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Preface

Some components in human breath have been proven to be associated with certain
diseases and the concentration of these components is linked to disease status.
Recently, breath signal diagnosis has attracted increasing research interests. Many
kinds of breath signal acquisition systems and breath signal processing methods
have been reported. However, there are still a lot of challenging works to be done,
for example, how to acquire breath signal in a fast, accurate, and informative way,
how to preprocess the breath signal to rule out the outliers and increase the quality
of the signal, and how to extract efficient features and find proper classifiers for
breath diagnosis.

This book focuses on these challenging issues. Novel breath signal acquisition
systems based on multiple breath sensors were described first. In order to collect
samples effectively, we developed a sample acquisition system with sensor fusion
technology. To detect the drift of breath signals, we provided optimized prepro-
cessing frameworks, such as using transfer samples and regression models. To
represent breath signals completely, we discovered different types of breath signal
features, such as spatial feature, frequency feature, deep learning feature, etc.
Moreover, we also provided many effective algorithms for breath signal classifi-
cation and recognition, such as curve-fitting models and sparse representation
classification.

All of the technologies, algorithms, and medical application cases described in
this book were applied in our research work and have proven to be effective in
breath signal analysis. First, this book presents a comprehensive introduction on the
useful techniques of breath signal acquisition methods using different kinds of
chemical sensors, cooperated with the optimized selection and fusion acquisition
scheme. Then, this book introduces the effective preprocessing approaches, such as
drift removing and feature extraction methods. Moreover, the classification methods
used as case studies are also provided. Finally, this book provides discussions and
concluding remarks to indicate some promising directions on the studies and
medical applications of computerized breath diagnosis. This book will benefit the
researchers, professionals, graduate and postgraduate students working in the field
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of breath sample diagnosis, signal processing, pattern recognition,biometrics, etc.
This book will also be very useful for interdisciplinary research.

Our team has been working on the breath analysis research on computational
TCM diagnosis over 10 years. Under the grant support (Grant No. 61332011) from
National Natural Science Foundation of China (NSFC) and Hong Kong Polytechnic
University, we had started our studies on this topic. The authors would like to thank
Dr. Zhaotian Zhang, Dr. Xiaoyun Xiong, and Dr. Ke Liu from NSFC for their
consistent support to our research work.

Hong Kong, China David Zhang
Winston-Salem, USA Dongmin Guo
Bethesda, USA Ke Yan
February 2017
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Chapter 1
Introduction

Abstract In this introductory chapter which sets the scene for this book, the back-

ground which stimulates this research work is first provided. The motivation for the

focus of the work is then explained, highlighting the importance of the breath analy-

sis used in disease diagnosis, of the development of breath analysis device, and of the

design of specific pattern recognition algorithm for breath analysis. This is followed

by a statement of the objective of the research, a brief summary of the work, and a

general outline of the overall structure of the present study.

Keywords Breath analysis ⋅ Electronic olfaction ⋅ Therapy monitoring ⋅ Chemical

sensor ⋅ Disease identification

1.1 Background and Motivation

As early as 1970s, Jellum et al. (1973) had stated that, “If one were able to identify
and determine the concentration of all compounds inside the human body, including
highmolecular weight as well as lowmolecular weight substances, one would proba-
bly find that almost every known disease would result in characteristic changes of the
biochemical composition of the cells and of the body fluids.” From the metabolism

point of view, the “metabolic profile” is representative of the internal chemistry of

human body. Therefore, its external expression, like breath, blood, urine, and skin

excretions, can be exploited as the source of information to diagnose diseases or

detect them at an early stage (D’Amico et al. 2008).

The exploitation strictly associates with finding the reliable ways of accessing it,

developing the consequent range of suitable instruments used to perform the mea-

surements, and designing the appropriate data analysis algorithm to discover patho-

logical features from the “metabolic profile” (D’Amico et al. 2008). Because of these

restrictions, at present, only the composition of human fluids such as blood and urine

is analyzed and utilized as an effective approach for diagnostic tasks. Even though

such approach is accurate, it is invasive, time consuming, and harmful to not only the

subjects but also the personnel who collect the samples. Recently, great efforts have

been done about seeking effective approaches to noninvasive and self-help diagnosis

© Springer Nature Singapore Pte Ltd. 2017
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4 1 Introduction

of disease. As a result, there are increasing concerns about the applications of breath

analysis in medicine and clinical pathology both as a diagnostic tool and as a way to

monitor the progress of therapies.

The present work includes three aspects: designing a specific device, collecting

breath data, and analyzing these data. The following sections highlight the signifi-

cance of the study and discuss the reasons why develop the current work.

1.1.1 Why Is Breath Analysis Used in Disease Diagnosis?

Breath analysis is the examination of breath for the presence of certain compounds

to determine the presence of some diseases and conditions in the human body.

Endogenous molecules in exhaled breath, such as acetone, nitric oxide, hydrogen,

and ammonia, are produced by metabolic processes. They are separated from blood

and enter into the alveolar air via the alveolar pulmonary membrane (D’Amico et al.

2008; Schubert et al. 2004; Miekisch et al. 2004). Variation in the concentration

of these molecules can suggest various diseases or at least changes in metabolism

(Amann et al. 2005). For instance, nitric oxide in breath can be measured as an indi-

cator of asthma or other conditions characterized by airway inflammation (Deykin

et al. 2002). Increased pentane and carbon disulfide have been observed in the breath

of patients with schizophrenia (Phillips et al. 1993). Breath concentration of volatile

organic compounds (VOCs) such as cyclododecatriene, benzoic acid, and benzene

are much higher in lung cancer patients than in control groups (Phillips et al. 2007).

Acetone has been found to be more abundant in the breath of diabetics (Deng et al.

2004; Fleischer et al. 2002), and breath ammonia is significantly elevated in patients

with renal diseases (Davies et al. 1997). These molecules are considered as biomark-

ers of the presence of diseases and clinical conditions. Much can be learnt from them

about the overall state of an individual’s metabolism or physical condition.

Breath analysis has many advantages compared with other traditional methods

such as blood and urine tests (Van Berkel et al. 2008). First, breath analysis is a non-

invasive method, and it causes the least harm to both the subjects and the personnel

who collect the samples. Secondly, its result can be obtained immediately, and third,

the sample collection is quite easy for a subject, since the only requirement to collect

a breath sample is that the subject must be breathing. Therefore, increasing interest

has been expressed about the applications of breath analysis in medicine and clinical

pathology, both as a diagnostic tool and as a way to monitor the progress of therapies

(Di Francesco et al. 2005; Dweik and Amann 2008).

1.1.2 Why Should Breath Analysis System Be Developed?

As aforementioned, the exploitation of “metabolic profile” strictly associates with

the reliable ways of accessing it and the suitable instruments used to perform the
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measurements. It is obvious that breath analysis is a possible way to access the

“metabolic profile”, so finding an efficient apparatus to discover the pathological

features is a significant and critical task for breath analysis.

Currently, the measurement of exhaled breath is usually performed by two com-

mon gas analysis apparatuses, gas chromatography (GC) (Phillips 1997), or elec-

tronic nose (e-nose) (Thaler and Hanson 2005). GC can separate and identify mole-

cules that are responsible of typical odors occurring in specific diseases. It is very

accurate for disease identification. But this kind of apparatus is expensive and not

portable, its sampling and assaying processes are complicated and time consum-

ing (about one hour for one sample), and its results require expert’s interpretation

(Amann et al. 2004). Therefore, it is hard to use such apparatus as a domestic or

clinical tool.

A less expensive and more portable alternative is e-nose. Unlike GC that identi-

fies molecules directly, e-nose works like human olfaction that functions as a non-

separative mechanism. It is cheaper and faster (requiring only 30 min for one sample)

and is often used outside of medicine, in fields related to food, chemistry, fragrances,

and environment (Rock et al. 2008). Recently, e-nose has gradually been used in

medicine for the diagnosis of renal disease (Lin et al. 2001), diabetes (Yu et al.

2005), lung cancer (Blatt et al. 2007), and asthma (Dragonieri et al. 2007). While

all of these methods work satisfactorily in breath analysis, the results could possibly

be improved. That is because, commercial e-noses, for the sake of their marketing

concerns, have to provide some versatility in applications, such as coffee, wine, and

fragrances identification. The versatility, in contrast, limits their performance in dis-

ease detection since their sensor selection has to match broad applications.

As a result, it is necessary to develop a specific device for breath analysis. The

device should have the advantage of both GC and e-nose: noninvasive, painless,

high accuracy, low cost, and user-friendly. A possible solution is to select highly

accurate chemical sensors that are specifically sensitive to compounds of human

breath and the indicators of certain diseases. Each sensor in the sensor array should

have a different sensitivity profile over a range of compounds expected in the target

application, e.g., the detection of an unknown disease. Therefore, the sensor array

provides distinct response patterns to different analytes.

1.1.3 Why Should Specific Algorithms Be Designed for
Breath Analysis?

1.1.3.1 Sensor Selection

The breath analysis system that the book proposes includes multiple sensors. This

kind of design offers system broad applications in medicine, but is problematic in

practice. Since each sensor has a specific contribution in identifying a type of dis-

ease, not all sensors in the system are needed when we only want to detect one type
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of disease. For sensors that are not sensitive to the biomarkers of a given disease,

they may only generate slightly different responses. These sensors would provide

redundant information, which might interfere with the identification. However, it is

difficult to decide which sensor is more useful for an unknown sample because some

sensors are cross-sensitive to the biomarkers of the diseases. Therefore, a proper

sensor selection approach should be involved in the system.

1.1.3.2 Feature Extraction

The shape of odor signal obtained by chemical sensor is different from other signals

like speech, image, and electric current. Compared with other signals, the odor sig-

nal is smooth and weakly distinguishable and therefore has less distinct features to

extract. Additionally, breath signals obtained by chemical sensors are often in such

case: (1) these data are with high dimensionality since there are often tens of chem-

ical sensors included in a sensor array; (2) the amount of signal samples is limited,

due to the time cost of diseased breath sample collection. However, it is known that

if the number of features extracted from the original samples is too large relative to

the number of the training samples, the features will become less distinguishable and

may lead to the degrading of the performance of the trained classifier. Accordingly,

finding a compact feature representation is the critical problem we are facing when

conducing odor signal recognition.

1.1.3.3 Classifier Design

Breath signals are with high dimensionality and the number of samples is limited, as

aforesaid, which means the number of samples utilized to train the classifier is too

small relative to the dimensionality of data in each sample. In this case, the traditional

statistical pattern recognition methods may not work well, since the efficiency of

these methods is highly dependent on the interrelationship between sample sizes,

number of features, and structure of classifiers (Jain and Mao 2000).

Besides, in the medical applications of breath analysis, one of them is physical

condition monitoring, which monitors the subjects’ physical condition by grouping

the samples into “well controlled”, “somewhat controlled”, “poorly controlled”, and

“not controlled” according to the status of disease control and development. It is

clear that there is an order among these values. Therefore, common classification

methods, which treat the samples as a set of unordered data, are not suitable for our

application tasks.

Accordingly, specific pattern recognition algorithms should be designed for the

breath signals in order to achieve different medical application tasks.
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1.2 Relative Technologies

Based on the aforementioned statement, the present work focuses on designing

breath analysis system and analyzing the breath data for medical application, such

as disease diagnosis and physical condition monitoring. Specifically, the following

research objective will be achieved:

∙ System design:

– Develop a special system for breath analysis;

– Define the standard breath gas collection and signal sampling procedure;

∙ Data collection:

– Collect samples and build database for all kinds of diseased samples associated

with the compounds of human breath, such as diabetes, lung cancer, and renal

diseases.

– Build database for patients with different level of diseases;

∙ Pattern recognition algorithm design:

– Design a technique to choose an optimal configuration of sensors from a whole

sensor set for a given medical application;

– Establish signal preprocessing algorithms to correct drift in e-nose signals such

as instrumental variation and time-varying drift;

– Extract multi-type of features and design a multi-feature fusion technique to

determine the optimal feature set for a given medical application;

– Develop different classifiers for different medical applications;

∙ Applications:

– Disease diagnosis: identify a subject as healthy or as with either diabetes, renal

disease, airway inflammation, gastroenteritis, or lung cancer.

– Condition monitoring: monitor the development of diabetes by measuring the

breath acetone of patients;

– Medical treatment evaluation: evaluate the medical treatment of patients with

end-stage renal failure by measuring the concentration of ammonia in patient’s

breath.

1.3 Outline of the Work

The organization of this book is presented as follows.

Chapter 2 reviews the general methods used in breath analysis. The limitations

and drawbacks of these methods are pointed out and some valuable conclusions from

the current investigation are presented.

http://dx.doi.org/10.1007/978-981-10-4322-2_2
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In Chap. 3, a specific breath analysis system is described. The system structure,

user interface, and system performance are introduced first. Then, the data collec-

tion and preprocessing are presented. Finally, the databases formed by the samples

collected by the designed system are described.

Chapter 4 proposes an automatical sensor selection method, which utilizes LDA

technique to compute the weight of each sensor, and therefore to choose an optimal

configuration of sensors from a whole set of available sensors for a given disease

identification task.

In Chap. 5, four techniques will be developed to evaluate the sensors perfor-

mance in a breath acquisition system. Proposed statistics aim at judging the impor-

tance, unique discriminating information and redundancy of each sensor based on

the exhaustive search results of all the possible sensor arrays.

Chapter 6 describes two approaches, windowed piecewise direct standardization

(WPDS) and standardization error-based model improvement (SEMI), to correct

instrumental variation and make the prediction models of e-noses more transferable.

Chapter 7 introduces transfer-sample-based multitask learning (TMTL) to simul-

taneously address instrumental variation and time-varying drift.

Chapter 8 proposes an approach named drift correction autoencoder (DCAE) to

deal with complex drift of e-noses.

In Chap. 9, maximum independence domain adaptation (MIDA) is presented for

unsupervised drift correction.

Chapter 10 applies the classical support vector machine recursive feature elimi-

nation (SVM-RFE) algorithm to feature selection and improves it by incorporating

a correlation bias reduction (CBR) strategy into the feature elimination procedure.

Chapter 11 proposes a Sparse Representation-based Classification (SRC) method

for breath sample identification. The method expresses an input signal as the lin-

ear combination of a small number of the training signals, which are from the same

category as the input signal. The selection of a proper set of training signals in rep-

resentation, therefore, gives us useful cues for classification.

Chapter 12 introduces a breath analysis system to measure acetone in human

breath, and therefore to evaluate the blood glucose levels of diabetics.

Chapter 13 investigates the potential of breath signals analysis as a way for blood

glucose monitoring.

Chapter 14 proposes several targeted approaches to improve the accuracy of dia-

betes screening and blood glucose level (BGL) prediction.

In Chap. 15, a novel optimized medical e-nose system specially for disease diag-

nosis and blood glucose level (BGL) prediction is proposed.

Finally, the conclusions drawn from this study and the directions of future work

are summarized in Chap. 16.

http://dx.doi.org/10.1007/978-981-10-4322-2_3
http://dx.doi.org/10.1007/978-981-10-4322-2_4
http://dx.doi.org/10.1007/978-981-10-4322-2_5
http://dx.doi.org/10.1007/978-981-10-4322-2_6
http://dx.doi.org/10.1007/978-981-10-4322-2_7
http://dx.doi.org/10.1007/978-981-10-4322-2_8
http://dx.doi.org/10.1007/978-981-10-4322-2_9
http://dx.doi.org/10.1007/978-981-10-4322-2_10
http://dx.doi.org/10.1007/978-981-10-4322-2_11
http://dx.doi.org/10.1007/978-981-10-4322-2_12
http://dx.doi.org/10.1007/978-981-10-4322-2_13
http://dx.doi.org/10.1007/978-981-10-4322-2_14
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Chapter 2
Literature Review

Abstract This chapter discusses some of the key issues in breath analysis and

reviews some previous research work in the areas which are particularly relevant

to the present study. Following a brief introductory overview of the field, the chapter

first presents the development of breath analysis. Traditional approaches like GC

which have been used to analyze the compounds of breath and identify several dis-

eases are then described. This is followed by a detailed introduction of current major

approaches, e-noses, for breath analysis. The final section gives a short summary of

the chapter.

Keywords Breath analysis ⋅ Electronic olfaction ⋅ Therapy monitoring ⋅ Chemical

sensor ⋅ Disease identification

2.1 Introduction

Breath analysis is the examination of breath for the presence of certain compounds

to determine the presence of some diseases and conditions in the human body. The

breath is largely composed of oxygen, carbon dioxide, water vapor, nitric oxide, and

numerous VOCs (Cao and Duan 2007). The type and quantity of the VOCs in the

breath of any particular individual will vary but there is nonetheless a comparatively

small common core of breath which is present in all humans (Phillips et al. 1999b).

The molecules in an individual’s breath may be exogenous or endogenous depend-

ing on their origin (Miekisch and Schubert 2006). Exogenous molecules are those

that have been inhaled or ingested from the environment or other sources such as air

or food and are hence of no diagnostic value (Risby and Solga 2006). Endogenous

molecules are produced by metabolic processes. They pass from the blood through

the alveolar pulmonary membrane and enter the alveolar air. As a result, the mole-

cules in the breath have a direct relationship with their types, concentrations, volatil-

ities, lipid solubility, and rates of diffusion when they circulate in the blood and cross

the alveolar membrane (Sehnert et al. 2002). Table 2.1 summarizes the typical com-

positions from the breath of healthy persons and their concentrations (Phillips et al.

1999b, Risby and Solga 2006). Changes in the concentration of these molecules can

suggest various diseases or at least changes in the metabolism.

© Springer Nature Singapore Pte Ltd. 2017
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Table 2.1 Typical compositions from the breath of healthy persons and their concentrations

Concentration (𝜈∕𝜈) Molecules

Percentage Oxygen, water, carbon dioxide

Parts-per-million
Acetone, carbon monoxide, methane, hydrogen, isoprene,

benzenemethanol

Parts-per-billion

Formaldehyde, acetaldehyde, 1-pentane, ethane, ethylene, other

hydrocarbons, nitric oxide, carbon disulfide, methanol, carbonyl sulfide,

methanethiol, ammonia, methylamine, dimethyl sulfide, benzene,

naphthalene, benzothiazole, ethane, acetic acid

Table 2.2 Physiological origins of some endogenous breath molecules

Breath molecules Physiological origins

Acetaldehyde Ethanol metabolism

Acetone Decarboxylation of acetoacetate

Ammonia Protein metabolism

Carbon disulfide Gut bacteria

Carbon monoxide Production catalyzed by heme oxygenase

Carbonyl sulfide Gut bacteria

Ethane Lipid peroxidation

Ethanol Gut bacteria

Ethylene Lipid peroxidation

Hydrocarbons Lipid peroxidation/metabolism

Hydrogen Gut bacteria

Isoprene Cholesterol biosynthesis

Methane Gut bacteria

Methanethiol Methionine metabolism

Methanol Metabolism of fruit

Methylamine Protein metabolism

Nitric oxide Production catalyzed by nitric oxide synthase

Pentane Lipid peroxidation

By studying the components of the breath, much can be learnt about the over-

all state of an individual’s metabolism or physical condition. Table 2.2 presents

some physiological origins of endogenous breath molecules (Risby and Solga 2006).

These molecules are considered as biomarkers of the presence of diseases and clin-

ical conditions. For instance, nitric oxide in breath can be measured as an indicator

of asthma or other conditions characterized by airway inflammation (Deykin et al.

2002). Breath isoprene is significantly lower in cystic fibrosis patients with acute res-

piratory exacerbation (McGrath et al. 2000). Increased pentane and carbon disulfide

have been observed in the breath of patients with schizophrenia (Phillips et al. 1993).

Acetone has been found to be more abundant in the breath of diabetics (Deng et al.
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2004; Fleischer et al. 2002), and breath ammonia is significantly elevated in patients

with renal diseases (Davies et al. 1997). By detecting these molecules in breath, one

can identify the diseases in an early stage and monitor their development.

Breath analysis has many advantages compared with other traditional methods

such as blood and urine tests, including the following major ones. First, breath analy-

sis is a noninvasive method, and it causes the least harm to both the subjects and the

personnel who collect the samples. Second, its result can be obtained immediately,

and third, the only requirement to collect a breath sample is that the subject must be

breathing (Van Berkel et al. 2008). Therefore, increasing interest has been expressed

about the applications of breath analysis in medicine and clinical pathology, both as

a diagnostic tool and as a way to monitor the progress of therapies (Di Francesco

et al. 2005; Dweik and Amann 2008).

2.2 Development of Breath Analysis

The breath analysis for the purpose of diagnosis has a long history. The ancient Greek

physicians already knew that human breath could provide clues to diagnosis (Phillips

1992). For example, doctors in ancient Greece knew the existence of sweet breath

was a dangerous sign and modern clinicians know that exhaled air from patients with

diabetic ketoacidosis smells sweet like rotting apples. Ancient Greek physicians also

recognized musty and fishy odors indicated a problem with liver, a urine-like smell

indicated failing kidneys, and a putrid stench indicated a lung abscess. Olfaction

diagnosis is also one of the basic diagnostic methods of Chinese Traditional Medi-

cine, which has a history of 5000 years. The ancient Chinese doctors stated that the

aroma of human breath could indicate the condition of the human body (Zhufan

2000). They found that foul breath is due to pathogenic heat in the stomach or indi-

gestion and sour breath indicates food accumulation in the stomach.

Modern breath analysis started in the 1970s when Pauling et al. (1971) pioneered

the analytical assessment of breath components by the GC analysis of exhaled air

and identified more than 200 compounds in human breath exhaled after passing the

blood/air interface within the lungs. Some of these compounds were associated with

different pathological conditions.

With the technical progress of various analytical methods such as GC and the

sensor system during the past few decades, breath measurement by GC and e-nose

have become two common approaches. GC is a chemical analysis instrument for

separating chemicals in a complex sample. By coupling with a detector, like Mass

Spectrometry (MS) or Flame Ionization Detection (FID), it can positively identify

the actual presence of a particular substance in a given sample. Despite its excellent

sensitivity, GC usually requires the preprocessing of breath samples and separation

for addressing target analytes, which renders this method less suitable for analyzing

samples in real time. Besides, GC is expensive and hard to move. It requires skilled

operators and qualified expert’s interpretation. Therefore, it is difficult to implement

GC as an online screening and quick diagnosis tool. For these reasons, e-nose might

provide an alternative means of breath analysis.
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E-nose utilizes chemical sensors to obtain ‘smell-prints’ of various gaseous

sources and distinguish them with the help of pattern recognition algorithms, pro-

viding discrimination of gas mixtures irrespective of the individual molecular com-

ponents. Compared with GC, e-nose measurement is regarded as a nonspecific test

which principally follows an empirical approach. Although largely qualitative or

semi-quantitative in nature, such approach is ideal for rapid screening for infectious

diseases because the results can be obtained in minutes, rather than the days taken

by traditional techniques (Turner and Magan 2004).

In the following sections, the current literatures about breath analysis by using

both GC and e-nose are reviewed in detail. The reviewed contents are categorized

according to the type of the diseases.

2.3 Breath Analysis by GC

In virtue of GC or GC linked with Mass Spectrometry (GC/MS), researchers can find

out which biomarkers indicate some diseases and explain the pathological mecha-

nisms associated with these diseases. The list of diseases reported below, is related

to a series of works found in literature. Each of diseases is associated with certain

biomarkers, which can be detected by GC or GC/MS.

2.3.1 Lung Cancer

In the past two decades, a noteworthy body of research about breath analysis has

been oriented toward the identification of some particular VOCs as markers of lung

cancer, one reason may be that the lung has a close connection with breath.

As early as 1985, by using a specially developed breath collection technique and

computer-assisted GC/MS, Gordon et al. (1985) identified 22 VOCs, such as hexane,

methylpentane, and benzene derivatives, in the exhaled air of patients with lung can-

cer. The GC/MS profiles of 12 diseased samples and 17 controlled samples were ana-

lyzed to distinguish patients from controlled group with the accuracy of over 80%.

Three years later, in 1988, O’Neill et al. (1988) also analyzed the compounds

of exhaled breath from both lung cancer patients and healthy subjects, in virtue of

GC/MS, and classified the compounds into 16 chemical classes, and then sorted all

compounds into these chemical classes and classified the compounds at the >75%

and >90% occurrence levels. Both the occurrence-rate components were then eval-

uated as diagnostic markers in a discriminant function model.

About a decade later, in 1999, Phillips et al. (1999a) collected breath samples from

108 patients with an abnormal chest radiograph and analyzed them by GC. The inves-

tigation found that a combination of 22 breath VOCs, predominantly alkane, alkane

derivatives, and benzene derivatives, could discriminate between patients with and

without lung cancer with 100% sensitivity and 81.3% specificity.
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Table 2.3 The definition of sensitivity and specificity

Test outcome
Sensitivity Specificity

Positive Negative

Actual

condition

Positive tp fn tp
tp + fn

tn
tn + fpNegative fp tn

It is necessary to introduce the definition of sensitivity and specificity. In medi-

cine, the reliability of a diagnosis is measured in terms of sensitivity and speci-

ficity, with the outcome being either positive (unhealthy) or negative (healthy). In

the classification, the number of genuine sick subjects is denoted tp; misidentified

healthy subjects is fp; genuine healthy subjects is tn; the misdiagnosed sick subjects

is denoted as fn (Blatt et al. 2007). Sensitivity and specificity are thus defined as in

Table 2.3.

And then, in 2003, to evaluate VOCs in the breath as tumor markers in lung can-

cer, Phillips et al. investigated the breath compounds of 178 bronchoscopy patients

and 41 healthy volunteers by using GC (Phillips et al. 2003a). In this study, the num-

ber of biomarkers of lung cancer was reduced to nine in comparison with the report

issued in 1999 (Phillips et al. 1999a). The results showed that a predictive model

employing the nine VOCs could identify the primary lung cancer with a sensitivity

of 89.6% and a specificity of 82.9%.

In these studies, it turned out that some specific compounds occur in anomalous

concentration in the breath of lung cancer patients.

2.3.2 Lipid Peroxidation

Alkanes (principally ethane and pentane) in the breath result from cellular injuries

which cause an intracellular accumulation of oxygen-free radicals and accelerated

peroxidation of polyunsaturated fatty acids (Van Gossum and Decuyper 1989). The

peroxidation of lipids may result in membrane injury, with the dysfunction and death

of the affected cells. From 1991, several research groups started to find the connec-

tion between the breath pentane and diseases related to lipid peroxidation.

Weitz et al. (1991) first measured pentane in the breath of 10 healthy control

subjects and 20 consecutive patients with suspected acute myocardial infarction. The

results showed the breath pentane concentration was higher in the acute myocardial

infarction group than in the patient control and healthy control groups.

Then, by using a GC, Sobotka et al. (1993a) measured compounds in the breath

of patients with chronic heart failure (CHF) and age matched controls in 1993, and

found out that the patients with CHF excreted high concentrations of pentane.
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In the same year, to determine the concentrations of pentane and other VOCs in

the breath of patients with schizophrenia, Phillips et al. (1993) measured the exhaled

breath in 25 patients with acute schizophrenic psychosis, 26 patients with psychiatric

disorders other than schizophrenia, and 37 normal volunteers by GC/MS. The results

demonstrated that the mean alveolar gradients of pentane and carbon disulfide were

significantly higher in the patients with schizophrenia than in the control groups. As

a result, schizophrenia could be detected by measuring the concentration of pentane

and carbon disulfide in breath.

Next year, in 1994, Sobotka et al. (1993b) studied 37 consecutive outpatients with

stable cardiac allograft function. Breath pentane levels were measured with GC. The

investigation found out that breath pentane could be measured as a potential marker

of acute cardiac allograft rejection.

In 1995, Phillips et al. (1995) first combined GC with a self-designed Breath Col-

lecting Apparatus (BCA) to analyze the breath samples. The composition of the sub-

ject database was the same as Ref. Phillips et al. (1993). Pattern recognition models

using 11 VOCs, such as 2-methylbatane, pentane, and dichloromethane, identified

the patients with schizophrenia with a sensitivity of 80% and a specificity of 61.9%.

The paper also indicated that the VOCs in breath were not significantly affected by

drug therapy, age, sex, smoking, diet, or race.

In 1997, to determine if exhaled pentane levels were increased in acute asthma,

Olopade et al. (1997) collected 12 acute asthma patients, 11 stable asthma patients,

and 17 normal control subjects and analyzed them using a GC. The result showed

exhaled pentane levels were similar in patients with stable asthma and in normal

control subjects, while the levels were increased in patients with acute asthma.

In 2003, by using GC, Phillips et al. (2003c) analyzed breath VOCs in 30 patients

with unstable angina confirmed by coronary angiography and in 38 age-matched

healthy volunteers. They selected 8 VOCs, like pentane and hexane as biomarkers to

construct a predictive model that correctly classified unstable angina patients with a

sensitivity of 90% and a specificity of 73.7%.

2.3.3 Renal Diseases

This kind of disease is due to the inability of kidneys to filter blood substances,

resulting in the accumulation of nitrogen-bearing waste products (urea), which are

usually excreted in urine and blood. It then eventually causes ammoniacal breath of

patients.

In 1997, Davies et al. (1997) used selected ion flow tube(SIFT) technique to quan-

tify ammonia on the breath of 23 patients with end-stage renal failure. The study

showed several compounds were present in patients’ breath samples, including amine

and alcohol, and in quantitative terms ammonia was by far the most significant abnor-

mality. The study also monitored the reduction of breath ammonia during hemodial-

ysis. Accordingly, ammonia can be regarded as a critical biomarker to detect renal

failure and monitor the medical treatment of this disease.



2.3 Breath Analysis by GC 17

2.3.4 Liver Diseases

Liver diseases were first investigated by Sehnert et al. (2002), based on abnormal

concentrations of metabolic products in exhaled breath. Exhaled breath collected

from 86 liver diseases patients and 109 healthy subjects were analyzed by GC. The

experiments showed that subjects with chronic liver diseases could be differentiated

from those with normal liver function by comparing the levels of breath carbonyl

sulphide, carbon disulphide, and isoprene. These differences were confirmed and

correlated by comparing the levels with standard clinical blood markers of liver dis-

eases.

2.3.5 Breast Cancer

Breast cancer is accompanied by increased oxidative stress and induction of poly-

morphic cytochrome P-450 mixed oxidase enzymes (CYP) (Phillips et al. 2003b).

Both processes affect the abundance of VOCs in the breath because oxidative stress

causes lipid peroxidation of polyunsaturated fatty acids in membranes, producing

alkanes and methylalkanes which are catabolized by CYP (Phillips et al. 2003b).

In 2003, Phillips, et al. (2003b) collected 201 breath samples from women with

breast cancer and analyzed them by GC/MS in order to determine the volatile mark-

ers of breast cancer. Eight breath VOCs, like nonane and tridecane, 5-methylused

were used to identify this disease. The breath test distinguished between women with

breast cancer and healthy volunteers with a sensitivity of 94.1% and a specificity of

73.8% (Phillips et al. 2003b).

2.3.6 Diabetes

It has long been known that the blood of diabetics contains acetone. Diabetes occurs

when the glucose produced by the body cannot enter the bloodstream to provide

energy to cells. Glucose enters the cells of body with the help of insulin. If the body

is not producing insulin (type 1 diabetes), or the body becomes less responsive to

insulin (type 2 diabetes), glucose cannot get into the cells. As a result, the cells have

to use fat as an energy source. In the process of metabolizing fat for energy, one of the

by-products is ketones. When ketones are accumulated in the blood, it first causes

ketosis, and then progresses to ketoacidosis, a form of metabolic acidosis (Laffel

1999). There are three ketone bodies—acetoacetate, acetone, and 𝛽-hydroxybutyrate

in the blood. Among them, 𝛽-hydroxybutyrate is the predominant ketone present in

severe diabetic ketoacidosis (Umpierrez et al. 1995).

As early as 1969, Tassopoulos et al. (1969) measured the breath acetone of 251

diabetics after overnight fasting, by using GC. At the same time, the authors also
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measured the patients’ venous 𝛽-hydroxybutyrate and blood glucose values, and

showed that the concentration of breath acetone has quite a high correlation with

both venous 𝛽-hydroxybutyrate and blood glucose values.

The relationship between breath acetone and plasma acetone was confirmed by

Sulway et al. (1970) in 1970, who tested the plasma and breath acetone of 27 diabet-

ics and discovered that the concentration of breath acetone and plasma acetone was

linearly correlated with some scatter at the higher concentration.

Additionally, Crofford et al. (1977) proved that the concentration of acetone in the

head space of the sealed container containing whole blood was approximately equal

to the alveolar air acetone concentration. And then, in 1982, Owen et al. (1982) stud-

ied acetone metabolism in nine diabetic patients in moderate to severe ketoacidosis

and observed that there was a positive linear relationship between the breath acetone

production rate and the plasma acetone concentration. In 2004, Deng et al. (2004)

analyzed the breath of healthy persons and patients with diabetes by using GC/MS.

The results proved that the increased concentration of acetone in diabetics’ breath

could be used as a marker for diagnosis of diabetes.

2.3.7 Pulmonary Tuberculosis

Pulmonary tuberculosis may alter the VOCs in breath because both mycobacteria and

oxidative stress resulting from mycobacterial infection generate distinctive VOCs in

human body (Phillips et al. 2007).

Phillips et al. (2007) studied the breath of patients with pulmonary tuberculosis

to determine if the breath contains biomarkers of this kind of disease in 2007. 130

different VOCs were consistently detected. The most abundant were naphthalene,

1-methyl-, 3-heptanone, etc. These VOCs were assayed by GC/MS in the breath

of 42 patients hospitalized for suspicion of pulmonary tuberculosis and 59 healthy

controls. Pattern recognition methods distinguished the healthy controls from the

hospitalized patients with 100% sensitivity and 100% specificity.

2.3.8 Summary

Table 2.4 summarizes the key breath compounds associated with different disease

types analyzed by both GC and pathological mechanism. Even though the clinical

application of GC might be hampered by the need for expensive analytical equip-

ment, the degree of expertise required to operate such instruments, and the length

of time required to obtain results (Turner and Magan 2004), GC plays a critical role

in confirming these compounds associated with certain diseases. These compounds

not only help explain the pathological mechanism of these diseases, but also are of

benefit to selecting proper sensors when designing the specific breath analysis sys-

tem.
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Table 2.4 Summary of key breath compounds associated with different disease types

Breath compounds Associated conditions

Acetone Diabetes (Deng et al. 2004)

Carbonyl sulphide, carbon disulphide, isoprene Liver diseases (Sehnert et al. 2002)

Naphthalene, 1-methyl-, 3-heptanone,

methylcyclododecane, etc.

Pulmonary tuberculosis (Phillips et al. 2007)

Nonane, tridecane, 5-methyl, undecane,

3-methyl, etc.

Breast cancer (Phillips et al. 2003b)

Benzene,1,1-oxybis-, 1,1-biphenyl, 2,2-diethyl,

furan, 2,5-dimethyl-, etc.

Lung cancer (Phillips et al. 2003a)

Ammonia Renal disease (Davies et al. 1997)

Octane, 4-methyl, decane, 4-methyl, hexane,

etc.

Unstable angina (Salazar 2003)

Propane, 2-methyl, octadecane, octane,

5-methyl, etc.

Heart transplant rejection (Phillips et al. 2004)

Pentane, carbon disulfide Schizophrenia (Phillips et al. 1993)

Pentane Acute myocardial infarction (Weitz et al. 1991)

Pentane Acute asthma (Olopade et al. 1997)

Pentane Rheumatoid arthritis (Humad et al. 1988)

Ethane Active ulcerative colitis (Sedghi et al. 1994)

Nitric oxide Asthmatic inflammation (Baraldi and Carraro

2006)

Nitric oxide, carbon monoxide Bronchiectasis (Kharitonov et al. 1995),

(Horvath et al. 1998)

Nitric oxide COPD (Maziak et al. 1998)

Ethane, propane, pentane, etc. Cystic fibrosis (Barker et al. 2006)

2.4 Breath Analysis by E-Nose

The idea of e-nose was inspired by the mechanisms of human olfaction. In general,

basic elements of an e-nose system include an ‘odor’ sensor array, a data preproces-

sor, and a pattern recognition engine (Craven et al. 1996). Among them, the sen-

sor array, like signal receptors, is the key part of e-nose. The application of sensor

array on odor recognition was demonstrated firstly by Persaud and Dodd (1982).

Currently, e-nose has undergone much development and been used to fulfill a large

number of industrial needs, such as food, chemistry, fragrances, security, and envi-

ronment (Rock et al. 2008). In addition to its contributions to analytical chemistry

and biotechnology, artificial olfaction also has a significant impact on the field of

medicine since the compounds listed in Table 2.4 may be detected by chemical sen-

sors (Dickinson et al. 1998). Recently, the feasibility of using e-noses for monitoring

the health of human and diagnosing diseases in an early stage has been demonstrated

(Lin et al. 2001; Yu et al. 2005; Blatt et al. 2007; Dragonieri et al. 2007).
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As early as 1997, Wang et al. (1997) designed an e-nose with one SnO2 thin film

sensor for diabetes diagnosis. The authors tested their device by using the breath

samples collected from 18 patients and 14 healthy persons. The concentration of

blood sugar of the subjects was used as reference. The results showed that the e-nose

was able to diagnose diabetes with a sensitivity of 77.8% and a specificity of 35.7%.

In 2001, Lin et al. (2001) reported a study about the application of e-nose with

six quartz crystal sensors to detect renal diseases. Discriminant Analysis (DA) was

carried out to analyze the sensor signals. The clinical test result showed that the

e-nose could discriminate the breath samples from 30 normal subjects, 83 uremia

patients, and 61 chronic renal disease patients with a total correct classification of

86.78%.

In 2003, Yu et al. (2004) developed an e-nose with two SAW sensors for lung

cancer detection. The breath samples of four patients with lung cancer and four nor-

mal subjects were collected by using Tedlar bags and then pre-concentrated by solid

phase micro extraction (SPME) to increase the sensitivity. The e-nose was calibrated

by 9 VOCs identified as the markers of lung cancer. An Artificial Neural Network

(ANN) was used to recognize the lung cancer patients. The result showed that in four

healthy samples, three of them were recognized correctly and one of them was recog-

nized as suspected patient; in four patients, three of them were diagnosed correctly

and one of them was diagnosed as suspected.

In 2003, Di Natale et al. (2003) used an e-nose composed by eight quartz microbal-

ance (QMB) gas sensors to analyze the breath samples, which were collected from

60 individuals, 35 of them were affected by lung cancer, 18 individuals were mea-

sured as healthy, and 9 were measured after the surgical therapy. The application of

a Partial Least Squares Discriminant Analysis (PLS-DA) found out that 100% lung

cancer-affected patients were classified correctly, 94% healthy individuals were clas-

sified correctly, and 44% of post-surgery patients were classified correctly.

In 2005, Yu et al. (2005) developed a gas analyzing system using four conducting

polymer sensors to analyze the breath samples from three diabetics and three normal

people. The discrimination between patients and normal persons were interpreted by

the PCA plus Euclidean distances with 100% sensitivity and 100% specificity.

In 2005, Machado et al. (2005) investigated exhaled breath of people by using a

commercial e-nose, the Cyrano Sciences’ Cyranose 320, comprising an array of 32

polymer carbon black composite sensors. PCA and Canonical Discriminant Analysis

(CDA) sensor data were used to determine whether exhaled gases could discriminate

between cancer and non-cancer. Support Vector Machine (SVM) analysis was used

to create a cancer prediction model prospectively in a separate group of 76 individu-

als, 14 with cancer, and 62 without cancer. The results showed a sensitivity of 71.4%

and a specificity of 91.9% of lung cancer detection.

In 2007, Dragonieri et al. also used Cyranose 320 to obtain the responses of

exhaled air of patients with asthma and healthy controls. The responses were ana-

lyzed by LDA. Cross-validation values plus Mahalanobis distance were calculated

for classification. The accuracy to classify the mild asthma and young controls is

100%, to classify severe asthma and old controls is 90%, to classify mild and severe

asthma is 65%, and to classify two controlled groups is 50%.
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In 2007, Blatt et al. (2007) reported their work about lung cancer detection by

using an e-nose with 6 MOS sensors. They analyzed the breath of 101 persons, of

which 58 as controls and 43 suffering from different types of lung cancer (primary

and not) at different stages. Nonparametric LDA was used to extract the features of

the sensors’ responses. The features were classified by several supervised pattern

classification techniques, based on different K-nearest neighbor (KNN) approaches,

linear and quadratic discriminant classifiers, and on a feed forward ANN. The

observed results showed an accuracy of 92.6%, a sensitivity of 95.3%, and a speci-

ficity of 90.5% for lung cancer diagnosis.

In 2009, Ogorodnik et al. (2008) analyzed VOCs from a breath sample of a patient

with different lung diseases by using an e-nose with ten MOSFET sensors and four

SnO2 sensors. In total, 66 individuals—23 with asthma, 3 with chronic obstructive

pulmonary disease (COPD), 12 with pneumonia, 13 with lung cancer, 4 in the past

operation state (removed lung cancer), and 11 healthy volunteers were tested at two

different times and ANN analysis was employed to classify the samples of cancer

and other lung diseases. The results showed that the e-nose could identify lung can-

cer with 100% accuracy, identify healthy subjects with 100% accuracy, and identify

asthma with 82.6% accuracy.

In 2009, using Cyranose 320, Dragonieri et al. (2009) analyzed the exhaled breath

samples to discriminate patients with lung cancer from COPD patients and healthy

controls. The breath samples were collected from 30 subjects, 10 patients with

non-small cell lung cancer, 10 patients with COPD, and 10 healthy controls. The

responses were analyzed by onboard statistical software. The method could distin-

guish non-small cell lung cancer from COPD and from normal people with 85% and

90% accuracy, respectively.

In 2010, Guo et al. (2010b) designed a breath analysis system, which includes 12

chemical sensors that are specially sensitive to the biomarkers and compositions in

human breath. 108 healthy breath samples, 117 samples from diabetics, 110 sam-

ples from patients with renal diseases, and 110 samples from patients with airway

inflammation were collected. PCA + KNN were used to evaluate the performance.

The results showed that the system was not only able to diagnose these diseases with

quite high accuracy, but in the case of renal failure was also helpful in evaluating the

efficacy of hemodialysis (treatment for renal failure).

In 2010, by using the same system and the same diabetes breath samples, Guo et

al. (2010c) proposed a method of monitoring the blood glucose levels of diabetics

via measuring the concentration of breath acetone. A SVM classifier was used to

evaluate the accuracy of classifying the samples into the groups with different blood

glucose levels. The results indicated that the system was not only able to distinguish

between breath samples from patients with diabetes and healthy subjects, but also

to represent the fluctuation of blood glucose of diabetics. In the same year, Guo

et al. (2010a) improved accuracy of diabetes condition monitoring by using a SRC

method. Coupling with SRC, the system was able to classify these levels with a much

better accuracy than the accuracy reported in Guo et al. 2010c.

In 2013, Saraolu et al. (2013) tried to develop an e-nose with 9 quartz crystal

microbalance (QCM) sensors. The e-nose was used to measure the breath of 30
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diabetes patients. Signals from 6 sensors were normalized then fed into a radial basis

function neural network (RBFNN). The final average accuracy rate was 83.03 and

74.76% for HbA1c parameter predictions and glucose parameter predictions, respec-

tively.

In 2014, an e-nose with 6 MOS sensors, 3 temperature modulated MOS sensors, a

carbon dioxide sensor, and a temperature-humidity sensor was proposed by Yan et al.

(2014). It was optimized for diabetes screening and blood glucose level prediction.

Several optimization strategies, such as sensor selection, humidity and alveolar air

ratio compensation, and inter-subject variance reduction, were implemented. The

sensitivity and specificity of diabetes screening were 91.51% and 90.77%, respec-

tively. The mean relative absolute error for BGL prediction was 21.7%. Experiments

showed that the system was effective and that the strategies adopted in the system

could improve its accuracy.

The same e-nose was further applied to collect breath samples from 5 kinds of

patients, see Table 2.5. They have been proved to be related to certain breath bio-

markers. The paper (Yan and Zhang 2016) proposed drift correction autoencoder

(DCAE) to deal with instrumental variation and complex time-varying drift of e-

noses. Experiments in the paper exhibited the potential of breath analysis systems as

adjunct tools for disease screening.

To sum up, Table 2.5 concludes the current reports about the medical applications

of e-noses.

From Table 2.5, we can see some limitations about the current researches: (1)

Even though some works provided promising disease identification results, the sam-

ple number they used are not enough to provide a stronger statistical evidence to

support the claim. (2) Most of the relevant systems have fewer sensors. We agree

that it is not going to be very useful by simply adding more sensors. But it is nec-

essary to provide a sufficiently redundant amount of sensors thus we can pick up

the most sensitive ones in applications. Consequently, it therefore requires us to add

more sensors in our system and collect enough typical samples for analysis.

2.5 Summary

This chapter reviewed some previous researches about breath analysis. General

breath analysis approaches, like GC and e-nose, were introduced according to the

type of the diseases analyzed. And some summaries were made about the disease

biomarkers and current approaches. From these summaries, we can see that even

though all of these methods work satisfactorily in breath analysis, the results could

possibly be improved. The portable and low cost device is required to achieve a broad

application in breath analysis.
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Table 2.5 The application of e-noses in medicine

Diseases Sensors Database Algorithm Results

Diabetes

(Wang et al. 1997)

1 SnO2 thin film

sensor

18 patients
Fuzzy clustering

Sensitivity: 78%

14 healthy

persons

Specificity: 36%

Renal diseases

(Lin et al. 2001)

6 quartz crystal

sensors

30 healthy

persons

DA

CRI/CRF:

90.16%

83 uremia Uremia: 79.52%

61 chronic renal

disease
Healthy: 100%

Lung cancer

(Yu et al. 2004)

2 SAW sensors

+GC

4 lung cancer
ANN

3 lung cancer

4 healthy persons
2 suspected

3 healthy persons

Lung cancer

(Di Natale et al.

2003)

8 QMB gas

sensors

35 lung cancer

PLS-DA

Lung cancer: 94

9 post-surgery Post-surgery: 44

17 healthy

persons
healthy: 100%

Diabetes (Yu

et al. 2005)

4 conducting

polymer

3 diabetics PCA + Euclidean

distances

Sensitivity: 100%

3 healthy persons Specificity: 100%

Lung cancer

(Machado et al.

2005)

32 carbon black

and polymers

sensors

14 lung cancer
SVM

Sensitivity:

71.4%

62 healthy

persons

Specificity:

91.9%

Asthma

(Dragonieri et al.

2007)

32 carbon black

and polymers

sensors

10 mild asthma

PCA+Mahala-

nobis distances

Mild asthma and

young controls:

100%

10 severe asthma

Severe asthma

and old controls:

90%

10 younger

controls

Mild and severe

asthma: 65%

10 older controls
Two controlled

groups: 50%

Lung cancer

(Blatt et al. 2007)

6 MOS sensors
43 lung cancer

Fuzzy-KNN

Sensitivity:

95.3%

58 controlled

patients

Specificity:

90.5%

(continued)
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Table 2.5 (continued)

Diseases Sensors Database Algorithm Results

Lung cancer

(Ogorodnik et al.

2008)

6 MOSFET

sensors
23 asthma

ANN

Lung cancer:

100%

4 MOS sensors

3 COPD Healthy: 100%

12 pneumonia Others: 82.6%

13 lung cancer

4 post surgery

11 healthy

persons

Lung cancer

(Dragonieri et al.

2009)

32 carbon black

and polymers

sensors

10 lung cancer
PCA +

Mahalanobis

distances

Distinguish lung

cancer from

COPD: 85%

10 COPD
From healthy:

90%

10 healthy

controls

Diabetes renal

diseases airway

inflammation

(Guo et al.

2010b)

12 MOS sensors

108 healthy

PCA+KNN

Diabetes:

sensitivity:

87.67%

117 diabetes
Specificity:

86.87%

110 renal diseases

Renal diseases:

sensitivity:

86.57%

110 airway

Inflammation

Specificity:

83.47%

Airway

inflammation:

sensitivity:

70.20%

Specificity:

75.07%

Diabetes (Guo

et al. 2010a)

12 MOS sensors

90 diabetes:

PCA + SRC

Level 1: 50%

4 level 1 Level 2: 83.67%

49 level 2 Level 3: 60%

20 level 3
Level 4: 76.47%

17 level 4

Diabetes

(Saraoğlu et al.

2013)

9 QCM sensors 30 patients RBFNN
HbA1c: 83.03%

BG: 74.76%

(continued)
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Table 2.5 (continued)

Diseases Sensors Database Algorithm Results

Blood glucose

(BG) and HbA1c

level for diabetics

(Yan et al. 2014)

6 MOS sensors

295 healthy

279 diabetes

PCA + SVM

Diabetes: 82.16%

3 temperature

modulated MOS

sensors

CKD: 84.27%

1 carbon dioxide

sensor

Cardiopathy:

89.94%

1 temperature-

humidity sensor

Lung cancer:

81.34%

Breast cancer:

82.92%

Diabetes

chronical kidney

disease (CKD)

cardiopathy lung

cancer breast

cancer (Yan and

Zhang 2016)

6 MOS sensors 125 healthy

DCAE + logistic

regression

Diabetes: 82.16%

3 temperature

modulated MOS

sensors

431 diabetes CKD: 84.27%

1 carbon dioxide

sensor
340 CKD

Cardiopathy:

89.94%

1 temperature-

humidity sensor

97 cardiopathy
Lung cancer:

81.34%

156 lung cancer Breast cancer:

82.92%215 breast cancer
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Chapter 3
A Novel Breath Acquisition System Design

Abstract Certain gases in the breath are known to be indicators of the presence

of diseases and clinical conditions. These gases have been identified as biomarkers

using equipments such as gas chromatography (GC) and electronic nose (e-nose). GC

is very accurate but is expensive, time consuming, and non-portable. E-nose has the

advantages of low-cost and easy operation, but is not particular for analyzing breath

odor and hence has a limited application in diseases diagnosis. This chapter proposes

a novel system that is special for breath analysis. We selected chemical sensors that

are sensitive to the biomarkers and compositions in human breath, developed the

system, and introduced the odor signal preprocessing and classification method. To

evaluate the system performance, we captured breath samples from healthy persons

and patients known to be afflicted with diabetes, renal disease, and airway inflam-

mation respectively and conducted experiments on medical treatment evaluation and

disease identification. The results show that the system is not only able to distinguish

between breath samples from subjects suffering from various diseases or conditions

(diabetes, renal disease, and airway inflammation) and breath samples from healthy

subjects, but in the case of renal failure is also helpful in evaluating the efficacy of

hemodialysis (treatment for renal failure).

Keywords Breath analysis ⋅ Electronic olfaction ⋅ Therapy monitoring ⋅ Chemical

sensor ⋅ Disease identification

3.1 Introduction

In recent years, there were increasing concerns about the applications of breath

analysis in medicine and clinical pathology both as a diagnostic tool and as a way

to monitor the progress of therapies (Di Francesco et al. 2005; Dweik and Amann

2008). Comparing with other traditional methods such as blood and urine test, breath

analysis is noninvasive, real-time, and least harmless to not only the subjects but also

the personnel who collect the samples (Van Berkel et al. 2008). The measurement of

breath air is usually performed by gas chromatography (GC) (Phillips 1997) or elec-

tronic nose (e-nose) (Thaler and Hanson 2005). GC is very accurate but is expensive
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and not portable, its sampling and assaying processes are complicated and time con-

suming (about one hour for one sample), and its results require expert interpretation

(Amann et al. 2004). A less expensive and more portable alternative is e-nose. It is

cheaper and faster (requiring only 30 min for one sample) and is often used outside

of medicine, in fields related to food, chemistry, fragrances, security, and environ-

ment (Rock et al. 2008). Recently, e-nose has gradually been used in medicine for

the diagnosis of renal disease (Lin et al. 2001), diabetes (Yu et al. 2005), lung cancer

(Blatt et al. 2007), and asthma (Dragonieri et al. 2007). While all of these methods

work satisfactorily, they can each identify only one particular disease. One reason

for the limited applications of e-noses in breath analysis might be the design of com-

mercial e-noses for broad applications rather than for breath analysis specifically. We

thus propose a new specific breath analysis system in this chapter in order to extend

the applications in medicine.

The system makes use of chemical sensors that are particularly sensitive to the

biomarkers and compositions in human breath to trigger responses to a patient’s

breath sample. In contrast to the broad panel of nonspecific sensors used in commer-

cial e-noses, the sensors of our system were specifically selected for their responses

to known components of human breath. The sample is injected into the system using

an auto-sampler at a fixed injection rate to guarantee all samples are sampled under

the same criterion. The chemical sensors sense the sample and accordingly form a

kind of “odorprint" that is typically associated with a given disease or condition. The

“odorprint" is then sent to computer for signal processing and pattern recognition.

We evaluated the system in two experiments. In the first, we classified subjects with

renal failure before and after hemodialysis. In the second, we applied the system to

distinguish between healthy subjects and subjects suffering from three types of dis-

eases/conditions (diabetes, renal disease, and airway inflammation). The experimen-

tal results show that our system can fairly accurately measure whether hemodialysis

has been effective and can identify the three conditions/diseases with quite a high

level of accuracy.

The remainder of this chapter is organized as follows. Section 3.2 describes the

composition of the human breath and the certain diseases that may be associated with

certain gaseous compounds. Section 3.3 describes how a subject’s breath is sam-

pled, the setup of the sensor array, and how data is processed. Section 3.4 explains

the experimental details. Section 5 gives the experimental results and discussion.

Section 3.6 summarizes our work.

3.2 Breath Analysis

Human breath is largely composed of oxygen, carbon dioxide, water vapor, nitric

oxide, and numerous volatile organize compounds (VOCs) (Cao and Duan 2007).

The type and number of the VOCs in the breath of any particular individual will

vary but there is nonetheless a comparatively small common core of breath which

are present in all humans (Phillips et al. 1999). The molecules in an individual’s
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Table 3.1 Typical compositions from the endogenous breath of the healthy persons

Concentration

(v∕v)
Molecule

Percentage Oxygen, water, carbon dioxide

Parts-per-million Acetone, carbon monoxide, methane, hydrogen, isoprene, benzenemethanol

Parts-per-billion

Formaldehyde, acetaldehyde, 1-pentane, ethane, ethylene, other

hydrocarbons, nitric oxide, carbon disulfide, methanol, carbonyl sulfide,

methanethiol, ammonia, methylamine, dimethyl sulfide, benzene,

naphthalene, benzothiazole, ethane, acetic aide

breath may be exogenous or endogenous (Miekisch and Schubert 2006). Exogenous

molecules are those that have been inhaled or ingested from the environment or

other sources such as air or food and hence no diagnostic value (Risby and Solga

2006). Endogenous molecules are produced by metabolic processes and partition

from blood via the alveolar pulmonary membrane into the alveolar air. These endoge-

nous molecules are present in breath relative to their types, concentrations, volatili-

ties, lipid solubility, and rates of diffusion as they circulate in the blood and cross the

alveolar membrane (Sehnert et al. 2002). Changes in the concentration of the mole-

cules in VOCs could suggest various diseases or at least changes in the metabolism.

Table 3.1 summarizes the typical compositions found in the endogenous breath of

healthy persons (Phillips et al. 1999; Risby and Solga 2006).

Some molecules such as nitric oxide, isoprene, pentane, benzene, acetone, and

ammonia may indicate specific pathologies (DAmico et al. 2007; Schubert et al.

2004; Miekisch et al. 2004). To take a few examples, nitric oxide can be measured

as an indicator of asthma or other conditions characterized by airway inflammation

(Deykin et al. 2002). Breath isoprene is significantly lower in patients with acute

respiratory exacerbation of cystic fibrosis (McGrath et al. 2000). Increased pentane

and carbon disulfide have been observed in the breath of patients with schizophrenia

(Phillips et al. 1993). The concentration of VOCs such as cyclododecatriene, benzoic

acid, and benzene are much higher in lung cancer patients than in control groups

(Phillips et al. 2007a). Acetone has been found to be more abundant in the breath

of diabetics (Deng et al. 2004). Ammonia is significantly elevated in patients with

renal disease (Davies et al. 1997). Table 3.2 lists some breath compounds and the

conditions that research has found to be associated with them. The compounds and

conditions listed in Tables 3.1 and 3.2 were the focus of the work being described in

this chapter.

3.3 Description of the System

The proposed system operates in three phases (Fig. 3.1), gas collection, sampling,

and data analysis, with a subject first breathing into a Tedlar gas sampling bag. This
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Table 3.2 Some breath compounds and associated conditions

Breath compounds Associated conditions

Acetone Diabetes (Deng et al. 2004)

Carbonyl sulfide, carbon disulfide, isoprene Liver diseases (Sehnert et al. 2002)

Naphthalene,1-methyl-, 3-heptanone,

methylcyclododecane, etc.

Pulmonary tuberculosis (Phillips et al. 2007b)

Nonane, tridecane, 5-methyl, undecane,

3-methyl, etc.

Breast cancer (Phillips et al. 2003b)

Benzene,1,1-oxybis-, 1,1-biphenyl,2,2 -diethyl,

furan,2,5-dimethyl-, etc.

Lung cancer (Phillips et al. 2003a)

Ammonia Renal disease (Davies et al. 1997)

Octane,4-methyl, decane, 4-methyl, hexane,

etc.

Unstable angina (Salazar 2003)

Propane,2-methyl, octadecane, octane,

5-methyl, etc.

Heart transplant rejection (Phillips et al. 2004)

Pentane, carbon disulfide Schizophrenia (Phillips et al. 1993)

Pentane Acute myocardial infarction (Weitz et al. 1991)

Pentane Acute asthma (Olopade et al. 1997)

Pentane Rheumatoid arthritis (Humad et al. 1988)

Ethane Active ulcerative colitis (Sedghi et al. 1994)

Nitric oxide Asthmatic inflammation (Baraldi and Carraro

2006)

Nitric oxide, Carbon monoxide Bronchiectasis (Kharitonov et al. 1995;

Horvath et al. 1998)

Nitric oxide COPD (Maziak et al. 1998)

Ethane, propane, pentane, etc. Cystic fibrosis (Barker et al. 2006)

Fig. 3.1 The working flow defined in our system

gas is then injected into a chamber containing a sensor array where a measurement

circuit measures the interaction between the breath and the array. The signals are then

filtered and amplified and sent to computer for further analysis. Figure 3.2 shows our

system (left) and its laptop interface.
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Fig. 3.2 Breath analysis

system and the working

interface

Fig. 3.3 Exhaled air is

collected with a gas

sampling bag

3.3.1 Breath Gas Collecting

Figure 3.3 shows how the subject’s breath is collected using a 600 ml Tedlar gas

sampling bag (A), an airtight box (B) filled with disposable hygroscopic material

to absorb the water vapor from the breath, and, the last component, a disposable

mouthpiece (C). The hygroscopic material is silica gel. It is stable and only reacts

with several components, such as fluoride, strong bases, and oxidizers. None of them

is involved in the breath components showed in Tables 3.1 and 3.2. Our previous

experiments had shown there was no obvious effect on the disease identification by

using silica gel as a hygroscopic material. In any case, the mouthpiece is equipped

with an anti-siphon valve that prevents inhalation of the gel.

Subjects are required to give their breath sample in one of two different ways

depending on whether the condition under consideration typically exhibits its bio-

markers (compounds) in what are known as, dead-space air from the upper airway, or

alveolar air from the lungs. Depending on the type of biomarkers and on the breath
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Table 3.3 Detailed information with respect to collected diseases

Compounds Breath sampling locations Conditions

Acetone Alveolar air Diabetes

Ammonia Dead-space air Renal disease

Nitric oxide Dead-space air Airway inflammation

test tracks, dead-space air may be either a necessity or a contaminant (Cao and Duan

2007). Alveolar air is required where a condition is typified by biomarkers that are

found when there is an exchange from circulating blood. In contrast, dead-space air is

required when the biomarkers are released into the airways, and thus into the dead-

space air. Table 3.3 lists some of the compounds, conditions, and breath sampling

locations used in this work (Davies et al. 1997; Turner and Magan 2004).

Alveolar and dead-space airs are collected in different ways. Alveolar air is col-

lected by having the subject take a deep breath before breathing into the bag. The first

150 ml of the collected breath is discarded because it may be contaminated (DAmico

et al. 2007). This method would be applied to a subject with, for example diabetes.

Dead-space air is collected with a pump that draws the breath from the subject’s

mouth into a sampling bag. The pump is shown as component (B) of the apparatus

in Fig. 3.3. This method would be applied with subjects with, for example, airway

inflammation and renal disease. There is no need for the subject to exhale in this

process.

3.3.2 Signal Sampling

The second phase is signal sampling, which involves acquiring dynamic responses to

the interactions between a breath sample and the sensing elements, chemical sensors

which form a sensor array in the signal measurement module in the hardware frame-

work. These sensors sense gas particles and generate measurable electronic signals.

The signals are then filtered, amplified, and digitized, and then sent to the computer

for feature extraction, pattern analysis and classification.

3.3.2.1 Chemical Sensors

The function and the performance of our system highly depend on the capabilities of

the chemical sensors. In our system, each sensor in the array has a unique “odorprint"

corresponding to the compounds listed in Tables 3.1 and 3.2. Most of the compounds

are VOCs but some are inorganic compounds such as ammonia, nitric oxide, carbon

dioxide, and hydrogen. Table 3.4 summarizes the main disease biomarkers and com-

positions in human breath and the type of sensor required. Table 3.5 lists the types
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Table 3.4 Compounds detected and sensors required

Main compounds in human breath Requisite sensors

Acetone, isoprene, pentane, benzene etc. VOC sensor

Ammonia NH3 sensor

Nitric oxide NO sensor

Carbonyl sulfide, carbon disulfide Sulfide sensor

Hydrogen H2 sensor

Carbon monoxide, carbon dioxide CO and CO2 sensor

Table 3.5 Type of sensors and corresponding sensitive gas

No. Sensors Gases Sensitivities (ppm)

1 TGS2600 H2, CO and VOCs 1–30

2 TGS2602 VOCs 1–30

3 TGS2611-C00 VOCs 500–10000

4 TGS2610-C00 VOCs 500–10000

5 TGS2610-D00 VOCs 500–10000

6 TGS2620 VOCs and CO 50–5000

7 TGS825 H2S 5–100

8 TGS4161 CO2 350–10000

9 TGS826 NH3 30–300

10 TGS2201 NO and NO2 0.1–10

11 TGS822 VOCs 50–5000

12 TGS821 H2 10–1000

of sensors used in our system, the gases they are sensitive to and at what sensitiv-

ity. These sensors used in our work are metal oxide semiconductor gas sensors from

FIGARO Engineering Inc. This kind of sensors is very sensitive, robust, and resis-

tant to humidity and ageing (Turner and Magan 2004). Seven of the sensors are each

sensitive to VOCs. One sensor detects only carbon dioxide. One sensor is sensitive

to ammonia, which is associated with renal disease. One sensor is sensitive to nitric

oxide which is associated with bronchiectasis, airway inflammation, and COPD. One

sensor is sensitive to sulfides, what are associated with liver diseases. Finally, one

sensor is sensitive to hydrogen. These sensors are able to sensitive to most of bio-

makers and compositions in human breath, therefore they have better responses than

those commercial e-noses.
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Fig. 3.4 Basic structure of

sensor array used in our

system

3.3.2.2 Signal Measurement

The framework of the system consists of three modules: signal measurement, sig-

nal conditioning, and signal acquisition. The signal measurement module contains

a sensor array, temperature control circuit, and measurement circuit (Fig. 3.4). The

temperature control circuit provides negative feedback voltage to the heater of sen-

sors so as to guarantee that the sensors are at stable temperature. The measurement

circuit is responsible for transforming odor signals into electronic signals.

The sensor array is composed of 12 sensors set in a 600 ml stainless steel chamber.

Breath samples from subjects are collected with a 600 ml Tedlar gas sampling bag

and then injected into the chamber through an auto-sampler at 120 ml/s. Since the

capacity of the sampling bag is 600 ml, the total injection time for one sample is

t = 600∕120 = 5s. The resistances of the sensors change from R0 to Rs when they

are exposed to sampled gas. The output voltage is

VOut =
1
2
VCC(1 −

Rs

R0
), (3.1)

where VCC is the transient voltage crossing the sensor and VOut is the transient output

voltages of the measurement circuits.

The signal measurement module measures these voltages and converts them into

analog electrical signals. The analog signals are subsequently conditioned by signal

filtering and amplifying. Finally, the signals are sampled at a 9 Hz sampling fre-

quency and transmitted through a USB interface to a computer. This component is

controlled by a 16-bit microprocessor. After data collection, a pump works at a rate
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Table 3.6 Fundamental performance parameters of the proposed system

System parameters Specifications

Working temperature 25 ± 10
◦
C

Carrier flow 10 ml/s

Chamber volume 600 ml

Sampling injection rate 120 ml/s

Sampling frequency 9 Hz

Sampling time 100 s

Fig. 3.5 A typical sensor

response curve which

undergoes three stages

of 10 ml/s to purge the chamber. Table 3.6 summarizes the fundamental performance

parameters of the proposed system.

