
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Fig. 17. Simulation results of cases E and F. 
 

Case ψ (rad) vo (cm/s) ,i rvK  (cm/s) 
G π  50 100 
H 3 / 4π  50 92.39 

Table 3. Summary of simulation parameters with a GROUP of obstacles. 
4. Cases G and H: To deal with a larger number of obstacles in the DE. In Case G, seven 
obstacles moved in a cluster towards the agent at vo=50 cm/s. From the path diagram as 
depicted in Fig. 18(b), as the obstacles were well apart, the agent found no difficulty in 
navigating through them, as shown in its V and H profiles. For Case H, the cluster of seven 
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obstacles moved at an angle of ¾π with respect to the agent. Again, the agent navigated 
through the cluster appropriately, without collision. 
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(h) Heading angle profile (Case H) 
Fig. 18. Simulation results of cases G and H. 

4.6 Obstacles at variable velocity 
The objective of this simulation is to study agent behavior in handling a simple randomly 
changing environment. In Cases I and J, a single obstacle moved at varying velocity directly 
towards the agent (ψ=π). The obstacle’s velocity ranges are 0-50 cm/s and 0-100 cm/s 
respectively, in step of 10 cm/s. The agent was evaluated over 1,000 episodes in the same 
environment in each case. A summary of the two cases is given in Table 4. 
 

Case ψ .rad) vo (cm/s) ,r ivK .(cm/s) Number of collision-
free Episodes Mean Path Time (s) 

I  0-50 50-100 976 62.97 
J  0-100 50-150 957 59.32 

Table 4. Simulation parameters with ONE obstacle at random speed. 
The results show that for Case I, the proportion of collision-free episodes is 97.6% and a 
mean path time of 62.97s. A collision-free episode is one that the agent travels to the 
destination without causing any collision. When compared with the shortest path time (50s), 
the agent used an extra of 12.97s more. For Case J, the obstacles moved faster in a wider 
range. As a result, the number of collision-free episodes was reduced to 95.7%, but the mean 
path time was also reduced to 59.32s. This can be explained as because of the faster moving 
obstacles, the agent experienced more collisions, but managed less convoluted paths. 
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4.7 Inaccurate sensor measurement 
In this simulation, we investigate how the proposed method tolerates inaccuracy in sensor 
measurements. As in Cases A & B at three different speeds (vo=10, 50 or 100 cm/s), the output 
of the sensor simulator was deliberately corrupted by a Gaussian noise function that has a 
mean (μ) of μ=di and standard deviation (σ) of n×μ where n=0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 (Ye 
et al., 2003). For each set of n and vo, Q-values for CA are set to zeros initially and the agent 
was trained for 10,000 episodes. After training, and the agent was evaluated in the same 
environment for 1,000 times with different n and vo. Table 5 depicts the simulation summary. 
 

vo = 10 cm/s 
( ,r ivK = 60 cm/s) 

vo = 50 cm/s 
( ,r ivK = 100 cm/s) 

vo = 100 cm/s 
( ,r ivK = 150 cm/s) 

n 
Collision-free 

Episodes 
Mean Path 

Time (s) 
Collision-free 

Episodes 
Mean Path 

Time (s) 
Collision-free 

Episodes 
Mean Path 

Time (s) 
0 1000 57 1000 57.00 1000 53.00 

0.1 1000 56.79 1000 54.43 1000 54.71 
0.2 999 55.40 987 56.05 957 59.89 
0.3 979 62.37 996 58.45 987 61.49 
0.4 997 65.55 979 58.33 725 80.45 
0.5 991 57.52 989 59.04 816 71.31 
0.6 995 61.93 954 65.58 576 92.01 

Table 5. Robustness to sensor noise. 

From Table 5, for n<0.2, none of the obstacle speed would cause collision. For n≥0.2, 
collision began to appear. At low speed, the number of collisions can be kept small with a 
worst case of 2.1%. For ovK =50 cm/s, the number of collision-free episodes was reduced to 
95.4% at n=0.6. For ovK =100 cm/s, it went down to 57.6%, or almost half of the episodes 
have collisions. This is logical as slow obstacles are easier to avoid compared with fast 
obstacles, and inaccurate sensor measurements make it harder to avoid collision. 
For mean path time, it generally increases when n increases, although minima appear at 
n=0.2 for low speed, n=0.1 for medium speed and n=0 for high speed. As in Case A, the 
mean path time is longer when obstacle speed is low because of more convoluted paths. As 
n increases, the agent learnt to respond earlier to such inaccuracy and resulted in shorter 
paths. However, for larger n, the agent travels extra steps in order to cope with the large 
sensor error, which resulted in even longer path. The same applies when obstacle speed is 
relatively higher, except that the minima appear when n is smaller because the agent 
responded earlier in this case. 

4.8 Randomly moving obstacles and performance comparison 
The purpose of this simulation is to evaluate the proposed method in an environment with 
up to 50 moving obstacles, and compare it against another navigation method that is 
designed to work in such a complex environment. Obviously, those that work on static 
environment (Pimenta et al., 2006; Belkhouche et al. 2006; Jing et al. 2006), those that 
consider relatively simple cases with very low obstacle density (Soo et al. 2005; Kunwar & 
Benhabib, 2006), or those that assume perfect communication among agents, e.g. robot 
soccering (Bruce & Veloso, 2006), are unsuitable. A suitable candidate is the artificial 
potential field method proposed by Ratering & Gini (R&G) (Ratering & Gini, 1995), which 
was simulated in a relatively complex environment with high density of multiple moving 
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obstacles. To enable the comparison, obstacles size was reduced to 20 cm in diameter, and 
the obstacles were placed and moved randomly in speed and direction, as in (Ratering & 
Gini, 1995). The origin and destination of the agent were located at the lower left hand 
corner and upper right corner of the environment, respectively. Since the obstacles moved 
randomly, the prediction was not used in the proposed method. Different obstacle density D 
and obstacle velocity vo were studied, and results are tabulated in Table 6. Each result 
shown in the table was derived from 100 episodes after training. The R&G method used 
static potential filed and dynamic potential fields to handle static and moving obstacles 
respectively, and their results are also depicted in Table VI.  
 

Obstacle 
speed vo 
(cm/s) 

No. of 
obstacles

Obstacle 
Density D

,r ivK  

(cm/s)

Average 
path time (s)

St. dev. 
path time

No. of 
collision-

free 
episodes 

Average 
no. of 

collisions 

St. dev. 
No. of 

collisions 

10 10 0.0005 40-60 68.25 
(79.07) 

16.16 
(13.40) 99 (99) 0.01 (0.02) 0.1 (0.20) 

10 20 0.001 40-60 80.1 (93.92) 50.27 
(20.93) 100 (95) 0 (0.06) 0 (0.28) 

10 30 0.0015 40-60 92.71 
(110.19) 

59.19 
(27.35) 97 (98) 0.11 (0.02) 0.83 

(0.14) 

10 40 0.002 40-60 99.24 
(126.23) 

53.56 
(34.25) 95 (92) 0.07 (0.09) 0.33 

(0.32) 

10 50 0.0025 40-60 111.55 
(135.06) 

58.39 
(41.06) 94 (82) 0.15 (0.25) 0.63 

(0.61) 

30 10 0.0005 20-80 68.58 
(80.75) 

7.84 
(11.98) 99 (99) 0.01 (0.01) 0.1 (0.10) 

30 20 0.001 20-80 75.03 
(96.17) 

14.27 
(23.43) 99 (95) 0.01 (0.05) 0.1 (0.22) 

30 30 0.0015 20-80 80.12 
(110.95) 

16.29 
(28.18) 96 (89) 0.07 (0.18) 0.43 

(0.59) 

30 40 0.002 20-80 89.58 
(116.94) 

28.13 
(28.91) 94 (80) 0.08 (0.46) 0.34 

(1.11) 

30 50 0.0025 20-80 91.93 
(125.46) 

21.07 
(32.30) 92 (72) 0.14 (0.59) 0.62 

(1.18) 

50 10 0.0005 0-100 69.62 
(85.10) 

8.60 
(18.56) 91 (92) 0.25 (0.46) 1.53 

(2.41) 

50 20 0.001 0-100 74.39 
(97.56) 

10.68 
(19.37) 88 (75) 0.2 (0.74) 0.64 

(1.56) 

50 30 0.0015 0-100 84.19 
(111.48) 

15.47 
(23.09) 85 (63) 0.17 (1.44) 0.43 

(3.16) 

50 40 0.002 0-100 93.67 
(123.48) 

24.95 
(29.11) 77 (37) 0.43 (2.66) 0.98 

(3.60) 

50 50 0.0025 0-100 101.31 
(127.72) 

29.13 
(29.49) 69 (32) 0.68 (3.22) 1.64 

(3.61) 
 

Table 6. Cases of randomly moving obstacles in a fixed area. (Numbers in brackets show the 
results of R&G Method (Ratering & Gini, 1995)) 
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In general, for the same ,r ivK , the no. of collision-free episodes decreases as D increases for 
the proposed method. Obviously, more obstacles in a fixed area increase the chance of 
collision. This is also true when ,r ivK  increases. In the extreme, only 69% of episodes are 
collision-free when ,r ivK =0-100 cm/s and D=0.0025 (max). When compared with the R&G 
method, when D is very low, differences in no. of collision-free episodes between the two 
methods are insignificant. However, when D is larger (>10 obstacles), the proposed method 
performed consistently better. This is also the case when ,r ivK  increases. On average, the 
improvement on the no. of collision-free episodes is 23.63%, whereas the best is slightly over 
115% for the largest D. 
For average path time, it increases as D increases. This is to be expected as there are more 
obstacles and more CA actions that resulted in longer path time. On the other hand, for small 

,r ivK  and large D, clustering of obstacles becomes a real possibility that can block the agent’s 
path. This is confirmed by the large standard deviation of path time when compared with 
other larger ,r ivK . Although the R&G method employed the adjustable hill extent method to 
deal with this issue, their average path times are in fact longer. When ,r ivK  is large, obstacle 
clustering is reduced, but their speed makes it necessary to make more convoluted path to 
avoid them, therefore the resultant path time is longer, with smaller standard deviation. 
Again, there is a minimum in average path time at medium ,r ivK  depending on D. When 
compared with R&G method, an average improvement of 20.6% is achieved. 

5. Conclusion 
In this chapter we have presented a multiple goal reinforcement learning framework and 
illustrated on a two-goal problem in autonomous vehicle navigation. In general, DAQL can be 
applied in any goals that environmental response is available, whereas QL would suffice if 
environmental response is not available or can be ignored. A proportional goal fusion function 
was used to maintain balance between the two goals in this case. Extensive simulations have 
been carried out to evaluate its performance under different obstacle behaivors and sensing 
accuracy. The results showed that the proposed method is characterized by its ability to (1) 
deal with single obstacles at any speed and from any directions; (2) deal with two obstacles 
approaching from different directions; (3) cope with large sensor noise; (4) navigate in high 
obstacle density and high relative velocity environment. Detailed comparison of the proposed 
method with the R&G method reveals that improvements by the proposed method in path 
time and the number of collision-free episodes are substantial. 
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An Intelligent Marshaling Based on Transfer
Distance of Containers Using a New Reinforcement

Learning for Logistics
Yoichi Hirashima

Osaka Institute of Technology
Japan

1. Introduction

Recent shipping amount in maritime transportation keeps growing, and efficient material
handling operations at marine ports becomes important issue. In many cases, containers
are used for transportation of cargos, and thus the growth of shipping amount leads to the
growth of the number of containers. In a marine port, containers are shifted between seaborn
and landside transportation at container yard terminal. Espesially, shifting containers from
landside into a vessel is highly complex, includingmany constraints and sensitive parameters.
In addition, the complexity grows at an exponential rate according to the linear growth of the
number of containers. Thus, the material hadling operation occupy a large part of the total
run time of shipping at container terminals.
This chapter addresses to improve throughput of the material handling operations for loading
container into a vessel by using reinforcement learning. Commonly, each container in a vessel
has its own position determined by the destination, weight, owner, and so on (Günther & Kim,
2005). Thus, the containers have to be loaded into a vessel in a certain desired order because
they cannot be rearranged in the ship. Therefore, containers must be rearranged before
loading if the initial layout is different from the desired layout. Containers carried into the
terminal are stacked randomly in a certain area called bay and a set of bays are called yard.
The rearrangement process conducted within a bay is called marshaling.
In the problem, the number of stacks in each bay is predetermined and the maximum
number of containers in a stack is limited. Containers are moved by a transfer crane and
the destination stack for the container in a bay is selected from the stacks being in the same
bay. In this case, a long series of container movements is often required to achieve a desired
layout, and results that are derived from similar initial layouts can be quite different. Problems
of this type have been solved by using techniques of optimization, such as genetic algorithm
(GA) and multi agent method (Koza, 1992; Minagawa & Kakazu, 1997). These methods can
successfuly yield some solutions for block stacking problems. However, they adopt the
environmental model different from the marshaling process, and cannot be applied directly
to generate marshaling plan to obtain the desired layout of containers.
Another candidate for solving the problem is the reinforcement learning (Watkins & Dayan,
1992), which is known to be effective for learning under unknown environment that has
the Markov Property. The Q-learning, one of the realization algorithm for the reinforcement
learning, can be applied to generate marshaling plan, with evaluation-values for pairs of the
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layout and movement of container. These values are called Q-value. The optimal series of
container movements can be obtained by selecting the movement that has the best evaluation
for each layout. However, conventional Q-learning has to store evaluation-values for all
the layout-movement pairs. Therefore, the conventional Q-learning has great difficulties
for solving the marshaling problem, due to its huge number of learning iterations required
to obtain admissible plan. Recently, a Q-learning method that can generate marshaling
plan has been proposed (Motoyama et al., 2001). Although these methods were effective for
several cases, the desired layout was not achievable for every trial so that the early-phase
performances of learning process can be spoiled. Modefied methods (Hirashima et al.,
2005; 2006) has been proposed to improve marshaling plan, and the environmental model
considering groups of containers is shown to be effective to reduce the total number of
movements of containers.
This chapter introduces a new environmental model integrated in reinforcement
learning method for marshaling plan in order to minimize the transfer distance of
container-movements. A container transfer process consists of 4 elements: 1. holding a
container by a crane, 2. removing the container, 3. placing the container, and 4. releasing
it from the crane. In the proposed method, elements 1., 3. and 4. are evaluated by the number
of container-movements, and the transfer distance of container-movements in the element 2.
is considered by using a weighted cost of a container-movement. Then, evaluation values
reflect the total transer-distance of containermovements, and the distance is minimized by
using the reinforcement learningmethod. Consequently, selecting the best evaluation values
leads the best series of container movements required to obtain a desired layout. Moreover,
each rearranged container is placed into the desiredposition so that every trial can achieve one
of desired layouts. In addition, in the proposed method, each container has several desired
positions in the final layout, and the feature is considered in the learning algorithm. Thus, the
early-phase performances of the learning process can be improved.
The remainder of the chapter is organized as follows. The marshaling process in container
yard terminals is elaborated in section 2, followed by problem description. Also, in this
section, desired positions and transfer distance of containers are newly explained. In section
3, a new Q-Learning algorithmbased on the transfer distance of containers is detailed.
Computer simulations are conducted for several cases and proposed method is compared
to conventional ones in section 4. Finally, concluding remarks are given in section 5.

