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Foreword

Efficient and accurate cardiovascular monitoring in clinical practice constitutes
a public health stake of paramount importance. The automated and reproducible
analysis of cardiovascular signals has thus received significant research efforts
over the last two decades. Such research, conducted by teams from all over
the world, gathering renowned medical doctors and experts in statistical signal
processing, led to a very diverse body of science, both in the broad range of
pathophysiological issues they have addressed and in the richness of the formal
concepts and corresponding technical tools they have invented and developed.
Advances in sensor technologies as well as in computer facilities, together with
progress in medicine and physiology, are continuously and further enlarging the
potential benefits of cardiovascular monitoring, hence further motivating the need
for accurate cardiovascular signal analysis tools and methodologies. The timing is
thus excellent for the publication of a volume focused on recent advances on the
quantitative assessment of complexity and nonlinearity in the cardiovascular system
able to reflect on, organize together, compare, and survey the current knowledge
and know-how in the field, aiming to tame the diversity of available conclusions
and achieved results and to help frame future research and development.

The book, proposed by R. Barbieri, E. Pasquale Scilingo, and G. Valenza, world-
renowned scientists who have significantly and consistently contributed to the field
and have a rich view of its various and different practical and methodological
aspects, is offering state-of-the-art contributions in cardiovascular signal analysis.
The volume opens with a chapter, proposed by editors and collaborators, reviewing
the physiological mechanisms underlying the nature of cardiovascular signals, and
is organized in two sections, dedicated respectively to methodological developments
and applications.

The Methodology Section will review and compare the use of several concepts,
stemming from information theory and advanced statistical signal processing, as
well as scale-free dynamics and nonlinear or nonstationarity signal processing
methods.
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The complexity of cardiovascular signals has indeed been probed using concepts
ranging from chaos (Schulz et al., Faes et al.) and entropies (Hu et al., Valenza et al.)
to symbolic complexity (Schulz et al.). The modeling of cardiovascular signals has
required extensive use of nonstandard signal processing tools: time-varying analysis
(Valenza et al.), time-frequency analysis (Orini et al.), multiscale analysis (Vanello
et al.), and fractal analysis (Castiglioni et al., Paradisi et al.).

The Application Section offers a broad overview of the potential interests of car-
diovascular signal analysis for the investigations of several different physiological
issues and for the assessment of pathologies, thus paving the way toward clinical
practice of these modern tools: heart failure (Liu et al.), diabetic cardiac neuropathy
(Jelinek et al.), depression and bipolar disorder (Valenza et al.), epilepsy (Romigi
et al.), atrial fibrillation (Alcaraz et al.), fetal heart rate monitoring (Signorini et al.),
acute brain injury (Almeida et al.), and sleep apnea (Varon et al.). The Application
Section also contains two review articles, one dedicated to the relations of age
and gender with complexity measures (Schroeder et al.) and another one offering
a historical perspective on the impacts of academic research efforts on clinical
practice, as well as on the relations between these two worlds (Sassi et al.).

In sum, R. Barbieri, E. Pasquale Scilingo, and G. Valenza have assembled
a remarkable collection of contributions, whose reading is both instructive and
pleasant, offering an up-to-date overview of the field, its history, as well as its
possible future.

CNRS Senior Researcher, Ecole Normale Supérieure de Lyon Patrice Abry
Lyon, France
April 15, 2017
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Part I
Introduction



Chapter 1
Introduction to Complex Cardiovascular
Physiology

Michele Orini, Riccardo Barbieri, Mimma Nardelli, Enzo Pasquale Scilingo,
and Gaetano Valenza

Abstract This chapter aims at providing a brief overview of the main aspects in
cardiovascular physiology that have encouraged and justified the use of advanced
nonlinear signal processing methodologies for the study of the cardiovascular
system. This system, in fact, constantly adapts to changes in internal and external
conditions to maintain blood pressure homeostasis through complex and dynamic
feedback mechanisms that simultaneously affect several processes such as heart
rate, cardiac output, blood pressure, respiration, peripheral resistance etc. Therefore,
there is a need for nonlinear, non-stationary, and multivariate approaches to assess
cardiovascular interactions and their causal structure in health and disease.

This chapter aims at providing a brief overview of the main aspects in cardiovascular
physiology that have encouraged and justified the use of advanced nonlinear signal
processing methodologies for the study of the cardiovascular system. This system,
in fact, constantly adapts to changes in internal and external conditions to maintain
blood pressure homeostasis through complex and dynamic feedback mechanisms
that simultaneously affect several processes such as heart rate, cardiac output,
blood pressure, respiration, peripheral resistance etc. Therefore, there is a need
for nonlinear, non-stationary, and multivariate approaches to assess cardiovascular
interactions and their causal structure in health and disease. This introduction
focuses on short-term regulation of the cardiovascular function, whose primary
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Table 1.1 Important

: Measure Typical value | Normal range

variables of the - -

cardiovascular system End-diastolic volume (EDV) | 120 mL 65-240 mL
End-systolic volume (ESV) |50 mL 16-143 mL
kStroke volume (SV) 70 mL 55-100 mL
Ejection fraction (Ef) 58% 55-70%
Cardiac output (CO) 4.9 L/min 4.0-8.0 L/min
Systolic pressure 90-119 mmHg
Diastolic pressure 60-79 mmHg
Heart rate (HR) 70 bpm 60-100 bpm

aim is to ensure that blood pressure allows oxygen and nutrients supply to match
body’s needs. The most important parameters that determine the cardiovascular
function as well as their normal range are reported in Table 1.1. Mean arterial
pressure (MAP) is determined by the interaction between cardiac output (CO), total
peripheral resistance (TPR), heart rate (HR), and stroke volume (SV) [1]:

MAP = CO x TPR = (HR x SV) x TPR (1.1)

Indeed, the autonomic nervous system is able to continuously and dynamically
regulate blood pressure by adjusting these parameters. Details on neural control of
the cardiovascular system, as well as on gender differences in the autonomic nervous
system regulation, baroreflex, heart rate variability, and respiratory sinus arrhythmia
follow below.

1.1 Neural Control of the Cardiovascular System

The autonomic nervous system plays a primarily role to maintain homeostasis
through the regulation of arterial pressure and all major cardiovascular variables.

The efferent autonomic signals are transmitted to the various organs of the body
through two major subdivisions called the sympathetic nervous system and the
parasympathetic nervous system [2]. The sympathetic and parasympathetic nerve
fibers secrete mainly one or the other of two synaptic transmitter substances: acetyl-
choline or norepinephrine. Fibers that secrete acetylcholine are called cholinergic,
while those that secrete norepinephrine are called adrenergic, a term derived from
adrenalin, which is an alternate name for epinephrine.

Table 1.2 shows the effects on different visceral functions of the body caused
by stimulating either the parasympathetic nerves or the sympathetic nerves. From
this table, it can be seen that sympathetic stimulation causes excitatory effects in
some organs but inhibitory effects in others. Likewise, parasympathetic stimulation
causes excitation in some but inhibition in others. Also, when sympathetic stim-
ulation excites a particular organ, parasympathetic stimulation sometimes inhibits
it, demonstrating that the two systems occasionally act reciprocally to each other.
However, most organs are dominantly controlled by one or the other of the two
systems.
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Table 1.2 Effect of

. Sympathetic Parasympathetic
sympathetic an.d L Organ stimulation stimulation
parasympathetic activation Heart Increased rate Slowed rate

Heart Increased force | Decreased force
of contraction of contraction
Coronaries Constricted («), |Dilated
dilated (8,)
Vessel Constricted No effect
Arterioles Constricted No effect
Adrenal medullae | Release of (nor) |No effect
epinephrine
Arterial pressure | Short-term Short-term
increase decrease

In contrast with skeletal nervous system regulation, activation of autonomic
effectors is enabled by low frequency stimulation. In general, only one nerve
impulse every few seconds suffices to maintain normal sympathetic or parasym-
pathetic effect. Moreover, the sympathetic and parasympathetic systems are con-
tinuously active, and the mean basal rates of activity are known, respectively, as
sympathetic tone and parasympathetic tone [2]. While the tonic influences of a
system are usually associated with an average modulation, variation over the tone is
usually called phasic stimulation.

The activity of the autonomic nerves that regulate the cardiovascular function is
determined by a network of neurons located in the medulla oblongata that receive
inputs from other central structures including the hypothalamus, cerebral cortex, and
medullary chemoreceptors; and from peripheral reflexes arising from baroreceptor,
chemoreceptor, mechanoreceptor, thermoreceptor, and nociceptor afferents located
in the blood vessels, heart, lungs, skeletal muscles, skin, and viscera [3].

The sympathetic nervous system can rapidly increase MAP by constricting
arterioles, and therefore peripheral resistance, or by increasing heart rate or stroke
volume, whereas the predominant effect of parasympathetic activation is a rapid
decrease of heart rate, which influences cardiac output [1].