3.3.2.3 Sampling Procedure

The sampling procedure, program controlled by the system to ensure all samples are

sampled under the same criterion, involves two sub-procedures, a purge cycle, and

a sampling cycle. In the purge cycle, a pump pulls and purges the air over the sensor

array, supplying background air to the array for the baseline measurement as well

as refreshing it after sampling. In the sample cycle, the analyte is injected into the

chamber. When the sensor array is exposed to the analyte, changes in resistances

are measured and recorded. The action of the system is different in each time-slice

(Fig. 3.5). The following explains this in detail.

1. −10–0 s (baseline stage): The chamber is purged and the sensor returns to a

steady state. The baseline value is measured and recorded for data manipulation

and normalization;
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2. 1–5 s (injection stage): Sampled gas is injected into the chamber at an invariable

rate. Particles of sampled gas inside the chamber accrue during injection, pro-

ducing a changing of resistance of the sensor, and causing the amplitude of the

signal to rise;

3. 6–10 s (reaction stage): Particles in the chamber continue to accumulate on the

sensors but the accumulation rate is decreasing. The resistance of the sensor

monotonically increases at a decreasing rate, as does the amplitude of the sig-

nals;

4. 15–90 s (purge stage): The chamber is purged again. The pump quickly draws out

the remaining analyte, thereby shortening the sampling time as well as refreshing

the air for the next use.

In our database, the characteristic curve of one sample is taken from the data for

the period from 1 s to 90 s. Since the sampling frequency is 9 Hz, one sensor in one

sample creates a 90 × 9 = 810-dimension feature vector.

3.3.3 Data Analysis

The system measures changes in voltage across each sensor and converts the raw

signal into a digital value that can be applied to future analysis. This analysis involves

three steps: signal preprocessing, feature extraction, and classification.

3.3.3.1 Signal Preprocessing

The purpose of signal preprocessing is to compensate for drift and eliminate irrel-

evant information so to improve the performance of the subsequent pattern recog-

nition and classification. It involves baseline manipulation and normalization. Base-

line manipulation is implemented for drift compensation, contrast enhancement, and

scaling. Its basic idea is to subtract the baseline of each sensor from the sensor

response. We assume that one data set has e samples, where e = 1,… ,Ne. Each

sample consists of s sensor transients, where s = 1,… ,Ns. There are k dimensions

per transient, where k = 1,… ,Nk. The dynamic response of one sample at time tk
is denoted as Re,s(tk). There are b dimensions in baseline stage, where b = 1,… ,Nb.

The baseline response of this sample is Be,s(tb). The relative change for a particular

sensor is defined as the preprocessed response

RB
e,s(tk) = Re,s(tk) −

1
Nb

Nb∑

tb=1
Be,s(tb), ∀e, s, k, b. (3.2)

Normalization is used to compensate for sample-to-sample variations caused by

analyte concentration and pressure of oxygen (PO2). RB
e,s(tk) is the response of the
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sensor Ns to the Ne sample in data set, which has been processed by baseline manip-

ulation. The normalized response is defined as

RBN
e,s(tk) =

RB
e,s(tk)

max(RB
e,s(tk))

, ∀e,m. (3.3)

3.3.3.2 Feature Extraction

The purpose of feature extraction is to find a low-dimensional mapping f ∶ x ∈
RN ↦ y ∈ RM(M < N) that preserves most of information in the original feature vec-

tor x. In this chapter, we employed principal components analysis (PCA) to extract

characteristic features of samples fromm classes. We calculated the eigenvectors and

eigenvalues of the training set and sort the eigenvectors, i.e., principal components

of PCA, by descendant eigenvalues, then projected both test data and training data

onto the PCA subspace spanned by selected principal components. The criteria for

principal component selection is

r
𝜆

=
s∑

k=1
𝜆i

/ n∑

k=1
𝜆i, (3.4)

where ri is the eigenvalue, s is the number of selected principal components, and n
is the total number of eigenvalues. Assume r

𝜆

> 99% counts for enough variability

in the dataset, s = 10 eigenvectors as features. We hence formed a s-dimensional

training vector space and test vector space respectively for data classification.

3.3.3.3 Classification

K-nearest neighbor voting rule (KNN) was used as a classifier for the features that

extracted by PCA. Basically, it classifies an unlabeled test sample by finding the

K nearest neighbors in the training set using Euclidean distance and assigning the

label of that class represented by a majority among the K neighbors (Gutierrez-

Osuna 2002). There are many voting rule to decide which class the unlabeled sample

belongs to. In our experiment, we used the following vote rule: assuming there are

m classes and one sample has K1,K2,… ,Km -nearest neighbors for the m classes,

where
∑m

i=1 Ki = K, the classification result is given by

c = argmax
i=1,…,m

{
Ki

K
}, (3.5)

where c is the label of the predicted class. The training vectors were classified in

advance into m classes, labeled as either healthy or diseased. The test vector was

then predicted using Eq. 3.5.
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3.4 Experiments

In the first experiment, we used our system to distinguish between pre- and post-

treatment breath samples from 52 subjects with end-stage renal failure, a kind of

condition associates with the accumulation of urinary waste products in the blood

because the kidneys are not working effectively (Table 3.7). A standard treatment

for the condition is hemodialysis to help patient remove more urea and creatinine

from the blood. There is a reduction in the ammonia concentration in expired breath

of patients as hemodialysis proceeds (Narasimhan et al. 2001). The results for these

experiments are given in Sect. 3.4.1.

In the second set of experiments, we tested the ability of the system to distin-

guish between subjects assumed to be healthy on the basis of recent health check and

subjects known to be afflicted with either diabetes, renal disease, or airway inflam-

mation. Totally, We collected 108 healthy samples, 117 diabetes samples, 110 renal

disease samples, and 110 airway inflammation samples using the gas collection and

signal sampling procedures described in Sects. 3.3.1 and 3.3.2. Table 3.8 details the

composition of the subject database. All patients were inpatient volunteers from the

Harbin Hospital. Their conditions were confirmed and correlated by comparing their

levels with standard clinical blood markers for the relevant diseases and conditions.

In each case, these diseases and conditions are associated with characteristic mole-

cules in the breath. Diabetes arises when the glucose produced by the body cannot

enter cells and so cells have to use fat as an energy source. One of the by-products

of metabolizing fat for energy is ketones. When ketones accumulate in the blood,

there is ketoacidosis, which is characterized by the smell of acetone on the patient’s

breath (Holt et al. 2006). Renal disease arise from the inability of the kidneys to

effectively filter the blood. This results in an accumulation of nitrogen-bearing waste

products (urea), which accounts for the odor of ammonia on the breath of patients

(Greenberg and Cheung 2005). As for airway inflammation, it has been shown that

exhaled nitric oxide levels are higher when there is airway inflammation, especially

asthmatic airway inflammation (Ashutosh 2000).

Table 3.7 Composition of the renal failure database

Type of subjects Number Male/Female Age

Subjects with renal failure 52 33/19 34–70

Table 3.8 Composition of the subject database

Type of subjects Number Male/Female Age

Healthy subjects 108 58/50 23–60

Subjects with diabetes 117 65/52 32–70

Subjects with renal disease 110 63/47 28–70

Subjects with airway inflammation 110 54/56 16–62
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3.4.1 Evaluating Outcomes of Hemodialysis

Figure 3.6 shows the responses of the twelve different sensors (S1–S12) to the sam-

ples of renal failure patients over the 90 s sampling period. Figure 3.6a shows a typ-

ical response of one patient before hemodialysis and Fig. 3.6b shows a response of

the same patient after hemodialysis. The curves represent the output of each sen-

sor, S1–S12. These curves have been preprocessed by baseline manipulation and

normalization according to Eqs. 3.2 and 3.3. As shown in Table 3.2, the dominant

compound marking renal disease is ammonia. From these figures, it is very clear

that before hemodialysis (Fig. 3.6a), the amplitude of the ninth sensor is very high,

which indicates that the concentration of ammonia in the breath is quite large. How-

ever, after treatment (Fig. 3.6b), the amplitude of the ninth sensor clearly decreases,

indicating the concentration of ammonia in the subject’s breath has fallen.

Figure 3.7 presents the mean responses of the twelve sensors showing the response

of each sensor to two kinds of samples. The error bar represents the standard devia-

tion, showing the difference between the responses of all samples in one classes and

their mean. The mean response is defined as

MeanRe,s =
1
Nk

Nk∑

tk=1
Re,s(tk), ∀e, s, k. (3.6)

The definitions of these variables are the same as Sect. 3.3.3.1. For each sensor, the

left bar presents the class before hemodialysis and the right bar is the class after

hemodialysis. After the treatment, the values of several responses clearly fall, espe-

cially the ninth sensor, which is sensitive to ammonia.
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Fig. 3.6 Typical responses from the same patient: a before treatment, b after treatment. The hor-

izontal axis stands for the sampling time (0–90 s) and the vertical axis shows the amplitude of the

sensor output in volts. The number in each curve is the index of the sensor
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Fig. 3.7 Mean response of

twelve sensors to two cases:

before treatment and after

treatment. The error bar

represents the standard

deviation (only the upper bar

is drawn). The horizontal

axis denotes the twelve

sensors and the vertical axis

is the mean value of each

normalized response

3.4.2 Distinguishing Between Subject Breath Samples

Figure 3.8 shows the responses of twelve different sensors (S1–S12) to the four dif-

ferent air samples over the 90 s sampling period. Figure 3.8a is a typical response to

a healthy sample. Figure 3.8b is to a diabetes sample. Figure 3.8c is to a renal disease

sample. And Fig. 3.8d is to an airway inflammation sample. The curves represent the

output of each sensor.

Figure 3.9 gives the mean responses of the twelve sensors in the four types of

air samples as defined by Eq. 3.6. The definition of error bar is the same as that in

Sect. 3.4.1. In each of the four categories it is possible to find the combinations of

sensors which could unambiguously identify each of the four conditions. Thus, the

strongest responses to healthy samples came from the sixth, seventh, and eighth sen-

sors while the strongest response to diabetes came from the second, fourth, fifth,

and twelfth sensors. It is worth mentioning that the twelfth sensor gave a very sig-

nificant response, though it is not used for VOCs detection. In China, the special

diet recommended for diabetics features large amounts of fermentable dietary fiber,

which leads to colonic fermentation of indigestible carbohydrates (Brighenti et al.

2006). One product of colonic fermentation is hydrogen (Le Marchand et al. 2006),

which is absorbed into the bloodstream and excreted through the breath. Therefore,

the breath air of diabetics we have collected would include hydrogen. The strong

response to the renal disease samples came from the first, third, ninth, and eleventh
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Fig. 3.8 Typical responses from four subject categories: a healthy subjects, b subjects with dia-

betes, c subjects with renal disease, and d subjects with airway inflammation. The horizontal axis

stands for the sampling time (0–90 s) and the vertical axis denotes the amplitude of sensor output

in volts. The number in each curve is the index of the sensor

Fig. 3.9 Mean response of

twelve sensors to four

classes: healthy, diabetes,

renal disease, and airway

inflammation. The error bar

represents the standard

deviation (only the upper bar

is drawn). The horizontal

axis denotes the twelve

sensors and the vertical axis

is the mean value of each

normalized response
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sensors, especially the ninth sensor, which is particularly sensitive to ammonia. The

largest response to airway inflammation came from the tenth sensor, which is used

to detect nitric oxide.

3.5 Results and Discussion

The outcomes of both sets of experiments were evaluated using PCA coupled with

KNN, as introduced in Sects. 3.3.3.2 and 3.3.3.3.

3.5.1 Results Evaluating Outcomes of Hemodialysis

Figure 3.10 shows a two-dimensional PCA analysis of the responses with the first

principal component (PC1) plotted against the second (PC2). ∗ stands for the

samples before treatment and + for the samples after treatment. The two dimen-

sions explained 73.01% of the variation in the data, 53.4% for PC1 and 19.61% for

PC2. The two classes are discriminative even though some samples overlap.

To measure the classification accuracy of system, we randomly selected a train-

ing set of 26 samples from each disease class of 52 samples. The remainder was

used as the test set. PCA was used to extract characteristic features of the samples.

We calculated the eigenvectors and eigenvalues of the training set and sorted the

eigenvectors by descendant eigenvalues. We then used Eq. 3.4 and the condition r
𝜆

>

99% to select the first 12 eigenvectors as principle components. Next, we projected

all samples onto the PCA subspace spanned by principal components. Then, KNN

(K = 5) classifier defined by Eq. 3.5 predicted the class that a test sample belonged

Fig. 3.10 PCA

two-dimensional plot of the

sensor signals corresponding

to two classes: a renal failure

samples before treatment (∗),

b renal failure samples after

treatment (+)

P
C
2(
19

.1
6%

)
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to. We ran this procedure 50 times and computed the average classification rate over

all 50 runs.

Table 3.9 shows the classification results. In the 26-sample pre-treatment test set,

an average of 20.84 samples were classified correctly and 5.16 samples were classi-

fied incorrectly, an overall accuracy of 80.15%. In the 26-sample post-treatment test

set, an average of 21.32 samples were classified correctly and 4.68 samples were clas-

sified incorrectly, an overall accuracy of 82%. Clearly, the proposed system would

have some value in evaluating the efficacy of hemiodialysis, and may take the place

in some cases of blood tests, given that it is simple, low-cost, and non-invasive.

3.5.2 Results Distinguishing Between Subject Breath
Samples

The classifications of the four types of breath samples were evaluated with PCA

coupled with KNN and the results were measured by sensitivity and specificity. The

samples from patients with diabetes, renal disease, and airway inflammation and the

healthy samples were formed three groups. One group contained healthy subjects

and subjects with diabetes, the second contained healthy subjects and subjects with

renal disease, and the third group contained healthy subjects and subjects with airway

inflammation.

Figure 3.11 shows the PCA two-dimensional plot of the responses from the two

classes with the first principal component (PC1) plotted against the second (PC2).

The ∗ stands for the samples classified as being from patients and + for healthy sub-

jects. In the PCA plot of diabetes samples and healthy samples, the two dimensions

explained 79.96% of the variation in the data, 65.29% for PC1 and 14.67% for PC2.

In the PCA plot of renal disease samples and healthy samples, the two dimensions

explained 72.45% of the variation in the data, 55.56% for PC1 and 16.89% for PC2.

In the PCA plot of airway inflammation samples and healthy samples, the two dimen-

sions explained 77.4% of the variation in the data, 52.49% for PC1 and 24.91% for

PC2.

Table 3.9 Classification results of two classes: renal failure samples before treatment and after

treatment

Actual group
Number of samples Predicted group member

Accuracy (%)

member
Training set Test set

Before

treatment

After

treatment

Before

treatment
26 26 20.84 5.16 80.15

After

treatment
26 26 21.32 4.68 82
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Fig. 3.11 PCA two-dimensional plot of the sensor signals corresponding to two classes: a healthy

samples (+) and diabetes samples (∗), b healthy samples (+) and renal disease samples (∗), and

c healthy samples (+) and airway inflammation samples (∗)

To compare the test results, we randomly selected 60 samples from each class

as the test set and the remainder formed the training set. PCA was used to extract

characteristic features of samples. Equation 3.4 and the condition r
𝜆

> 99% were

used to select the first 10 eigenvectors in all classes in every group. The KNN

(K = 5) classifier as defined by Eq. 3.5 was then used to determine which class each

test sample belonged to.

In medicine, the reliability of a diagnosis is measured in terms of sensitivity and

specificity, with the outcome being either positive (unhealthy) or negative (healthy).

In the classification, the number of genuine sick subjects is denoted tp; misidentified

healthy subjects is fp; genuine healthy subjects is tn; the misdiagnosed sick subjects

is denoted as tn (Blatt et al. 2007). Sensitivity and specificity are thus defined as in

Table 3.10. Table 3.11 shows the classification results of all groups.

In the diabetes experiment, out of 60 samples in the test set, the system correctly

diagnosed an average of 52.6 samples as diabetes and incorrectly diagnosed 7.4 sam-

ples as healthy. In the 60 healthy samples in the test set, an average of 52.12 samples
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Table 3.10 The definition of sensitivity and specificity

Test outcome
Sensitivity Specificity

Positive Negative

Actual Positive tp fp tp
tp+fn

tn
tn+fpcondition

Negative fn tn

Table 3.11 The classification results defined by sensitivity and specificity

Training/ Test outcome Sensitivity Specificity

Test sets Positive Negative (%) (%)

Diabetes
Positive 57/60 52.6 7.4

86.97 87.57
Negative 48/60 7.88 52.12

Renal Positive 50/60 51.94 8.06
83.96 86.14

failure Negative 48/60 9.92 50.08

Airway Positive 50/60 42.12 17.88
73.79 71.58

inflammation Negative 48/60 14.96 45.04

were correctly diagnosed as healthy and 7.88 were incorrectly diagnosed as diabetes.

The sensitivity of this diagnosis was thus 86.97% and the specificity was 87.57%.

In the renal disease experiment, an average of 51.94 disease samples were cor-

rectly diagnosed as renal disease and 8.06 disease samples were incorrectly diag-

nosed as healthy. In the 60 healthy samples in the test set, an average of 50.08 healthy

samples were correctly diagnosed as healthy; while an average of 9.92 healthy sam-

ples were incorrectly diagnosed as renal disease. Consequently, the sensitivity and

specificity of this diagnosis were 83.96% and 86.14% respectively.

Same as above, in the experiment of airway inflammation diagnosis, there were

averagely 42.12 disease samples diagnosed correctly as airway inflammation and

17.88 disease samples diagnosed incorrectly as healthy, and there were averagely

14.96 healthy samples diagnosed incorrectly as airway inflammation and 45.04

healthy samples diagnosed correctly as healthy. The sensitivity of this diagnosis was

thus 73.79% and the specificity was 71.58%.

3.6 Summary

This chapter proposed a breath analysis system that has a broad application in medi-

cine, such as detecting diseases and monitoring the progress of related therapies.

The system structure, working procedure, odor signal preprocessing, and pattern

recognition method were introduced. To evaluate the system performance, breath

samples were captured and two experiments were conducted on medical treatment

evaluation and disease identification. The results showed that the system was not

only able to distinguish between breath samples from subjects suffering from var-



50 3 A Novel Breath Acquisition System Design

ious diseases or conditions (diabetes, renal disease, and airway inflammation) and

breath samples from healthy subjects, but in the case of renal failure was also helpful

in evaluating the efficacy of hemodialysis.

Although the current pattern recognition method produced satisfactory results

when we used integral data, it should still be possible to further improve the classi-

fication accuracy and speed by selecting proper features. Typically, the performance

of an electronic olfaction system depends heavily on the features being provided to

the odor classification algorithm. Therefore, in future work we will investigate how

to select the most proper features for effective pattern classification. We also intend

to extend the number of diseases/conditions that the system can analyze.
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Chapter 4
An LDA-Based Sensor Selection Approach

Abstract In the application of breath analysis, the redundant specificities of a sen-

sor array often exceed the needs of the discrimination application. When recogniz-

ing types of diseases, not all sensors are required. However, it is difficult to decide

which sensor is more useful for an unknown sample because some sensors are cross-

sensitive to the biomarkers of the diseases. In this chapter, we propose a linear dis-

criminant analysis (LDA)-based sensor selection technique (LDASS) which chooses

an optimal configuration of sensors for a particular application from a whole set of

available sensors. The proposed method finds the direction w via the LDA such that

when data are projected onto this direction, the samples from two classes are as sep-

arate as possible. It is found that after projection, the difference of means of the two

distinct sample classes can be expressed as the linear combination of the responses

of all the sensors in the system, and w can be regarded as the weight vectors for

these sensors which indicate the contribution weight of each sensor. Accordingly, it

is possible to determine which sensor has a greater contribution in classifying the

two classes. A series of experiments on different databases show that the proposed

method outperforms other sensor selection techniques, such as the sequential forward

selection (SFS) and genetic algorithm (GA) in recognition accuracy and processing

time. This technique is not only applicable for breath analysis, but also useful in the

general applications of e-noses.

Keywords Breath analysis ⋅ Disease identification ⋅ Sparse representation ⋅
Diabetes ⋅ Blood glucose levels

4.1 Introduction

Endogenous molecules in human breath, such as acetone, nitric oxide, hydrogen,

and ammonia, are produced by metabolic processes and partitioned from blood via

the alveolar pulmonary membrane and enter into the alveolar air (DAmico et al.

2007; Schubert et al. 2004; Miekisch et al. 2004). Changes in the concentration of

these molecules could suggest various diseases or at least changes in metabolism

(Amann et al. 2005). These molecules are therefore considered as biomarkers of the

presence of diseases and clinical conditions. In comparison with other traditional

methods such as blood and urine tests, breath analysis are noninvasive, real-time,
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and the least harmless to not only the subjects, but also the personnel who collect

the samples (Van Berkel et al. 2008). Currently, there are increasing concerns about

the applications of breath analysis in medicine and clinical pathology both as a diag-

nostic tool and as a way to monitor the progress of therapies (Di Francesco et al.

2005; Dweik and Amann 2008; Guo et al. 2010; D’Amico et al. 2010; Di Natale

et al. 2003; Dragonieri et al. 2007, 2009; Yu et al. 2005; Shih et al. 2010).

In our previous work, we introduced a novel and portable system that is specific

for breath analysis (Guo et al. 2010). In contrast to the broad panel of nonspecific

sensors used in commercial e-noses, the sensors of our system are selected particu-

larly to be sensitive to biomarkers and compositions in human breath. The system in

Ref. Guo et al. (2010) has a sensor array, which is composed of twelve chemical sen-

sors. Sensors 1–6, and 11 respond positively to volatile organic compounds (VOCs)

with various sensitivities. They are used to detect pulmonary disease, diabetes, breast

cancer, etc. (Deng et al. 2004; Phillips et al. 2003a, b, 2007). Sensor 7 is sensitive to

sulfides, which are associated with liver diseases (Sehnert et al. 2002). Sensor 8 only

detects carbon dioxide. Sensor 9 is used to ammonia, which is associated with renal

diseases (Davies et al. 1997). Sensor 10 is sensitive to nitric oxide, which is associ-

ated with bronchiectasis, airway inflammation, and chronic obstructive pulmonary

diseases (COPD) (Baraldi and Carraro 2006; Kharitonov et al. 1995; Horvath et al.

1998; Maziak et al. 1998). Finally, Sensor 12 is sensitive to hydrogen, which is used

to detect gastrointestinal diseases (Brighenti et al. 2006; Le Marchand et al. 2006).

A fundamental design concept for an array of sensors used in the system is that each

sensor should have a different sensitivity profile over a range of compounds expected

in the target application, e.g., the detection of an unknown disease. Therefore, the

sensor array provides distinct response patterns to different analytes.

This kind of design offers system broad applications, but is problematic in prac-

tice. Since each sensor has a specific contribution in identifying a type of disease, not

all sensors in the system are needed when we only want to detect one type of disease.

For sensors that are not sensitive to the biomarkers of a given disease, they may only

generate slightly different responses. These sensors would provide redundant infor-

mation, which is not helpful, or even interfere with the identification results. Hence,

it requires a method to select proper sensors. As shown in Fig. 4.1, breath gas collec-

tion is detected by a sensor array which converts the breath gas into electronic sig-

nals. After signal preprocessing, such as baseline manipulation and normalization,

the signals become standard sample data. Then, the sensors involved in the standard

samples are selected, and features in these sensors are extracted for classification.

The classification task guides the execution of the sensor selection process.

Fig. 4.1 The working flow of breath analysis system
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There are many techniques used in sensor selection (Gardner et al. 2005; Phaisan-

gittisagula et al. 2010; Zhang et al. 2009; Gualdron et al. 2007; Kermani et al. 1998;

Pardo et al. 2001). Reference Pardo et al. (2001) made a good comparison between

some common algorithms, such as sequential forward selection (SFS), sequential

back selection (SBS), genetic algorithm (GA), and projection methods (PCA and

LDA).

Even though the current techniques provide better recognition results than the

methods that employ a full sensor set, they have several drawbacks. For example,

SFS and SBS only explore a small fraction of the whole sensor set and can easily be

trapped in local extrema while GA executes a global search in the whole set which

incurs a heavy cost of computation. The most important is, all of these approaches

fail to provide the weight information of the selected sensors, i.e., the significance

of each sensor for a given recognition task. For example, in our system, Sensor 9 is

specifically sensitive to ammonia, which is associated with renal diseases. Although

other sensors, such as Sensors 3 and 12, also generate distinguishable responses to

renal disease samples, they take on less important roles than Sensor 9 when recog-

nizing renal diseases (Guo et al. 2010). In this case, the weight of Sensor 9 will be

greater than the other sensors. However, the SFS, SBS, GA, and the projection meth-

ods provided by Refs. Kermani et al. (1998) and Pardo et al. (2001) cannot directly

provide such weights for a given classification task.

Inspired by Refs. Kermani et al. (1998) and Pardo et al. (2001), which introduced

the idea about the projection methods used in sensor selection, we propose a sensor

selection approach in this chapter which is based on the LDA technique to choose

an optimal configuration of sensors from a whole sensor set for given disease iden-

tification task. The approach finds the optimum projection direction w via the LDA

such that when projecting the data in this direction, the samples from two classes are

as separate as possible. We have found that after projection, the difference between

the means of samples from the two classes is the linear combination of all sensors

involved in the system, and w is a vector that can be divided into m sub-vectors. Each

sub-vector is the scaling vector for the m sensors, indicating the weight of each sen-

sor when recognizing a disease. A higher sub-vector implies a greater contribution

of the sensor for the disease recognition. Hence, we not only can select the optimal

sensor subset, but fix their weights, i.e., sub-vectors of w. The sensors are multiplied

by the norm of the sub-vectors to form the optimal configuration of sensors, which

will be used in recognizing diseases. A series of experiments on different databases

show that the proposed approach outperforms other sensor selection techniques, such

as the SFS and GA, in recognition accuracy and processing time.

In fact, the proposed approach is not only effective in our breath analysis system,

but also useful in commercial e-noses with an array of chemical sensors. Commer-

cial e-noses, for the sake of broad application, such as wine and gasoline recognition,

have just as many sensors involved. However, not all sensors are sensitive to wine

or gasoline and redundant sensors may bring noises rather than improve the perfor-

mance of e-noses. Therefore, sensor selection is also required and our technique can

be helpful by identifying an appropriate sensor subset in the commercial e-noses.
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Fig. 4.2 Data from two

classes that are projected

onto w

The remainder of this chapter is organized as follows. Section 4.2 gives a detailed

explanation about the proposed technique. Section 4.3 introduces the LDA-based

approach (LDASS) in the application of breath analysis. Section 4.4 provides com-

parison experiments between our proposed approach and other two common meth-

ods, the SFS and GA. Section 4.5 offers our summaries.

4.2 LDA-Based Approach: Definition and Algorithm

This section details the LDA-based sensor selection approach (LDASS), which

makes use of the LDA to model the difference of responses between two classes.

The LDA can determine the optimum direction of projecting w, such that when pro-

jecting onto w, the samples from two different classes are as separate as possible and

the samples from the same classes are as close as possible, which is shown by Fig. 4.2

(Alpaydin 2004). After projection, we deduced that the difference between the means

of samples from two classes is the linear combination of all the sensors involved in

the system with the entries of w as the coefficient of each sensor. Accordingly, in the

linear combinations, the item with the largest value implies the corresponding sensor

has the greatest contribution in classifying the two classes and is therefore selected

for the classification. The sensor with the least contribution will be knocked out.

4.2.1 Data Expression

Assume that we have two types of disease samples. They are labeled as classes C1
and C2, respectively. Each class consists of ni training samples, where i = 1, 2. Each

sample comprises m sensor responses, i.e., x1, ..., xm, where m = 12 in our system.

The response of each sensor is a discrete time signal with d dimensions, where
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d = 810 according to our time sampling method. The response of the k-th sensor

of the i-th sample from class C1 is expressed as

sc1i,k = [t1, t2,… , td]T ∈ 𝐑d
. (4.1)

Since each sample comprises m sensor responses,

xc1
i =

⎡
⎢
⎢
⎢
⎢
⎣

sc1i,1
sc1i,2
⋮
sc1i,m

⎤
⎥
⎥
⎥
⎥
⎦

(4.2)

is the i-th sample from class C1, which is the l (l = d × m)-dimensional column vec-

tor. So, the training set including n1 samples from class C1 is expressed as

Xc1 = [xc11 , x
c1
2 ,… , xc1

n1
]. (4.3)

Same as Eq. 4.3, the training set consisting of n2 samples from class C2 is expressed

as

Xc2 = [xc21 , x
c2
2 ,… , xc2

n2
]. (4.4)

Hence, the training set from the two classes can be written as

X = [Xc1
,Xc2 ] ∈ Rl×n

, (4.5)

where n = n1 + n2 is the total number of training samples.

4.2.2 Find Out the Optimum Direction by LDA

Given the samples introduced in Sect. 4.2.1,

y = wTX (4.6)

is the projection of X onto w, where w is the l-dimensional column vector and

y = [y1, …, yn1 , yn1+1, …, yn] is the n-dimensional row vector. Each entry of y rep-

resents a training sample.

The means of the samples with the two different diseases after projection are

denoted by m1 and m2. The means of the samples with the two different diseases

before projection are denoted by m1 and m2, respectively. Thus, we have

m1 = wTm1, (4.7)
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and

m2 = wTm2. (4.8)

After projection, we would like the samples with different diseases to be well

separated, which implies that the means of the samples with different diseases is to

be as far apart as possible and the samples with the same disease to be scattered in

as small a region as possible, respectively. As we known, the LDA determines the w
by maximizing

J(w) =
(m1 − m2)2

s21 + s22
, (4.9)

where s1 and s2 are the scatters of samples with two different diseases, respectively

(Alpaydin 2004):

s21 =
n1∑

t=1
(yt − m1)2, (4.10)

and

s22 =
n∑

t=n1+1
(yt − m2)2. (4.11)

4.2.3 Difference Between Two Classes as the Linear
Combination of Sensors

Since m is the number of sensors that is included in a sample, w is a vector that can

be divided into m sub-vectors,

w =
⎡
⎢
⎢
⎢
⎣

w1
w2
⋮
wm

⎤
⎥
⎥
⎥
⎦

. (4.12)

Each sub-vector is a d-dimensional column vector, standing for the scaling vector for

the m sensors and indicating the weight of each sensor when recognizing a disease.

From Eq. 4.6, the data before and after projection have the following relationship,

y =
[
y1,… , yn1 , yn1+1,… , yn

]

=
⎡
⎢
⎢
⎢
⎣

w1
w2
⋮

wm

⎤
⎥
⎥
⎥
⎦

T ⎡
⎢
⎢
⎢
⎢
⎣

sc11,1,… , sc1n1,1, s
c2
1,1,… , sc2n2,1

sc11,2,… , sc1n1,2, s
c2
1,2,… , sc2n2,2
⋮

sc11,m,… , sc1n1,m, s
c2
1,m,… , sc2n2,m

⎤
⎥
⎥
⎥
⎥
⎦

,

(4.13)
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where y1,… , yn1 , yn1+1,… , yn2 are the samples after projection, and the dimensions

of the training set have been reduced from l × n to 1 × n.

By Eqs. 4.7 and 4.8, the mean of the training data from each class can be written

as the linear combination of all sensors that are involved in the system,

m1 =
1
n1

n1∑

i=1
yi =

⎡
⎢
⎢
⎢
⎣

w1
w2
⋮

wm

⎤
⎥
⎥
⎥
⎦

T
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
n1

n1∑

i=1
sc1i,1

1
n1

n1∑

i=1
sc1i,2

⋮
1
n1

n1∑

i=1
sc1i,m

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= w1s̄c11 + w2s̄
c1
2 +,… ,+wms̄c1m ,

(4.14)

and

m2 =
1
n2

n∑

i=n1+1
yi =

⎡
⎢
⎢
⎢
⎣

w1
w2
⋮

wm

⎤
⎥
⎥
⎥
⎦

T
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
n2

n2∑

i=1
sc2i,1

1
n2

n2∑

i=1
sc2i,2

⋮
1
n2

n2∑

i=1
sc2i,m

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= w1s̄c21 + w2s̄
c2
2 +,… ,+wms̄c2m .

(4.15)

Finally, by subtracting Eq. 4.15 from Eq. 4.14, the difference between the means

of the samples from C1 and C2 after projection can be expressed as the linear com-

bination of all sensors involved in the sensor set and w could just be the coefficient

of each sensor in the linear combination,

m1 − m2 =
m∑

k=1
wT
k (s̄

c1
k − s̄c2k ). (4.16)

Each item on the right side of Eq. 4.16 can be positive or negative, but we will just

consider the value of
|
|
|
wT
k (s̄

c1
k − s̄c2k )

|
|
|
, because the absolute value indicates the impor-

tance of each item. A larger value of
|
|
|
wT
k (s̄

c1
k − s̄c2k )

|
|
|

implies a stronger effect of the

k-th sensor on the difference of means of the two classes, and a smaller value of
|
|
|
wT
k (s̄

c1
k − s̄c2k )

|
|
|

implies a weaker effect of the k-th sensor on the difference of means

of the two classes.

Hence, if we remove a sensor with smaller value of
|
|
|
wT
k (s̄

c1
k − s̄c2k )

|
|
|
, (m1 − m2)2

does not change greatly. However, since each item on the right sides of the both
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Eqs. 4.10 and 4.11 consists of m sensors, we can see that s12 and s22 will decrease

seriously (about 1/m of total value) if we remove one sensor from the whole sensor

set. It means J(w) is larger if we remove a sensor with smaller
|
|
|
wT
k (s̄

c1
k − s̄c2k )

|
|
|
. It also

indicates we can obtain a better w which makes the two classes separate as far as

possible.

Therefore,
|
|
|
wT
k (s̄

c1
k − s̄c2k )

|
|
|

is regarded as the contribution of the k-th sensor to dis-

criminate the two classes. The sensor with the highest associated
|
|
|
wT
k (s̄

c1
k − s̄c2k )

|
|
|

is

the most important one for classification and should be added to the selected sensor

subset. The sensor can be selected one by one in accordance to the descending order

of
|
|
|
wT
k (s̄

c1
k − s̄c2k )

|
|
|

if they improve the classification result. The process ends when

adding a new sensor does not improve the result.

4.2.4 Weight of Sensor

An advantage of this approach is that it provides the weight of a sensor for a given

classification task. Since
|
|
|
s̄c1k − s̄c2k

|
|
|

indicates the difference in the sensor response

between the two given classes, wk can be considered as the scaling factors of each

sensor and each sensor is multiplied by the corresponding component of wk to obtain

the item
|
|
|
wT
k (s̄

c1
k − s̄c2k )

|
|
|
, making the magnitude of wk indicative of the importance of

the k-th sensor.

Equation 4.12 shows a series of scaling vectors for the m sensors. For any wk(k =
1, 2,… ,m), it has td entries, [wt1 ,wt2 ,… ,wtd ]. We use the following regularization

item to exploit the scaling information of the sensor (Subrahmanya and Shin 2010),

Wk = ‖
‖wk

‖
‖2 , (4.17)

which stands for the weight of the k-th sensor for a given classification task.

4.2.5 Algorithm Conclusion

Algorithm 4.2.1 summarizes the complete sensor selection procedure. In step 5, the

classification accuracy is calculated by using the principal component analysis (PCA,

to extract the characteristic features of samples) coupled with the K Nearest Neighbor

(KNN, as a classifier) (Guo et al. 2010).
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Algorithm 4.2.1 LDASS algorithm

Require: Two classes Xc1 = [xc1
1 , x

c1
2 ,… , xc1n1 ] and Xc2 = [xc21 , x

c2
2 ,… , xc2n2 ], where

xc1
i = [sc1i,1; s

c1
i,2;… ; sc1i,m] and xc2

i = [sc2i,1; s
c2
i,2;… ; sc2i,m] (‘;’ means the two columns are

stacked).

1: Compute the eigenvector w by the LDA, where w = [w1;w2;… ;wm].
2: Compute

|
|
|
wT
k (s̄

c1
k − s̄c2k )

|
|
|

for each sensor and sort them in descending order.

3: Compute the corresponding Wk = ‖
‖wk

‖
‖2 for each selected sensor.

4: Form the full configuration of sensors [W1s1,W2s2,… ,W12s12].
5: Select the top k items from the full sensor set to calculate the classification accuracy.

6: Check if the classification accuracy stops increasing. If Yes, go to the end. If No, k = k + 1 and

go to Step 5.

Ensure: An optimal configuration of sensors [W1s1,W2s2,… ,Wksk].

4.3 Sensor Selection in Breath Analysis System

This section introduces the application of the LDASS in breath analysis system. Two

special cases are introduced. One identifies a disease sample from healthy ones (dis-

ease diagnosis), the other distinguishes the before and after treatment samples from

the same type of disease (medical treatment evaluation).

4.3.1 Sensor Selection for Disease Diagnosis

This subsection describes the database that is used, which includes four classes:

healthy subjects, and patients with diabetes, renal diseases, and airway inflammation,

respectively. The breath collection, data sampling, and signal processing method

have been introduced in our previous work (Guo et al. 2010). Subjects were assumed

to be healthy on the basis of a recent health check; subjects were confirmed to be

afflicted with diabetes, renal diseases, or airway inflammation whose conditions have

been verified and correlated by comparing their levels with standard clinical blood

markers for the relevant diseases and conditions. Table 4.1 details the composition

of the subject database. The samples of each condition are divided into two group:

training set and test set, which will be used in the following experiments.

Figure 4.3 shows the responses of the twelve different sensors (S1-S12) to the four

different samples over a 90 s sampling period. Figure 4.3a–d are typical responses to

Table 4.1 Composition of the subject database

Type of subjects Number Male/Female Age
Training

set/Test set

Healthy subjects 135 62/73 21–65 65/70

Subjects with diabetes 158 71/87 31–70 78/80

Subjects with renal diseases 167 63/104 28–70 82/85

Subjects with airway inflammation 126 59/67 16–62 61/65
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Fig. 4.3 Typical responses from four subject categories: a healthy subjects, b subjects with dia-

betes, c subjects with renal diseases, and d subjects with airway inflammation. The horizontal axis

stands for the sampling time (0–90 s) and the vertical axis denotes the amplitude of sensor output

in volts

healthy, diabetes, renal disease, and airway inflammation samples, respectively. As

shown in Fig. 4.3, the responses of most sensors are not distinguishable between each

pair of the four conditions. Figure 4.4 presents the mean responses of the twelve

sensors which show the response of each sensor to the four types of samples. In

each of the four categories, it is possible to find combinations of several sensors that

could unambiguously identify each of the four conditions. For instance, the strongest

responses to healthy samples come from the sixth, seventh, and eighth sensors while

the strongest response to diabetes come from the second, fourth, fifth, and twelfth

sensors. The strong response to the renal disease samples come from the first, third,

ninth, and eleventh sensors, especially the ninth sensor, which is particularly sen-

sitive to ammonia. The strongest response to airway inflammation comes from the

tenth sensor, which detects nitric oxide. However, it also can be observed that most

of sensors in the sensor array create overly similar responses in the classification of

two of the four conditions except for these dominant sensors. This implies that not all

sensors are useful in identifying an arbitrary sample. Therefore, not all of the sensors

in the system are required and an effective sensor selection method is required for a

given recognition problem.
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Fig. 4.4 Mean response of

twelve sensors to four

classes: healthy (red line),

diabetes (green line), renal

disease (blue line), and

airway inflammation

(magenta line). The

horizontal axis denotes the

twelve sensors and the

vertical axis shows the

responses of these sensors
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In medicine, the reliability of a diagnosis is measured in terms of sensitivity and

specificity, which are defined in Guo et al. (2010), with the outcome being either pos-

itive (unhealthy) or negative (healthy), which comes to a two class labeling problem.

That is, the diagnosis of an unknown sample is either a type of disease or healthy.

Hence, we divided the training samples into three groups. Each group was composed

of two classes. The first group consisted of diabetes and healthy samples; the sec-

ond group was made of renal disease and healthy samples; and the third group was

formed with airway inflammation and healthy samples. We have selected three dif-

ferent sensor subsets in total to diagnose the three types of diseases, respectively, in

this experiment.

Figure 4.5 shows the sub-vector wk (solid line) computed by the LDA and the

(s̄c1k − s̄c2k ) (dash-dot line) by subtracting the mean of the responses of C2 from

the mean of responses of C1. We express the response of the first sensor as s1 =
[t1, t2 … , t810]T, as shown in Eq. 4.1. Therefore, a sample that includes twelve sen-

sors can be written as x = [s1; s2;… ; s12] (‘;’ means the two columns are stacked),

as shown by Eq. 4.2. The dimension of x is 9720 × 1. In these figures, the horizontal

axis stands for the twelve sensors. The period 1–810 is the response of s1, 811–1620

is the response of s2, …, and 8911–9720 is the response of s12. It can be seen from

these figures that the curve of sub-vector wk analogously varies to the differences

between the two classes.

The vertical axis of Fig. 4.6 represents the value of
|
|
|
wT
k (s̄

c1
k − s̄c2k )

|
|
|

of the corre-

sponding sensor, indicating the contribution of the k-th sensor to distinguish the two

classes. They are computed and sorted in descending order. As for the diabetes and

healthy classes (Fig. 4.6a), the sensor that has the most contribution for distinguish-

ing them, is sorted as {12, 11, 6, 8, 4, 5, 2, 7, 3, 10, 1, 9}. As for the renal disease

and healthy classes (Fig. 4.6b), the order is {9, 12, 6, 3, 11, 1, 7, 8, 2, 10, 4, 5}, and

in the airway inflammation and healthy classes (Fig. 4.6c), the order is {10, 6, 7, 1,

8, 12, 4, 5, 11, 2, 3, 9}, in which the numbers are the indexes of the sensors.
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Fig. 4.5 The differences between the two classes (dash-dot line) and the eigenvectors computed by

the LDA (solid line). a healthy samples and diabetes samples, b healthy samples and renal disease

samples, and c healthy samples and airway inflammation samples. In the horizontal axis, each 810-

point interval stands for one sensor. The vertical axis shows the differences between two classes

and eigenvectors computed by LDA

To measure the classification accuracy of our proposed approach, we randomly

selected a certain number of samples from each of the four subject categories as the

test set and the remainder in each class formed the training set. The number of each

test set and training set has been listed in Table 4.1. The PCA was used to extract

the characteristic features of samples. The KNN (K = 5) classifier was then used to

determine the class of each test sample. We ran this procedure 50 times and computed

the results over all 50 runs.

Figure 4.7 shows the classification accuracy, which is given by sensitivity and

specificity. In the horizontal axis, ‘1’ indicates that only the most important sensor is

used, ‘2’ indicates that the top two important sensors are used, …, and ‘12’ indicates

that all of the sensors in the system are used. It can be seen from these figures that

when only one sensor is used, the corresponding sensitivity and specificity are not

satisfactory. When a number of sensors are added, the sensitivity and specificity

gradually increase. It is worth noting that there is a maximum for both sensitivity and

specificity, which means that there exists an optimal sensor subset when classifying

two given classes.
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Fig. 4.6 The contributions of the sensors to discriminate two classes. a healthy samples and dia-

betes samples, b healthy samples and renal disease samples, and c healthy samples and airway

inflammation samples. The horizontal axis stands for the weights of each sensor calculated by

LDASS

From Fig. 4.7, we can also see that sometimes the sensitivity and specificity can-

not reach the maximum at the same time. For example, in Fig. 4.7c, the sensitivity

has reached its maximum when eight sensors are involved while the specificity is

at its maximum when seven sensors are involved. In our experiments, we selected

the optimal sensor subset by using the following criterion: use the sensor subset

that allows the sum of the sensitivity and specificity to reach the maximum. When

adding a new sensor did not improve the sum of sensitivity and specificity any more,

we stopped the process. By using this criterion, for diagnosing diabetes, the optimal

sensor subset is [s12, s11, s6, s8, s4, s5] and the weights of these sensors are [0.5321

0.4662 0.3898 0.3166 0.2052 0.1804], respectively. For the diagnosis of renal dis-

eases, the optimal sensor subset is [s9, s12, s6, s3, s11] and the, weight of these sensors

are [0.6559 0.3745 0.3385 0.2888 0.2037], respectively. The optimal sensor subset to

diagnose airway inflammation is [s10, s6, s7, s1, s8, s12, s4] and the weights of these

sensors are [0.6805 0.4148 0.3125 0.2542 0.2083 0.1829 0.0534], respectively, as

Table 4.2 shows.

We obtain the optimal configuration of sensors when these selected sensors are

multiplied by the corresponding weights. They are [0.5321s12, 0.4662s11, 0.3898s6,
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Fig. 4.7 Sensitivity (dash-dot line) and specificity (solid line). a healthy samples and diabetes sam-

ples, b healthy samples and renal disease samples, and c healthy samples and airway inflammation

samples. The horizontal axis stands for the value of sensitivity and specificity, and the vertical axis

indicates the sensors

0.3166s8, 0.2052s4, 0.1804s5], [0.6559s9, 0.3745s12, 0.3385s6, 0.2888s3, 0.2037s11],

and [0.6805s10, 0.4148s6, 0.3125s7, 0.2542s1, 0.2083s8, 0.1829s12, 0.0534s4] for the

three kinds of diseases, respectively. By using these configurations, coupling with

PCA (to extract the features) and KNN (to classify the test samples), the classifica-

tion results defined by sensitivity and specificity are given in Table 4.2. In the dia-

betes experiment, when all the sensors were used, the sensitivity and specificity are

86.11% and 86.25%, respectively. However, when our proposed approach (LDASS)

was used, only six sensors were selected, with a sensitivity and specificity of 89.23%

and 90.01%, respectively. In the renal disease experiment, when using all sensors,

the sensitivity and specificity of this diagnosis are 83.62% and 84.17%, respectively.

When LDASS was used, five sensors were selected, with a sensitivity and speci-

ficity of 88.35% and 89.16%, respectively. Similarly, for the airway inflammation

diagnosis experiment, when using all sensors, the sensitivity and specificity of the

diagnosis are 72.71% and 71.90%, respectively. But the sensitivity and specificity

rise to 81.79% and 81.71%, respectively with seven sensors selected by LDASS.

From the results, we can see that after using the LDASS, the results are better

than using the whole sensor set. The proposed approach is not only able to remove
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Table 4.2 Classification results defined by sensitivity and specificity

Conditions Use all sensors LDASS

Sens (%) Spec (%) Sensors Weight of sensors Sens (%) Spec (%)

Diabetes 86.11 86.25 12, 11, 6,

8, 4, 5

[0.5321 0.4662

0.3898 0.3166

0.2052 0.1804]

89.23 90.01

Renal

diseases

83.62 84.17 9, 12, 6, 3,

11

[0.6559 0.3745

0.3385 0.2888

0.2037]

88.35 89.16

Airway

inflamma-

tion

72.71 71.90 10, 6, 7, 1,

8, 12, 4

[0.6805 0.4148

0.3125 0.2542

0.2083 0.1829

0.0534]

81.79 81.71

Sens Sensitivity; Spec Specificity

the redundant sensors, but also enlarge the weights of the sensors which benefit the

increasing of the classification accuracy.

4.3.2 Evaluating the Medical Treatment

In this subsection, our approach is tested when it is used to classify the same type

of disease, i.e., distinguishing between before and after treatment breath samples

from subjects with end stage renal failures. These samples were collected and classi-

fied for the purpose of evaluating the efficacy of treatment for renal failure. Detailed

information about the sample collection and the disease treatment has been intro-

duced in Guo et al. (2010). We collected the breath samples from 79 subjects with

end-stage renal failure before and after they were treated by hemodialysis (a stan-

dard treatment for this condition). When classifying the two groups (before and after

treatment) (Fig. 4.8), the accuracy is not satisfactory if all sensors are involved in

the database. Since there is a reduction in the ammonia concentration in the exhaled

breath of patients as the treatment proceeded (Narasimhan et al. 2001), the sensors

that are sensitive to ammonia may show different responses between before and after

treatment. However, for some sensors that are not sensitive to ammonia, only slightly

distinct difference of responses may be generated between before and after treatment.

Sensor selection is hence necessary for achieving high accuracy.

Figure 4.9 shows the eigenvector wk (solid line) computed by the LDA and the

(s̄c1k − s̄c2k ) (dash-dot line) by subtracting the mean of the responses of sample before

treatment from the mean of the responses of samples after treatment. The expla-

nation for the horizontal axis is the same as in Sect. 4.3.1. Figure 4.10 gives the

values of
|
|
|
wT
k (s̄

c1
k − s̄c2k )

|
|
|
, which indicates the contribution of the k-th sensor in dis-

tinguishing the two classes. They are computed and sorted in descending order as

[9, 12, 10, 1, 7, 4, 5, 6, 3, 8, 2, 11] and the weights of these sensors are [0.4766 0.1327
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Fig. 4.8 Typical responses from the same patient: a before treatment, b after treatment. The hor-

izontal axis stands for the sampling time (0–90 s) and the vertical axis denotes the amplitude of

sensor output in volts

Fig. 4.9 The differences

between two classes

(dash-dot line) and the

eigenvectors computed by

the LDA (solid line). In the

horizontal axis, each

810-point interval stands for

one sensor. The vertical axis

shows the differences

between the two classes and

the eigenvectors computed

by the LDA
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0.0206 0.0177 0.0106 0.0101 0.0099 0.0097 0.0075 0.0052 0.0044 0.0026], respec-

tively. In these sensors, Sensor 9 has the greatest contribution, followed by Sensor 12.

In the 79 samples in each class, we randomly selected 39 samples as the training

set and the remainder formed the test set to measure the classification accuracy of

our proposed approach. The classification accuracy in this experiments is defined

as the proportion of the sample amount of classified correctly against all samples.

The PCA was used to extract the characteristic features of the samples. The KNN

(K = 5) classifier was then used to determine the class of each test sample. We ran

this procedure 50 times and computed the results over all 50 runs. The accuracies

of the classification of both before and after treatment reach the maximum when

we used the first three sensors (Fig. 4.11), i.e., [s9, s12, s10]. Table 4.3 provides the

classification results. In comparison to the results from the approach that used all
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Fig. 4.10 The contributions

of the sensors in

discriminating the two

classes
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Fig. 4.11 The classification

accuracy for before treatment

and after treatment
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Table 4.3 Classification results of two classes: renal failure samples before treatment and after

treatment

Actual group Use all sensors LDASS

member Accuracy (%) Sensors Weight of sensors Accuracy (%)

Before treatment 81.13
9, 12, 10

[0.4766 0.1327 82.52

After treatment 84.32 0.0206] 85.23

the sensors, the classification results of LDASS rise significantly, even though only

three sensors were employed.
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4.4 Comparison Experiment and Performance Analysis

In this section, the comparison experiments between our proposed LDASS method

and common methods, such as the SFS and GA, will be discussed. Then, a perfor-

mance analysis will be provided on these approaches.

4.4.1 Sensor Selection for Disease Diagnosis

To evaluate the proposed method, two other sensor selection methods, the SFS and

GA, were tested by using the same database. The comparison results were listed in

Table 4.4.

For the SFS, we first computed the accuracy by using all sensors one by one.

sl, the one with the highest classification accuracy was selected. The next step was

to calculate all possibilities with two sensors, one of which was the sl. The sensor,

taken together with sl, increased the classification accuracy mostly, was added to the

sensor set. This process was iterated until the classification accuracy was not further

increased by including a new sensor. Take diabetes diagnosis as an example, by using

this approach, the selected optimal sensor subset was [s12, s11, s2, s8, s5, s4, s6],

according to the order of selection. In fact, the optimal sensor subset should be [s12,
s11, s6, s8, s4, s5]. The SFS obtained the different sensor subset because it was trapped

in local extrema at Sensor 2. The application of SFS on renal disease diagnosis has

the same problem. The SFS selected [s9, s3, s11, s1, s4, s5] as the optimal sensor subset

but the right one is [s9, s12, s6, s3, s11] because the SFS was trapped in local extrema

at Sensor 12 and Sensor 6. For airway inflammation diagnosis, the SFS selected the

sensor subset correctly, same as LDASS. However, the classification results have a

significant difference between the two approaches. The reason is that LDASS brings

the weight of each sensor into the classification. The responses of sensors which have

Table 4.4 Classification results of the three approaches defined by sensitivity and specificity

LDASS SFS GA

Sensors Sens (%) Spec (%) Sensors Sens (%) Spec (%) Sensors Sens (%) Spec (%)

1
12, 11, 6,

8, 4, 5
89.23 90.01

12, 11,

2, 8, 5,

4, 6

87.16 86.42
1, 2, 6,

8, 11, 12
89.74 88.41

2
9,12,6,

3, 11
88.35 89.16

9, 3, 11,

1, 4, 5
87.43 86.90

3, 6, 7,

9, 11, 12
87.24 88.53

3

10, 6, 7,

1, 8, 12,

4

81.79 81.71

10, 1, 6,

7, 8, 12,

4

80.21 79.19

1, 2, 4,

6, 7, 10,

12

80.14 79.61

1 Diabetes; 2 Renal diseases; 3 Airway inflammation

Sens Sensitivity; Spec Specificity
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Table 4.5 Sensor selection time of three approaches

Conditions
Sensor selection time (s)

LDASS SFS GA

Diabetes 24.02 42.11 94.27

Renal diseases 24.90 43.20 93.73

Airway inflammation 25.63 45.69 101.50

positive impact on the classification were enlarged by being multiplied the scaling

factors.

For the GA, we first selected four initial populations by randomly creating chro-

mosomes, and then evaluated whether the classification was accurate by determin-

ing if each population has been reached. If the population has been reached, the

chromosome of this population can be taken as the configuration of the sensor set

and if not, a new population is generated by the GA. The parameters used for the

evolution of the population are: population size: four chromosomes; initial popula-

tion: random; selection: roulette-wheel; crossover: two points with probability 0.98;

and mutation probability: 0.008. As for diabetes diagnosis, a created chromosome

is 110001010011, which means that [s1, s2, s6, s8, s11, s12] are selected sensors. For

renal disease diagnosis, a created chromosome is 001001101011, so [s3, s6, s7, s9,
s11, s12] are selected sensors. And for airway inflammation diagnosis, a created chro-

mosome is 110101100101, so [s1, s2, s4, s6, s7, s10, s12] are selected sensors. Even

though GA can obtain a global optimal solution, it has a large cost of computation.

Besides, we found that the results of GA highly depend on the training samples. With

different training samples, the selected sensors may be different, especially when the

number of training samples is small. Therefore, the GA is not so robust as the LDASS

in our experiments.

In the diabetes experiment, when using our proposed approach, only six sen-

sors are selected, with a sensitivity and specificity of 89.23% and 90.01%, respec-

tively. The result can be compared with the SFS approach, which has a sensitivity

and specificity of 87.16% and 86.42%, respectively. Yet another comparison can be

made with the GA, which has a sensitivity and specificity of 89.74% and 88.41%,

respectively. In the renal disease experiment, our proposed approach selected five

sensors with a sensitivity and specificity of 88.35% and 89.16%, respectively. In

comparison with the result from the SFS approach, the sensitivity and specificity

are 87.43% and 86.90%, respectively. In the GA, the sensitivity and specificity are

87.24% and 88.53%, respectively. Similarly, in the airway inflammation diagnosis

experiment, our proposed approach selected five sensors with a sensitivity and speci-

ficity of 81.79% and 81.71%, respectively. In a comparison of the result from the SFS

approach, the sensitivity and specificity are 80.21% and 79.19%, respectively. In the

GA, the sensitivity and specificity are 80.14% and 79.61%, respectively.

Table 4.5 shows the sensor selection time of each method. The experiments were

conducted on the computer with the configuration of 1.97 GB of RAM and E8200 @
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2.66 GHz. The sensor selection times are 24.02, 24.90, and 25.63 s for the diabetes,

renal diseases, and airway inflammation diagnoses, respectively, in our proposed

approach. The sensor selection times are 42.11, 43.20, and 45.69 s for the diabetes,

renal diseases, and airway inflammation diagnoses, respectively, for the SFS. The

sensor selection times are 94.27, 93.73, and 101.50 s for the diabetes, renal diseases,

and airway inflammation diagnoses, respectively, for the GA. It is obvious that the

LDASS has a better performance in classification accuracy and processing time than

the SFS and GA.

4.4.2 Evaluating the Medical Treatment

The proposed method is evaluated based on its performance in assessing the treat-

ment of end stage renal failure. Two other sensor selection methods, the SFS and

GA, are also tested by using the same database.

The experiment on the SFS is the same as the one in Sect. 4.4.1. By using this

approach, the selected optimal sensor set is [s9, s8, s12, s1, s7]. In comparison with

the LDASS, the numbers in the selected sensor set have increased. After selecting

Sensor 9, the SFS selected Sensor 8 and then Sensor 12. However, the optimal sensor

subset should be [s9, s12, s10]. There is an error in the selection because the SFS is

easily trapped in local extrema.

The process of implementing the GA is also the same as that in Sect. 4.4.1. The

final created chromosome is 000000001111, which means that [s9, s10, s11, s12] is

selected as the optimal sensor subset. However, the GA can not provide the weight

information of each sensor. By adding the weight of these sensors, the classification

accuracy can be increased.

Table 4.6 shows the classification results of the three approaches, LDASS, SFS,

and GA. When using the LDASS, the accuracy of classifying the before and after

treatment test set is 84.32% and 85.23%., respectively. In comparison, two results

are given from the SFS and GA. The accuracy of classifying the before and after

treatment test set is 82.66% and 82.24%, and 84.13% and 84.40%, respectively.

The sensor selection time of each approach to evaluate the treatment of end stage

renal failure is also given in Table 4.6. The experiments were conducted on the com-

puter with the configuration of 1.97 GB of RAM and E8200 @ 2.66 GHz. Our pro-

posed approach takes 9.30 s to evaluate the treatment. The SFS and GA require 21.72

and 87.01 s, respectively. It is obvious that the LDASS outperforms the SFS and GA

in both classification accuracy and processing time.

4.5 Summary

This chapter first introduces breath analysis system for disease diagnosis and ana-

lyzes the problems that lie in the system. Since not all sensors can contribute to
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Table 4.6 Comparison between three approaches for the classification of the renal failure samples

Actual group number
Accuracy

LDASS SFS GA

Before treatment (%) 84.32 82.66 82.24

After treatment (%) 85.23 84.13 84.40

Second selection time (s) 9.30 21.72 87.01

signal classification, it is necessary to provide a sufficiently large amount of sen-

sors and select the most sensitive ones for applications. Therefore, this chapter has

proposed an approach in the system to obtain the optimal configuration of sensors.

Experiments show that this approach could significantly increase the classification

accuracy and outperform other similar methods.

In spite of the many advantages, the proposed approach can still be improved.

When seeking the best direction, the LDA does not work well with high-dimensional

data and a small subset of samples. Some improvements (Xu et al. 2004a, b; Hu et al.

2009) could be investigated in the future to achieve better results.
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Chapter 5
Sensor Evaluation in a Breath
Acquisition System

Abstract Breath acquisition systems contain arrays of correlated chemical sensors.
For such systems, sensor selection is needed. From the process of sensor selection,
some insight behind the performance of different sensor arrays can be obtained.
Thus, we can know more about the sensors, which could help us with the selection
work in turn. In this chapter, we focus on the evaluation of sensor performance
instead of particular sensor selection techniques. First, a breath acquisition system
for diabetes diagnosis with 16 sensors is described. Based on this system, several
methods are proposed to evaluate the importance, unique discriminant information,
and redundancy of each sensor. They are based on the results of exhaustive sensor
selection. These methods are made convenient to observe and draw intuitive con-
clusions. They are applied to the breath acquisition system and some useful dis-
coveries about the sensors in the system are made accordingly.

Keywords Average accuracy improvement (AAI) ⋅ Cumulative sensor
importance (CSI) ⋅ Sensor accuracy improvement (SAI) ⋅ Sensor accuracy
similarity (SAS) ⋅ Sensor evaluation

5.1 Introduction

Researchers have developed many techniques to select useful sensors from the
original sensor array. Wilks lambda-statistic coupled with elimination transform
was used in Yin et al. (2013) to pick sensors with high discriminant ability. A rough
set-based approach which could simultaneously classify the data as well as optimize
the array was applied by Bag et al. (2011). In Szecowka et al. (2011), the authors
tried to utilize neural network sensitivity analysis for this task. As introduced in the
last chapter, linear discriminant analysis (LDA)-based sensor selection technique
has also been proposed to estimate the contribution weight of each sensor, followed
by subset selection (Guo et al. 2011). Traditional methods such as genetic algorithm
(GA) are also feasible choices (Gardner et al. 2005).
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All of these methods have succeeded in providing optimized sensor arrays with
higher accuracy and smaller size. Many of them could also estimate the importance
of each sensor by either weights or an order of sensors (Bag et al. 2011; Guo et al.
2011; Szecowka et al. 2011; Yin et al. 2013). However, these importance indices do
not have clear meanings. Sometimes questions such as “how much the accuracy
will improve by adding this sensor” may be raised. Besides, we may also be
interested in the inter-relationships between sensors, e.g., “given the presence of
sensor S2, how much will the accuracy change by adding sensor S1?” “Does sensor
S1 have very similar performance to S2?” From the answers to these questions,
useful messages can be inferred about the importance, unique discriminant infor-
mation, and redundancy of the sensors in our prediction task. These messages help
us to select better array in turn.

To answer these questions, a direct and reliable way is to analysis the results of
an exhaustive search among all possible sensor combinations. For an e-nose with
N sensors, the number of experiments to carry out during searching is 2N − 1. For
example, if N = 13, the experiment number is 8191. In fact, this number is
affordable for modern computers if the time cost for each experiment is not too
much. This exhaustive searching method is suitable for the cases in (Bag et al.
2011; Guo et al. 2011; Szecowka et al. 2011), since the e-noses have no more than
13 sensors. This method can also ensure to select the optimal array.

In this chapter, we propose several techniques based on exhaustive searching to
evaluate the sensors so as to infer their importance, unique discriminant informa-
tion, and redundancy (Yan and Zhang 2014). The experiments are carried out with a
breath analysis system. It has 16 sensors to measure the volatile organic compounds
(VOCs) in breath. 167 breath samples from healthy subjects and 151 from diabetics
have been collected. This dataset is used to test the sensor evaluation methods.
Several useful conclusions will be drawn after the evaluation. The conclusions have
been used to develop a practical breath analysis system (Yan et al. 2014).

The remainder of this chapter is organized as follows: Sect. 5.2 describes the
breath acquisition system in detail; Sect. 5.3 introduces the idea of our sensor
evaluation methods. The analysis results and a few discussions will be provided in
Sect. 5.4. Section 5.5 summarizes the chapter.

5.2 System Description

The proposed breath analysis system includes a device to measure breath and a set
of data analysis algorithms. In this section, we will first introduce the framework of
the breath analysis device. The key part of the device, the sensor array, will be
described next. After that the process of breath collection and measurement will be
shown. Finally, a brief introduction will be given about the data analysis
algorithms.
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5.2.1 Framework of the Device

Figure 5.1 shows the main framework of the breath acquisition device. The gas
sensors in our sensor array include an electrochemical ammonia (NH3) sensor, a
photo ionization detector (PID) sensor, and 12 metal oxide semiconductor (MOS)
sensors. The MOS sensors work in a relatively high temperature which is not
suitable for the NH3 and PID sensors, so separate small gas rooms were made for
the NH3 and PID sensors. Breath or fresh air is drawn from outside and pumped
into the gas rooms by a micro vacuum pump. According to our experiments, the
contamination and carryover in the pump is negligible.

The gas passes the gas room for the NH3 sensor, the PID sensor, and the MOS
sensors successively. The signal of the NH3 and PID sensors are transmitted to the
signal processing circuit through transmitting modules. The signal processing cir-
cuit magnifies and filters the responses of all the sensors. Finally, a data acquisition
card digitizes the processed signals and transmits them to a computer using a USB
cable. On the other way round, the computer sends control signals to the data
acquisition card to control the on/off of the pump and the modulation voltage of the
temperature modulated sensors. The whole device is powered by a 12 V power
adapter. The power is sent to each unit by a power distribution circuit.

5.2.2 Sensor Array

There are 16 sensors in our device. Besides the NH3 sensor, the PID sensor and the
12 MOS sensors, a humidity sensor and a MEMS mass flow sensor are also utilized.
Table 5.1 is a list of these sensors. When choosing these candidate sensors, we
focused on commercially available sensors because they are easier to acquire, more

Fig. 5.1 Main framework of the proposed device
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robust and have a good variety. The diversity of the candidates was augmented by
choosing sensors from different companies and of different types, sensitive spec-
trums and measurement ranges. We also paid attention to choose some sensors that
have higher sensitivity to our target compounds such as acetone. Our references
included sensor datasheets and previous studies (Guo et al. 2011; Yan et al. 2012).