2. Problem description

Figure 1 shows an example of container yard terminal. The terminal consists of containers,
yard areas, yard transfer cranes, and port crane. Containers are carried by trucks and each
container is stacked in a corresponding area called bay and a set of bays constitutes a yard area.
k containers, ci (i = 1, · · · ,k), are assumed to be exist in a bay, and each bay has ny stacks that
my containers can be laden. A position of each container is discriminated by using discrete
position numbers, 1, · · · ,ny ·my. Then, the position of the container ci is described by xi (1≤
i ≤ k,1 ≤ xi ≤ my · ny), and the state of a bay is determined by the vector, x = [x1, · · · ,xk].
Figure 2 shows an example of initial layout of container and the desired layout for k= 8,my =
ny = 4. In the figure, the state vector for the initial layout is [13,10,9,11,14,15,16,12], and
[13,14,15,16,9,10,11,12] for the desired layout.
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Container terminal

Port crane

Yard transfer crane

Vessel

ContainerYard area

Fig. 1. Container terminal

2.1 Grouping
The desired layout in a bay is generated based on the loading order of containers that are
moved from the bay to a vessel. The container to be loaded into the vessel can be located at
any stack if it is on top of the stack. This feature yields several desired layouts for the bay.

2.1.1 Horizontal group
In the addressed problem, when containers on different stacks are placed at the same height
in the desired layout of a bay, it is assumed that the positions of such containers can be
exchanged. Figure 3 shows an example of desired layouts, where my = ny = 3,k = 9. In
the figure, containers are loaded into the vessel in the descendent order. Then, containers
c7,c8,c9 are in the same group (group1), and their positions are exchanged because the loading
order can be kept unchanged after the exchange of positions. In the same way, c4,c5,c6 are in
the group2, and c1,c2,c3 are in the group3 where positions of containers can be exchanged.
Consequently several candidates for desired layout of the bay are generated from the original

Initial layout Desired layout Position indexes

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16c1c1 c2

c2

c3

c3

c4

c4 c5

c5

c6

c6

c7

c7

c8c8

Fig. 2. Example of container layouts in a Bay

413
An Intelligent Marshaling Based on
Transfer Distance of Containers Using a New Reinforcement Learning for Logistics



4 Advances in Reinforcement Learning

A desired layout (original)

Bay
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c1c1

c2

c2c2c2

c2c2

c3

c3c3c3

c3c3

Fig. 3. Horizontal group

desired-layout.

2.1.2 Heap group
In addition to the horizontal grouping, a “heap group” for ny containers at the top of stacks
in the original desired-layout (group1) is generated as follows:

1. ny containers in group1 can be placed at any stacks if their height is same as the original
one.

2. Each of them can be stacked on other ny − 1 containers when both of followings are
satisfied:

(a) They are placed at the top of each stack in the original disired-layout,

(b) The container to be stacked is loaded into the ship before other containers being
under the container.

Other groups are the same as ones in the horizontal group, so that the heap group contains all
the desired layout in the horizontal group.
Figure 4 depicts an example of heap group for k = 9,ny = 3. In the figure, containers are
loaded into a vessel by the order c9,c8,c7, · · · . Then, c9 can be placed on c7 and c8, c8 can be
placed on c7, so that the number of desired layouts is incresed.

2.2 Marshaling process
The marshaling process consists of 2 stages: 1© selection of a container to be rearranged, and
2© removal of the containers on the selected container in 1©. After these stages, rearrangement
of the selected container is conducted. In the stage 2©, the removed container is placed on the
destination stack selected from stacks being in the same bay. When a container is rearranged,
ny positions that are at the same height in a bay can be candidates for the destination. In
addition, ny containers can be placed for each candidate of the destination. Then, defining
t as the time step, ca(t) denotes the container to be rearranged at t in the stage 1©. ca(t) is
selected from candidates cyi1 (i1 = 1, · · · ,n2y) that are at the same height in a desired layout.
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Fig. 4. Heap group

A candidate of destination exists at a bottom position that has undesired container in each
corresponding stack. The maximum number of such stacks is ny, and they can have ny
containers as candidates, since the proposedmethod considers groups in the desired position.
The number of candidates of ca(t) is thus ny× ny. In the stage 2©, the container to be removed
at t is cb(t) and is selected from two containers cyi2 (i2 = 1,2) on the top of stacks. cy1 is on the
ca(t) and cy2 is on the destination of ca(t). Then, in the stage 2©, cb(t) is removed to one of
the other stacks in the same bay, and the destination stack u(t) at time t is selected from the
candidates uj (j = 1, · · · ,ny − 2). ca(t) is rearranged to its desired position after all the cyi2 s
are removed. Thus, a state transition of the bay is described as follows:

xt+1 =

{
f (xt, ca(t)) (stage 1©)
f (xt, cb(t),u(t)) (stage 2©) (1)

where f (·) denotes that removal is processed and xt+1 is the state determined only by
ca(t), cb(t) and u(t) at the previous state xt. Therefore, the marshaling plan can be treated
as the Markov Decision Process.
The objective of the problem is to find the best series of movements which transfers every
container from an initial position to the goal position. The goal state is generated from the
shipping order that is predetermined according to destinations of containers. A series of
movements that leads a initial state into the goal state is defined as an episode. The best
episode is the series of movements having the minimum transfer distance of contaners to
achieve the goal state.

3. Reinforcement learning for marshaling plan

In the selection of ca, the container to be rearranged, an evaluation value is used for each
candidate cyi1 (i1 = 1, · · · ,r), where r is the number of candidates. In the same way, evaluation
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values are used in the selection of the container to be removed cb and its destination uj (j =
1, · · · ,ny− 2). Candidates of cb is cyi2 (i2 = 1, · · · ,ny). The evaluation value for the selection of
cyi1 , cyi2 and uj at the state x are called Q-values, and a set of Q-values is called Q-table. At the
lth episode, the Q-value for selecting cyi1 is defined as Q1(l,x, cyi1 ), the Q-value for selecting
cyi2 is defined as Q2(l,x, cyi1 , cyi2 ) and the Q-value for selecting uj is defined as Q3(l,x, cyi1 ,
cyi2 ,uj). The initial value for Q1,Q2,Q3 is assumed to be 0. Then, Q3 is updated by the
following equation:

Q3(l,xt, ca(t), cb(t),u(t)) =
(1− α)Q3(l − 1,xt, ca(t), cb(t),u(t)) + α[R+Vt+1]

Vt =

⎧⎨
⎩

γmax
yi1

Q1(l,xt, cyi1 ) (stage 1©)

γmax
yi2

Q2(l,xt, ca(t), cyi2 ) (stage 2©)

(2)

where γ, (0< γ < 1) denotes the discount factor and α is the learning rate. Reward R is given
only when the desired layout has been achieved.
In the selection of cb(t), the evaluation value Q3(l,x, ca(t), cb(t),uj) can be referred for all the
uj (j = 1 · · ·ny − 2), and the state x does not change. Thus, the maximum value of Q3(l,x,
ca(t), cb(t),uj) is copied to Q2(l,x, ca(t), cb(t)), that is,

Q2(l,x, ca(t), cb(t)) =max
j

Q3(l,x, ca(t), cb(t),uj). (3)

In the selection of ca(t), the evaluation value Q1(l,x, ca(t)) is updated by the following
equations:

Q1(l,xt, ca(t)) = (1− α)Q1(l − 1,xt, ca(t)) + α[R+Vt+1]. (4)

In order to reflect the transfer distance of the removed container into the corresponding
evaluation value, the discount factor γ is used. In the proposed method, γ has smaller value
for larger transfer distance, so that smaller transfer distance has better evaluation. In the
following, the calculation method of γ is explained.
Define D as the transfer distance of a removed container. For simplicity, D is set as 1 for
a removal between neighboring positions in the horizontal or the vertical direction. Then,
by assuming each container is moved either horizontal or vertical direction, the maximum

value of D satisfies maxD = 2my + ny − 1 def
= Dmax. Then, 1 ≤ D ≤ Dmax. Figure 5 shows an

examples of Dmax for my = ny = 6. Using D and Dmax, γ is calculated as follows:

γ =
Dmax − (βD− 1)

Dmax
. (5)

The size of γ is determined by putting 0 < β < 1, where larger transfer distance yealds larger
discount so that the smaller transfer distance obtains the better evaluation value.
ca(t), cb(t), u(j) is determined by the soft-max action selection method(Sutton & Barto, 1999).
Probability P for selection of each candidate is calculated by
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Dmax = 2my + ny − 1

Dmin

1
1

my = 6my = 6

ny − 1= 5

Fig. 5. Transfer distance of a container

Q̃(x̃,uL) =
Q(l, x̃,ul)−min

u
Q(l, x̃,uL)

max
u

Q(l, x̃,u)−min
u

Q(l, x̃,u)
(6)

P(x̃,uL) =
exp(Q̃(x̃,uL)/T)

∑
u
exp(Q̃(x̃,uL)/T)

, (7)

where x̃ = xt,uL = cyi1 for selecting ca(t), x̃ = (xt, ca(t)),uL = cyi2 for selecting cb(t) and x̃ =

(xt, ca(t), cb(t)),uL = uj for selecting u(t). Also, T is the thermo constant.
By using the update rule, restricted movements and goal states explained above, the learning
process is described as follows:

[1]. Rearrange ca(t) if possible, and count the number of containers being in the goal
positions and store it as n

[2]. If n = k, go to [10]
[3]. Select ca(t) to be rearranged
[4]. Store (x, ca(t))
[5]. Select cb(t) to be removed
[6]. Store (x, ca(t), cb(t))
[7]. Select destination position uj for cb(t)
[8]. Store (x, ca(t), cb(t),uj)

[9]. Remove cb(t) and go to [5] if another cb(t) exists, otherwise go to [1]
[10]. Update Q-values referred in [3],[5],[7].
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4. Simulations

Computer simulations are conducted for k = 18,my = ny = 6, and learning performances of
following 3 methods are compared:

(A) proposed method using horizontal grouping and heap grouping,

(B) conventional method only using horizontal grouping (Hirashima et al., 2006),

(C) conventional method without grouping (Hirashima et al., 2005).

Figure 6 shows the initial state of the yard and an example of desired layout. The desired
layout is fixed for method (C), and is exteded for methods (A),(B) by grouping. Parameters
used in the proposed method are set as α = 0.8,β = 0.8,T = 0.1,R = 1.0. A trial starts from a
initial state and ends when all the containers are rearranged to the buffer. Containers, from c1
to c18, are loaded into a vessel by ascending order.

c1c1 c2

c2

Initial layout Original desired layout

c3

c3

c4

c4

c5

c5

c6

c6 c7c7 c8

c8

c9c9 c10

c10

c11

c11

c12

c12 c13

c13

c14

c14

c15c15 c16

c16

c17

c17

c18c18

Fig. 6. Initial layout and original desired layout

Figure 7 shows the results, where the horizontal axis expresses the number of trials. The
vertical axis expresses the minimum transfer-distance of removed containers to achive a
desired layout found in the past trials. Each result is averaged over 20 independent
simulations. Among these simulations, dispersions of averaged data are indicated by error
bars on some tipical data points at 1000th, 5000th, 10000th, 50000th, 150000th, 20000th and
250000th trials. Method (A) could derive solutions with smaller transfer-distance of container
as compared to methods (B),(C). Moreover, in early stages, learning performances of method
(A) is much better than that of methods (B),(C), because method (A) has augmented desired
layouts including the original ones in methods (B),(C), so that the method (A) has obtained
the layout that can reduce the total transfer-distance of container. Figure 8 dipicts final layouts
generated by methods (A),(B). The final layout of method (C) is identical to the one dipicted in
Figure 6. In the figure, positions of conainers in the same height are exchanged. In the layout
obtained by method (A), c1, c2, c3 are located on other containers in the same group, whereas
this layout does not regarded as desired layout in methods (B),(C), so that the total distance
of movements of containers is reduced.
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Fig. 8. Final layouts

5. Conclusions

A new marshling method for containers at marine terminals has been proposed. In the
proposed method, Q-Learning is used to derive marshaling plan considering the transfer
distance of container that is required to achieve desired layout of the bay. As a consequent,
the layout of container, rearrange order of containers, destinations of removed containers are
simultaneously optimized, so that the total transfer distance of containers is minimized. The
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proposed method applied for realistic scale problems, and showed much better performance
for improving solutions as compared to conventional methods.
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1. Introduction 
In the last decade, the Computational Intelligence tools (CI), including Artificial Neural 
Networks (ANN) and Fuzzy Systems (FS), applying soft computing, became universal 
means for many applications. Because of their approximation and learning capabilities, the 
ANNs have been widely employed to dynamic process modeling, identification, prediction 
and control, (Boskovic & Narendra, 1995; Haykin, 1999; Bulsari & Palosaari, 1993; Deng & 
Li, 2003; Deng et al., 2005; Gonzalez-Garcia et al., 1998; Padhi & Balakrishnan, 2003; Padhi et 
al., 2001; Ray,1989). Many applications have been done for identification and control of 
biotechnological plants too, (Padhi et al., 2001). Among several possible neural network 
architectures the ones most widely used are the Feedforward NN (FFNN) and the Recurrent 
NN (RNN), (Haykin, 1999). The main NN property namely the ability to approximate 
complex non-linear relationships without prior knowledge of the model structure makes 
them a very attractive alternative to the classical modeling and control techniques. Also, a 
great boost has been made in the applied NN-based adaptive control methodology 
incorporating integral plus state control action in the control law, (Baruch et al., 2004; 
Baruch & Garrido, 2005; Baruch et al., 2007). The FFNN and the RNN have been applied for 
Distributed Parameter Systems (DPS) identification and control too. In (Pietil & Koivo, 
1996), a RNN is used for system identification and process prediction of a DPS dynamics - 
an adsorption column for wastewater treatment of water contaminated with toxic chemicals. 
In (Deng & Li, 2003; Deng et al., 2005) a spectral-approximation-based intelligent modeling 
approach, including NNs for state estimation and system identification, is proposed for the 
distributed thermal processing of the snap curing oven DPS that is used in semiconductor 
packaging industry. In (Bulsari & Palosaari, 1993), it is presented a new methodology for the 
identification of DPS, based on NN architectures, motivated by standard numerical 
discretization techniques used for the solution of Partial Differential Equation (PDE). In 
(Padhi & Balakrishnan, 2003), an attempt is made to use the philosophy of the NN adaptive-
critic design to the optimal control of distributed parameter systems. In (Padhi et al., 2001) 
the concept of proper orthogonal decomposition is used for the model reduction of DPS to 
form a reduced order lumped parameter problem. The optimal control problem is then 
solved in the time domain, in a state feedback sense, following the philosophy of adaptive 
critic NNs. The control solution is then mapped back to the spatial domain using the same 
basis functions. In (Pietil & Koivo, 1996), measurement data of an industrial process are 
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generated by solving the PDE numerically using the finite differences method. Both 
centralized and decentralized NN models are introduced and constructed based on this 
data. The models are implemented on FFNN using Backpropagation (BP) and Levenberg-
Marquardt learning algorithms. 
Similarly to the static ANNs, the fuzzy models could approximate static nonlinear plants 
where structural plant information is needed to extract the fuzzy rules, (Baruch et al., 2008a, 
Baruch et al., 2008b, Baruch et al., 2008c; Baruch & Galvan-Guerra, 2008; Baruch & Galvan-
Guerra, 2009). The difference between them is that the ANN models are global models 
where training is performed on the entire pattern range and the FS models perform a fuzzy 
blending of local models space based on the partition of the input space. So, the aim of the 
neuro-fuzzy (fuzzy-neural) models is to merge both ANN and FS approaches so to obtain 
fast adaptive models possessing learning, (Baruch et al., 2008a). The fuzzy-neural networks 
are capable of incorporating both numerical data (quantitative information) and expert’s 
knowledge (qualitative information), and describe them in the form of linguistic IF-THEN 
rules. During the last decade considerable research has been devoted towards developing 
recurrent neuro-fuzzy models, summarized in (Baruch et al., 2008a). To reduce the number 
of IF-THAN rules, the hierarchical approach could be used (Baruch et al., 2008a). A 
promising approach of recurrent neuro-fuzzy systems with internal dynamics is the 
application of the Takagi-Sugeno (T-S) fuzzy rules with a static premise and a dynamic 
function consequent part, (Baruch et al., 2008a). The paper of (Baruch et al., 2008a) proposed 
as a dynamic function in the consequent part of the T-S rules to use a Recurrent Neural 
Network Model (RNNM). 
Some results of this RNNM approach for centralized and decentralized identification of 
dynamic plants with distributed parameters are given in (Baruch et al., 2008a; Baruch et al., 
2008b; Baruch et al., 2008c; Baruch & Galvan-Guerra, 2008; Baruch & Galvan-Guerra, 2009). 
The difference between the used in the other papers fuzzy neural model and the approach 
used in (Baruch et al., 2008a) is that the other one used the Frasconi, Gori and Soda RNN 
model, which is sequential one, and in (Baruch et al., 2008a), it is used the RTNN model, 
which is completely parallel one. But it is not still enough because the neural nonlinear 
dynamic function ought to be learned, and the Backpropagation learning algorithm is not 
introduced in the T-S fuzzy rule. For this reason in (Baruch et al., 2008a) the RTNN BP 
learning algorithm (Baruch et al., 2008d) has been introduced in the antecedent part of the 
IF-THAN rule so to complete the learning procedure and a second hierarchical 
defuzzyfication BP learning level has been formed so to improve the adaptation and 
approximation ability of the fuzzy-neural system, (Baruch et al., 2008a). This system has 
been successfully applied for identification and control of complex nonlinear plants, (Baruch 
et al., 2008a). 
The aim of this chapter is to describe the results obtained by this system for decentralized 
identification and control of wastewater treatment anaerobic digestion bioprocess 
representing a Distributed Parameter System (DPS), extending the used control laws with 
an integral term, so to form an integral plus state control action, capable to speed up the 
reaction of the control system and to augment its resistance to process and measurement 
noises. The analytical anaerobic bioprocess plant model (Aguilar-Garnica et al., 2006), used 
as an input/output plant data generator, is described by PDE/ODE, and simplified using 
the orthogonal collocation technique, (Bialecki & Fairwether, 2001), in four collocation 
points and a recirculation tank. This measurement points are used as centres of the 
membership functions of the fuzzyfied space variables of the plant. 
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2. Description of the direct decentralized fuzzy-neural control with I-term 
The block-diagrams of the complete direct Fuzzy-Neural Multi-Model (FNMM) control 
system and its identification and control parts are schematically depicted in Fig.1, Fig. 2 and 
Fig. 3. The structure of the entire control system, (Baruch et al., 2008a; Baruch et al., 2008b; 
Baruch et al., 2008c) contained Fuzzyfier, Fuzzy Rule-Based Inference System (FRBIS), and 
defuzzyfier. The FRBIS contained five identification, five feedback control, five feedforward 
control, five I-term control, five total control T-S fuzzy rules (see Fig. 1, 2, 3 for more details). 