1.1.1 The Parasympathetic Nervous System

About 75% of all parasympathetic nerve fibers are in the vagus nerves (cranial nerve
X), passing to the entire thoracic and abdominal regions of the body. The vagus
nerves supply parasympathetic nerves to the heart, lungs, esophagus, stomach, entire
small intestine, proximal half of the colon, liver, gallbladder, pancreas, kidneys, and
upper portions of the ureters [2].

Parasympathetic division consists of long preganglionic fibers that synapse on
short postganglionic fibers arising from ganglia located close to the effector targets.
Therefore, parasympathetic discharge causes fairly localized responses [3].

Either all or almost all of the postganglionic neurons of the parasympathetic
system are cholinergic. Thus virtually all the terminal nerve endings of the
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parasympathetic system secrete acetylcholine. Acetylcholine activates mainly two
types of receptors, called muscarinic and nicotinic receptors.

1.1.1.1 Effect of the Parasympathetic Nervous System

» Effects on the heart:

Tonic parasympathetic activation predominates over sympathetic tone at rest [4].
Parasympathetic stimulation on the heart causes mainly opposite effects than
sympathetic stimulation: decreased heart rate and strength of contraction. Heart
rate reduction is mediated by inhibition of the sympathetic nervous system and
by direct hyperpolarization of sinus nodal cells. The membrane hyperpolarization
decreases the spontaneous firing rate of the sinoatrial node and slows conduction
in the atrioventricular node, thereby slowing the intrinsic heart rate [4].

The effects of parasympathetic regulation of ventricular activation and repo-
larization have not been extensively studied, and parasympathetic innervation
of the ventricular myocardium was considered minimal for many years [5].
However, direct vagal nerve stimulation has been recently shown to decreased
heart rate, left ventricular pressure and contractility, and to prolong ventricular
action potential duration in an in-vivo porcine model [5].

» Effects on blood vessels:
Parasympathetic stimulation has almost no effects on most blood vessels except
to dilate vessels in certain restricted areas, such as in the blush area of the
face [2].

« Effects on arterial pressure:
Parasympathetic stimulation can provoke a decrease in arterial pressure, because
it decreases pumping by the heart but has virtually no effect on vascular
peripheral resistance [2]. Very strong vagal parasympathetic stimulation can
almost stop or occasionally actually stop the heart entirely for a few seconds
and cause temporary loss of all or most arterial pressure.

Clinical Implications While elevated sympathetic activity is associated with an
adverse prognosis, a high level of parasympathetic activation confers cardio-
protection by several potential mechanisms [4]. Epidemiological data indicate that
the resting heart rate predicts mortality. The higher the vagus nerve activity is, the
slower the heart rate is, the greater the increase in the parasympathetic component of
heart rate variability is, and the better the outcome is [4]. Moreover, parasympathetic
activation and its physiological effects are attenuated in heart failure. And either
direct or indirect vagus nerve stimulation could have direct beneficial effects on
remodeling and clinical outcomes. Vagal nerve stimulation has also been shown to
decrease infarct size [6], reduce the ventricular fibrillation threshold and decrease
the incidence of ventricular arrhythmias and mortality during ischemia [5]. Due to
its cardio-protective effect, mainly mediated by antagonizing sympathetic overdrive,
vagal nerve stimulation devices have been proposed to treat heart failure [7, 8].
Many approaches are under development to modulate autonomic activity, that
include vagus nerve stimulation (VNS) [9], spinal cord stimulation [10], and
baroreceptor activation [11]. However, despite great expectations, recent clinical
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trials have shown that VNS does not reduce the rate of death or heart failure events
in chronic heart failure patients [12].

1.1.2  Respiratory Sinus Arrhythmia

Cardiorespiratory interactions are mediated by both mechanical effects related
to hemodynamics, and neural control mainly related to vagal (parasympathetic)
activity.

Respiratory sinus arrhythmia (RSA) is the variation in heart rate that occurs
during a breathing cycle, or heart rate variability in synchrony with respiration. In
short-term HRV, RSA is the most prominent and consistent component. It appears in
power spectrum of RR interval as a peak within the so-called HF band (0.15-0.4 Hz)
or, more appropriately, as a peak at respiratory frequency. Because the magnitude
of RSA is attenuating with progressive suppression of cardiac vagal activity and
abolished by complete vagal blockage with atropine, RSA has been proposed and
widely used as a quantitative index of cardiac vagal function [13—15].

The magnitude of RSA increases with rest and decreases with strain or tension.
RSA is increased in the supine position and decreased in the upright position
[16]. It becomes greatest during sleep and is greater during slow wave sleep than
REM sleep. It also increases with relaxation and decreases with physical and
mental stresses [13]. Moreover, RSA decreases with advancing age and severity
of cardiac diseases. In particular, in patients with coronary artery disease, RSA at
rest decreases progressively with advancing severity of coronary artery disease [13].

Although RSA was already studied at the beginning of the twentieth century, it is
still far from being completely understood, and it is consider a complex phenomenon
whose physiological role is still a matter of debate [17].

The importance of RSA is motivated by the following reasons: (i) It is frequently
employed as an index of cardiac vagal tone or even believed to be a direct measure
of vagal tone. For this reason RSA is classically described as a vagally mediated
increase and decrease in heart rate concurrent with inspiration and expiration,
respectively. (ii) It is used to index disease risk or severity [18]; (iii) It is a central
point in the evolution theory of neural control of cardiorespiratory interactions [19].
However, there are many concerns regarding the interpretation of RSA, which are
described in the following section.

Interpretation of RSA The simple magnitude of RSA is often assumed to be a
valid index of cardiac parasympathetic control. However, as explained in [19], there
are many significant caveats regarding vagal tone interpretation. The main concerns
are:

(i) Respiratory parameters of rate and volume can confound relations between
RSA and cardiac vagal tone. Alterations in respiration rate and tidal volume
had profound effects upon RSA magnitude: RSA magnitude under steady-
state conditions is inversely related to respiration rate and directly related to
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tidal volume. However, these effect have been reported to be unrelated to
directly determined levels of cardiac vagal tone [18]. A number of laboratory
studies have documented that changes in respiratory rate and tidal volume can
seriously confound the association of RSA and cardiac vagal tone. Respiratory
influences upon RSA amplitude become a problem for assessment of cardiac
vagal tone whenever respiratory rate and/or tidal volume substantially differ
between groups or conditions, and whenever RSA, respiratory parameters
and cardiac vagal tone do not covary with each other [19]. The most likely
explanation for the RSA variations due to changes in respiratory rate and
volume, is that they are related to phasic patterning of vagal effects upon heart
rate, owning to respiratory gating [20]. Therefore, in this case RSA cannot be
used to quantitatively measure vagal tone.

To exclude respiratory confounding effects from RSA, subjects are some-
times asked to breath at a paced rate [18]. Another technique is to adjust for
the influence of tidal volume. The measure is simply RSA divided by tidal
volume when time domain-measures are used [18], or the transfer function
from cross-spectral analysis of RR interval and respiratory time series when
spectral analysis is employed [21]. In both cases, this characterizes the amount
of RSA amplitude change per tidal volume. Due to the reciprocal relation
between rate and tidal volume, this adjustment may reduce or eliminate the
RSA dependency upon respiratory rate [19]. Finally, experts suggest that the
only way to determine whether RSA differences are related to respiratory
parameters in a particular study is to measure both respiration and RSA, as
well as to examine relations between the two [19].

Although within-subject relations between RSA and cardiac vagal control
are often strong, between-subject associations may be relatively weak [19].
Furthermore, it is not clear what exactly individual differences in RSA
represent.

RSA measurement is strongly influenced by concurrent levels of momentary
physical activity, which can bias estimation of individual differences in
vagal tone. Therefore, it is plausible that even small laboratory differences
in movement during baseline measurement may produce effects upon RSA
that could be wrongly inferred as evidence of constitutional differences in
autonomic control [19].

RSA amplitude is affected by sympathetic tone and may not be a pure
vagal measure. RSA was shown to be sensitive to variations in cardiac
vagal tone when cardiac sympathetic tone was absent, or was relatively low
and stable. However, there is not confirmation about the parasympathetic
specificity of RSA, i.e. that RSA always specifically reflects cardiac vagal
control independently from how cardiac sympathetic activity changes [19]. It
has been shown that RR interval correction of RSA can reduce or eliminate
the influence of basal levels of cardiac sympathetic tone. Concerning possible
sympathetic effects on RSA, it is worth mention that a pronounced decrease
in RSA magnitude may signify true reduction of vagal outflow from brain to
heart, or a primary increase in sympathetic tone that leads to an interaction
with vagal activity, or both.
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(v) RSA and cardiac vagal tone may dissociate under certain circumstances.
Dissociation has been observed in experiments in which phenylephrine was
used to activate vagal baroreflex response. The relation between RSA and vagal
tone was relatively proportional and linear until heart rate slows down to very
low levels. As heart rate further decreases, so does magnitude of RSA [22].
Some results suggest that the relation between RSA and vagal tone is quadratic
across the entire range of vagally mediated heart change [22].