Temperature modulation (TM) is a way of using the MOS sensors. Instead of
giving the sensors a constant heating voltage as usual, this method periodically
modulates the heating voltage. It has been proved that this method can increase the
discriminability and selectivity of MOS sensor (Gutierrez-Osuna et al. 2003).
Although it has been used a lot to classify different chemicals, TM has never been
applied in breath acquisition systems. So three MOS sensors in our array (TGS2600,
TGS2602, and WSP2111) were copied, with one copy of each sensor operated under
TM. We wish to explore if they would outperform the original ones. In Table 5.1,
the suffix “-TM” indicates that the sensor is a temperature modulated sensor.

5.2.3 Sampling Procedure

When collecting the breath sample from either a healthy or a diabetes subject,
he/she is asked to exhale into a 600 mL Tedlar® gas bag through a disposable
mouthpiece. After that, the gas bag is plugged onto the connector of the device to
let the software control the device to finish the measurement of the breath. The
measurement consists of 4 stages, including:

Table 5.1 Detailed sensor information

No. Model Function Range Company

1 D6F-P0001A1 Gas mass flow rate 0–100 (mL/min) Omron Inc. Japan
2 NH3 3E 100 SE NH3 0–100 (ppm) City Inc. UK
3 piD-TECH 200 VOCs 1–200 Baseline-Mocon Inc. USA
4 TGS826 NH3, VOCs 30–300 Figaro Inc. Japan
5 TGS2610-D00 VOCs, H2 500–10,000
6 TGS2602 VOCs, NH3, H2S 1–30
7 TGS2600-TM H2, VOCs, CO 1–100
8 GSBT11 VOCs 1–1000 Ogam Inc. Korea
9 TGS2602-TM VOCs, NH3, H2S 1–30 Figaro Inc. Japan
10 WSP2111-TM VOCs, H2 5–40 Winsen, China
11 WSP2111 VOCs, H2 5–40
12 HTG3515CH Humidity 10–95 (RH%) Humirel Inc. France
13 TGS2610C VOCs, H2 500–10,000 Figaro Inc. Japan
14 TGS822 VOCs, H2, CO 50–5000
15 TGS2600 H2, VOCs, CO 1–100
16 SP3S-AQ2 VOCs, H2, CO 1–1000 FIS Inc. Japan
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(1) Baseline stage (1 s): The baseline values of the sensors are recorded for future
data preprocessing.

(2) Injection stage (7 s): The pump opens; breath is drawn from the gas bag to the
gas room at a constant speed.

(3) Reaction stage (56 s): The pump is off; the sensors continue reacting with the
gas particles.

(4) Purge stage (80 s): The pump opens again; fresh air is drawn into the gas room
to push the breath gas out.

5.2.4 Data Analysis

In this chapter, sensors are evaluated based on their performance on the task of
classification between healthy and diabetes samples. Before classification, the
samples need to be preprocessed first. The preprocessing is made up of 3 steps:
baseline removing, gas amount compensation, and humidity compensation. For
each of the chemical sensors, the baseline value is estimated by its average response
in the baseline stage. Then it is subtracted from the response of the corresponding
sensor. Gas amount and humidity compensation is used to compensate the fluctu-
ation of gas amount and humidity among samples. First, several acetone samples
were collected with different gas amount and humidity. Then two linear models
were built to describe each sensor’s dependency on gas amount and humidity,
respectively. Finally, the breath samples were compensated using these models and
the responses of mass flow sensor and humidity sensor in the samples. The details
of the compensation algorithm can be found in (Kashwan and Bhuyan 2005).

Next, principle component analysis (PCA) is used to extract a smaller set of
features from the preprocessed responses of 14 chemical sensors (except the mass
flow sensor and the humidity sensor). A critical coefficient of PCA is the ratio of
variance that can be explained by the extracted features. In this chapter, the ratio is
set to be 99.99%. Finally, support vector machine (SVM) with a Gaussian kernel is
adopted to do the final classification. Details of these algorithms can be found in
many related papers or textbooks.

5.3 Sensor Evaluation Methods

5.3.1 Cumulative Sensor Importance

Many sensor selection algorithms are capable of giving each sensor an estimation of
importance/weight/contribution. For example, the estimation may come from some
intermediate values of the classifier (Guo et al. 2011; Szecowka et al. 2011).
However, if the prediction accuracy of every possible sensor array is available, we
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can get a more reliable importance evaluation. The question is, how to evaluate the
sensor importance from these accuracy values?

When we have the prediction accuracy of every possible sensor array, it is easy
to sort the arrays according to the descending order of the accuracy values. The first
few items of this sorted list may be like Table 5.2. A reasonable intuition is that the
sensor in the rank 1 array must be important. But because of the instability of the
prediction model brought by the limited sample size, and the large correlation
among the chemical sensors, some important sensor may not be present in the rank
1 array. Besides, what is the importance order of the sensors in the rank 1 array?

Following the evaluation criterion known as “cumulative match score” (Phillips
et al. 2000), we propose a criterion named “cumulative sensor importance” (CSI).
For each sensor, its occurrence in the top K ranked arrays is counted and denoted as
CSI(K). A sensor with high importance should occur more in the top ranked arrays
than those with low importance. So CSI can be used to indicate the importance of
the sensors. Curves of CSI(K) with K as the x-axis can be plotted. Thus, by
observing these curves’ height, we can get the importance order of all the sensors.

5.3.2 Average Accuracy Improvement

The average accuracy improvement (AAI) intends to answer such a question: “how
much will the accuracy improve by adding a certain sensor?” For instance, we
already have an array A which does not contain the sensor S. The prediction
accuracy for A is acc(A). So the accuracy improvement after adding sensor S is acc
(A ∪ S) − acc(A). Since A could be any array without S, it is better to average this
improvement for all possible A’s. So AAI(S) is defined by this average accuracy
improvement of sensor S.

If we can use the prediction accuracy to estimate the discriminating information
of an array, AAI(S) somehow reflects the average of unique discriminating infor-
mation in S, subtracting the noise or redundancy in S. This is because the accuracy
is likely to increase only if S contains some unique discriminating information that
the original array does not have. Or, in other words, S should contain some com-
plementary information. If compared to the discriminative information it can bring,
S introduces more noise or redundancy to the prediction algorithm, and AAI
(S) could even be negative.

Table 5.2 An example of the
array rank list

Rank Sensors Accuracy

1 s7, s8, s9, s10, s11, s16 0.923
2 s7, s8, s9, s10, s11 0.922
3 s3, s4, s7, s8, s9, s10, s11 0.919
… … …
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As a result, we could also draw a scatter plot for all the sensors, with the
accuracy of each single sensor as the x-axis, and the AAI of each sensor as the y-
axis. Suppose the accuracy of each single sensor reflects the total discriminating
information of the sensor, then the sensors in the right part of this plot are those
with high discriminating information by themselves, while those in the upper part
are those with more unique discriminating information. When selecting sensors, it
is reasonable that we first select those in the upper right corner of the scatter plot,
followed by the ones in the upper part. When discarding sensors, those in the lower
left corner should be the first choices.

5.3.3 Sensor Inter-relationship

The AAI reflects the average of the unique discriminating information of a sensor.
Sometimes we are interested in relationships between sensors pairs, e.g., “compared
to sensor S2, does S1 contain any unique discriminating information?” This could
be estimated by sensor accuracy improvement (SAI). We define SAI(S1, S2) = acc
(S1 ∪ S2) − acc(S2). The reason is that only if S1 has some unique discriminating
information that the S2 does not have, acc(S1 ∪ S2) is likely to be larger than acc
(S2). If compared to the discriminative information it can bring, S1 introduces more
noise or redundancy to the prediction algorithm, SAI(S1, S2) could even be
negative.

In an opposite aspect, we may wonder if sensor S1 is very similar to S2. If so,
one of them is likely to be redundant and can be discarded. The similarity could be
estimated by algorithms such as correlation or mutual information between the
features of two sensors, but the result is not task-specific. Our real goal is to
evaluate if the two sensors contribute analogously to our prediction task. Therefore,
it is better to use the prediction accuracy to judge the similarity. Suppose there is an
array A which contains neither S1 nor S2. If acc(A ∪ S1) is close to acc(A ∪ S2)
for every possible A, then S1 has similar performance to S2 for this prediction task.
Thus, the sensor accuracy similarity (SAS) can be defined as SAS(S1, S2) = 1 −
mean(abs(acc(A ∪ S1) − acc(A ∪ S2))), where the operation “abs” means the
absolute value and “mean” means averaging over all possible A’s.

Both SAI and SAS can be described with a matrix, where each row and each
column correspond to a sensor. SAI(i, j) is an estimation of the unique discrimi-
nating information of sensor i that the sensor j does not have. SAS(i, j) is an
estimation of the similarity between sensor i and j. The larger the SAS(i, j), the
more similar. It is easy to know that SAI(i, i) = 0, SAS(i, i) = 1. SAI(i, j) ≠ SAI
( j, i), but SAS(i, j) = SAS( j, i).

In this section, we introduced our methods to compute the cumulative sensor
importance and average accuracy improvement for each sensor, as well as sensor
accuracy improvement and sensor accuracy similarity between each pair of sensors.
Each measurement can be plotted to a figure, which is convenient for us to observe
and draw intuitive conclusions. While traditional sensor selection methods only tell
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us which sensors are important, these methods give us more insight and tell us why
certain sensors are important and some should be discarded. These conclusions
come from analyzing the exhaustive searching results of a certain task, followed by
cumulating or averaging, so they are more reliable and more specific for the task. In
the next chapter, these methods will be used to analyze the data collected by our
breath acquisition system, followed by a detailed discussion.

5.4 Experiments and Discussion

5.4.1 Experiment Configuration

167 breath samples from healthy subjects and 151 from diabetics were collected. To
classify between healthy and diabetes samples, half of samples were randomly
picked from both class to form the training set. The rest of the samples formed the
test set. We ran the classification 50 times and calculate the average accuracy for
sensor performance evaluation.

There are 14 chemical sensors in our breath acquisition system. The NH3 sensor
is ignored since it is irrelevant to our task and generates little response for all the
samples. Thus, there are 13 sensors to evaluate altogether. 8191 arrays need to be
tested. The program was run on the Matlab v8.0 software on a computer with
2.4 GHz, 8 core CPU and 16 GB RAM. The parallel function of Matlab was used
to accelerate the program. It took 8.8 h to test the 8191 arrays. This time cost is
acceptable for our task. If the sensor number becomes larger, it will be impractical
to test all the arrays. However, some filter algorithms can be used to exclude some
sensors before testing.

5.4.2 Sensor Evaluation Results

Figure 5.2 shows the cumulative sensor importance of the evaluated 13 sensors. For
clarity, the sensors’ names have been replaced by their number. One can check
Table 5.1 for correspondence. From Fig. 5.2, it is clear that sensors 9, 10, 7, 8, 11,
and 4 are the most important ones. For the same K, their CSI(K) is higher, indi-
cating that they appear more frequently in the top K arrays.

From Fig. 5.3, we can get similar conclusions. The average accuracy
improvement (AAI) of sensors 9, 7, 10, 8, and 4 are the highest ones. Sensor 9 can
improve the accuracy by 4% on average. This AAI list is not identical to CSI, since
AAI averaged over the accuracy of all the arrays, while in the CSI figure only the
top 1500 arrays are shown. The sensors 3, 13, 15, and 16 have negative AAI values,
indicating that on average they introduce more noise and redundancy than dis-
criminating information. The AAI is basically proportional to the accuracy of each
single sensor. But for sensors 14 and 15, although they have higher single accuracy
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than sensors 8 and 4, their AAI is lower than sensors 8 and 4. This is probably
because sensor 14 and 15 have some discriminating information, but much of it is
overlapped with other sensors. Their unique discriminating information left is less
than sensors 4 and 8.

The sensor accuracy improvement (SAI) matrix is illustrated in Fig. 5.4. For
easy reading, pseudo-color is used to represent values. Red indicates large positive
SAI values, whereas blue indicates large negative values. The ith row and jth
column of this matrix is SAI(i, j), which means that adding sensor i to sensor j, the
prediction accuracy will increase SAI(i, j). We can see that sensors 9, 7, 10 (the s9,
s7, s10 row), and so on have relatively large SAI values along all the columns. This
is a hint that they have some unique discriminating information that every other
sensor does not have. This is consistent to our observation from CSI and AAI.
Another finding is that SAI(s7, s15) > 0 but SAI(s15, s7) < 0. This is a hint that
the discriminating information in s15 is a subset of that in s7.
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To estimate the redundancy between sensors, we plot the sensor accuracy
similarity (SAS) matrix in Fig. 5.5. A red-color grid (i, j) in this figure means that
sensor i and j have very similar performance, thus one of them may be redundant
and can be discarded. For clarity reason, the order of row and column has been
rearranged to cluster sensors with close SAS values. As we can see, sensors 13, 5,
3, 15, and 16 have large SAS values between one another. This possibly means that
they have highly correlated responses. An interesting fact is that from Fig. 5.3 we
know none of them has much unique discriminating information and from Fig. 5.2
we know none of them is very important. Keeping one of them in the array is
enough. Sensors 11, 14, 6, 4, and 8 also have some correlation between each other,
but not as much as sensor 13 and so on. Sensors 10, 7, and 9 are really different
from other sensors. They contain much unique discriminating information and
adding them to the array will make big differences to the accuracy of this task.

5.4.3 Discussion

In this section, the evaluation results will be related with some prior knowledge
about the sensors to see if it will bring more discoveries on the sensors.
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From the four evaluation techniques it is found that sensors 9, 7, and 10 (par-
ticularly sensor 9) are the most important sensors, contain the most unique dis-
criminant information than other sensors, and are not redundant at all. They are all
temperature modulated sensors. Their performance is much better than their
counterparts without TM, i.e., sensor 6, 15, and 11. SAI(15, 7) and SAS(6, 9) are
even negative (see Fig. 5.4), which is to say that compared to the TM version, the
non-TM version of the two sensors contains only noise and redundancy. In con-
clusion, temperature modulation can be applied to breath acquisition systems and it
can greatly improve the performance of MOS sensors.

Sensors 8, 4, and 6 have medium importance, unique discriminant information,
and moderate redundancy. Actually, in our pilot experiments, these 3 sensors have
high sensitivity to acetone, which is the main biomarker of diabetes. This fact can
explain their importance.

Sensors 13, 5, 3, 15, 16, and 11 contain high redundancy and low unique
discriminant information. This is consistent to the fact that the sensitivity features in
their datasheets are very similar. Sensor 5 and 13 have very similar performance
according to Fig. 5.5, which is possibly because that they both belong to the
TGS2610 series.

The four figures above show that the PID sensor (sensor 3) is not a good choice
for our task. It is because that a PID sensor is sensitive to a wide range of analytes
(Baseline-Mocon 2007), thus have poor selectivity.

From the discussions above, we have more knowledge on the sensor selection
results now. Although the best sensor array consists of sensors 7, 8, 9, 10, 11, and
16 according to exhaustive searching, it is not the only choice. It can be inferred
that sensors 7, 9, 10 are essential; sensor 16 could be replaced by another one in
sensor 5, 13, 15; sensors 8, 4, 6 are better kept; sensors 11 and 14 are optional;
sensor 3 should be discarded.

In its datasheet, sensor 14 has high sensitivity to acetone. The datasheet of
sensors 8, 4, and 6 do not include any content about acetone. But in our experi-
ments, sensor 14’s sensitivity of acetone is not comparable to the latter three
sensors. This is maybe because that the latter three sensors are not designed to sense
acetone, so it is not written in their datasheet. This finding shows that when
selecting sensors for e-noses, the datasheets are not completely reliable, since they
do not show the sensors’ sensitivity to every analyte.

5.5 Summary

In this chapter, a breath acquisition system for diabetes diagnosis was introduced.
Four techniques were developed to evaluate the sensors’ performance. The cu-
mulative sensor importance shows the importance order of the sensors. The average
accuracy improvement displays the accuracy improvement brought by a sensor. The
sensor accuracy improvement tells us the accuracy gain by combining one sensor
with another. The sensor accuracy similarity shows the likeness of performance
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between two sensors. Different from traditional sensor selection methods which
focus on selecting the best array, the proposed statistics aim at judging the
importance, unique discriminating information, and redundancy of each sensor
based on the exhaustive search results of all the possible sensor arrays.

The key step of using these techniques lies in comparing the results to prior
knowledge about the sensors. It can bring us more insight and tell us why certain
sensors are important and some should be discarded, thus provide new aspects for
selecting sensors. We have tested these techniques on our data and draw some
useful conclusions. The conclusions themselves may not be very helpful for other
researches since they are specific for our task. But the analysis methods are suitable
to analyze all systems with an array of sensors, especially when different sensors
have correlation. The heavy computation cost needed to do the exhaustive search is
an obstacle. A possible solution is to filter out some irrelative or redundant sensors
in advance.
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Chapter 6
Improving the Transfer Ability of Prediction
Models

Abstract Calibration transfer aims at making the prediction model trained on one e-

nose transferable to other e-noses, which is important for the large-scale deployment

of e-noses, especially when the cost of sample collection is high. In this chapter,

the transfer ability of prediction models is improved in two simple yet effective

steps. First, windowed piecewise direct standardization (WPDS) is used to standard-

ize the slave device, i.e., to transform the variables from the slave device to match

the master one. Then, data from the master device are used to develop prediction

models with a novel strategy named standardization-error-based model improvement

(SEMI). Finally, the standardized slave data can be predicted by the models with a

better accuracy. The proposed WPDS is a generalization of the widely used PDS

algorithm. To evaluate the algorithms, three e-noses specialized for breath analysis

are adopted to collect a dataset, which contains pure chemicals and breath samples.

Experiments show that WPDS outperforms previous methods in the sense of stan-

dardization error and prediction accuracy; SEMI consistently enhances the accuracy

of the master model applied to standardized slave data.

Keywords Calibration transfer ⋅ Standardization-error-based model improvement

(SEMI) ⋅ Tikhonov regularization ⋅Variable standardization ⋅Windowed piecewise

direct standardization (WPDS)

6.1 Introduction

As increasing number of e-nose systems are being deployed in real-life applications,

the problem of instrumental variation is receiving more and more attention. When

two e-noses of the same model are used to measure the same gas sample, their

responses are usually not identical, which is due to the variations in the manufac-

ture of gas sensors, e-nose devices, and the change in operational condition (Bruins

et al. 2013; Marco and Gutiérrez-Gálvez 2012; Zhang et al. 2011). Therefore, if the

prediction model trained on one device (master device) is applied to other devices

(slave devices), there will be a degradation in accuracy. However, it is often impracti-

cal to collect a set of labeled gas samples with each device to train prediction models,
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especially when the cost of sample collection is high. This problem limits the popu-

larization of e-noses.

In order to make prediction models more applicable on slave devices, researchers

have presented various calibration transfer methods. Many of them were originally

proposed for spectroscopic data (Feudale et al. 2002; Park et al. 2001; Wang et al.

1991), but can also be applied to e-noses. This is because spectrometers generate 1D

signals similar to e-noses, and also suffer from the instrumental variation problem.

There are three typical ways of calibration transfer (Feudale et al. 2002; Marco and

Gutiérrez-Gálvez 2012): transforming the data from the slave device to match the

master one; updating the prediction model of the master device according to the slave

data; and transforming the predicted values of the slave data. Transfer samples are

often used in the algorithms. They usually consist of a group of standard gases which

are reproducible and easy to acquire. The mapping information between devices can

be obtained by analyzing the correspondence relationship between transfer sample

groups.

In the field of e-noses, focuses have been paid on the first way (Balaban et al.

2000; Deshmukh et al. 2014; Marco and Gutiérrez-Gálvez 2012; Tomic et al. 2002;

Zhang et al. 2011, 2013), since it is feasible in most situations and easy to imple-

ment. These kinds of methods are also known as variable standardization meth-

ods, which essentially deal with a regression problem. Common categories include

univariate directstandardization (UDS), direct standardization (DS), and piecewise

direct standardization (PDS), which differ mainly in the number of input variables.

They can also be viewed as estimating a transformation matrix with different non-

zero off-diagonal element constraints. Regression algorithms such as robust fitting

(Deshmukh et al. 2014; Zhang et al. 2011), artificial neural network (ANN) (Bala-

ban et al. 2000; Zhang et al. 2013), partial least squares (PLS) (Tomic et al. 2002),

ordinary least square (OLS), and principal component regression (PCR) (Park et al.

2001) have been studied. Besides, in Peng et al. (2011), standardization was per-

formed on a subspace obtained by spectral regression. The method is better than

DS when the number of transfer samples is not less than 20. A calibration transfer

approach based on alternating trilinear decomposition (ATLD) was proposed in Liu

et al. (2014). With the method, the correction coefficients of multiple devices can

be simultaneously derived. But the method may only be suitable when the changes

between devices are restricted to relative intensity.

In the widely used PDS method, one variable in the master device is fitted by a

group of variables around the corresponding variable in the slave device. All input

variables are given the same weight (Wang et al. 1991). However, it is intuitive that

the variables nearer to the corresponding variable should receive higher weights than

the farther ones. With the constraint of the feature weights, the regression algo-

rithm can be more stable. So we propose windowed piecewise direct standardiza-

tion (WPDS) in this chapter, which allows us to give different weights to the input

variables by assigning different penalty parameters. Experimental results show that

WPDS outperforms UDS, PDS, and DS in the sense of test standardization error

(the difference between standardized slave variables and the master variables) and

prediction accuracy.
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In current literatures, variable standardization and prediction model training are

always considered separately. The transfer ability of prediction models is improved

simply by minimizing the standardization error (SE). Nevertheless, we find that by

incorporating some prior information obtained from standardization into the predic-

tion models, the prediction accuracy of the slave data can also be enhanced (Yan and

Zhang 2015). We call the strategy standardization-error-based model improvement

(SEMI). The main idea is to make the models rely more on stable variables which

have smaller SE. The strategy is combined with four popular prediction algorithms,

i.e., logistic regression, support vector machine, ridge regression, and support vector

regression. A weighted regularization term is included in the objective function of

each algorithm. We impose larger penalty on the variables with larger SE, so as to

reduce the weights of these variables in the trained model. Therefore, the model will

be less sensitive to these unstable variables and have better transfer ability.

Calibration transfer is crucial in the application of clinical analysis because sam-

ples from patients are rather hard to collect. In this chapter, we will conduct experi-

ments on a portable e-nose specialized for breath analysis (Yan et al. 2014; Yan and

Zhang 2014), which will be introduced in Chap. 14. It achieves disease screening

and monitoring through analyzing the biomarkers in breath, such as acetone, hydro-

gen, and ammonia. Three e-noses of this model are adopted to collect a gas sample

dataset. Six pure chemical samples are chosen as transfer samples for variable stan-

dardization. Several prediction tasks are designed to evaluate the transfer ability of

the models, includingclassification or regression of pure chemicals or breath sam-

ples. Experimental results show that the SEMI strategy consistently enhances the

accuracy of the master model applied to standardized slave data, especially when

the inconsistency between devices is large. In addition to its efficacy, SEMI can be

easily extended to other prediction algorithms.

The chapter is organized as follows. Section 6.2 describes WPDS and SEMI in

detail. Section 6.3 introduces the experimental configurations, including the e-nose

module, the dataset, and the related data analysis procedure. Section 6.4 presents

the results of the calibration transfer experiments and provides some discussion.

Section 6.5 summarizes the chapter.

6.2 Design of Methods

The calibration transfer process in the chapter consists of two steps: (1) developing

standardization models with WPDS to standardize the data from the slave device;

(2) developing prediction models with the SEMI strategy to predict the standardized

slave data. This section will describe the steps in detail.

http://dx.doi.org/10.1007/978-981-10-4322-2_14
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6.2.1 Windowed Piecewise Direct Standardization (WPDS)

The objective of standardization is to model the difference between two devices and

reduce it. To achieve this, a set of transfer samples are measured on both devices.

Then, regression models are built based on the correspondence between the transfer

samples, so as to transform each slave variable to match the corresponding master

variable. Finally, the prediction models trained on master data can be applied to the

standardized slave data and get a better accuracy.

In the simple univariate directstandardization (UDS) approach (Balaban et al.

2000), each master variable is fitted using the corresponding slave variable and

obtain two coefficients: the slope and the intercept. When the device variation is

large, the univariate approach cannot always model the master variables well. The

direct standardization(DS) proposed in Wang et al. (1991) is a multivariate approach

which fits each master variable using all slave variables. Some researchers (Balaban

et al. 2000) reported that DS is better than UDS. However, when the number of

variables is large and the number of transfer samples is limited, DS is prone to over-

fitting (Feudale et al. 2002). A trade-off approach between UDS and DS is piecewise

direct standardization (PDS) (Wang et al. 1991). In PDS, each master variable is

related to only a subset of slave variables, for example, neighboring wavelengths in

near-infrared spectroscopy data. PDS is one of the most widely used standardization

approaches in spectroscopic area. Its superiority is attributed to its local character

and multivariate nature (Feudale et al. 2002). But it has not been well explored for

e-nose data partially due to the feature extractionmethods used in previous studies.

Commonly, only one steady response feature is extracted from each sensor before

standardization, hence there are no “neighboring” variables. If multiple transient

features are extracted from each sensors response curve, neighboring variables can

be defined and PDS can be applied.

In PDS, the input variables are regarded as equally important. Intuitively, when fit-

ting the kth master variable, the kth slave variable should be more important than the

variables at some distance from k. Therefore, we propose a windowed PDS (WPDS)

which gives different weights to input variables by assigning different penalty para-

meters in regression. The penalty parameters can be seen as a window around k. By

changing the size and shape of the window, we can change the scope and weights of

the input variables. Consequently, the original PDS turns out to be a special case of

WPDS with a rectangular window (constant weights).

We adopt generalized ridge regression as the algorithm inside WPDS. Ridge

regression (Hoerl and Kennard 1970; Hastie et al. 2009) is a well-known shrinkage

method for linear regression. Suppose the problem is to find proper 𝜷 and 𝛽0 in

y(i) = 𝜷Tx(i) + 𝛽0 + 𝜀(i), i = 1, 2,… ,N, (6.1)

where y is the output variable; superscript (i) indicates the ith sample; N is the num-

ber of samples; x(i) ∈ 𝐑M
is a vector of M input variables; M is the window length
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of WPDS. 𝜷 = [𝛽1, 𝛽2,… , 𝛽M]T ∈ 𝐑M
and 𝛽0 ∈ 𝐑 are the regression coefficients to

be estimated; and 𝜀(i) ∈ 𝐑 is an error term. The problem formulation of ridge regres-

sion is

min
𝜷, 𝛽0

{ N∑
i=1

(𝜷Tx(i) + 𝛽0 − y(i))2 + 𝜆

M∑
j=1

𝛽2j

}
. (6.2)

The second term is a regularization term, which imposes a penalty on the coeffi-

cients’ size. It forces the coefficients to shrink towards zero. 𝜆 ≥ 0 is a parameter

controlling the amount of shrinkage. The larger 𝜆, the greater the shrinkage. Note

that the intercept 𝛽0 is not included in the regularization term (Hastie et al. 2009).

In multivariate standardization approaches, the number of samples is limited and

the input variables are often correlated. In such cases, the estimated coefficients can

have large variance. Ridge regression is particularly useful in such problems. By

introducing the regularization term, ridge regression reduces the variance and stabi-

lizes the regression model (Hastie et al. 2009). The ridge regression model can be

generalized by adding a penalty parameter w for each coefficient in the regularization

term:

min
𝜷, 𝛽0

{ N∑
i=1

(𝜷Tx(i) + 𝛽0 − y(i))2 + 𝜆

M∑
j=1

(wj 𝛽j)2
}

. (6.3)

Large wj brings large penalty to 𝛽j and shrinks it. As a result, the regression model

will depend less on variable j. A triangular window is designed for wj. Suppose the

window length M = 2L + 1, which means that when fitting the kth master variable,

from the (k − L)th to the (k + L)th slave variables will form the input vector x. So xL+1
is the slave variable which corresponds to the master variable to be fitted. As shown

in Fig. 6.1a, the penalty parameterwL+1 is set to be 0, andw grows linearly to 1 for the

L adjacent variables on both sides. This means that we impose the minimum penalty

to 𝛽L+1; and the further the index is away from L + 1, the larger the penalty. When k ≤
L or k > P − L (P is the total number of variables), the window should be truncated

on one side since the number of input variables is less than 2L + 1, as shown in

Fig. 6.1b. It is worth noting that the proper shape of the window is dependent on

the feature extraction method. The triangular window is suitable when the transient

feature is utilized, either in time domain (the points on the sensors’ response curves

are used as features) or frequency domain (the Fourier transform coefficients of the

response curves are used). In such cases, neighboring variables are closely related.

If other feature extraction methods are applied before standardization, the window

should be adjusted based on the relationships among the input variables.

To solve Eq. 6.3, the input and output variables are first centered to eliminate the

intercept term 𝛽0 (Hastie et al. 2009). Then it can be derived that

𝜷 =
(
XTX + 𝜆W

)−1 XTy,W = diag(w2
1,… ,w2

M), (6.4)
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Fig. 6.1 Illustration of the triangular window used in WPDS. The x-axis is the index of the vari-

ables. The y-axis is the penalty parameter. Plot (a) shows a complete window; Plot (b) shows an

example of a truncated window when the number of input variables is less than 2L + 1 (there are

less than L variables on either the left or the right side of the kth variable)

where X = [x(1),… , x(N)]T ∈ 𝐑N×M
and y = [y(1),… , y(N)]T ∈ 𝐑N

. In practice, we

need to estimate a 𝜷 for each master variable. X is from the slave transfer samples

and y is from the master transfer samples.

6.2.2 Standardization-Error-Based Model Improvement
(SEMI)

Compared with other calibration transfer methods, device standardization is widely

used since it is easy to implement and feasible in most problems and prediction algo-

rithms. Existing literatures have been treating standardization and prediction model

training as two separate steps. In the latter step, the prediction algorithm focuses

on fitting the master data, without trying to make the model adapt well to standard-

ized slave data. In this section, we propose a strategy to connect these two steps. By

incorporating some prior information obtained from standardization, the prediction

models can be improved and have better transfer ability.

To enhance the prediction accuracy on standardized slave data, a direct way is to

improve the standardization algorithm and minimize the standardization error (SE)

of each variable. However, in practice, some sensors’ responses are more stable than

others when measuring certain gases. The signal-to-noise ratios of different feature

extraction methods are also different. Therefore, some variables will have less inter-

device variance after standardization, thus have less SE. If the prediction model

can rely more on these variables, its performance on standardized slave data will

be better.

We define the SE of a variable x to be the root mean square deviation (RMSD)

between the standardized slave variable xSS
and the master variable xMa

:

SE(x) = RMSD(x) =

√√√√ 1
Nt

Nt∑
i=1

(
xMa

i − xSS

i

)2
, (6.5)

where the superscript “Ma” stands for “master” and “SS” stands for “standardized

slave”. Nt is the number of transfer samples.
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To make the models more dependent on variables with less SE, we modify the

objective functions of prediction algorithms to include a weighted regularization

term. The method is based on Tikhonov regularization (Tikhonov and Arsenin 1977;

Kalivas et al. 2009). The regularization term has the form 𝜆
∑M

j=1(wj 𝛽j)2, which is

similar to the one in generalized ridge regression for WPDS. 𝛽j is the coefficient

of variable j to be estimated in the model; wj is set to be the SE of variable j; 𝜆
is a positive constant controlling the weight given to the term. By minimizing the

objective function with this regularization term, the variables with larger SE are

given larger penalty parameters. Hence, the coefficients (𝛽j) for these variables in

the estimated model will be shrunk, and the model will be less dependent on them.

We also tried to replace the L2-norm penalty with L1-norm (𝜆
∑M

j=1
|||wj 𝛽j

|||). It can

generate sparse models with some coefficients being exactly zero. But the estimated

models are not stable (Park and Hastie 2007) and show worse transfer ability than

the L2-norm one.

This standardization-error-based model improvement (SEMI) strategy is applica-

ble on various prediction algorithms. We combine it with four popular classifica-

tion or regression algorithms, i.e., logistic regression, support vector machine, ridge

regression, and support vector regression. For logistic regression, a regularization

term is added into its objective function. In the objective functions of the other

three algorithms, a regularization term already exists. So we turn the term into a

weighted version. These algorithms will be briefly reviewed in the following subsec-

tions. Hereinafter each input vector x is assumed to contain a constant component

(x0 = 1), so the intercept coefficient 𝛽0 is merged into the coefficient vector 𝜷.

6.2.2.1 Logistic Regression-Based Classification

In binary-class cases, the decision function of logistic regression (LR) is a sigmoid

function

h𝜷(x) = sigmoid(𝜷Tx) = 1
1 + exp(−𝜷Tx)

. (6.6)

A test sample x is classified into the positive class if h𝜷(x) ≥ 0.5. Since h𝜷(x) is

between 0 and 1, it can be viewed as the probability of the test sample belonging

to the positive class, which is also the characteristic of LR. The coefficients 𝜷 can

be learned by maximum likelihood estimation, which seeks to maximize the log-

likelihood function (Hastie et al. 2009):

𝓁(𝜷) =
N∑
i=1

y(i) log h𝜷(x(i)) + (1 − y(i)) log(1 − h𝜷(x(i))), (6.7)

where y(i) = 1 if x(i) belongs to the positive class and 0 otherwise. Under the SEMI

strategy, the LR problem can be formulated as
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min
𝜷

{
−𝓁(𝜷) + 𝜆

2

M∑
j=1

(SEj ⋅ 𝛽j)2
}

, (6.8)

which can be solved using numerical optimization methods. In K-class cases, K sep-

arate LR models are trained using the one-versus-all strategy and x is classified into

the class whose decision function has the largest value.

6.2.2.2 Support Vector Machine-Based Classification

Support vector machine (SVM) is among the most popular techniques for classifi-

cation. The main idea of the algorithm is finding a hyperplane to separate the train-

ing samples with a maximum margin. It has been proved to generalize well on test

samples (Burges 1998). The detailed introduction of the algorithm can be found in

(Burges 1998). The objective function of SVM has the form “loss + penalty” (Hastie

et al. 2009), so we modify the penalty term in an L2-loss SVM model and formulate

the problem of SVM + SEMI as:

min
𝜷

N∑
i=1

𝜉2i +
𝜆

2

M∑
j=1

(SEj ⋅ 𝛽j)2

s.t. y(i)𝜷Tx(i) ≥ 1 − 𝜉i, 𝜉i ≥ 0, ∀i,

(6.9)

where y(i) ∈ {+1,−1}. The trust region Newton method in LIBLINEAR (Fan et al.

2008) is used in this chapter to solve Eq. 6.9 in the primal form. In K-class cases,

the one-versus-all strategy is used.

6.2.2.3 Ridge Regression-Based Regression

Ridge regression generates regression models which are more robust than ordinary

least squares, especially in ill-conditioned problems (Marco and Gutiérrez-Gálvez

2012; Hastie et al. 2009). Its formulation under the SEMI strategy and solution are

similar to Eqs. 6.3 and 6.4:

min
𝜷

{ N∑
i=1

(𝜷Tx(i) − y(i))2 + 𝜆

M∑
j=1

(SEj ⋅ 𝛽j)2
}

. (6.10)

𝜷 =
(
XTX + 𝜆W

)−1 XTY ,W = diag(0,SE
2
1,… ,SE

2
M). (6.11)

The intercept coefficient 𝛽0 is not penalized, so the first element of W is zero.
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6.2.2.4 Support Vector Regression-Based Regression

Support vector regression (SVR) is a frequently used regression algorithm with good

generalization ability (Marco and Gutiérrez-Gálvez 2012). The details of the algo-

rithm can be found in (Smola and Schölkopf 2004). Similar to SVM, we modify the

penalty term in an L2-loss SVR model and formulate the problem of SVR + SEMI

as:

min
𝜷

N∑
i=1

(𝜉2i + 𝜉∗i
2) + 𝜆

2

M∑
j=1

(SEj ⋅ 𝛽j)2

s.t. y(i) − 𝜷Tx(i) ≤ 𝜀 + 𝜉i

𝜷Tx(i) − y(i) ≤ 𝜀 + 𝜉∗i
𝜉i, 𝜉

∗
i ≥ 0, ∀i.

(6.12)

The trust region Newton method in LIBLINEAR (Fan et al. 2008) is used in this

chapter to solve Eq. 6.12 in the primal form.

6.3 Experimental Details

In order to assess the proposed methods, we used three e-noses to collect a gas sample

dataset. In this section, the e-nose module, the composition of the dataset, and the

related data analysis procedure will be described.

6.3.1 E-nose Module

The e-nose to be introduced in Chap. 14 is equipped with an array of 11 sensors.

Among them, we focus on 9 metal oxide semiconductor (MOS) sensors for the detec-

tion of volatile organic compounds (VOCs). They have diverse sensitivity spectrums.

For example, some sensors (TGS826, TGS2602, GSBT11) are proved to be sensitive

to acetone, which is a biomarker of diabetes (Deng et al. 2004; Turner et al. 2009);

some (TGS2610-D00, SP3S-AQ2, TGS822) are more sensitive to hydrogen, which

has been used to detect functional intestinal disorders (Eisenmann et al. 2008); some

(TGS826, TGS2602) are sensitive to ammonia, which is associated with renal failure

(Davies et al. 1997). In our experiments, we found that GSBT11 is unstable and has

a very large SE, so we discarded the sensor. The following analysis is performed on

the remaining 8 MOS sensors. Examples of the signals measured using three e-noses

of the same model are shown in Fig. 6.2. The inconsistency of the devices can be

easily observed.

http://dx.doi.org/10.1007/978-981-10-4322-2_14
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Fig. 6.2 Comparison of the baseline-removed responses of the same breath sample measured using

the three e-noses. a–c correspond to devices 1–3, respectively. The legend shows the names of the

sensors

6.3.2 Dataset

The e-noses were utilized to measure 7 groups of gas samples. Three groups of them

are pure chemicals of different concentrations; one group is normal breath exhaled by

healthy people; and the other three groups are chemicals blended with normal breath.

Three kinds of chemicals were considered, namely acetone, hydrogen, and ammonia,

since they are typical breath biomarkers of certain diseases. In the last three groups,

the chemicals were diluted with exhaled breath instead of clean air. The aim is to

make the prediction tasks more challenging, since normal breath already contains

the three chemicals of different concentrations (Deng et al. 2004; Eisenmann et al.

2008; de Lacy Costello et al. 2008), as well as many other interfering VOCs (Phillips

et al. 1999). They are also used to simulate the breath samples of patients. Details of

the dataset are listed in Table 6.1. The ranges of concentrations of the chemicals were

determined by their typical concentrations in breath (Deng et al. 2004; Turner et al.

2009; Eisenmann et al. 2008; Davies et al. 1997). A visualization of the data in groups

1–3 can be found in Fig. 6.3, which demonstrates the sensitivity characteristics of

the sensors.

All 248 samples were measured using each of the three e-noses. The measurement

procedure of each sample can be found in Chap. 14. Six pure chemical samples were

empirically chosen as the transfer samples in this study. We chose two samples of

http://dx.doi.org/10.1007/978-981-10-4322-2_14


6.3 Experimental Details 101

Table 6.1 Composition of the dataset

Group Gas sample #Samples Notes

1 Acetone 16 8 concentrations (0.1, 0.2, 0.5, 1, 2, 5, 10, 20 ppm),

2 samples per concentration

2 Hydrogen 18 9 concentrations (0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50

ppm), 2 samples per concentration

3 Ammonia 14 7 concentrations (0.1, 0.2, 0.5, 1, 2, 5, 10 ppm), 2

samples per concentration

4 Normal breath 80 Collected from 24 healthy subjects in different days,

2–6 samples per subject

5 Acetone + breath 40 8 concentrations (0, 0.2, 0.3, 0.7, 1.7, 3.3, 5.0, 6.7

ppm), 5 samples per concentration, mixed with

normal breath from 5 subjects

6 Hydrogen + breath 40 8 concentrations (0, 0.4, 0.7, 1.7, 4.2, 8.3, 12.5, 16.7

ppm), 5 samples per concentration, mixed with

normal breath from 5 subjects

7 Ammonia + breath 40 8 concentrations (0, 0.3, 0.8, 1.7, 2.5, 3.3, 4.2, 5.0

ppm), 5 samples per concentration, mixed with

normal breath from 5 subjects
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Fig. 6.3 Responses of the eight sensors to three gases. The x-axis is the logarithm of the concen-

tration C of the target gas. The y-axis is the sensor resistance ratio RS∕R0, where RS is the sensor’s

resistance in the target gas and R0 is that in fresh air. Each data point is the average of two tests of

the same gas in the same concentration. The error bars show the standard deviation
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each chemical, one with a low concentration and one with a high concentration,

namely acetone (1 and 10 ppm), hydrogen (1 and 50 ppm), and ammonia (1 and 10

ppm). Experiments showed that with the proposed algorithms, these transfer samples

can be used to standardize the breath samples with an acceptable accuracy.

6.3.3 Preprocessing and Feature Extraction

After a digitized gas sample is obtained, the baseline values are subtracted from the

sensor responses to remove baseline drift. Then, discrete Fourier transform (DFT)

features are extracted from the response curves. Compared with the traditional steady

response feature, DFT contains the transient information of a curve, which will be

helpful in prediction. Additionally, the energy of the typical response curve of a gas

sensor lies mostly in low frequencies, so we can compress the curve using only a

small number of variables in the frequency domain. In this chapter, we extract the

modulus of the first 30 DFT coefficients from each curve, which has 1152 data points

in the time domain. As a result, each feature vector contains 30× 8 sensors = 240

variables.

The variables are further normalized with standard normal variate (SNV) to elim-

inate additive and multiplicative variations among different devices (Marco and

Gutiérrez-Gálvez 2012). For each device, the mean and standard deviation values

of each variable are calculated from the transfer samples. Then all samples from

the device are centered and scaled by these values. This normalization step can be

viewed as an initial standardization of the variables.

6.3.4 Data Analysis Procedure

The entire data analysis procedure for device standardization and prediction is shown

in Fig. 6.4. After preprocessing and feature extraction, the gas samples from master

and slave devices are represented by matrices X
Ma

and X
Sl

, respectively. The transfer

samples from both devices are adopted to build standardization models. Then X
Sl

is standardized using the models and the standardized slave sample matrix X
SS

is

obtained. Next, training samples from X
Ma

are used to develop master prediction

models. When the SEMI strategy is used, the standardization error will also join

the model training. The trained model is applied to predict the test samples in X
Ma

and X
SS

, obtaining the accuracy Acc
Ma

and Acc
SS

, respectively. We can also get

Acc
Sl

when the training and test samples are both from X
Sl

. Generally, Acc
Ma

and

Acc
Sl

should be better than Acc
SS

, since their training and test samples are from

the same devices. The final goal is to enhance Acc
SS

to approach Acc
Sl

, without

degrading Acc
Ma

. Note that for classification tasks, Acc is the classification precision

(the larger the better); For regression tasks, Acc is the root mean square error (RMSE,

the smaller the better).
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Fig. 6.4 Flowchart of the device standardization and prediction procedure. An unfilled arrow starts

from an input, and a filled arrow points to an output. X
Ma

,X
Sl

, andX
SS

represent the sample matrices

of master, slave, and standardized slave device, respectively. Acc stands for prediction accuracy

Note that in the standardization step, if multivariate standardization methods are

used, the input variables and the output variable should come from the same sensor.

In the prediction step, four classification tasks and six regression tasks are executed

to evaluate the algorithms. The classification tasks include a multi-class task (dis-

tinguishing the three chemicals) and three binary-class tasks (distinguishing normal

breath samples from each group of blended ones). In each task, we randomly choose

an equal number of samples from the each corresponding data group (class). Half

of them are randomly chosen as training samples, leaving the rest as test ones. The

two classification algorithms in Sect. 6.2.2 are applied. The process is repeated 20

times and an average accuracy is computed for each task. The regression tasks aim at

predicting the concentration of chemicals in each data group except group 4. Within

each group, the leave-one-out cross validation strategy is used. Ridge regression and

support vector regression introduced in Sect. 6.2.2 are applied.
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Fig. 6.5 Illustration of the relationship between the maximum responses of two devices. Plot (a)–

(i) correspond to the eight sensors. The x-axis and y-axis correspond to the responses of the slave

(device 3) and master device (device 1), respectively. Note that there is a manual shift of 1 on the y-

axis between different data groups. The R values are the correlation coefficients of x and y (without

shift) for the samples in all groups

6.4 Results and Discussion

6.4.1 Standardization

Among the three e-noses, we assigned device 1 as the master device, devices 2 and

3 as the slave ones. Figure 6.5 illustrates the relationship between the maximum

responses of two devices. It is clear that the maximum responses of the two devices

have a linear relationship.

Experiments were made to compare the performance of different standardiza-

tion methods, including univariate direct standardization (UDS), direct standardiza-

tion (DS),piecewise direct standardization (PDS), and the proposed windowed PDS

(WPDS). The results are displayed in Table 6.2. In the method “only SNV,” the slave

variables are normalized with SNV but not standardized. For UDS, the robust fitting

algorithm in (Zhang et al. 2011) was used. For DS and PDS, different regression

algorithms were tested, such as OLS, PCR, PLS, and ridge regression (Eq. 6.2). It

was found that generally the order of performance is: ridge > PLS > PCR > OLS.

So only the results of ridge regression are listed in Table 6.2 for clarity. For DS, all

30 variables of each sensor in slave device were used to fit each master variable. The
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Table 6.2 Test standardization error and prediction accuracy of different standardization methods.

Bold values indicate the best results

Method

Device 2 as slave Device 3 as slave

Test SE Acc
SS

Test SE Acc
SS

Chemical Breath Classifi.

acc.

Regress.

RMSE

Chemical Breath Classifi.

acc.

Regress.

RMSE

Only SNV 0.3668 0.6192 0.8125 3.4676 0.5492 0.6897 0.7045 3.6586

UDS 0.1905 0.4034 0.8762 1.8711 0.3776 0.5508 0.6159 2.7165

DS 0.1346 0.3139 0.7049 2.5188 0.2317 0.4280 0.6357 3.0510

PDS 0.1280 0.2848 0.7458 2.1887 0.2460 0.4235 0.6474 3.1444

PDS (neural) 0.7433 0.9093 0.6825 4.6332 0.8939 1.0148 0.6145 5.1032

WPDS 0.0979 0.2713 0.8945 1.4658 0.2255 0.4189 0.7348 2.6188

window length of PDS and WPDS was 15. The shrinkage parameter 𝜆 in Eqs. 6.2

and 6.3 was set to 10. The neural method was also tested with the same parameter

setting as in Zhang et al. (2013).

In Table 6.2, the standardization error (SE) is not computed on transfer samples

as in Eq. 6.5. Instead, it is computed on all chemical (groups 1–3) or breath (groups

4–7) samples and averaged over all variables. So we denote it as “test SE”. The Acc
SS

is also listed, including the average accuracy of the four classification tasks and the

average RMSE of the six regression tasks. The prediction algorithms are logistic

regression and ridge regression without SEMI. WPDS has the lowest SE and best

prediction accuracy. PDS and DS have the second lowest SE. It is found that good

Acc
SS

does not always occur together with low SE. It is possibly because high Acc
SS

requires the variables important for prediction to have low SE. The displayed test SE,

however, is averaged over all variables. So it does not strictly reflect the prediction

results. This observation was also found in Park et al. (2001). The performance of

PDS (neural) is not good, for the neural network algorithm in Zhang et al. (2013) has

nonlinear hidden neurons and is easy to overfit the transfer samples, especially when

the number of input variables is large. The triangular window adopted in WPDS

brings effective prior information to the problem, which makes it outperform other

methods.

It can be observed that the breath samples have larger SE than the chemical sam-

ples. Human breath is a complex mixture of gases. An average normal breath con-

tains 204.2 VOCs (Phillips et al. 1999). It is not very similar to the transfer samples

used in the chapter. But since human breath is not reproducible, it cannot be directly

used as transfer sample. Experiments in this chapter show the possibility of using

three chemicals to standardize breath samples. Further study is needed on the selec-

tion of transfer samples for breath analysis systems.

Figure 6.6 is a visual illustration of the effect of the standardization process. Lin-

ear discriminant analysis (LDA) is used to reduce the master samples in three classes
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Fig. 6.6 Linear discriminant analysis (LDA) plot of the samples. The dots, circles, and plus signs

represent the samples from the master device, the slave device before standardization, and the slave

device after standardization, respectively. The red, green, and blue colors represent samples in three

classes (acetone, hydrogen, and ammonia). The slave devices are devices 2 and 3 in plot (a) and (b),

respectively

to a two-dimension subspace. Then the slave samples before and after standardiza-

tion (WPDS) were projected onto the subspace. In Fig. 6.6, it is found that the raw

samples from device 1 and 2 are similar. Meanwhile, the difference between device

1 and 3 is larger. It is probably because the gas route of device 3 is a bit different

from the other two devices. Its sensor array is also more aged. These factors enlarge

the difference between it and the master device. The standardization method reduces

the difference, especially for device 3 (see Fig. 6.6b). It can make the prediction

model trained on master data be applied to the standardized slave data without much

accuracy loss.

6.4.2 Prediction

The performance of the SEMI strategy is evaluated in this section. In the strategy,

the SEs in Eq. 6.5 are used as penalty parameters in various prediction models. In

Fig. 6.7a, the SEs of the 240 variables are shown. Their mean is scaled to 1. Note that

variables 1–30 are extracted from sensor 1, variables 31–60 are extracted from sensor

2, and so on. For each sensor, the first variable is the DFT feature of zero frequency

and the frequency rises as the feature index increases. It can be seen that SEs of

different sensors are different. Besides, the high frequency features generally have

higher SEs. Figure 6.7b, c show the coefficients of a logistic regression model trained

to distinguish three chemicals. Figure 6.7b shows the model under the SEMI strategy.
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Fig. 6.7 a Standardization error of the variables. b The classification model trained by logistic

regression with SEMI. The three curves are the coefficients of the decision functions of three chemi-

cals. c The classification model trained by logistic regression without SEMI (the penalty parameters

are all set to 1)

Compared with Fig. 6.7c, its coefficients have larger magnitude if the corresponding

SE is small (e.g., variables 90–120).

The classification accuracies based on different configurations are demonstrated

in Fig. 6.8. Both the two slave devices and the two classification algorithms are inves-

tigated. The shrinkage parameter 𝜆 is varied. When the master models are applied

to slave data which is normalized but not standardized, the performance is not good.

The accuracy is enhanced after standardization with WPDS (the curve with trian-

gles). The SEMI strategy further enhances it and makes it closer to Acc
Sl

, which is

obtained by applying the slave model on slave data. The value of 𝜆 is related to Acc
SS

with SEMI. If 𝜆 is too small, the weight of the regularization term is not enough to

penalize the unstable variables. If 𝜆 is too large, the prediction algorithms will be

too focused on penalization and cannot fit the training samples well. The results of

the regression algorithms (Fig. 6.9) show similar trends.

Apart from the DFT feature, the traditional steady response feature was also

tested. The SEMI strategy can also enhance its performance. But its overall per-

formance is not as good as the DFT feature. It is probably because steady responses

provide much less information than the DFT feature. In addition, SEMI is expected

to work better if the dimension of the feature vector is relatively high. In such situ-

ations, the variables contain redundant information. When the coefficients of some

variables are shrunk, the other variables can still provide sufficient information for

prediction.
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Fig. 6.8 Average accuracy of the classification tasks. Rows 1-2 correspond to devices 2 and 3,

respectively. Columns 1-2 correspond to logistic regression and SVM, respectively. Square the

master model is applied to slave data which is normalized but not standardized; triangle Acc
SS

without SEMI (the penalty parameters are all set to 1); plus Acc
SS

with SEMI (the mean of the

penalty parameters (SEs) are scaled to 1); circle Acc
Sl

Detailed results for every prediction algorithm are listed in Tables 6.3, 6.4, 6.5,

and 6.6. 𝜆 was searched among {10−4, 10−3.5,… , 104} for each result to find the best

one. For device 2, the improvement of Acc
SS

brought by WPDS is relatively large.

For device 3, however, the effect of device standardization is not good enough. But

SEMI significantly improves Acc
SS

in this case. This proves that SEMI is especially

effective when the inconsistency between devices is large. Surprisingly, Acc
Ma

and

Acc
Sl

can also be slightly improved by applying the SEMI strategy (including the

SE weighted regularization term in the prediction models), which implies that SEMI

introduces helpful information about the variables (such as their stability) to the pre-

diction algorithms. Among the four prediction algorithms, logistic regression and

SVM are comparable; ridge regression performs relatively better than SVR. So we

further list the results of logistic regression and ridge regression on all prediction

tasks with the best 𝜆 settings in Tables 6.7 and 6.8. It can be observed that the pro-

posed methods have made Acc
SS

close to Acc
Sl

. Acc
SS

is even better than Acc
Sl

in

some classification and regression tasks due to the helpful information introduced

by SEMI.
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Fig. 6.9 Average RMSE of the regression tasks. Rows 1–2 correspond to devices 2 and 3, respec-

tively. Columns 1–2 correspond to ridge regression and SVR, respectively. Square the master model

is applied to slave data which is normalized but not standardized; triangle Acc
SS

without SEMI (the

penalty parameters are all set to 1); plusAcc
SS

with SEMI (the mean of the penalty parameters (SEs)

are scaled to 1); circle Acc
Sl

Table 6.3 Classification accuracy of logistic regression

Slave
Acc

Ma
Acc

Sl
Acc

SS

device Without

SEMI

With

SEMI

Without

SEMI

With

SEMI

Only SNV WPDS WPDS +

SEMI

Device 2 0.9312 0.9324 0.9312 0.9410 0.8156 0.9167 0.9220

Device 3 0.9312 0.9336 0.9210 0.9314 0.7056 0.7532 0.8865

Table 6.4 Classification accuracy of SVM

Slave
Acc

Ma
Acc

Sl
Acc

SS

device Without

SEMI

With

SEMI

Without

SEMI

With

SEMI

Only SNV WPDS WPDS +

SEMI

Device 2 0.9313 0.9331 0.9322 0.9395 0.8160 0.9144 0.9217

Device 3 0.9313 0.9343 0.9350 0.9364 0.7105 0.7637 0.8836
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Table 6.5 Regression RMSE of ridge regression

Slave
Acc

Ma
Acc

Sl
Acc

SS

device Without

SEMI

With

SEMI

Without

SEMI

With

SEMI

Only SNV WPDS WPDS +

SEMI

Device 2 0.8971 0.8810 0.9106 0.7716 2.5704 1.4119 1.1424

Device 3 0.8971 0.8012 0.7891 0.7873 2.7224 2.2629 1.2691

Table 6.6 Regression RMSE of SVR

Slave
Acc

Ma
Acc

Sl
Acc

SS

device Without

SEMI

With

SEMI

Without

SEMI

With

SEMI

Only SNV WPDS WPDS+

SEMI

Device 2 1.0522 1.0739 1.1748 1.0732 2.4545 1.3904 1.2690

Device 3 1.0494 1.0157 1.0559 1.0558 2.7004 2.0737 1.4824

Table 6.7 Accuracy of logistic regression on device 2 of all classification tasks (distinguishing

the samples in different data groups)

Group 1 versus 2 versus 3 4 versus 5 4 versus 6 4 versus 7 Average

Acc
SS

: Only SNV 0.7286 0.8941 0.8824 0.7574 0.8156

Acc
SS

: WPDS

+ SEMI
0.9762 0.8941 0.9206 0.8971 0.9220

Acc
Sl

0.9881 0.8779 0.9176 0.9412 0.9312

Table 6.8 RMSE of ridge regression on device 2 of all regression tasks (predicting the concen-

tration of chemicals in different data groups)

Group 1 2 3 5 6 7 Average

Acc
SS

: Only SNV 2.8982 5.2685 1.4605 0.6872 3.9549 1.1529 2.5704

Acc
SS

: WPDS + SEMI 1.1109 1.4875 0.9921 0.6679 1.6318 0.9641 1.1424

Acc
Sl

0.7763 0.7457 0.8403 0.3552 1.9783 0.7676 0.9106

6.5 Summary

This chapter is dedicated to making the prediction models of e-noses more transfer-

able. Efforts were made in two aspects. First, the windowed piecewise direct stan-

dardization (WPDS) algorithm based on generalized ridge regression was proposed.

Experiments showed that WPDS outperformed previous methods in the sense of test

standardization error (SE) and prediction accuracy. It was also found that test SE is

not proportional to prediction accuracy, which implies that standardization should

be studied together with prediction in calibration transfer problems. Second, a novel

strategy named standardization-error-based model improvement (SEMI) was applied
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in the prediction step. It incorporates a Tikhonov regularization term in the objective

functions of prediction algorithms, so as to make the trained models more relied on

stable variables, thus relatively not sensitive to the device inconsistency. It fills the

gap between standardization and prediction by effectively combining the informa-

tion obtained from the former step with the latter step. Experiments confirmed that it

could enhance the accuracy of the master model applied to standardized slave data,

especially when the inconsistency between devices is large.

The proposed methods are easily extensible. WPDS is also applicable for spec-

troscopic data. Its window can be adjusted to adapt to different feature extraction

algorithms. The SEMI strategy can also be combined with various prediction algo-

rithms other than the four explored in this chapter.

Clinical analysis is an important application of e-noses. However, literatures

about the calibration transfer in this application are rare. In this chapter, we investi-

gated the use of only six chemical samples as transfer samples in a breath analysis

system. Experiments showed that with the algorithms proposed in this chapter, the

accuracy after calibration transfer is largely improved. Further study is still needed to

choose an optimized set of transfer samples and test the algorithms with real patients’

breath under different temperature and humidity.
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Chapter 7
Learning Classification and Regression
Models Based on Transfer Samples

Abstract In this chapter, we introduce transfer-sample-based multitask learning
(TMTL) to simultaneously address two problems in e-nose signals: instrumental
variation and time-varying drift. Data collected with each device or in each time
period define a domain. Transfer samples measured in every domain are used to
share knowledge across domains. TMTL reduces the influence of drift in the target
domains by aligning the transfer samples at the model level. Two paradigms,
parallel and serial transfer, are designed to reflect different relationships between
domains, which are dependent on the cause of drift. A dynamic model strategy is
proposed to predict samples with known acquisition time and to handle noise in
transfer samples. Classification and regression experiments on three real-world
datasets confirm the efficacy of the proposed methods. They achieve good accu-
racies compared with traditional feature-level drift correction algorithms and typical
labeled-sample-based MTL methods, with few transfer samples needed. TMTL is a
practical algorithm framework which can greatly enhance the robustness of sensor
systems with complex drift.

Keywords Drift correction ⋅ Instrumental variation ⋅ Multitask learning ⋅
Time-varying drift ⋅ Transfer learning

7.1 Introduction

Owing to the variations in the manufacture of gas sensors and e-noses, two e-noses
of the same model can respond differently to the same gas sample. We have
presented two algorithms in the last chapter to deal with this problem known as
instrumental variation. Besides, because of aging and poisoning of gas sensors and
change in operating conditions, gas sensors’ responses change over time in a
complex manner (Di Carlo and Falasconi 2012; Marco and Gutiérrez-Gálvez 2012).
This problem is known as time-varying drift. From the perspective of machine
learning, instrumental variation and time-varying drift are essentially a variation of
the data distribution in the feature space. Following the terms in transfer learning
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(Pan and Yang 2010), we can refer to the data from the master device or before drift
as the data from the source domain, and the data from the slave device or after drift
as the data from the target domain. The goal is to transfer knowledge from the
source to the target by leveraging information from both domains. In e-nose
applications, we usually have enough labeled source data to train a prediction
model. However, the labeled target data are scarce or hard to acquire, making it
difficult to train a new model for the target domain.

Multitask learning (MTL) can be used to address this challenging problem. It is a
type of inductive transfer learning method which has been successfully applied in
several fields (Evgeniou and Pontil 2004; Pan et al. 2007; Yu and Ji 2015; Zhou
et al. 2011b). It treats model learning in different domains as different but related
tasks. Multiple models are learned simultaneously, so that information can be
shared across them during the learning process to improve their accuracies (Caruana
1997). However, most MTL algorithms rely on labeled samples in the target
domain, which are sometimes hard to acquire in real-world applications. In this
situation, it is a good idea to use transfer samples to obtain knowledge from the
target domain. Transfer-sample-based feature-level standardization methods intro-
duced in the last chapter are easy to implement, but they are not able to correct the
drift well when the distributional variation is complex. Note that the term “drift”
often refers to time-varying drift (Marco and Gutiérrez-Gálvez 2012). In the fol-
lowing three chapters, we use the term to indicate the change in data distribution,
which can be caused by instrumental variation, sensor aging, environmental
change, and so on.

In this chapter, we propose a novel method named transfer-sample-based mul-
titask learning (TMTL). It combines MTL with transfer samples, thus has strength
in both accuracy and practical convenience. In the proposed algorithm, labeled
source data and a group of transfer samples are exploited to learn the source and
(multiple) target models jointly. The type of drift determines the relationship
between domains, so we designed a parallel and a serial transfer paradigm for
different drifts. To predict the sample measured in a specific time and handle the
noise in transfer samples, a dynamic model strategy that uses combination of
neighboring models is proposed. Like SEMI, TMTL is a framework that can be
implemented using various loss functions. Two popular classification/regression
loss functions, i.e., logistic and squared loss, are demonstrated in this chapter. We
also compared three algorithms to select representative transfer samples.

We mainly focus on e-noses in this chapter, but the proposed methods have
potential in fields such as spectroscopy (Yu and Ji 2015), indoor localization (Pan
et al. 2007), and color correction of digital cameras (Wang and Zhang 2010). For
these problems, data measured by sensors or devices contain drift, meanwhile
transfer samples can be collected (e.g., the spectra of the same chemical, the WiFi
signals at the same location, and the images of the same color).

The rest of this chapter is organized as follows. Section 7.2 briefly reviews the
related works in drift correction and MTL. Section 7.3 describes the proposed
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TMTL in detail. The transfer sample selection algorithms adopted in this chapter
are introduced in Sect. 7.4. Section 7.5 presents the experimental configurations
and results, along with some comprehensive analysis. Section 7.6 summarizes the
chapter.

7.2 Related Work

In order to obtain knowledge from the target domain, some samples from the
domain are needed. According to the type of the target samples, we classify drift
correction methods into three categories, i.e., those based on labeled target samples,
unlabeled target samples, and transfer samples.

In the setting of labeled-sample-based methods, some labeled data from the
target domain is available, but not sufficient to retrain a target model. In this case,
one intuitive idea is to use source and target data together to train a model,
meantime increase the weights of the target samples to ensure the model’s feasi-
bility in the target domain. For instance, Zhang and Zhang (2015) combined e-nose
data before and after drift into the objective function of an extreme learning
machine. Although easy to implement, this kind of method often needs many target
samples to capture the variance in the target domain. In the case of time-varying
drift, drifted data comes in the form of streams. Concept drift adaptation methods
make use of newly arrived labeled data to update the prediction models (Gama et al.
2014; Kadlec et al. 2011). As an example, Vergara et al. (2012) adopted an
ensemble strategy to cope with time-varying drift in e-noses. Samples collected in
different time were split into several batches. Then, a prediction model was trained
on each batch. Finally, for a test sample in batch k, the outputs of models 1 to k − 1
were fused by weighted majority voting, with the weights estimated from the
prediction accuracies of the models on batch k − 1. The method requires all
samples in prior batches to be labeled, which is often impractical.

Multitask learning (MTL) uses a different strategy to fuse knowledge from
different domains. Models for all domains are learned jointly. In the objective
function of an MTL method, the prior knowledge about the relationship of the
models and the features can be specified. Consequently, information can be shared
properly among the tasks, so as to enhance the generalization ability of all models,
especially for the target domain which has less labeled samples. Regularized MTL
(RMTL) was proposed in Evgeniou and Pontil (2004), in which a regularization
term was introduced to penalize the deviation among multiple models. Yu and Ji
(2015) applied RMTL to transfer models between near-infrared spectra measured in
different conditions (e.g., multiple devices) and achieved good results. In Zhou et al.
2011b, formulated disease progress prediction as a multitask regression problem,
with learning the model at each time period as a task. Models at neighboring time
periods were required to be close to capture the intrinsic temporal smoothness.
Group Lasso regularization was also employed for feature selection.
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The second category of methods is unlabeled-sample-based ones, whose main
advantage is that unlabeled target samples are much easier to acquire in practice.
Transductive transfer learning (Pan and Yang 2010) and semi-supervised learning
algorithms can be adopted in this setting. A transfer learning approach based on
weighted geodesic flow kernel and a semi-supervised classifier based on manifold
regularization were used in Liu et al. (2014) to address sensor drift in e-noses. On
the dataset introduced in Vergara et al. (2012), the prediction accuracy on drifted
data was improved.