 

 
Fig. 1. Block-Diagram of the FNMM Control System 
The plant output variables and its correspondent reference variables depended on space and 
time. They are fuzzyfied on space and represented by five membership functions which 
centers are the five collocation points of the plant (four points for the fixed bed and one 
point for the recirculation tank). The main objective of the Fuzzy-Neural Multi-Model 
Identifier (FNMMI), containing five rules, is to issue states and parameters for the direct 
adaptive Fuzzy-Neural Multi-Model Feedback Controller (FNMMFBC) when the FNMMI 
outputs follows the outputs of the plant in the five measurement (collocation) points with 
minimum error of approximation. The control part of the system is a direct adaptive Fuzzy-
Neural Multi-Model Controller (FNMMC). The objective of the direct adaptive FNMM 
controller, containing five Feedback (FB), five Feedforward (FF) T-S control rules,  five I-
term control rules, and five total control rules is to speed up the reaction of the control 
system, and to augment the resistance of the control system to process and measurement 
noises, reducing the error of control, so that the plant outputs in the five measurement 
points tracked the corresponding reference variables with minimum error of tracking. 
The upper hierarchical level of the FNMM control system is one- layer- perceptron which 
represented the defuzzyfier, (Baruch et al., 2008a). The hierarchical FNMM controller has 
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two levels – Lower Level of Control (LLC), and Upper Level of Control (ULC). It is 
composed of three parts (see Fig. 3): 1) Fuzzyfication, where the normalized reference vector 
signal contained reference components of five measurement points; 2) Lower Level 
Inference Engine, which contained twety five T-S fuzzy rules (five rules for identification 
and twenty rules for control- five in the feedback part, five in the feedforward part, five in 
the I-term part, and five total control rules), operating in the corresponding measurement 
points; 3) Upper Hierarchical Level of neural defuzzification. 
The detailed block-diagram of the FNMMI (see Fig. 2), contained a space plant output 
fuzzyfier and five identification T-S fuzzy rules, labeled as RIi, which consequent parts are 
RTNN learning procedures, (Baruch et al, 2008 a). The identification T-S fuzzy rules have 
the form: 

 RIi: If x(k) is Ai and u(k) is Bi then Yi = Πi (L,M,Ni,Ydi,U,Xi,Ai,Bi,Ci,Ei), i=1-5. (1) 

 

 
Fig. 2. Detailed block-diagram of the FNMM identifier 
The detailed block-diagram of the FNMMC, given on Fig. 3, contained a spaced plant 
reference fuzzyfier and twenty control T-S fuzzy rules (five FB, five FF, five I-term, and five-
total control), which consequent FB, and FF parts are also RTNN learning procedures, 
(Baruch et al., 2008a), using the state information, issued by the corresponding identification 
rules. The consequent part of each feedforward control rule (the consequent learning 
procedure) has the M, L, Ni RTNN model dimensions, Ri, Ydi, Eci inputs and Uffi, outputs 
used by the total control rule. The T-S fuzzy rule has the form: 

 RCFFi: If R(k) is Bi then Uffi = Πi (M, L, Ni, Ri, Ydi, Xi, Ji, Bi, Ci, Eci), i=1-5. (2) 

The consequent part of each feedback control rule (the consequent learning procedure) has 
the M, L, Ni RTNN model dimensions, Ydi, Xi, Eci inputs and Ufbi, outputs used by the total 
control rule. The T-S fuzzy rule has the form: 
 RCFBi: If Ydi is Ai then Ufbi = Πi (M, L, Ni, Ydi, Xi, Xci, Ji, Bi, Ci, Eci), i=1-5. (3) 
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Fig. 3. Detailed block-diagram of the HFNMM controller 

The I-term control algorithm is as follows: 

 UIti (k+1) = UIti (k) + To K i (k) Eci (k), i=1-5; (4) 

where To is the period of discretization and K i  is the I-term gain. An appropriate choice for 
the  I-term gain K i is a proportion of the inverse input/output plant gain, i.e.: 

 K i (k) =  η (Ci Bi)+. (5) 

The product of the pseudoinverse  (Ci Bi)+ by the output error Eci (k) transormed the output 
error in input error which equates the dimensions in the equation of the I-term control. The 
T-S rule, generating the I-term part of the control executed both equations (4), (5), 
representing a computational procedure, given by: 

 RCIti: If Ydi is Ai then UIti = Πi (M, L, Bi, Ci, Eci , To, η), i=1-5. (6) 

The total control corresponding to each of the five measurement points is a sum of its 
corresponding feedforward, feedback, and I-term parts, as: 

 Ui (k) = -Uffi (k) + Ufbi (k) + UIti (k), i=1-5. (7) 

The total control is generated by the procedure (7) incorporated in the T-S rule: 

 RCi: If Ydi is Ai then Ui = Πi (M, Uffi, , Ufbi, UIti), i=1-5. (8) 

The defuzzyfication learning procedure, which correspond to the single layer perceptron 
learning is described by: 

 U = Π (M, L, N, Yd, Uo, X, A, B, C, E). (9) 
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The T-S rule and the defuzzification of the plant output of the fixed bed with respect to the 
space variable z (λi,z  is the correspondent membership function), are given by: 

 ROi: If Yi,t is Ai then Yi,t = aiTYt + bi, i=1,2,3,4; (10) 

 Yz=[Σi γi,z aiT] Yt + Σi γi,z bi  ; γi,z = λi,z / (Σj λj,z). (11) 

The direct adaptive neural control algorithm, which appeared in the consequent part of the 
local fuzzy control rule RCFBi, (3) is a feedback control, using the states issued by the 
correspondent identification local fuzzy rule RIi (1). 

3. Description of the indirect (sliding mode) decentralized fuzzy-neural 
control with I-term 
The block-diagram of the FNMM control system is given on Fig.4. The structure of the entire 
control system, (Baruch et al., 2008a; Baruch et al., 2008b; Baruch et al., 2008c), contained 
Fuzzyfier, Fuzzy Rule-Based Inference System, containing twenty T-S  fuzzy rules (five 
identification, five sliding mode control, five I-term control, five total control rules), and a 
defuzzyfier. Due to the learning abilities of the defuzzifier, the exact form of the control 
membership functions is not need to be known. The plant output variable and its 
correspondent reference variable depended on space and time, and they are fuzzyfied on 
space. The membership functions of the fixed-bed output variables are triangular or 
trapezoidal ones and that - belonging to the output variables of the recirculation tank are 
singletons.  Centers of the membership functions are the respective collocation points of the 
plant. The main objective of the FNMM Identifier (FNMMI) (see Fig. 2), containing five T-S 
rules, is to issue states and parameters for the indirect adaptive FNMM Controller 
(FNMMC) when the FNMMI outputs follows the outputs of the plant in the five 
measurement (collocation) points with minimum MSE of approximation. 
The objective of the indirect adaptive FNMM controller, containing five Sliding Mode 
Control (SMC) rules, five I-term rules, and five total control rules  is to reduce the error of 
control, so that the plant outputs of the four measurement points tracked the corresponding 
reference variables with minimum MSE%. The hierarchical FNMM controller (see Fig. 5) has 
two levels – Lower Level of Control (LLC), and Upper Level of Control (ULC). It is 
composed of three parts: 1) Fuzzyfication, where the normalized reference vector signal 
contained reference components of five measurement points; 2) Lower Level Inference 
Engine, which contained twenty T-S fuzzy rules (five rules for identification, five rules for 
SM control, five rules for I-term control, and five rules for total control), operating in the 
corresponding measurement points; 3) Upper Hierarchical Level of neural defuzzification, 
represented by one layer perceptron, (Baruch et al., 2008a) . The detailed block-diagram of 
the FNMMI, given on Fig. 2, contained a space plant output fuzzyfier and five identification 
T-S fuzzy rules, labeled as RIi, which consequent parts are learning procedures, (Baruch et 
al., 2008a), given by (1). The block-diagram of the FNMMC, given on Fig. 5, contained a 
spaced plant reference fuzzyfier, five SMC, five I-term control, and five total control T-S 
fuzzy rules. The  consequent parts of the SMC T-S fuzzy rules are SMC procedures, (Baruch 
et al, 2008 a), using the state, and parameter information, issued by the corresponding 
identification rules. The SMC T-S fuzzy rules have the form: 

 RCi: If R(k) is Ci then Ui = Πi (M, L, Ni, Ri, Ydi, Xi, Ai, Bi, Ci, Eci), i=1-5. (12) 
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Fig. 4. Block-diagram of the FNMM control system 

 

 
Fig. 5.  Detailed block-diagram of the HFNMM controller 
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The I-term control algorithm and its corresponding T-S fuzzy rule are given by (4), (5), (6). 
The total control corresponding to each of the five measurement points is a sum of its 
corresponding SMC and I-term parts, as: 

 Ui (k) = Usmci (k) + UIti (k), i=1-5. (13) 

The total control is generated by the procedure (13) incorporated in the T-S rule: 

 RCi: If Ydi is Ai then Ui = Πi (M, Usmci, UIti), i=1-5. (14) 

The defuzzyfication learning procedure, which correspond to the single layer perceptron 
learning is described by (9), (10), (11). 
Next the indirect SMC procedure will be briefly described. 

3.1 Sliding mode control system design 
Here the indirect adaptive neural control algorithm, which appeared in the consequent part 
of the local fuzzy control rule RCi (12) is viewed as a Sliding Mode Control (SMC), (Baruch 
et al., 2008a; Baruch et al., 2008d), designed using the parameters and states issued by the 
correspondent identification local fuzzy rule RIi (1), approximating the plant in the 
corresponding collocation point.  
Let us suppose that the studied local nonlinear plant model possess the following structure:  

 Xp(k+1)=F[Xp(k),-Up(k)]; Yp(k)=G[Xp(k)] , (15) 

where: Xp(k), Yp(k), U(k) are plant state, output and input vector variables with dimensions 
Np, L and M, where L>M (rectangular system) is supposed; F and G are smooth, odd, 
bounded nonlinear functions. The linearization of the activation functions of the local 
learned identification RTNN model, which approximates the plant leads to the following 
linear local plant model: 

 X(k+1)=AX(k)+BU(k); Y(k)=CX(k); (16) 

where L > M (rectangular system), is supposed. Let us define the following sliding surface 
with respect to the output tracking error: 

 
i=1

( 1) ( 1) ( - 1) ;  | | 1;
P

i iS k E k E k iγ γ+ = + + + <∑  (17) 

where: S(⋅) is the sliding surface error function; E(⋅) is the systems local output tracking 
error; γi are parameters of the local desired error function; P is the order of the error 
function. The additional inequality in (17) is a stability condition, required for the sliding 
surface error function. The local tracking error is defined as: 

 ( ) ( ) - ( );E k R k Y k=  (18) 

where R(k) is a L-dimensional local reference vector and Y(k) is an local output vector with 
the same dimension. The objective of the sliding mode control systems design is to find a 
control action which maintains the systems error on the sliding surface assuring that the 
output tracking error reached zero in P steps, where P<N, which is fulfilled if: 
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 ( 1) 0.S k + =  (19) 

As the local approximation plant model (16), is controllable, observable and stable, (Baruch 
et al., 2004; Baruch et al., 2008d), the matrix A is block-diagonal, and L>M (rectangular 
system is supposed), the matrix product (CB) is nonsingular with rank M, and the plant 
states X(k) are smooth  non- increasing functions. Now, from (16)-(19), it is easy to obtain the 
equivalent control capable to lead the system to the sliding surface which yields: 

 ( )
1

( ) ( ) ( 1) ( 1) ,
P

eq i
i

U k CB CAX k R k E k i Ofγ+

=

= − + + + − + +⎡ ⎤
⎢ ⎥⎣ ⎦

∑  (20) 

 ( ) ( ) ( ) ( )
1

.T TCB CB CB CB
−+ = ⎡ ⎤⎣ ⎦  (21) 

Here the added offset Of is a learnable M-dimensional constant vector which is learnt using 
a simple delta rule (see Haykin, 1999, for more details), where the error of the plant input is 
obtained backpropagating the output error through the adjoint RTNN model. An easy way 
for learning the offset is using the following delta rule where the input error is obtaned from 
the output error multiplying it by the same pseudoinverse matrix, as it is: 

 ( ) ( ) ( ) ( )1 1 ( ) .Of k Of k Of k CB E kη ++ = + = +  (22) 

If we compare the I-term expression (4), (5) with the Offset learning (22) we could see that 
they are equal which signifyed that the I-term generate a compensation offset capable to 
eliminate steady state errors caused by constant perturbations and discrepances in the 
reference tracking caused by non equal input/output variable dimensions (rectangular case 
systems). So introducing an I-term control it is not necessary to use an compensation offset 
in the SM control law (20). 
The SMC avoiding chattering is taken using a saturation function inside a bounded control 
level Uo, taking into account plant uncertainties. So the SMC has the form: 

 ( )
0

0

0

( ), if ( )

( )
, if ( )

( )

;
.

eq eq

eq

eq

eq

U k U k U

U U kU k
U k U

U k

<

−=
≥

⎧
⎪
⎨
⎪
⎩

 (23) 

The proposed SMC cope with the characteristics of the wide class of plant model reduction 
neural control with reference model, and represents an indirect adaptive neural control, 
given by (Baruch et al., 2004).  Next we will give description of the used RTNN topology 
and learning. 