Another instance of dissociation between cardiac vagal tone and RSA
appears to occur during stimulation of the carbon dioxide chemoreceptors [19].

Recently, it was suggested that the apparent associations between RSA and cardiac
vagal tone can be explained as indirect consequences; i.e., whenever the cardiac
vagal tone changes in response to the resting level of the cardiopulmonary system,
RSA appears to change parallel to it [13]. This hypothesis, which supports the idea
that the degree of respiratory modulation of cardiac vagal outflow and cardiac vagal
tone may be regulated separately and independently of each other, can explain the
possible dissociation between the respiratory cardiac vagal modulation and cardiac
vagal tone under certain conditions. According to this hypothesis, RSA should
be considered as an intrinsic resting functionality within the cardiopulmonary
system [13].

Origin of RSA Three main hypothesis exist to explain the origin of RSA.
According to them, RSA may be due to (i) A central mechanism [23], (ii) The
baroreflex [24-26], (iii) The mechanical stretching of the sinoatrial node [27, 28];
(iv) A mixture of these mechanisms [29].

Those who support the central origin for RSA, pointed out that vagal-cardiac
motoneuron membrane potentials fluctuate at respiratory frequencies, modulate
responsiveness of vagal motoneurons to arterial baroreceptor inputs, and impose
a respiratory rhythm on vagal-cardiac nerve traffic and heart periods. Therefore,
central respiratory gating of vagal motoneuron responsiveness [20] is sufficient to
explain respiratory sinus arrhythmia [23]. According to this hypothesis, the strong
correlation between systolic pressure and RR intervals at respiratory frequencies
reflects the influence of respiration on these two measures, rather than arterial
baroreflex physiology [20, 30]. A central mechanism is thought to be more likely
than baroreflex also due to the observation that the latencies between a change in the
respiratory component of the arterial pressure and a related change in the respiratory
component of th RR (i.e. RSA) reported in the literature is too short to be due to
baroreflex mechanisms. Moreover, RSA is still present in subjects with baroreflex
failure [29], and causal analysis also support the hypothesis that baroreflex cannot
be considered as the unique origin of RSA [29, 31-33].

The hypothesis that RSA is mainly a reflex phenomenon, driven by incoming
information from baroreceptors, relies on a model [24, 34]. According to this
hypothesis the RSA is due to respiratory induced blood pressure oscillations (mainly
due to variations in the stroke volume following intrathoracic pressure changes)
that are translated into heart rate by the baroreflex [25]. Consequently, RSA
would reduce diastolic pressure variability. This hypothesis does not refute animal
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experiments that show respiration to modulate centrally the blood pressure to heart
period reflex, but it suggests that in awake humans this phenomenon is insufficient
to explain respiration-to-heart rate relations [25].

A third hypothesis suggests that, given the complexity of human cardio-
respiratory physiology, RSA should be the results of many causes. Among others,
there are the feedback from the lungs and, possibly, atrial stretch receptors [26].

This debate points out the need of improved methodologies that undertake the
limitation of classical temporal or spectral analysis [35].

Physiological Role of RSA Respiratory sinus arrhythmia is a physiologic phe-
nomenon reflecting respiratory-circulatory interactions universally observed among
vertebrates. Some studies have shown that the efficiency of pulmonary gas exchange
is improved by RSA, suggesting that RSA may play an active physiologic role [36,
37]. The matched timing of alveolar ventilation and its perfusion with RSA within
each respiratory cycle could save energy expenditure by suppressing unnecessary
heartbeats during expiration and ineffective ventilation during the ebb of perfusion.
Thus RSA may have a positive influence on gas exchange at the level of the lung via
efficient ventilation/perfusion matching [13, 37]. This hypothesis is in agreement
with the definition of the RSA as an “intrinsic resting function of cardiopulmonary
system” previously mentioned [13].

However, recent results [17] have been presented that do not support the
hypothesis that RSA optimizes pulmonary gas exchange efficiency via clustering of
heart beats in inspiration. In that study [17], contrary to assumptions in the literature,
no significant clustering of heart beats was observed, even with high levels of RSA
enhanced by slow breathing [17]. It is suggested that some process other than the
clustering of heart beats may be responsible for previously reported associations
between RSA and indexes of pulmonary gas exchange efficiency. Authors speculate
that the enhancement of gas exchange may be mediated by mechanical effects. The
falling intra thoracic pressure associated with spontaneous inspiratory effort lowers
right atrial pressure and facilitates blood flow to the right ventricle because the rate
of venous return changes inversely with right atrial pressure. This increased venous
return during inhalation may be transmitted to the pulmonary artery on subsequent
beats, resulting in a matched increase in both pulmonary capillary blood flow and
alveolar ventilation. This thoracic pump effect, which is distinct from RSA, may
be greater during slower breathing and may confound the apparent relationship
between RSA and pulmonary gas exchange efficiency [17].

1.1.3 The Sympathetic Nervous System

The sympathetic nervous system innervates the heart, blood vessels, kidneys and
adrenal medulla, and has a predominant role in cardiovascular regulation.

Each sympathetic pathway from the cord to the stimulated tissue is comprised
of two neurons, a short preganglionic neuron and a long postganglionic neuron.
Such an arrangement allows sympathetic discharge to cause diffuse responses
involving multiple regional effectors [3]. All preganglionic sympathetic neurons are
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cholinergic, while most of the postganglionic sympathetic neurons are adrenergic.
Ordinarily, the norepinephrine secreted directly into a tissue remains active for
only a few seconds, demonstrating that its reuptake and diffusion away from the
tissue are rapid. Epinephrine and norepinephrine are almost always released by the
adrenal medullae at the same time as the different organs are stimulated directly by
generalized sympathetic activation. Therefore, the organs are actually stimulated
in two ways: Directly by the sympathetic nerves and indirectly by the adrenal
medullary hormones. The two means of stimulation support each other, and either
can in most instances substitute for the other. However, some exceptions exist. For
example, recent work has shown that sympathetic nerve stimulation, not circulating
norepinephrine, modulates cardiac repolarization dispersion [38]. When secreted
into the blood by the adrenal medullae, both norepinephrine and epinephrine remain
very active for 10-30s; but their activity declines to extinction over 1 to several
minutes [2].

Before a transmitter substance secreted at an autonomic nerve ending can
stimulate an effector organ, it must first bind with specific receptors on the effector
cells. There are two major types of adrenergic receptors, alpha receptors and beta
receptors. Norepinephrine and epinephrine have slightly different effects in exciting
the alpha and beta receptors. Norepinephrine excites mainly alpha receptors but
excites the beta receptors to a lesser extent as well. Conversely, epinephrine excites
both types of receptors approximately equally. Therefore, the relative effects of
norepinephrine and epinephrine on different effector organs are determined by the
types of receptors in the organs.

Sympathetic nerves are continuously active so all innervated blood vessels
remain under some degree of continuous constriction. Direct observation of the
sympathetic nerve activity shows that (i) Discharges occur in a synchronized
fashion, with many of the nerves in the bundle being active at approximately
the same time, and (ii) That discharges generally occur in a highly rhythmical
fashion. Postganglionic sympathetic nerves are comprised of hundreds to thou-
sands of unmyelinated fibers that fire action potentials at almost the same time
(synchronization) to give discharges of summed spikes. Two features seem to
characterize sympathetic discharges: their firing frequency and amplitude. Some
researches have made the hypothesis of a differential control over the amplitude
and frequency of sympathetic activity [39]. This hypothesis suggests that the
network of cells involving the rostral ventrolateral medulla (at brainstem) provide
the basal level of nerve recruitment and determine the firing frequency based on
the intrinsic rhythmicity and phasic input from arterial baroreceptors, while inputs
from cell groups with direct projections to the spinal cord provide an extra level of
gain/recruitment of fibers [39].

Assessment of the Sympathetic Nerve Activity Because it is difficult to directly
record sympathetic outflow in humans, plasma concentrations of norepinephrine
are often used as a surrogate measure of postganglionic sympathetic nerve activity.
Caution is warranted, however, as blood levels will be affected by changes not only
in the release of noreprinephrine but also in its reuptake and metabolism (clearance
from the blood). Furthermore, plasma norepinephrine provides limited insight into
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regional differences in sympathetic nerve activity as it reflects the contribution of
norepinephrine spillover from all potential sources [3].

Radiotracer technology has been used extensively for studying norepinephrine
kinetics in humans and has now become a gold standard for assessing sympathetic
nerve activity in humans [39]. Norepinephrine in the plasma reflects the trans-
mitter released by sympathetic nerves that has spilled over into the circulation.
Norepinephrine spillover rate gives the rate at which norepinephrine released enters
plasma and provides information about the activity of sympathetic nerves in regions
that are not accessible by percutaneous microneurography, such as the heart and
kidney [40]. While this technique offers good estimations of regional sympathetic
nerve activity, limitations are related to its low repeatability, to the fact that it does
not allow for continuous recording and to the evidence of non linear relationship
between actual sympathetic activity and norepinephrine spillover [39].