Transfer samples are more informative than unlabeled target samples, mean-
while more convenient to obtain than labeled target samples in many real-world
applications. Most existing transfer-sample-based methods concentrate on
feature-level correction. Algorithms based on variable standardization build re-
gression models using the transfer samples. Each variable in the source domain is
fitted with one or multiple variables in the target domain using regression algo-
rithms, so as to transform the target data to the source domain. Then, the corrected
data can be predicted by the source models (Yan and Zhang 2015). Algorithms
based on component correction (CC) are also popular. CC-PCA (Artursson et al.
2000) finds the drift-related direction in the feature space by applying principal
component analysis to the transfer samples. Then the component on the direction
can be removed from all data. Orthogonal signal correction (OSC) (Padilla et al.
2010; Wold et al. 1998) is a CC-like method that relies on labeled target samples. It
pools samples with and without drift and finds the undesired component by cal-
culating the subspace that is orthogonal to the labels. One drawback of CC-like
methods is that when the drift is complex, it may be difficult to accurately separate
the directions of useful information and drift (Romain and Nicolas 2010).

7.3 Transfer-Sample-Based Multitask Learning (TMTL)

In this section, we will first consider the situation with only one source and one
target domain. Transfer-sample-based coupled task learning (TCTL), the basic form
of TMTL, is introduced for this situation. Then, we will extend TCTL to TMTL
which involves multiple domains, and describe a parallel paradigm and a serial one
to deal with different inter-domain relationships. Finally, we propose a combination
of the two paradigms and a dynamic model strategy.

7.3.1 Transfer-Sample-Based Coupled Task Learning
(TCTL)

A preliminary version of TCTL was introduced in our previous work (Yan and
Zhang 2016). In order to depict the problem setup more concretely, we take
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calibration transfer as an example. Suppose an e-nose (the source device) was
utilized to collect 50 breath samples from healthy subjects and 50 from diabetes
patients. A classification model was trained on these data. Now we have made a
new e-nose (the target device) of the same model for diabetes screening. A set of
standard gas samples have been measured with both the old and the new e-nose.
Then, TCTL can be used to learn the classification model of the new device.

Denote XS ∈ Rn×m as the matrix of source training data with each row as a
feature vector; n is the number of labeled source samples; m is the number of
variables; yS ∈ Rn is the label vector; TS ∈ Rnt ×m and TT ∈ Rnt ×m are the matrices
of the source and target transfer samples, respectively; nt is the number of transfer
samples; βS, βT ∈ Rm are the source and target prediction models to be estimated,
respectively. The objective function of TCTL is presented as the following:

min
βS, βT

ℓðXS, yS, βSÞ+ λ1 TSβS − TTβTk k22

+ λ2 XSβS −XSβTk k22 + μ ∑
m

j=1
w2
j β2S, J + β2T , J
� �

.
ð7:1Þ

In Eq. 7.1, the first term represents the empirical loss function for the source
training samples. TSβS −TTβTk k22 is the transfer sample term. It requires the cor-
responding source and target transfer samples to be close after they are respectively
projected by the source and target models. The term XSβS −XSβTk k22 encourages
similar source and target models by requiring that they project the source training
samples to similar values. The last term is a weighted shrinkage term. βS, j stands for
the jth element of βS. The weights are defined as:

wj =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
nt

i=1
ðtS, ij − tT , ijÞ2

s
, ð7:2Þ

where tS, ij means the element in the ith row (sample) and jth column (variable) of
TS. The shrinkage term penalizes the variables that have large deviation between the
source and target transfer samples. λ1, λ2 and μ≥ 0 are regularization parameters
controlling the strength of the terms.

The transfer sample term is key for information transfer between domains. It
aligns the transfer samples of the two domains in their respective projected spaces,
so as to reduce the inter-domain drift. Thus, the discriminative information of the
labeled source samples can be used in the target domain. The transfer sample term
can also be regarded as an improvement on the conventional variable standard-
ization (VS) method. In linear cases, the latter method is essentially estimating a
matrix M ∈ Rm×m to transform the target variables to the source space, i.e., to
make TTM ≈ TS. In the prediction step, the transformed target samples are projected
by βS. So the goal actually boils down to reducing the difference between the two
domains in the projected direction, in other words, minimizing TSβS −TTMβSk k22. It

7.3 Transfer-Sample-Based Multitask Learning (TMTL) 117



is exactly the transfer sample term in TCTL if we set βT =MβS. M no longer needs
to be estimated, which makes TCTL more efficient and less prone to overfitting
compared with VS.

If we rely solely on the transfer sample term to infer βT from βS, the control over
βT will be too weak. Because the number of transfer samples is often small, there
will be infinite solutions to βT that can minimize the transfer sample term and make
it zero. Therefore, we add the model similarity term XSβS −XSβTk k22 to introduce an
inductive bias reflecting the prior belief that the models resemble each other. To
reduce the inter-domain difference before applying TCTL, one can preprocess the
source and target data separately with standard normal variate (SNV) (Marco and
Gutiérrez-Gálvez 2012), i.e., each variable is centered and scaled by the mean and
standard deviation calculated from the transfer samples of its domain. Additionally,
many MTL algorithms (Evgeniou and Pontil 2004; Pan et al. 2007; Yu and Ji 2015;
Zhou et al. 2011b) simply penalize the deviation between two models, e.g., mini-
mizing βS − βTk k22. This requirement is too strict when the inter-domain difference
is large. Our model similarity term relaxes this requirement. The two models may
not be identical, but their difference should be orthogonal to the space spanned by
the source training samples. Experimental results show that the model similarity
term in this form is better than that in the traditional form.

Moreover, we add the SEMI term in the last chapter into TCTL. Two imple-
mentations of the TCTL framework are as follows.

7.3.1.1 Classification: Logistic Loss

The proposed framework can be tied with various loss functions. Logistic loss
function is demonstrated in this chapter because logistic regression (LR) is a
popular and effective classifier. We denote xðiÞ ∈Rm as the ith training sample and
yðiÞ ∈ f0, 1g as its label. X = ½xð1Þ, . . . , xðnÞ�T , y= ½yð1Þ, . . . , yðnÞ�T . In binary-class
cases, the decision function of LR is a sigmoid function hβðxÞ=1 ̸ð1+ e− β⊤xÞ. A
test sample x is classified into the positive class if hβðxÞ≥ 0.5. The logistic loss
function can be written as:

ℓLðX, y, βÞ= 1
n
∑
n

i=1
yðiÞ log hβ xðiÞ

� �
+ 1− yðiÞ
� �

log 1− hβ xðiÞ
� �� �h i

, ð7:3Þ

Combining Eq. 7.3 with Eq. 7.1, we formulate the objective function of TCTL
with logistic loss as:

JLðβS, βTÞ=ℓLðXS, yS, βSÞ+
λ1
2nt

TSβS − TTβTk k22

+
λ2
2n

XSβS −XSβTk k22 +
μ

2
∑
m

j=1
w2
j β2S, J + β2T , J
� �

,
ð7:4Þ
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whose gradient is given by:

∂JL
∂βS

=
1
n
XT
S hβðXSÞ− yS
� �

+
λ1
nt
TT
S TSβS − TTβTð Þ+ λ2

n
XT
S XS βS − βTð Þ+ μWβS,

∂JL
∂βT

= −
λ1
nt
TT
T TSβS −TTβTð Þ− λ2

n
XT
S XS βS − βTð Þ+ μWβT ,

W =diagðw2
1, . . . ,w

2
mÞ.

ð7:5Þ

The problem above can be solved using numerical optimization methods such as
conjugate gradient. In K-class cases, K LR models are trained using the one-
versus-all strategy and x is classified into the class whose decision function has the
largest value.

7.3.1.2 Regression: Squared Loss

For regression problems, the squared loss function is adopted in this chapter. The
objective function of TCTL with squared loss is:

JSðβS, βTÞ=
1
2n

XSβS − ySk k22 +
λ1
2nt

TSβS − TTβTk k22

+
λ2
2n

XSβS −XSβTk k22 +
μ

2
∑
m

j=1
w2
j β2S, J + β2T , J
� �

.
ð7:6Þ

By setting its gradient to zero, the closed-form solution to βS and βT can be
derived:

βS
βT

� �
= ðA1 +A2 +A3Þ− 1b, ð7:7Þ

where

A1 =
P 0

0 0

� �
,A2 =

λ1
nt

TT
S TS − TT

S TT
− TT

T TS TT
T TT

� �
,

A3 =
λ2P+ μW − λ2P

− λ2P λ2P+ μW

� �
, b=

1
n

XT
S yS

0

� �
,

P=
1
n
XT
S XS,W =diagðw2

1, . . . ,w
2
mÞ.
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7.3.2 TMTL-Parallel and TMTL-Serial

TCTL only exploits information from two domains. In reality, there are situations
of multiple domains. If a number of new devices have been manufactured, each new
device can be regarded as a target domain which is different but related with each
other and the old device (source domain). In another situation, a device may have
been used to collect data for a long time. Knowing its slow and irregular
time-varying drift, we have collected transfer samples periodically. In this case,
each period can be viewed as a target domain which has relatively small
intra-domain drift. Each domain is different but related with its previous domain,
i.e., the time period prior to it. TMTL shares information across many domains,
which would probably be superior to TCTL. For instance, transfer samples in one
domain may contain noises or outliers due to the uncertainty in the measurement
process. In TCTL, the noises and outliers will mislead the model transfer process.
However, in TMTL, the influence of noises and outliers to one model can be
mitigated owing to the similarity requirements with all the other models.

Considering the relationship between domains, we have designed two para-
digms, namely TMTL-parallel and TMTL-serial. TMTL-parallel is suitable for
situations such as calibration transfer, where multiple domains are similar to each
other. Here, we use a subscript k to denote the variable in the kth target domain, and
a subscript 0 to denote the variable in the source domain for simplicity. The total
number of target domains is d. The objective function of TMTL-parallel is
expressed as:

min
βS, β

ð1Þ
T
, ..., βðdÞ

T

ℓðX0, y0, β0Þ+ λ1 ∑
d

k=1
T0β0 −Tkβkk k22

+ λ2 ∑
d

k=0
X0 βk −

1
d+1

∑
d

r=0
βr

� �				
				
2

2

+ μ ∑
d

k=0
∑
m

j=1
w2
k, jβ

2
k, j.

ð7:8Þ

It is a natural extension of TCTL to multiple target domains. The transfer
samples of each target domain are aligned to those in the source domain in their
respective projected spaces. Each model is encouraged to resemble an average
model (Evgeniou and Pontil 2004). In the SEMI term, the shrinkage weight for
variable j in the source domain w0, j

� �
is the average of those in the target domain.

By minimizing Eq. 7.8, we can obtain the prediction models for all devices
efficiently.

TMTL-serial is specialized for situations such as time-varying drift. The dif-
ference between the parallel and serial TMTL is that the latter one encourages each
model to be similar to its previous model:
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min
βS, β

ð1Þ
T
, ..., βðdÞ

T

ℓðX0, y0, β0Þ+ λ1 ∑
d

k=1
T0β0 −Tkβkk k22

+ λ2 ∑
d

k=1
X0 βk − βk− 1ð Þk k22

+ μ ∑
d

k=0
∑
m

j=1
w2
k, jβ

2
k, j.

ð7:9Þ

The intuition is to capture the temporal smoothness prior as in Zhou et al.
(2011b). Note that there are two typical modes to analyze data streams. In the
offline mode, data in all time periods are analyzed together, which implies that
transfer samples collected in later periods can aid the model transfer process of
former periods. In this mode, models of all periods can be obtained simultaneously
by optimizing Eq. 7.9. The online mode, on the other hand, requires data in the
current period to be analyzed in real time. This means that only the transfer samples
collected before can be used. In this mode, we can optimize Eq. 7.9 each time a
new group of transfer samples are collected, and use the latest model βdð Þ obtained
to predict recent samples.

7.3.3 TMTL-General and the Dynamic Model Strategy

In the most general case, samples can be collected by several devices in a long
period of time, as illustrated in Fig. 7.1. So we can go one step further and combine
the parallel and serial TMTL to simultaneously learn all models. In TMTL, each
group of transfer samples corresponds to a model. First, the initial group of transfer
samples measured by the oldest device (denoted as device 1) is selected as the
overall reference. All the other groups should be aligned with it in their respective
projected spaces, which form the transfer sample term in the objective function.
Second, each model is expected to be similar to its previous model of the same
device, while the first model of each device should resemble their average
meanðβk, 1Þ, as shown in Fig. 7.1.

To deal with time-varying drift, the data stream of a device is split into discrete
batches in most previous studies (Liu et al. 2014; Vergara et al. 2012; Zhang and
Zhang 2015; Zhou et al. 2011b) and the discussions above. Each batch corresponds
to one fixed model. This strategy loses the information carried in the exact
acquisition time of the samples in the same batch. The drift within a batch cannot be
modeled. Therefore, we propose a dynamic model strategy to exploit the infor-
mation. Assuming that the time-varying drift of a device is smooth, it is intuitive to
also let the model change smoothly over time. We set the model of device i at time
t to be a function of all models of the same device. A straightforward method is to
interpolate between neighboring models. We find it better to use a weighted
combination as follows:
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βiðtÞ= ∑
j
ci, jðtÞβi, j,

ci, jðtÞ= exp − σðt− ti, jÞ2
� �

.
ð7:10Þ

ti, j is the acquisition time of the jth group of transfer samples of device i. The closer
t is to ti, j, the larger the weight ci, jðtÞ will be. σ is the window size parameter. Note
that ci, jðtÞ should be normalized to keep a sum of 1. When using this dynamic
model strategy, the model for every training and test sample should be calculated
using Eq. 7.10. The mean and standard deviation values used to normalize variables
in SNV should also be modified according to Eq. 7.10, which we will call dynamic
SNV. These dynamic strategies can probably make the models more accurate.
Another important function of the strategies is to deal with noises and outliers in
transfer samples. They can further smooth the noise contained in individual models,
which has similar insight to the ensemble strategy (Vergara et al. 2012). Details
about TMTL with logistic or squared loss can be extended from Eqs. 7.5 to 7.7,
thus will not be presented here for brevity.

7.4 Selection of Transfer Samples

The selection of transfer samples is also an important issue in TMTL. Transfer
samples should be capable of representing one domain in order to effectively
transfer knowledge between domains. Meanwhile, the number of transfer samples

Fig. 7.1 Illustration of the sample collection process in the most general case. The jth cylinder
located in the ith row represents the jth group of transfer samples measured by device i, which also
corresponds to a model βi, j. The circles are ordinary samples measured by the device at a specific
time. The arrows indicate the model similarity relationships: the model at the beginning of an
arrow should resemble the model at the end
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should be as small as possible to ease the burden of collecting them repeatedly
(Rodionova and Pomerantsev 2008). Because only the source samples are acces-
sible in the training stage, one often gathers a sufficient set of candidates from the
source domain, then selects a compact and representative group from them. The
selected transfer samples can then be measured by every new device and in each
time period.

In the last chapter, we empirically selected six transfer samples. Nonetheless,
this method requires strong prior knowledge of the dataset, thus we hope an
algorithm can be applied to automatically choose transfer samples. In the field of
machine olfaction (e-noses) and spectroscopy, the Kennard–Stone (KS) algorithm
is the most intensively used (Feudale et al. 2002; Kennard and Stone 1969; Zhang
et al. 2011b, 2015). Given a set of candidate transfer samples, KS aims to
sequentially select the samples that capture the most variance of the candidates.
First, the two samples farthest apart from each other are picked. The next sample
selected should have the largest nearest distance from the existing selections. This
procedure is repeated until desired number of samples have been chosen. One
disadvantage of KS is that the selected samples may contain outliers.

Active learning methods (Yu et al. 2006; Zhang et al. 2011a) are also suitable for
this problem. In this chapter, we explore two methods in this category. For easy
controlling of the sample size, only sequential selection algorithms are considered.
Transductive experimental design (TED) (Yu et al. 2006) selects samples that can
be used to reconstruct the whole data set most precisely (Zhang et al. 2011a).
Locally Linear Reconstruction (LLR) (Zhang et al. 2011a) further takes into
account the local manifold structure. It requires that a data point can only be linearly
reconstructed from its neighbors, then selects the samples that best reconstruct the
whole data set. We will compare the three methods mentioned above in the next
section. Another related issue is to choose the proper time to collect transfer
samples. For this issue, one can refer to the change detection algorithms in Gama
et al. (2014).

7.5 Experiments

In this section, we will conduct experiments on three datasets to evaluate the
performance of the proposed algorithms. The datasets contain time-varying drift,
instrumental variation, and both, respectively. Comparison will be made between
our methods and other typical methods in the fields of drift correction and MTL.
Different strategies in our methods will also be explored and analyzed.
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7.5.1 Gas Sensor Array Drift Dataset

The gas sensor array drift dataset is a public dataset1 introduced by Vergara et al.
(2012, 2014). An e-nose with 16 gas sensors was utilized to collect the dataset over
a course of 36 months. Six kinds of gases (ammonia, acetaldehyde, acetone,
ethylene, ethanol, and toluene) at different concentrations were measured. The total
number of samples is 13,910. Each sample is represented by a feature vector with
128 variables extracted from the sensors’ response curves (Vergara et al. 2012). The
dataset is split into 10 batches in chronological order. The period of collection and
the number of samples in each batch can be found in Table 7.1. The goal is to
classify the type of gases, despite their concentrations. We choose batch 1 (source
domain) as the training set and test on batches 2–10 (target domains). This eval-
uation strategy was also used in Liu et al. 2014, Vergara et al. 2012, Zhang and
Zhang 2015 and resembles the situation in real-world applications.

Figure 7.2 shows a scatter map for visual inspection of the time-varying drift
across batches. The samples are projected to a 2D subspace using PCA. It can be
found that the ammonia samples drift roughly to the +x direction, whereas the drift
of acetaldehyde is small. There are also some samples that do not follow the general
trend of drift, which implies that the drifting pattern of the samples is complex and
it is hard to directly compensate it (Zhang and Zhang 2015).

To explain the principle of proposed transfer-sample-based strategy, we depict
the effect of TCTL in Fig. 7.3, in which transfer samples are leveraged to align the
drifted samples in the projected subspace. An experiment was made with samples of
three classes in two batches. Two classification models were trained to distinguish
class 1 or 2 from the other two classes. Then, the samples were projected by the two
models. The colored areas suggest the correct regions for the samples in each class.
In plot (a), samples from both batches are projected by the source model. Therefore,
some target samples (plus signs) fall into the wrong region because of the drift, thus
will not be correctly classified. In plot (b), TCTL is applied to learn the source and
the target models simultaneously. With the transfer samples in both domains
aligned (black points), the drift is reduced in the model level and the target samples
fall into correct regions.

The first step of our methods is choosing transfer samples. They are not directly
provided in the dataset, hence need to be selected from a candidate set. The can-
didate set of batch k (k = 2,…, 10) was defined as the overlapping samples in batch
1 and k, namely the samples of the same gas and concentration. Then, we used the
three selection algorithms introduced in Sect. 7.4 to choose nt transfer samples for
each batch. After that, the samples in each batch were preprocessed with SNV. The
models for batches 2–10 were learned using TCTL or TMTL. For TMTL, the serial
paradigm and the online analysis mode were adopted. For a target batch k, the
labeled training samples in batch 1 and the transfer sample groups of batches 1 to

1http://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+at+Different
+Concentrations.
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Fig. 7.2 Example of the drift across batches 1–6 in the gas sensor array drift dataset. Dots and
plus signs represent ammonia and acetaldehyde samples, respectively. Different colors indicate
different batches

Fig. 7.3 Illustration of the effect of TCTL. Markers in different colors are samples from different
classes, except the black ones, which represent the transfer samples. Circles are samples from
batch 1 (source); Plus signs are those from batch 2 (target). In plot (a), samples from both batches
are projected by the source model learned by LR. In plot (b), the source samples are projected by
the source model learned by TCTL with logistic loss, whereas the target samples are projected by
the target model learned by it
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k were fed into Eq. 7.9 with logistic loss. After prediction, an average classification
accuracy was computed.

Comparison of the sample selection algorithms is displayed in Fig. 7.4. The
parameters for TED and LLR were set to be the same with those in the original
papers (Yu et al. 2006; Zhang et al. 2011a). The parameters of TCTL and TMTL
were optimized by grid search for each result, except that μ was empirically fixed to
10−3. It can be found that the accuracy improves as nt increases, until nt reaches
about 10. The overall order of performance is LLR > KS > TED. The effective-
ness of the locally linear reconstruction strategy of LLR is proved. The traditional
KS algorithm, although simple, shows performances close to LLR. Besides, TMTL
is generally better than TCTL, which is because TMTL involves more tasks that can
help each other. It makes use of all k groups of transfer samples for batch k, whereas
TCTL only uses two groups. Furthermore, TMTL-serial is able to capture the
temporal smoothness prior of the data. The influence of noises and outliers in
transfer samples are better mitigated.

Figure 7.5 shows the average accuracy of TMTL-serial when parameters λ1 and
λ2 are varied in f2− 8, 2− 7, . . . , 22g. LLR was used to select 10 transfer samples in
this experiment. μ was still fixed to 10−3. We notice that the accuracy is the highest
when λ1 is neither too small nor too large. λ1 controls the weight of the transfer
sample term. If it is too small, the transfer samples cannot be aligned well.
Meanwhile, putting too much emphasis on the transfer samples will cause over-
fitting. The accuracy degrades when λ2 is large, indicating that the source and target
models cannot be too similar because of the drift.

Figure 7.6 compares TCTL- and TMTL-serial with several other methods,
including only preprocessing the features with SNV (Only SNV) (Marco and
Gutiérrez-Gálvez 2012), variable standardization (last chapter), MTL based on
temporal group Lasso (TGL) (Zhou et al. 2011a, b), and regularized MTL (RMTL)
(Evgeniou and Pontil 2004). LLR was used to select transfer samples from the
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source domain or labeled target samples from the target domain. The first two
methods standardize each target variable based on the transfer samples, then use the
source models learned by LR to predict the standardized target samples. Their
performances are not promising possibly because the drift is complex and the
capacity of the feature-level correction methods is limited. The latter two are MTL
methods (with logistic loss function and linear kernel) based on labeled target
samples. The parameters were tuned by grid search for each result. Their perfor-
mances are comparable with TCTL. TMTL-serial has the best accuracy for each nt.
Moreover, TCTL and TMTL have the advantage of not needing to select and label
the target samples.

More results of existing methods are listed in Table 7.2. For “no transfer”, data
in batches 2–10 were directly predicted by the classification model trained on batch
1. Its accuracy is poor especially for batches with large IDs, which proves the
influence of drift. The results of ensemble, DAELM-S, and ML-comGFK are
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copied from the original papers. Although the ensemble method and DAELM-S
achieve good results, they both need relatively large amount of auxiliary target
samples. DAELM-S requires 30 selected labeled samples in each target batch. The
ensemble method requires all samples in batches 1 to k − 1 to be labeled when
predicting batch k. ML-comGFK needs only unlabeled target samples. But its
accuracy is still not satisfactory.

In order to assess the strategies adopted in our methods, we have tested some
possible alternatives, whose results are listed in the last five rows of Table 7.2. For

“TMTL (sim2)”, the proposed model similarity constraint XSβ1 −XSβ2k k22
� �

is

replaced by β1 − β2k k22, which occurs in many MTL papers. For “TMTL (no
SEMI)”, the proposed weighted shrinkage term is replaced by an ordinary
shrinkage term with uniform weights. TMTL-serial outperforms the two alterna-
tives, indicating the superiority of the proposed strategies. Besides, TMTL-serial is
slightly better than TMTL-parallel in this problem.

7.5.2 Breath Analysis Dataset

A breath analysis dataset was collected using two e-noses of the same model (Yan
et al. 2014) as in Chap. 14. The collection process lasted for about 500 days starting
from 2014. From the dataset, we select five diseases that have been proved to be
related with certain biomarkers in breath, namely diabetes, chronical kidney disease
(CKD), cardiopathy, lung cancer, and breast cancer (Wilson and Baietto 2011).
Their sample sizes and days of collection are illustrated in Fig. 7.7, together with
those of the healthy samples and transfer samples. Transfer sample groups were
measured periodically, with eight pre-selected standard gas samples in each group.

Table 7.2 Classification accuracy of various methods on the gas sensor array drift dataset

Target batch ID 2 3 4 5 6 7 8 9 10 Average

No transfer 88.59 66.96 40.99 54.82 43.22 44.40 31.63 45.74 39.11 50.61

CC-PCA 90.92 40.86 47.20 59.39 56.74 56.71 36.39 45.32 37.72 52.36

OSC 88.10 66.71 54.66 53.81 65.13 63.71 36.05 40.21 40.08 56.50

Ensemble 74.36 87.83 93.79 95.43 69.17 69.72 91.84 76.38 65.50 80.45

ML-comGFK 80.25 74.99 78.79 67.41 77.82 71.68 49.96 50.79 53.79 67.28

DAELM-S 87.98 95.74 85.16 95.99 94.14 83.51 86.90 100.00 53.62 87.00

TCTL 97.35 95.46 90.68 98.48 93.22 93.91 89.12 87.02 69.97 90.58

TMTL (sim2) 97.51 98.74 93.79 96.95 95.04 90.51 90.14 92.55 69.72 91.66

TMTL (no SEMI) 96.46 97.35 95.65 97.97 95.04 84.83 82.31 93.19 70.78 90.40

TMTL-parallel 97.35 97.16 93.17 97.46 95.96 91.70 90.14 90.85 73.28 91.90

TMTL-serial 97.35 98.80 90.06 98.48 95.35 91.50 91.84 96.38 71.56 92.37

Bold values indicate the best results
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Different from the simulation dataset used in the last chapter, this real-world
dataset was collected in a loosely controlled environment in several hospitals in
Guangzhou, China. Therefore, it suffers from a number of factors that will cause
drift in data distribution, e.g., instrumental variation, sensor aging, temperature and
humidity change, sensor damage and replacement, etc. As an example, we draw the
steady-state responses of two sensors in Fig. 7.8. The sensitivity of the sensor in
plot (a) gradually decayed over time, as can be observed from the trend of breath
and transfer samples. For the sensor in plot (b), however, the decay was much
faster, so we replaced it three times. It is worth noting that the transfer samples
contain noise and outliers (e.g., in plot (a)), which cannot precisely reflect the true
distribution of the data, thus will degrade the accuracy if we transfer knowledge
based on them. One solution is to detect the outliers according to some prior
knowledge. In this chapter, we use the dynamic model strategy in Eq. 7.10 to deal
with it.

The experimental settings are as follows. Five binary-class classification tasks
(healthy vs. disease) were executed. Because the classes are imbalanced, F-score
was adopted as the accuracy metric. To simulate real-world applications, we used
only the first 50 samples collected with device 1 in each class as training samples
(see Fig. 7.7), others as test ones. Considering the complexity of the drift and the
noise in transfer samples, we utilized the offline analysis mode, namely all groups
of transfer samples were used to learn all models simultaneously. The 9D feature
vector consists of steady-state responses of nine gas sensors, followed by dynamic
SNV described in Sect. 7.3.3. Owing to the instability of the sensor GSBT11 (see
Table 13.2), we have replaced it with TGS2603 from Figaro Inc.

Experimental results are listed in Table 7.3. Solutions based on labeled target
samples are impractical in this case because of the difficulty in collecting breath

Fig. 7.7 Overview of part of the breath analysis dataset. Each point denotes a sample (or a group
of transfer samples) collected in a specific time. The two rows of each class represent samples
measured by the two devices, with the sample sizes labeled on the right. Red plus signs denote the
training samples

130 7 Learning Classification and Regression Models …



samples from patients. Therefore, only transfer-sample-based methods were tested
in this section. The parameters of each method were tuned by grid search. For
methods except TMTL and “random train + TMTL”, LR was adopted as the
classifier. Multiplicative drift correction (MDC) (Artursson et al. 2000) is a sim-
plified version of variable standardization which corrects each variable with a
multiplicative factor. It performed better than variable standardization in this
dataset. However, the two transfer-sample-based feature-level correction methods,
MDC and CC-PCA, showed little improvement over “no transfer.” For TMTL,
TMTL-general with the dynamic model strategy was applied since the exact
acquisition time of each sample is known. 45 models were learned simultaneously,
as there were 45 groups of transfer samples altogether. The time-specific model for
each training or test sample is a combination of neighboring models. The window

Fig. 7.8 Responses of two sensors in all breath samples (blue dots) and one transfer sample (red
triangles). Each point represents the steady response of the sensor in one sample. Dashed circles
mark the outlier in transfer samples (plot (a)) or the replacement of the sensor (plot (b))

Table 7.3 F-score of the classification tasks on the breath analysis dataset

Task 1 2 3 4 5 Average

No transfer 66.29 68.61 73.04 61.06 65.85 66.97
MDC 74.03 72.53 85.50 50.67 54.18 67.38
CC-PCA 70.09 68.00 76.40 64.90 74.97 70.87
TMTL 76.17 84.38 87.80 77.79 82.77 81.78
Random train 87.45 81.87 86.30 80.35 80.16 83.22
Random train + TMTL 95.80 87.70 89.11 83.88 84.84 88.27

Bold values indicate the best results
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size parameter in Eq. 7.10 was empirically set to 10−4. We find that this strategy is
important for the dataset. If it is not used and each sample is predicted by an
individual adjacent model, the accuracy will be poor. The noise in transfer samples
could be the major cause. The combined model can smooth the noise. A minor
drawback is that it cannot deal with “abrupt drift,” e.g., sensor replacement. The
accuracy of TMTL is close to “random train”, in which the 50 training samples of
each class were randomly selected from all devices and time periods to include the
information of drift in the model. If we use TMTL with randomly select training
samples, the accuracy can be further improved, indicating that TMTL can reduce
the influence of drift effectively with the information contained in the transfer
samples.

7.5.3 Corn Dataset

The corn dataset is a publicly available dataset in spectroscopy.2 Three
near-infrared spectrometers designated as m5, mp5, and mp6 were involved. Each
device was adopted to measure the moisture, oil, protein, and starch contents of 80
corn samples. The ranges of the measured values are 9.377–10.993, 3.088–3.832,
7.654–9.711, and 62.826–66.472, respectively. The wavelength range is 1100–
2498 nm at 2 nm intervals, resulting in 700 variables for each sample. Figure 7.9
illustrates the variation in distribution of the same samples measured by the three
devices.

We follow the experimental setting in Yu and Ji (2015) and study the calibration
transfer from m5 to the other two devices. A fourfold cross-validation was made by
assigning every fourth sample to the test set. In each fold, the transfer samples or
labeled target samples were selected by LLR from the training samples. Before
training, each spectrum was first down-sampled to form a feature vector with 234
variables, followed by preprocessing with SNV. The four measured values were
predicted separately and an average RMSE was computed. Table 7.4 lists the
results on the two target devices when different number of transfer sample/labeled
target samples were used. The parameters were tuned by grid search for each result.
The RMSE of “RMTL (SVR)” are copied from Yu and Ji (2015), which only
provided the results on mp6. TMTL-parallel was applied in the experiment. It
achieves the best performance when the number of auxiliary samples (nt) is small.
RMTL (SVR) has smaller RMSE on mp6 when the nt is larger than 15, which is
probably because the labeled-sample-based method can extract more information
from the additional labeled samples, whereas information brought by the additional
transfer samples is marginal when nt is large (can also be observed from Fig. 7.6).
RMTL (SVR) also benefits from an ε-insensitive loss function with RBF kernel. It
will be our future work to equip our methods with more powerful loss functions and

2http://www.eigenvector.com/data/Corn/.
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kernels. For “train on target”, regression models were trained and tested on the
same (slave) device. It can be regarded as an objective result for calibration transfer.
We find that with the help of only 10 transfer samples, TMTL can actually out-
perform it.

-2 -1 0 1 2 3 4
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

PC1

PC
2

Device m5
Device mp5
Device mp6

Fig. 7.9 Scatter plot of the samples measured by the three spectrometers. The samples are
projected to a 2D subspace using PCA

Table 7.4 Average RMSE on the corn dataset with different number of auxiliary samples

# Auxiliary
samples

Mp5 as target device Mp6 as target device
7 10 15 20 7 10 15 20

No transfer 1.242 1.347
Only SNV 0.220 0.216 0.227 0.224 0.231 0.224 0.237 0.231
Variable
standardization

0.219 0.215 0.220 0.214 0.231 0.225 0.230 0.224

DAELM-S 0.213 0.217 0.200 0.206 0.222 0.227 0.207 0.216
RMTL
(squared loss)

0.201 0.197 0.213 0.206 0.204 0.193 0.207 0.204

RMTL (SVR) – 0.210 0.202 0.181 0.177
TCTL 0.196 0.189 0.196 0.186 0.194 0.184 0.190 0.181
TMTL-parallel 0.186 0.183 0.190 0.189 0.188 0.182 0.191 0.191
Train on target 0.185 0.189
Bold values indicate the best results
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7.6 Summary

We propose transfer-sample-based multitask learning (TMTL) to address the drift
problem of e-noses. By drift we refer to the change of posterior data distribution
caused by instrumental variation, sensor aging, environmental change, etc. Instead
of using conventional methods to correct the drifted signals, our method handles
drift under the framework of transfer learning and MTL. The key idea of our
method is to reduce the influence of drift in the target domains by aligning the
transfer samples in the model level. In this chapter, we have three observations:

(1) Different from existing MTL methods depending on labeled or unlabeled
target samples, TMTL leverages transfer samples to transfer knowledge from
source to target domains. In our experiments, it achieved better results, and the
number of transfer samples needed for effective transfer was usually small
(about 10). Besides, transfer samples are not required to be of the same type
with the training and test samples. Thus, the proposed method is more con-
venient to use in many real-world applications.

(2) TMTL learns models for multiple target domains jointly. It is always better
than its basic version, TCTL, which only involves one target domain. This
confirms that TMTL has organized the models in a proper way so that they can
improve each other.

(3) In the cases of time-varying drift, the serial transfer paradigm is better because
it can capture the temporal smoothness prior. The dynamic model strategy is
feasible when the acquisition time of each sample is known and when the
transfer samples contain noise.

Overall, TMTL is a practical algorithm framework to predict data with complex
drift caused by various factors. The robustness of e-noses can be greatly enhanced.
Future works may include making more sophisticated assumptions on the structures
of the models and features. It will also be beneficial to further exploit the infor-
mation contained in unlabeled target samples.
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Chapter 8
A Transfer Learning Approach
for Correcting Instrumental Variation
and Time-Varying Drift

Abstract In this chapter, we propose drift correction autoencoder (DCAE) to deal

with instrumental variation and time-varying drift of e-noses. DCAE learns to model

and correct these influential factors explicitly with the help of transfer samples.

It generates drift-corrected and discriminative representation of the original data,

which can then be applied to various prediction algorithms. Experimental results

show that DCAE outperforms typical drift correction algorithms and autoencoder-

based transfer learning methods. In particular, it is better than TMTL in the last

chapter in datasets with complex drift, at the cost of longer training time and more

hyper-parameters.

Keywords Autoencoder ⋅ Drift correction ⋅ Transfer learning

8.1 Introduction

To deal with instrumental variation and time-varying drift, an intuitive and com-

monly used idea is to transform the features in target domains to match those in the

source one, so that the transformed target samples can be predicted by the models

trained in the source domain (Zhang et al. 2011b; Yan and Zhang 2015; Feudale

et al. 2002; Artursson et al. 2000; Padilla et al. 2010; Romain and Nicolas 2010).

Here, following the terms in transfer learning (Pan and Yang 2010), we assume that

the training samples are drawn from a source domain (e.g., collected with the old

device or in the initial time period), whereas the test samples are drawn from tar-

get domains (e.g., collected with new devices or in later time periods). Efforts have

also been made in the model level for drift correction. Prediction models suitable for

the target samples were learned based on labeled source samples and a few labeled

(Vergara et al. 2012; Zhang and Zhang 2015; Binfeng and Haibo 2015) or unlabeled

(Liu et al. 2014) target samples or transfer samples (Yan and Zhang 2016a). These

methods showed better accuracy than the feature-level ones.

Algorithms mentioned above operate on traditional hand-crafted features. In

recent years, feature/representation learning methods based on deep networks have

achieved promising results (Vincent et al. 2010; Bengio 2012; Bengio et al. 2013;

© Springer Nature Singapore Pte Ltd. 2017

D. Zhang et al., Breath Analysis for Medical Applications,
DOI 10.1007/978-981-10-4322-2_8

137



138 8 A Transfer Learning Approach for Correcting Instrumental . . .

Längkvist et al. 2014). These methods make use of the plentiful unlabeled data to

learn representative features, whose discriminative power can be further enhanced by

supervised fine-tuning. The adoption of nonlinear activation functions and multilayer

stacking strategy enables the learned features to capture complex structures in the

data. In the field of machine olfaction (e-noses), the pioneer works by Längkvist et al.

(2013), Längkvist and Loutfi (2011) have shown that features learned by an autoen-

coder or restricted Boltzmann machines (RBMs) outperform traditional e-nose fea-

tures. Transfer learning with deep networks has been discussed in Bengio (2012),

Glorot et al. (2011), Zhou et al. (2014), Zhuang et al. (2015), Deng et al. (2014),

Kandaswamy et al. (2014), Chopra et al. (2013). However, there is still no litera-

ture working on explicitly correcting instrumental variation and time-varying drift

in sensor systems with deep networks. Furthermore, most transfer learning meth-

ods are designed for discrete source and target domains, whereas in the problem of

time-varying drift, it is not easy to split data into such domains because the drift is

continuous in time.

In this chapter, we propose drift correction autoencoder (DCAE) for joint repre-

sentation learning and drift correction (Yan and Zhang 2016b). Besides the original

features, the “domain features” are also inputted into DCAE, which contain the infor-

mation about when and with which device the sample was collected. They make it

convenient for DCAE to handle both the discrete drift among devices and the con-

tinuous drift over time. DCAE explicitly models the influence of these factors to the

learned representation with the aid of transfer samples. A correction layer is used

to further enhance DCAE’s ability to correct complex time-varying drift. The hid-

den representation of DCAE is drift-corrected and can then be applied to various

prediction algorithms. The supervised term in its objective function makes the rep-

resentation to be discriminative as well.

The rest of the chapter is organized as follows. Related work on autoencoders is

briefly reviewed in Sect. 8.2. Section 8.3 describes the proposed DCAE in detail. The

experimental configurations and results are presented in Sect. 8.4, along with some

discussions. Section 8.5 summarizes the chapter.

8.2 Related Work

8.2.1 Autoencoder

In this chapter, we will use the letter m to denote the number of features, h for the

number of hidden units in the network, and n for the number of samples. The basic

framework of an autoencoder is essentially a feed-forward neural network with one

hidden layer. It takes an input vector x ∈ 𝐑m
, encodes it to a new representation

z ∈ 𝐑h
, and then decodes z to x̂ ∈ 𝐑m

in the original space. The encoding and

decoding process can be formulated as:
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z = 𝜎(Wx + b), (8.1)

x̂ = 𝜎(W ′z + b′), (8.2)

where W ∈ 𝐑h×m
and W ′ ∈ 𝐑m×h

are the weight matrices, b ∈ 𝐑h
and b′ ∈ 𝐑m

are the bias vectors. 𝜎 is an activation function such as sigmoid, hyperbolic tangent

(tanh), or linear (i.e. using an identity function). The objective of an autoencoder is

to minimize the reconstruction error (Bengio et al. 2013):

JAE(W, b,W ′
, b′) = 1

n

n∑

i=1
‖xi − x̂i‖2, (8.3)

where n is the number of training samples. When the number of hidden units h is less

than the dimension of the original feature vector m, there will be a “bottleneck” in

the network and a compressed representation of the original features will be learned.

Note that one can use a tied weight (Bengio et al. 2013) by defining W ′ = WT
, which

can reduce the number of parameters to estimate.

One variant of the basic autoencoder is the denoising autoencoder (Vincent et al.

2010). It first corrupts the input x into x̃ by randomly setting some of the features to

zero. After obtaining the reconstruction of x̃ from Eqs. 8.1 and 8.2, one minimizes

the difference between it and the clean x. It is expected that under this strategy, the

learned representation will be more stable and robust to corruptions of the input,

as well as capture more useful structures in the input distribution (Vincent et al.

2010). The single-layer autoencoders can also be stacked into deeper ones to obtain

more abstract representation (Bengio et al. 2013). The hidden representation of an

outer autoencoder serves as the input to an inner one. The hidden representation of

the innermost one is regarded as the final learned representation, which can then be

applied to various prediction algorithms.

8.2.2 Transfer Learning with Autoencoders

When the samples are collected from multiple domains, transfer learning with

autoencoders can be considered (Bengio 2012; Glorot et al. 2011; Zhou et al. 2014;

Zhuang et al. 2015; Deng et al. 2014; Kandaswamy et al. 2014; Chopra et al. 2013).

For example, (Kandaswamy et al. 2014) proposed to reuse part of the weights of

the network trained with source data and fine-tune the other part with labeled target

samples. There are many other works that do not need label information in target

domains. Glorot et al. (2011) and Bengio (2012) suggested that the learned features

could generalize in multiple domains if one trains an autoencoder with unlabeled data

from all these domains. Chopra et al. (2013) presented an interesting idea to learn

an universal representation across domains. They constructed intermediate domains

between the source and the target ones by merging different proportion of samples

from the two domains. The final representation was the concatenation of the features
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learned from each domain, which contained the information of the distributional shift

across domains. In the work by Deng et al. (2014), the knowledge in target domains

is transferred to the source one by a similarity constraint of the weights.

Although these three methods can make the learned features capture the infor-

mation in multiple domains, they may encounter difficulties in the scenario of drift

correction, because the difference in distribution across domains is not explicitly

reduced. The strategies used in Zhou et al. (2014), Zhuang et al. (2015), Kan et al.

(2014) tried to reduce the difference. Zhou et al. (2014) first learned features from

both domains separately with autoencoders, then computed a transformation matrix

between the learned features according to a set of “cross-domain parallel data”. This

method is similar to variable standardization in machine olfaction. In Zhuang et al.

(2015), the mean of the learned feature vectors of both domains were required to have

small KL divergence. Kan et al. (2014) designed a network to learn pose-corrected

features for face recognition. In the training process, face images with pose varia-

tions were used to reconstruct those without pose variations. The training images

can actually be viewed as transfer samples.

8.3 Drift Correction Autoencoder (DCAE)

8.3.1 Domain Features

Most transfer learning algorithms (Pan and Yang 2010) split data into one or more

source domains and one or more target ones. Labeled samples are sufficient in source

domains, but scarce or not available in target ones. In drift correction problems, data

without and with drift are often regarded as source and target domains, respectively

(Zhang and Zhang 2015). For example, when the data are collected with different

devices, each device defines a domain. In the case of time-varying drift, one can split

the data into several batches in chronological order and treat each batch as a domain.

Within each domain, drift is small. Prediction models need to be transferred from

the source domain (the initial device or batch) to the target domains (the subsequent

devices or batches).

However, in the most general cases, data are collected in continuous streams. The

amount of drift in each sample is different. This information of continuity will be

lost if we force the data into batches. Therefore, instead of putting data into different

domains according to which device it is from and when it was collected (acquisition

time), we consider all data as a whole and design “domain features” for each sam-

ple to describe this information conveniently. If we only consider the instrumental

variation, a one-hot coding scheme can be used. Suppose there are ndev devices. The

domain feature vector is thus d ∈ 𝐑ndev , where di = 1 if the sample is from the ith
device and 0 otherwise. If the time-varying drift is also considered, the acquisition

time can be further added into d. Suppose a gas sample is collected from the ith
device at time t, then d ∈ 𝐑2ndev and
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dj =
⎧
⎪
⎨
⎪⎩

1, j = 2i − 1,
t, j = 2i,
0, otherwise.

(8.4)

8.3.2 Basic Framework

In order to correct instrumental variation and time-varying drift, transfer samples

should be collected from each device periodically. They are viewed as representatives

or milestones of the samples collected with the same device and one time period. It

is natural to assign the first group of transfer samples collected by the first device

as the reference group (source). All other groups collected with other devices or in

later time periods (target) should be aligned with the reference. If the difference of

representation is small between the reference and the other groups, one can expect

that the drift has been reduced in the learned representation.

Four sets of data are used in the learning procedure of DCAE.  = {xi}ni=1 con-

tains both labeled and unlabeled data. The labeled data and their labels are included

in L = {(x(L)
j , y(L)j )}nLj=1. n and nL are the total number of samples and the number of

labeled samples, respectively.S = {t(S)p }nt,totalp=1 andT = {t(T)q }nt,totalq=1 denote the source

and target transfer samples, respectively. nt,total is the total number of transfer sample

pairs. x, x(L), t(S), t(T) ∈ 𝐑m
. y(L) ∈ 𝐑c

, where c is the number of labels. Each sample

(xi, x
(L)
j , t(S)p , t(T)q ) has a corresponding domain feature vector (di, d

(L)
j , d(S)

p , d(T)
q ).

To clarify the composition of S and T , let us assume that each group of transfer

samples is made up of nt,gas different gas samples, and nt,group groups were collected

altogether. Thus, T is the stack of samples in all groups, whereas S is the stack

of nt,group repetitions of the samples in the reference group. Therefore, each target

transfer sample t(T)p has a corresponding source one t(S)p . The total number of transfer

sample pairs is nt,total = nt,gas × nt,group. DCAE can thus incorporate the information

from all available transfer sample groups into the learning process.

On the basis of an autoencoder, we utilize a new weight matrix to correct drift. It

is denoted as WD ∈ 𝐑h×md , where md is the length of the domain feature vector and

h is the number of hidden units of the original autoencoder. The component of drift

is explicitly removed from the hidden representation by adding WDd in the encoding

process, and recovered in the decoding process by subtracting it:

z = f (x, d) = 𝜎(Wx +WDd + b), (8.5)

x̂ = g(z, d) = 𝜎(W ′(z −WDd) + b′). (8.6)

Through the equations above, drift correction in the hidden representation and data

reconstruction can both be accomplished. If a linear activation function is used, the

reconstruction will be identical to that in the original autoencoder.
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The objective function of DCAE is expressed as follows:

JDCAE(W, b,W ′
, b′

,WD,WS, bS) =

1
n

n∑

i=1
‖xi − g(f (xi, di), di)‖2

+
𝜆1

nL

nL∑

j=1


(
f (x(L)j , d(L)

j ), y(L)j ;WS, bS
)

+
𝜆2

nt,total

nt,total∑

p=1
‖f (t(S)p , d(S)

p ) − f (t(T)p , d(T)
p )‖2

(8.7)

It can be decomposed into three parts: the first term is the reconstruction error of all

data; the second term is the supervised loss of the labeled samples; the third term

is the alignment error of the transfer samples. 𝜆1, 𝜆2 and 𝜇 are regularization hyper-

parameters. The weight matrix WS ∈ 𝐑c×h
and bias vector bS ∈ 𝐑c

are used in the

supervised model. By minimizing Eq. 8.7, all weight matrices and bias vectors are

learned simultaneously.

The first term of Eq. 8.7 is similar to the objective of the original autoencoder,

except that the functions f and g are those defined in Eqs. 8.5 and 8.6, which take drift

into consideration. The second term incorporates the label information into the func-

tion. The loss function  can be determined according to the problem. For example,

the softmax function (Zhuang et al. 2015) can be used for classification problems,

whereas the squared error function can be used for regression ones.

The third term is key for drift reduction in DCAE. It requires the corresponding

source and target transfer samples to have similar hidden representations. The cor-

rection weight matrix WD will be learned mainly base on this term. W and b will also

be influenced to extract features that are more robust to drift. The term has similar

insight with the transfer sample term of TMTL in the last chapter. An alternative

strategy to learn WD is using the drift-corrected hidden representation of the target

transfer samples to reconstruct the corresponding source ones, which is similar to

the strategy in Kan et al. (2014). The accuracy of this strategy is not as good as that

of the proposed one, which is probably because an trained autoencoder only has low

reconstruct error on certain data (Bengio et al. 2013), which are those in . How-

ever, transfer samples are not always of the same type with data in . For example,

one is standard gas and the other is breath sample. Therefore, the transfer samples

may not be well reconstructed.

8.3.3 Handling Complex Time-Varying Drift

For a sample with domain feature d, the amount of correction received by the ith
hidden unit is the ith element of WDd. This value is device-specific and linearly
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proportional to the acquisition time (see the coding scheme of d in Sect. 8.3.1). How-

ever, the relationship between time and the time-varying drift in most real-world

applications is nonlinear. The sensitivity characteristic of gas sensors can be affected

by many factors such as aging effect, humidity, temperature, background change, and

sensor replacement (Marco and Gutiérrez-Gálvez 2012). Thus, the drift can display

a complex pattern, which makes the linear correction insufficient. To enhance the

correction ability, we further insert a correction layer between the domain feature

vector and the hidden layer in the basic DCAE described in the last section. The

encoding and decoding process thus becomes:

z = f (x, d) = 𝜎(Wx +WD1 𝜎cor(WD0d) + b), (8.8)

x̂ = g(z, d) = 𝜎(W ′(z −WD1 𝜎cor (WD0d)) + b′). (8.9)

In the equation above, WD0 ∈ 𝐑hcor×md is the weight matrix from the domain features

to the correction layer, where the number of units in the correction layer is hcor .
WD1 ∈ 𝐑h×hcor is the weight matrix from the correction layer to the hidden layer of

DCAE. 𝜎cor is the activation function of the correction layer. It should be set to a

nonlinear one, as a linear one makes the correction linearly related to time, which is

equivalent to the basic DCAE. Ideally, the correction output WD1 𝜎cor (WD0d) should

compensate the drift of each hidden unit with regard to time and device. There is

no bias vector in the correction layer. The 1’s in the domain features in Eq. 8.4 can

be viewed as device-specific constant terms, so the bias vector is merged into WD0.

The number of units in the correction layer hcor should be selected according to the

complexity of the time-varying drift. A larger hcor is preferable for more complex

drift.

Both the basic DCAE and that with correction layer explicitly models the influ-

ence of instrumental variation and time-varying drift by the weight matrix WD (or

WD0 and WD1). The parameters for different devices are stored in different columns

of WD or WD0. Similar to the stacked autoencoders, the number of hidden layers in

DCAE can be increased to extract more abstract representation. The correction out-

put is added before the first hidden layer and removed after the last hidden layer, so

that the representations learned in the hidden layers are all drift-corrected.

8.3.4 Summary

Figure 8.1 illustrates the architecture of a DCAE with correction layer and three

hidden layers. The solid arrows indicate the flow of signals. The original features are

input to the first layer of the main body of the network (in blue), whereas the domain

features are input to the first layer of the correction part (in orange). The output of

the correction layer is added to the input of the second layer of the main body, in

the meantime subtracted from the output of the fourth (the second to the last) layer.
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Fig. 8.1 Architecture of a DCAE with correction layer and three hidden layers

The hidden representation is applied to predict for the labeled samples and align the

transfer samples, see the objective function Eq. 8.7.

It is important to carefully initialize the weights in deep networks. The greedy

layerwise unsupervised pretraining strategy (Bengio et al. 2013) is widely used for

stacked autoencoders. We first pretrain a stacked denoising autoencoder with all

samples in . The fraction of corrupted input is set to 10% in this chapter. The

weight tying strategy is used. Then, supervised fine-tuning (Vincent et al. 2010) is

performed with the labeled data in L. This step minimizes the supervised loss of

the labeled data. Although a supervised loss term has been included in the objective

function of DCAE, we find that this fine-tuning step can further improve the accuracy

because it can make the initialized weights in DCAE closer to the optimal solution.

An experiment will be made in Sect. 8.4.4 to compare the impact of different training

procedures to the accuracy. Finally, the weights and biases in the fine-tuned network

are used to initializeW, b,W ′
, b′

in DCAE.WS,WD1 are randomly initialized. b′
S,WD0

are initialized to zeros. After that, Eq. 8.7 can be optimized using methods such as

gradient descent or conjugate gradient. Note that the denoising strategy is not used

in DCAE.

Once the optimization is done, the labeled samples and their domain features

can be input to DCAE. Their hidden representations and labels are used to train a

separate prediction model, which is then applied on the hidden representations of the

unlabeled samples to obtain the predicted labels. The entire process is summarized

in Algorithm 8.3.1.
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Algorithm 8.3.1 Drift correction autoencoder (DCAE)

Input: The unlabeled dataset , the labeled dataset L, and the transfer sample datasets S,T .

The device index and acquisition time of each sample are known.

Output: The predicted labels of samples in .

1: Pretrain a stacked denoising autoencoder unsupervisedly with , and then fine-tune it with L;

2: Initialize the weights in DCAE based on the weights of the autoencoder;

3: Create the domain feature vector for each sample according to Eq. 8.4;

4: Optimize Eq. 8.7 with samples in,L,S,T and their domain features to obtain the weights

of DCAE;

5: Train a prediction model with the hidden representations of L, and then apply it on the hidden

representations of .

8.4 Experiments

In this section, we conduct experiments on the three datasets same with the last

chapter. Locally linear reconstruction (LLR) (Zhang et al. 2011a) was employed for

transfer sample selection, as it has been proved effective in the last chapter. The

proposed method was implemented based on the Theano library (Bergstra et al.

2010). The optimization algorithm was conjugate gradient with the maximum itera-

tion number set to 1000. No other strategies were used in the optimization process.

8.4.1 Gas Sensor Array Drift Dataset

Readers are directed to Sect. 7.5.1 for the detail of the gas sensor array drift dataset.

Still, we assume that the labels in batch 1 are known, whereas those in batches 2–10

are to be predicted. The time-varying drift across batches can be visually inspected

in Fig. 8.2a. Samples in two classes are projected to a 2D subspace using PCA. It can

be found that there is an obvious drift for samples in both classes as time elapses.

Therefore, if the prediction model trained on batch 1 is applied to classify samples

in later batches, the accuracy will degrade. It is worth noticing that the direction in

which the two classes can be discriminated is close to the direction of drift (along the

y-axis). In such cases, correction methods that seeking to find a drift-free latent space

or trying to remove the component of drift may suffer a loss of useful information.

We developed a DCAE with three hidden layers (one hidden layer between the

input layer and the hidden representation layer). The numbers of units were 30, 20,

and 30, respectively. Further increasing the number of layers or units cannot improve

the accuracy. The tanh activation function was used. In the dataset, each sample is

represented by 128 features extracted from the sensors’ response curves (Vergara

et al. 2012). The original features have unbounded values that cannot be well recon-

structed by the bounded tanh function. Thus, before it was inputted into the network,

each feature was normalized to have zero mean and unit variance, then divided by 2

to make most feature values range from −1 to 1. Directly mapping the minimum and

http://dx.doi.org/10.1007/978-981-10-4322-2_7
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Fig. 8.2 Illustration of the drift across batches 1–6 in the gas sensor array drift dataset. Dots and

plus signs represent ammonia and acetone samples, respectively. Different colors indicate different

batches. The original features were used in plot (a) whereas the learned representation of DCAE

were used in plot (b)

maximum values to −1 and 1 was not considered because of the disturbance of out-

lier samples. The domain features were created according to Eq. 8.4. In this dataset,

the number of devices ndev = 1, and the acquisition time t was defined as the batch

index minus one, e.g., t = 5 for a sample in batch 6.

The transfer samples are not directly provided in the dataset, hence need to be

selected for each batch. The candidate set of batch k (k = 2,… , 10) was defined

as the overlapping samples in batch 1 and k, namely the samples of the same gas

and concentration. Then, LLR was used to sequentially select nt,gas transfer samples

from each candidate set. Following Algorithm 8.3.1, the weights of a pretrained and

fine-tuned denoising stacked autoencoder were used to initialize the DCAE. Then,

for each batch k (k = 2,… , 10), we used the labeled samples in batch 1 and the

transfer sample groups from batch 1 to k to train the DCAE. After that, the hidden

representations of batch 1 were adopted to train logistic regression classifiers with the

one-vs-all strategy for multi-class classification. The hidden representations of the

samples in batch k were predicted by the classifiers and an accuracy was computed.

Plot (b) of Fig. 8.2 displays the scatter of the hidden representations of the same

group of samples as Fig. 8.2a. We can find that the drift across batches has been

greatly reduced and samples in each class are better clustered.

The proposed method has two variants: the basic DCAE (DCAE-basic) and

DCAE with correction layer (DCAE-CL). In the latter variant, we set the activa-

tion function of the correction layer to be tanh as well. There are three major hyper-

parameters in DCAE-CL, i.e., 𝜆1, 𝜆2, and the number of units in the correction layer

hcor . 𝜆1 controls the weight of the supervised loss term. 𝜆2 controls the weight of

the transfer sample alignment error term. Larger hcor brings higher capability in
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Fig. 8.3 Impact of the hyper-parameters on the average classification accuracy of DCAE-CL in

the gas sensor array drift dataset

Fig. 8.4 Performance

comparison on the gas

sensor array drift dataset
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correcting complex time-varying drift. Their influence to the performance of DCAE-

CL is investigated in Fig. 8.3. The number of transfer samples in each batch is

nt,gas = 10. When one hyper-parameter was tuned, the others were fixed. Owing

to the random factor during the initialization of the networks, each experiment was

repeated 10 times with 10 random seeds. The y-axis is the average accuracy of the

10 runs, where each accuracy is the average one on batches 2–10. It can be observed

that when hcor is not smaller than 2, the accuracy is relatively stable. Finally we adopt

𝜆1 = 2−4, 𝜆2 = 2−3 and hcor = 6.

The proposed methods are compared with typical existing methods in Fig. 8.4

with regard to different numbers of transfer samples (nt,gas). Variable standardization

(Yan and Zhang 2016a) transforms the original features in batches k (k = 2,… , 10)

to batch 1 using ridge regression based on transfer samples. Regularized multitask

learning (RMTL) (Binfeng and Haibo 2015) jointly learns two models for batches 1



148 8 A Transfer Learning Approach for Correcting Instrumental . . .

and k respectively based on the labeled samples in both batches. The transfer samples

in batch k were used as labeled samples in this method. On the other hand, transfer-

sample-based coupled task learning (TCTL) (Yan and Zhang 2016a) is a multitask

learning framework that seeks to align the transfer samples in the model level. Trans-

fer learning with deep autoencoders (TLDA) (Zhuang et al. 2015) learns a common

representation for the source and the target domains (batches 1 and k). It requires that

the means of representations in the two domains are close. However, the method is

suitable only when each domain has similar data composition. Moreover, transfer

samples can provide much more information than the mean of each domain. Hence,

we modify the method by replacing the mean of representations with transfer sam-

ples. We name the modified method as “latent space”, because it actually assumes a

latent representation space in which samples in different domains have similar distri-

bution. The only difference between latent space and DCAE is that domain features

are not used in the former method. Hybrid heterogeneous transfer learning (HHTL)

(Zhou et al. 2014) first uses marginalized stacked denoising autoencoders (mSDAs)

to learn representations separately in each domain, then transform the target rep-

resentation to the source one in the same way as in variable standardization. The

representations learned in different layers are finally concatenated to an augmented

feature vector. In all methods, the transfer samples were selected with LLR. The

parameters of the autoencoders in latent space and HHTL were the same as those in

DCAE. For the autoencoder-based methods, we report the average accuracy of 10

random runs.

From Fig. 8.4, we can find that the accuracy improves as nt,gas increases, but

reaches a plateau when nt,gas = 10. The performance of variable standardization

and HHTL is not promising, which is because the capacity of the feature-level cor-

rection methods is insufficient when facing complex drift. The fact that HHTL is

better than variable standardization implies the augmented feature vector learned by

mSDA is better than the original features. DCAE outperforms latent space, because

it explicitly models and corrects drift, thus avoids information loss caused by the

tangle between drift and useful information. Similar to the model-level methods like

RMTL and TCTL, DCAE considers the discriminative information when correct-

ing drift. Better yet, it can capture nonlinear and more abstract structures in data.

The learned representation can be used in various prediction models, which makes

it more convenient to use. The two DCAE variants outperform other methods espe-

cially when nt,gas is smaller.

More results of existing methods are listed in Table 8.1. “No transfer” means the

prediction model trained on batch 1 is directly applied on batches k (k = 2,… , 10).

The unsatisfactory performance proves the influence of drift. The two traditional

methods based on component correction (CC-PCA and OSC) do not achieve large

improvement because they rely on clear separation of drift and useful informa-

tion in data. The results of ensemble, source domain adaptation extreme learning

machine (DAELM-S), and manifold regularization with combination geodesic flow

kernel (ML-comGFK) are copied from the original papers. DAELM-S achieves good

results with the help of 30 selected labeled samples in each batch. Our proposed

methods have a higher accuracy with only 10 transfer samples needed. The last three



8.4 Experiments 149

Ta
bl
e
8.
1

C
la

s
s
ifi

c
a
ti

o
n

a
c
c
u
r
a
c
y

(
%

)
o
n

th
e

g
a
s

s
e
n
s
o
r

a
r
ra

y
d
r
if

t
d
a
ta

s
e
t.

B
o
ld

v
a
lu

e
s

in
d
ic

a
te

th
e

b
e
s
t

r
e
s
u
lt

s

B
a
tc

h
2

3
4

5
6

7
8

9
1
0

A
v
e
r
a
g
e

N
o

tr
a
n
s
fe

r
8
8
.5

9
6
6
.9

6
4
0
.9

9
5
4
.8

2
4
3
.2

2
4
4
.4

0
3
1
.6

3
4
5
.7

4
3
9
.1

1
5
0
.6

1

C
C

-
P

C
A

9
0
.9

2
4
0
.8

6
4
7
.2

0
5
9
.3

9
5
6
.7

4
5
6
.7

1
3
6
.3

9
4
5
.3

2
3
7
.7

2
5
2
.3

6

O
S

C
8
8
.1

0
6
6
.7

1
5
4
.6

6
5
3
.8

1
6
5
.1

3
6
3
.7

1
3
6
.0

5
4
0
.2

1
4
0
.0

8
5
6
.5

0

E
n

s
e
m

b
le

7
4
.3

6
8
7
.8

3
93
.7
9

9
5
.4

3
6
9
.1

7
6
9
.7

2
9
1
.8

4
7
6
.3

8
6
5
.5

0
8
0
.4

5

M
L

-
c
o
m

G
F

K
8
0
.2

5
7
4
.9

9
7
8
.7

9
6
7
.4

1
7
7
.8

2
7
1
.6

8
4
9
.9

6
5
0
.7

9
5
3
.7

9
6
7
.2

8

D
A

E
L

M
-
S

8
7
.9

8
9
5
.7

4
8
5
.1

6
9
5
.9

9
9
4
.1

4
8
3
.5

1
8
6
.9

0
10
0.
0

5
3
.6

2
8
7
.0

0

T
M

T
L

-
s
e
r
ia

l
9
7
.3

5
98
.8
0

9
0
.0

6
9
8
.4

8
9
5
.3

5
9
1
.5

0
9
1
.8

4
9
6
.3

8
7
1
.5

6
9
2
.3

7

J
o
in

t
tr

a
in

5
9
.4

1
5
6
.3

3
5
8
.6

3
3
7
.2

6
4
4
.7

7
4
3
.1

7
2
0
.7

2
3
4
.2

6
3
5
.5

5
4
3
.3

4
±

1
.1

4

D
C

A
E

-
b
a
s
ic

97
.5
8

9
6
.8

2
8
8
.5

7
98
.7
3

95
.4
0

9
4
.7

6
9
1
.1

9
9
5
.6

6
7
4
.6

0
9
2
.5

9
±

0
.6

1

D
C

A
E

-
C

L
9
7
.4

7
9
6
.1

3
9
0
.5

0
9
8
.5

8
9
4
.9

4
95
.4
7

92
.6
2

9
6
.4

0
76
.8
2

93
.2
1
±

0
.5

2



150 8 A Transfer Learning Approach for Correcting Instrumental . . .

rows are results obtained by deep networks. The standard deviation of the average

accuracy of the 10 runs is also calculated. In “joint train”, samples in batch 1 and k
are pooled together to train a stacked denoising autoencoder, as suggested by Glorot

et al. (2011). The poor performance indicates that this strategy is not suitable in drift

correction. Among the results of DCAE-basic and DCAE-CL, the former method is

better in earlier batches whereas the latter wins in latter batches which have larger

drift. It indicates that DCAE-CL is preferable when the time-varying drift is more

complex. DCAE broke the record of TMTL in the last chapter possibly because it

can learn more abstract and nonlinear representation from data.