4. Description of the RTNN topology and learning 
4.1 RTNN topology and recursive BP learning 
The block-diagrams of the RTNN topology and its adjoint, are given on Fig. 6, and Fig. 7. 
Following Fig. 6, and Fig. 7, we could derive the dynamic BP algorithm of its learning based 
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on the RTNN topology using the diagrammatic method of (Wan & Beaufays, 1996). The 
RTNN topology and learning are described in vector-matrix form as: 

 X(k+1) = AX(k) + BU(k); B = [B1 ; B0]; UT = [U1 ; U2]; (24) 

 Z1(k) = G[X(k)]; (25) 

 V(k) = CZ(k); C = [C1 ; C0]; ZT = [Z1 ; Z2]; (26) 

 Y(k) = F[V(k)]; (27) 

 A = block-diag (Ai), |Ai | < 1; (28) 

 W(k+1) = W(k) +η ΔW(k) + α ΔWij(k-1); (29) 

 E(k) = T(k)-Y(k); (30) 
 

 
Fig. 6. Block diagram of the RTNN model 

 
Fig. 7. Block diagram of the adjoint RTNN model 

 E1(k) = F’[Y(k)] E(k); F’[Y(k)] = [1-Y2(k)]; (31) 

 ΔC(k) = E1(k) ZT(k); (32) 

 E3(k) = G’[Z(k)] E2(k); E2(k) = CT(k) E1(k); G’[Z(k)] = [1-Z2(k)]; (33) 

 ΔB(k) = E3(k) UT(k); (34) 

 ΔA(k) = E3(k) XT(k); (35) 

 Vec(ΔA(k)) = E3(k)▫X(k); (36) 
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where: X, Y, U are state, augmented output, and input vectors with dimensions N, (L+1), 
(M+1), respectively, where Z1 and U1 are the (Nx1) output and (Mx1) input of the hidden 
layer; the constant scalar threshold entries are Z2 = -1, U2 = -1, respectively; V is a (Lx1) pre-
synaptic activity of the output layer; T is the (Lx1) plant output vector, considered as a RNN 
reference; A is (NxN) block-diagonal weight matrix; B and C are [Nx(M+1)] and [Lx(N+1)]- 
augmented weight matrices; B0 and C0 are (Nx1) and (Lx1) threshold weights of the hidden 
and output layers; F[⋅], G[⋅] are vector-valued tanh(⋅)-activation functions with corresponding 
dimensions; F’[⋅], G’[⋅] are the derivatives of these tanh(⋅) functions; W is a general weight, 
denoting each weight matrix (C, A, B) in the RTNN model, to be updated; ΔW (ΔC, ΔA, ΔB), 
is the weight correction of W; η, α are learning rate parameters; ΔC is an weight correction 
of the  learned matrix C; ΔB is an weight correction of the learned matrix B; ΔA is an weight 
correction of the learned matrix A; the diagonal of the matrix A is denoted by Vec(⋅) and 
equation (34) represents its learning as an element-by-element vector products; E, E1, E2, E3, 
are error vectors with appropriate dimensions, predicted by the adjoint RTNN model, given 
on Fig.7. The stability of the RTNN model is assured by the activation functions (-1, 1) 
bounds and by the local stability weight bound condition, given by (28). Below a theorem of 
RTNN stability which represented an extended version of Nava’s theorem, (Baruch et al., 
2008d) is given. 
Theorem of stability of the BP RTNN used as system identifier (Baruch et al., 2008d). Let 
the RTNN with Jordan Canonical Structure is given by equations (24)-(28) (see Fig.6) and the 
nonlinear plant model, is as follows: 

Xp.(k+1) = G[ Xp (k), U(k) ], 

Yp (k) = F[ Xp (k) ]; 

where: {Yp (⋅), Xp (⋅), U(⋅)} are output, state and input variables with dimensions L, Np, M, 
respectively; F(⋅), G(⋅) are vector valued nonlinear functions with respective dimensions. 
Under the assumption of RTNN identifiability made, the application of the BP learning 
algorithm for A(⋅), B(⋅), C(⋅), in general matricial form, described by equation (29)-(36), and 
the learning rates η (k), α (k) (here they are considered as time-dependent and normalized 
with respect to the error) are derived using the following Lyapunov function: 

( ) ( ) ( )1 2L k  = L k +L k ;  

Where: 1L (k)   and  2L (k)  are given by: 

( ) ( )2
1

1 ,
2

L k e k=  

( ) j ( )j ( )( ) j ( )j ( )( ) j ( )j ( )( )2 ;
T T T

A A B B C CL k tr W k W k tr W k W k tr W k W k= + +  

where: j ( ) l ( ) j ( ) � ( ) j ( ) l ( )* * *, ,A B CW k A k A W k B k B W k C k C= − = − = − , are vectors of the 
estimation error and  * * *(A ,B ,C ) , ˆ ˆˆ(A(k),B(k),C(k))  denote the ideal neural weight and the 
estimate of the neural weight at the k-th step, respectively, for each case. 
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Then the identification error is bounded, i.e.: 

( ) ( ) ( )
( ) ( ) ( )

1 21 1 1 0,

1 1 ;

L k L k L k

L k L k k

+ = + + + <

Δ + = + −
 

where the condition for 1L (k+1)<0  is that: 

max
max max

1 11 1
2 2 ;η

ψ ψ

⎛ ⎞ ⎛ ⎞
− +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠< <  

and for 2L (k+1)<0  we have: 

( ) ( ) ( ) ( )2 2
2 max max1 1 1 .L k e k e k d kη αΔ + < − + + +  

Note that maxη  changes adaptively during the RTNN learning and:  

{ }
3

max 1
max ;ii

η η
=

=  

where all: the unmodelled dynamics, the approximation errors and the perturbations, are 
represented by the d-term. The Rate of Convergence Lemma used, , is given below. The 
complete proof of that Theorem of stability is given in (Baruch et al., 2008d). 
Rate of Convergence Lemma (Baruch et al., 2008a). Let kLΔ  is defined. Then, applying the 
limit's definition, the identification error bound condition is obtained as: 

( ) ( )2 2

1

1lim 1 .
k

k t
E t E t d

k→∞ =

⎛ ⎞+ − ≤⎜ ⎟
⎝ ⎠∑  

Proof.  Starting from the final result of the theorem of RTNN stability: 

( ) ( ) ( ) ( ) ( )2 2
1L k k E k k E k dη αΔ ≤ − − − +  

and iterating from k=0, we get:  

( ) ( ) ( ) ( )2 2

1 1
1 0 1 ,

k k

t t
L k L E t E t dk

= =
+ − ≤ − − − +∑ ∑  

( ) ( ) ( ) ( ) ( )2 2

1
1 1 0 0 .

k

t
E t E t dk L k L dk L

=

⎛ ⎞+ − ≤ − + + ≤ +⎜ ⎟
⎝ ⎠∑  

From here, we could see that d  must be bounded by weight matrices and learning 
parameters, in order to obtain: ( ) ( )L kΔ ∈ ∞L . 
As a consequence:. ( ) ( ) ( ) ( ) ( ) ( ), , ,A k B k C k∈ ∞ ∈ ∞ ∈ ∞L L L  
The stability of the HFNMMI could be proved via linearization of the activation functions of 
the RTNN models and application of the methodology using LMI. 
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Theorem of stability of the BP RTNN used as a direct system controller. Let the RTNN 
with Jordan Canonical Structure is given by equations (24)-(28) and the nonlinear plant 
model, is given above. Under the assumption of RTNN identifiability made, the application 
of the BP learning algorithm for A(⋅), B(⋅), C(⋅), in general matricial form, described by 
equations (29)-(36) without momentum term, and the learning rate η (k) (here it is 
considered as time-dependent and normalized with respect to the error) are derived using 
the following Lyapunov function: 

L(k) = L1 (k) + L2 (k); 

where: L1 (k) and L2 (k) are given by: 

( ) ( )2
1

1 ,
2

L k e k=  

( ) j
( )
j

( )( ) j
( )
j

( )( ) j
( )
j

( )( )2 ;k k k k k k

T T T
A A B B C CL k tr W W tr W W tr W W= + +  

where: j ( )
l ( ) j

( )
� ( ) j

( )
l ( )

* * *, , ,k k kk kA B C kW A A W B B W C C= − = − = − are vectors of the estimation 

error and ( )* * *, ,A B C and l ( ) � ( ) l ( )( ), ,k k kA B C  denoted the ideal neural weight and the estimate 

of the neural weight at the k-th step, respectively, for each case. 

Let us define: ( )max max
k

kψ ψ= , and ( )max max
k

kϑ ϑ= , where ( ) ( )
( )

o k
k

W k
ψ

∂
=
∂

, and 

( ) ( )
( )

y k
k

W k
ϑ

∂
=
∂

, where W is a vector composed by all weights of the RTNN, used as a system 

controller, and ⋅  is an Euclidean norm in nℜ . 
Then the identification error is bounded, i.e.: 

L(k+1) = L1(k+1) + L2(k+1) < 0, 

∆L(k+1) = L(k+1) - L(k); 

where the condition for L1 (k+1) < 0 fulfillment is that the maximum rate of learning is 
inside the limits: 

max 2 2
max max

20 ,η
ϑ ψ

< <  

and for L2(k+1) < 0, we have: 

( ) ( ) ( )2
2 max1 1 1 .L k e k kη βΔ + < − + + +  

Note that maxη  changes adaptively during the learning process of the network, where:  

{ }
3

max ii=1
η =max η .  



 Advances in Reinforcement Learning 

 

434 

Here all: the unmodelled dynamics, the approximation errors and the perturbations, are 
represented by the β-term, and the complete proof of that theorem and the rate of 
convergence lemma, are given in (Baruch et al., 2008d). 

4.2 Recursive Levenberg-Marquardt RTNN learning 
The general recursive L-M algorithm of learning, (Baruch & Mariaca-Gaspar, 2009) is given 
by the following equations: 

 ( ) ( ) ( ) ( ) ( )W 1 =Wk k P k Y W k E W k⎡ ⎤ ⎡ ⎤+ + ∇ ⎣ ⎦ ⎣ ⎦ , (37) 

 ( ) ( ) ( ),Y W k g W k U k⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ , (38) 

 ( ) ( ) ( ) ( ){ }22 ,pE W k Y k g W k U k⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ , (39) 

 ( )
( ) ( )

( )

,

W W k

g W k U k
DY W k

W
=

⎡ ⎤∂ ⎣ ⎦⎡ ⎤ =⎣ ⎦ ∂
; (40) 

where W is a general weight matrix (A, B, C) under modification; P is the covariance matrix 
of the estimated weights updated; DY[⋅] is an nw-dimensional gradient vector; Y is the 
RTNN output vector which depends of  the updated weights and the input; E is an error 
vector; Yp is the plant output vector, which is in fact the target vector. Using the same 
RTNN adjoint block diagram (see Fig.7), it was possible to obtain the values of the gradients 
DY[⋅] for each updated weight, propagating the value D(k) = I through it. Applying 
equation (40) for each element of the weight matrices (A, B, C) in order to be updated, the 
corresponding gradient components are as follows:  

 ( ) ( ) ( )1,ij i jDY C k D k Z k⎡ ⎤ =⎣ ⎦ , (41) 

 ( ) ( )'
1,i j iD k F Y k⎡ ⎤= ⎣ ⎦ , (42) 

 ( ) ( ) ( )2,ij i jDY A k D k X k⎡ ⎤ =⎣ ⎦ , (43) 

 ( ) ( ) ( )2,ij i jDY B k D k U k⎡ ⎤ =⎣ ⎦ , (44) 

 ( ) ( ) ( )'
2 , 1,i i j i iD k G Z k C D k⎡ ⎤= ⎣ ⎦ . (45) 

Therefore the Jacobean matrix could be formed as: 

 ( ) ( )( ) ( )( ) ( )( ), ,ij ij ijDY W k DY C k DY A k DY B k⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦  (46) 

The P(k) matrix was computed recursively by the equation: 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 11 1 1TP k k P k P k W k S W k W k P kα− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − − Ω Ω −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ; (47) 

where the S(⋅), and Ω(⋅) matrices were given as follows: 

 ( ) ( ) ( ) ( ) ( ) ( )1TS W k k k W k P k W kα⎡ ⎤ ⎡ ⎤ ⎡ ⎤= Λ +Ω − Ω⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (48) 

 ( )

( ) ( )

1 4 6

3 6

( )( ) ;
0 1 0

1 0
; 10 10 ;

0

0.97 1; 10 0 10 .

T
T Y W kW k

k

k P

ρ
ρ

α

− − −

⎡ ⎤∇ ⎡ ⎤⎣ ⎦Ω =⎡ ⎤ ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

⎡ ⎤
Λ = ≤ ≤⎢ ⎥

⎣ ⎦
≤ ≤ ≤ ≤

" "

 (49) 

The matrix Ω(⋅) had a dimension (nwx2), whereas the second row had only one unity 
element (the others were zero). The position of that element was computed by: 

 ( )mod 1;i k nw k nw= + >  (50) 

After this, the given up topology and learning are applied for an anaerobic wastewater 
distributed parameter decentralized system identification. 