In humans, sympathetic activity is often measured at the peroneal nerve, and
the most common measurement is muscle sympathetic neural activity, often called
MSNA. The technique involves the percutaneous insertion of a high-impedance
tungsten microelectrode (the tip of which is only a few microns in diameter).
Most sympathetic neural recordings involve multiunit recordings, but single-neuron
recordings are also possible. The level of muscle sympathetic neural activity did not
correlate to the resting heart rate or blood pressure (within normal range) but was
found to relate to cardiac output and thus total peripheral resistance in males [39].
Muscle sympathetic neural activity is characterized by a striking inter-individual
variability in resting humans, but it is very reproducible in a given person [40].
Recently, it has been suggested to be a good index of whole-body “net” sympathetic
vasoconstrictor tone in healthy young men [40].

Researchers have also attempted to use non-invasive marker to track sympathetic
nerve activity. Heart rate variability was shown to provide valuable information
about sympathetic tone [41-43]. Although heart rate variability analysis has the
great advantage of being the non-invasive and relatively simple, there are serious
limitations to this technique. Specifically, while the low frequency variability
in heart rate is influenced by the sympathetic nervous system, examples where
increases in sympathetic activity are not associated with changes in low frequency
variability have been reported [39, 44].

Effect of the Sympathetic Nervous Activity As also shown in Table 1.2, the
sympathetic nerves have a dominant role in cardiovascular control due to their
effects to increase cardiac rate and contractility, cause constriction of arteries and
veins, cause release of adrenal catecholamines, and activate the reninangiotensin-
aldosterone system [3].

* Effects on the heart:
Cardiac sympathetic innervation of the heart includes innervation of the sinoatrial
node, which allows sympathetic nerves to increase heart rate by increasing the
slope of diastolic depolarization during the spontaneous sinoatrial node action
potential [40]. Sympathetic nerves also innervate the myocardium; increases in
sympathetic activity increase myocardial contractility and, therefore, increase
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stroke volume. Thus, the sympathetic nervous system has both chronotropy and
inotropy effects on the heart [3]. Given the ability to modulate both cardiac
rate and stroke volume, the autonomic nerves provide an important remote
mechanism to rapidly adjust cardiac output to meet short-term changes in the
body’s needs. In humans, there is a good deal of tonic vagal discharge and a
moderate amount of tonic sympathetic discharge. The interplay of these tonic
activities results in a resting heart rate that is &~ 30% lower than the intrinsic
heart rate of 90—100 beats/min and a cardiac output that is &~ 30% higher than in
the absence of sympathetic discharge [39]. Additional sympathetic discharge can
increase heart rate and stroke volume and increase cardiac output. Conversely,
withdrawal of tonic vagal or sympathetic discharge has opposing effects to
increase or decrease cardiac output, respectively [39].

Sympathetic activation affects the action potential duration of cardiac myocyte
by modulating calcium and potassium ionic currents. Recently, experimental and
theoretical studies have linked sympathetic activity to low-frequency oscillations
in ventricular repolarization [45-47]. Beat-to-beat repolarization variability,
often estimated as QT interval variability from the ECG also increases with tonic
sympathetic activation [48, 49].

Effects on blood vessels: Sympathetic innervation of the peripheral vasculature
causes vasoconstriction primarily through the action of norepinephrine at post-
synaptic o-adrenergic receptors [40].

Vascular capacitance, mainly driven by venous capacitance, is strongly influ-
enced by sympathetic nervous activity. It is often overlooked that the venous
circulation receives considerable sympathetic innervation, and with 70% of the
blood volume can play a significant role in the acute cardiovascular responses
to sympathetic activation. Venoconstriction in the splanchnic circulation results
in a significant shift of blood towards the heart, increasing diastolic filling, and
thus increasing cardiac output. Blood that is forced out of the veins returns to the
heart, increasing end-diastolic volume and, via the Frank-Starling mechanism,
increasing stroke volume and cardiac output. As 20% of blood volume is located
in the veins of the splanchnic circulation, translocation of blood from this venous
reservoir due to sympathetic venoconstriction is a particularly effective way
to quickly redistribute blood from the venous side to the arterial side of the
circulation. Recently, it has been suggested that increases in venomotor tone
driven by sympathetic activity may be important mediators in cardiovascular
disease development [39].

Effects on blood pressure: Sympathetic stimulation increases both propulsion
by the heart and resistance to flow, which usually causes a marked acute increase
in arterial pressure [2]. To understand how sympathetic activity can control blood
pressure, it is important to remind relationship reported in (1.1), which shows
that blood pressure is determined by the product between cardiac output x total
peripheral resistance. Flow varies directly (and resistance inversely) with the
fourth power of the vessel radius. As a result, even small changes in vessel
caliber can have relatively large effects on vascular resistance and blood flow.
Sympathetic neural control of arteriolar resistance therefore offers a powerful
mechanism to regulate regional blood flows to individual organs and tissues. As
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the arterioles are the major contributors to total peripheral resistance, sympathetic
control plays a principal role in the regulation of systemic blood pressure [3].
Sympathetic control of blood vessels is mediated by the baroreflex, which is one
of the most important mechanisms for the short-term maintaining of the blood
pressure.

Pathophysiology What distinguishes the sympathetic nervous system is the emerg-
ing evidence that overactivity is strongly associated with a variety of cardiovascular
diseases [39, 50, 51]. Whether this increased sympathetic activity acts as a driver
of the disease progression or whether it is merely a follower is currently matter of
debate. However, beta blockers that treat and inhibit excess sympathetic stimulation
are currently widely used to treat most forms of cardiac diseases and reduce cardiac
risk.

In the following, we revised some of the conditions that are known to be
associated to chronic sympatho-excitation [39, 40].

* Hypertension: The study of the mechanisms underlying hypertension is clin-
ically relevant because hypertension is a causative factor in the development of
heart failure, renal failure, and stroke. The causes of sympatho-excitation in asso-
ciation with hypertension are unclear but may involve increases in chemoreflex
sensitivity to hypoxia or hypercapnia [40]. However, it is important to consider
that in the vast majority of cardiovascular diseases, there is a disproportionate
increase in renal sympathetic activity compared with sympathetic activity to the
muscle [39]. Chronic changes in blood pressure may be related with sympathetic
action on the kidney.

* Heart failure: Among patients with heart failure, muscular sympathetic activity
is strikingly increased. In terms of the occurrence of sympathetic bursts, a healthy
person may experience 30-50 bursts per 100 heart beats, whereas patients with
heart failure can experience as many as 90-100 bursts per 100 heart beats.
This extreme sympathoexcitation has been shown to be a predictor of mortality
for patients with heart failure [40, 52]. Rapid increases in cardiac sympathetic
activity are associated with ventricular arrhythmias, coronary occlusion, and
damage to myocytes associated with the resulting high norepinephrine levels.
Moreover, the degree of sympatho-activation appears to be a good indicator of
long-term prognosis [39]. The fundamental processes underlying the sympathetic
activation in heart failure remain uncertain.

* Obesity: Muscle sympathetic neural activity is increased markedly among
obese patients and decreases with weight loss induced by exercise and diet
[40]. Obesity is often related with hypertension, with up to 70% of newly
diagnosed hypertensive cases are attributable to obesity [39]. Obese hypertensive
subjects present high level of norepinephrine spillover from the kidneys. The
mechanism(s) by which weight gain elicits sympathetic neural activation remains
unclear [39].

* Sleep apnea: Sleep-related breathing disorders play an important pathophysio-
logical role in cardiovascular disease, and sympathetic activation is thought to be
a key mechanism linking sleep apnea to cardiovascular disease. For instance, in
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patients with obstructive sleep apnea, muscular sympathetic activity is increased,
even during the awake state without apnea [40]. Over time, periodic nocturnal
sympathetic activation related to apnea appears to evolve into a rise in the mean
daytime level of sympathetic activity.

* Mental stress: Large-scale studies link hypertension development with chronic
mental stress in the workplace. Blood pressure has been shown to be elevated
soon after migration, presumably due to stress [39]. Stress is recognized as
a cardiac risk factor, with epidemiological data showing that chronic stress is
associated with coronary heart disease and short-term emotional stress can act
as a trigger of cardiac events among individuals with advanced atherosclerosis
[53]. A stress-specific coronary syndrome, called Takotsubo cardiomyopathy,
also exists. The physiological response to stress and its association with cardiac
risk are thought to be mediated, at list in part, by a modulation of the sympathetic
nerve activity [53]. However, the role of the sympathetic nervous system in these
events need further studies [54-57].

1.1.4 Baroreflex

The baroreflex is a negative feedback system that buffers short-term fluctuations
in arterial pressure [1] by modifying the cardiovascular variables which, as shown
in (1.1), determine arterial pressure. Under a variety of environmental and physio-
logical circumstances, arterial blood pressure is regulated around a narrow range and
arterial baroreflexes are critically important for the beat-to-beat regulation of blood
pressure [1]. The importance of the baroreflex has been demonstrated in several
experimental data in which it has been observed that, in many animal species,
arterial baroreceptor denervation results in an increase of the variability of blood
pressure [52].