8.4.2 Breath Analysis Dataset

A breath analysis dataset was collected using two e-noses of the same model (Yan

et al. 2014). Please see Sect. 7.5.2 for the introduction of this dataset. Only transfer-

sample-based methods will be tested in this section. Five binary-class classification

tasks (healthy vs. disease) were carried out on this dataset. F-score was used as the

accuracy criterion. In order to evaluate the drift correction algorithms, we chose

the first 50 samples collected with device 1 in each class for training. Each sample

was represented by the steady-state responses of nine gas sensors. The features were

preprocessed with the normalization method similar to that in Sect. 8.4.1. Logistic

regression was adopted as the final classifier.

The DCAE developed for this dataset has one hidden layer with four units.

Because the numbers of features and classes are not large, further enlarging the net-

work cannot improve the accuracy. Tanh activation function was used in the net-

work including the correction layer. The domain features were created according to

Eq. 8.4, where t was the exact acquisition time converted to years and the number

of devices ndev = 2. The impact of the hyper-parameters on the average accuracy is

studied in Fig. 8.5. It is found that the change of accuracy is not large when 𝜆1 is

varied. The best value of 𝜆2 is 2−6, which is smaller than 2−3 in the gas sensor array

drift dataset. We attribute it to the noisy transfer samples in this dataset. Larger 𝜆2
enforces the transfer samples to be aligned better in the representation space, which

will cause overfitting if the transfer samples are noisy and their quantity is small. For

hcor , the accuracy is relatively stable when it is not smaller than 4. Finally we adopt

𝜆1 = 2−4, 𝜆2 = 2−6 and hcor = 4.

The accuracy of various methods is compared in Table 8.2. Note that some results

are not identical with Table 7.3 in the last chapter because the preprocessing strat-

egy is different. If the prediction models trained on the original features are directly

used for classification, the average accuracy is only 68.30%. Among all the tested

methods, DCAE has the best performance. DCAE-CL outperforms DCAE-basic in

all tasks. The last row of the table shows the results obtained by randomly select-

ing 50 training samples in each class. The experiment was repeated 20 times and

the average accuracy is reported. No drift correction was done. Since the training

http://dx.doi.org/10.1007/978-981-10-4322-2_7
http://dx.doi.org/10.1007/978-981-10-4322-2_7
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Fig. 8.5 Impact of the hyper-parameters on the average F-score of DCAE-CL in the breath analysis

dataset

Table 8.2 Classification accuracy (%) on the breath analysis dataset. Bold values indicate the best

drift correction results

Task 1 2 3 4 5 Average

No transfer 63.20 71.49 75.87 64.36 66.55 68.30

Var. stdd. 52.13 49.58 65.85 47.88 45.47 52.18

CC-PCA 70.82 79.24 84.59 74.19 76.24 77.02

TMTL 76.17 84.38 87.80 77.79 82.77 81.78

Latent space 57.49 68.73 73.27 68.04 74.12 68.33 ± 2.37

DCAE-basic 74.44 82.20 89.36 81.15 82.04 81.84 ± 0.67

DCAE-CL 82.16 84.27 89.94 81.34 82.92 84.13 ± 0.82

Random train 87.85 85.44 90.10 85.09 84.54 86.60

samples were from all devices and time periods, the trained model should be robust

to drift. The accuracy of DCAE-CL is close to random train.

In the breath analysis dataset, the samples were collected in a stream. They drift

in the data space continuously in both the training and the test set. TCTL and HHTL-

Hybrid heterogeneous transfer learning (HHTL) are designed for problems with dis-

crete source and target domains, so they are not feasible in this dataset. CC-PCA and

latent space correct all data as a whole. Latent space tries to align each group of trans-

fer samples to the reference group, which is not suitable when the transfer samples

are noisy. This could be the reason why its performance is not good. We also tried

to split the data into batches so that each batch had a group of transfer samples. A

breath sample was assigned to the batch whose transfer sample group was closest to it

in time. Then, variable standardization was applied for drift correction. The results

are listed in the row “var. stdd.”. Its poor performance can also be caused by the
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noise in transfer samples, which makes the correction inaccurate. On the contrary,

the correction output in DCAE is smooth over time as long as 𝜆2 is not too large.

Two samples will be given similar correction output if their acquisition times are

close. This is consistent with the prior knowledge that the time-varying drift usually

changes slowly in time, which helps to smooth the noise in transfer samples. Besides,

by using the domain features, DCAE can correct continuous drift intrinsically and

without loss of the continuity information.

8.4.3 Corn Dataset

The dataset has been described in Sect. 7.5.3. The features were preprocessed with

the normalization method similar to that in Sect. 8.4.1. We follow the experimental

setting in Binfeng and Haibo (2015) and study the calibration transfer from m5 to the

other two devices. A fourfold cross-validation was made by assigning every fourth

sample to the test set. Regression models were trained on the training samples col-

lected with m5 and tested on the test samples collected with mp5 and mp6. Linear

ridge regression was adopted as the final regression algorithm. Root mean square

error (RMSE) was used as the accuracy criterion.

DCAE-basic was used for this dataset since it contains no time-varying drift. Con-

sidering that the complexity of the dataset is relatively small, we adopted a network

with one hidden layer and linear activation function. The number of units in the hid-

den layer was 15. The domain feature vectors were created according to the one-hot

coding scheme in Sect. 8.3.1 with ndev = 3. Because the four values to predict have

different variances, we normalized them to zero mean and unit variance before train-

ing DCAE, then transformed them back when computing RMSE. For this dataset,

we found that small RMSE was obtained when setting 𝜆1 = 21, 𝜆2 = 24. The opti-

mal hyper-parameters are larger than the previous datasets, which is because there

is much less noise in this dataset. It is less prone to overfitting when the supervised

loss and alignment error are given larger weights.

Results of various methods are compared in Table 8.3. For each calibration trans-

fer algorithm except RMTL, LLR was used to select seven transfer samples (or

labeled target samples) from the training data. The results of RMTL (SVR) are

copied from Binfeng and Haibo (2015), which only provided the results on mp6.

The “train on target” method trained and tested regression models on the same target

device. Its results can be regarded as goals for calibration transfer. It can be found that

TMTL won the first place and TCTL and DCAE-basic were second to it. It is easy to

see why DCAE is not better than TMTL: this dataset is relatively small for a neural

network with many parameters. Plus, the dataset only contains plain instrumental

variation, whereas DCAE is more suitable for complex drift.

http://dx.doi.org/10.1007/978-981-10-4322-2_7
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Table 8.4 Classification accuracy (%) or RMSE on the three datasets with different training pro-

cedures. Bold values indicate the best results

Procedure Dataset 1 Dataset 2 Dataset 3 (RMSE)

Final(3000) 76.56 ± 2.36 81.28 ± 2.11 0.2096 ± 0.0014

Unsup.(1000) + final(2000) 75.83 ± 2.15 83.41 ± 2.94 0.2055 ± 0.0014

Sup.(1000) + final(2000) 93.04 ± 0.44 83.44 ± 0.89 0.1964 ± 0.0017

Unsup.(1000) + sup.(1000)

+ final(1000)
93.21 ± 0.52 84.13 ± 0.82 0.1961 ± 0.0022

8.4.4 Impact of Different Training Procedures

According to Algorithm 8.3.1, the weights in DCAE are learned in three steps: unsu-

pervised pretraining (unsup.), supervised fine-tuning (sup.), and final optimization

of the objective function Eq. 8.7 (final). In order to explore the necessity of the two

steps before the final optimization, we compare four different training procedures in

Table 8.4. The number after the name of a step indicates its preset maximum itera-

tion number. When one step is omitted, the maximum iteration number of the final

optimization is increased for fair comparison.

As shown in the table, the proposed procedure achieves the best results in all three

datasets. On the other side, directly optimizing the objective function is nearly always

the worst one. Similar to the pretraining step in original autoencoders, the two steps

before the final optimization drive the weights to approach a “good” local minimum,

where “good” is in terms of generalization error (Bengio et al. 2013). Nevertheless,

the weights obtained by directly optimizing Eq. 8.7 may have larger generalization

error, even if it can obtain a smaller loss value. Besides, the actual iteration number of

the proposed procedure is also the smallest among the four procedures, because both

unsupervised pretraining and supervised fine-tuning are easier tasks than minimizing

Eq. 8.7 and converge faster. In the experiment for batches 1 and 2 in the first dataset,

the time costs for optimizing the three steps are 1.7, 7.3, and 48.1 s, respectively.

8.5 Summary

In this chapter, we proposed drift correction autoencoder (DCAE) for joint repre-

sentation learning and drift correction in machine olfaction. The main difference

between DCAE and the original stacked autoencoder lies in three aspects:
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1. Domain features and the correction layer are introduced in DCAE to explicitly

model instrumental variation and time-varying drift;

2. The component of drift is removed in the encoding process and recovered in the

decoding one, so that the hidden representation of DCAE is drift-corrected;

3. Transfer samples are utilized to learn the correction weight matrices.

Compared with other drift correction algorithms, DCAE has several characteristics:

1. It tackles both discrete and continuous drift in the training and test data naturally

without having to split the data into different domains;

2. The correction output in DCAE is intrinsically smooth over time, which is con-

sistent with the temporal smoothness prior of the time-varying drift, so that the

influence of noisy transfer samples can be diminished;

3. When correcting drift, DCAE keeps the learned representation to be representa-

tive and discriminative as well at the cost of two regularization hyper-parameters.

According to our experiments, they can be set according to the noise level of the

dataset and the transfer samples.

The superiority of DCAE is more obvious when the drift in the dataset is com-

plex (e.g., Sects. 8.4.1 and 8.4.2). Besides, when the size of the dataset is not large

(which is common in machine olfaction), it may be better to use a smaller network.

The application scope of DCAE may be further extended. By simply modifying the

domain features, other influential factors such as temperature and humidity can also

be corrected as long as suitable transfer samples are collected. Apart from machine

olfaction, it is also viable in fields such as spectroscopy, where data measured by

sensors or devices contain drift and transfer samples can be collected. Future study

may include deeper exploiting the information in the unlabeled samples to improve

the effect of correction.
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Chapter 9
Drift Correction Using Maximum
Independence Domain Adaptation

Abstract Transfer samples are required by the drift correction algorithms in the last

three chapters. When transfer samples are not available, we can resort to unsuper-

vised domain adaptation approaches. Maximum independence domain adaptation

(MIDA) is proposed in this chapter for unsupervised drift correction. MIDA bor-

rows the definition of domain features in the last chapter and learns features which

have maximal independence with them, so as to reduce the inter-domain discrepancy

in distributions. A feature augmentation strategy is designed so that the learned sub-

space is background-specific. Semi-supervised MIDA (SMIDA) extends MIDA by

exploiting the label information. The proposed algorithms are flexible and fast. The

effectiveness of our approaches is verified by experiments on synthetic datasets and

three real-world ones on sensors and measurement.

Keywords Dimensionality reduction ⋅ Domain adaptation ⋅ Drift correction ⋅
Hilbert–Schmidt independence criterion ⋅ Subspace learning ⋅ Unsupervised learn-

ing ⋅ Semi-supervised learning

9.1 Introduction

Transfer samples are usually needed when dealing with instrumental variation and

time-varying drift. Methods in the last three chapters are methods of this class (Yan

and Zhang 2015, 2016a, b). Despite the fact that their accuracy is often better, col-

lecting transfer samples repeatedly is a demanding job especially for nonprofessional

e-nose users. In such cases, domain adaptation techniques with unlabeled target

samples are desirable (Pan and Yang 2010; Patel et al. 2015). An intuitive idea is

to reduce the inter-domain discrepancy in the feature level, i.e., to learn domain-

invariant feature representation (Pan et al. 2011; Shi and Sha 2012; Fernando et al.

2013; Cui et al. 2014; Gong et al. 2014; Shao et al. 2014; Blitzer et al. 2007; Chen

et al. 2012; Jiang et al. 2016). For example, Pan et al. (2011) proposed transfer com-

ponent analysis (TCA), which finds a latent feature space that minimizes the distrib-

utional difference of two domains in the sense of maximum mean discrepancy. More

© Springer Nature Singapore Pte Ltd. 2017

D. Zhang et al., Breath Analysis for Medical Applications,
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related methods will be introduced in Sect. 9.2.1. When applied to drift correction,

however, existing domain adaptation algorithms are faced with two difficulties. First,

they are designed to handle discrete source and target domains. In time-varying drift,

however, samples come in a stream, so the change in data distribution is often contin-

uous. One solution is to split data into several batches, but it will lose the temporal

order information. Second, because of the variation in the sensitivity of chemical

sensors, the same signal in different conditions may indicate different concepts. In

other words, the conditional probability P(Y|X) may change for samples with differ-

ent backgrounds, where “background” means when and with which device a sample

was collected. Methods like TCA project all samples to a common subspace, hence

the samples with similar appearance but different concepts cannot be distinguished.

In this chapter, we present a simple yet effective algorithm called maximum inde-

pendence domain adaptation (MIDA) (Yan et al. 2017). First, we apply the “domain

features” in the last chapter to describe the background of each sample. Then, MIDA

finds a latent feature space in which the samples and their domain features are max-

imally independent in the sense of Hilbert–Schmidt independence criterion (HSIC)

(Gretton et al. 2005). Thus, the discrete and continuous change in distribution can

be handled uniformly. In order to project samples according to their backgrounds,

feature augmentation is performed by concatenating the original feature vector with

the domain features. We also propose semi-supervised MIDA (SMIDA) to exploit

the label information with HSIC. MIDA and SMIDA are both very flexible. (1) They

can be applied in situations with single or multiple source or target domains thanks

to the use of domain features. In fact, the notion “domain” has been extended to

“background” which is more informative. (2) Although they are designed for unsu-

pervised domain adaptation problems (no labeled sample in target domains), the pro-

posed methods naturally allow both unlabeled and labeled samples in any domains,

thus can be applied in semi-supervised (both unlabeled and labeled samples in target

domains) and supervised (only labeled samples in target domains) problems as well.

(3) The label information can be either discrete (binary- or multi-class classification)

or continuous (regression).

To illustrate the effect of our algorithms, we first evaluate them on several syn-

thetic datasets. Then, drift correction experiments are performed on two e-nose

datasets and one spectroscopy dataset. The rest of the chapter is organized as follows.

Related work on unsupervised domain adaptation and HSIC is briefly reviewed in

Sect. 9.2. Section 9.3 describes domain features, MIDA, and SMIDA in detail. The

experimental configurations and results are presented in Sect. 9.4, along with some

discussions. Section 9.5 summarizes the chapter.
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9.2 Related Work

9.2.1 Unsupervised Domain Adaptation

Two good surveys on domain adaptation can be found in Pan and Yang (2010) and

Patel et al. (2015). In this section, we focus on typical methods that extract domain-

invariant features. In order to reduce the inter-domain discrepancy while preserving

useful information, researchers have developed many strategies. Some algorithms

project all samples to a common latent space (Pan et al. 2011; Shi and Sha 2012;

Shao et al. 2014). Transfer component analysis (TCA) (Pan et al. 2011) tries to learn

transfer components across domains in a reproducing kernel Hilbert space (RKHS)

using maximum mean discrepancy. It is further extended to semi-supervised TCA

(SSTCA) to encode label information and preserve local geometry of the manifold.

Shi and Sha (2012) measured domain difference by the mutual information between

all samples and their binary domain labels, which can be viewed as a primitive ver-

sion of the domain features used in this chapter. They also minimized the negated

mutual information between the target samples and their cluster labels to reduce the

expected classification error. The low-rank transfer subspace learning (LTSL) algo-

rithm presented in Shao et al. (2014) is a reconstruction-guided knowledge transfer

method. It aligns source and target data by representing each target sample with some

local combination of source samples in the projected subspace. The label and geom-

etry information can be retained by embedding different subspace learning methods

into LTSL.

Another class of methods first project the source and the target data into separate

subspaces, and then build connections between them (Gong et al. 2012; Fernando

et al. 2013; Liu et al. 2014; Cui et al. 2014). Fernando et al. (2013) utilized a trans-

formation matrix to map the source subspace to the target one, where a subspace

was represented by eigenvectors of PCA. The geodesic flow kernel (GFK) method

(Gong et al. 2012) measures the geometric distance between two different domains

in a Grassmann manifold by constructing a geodesic flow. An infinite number of

subspaces are combined along the flow in order to model a smooth change from the

source to the target domain. Liu et al. (2014) adapted GFK to correct time-varying

drift of e-noses. A sample stream is first split into batches according to the acquisi-

tion time. The first and the latest batches (domains) are then connected through every

intermediate batch using GFK. Another improvement of GFK is domain adapta-

tion by shifting covariance (DASC) (Cui et al. 2014). Observing that modeling one

domain as a subspace is not sufficient to represent the difference of distributions,

DASC characterizes domains as covariance matrices and interpolates them along

the geodesic to bridge the domains.
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9.2.2 Hilbert–Schmidt Independence Criterion (HSIC)

HSIC is used as a convenient method to measure the dependence between two sample

sets X and Y . Let kx and ky be two kernel functions associated with RKHSs  and

, respectively. pxy is the joint distribution. HSIC is defined as the square of the

Hilbert–Schmidt norm of the cross-covariance operator xy (Gretton et al. 2005):

HSIC(pxy, ,) = ‖xy‖
2
HS

=𝐄xx′yy′ [kx(x, x′)ky(y, y′)] + 𝐄xx′ [kx(x, x′)]𝐄yy′ [ky(y, y′)]
− 2𝐄xy[𝐄x′ [kx(x, x′)]𝐄y′ [ky(y, y′)]].

Here 𝐄xx′yy′ is the expectation over independent pairs (x, y) and (x′, y′) drawn from

pxy. It can be proved that with characteristic kernels kx and ky, HSIC(pxy, ,) is

zero if and only if x and y are independent (Song et al. 2012). A large HSIC suggests

strong dependence with respect to the choice of kernels. HSIC has a biased empirical

estimate. Suppose Z = X × Y = {(x1, y1),… , (xn, yn)}, Kx,Ky ∈ 𝐑n×n
are the kernel

matrices of X and Y , respectively, then (Gretton et al. 2005):

HSIC(Z, ,) = (n − 1)−2tr(KxHKyH), (9.1)

where H = I − n−1𝟏n𝟏Tn ∈ 𝐑n×n
is the centering matrix.

Due to its simplicity and power, HSIC has been adopted for feature extraction

(Song et al. 2007; Pan et al. 2011; Barshan et al. 2011) and feature selection (Song

et al. 2012). Researchers typically use it to maximize the dependence between the

extracted/selected features and the label. However, to our knowledge, it has not been

utilized in domain adaptation to reduce the dependence between the extracted fea-

tures and the domain features.

9.3 Proposed Method

9.3.1 Domain Feature

We aim to reduce the dependence between the extracted features and the background

information. A sample’s background information should (1) naturally exist, thus can

be easily obtained; (2) have different distributions in training and test samples; (3)

correlate with the distribution of the original features. According to these charac-

teristics, the information clearly interferes the testing performance of a prediction

model, and that is why we want to minimize the aforementioned dependence. In

common domain adaptation problems, the domain label (which domain a sample

belongs) is an example of such information.
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From the perspective of drift correction, background information includes the

device label (with which device the sample was collected) and the acquisition time

(when the sample was collected). We use domain features d introduced in Sect. 8.3.1

to describe them. If we only consider the instrumental variation, a one-hot coding

scheme can be used. Suppose there are ndev devices. The domain feature vector is

thus d ∈ 𝐑ndev , where di = 1 if the sample is from the ith device and 0 otherwise. If

the time-varying drift is also considered, the acquisition time can be further added

into d. Suppose a gas sample is collected from the ith device at time t, then d ∈ 𝐑2ndev

and

dj =
⎧
⎪
⎨
⎪
⎩

1, j = 2i − 1,
t, j = 2i,
0, otherwise.

(9.2)

We can actually encode more information such as the place of collection, the

operation condition, and so on, which will be useful in other applications. According

to Eq. 9.1, the kernel matrix Kd of the domain features needs to be computed for

HSIC. We apply the linear kernel. Suppose D = [d1,… , dn] ∈ 𝐑md×n, md is the

dimension of a domain feature vector. Then

Kd = DTD. (9.3)

9.3.2 Feature Augmentation

Feature augmentation is used in this chapter to learn background-specific subspaces.

In Daum III (2007), the author proposed a feature augmentation strategy for domain

adaptation: if a sample x ∈ 𝐑m
is from the source domain, then its augmented feature

vector is x̂ =
⎡
⎢
⎢
⎣

x
x
𝟎m

⎤
⎥
⎥
⎦

∈ 𝐑3m
; If it is from the target domain, then x̂ =

⎡
⎢
⎢
⎣

x
𝟎m
x

⎤
⎥
⎥
⎦

∈ 𝐑3m
.

The augmented labeled source and target samples are then used jointly to train one

prediction model. In this way, the learned model can be viewed as two different mod-

els for the two domains. Meanwhile, the two models share a common component.

However, this strategy requires that data lie in discrete domains and cannot deal with

time-varying drift. We propose a more general and efficient feature augmentation

strategy: concatenating the original features and the domain features, i.e.,

x̂ =
[
x
d

]

∈ 𝐑m+md
. (9.4)

The role of this strategy can be demonstrated through a linear dimensionality

reduction example. Suppose a projection matrix W ∈ 𝐑(m+md)×h has been learned for

the augmented feature vector. h is the dimension of the subspace. W has two parts:

http://dx.doi.org/10.1007/978-981-10-4322-2_8
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W =
[
Wx
Wd

]

,Wx ∈ 𝐑m×h
,Wd ∈ 𝐑md×h. The embedding of x̂ can be expressed as

WTx̂ = WT
x x + WT

d d ∈ 𝐑h
, which means that a background-specific bias (WT

d d)i
has been added to each dimension i of the embedding. From another perspective, the

feature augmentation strategy maps the samples to an augmented space with higher

dimension before projecting them to a subspace. It will be easier to find a projection

direction in the augmented space to align the samples well in the subspace.

Take machine olfaction (e-noses) for example, there are situations when the con-

ditional probability P(Y|X) changes along with the background. For instance, the

sensitivity of chemical sensors often decays over time. A signal that indicates low

concentration in an earlier time actually suggests high concentration in a later time.

In such cases, feature augmentation is important, because it allows samples with

similar appearance but different concepts to be treated differently by the background-

specific bias. The strategy also helps to align the domains better in each projected

dimension. Its effect will be illustrated on several synthetic datasets in Sect. 9.4.1

and further analyzed in the complementary materials.

9.3.3 Maximum Independence Domain Adaptation (MIDA)

In this section, we introduce the formulation of MIDA in detail. Suppose X ∈ 𝐑m×n

is the matrix of n samples. The training and the test samples are pooled together.

More importantly, we do not have to explicitly differentiate which domain a sample

is from. The feature vectors have been augmented, but we use the notations X and

m instead of ̂X and m + md for brevity. A linear or nonlinear mapping function Φ
can be used to map X to a new space. Based on the kernel trick, we need not know

the exact form of Φ, but the inner product of Φ(X) can be represented by the kernel

matrix Kx = Φ(X)TΦ(X). Then, a projection matrix ̃W is applied to project Φ(X) to a

subspace with dimension h, leading to the projected samples Z = ̃WTΦ(X) ∈ 𝐑h×n
.

Similar to other kernel dimensionality reduction algorithms (Schlkopf et al. 1998;

Scholkopft and Mullert 1999), the key idea is to express each projection direction as

a linear combination of all samples in the space, namely ̃W = Φ(X)W. W ∈ 𝐑n×h
is

the projection matrix to be actually learned. Thus, the projected samples are

Z = WTΦ(X)TΦ(X) = WTKx. (9.5)

Intuitively, if the projected features are independent of the domain features, then

we cannot distinguish the background of a sample by its projected features, sug-

gesting that the inter-domain discrepancy is diminished in the subspace. Therefore,

after omitting the scaling factor in Eq. 9.1, we get the expression to be minimized:

tr(KzHKdH) = tr(KxWWTKxHKdH), where Kz is the kernel matrix of Z.

In domain adaptation, the goal is not only minimizing the difference of distrib-

utions, but also preserving important properties of data, such as the variance (Pan
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et al. 2011). It can be achieved by maximizing the trace of the covariance matrix of

the project samples. The covariance matrix is

cov(Z) = cov(WTKx) = WTKxHKxW, (9.6)

where H = I − n−1𝟏n𝟏Tn is the same as that in Eq. 9.1. An orthonormal constraint is

further added on W. The learning problem then becomes

max
W

−tr(WTKxHKdHKxW) + 𝜇 tr(WTKxHKxW),
s.t. WTW = I,

(9.7)

where 𝜇 > 0 is a trade-off hyper-parameter. Using the Lagrangian multiplier method,

we can find that W is the eigenvectors of Kx(−HKdH + 𝜇H)Kx corresponding to

the h largest eigenvalues. Note that a conventional constraint is requiring ̃W to be

orthonormal as in Barshan et al. (2011), which will lead to a generalized eigenvector

problem. However, we find that this strategy is inferior to the proposed one in both

adaptation accuracy and training speed in practice, so it is not used.

When computing Kx, a proper kernel function needs to be selected. Common

kernel functions include linear (k(x, y) = xTy), polynomial (k(x, y) = (𝜎xTy + 1)d),

Gaussian radial basis function (RBF, k(x, y) = exp( ‖x−y‖
2

2𝜎2 )), and so on. Different ker-

nels indicate different assumptions on the type of dependence in using HSIC (Song

et al. 2012). According to Song et al. (2012), the polynomial and RBF kernels map

the original features to a higher or infinite dimensional space, thus are able to detect

more types of dependence. However, choosing a suitable kernel width parameter (𝜎)

is also important for these more powerful kernels (Song et al. 2012).

The maximum mean discrepancy (MMD) criterion is used in TCA (Pan et al.

2011) to measure the difference of two distributions. Song et al. (2012) showed that

when HSIC and MMD are both applied to measure the dependence between fea-

tures and labels in a binary-class classification problem, they are identical up to a

constant factor if the label kernel matrix in HSIC is properly designed. However,

TCA is feasible only when there are two discrete domains. On the other hand, MIDA

can deal with a variety of situations including multiple domains and continuous dis-

tributional change. The stationary subspace analysis (SSA) algorithm (Von Bünau

et al. 2009) is able to identify temporally stationary components in multivariate time

series. However, SSA only ensures that the mean and covariance of the components

are stationary, while they may not be suitable for preserving important properties

in data. Concept drift adaptation algorithms (Gama et al. 2014) are able to correct

continuous time-varying drift. However, most of them rely on newly arrived labeled

data to update the prediction models, while MIDA works unsupervisedly.
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9.3.4 Semi-supervised MIDA (SMIDA)

MIDA aligns samples with different backgrounds without considering the label

information. However, if the labels of some samples are known, they can be incor-

porated into the subspace learning process, which may be beneficial to prediction.

Therefore, we extend MIDA to semi-supervised MIDA (SMIDA). Since we do not

explicitly differentiate the domain labels of the samples, both unlabeled and labeled

samples can exist in any domain. Similar to Song et al. (2007), Pan et al. (2011),

Barshan et al. (2011), Song et al. (2012), HSIC is adopted to maximize the depen-

dence between the projected features and the labels. The biggest advantage of this

strategy is that all types of labels can be exploited, such as the discrete labels in

classification and the continuous ones in regression.

The label matrix Y is defined as follows. For c-class classification problems, the

one-hot coding scheme can be used, i.e., Y ∈ 𝐑c×n
, yi,j = 1 if xi is labeled and

belongs to the jth class; 0 otherwise. For regression problems, the target values can

be centered first. Then, Y ∈ 𝐑1×n
, yi equals to the target value of xi if it is labeled;

0 otherwise. The linear kernel function is chosen for the label kernel matrix, i.e.,

Ky = YTY . (9.8)

The objective of SMIDA is

max
W

tr(WTKx(−HKdH + 𝜇H + 𝛾HKyH)KxW),
s.t. WTW = I,

(9.9)

where 𝛾 > 0 is a trade-off hyper-parameter. Its solution is the eigenvectors of

Kx(−HKdH + 𝜇H + 𝛾HKyH)Kx corresponding to the h largest eigenvalues. The out-

line of MIDA and SMIDA is summarized in Algorithm 9.3.1. The statements in

brackets correspond to those specialized for SMIDA.

Algorithm 9.3.1 MIDA [or SMIDA]

Input: The matrix of all samplesX and their background information; [the labels of some samples];

the kernel function for X; h, 𝜇, [and 𝛾].
Output: The projected samples Z.

1: Construct the domain features according to the background information, e.g., Sect. 9.3.1.

2: Augment the original features with domain features Eq. 9.4.

3: Compute the kernel matrices Kx,Kd ,
[
and Ky

]
.

4: Obtain W, namely the eigenvectors of Kx(−HKdH+𝜇H)Kx [or Kx(−HKdH+𝜇H+𝛾HKyH)Kx]
corresponding to the h largest eigenvalues.

5: Z = WTKx.

Besides variance and label dependence, another useful property of data is the

geometry structure, which can be preserved by manifold regularization (MR) (Belkin

et al. 2006). The manifold structure is modeled by a data adjacency graph. MR
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can be conveniently incorporated into SMIDA by adding a regularization term

−𝜆 tr(WTKxLKxW) into Eq. 9.9, where L is the graph Laplacian matrix (Belkin et al.

2006), 𝜆 > 0 is a trade-off hyper-parameter. In our experiments, adding MR generally

increases the accuracy slightly. However, it also brings three more hyper-parameters,

including 𝜆, the number of nearest neighbors, and the kernel width when computing

the data adjacency graph. Consequently, the experimental results in the next section

were obtained without MR. It can still be an option in applications where geometry

structure is important.

9.4 Experiments

In this section, we first conduct experiments on some synthetic datasets to verify the

effect of the proposed methods. Then, drift correction experiments are performed on

the same three datasets as the last two chapters. Comparison is made between them

and recent unsupervised domain adaptation algorithms that learn domain-invariant

features.

9.4.1 Synthetic Dataset

In Fig. 9.1, TCA (Pan et al. 2011) and MIDA are compared on a 2D dataset with two

discrete domains. The domain labels were used to construct the domain features in

MIDA according to the one-hot coding scheme introduced in Sect. 9.3.1. The sim-

ilar definition was used in synthetic datasets 3 and 4. For both methods, the linear

kernel was used on the original features and the hyper-parameter 𝜇 was set to 1. In

order to quantitatively assessing the effect of domain adaptation, logistic regression

models were trained on the labeled source data and tested on the target data. The

accuracies are displayed in the caption, showing that the order of performance is

MIDA > TCA > original feature. TCA aligns the two domains only on the first pro-

jected dimension. However, we can find that the two classes have large overlap on

that dimension. This is because the direction for alignment is different from that for

discrimination. Incorporating the label information of the source domain (SSTCA)

did no help. On the contrary, MIDA can align the two domains well in both projected

dimensions, in which the domain-specific bias on the second dimension brought by

feature augmentation played a key role. A 3D explanation is included in the supple-

mentary materials. Thus, good accuracy can be obtained by using the two dimensions

for classification.

In Fig. 9.2, SSA (Von Bünau et al. 2009) and MIDA are compared on a 2D

dataset with continuous distributional change, which resembles time-varying drift

in machine olfaction. Samples in both classes drift to the upper right. The chrono-

logical order of the samples was used to construct the domain features in MIDA, i.e.

d = 1 for the first sample, d = 2 for the second sample, etc. The parameter setting
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Fig. 9.1 Comparison of TCA and MIDA in a 2D synthetic dataset. Plots a–c show data in the

original space and projected spaces of TCA and MIDA, respectively. The classification accuracies

are 53, 70 (only using the first projected dimension z1), and 88%

of MIDA was the same with that in Fig. 9.1, whereas the number of stationary com-

ponents in SSA was set to 1. The classification accuracies were obtained by training

a logistic regression model on the first halves of the data in both classes, and testing

them on the last halves. SSA succeeds in finding a direction (z1) that is free from

time-varying drift. However, the two classes cannot be well separated in that direc-

tion. In plot (c), the randomly scattered colors suggest that the time-varying drift is

totally removed in the subspace. MIDA first mapped the 2D data into a 3D space

with the third dimension being time. Then, the augmented data were projected to a

2D plane that is orthogonal to the direction of drift in the 3D space. The projection

direction was decided so that the independence between the projected data and time

is maximized, meanwhile class separation was achieved by properly exploiting the

background information.

No label information was used in the last two experiments. If keeping the label

dependence in the subspace is a priority, SMIDA can be adopted instead of MIDA. In

the 3D synthetic dataset in Fig. 9.3, the best direction (x3) to align the two domains

also mixes the two classes, which results in the output of MIDA in plot (b). For

SMIDA, the weights for variance (𝜇) and label dependence (𝛾) were both set to 1.

The labels in the source domain were used when learning the subspace. From plot
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Fig. 9.2 Comparison of SSA and MIDA in a 2D synthetic dataset. Plots a–c show data in the orig-

inal space, projected spaces of SSA and MIDA, respectively. The chronological order of a sample is

indicated by color. The classification accuracies are 55, 74 (only using the first projected dimension

z1), and 90%

(c), we can observe that the classes are separated. In fact, class separation can still be

found in the third dimension of the space learned by MIDA. However, for the purpose

of dimensionality reduction, we generally hope to keep the important information in

the first few dimensions.

Nonlinear kernels are often applied in machine learning algorithms when data

is not linearly separable. Besides, they are also useful in domain adaptation when

domains are not linearly “alignable”, as shown in Fig. 9.4. As can be found in plot

(a), the inter-domain changes in distributions are different for the two classes. Hence,

it is difficult to find a linear projection direction to align the two domains, even with

the domain-specific biases of MIDA. Actually, domain-specific rotation matrices are

needed. Since the target labels are not available, the rotation matrices cannot be

obtained accurately. However, a nonlinear kernel can be used to map the original

features to a space with higher dimensions, in which the domains may be linearly

alignable. We applied an RBF kernel with width 𝜎 = 10. Although the domains

are not perfectly aligned in plot (c), the classification model trained in the source
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Fig. 9.3 Comparison of MIDA and SMIDA in a 3D synthetic dataset. Plots a–c show data in the

original space and projected spaces of MIDA and SMIDA, respectively. The classification accura-

cies are 50, 55, and 82%

domain can be better adapted to the target domain. A comparison on different kernel

and kernel parameters on two synthetic datasets is included in the supplementary

materials.

9.4.2 Gas Sensor Array Drift Dataset

Readers are directed to Sect. 7.5.1 for the detail of the gas sensor array drift dataset.

The original features have quite different dynamic ranges, which will interfere the

learning process. Therefore, each feature was first normalized to have zero mean and

unit variance within each batch. Next, the labeled samples in batch 1 were adopted

as the source domain and the unlabeled ones in batch b (b = 2,… , 10) as the target

domain. The proposed algorithms together with several recent ones were used to

learn domain-invariant features based on these samples. Then, a logistic regression

model was trained on the source domain and tested on each target one. For multi-

class classification, the one-vs-all strategy was utilized.

http://dx.doi.org/10.1007/978-981-10-4322-2_7
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Fig. 9.4 Comparison of different kernels in a 2D synthetic dataset. Plots a–c show data in the

original space and projected spaces of MIDA with linear and RBF kernels, respectively. The clas-

sification accuracies are 50, 57, and 87%

As displayed in Table 9.1, the compared methods include kernel PCA (KPCA),

transfer component analysis (TCA), semi-supervised TCA (SSTCA) (Pan et al.

2011), subspace alignment (SA) (Fernando et al. 2013), geodesic flow kernel (GFK)

(Gong et al. 2012), manifold regularization with combination GFK (ML-comGFK)

(Liu et al. 2014), information-theoretical learning (ITL) (Shi and Sha 2012), struc-

tural correspondence learning (SCL) (Blitzer et al. 2007), and marginalized stacked

denoising autoencoder (mSDA) (Chen et al. 2012). For all methods, the hyper-

parameters were tuned for the best accuracy. In KPCA, TCA, SSTCA, and the pro-

posed MIDA and SMIDA, the polynomial kernel with degree 2 was used. KPCA

learned a subspace based on the union of source and target data. In TCA, SSTCA,

MIDA, and SMIDA, eigenvalue decomposition needs to be done on kernel matrices.

If the number of samples is too large, this step can be time-consuming. In order to

reduce the computational burden, we randomly chose at most nt samples in each tar-

get domain when using these methods, with nt being twice the number of the samples

in the source domain. GFK used PCA to generate the subspaces in both source and

target domains. The subspace dimension of GFK was determined according to the

subspace disagreement measure in Gong et al. (2012). The results of ML-comGFK
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are copied from Liu et al. (2014). In SCL, the pivot features were binarized before

training pivot predictors using logistic regression.

We also compared several variants of our methods. In Table 9.1, the notation

“(discrete)” means that two discrete domains (source and target) were used in MIDA

and SMIDA, which is similar to other compared methods. The domain feature vector

of a sample was thus [1, 0]T if it was from the source domain and [0, 1]T if it was from

the target. However, this strategy cannot make use of the samples in intermediate

batches. An intuitive assumption is that the distributions of adjacent batches should

be similar. When adapting the information from batch 1 to b, taking samples from

batches 2 to b − 1 into consideration may improve the generalization ability of the

learned subspace. Concretely, nt samples were randomly selected from batches 2

to b instead of batch b alone. For each sample, the domain feature was defined as

its batch index, which can be viewed as a proxy of its acquisition time. MIDA and

SMIDA then maximized the independence between the learned subspace and the

batch indices. The results are labeled as “(continuous)” in Table 9.1. Besides, the

accuracies of continuous SMIDA without feature augmentation (no aug.) are also

shown.

From Table 9.1, we can find that as the batch index increases, the accuracies of all

methods generally degrade, which confirms the influence of the time-varying drift.

Continuous SMIDA achieves the best average domain adaptation accuracy. The con-

tinuous versions of MIDA and SMIDA outperform the discrete versions, proving

that the proposed methods can effectively exploit the chronological information of

the samples. They also surpass ML-comGFK which uses the samples in intermedi-

ate batches to build connections between the source and the target batches. Feature

augmentation is important in this dataset, since removing it in continuous SMIDA

causes a drop of four percentage points in average accuracy. In Fig. 9.5, the average

classification accuracies with varying subspace dimension are shown. MIDA and

SMIDA are better than other methods when more than 30 features are extracted. Not

surprisingly, the accuracy of unsupervised domain adaptation methods are not so

good as the methods in the last two chapters which made use of the information in

10 transfer samples.

9.4.3 Breath Analysis Dataset

We have collected a breath analysis dataset in years 2014–2015 using two e-noses

of the same model (Yan et al. 2014). Please see Sect. 7.5.2 for the introduction of

this dataset. We performed five binary-class classification tasks to distinguish sam-

ples with one disease from the healthy samples. Each sample was represented by

the steady state responses of nine gas sensors in the e-nose. The numbers of sam-

ples in the six classes (healthy and the five diseases mentioned above) are 125, 431,

340, 97, 156, and 215, respectively. We chose the first 50 samples collected with

device 1 in each class as labeled training samples. Among the other samples, 10

samples were randomly selected in each class for validation, the rest for testing.

http://dx.doi.org/10.1007/978-981-10-4322-2_7
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Fig. 9.5 Performance

comparison on the gas

sensor array drift dataset

with respect to the subspace

dimension h
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The hyper-parameters were tuned in the validation sets. Logistic regression was

adopted as the classifier. F-score was used as the accuracy criterion. Results are com-

pared in Table 9.2.

In KPCA, TCA, SSTCA, MIDA, and SMIDA, the RBF kernel was used. Because

methods other than stationary subspace analysis (SSA) (Von Bünau et al. 2009),

MIDA, and SMIDA are not capable of handling the chronological information, we

simply regarded each device as a discrete domain and learned device-invariant fea-

tures with them. The same strategy was used in discrete MIDA and SMIDA. In con-

tinuous MIDA and SMIDA, the domain features were defined according to Eq. 9.2,

where t was the exact acquisition time converted to years and the number of devices

ndev = 2. SSA naturally considers the chronological information by treating the sam-

ple stream as a multivariate time series and identifying temporally stationary compo-

nents. However, SSA cannot deal with time series with multiple sources, such as the

multi-device case in this dataset. Thus, the samples were arranged in chronological

order despite their device labels.

From Table 9.2, we can find that the performance of the original features is not

promising, which is caused by the instrumental variation and time-varying drift in the

dataset. The domain adaptation algorithms can improve the accuracy. The improve-

ment made by SSA is little, possibly because the stationary criterion is not suitable

for preserving important properties in data. For example, the noise in data can also

be stationary (Pan et al. 2011). MIDA and SMIDA achieved obviously better results

than other methods. They can address both instrumental variation and time-varying

drift. With the background-specific bias brought by feature augmentation, they can

compensate for the change in conditional probability in this dataset. Similar to the

gas sensor array drift dataset, it can be seen that the continuous MIDA and SMIDA

that utilize the time information are better than the discrete ones. Feature augmenta-

tion can improve continuous SMIDA by six percentage points. SMIDA is better than

MIDA because the label information of the first 50 samples in each class was better

kept.
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Table 9.2 Classification accuracy (%) on the breath analysis dataset. Bold values indicate the best

results

Task 1 2 3 4 5 Average

Original feature 34.34 63.67 73.71 43.17 42.93 51.57

KPCA 58.05 72.58 84.78 44.95 42.60 60.59

TCA 67.19 68.31 59.93 67.08 68.17 66.14

SSTCA 67.01 68.06 74.14 68.31 67.36 68.97

SA 29.95 72.42 72.74 42.19 44.54 52.37

GFK 41.49 68.50 58.96 75.63 70.16 62.95

ITL 68.59 66.53 74.75 66.67 68.03 68.91

SSA 49.77 72.10 33.49 52.64 55.38 52.68

SCL 32.52 61.16 75.43 35.35 51.86 51.26

mSDA 36.86 69.51 76.69 35.51 50.49 53.81

MIDA (discrete) 62.17 71.74 84.21 67.05 67.06 70.45

SMIDA (discrete) 80.16 84.18 88.47 68.45 52.41 74.73

MIDA (continuous) 68.30 67.54 74.01 73.04 69.63 70.50

SMIDA (no aug.) 82.80 72.57 72.61 80.33 70.05 75.67

SMIDA (continuous) 85.29 80.18 91.67 74.28 66.55 79.59

9.4.4 Corn Dataset

The dataset has been introduced in Sect. 7.5.3. This dataset resembles traditional

domain adaptation datasets because there is no time-varying drift. Three discrete

domains can be defined based on the three devices. We adopt m5 as the source

domain, mp5 and mp6 as the target ones. In each domain, samples 4, 8,… , 76, 80
were assigned as the test set, the rest as the training set. For hyper-parameter tun-

ing, we applied a threefold cross-validation on the training sets of the three domains.

After the best hyper-parameters were determined for each algorithm, a regression

model was trained on the training set from the source domain and applied on the test

set from the target domains. The regression algorithm was ridge regression with the

L2 regularization parameter 𝜆 = 1.

Table 9.3 displays the root mean square error (RMSE) of the four prediction

tasks and their average on the two target domains. We also plot the overall aver-

age RMSE of the two domains with respect to the subspace dimension h in Fig.

9.6. ITL was not investigated because it is only applicable in classification prob-

lems. In KPCA, TCA, SSTCA, MIDA, and SMIDA, the RBF kernel was used. For

the semi-supervised methods SSTCA and SMIDA, the target values were normal-

ized to zero mean and unit variance during subspace learning. The domain features

were defined according to the device indices using the one-hot coding scheme. We

can find that when no domain adaptation was done, the prediction error is large. All

domain adaptation algorithms managed to significantly reduce the error. KPCA also

http://dx.doi.org/10.1007/978-981-10-4322-2_7
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Fig. 9.6 Performance

comparison on the corn

dataset with respect to the

subspace dimension h
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has good performance, which is probably because the source and the target domains

have similar principal directions, which also contain the most discriminative infor-

mation. Therefore, source regression models can fit the target samples well. In this

dataset, different domains have identical data composition. As a result, correspond-

ing data can be aligned by subspaces alignment, which explains the small error of

SA. However, this condition may not hold in other datasets.

MIDA and SMIDA obtained the lowest average errors in both target domains.

Aiming at exploring the prediction accuracy when there is no instrument variation,

we further trained regression models on the training set of the two target domains

and tested on the same domain. The results are listed as “train on target” in Table

9.3. It can be found that SMIDA outperforms these results. This could be attributed

to three reasons: (1) The inter-domain discrepancy in this dataset is relatively easy

to correct; (2) The use of RBF kernel in SMIDA improves the accuracy; (3) SMIDA

learned the subspace on the basis of both training and test samples. Although the test

samples were unlabeled, they can provide some information about the distribution

of the samples to make the learned subspace generalize better, which can be viewed

as the merit of semi-supervised learning.

9.5 Summary

In this chapter, we introduced maximum independence domain adaptation (MIDA)

to learn domain-invariant features. The main idea of MIDA is to reduce the inter-

domain discrepancy by maximizing the independence between the learned fea-

tures and the domain features of the samples. The domain features describe the



176 9 Drift Correction Using Maximum Independence Domain Adaptation

background information of each sample, such as the device label and acquisition

time. The feature augmentation strategy proposed in this chapter adds domain-

specific biases to the learned features, which helps MIDA to align domains. It is

also useful when there is a change in conditional probability. Finally, to incorporate

the label information, semi-supervised MIDA (SMIDA) is presented.

MIDA and SMIDA are flexible algorithms. With the design of the domain features

and the use of the HSIC criterion, they can be applied in all kinds of domain adap-

tation problems, including discrete or continuous distributional change, supervised/

semi-supervised/unsupervised, multiple domains, classification or regression, etc.

Thus, they have a wide range of potential applications. They are also easy to imple-

ment and fast, requiring to solve only one eigenvalue decomposition problem. Exper-

imental results on various types of datasets proved their effectiveness. Although

MIDA and SMIDA outperformed typical unsupervised domain adaptation algo-

rithms, their accuracy still needs improvement compared with transfer-sample-based

methods.

In the last four chapters, we have proposed five algorithms to mitigate the influ-

ence of instrumental variation and time-varying drift of e-noses, so as to enhance

the robustness and practicability of breath analysis systems in real-world situations.

Among them, windowed piecewise direct standardization (WPDS) is an improve-

ment of the widely used PDS algorithm. It is easy to implement, but may not be the

best choice when the drift is complex. Standardization-error-based model improve-

ment (SEMI) is actually a regularization term that can be incorporated in existing

prediction models. The remaining three algorithms, transfer-sample-based multitask

learning (TMTL), drift correction autoencoder (DCAE), and maximum indepen-

dence domain adaptation (MIDA), are complete algorithm frameworks. They have

three features in common:

∙ They can handle instrumental variation and time-varying drift, i.e., discrete and

continuous distributional change, at the same time;

∙ They consider drift correction and discriminability at the same time. There are

supervision terms in their objective functions.

∙ They are flexible and extensible. For instance, labeled, unlabeled, and transfer

(except MIDA) samples can occur in any domain; classification and regression

problems are both allowed; the supervision term can be any loss function in TMTL

and DCAE, etc.

The major differences between TMTL, DCAE, and MIDA are listed in Table 9.4.

In summary, drift correction is an important topic for e-noses. We have adapted

and extended various transfer learning/domain adaptation algorithms into this field.

The algorithms can be used on not only e-noses, but also other applications.
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Table 9.4 Comparison of TMTL, DCAE, and MIDA

Feature TMTL DCAE MIDA

Framework Multitask learning Autoencoder Subspace learning

Principle Aligning transfer

samples in the model

level

Aligning transfer

samples in the

representation level

Maximum

independence

criterion, adapting

unlabeled samples

with different

background

Ensuring drift is

sufficiently corrected

Learning one model

for each domain

Applying different

correction outputs

Feature augmentation

strategy helps

correction

Ensuring drift is not

over-corrected

Model similarity

constraint; Dynamic

model strategy can

smooth models

Correction outputs

only relate with

sample background

and they change

smoothly over time

Learning one subspace

for samples with

different background

Handling data stream Dynamic model

strategy

Using domain features Using domain features

Suitable scenarios General drift

correction problems

Drift is complex; or

more abstract and

discriminative features

are needed

Transfer samples are

unavailable
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Chapter 10
Feature Selection and Analysis on Correlated
Breath Data

Abstract Feature selection is a useful step in data analysis procedure. In this chapter,

we study the classical support vector machine recursive feature elimination (SVM-

RFE) algorithm and improve it by incorporating a correlation bias reduction (CBR)

strategy into the feature elimination procedure. Experiments are conducted on a syn-

thetic dataset and two breath analysis datasets. Large and comprehensive sets of

transient features are extracted from the sensor responses. The classification accu-

racy with feature selection proves the efficacy of the proposed SVM-RFE + CBR.

It outperforms the original SVM-RFE and other typical algorithms. An ensemble

method is further studied to improve the stability of the proposed method. By sta-

tistically analyzing the features’ rankings, some knowledge is obtained, which can

guide future design of e-noses and feature extraction algorithms.

Keywords Correlation bias ⋅ Feature ranking ⋅ Feature selection ⋅ SVM-RFE ⋅
Transient feature

10.1 Introduction

Feature selection (FS) is a widely used technique in pattern recognition applica-

tions. By removing irrelevant, noisy, and redundant features from the original feature

space, FS alleviates the problem of overfitting and improves the performance of the

model. The time and space cost of the learning algorithm can also be reduced. More

importantly, we can gain a deeper insight of the data by analyzing the importance of

the features (Guyon and Elisseeff 2003; Saeys et al. 2007). Many researchers have

explored the use of FS techniques in electronic nose (e-nose) systems and achieved

good results (Paulsson et al. 2000; Llobet et al. 2007; Gualdrón et al. 2007; Pardo

and Sberveglieri 2008; Cho and Kurup 2011; Kaur et al. 2012; Marco and Gutiérrez-

Gálvez 2012).

In the context of classification, FS algorithms can be roughly divided into three

categories: filters, wrappers and embedded methods, based on how they interact with

classifiers (Guyon and Elisseeff 2003; Saeys et al. 2007). Filters evaluate each feature

by predefined criteria, such as correlation criteria and information theoretic criteria

© Springer Nature Singapore Pte Ltd. 2017
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(Guyon and Elisseeff 2003), which are independent from classifiers. Wrappers treat

classifiers as black boxes and aim at finding a feature subset that has the minimum

cross-validation error on the training data. Examples of wrappers include sequential

forward selection (Paulsson et al. 2000; Yan and Zhang 2014a), genetic algorithms,

and simulate annealing (Llobet et al. 2007). Embedded methods generally include

two kinds of approaches. In some methods, such as a decision tree (Cho and Kurup

2011), the training of the classifier intrinsically selects a subset of features. Some

methods estimate the importance of the features from the coefficients in the classi-

fiers, e.g., the algorithm in (Gualdrón et al. 2007).

Support vector machine recursive feature elimination (SVM-RFE) is an embed-

ded FS algorithm proposed by Guyon et al. (Guyon et al. 2002). It uses criteria

derived from the coefficients in SVM models to assess features, and recursively

removes features that have small criteria. It has both linear and nonlinear versions.

The nonlinear SVM-RFE uses a special kernel strategy (Guyon et al. 2002; Rako-

tomamonjy 2003) and is preferred when the optimal decision function is nonlinear.

As a backward elimination method, SVM-RFE is able to model the dependencies

among features. Compared to wrappers, SVM-RFE does not use the cross-validation

accuracy on the training data as the selection criterion, thus is (1) less prone to over-

fitting; (2) able to make full use of the training data; (3) much faster, especially when

there are a lot of candidate features. As a result, it has been successfully applied in

many problems, especially in gene selection (Guyon et al. 2002; Rakotomamonjy

2003; Duan et al. 2005; Tang et al. 2007; Yoon and Kim 2009; Mundra and Rajapakse

2010).

However, there is still one problem in SVM-RFE that has not been addressed.

When some of the candidate features are highly correlated, the assessing criteria

of these features will be influenced, and their importance will be underestimated.

Inspired by (Toloşi and Lengauer 2011), we call this phenomenon “correlation bias”.

It is a crucial problem especially for gas sensor features that are often correlated.

In this chapter, a simulated experiment is first employed to illustrate this problem.

Then a novel strategy, correlation bias reduction (CBR), is proposed to reduce this

potential bias in both linear and nonlinear SVM-RFE. Finally, an ensemble method

is suggested to improve the stability of the feature selection results. (Yan and Zhang

2015)

The proposed method is evaluated on two breath analysis datasets. The first breath

analysis dataset was collected by an e-nose with 10 gas sensors (Yan et al. 2014). The

dataset contains 295 samples from healthy subjects and 279 from diabetics. It will

also be investigated in Chap. 14. The second dataset was collected by the e-nose

in Chap. 3 with 12 MOS sensors (Guo et al. 2010). The breath samples were from

healthy subjects and also subjects with diabetes, renal disease, and airway inflamma-

tion, respectively. Over 1000 features are extracted from the gas sensors’ responses.

The comprehensive feature set contains seven kinds of transient features. Experi-

mental results show that the Gaussian SVM-RFE is better than the linear one, as well

as other typical algorithms. The proposed CBR strategy further enhances the accu-

racy. The ensemble method is proved to have better stability. Furthermore, systematic

statistical analysis on the features’ rankings reveals useful information about which

http://dx.doi.org/10.1007/978-981-10-4322-2_14
http://dx.doi.org/10.1007/978-981-10-4322-2_3
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sensors, feature types and TM voltages are more important. For example, TM sen-

sors significantly outperform the ones operated under constant temperature. Phase

feature extracted from TM sensors is proved to be the most effective feature. The

information provides guidance for future e-nose and feature designing.

The chapter is organized as follows. Section 10.2 describes the details of linear

and nonlinear SVM-RFE algorithm. Section 10.3 investigates the correlation bias

problem and proposes SVM-RFE + CBR. Section 10.4 introduces the breath analysis

datasets and feature extraction methods. Section 10.5 shows the results of the FS

experiments and provides the feature analysis results. Section 10.6 summarizes the

chapter.

10.2 SVM-RFE

10.2.1 Linear SVM-RFE

The output of SVM-RFE is a ranked feature list. Feature selection can be achieved

by choosing a group of top-ranked features. The ranking criterion of SVM-RFE is

closely related to the SVM model. SVM is a popular algorithm for classification par-

tially due to its high accuracy and good generalization ability. It has been successfully

applied in many e-nose applications (Marco and Gutiérrez-Gálvez 2012).

The intuition of SVM is to find a separating hyperplane with the largest margin.

In linear separable cases, the margin is twice the distance between the separating

hyperplane and the training sample closest to it (Burges 1998). Given a set of train-

ing samples {xi, yi}, xi ∈ 𝐑m
, yi ∈ {−1, 1}, i = 1,… , n, the decision function of a

linear SVM is

f (x) = w ⋅ x + b. (10.1)

It can be proved that the margin M is simply 2∕‖w‖, thus maximizing the margin is

equivalent to minimizing ‖w‖2 under constraints. The dual form of the Lagrangian

formulation of the problem can be written as (Burges 1998):

LD =
n∑

i=1
𝛼i −

1
2

n∑

i,j=1
𝛼i𝛼jyiyjxi ⋅ xj, (10.2)

where 𝛼i are the Lagrange multipliers. Solutions of 𝛼i can be found by maximizing LD
under constraints 𝛼i ≥ 0 and

∑n
i=1 𝛼iyi = 0. The samples corresponding to nonzero

𝛼’s are known as support vectors. Then the weight vector w can be obtained by

w =
n∑

i=1
𝛼iyixi. (10.3)
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The ranking criterion for feature k is the square of the kth element of w,

J(k) = w2
k . (10.4)

In each iteration of the recursive feature elimination (RFE), a linear SVM model

is trained. The feature with the smallest ranking criterion is removed since it has the

least effect on classification (Tang et al. 2007). The remaining features are kept for

the SVM model in the next iteration. This process is repeated until all the features

have been removed. Then the features are sorted according to the order of removal.

The later a feature is removed, the more important it should be. When the feature

dimension is high, removing features one by one will be time-consuming. In such

cases, more than one feature can be removed in each iteration (Guyon et al. 2002).

However, this strategy may influence the precision (Tang et al. 2007) and cause the

correlation bias problem, which will be described in Sect. 10.3.1.

10.2.2 Nonlinear SVM-RFE

Most gene selection problems have much more features (several thousand) than sam-

ples (less than 100), so linear SVM-RFE is more suitable in these cases to avoid

overfitting. But in many other situations where the number of samples is larger, non-

linear SVM-RFE can be expected to outperform the linear one since it can fit the

data with less bias.

Nonlinear SVM considers to map the features into a new space with higher dimen-

sion:

x ∈ 𝐑m ↦ Φ(x) ∈ 𝐑h
. (10.5)

In the new space, the samples are expected to be linearly separable. Thus Eq. 10.2

can be rewritten as

LD =
n∑

i=1
𝛼i −

1
2

n∑

i,j=1
𝛼i𝛼jyiyjΦ(xi) ⋅Φ(xj). (10.6)

Note that the only form thatΦ(x)’s are involved in the training algorithm is their inner

product. So we can replace Φ(xi) ⋅Φ(xj) with a kernel function K(xi, xj) without

knowing the explicit form of Φ. This is a particularly useful trick because it is hard

to determine the form of Φ in real-world problems. There are several choices for

kernel functions, though, one common choice being the Gaussian kernel

K(xi, xj) = e−𝛾 ‖xi−xj‖2
. (10.7)

Since the form of Φ is unknown, the weight vector w cannot be obtained. How-

ever, linear SVM-RFE can be extended to nonlinear cases via a special strategy. If
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the removal of a feature causes only small changes in the objective function Eq. 10.6,

the feature should be removed (Guyon et al. 2002; Rakotomamonjy 2003). This leads

to the following ranking criterion for feature k:

J(k) = 1
2

n∑

i,j=1
𝛼i𝛼jyiyjK(xi, xj) −

1
2

n∑

i,j=1
𝛼i𝛼jyiyjK(x

(−k)
i , x(−k)

j ). (10.8)

The notation (−k) means the feature k has been removed, i.e., x(−k) ∈ 𝐑m−1
. The

above criterion is the difference of Eq. 10.6 before and after removing feature k while

keeping the 𝛼’s unchanged. The features with small J’s will be eliminated in each

iteration of RFE. This criterion is applicable for all kinds of kernels. When the linear

kernel is used (K(xi, xj) = xi ⋅ xj ), it is equivalent to the linear SVM-RFE. This non-

linear version of SVM-RFE costs a little more time than the linear version, but some

techniques can be applied to accelerate it, which will be introduced in Sect. 10.3.3.

10.3 Improved SVM-RFE with Correlation Bias Reduction

10.3.1 Correlation Bias

Some classification applications contain highly correlated features. For example, in

gene classification, features represented by probes that either have similar molecular

functions or genomic locations are highly correlated (Toloşi and Lengauer 2011).

In e-nose applications, gas sensors are known to be cross-sensitive. Besides, when

multiple transient features (e.g., the magnitude, derivative and integral at different

time points) are extracted from a gas sensor’s response, high correlation often exists

among these features. The correlation brings adverse impacts to some feature selec-

tion algorithms. Toloşi and Lengauer (2011) evaluated feature importance based on

Lasso penalized logistic regression and random forest. They discovered that the eval-

uation was biased in highly correlated feature groups. Concretely, the features in the

groups received smaller weights due to the shared responsibility in the classification

models. Therefore, the importance of the features will be underestimated even if they

are highly relevant. The larger the group size, the larger the underestimation. This

phenomenon is called “correlation bias” (CB) in (Toloşi and Lengauer 2011).

The phenomenon has not been studied in SVM-RFE. However, both linear and

nonlinear SVM-RFE are affected due to the similar reason for Lasso penalized logis-

tic regression and random forest. We have conducted a simulated experiment to illus-

trate the phenomenon. A synthetic dataset is generated with 500 samples and 100

features. There are 22 latent variables z1,… , z22 that contribute to the class label y.

They are all drawn from the normal distribution  (0, 1). The class label y is decided

by
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Table 10.1 Weights and sizes of the feature groups in the synthetic dataset

Parameter Real feature index

1–20 21–30 31–36 37–40 41–60 61–70 71–76 77–80 81–100

Weight w 1 1 1 1 0.5 0.5 0.5 0.5 0

Group size k 10 5 2 1 10 5 2 1 1

y = sign

( 22∑

i=1
wizi + 𝜖

)

, (10.9)

where 𝜖 is a perturbation term drawn from  (0, 0.01). w1,… ,w22 are predefined

weights. From each latent variable, a group of real features x are generated:

xij = zi + 𝜖, j = 1,… , ki; i = 1,… , 22. (10.10)

ki is the size of the ith group, 𝜖 ∼  (0, 0.01). So the features in each group are highly

correlated. The 22 groups of features are concatenated and constitute x1,… , x80.

x81,… , x100 are pure noise features drawn from  (0, 1). The weights and sizes of

the feature groups are listed in Table 10.1. For example, x1–x20 belong to two groups

with size 10 and w = 1.

The 100 features are evaluated using the feature ranking criteria introduced in

Sect. 10.2. Note that the RFE procedure is not performed. In order to compare the

criteria among groups, they are normalized to [0, 1]. The results for linear and non-

linear SVM-RFE are displayed in Fig. 10.1. It is clear that both the group size and

the weight influence the criteria. Ideally, the criteria should solely depend on the

weight, so the criteria for feature 1–40, 41–80 and 81–100 should be about 1, 0.5

and 0, respectively. However, because of CB, the features in larger groups receive

smaller criteria. The features with group size 5 and 10 receive criteria comparable

to that of the noise features. In this case, if a batch of features are removed in one

iteration of RFE, features in large groups are likely to be removed entirely.

10.3.2 Correlation Bias Reduction

Highly correlated features bring wrong estimations to several embedded FS algo-

rithms including SVM-RFE. They also affect regression applications, causing large

variance of the estimates and inaccurate prediction (Park et al. 2007). In order to

deal with the problem, some methods have been proposed. An intuitive method is to

replace each group of highly correlated features with one representative before selec-

tion or regression. For example, Park et al. (2007) performed hierarchical clustering

on features and used the cluster centroids for regression. Another idea is to perform
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Fig. 10.1 Normalized

feature ranking criteria of a
linear (Eq. 10.4) and b
nonlinear (Eq. 10.8)

SVM-RFE in the synthetic

dataset. The curves represent

the criteria of each single

feature. The bars show the

average criteria of the

features in the groups with

the same size and weight

(see Table 10.1). It can be

found that if the group size

increases or the weight

decreases, the criterion

decreases
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selection or regression on feature groups instead of single features. For example,

Sharma et al. (2013) proposed to automatically group and select correlated features

based on a penalization scheme. However, the scheme only applies to linear models.

Our method differs from the methods described above. It makes use of the RFE

procedure to reduce the influence brought by CB. For efficiency, it is impractical for

the RFE procedure to remove one feature each time if the feature dimension is high.

When a batch of features are removed in one iteration of RFE, a group of correlated

features may be removed entirely. This may either because the features are truly

irrelevant, or because their ranking criteria have been incorrectly underestimated.

In both conditions, we can move a representative feature of the group back to the

surviving feature list. Then it can be evaluated again in the next iteration without

the influence of CB. The group representative can be chosen as the feature with the
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highest criterion in this iteration. This strategy does not change the candidate feature

set or the ranking criterion, but monitors and corrects the potentially wrong decisions

due to CB.

The details of the correlation bias reduction (CBR) algorithm are shown in Algo-

rithm 10.3.1. out
is the list of features to be removed in one iteration of RFE.  in

is

the list of features that survives. The purpose of the algorithm is to move potentially

useful features from out
back to  in

. In order to identify highly correlated feature

groups in out
, two thresholds Tc and Tg are used. We start from examining the fea-

ture with the highest criterion in out
and denote it as feature k. If there exist more

than Tg features (including k) whose absolute correlation coefficient with k is larger

than Tc, they are identified as a group. If none of the group members are in  in
, k

should be moved to  in
since it has the highest criterion in the group. This operation

is repeated on all features in out
. In Algorithm 10.3.1, | | represents the number

of elements in  .

Algorithm 10.3.1 CBR( in
, out

)

Require: out
: the list of features to be removed in one iteration of RFE;

 in
: the list of features that survives;

Thresholds Tc and Tg.

Ensure: Modified out
and  in

.

1: Sort out
according to the descending order of the ranking criteria.

2: for p = 1 to |
|

out |
| do

3: Suppose feature k is the pth element of the sorted out
, let

out ←
{
i ∈ out |

| |corr(i, k)| > Tc
}

;

in ←
{
j ∈  in|

| |corr(j, k)| > Tc
}

.

4: if ||out |
| > Tg and |

|
in|
| == 0 then

5: out ← out − k;

 in ←  in ∪ k.