5. Analytical model of the anaerobic digestion bioprocess plant 
The anaerobic digestion systems block diagram is depicted on Fig.8. It consists of a fixed bed 
reactor and a recirculation tank. The physical meaning of all variables and constants (also its 
values), are summarized in Table 1. The complete analytical model of wastewater treatment 
anaerobic bioprocess, taken from (Aguilar-Garnica et al., 2006), could be described by the 
following system of PDE: 

 ( )1 1
1 1 1 1max

1 1 1
,

S

X SD X
t K X S

μ ε μ μ∂
= − =

∂ +
, (51) 

 ( )2 1
2 2 2 2 2

2
2 2

2

, s

S
I

X SD X
t SK X

K

μ ε μ μ∂
= − =

∂
+

, (52) 

 
2

1 1 1
1 1 12 2

zES S SD k X
t tH z

μ∂ ∂ ∂
= − −

∂ ∂∂
, (53) 

 
2

2 2 2
2 1 12 2

zES S SD k X
t tH z

μ∂ ∂ ∂
= − −

∂ ∂∂
, (54) 

 ( ) ( ) ( ) ( )1, 1 2, 2
1 20, , 0, ,

1 1
in T in T T

eff

S t RS S t RS QS t S t R
R R DV

+ +
= = =

+ +
, (55) 
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Variable Units Name Value 
z z∈[0,1] Space variable  
t D Time variable  

Ez m2/d Axial dispersion coefficient 1 
D 1/d Dilution rate 0.55 
H m Fixed bed length 3.5 
X1 g/L Concentration of acidogenic bacteria  
X2 g/L Concentration of methanogenic bacteria  
S1 g/L Chemical Oxygen Demand  
S2 mmol/L Volatile Fatty Acids  
ε  Bacteria fraction in the liquid phase 0.5 
k1 g/g Yield coefficients 42.14 
k2 mmol/g Yield coefficients 250 
k3 mmol/g Yield coefficients 134 
μ1 1/d Acidogenesis growth rate  
μ2 1/d Methanogenesis growth rate  

μ1max 1/d Maximum acidogenesis growth rate 1.2 
μ2s 1/d Maximum methanogenesis growth rate 0.74 
K1s’ g/g Kinetic parameter 50.5 
K2s’ mmol/g Kinetic parameter 16.6 
KI2’ mmol/g Kinetic parameter 256 
QT m3/d Recycle flow rate 0.24 
VT m3 Volume of the recirculation tank 0.2 
S1T g/L Concentration of Chemical Oxygen Demand in the recirculation tank  
S2T mmol/L Concentration of Volatile Fatty Acids in the recirculation tank  
Qin m3/d Inlet flow rate 0.31 
VB m3 Volume of the fixed bed 1 
Veff m3 Effective volume tank 0.95 

S1,in g/L Inlet substr. Concentration  
S2,in mmol/L Inlet substr. Concentration  

Table 1.  Summary of the variables in the plant model 

 ( ) ( )1 21, 0, 1, 0S St t
z z

∂ ∂
= =

∂ ∂
, (56) 

 ( )( ) ( )( )1 2
1 1 2 21, , 1,T T T T

T T
T T

dS Q dS QS t S S t S
dt V dt V

= − = − . (57) 

For practical purpose, the full PDE anaerobic digestion process model (51)-(57), taken from 
(Aguilar-Garnica et al., 2006), could be reduced to an ODE system using an early lumping 
technique and the Orthogonal Collocation Method (OCM), (Bialecki & Fairwether, 2001), in 
four points (0.2H, 0.4H, 0.6H, 0.8H) obtaining the following system of OD equations: 
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Fig. 8. Block-diagram of anaerobic digestion bioreactor  

 ( ) ( )1, 2,
1, 1, 2, 2 ,,i i

i i i i
dX dX

D X D X
dt dt

μ ε μ ε= − = − , (58) 

 
2 2

1,
, 1, , 1, 1 1, 1,2

1 1

N N
i z

i j j i j j i i
j j

dS E B S D A S k X
dt H

μ
+ +

= =
= − −∑ ∑ , (59) 

 
2 2

2,
, 1, , 2 , 2 1, 2, 3 2, 2,2

1 1

N N
i z

i j j i j j i i i i
j j

dS E B S D A S k X k X
dt H

μ μ
+ +

= =
= − − −∑ ∑ , (60) 

 ( ) ( )1 2
1, 2 1 2, 2 2,T T T T

N T N T
T T

dS Q dS QS S S S
dt V dt V+ += − = − , (61) 

 ( ) ( )
1

1 1
,1 , , 2 , ,

1

1 ,
1 1 1 1

N

k k in kT k N k in kT i k i
i

R K K RS S t S S S t S K S
R R R R

+

+
=

= + = + +
+ + + + ∑ , (62) 

 2,1 2,
1

2, 2 2, 2
,N N i

i
N N N N

A A
K K

A A
+ +

+ + + +
= = , (63) 

 ( )1 2
,, 1 l

m l mA l zφ ω− −⎡ ⎤= Λ Λ = = −⎣ ⎦ , (64) 

 ( )( )1 3 1
, , ,, , 1 2 ,l l

m l m l m m l mB l l z zφ τ τ φ− − −⎡ ⎤= Γ Γ = = − − =⎣ ⎦ , (65) 

 2, 2, , 1, 2i N m l N= + = +… … . (66) 
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The reduced plant model (58)-(66), could be used as unknown plant model which generate 
input/output process data for decentralized adaptive FNMM control system design, based 
on the concepts, given in (Baruch et al., 2008a; Baruch et al., 2008b; Baruch et al., 2008c; 
Baruch et al., 2008d). The mentioned concepts could be applied for this DPS fuzzyfying the 
space variable z, which represented the height of the fixed bed. Here the centers of the 
membership functions with respect to z corresponded to the collocation points of the 
simplified plant model which are in fact the four measurement points of the fixed bed, 
adding one more point for the recirculation tank. 

6. Simulation results 
In this paragraph, graphical and numerical simulation results of system identification, direct 
and indirect control, with and without I-term, will be given. For lack of space we will give 
graphical results only for the X1 variable. Furthermore the graphical results for the other 
variables possessed similar behavior. 

6.1 Simulation results of the system identification using L-M RTNN learning 
The decentralized FNMM identifier used a set of five T-S fuzzy rules containing in its 
consequent part RTNN learning procedures (1). The RTNN topology is given by the 
equations (24)-(28), the BP RTNN learning is given by (29)-(36), and the L-M RTNN learning 
is given by (37)-(50). The topology of the first four RTNNs is (2-6-4) (2 inputs, 6 neurons in 
the hidden layer, 4 outputs) and the last one has topology (2-4-2), corresponding to the fixed 
bed plant behavior in each collocation point and the recirculation tank. The RTNNs 
identified the following fixed bed variables: X1 (acidogenic bacteria), X2 (methanogenic 
bacteria), S1 (chemical oxygen demand) and S2 (volatile fatty acids), in the following four 
collocation points, z=0.2H, z=0.4H, z=0.6H, z=0.8H, and the following variables in the 
recirculation tank: S1T (chemical oxygen demand) and S2T (volatile fatty acids). The graphical 
simulation results of RTNNs L-M learning are obtained on-line during 600 iteration with a 
step of 0.1 sec. The learning rate parameters of RTNN have small values which are different 
for the different measurement point variables (ρ=0.1 and α=0). The Figs. 9-11 showed 
graphical simulation results of open loop decentralized plant identification. The MSE of the 
decentralized FNMM approximation of plant variables in the collocation points, using the L-
M and BP RTNN learning are shown in Tables 2 and 3. The input signals applied are:  
 

 1,
30.55 0.15cos 0.3sin
80 80inS t tπ π⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, (67) 

 2,
30.55 0.05cos 0.3sin
40 40inS t tπ π⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. (68) 

 
The graphical y numerical results of decentralized FNMM identification (see Fig. 9-11, and 
Tables 2, 3) showed a good HFNMMI convergence and precise plant output tracking (MSE 
0.0083 for the L-M, and 0.0253 for the BP RTNN learning in the worse case). 
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Collocation point X1 X2 S1 / S1T S2 / S2T 

z=0.2 0.0013 0.0012 0.0049 0.0058 
z=0.4 0.0013 0.0013 0.0058 0.0049 
z=0.6 0.0013 0.0013 0.0071 0.0055 
z=0.8 0.0014 0.0013 0.0083 0.0070 

Recirculation tank   0.0080 0.0058 

Table 2. MSE of the decentralized FNMM approximation of the bioprocess output variables 
in the collocation points, using the L-M RTNN learning 
 

Collocation point X1 X2 S1 / S1T S2 / S2T 

z=0.2 0.0015 0.0023 0.0145 0.0192 
z=0.4 0.0015 0.0044 0.0098 0.0164 
z=0.6 0.0030 0.0009 0.0092 0.0133 
z=0.8 0.0046 0.0048 0.0045 0.0086 

Recirculation tank   0.0168 0.0253 

Table 3. MSE of the decentralized FNMM approximation of the bioprocess output variables 
in the collocation points, using the BP RTNN learning 
 
 

 
 

Fig. 9. Graphical simulation results of the FNMM identification of X1 in a) Z=0.2H; b) 0.4H; 
c) 0.6H; d) 0.8H (acidogenic bacteria in the corresponding fixed bed points) by four fuzzy 
rules RTNNs (dotted line-RTNN output, continuous line-plant output) for 600 iteration of L-
M RTNN learning 
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Fig. 10. Detailed graphical simulation results of the FNMM identification of X1 in a) Z=0.2H; 
b) 0.4H; c) 0.6H; d) 0.8H (acidogenic bacteria in the corresponding fixed bed points) by four 
fuzzy rules RTNNs (dotted line-RTNN output, continuous line-plant output) for the first 15 
iterations of the L-M RTNN learning 
 

 
Fig. 11. Graphics of the 3d view of X1 space/time approximation during its L-M RTNN 
learning in four points 

6.2 Simulation results of the direct HFNMM control with I-term and L-M RTNN learning 
The topology of the first four RTNNs is (12-14-2) for the variables in the collocation points 
x=0.2H, z=0.4H, z=0.6H, z=0.8H and for the recirculation tank is (8-10-2). The graphical 
simulation results of RTNNs L-M learning are obtained on-line during 600 iterations (2.4 
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hours) with a step of 0.1 sec. The learning parameters of RTNN are ρ=0.2 and α=1; while the 
parameter of the I-term are η=0.01 and α=1e-8. Finally the topology of the defuzzifier neural 
network is (10-2) with parameters η=0.0035 and α=0.00001. 
The Figs. 12-17 showed graphical simulation results of the direct decentralized HFNMM 
control with and without I-term, where the outputs of the plant are compared with the 
reference signals. The reference signals are train of pulses with uniform duration and 
random amplitude. The MSE of control for each output signal and each measurement point 
are given on Table 4 For sake of comparison the MSE of direct decentralized HFNMM 
proportional control (without I-term) for each output signal and each measurement point 
are given on Table 5. 
 
 
 

 
 
 

Fig. 12. Results of the direct decentralized HFNMM I-term control of X1 (acidogenic bacteria 
in the fixed bed) (dotted line-plant output, continuous-reference) in four collocation points 
(a) 0.2H,b) 0.4H, c) 0.6H, d) 0.8H) for 600 iterations 

Also, for sake of comparison, graphical results of direct decentralized HFNMM 
proportional control (without I-term) only for the X1 variable will be presented. The 
results show that the proportional control could not eliminate the static error due to 
inexact approximation and constant process or measurement disturbances. The graphical 
and numerical results of direct decentralized HFNMM I-term control (see Fig. 12-13, and 
Tables 4, 5) showed a good reference tracking (MSE is of 0.0097 for the I-term control and 
0.0119 for the control without I-term in the worse case). The results showed that the I-term 
control eliminated constant disturbances and approximation errors and the proportional 
control could not. 
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Fig. 13. Detailed graphical results of the direct decentralized HFNMM I-term control of X1 
(acidogenic bacteria in the fixed bed) (dotted line-plant output, continuous-reference) in 
four collocation points (a) 0.2H, b) 0.4H, c) 0.6H, d) 0.8H) for the first 30 iterations 

 

 
Fig. 14. Graphics of the 3d view of X1 space/time approximation and direct decentralized 
HFNMM I-term control in four collocation points of the fixed bed 
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Fig. 15. Results of the direct decentralized HFNMM control without I-term of X1 (acidogenic 
bacteria in the fixed bed) (dotted line-plant output, continuous-reference) in four collocation 
points (a) 0.2H, b) 0.4H, c) 0.6H, d) 0.8H) for 600 iterations 

 
Fig. 16. Detailed graphical results of the direct decentralized HFNMM control without I-
term of X1 (acidogenic bacteria in the fixed bed) (dotted line-plant output, continuous-
reference) in four collocation points (a) 0.2H, b) 0.4H, c) 0.6H, d) 0.8H) for the first 30 
iterations 
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Fig. 17. Graphics of the 3d view of X1 space/time approximation and direct decentralized 
HFNMM proportional control (without I-term) in four collocation points of the fixed bed 
 

Collocation point X1 X2 S1 / S1T S2 / S2T 

z=0.2 0.0011 0.0013 0.0065 0.0097 
z=0.4 0.0009 0.0011 0.0051 0.0090 
z=0.6 0.0008 0.0011 0.0042 0.0074 
z=0.8 0.0006 0.0010 0.0037 0.0063 

Recirculation tank   0.0060 0.0086 

Table 4. MSE of the direct decentralized HFNMM I-term control of the bioprocess plant 
 

Collocation point X1 X2 S1 / S1T S2 / S2T 

z=0.2 0.0012 0.0016 0.0084 0.0119 
z=0.4 0.0009 0.0014 0.0068 0.0107 
z=0.6 0.0007 0.0012 0.0055 0.0089 
z=0.8 0.0006 0.0010 0.0045 0.0073 

Recirculation tank   0.0068 0.0092 

Table 5. MSE of the direct decentralized HFNMM proportional control (without I-term) of 
the bioprocess plant 

6.3 Simulation results of the indirect HFNMM I-term SMC and L-M RTNN learning 
The neural network used as defuzifier in the control with BP learning rule has the toplogy 
(10-2) with learning parameters η=0.005 and α=0.00006. For the simuulation with the L-M 
RTNN learning we use a saturation U0=1 with γ=0.8. In the integral term we used the 
parameters for the offset (Of), η=0.01 and α=1e-8. The Figs. 18-23 showed graphical 
simulation results of the indirect (sliding mode) decentralized HFNMM with and without I-
term control. The MSE of control for each output signal and each measurement point are 
given on Table 6. The reference signals are train of pulses with uniform duration and 
random amplitude and the outputs of the plant are compared with the reference signals.  
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Collocation point X1 X2 S1 / S1T S2 / S2T 

z=0.2 0.0010 0.0011 0.0052 0.0089 
z=0.4 0.0007 0.0009 0.0040 0.0084 
z=0.6 0.0006 0.0009 0.0037 0.0063 
z=0.8 0.0006 0.0008 0.0034 0.0061 

Recirculation tank   0.0051 0.0074 

Table 6.  MSE of the indirect decentralized HFNMM I-term control of the bioprocess plant 
 

 
Fig. 18. Results of the indirect (SMC) decentralized HFNMM I-term control of X1 
(acidogenic bacteria in the fixed bed) (dotted line-plant output, continuous-reference) in 
four collocation points (a) 0.2H, b) 0.4H, c) 0.6H, d) 0.8H) for 600 iterations 

 
Collocation point X1 X2 S1 / S1T S2 / S2T 

z=0.2 0.0013 0.0018 0.0101 0.0139 
z=0.4 0.0010 0.0016 0.0083 0.0125 
z=0.6 0.0008 0.0014 0.0068 0.0104 
z=0.8 0.0007 0.0012 0.0057 0.0085 

Recirculation tank   0.0070 0.0095 

Table 7. MSE of the indirect decentralized HFNMM proportional control (without I-term) of 
the bioprocess plant 
The graphical y numerical results (see Fig. 18-23, and Tables 6, 7) of the indirect (sliding 
mode) decentralized control showed a good identification and precise reference tracking 
(MSE is about 0.0089 in the worse case). The comparison of the indirect and direct 
decentralized control showed a good results for both control methods (see Table 3 and Table 
4) with slight priority for the indirect control (9.8315e-5 vs. 1.184e-4) due to its better plant 
dynamics compensation ability and adaptation.  
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Fig. 19. Detailed graphical results of the indirect (SMC) decentralized HFNMM I-term 
control of X1 (acidogenic bacteria in the fixed bed) (dotted line-plant output, continuous-
reference) in four collocation points (a) 0.2H, b) 0.4H, c) 0.6H, d) 0.8H) for the first 30 
iterations 
 

 
Fig. 20. Graphics of the 3d view of X1 space/time approximation and indirect decentralized 
HFNMM I-term control in four collocation points of the fixed bed 
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Fig. 21. Results of the indirect (SMC) decentralized HFNMM proportional control (without 
I-term) of X1 (acidogenic bacteria in the fixed bed) (dotted line-plant output, continuous-
reference) in four collocation points (a) 0.2H, b) 0.4H, c) 0.6H, d) 0.8H) for 600 iterations 
 

 
Fig. 22. Detailed graphical results of the indirect (SMC) decentralized HFNMM proportional 
control (without I-term) of X1 (acidogenic bacteria in the fixed bed) (dotted line-plant 
output, continuous-reference) in four collocation points (a) 0.2H, b) 0.4H, c) 0.6H, d) 0.8H) 
for the first 25 iterations 
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For sake of comparison, graphical results of indirect decentralized HFNMM proportional 
control (without I-term) only for the X1 variable are presented. The results show that the 
proportional control could not eliminate the static error due to inexact approximation and 
constant process or measurement disturbances. 
 