The arterial baroreflex senses changes in blood pressure via baroreceptors, which
are sensory afferent nerve endings mainly located in the carotid sinus and the aortic
arch. The baroreceptors respond to stretching of the vessel wall. In general, increases
in this stretching as the result of a short-term increase in blood pressure lead to an
increase in afferent input into central autonomic nuclei (notably the nucleus tractus
solitarius). This increase in afferent input results in a reflex decrease in sympathetic
neural outflow (sympathetic baroreflex), which in turn decreases vasoconstrictor
tone, myocardial contractility (to decrease stroke volume), and heart rate. These
sympathetic influences work in conjunction with parasympathetic influences on the
sinoatrial node to decrease heart rate (vagal cardiac baroreflex). During a short-
term decrease in blood pressure, the opposite occurs, and the autonomic nervous
system acts to increase vasoconstriction, increase stroke volume, and increase heart
rate [40].

Baroreflex Control of Sympathetic and Parasympathetic Outflow At normal
arterial pressures there is activity from all neural components of the arterial



16 M. Orini et al.

baroreflex: both afferent and efferent limbs. Both resistance and capacitance vessels
are partially constricted. With regard to determinants of heart rate, the sinoatrial
and atrioventricular nodes receive sympathetic and parasympathetic innervation,
and both efferent outflows are active at rest. Baseline heart rate is determined by
the balance between these two opposing influences and the relative contribution
of the sympathetic and parasympathetic nervous systems varies among species.
In conscious humans, basal parasympathetic nerve activity to the heart is the
major determinant of baseline heart rate, whereas basal sympathetic nerve activity
has small or negligible effects. In addition, variation in resting heart rate among
individuals is caused mainly by differences in basal parasympathetic tone. There
are significant differences in the time delay of the response mediated by parasym-
pathetic and sympathetic efferents. Following a rapid rise in arterial pressure,
parasympathetic activation produces an immediate reaction (between 200 and
600 ms) [52]. On the contrary, the reaction to cardiac and vasomotor sympathetic
activation occurs with a 2-3 s delay and reaches maximal effect more slowly. An
even more sluggish response has been observed in the baroreflex control of venous
return. Therefore, the ability of the baroreflex to control heart rate on a beat-to-beat
basis is exerted through vagal but not sympathetic activity [52]. However, even for
fast maneuvers, like standing up from the supine position, the ability to increase
heart rate quickly is not of primary importance. Heart-transplant patients provide
dramatic proof of this contention since they can only change their heart rate by way
of circulating hormones, like norepinephrine, which takes at least a minute to have
effect on heart rate after standing up. Still, these individuals can stand up without
any problem [58]. However, when the sympathetic innervation to the vasculature is
lost, as it may occur in autonomic failure, then the patient can no longer stand up
since blood pressure starts to drop immediately and, after some 5 s, consciousness
is lost due to cerebral hypoxia [58]. Therefore, the sympathetic efferent part of
the baroreflex is of much more importance, since it induces vasoconstriction in
response to a drop in blood pressure [58, 59]. Thus, for the control of blood pressure
sympathetic outflow to the heart and vasculature is far more important than what the
vagus nerve does to heart rate [59].

Although baroreflex has been widely studied, many aspects of the cardiovascular
control are still unclear. For instance, in a recent debate [23, 25, 29], the involvement
of the baroreflex in the respiratory sinus arrhythmia (oscillations in heart period
synchronous with respiration, described in the following, has been discussed. Some
authors [25], advocated that baroreflex should be considered as the main responsible
for respiratory sinus arrhythmia. Following this hypothesis, the first explanation of
respiratory sinus arrhythmia is that it is due to respiratory induced blood pressure
oscillations that are translated into heart rate oscillations by the baroreflex. Others
suggested that respiratory sinus arrhythmia has a central origin [20, 23, 29] and is
not baroreflex mediated [60]. This debate clearly shows that cardiovascular control,
including baroreflex, is far from being completely understood and that much work
is still needed.

In a recent study, orthostatic hypotension was observed in patients with pure
autonomic failure despite the increase in leg vascular resistance [61]. The results
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shown in [61] demonstrate that leg vasoconstriction during orthostatic challenges
in patients with pure autonomic failure is not abolished. This indicates that the
sympathetic nervous system is not the sole or pivotal mechanism inducing leg vaso-
constriction during orthostatic challenges. Additional vasoconstrictor mechanisms
may compensate for the loss in sympathetic nervous system control.

Baroreceptors In the normal operating range of arterial pressure, around
100 mmHg, even a slight change in pressure causes a strong change in the baroreflex
signal to readjust arterial pressure back toward normal. The baroreceptors respond
extremely rapidly to changes in arterial pressure; in fact, the rate of impulse firing
increases in the fraction of a second during each systole and decreases again during
diastole. Furthermore, the baroreceptors respond much more to a rapidly changing
pressure than to a stationary pressure. That is, if the mean arterial pressure is 150
mmHg but at that moment is rising rapidly, the rate of impulse transmission may
be as much as twice that when the pressure is stationary at 150 mmHg [62]. The
arterial baroreflex also responds to the normal small variations in blood pressure
that are continually induced by the respiratory cycle and by changes in posture in
healthy, resting humans.

Although the arterial baroreceptors provide powerful moment-to-moment control
of arterial pressure, their importance in long-term blood pressure regulation has
been controversial [62]. Some physiologists consider the baroreflex relatively
unimportant in chronic regulation of arterial pressure because baroreceptors tend
to reset in one to two days to the pressure level to which they are exposed. This
resetting of the baroreceptors may attenuate their potency as a control system for
correcting disturbances that tend to change arterial pressure for longer than a few
days at a time. Experimental studies, however, have suggested that the baroreceptors
do not completely reset and may therefore contribute to long-term blood pressure
regulation, especially by influencing sympathetic nerve activity of the kidneys [62].
Recently, it has been suggested that arterial baroreceptors play a role in long-term
regulation of arterial pressure under conditions of increased dietary salt intake [39].

Measurement of Baroreflex Sensitivity Traditionally, baroreflex sensitivity
(BRS) is measured as the induced heart period lengthening (in ms) divided by the
causative change in previous systolic pressures (in mmHg) [58, 63]. The baroreflex
appears to buffer (unwanted) blood pressure variability by modulating heart rate
variability. When the sympathetic baroreflex is less sensitive, the response of the
sympathetic nerves to a given change in arterial pressure will be less pronounced
and may be less able to return the pressure to baseline levels [40].

Originally, a pharmacological tool was used to quickly increase or decrease
blood pressure, i.e. an intravenous bolus injection of phenylephrine or nitroprusside,
which increases and decreases blood pressure, respectively. While vasoconstrictor
drugs, as phenylephrine, allows one to mainly explore the vagal component of the
baroreceptor control of heart rate, the excitation of the sinus node that accompanies
a reduction in arterial pressure caused by the administration of vasodilators,
as nitroglycerin, is partly mediated through sympathetic mechanisms. Therefore
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vasodilators have been used to obtain information on the sympathetic limb of heart
rate control [52].

The lack of selectivity in the response has been claimed as one of the major limi-
tations of the use of vasoactive drugs. Indeed, the pressure stimulus causes a simul-
taneous activation of multiple reflexogenic areas, particularly cardiopulmonary
receptors, which may interfere with or even counteract the arterial baroreceptor
reflex. Moreover, vasoactive drugs may directly affect the transduction properties
of baroreceptors, the central nervous system part of the reflex arc and the response
of the sinus node [52].

Later, it was shown that this intervention could be replaced by the measurement
of spontaneous blood pressure variations and the ensuing heart period variations
[64, 65]. Specifically, the variations around the “Eigen frequency” of the baroreflex
at 0.1 Hz are useful, while the variations around respiratory frequency are contro-
versial [23, 25, 26, 29], for this purpose. Resonances in low frequency are induced
mainly by the latencies in the sympathetic efferent arm of the baroreflex, excited
by spontaneous variations in blood pressure. This explanation for the genesis of so-
called low-frequency blood pressure oscillations received its theoretical basis by the
modeling work of De Boer et al. [24, 58].

Two basic approaches have been established for spontaneous BRS quantification:
one based on time domain and the other on frequency domain measurements. In
time-domain, the sequence method [66] is based on the identification of three or
more consecutive beats in which progressive increases/decreases in systolic blood
pressure are followed by progressive lengthening/shortening in RR interval. The
sensitivity of the reflex is obtained by computing the slope of the regression line
relating changes in systolic pressure to changes in RR interval [52]. Evaluation of
BRS by spectral methods is based on the concept that each spontaneous oscillation
in blood pressure elicits an oscillation at the same frequency in RR interval by
the effect of arterial baroreflex activity [52]. There are some differences in the
computational algorithms of spectral indexes of BRS [63], which can be divided in
autoregressive spectral methods [67, 68] and transfer function based methods [65].
More recently, advanced time-varying methods to assess changes in the baroreflex
sensitivity have been also proposed [69-71].