6: end if
7: end for

The larger Tg, the fewer groups will be identified. In practice, we find that setting

Tg to 1 or 2 achieves comparable accuracy. Larger values of Tg will degrade the

accuracy since some groups of correlated features are eliminated too early. Tc is

the correlation threshold. We will explore the effect of different Tc values on the

accuracy in Sect. 10.5.2. The experimental results in Sect. 10.5 prove that the CBR

strategy improves the performance of SVM-RFE.

10.3.3 Efficient Implementation of SVM-RFE with CBR

This section describes some details on the implementation of the proposed algo-

rithm. First, the number of features that are removed in each iteration of RFE should

be determined. In this chapter, a method that simultaneously considers the time cost
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and precision is used (Rakotomamonjy 2003). At the beginning of the algorithm,

one half of the remaining features are removed in each iteration. When the number

of the remaining features is less than an elimination number threshold Te, they are

removed one by one in the following iterations for better precision.

A technique can be applied to accelerate the calculation of the ranking criterion

for nonlinear SVM-RFE (Eq. 10.8) with Gaussian kernel. First, Eq. 10.8 is expressed

in a matrix form:

J(k) = 1
2
(
𝜷TH𝜷 − 𝜷TH(−k)𝜷

)
. (10.11)

Here, 𝜷 is the column vector of signed 𝛼’s, i.e., 𝛽i = 𝛼iyi. Only the nonzero 𝛼’s

are included. H is the kernel matrix, Hij = K(xi, xj). Only the support vectors are

included. For the Gaussian kernel, we have Hij = e−𝛾Sij , where Sij = ‖xi − xj‖2. It is

easy to prove that

S(−k)ij = ‖x(−k)i − x(−k)j ‖2 (10.12)

= Sij −
(

x(k)i − x(k)j

)2
, (10.13)

where x(k)i ∈ 𝐑 is the kth feature of the ith support vector. When computing S(−k)ij , we

can use Eq. 10.13 to replace the original Eq. 10.12, since the matrix S can be cached

and reused, and computing the scalar operation in Eq. 10.13 is much easier than the

vector norm in Eq. 10.12. According to experiments using MATLAB, Eq. 10.13 is

about 5 times faster.

The complete algorithm of SVM-RFE with CBR is summarized in Algorithm

10.3.2.

10.3.4 Stability Improvement with Ensemble Method

The stability of an FS algorithm is a topic of recent interest (Bhondekar et al. 2011;

Awada et al. 2012; Somol and Novovicova 2010; Saeys et al. 2008; Kalousis et al.

2007). A stable FS algorithm is important for data mining applications such as bioin-

formatics. Stability describes the sensitivity of a method to variations in the training

set (Kalousis et al. 2007). If the training set is perturbed, the difference in selected

features should not be too large. The Jaccard index is a widely used criterion to mea-

sure the difference between two selected feature subsets A and B (Saeys et al. 2008;

Somol and Novovicova 2010; Kalousis et al. 2007):

S(A,B) = |A ∩ B|
|A ∪ B|

. (10.14)

Its value ranges from 0 to 1, with 0 meaning that the two subsets have no overlap and

1 meaning that they are identical. When evaluating the stability of an FS algorithm,
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Algorithm 10.3.2 SVM-RFE with CBR

Require: A set of training samples with feature dimension m;

An SVM training algorithm (linear or nonlinear); Te.
Ensure: A ranked list of features  ranked

= out
, the most important feature in the first place.

1: Initialize the list of surviving features  in ← {1,… ,m};

the list of eliminated features out ← ∅.

2: while  in ≠ ∅ do
3: Train an SVM model with the features in  in

.

4: Calculate the features’ ranking criteria with Eq. 10.4, or Eqs. 10.11 and 10.13.

5: Sort  in
according to the descending order of the ranking criteria.

6: if | in| > Te then
7: r = min(floor(| in|∕2), | in| − Te),
8: else
9: r = 1.

10: end if
11:  removing ← the last r elements in  in

;

 in ← the first | in| − r elements in  in
.

12: if r > 1 then
13: Call Algorithm 10.3.1: ( in

,  removing
) ← CBR( in

,  removing
).

14: end if
15: out ← [ removing

, out
].

16: end while

we can use the N-fold cross-validation strategy. After N subsets have been selected

based on N training sets, the Jaccard index is computed for all N(N − 1)∕2 pairs of

subsets. The final stability is the average over all pairs (Kalousis et al. 2007).

To improve the stability of FS algorithms, one of the popular ideas is to use an

ensemble method (Awada et al. 2012; Saeys et al. 2008), i.e., to aggregate the outputs

of the single feature selectors. In this chapter, we apply this method to SVM-RFE

+ CBR. Part (9/10 in this chapter) of the training samples are randomly picked to

generate a ranked feature list. The process is repeated M times, then the average

rank of each feature is used to determine its final rank. In this way, the features

with stably good performance are more likely to rank higher. Note that the stabil-

ity issues and performance of the ensemble method will be separately discussed in

Sect. 10.5.5. The results described in Sects. 10.5.1–10.5.4 are obtained without the

ensemble method.

10.4 Datasets and Feature Extraction

10.4.1 Dataset 1

10.4.1.1 Description

Dataset 1 will also be investigated in Chap. 14. It consists of breath samples from

healthy and diabetic subjects. A breath analysis system was proposed by Yan et al.

http://dx.doi.org/10.1007/978-981-10-4322-2_14
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Table 10.2 Summary of the sensor array used in dataset 1

No. Model Manufacturer Function

1 TGS4161 Figaro Inc., Japan CO2

2 TGS822 VOCs (e.g., acetone), H2, CO, NH3, H2S, etc.

3 TGS826

4 TGS2610-D00

5 SP3S-AQ2 FIS Inc., Japan

6 GSBT11 Ogam Inc., Korea

7 WSP2111 Winsen Inc., China

8 TGS2600-TM Figaro Inc., Japan

9 TGS2602-TM

10 WSP2111-TM Winsen Inc., China

11 HTG3515CH Humirel Inc., France Temperature

12 Humidity

Fig. 10.2 Typical curves in

dataset 1. Solid line the

heating voltage of

temperature modulated (TM)

sensors. Dashed line: a

typical response curve of a

TM sensor. Dash dot line a

typical response curve of an

ordinary sensor. The vertical
dotted lines separate the 4

stages of the sampling

procedure: a baseline stage;

b injection stage; c reaction

stage; d purge stage
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(2014) to measure breath samples of healthy people and diabetics. They developed

an e-nose with a carbon dioxide sensor, a temperature-humidity sensor and 9 metal

oxide semiconductor (MOS) sensors. The details of the sensor array are listed in

Table 10.2. The carbon dioxide sensor was utilized to compensate for the difference

in proportion of alveolar air. The MOS sensors were carefully selected for better

accuracy in diabetes identification (Yan and Zhang 2014b). It is worth noting that

three of the MOS sensors were operated under temperature modulation (sensor 8-

10 with the notation “-TM” in Table 10.2). They were heated by a staircase voltage

oscillated between 3 V and 7V. Figure 10.2 illustrates the waveform of the heating

voltage and compares typical responses of a TM sensor and an ordinary sensor. More

details about the e-nose will be revealed in Chap. 14.

http://dx.doi.org/10.1007/978-981-10-4322-2_14
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Fig. 10.3 Average preprocessed responses of the two classes in dataset 1. Left healthy; right dia-

betes. The sensor models can be found in Table 10.2

A total of 295 healthy and 279 diabetes breath samples were collected. Before fea-

ture extraction, the samples are preprocessed. First, the baseline values are subtracted

from the sensor responses. Humidity compensation is necessary because breath sam-

ples contain water vapor. Linear humidity response models are built for each sensor,

then applied to rectify the samples (Yan et al. 2014). Figure 10.3 exhibits the average

preprocessed samples of healthy and diabetic subjects. Only the carbon dioxide sen-

sor (S1) and MOS VOC sensors (S2-S10) are drawn. For S2-S10, the responses in

diabetes samples are larger than that in healthy samples, showing that the concentra-

tion of VOCs in breath of diabetics is higher than that of healthy subjects. Besides,

the curve shape of S8 is significantly different between the two classes.

10.4.1.2 Transient Feature Extraction

Traditional features of gas sensors are their steady-state responses. However, addi-

tional useful information is carried in the transient responses (Hierlemann and

Gutierrez-Osuna 2008; Marco and Gutiérrez-Gálvez 2012). Transient responses are

often related to the change of gas flow (injection/purge) or temperature (for TM

sensors). In this chapter, 1712 transient features are extracted from sensors 1–10 in

dataset 1. The feature set includes magnitude, difference, derivative, second deriva-

tive, integral, time constant and phase features. It is a larger and more comprehensive

feature set than previous studies (Paulsson et al. 2000; Pardo and Sberveglieri 2008;

Cho and Kurup 2011), which enables us to (1) enhance the classification accuracy,

for the best feature subset in a large candidate set should be better than that in a
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Table 10.3 Feature description for ordinary sensors in dataset 1

Feature type Description #Features

Magnitude Down-sampled values of the curve’s magnitude M 21

The maximum magnitude 1

Down-sampled values of the normalized magnitude

̃M,
̃M = M∕max(M)

21

Difference The difference F of magnitude M,

Fi = M(ti+1) −M(ti), t = [0, 8, 36, 64, 92, 120], i = 1,… , 5
5

Derivative Down-sampled values of the curve’s derivative D 21

The maximum and minimum derivative 2

2nd derivative The maximum and minimum 2nd derivative in both injection

and purge stage

4

Integral The integral of the 5 intervals of the curve, the intervals are the

same with the difference feature

5

Time constant The time when the magnitude reaches 30, 60, 90, and 100% of

its maximum value (T30,T60,T90,Tmax), and 90, 60, and 30 of

its maximum value in the purge stage (T−90,T−60,T−30)

7

The time when the derivative reaches its maximum and

minimum values

2

The time when the 2nd derivative reaches its maximum and

minimum values in both injection and purge stage

4

Phase feature The phase feature is proposed in (Martinelli et al. 2003). First,

the response is transformed to the phase space, which is

spanned by its magnitude and derivative. Then, the phase

features are defined by Pi = ∫
M(ti+1)
M(ti)

D dM, t is the same with

the difference feature

5

small set; (2) Perform a systematic statistical analysis on the features; (3) Testify the

performance of the proposed FS algorithm in a large correlated feature set.

The features extracted from each ordinary sensor are described in Table 10.3.

There are 98 features altogether. The difference, integral, and phase features are cal-

culated on 5 intervals of the curve (1 in injection stage, 2 in reaction stage, and 2 in

purge stage), which are illustrated in Fig. 10.4a. The shape of a TM sensor’s response

is more complex and informative. However, the features defined in Table 10.3 can

still be used to describe the transient of the curve. Because the response of a TM

sensor has 18 “stairs”, transient features are extracted on every stair. The features

are similar to those in Table 10.3, but the features related to the 2nd derivative in

the purge stage and the time constant features T30,T60,T90,T−90,T−60,T−30 are not

included. The feature dimension for each TM sensor is 18 × 19 = 342.
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Fig. 10.4 Examples of the difference, integral, and phase feature for a ordinary sensors and b TM

sensors
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Table 10.4 Summary of the sensor array used in dataset 2

No. Model Gas Sensitivity (ppm)

1 TGS2600 H2, CO and VOCs 1–30

2 TGS2602 VOCs 1–30

3 TGS2611-C00 VOCs 500–10000

4 TGS2610-C00 VOCs 500–10000

5 TGS2610-D00 VOCs 500–10000

6 TGS2620 VOCs and CO 50–5000

7 TGS825 H2S 5–100

8 TGS4161 CO2 350–10000

9 TGS826 NH3 30–300

10 TGS2201 NO and NO2 0.1–10

11 TGS822 VOCs 50–5000

12 TGS821 H2 10–1000
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Fig. 10.5 Typical samples in dataset 2. Left healthy; right airway inflammation. The sensor models

are in Table 10.4

10.4.2 Dataset 2

The second dataset, which has been described in Chap. 3, was collected by a breath

analysis system designed by Guo et al. (2010). It was equipped with a carbon dioxide

sensor and 11 MOS sensors. The details of the sensor array are listed in Table 10.4.

All sensors are commercially available from Figaro Inc., Japan. They were operated

http://dx.doi.org/10.1007/978-981-10-4322-2_3
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under constant heating voltage. The sensor array is able to detect biomarkers of sev-

eral kinds of diseases. There are 135 healthy samples, 181 diabetes samples, 167

renal disease samples, and 126 airway inflammation samples in the dataset. Typical

samples in the dataset are displayed in Fig. 10.5. The duration of each breath sample

was 90 s. The data preprocessing algorithm includes baseline subtraction and sig-

nal normalization (Guo et al. 2010). After preprocessing, 1140 transient features are

extracted. The features are similar to the ones for ordinary sensors in dataset 1, but

not as many since the sample duration of dataset 2 is shorter.

10.5 Results and Discussion

The performance of the proposed method (without ensemble) on the three datasets

will be described and compared in Sects. 10.5.1–10.5.4. Section 10.5.5 will discuss

the stability of the FS methods and study the performance of SVM-RFE + CBR with

ensemble. Some useful information will be provided in Sect. 10.5.6 by analyzing the

feature importance.

10.5.1 Synthetic Dataset

The synthetic dataset has been described in Sect. 10.3.1. It contains several groups of

highly correlated features. A tenfold cross-validation was conducted on the dataset

to evaluate the algorithms. First, feature ranking was performed on the training sets.

Then, linear SVM classifiers based on the top-ranked features were used to classify

separate test sets. Finally, the average classification accuracy and the standard devia-

tion are calculated. Because the relationship between the features and the class label

is linear, we adopted linear SVM-RFE to rank the features. The penalty parameter C
of the SVM models was empirically set to 23 for both SVM-RFE and classification.

For the RFE procedure, the elimination number threshold is Te = 22. For the CBR

strategy, the group size threshold is Tg = 1; the correlation threshold is Tc = 0.9.

In Fig. 10.6, three algorithms are compared. Besides the linear SVM-RFE with or

without CBR, the “slowest” SVM-RFE is also explored, which removes the features

one by one in the RFE procedure (equivalent to setting Te = ∞). Theoretically, this

method is not affected by correlation bias. The left figure shows how many latent

variables have been included in the top-ranked features. Recall that the 80 relevant

features in the dataset are generated from 22 latent variables. We can see that the

original SVM-RFE fails to include all the variables in the top 30 features, probably

because some of the feature groups are eliminated too early due to CB. Both SVM-

RFE + CBR and the slowest SVM-RFE succeed to include all the variables in the

top 30 features. The right figure compares the accuracy of the three algorithms. This

result shows that SVM-RFE + CBR is comparable to the slowest SVM-RFE and

better than the original SVM-RFE in the synthetic dataset. It proves the ability of
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Fig. 10.6 FS results on the synthetic dataset. Left the number of latent variables identified in the

top-ranked features. Right average classification accuracy of the top-ranked features. The error bars

represent the standard deviations

the CBR strategy to reduce the influence of CB. Besides, the slowest SVM-RFE

becomes impractical to use when the feature dimension is high. When running the

experiment on dataset 1 using MATLAB, SVM-RFE + CBR needed 100 s to rank

the 1712 features in one cross-validation, while the slowest SVM-RFE did not finish

it in 9 h. So we will not compare the result of the latter method in the breath analysis

datasets.

10.5.2 Dataset 1

Similar to the synthetic dataset, tenfold cross-validation was carried out for dataset 1.

Gaussian SVM was adopted for classification with parameters C = 23 and 𝛾 = 2−6.

In both linear and nonlinear SVM-RFE algorithms, we set C = 23 since it has good

performance. The kernel parameter 𝛾 was searched among {2−3, 2−4,… , 2−10} for

nonlinear SVM-RFE with or without CBR. Finally, we found that the best accuracy

is achieved in both situations when 𝛾 = 2−8. Other parameters for RFE and CBR

were: Te = 60,Tg = 2.

In Fig. 10.7, performance of linear and nonlinear SVM-RFE are compared. The

shown performance is the best accuracy among the top 60 feature subsets. The x-axis

of the figure is the correlation threshold Tc in CBR strategy. When Tc = 1, the algo-

rithm is equivalent to the original SVM-RFE without CBR. Table 10.5 shows the

classification accuracy of several feature extraction/selection methods. The parame-
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Fig. 10.7 Average accuracy

of a linear and b nonlinear

SVM-RFE with CBR in

dataset 1 with varying

correlation threshold Tc.
When Tc = 1, the algorithm

is equivalent to the original

SVM-RFE without CBR.

The error bars represent the

standard deviations
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ters of the methods have been optimized. In the principal component analysis (PCA)

method, the ratio of variance (Yan et al. 2014) was searched from 80% to 99.9%. In

the min-redundancy max-relevance (mRMR) method, the features were discretized

to three levels to compute the mutual information (Peng et al. 2005). When hierar-

chical clustering (HC) was applied before SVM-RFE, the number of clusters was

searched between 800 to 1700. In clinical applications, sensitivity and specificity

measures are important, so they are also listed in Table 10.5. Sensitivity is the pro-

portion of correctly classified patients in all the patients, while specificity is the

proportion of correctly classified healthy subjects in all the healthy subjects. The

accuracy is presented as “mean ± standard deviation”.

10.5.3 Dataset 2

There are three subproblems in dataset 2: discriminating healthy samples from dia-

betes, renal disease, and airway inflammation samples, respectively. tenfold cross-

validation was carried out for each problem. The experimental configurations were

similar to those in Sect. 10.5.2. The kernel parameter was also separately tuned in

nonlinear SVM-RFE with or without CBR. The value of Tc was searched among

0.5, 0.55,… , 0.95 for better accuracy. The results are shown in Tables 10.6, 10.7

and 10.8.
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Table 10.5 Performance comparison of various methods in dataset 1. The stability is the average

Jaccard index

Algorithm #Features
Sensitivity

(%)

Specificity

(%)

Average acc.

(%)

Stability

All transient 1712 87.04 ± 6.36 90.74 ± 5.59 88.89 ± 4.86 –

PCA + transient 58 90.74 ± 5.01 90.00 ± 4.95 90.37 ± 2.44 –

PCA + magnitude 40 92.59 ± 4.62 90.74 ± 6.11 91.67 ± 4.56 –

mRMR 40 90.37 ± 4.68 91.85 ± 4.55 91.11 ± 3.24 0.5183
SFS 28 83.70 ± 6.10 88.15 ± 10.88 85.93 ± 6.25 0.1088

Original linear SVM-

RFE
57 90.37 ± 7.03 88.15 ± 4.20 89.26 ± 3.79 0.2201

Linear SVM-RFE +

CBR (Tc = 0.65)
17 90.74 ± 7.66 92.60 ± 3.51 91.67 ± 3.24 0.2238

Original nonlinear

SVM-RFE
30 93.33 ± 5.74 93.33 ± 4.20 93.33 ± 3.40 0.4996

Nonlinear SVM-RFE

+ HC
36 94.07 ± 5.30 94.07 ± 4.95 94.07 ± 3.50 0.4228

Nonlinear SVM-RFE

+ CBR (Tc = 0.9)
31 94.44 ± 6.11 95.56 ± 3.40 95.00 ± 3.39 0.4572

Table 10.6 Performance comparison of various SVM-RFE strategies in dataset 2: distinguishing

between healthy and diabetes samples

Algorithm #Features
Sensitivity

(%)

Specificity

(%)

Average acc.

(%)

Stability

Linear 59 90.00 ± 8.15 90.00 ± 8.92 90.00 ± 6.07 0.0531

Linear + CBR

(Tc = 0.7)
43 90.00 ± 7.30 90.77 ± 8.73 90.38 ± 6.35 0.0525

Nonlinear 52 97.69 ± 3.72 99.23 ± 2.43 98.46 ± 2.69 0.4131
Nonlinear +

CBR (Tc = 0.9)
56 99.23 ± 2.43 99.23 ± 2.43 99.23 ± 1.62 0.4087

10.5.4 Discussion

Figure 10.7 shows that the CBR strategy improves the average accuracy of both linear

and nonlinear SVM-RFE when Tc is not less than 0.6. The improvement seems not

very obvious because the standard deviation (SD) is relatively large. However, when

observing the detailed results of dataset 1 and 2 (Tables 10.5, 10.6, 10.7 and 10.8),

we find that SVM-RFE + CBR has comparable or lower SD than the original SVM-

RFE. Moreover, the sensitivity, specificity, and average accuracy of SVM-RFE +

CBR are consistently better than that of SVM-RFE. So the CBR strategy is effective

in terms of accuracy. The SD of other feature extraction/selection methods such as

PCA, SFS, and mRMR is comparable to SVM-RFE, which is probably caused by the
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Table 10.7 Performance comparison of various SVM-RFE strategies in dataset 2: distinguishing

between healthy and renal disease samples

Algorithm #Features
Sensitivity

(%)

Specificity

(%)

Average acc.

(%)

Stability

Linear 60 92.31 ± 8.11 86.92 ± 8.92 89.62 ± 5.75 0.0494

Linear + CBR

(Tc = 0.7)
50 92.31 ± 5.13 90.00 ± 7.30 91.15 ± 5.14 0.0490

Nonlinear 40 96.92 ± 7.43 97.96 ± 5.19 97.31 ± 4.23 0.4077
Nonlinear +

CBR (Tc = 0.85)
32 98.46 ± 3.24 98.46 ± 3.24 98.46 ± 1.99 0.3510

Table 10.8 Performance comparison of various SVM-RFE strategies in dataset 2: distinguishing

between healthy and airway inflammation samples

Algorithm #Features
Sensitivity

(%)

Specificity

(%)

Average acc.

(%)

Stability

Linear 54 83.33 ± 11.11 78.33 ± 11.25 80.83 ± 7.14 0.0473

Linear + CBR

(Tc = 0.8)
52 86.67 ± 8.96 79.17 ± 10.58 82.92 ± 7.47 0.0453

Nonlinear 45 93.33 ± 8.29 92.50 ± 7.30 92.92 ± 5.49 0.4844
Nonlinear +

CBR (Tc = 0.8)
45 95.00 ± 5.83 93.33 ± 5.27 94.17 ± 2.91 0.4322

fact that the number of training samples is limited. We also find that the accuracy

of nonlinear SVM-RFE is always better than the linear one, which is because of the

nonlinear nature of the data. The best Tc value varies between 0.65 and 0.9 depending

on the dataset and the algorithm (linear or nonlinear).

In Table 10.5, when all the transient features are used, the accuracy is not very

good. Although it contains useful features for classification, the transient feature

set also contains irrelevant and redundant features, which will hinder the train-

ing of the classifier. PCA can reduce the redundancy within features, so the accu-

racy is improved in the method “PCA + transient features.” In the “PCA + mag-

nitude” method, PCA is applied to the magnitude of the whole curve as presented

in Chap. 14. Its accuracy is even better, possibly because there are less irrelevant

features in the magnitude.

A proper FS method can be used to identify the effective features and discard the

irrelevant and redundant ones. We compared a few FS methods that are able to han-

dle redundancy in candidate features. The mRMR method proposed by Peng et al.

(Peng et al. 2005) is a popular filter method which selects relevant and nonredundant

features based on a mutual information criteria. The widely used sequential forward

selection (SFS) algorithm (Paulsson et al. 2000) iteratively examines each feature

http://dx.doi.org/10.1007/978-981-10-4322-2_14
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and selects the one that maximizes the cross-validation accuracy in the training set.

If there is redundancy in features, the time cost of SFS will increase, but the accu-

racy will not be affected. The drawback of the two methods is that they use greedy

strategies, thus are prone to be trapped in local optima. As a wrapper method, SFS

often overfits the training set, especially when the sample size is much smaller than

the feature dimension, which results in a low accuracy in Table 10.5. Additionally,

it is often impractical to use wrapper methods such as SFS and genetic algorithm on

high-dimensional FS problems due to the large time cost.

Besides the proposed CBR strategy, there is an alternative way to deal with the

correlation bias problem in SVM-RFE. The intuitive idea is to filter the redundant

features before FS. Following (Park et al. 2007), we implemented a method which

uses hierarchical clustering to group the correlated features. The feature closest to the

group center is kept in each group. Then the filtered features (about 1500 in dataset 1)

are ranked using nonlinear SVM-RFE. Table 10.5 shows that this method generates a

higher accuracy (94.07%) than the original nonlinear SVM-RFE (93.33%). However,

the proposed nonlinear SVM-RFE + CBR achieves the best accuracy 95.00% with

fewer features.

10.5.5 Stability Analysis and the Ensemble Method

The stability of the FS algorithms listed in Tables 10.5, 10.6, 10.7 and 10.8 is the

average Jaccard index (see Sect. 10.3.4) of the top 60 features. The overall stability

is not high, which is mainly because there are many highly correlated features, hence

the same accuracy can be achieved by different feature subsets. In Table 10.5, mRMR

achieves the highest stability. The other algorithms all depend on the training of the

SVM classifier, thus will be more sensitive to the perturbation of the training set.

This result is consistent with (Kalousis et al. 2007), where SVM-RFE was found to

be less stable than univariate filter methods. The stability of nonlinear SVM-RFE

is better than the linear one due to the nonlinear nature of the data. The stability of

SVM-RFE + CBR is slightly lower than SVM-RFE. The possible reason is that the

CBR strategy moves several features back to the surviving feature list in each RFE

iteration, which increases the uncertainty of the algorithm, since deciding which

feature to move can be sensitive to sample perturbation if several features are highly

correlated and have similar ranking criteria.

In order to improve the stability of SVM-RFE + CBR, the ensemble method intro-

duced in Sect. 10.3.4 was investigated. Figure 10.8 shows the accuracy and stability

of the ensemble method as the ensemble size (the number of ranking processes to

be aggregated) changes. The results were obtained by tenfold cross-validation fol-

lowed by averaging over 10 repetitions. It can be seen that as the ensemble size

increases, the average accuracy and standard deviation do not change obviously, but

the stability has significant improvement. When the ensemble size is greater than 9,

the stability of nonlinear SVM-RFE + CBR is better than mRMR. So the ensemble

method is able to improve the stability at the cost of more computation time. It is
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Fig. 10.8 Average accuracy and stability of SVM-RFE + CBR with ensemble in dataset 1. Plot a
and b correspond to linear SVM-RFE + CBR with Tc = 0.65. Plot c and d correspond to nonlinear

SVM-RFE + CBR with Tc = 0.9. The error bars represent the standard deviations

worth noting that higher accuracy can be coupled with relatively lower stability par-

ticularly in the presence of highly correlated features (Kalousis et al. 2007). In FS

applications where stability and accuracy are both important, ensemble methods can

be considered.

10.5.6 Analysis of the Ranked Features

FS techniques can help us understand the data better. By analyzing the importance of

the features, useful information about the sensors and feature extraction algorithms

can be obtained. Dataset 1 is studied since it contains TM sensors. We wish to find

the answers to several questions: In the application of diabetes identification, which

sensors are important? What kinds of features are suitable for ordinary/TM sensors?

What heating voltage is a better choice for TM sensors?

The output of SVM-RFE + CBR is a ranked feature list. The ranking of a fea-

ture indicates its importance. However, a sensor or a type of feature (such as the

magnitude feature) is made up of a group of features. Their importance needs to be

estimated according to a group of rankings. Simply averaging the rankings may be

improper, because we are more interested in whether the feature group contains use-

ful features. The irrelevant features in the group may degrade its ranking and mislead

our judgement. As a result, we use the “average top rank” criterion, namely the aver-
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age of the top 5 rankings of the features in the group, to evaluate the feature groups.

The smaller the criterion, the more important the feature group. Note that the ten

ranking lists of the tenfold cross-validation are pooled together. Using this criterion,

some helpful conclusions can be summarized:

∙ Sensors. The importance order of the sensors is TGS2600-TM, TGS2602-TM,

TGS2610-D00, TGS826, WSP2111-TM, TGS4161, GSBT11, SP3S-AQ2,

TGS822, WSP2111. The result is not identical with that in Chap. 5, but some sim-

ilar trends can be observed. The two most important sensors are both TM sensors.

The models of WSP2111-TM and WSP2111 are the same, but the former one is

operated under TM, which makes it turn from the least important sensor to the

5th one. To the best of our knowledge, (Yan et al. 2014) is the first literature that

applied TM technique to breath analysis systems. The results prove the effective-

ness of TM in such applications. The carbon dioxide sensor (TGS4161) has an

average top rank of 11.6, showing that it is useful for the application.

∙ Feature types. The average top ranks of the seven types of transient features

are displayed in Table 10.9. The phase feature extracted from TM sensors is the

most effective. The time constant (especially the Tmax feature) and derivative are

effective for both types of sensors, while the 2nd derivative and integral are the

least effective ones. The normalized magnitudes show slightly smaller average top

ranks than the magnitudes without normalization.

∙ TM heating voltages. We find that the average top rank is smaller when the heat-

ing voltage is in the interval of 6V-7V-3V (see Fig. 10.2). It implies that when

detecting breath biomarkers such as acetone, the TM sensors’ responses are more

discriminative when the temperature is close to or higher than normal range.

According to (Hosseini-Golgoo and Hossein-Babaei 2011), responses at low tem-

peratures contained mostly redundant or indiscriminative information. This is con-

sistent with our study. But it needs further investigation whether the high heating

voltage will increase sensor drift.

Table 10.9 Average top ranks of the seven types of transient features extracted from ordinary and

TM sensors, respectively. The smaller the better

Feature type Ordinary sensor TM sensor

Magnitude 7.2 6.4

Difference 20.4 4.6

Derivative 6.2 2.6

2nd derivative 80.4 35.4

Integral 46.0 15.6

Time constant 4.0 2.6

Phase feature 11.8 1.0

http://dx.doi.org/10.1007/978-981-10-4322-2_5
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10.6 Summary

In this chapter, the linear and nonlinear support vector machine recursive feature

elimination (SVM-RFE) algorithms were studied. The correlation bias problem in

SVM-RFE was raised, which will affect the accuracy of the feature selection result.

The correlation bias reduction (CBR) algorithm was proposed to solve the problem

by improving the feature elimination strategy. A synthetic dataset and two breath

analysis datasets with large sets of correlated features were used to evaluate the algo-

rithms. The nonlinear SVM-RFE + CBR was proved to be effective. It outperformed

the original SVM-RFE and other typical algorithms. A complete and efficient imple-

mentation of the proposed method was also presented. The stability of the proposed

algorithm can be improved by applying the ensemble method.

In this study, the comprehensive feature set included seven types of transient fea-

tures. By analyzing the features’ rankings, some useful knowledge was obtained.

Three representative conclusions for dataset 1 are:

∙ MOS sensors with temperature modulation (TM) are significantly more effective

than those without TM.

∙ Phase feature is the best feature for TM sensors and time constant is the best for

ordinary sensors.

∙ The TM sensors’ responses are more discriminative when the temperature is close

to or higher than the normal range.

These information will be helpful when making new breath analysis systems or

designing new features. For example, the low-ranking sensors may be discarded to

lower the cost without precision loss. Features related to TM sensors or the phase

space can be further studied. In summary, the proposed FS algorithm is a promis-

ing method for accuracy enhancement, dimension reduction and data interpretation.

Future works may include investigation of more kinds of features (Zhang et al. 2008;

Gutierrez-Osuna et al. 2003).
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Chapter 11
Breath Sample Identification by Sparse
Representation-Based Classification

Abstract It has been discovered that some compounds in human breath can be used

to detect some diseases and monitor the development of the conditions. A sensor sys-

tem in tandem with certain data evaluation algorithm offers an approach to analyze

the compositions of breath. Currently, most algorithms rely on the generally designed

pattern recognition techniques rather than considering the specific characteristics of

data. They may not be suitable for odor signal identification. This chapter proposes

a Sparse Representation-based Classification (SRC) method for breath sample iden-

tification. The sparse representation expresses an input signal as the linear combina-

tion of a small number of the training signals, which are from the same category as

the input signal. The selection of a proper set of training signals in representation,

therefore, gives us useful cues for classification. Two experiments were conducted

to evaluate the proposed method. The first one was to distinguish diabetes samples

from healthy ones. The second one aimed to classify these diseased samples into

different groups, each standing for one blood glucose level. To illustrate the robust-

ness of this method, two different feature sets, namely, geometry features and princi-

ple components were employed. Experimental results show that the proposed SRC

outperforms other common methods, such as Support Vector Machine (SVM) and

K-Nearest Neighbor (KNN), irrespective of the features selected.

Keywords Breath analysis ⋅ Disease identification ⋅ Sparse representation ⋅
Diabetes ⋅ Blood glucose levels

11.1 Introduction

Endogenous molecules in human breath, such as acetone, nitric oxide, hydrogen and

ammonia, are produced by metabolic processes. They are separated from blood and

enter into the alveolar air via the alveolar pulmonary membrane (DAmico et al. 2007;

Schubert et al. 2004; Miekisch et al. 2004). Variation in the concentration of these

molecules can suggest various diseases or at least changes in metabolism (Amann

et al. 2005). These molecules are considered as biomarkers of the presence of dis-

eases and clinical conditions. For instance, nitric oxide in breath can be measured

© Springer Nature Singapore Pte Ltd. 2017
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as an indicator of asthma or other conditions characterized by airway inflammation

(Deykin et al. 2002). Breath isoprene is significantly lower in cystic fibrosis patients

with acute respiratory exacerbation (McGrath et al. 2000). Increased pentane and

carbon disulfide have been observed in the breath of patients with schizophrenia

(Phillips et al. 1993). Breath concentration of volatile organic compounds (VOCs)

such as cyclododecatriene, benzoic acid, and benzene are much higher in lung can-

cer patients than in control groups (Phillips et al. 2007). Acetone has been found to

be more abundant in the breath of diabetics (Fleischer et al. 2002; Deng et al. 2004),

and breath ammonia is significantly elevated in patients with renal diseases (Davies

et al. 1997).

By detecting the molecules in breath, one can identify the diseases in an early

stage and monitor their development. Compared with other traditional methods, such

as blood and urine tests, breath analysis is noninvasive, real time, and the least harm-

ful to not only the subjects but also the personnel who collect the samples (Berkel

et al. 2008). Increasing interest has been expressed about the applications of breath

analysis in medicine and clinical pathology both as a diagnostic tool and as a way to

monitor the progress of therapies (Francesco et al. 2005; Dweik and Amann 2008).

With the development of sensor technology, sensor systems promise a number of

advantages in breath analysis compared with the traditional analytical instruments,

like the gas chromatograph, because of its low-cost and ease of operation property.

In recent years, much work has been reported about the application of one kind of

sensor system, namely, electronic noses (e-noses), to breath analysis. To take some

examples, D’Amico et al. have reported a diagnosis method for lung cancer by the

analysis of breath by means of an e-nose with eight quartz microbalance (QMB) gas

sensors (Natale et al. 2003; D’Amico et al. 2009). Dragonieri et al. have introduced

the application of an e-nose with 32 polymer sensors to lung diseases identification,

such as asthma, CPOD, pneumonia, lung cancer, and the postoperative state of lung

cancer (Dragonieri et al. 2007, 2009). Yu et al. have detected diabetes by analyzing

the acetone in patients’ breath using an array with four conducting polymer sensors

(Yu et al. 2005). Shih et al. have used an e-nose with an array of 24 individual trans-

ducers to detect and identify bacterial infections of the lungs and airways (Shih et al.

2010).

While these methods work satisfactorily in some applications, the results could

possibly be improved. That is because, on the one hand, the analysis tools they have

utilized were commercial e-noses. Current commercial e-noses, for the sake of their

marketing concerns, have to provide some versatility in applications, such as coffee,

wine, and fragrances identification. The versatility, in contrast, limits their perfor-

mance in disease detection since their sensor selection has to match broad appli-

cations. On the other hand, the data evaluation methods they have used are gener-

ally designed pattern recognition algorithms, such as Principal Component Analysis

(PCA) plus Euclidean distance and Canonical Discriminant Analysis (CDA) plus

Mahalanobis distance, which rarely consider the specific characteristics of samples

and may not be very suitable for odor signal identification.

It has been claimed that the sensor array itself, the reference data set, and the data

evaluation algorithms are all responsible for the system performance (Rock et al.
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2008). The improvements taken in these three aspects would help to enhance the

disease identification accuracy. In our previous work, we have developed a system

especially for breath analysis (Guo et al. 2010b). The system employs 12 chemical

sensors to detect the abnormal concentration of the molecules in breath. In contrast

to the broad panel of nonspecific sensors used in commercial e-noses, the sensors

in our system are selected particularly to be sensitive to the disease biomarkers in

human breath. Previous work has shown that when used in tandem with general

pattern recognition methods, for example, PCA plus KNN classifier, the system per-

formed well in detecting diseases, monitoring the progress of related therapies, and

evaluating the efficiency of medical treatment (Guo et al. 2010a, b, c).

Although the mentioned system works well, its performance can be further

improved when a comparatively appropriate pattern recognition method is employed.

Breath signals have the following characteristics: on the one hand, these data are with

high dimensionality; on the other, the number of samples is limited, due to the high

cost of data collection. This means the number of samples utilized to train the classi-

fier is too small relative to the dimensionality of data in each sample. In this case, the

traditional statistical pattern recognition method may not work well, since the effi-

ciency of these methods is highly dependent on the interrelationship between sample

sizes, number of features, and structure of classifiers (Jain and Mao 2000).

In this chapter, we propose a Sparse Representation-based Classification (SRC)

method for the breath signal identification to improve the classification accuracy

of the system. Sparse representation has shown great promise in face recognition

(Wright et al. 2008). The basic idea is to search for the most compact representa-

tion of an input signal in terms of linear combination of atoms in an overcomplete

dictionary (Huang and Aviyente 2007). We apply this method in disease identifica-

tion in this chapter. For semiconducting metal oxide sensor, the transient response is

related to the gas type, and the amplitude of the response is associated with gas con-

centration (Liess 2002). Hence, the data of the samples from the same class, which

only have the difference in amplitude, are highly correlated and can be linearly rep-

resented by each other. And the data of the samples from different classes, whose

transient responses and amplitudes are different, are independently distributed and

cannot be linearly represented by each other. We represent a test sample as the linear

combination of a set of training samples. In the linear combination, ideally, the train-

ing samples that are from the same class as the test sample have nonzero coefficients,

while those from the different class as the test sample have zero coefficients. Accord-

ingly, we can assign a test sample to the class whose training samples hold higher

linear combination coefficients. The coefficients can be obtained by solving an opti-

mization problem with the constraint of l1 norm minimization. To our knowledge,

there is no similar odor signal identification system that using SRC. The SRC method

is not only effective in the signal analysis of our system, but useful and applicable to

the performance enhancement of other current existing electronic noses.

Two experiments were conducted to evaluate the performance of this method. The

first aimed to distinguish samples with diabetes from healthy ones (disease diagno-

sis). The second was to classify these diseased samples into different groups, each

standing for a distinct blood glucose level (condition monitoring). Two different
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feature sets, namely, geometry features and principle components were employed

to illustrate the robustness of this method. As classical classifiers, SVM and KNN

have been widely used in odor signal identification (Brudzewski et al. 2004; Pardo

and Sberveglieri 2005; Pardo et al. 2005; Zhang et al. 2008a). In this chapter, we

compared the proposed method with SVM and KNN in terms of classification accu-

racy. Experimental results show that the proposed SRC outperforms SVM and KNN,

irrespective of the features selected for classification.

The rest of this chapter is organized as follows: Sect. 11.2 describes in detail the

proposed SRC method and its application to odor sample identification. Section 11.3

summarizes the overall disease identification procedure. Section 11.4 explains the

experimental details and presents the results and discussion. Finally, Sect. 11.5 offers

some conclusions.

11.2 Sparse Representation Classification

This section describes the SRC method and its application to odor signal identifica-

tion in detail.

11.2.1 Data Expression

Figure 11.1 is a typical output of the breath analysis system. The horizontal axis

stands for the sampling time (0–90 s) and the vertical axis shows the amplitude of

the sensor output in volts. The output is composed of l sensors’ responses, where

l = 12 since there are twelve chemical sensors involved in the system. The response

of each sensor, i.e., each curve in Fig. 11.1, is a discrete time series with d dimensions

(d = 810 according to the sampling rule). The response of the k-th sensor in the

sample is:

Fig. 11.1 The typical

output of the system
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s = [t1,k, t2,k,… , td,k]T. (11.1)

The sample with l sensors can be expressed as a matrix:

𝐒 =
⎡
⎢
⎢
⎣

t1,1, t1,2,… , t1,l
t2,1, t2,2,… , t2,l

⋮
td,1, td,2,… , td,l

⎤
⎥
⎥
⎦

. (11.2)

We can express the sample matrix as a vector by stacking its columns,

𝐯 = [t1,1,… , td,1, t1,2,… , td,2,… , t1,l,… , td,l]T ∈ 𝐑m
. (11.3)

Assume there are k classes, the i-th class includes ni samples. All training samples

from the i-th object class can be expressed as a matrix,

𝐀i = [𝐯i,1, 𝐯i,2,… , 𝐯i,ni ] ∈ 𝐑m×ni
. (11.4)

All samples from k object classes form a new matrix:

𝐀 = [𝐀1,𝐀2,… ,𝐀k]
= [𝐯1,1,… , 𝐯1,n1 , 𝐯2,1,… , 𝐯2,n2 ,… , 𝐯k,1,… , 𝐯k,nk ].

(11.5)

𝐀 ∈ 𝐑m×n
is called a dictionary matrix. m is the dimension of each sample and n is

the number of all training samples in matrix 𝐀.

11.2.2 Test Sample Representation by Training Samples

One of the test samples 𝐲 can be expressed as a linear combination of all training

samples from all object classes:

𝐲 = 𝛼1,1𝐯1,1 + 𝛼1,2𝐯1,2+,… , 𝛼k,nk𝐯k,nk = 𝐀𝐱 ∈ 𝐑m
, (11.6)

where 𝐱 = [𝛼1,1,… , 𝛼1,n1 ,… , 𝛼k,1,… , 𝛼k,nk ]
T ∈ 𝐑n

is a coefficient vector.

As have mentioned, the samples from the same class are highly correlated and

hence can be linearly represented by each other. While those from different classes

are independently distributed and therefore cannot be linearly represented by each

other. Ideally, the training samples from the same class as the test sample have

nonzero coefficients in the linear combination, whereas those from the different class

as the test sample have zero coefficients. For example, if a test sample is from the

i-th class, the coefficient vector of the training samples should be:

𝐱 = [0,… , 0, 𝛼i,1,… , 𝛼i,ni , 0,… , 0]. (11.7)
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In general, the behavior of a linear system is determined by the relationship

between the columns of 𝐀 (the number of equations) and the rows of 𝐀 (the number

of unknowns). When the system has fewer equations than unknowns, say m < n in

dictionary 𝐀 ∈ 𝐑m×n
, it may have an infinite number of solutions. As a result, in all

solutions of 𝐲 = 𝐀𝐱, it is possible to arrive at the best solution (𝐱1), which is infi-

nitely close to the ideal solution showed in Eq. 11.7. The sparsest solution of 𝐲 = 𝐀𝐱
is defined as the following optimization problem:

�̂�1 = argmin(‖𝐀𝐱 − 𝐲‖2 + 𝜆 ‖𝐱‖1), (11.8)

where the columns of 𝐀 are the training samples, 𝐲 is the test sample, and 𝜆 is the

regularization parameter to control the trade-off between the least squares error of

representation and the sparsity of the coefficients. The solution can be obtained by

using the MATLAB package provided by Koh et al. (2007).

As mentioned earlier, only when m < n in dictionary 𝐀 is it possible to discuss

the optimal problem. In most cases, however, the number of features in breath sam-

ples is larger than the number of training samples; that is, m is always bigger than n.

Due to that fact, feature extraction for the purpose of data dimensionality reduction is

required. Additionally, feature extraction has the benefit of reducing computational

cost when searching for the optimal solution. In the experiments, two feature extrac-

tion methods were employed. The first one was to extract geometry features from

the response curve directly; the second one was to obtain the principal components

by PCA. Both of the two methods will be described in next section. The features

extracted from one sample form a vector. A test vector stands for the set of features

extracted from a test sample, and a training vector contains the features extracted

from a training sample.

11.2.3 Sampling Errors

Practical application requires considering sampling errors since odor signals are

quite susceptible to environmental contamination. The correlation between the sam-

ples from the same class may be weakened by sampling errors. To solve this problem,

we add an error vector 𝐞 to the test vector 𝐲, and the real test vector becomes:

𝐲0 = 𝐲 + 𝐞. (11.9)

Ideally, all entries of 𝐞 should be zeros. However, because of sampling errors, the

nonzero entry of 𝐞 indicates that the response is miss-sampled or corrupted in that

position by accident. The linear representation is hence improved as follows:

𝐲 = [𝐀, 𝐈]
[ 𝐱
𝐞

]
= 𝐁𝐰, (11.10)
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where𝐁 = [𝐀, 𝐈] ∈ 𝐑m×(m+n)
and𝐰 = [𝐱; 𝐞] (‘;’ means the two columns are stacked).

And as such, it becomes an l1-minimization problem:

�̂�1 = argmin(‖𝐁𝐰 − 𝐲‖2 + 𝜆 ‖𝐰‖1). (11.11)

The solution to the minimization problem can also be obtained by using the MAT-

LAB package provided by Koh et al. (2007).

11.2.4 Voting Rules

There are two voting rules to make the classification decision. One measures the

coefficients of representation and another measures the residue between the original

signal and reconstructed signal.

11.2.4.1 Coefficients Based Voting Rule

The entries of the optimal solution �̂�1 are the representation coefficients of training

vectors from all classes. Figure 11.2 is an example to show the coefficients. There

are two classes A and B. We represent a test vector by using a set of training vectors

from Class A and B, respectively. The blue solid line stands for the coefficients of

training vectors from Class A, and the red dash-dot line stands for the coefficients of

training vectors from Class B. It is observed that the training vectors from Class A

hold higher coefficients than those from Class B. The test vector can be assigned to

the class whose coefficients are much higher.

In the experiment, the following vote rule is used: assuming there are k classes,

the i-th class includes ni training vectors. When representing an unknown test vector,

the training vectors from the i-th class obtain such coefficients: Ci = [�̂�i,1,… , �̂�i,ni ],
where i = 1, ..., k, the classification result is given by

Fig. 11.2 Example of

sparse representation

coefficients
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c = argmax
i=1,...,k

‖
‖Ci

‖
‖
2
, (11.12)

where c is the label of the predicted class. The test vector is then predicted using

Eq. 11.12.

11.2.4.2 Residue Based Voting Rule

Another voting rule for signal prediction is by computing the residue between the

original signal and signal reconstructed by the atoms in the dictionary. To make

the explanation clearer, we introduce a new vector 𝛿i(�̂�1), whose nonzero entries

are the entries in �̂�1 that are associated with the i-th class (Wright et al. 2008). For

example, assume �̂�1 = [�̂�1,1,… , �̂�1,n1 ,… , �̂�i,1,… , �̂�i,ni ,… , �̂�k,1,… , �̂�k,nk ]
T
, where

�̂�i,1,… , �̂�i,ni are coefficients of vectors from class i, respectively, and 𝛿i(�̂�1) =
[0,… , 0,… , �̂�i,1,… , �̂�i,ni ,… , 0,… , 0]T. The test vector 𝐲 can be represented by the

training vectors from class i:
�̃�(i) = 𝐀𝛿i(�̂�1). (11.13)

The residue between 𝐲 and �̃�(i) is:

ri(𝐲) = ‖
‖𝐲 − 𝐀𝛿i(�̂�1)‖‖2 , (11.14)

which indicates how well the training vectors represent 𝐲. The smaller the value of

ri(𝐲), the more likely 𝐲 belongs to class i. So the test vector 𝐲 can be assigned to the

object class whose �̃� has the minimal residue with 𝐲.

11.2.5 Identification Steps

The identification procedure can be summarized as follows. The voting rule is based

on the residue.

1. Divide all samples into a training set and a test set;

2. Select one sample from the test set as a test sample;

3. Extract the features from each training and test sample as training vectors and

test vector, respectively;

4. The training vectors form 𝐀 and the test vector is 𝐲;

5. Normalize the column of 𝐀 to have unit l2-norm;

6. 𝐁 = [𝐀, 𝐈];
7. Solve �̂�1 = argmin(‖𝐁𝐰 − 𝐲‖2 + 𝜆 ‖𝐰‖1) and obtain �̂�1, where �̂�1 = [�̂�1; �̂�1];
8. Reconstruct the test vector 𝐲 by �̃�(i) = 𝐀𝛿i(�̂�1) + �̂�1, i = 1, 2,… , k, 𝛿i(�̂�1) stands

for the coefficient vector associated with class i;
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9. Compute residue ‖
‖𝐲−�̃�(i)‖‖2 of each class, respectively;

10. Assign test vector 𝐲 to the class with the least residue;

11. Iterate Step 2–10 until all test vectors are identified;

12. Compute the total identification accuracy.

11.3 Overall Procedure

This section introduces the disease identification procedure, including the feature

extraction and classification.

11.3.1 Disease Identification

The identification procedure is presented in Fig. 11.3, which has been introduced in

detail in Guo et al. (2010b).

In breath sample acquisition phase, breath gas is injected into the device con-

taining twelve chemical sensors. The signal measurement module measures the

responses of sensors and converts them into analog electrical signals. After filter-

ing, amplifying, and digitizing, the signals are transmitted to a computer for future

analysis.

In the phase of signal processing, original signals are processed by de-noising,

baseline manipulation, and normalization and then stored in the database as standard

samples. When an unknown sample is delivered, it undergoes the same processing.

The characteristic features are extracted from both the training samples and the test

sample. Finally, the classifier decides which class the unknown sample belongs to.

Among these phases, feature extraction and classifier selection play critical roles

in disease identification, which will be introduced in the following sections.

Fig. 11.3 Working flow of disease identification



216 11 Breath Sample Identification by Sparse Representation-Based Classification

11.3.2 Feature Extraction

Feature extraction reduces the measurement cost and increases the classification

accuracy. A feature set that describes the original data perfectly can make the clas-

sifier work efficiently. A range of feature extraction methods has been applied in

odor signals. Instances of those include extracting parameters of fitting model for

odor signals (Carmel et al. 2003), extracting geometry features from signal curves

(Paulsson et al. 2000), extracting global features by PCA or Linear Discriminant

Analysis (LDA) (Wang et al. 2009), and extracting frequency features by Discrete

Wavelet Transform (DWT) (Distante et al. 2002). The purpose of this chapter is to

demonstrate that SRC is the best for odor signal classification, irrespective of the

features selected. As a result, two different sets of features, i.e., geometry features

from transient curves and principal components obtained by PCA, are employed in

the experiments to illustrate the robustness of the proposed method.

11.3.2.1 Geometry Features

Geometry features are the parameters such as rise times, maximum response, slope,

and curve integrals extracted directly from the transient response curve. They have

been utilized in several odor signal identifications (Paulsson et al. 2000; Distante

et al. 2002; Martinelli et al. 2003; Zhang et al. 2008b; Mirmohseni et al. 2007; Pardo

and Sberveglieri 2007). These features consume the least time to extract and are

suitable for real-time and on-site data analysis.

It has been observed that signal amplitudes, such as maximal amplitude and

amplitude at given time, are related to the concentration of analytes; signal curvature,

curve integrals, and response time, are associated with the type of analytes. These

features are extracted from the transient response curves, as Fig. 11.4 shows. The

labeled features are explained in Table 11.1. There are 12 features extracted from

one sensor response curve. The feature vector of sensor i is:

Fig. 11.4 Geometry

features extracted from one

response curve
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Table 11.1 Composition of

the subject database
Feature label Detailed explanation

1 Rise times

2 Maximum response

3 Length of median

4 Response at the half of rise times

5 Response at the half of drop times

6
Time when curvature is maximal in drop

period

7 Maximal curvature in drop period

8 Curve integrals in rise period

9 Curve integrals in drop period

10 Response at 5 s before drop time

11 Response at 5 s after drop time

12 Response at 10 s after drop time

vi = [fi,1, fi,2,… , fi,12]. (11.15)

A breath sample is composed of the responses of l chemical sensors (l = 12), the

feature matrix of this sample is:

𝐕 =
⎡
⎢
⎢
⎣

v1
v2
⋮

vl

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

f1,1, f1,2,… , f1,p
f2,1, f2,2,… , f2,p

⋮
fl,1, fl,2,… , fl,p

⎤
⎥
⎥
⎦

, (11.16)

where p = 12 is the number of features.

Feature normalization is required as the values of these features have huge diver-

sities in magnitude. A proposed method is to normalize one kind of feature from the

l sensors together. A new vector is defined including the j-th feature from all sensors,

cj = [f1,j, f2,j,… , fl,j], j = 1,… , p. A new matrix

∼
𝐕 after normalization is:

∼
V =

⎡
⎢
⎢
⎢
⎢
⎣

f1,1∕ ‖‖c1‖‖2 , f1,2∕ ‖‖c2‖‖2 ,… , f1,p∕
‖
‖
‖
cp
‖
‖
‖2

f2,1∕ ‖‖c1‖‖2 , f2,2∕ ‖‖c2‖‖2 ,… , f2,p∕
‖
‖
‖
cp
‖
‖
‖2

⋮
fl,1∕ ‖‖c1‖‖2 , fl,2∕ ‖‖c2‖‖2 ,… , fl,p∕

‖
‖
‖
cp
‖
‖
‖2

⎤
⎥
⎥
⎥
⎥
⎦

. (11.17)

Consequently, the same features in all sensors range between 0 and 1, but their rela-

tive distances remain unchanged.
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11.3.2.2 Principal Component Analysis

The Principal Component Analysis is also utilized to extract the principal compo-

nents of each sample. The feature extraction by PCA has been described in Guo et al.

(2010b). s (s = 144) principle components were selected to guarantee they count for

more than 99.9% variability. One of reasons for selecting 144 eigenvectors is to keep

both the geometry features and the principal components as the same dimensionality.

It is possible to compare the two feature extraction methods together.

11.3.3 Classifier

Finally, an appropriate classifier is applied to assign the unknown sample to the

tagged class. At present, odor signals, captured by chemical sensors or e-noses, can

be identified via many methods. For example, Wang et al. applied Relevance Vector

Machines (RVM) to classify coffee sampled by a commercial e-nose (Wang et al.

2009). Brudzewski et al. used SVM network to classify milk measured by a chemi-

cal sensor array (Brudzewski et al. 2004). Lozano et al. employed ANN to identify

wine aromas captured by an e-nose (Lozano et al. 2006). In our experiments, SRC

is proposed to classify human breath. Additionally, SVM and KNN are also used to

provide comparative results, which are described briefly in the following sections.

11.3.3.1 SVM

The basic idea of SVM is to construct a hyperplane in classifying the data such that

the gap between the classified data set is maximized (Cristianini and Shawe-Taylor

2000). For any training data {𝐱i, yi}, i = 1,… , n, 𝐱i ∈ Rd
is the training sample

and yi is either 1 or −1, indicating the class to which the sample 𝐱i belongs to. The

optimization problem in SVM is to maximize:

L(𝛼) =
n∑

i=1
𝛼i −

1
2
∑

i,j
𝛼i𝛼jyiyjK(𝐱i, 𝐱j),

s.t. 𝛼i ≥ 0,
n∑

i=1
𝛼iyi = 0.

(11.18)

K(𝐱i, 𝐱j) is the kernel of SVM, which can be defined by user. The solution is

expressed in terms of linear combination of the training vectors:

𝐰 =
n∑

i=1
𝛼iyi𝐱i. (11.19)
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In the experiment, the Gaussian kernel K(𝐱i, 𝐱j) = e−𝜈‖𝐱i−𝐱j‖
2

is used to train

the classifier with a predefined 𝜈. The learnt classifier is used for unknown sample

classification.

11.3.3.2 KNN

KNN classifies an unlabeled test sample by finding the K nearest neighbors in the

training set using Euclidean distance and assigning the label of that class represented

by a majority among the K neighbors (Gutierrez-Osuna 2002). The vote rule is:

assuming there are m classes and one sample has K1,K2, ...,Km nearest neighbors for

the m classes, where
∑m

i=1 Ki = K, the classification result is given by

c = argmax
i=1,...,m

{
Ki

K
}, (11.20)

where c is the label of the predicted class. The training vectors are classified in

advance into m classes, labeled as either healthy or diseased. The test vector is then

predicted using Eq. 11.20.

11.4 Experiments and Results

This section presents two experiments to test the performance of the proposed SRC.

The first one is to identify diabetes from a database including healthy samples and

diabetes samples. The second one aims to classify the diabetics’ breath samples into

four levels by measuring the concentration of acetone in breath. The classification

results are judged by the subjects’ blood glucose levels provided by simultaneous

blood test.

11.4.1 Diabetes Identification

It has been claimed that the abnormal concentration of acetone in exhaled air indi-

cates the existence of diabetes (Deng et al. 2004). Chemical sensors can respond to

the diabetes samples distinctively due to the abundant acetone in patients’ breath. The

typical healthy breath sample and diabetics’ breath sample are shown in Fig. 11.5.

The difference between the two kinds of samples have been discussed in Guo et al.

(2010b).

Table 11.2 details the composition of the database, which contains 104 diabetes

samples and 108 healthy samples. In each class, two thirds of the samples is selected

randomly as training samples and the rest as test samples. Totally, the training set
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(a) (b)

Fig. 11.5 Typical responses from one healthy sample and one diabetes sample: a healthy sample,

b diabetes sample

Table 11.2 Composition of the subject database

Type of subjects Number Male/Female Age

Healthy subjects 108 58/50 23–60

Subjects with diabetes 104 62/42 25–77

included 142 samples, 70 labeled as diabetes and 72 labeled as healthy. The test set

was composed of 70 samples, 34 labeled as diabetes, and 36 labeled as healthy.

Each sample includes 12 responses of sensors. Each response is a 810 dimensional

discrete time series. According to Eq. 11.3, one sample was expressed as a 12 ×
810 = 9720 dimensional vector. Geometry features and principle components were

extracted at the same time. Finally, each sample formed a 144-dimensional feature

vector by using either method.

All training vectors formed the dictionary 𝐀. One test vector was selected ran-

domly from the test set, which was represented by each column of 𝐀. The sparse

representation coefficients of the training vectors were obtained by Eq. 11.11, as

shown in Fig. 11.6. The first 70 training vectors (blue solid line) were from the dia-

betes class and the rest of the training vectors (red dash-dot line) were from the

healthy class. When the test vector was from the diabetes class, the training vectors

from diabetes samples held far larger sparse coefficients than those from healthy

samples (Fig. 11.6a), whereas when the test vector was from the healthy class, the

healthy training vectors possessed much larger sparse coefficients than those from

diseased class (Fig. 11.6b).

The residue between the test vector and the vector reconstructed by the train-

ing vectors from each class presented the same result as what have been shown by

coefficients. Figure 11.7 provided the residues of two cases: test sample from the

diabetes class (Fig. 11.7a) and the test sample from the healthy class (Fig. 11.7b).

In Fig. 11.7a, the blue solid line stood for the residue between the test vector and

the vector reconstructed by only the training vectors from the diabetes class, while
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(a) (b)

Fig. 11.6 Sparse representation coefficients of the training vectors from the classes: diabetes sam-

ples (blue solid line) and healthy samples (red dash-dot line). a When representing a diabetes test

vector, b when representing a healthy test vector. The horizontal axis stands for the number of

training vectors and the vertical axis shows the vectors’ sparse representation coefficients

(a) (b)

Fig. 11.7 Residues between test vector and the vector reconstructed by training vectors. The test

vector is from a diabetes class, b healthy class. The horizontal axis stands for the number of features

and the vertical axis shows the residues

the red dash-dot line represented the residue between the test vector and the vec-

tor reconstructed by only the training vectors from the healthy class. Comparing the

two lines shows that when the test vector and the training vectors were from the

same class, the residue was much smaller than when the test vector and the training

vectors were from different classes. The same held good for the second case that the

test sample was from the healthy class, as shown in Fig. 11.7b. The residue between

the test vector and the vector reconstructed by only the healthy training vectors was

much smaller than the residue between the test vector and the vector reconstructed

by only the training vectors of diabetes.

The two cases indicated that the training vectors could successfully represent

the test vectors in the same class but could hardly represent the test vectors in the
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Table 11.3 Recognition results defined by sensitivity and specificity

No. Methods Sensitivity(%) Specificity(%)

1 Geometry features + KNN 78.07 77.61

2 Geometry features + SRC 88.55 87.28
3 Geometry features + SVM 87.62 86.81

4 PCA + KNN 81.63 79.85

5 PCA + SRC 92.10 91.24
6 PCA + SVM 91.81 89.17

different class. By computing the residue, we could possibly determine which class

the test sample belongs to: the class possessing the least residue was the one the test

vector belonged.

The comparative experimental results were provided by SVM and KNN. In all

of these experiments, the classification procedure was run 30 times and the average

classification rate over all runs was computed.

Table 11.3 provides the identification results defined by sensitivity and specificity.

There were six identification results listed in the table. It is obvious that SRC pro-

vided the best results, while KNN gave the worse results whatever features used. It

means that the classification accuracy can be increased by selecting an appropriate

classifier.

11.4.2 Blood Glucose Measurement

Diabetics need to check their blood glucose levels several times each day by drawing

blood samples. This process is invasive and unsafe and requires considerable skill.

Hence, not everyone is suited to this approach. An alternative is to collect a sample of

exhaled breath with the breath analysis system (Melker et al. 2006). This technology

is likely to increase the acceptance of frequent blood glucose monitoring and reduce

the danger posed by drawing blood samples.

There is a linear correlation between the mean group acetone and the mean group

blood glucose level of diabetics (Wang et al. 2010). Consequently, attempt was made

in this chapter to find out if the diabetics’ breath samples captured by the device can

be grouped based on their blood glucose levels. The breath samples of diabetes and

their simultaneous blood glucose levels were collected at the same time. Table 11.4

lists the subjects’ blood glucose levels which is defined in (Wang et al. 2010) and

their corresponding number.

Figure 11.8 shows the responses of the twelve different sensors (S1–S12) to the

samples of four diabetics over the 90 s sampling period. Figure 11.8a–d are the

responses from four diabetics’ breath samples, their blood glucose levels increased

gradually from Fig. 11.8a to d. From the figures we can see the difference between
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Table 11.4 The blood glucose levels and the corresponding number

Level stage Name
Blood glucose level

(mg/dL)
Number

Level 1 Low level 81–100 18

Level 2 Borderline 101–150 49

Level 3 High level 151–200 20

Level 4 Very high level 201–421 17

Total 81–421 104

(a) (b)

(c) (d)

Fig. 11.8 Responses from four diabetics with different simultaneous blood glucose levels: a Level
1, b Level 2, c Level 3, and d Level 4

the four samples. The amplitudes of the sensors’ responses increase with the blood

glucose levels. As a result, it is possible to measure the blood glucose levels of dia-

betics by classifying their breath gas samples.

The feature extraction method used in this experiment is PCA. Figure 11.9

presents the sparse coefficients of the training vectors. Figure 11.9a–d indicate a test

vector was from Level 1 to Level 4, respectively when it was represented by all train-

ing vectors. When representing one vector from Level 1, the training vectors in the
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(a) (b)

(c) (d)

Fig. 11.9 Sparse representation coefficients of the training vectors from the four classes: Level 1

(blue solid line), Level 2 (green dash-dot line), Level 3 (red dash line), and Level 4 (magenta dot
line). a The test vector is from Level 1 class, b the test vector is from Level 2 class, c the test vector

is from Level 3 class, and d the test vector is from Level 4 class. The horizontal axis stands for the

number of training vectors and the vertical axis shows the vectors’ sparse representation coefficients

same Level obtained larger sparse coefficients than others (Fig. 11.9a). As with Level

1 vectors, when representing one vector from Level 2, the training vectors in Level 2

obtained larger sparse coefficients than other training vectors (Fig. 11.9b). The same

held good for Level 3 and Level 4 vectors. When representing one vector of the same

class, the coefficients of the training vector are larger.