 
Fig. 23. Graphics of the 3d view of X1 space/time approximation and indirect decentralized 
HFNMM proportional control (without I-term) in four collocation points of the fixed bed 

7. Conclusion 
The chapter proposed decentralized recurrent fuzzy-neural identification, direct and 
indirect I-term control of an anaerobic digestion wastewater treatment bioprocess, 
composed by a fixed bed and a recirculation tank, represented a DPS. The simplification of 
the PDE process model by ODE is realized using the orthogonal collocation method in four 
collocation points (plus the recirculation tank) represented centers of membership functions 
of the space fuzzyfied output variables. The obtained from the FNMMI state and parameter 
information is used by a HFNMM direct and indirect (sliding mode) control with or without 
I-term. The applied fuzzy-neural approach to that DPS decentralized direct and indirect 
identification and I-term control exhibited a good convergence and precise reference 
tracking eliminating static errors, which could be observed in the MSE% numerical results 
given on Tables 4 and 6 (2.107e-5 vs. 1.184e-4 vs. 9.8315e-5 in the worse case). 
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1. Introduction     
With Reinforcement Learning (RL), an agent learns optimal behavior through trial-and-error 
interactions with a dynamic environment. On each step of interaction, the RL agent receives 
as input some indication of the current state of the environment. The agent then chooses an 
action to generate as output. The action changes the state of the environment, and the value 
of this state transition is communicated to the agent through a scalar reinforcement signal. 
The agent behavior should choose actions that tend to increase the long run sum of values of 
the reinforcement signal[1].  
Cardiac Resynchronizayion Therapy (CRT) is an established therapy for patients with 
congestive heart failure (CHF) and intraventricular electrical or mechanical conduction 
delays. It is based on synchronized pacing of the two ventricles [5-7] according to the sensed 
natural atrium signal that determines the heart rhythm. The resynchronization task 
demands exact timing of the heart chambers so that the overall stroke volume for example is 
maximized for any given heart rate (HR). Optimal timing of activation of the two ventricles 
is one of the key factors in determining cardiac output. The two major timing parameters 
which are programmable in a CRT device and determine the pacing intervals are the 
atrioventricular (AV) delay and interventricular (VV) interval. 
The adaptive Cardiac Resynchronization Therapy (CRT) cardiac pacemaker control system 
[2-4], solves a reinforcement learning problem. Accordingly, an implanted cardiac 
pacemaker is an agent connected to its environment, the patient heart and body, through an 
implanted electric leads and a hemodynamic sensor. The agent chooses the actions to be 
delivered, which are the stimulation AV delay and VV interval parameters that are used to 
resynchronize the right and left ventricles contractions in each heart beat. The agent task is 
to learn the optimal AV delay and VV interval that maximize the long run cardiac 
performance in all heart rates. 
In order to simulate the resynchronization RL problem a responsive electro-mechanical 
heart model is needed for generating the expected environment responses to the agent CRT 
pacemaker stimulations with different AV delays and VV intervals. The responsive electro-
mechanical heart model needs to simulate both the heart electrical activity and the 
correlated heart and body mechanical activities responsive to electrical stimulation 
delivered in the right and left ventricles with different AV delay and VV interval. 
P. Glassel et al [8], provided a system for simulating the electrical activity of the heart that 
included a computer controlled heart model for generating and displaying the simulated 
electrogram signals. The simulation system included various hardware components and 
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software designed to realize the electrical activity of a responsive heart model.  However, P. 
Glassel et al heart model did not simulate the mechanical activity of the heart such as the left 
ventricle stroke volume, the volumes and pressures of the heart chambers during the systole 
and diastole cardiac cycles and hence cannot be used for developing a CRT device agent.   
A development system of adaptive CRT devices control systems that includes a simplified 
hemodynamic sensor model was presented by Rom [9]. The aim of the simplified 
hemodynamic sensor model was to allow a machine learning algorithm to be developed and 
tested in a simulation with no need to develop a full responsive electro-mechanical heart 
model. Developing a responsive electro-mechanical heart model is an immense task that 
needs a model of both the full cardiovascular system and the autonomous nerve system of a 
CRT patient.     
The hemodynamic effects of changes in AV delays and VV intervals delivered to CRT 
patients were studied by Whinnett et al [10].  In this study, the authors applied non-invasive 
systolic blood pressure (SBP) monitoring, by continuous finger photoplethysmography 
(Finometer), to detect hemodynamic responses during adjustment of the AV delay of CRT, at 
different heart rates. The authors presented CRT response surfaces of systolic blood 
pressure measurement dependence on paced AV delay and VV intervals. The CRT response 
surface changed from patient to patient and depended also on the heart rate. The authors 
suggested that optimization of CRT devices is more important at higher heart rates where 
CRT patients are more symptomatic. The authors concluded that continuous non-invasive 
arterial pressure monitoring demonstrated that even small changes in AV delay from its 
hemodynamic peak value have a significant effect on blood pressure. This peak varied 
between individuals, was highly reproducible, and was more pronounced at higher heart 
rates than resting rates. 
P. Bordachar et al [11] in a prospective echocardiographic study investigated the respective 
impacts of left ventricular (LV) pacing, simultaneous and sequential biventricular pacing on 
ventricular dyssynchrony during exercise in 23 patients with compensated heart failure and 
ventricular conduction delays. The authors concluded that the optimal interventricular 
delay was different in rest from exercise in 57% of the patients. In addition the authors 
showed that changes from rest to exercise in LV dyssynchrony were correlated with changes 
in stroke volume and changes in mitral regurgitation. 
Odonnell et al [12] showed, in 43 CHF patients after CRT implantation in a follow-up study, 
that the optimal AV delay and VV interval found with echocardiography changed 
significantly over 9 months  of follow-up period. 
G. Rocchi et al [13] showed recently that exercise stress Echo is superior to rest echo in 
predicting LV reverse remodelling and functional improvement after CRT. The authors 
reported that exercise stress Echo enables identification of CRT responders with about 90% 
success rate comparing to the current methods that give only about 70% success rate which 
is still a major problem with CRT today.    
According to the clinical studies recited above, the AV delay and VV interval need to be 
optimized for each CRT patient, may have different optimal values in exercise comparing to 
rest condition, and may change during 9 months follow up period.    
Several optimization methods of control parameters of pacemaker devices in correlation 
with hemodynamic performance were published. D. Hettrick et al [14], proposed to use the 
real time left atrial pressure signal as a feedback control mechanism to adjust one or more 
device parameters. D. Hettrick et al proposed to identify specific characteristics and 
attributes of the left atrial pressure signal that correlate to hemodynamic performance and to 
adjust the AV delay parameter of implanted dual chamber pacemaker accordingly. 
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R. Turcott [15], provided a technique for rapid optimization of control parameters of 
pacemakers and implanted cardioverters and defibrillators. Turcott proposed to pace the 
heart with a sequence of consecutive short evaluation periods of equal duration. Turcott 
proposed to monitor the transient cardiac performance during each of the evaluation phases 
and to estimate the optimal parameter settings based on changes in the transient cardiac 
performance from one parameter settings to another. 
Hettrick et al and Turcott proposed to use a gradient ascent scheme to adjust the AV delay 
and VV interval control parameters based on the left atrial pressure signal features (Hettrick 
et all), and changes in the transient cardiac performance from one parameter settings to 
another measured by any hemodynamic sensor (Turcott).  Hettrick et al and Turcott did not 
propose to use advanced optimization algorithms for the adjustments of the AV delay and 
VV interval. Gradient ascent methods may converge slowly, especially in a biological noisy 
environment, such as the cardiac system. Furthermore, gradient ascent methods may 
converge to a sub optimal local maximum. Hence, a simple gradient ascent method may 
result in sub-optimal therapy delivered to CRT patients. The mentioned gradient ascent 
methods disadvantages together with the clear clinical need of CRT patients to receive 
optimal therapy may open the door to a more sophisticated machine learning methods that 
can guarantee convergence and delivery of tailored to the patient optimal therapy. 
An adaptive CRT device control system based on reinforcement learning (RL) and using 
spiking neurons network architecture was presented in [2-4]. The adaptive CRT device 
control system architecture used a RL method combined with a Hebbian learning rules for 
the synaptic weights adjustments. The adaptive CRT device control system aim was to 
optimize online the AV delay and VV interval parameters according to the information 
provided by the implanted leads and a hemodynamic sensor.  
The adaptive CRT device control system used several operational states with a built in 
priority to operate in an adaptive state aimed to achieve optimal hemodynamic 
performance.  Other operational states were used to initialize the system and to operate as  
fallback states.  The adaptive CRT device control system architecture and operation is 
described in section 2 herein below.  
A Q Learning (QL) and a probabilistic replacement schemes were integrated with the 
adaptive CRT control system in [16] and are presented in section 3 herein below.  QL 
guarantees convergence online to optimal policy [17], and implemented in a CRT device 
controller, QL achieves optimal performance by learning the optimal AV delay and VV 
interval in all heart rates.   
With QL, an iterative equation that converges to the optimal policy is solved and a lookup 
table is calculated.  A probabilistic replacement scheme is utilized that replaces an input 
from a hemodynamic sensor with an input from the lookup table when selecting the next 
applied AV delay and VV interval.  The probability to replace the hemodynamic sensor 
input with the calculated lookup table value depends on the lookup table difference sign 
and magnitude that are used as confidence measure for the convergence of the QL scheme. 
QL combined with the probabilistic replacement scheme improve system performance over 
time that reach optimal performance even in the face of noisy hemodynamic sensor signal 
expected with the cardiac system, see Whinnett et al for example [10]. 
The major advantages of the adaptive CRT control system presented in this chapter are: 
1. QL scheme guarantees convergence to optimal policy which in the adaptive CRT 

application translates to a guarantee to learn the optimal pacing timings (i.e. guarantee 
to learn online the optimal AV delays and VV intervals).  
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2. QL converges to the optimal AV and VV values in rest and in exercise where CRT 
patients are more symptomatic and the converged optimal values are stored in a lookup 
table that guides the controller operations. 

3. Since the Adaptive CRT control system converges to the optimal AV and VV values 
online, a stress echo test proposed by P. Bordachar et al [11] and  G. Rocchi et al [13]  in 
a follow up procedure may not be needed.  

4. AV delay and VV interval optimization methods that use a pre-defined sequence of 
control parameters in a scan test may fail to converge to the true optimal values.  
Different pre-defined sequences of varying control parameters may lead to different 
heart conditions and responses, resulting in different estimated values of AV delay and 
VV intervals since the cardiac system is regulated by the autonomous nerve system and 
has a delayed time response till it stabilize in a new heart condition. 

In summary, an optimization method of the AV delay and VV interval that gradually 
converges to the optimal set of values is described in this chapter. The optimization method 
aim is to allow the cardiac system and the autonomous nerve system to stabilize gradually 
and reach optimum hemodynamic performance in correlation with a learned set of optimal 
control parameters delivered by the implanted pacemaker. Furthermore, the optimization 
method aim is to learn the optimal AV delay and VV interval in different heart conditions, 
and to identify and deliver the learned optimal values safely and efficiently. 
This chapter is organized as follows: In section 2 the adaptive CRT device control system 
architecture and operation are presented and the integration of QL and a probabilistic 
replacement scheme with the adaptive CRT device control system is presented in section 3. 
In section 4 simulation results performed with CRT response surface models are presented 
and section 5 is a conclusion. 

2. Adaptive CRT device control system architecture and operation  
The adaptive CRT device control system learns to associate different optimal AV delay and VV 
interval in each heart condition for a CHF patient treated with an implanted CRT device. The 
adaptive CRT control system uses a deterministic master module to enforce safety limits and 
to switch between operational states online with a build-in priority to operate in an adaptive 
state (implemented with a build-in priority state machine).  The adaptive CRT control system 
uses further a slave learning module that implements QL and a probabilistic replacement 
schemes. The learning module includes leaky I&F neural networks and sigmoid neural 
networks in order to learn to identify the heart state and to deliver optimal therapy. The 
adaptive control system uses both supervised learning and a model free reinforcement 
learning scheme. Supervised learning is used at initialization and fall back states of the priority 
state machine while QL is used in the higher priority adaptive atate. In the higher priority 
adaptive state, hemodynamic sensor signal and a QL lookup table calculted online are used. 
The control system architecture and operation is described herein below. 