However, these methodologies provide only a partial characterization of the
baroreflex, and probably not even the most important component. The baroreflex
sensitivity describes the ability of the baroreflex to change heart period (or heart
rate) in response to a change in blood pressure [58], while it gives no information
about the changes in the blood vessels operated by sympathetic nerves. Given that
the changes in heart period are principally related to the vagal efferent activity to
the heart, the BRS is sometime called vagal BRS or cardiac BRS [72].

An index of baroreflex control of sympathetic outflow (sympathetic BRS) is
provided by the relationship between muscular sympathetic nervous activity and
diastolic blood pressure during the drug boluses [72]. Diastolic blood pressure is
used because muscular sympathetic nervous activity correlates more closely with
diastolic blood pressure than with systolic pressure. A recent study showed that,
within individuals, there is a low correlation between the sensitivities of the cardiac
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and sympathetic efferent arms of the baroreflex mechanism, i.e. between cardiac and
sympathetic baroreflex sensitivity [72]. This result emphasizes the distinct pathways
associated with cardiac and sympathetic baroreflex control and the need to use
caution when drawing conclusions about the baroreflex as a whole if only one or
the other arm of the reflex is studied [72].

Clinical Relevance A quantitative description of BRS can provide a useful index
of neural regulation of the sinus atrial node. This information has clinical and
prognostic value in a variety of cardiovascular diseases, including myocardial
infarction and heart failure [50, 52]. The notion that BRS may be altered in patients
with cardiovascular disease is not new [73]. Cardiovascular diseases are often
accompanied by an impairment of baroreflex mechanisms, with a reduction of
inhibitory activity and an imbalance in the physiological sympathetic-vagal outflow
to the heart, thus resulting in a chronic adrenergic activation [52].

Age and blood pressure have been demonstrated to be the most important
correlates of BRS. Although the exact mechanism is not known, loss of arterial
distensibility is generally regarded to be the main mechanism responsible for
reduction of BRS in older subjects [52]. The clinical relevance of spontaneous BRS
analysis [64] is shown by its ability to detect early impairment of autonomic function
[74] and to provide information of prognostic value, as in patients after stroke [75]
or myocardial infarction [76], or in the diagnosis of brain death [77]. In particular,
the study described in [76] enrolled almost 1300 patients under 80 years and showed
that impaired vagal reflexes, expressed by a depressed BRS (< 3 ms/mmHg), was
a significant predictor of total cardiac mortality, independently of well-established
risk factors such as depressed left ventricular function and the number of ectopic
beats/hour [52].

Patients with low heart-rate variability or BRS have a reduced capability to
antagonise sympathetic activation through vagal mechanisms [76]. However, a low
BRS added predictive value to that of low heart-rate variability [76].

A number of papers have supported the pathophysiological and clinical relevance
of spontaneous BRS estimates. Indeed, the information provided by laboratory and
spontaneous methods appears to be complementary, when exploring the complexity
inherent in baroreflex cardiovascular modulation [78].

1.2 Sympatho-Vagal Nonlinear Interactions

Sympathetic and parasympathetic systems activities were traditionally considered
to produce opposite effects in the autonomic control. When this dynamic balance
changes into a static imbalance, for example, under environmental stress, the
organism becomes vulnerable to pathology.

The classical model of sympatho-vagal balance was proposed by William
Cannon in the beginning of twentieth century. He suggested the existence of a
mutual influence, which conducts to a decrease of the parasympathetic activity
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in case of increased sympathetic activity and vice versa, with a linear-continuum
model of activity of the autonomic nervous system in its two subdivisions. The
model of Cannon was based on a negative feedback mechanism, regulated by the
hypothalamus [79].

Cannon’s pioneer studies about emotional physiology, highlights the role of
the sympathetic nervous system in the coordination and mediation with the neu-
roendocrine and cardiovascular modifications, which follow an emotional stimulus.
He called this response “emergency reaction”, which is known as “flight or
fight response” of the sympathetic nervous system [80]. In the same theory, the
parasympathetic system was indicated to be the accountable to the “rest and digest”
functions, preserving the basal conditions of the organism during the resting state,
in terms of heart rate, respiration and metabolism.

In the 1930s, Rosenblueth and Simeone observed that when a vagal stimulus was
given to anesthetized cats, their heart rate decreased and the effect was more evident
under tonic sympathetic stimulation [81]. This was successively confirmed by Adli
Samaan [82].

A review about this interpretation of the interaction between sympathetic and
parasympathetic activities was written by Levy in 1971 [83], who introduced the
definition of “accentuated antagonism”, as the phenomenon where the cardiac
response to neural activity in one autonomic division depends on the level of
activity in the other autonomic division. Following this definition, it was suggested
that the effects of combined sympathetic and vagal stimulation on the heart rate
are not simply additive. Levy studied the consequence of a vagal stimulation on
the heart, and he found in his experiments that the effects of the accentuated
antagonism are modulated in accordance with the cardiac effector tissue [84]. This
concept is detectable in the activity of sinoatrial nodal tissue, where the action of
sympathetic stimulation produces a less relevant effect when the vagal activity rises.
This kind of interaction is not appreciable in the neural control of atrioventricular
conduction. When the parasympathetic stimulation of the heart is not accompanied
by a considerable sympathetic activity, the only response is a feeble negative
inotropic effect on the ventricular myocardium.

The accentuated antagonism was found to be influenced by time factor in
the sequence of excitation of vagal and sympathetic nervous systems [85, 86].
Furukawa et al. found that when a simultaneous stimulation of sympathetic and
parasympathetic systems is produced, the inhibitory effect of vagal stimulation
prevails on the effect of the contemporary sympathetic stimulation. However the
autonomic response tends to slide back towards the level before the stimulation and
the variation of the activity as a function of the time is more relevant when the
frequency of the excitation sequence is high.

Yang and Levy showed that a prolonged stimulation of sympathetic system leads
to a reduction of the effects of vagal nervous system activity [87], in a sort of
sympathetic inhibition of vagus nerve. This means that the nature and the magnitude
of sympatho-vagal interaction can be influenced by previous consistent stimulations,
which can provoke a mitigation of this phenomenon. From the biochemical point
of view, this outcome is the consequence of the accumulation of neuropeptide Y
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which inhibits the vagal nervous termination at the junctional level [88]. Many other
studies in the literature highlighted the inhibition of chronotropic responses to vagal
stimulation, after a previous intense sympathetic activity [8§9-92].

At the end of twentieth century, Bernston et al. [93] proposed a non-linear model
to describe these interactions, based on a bidirectional modulation of vagal control
and supported by the study of Porter et al. [94]. This model is characterized by
coactive or independent changes in the autonomic divisions. Both the subsystems
in this model are considered to be tonically active and to cooperate in normal and
emergency conditions. Even if one or the other system can prevail in the control, it is
the total balance of activity of the two to maintain the homeostasis of the organism.
This bivariate representation of autonomic nervous system activity is shown in
Fig. 1.1. The psychophysiological responses are depicted, in this autonomic space
model, as vectors on an autonomic plane bounded by orthogonal sympathetic
and parasympathetic axes. Bernston’s model incorporates the classical reciprocal
modes of autonomic control (sympathetic activation/parasympathetic withdrawal;
parasympathetic activation/sympathetic withdrawal), and also adds the broader
range of autonomic modes (coactivation, coinhibition, and uncoupled sympathetic
or parasympathetic changes). These four modes correspond to the four quadrants
of the bivariate sympathetic-parasympathetic autonomic plane, two of them are
the branches where the systems activities are negatively correlated (sympathetic
reciprocal and parasympathetic reciprocal modes), and two where the branches
are positively correlated (coactivation and coinhibition). In contrast with the linear
model of Cannon, the Bernston model assumes that rostral neural networks action,
following particular psychological and physical states, can produce reciprocal,
autonomous or also coactive changes in sympathetic and parasympathetic activity.
The nonlinear aspects of the dynamic interaction between sympathetic and parasym-
pathetic nervous systems were studied by Sunagawa and Kawada [96, 97]. In
their research, they estimated the transfer function from nerve stimulation to
heart rate. This model highlighted the crucial role of the dynamical interaction
of the autonomic nervous system subdivisions in the regulation of heart rate,
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considering the continuous changes in sympathetic and vagal activities due to
external stimuli. The authors considered a system where the input was the vagal
or the sympathetic stimulation and the output was the effect on the heart rate.
Given the intrinsic nonlinearity of biological systems, the Gaussian white noise
approach was applied, in order to be able to calculate the linear transfer function
also in presence of nonlinear dynamics [98]. The experiment was addressed to
examine the tonic vagal stimulation effects on the dynamic heart rate response
to sympathetic stimulation and vice versa in «-chloralose-anesthetized rabbits.
Confirming the theory of Levy, Sunagawa et al. studied that stimulation of either
the sympathetic and parasympathetic nervous systems increased dynamic response
of heart rate to the concurrent stimulation of its counterpart. This phenomenon was
called bidirectional augmentation and was explained by considering a sigmoidal
static relationship between autonomic nervous system and heart rate. The scheme
of this reciprocal excitation is shown in Fig. 1.2. From the graph it could be seen that
when the sympathetic nervous system is stimulated alone, the mean heart rate is high
and (c) can be considered the operating point. If a simultaneous vagal stimulation is
produced, the operating point of the system becomes (a). The slope of the tangential
lines in the operating points depends on the gain of the stimulation. For example,
the slope in (a) is larger than in (c) because the concomitant vagal stimulation
increased the gain of the dynamic heart rate. When the stimulation involves only
the parasympathetic nervous system, the operating point of heart rate is in (b) and
the dynamic gain is also low.