Figure 11.10 shows the residues between the test vector and the vector recon-

structed by the training vectors from the four classes. Figure 11.10a–d show the test

vector was from Level 1 to Level 4, respectively. In each figure, the blue solid line,

green dash-dot line, red dash line, and magenta dot line indicates the training vectors

were from Level 1 to Level 4, respectively. When the test vector and the training vec-

tors were from the same classes, the smallest residue was achieved. The test vector

was therefore assigned to the class with the least residue.
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(a) (b)

(c) (d)

Fig. 11.10 Residues between test vector and the vector reconstructed by training vectors. The test

vector is from a Level 1, b Level 2, c Level 3, and d Level 4. The horizontal axis stands for the

number of features and the vertical axis shows the residues

Since the first experiment showed that the results provided by the PCA + SRC

were better than geometry features + SRC, this experiment only employed the PCA

+ SRC to evaluate the classification. The feature dimension was 76. We also pro-

vided the result given by the PCA + KNN for comparison and use the leave-one-out

cross-validation to obtain the classification results. In this process, firstly selected

one sample as the test sample and the rest as the training samples to compute whether

the test sample was classified correctly. The process was reiterated until every sam-

ple was tested once. The results of SRC were out of parenthesis, and the results of

KNN were in parenthesis, as Table 11.5 shows. The results of SRC were given out

of parenthesis and the results of KNN were given in parenthesis. From the table, we

can see that the results provided by SRC were much better than KNN.
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Table 11.5 The classification results calculated by sparse representation

Number
Test outcome of SRC (KNN)

Accuracy(%)
Level 1 Level 2 Level 3 Level 4

Level 1 18 13 (8) 3 (10) 2 (0) 0 (0) 72.22 (44.44)

Level 2 49 2 (3) 41 (27) 5 (13) 1 (6) 83.67 (55.1)

Level 3 20 0 (0) 4 (8) 14 (9) 2 (3) 70 (45)

Level 4 17 0 (0) 2 (2) 2 (3) 13 (12) 76.47 (70.59)

11.5 Summary

This chapter has proposed a novel SRC method for the breath sample identification.

Two experiments were conducted to measure the proposed method. The experimen-

tal results showed that the proposed method outperforms SVM and KNN, irrespec-

tive of the features selected. The results achieved here are promising if not entirely

satisfactory. Clearly, more samples are required to test the method. Improvement of

the feature extraction and classification method is also necessary. From the classi-

fier optimization point of view, we can improve the current result by optimizing the

l1-minimization problem (Eq. 11.8) and learning proper dictionary (matrix A in Eq.

11.8), which will be part of our future work.
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Chapter 12
Monitor Blood Glucose Levels via Sparse
Representation Approach

Abstract It has been reported that the abnormal concentration of acetone in exhaled

air is an indicator of diabetes and the concentration rises progressively with the blood

glucose level of patients. Therefore, the acetone in human breath can be used to

monitor the development of diabetes. In this chapter, we introduce a breath analysis

system to measure acetone in human breath, and therefore to evaluate the blood glu-

cose levels of diabetics. The system structure, breath collection method, and signal

preprocessing method are introduced. To enhance the system performance, we use a

novel classification approach, i.e., Sparse Representation based Classification (SRC),

to classify diabetics’ breath samples into different blood glucose levels. Experimen-

tal results show that coupling with SRC, the system is able to classify these levels

with satisfactory accuracy.

Keywords Breath analysis ⋅ Disease identification ⋅ Sparse representation ⋅ Dia-

betes ⋅ Blood glucose levels

12.1 Introduction

Changes in the concentration of components in human breath such as acetone,

nitric oxide, and ammonia could suggest various diseases or at least changes in the

metabolism (Amann et al. 2005). These molecules are therefore considered as bio-

markers of the presence of diseases and clinical conditions. It is well known that the

abnormal concentration of acetone in exhaled air is an indicator of diabetes (Deng

et al. 2004). Additionally, the mean acetone concentration in exhaled air rises pro-

gressively with the blood glucose of the diabetics, especially when they are with

high blood glucose levels (Tassopoulos et al. 1969). These patients should check

their blood glucose levels several times each day by drawing their blood samples.

The process is invasive and unsafe and requires considerable skill. Therefore, not

everyone is suitable for this approach. An alternative is to collect a breath sample

and measure the concentration of acetone (Melker et al. 2006). This technology will

increase the acceptance of frequent blood glucose monitoring and reduce the danger

caused during drawing blood samples.
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In this chapter, we propose a breath analysis system to monitor the levels of blood

glucose. The system uses chemical sensors that are particularly sensitive to the bio-

markers, triggering responses to the breath sample when the biomarkers are detected.

The response signals serve to subsequent processing and then become the standard

odor samples. In fact, this system is not only used in monitoring the blood glucose

levels, but also used in disease detection, such as diabetes, renal diseases, and airway

inflammation effectively (Guo et al. 2010a).

Comparing with detecting diseases, monitoring the blood glucose levels is much

more difficult for the breath analysis system because the responses of different blood

glucose levels are not very distinguishable. Additionally, the samples are high dimen-

sional and the data set formed by these samples is with a small size. Hence, the

traditional pattern recognition method such as KNN and RBF neural networks do

not work well in our case (Gutierrez-Osuna 2002). In this chapter, we use a Sparse

Representation based Classification (SRC) approach to classify the levels of blood

glucose. This approach have shown good performance in face recognition (Wright

et al. 2008). In this chapter, we use it in classifying the diabetes samples with differ-

ent blood glucose levels. The experimental result show that coupling with SRC, the

system has satisfying performance in this application.

The remainder of this chapter is organized as follows. Section 12.2 describes the

breath analysis system. Section 12.3 explains the approach of SRC and its application

in odor signal. Section 12.4 explains the experimental details and gives the result and

discussion. Section 12.5 offers our summary.

12.2 System Description and Breath Signals Acquisition

The system, operates in three phases (Fig. 12.1), breath collection, sample process,

and pattern recognition.

In the first phase, subject is requested to breath into a Tedlar gas sampling bag.

The collected gas is then injected into a chamber containing a sensor array. The sen-

sor array is composed of 12 metal oxide semiconductor gas sensors (from FIGARO

Engineering Inc.) set in a stainless steel chamber. The resistances of the sensors

Fig. 12.1 The working flow defined in our system
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changes when they are exposed to sampled gas and the output voltage changes cor-

respondingly. Then, the signal measurement module measures the output voltage

and converts it into analog electrical signal. The analog signal is subsequently con-

ditioned by signal filtering and amplifying. Finally, the signal is sampled and trans-

mitted through a USB interface to a computer for future analysis.

In the second phase, the original signals are preprocessed by denoising, base-

line manipulation, and normalization. Denoising is to remove the noise from the

original signals. Baseline manipulation is implemented for drift compensation, con-

trast enhancement, and scaling. Normalization is used to compensate for sample-to-

sample variations caused by analyte concentration and pressure of oxygen (PO2). For

denoising, we use a low-pass filter to remove the noise since it is just with high fre-

quency. For baseline manipulation, we subtract the initial value of each sensor from

the whole sensor response curves to guarantee all signals starts from the same base-

line. For normalization, we firstly find the maximum sensor response in the whole

sensor array and set it as 1 by multiplying a coefficient, other data in the whole sen-

sor array are also multiplied by the same coefficient. Therefore, the responses of all

sensors are set in [0, 1] but their relationship is unchanged. After these steps, we

obtain the standard samples, which are stored in data base for future analysis.

In the third phase, these samples, from several classes, are divided into two sub-

databases: training samples and test samples for blood glucose levels classification.

Before these samples are sent to classifier, feature extraction from both training sam-

ples and test samples are required for reducing data dimension and computational

cost. Then, the training samples are used to train the parameters of selected clas-

sifier. In the end, the classifier decides which class the test sample belongs to. In

Sect. 12.3, we will introduce the proposed classification approach based on SRC in

detail.

12.3 Sparse Representation Classification

The basic idea of sparse representation classification is to represent a test sample

as the linear combination of a set of training samples. The coefficients of the linear

combination are restricted to be sparse. Ideally, the coefficients are all zero except

those associated with the same class as the test sample and by using these coeffi-

cients these training samples can represent the test sample accurately. Therefore, we

can assign the test sample to the class that have smallest residual between the repre-

sentation and the test sample. This approach has been reported by Wright et al., for

face recognition (Wright et al. 2008). In this chapter, we introduce its application in

odor signal classification.



232 12 Monitor Blood Glucose Levels via Sparse Representation Approach

Fig. 12.2 The typical

response of our system to a

healthy person
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12.3.1 Data Expression

Figure 12.2 is a typical response from a healthy breath sample, which includes l sen-

sors’ responses, where l = 12. The response of each sensor is s = [t1, t2,… , td]T,

where d = 810. Therefore, the sample can be expressed as a column vector 𝐯 =
[t1,1,… , td,1, t1,2,… , td,2,… , t1,l,… , td,l]T ∈ 𝐑m

, where m = d × l. Assume we have

k classes, the i-th class includes ni samples,
∑k

i=1 ni = n. Express all training samples

form the i-th object class as,

Ai = [𝐯i,1, 𝐯i,2,… , 𝐯i,ni ] ∈ 𝐑m×ni
, (12.1)

All of the samples from the k object classes is expressed as

A = [A1,A2,… ,Ak] = [𝐯1,1, 𝐯1,2,… , 𝐯k,nk ] ∈ 𝐑m×n
. (12.2)

12.3.2 Sparse Representation of Odor Signals

One of the test sample 𝐲 can be expressed as a linear combination of all of training

samples from all object classes:

𝐲 = 𝛼1,1𝐯1,1 + 𝛼1,2𝐯1,2+,… , 𝛼k,nk𝐯k,nk = A𝐱 ∈ 𝐑m
, (12.3)

where 𝐱 = [𝛼1,1,… , 𝛼1,n1 ,… , 𝛼k,1,… , 𝛼k,nk ]
T ∈ 𝐑n

is a coefficient vector. The intra-

class samples, which are highly correlated, can be linearly represented by the training

samples; the inter-class samples, however, which are independently distributed, can-

not be linearly represented by the training set, and therefore have zero coefficients in

the linear model. Ideally, the best solution (𝐱1) of 𝐲 = 𝐀𝐱 should be sparse enough to
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satisfy: the entries of 𝐱1 should be zeros except those associated with the same class

as the test sample. The sparse representation coefficients can be obtained by solving

the following l1-minimization problem:

�̂�1 = argmin(‖𝐀𝐱 − 𝐲‖2 + 𝜆 ‖𝐱‖1), (12.4)

where the columns of 𝐀 are the training samples, 𝐲 is the test sample, and 𝜆 is the

regularization parameter to control the trade-off between the reconstructed error and

coefficients’ sparsity. We can obtain the solution of the minimization problem by

using the matlab package provided by Koh et al. (2007).

In practical application, we have to consider the sampling errors since the odor

signals are quite susceptible to environment. The correlation between the samples

from the same class may be weakened by the sampling errors. Therefore, an error

vector 𝐞 is added to the test sample 𝐲, the real test sample becomes 𝐲0 = 𝐲 + 𝐞. Ide-

ally, all of entries of 𝐞 should be zero. However, because of sampling errors, there

are the nonzero entries of 𝐞, indicating which part of the response is mis-sampled or

corrupted by incident. Therefore, we improve the linear representation as follows:

𝐲 = [𝐀, 𝐈]
[
𝐱
𝐞

]

= 𝐁𝐰, (12.5)

where𝐁 = [𝐀, 𝐈] ∈ 𝐑m×(m+n)
and𝐰 = [𝐱; 𝐞] (‘;’ means the two columns are stacked).

So Eq. 12.4 becomes such an l1-minimization problem:

�̂�1 = argmin(‖𝐁𝐰 − 𝐲‖2 + 𝜆 ‖𝐰‖1). (12.6)

We can also obtain the solution of the minimization problem by using the MATLAB

package provided by Koh et al. (2007).

12.3.3 Feature Extraction

In fact, before all samples are used in the sparse representation, feature extraction

is necessary for reducing computational cost. In our experiments, we use principal

components analysis (PCA) to extract features of samples. The dimension of each

sample is therefore reduced from m to m′ (m′
≪ m). As a result, in Eq. 12.6, 𝐁 ∈

𝐑m′×(m′+n)
and 𝐞, 𝐲 ∈ 𝐑m′

.

12.3.4 Classification Steps

The following summarizes the classification procedure:

1. In the database, randomly select one sample as the test sample and the rest are as

the training samples;
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2. Extract the features from each training and test samples;

3. Form the extracted features of each training samples as 𝐀, form the extracted

features of the test sample as 𝐲;

4. Normalize the column of 𝐀 to have unit l2-norm;

5. Form 𝐁 = [𝐀, 𝐈];
6. Solve �̂�1 = argmin(‖𝐁𝐰 − 𝐲‖2 + 𝜆 ‖𝐰‖1) and obtain �̂�1, where �̂�1 = [�̂�1; �̂�1];
7. Reconstruct the test sample �̃�(i) by �̃�(i) = 𝐀i�̂�i1 + �̂�1, i = 1, 2,… , k, �̂�i1 stands for

the coefficient vector associated with class i;
8. Compute residual ‖‖�̃�−�̃�(i)‖‖2 of each class respectively;

9. Throw test sample 𝐲 to the class with the least residual;

12.4 Experiments and Results

In this section, we present experiment on blood glucose levels measurement.

Table 12.1 list the subjects’ blood glucose levels and the corresponding number. The

samples were grouped by different blood glucose levels defined in (Wang et al. 2010).

Figure 12.3 shows the responses of the 12 sensors (S1–S12) to the samples of

four diabetics with four blood glucose levels. In our system, S1–S6, S11, and S12

are specially sensitive to diabetics’ breath (Guo et al. 2010a). Hence, these sen-

sors have obvious responses to diabetes samples comparing with the responses of

healthy sample (Fig. 12.2), especially for Level 4 samples. When the blood glucose

of one patient is in low level (Fig. 12.3a), the response is not distinguishable from

the healthy response (Fig. 12.2). However, when the patient is with high level blood

glucose (Fig. 12.3c, d), the differences between the response of healthy subject and

the patient is quite discernible.

In our experiment, we selected one sample as test sample and the rest as train-

ing samples and iterated the process until all samples are tested. One sample can be

expressed as a 12 × 810 = 9720 dimensional column vector and there are 89 train-

ing samples, so A ∈ R9720×89
. PCA was used to reduce the dimension of each sample

from 9720 to 189 with 100% information kept. So A ∈ R189×89
after feature extrac-

tion.

Table 12.1 The blood glucose level and the corresponding number

Level stage Name
Blood glucose level

(mg/dL)
Number

Level 1 Low level 81–100 4

Level 2 Borderline 101–150 49

Level 3 High level 151–200 20

Level 4 Very high level 201–421 17

Total 81–421 90
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Fig. 12.3 Responses from four diabetics with different simultaneous blood glucose levels: a Level
1, b Level 2, c Level 3, and d Level 4

Figure 12.4 shows the sparse representation coefficients of samples from four

classes: Level 1 (blue solid line), Level 2 (green dash-dot line), Level 3 (red dash

line), and Level 4 (magenta dot line). The horizontal axis stands for the index of

the training samples. Figure 12.4a–d represents a test sample from Level 1, Level 2,

Level 3, and Level 4, respectively when representing this test sample by using all

training samples. Since 𝐰 = [𝐱; 𝐞] (‘;’ means the two columns are stacked), these

figures just show the entries of 𝐱 because 𝐱 consists of the coefficients of sparse rep-

resentation. When representing one sample from Level 1 class, the training samples

in Level 1 obtain larger sparse coefficients than other training samples (Fig. 12.4a).

Same as Level 1 samples, when representing one sample from Level 2, the train-

ing samples in Level 2 obtain larger sparse coefficients than other training samples

(Fig. 12.4b). And so do Level 3 and Level 4 samples. Therefore, we can say that

when representing one sample from the same class, the corresponding coefficients

will be larger.

In fact, we can get a good result by computing the absolute value of the sparse

coefficients. However, the residuals of the test sample and the representation (recon-

structed sample by using the training samples) can achieve a better result when clas-

sifying the odor signals (Table 12.2). A comparative result is given by PCA+KNN
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Fig. 12.4 Sparse representation coefficients of the samples from the four classes: Level 1 (blue
solid line), Level 2 (green dash-dot line), Level 3 (red dash line), and Level 4 (magenta dot line)

Table 12.2 The classification results of SRC

Level Number
Test outcome

Accuracy (%)
Level 1 Level 2 Level 3 Level 4

Level 1 4 2 2 0 0 50

Level 2 49 2 41 5 1 83.67

Level 3 20 0 4 12 3 60

Level 4 17 0 2 2 13 76.47

to show our proposed method outperforms it (Table 12.3). From the two tables we

can see that the result given by KNN is quite poor. However, our proposed method

provides a better result, especially when classifying Level 2 samples. Another com-

parative result is given by building a mathematical model to fit the responses of

training samples (Guo et al. 2010b). The method is also not as good as our proposed

approach except when classifying Level 1 samples (it gives the accuracy of 75% for

Level 1). However, the result of SRC can be increased by improving the optimization

equation (Eq. 12.4) and learning proper dictionary (matrix A in Eq. 12.4), which will

be our future work.
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Table 12.3 The classification results of KNN

Level Number
Test outcome

Accuracy (%)
Level 1 Level 2 Level 3 Level 4

Level 1 4 1 3 0 0 25

Level 2 49 3 27 13 6 55.1

Level 3 20 0 8 9 3 45

Level 4 17 0 2 3 12 70.59

12.5 Summary

This chapter proposes a breath analysis system and a novel classification method for

diabetes monitoring. The system structure, signal processing method, and the SRC

approach are introduced in detail. The experimental results on blood glucose levels

measurement shows the system has good performance in this application.
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Chapter 13
Breath Signal Analysis for Diabetics

Abstract Much attention has been focused on the noninvasive blood glucose moni-

toring for diabetics. It has been reported that diabetics’ breath includes acetone with

abnormal concentrations and the concentrations rise gradually with patients’ blood

glucose values. Therefore, the acetone in human breath can be used to monitor the

development of diabetes. This chapter investigates the potential of breath signals

analysis as a way for blood glucose monitoring. We employ a specially designed

chemical sensor system to collect and analyze breath samples of diabetic patients.

Blood glucose values provided by blood test are collected simultaneously to eval-

uate the prediction results. To obtain an effective classification results, we apply a

novel regression technique, SVOR, to classify the diabetes samples into four ordinal

groups marked with “well controlled”, “somewhat controlled”, “poorly controlled”,

and “not controlled”, respectively. The experimental results show that the accuracy

to classify the diabetes samples can be up to 68.66%. The current prediction correct

rates are not quite high, but the results are promising because it provides a possibility

of noninvasive blood glucose measurement and monitoring.

Keywords Breath analysis ⋅ Diabetes detection ⋅ Blood glucose levels ⋅ Support

vector ordinal regression ⋅ Probabilistic output

13.1 Introduction

Blood glucose monitoring is particularly important for diabetic patients to control

their conditions. Typically, they measure their blood glucose levels by piercing a

finger to obtain a blood sample. This method is accurate, but is painful, invasive,

and unsafe. Therefore, it does not suit everyone, especially in the case where it needs

several samplings each day. As a result, it highly requires the noninvasive continuous

glucose monitoring.

Recently, several noninvasive glucose monitoring approaches were studied,

including spectrophotometric (IR light, fluorescence-bases, etc.), electrical

impedance, photoacoustic, light scattering, and iontophoretic (Ferrante do Amaral

and Wolf 2008; Tura et al. 2007). These approaches can provide a painless and con-

© Springer Nature Singapore Pte Ltd. 2017
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venient procedure. However, all of them work through skin measurements. They are

susceptible to environmental variations and subjects’ physical and chemical para-

meters, such as changes in temperature and humidity, variation in subjects’ blood

pressure, skin hydration, and skin pigmentation (Tura et al. 2007).

Breath analysis is supposed to provide useful information about blood glucose

levels of diabetic patients. The analysis of breath acetone associated with diabetes

was the most extensively studied area in the field of breath analysis since 1960s

(Rooth and Ostenson 1966; Levey et al. 1964; Tassopoulos et al. 1969). The key

reason is that diabetes is the most common pathological cause of elevated blood

ketone (Laffel 1999), and, plasma acetone has been proven to be linearly related to

breath acetone (Sulway and Malins 1970). Therefore, we can smell the “sweet odor”

of the breath of diabetics due to the elevated presence of acetone in blood and breath.

As early as 1969, Tassopoulos et al. (1969) used GC to measure the breath acetone of

251 diabetic patients after overnight fasting and the patients’ blood glucose values.

The results showed that the concentration of breath acetone has quite high correlation

with blood glucose values. More recently, Galassetti et al. (2005) discovered that

the breath ethanol and acetone are highly correlated with the corresponding blood

glucose values. Wang et al. (2010) observed that a linear correlation between the

mean concentration of breath acetone and the mean of blood glucose levels exists.

Consequently, breath analysis may offer a solution to non-invasive monitoring of

blood glucose levels.

Conventional breath analysis is typically carried out by using the highly sensitive

gas chromatography (GC). However, GC has the disadvantages of slow response,

relatively high cost, lack of portability, and complicated operation. These disadvan-

tages limit their applications in both the household and clinic. A less expensive and

more portable alternative is the chemical sensor system, the so-called electronic nose

(e-nose). It has been increasingly used in medicine for the diagnosis of renal disease

(Lin et al. 2001), lung cancer (Blatt et al. 2007; D’Amico et al. 2009; Dragonieri

et al. 2009), airway inflammation (Shih et al. 2010), and asthma (Fleischer et al.

2002; Dragonieri et al. 2007) and presents satisfactory performance. Recently, sev-

eral research groups have applied this technique to the diagnosis of diabetes with

promising results (Wang et al. 1997; Zhang et al. 2000; Mohamed et al. 2002).

Despite a large amount of researches on diabetes diagnosis, there is still no report

about using chemical sensor system to evaluate the blood glucose levels of diabetic

patients. It is a more difficult tasks than diabetes diagnosis since the latter just dis-

tinguishes diabetic samples from healthy samples and other diseased samples, while

the former attempts to make a classification intra diabetic samples.

In this chapter, we employ a specially designed chemical sensor system to col-

lect and analyze breath samples of diabetic patients and to test the possibility of

chemical-sensor-based blood glucose monitoring. Breath samples from diabetics and

their blood glucose values provided by blood test are collected simultaneously. To

obtain an effective classification results, we use a novel regression technique, SVOR,

to classify the diabetes samples into four ordinal groups marked with “well con-

trolled”, “somewhat controlled”, “poorly controlled”, and “not controlled”, respec-

tively. Finally, we map the outputs of SVOR to probabilities to decide which levels
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the input sample belongs to. The experimental results show that the accuracy to

classify the diabetes samples can be up to 68.25%. To our knowledge, this is the

first attempt at adopting a low-cost chemical sensor system to measure the blood

glucose values of diabetes. Frankly speaking, current prediction correct rates are not

quite high comparing with the blood test, but the results are promising because it

does provide a possibility of noninvasive blood glucose measurement and further

investigation on this topic will continue.

The remainder of this chapter is organized as follows. Section 13.2 introduces how

the breath analysis system works, how to collect breath samples, and data processing.

SVOR and probability outputs are described in Sect. 13.3. Section 13.4 introduces

the experiments. Section 13.5 presents the results and discussion. Finally, Sect. 13.6

offers our summaries.

13.2 Breath Analysis System

In this section, we will describe the detection mechanism of breath analysis system

briefly since it has been introduced in (Guo et al. 2010). Then, we will present the

breath collection, signal sampling, and data preprocessing.

13.2.1 Chemical Sensor Array

The most critical component of the system is the sensor array. During system design,

our main concern is about the choice of sensors since the function and performance

of the breath analysis system highly depend on the capabilities of sensors. A funda-

mental design concept is that each sensor should have a distinct sensitivity profile

over a range of compounds expected in the target application, e.g., the detection of

an unknown disease (Rock et al. 2008). In our system, we selected 12 metal oxide

semiconducting sensors (from FIGARO Engineering Inc.) to form a sensor array.

Sensors 1–6, and 11 respond positively to VOCs with various sensitivities. Since the

biomarker of diabetes is acetone, a kind of VOCs, these sensors in our system have

specially significant responses to the breath of diabetic patients. Sensor 7 is sensi-

tive to sulfide, which is associated with liver diseases (Sehnert et al. 2002). Sensor

8 only detects carbon dioxide. Sensor 9 is used to detect ammonia, which is associ-

ated with renal diseases (Davies et al. 1997). Sensor 10 is sensitive to nitric oxide,

which is associated with bronchiectasis, airway inflammation, and chronic obstruc-

tive pulmonary diseases (COPD) (Baraldi and Carraro 2006; Kharitonov et al. 1995;

Horvath et al. 1998; Maziak et al. 1998). Finally, Sensor 12 is sensitive to hydrogen,

which is used to detect gastrointestinal diseases (Brighenti et al. 2006; Le Marchand

et al. 2006). These sensors are not specially sensitive to acetone, but they are useful

when detecting the complications of diabetes.
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The twelve sensors are set in a stainless steel chamber. In the presence of breath

gas samples, each sensor’s conductivity increases depending on the concentration of

acetone in the breath. An electrical circuit converts the change in conductivity to a

voltage signal which corresponds to the gas concentration. Then, the signal measure-

ment circuit converts the output voltage into an analog electrical signal. The analog

signal is subsequently conditioned by signal filtering and amplification. Finally, the

signal is sampled and transmitted through a USB interface to a computer for future

analysis.

13.2.2 Breath Collection

The existence of breath acetone in diabetes occurs because plasma acetone is sepa-

rated from blood and enters into the alveolar air via the alveolar pulmonary mem-

brane. To guarantee what we collected is alveolar air, we used two breath collection

bags during collection. One bag is a 150 ml normal plastic bag and the other is a 600

ml specially designed breath collection bag (Tedlar). The subjects were instructed to

first take a deep breath first, then exhaled into and inflated the first 150 ml bag. This

sample from the upper air passages was discarded because it may be contaminated

(D’Amico et al. 2007). Finally, they exhaled into the second bag to produce a test

sample.

Figure 13.1 shows how the subject’s breath is collected using the breath collection

bag (A), the air-tight box (B), which is filled with disposable hygroscopic material to

absorb the water vapor from the breath, and a disposable mouthpiece (C). The hygro-

scopic material used is silica gel because it is stable and only reacts with a small

number of compounds, such as fluoride, strong bases, and oxidizers. Our previous

Fig. 13.1 Exhaled air is

collected with a gas

sampling bag
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experiments have shown that there has no obvious effect on breath acetone moni-

toring by using silica gel as a hygroscopic material. The disposable mouthpiece is

equipped with an anti-siphon valve to prevent inhalation of collected gas and silica

gel.

The breath gas is then introduced into the sensor chamber of the breath analy-

sis device through the breath gas collection bag, which connects to the device inlet

tubing via a plug-in connector.

13.2.3 Data Sampling and Preprocessing

The detailed data sampling and preprocessing have been introduced in our previous

work (Guo et al. 2010). Generally, in the sampling procedure, program controlled

system guarantees all samples are sampled under the same criterion. In the data pre-

processing, the original signals are preprocessed by de-noising, baseline manipula-

tion, and normalization. De-noising is to remove the noise from the original signals.

Baseline manipulation is implemented for drift compensation, contrast enhance-

ment, and scaling. Normalization is used to compensate for sample-to-sample vari-

ations caused by analyte concentration and pressure of oxygen (PO2).

13.3 Breath Sample Classification and Decision Making

The purpose of our investigation is to determine if the physical condition of diabetics

is well controlled by monitoring patients’ breath. This is a problem of ordinal clas-

sification, which arises frequently in medicine and information retrieval. In ordinal

classification, the training samples are labeled by a set of ranks, for example, the

labels of the samples in the categories {ill, sub-healthy, healthy} exhibit an order

among the different categories. In our case, since the samples are grouped into “well

controlled”, “somewhat controlled”, “poorly controlled”, and “not controlled”’, it is

clear that there is an order among these labels: well controlled > somewhat con-

trolled > poorly controlled > not controlled. Therefore, we use an ordinal regression

technique to represent a coarse classification of the blood glucose levels represented

by the labels of well controlled, somewhat controlled, poorly controlled, and not

controlled. Patients can be informed the blood glucose levels by observing which

category their samples fall into. We solve the problem by using SVOR technique.

In this section, we first introduce the SVOR algorithm in detail, then present our

method to get the probabilistic output of SVOR.
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Fig. 13.2 An illustration of the idea of support vector ordinal regression. There are r = 4 cat-

egories. Each point stands for a sample 𝐱ji . y = j(j = 1,… , r) indicates 𝐱ji should belong to the

jth category. b1,… , br−1 are the thresholds between the r ordered categories. 𝜉
j
ki and 𝜉

∗j
ki are slack

variables

13.3.1 Support Vector Ordinal Regression

The ordinal regression can be illustrated in Fig. 13.2. There are r = 4 categories.

In the figure, each point stands for a sample 𝐱ji. y = j(j = 1,… , r) indicates 𝐱ji
should belong to the jth category. The number of samples in the jth category is nj.
b1,… , br−1 are the thresholds between the r ordered categories. 𝜉

j
ki and 𝜉

∗j
ki are slack

variables to represent the prediction errors, where k indicates the sample 𝐱ji should

belong to the kth category but actually it is not. For the r ordered categories, it gener-

alizes the support vector formulation for ordinal regression by finding r−1 thresholds

that divide the real line into r consecutive intervals. The method was first proposed by

Shashua and Levin (2003). To guarantee the thresholds are accurately ordered, Chu

and Keerthi (2005) improved the method from only considering the errors from the

samples of adjacent categories to considering the errors from all samples in these

categories and showed the performance of the improved method outperforms the

previous one.

In our setting of ranking learning, there are r = 4 categories, so there are r−1 = 3
thresholds to consider. Each threshold has a margin, defined by the closest pair of

two adjacent categories. 𝐰 and b are scaled so that the distances from all boundary

points to the corresponding thresholds are 1. Hence, the width of each margin is 2,

from bj − 1 to bj + 1, j = 1,… , r − 1. Same as SVR, we use the regression function

f (𝐱) =
⟨
𝐰, 𝜙(𝐱ji)

⟩
to predict the target of sample 𝐱ji (Smola and Schölkopf 2004).

As shown in Fig. 13.2, samples out of the margin are deemed to fall into the cor-

rect categories, while samples in the margins might be misclassified. We can calcu-

late the errors as follows when comparing the function values with the lower margin

(bj − 1) and upper margin (bj + 1), respectively:
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𝜉
j
ki =

⟨
𝐰, 𝜙(𝐱ji)

⟩
− (bj − 1), j = k = 1,… , r − 1, (13.1)

𝜉
∗j
ki = (bj + 1) −

⟨
𝐰, 𝜙(𝐱ji)

⟩
, j = 1,… , r − 1 when k = j + 1, (13.2)

where j in 𝜉
j
ki implies that the slack variable is associated with the lower categories of

bj, ∗ j in 𝜉
∗j
ki indicates that the slack variable is associated with the upper categories of

bj, and the subscript ki denotes that the error is associated with the ith input sample

in the kth category.

The purpose is to make the errors as small as possible. By taking all errors asso-

ciated with all r − 1 thresholds into account, the optimal problem can be defined as

follows (Chu and Keerthi 2005):

min
𝐰,b,𝜉,𝜉∗

1
2
‖𝐰‖2 + C

r−1∑
j=1

( j∑
k=1

nj∑
i=1

𝜉
j
ki +

r∑
k=j+1

nj∑
i=1

𝜉
∗j
ki

)
(13.3)

subject to ⟨
𝐰, 𝜙(𝐱ji)

⟩
− bj ≤ −1 + 𝜉

j
ki, 𝜉

j
ki ≥ 0,

(k = 1,… , j; i = 1,… , nj);⟨
𝐰, 𝜙(𝐱ji)

⟩
− bj−1 ≤ 1 + 𝜉

∗j
ki , 𝜉

∗j
ki ≥ 0.

(k = j + 1,… , r; i = 1,… , nj).

(13.4)

Reference Chu and Keerthi (2005) set a series of Lagrangian multipliers for the

inequalities in Eq. 13.4 and obtained the dual problem. Solving the dual problem it

is easy to get the discrimination function:

f (𝐱) = ⟨𝐰 ⋅ 𝜙(𝐱)⟩ = ∑
k,i

(k−1∑
j=1

𝛼
∗j
ki −

r−1∑
j=k

𝛼
j
ki

)
𝜅(𝐱ki , 𝐱), (13.5)

where 𝛼
∗j
ki and 𝛼

j
ki are the Lagrangian multipliers and 𝜅(𝐱ki , 𝐱) is the kernel function.

In the experiment, the Gaussian kernel 𝜅(𝐱i, 𝐱j) = e−
1
2‖𝐱i−𝐱j‖2

is used to train the

classifier.

13.3.2 Probability-Based Classification

As Ref. Chu and Keerthi (2005) proposed, the predictive ordinal decision function

is given by argmin
i
{i ∶ f (𝐱) < bi}. It determines which category an input sample

belongs to. However, the judgement is too absolute for medical application. It is like
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a binary output (0/1), which provides a judgement for the sample that is definitely

healthy or diseased. However, in the case that one sample has the 49% probability

to be diseased and 51% probability to be healthy, binary output cannot work well or

often makes mistakes. So, we can just provide the probability that a sample belongs to

one kinds of categories, and doctors can decide the condition of the samples accord-

ing to the probability. The probability outputs enable us to make a flexible judgement

about the real condition of the diseases, which is more suitable for medical applica-

tions.

In Sect. 13.3.1, the algorithm of SVOR is based on two assumptions: (1) Sample

from the jth category should have a function value that is less than the lower margin

bj−1, otherwise

⟨
𝐰, 𝜙(𝐱ji)

⟩
−(bj−1) is the error; (2) Sample in the (j+1)-th category

should have a function value that is greater than the upper margin bj + 1, otherwise

(bj+1)−
⟨
𝐰, 𝜙(𝐱ji)

⟩
is the error. Each bj has a working margin, from bj−1 to bj+1,

as shown in Fig. 13.2. If the value of f (𝐱i) falls out of the margin, we can definitely

decide which category the sample 𝐱i belongs to. While, if the value of f (𝐱i) falls in

the range, we may use probability to decide the category of 𝐱i.
We define a sequence to calculate the probability, as shown in Fig. 13.3. When

a sample comes, we first get the corresponding f (𝐱i), meanwhile, regard Level 1 as

one group and Level 2, 3, and 4 as another group. Then we calculate the probability

the input sample belongs to Level 1 (p11) and the probability that the input sample

belongs to Level 2, 3, and 4 (p12). In the next step, we regard Level 2 as one group and

Level 3 and 4 as another group, and calculate the probability that the input sample

belongs to the two groups, respectively, marked as p21 and p22. Finally, we regard

Level 3 as one group and Level 4 as another group and calculate the probability

Fig. 13.3 The framework of

the probability calculation

based on SVOR
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the input sample belongs to the two groups, respectively, marked as p31 and p32. In

Fig. 13.3, Pk(k = 1,… , r) is the probability that the input sample belongs to each

level. We can obtain Pk according to Fig. 13.3, where pj1 can be calculated by the

following equations:

pj1 =
1 − (f (𝐱i) − bj)

2
, (13.6)

pj2 =
1 + (f (𝐱i) − bj)

2
, (13.7)

where j = 1,… , r−1, bj indicates the jth threshold to classify the ordinal categories,

and f (𝐱i) is the function value of the ith test sample, defined by Eq. 13.5.

13.4 Experiments

In this section, some experiments based on our data set are presented. Comparative

experiments between the proposed approach and other two common methods, Sup-

port Vector Machine (SVM) and Sparse Representation-based Classification (SRC),

are also introduced. Finally, we present the probabilistic outputs of SVOR.

13.4.1 Breath Samples

According to the introduction of Sect. 13.2 about the data collection processing,

breath samples and overnight fasting blood glucose values were sampled from 192

diabetics simultaneously. In all of the subjects, 110 of them were outpatients and 82

were inpatients. 123 of them were diagnosed type 2 diabetes and the rest were type 1

diabetes and other types. Table 13.1 lists the subjects’ blood glucose levels and their

corresponding number. The blood glucose levels are defined according to Chinese

diabetes control criterion since all of samples we collected are from Chinese (Shang

2003). Totally, there are four levels. Fasting blood glucose <5.8 mmol/L implies the

condition of patient is well controlled. Fasting blood glucose in 5.83–6.60 mmol/L

shows the disease is somewhat controlled. When fasting blood glucose lies in 6.66–

8.25 mmol/L, patient’s condition is poorly controlled, while fasting blood glucose

>8.31 mmol/L indicates that the condition is not controlled and doctors should adopt

more effective treatment to control the condition.

Figure 13.4 shows the responses of the twelve different sensors (S1–S12) to the

samples of four diabetics over the 90 s sampling period. Figure 13.4a–d are the

responses from four diabetics’ breath samples, their blood glucose levels increase

gradually from Fig. 13.4a–d. In each of these figures, the horizontal axis stands for

the sampling time (0–90 s) and the vertical axis shows the amplitude of the sen-

sor output in volts. As aforementioned, Sensors 1–6, and 11 are specially sensitive
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Table 13.1 The blood glucose levels and the corresponding number

Level

stage

Name Blood glucose value

mmol/L (mg/dL)

Number Female/Male

Level 1 Well controlled <6.05 (110) 67 31/36

Level 2
Somewhat

controlled
6.10-7.15 (111–130) 41 15/26

Level 3 Poorly controlled 7.21-8.80 (131–160) 39 16/23

Level 4 Not controlled >8.86 (161) 45 20/25

Total diabetics 4.45-23.15 (81–421) 192 82/110
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Fig. 13.4 Responses from four diabetics with different simultaneous blood glucose levels: a Level

1, b Level 2, c Level 3, and d Level 4. The horizontal axis stands for the sampling time (0–90 s)

and the vertical axis shows the amplitude of the sensor output in volts
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Fig. 13.5 PCA

two-dimensional plot of the

sensor signals corresponding

to four levels: a samples

from Level 1 (⋅), b samples

from Level 2 (∗), c samples

from Level 3 (+), and d
samples from Level 4 (×)
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to acetone. It has been reported that the transient responses of metal oxide semi-

conducting sensor are related to the type of gas and the amplitude of the responses

is associated with the concentration of gas (Liess 2002). These figures display that

the amplitudes of the sensors’ responses increase with the blood glucose levels, from

Fig. 13.4a–d. It is worth mentioning that Sensor 12 gives a very significant response,

though it is not used for VOCs detection. In China, the special diet recommended for

diabetics features large amounts of fermentable dietary fiber, which leads to colonic

fermentation of indigestible carbohydrates (Brighenti et al. 2006). One product of

colonic fermentation is hydrogen (Le Marchand et al. 2006). It is absorbed into the

bloodstream and excreted through the breath. Therefore, the breath air of diabetics

we have collected would include hydrogen. From the figures, we can see that it is

possible to measure the blood glucose levels of diabetics by analyzing their breath

gas samples.

To present the data distribution of these samples intuitively, we gave the two-

dimensional plot of Principal Component Analysis (PCA), as Fig. 13.5 shows. Sam-

ples marked with ⋅ are from Level 1, samples from Level 2 are represented by ∗, Level

3 samples are +, and samples from Level 4 are marked with ×. The two dimensions

explains 72.5% of the variation in the data, 54.07% for PC1 and 18.43% for PC2.

The figure demonstrates that the samples from the four categories distribute ordi-

nally even though some samples overlap.

13.4.2 Feature Extraction

In the experiment, we adopted PCA to extract the characteristic features directly from

the original samples. We calculated the eigenvectors and eigenvalues of the training

set and sorted the eigenvectors, i.e., principal components of PCA, by descendant
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eigenvalues, then projected both test data and training data onto the PCA subspace

spanned by selected principal components. The criteria for principal component

selection is r
𝜆
=

∑p
k=1 𝜆i

/∑n
k=1 𝜆i, where ri is the eigenvalue, p is the amount of

selected principal components, and n is the total number of eigenvalues. We selected

p = 60 eigenvectors as features to count over 92% variability in the data set. It lost

some information, but with lower dimensions, the classification could be more robust

since the size of our samples is limited.

13.4.3 Support Vector Ordinal Regression

Using the feature set extracted by PCA directly, we conducted experiments by using

the proposed SVOR. We also employed two other popular classification methods,

Support Vector Machine (SVM) and Sparse Representation-based Classification

(SRC) to make comparisons. The source code of the three classification methods

are listed in Ref. Chu (2005), Chang and Lin (2001) and Koh et al. (2007).

SVOR trained the data sets using a Gaussian kernel 𝜅(𝐱i, 𝐱j) = e−
1
2‖𝐱i−𝐱j‖2

and a

regularization factor value of C = 100. In the experiment of SVM, we employed the

same Gaussian kernel to train the classifier. Both of the two learnt classifiers were

used for the test sample classification. We also employed SRC to conduct the classi-

fication. The basic idea of SRC is to search for the most compact representation of an

input signal in terms of linear combination of atoms in an overcomplete dictionary

(Huang and Aviyente 2007). We represented a test sample as the linear combination

of a set of training samples. In the linear combination, ideally, the training samples

that are from the same category as the test sample have non zero coefficients, while

those from the different category as the test sample have zero coefficients. Accord-

ingly, we can assign a test sample to the category whose training samples hold higher

linear combination coefficients. We obtained the coefficients by solving an optimiza-

tion problem with the constraint of l1 norm minimization.

In the verification stage, we used the leave-one-out cross-validation to obtain the

classification results. In this process, first selected one sample as the test sample and

the rest as the training samples to compute whether the test sample was classified

correctly. The process was reiterated until every sample was tested once. It is worth

noting that SVOR and SVM may not work well if only using one test sample in

the verification stage. To solve this problem, we built a test set which includes two

samples, one is real test sample, another is simulative sample, and just picked up the

classification result of the real test sample.

Either using SVOR or using SVM and SRC to conduct the classification, the

degree of misclassification could be different when they classified an unknown sam-

ple into Level 1–Level 4, respectively. For example, an unknown sample should

belong to the category of Level 1, if it was misclassified into the category of Level

3 by one classifier while misclassified into the category of Level 2 by another clas-

sifier, it is obviously the first classifier is worse than the second one. In this chapter,
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we define a function to emphasize the performance of the classifiers SVOR, SRC,

and SVM:

Acc = 1 −
∑4

j=1
|i − j|R, (13.8)

where i stands for the category the samples should belong to and j represents the

category the samples were classified into by each classifier actually. R shows the

rate of all samples are classified into every level.

13.5 Results and Discussion

In this section, we will present the comparative classification results from SVOR,

SVM, and SRC, respectively and the results of probability based classification.

13.5.1 Support Vector Ordinal Regression

The results are listed in Table 13.2. The accuracy of each classifier was calculated by

Eq. 13.8. For instance, the performance of SVOR to classify the samples in Level 1

was calculated by Acc = 1−(0×48∕67+1×17∕67+2×2∕67+3×0∕67) = 68.66%.

From the table, we can see that the results provided by SVOR obtained the best

results. Comparing with other two classification methods, the results of SVOR were

more reasonable, because the samples intensively fell into the correct group and its

adjacent categories. For example, in the classification of Level 2, SRC classified two

samples into Level 1 category, five samples into Level 3 category, and one sample

Table 13.2 The classification results obtained by various classifiers

Number Classifier
Test outcome of classifiers

Accuracy (%)
Level 1 Level 2 Level 3 Level 4

Level 1 67

SVM 47 18 2 0 67.16

SRC 47 17 3 0 65.67

SVOR 48 17 2 0 68.66

Level 2 41

SVM 2 24 13 2 53.66

SRC 6 24 10 1 56.10

SVOR 4 26 10 1 60.98

Level 3 39

SVM 3 12 24 0 53.85

SRC 2 11 24 2 56.41

SVOR 1 9 26 3 64.10

Level 4 45

SVM 1 8 10 26 35.56

SRC 2 3 13 27 44.44

SVOR 0 4 13 28 53.33
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into Level 4 category, incorrectly. SVM has the similar problem as SRC. SVOR clas-

sified 2 samples into Level 1 and 6 samples into Level 4, incorrectly. Misidentifying

a somewhat controlled (Level 2) sample into the not controlled (Level 4) category

is a much severer mistake than misidentifying it into the poorly controlled (Level 3)

category. As a result, from the medical point of view, SVOR performs better than

SRC and SVM when solving the ordinal problem.

Frankly speaking, the current classification accuracy is not as good as the blood

test, but the result is promising because it does provide a possibility of noninva-

sive blood glucose measurement. There are two main reasons for the low accuracy:

(1) Breath air, on the one hand, is a direct reflection of organs’ conditions; on the

other hand, it is susceptible to oral odor, especially when patients are smokers, or

have bad breath. So, the critical problem of breath analysis of diabetics is how to

eliminate the negative impact from the oral odor. One possible solution is to select

sensors with high selectivity, i.e., they are only sensitive to acetone. (2) The current

database, because of the limitation of sampling condition, is not large enough. While

the current prediction algorithm is a kind of statistical pattern recognition method,

which relies on a large number of samples to achieve a stable prediction result. There-

fore, improving the breath analysis device, enlarging the database, and developing

effective algorithm that specially suits the prediction of small samples will be our

future work.

13.5.2 Probability-Based Classification

Table 13.2 presents the classification result of SVOR. If we map the outputs of SVOR

into probabilities, as introduced in Sect. 13.3.2, we may discover the classification

information in detail. Users, either patients or doctors could use the probabilities of

classification as reference values when they make a prediction using our system.

Figure 13.6 demonstrates the probabilities of the classification of each sample.

In each figure, the horizontal axis stands for the number of samples in each level

and the vertical axis shows the probabilities that the samples belong to the four lev-

els. Figure 13.6a–d represent the detailed classification information of samples from

the category of Level 1–Level 4, respectively. In each figure, there are four lines

demonstrating the probabilities that the samples belongs to the four categories. The

probability that the sample belongs to Level 1 is marked with □, the probability that

the sample belongs to Level 2 is marked with ◦, same as the first two levels, Level 3

is marked with ⋄ and Level 4 is marked with ∗.

To decide the categories of these samples, the decision rule used in our exper-

iment is: sample i is decided to belong to the category which holds the maximum

probability. As Fig. 13.6a demonstrates, most of samples have the maximum prob-

abilities, even 100%, to belong to Level 1. But there are still some samples with

quite high probabilities to belong to other three levels. It implies that these samples

are not completely well controlled. Patients and doctors should be warned when the

case happens.
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Fig. 13.6 Probability-based classification to classify the samples from four blood glucose levels: a
Samples from Level 1, b Samples from Level 2, c Samples from Level 3, and d Samples from Level

4. The horizontal axis stands for the number of samples in each level and the vertical axis shows

the probabilities that the samples belong to the four levels. The four lines in each figure represent

four levels

The probabilities can be regarded as additional information of Table 13.2. In the

application reported in this chapter, due to the limitation of current device and algo-

rithm, it is difficult to provide an exact value of blood glucose. Our work focuses on

the prediction of the condition of diabetic patients, i.e., well controlled, somewhat

controlled, poorly controlled, and not controlled. Each condition includes a rough

range of blood glucose values instead of an exact value. Samples near the bound-

ary may have the same probabilities to belong to two conditions. Take the sample

shown in Fig. 13.6c as an example, the sample in black rectangle has the probability

of 52.98% belonging to Level 3 and the probability of 47.02% belonging to Level

4. Even though we predict the sample to belong to Level 3, its condition is severer

than the average condition of Level 3 since it also has a quite high probability to

belong to Level 4. Probability-based classification is especially useful in this case.

We can combine the probabilistic classification results to the experience of the doc-

tors to determine the exact status of the condition. It is more reasonable to make such

judgment than only consider the absolute classification result provided by SVOR.
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13.6 Summary

This chapter investigated the possibility of breath signals analysis as an approach for

blood glucose monitoring. We collected and analyzed the breath samples of diabetic

patients by using our self-designed breath analysis system and divided the samples

into four categories marked with “well controlled”, “somewhat controlled”, “poorly

controlled”, and “not controlled”, respectively, according to their simultaneous blood

glucose values. Then we attempted to predict the condition of an input diabetic sam-

ple by using an ordinal regression technique, SVOR. Since the output of SVOR is an

absolute value to indicate the sample’s condition, it does not involve the probabil-

ity of a prediction. Therefore, we discovered a method to map the output of SVOR

to probabilities to decide which levels the input sample belongs to. This approach

enabled us to make a flexible judgment about the real condition of the disease, which

is more suitable for medical applications than general classifiers. Frankly speaking,

the current prediction accuracies are not quite high comparing with blood test, the

results are promising because it does provide a possibility of noninvasive blood glu-

cose measurement and further investigation on this topic will be continued.
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Chapter 14
A Breath Analysis System for Diabetes
Screening and Blood Glucose Level
Prediction

Abstract It has been reported that concentrations of several biomarkers in dia-
betics’ breath show significant difference from those in healthy people’s breath.
Concentrations of some biomarkers are also correlated with the blood glucose
levels (BGLs) of diabetics. Therefore, it is possible to screen for diabetes and
predict BGLs by analyzing one’s breath. In this chapter, we describe the design of a
novel optimized breath analysis system for this purpose. The system uses carefully
selected chemical sensors to detect biomarkers in breath. Common interferential
factors, including humidity and the ratio of alveolar air in breath, are compensated
or handled in the algorithm. Considering the inter-subject variance of the compo-
nents in breath, we design a feature augmentation strategy to learn subject-specific
prediction models to improve the accuracy of BGL prediction. 295 breath samples
from healthy subjects and 279 samples from diabetic subjects were collected to
evaluate the performance of the system. The sensitivity and specificity of diabetes
screening are 91.51% and 90.77%, respectively. The mean relative absolute error
for BGL prediction is 20.6%. Experiments show that the system is effective and that
the strategies adopted in the system can improve its accuracy. The system poten-
tially provides a noninvasive and convenient method for diabetes screening and
BGL monitoring as an adjunct to the standard criteria.

Keywords Alveolar air ⋅ Blood glucose level ⋅ Diabetes screening ⋅ Humidity
compensation ⋅ Inter-subject variance

14.1 Introduction

Diabetes has become a great threat to human health. The timely diagnosis and
frequent monitoring are important for managing the disease. To diagnose or
monitor diabetes, traditionally, one must draw blood samples to check if his blood
glucose level (BGL) falls within the normal range. This method is accurate but
painful, invasive, and inconvenient (Turner 2011). Therefore, noninvasive diabetes
screening and BGL prediction is arousing more and more interest recently.
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Approaches including reverse iontophoresis, fluorescence technology, bioimpe-
dance spectroscopy, and so on (Ramachandran et al. 2010; Vashist 2012) have been
studied. These approaches are painless and convenient, but still suffer disadvantages
such as lack of specificity, inaccuracy due to subject’s movement and sweating,
skin irritation, etc. (Ramachandran et al. 2010; Vashist 2012).

Breath analysis is a noninvasive approach for clinical applications. By analyzing
the concentrations of the biomarkers in breath, we are able to detect disease,
monitor disease progression, or monitor therapy (Risby et al. 2006). Lots of efforts
have been devoted to studying the breath biomarkers of diabetes. Acetone (Deng
et al. 2004; Righettoni et al. 2013; Ueta et al. 2009; Wang et al. 2010) as well as
many other volatile organic compounds (VOCs) (Ghimenti et al. 2013) in breath
are proved to either have abnormal concentrations in diabetics or correlate with
BGL. Compared to other approaches, breath analysis is readily acceptable and easy
to collect samples, which makes it an attractive way for noninvasive diabetes
screening and BGL prediction (Minh et al. 2012; Turner 2011).

Gas chromatography, mass spectroscopy (GC/MS) and related techniques can be
used to analyze components in breath. GC/MS-related methods have high accuracy
but relatively high cost, low portability, and complex usage, which limit their
applications in massive diabetes screening and household BGL monitoring.
Another breath analysis method makes use of chemical sensor systems, also known
as electronic noses (e-noses), which are generally cheaper, faster, more portable and
easier to operate. With the development in sensor technology, their accuracy has
been improving.

A few chemical sensor systems have been developed for either diabetes diag-
nosis (Guo et al. 2010; Wang et al. 1997; Yu et al. 2005; Zhang et al. 2000) or BGL
prediction (Guo et al. 2012; Saraoğlu et al. 2013). However, there are still problems
not solved in these systems. First, the chemical sensor array should be further
optimized for the specific application. Second, in previous systems, common
fluctuations in breath samples were not well taken into account, such as humidity
and the ratio of alveolar air. More importantly, considering the inter-subject vari-
ance of the components in breath, subject-specific BGL prediction models should
be built (Turner 2011). Furthermore, the number of samples in the experiments of
previous studies is small.

In this chapter, a novel breath analysis system for both diabetes screening and
BGL prediction is proposed. The sensors array is carefully selected with the help of
two pilot devices to improve the accuracy. Some of the sensors are under tem-
perature modulation, which is an effective technique to enrich the information
content and enhance the selectivity of gas sensors. A temperature-humidity sensor
and a carbon dioxide sensor are used to compensate for fluctuations in breath
samples. In the algorithm of BGL prediction, subject-specific prediction models are
built by incorporating subject identity information into the feature vector. The
purpose of these optimization strategies is to enhance the accuracy and robustness
of the system.

To evaluate the proposed system, a series of experiments were made. Experi-
ments with simulated samples confirm the system’s capability in predicting the
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concentration of acetone with the presence of interference in breath. In the exper-
iments with real breath samples, a total of 295 healthy and 279 diabetes breath
samples were collected. The sensitivity and specificity of diabetes screening is
91.51% and 90.77%, respectively. The mean relative absolute error for BGL pre-
diction is 20.6%. The results prove the effectiveness of the system as well as the
optimization strategies used in our system. The hemoglobin A1c (HbA1c) values of
62 diabetic subjects were also predicted.

The rest of this chapter is organized as follows. Section 14.2 is the overall
description of the system. Section 14.3 introduces the optimization strategies in the
sensor array and prediction algorithms. The details of the experiments with simu-
lated samples and real breath samples are in Sects. 14.4 and 14.5, respectively.
Section 14.6 summarizes the chapter.

14.2 System Description

14.2.1 Structure of the Device

The proposed system consists of two parts: a device for breath acquisition and a set
of algorithms for data analysis. The framework of the device is presented in
Fig. 14.1. The gas route is made up of a small vacuum pump and a gas chamber.
Breath or fresh air is drawn from the outside and injected into the gas chamber,
which is a metal container with the sensor array embedded in its shell. The sensor’s
signals are captured by a signal processing circuit, where they are magnified and
filtered. Finally, a data acquisition card digitizes the processed signals and transmits
them to a computer using a USB cable. On the other hand, the computer sends
control signals to the data acquisition card to control both the on/off of the pump
and the modulation voltage of the temperature modulated sensors. A fan is placed
next to the gas chamber to take away the heat emitted by the MOS sensors. The
whole device is powered by a 12 V power adapter. Some basic parameters of the
device are listed in Table 14.1.

It is worth noting that instead of the common box-shaped gas chamber, we
designed a column-shaped gas chamber, as shown in Fig. 14.2. The internal shape
of the chamber is cylindrical and the external shape is hexagon. The sensors are
embedded on the six facets of the chamber. This design has three advantages: its
internal shape allows gases to flow smoothly; its symmetry ensures that the gas
concentration in the head space of each sensor is similar; the size of the chamber is
miniature.
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14.2.2 Sensor Array

We equip our device with 11 sensors, including 6 ordinary MOS sensors, 3 tem-
perature modulated MOS sensors, a carbon dioxide sensor, and a
temperature-humidity sensor. There are actually 12 input channels since the
temperature-humidity sensor has 2 channels. Table 14.2 summarizes the model,
manufacturer, and function of each sensor. The suffix “-TM” indicates that the
sensor is a temperature modulated sensor. The sensors are specially selected for the
purpose of diabetes diagnosis and BGL prediction. The selection scheme is intro-
duced in Sect. 14.3.1 and Chap. 5.

Temperature modulated MOS sensors are believed to provide richer information
and have better selectivity than MOS sensors operated in the ordinary way (Amini
et al. 2012; Gutierrez-Osuna et al. 2003; Hosseini-Golgoo et al. 2011). The main

Fig. 14.1 Framework of the breath acquisition device

Table 14.1 Basic parameters
of the proposed device

Device parameters Specifications

Size 22 cm × 15 cm × 11 cm
Sampling duration 144 s
Sampling frequency 8 Hz
Injection flow rate 50 mL/s
Chamber volume 100 mL
Number of sensors 11
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reason is that the response and gas sensitivity of MOS sensors are strongly tem-
perature dependent (Hosseini-Golgoo et al. 2011). The reaction temperature, on the
other side, is decided by the heating voltage. Traditionally, the heating voltage is
fixed. But if we periodically modulate the heating voltage, we will be able to
acquire the sensor’s responses to the current analyte at different temperatures. With

Fig. 14.2 A snapshot of the column-shaped gas chamber. Sensors are embedded on its wall. Gas
enters the chamber from the inlet hole at one end. The outlet end was removed in the figure to
show the inside of the chamber

Table 14.2 Summary of the sensor array

Channel Model Manufacturer Function

1 TGS4161 Figaro Inc., Japan Carbon dioxide
2 TGS822 VOCs, hydrogen, carbon monoxide, etc.
3 TGS826
4 TGS2610-D00
5 SP3S-AQ2 FIS Inc., Japan
6 GSBT11 Ogam Inc., Korea
7 WSP2111 Winsen Inc., China
8 TGS2600-TM Figaro Inc., Japan
9 TGS2602-TM
10 WSP2111-TM Winsen Inc., China
11 HTG3515CH Humirel Inc., France Temperature
12 Humidity
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more diagnostic information provided, the selectivity of the sensor can be
enhanced.

In the proposed system, we use a staircase modulation voltage, which is similar
to the methods in Gutierrez-Osuna et al. (2003) and Hosseini-Golgoo et al. (2011).
The heating voltage changes between 3 V and 7 V in a staircase manner. It drives
the temperature on the sensing material as well as the response of the sensor to
oscillate in a similar way. Figure 14.3 illustrates the waveform of the heating
voltage and compares typical responses of a temperature modulated sensor and an
ordinary sensor. To our knowledge, this is the first time that the TM technique is
used in breath analysis systems. The analysis results in Chaps. 5 and 10 confirm its
efficacy.

14.2.3 Sampling Procedure

Similar to Guo et al. (2010), when collecting a breath sample, a subject is asked to
take a deep breath and exhale into a 600 mL Tedlar® gas bag through a disposable
mouthpiece. Then the filled gas bag is plugged onto the connector of the device.
The computer software controls the device to complete the breath acquisition
automatically. All breath samples are measured by the same process, which
includes four stages as shown in Fig. 14.3:

(1) Baseline stage (1 s): The baseline values of the sensors are recorded for future
data preprocessing.

(2) Injection stage (7 s): The pump is on. Breath is drawn from the gas bag to the
gas chamber at a constant speed. The sensors’ signals start to respond to the
injected breath.

Fig. 14.3 Red solid line:
heating voltage waveform for
temperature modulation;
Green dash line: a typical
response of a temperature
modulated sensor; Blue
dash-dot line: a typical
response of an ordinary
sensor. The vertical dotted
lines separate the 4 stages of
the sampling procedure,
a baseline stage; b injection
stage; c reaction stage;
d purge stage
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(3) Reaction stage (56 s): The pump is off. The sensors continue reacting with the
components in breath. The responses of the MOS sensors without temperature
modulation reach their maximum values.

(4) Purge stage (80 s): The pump is on again. Pure air is drawn into clean the gas
chamber for 80 s. The sensors’ responses gradually return to their baselines.
After the responses remain stable in their baselines, the device is ready for the
measurement of the next sample.

After the measurement process, we will get a digitized breath sample represented
by 12 response curves (which will also be referred to as a “sample” hereinafter).
Each response curve has 144 s*8 Hz = 1152 data points. The samples will be
analyzed with the algorithms in the next section.

14.2.4 Data Analysis Methods

14.2.4.1 Signal Preprocessing

For each sensor, we compute its baseline value by averaging its response in the
baseline stage. The value is then subtracted from the whole response curve. It is
done to eliminate the interference of background noise of the sensors (Hierlemann
et al. 2008). Humidity compensation is carried out by building a linear humidity
response model for each sensor, which will be described in Sect. 14.3.2. Tem-
perature compensation is not performed since it did not show big significance in our
experiments.

14.2.4.2 Feature Extraction

The objective of this chapter is to verify the probability of the e-nose for diabetes
screening and BGL prediction. Therefore, we only use simple and widely used data
analysis algorithms. After signal preprocessing, the responses of the 10 chemical
sensors (channels 1–10 in Table 14.2) are concatenated into a feature vector. The
feature dimension (1152 * 10 = 11520) is very high, so principal component
analysis (PCA) is used to extract low dimensional features. PCA projects
high-dimensional data into a low-dimensional subspace while keeping most of the
data variance. In the case of BGL prediction, considering the inter-subject variance
between breath samples, we further add some categorical features to indicate the
subject’s identity. The detail of this feature is described in Sect. 14.3.3.
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14.2.4.3 Classification and Regression

Support vector machine (SVM) is among the most popular techniques for classi-
fication. It is a kernel-based method suitable for both linear and nonlinear problems.
The main idea of the algorithm is to find a maximum margin hyperplane to separate
the training samples. It has been proved to generalize well on test samples (Burges
1998). SVM has been adopted as the decision algorithm in many chemical sensor
systems (Amini et al. 2012; Trincavelli et al. 2010). We will use it to discriminate
between healthy and diabetes samples in the case of diabetes screening. The support
vector regression (SVR) (Smola et al. 2004) algorithm is chosen to solve the BGL
prediction problem, since it also has good generalization ability. The details of
SVM and SVR can be found in Burges (1998) and Smola et al. (2004).

The entire framework of the data analysis algorithms is displayed in Fig. 14.4.

14.3 System Optimization

In order to enhance the system’s accuracy and robustness for diabetes screening and
BGL prediction, several optimization strategies are proposed, including sensor
selection, compensation of influential factors and development of subject-specific
prediction models.

Fig. 14.4 Framework of the
data analysis algorithms. The
rounded rectangles in blue are
the features. The rectangles in
green are the algorithms
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14.3.1 Sensor Selection

The sensor array is the key part of a chemical sensor system. The sensors should be
able to detect the breath biomarkers of diabetes, among which acetone is the most
studied one. The concentration of breath acetone of diabetics is higher than that of
healthy people (Deng et al. 2004; Ueta et al. 2009; Wang et al. 2010). Furthermore,
Wang et al. (2010) split 30 diabetic subjects into four groups and found a linear
correlation between the mean concentration of breath acetone and the mean BGL of
each group. Turner et al. (2009) observed that the breath acetone declined linearly
with BGL during hypoglycaemic clamps for each volunteer. However, the baseline
values of breath acetone concentrations varied from subject to subject (Turner et al.
2009). Some other factors may influence the relationship between breath acetone
and BGL as well, such as diet and age (Španěl et al. 2011). Besides acetone,
compounds such as ethanol (Galassetti et al. 2005), carbon monoxide (Paredi et al.
1999), alkanes (Phillips et al. 2004), and methyl nitrate (Novak et al. 2007) in
breath have also been proved to either have abnormal concentrations in diabetics or
correlate with BGL. Some researchers have attempted to combine the concentra-
tions of multiple VOCs and achieved good results in diabetes diagnosis and BGL
prediction (Greiter et al. 2010; Lee et al. 2009).

To detect acetone, one way is to use specially designed acetone sensors (Wang
et al. 1997). On the other hand, an array of carefully selected cross-sensitive VOC
sensors can also have good performance in detecting one or more kinds of gases (Di
Natale et al. 2005; Hierlemann et al. 2008), when pattern recognition algorithms are
applied to discriminate different gas “patterns.” As discussed in the last paragraph,
there are drawbacks of detecting acetone alone and merits of detecting multiple
biomarkers. So we first chose a set of candidate sensors to build pilot e-nose
devices, then collected breath samples to evaluate them and select the best sensor
combination.

Commercially available sensors are used as candidate sensors because they are
easier to acquire, robust, and have good diversity. Some of the candidate sensors
can detect and quantify VOCs as low as 0.05 parts-per-million (ppm) (Wolfrum
et al. 2006), indicating that their precision is satisfactory. Two pilot devices were
made with two batches of breath samples collected for sensor selection (Yan et al.
2012, 2014). Nine sensors were eventually selected to be employed in the final
device, i.e., the sensors in channels 2–10 in Table 14.2. Sensors were selected using
exhaustive searching experiments, see Chap. 5.

14.3.2 Compensation for Influential Factors

In breath analysis systems, influential factors such as humidity and the proportion
of alveolar air in breath samples affect the responses of sensors. Compensation for
these factors is important but often neglected in existing literature. In this section,
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the influence of these factors will be studied and the methods for compensation will
be introduced.

14.3.2.1 Humidity

Humidity compensation is important in breath analysis systems, because human
breath contains water vapor, and many VOC sensors are sensitive to humidity. An
experiment was made to study the influence of humidity to the sensors. Acetone
samples in five concentrations at four humidity levels were provided to the sensors.
Results show that if the concentration of acetone is fixed, the maximum value of
each sensor rises approximately linearly as the humidity rises. The water vapor in
acetone samples has an additive effect to the response of the sensors. Thus, a
“humidity coefficient” for each sensor can easily be estimated by linear regression,
describing the increase of the sensor’s maximum response when humidity increases
1%RH (Kashwan et al. 2005). The humidity compensation model for each VOC
sensor is shown in Eq. 14.1.