2.1 Adaptive CRT device control system architecture 
The adaptive CRT device control system includes the following main modules: 
5. Spiking neurons network. 
6. Pattern recognition sigmoid neurons network. 
7. Built-in priority state machine. 
8. Configuration and register file. 
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2.1.1 Spiking neurons network architecture 
Neural network architectures are inspired by the human brain [18]. Spiking neural networks 
[19] are closer to biological neural networks and have advantages over other neural 
networks architectures (such as sigmoid neurons based network) in real time control 
applications. The spiking neural network perform parallel computation locally and 
concurrently, in real time. A leaky integrate-and-fire neuron module and a dynamic synapse 
module are the building blocks of the spiking neurons architecture.  
Leaky integrate-and-fire (I&F) neuron 
The leaky I&F neuron module is a simplified model of a biological neuron and is naturally 
adapted for control tasks where the learning objective is a time interval as in the adaptive 
CRT device where the learned control parameters are the AV delay and VV interval. The 
leaky I&F neuron is implemented as a digital state machine and two leaky I&F neurons 
networks are used, one for learning the right AV delay and the second for learning the left 
AV delay. The interventricular (VV) interval is the time difference between the right and the 
left optimal AV delays learned by the two leaky I&F neurons.  Each leaky I&F neuron is 
connected to a series of dynamic synapses, typically about 80 dynamic synapses are 
connected to each leaky I&F neuron.  The dynamic synapses weights are adjusted online, in 
each synapse locally and concurrently (in a hardware version of the controller), according to 
a set of learning rules in the non-adaptive state and to a second set of learning rules in the 
adaptive state.  
The leaky I&F neuron digital state machine is set initially to idle state waiting for an atrial 
sensed event. When an atrial sensed event occurs (sensed by an implanted lead in the right 
atria) the leaky I&F neuron state machine transits to a wait state where in each time step 
(typically a 1 milli second time step) the outputs of all dynamic synapses connected to the 
leaky I&F neuron are added to the value stored in a membrane potential register and 
compared with a threshold value. When the accumulated membrane potential value crosses 
the threshold value the state machine transits to a fire state, a spike is emitted through the 
leaky I&F neuron output, and the membrane potential register is reset to 0. The timing of the 
emitted spike measured relative to the sensed atrial event in milliseconds is the AV delay 
and the CRT device stimulates the right ventricles accordingly (the left ventricle is 
stimulated when the left leaky I&F neuron fires a spike similarly). Next the state machine 
transits to a refractory state for a predefined time period. The leaky I&F neuron state 
machine transits back to the initial idle state after the refractory period expired and it waits 
in the idle state to the next atrial sensed event.  
A leakage function that reduces the membrane potential value gradually at a pre-defined 
rate is implemented as a constant value subtracted from the membrane potential register at 
a constant rate. The leakage function adds timing sensitivity to the leaky I&F neuron and is 
used to generate a coherent operation of the dynamic synapse.  The I&F neuron membrane 
potential threshold is set to a value that can be crossed only when 3 to 5 dynamic synapses 
in a short time period emit a maximal post synaptic response (PSR). The dynamic synapses 
module is described below. 
Dynamic synapse 
Each dynamic synapse is implemented as a digital state machine. When an atrial event is 
sensed, a milli second timer starts to count and is used to trigger the dynamic synapses in a 
time sequence with a pre-defined time delay of 4 msec typically.  After receiving the trigger 
from the timer, each synapse state machine is propagated using it’s own local timer from 
state to state. The dynamic synapse states are: IDLE, WAIT, PRE-HEBB, HEBB, POST-HEBB, 
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REFRACTORY. Each dynamic synapse releases a post synaptic response in the HEBB state. 
The PSR magnitude is equal to the adjustable stored synaptic weight and is a time decaying 
function after the initial PSR is released.  All the dynamic synapses PSR’s are accumulated in 
the leaky I&F neuron membrane potential, and when the leaky I&F neuron emits a spike, 
the dynamic synapse state at the time of the spike in each synapse (may be WAIT, PRE-
HEBB, HEBB, POST-HEBB or REFRACTORY state) is captured and stored. The adjustments 
of the synaptic weights occur at the next sensed atrial event according to the locally 
captured synapse state and to the learning scheme (supervised learning in the non adaptive 
state and reinforcement learning in the adaptive state). Typically the synaptic weight stored 
in each synapse has values between 0 and 31.   
Dynamic synapse sub groups and time interleaving 
The dynamic synapses are divided to 5 sub groups according to heart rate ranges, from low 
heart rate range, to high heart rate range and are interleaved according to their excitation 
time order and heart rate group. The excitation timer triggers the appropriate dynamic 
synapses sub group according to the time relative to the sensed atrial event in each heart 
beat and to the current heart rate. The division of the dynamic synapse to sub groups allows 
learning and adjusting the optimal AV delay and VV interval in each heart rate range in real 
time throughout the CRT device operation in a patient body which is typically 5 to 7 years. 
This architecture allows efficient delivery and adjustment of the learned optimal values with 
faster convergence to the current optimal values.   
Supervised learning in the non adaptive state 
In the initial and the fall-back non-adaptive CRT state, the adaptive CRT device stimulates 
the two ventricles using the AV delay and VV interval values programmed by a clinician. 
The supervised learning task is to train the leaky I&F neurons to fire (i.e. emit a spike) at the 
programmed values relative to the sensed atrial event in each heart beat.  The learning task 
is to create significant and coherent post synaptic responses of 3 to 5 synapses at the proper 
times. The released PSR’s are then accumulated in the leaky I&F neuron membrane 
potential that crosses the threshold and fire at the target time (the programmed AV delay 
and VV interval). Generally, the learning rule increases the synaptic weights in those 
dynamic synapses that release a PSR just before the target time and reduces synaptic 
weights values of other dynamic synapses. 
 

 
Fig. 1. Hit count rate convergence.  
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A hit count rate is defined as the number of hits of the leaky I&F neuron spikes at a time 
window overlapping the target time (the programmed AV delay and VV interval).  The I&F 
neuron learns to fire at the target time window and the number of hits in a time frame of 32 
cardiac cycles  is used as a performance measure (shown in Fig. 1 above). When the leaky 
I&F neurons hit count rate achieves a high value (~30) in a time frame, the learning task is 
converged and a transition to the adaptive state is allowed. When the leaky I&F neurons hit 
count rate falls below a predefined value (~10) in a time frame, the learning task failed to 
and a transition to a lower priority state is forced by the build-in priority state machine. 
Reinforcement learning in the adaptive state 
In the adaptive CRT state a hemodynamic sensor signal responsive to pacing with different 
AV delay and VV interval is used as the reinforcement immediate reward [1]. Whinnett et al 
showed in a clinical study [10] that a CRT response surface with a global maximum as a 
function of the stimulation intervals AV delay and VV interval exist. The adaptive CRT 
device control system reinforcement learning scheme [2-4], assumes that a CRT response 
surface exists, and accordingly the synaptic weights reach a steady state values that causes 
the leaky I&F neurons to fire at the correct timings correlated with the CRT response surface 
maximum.   
The synaptic weights adjustments in the RL scheme are performed in two adjacent cardiac 
cycles as described in details below.  In the first cardiac cycle, a pacing register is increased 
or decreased by a pre programmed step, ∆. In the next cardiac cycle, the adaptive CRT 
controller stimulate the heart with the new value and the hemodynamic response is 
received. Using the current and the previous hemodynamic response and the stored HEBB 
states of each dynamic synapse, the synaptic weights adjustments are made in each synapse 
locally and concurrently.  
A random stepping mechanism is utilized as follows. In the first cardiac cycle a pacing 
register value is increased or decreased according to the I&F neuron spike timing, initialized 
by the sensed atrial event, and compared with the current pacing register value:  

 TSpike  >   P                               P = P + ∆ (1a) 

 TSpike  <   P                               P = P -  ∆ (1b) 

4 possible states are defined according to the flow diagram shown in Fig. 2 below  
 

 
Fig. 2. Synaptic adjustments flow diagram. 
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Where SV(P) and SV(P+/- ∆) are the hemodynamic response immediate reward stored in 
the current and the previous cardiac cycles (SV is the stroke volume extracted from the 
hemodynamic sensor signal and is used as a CRT response surface).  A hemodynamic 
sensor model [9] is used in the simulations presented in section 4 to extract the SV values 
with different AV delay, VV interval and heart rate. 
Next, according to the 4 possible states shown in Fig. 2 and the stored HEBB state in each 
synapse (PRE_HEBB, HEBB and POST HEBB) , the synaptic adjustments are : 

 Wi=Wi+λ when {PRE_HEBB, 3 or 1} or {HEBB, 4 or 2} or {POSTHEBB, 4 or 2} (2a) 

 Wi=Wi-λ when {HEBB, 3 or 1} or {POST HEBB, 3 or 1} or {PRE HEBB, 4 or 2} (2b) 

The synaptic weights are typically limited to the values of 0 to 31, with a a step value λ, 
typically 0.125. 
 

 
Fig. 3. Synaptic adjustments and the CRT response surface. 

In summary, the synaptic adjustments learning rule uses the Hebbian states stored in each 
dynamic synapse and the hemodynamic responses in two adjacent cardiac cycles to train the 
leaky I&F neurons to fire at the optimal timing that correlates with the maximal value of the 
CRT response surface (as a result of coherent release of several dynamic synapse PSR’s at 
the approperiate learned time). The adaptive CRT device control system learns to track the 
CRT response surface maximum online. When the heart rate changes, the CRT response 
surface shape changes too [10], and new optimal AV delay and VV interval values are 
learned and other steady state values of  synaptic weights are obtained and stored at the 
dynamic synapses.  Since these changes of the CRT response surface shape and the 
correlated optimal AV delay and VV interval are learned and stored at the dynamic 
synapses continuousuly in both the non adaptive and adaptive CRT states, the method 
maximizes the long term sum of the immediate rewards (i.e. the hemodynamic responses).  
In section 3 a QL scheme is presented that use Watkins and Dayan iterative equation and 
adds a probabilistic replacement scheme to QL [16]. 
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2.1.2 Pattern recognition sigmoid network architecture 
The pattern recognition sigmoid network includes two sigmoid neuron networks where each 
network has 16 sigmoid neurons in a layer, 16 synapses are connected to each sigmoid neuron, 
3 hidden layers and one linear output neuron. The two sigmoid networks are trained by a 
standard supervised learning delta rule [18]. The inputs to the pattern recognition networks 
are temporal patterns of the last 16 hemodynamic sensor responses stored at the controller 
memory in each heart beat. The supervised training values that the sigmoid network recieves 
every heart beat is the firing time of the leaky I&F neurons relative to the sensed atrial signal, 
i.e. the right AV delay for one network and the left AV delay for the second network. The 
pattern recognition networks learns to associate the learned optimal AV delay and VV interval 
of the leaky I&F neurons network with a temporal patterns of hemodynamic responses, i.e. 
hemodynamic performance signals exteracted from the hemodynamic sensor. Hence, the 
pattern recognition network learns to associate optimal AV delay and VV interval with a heart 
condition characterized by the temporal patterns of hemodynamic sensor. The operation of the 
build-in priority state machine described below depends on the successes and failures of the 
pattern recognition network to output the correct AV delay and VV interval values comparing 
to the values obtained by the leaky I&F neutons.     

2.1.3 Configuration and registers file  
The configuration and register file unit stores programmable parameters, such as the initial 
AV delay and VV interval, and other parameters needed for the initialization of the adaptive 
CRT control system. The programmable values of the AV delay and VV interval are used in 
the initialization and fall back non adaptive CRT state while in the non adaptive state the 
adaptive CRT device controller deliver stimulations with the learned optimal AV delay and 
VV intervals that correlates with the maximal hemodynamic responses values of the CRT 
response surface. 

2.1.4 Build-in priority state machine 
Fig. 4 shows the adaptive CRT priority state machine that has a build in logic that 
continuously directs the state machine to prefer and to transit to the highest priority 
adaptive state [21]. Switching to higher priority states require meeting convergence criteria 
and failing to meet convergence criteria results in transitions back to lower priority states.   
The lower priority initial and fallback state, the non adaptive CRT state, is the starting state. 
In the non adaptive CRT lower priority state, the leaky I&F neurons networks adjust their 
synaptic weights until convergence conditions are met (hit count rate is high) and the build-
in priority state machine can switch to a higher priority state, delivering optimal therapy 
with best hemodynamic performance. The build-in priority state machine in the higher 
priority adaptive state is guaranteed to deliver the optimal AV and VV Intervals using QL 
and a probabilistic replacement scheme. In the non adaptive CRT lower priority state the 
AV delay and VV interval programmed by a clinician are delivered as initialization and 
safety fallback values. The adaptive CRT build in priority state machine operation and 
switching conditions are described below. 
Non-adaptive CRT state 
In the non adaptive CRT state, the CRT device uses a programmed AV delay and VV 
interval delivering biventricular pacing with fixed AV delay and VV interval. In the non-
adaptive CRT state, a leaky integrate and fire (I&F) neurons synaptic weights are trained 
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using a supervised learning scheme and the synaptic weights reach a steady state values 
that bring the leaky I&F neurons to fire at the programmed AV delay and VV interval 
timings with high hit count rate as shown in Fig. 1 above, and after convergence is achieved 
switching to adaptive state is allowed. 
Gradient ascent (GA) state 
In the GA CRT state the AV delay and VV interval values are changed according to a 
random stepping mechanism (see equation 1a and 1b above), and the leaky I&F neurons 
synaptic weights are trained using a Hebbian and reinforcement learning scheme shown in 
Figs. 2 and 3 above. The leaky I&F neurons synaptic weights reach a steady state values that 
bring the leaky I&F neurons to fire at the optimal AV delay and VV interval correlated with 
the maximum of a CRT response surface extracted from a hemodynamic sensor that reflect 
for example the stroke volume dependence on the changing AV and VV delays. The GA 
scheme is designed to track continuously the maximum stroke volume on the CRT response 
surface as a function of pacing intervals in all heart condition. The leaky I&F neurons output 
the learned optimal pacing intervals with changing heart rates efficiently using a division of 
the dynamic synapses to sub groups according to the heart rate range.   
QL state 
In the QL state, the QL lookup table calculated according to Watkins and Dayan iterative 
equation [17], are used in addition to the hemodynamic sensor input according to a 
probabilistic replacements mechanism described in section 3. Q Learning combined with the 
probabilistic replacement mechanism enables the system to perform optimally also in a 
noisy biological environment and to improve the overall system performance online using 
its own predictions. The QL state brings the best hemodynamic performance, learned from 
the patient hemodynamic responses. The Adaptive CRT build-in priority state machine 
directs the control system to this highest priority QL state continuously [21]. 
Fail QL state 
In the FAIL-QL state the pattern recognition sigmoid neurons networks re-adjust their 
synaptic weights in order to map the input temporal patterns of CRT response with the 
leaky I&F neurons networks outputs. 
Switching criteria 
Switching between the four states occurs automatically back and forth during operation 
according to the heart condition and system performance with a build in preference to 
operate in the QL state that brings the best hemodynamic performance.  
Switching from the non-adaptive CRT state to the GA state occurs according to convergence 
of the leaky I&F neurons networks supervised learning scheme in the non-adaptive CRT 
state. The two leaky I&F neurons (one for the right AV delay and the second for the left AV 
delay) need to hit a target times with high rates in a time frame in order to enable a 
transition as shown in Fig. 1 above.  
Switching from the GA state to the optimal QL state occur according to successful 
association of the temporal pattern recognition sigmoid neural networks predictions 
(predicted AV delay and VV interval) compared with the I&F neurons network predictions. 
A hit count rate is calculated for the pattern recognition sigmoid neural networks similar to 
the hit count rate calculated for the leaky I&F neurons and the hit count rate value of the 
sigmoid neural networks are used as a performance measure that allows transition to the QL 
state when it crosses a predefined threshold value.   
Fallback from the GA state to the non-adaptive CRT state occurs according to pre-defined 
system failures that can be for example too low or too high AV delay and VV interval 
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(crossing pre-defined safety limits), too low or too high heart rate (or other arrhythmia 
detected) or a poor neural networks performance expressed as a too low hit count rate of the 
leaky I&F neuron due to sudden drifts of the networks outputs.    
Fallback from the QL state to the FAIL QL state occurs if too low hit count rate of the 
temporal pattern recognition sigmoid neurons networks are obtained. Fallback from the QL 
state to the FAIL QL state occurs when a sudden change in the heart condition occurs 
resulting in unfamiliar to the pattern recognition neural networks temporal patterns of 
hemodynamic sensor values. In such case, the pattern recognition sigmoid neurons 
networks need to learn to associate the new temporal patterns with new learned optimal 
values achieved by the leaky I&F neurons network in the new heart condition in order to 
switch back to a higher priority state. 
 