This model has several limitations, e.g. the absence of precise information about
the operating points and the inability to express the real nonlinear properties of
input-output relationship of the system [97]. Regarding the last observation, Borger
et al. demonstrated that the gain of the transfer function decreased with the increase
of the mean stimulation frequency of Gaussian white noise [99]. This property
was not explained through the sigmoid curve of Fig.1.2. In order to overcome
these limitations, Kuwada et al. applied a neural network analysis to obtain further
information about the static and dynamic regulation of heart rate. This approach was
used to analyze data recorded during three experimental protocols in a rabbit model.
In the first two protocols either the parasympathetic or the sympathetic systems
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were stimulated, while in the third protocol both system were simultaneously
stimulated. They used a simple two layers neural network for the identification of
the characteristics of heart rate (see Fig. 1.3). The first layer received as input the
time series of command signals for sympathetic stimulation (s(n), ..., s(n —k)) and
for vagal elicitation (v(n), ..., v(n — k)). The weights related to the response of the
two systems are shown in the figure with the symbols wy and w,. The output of the
neural network is given by the following equation:

HRp(n) = f {221 I (i) x s = i) + wy (i) x (n = i)]} (1.2)
The function f, defined in the second layer, is:
fx)y=axx+b (1.3)

The authors chose a linear function in order to plot the scattergrams of the measured
responses versus the linearly predicted outputs. The scattergrams highlighted a
sigmoidal dependence, as shown in Fig. 1.4, on the left.

Then the authors used a nonlinear sigmoidal function:

Py

f) = 1 + exp[P; x (P3 — x)] +

Py (1.4)

where P; is the range of heart rate response, P, is the slope coefficient, Ps is the
midpoint of the operating range and P, is the minimum of heart rate. In Fig. 1.4,
on the right, it is easy to see the result of the application of this nonlinear neural
network, with the linear dependence between the linearly predicted values of heart
rate and the measured heart rate. In the same study, the authors simulated static heart
rate response to combined stimulation of vagal and sympathetic systems. The results
are displayed in Fig. 1.5, which shows that in absence of sympathetic stimulation,
the heart rate decreases along the parasympathetic axis (curve a—b) and when only
the sympathetic system is stimulated, it increases along its axis (curve a—c). The
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Fig. 1.4 Scattergrams of measured heart rate values as a function of the output of the linear neural
network (on the left) and of the nonlinear neural network (on the right) [97]

Fig. 1.5 Graph of the heart
rate response following
combined sympathetic and
vagal stimulation [97]
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slopes of this curve change when the stimulation is combined, in the first case it
rises when the sympathetic system is stimulated (curve c—d) and in the second is
reduced by the activation of vagal nervous system (curve b—d).

There is a region, circumscribed by a dashed line in Fig. 1.5, where the combined
action of the two system produces steeper slopes along the two directions (lines 3—
4 and y-§). This suggests that, under a balanced condition of the stimulation, a
bidirectional augmentation can be produced.

The hypothesis of nonlinearity in heart rate dynamics was supported also by
other studies in the literature. Long range power-law correlations in beat-to-beat
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fluctuations were discussed in several works, and this condition is typical in physical
systems near a critical point [100].

Tulppo et al. tested the hypothesis of fractal organization of autonomic dynamics
in heart rate regulation [101]. The fractal properties of heart rate consist in the
self-similarity fluctuations which are invariant over a large range of scales and
are supposed to depend on the characteristics derived from deterministic chaos in
the control of autonomic nervous system [102]. The loss of the fractal properties
of heart rate dynamics has been identified in presence of pathological diseases,
e.g. congestive heart failure [100], and during aging [103]. This interpretation
apparently conflicts with the classical theory of homeostasis, opening to possible
chaotic characteristics of autonomic nervous system functioning.

1.3 Heart Rate Variability

Heart rate varies over very short periods of time, even from beat to beat [104].
These variations do not follow strictly regular patterns, but repeating phenomena
may be observed. Best known is the respiratory sinus arrhythmia: quickening of
the heartbeat at inspiration, slowing at expiration [104]. This is entirely vagally
mediated. But this is not the only rhythm that can be discerned. Slow variations, with
repetition periods of approximately 10 s, not related to respiration, are present most
of the time [105]. These may be very prominent in the upright posture [104, 106].
Even slower rhythms can be observed over the course of the day if sufficient time
is allowed for recording, with the slowest one being the circadian pattern-speeding
heart rate up during the waking day and slowing it down during sleep.

In 1981, Akselrod et al. introduced power spectral analysis of these heart rate
fluctuations to quantitatively evaluate beat-to-beat cardiovascular control [14, 41].
Since then, heart rate variability analysis has received great attention from phys-
iologists, clinicians and bioengineers, because it is considered as a useful tool
to assess sympathetic and parasympathetic outflows [42, 107, 108]. Frequency-
domain analyses contributed to the understanding of the autonomic background
of RR interval fluctuations in the heart rate record [41]. However, as discussed in
the following paragraph, the usefulness of HRV indices to evaluate nerve traffic is
controversial [43, 44, 64, 104, 109].

The clinical importance of HRV became apparent in the late 1980s when it was
confirmed that HRV was a strong and independent predictor of mortality following
an acute myocardial infarction [41].

Nowadays, heart rate variability analysis is considered as a non invasive method-
ology of substantial utility to evaluate autonomic control mechanisms and to identify
patients with an increased cardiac mortality [50, 51, 110], but it is accepted that it
does not represent a quantitative measure of absolute autonomic outflow [64, 109].
However, when associated to other components of cardiovascular variability (blood
pressure variability, respiration, baroreflex etc.), heart rate variability provides
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important information about the autonomic control of circulation, in normal and
diseased conditions [64, 109].

Indices of HRV Many indices have been proposed to quantify HRV properties.
Most of them were included in the Task Force of 1996 [41], and are reported in the
Table 1.3. They can divided in two groups:

e Time-domain indices:
These indices, reported in the upper part of Table 1.3, are the most simple. In
spite of their simplicity, a number of reports have confirmed, also in prospective
studies, their prognostic value as predictors of arrhythmic and total cardiac
mortality not only after myocardial infarction but also in patients with heart
failure [41, 110, 111]. In a continuous electrocardiographic (ECG) record, each
QRS complex is detected, and the so-called normal-to-normal (NN) intervals
(that is all intervals between adjacent QRS complexes resulting from sinus node

Table 1.3 Indices of HRV, from [41]

Variable (Units)
Time-domain
SDNN (ms)
SDANN (ms)
RMSSD (ms)

SDNN index (ms)
SDSD (ms)
NNS50 count

pNNS50 (%)
HRV triangular index

TINN (ms)
Differential index (ms)

Logarithmic index

Frequency-domain
Power (ms?)

VLF (ms?)

LF (ms?)

LF norm (nu)

HF (ms?)

HF norm (nu)
LF/HF

Description

SD of all NN
SD of the averages of NN in all 5-min segments of the entire recording

The square root of the mean of the sum of the squares of differences
between adjacent NN

Mean of the SD of all NN for all 5-min segments of the entire recording
SD of differences between adjacent NN

Number of pairs of adjacent NN differing by more than 50 ms in the
entire recording

NNS50 count divided by the total number of all NN

Total number of all NN divided by the height of the histogram of all NN
measured on a discrete scale with bins of 7.8125 ms (1/128 s)

Baseline width of the minimum square difference triangular interpola-
tion of the highest peak of the histogram of all NN

Difference between the widths of the histogram of differences between
adjacent NN measured at selected heights

Coefficient ¢ of the negative exponential curve ke™?', which is the best
approximation of the histogram of absolute differences between adjacent
NN

The variance of NN over 5 min

Power in VLF range (f <0.04 Hz)

Power in LF range (f € [0.04-0.15] Hz)

LF power in norm units LF/(total power-VLF) x 100
Power in HF range (f € [0.15-0.4] Hz)

HF power in norm units HF/(total power-VLF) x 100
Ratio LF(ms?)/HF(ms?)

NN NN intervals corresponding to heart period during sinus rhythm, SD Standard deviation
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depolarizations), are determined and mathematically processed [41, 112]. Time-
domain indices can be divided in two subgroups: statistical indices, mainly
obtained form mean and standard deviations of heart period, and geometric
indices, mainly obtained from the probability density function of the NN.