R
b̂
nðtÞ=Rb

nðtÞ 1− sn
ΔRHb

maxðRb
nðtÞÞ

� �
ð14:1Þ

In Eq. 14.1, Rb
nðtÞ is the baseline-removed response curve of the nth sensor in the

bth breath sample; sn is the humidity coefficient of the nth sensor; ΔRHb is the

difference of humidity between the bth breath sample and the environment; R
b̂
nðtÞ is

the compensated response curve. The proportion of magnitude which is considered
to be brought by the water vapor in breath is subtracted. Experiment results in
Sect. 14.5.3 show that the compensation improves the accuracy of the system.

Temperature in the gas chamber was also measured. Because the temperature
was relatively stable among samples, temperature compensation is not applied.
Besides, the compensation of instrumental variation and time-varying drift is dis-
cussed in Chaps. 6–9 (Yan et al. 2015, 2016a, b, 2017).

14.3.2.2 Proportion of Alveolar Air

General breath samples consist of two parts: dead-space air from the upper airway
and alveolar air from the lungs. VOCs are exchanged between blood and alveolar
air. In the case of diabetes screening and BGL prediction, dead-space air is a
contaminant and dilutes the concentrations of VOCs in breath samples (Cao et al.
2007; Guo et al. 2010). So the proportion of alveolar air in a breath sample is an
influential factor. This proportion is decided by the phase of the breath. In end-tidal
breath, alveolar air is prevailing; whereas breath drawn from the initial phase
contains more dead-space air.
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Some researcher (Guo et al. 2012) tried to collect the two parts of breath sep-
arately with two cascade gas bags. However, the estimation of the volume of
dead-space air may be inaccurate. Moreover, some patients are unable to blow up
the two cascade gas bags because of their illness. Another method is to estimate the
proportion of alveolar air from the CO2 concentration in breath samples (Cao et al.
2007). Higher CO2 concentration is an indication of higher proportion of alveolar
air. Thereby, we employ a CO2 sensor in the proposed device. The responses of the
CO2 sensor and the VOC sensors are combined to extract PCA features, which
allow the pattern recognition algorithms to learn a better prediction model taking
the information of CO2 concentration into account. The experiment results in
Sect. 14.5.3 show that with the information from the CO2 sensor, better accuracy is
acquired.

14.3.3 Subject-Specific Prediction Model

Researchers have identified the inter-subject variance of the relationship between
breath acetone and BGL (Ghimenti et al. 2013; Turner et al. 2009). As shown in
Turner et al. (2009), although breath acetone is correlated with BGL for each
subject, the baseline values of breath acetone vary among subjects. The author of
Turner (2011) concluded that calibration of acetone with BGL for each individual is
required. However, in previous breath analysis systems aiming at predicting BGL
(Guo et al. 2012; Saraoğlu et al. 2013), the prediction models are not
subject-specific.

To make prediction models subject-specific, an intuitive way is to build a model
for each subject with samples from the same subject as training samples. But this
method is not applicable when the number of samples from one subject is not
enough for an accurate model. In this chapter, we propose to add p categorical
features in each feature vector to indicate the subject’s identity, where p is the
number of subjects in total. Concretely, for each sample, the ith additional cate-
gorical feature will be 1 if the training sample is from the ith subject, or be 0
otherwise. If the regression model is linear, this feature augmentation strategy is
equivalent to adding a subject-specific bias in the model, which can compensate for
the constant part of the inter-subject variance. From the results in Sect. 14.5.3.3, we
find this method can markedly improve the accuracy for BGL prediction.

14.4 Experiments with Simulated Samples

An experiment was made to test the system’s ability to quantify the main breath
biomarker of diabetes, i.e., acetone. According to (Deng et al. 2004), the concen-
tration of breath acetone in healthy subjects is ranged from 0.22 to 0.80 ppm, while
that in subjects with type 2 diabetes is from 1.76 to 3.73 ppm. For subjects with

14.3 System Optimization 269



type 1 diabetes, breath acetone could be as high as 21 ppm (Turner et al. 2009). So
we prepared acetone samples in 8 concentrations (0.1, 0.2, 0.5, 1, 2, 5, 10, 20 ppm),
with two samples for each concentration. The 16 samples were measured by our
device using the sampling procedure in Sect. 14.2.3. Then the concentration of
acetone in each sample was predicted by leave-one-out cross-validation. The data
analysis method was preprocessing + PCA + SVR as introduced in Sect. 14.2.4.
The prediction is evaluated by its mean absolute error (MAE) defined in Eq. 14.2,
where xi and xî are the true and predicted concentration of the ith sample,
respectively; n = 16. In this experiment, the MAE is 0.16 ppm, which indicates
that the system can predict the concentration of acetone with high accuracy.

MAE=
1
n
∑
n

i=1
xi − xîj j ð14:2Þ

Although acetone is among the most abundant VOCs in breath (Turner 2011),
there are many other VOCs in breath that may interfere the measurement of ace-
tone. Thus, another experiment was made to test the system’s ability to measure
acetone with the presence of interfering VOCs. Eight breath samples were collected
from each of five healthy volunteers. Then an addition of acetone was mixed with
these 40 breath samples. The eight samples of each volunteer were made to contain
an additional acetone of 0, 0.2, 0.3, 0.7, 1.7, 3.3, 5.0, and 6.7 ppm, respectively.
These mixed samples were used to simulate the existence of interfering VOCs and
the variation of baseline acetone concentrations in real breath samples. Then the
concentration of the additional acetone in each sample was predicted. The
leave-one-out strategy and the preprocessing + PCA + SVR algorithm were
applied. It is worth noting that the feature augmentation strategy described in
Sect. 14.3.3 was added to build subject-specific prediction models. In this experi-
ment, the MAE is 0.22 ppm, proving that the system is able to predict the con-
centration of acetone in the presence of interfering VOCs and the variation of
baseline acetone concentrations.

14.5 Experiments with Breath Samples

14.5.1 Overview of the Breath Samples

A total of 295 healthy samples and 279 diabetes samples were collected from
Guangdong Provincial Hospital of Traditional Chinese Medicine (Guangzhou,
China). The health states of the healthy subjects were confirmed by physical
examinations. The diabetes samples were from 87 inpatient volunteers. For each
diabetic subject, several samples were collected at 2 h after meal in different days
together with the simultaneous BGLs. The number of samples per subject ranges
from 1 to 11. Some information about the diabetic subjects is listed in Table 14.3.
Figure 14.5 shows the distribution of BGLs of the diabetic samples.
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Hemoglobin A1c (HbA1c) is also an important parameter for the diagnosis and
monitoring of diabetes. It serves as a marker for average BGL during the preceding
3–4 months with a higher weight over the latest 30 days (Rohlfing et al. 2002).
Correlation between breath acetone and HbA1c of diabetic subjects has been
reported (Ueta et al. 2009; Wang et al. 2010). In this study, 62 out of the 87 subjects
had the HbA1c test within the last 13 days. Their HbA1c values range from 5.1% to
15.2%. An experiment was made to predict the HbA1c of the 62 subjects.

14.5.2 Data Analysis Procedure

14.5.2.1 Distinguishing Between Healthy and Diabetes Samples

Diabetes screening was achieved by distinguishing between healthy and diabetes
samples. After a digitized breath sample was acquired, it underwent baseline
removal, humidity compensation and PCA feature extraction. The ratio of variance
in PCA was set to be 99.98%, extracting about 60 features. They were then scaled to
have zero mean and unit variance. SVM (Chang et al. 2011) with a Gaussian kernel
was used for classification. 140 healthy and 140 diabetes samples were randomly
selected to train the SVM classifier. Another 139 healthy and 139 diabetes samples
were used for testing. We ran this procedure 50 times and computed the average
sensitivity and specificity.

Table 14.3 Basic
information of the diabetic
subjects

Item Value

Number 87
Male/Female 39/48
Age 39–91
Type 1/Type 2 1/86
Disease duration (years) 0.5–19
Blood glucose level (mmol/L) 4.4–23.1

Fig. 14.5 The distribution of
BGLs of the 279 diabetic
samples
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14.5.2.2 Blood Glucose Level and HbA1c Prediction

In these two cases, only the diabetes samples were investigated. The data analysis
procedures for BGL and HbA1c prediction are mostly the same. Baseline removal,
humidity compensation and PCA feature extraction were applied to the samples.
The optimized ratio of variance was set to be 99.1%, extracting about 12 features
after PCA. The dimension is lower than that in diabetes screening so as to prevent
the regression model from overfitting. The features were further scaled to have zero
mean and unit variance. The leave-one-out cross-validation protocol was employed.
The feature augmentation strategy described in Sect. 14.3.3 was added. However,
when the HbA1c was predicted, only the first breath sample of each subject was
used. There is no need to add the feature augmentation strategy since each subject
had only one sample. SVR (Chang et al. 2011) with a linear kernel was adopted to
do the prediction.

Three evaluation criteria were utilized to quantify the accuracy of the prediction.
The mean absolute error (MAE) is the average deviation of the prediction from the
true target. The mean relative absolute error (MRAE) measures the relative error by
normalizing the absolute error with the true target. The correlation coefficient
(r) measures the linear correlation between the true target and the predicted value. If
we denote xi as the true target (BGL or HbA1c) of the ith sample, x ̂i as the predicted
value, n as the number of samples, xī and xî as the mean of all the true and predicted
values, the MRAE and r can be defined as follows:

MRAE=
1
n
∑
n

i=1

xi − xî
xi

����
����

� �
×100% ð14:3Þ

r=
∑n

i=1 ðxi − xīÞðxî − xîÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 ðxi − xīÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i=1 ðxî − xîÞ2

q ð14:4Þ

14.5.3 Results and Discussion

14.5.3.1 Distinguishing Between Healthy and Diabetes Samples

Figure 14.6 exhibits the average responses of the healthy samples and the diabetes
samples. To observe their differences more clearly, we have made a comparison in
Fig. 14.7. For most VOC sensors (S2-S10), the mean responses of the diabetes
samples are larger than that of the healthy samples, showing that the concentration
of VOCs in breath of the diabetics is higher than that of the healthy subjects.

The final sensitivity and specificity for diabetes screening are 91.51% and
90.77%, respectively. The breath analysis system can distinguish between healthy
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and diabetes samples with a promising accuracy. The accuracy is comparable to
previous studies, especially given the fact that the database in this study is larger.
The result shows that the system has the potential to be an assistive tool for diabetes
screening.

Fig. 14.6 Average responses of the two classes. Left healthy; right diabetes. S1 is a CO2 sensor;
S2-S7 are ordinary MOS sensors; S8-S10 are temperature modulated MOS sensors, so their
responses are staircase-shaped

Fig. 14.7 Average responses
of each sensor in the two
classes. The coordinates on x-
axis are the sensors’ indices.
S1 is the CO2 sensor and
S2-S10 are VOC sensors. The
y-axis is the mean of the
maximum value of the
preprocessed response. Error
bars represent the standard
deviations
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14.5.3.2 Blood Glucose Level and HbA1c Prediction

In order to observe the difference between breath samples from subjects with dif-
ferent BGLs, we divide the diabetes samples in our database into four groups.
The BGL thresholds are set to be 7.4, 9.7, and 13.2 mmol/L, so as to make the
number of samples in each group close to each other. The mean responses of the
VOC sensors in the four groups are shown in Fig. 14.8. The mean response is
ascending from the first to the last group for most sensors except S6 and S9, which
is probably because S6 and S9 have higher sensitivity to the interfering components
than to acetone. It should also be noticed that the standard deviation in each group
is large, which indicates that there are overlaps between groups. This result shows
that the prediction task is challenging. The discoveries above are consistent to those
in Wang et al. (2010).

BGLs of 279 samples from 87 diabetic subjects are predicted using the
leave-one-out protocol. Correlation between the true and the predicted BGLs can be
observed from the scatter diagram in Fig. 14.9. The final results are MAE = 2.09
mmol/L, MRAE = 20.6%, r = 0.658. The result is better than a recent study
(Saraoğlu et al. 2013), in which a chemical sensor system was designed to predict
the BGL of 30 samples with MRAE = 25.2%.

The MAE, MRAE, and correlation coefficient of the HbA1c prediction are 1.86,
21.0%, and 0.56, respectively. The MAE and MRAE are lower than that in the BGL
prediction experiment, which is possibly because HbA1cs are more stable and
range in a smaller interval. The BGL prediction models are subject-specific and in
fact more accurate, so the correlation coefficient of BGL prediction is higher.

Fig. 14.8 Mean responses of
the VOC sensors in different
BGL groups. The diabetes
samples are divided into four
groups according to their
BGLs. The coordinates on x-
axis are the sensors’ indices.
The y-axis is the mean of the
maximum value of the
preprocessed response. Error
bars represent the standard
deviations
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14.5.3.3 Effectiveness of the Optimization Strategies

In this section, the effect of the optimization strategies proposed in this chapter is
assessed. First, the accuracies acquired with or without the compensation algo-
rithms in Sect. 14.3.2 are compared. The results for both diabetes screening and
BGL prediction are demonstrated in Table 14.4. In the table, HC is short for
humidity compensation. CO2 stands for the information from the CO2 sensor. For
diabetes screening, the addition of HC and CO2 improves the sensitivity and
specificity. For BGL prediction, with the addition of HC and CO2, the MAE and
MRAE are reduced and the correlation coefficient is increased. Therefore, the
proposed algorithms aiming at compensating fluctuations of humidity and the
proportion of alveolar air are effective.

Table 14.5 shows that the BGL prediction accuracy is improved by the strategy
of building subject-specific prediction models. We can infer that the influence of the
inter-subject variance has been reduced. Figure 14.10 gives another hint on how
much the subject identity information helps the prediction. The diabetic subjects are

Fig. 14.9 Scatter diagram for
BGL prediction. The x-axis is
the true BGL. The y-axis is
the predicted BGL.
The MAE, MRAE, and
correlation coefficient of the
prediction are 2.09, 20.6%,
and 0.658, respectively

Table 14.4 Comparison of the performance on diabetes screening and BGL prediction with
different strategies

Method Sensitivity (%) Specificity (%) MAE MRAE (%) r

No HC, no CO2 90.23 88.87 2.31 20.7 0.599
No HC, add CO2 90.81 89.13 2.11 23.2 0.658
Add HC, no CO2 90.74 90.14 2.12 20.9 0.650

Add HC, add CO2 91.51 90.77 2.09 20.6 0.658
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grouped according to the number of samples collected from them in the database.
Groups are designed so that the number of subjects in each group is close to each
other. Then we compute the MAE of BGL prediction in each group. We find that
the MAE of the subjects with more than 3 samples are better than those with only
1–2 samples. This is probably because that with more training samples provided for
each subject, the subject-specific prediction model can be more accurate. But this
hypothesis still needs further validation using a larger database. To sum up, the
subject identity information is important for the training of the prediction model; to
improve the prediction accuracy, we may increase the number of training samples
of each subject.

14.6 Summary

This chapter proposes a breath analysis system for diabetes screening and blood
glucose level prediction. The system includes a breath acquisition device and a set
of data analysis algorithms. The device has the advantage of being noninvasive,
portable, and easy to operate.

To increase the accuracy and robustness of the system, targeted improvements
were made on the sensor array, preprocessing, and feature extraction algorithms.
The improvements can be roughly categorized into two aspects. In the aspect of
medicine, some results in breath analysis studies were consulted. A CO2 sensor was

Table 14.5 Comparison of
the performance on BGL
prediction with or without
feature augmentation

Method MAE MRAE (%) r

Without feature augmentation 2.82 28.2 0.310
With feature augmentation 2.09 20.6 0.658

Fig. 14.10 The relationship
between the number of
samples collected from a
subject and the prediction
MAE. Group 1–4 contain
subjects who have 1, 2, 3–5,
and 6–11 samples,
respectively. The bars show
the number of subjects in each
group (corresponding to the y-
axis on the left). The red line
shows the MAE of the
samples in each group
(corresponding to the y-axis
on the right)
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employed to compensate for the difference of proportion of alveolar air in breath
samples. Subject-specific prediction models were built for BGL prediction to
reduce the influence of the inter-subject variance. In the aspect of sensor technol-
ogy, an optimal cross-sensitive VOC sensor array was selected.
Temperature-modulated MOS sensors were adopted and proved to be useful. The
humidity drift of the sensors was compensated. The effectiveness of these
improvement strategies was confirmed by experiments. These strategies are
expected applicable not only in the proposed system, but in other breath analysis
systems as well.

Over 500 breath samples were collected to evaluate the performance of the
system. We achieved a promising accuracy in diabetes screening. For BGL and
HbA1c prediction, the mean relative absolute error is 20.6% and 21.0%, respec-
tively. The BGL prediction result is better than previous breath analysis systems,
but still not quite adequate for practical use. One of the error sources is the
inter-subject variance of the components in breath samples. We have made attempts
to reduce the influence of this variance by feature augmentation. With more training
samples for each subject and more sophisticated prediction models, the error may
be further diminished. Since our experiments were not conducted in strictly con-
trolled environments, there is also intra-subject variance caused by factors such as
diet, exercise, and insulin injection. The influence of these factors needs to be
further studied to build a prediction model properly taking them into consideration
(Španěl et al. 2011; Turner 2011). Larger database should be collected to validate
the models.

References

Amini A, Bagheri MA, Montazer G (2012) Improving gas identification accuracy of a
temperature-modulated gas sensor using an ensemble of classifiers. Sens Actuators B: Chem

Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl
Disc 2:121–167

Cao W, Duan Y (2007) Current status of methods and techniques for breath analysis. Crit Rev
Anal Chem 37:3–13

Chang C-C, Lin C-J (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst
Technol (TIST) 2:27

Deng C, Zhang J, Yu X et al (2004) Determination of acetone in human breath by gas
chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatiza-
tion. J Chromatogr B 810:269–275

Di Natale C, Paolesse R, D’arcangelo G et al (2005) Identification of schizophrenic patients by
examination of body odor using gas chromatography-mass spectrometry and a cross-selective
gas sensor array. Med Sci Monit: Int Med J Exp Clin Res 11:CR366

Galassetti PR, Novak B, Nemet D et al (2005) Breath ethanol and acetone as indicators of serum
glucose levels: an initial report. Diabetes Technol Ther 7:115–123

Ghimenti S, Tabucchi S, Lomonaco T et al (2013) Monitoring breath during oral glucose tolerance
tests. J Breath Res 7:017115

Greiter M, Keck L, Siegmund T et al (2010) Differences in exhaled gas profiles between patients
with type 2 diabetes and healthy controls. Diabetes Technol Ther 12:455–463

14.6 Summary 277



Guo D, Zhang D, Li N et al (2010) A novel breath analysis system based on electronic olfaction.
IEEE Trans Biomed Eng 57:2753–2763

Guo D, Zhang D, Zhang L et al (2012) Non-invasive blood glucose monitoring for diabetics by
means of breath signal analysis. Sens Actuators B: Chem 173:106–113

Gutierrez-Osuna R, Gutierrez-Galvez A, Powar N (2003) Transient response analysis for
temperature-modulated chemoresistors. Sens Actuators B: Chem 93:57–66

Hierlemann A, Gutierrez-Osuna R (2008) Higher-order chemical sensing. Chem Rev 108:563–613
Hosseini-Golgoo S, Hossein-Babaei F (2011) Assessing the diagnostic information in the response

patterns of a temperature-modulated tin oxide gas sensor. Meas Sci Technol 22:035201
Kashwan K, Bhuyan M (2005) Robust electronic-nose system with temperature and humidity drift

compensation for tea and spice flavour discrimination. In: 2005 Asian conference on sensors
and the international conference on new techniques in pharmaceutical and biomedical research.
IEEE, pp 154–158

Lee J, Ngo J, Blake D et al (2009) Improved predictive models for plasma glucose estimation from
multi-linear regression analysis of exhaled volatile organic compounds. J Appl Physiol
107:155–160

Minh TDC, Blake DR, Galassetti PR (2012) The clinical potential of exhaled breath analysis for
diabetes mellitus. Diabetes Res Clin Pract 97:195–205

Novak B, Blake D, Meinardi S et al (2007) Exhaled methyl nitrate as a noninvasive marker of
hyperglycemia in type 1 diabetes. Proc Nat Acad Sci 104:15613–15618

Paredi P, Biernacki W, Invernizzi G et al (1999) Exhaled carbon monoxide levels elevated in
diabetes and correlated with glucose concentration in blood: a new test for monitoring the
disease? Chest 116:1007–1011

Phillips M, Cataneo RN, Cheema T et al (2004) Increased breath biomarkers of oxidative stress in
diabetes mellitus. Clin Chim Acta 344:189–194

Ramachandran A, Moses A, Shetty S et al (2010) A new non-invasive technology to screen for
dysglycaemia including diabetes. Diabetes Res Clin Pract 88:302–306

Righettoni M, Schmid A, Amann A et al (2013) Correlations between blood glucose and breath
components from portable gas sensors and ptr-tof-ms. J Breath Res 7:037110

Risby TH, Solga S (2006) Current status of clinical breath analysis. Appl Phys B 85:421–426
Rohlfing CL, Wiedmeyer H-M, Little RR et al (2002) Defining the relationship between plasma

glucose and HbA1c analysis of glucose profiles and HbA1c in the diabetes control and
complications trial. Diabetes Care 25:275–278

Saraoğlu HM, Selvi AO, Ebeoğlu MA et al (2013) Electronic nose system based on quartz crystal
microbalance sensor for blood glucose and HbA1c levels from exhaled breath odor. IEEE
Sens J 13:4229–4235

Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222
Španěl P, Dryahina K, Rejšková A et al (2011) Breath acetone concentration; biological variability

and the influence of diet. Physiol Meas 32:N23
Trincavelli M, Coradeschi S, Loutfi A et al (2010) Direct identification of bacteria in blood culture

samples using an electronic nose. IEEE Trans Biomed Eng 57:2884–2890
Turner C (2011) Potential of breath and skin analysis for monitoring blood glucose concentration

in diabetes. Expert Rev Mol Diagn 11:497–503
Turner C, Walton C, Hoashi S et al (2009) Breath acetone concentration decreases with blood

glucose concentration in type i diabetes mellitus patients during hypoglycaemic clamps.
J Breath Res 3:046004

Ueta I, Saito Y, Hosoe M et al (2009) Breath acetone analysis with miniaturized sample
preparation device: in-needle preconcentration and subsequent determination by gas
chromatography–mass spectroscopy. J Chromatogr B 877:2551–2556

Vashist SK (2012) Non-invasive glucose monitoring technology in diabetes management: a
review. Anal Chim Acta 750:16–27

Wang C, Mbi A, Shepherd M (2010) A study on breath acetone in diabetic patients using a cavity
ringdown breath analyzer: exploring correlations of breath acetone with blood glucose and
glycohemoglobin a1c. IEEE Sens J 10:54–63

278 14 A Breath Analysis System for Diabetes Screening …



Wang P, Tan Y, Xie H et al (1997) A novel method for diabetes diagnosis based on electronic
nose. Biosens Bioelectron 12:1031–1036

Wolfrum EJ, Meglen RM, Peterson D et al (2006) Metal oxide sensor arrays for the detection,
differentiation, and quantification of volatile organic compounds at sub-parts-per-million
concentration levels. Sens Actuators B: Chem 115:322–329

Yan K, Kou L, Zhang D (2017) Learning domain-invariant subspace using domain features and
independence maximization. IEEE Trans Cybern

Yan K, Zhang D (2012) A novel breath analysis system for diabetes diagnosis. In: 2012
international conference on computerized healthcare. Hong Kong, China, pp 166–170

Yan K, Zhang D (2014) Sensor evaluation in a breath analysis system. In: 2014 international
conference on medical biometrics (ICMB). IEEE, Shenzhen, pp 35–40

Yan K, Zhang D (2015) Improving the transfer ability of prediction models for electronic noses.
Sens Actuators B: Chem 220:115–124

Yan K, Zhang D (2016a) Calibration transfer and drift compensation of e-noses via coupled task
learning. Sens Actuators B: Chem 225:288–297

Yan K, Zhang D (2016b) Correcting instrumental variation and time-varying drift: a transfer
learning approach with autoencoders. IEEE Trans Instrum Meas 65:2012–2022

Yu J-B, Byun H-G, So M-S et al (2005) Analysis of diabetic patient’s breath with conducting
polymer sensor array. Sens Actuators B: Chem 108:305–308

Zhang Q, Wang P, Li J et al (2000) Diagnosis of diabetes by image detection of breath using
gas-sensitive laps. Biosens Bioelectron 15:249–256

References 279



Chapter 15
A Novel Medical E-Nose Signal Analysis
System

Abstract Some components in human breath have been proven to be associated
with certain diseases, such as diabetes and renal disease. The concentration of these
components can also be linked to condition status, for example, blood glucose
levels (BGLs). We called these components diseases biomarkers and seek ways to
detect them in human breath by using a specially designed e-nose system plus
advanced pattern recognition algorithms. In this chapter, a novel optimized medical
e-nose system specially for disease diagnosis and BGL prediction is proposed.
A large scaled breath dataset is collected by the proposed system. Experiments are
conducted on the collected dataset and the experimental results have shown that the
proposed system can well solve the problems of existed systems and the methods
have effectively improved the classification accuracy.

Keywords E-nose ⋅ Chemical sensors ⋅ Breath analysis ⋅ Blood glucose level

15.1 Introduction

Electronic noses, or e-noses, are devices that “smell” or detect odor. An e-nose
consists of a mechanism for chemical detection, such as an array of electronic
sensors, and a mechanism for processing. Different sensors respond differently to
odor samples and transmit the signal to the processing module. By analyzing the
signals, the components or characteristics of the samples can be distinguished.
E-noses are now attracting increasing interests from researchers in various areas
because of the wide range of applications (Röck et al. 2008), including drunk
driving testing, hazardous gas monitoring (Chou 1999), and air quality monitoring
(Romain et al. 2010; Zampolli et al. 2004; Zhang et al. 2012). Table 15.1 lists some
of the e-noses manufacturers and the application of their products. These com-
mercial e-noses always provide some versatility in applications, such as coffee,
wine, and fragrances identification for the sake of their marketing concerns. The
versatility may in contrast improve the price and limit their performance since their
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sensor selection must match broad applications. So, it is a better choice to design
specific e-nose system for specific applications.

Medical application is another important area of e-noses. They have been used in
medicine for the diagnosis of renal disease (Li et al. 2017; Lin et al. 2001), diabetes
(Yu et al. 2005), lung cancer (Blatt et al. 2007; Van Hooren et al. 2016), arthritis
(Brekelmans et al. 2016), and asthma (Dragonieri et al. 2007). Although gas
chromatography (GC) has been proved to be effective in breath diagnosis (Nakhleh
et al. 2016), using e-nose instead of GC (Phillips 1997) to analysis human breath,
which are generally cheaper, faster, more portable, and easier to operate (Yan et al.
2014).

However, most of the existing trials (Di Natale et al. 2014) on breath diagnosis
only focus on very limited kinds of diseases. One possible reason might be the
design of commercial e-noses for broad applications rather than for breath analysis
specifically or the specific designed devices only detect limited components (Broza
et al. 2014). Moreover, some of the fluctuations in breath samples were not well
taken into account, such as humidity and the ratio of alveolar air. Furthermore, the
numbers of samples in the experiments of previous studies are small. We thus
designed a novel medical e-nose device for breath analysis with optimized structure
and sensor arrays for the specific application in order to extend the applications in
medicine. A breath analysis dataset was then collected by this e-nose. Experiments
were organized on the collected dataset to evaluate the performance of the system in
disease diagnosis and Blood Glucose Level (BGL) classification. By analyzing the
e-nose signals of human breath, it is possible for us to recognize the difference in
contribution of the biomarkers so that certain diseases can be detected (Risby et al.
2006). For example, acetone (Righettoni et al. 2013; Ueta et al. 2009; Wang et al.
2010) as well as many other volatile organic compounds (VOCs) (Ghimenti et al.
2013) in breath are already proved to either have abnormal concentrations in dia-
betics or correlate with BGL. Moreover, in order to reduce the influence of device

Table 15.1 The developed products of e-noses

Manufacturer Product Application

The eNose Company,
Netherland

AEONOSE (Aeonose
2017)

Medical

Airsense Analytics GmnH,
Germany

PEN3 (PEN3 2017) Food, wine, material,
environment, medical

Alpha-Mos, France HERACLES
(HERACLES 2017)

Food, material, process
management

Sensigent, USA Cyranose 320 (Cyranose
2017)

medical, materials
identification, food

Electronic Sensor Technology
Inc., USA

Z-Nose (zNose 2017) Investigation, food,
environment, medical

Owlstone Inc., UK LONESTAR
(LONESTAR 2017)

Food, materials, industry
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variety and time drift and make the system more robust, drift compensation
methods will be introduced in the system before classification. Figure 15.1 gives a
global working flow of the system.

15.2 Optimal System Design

15.2.1 Sensor Array Selection

Human breath is largely composed of oxygen, carbon dioxide, water vapor and
nitric oxide, and the rest is less than 100 ppm (parts per million) of mixture with
over 500 kinds of components, including carbon monoxide, methane, hydrogen,
acetone and numerous volatile organize compounds (VOCs) (Cao et al. 2007; Yan
et al. 2014). While the metabolic processes and partition from blood changed with
some diseases, the types and concentrations of components in human breath will
also change.

Nowadays, the concentration of some biomarkers in breath has been proved to
be related with certain diseases. Selecting proper sensors that could respond to the
components make it possible to analyze a person’s breath odor and patients’ health
state. A few examples will further prove the points. The level of nitric oxide can be
used as a diagnostic for asthma (Deykin et al. 2002). Patients with renal disease
have higher concentration of ammonia (Davies et al. 1997). The concentration of
VOCs, such as cyclododecatriene, benzoic acid, and benzene are much higher in
lung cancer patients (Phillips et al. 2007). Table 15.2 lists the relationship between
biomarkers and some typical diseases.

Among the breath biomarkers related with BGL, acetone is higher in concen-
tration and easier for analysis. People with diabetes are insufficient of insulin
secretion or cannot effectively use their own insulin. As a result, glucose is difficult
to enter the cells, leading to the rising of the BGL. On the other hand, because the
cells cannot get enough energy, the liver will increase lipolysis and produce more

Fig. 15.1 Global working flow of the system
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ketones. Other biomarkers in lower concentration including ethanol and methyl
nitrite are also found in the breath of patients with diabetes (Turner 2011).

The characteristics of breath and the association of biomarker with diseases
indicate the sensors in e-nose should be sensitive to the VOCs, carbon dioxide,
humidity, and temperature. Thus, a sensor array with 11 sensors is optimized for the
purpose of detecting one’s breath. The sensor array includes six ordinary metal
oxide semiconductor (MOS) sensors, three temperature modulated MOS sensors, a
carbon dioxide sensor, and a temperature-humidity sensor. Specially, the
temperature-humidity sensor has two input channels for temperature and humidity
respectively. As a result, there are totally 12 input channels. The model, manu-
facturer and function of the sensors are listed in Table 15.3. The suffix “-TM”

indicates that the sensor is a temperature modulated sensor.

Table 15.2 Breath biomarkers and related diseases

Diseases Breath biomarkers

Diabetes (Risby et al. 2006) Acetone
Renal disease (Davies et al. 1997) Ammonia
Heart disease (Phillips et al. 2004) Propane
Lung cancer (Phillips et al. 2007) Benzene, 1, 1-oxybis-, 1, 1-biphenyl, 2, 2-diethyl,

furan, 2, 5-dimethyl-, etc.
Breast cancer (Phillips et al. 2003) Nonane, tridecane, 5-methyl, undecane, 3-methyl, etc.
Digestive system disease
(Eisenmann et al. 2008)

Hydrogen

Table 15.3 Summary of the sensor array

Channel Model Manufacturer Function Sensitivities (ppm)

1 TGS4161 Figaro Inc., Japan CO2 350–10000
2 TGS826 Figaro Inc., Japan VOCs, NH3 30–5000
3 QS01 FIS Inc., Japan VOCs, H2, CO 1–1000
4 TGS2610D Figaro Inc., Japan H2, VOCs 500–10000
5 TGS822 Figaro Inc., Japan VOCs, H2, CO 50–5000
6 TGS2602-TM Figaro Inc., Japan VOCs, NH3, H2S 1–30
7 TGS2602 Figaro Inc., Japan VOCs, NH3, H2S 1–30
8 TGS2600-TM Figaro Inc., Japan H2, VOCs, CO 1–100
9 TGS2603 Figaro Inc., Japan NH3, H2S 1–10
10 TGS2620-TM Figaro Inc., Japan VOCs, H2 50–5000
11 HTG3515CH Humirel Inc., France Temperature
12 Humidity
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15.2.2 Optimized System Structure

Figure 15.2 shows the frame of the proposed e-nose system, including mainly five
modules: the gas route, the sensor arrays, the signal processing circuitry, the con-
trolling circuitry, and the host computer.

The gas route of the device contains a vacuum pump and a gas chamber. Breath
samples from outside was drawn and injected it into the gas chamber. With the
purpose of finding a balance between portable and effectiveness, the gas chamber is
designed to be a column-shaped metal container with the capacity of 100 ml.
Sensors are embedded on the six facets, so that gases can flow smoothly the gas
concentration in the head space of each sensor is similar, and the size of the
chamber can be kept relatively small, as shown in Fig. 15.3.

The resistances of the sensors change from R0 to RS when they are exposed to
sampled gas. The output voltage is

VOut =
1
2
VCC 1−

RS

R0

� �
ð15:1Þ

where VCC is the transient voltage crossing the sensor and VOut is the transient
output voltages of the measurement circuits.

The origin sensors’ signals are magnified by a signal processing circuit. The
signal processing circuit also filters high-frequency noises. The controlling circuitry
is used to control the pump and the processing circuitry, then digitize the processed
signals and transmit them to a host computer for further processing. In order to
remove the waste heat produced by the sensors, a fan is set next to the gas chamber.
The fundamental parameters of the system are summarized in Table 15.4.

Fig. 15.2 The frame of the
e-nose system with 5
modules: the gas route, the
sensor arrays, the signal
processing circuitry, the
controlling circuitry, and the
host computer
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15.2.3 Sampling Procedure

During working, sensors’ temperature will graduate increase then remain constant.
This phenomenon will result in a change in baseline response of the sensors. So, the
device should be switched on for about 20 min till the baseline response shown on
the host computer is stable. Besides, the devices would be calibrated every two
weeks with 8 different kinds of standard gas samples to reduce the time drift. The
standard gas samples include VOCs, H2, CO2 and NH3 with two different con-
centrations respectively.

600-mL Tedlar gas bags supplied by Beijing Safelab Technology Ltd. are used
to collect breath samples. Subjects are asked to take a deep breath and exhale into a
gas bag through a disposable mouthpiece and an airtight box filled with disposable
hygroscopic material to absorb the water vapor. The gas bags also allow those weak
patients to give enough exhales with more than one exhale. Then the gas bag with

Table 15.4 Fundamental parameters of the system

Parameters Specifications

Device size 22*15*11 cm
Working temperature 25 ± 10 °C
Gas chamber volume 600 mL
Injection rate 50 mL/s
Sampling frequency 8 Hz
Sampling time 144 s
Working voltage 5 V
Working voltage for temperature modulated sensors 3–7 V cycle
Resolution of the ADC 12 bit

Fig. 15.3 Snapshot of the device a and gas chamber b. Sensors are embedded on its wall.
Samples are injected to the chamber from the inlet hole at one end and pumped out through the
outlet end
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the breath sample is plugged onto the preheated device connected to a computer.
The measurement procedure is automatically controlled by the software in the
computer. The measurement procedure is divided to four stages

(1) Baseline stage (0–1 s): The baseline values of the sensors are recorded for
future data preprocessing.

(2) Injection stage (1–8 s): The pump is ON. Breath is drawn from the gas bag to
the gas chamber at a constant speed. The sensors’ signals start to respond to the
injected breath.

(3) Reaction stage (9–64 s): The pump is OFF. The sensors continue reacting with
the components in breath. The responses of the MOS sensors without tem-
perature modulation (TM) reach their maximum values.

(4) Purge stage (64–144 s): The pump is ON again. Clean air is drawn into clean
the gas chamber for 80 s. The sensors’ responses gradually return to their
baselines. After the responses remain stable in their baselines, the device is
ready for the measurement of the next sample.

Figure 15.4 is the responses of the sensors in four stages. It can be seen that the
responses keep stable in the baseline stage and start to change from injection stage.
Since the injection speed is 50 mL/s, 350 mL of the sample gases will be pumped
in. The first 250 mL will directly go through the chamber to remove air in the
chamber and the rest 100 mL will stay in the chamber for reacting. Each sensor will
reach its highest response value at least once within the reaction stage. Finally,
during the purge stage, the sample gas will be cleaned by pure air and the responses
return to baseline. The system does not require very high sampling frequency,
which is chosen at 8 Hz. After the whole process, a digitized breath sample is
represented by 12 response curves. Each response curve has 144 s × 8 Hz = 1152
data points. The samples will be then used for further analysis.

Fig. 15.4 The four stages of measurement procedure
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15.3 Signal Analysis

15.3.1 Preprocessing

Before analyzing the data, original signals should be preprocessed so that to be
transformed into standard samples. Four steps will be taken: faulty signal removing,
de-noising, baseline manipulation, and normalization.

Faulty signal is a common problem in devices with sensors. In our system,
causes of faulty signals are complicated, such as misoperation, bad connection, and
device damage. In order to make the system more robust, these signals should be
removed before analysis.

De-noising aims to remove the noise from the original signals by utilizing a
low-pass filter to remove the noise since the signal is mainly interfered by
high-frequency noise.

The purpose of baseline manipulation is to compensate baseline drift. The
baseline value is the average response in the baseline stage of each sensor. The
value is then subtracted from the whole response curve to eliminate the interference
of background noise of the sensors (Marco et al. 2012). Assume that for each sensor
transient of each sample, there are k dimensions, where k = 1, …, Nk, and b di-
mensions in the baseline stage, where b = 1, …, Nb. The response at time tk is
denoted as R tkð Þ. The baseline response is BðtbÞ. Then baseline manipulation can be
computed as

RB tkð Þ=R tkð Þ− 1
Nb

∑
Nb

tb =1
BðtbÞ ð15:2Þ

Normalization is used to compensate for sample-to-sample variations caused by
analyte concentration. RB tkð Þ is a sample after the baseline manipulation step, and
the normalized response RBN tkð Þ can be defined as

RBN tkð Þ= RB tkð Þ
maxðRB tkð ÞÞ ð15:3Þ

15.3.2 Feature Extraction

To reduce the dimension of the origin features, principal component analysis
(PCA) can be used. PCA projects high-dimensional data into a low-dimensional
subspace while keeping most of the data variance.

Some low-dimensional geometric features can also be extracted from the origin
response curves. Traditional features of gas sensors are their steady-state responses.
When a gas sensor is used to sense a gas sample, its response will reach a steady
state in a few minutes. The steady-state response has a close relationship with the

288 15 A Novel Medical E-Nose Signal Analysis System



concentration of the measured gas. Therefore, the 9D feature vector contains the
most important information needed for disease screening.

However, additional useful information is carried in the transient responses
(Hierlemann et al. 2008). Transient responses are often related to the change of gas
flow (injection/purge) or temperature (for TM sensors). The feature set includes
magnitude, difference, derivative, second derivative, integral, slope and phase
features, as well as features in frequency domain such like FFT and wavelet. The
extracted features in both space domain and frequency domain are described in
Table 15.5.

15.3.3 Drift Compensation

15.3.3.1 Sensor Drift

Drift is a comment problem and challenging task for chemical sensors, which may
influent the robust of e-nose systems. The breath samples are collected by different
devices in different time periods. On the one hand, because of the variations in of
sensors and devices, the responses to the same signal source may not be different

Table 15.5 Summary of the transient features

Feature Description

Spatial

PCA Reduce the dimension of the origin features with PCA method
Magnitude Down-sampled values of the curve’s magnitude M

The maximum magnitude
Down-sampled values of the normalized magnitude M/max(M)
Mean values of the magnitude

Derivative Down-sampled values of the curve’s derivative D

The maximum and minimum derivative
2nd
Derivative

The maximum and minimum 2nd derivative in both injection and
purge stage

Integral The integral of the 5 intervals of the curve, the intervals are the
same with the difference feature

Slope The slope of the 5 intervals of the curve, the intervals are the same
with the difference feature

Phase
Feature

The phase feature is proposed in (Martinelli et al. 2003). First, the
response is transformed to the phase space, which is spanned by
its magnitude and derivative. Then, the phase features are defined

as ∫ M ti+1ð Þ
M tið Þ DdM

Frequency
FFT Fast fourier transformation
Wavelet Wavelet transformation
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for different instruments. On the other, for a same device or same sensor, the
stability also changes over time.

Additionally, studies by Phillips et al. (2000) and Klaassen et al. (2015) also
proved that there is relationship with age and breath biomarkers. So, the influence
of age should also be regard as a drift factor.

Widely used methods including algorithms based on variable standardization
(Feudale et al. 2002; Zhang et al. 2011) and component correction PCA (CC-PCA)
(Artursson et al. 2000) method. Moreover, Yan et al. proposed a Drift Correction
Autoencoder (DCAE) (Yan et al. 2016).

Most of these methods require a set of predefined gas samples collected with
each device and in each time period as transfer samples to provide mapping
information between the source and the target domains. Nevertheless, collecting
transfer samples may be a difficult job if there are not convenient predefined gases
or thee operators are not professional e-nose users. For this situation, as an unsu-
pervised domain adaption method is proposed to correct the drifts with unlabeled
data, the optimized Maximum Independence Domain Adaptation (MIDA) method
will be used in the system for drift compensation.

15.3.3.2 Optimized MIDA

Like transfer learning, domain adaption (DA) aims to solve the problem of trans-
ferring knowledge between domains with different distribution. Maximum Inde-
pendence Domain Adaptation (MIDA) (Yan et al. 2017) was proposed to find this
latent subspace in which the samples and their domain features are maximally
independent in the sense of Hilbert-Schmidt independence criterion (HSIC)
(Gretton et al. 2005).

HSIC measures the dependence between two sample sets X,Y ∈Rd × n

HSIC= n− 1ð Þ− 2tr KxHKyH
� �

,H = I − n− 11n1Tn ∈Rn× n ð15:4Þ

We first define the domain features to describe the background information: the
device label, the acquisition time, and the age. Suppose there are ndev devices, the
domain feature is then d∈R3ndev , and

dq =

1, q=3p− 2
t, q=3p− 1
age, q=3p
0, otherwise.

8>><
>>: ð15:5Þ

Suppose X∈Rm× n is the matrix of n samples containing both the training and
the test samples. More importantly, we do not have to explicitly differentiate which
domain a sample. A linear or nonlinear mapping function Φ can be used to map
X to a new space. According to the kernel trick, the inner product of Φ Xð Þ can be
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represented by the kernel matrix Kx =ΦðXÞTΦðXÞ. Then, a projection matrix eW is
applied to project Φ Xð Þ to a subspace with dimension h, leading to the projected
samples Z =Φ Xð Þ eW ∈Rh× n. To express each projection direction as a linear
combination of all samples in the space, eW =Φ Xð ÞTW ,W ∈Rn× h is the projection
matrix to be actually learned. Thus, the projected samples are

Z =Φ Xð ÞΦ Xð ÞTW =KxW ð15:6Þ

The kernel matrix Kz =KxWWTKx. Set the matrix of background feature as
D∈Rn×md , md is the dimension of background feature. The linear kernel
Kd =DDT . Omitted the scaling factor in HSIC, the expression to be minimized is:

tr KzHKdHð Þ= trðKxWWTKxHKdHÞ ð15:7Þ

In domain adaption problems, the other goal is to preserve important properties
of data, such as the variance, by maximizing the trace of the covariance matrix of
the project samples.

cov Zð Þ= cov KxWð Þ

=
1
n

KxW −
1
n
1n1TnKxW

� �T

KxW −
1
n
1n1TnKxW

� �
=WTKxHKxW

ð15:8Þ

Thus, the learning problem then becomes

maxW − tr WTKxHKdHKxW
� �

+ μtr WTKxHKxW
� �

s.t. WTW = I

ð15:9Þ

Using the Lagrangian multiplier method, we can find that W is the eigenvectors
of Kx −HKdH + μHð ÞKx corresponding to the h largest eigenvalues.

15.4 Experiments

15.4.1 Breath Dataset

To evaluate the performance of our device, a large-scaled breath dataset is col-
lected. We cooperated with Guangzhou Hospital of Traditional Chinese Medicine
and collected data from inpatient volunteers. Two devices with same model are
used for data collection. Patients are asked to rinse their mouth with medical
mouthwash and not to use fragrance. The devices are placed in a well-ventilated
room without the interruption of medical alcohol or odor of traditional Chinese
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medicine. For each sample, we first collected the patient’s breath and recorded the
signals. The diagnosis was then given by an authoritative doctor as the classification
labels. Moreover, some biochemical indicators are also collected, such as blood
glucose, blood pressure, and blood lipid. Finally, in this dataset, there are totally
over 10000 samples of 47 classes, including 1491 healthy samples and samples of
46 different kinds of diseases. In this chapter, a subset of healthy and six kinds of
diseases were selected for experiments, including breast disease, cardiopathy, dia-
betes, lung disease, kidney disease and gastritis. Table 15.6 shows the number of
each class used in selected subset.

All the samples are collected from hospitals in Guangzhou. However, since most
of the healthy samples are provided by medically examined young people while
disease samples are from elder patients, it is difficult to make age-matched subsets,
which is a shortage of this dataset. Operations will be taken to reduce the infection
of age.

15.4.2 Disease Diagnosis

To check the performance of the system, six binary-classification tasks were per-
formed to detect samples with one of the diseases from the healthy ones.

For each class, the first 50 samples collected by the first device are chosen as the
labeled training sets and the rest are test samples. Logistic regression method was
adopted as the classifier after drift compensation optimized MIDA. Sequential
Forward Selection (SFS) method is used to optimal the features. SFS method is a
greedy strategy. In each iteration, one feature is selected from all features that could
achieve a best classification accuracy together with the features already selected.
Figure 15.5 shows the results of forward selection in different disease diagnosis
tasks.

In Table 15.7, we conclude the best combination of features and sensors selected
for each task. It can be find that Wavelet, MaxMag, Slope and Phase features
contribute most in all the tasks.

MeanMag feature and Integral feature are also discriminating in detecting car-
diopathy, lung disease, and gastritis. Derivative feature only shows its importance
in tasks of breast disease and gastritis. While other features did not improve the

Table 15.6 Number of
samples in each class

Class Number

Healthy 1291
Diabetes 491
Kidney disease 398
Cardiopathy 537
Lung disease 376
Breast disease 527
Gastritis 241
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Fig. 15.5 Forward selection result of six binary-classification tasks. For each graph, the
horizontal axis is the number of features used and the vertical axis is the classification result
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Fig. 15.5 (continued)
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Table 15.7 Selected features and sensors and the sensitivity (SEN), specificity (SPE) and
Accuracy (ACC) for each task

Task Features and sensors SEN SPE ACC

Diabetes
Wavelet of TGS2602 Wavelet of TGS2610D

0.8815 0.9495 0.9155
Phase of TGS2602-TM MaxMag of TGS826

Kidney
disease

Wavelet of TGS2602 Wavelet of
TGS2600-TM

0.7002 0.8698 0.7850
Slope of TGS2602-TM Slope of TGS2620-TM
Phase of TGS826 Phase of TGS2610D

Cardiopathy

Wavelet of TGS822 Integral of TGS826

0.7433 0.7125 0.7279

MeanMag of TGS2603 Slope of TGS822
Integral of TGS2602 Slope of TGS826
MaxMag of TGS2603 Phase of TGS826
Phase of TGS2610D Integral of TGS2610D

Lung disease

Wavelet of QS01 MeanMag of QS01

0.7117 0.7209 0.7163

Slope of TGS2603 Slope of QS01
Integral of TGS2602 Integral of TGS826
Phase of TGS2620-TM Slope of TGS826
MaxMag of TGS2602 Integral of TGS2610D
MeanMag of TGS2610D MeanMag of TGS2603
MaxMag of TGS2603 MeanMag of

TGS2602-TM
Integral of QS01 MeanMag of TGS2602
MaxMag of
TGS2602-TM

MaxMag of TGS826

Phase of TGS826 Phase of QS01
Phase of TGS2602

Breast
disease

Wavelet of TGS826 MaxMag of TGS822

0.6321 0.7599 0.6960

MaxMag of TGS2602 Derivative of
TGS2610D

Derivative of
TGS2620-TM

MaxMag of TGS2603

Phase of TGS2600-TM MeanMag of
TGS2600-TM

MeanMag of
TGS2602-TM

Phase of TGS2620-TM

Gastritis

Wavelet of TGS822 Slope of TGS2600-TM

0.6436 0.8582 0.7509

Integral of TGS2603 MaxMag of
TGS2620-TM

Phase of TGS2602-TM Integral of QS01
Wavelet of
TGS2620-TM

Derivative of
TGS2610D

MaxMag of
TGS2602-TM

Slope of TGS2603
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performance of the system. On the other hand, the sensors those contribute most in
each task meet the relationship between diseases and breath biomarkers listed in
Tables 15.2 and 15.3.

15.4.3 BGL Classification

BGL prediction is another application of the system. In the collected dataset, the
blood glucose levels are given by blood glucose meters in hospital. Since the blood
glucose meters may already have a ±10% to ±25% of error, the final error rate
will be further accumulated if we use these samples for regression. As a result,
instead of regression experiments, we group the samples into different classes based
on the BGL ranges and performed the BGL classification experiments on the
datasets.

According to Chinese diabetes control criterion (Shang 2004), the dataset is
divided into four parts based on BGL. The BGL range and sample number of each
class are listed in Table 15.8. Because of the detection error of the meters, samples
within the ±0.2 mmol/L of the thresholds are not selected as learning samples to
improve the robust of the classification methods. We use a Random Forest
(RF) method for the triplet-classification task.

The classification result and optimal features can be seen in Table 15.9. It can be
seen that Magnitude features (MaxMag, MeanMag, and DownSampleMag), Slop
features and Integral features are the most important features for BGL classification
while the most useful sensors include TGS2602-TM, TGS2602, TGS826, TGS822,
QS01, and TGS2610D.

Table 15.8 Number of samples in each class of BGL

Class BGL (mmol/L) Number

Normal Lower than 6.1 1851
Impaired glucose tolerance 6.1–7.11 168
Hyperglycemia Higher than 7.11 241

Table 15.9 Selected sensors and features for BGL classification

Features and sensors Accuracy

MaxMag of TGS2602-TM MaxMag of TGS2602

0.7778
MeanMag of TGS2602-TM DownSample of TGS826
DownSample of QS01 DownSample of TGS2610D
DownSample of TGS822 Slope of TGS826

Slope of QS01 Integral of QS01
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15.5 Conclusions

This chapter gave out a novel medical e-nose system that specified on disease
diagnosis and BGL prediction. The scientific basis, structure, optimizing strategies,
sensor arrays, sampling procedure, and signal preprocessing methods were intro-
duced, as well as a large-scaled medical dataset collected by the system. In order to
better correct the drifts, an optimized domain adaption method was adopted in the
system. Experiments were taken on the new collected datasets to evaluate the
performance of both the system and the methods.

The experimental results showed that better accuracy can be achieved by opti-
mize the combination of features and sensors for different tasks. Wavelet, MaxMag,
Slope and Phase features are the most significant in most of the disease diagnosis
tasks while different sensors contribute differently based on the relationship of
diseases and biomarkers. The BGL classification tests also produced a satisfactory
output. However, it is still possible to further improve the performance and extent
the applications. Multi-feature and multi-classification methods will be mainly
investigated in future work. Neural networks will also be introduced to the system
to further discover the relationship between the signals and human states.
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Chapter 16
Book Review and Future Work

Some components in human breath have been proven to be associated with certain
diseases and the concentration of these components is linked to disease status.
Breath signal contains important information about health status. Recently, breath
signal diagnosis has attracted increasing research interest. Many kinds of breath
signal acquisition systems and breath signal processing methods have been repor-
ted. However, there are still a lot of challenging works to be done, for example, how
to acquire breath signal in a fast, accurate, and informative way, how to preprocess
the breath signal to rule out the outliers and increase the quality of the signal, and
how to extract efficient features and find our proper classifiers for breath diagnosis.
This book focuses on these challenging issues. We first introduce novel breath
signal acquisition systems equipped with multiple breath sensors. In order to collect
samples effectively, we developed a sample acquisition system with sensor fusion
technology. To detect the drift of breath signals, in this book, we provided opti-
mized preprocessing frameworks with corresponding learning classification and
regression models. To represent breath signals completely, this book discovered
different types of breath signal features, such as spatial feature, frequency feature,
deep learning feature, etc. Moreover, this book also provided many effective
algorithms for breath signal classification and recognition, such as curve-fitting
models and sparse representation classification.

In this chapter, we first recapitulate the contents of this book in Sect. 16.l. Then,
Sect. 16.2 discusses the future of breath analysis for medical applications.

16.1 Introduction

The first chapter of this book sets the scene for this book. It first introduces the
background that stimulates this research work. The motivation for the focus of the
work is then explained, highlighting the importance of the breath analysis used in
disease diagnosis, of the development of breath analysis device, and of the design
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of specific pattern recognition algorithm for breath analysis. This is followed by a
statement of the objective of the research, a brief summary of the work, and a
general outline of the overall structure of the present study.

Chapter 2 discusses some of the key issues in breath analysis and reviews some
previous research work in the areas which are particularly relevant to the present
study. Following a brief introductory overview of the field, the chapter first presents
the development of breath analysis. Traditional approaches like GC which have
been used to analyze the compounds of breath and identify several diseases are then
described. This is followed by a detailed introduction of current major approaches,
e-noses, for breath analysis. The final section gives a short summary of the chapter.

Chapter 3 proposes a novel system that is special for breath analysis. We
selected chemical sensors that are sensitive to the biomarkers and compositions in
human breath, developed the system, and introduced the odor signal preprocessing
and classification method. To evaluate the system performance, we captured breath
samples from healthy persons and patients known to be afflicted with diabetes, renal
disease, and airway inflammation respectively and conducted experiments on
medical treatment evaluation and disease identification. The results show that the
system is not only able to distinguish between breath samples from subjects suf-
fering from various diseases or conditions (diabetes, renal disease, and airway
inflammation) and breath samples from healthy subjects, but in the case of renal
failure is also helpful in evaluating the efficacy of hemodialysis (treatment for renal
failure).

In Chap. 4, we propose a linear discriminant analysis (LDA)—based sensor
selection technique (LDASS) which chooses an optimal configuration of sensors for
a particular application from a whole set of available sensors. The proposed method
finds the direction w via the LDA such that when data are projected onto this
direction, the samples from two classes are as separate as possible. It is found that
after projection, the difference of means of the two distinct sample classes can be
expressed as the linear combination of the responses of all the sensors in the system,
and w can be regarded as the weight vectors for these sensors which indicate the
contribution weight of each sensor. Accordingly, it is possible to determine which
sensor has a greater contribution in classifying the two classes. A series of
experiments on different databases show that the proposed method outperforms
other sensor selection techniques, such as the sequential forward selection
(SFS) and genetic algorithm (GA) in recognition accuracy and processing time.
This technique is not only applicable for breath analysis, but also useful in the
general applications of e-noses.

In Chap. 5, we focus on the evaluation of sensor performance instead of par-
ticular sensor selection techniques. First, a breath acquisition system for diabetes
diagnosis with 16 sensors is described. Based on this system, several methods are
proposed to evaluate the importance, unique discriminant information and redun-
dancy of each sensor. They are based on the results of exhaustive sensor selection.
These methods are made convenient to observe and draw intuitive conclusions.
They are applied to the breath acquisition system and some useful discoveries about
the sensors in the system are made accordingly.
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In Chap. 6, the transfer ability of prediction models is improved in two simple
yet effective steps. First, windowed piecewise direct standardization (WPDS) is
used to standardize the slave device, i.e., to transform the variables from the slave
device to match the master one. Then, data from the master device are used to
develop prediction models with a novel strategy named standardization error-based
model improvement (SEMI). Finally, the standardized slave data can be predicted
by the models with a better accuracy. The proposed WPDS is a generalization of the
widely used PDS algorithm. To evaluate the algorithms, three e-noses specialized
for breath analysis are adopted to collect a dataset, which contains pure chemicals
and breath samples. Experiments show that WPDS outperforms previous methods
in the sense of standardization error and prediction accuracy; SEMI consistently
enhances the accuracy of the master model applied to standardized slave data.

In Chap. 7, we introduce transfer-sample-based multitask learning (TMTL) to
simultaneously address two problems in e-nose signals: instrumental variation and
time-varying drift. Data collected with each device or in each time period define a
domain. Transfer samples measured in every domain are used to share knowledge
across domains. TMTL reduces the influence of drift in the target domains by
aligning the transfer samples at the model level. Two paradigms, parallel and serial
transfer, are designed to reflect different relationships between domains, which are
dependent on the cause of drift. A dynamic model strategy is proposed to predict
samples with known acquisition time and to handle noise in transfer samples.
Classification and regression experiments on three real-world datasets confirm the
efficacy of the proposed methods. They achieve good accuracies compared with
traditional feature-level drift correction algorithms and typical
labeled-sample-based MTL methods, with few transfer samples needed. TMTL is a
practical algorithm framework which can greatly enhance the robustness of sensor
systems with complex drift.

In Chap. 8, we propose drift correction autoencoder (DCAE) to deal with
instrumental variation and time-varying drift of e-noses. DCAE learns to model and
correct these influential factors explicitly with the help of transfer samples. It
generates drift-corrected and discriminative representation of the original data,
which can then be applied to various prediction algorithms. Experimental results
show that DCAE outperforms typical drift correction algorithms and
autoencoder-based transfer learning methods. In particular, it is better than TMTL
in the last chapter in datasets with complex drift, at the cost of longer training time
and more hyper-parameters.

Chapter 9 proposes Maximum Independence Domain Adaptation (MIDA) for
unsupervised drift correction. MIDA borrows the definition of domain features in
the previous chapters and learns features which have maximal independence with
them, so as to reduce the inter-domain discrepancy in distributions. A feature
augmentation strategy is designed so that the learned subspace is
background-specific. Semi-supervised MIDA (SMIDA) extends MIDA by
exploiting the label information. The proposed algorithms are flexible and fast. The
effectiveness of our approaches is verified by experiments on synthetic datasets and
three real-world ones on sensors and measurement.
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In Chap. 10, we study the classical support vector machine recursive feature
elimination (SVM-RFE) algorithm and improve it by incorporating a correlation
bias reduction (CBR) strategy into the feature elimination procedure. Experiments
are conducted on a synthetic dataset and two breath analysis datasets. Large and
comprehensive sets of transient features are extracted from the sensor responses.
The classification accuracy with feature selection proves the efficacy of the pro-
posed SVM-RFE + CBR. It outperforms the original SVM-RFE and other typical
algorithms. An ensemble method is further studied to improve the stability of the
proposed method. By statistically analyzing the features’ rankings, some knowl-
edge is obtained, which can guide future design of e-noses and feature extraction
algorithms.

Chapter 11 proposes a Sparse Representation-based Classification (SRC) method
for breath sample identification. The sparse representation expresses an input signal
as the linear combination of a small number of the training signals, which are from
the same category as the input signal. The selection of a proper set of training
signals in representation, therefore, gives us useful cues for classification. Two
experiments were conducted to evaluate the proposed method. The first one was to
distinguish diabetes samples from healthy ones. The second one aimed to classify
these diseased samples into different groups, each standing for one blood glucose
level. To illustrate the robustness of this method, two different feature sets, namely,
geometry features and principle components were employed. Experimental results
show that the proposed SRC outperforms other common methods, such as Support
Vector Machine (SVM) and K-Nearest Neighbor (KNN), irrespective of the fea-
tures selected.

In Chap. 12, we introduce a breath analysis system to measure acetone in human
breath, and therefore to evaluate the blood glucose levels of diabetics. The system
structure, breath collection method, and signal preprocessing method are intro-
duced. To enhance the system performance, we use a novel classification approach,
i.e., Sparse Representation-based Classification (SRC), to classify diabetics’ breath
samples into different blood glucose levels. Experimental results show that coupling
with SRC, the system is able to classify these levels with satisfactory accuracy.

Chapter 13 investigates the potential of breath signals analysis as a way for
blood glucose monitoring. We employ a specially designed chemical sensor system
to collect and analyze breath samples of diabetic patients. Blood glucose values
provided by blood test are collected simultaneously to evaluate the prediction
results. To obtain an effective classification results, we apply a novel regression
technique, SVOR, to classify the diabetes samples into four ordinal groups marked
with “well controlled”, “somewhat controlled”, “poorly controlled”, and “not
controlled”, respectively. The experimental results show that the accuracy to
classify the diabetes samples can be up to 68.66%. The current prediction correct
rates are not quite high, but the results are promising because it provides a possi-
bility of noninvasive blood glucose measurement and monitoring.

In Chap. 14, we describe the design of a novel optimized breath analysis system
for this purpose. The system uses carefully selected chemical sensors to detect
biomarkers in breath. Common interferential factors, including humidity and the
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ratio of alveolar air in breath, are compensated or handled in the algorithm. Con-
sidering the inter-subject variance of the components in breath, we design a feature
augmentation strategy to learn subject-specific prediction models to improve the
accuracy of BGL prediction. 295 breath samples from healthy subjects and 279
samples from diabetic subjects were collected to evaluate the performance of the
system. The sensitivity and specificity of diabetes screening are 91.51% and
90.77%, respectively. The mean relative absolute error for BGL prediction is 20.6%.
Experiments show that the system is effective and that the strategies adopted in the
system can improve its accuracy. The system potentially provides a noninvasive
and convenient method for diabetes screening and BGL monitoring as an adjunct to
the standard criteria.

Chapter 15 introduced a new medical e-nose signal analysis system. A novel
optimized medical e-nose system specially for disease diagnosis and BGL predic-
tion is proposed. A large-scaled breath dataset is collected by the proposed system.
Experiments are conducted on the collected dataset and the experimental results
have shown that the proposed system can well solve the problems of existed
systems and the methods have effectively improved the classification accuracy.

16.2 Future Work

Even though the current work for breath analysis has reached great achievement,
some limitations of this research should be stated. First, the results of breath
analysis are not stable enough to meet the clinic requirements. A major cause of this
problem is that breath samples are easily volatile and they are susceptible to the life
habits and dietary habits of the subjects, such as smoking and drinking. Second, the
accuracy of breath analysis highly relies on the device. A device with highly
accurate sensors is of benefit to the disease diagnosis. Based on the current tech-
nique, however, the performance of chemical sensors is limited. Third, not all kinds
of diseases can be detected by breath analysis. Breath analysis only can detect
several kinds of diseases. Therefore, this technique cannot take the place of blood
test completely. Additionally, the relationship between breath and some diseases are
not clear currently. Consequently, these disadvantages limit the development of
breath analysis. To achieve a better result, a possible solution is to improve the
breath analysis system and the pattern recognition methods.

The book has studied several issues in breath analysis and its medical applica-
tions. A few directions could extend current work and improve the accuracy and
robustness of the system:

(1) Improvement of the breath analysis system: the chemical sensors are critical for
breath analysis, as the accuracy of system relies on the development of sensor
technology. The system in Chap. 3 employs the chemical sensors from the
same company (FIGARO Engineering Inc.), where the sensors’ working
principles, performance parameters, and sensitivities are similar. Because of
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this, the responses of sensors are not significantly discriminating, such that the
diagnosis is not very remarkable for some diseases. As a result, discovering the
sensors with various working principle and performance are valuable to
enhancing the accuracy of data collection, which leads to the work in Chaps. 5
and 14.

(2) Extension of the database: the database with a larger number of samples can
provide stronger statistical evidence in disease diagnosis and to provide a
satisfactory diagnosis result. In our database, the samples of lung cancer and
gastroenteritis are limited, which is one of the reasons that the diagnosis
accuracies of them are not very satisfactory. Therefore, to increase the size of
the database and to enhance its varieties are the main tasks of future work.

(3) Discovering the technique of health condition monitoring: currently, more and
more sub-healthy condition and chronic illnesses are not likely to be detected
by the formal sector health services until they result in complications or
death. A new approach to health assessment and monitoring of health is
urgently needed. The health condition monitoring technique can serve as a
domestic tool for daily monitoring in this situation. When a subject is in
sub-healthy or diseased condition, alarm is emitted automatically by the breath
analysis system. This will be one of our future works.

(4) Discovering more medical treatment evaluation: our current study has intro-
duced the hemodialysis treatment evaluation. In fact, much more interesting
and useful treatment evaluation should be discovered, such as airway inflam-
mation, asthma, and COPD. The common blood check is not effective in
detecting whether these diseases are cured or not. However, the biomarkers of
these diseases are easily detected by breath analysis. This would be a promising
research direction.
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