 
Fig. 4. Build-in priority state machine 

2.2 Device optimization during Implantation   
Due to the complexity and the cost of the follow up procedures using echocardiography, 
about 80% of CRT patients are not optimized in the US according to studies presented in 
Cardiostim conference, France 2006.  It is known that more then 30% of CRT patients do not 
respond to CRT and that CRT non-responders are identified only after 3 to 6 months with 
quality of life (QOL) questioners or 6 minutes hall walk distance test.  
The CLEAR study [22], with 156 pateints enrolled in 51 centers in 8 countries, demonstrated 
reduced mortality and heart failure related hospitalization in patients whose CRT device 
was optimized on a regular basis. Final results showed that regular optimization of CRT 
using Sorin Group’s SonR sensor technology improved clinical response rate to 86% as 
compared to 62% in patients recieving standard medical treatment.    
An adaptive CRT device, presented in this chapter, may be used to validate and identify 
responders to CRT in acute way[20]. The RL algorithm that changes automatically pacing 
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delays and converge gradually to maximal stroke volume of a CRT response surface will 
enable a clinician to identify a responder in 2-5 minutes during CRT implantation as 
simulated in Fig. 5 below.  A clinician may monitor the device operation on a programmer 
screen and validate the hemodynamic improvement according to a CRT responder curve 
shown in Fig. 5. Optimal CRT and lead positioning during CRT device implantation may 
turn a non-responder to a responder and a responder to a better responder [6]. The adaptive 
CRT device implant may allow a clinician using a responder curve to change and validate 
lead position and achieve optimal lead positioning sites during the implantation procedure. 
Hence, in addition to the potential long term benefits of a machine learning based adaptive 
CRT device control system, aimed to manage an implanted CRT device continuously in a 
patient body for typically 5 to 7 years, the adaptive CRT device control system presented in 
this chapter may allow: 
1. Acute Identification of CRT responders during implantation procedure. 
2. Optimal lead positioning validation during implantation procedure. 
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Fig. 5. CRT responder curve 

3. Q Learning and cardiac resynchronization therapy 
“Reinforcement learning differs from the more widely studied problem of supervised 
learning in several ways. The most important difference is that there is no presentation of 
input/output pairs. Instead, after choosing an action the agent is told the immediate reward 
and the subsequent state, but is not told which action would have been in its best long-term 
interests. It is necessary for the agent to gather useful experience about the possible system 
states, actions, transitions and reward actively to act optimally. Another difference from 
supervised learning is that on-line performance is important; the evaluation of the system is 
often concurrent with learning”[1]. 
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Watkins and Dayan QL is a model free reinforcement learning scheme where the agent 
converge to the optimal policy online solving an iterative equation, shown below, and 
without apriori knowledge of the environment states transitions [17].  

 (S,A)= Q(S,A)+ α( R(S,A)+ γ Q max A (S,A) -Q(S,A)) (1)  

A is the agent action, S is the environment state, Q(S,A)  is the expected discounted 
reinforcement of taking action A in state S, R(S,A) is an immediate reward response of the 
environment, α is a small learning rate factor (α << 1 ), γ is a discount factor (smaller then 1), 
Q max A (S,A) is the learned optimal policy, i.e. the optimal action A that give maximum Q 
value at a given state, S, out of the possible set of actions A.  The converged solution of 
Watkins and Dayan iterative equation is stored in a lookup table. 
With a CRT device, the two parameters that need to be optimized are the AV delay and the 
VV interval. Watkins and Dayan QL lookup table is calculated for each configuration of AV 
and VV values and for each configuration the possible actions assumed are limited to an 
increase or a decrease by constant value ∆P at a time (typically 5 ms step size is used) 
applied in the next cardiac cycle.  

 (S,A) = Q(AV, VV,  AV +/- ∆P, VV +/- ∆P) (2)  

A represents the pacemaker stimulation timings, AV delay and VV interval, S is the heart 
hemodynamic performance extracted from a hemodynamic sensor signal, Q(S,A)  is the 
calculated lookup table using a specific AV delay and VV intervals parameters and action A, 
R(S,A) is the immediate reward (a stroke volume  extracted from the hemodynamic sensor 
signal as an examples). Q max A (S,A) is the converged  Q value expected with the optimal AV 
delay and VV intervals and optimal action A.  
Watkins and Dayan proved [17] that by solving the iterative equation, the agent learns the 
optimal policy in a model free reinforcement leaning problem with a probability of 1 when 
the action space is visited enough times such that exploration of the action space is 
sufficient. The importance of Watkins and Dayan proof, adopted here for CRT pacemakers, 
is that the stimulation timings obtained by solving the iterative equation are guaranteed to 
converge to the optimal AV delay and VV without making any assumptions regarding the 
CRT responses surface shape. The guarantee to converge to the optimal AV delay and VV 
interval is the valuable benefit of using a sophisticated machine learning method, such as 
QL, in a CRT pacemaker. Since the AV delay and VV interval parameters are crucial for the 
success of the therapy [10-13, 21], the guarantee to converge to the optimal AV delay and VV 
interval is an important advantage over other optimization methods that do not guarantee 
convergence to optimal values. Furthermore, this advantage should open the door to 
implementation of machine learning methods, such as QL, in implanted medical devices 
such as CRT pacemakers and defibrillators. 
In the adaptive CRT control system presented here two control parameters, the AV delay 
and VV interval, were optimized at different heart rates. The QL scheme will be even more 
beneficial if more control parameters are needed to be optimized. In general, a QL scheme 
will be more beneficial when the action space is big and the agent needs to select its action 
from a bigger set of possible actions (i.e. control parameters).       

3.1 Probabilistic replacement scheme 
QL combined with a probabilistic replacement mechanism allows the adaptive CRT device 
to replace input gradients with its own predictions learned from the hemodynamic 
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responses to pacing with different AV delay and VV interval. Q Learning combined with 
probabilistic replacement mechanism enables the system to perform optimally also in a 
noisy biological environment, such as the cardiac system, and to improve the overall system 
performance using its own predictions. The probabilistic replacement scheme selects 
between input from a hemodynamic sensor and a calculated value obtained from the QL 
lookup table with a probability that depends on the calculated lookup table. The magnitude 
of the difference of the optimal action Q value and a sub-optimal action Q value is used as a 
confidence measure in the probabilistic replacement scheme [16].  
Fig. 6 is a flow chart diagram, explaining the leaky I&F spiking neurons synaptic weight 
adjustmants combined with the probabilistic replacement scheme.  The modification shown  
in Fig. 6 comparing to the flow diagram of Fig. 2 is that the selection conditions depends 
now on the stroke volumes difference (calculated in the current and previous cardiac cycle) 
or the QL lookup table difference magnitude which is used as a confidence measure of the 
probabilistic replacement scheme. After a selection of one out of four possible states is 
performed, the synaptic weight adjustment are performed in the same manner as described 
in [2-4 and 16].  The probabilistic replacement mechanism affects the synaptic weight 
adjustments directly since it determines the selection of one of the four possible states 
shown in Fig. 6 , and it affects the random stepping mechanism indirectly since the spike 
timing , T,  depends on the values of the adjusted synaptic weights and T value compared to 
the pacing register value, P, determines the step selection. 
   

 
Fig. 6. Synaptic adjustments with the probabilistic replacements scheme 

Regulation of α and threshold parameters  
Watkins and Dayan iterative equation (Eq. 1) learning rate parameter α, determines the 
convergence rate of the solution of the iterative Q Learning lookup table. With a high value of 
α the QL iterative equation will converge faster. However, in noisy environment a too big α 
parameter may cause instability in the Q Learning scheme. Hence an automatic regulation of α 
is used to ensure proper performance. The regulation scheme is based on a replacements rate 
counter calculated online and a maximal steady replacement rate value is typically 80%. This 
high limit value determines the effectiveness of the probabilistic replacement scheme. 
When a QL replacement is performed as shown in Fig. 6, a replacement counter is 
incremented and the replacement counter is reset to 0 every 2000 cardiac cycles typically. 
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The number of replacements performed in a time period depends on the α value and on 3 
threshold values that are used in the replacement probabilistic mechanism. The α  
parameter is set initially to a low value (typically 0.02) and is incremented slowly if the 
replacement rate is below the programmed high limit (typically 80%) until it reach the 
maximal value allowed for α (typically 0.05). When the replacement rate is higher then the 
maximal value allowed α is decreased (lower limit for α is typically  0.002).  
The 3 thresholds values regulation scheme depends on the value of α and on the calculated 
replacement rate. The initial thresholds values are set to low values (typically 10, 20 and 30).  
The values of the 3 thresholds determine three ranges for selecting the lookup table 
prediction replaceing the hemodynamic sensor input and determining 3 confidence ranges. 
The magnitude of the difference of the optimal action Q value and a sub-optimal action Q 
value is compared with the 3 threshold values and accordingly a replacement of the 
hemodynamic sensor input with the lookup table prediction is selected with a probability 
that depends on the 3 ranges. When the diffefence magnitude is high, a replacement is 
performed with a high probability and vice versa.  
When α is maximal (0.05) and the replacement rate is still too low the thresholds will be 
lowered. When α is minimal (typically 0.002) and the replacement rate is still too high the 3 
thresholds will be incremented gradually till the replacement rate will be lowered. The aim 
of both α and the 3 thresholds values regulation is to maintain a steady replacement rate 
close to the maximal value required  (typically 80%). The replacement rate value defines the 
efficiency of the QL scheme to correct errors of noisy biological inputs using the learned 
environment responses acquired in the QL lookup table (the probabilistic replacement 
mechanism use the magnitudes of the diffefnce in addition to it’s sign).     

4. Simulation results  
In the simulation results section we first show that the adaptive CRT control system learns to 
deliver the optimal pacing timings, i.e. the optimal AV delay and VV interval that maximize 
the CRT response with varying heart rate (Fig. 7). Next we show that with the combined QL 
and probabilistic replacement mechanism, the adaptive CRT control system reach the optimal 
performance in a noisy environment almost independent to the noise level (Fig. 8). We 
compare simulation results with and without the combined QL and probabilistic replacement 
mechanism to show that it out perform a simple gradient ascent scheme with varying noise 
levels (Fig. 9), and finally we show that QL scheme enables the system to escape from local 
maximum and to converge to the global maximum of a CRT response surface (Fig. 10).  
Simulations of the adaptive CRT device control system and the CRT response surface were 
performed using Matlab-Simulink version 7.6. The adaptive CRT control system application 
was coded in C and compiled as a Simulink S-function. Simulink S-functions were also used 
for implementing timers (Atrial-Atrial timer that defines the simulated heart rate and for the 
AV and VV delays for example) in order to simulate a real time, interrpts based application. 
Fig. 7 shows the AV delay and VV interval obtained in a  simulation that starts at a heart rate 
of 60 beats per minute (BPM), then the heart rate changes to 100 BPM and to 120 BPM and 
relax back to 100 BPM and to 60 BPM periodically. Pre programmed optimal AV delay of the 
simulated CRT response surface were 160 ms at 60 BPM, 130 ms at 100 BPM and 90 ms at 120 
BPM. Optimal pre programmed VV intervals were 0 at 60 BPM, -10 at 100 BPM and -30 at 120 
BPM. The simulation results shown in Fig. 7 follow accurately the optimal values. 
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Fig. 7. Dynamic optimization of AV and VV intervals 

 
Fig. 8. RT responses convergence with QL in a noisy environment  
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Fig. 8 shows a normalized CRT response (defined further below) in its upper part and an 
average deviation from optimal values in its bottom part, calculated during a long 
simulations with varying heart rate. The normalized CRT response grows during the 
simulation and shows deeps at the first part of the simulation. After convergence of the 
combined QL and probabilistic replacement mechanism, the normalized CRT response 
reach the maximal value with almost no deeps and remain steady at the maximal value 
while the noise level added to the hemodynamic sensor signal is effetive during all the 
simulation. The average deviation from optimal AV delay and VV values  shown in Fig 8 
bottom part is high initially, shows some peaks during a convergence period with generally 
lower values and then reach a minimal steady value of 10 msec. Fig. 8  proves in a 
simulation that the adaptive control system learns to deliver pacing with optimal AV and 
VV intervals in rest and exercise conditions in a noisy environment and the overall system 
performance improves during the simulation and reach the optimal performance, i.e. the 
agent learns and acts according to the optimal policy in a noisy environment. 
Since the CRT surface responses are proportional to the patient cardiac output, Fig. 8 shows 
that the combined QL and probabilistic replacement mechanism has the potential to increase 
the cardiac output of CRT patients which is a major goal of CRT. Hence machine learning 
methods may be clinically beneficial to CHF patients and this advantage may open the door 
for machine learning methods implemented in implanted medical devices [16, 23, 24].   
Fig. 9 shows the adaptive CRT device system performance with and without learning with 
varying random noise levels added to the hemodynamic sensor input, i.e. to the CRT 
response surface. The system performance with a simple gradient ascent scheme (without 
learning)  falls linearly with the growing random noise level to below 70% of the optimal 
performance while QL combined with the probabilistic replacement scheme is able to 
improve the system performance and keep it almost at the optimal system performance with 
no noise at all noise levels shown. 
 

 
Fig. 9. System performance with QL in noisy environment 
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The normalized CRT response shown in Figs. 8 and 9 is defined as a normalizaed average of 
CRT responses calculated during each simulation period of 2000 cardiac cycles. 

 Averaged CRT Response =1/2000 * Σ12000  CRT Response(i) (3) 

A normalize CRT Response, that takes into account the surface global maximal value and 
the minimal value at a given heart rate is calculated according to  Eq. 4 below:  

Normalized CRT Response = [Averaged CRT Response – CRT Response 
Min]/[CRT Response Max – CRT Response Min] * 100 (4)  

Where at heat rate of 60 BPM :  
CRT Response Min  = CRT Response (worst values AV=60,VV=0) 
CRT Response Max  = CRT Response (optimal values AV=160,VV=0) . 
An important aspect of the QL based adaptive CRT control system is its ability to converge 
to the global maximum of the CRT response surface when it includes also a local maximum. 
Fig. 10 shows the pacing histogram obtained with a long simulations of 1 million cardiac 
cycles with random noise and compares the results obtained with and without Q Learning. 
The simulation starts at low AV delay of 90 ms in vicinity of a local maximum in the 
simulated CRT response surface. The simulated pacing histograms shows that without QL 
the histogram has a stronger peak at the local maximum of 90 ms and a weaker peak at the 
global maxima of 160 ms.  With Q Learning the histogram is peaked at the global maximum 
of 160 ms and only a small peak is seen at the local sub optimal maximum of 90 ms. 
 

 
Fig. 10. Convergence to the global maxima with QL  

7. Conclusions 
In this chapter we present an adaptive control system for a CRT device based on QL and a 
probabilistic replacement mechanism aimed to achieve patient specific optimal pacing 
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therapy for CHF patients implanted with a CRT device.  The learning target was to learn to 
deliver optimal AV delay and VV interval in all heart conditions and in a biological noisy 
environment.  The adaptive control system uses a deterministic master module that enforce 
safety limits and switch between operational states online with a build-in priority to operate 
in the adaptive state, and a learning slave module that use QL and probabilistic replacement 
mechanism and includes leaky I&F neural networks and sigmoid neural networks in order 
to identify heart conditions and to learn to deliver optimal therapy.  
A combined QL and probabilistic replacement mechanism may allow the adaptive CRT 
device to replace hemodynamic sensor inputs with its own calculated predictions learned 
from the environment responses to pacing. The combined QL and probabilistic replacement 
mechanism may enable the adaptive CRT control system to perform optimally in a 
biological noisy environment, such as the cardiac system. 
The adaptive CRT device aim is to increase the patient hemodynamic performance (cardiac 
output for example) and to be clinically beneficial to CRT patients especially in high heart 
rates where CRT patients are more symptomatic [10]. Pre-clinical and clinical studies are 
needed to prove the clinical benefits of an adaptive CRT device bases on machine learning 
methods.   
Adaptive control systems that learn to deliver optimal therapy were proposed for two other 
implanted medical devices:  Vagal stimulation device that learns to regulate the patient 
heart rate combined in one can with a CRT device that improve cardiac efficiency by 
learning to optimize at the same time also the AV delay and VV interval [23], and a deep 
brain stimulation (DBS) device adaptive control system that learns the optimal control 
parameters that reduce uncontrolled movements of Parkinson’s disease patients [24].  
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