* Frequency domain indices:

Interest for frequency domain parameters derives from the possibility of identi-
fying periodic oscillations in HRV and to correlate these oscillation patterns to
neural discharge. In fact, vagal and sympathetic cardiac controls operate on heart
rate in different frequency bands [64]. Low frequency (LF; 0.04-0.15 Hz) fluctu-
ations in HR are affected by electrical stimulation of both vagal and sympathetic
cardiac nerves in animals. Similarly, in humans, LF powers are reduced by either
parasympathetic or sympathetic blockade; parasympathetic blockade by atropine
eliminates most HR fluctuations at high frequency (HF; 0.15-0.4 Hz); thus, HRV
at HF is a satisfactory, although partly incomplete, measure of vagal cardiac
control, whereas LF components reflect both sympathetic and parasympathetic
modulation, without excluding a role of humoral factors, gender and age. The
LF/HF ratio was proposed as measure of the sympatho-vagal balance [42, 108]
and was also effective to study autonomic control in those clinical conditions
associated with an increase sympathetic and reduced vagal modulation of sinus
node such as, for example, the acute phase of myocardial infarction or the
initial phases of heart failure [110]. Since the beginning, however, it was evident
that the physiological interpretation of LF and HF components and of LF/HF
ratio was progressively more problematic when moving from short-term to 24
hour recordings, and recently it has been suggested that spectral analysis of
HRV must be restricted to short term recordings under controlled conditions
in order to measure more correctly and to interpret more safely LF and HF
components [110].

The origin and the interpretation of the LF rhythm of heart rate variability,
is by far the most controversial. It is known to be related to Mayer’s wave,
oscillations of arterial pressure lower than respiration with a period of approxi-
mately 10 s [105]. Several data suggest that heart rate oscillations buffer Mayer’s
wave [105]. The function as well as physiological determinants of Mayer’s wave
frequency and amplitude are still largely unknown [105].

* Advanced indices: Several methodologies have been proposed to improve the
assessment of time-domain and spectral indices or to overcome their limitations.
These include time-varying autoregressive models [113, 114], time-frequency
methods [115-117], hybrid parametric and non-parametric methods [108, 118],
point process models [119] and non-linear methodologies [120].

Clinical Relevance The clinical relevance of HRV analysis is related to the well-
established link between autonomic cardiac control and cardiovascular mortality,
including sudden cardiac death, with HRV being a key marker of such a relationship.
In fact, reduced HRV is associated with increased mortality after myocardial
infarction and increased risk of sudden arrhythmic death [64]. One of the basic
assumptions used to explain the negative predictive value of reduced HRV was the
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concept that overall HRV was largely dependent on vagal mechanisms and that
a reduction in HRV could reflect an increased sympathetic and a reduced vagal
modulation of sinus node; i.e., an autonomic imbalance favouring cardiac electrical
instability [110]. Changes in HRV have been also shown to identify favorable
changes in cardiac autonomic control after cardiac resynchronization therapy in
patients with severely symptomatic heart failure [64]. These observations strongly
suggest that HRV, in addition to representing a research tool, should become a more
widely employed clinical parameter [64].

Criticisms The reliability of HRV as autonomic marker has been seriously crit-
icized. Criticisms do not deny the clinical relevance of HRV, but they question
its physiological interpretation. In 1997, Dr Ekberg wrote a critical review [121]
that support the opinion that calculations of sympathovagal balance, proposed
ten years before [42], may obscure rather than illuminate human physiology and
pathophysiology. In the paper, Dr Ekberg claimed that the ratio of the LF power
to HF power is not suitable to quantitatively evaluate autonomic nervous activity
owing to the following reasons [121]:

— Vagal contributions to baseline LF RR-interval fluctuations are great, and
evidence that baseline LF RR-interval spectral power is related quantitatively
to sympathetic-cardiac nerve traffic is nonexistent.

— Most evidence refutes the notion that LF RR-interval spectral power tracks
baroreflex-mediated changes of sympathetic nerve activity.

— Baseline respiratory-frequency RR-interval fluctuations are related significantly
but imperfectly to the level of human vagal-cardiac nerve traffic.

— Moderate changes of arterial pressure, which alter vagal-cardiac nerve activity,
do not change HF RR-interval fluctuations, and changes of breathing frequency
and depth, which profoundly alter HF RR-interval fluctuations, may not change
vagal-cardiac nerve activity at all.

Finally he questioned the hypothesis that sympathetic and parasympathetic nervous
systems continuously interact [44], suggesting that the construct of sympatho-vagal
balance imposes attributes on physiological regulatory mechanisms that they do not
possess [121].

This critical appraisal caused many of the members of the task force [41] to
answer to these criticisms to support the usefulness of HRV indices in cardiovascular
control analysis [43].

Ten years later, a series of editorial papers about whether cardiovascular vari-
ability is or is not an index of autonomic control of circulation [64, 109] refocused
the debate about the role of HRV indices in physiology. All authors agreed that
neither low frequency (< 0.15Hz) nor high frequency (> 0.15Hz) indices can be
used as exclusive markers of sympathetic and parasympathetic activity, respectively
[109]. And some of them suggested that heart rate variability provides only a
qualitative marker of cardiac parasympathetic regulation through respiratory sinus
arrhythmia (RSA). In the debate, on one side, Taylor and Studinger [64, 109] argued
that quantification of autonomic activity has not been achieved, and suggested that
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efforts should be focused on establishing more direct links to underlying physiology.
For these authors, the point is that there is more to be learned from cardiovascular
periodicities than what they may or not say regarding baseline levels of autonomic
nerve traffic [64, 109]. On the other side, Parati et al. [64, 109] claimed that HRV
analysis has already established a basis for autonomic interpretation of results and
that future modeling will expose underlying physiology.

These debates and discussions, which should include the more recent debate
about the origin of respiratory sinus arrhythmia [23, 25] and Mayer’s Wave [105],
show that research in cardiovascular variability is far from being over and much
effort is needed in multi-signal analysis.

1.3.1 Representations of Heart Rate Variability

In the literature, several methodologies to mathematically describe heart rate
variability have been proposed.

¢ Interpolation: Heart rate variability can be estimated just by evenly resampling
the inverse interval function, i.e. the reciprocal of the heart period. In the
interpolation process, the n-th heart period should be arbitrarily assign to a
given temporal instant, which usually is the time of occurrence of one of the
two QRS complexes which determine the beginning and the end of the heart
period. This procedure is not based on a physiological model. The representation
of a discrete unevenly sampled time series as a continuous signal is often a
requirement of many signal processing techniques, among which there is time-
frequency analysis.

* Autoregressive model: Autoregressive models as well as ARMA and ARMAX
models are widely used to describe heart rate variability and the interactions
of cardiovascular signals [114, 122, 123]. The use of these models is rarely
motivated by cardiovascular physiology, and is principally due to the possibility
of using very powerful methodologies of time series spectral and cross spectral
analysis. Although the use of these models is rarely based on cardiovascular
physiology, it offers the possibility of using very powerful methodologies of time
series spectral and cross spectral analysis.

e IPFM: The integral pulse frequency modulation (IPFM) model has been used to
explain the mechanisms of control of the autonomic system over the heart rate
[124-126]. The IPFM model is based on the hypothesis that the sympathetic and
parasympathetic influences on the sino-atrial node can be represented by a single
modulating signal, and the beat trigger impulse is generated when the integral
of this function reaches a threshold. The heart timing signal, which assume
the IPFM model, has been demonstrated to provide an unbiased estimation of
the ANS modulation, even in the presence of isolated ectopic beats [124, 125].
Recently, a time-varying threshold IPFM model was proposed to be used in
situations in which the mean heart period is time varying, as during exercise
stress testing [127].
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» Point process: Recently, a point process model has been also used to study heart
rate and heart rate variability [119, 128]. A point process is a random process
for which any realization consists of a set of isolated points in time. In this
framework, the waiting time until the next R-wave event or, equivalently, the
length of the next R-R interval, obeys an history-dependent inverse Gaussian
process probability density. The time-varying parameters of this model are
estimated by local maximum likelihood and assessed using a model goodness-of-
fit by Kolmogorov-Smirnov tests based on the time-rescaling theorem [128, 129].
The mean and the standard deviation of the probability density function are used
to give instantaneous estimates of heart rate and heart rate variability. Recently,
this point process framework has been combined with bi-variate autoregressive
models to include the influence of respiration and to assess cardiovascular
interactions [21, 70].

1.4 Gender/Age Differences in the Autonomic Nervous
System Regulation

Gender differences in the autonomic nervous system control have been described
in previous studies. Studying rats, some discrepancies are detectable in pre-natal
phases, as the distribution of neuropeptides in the brain. Fewer ganglionic neurones
are present in females and higher acetylcholinesterase activity is observable in males
[130-132].

The male or female sex hormones, especially estrogen, plays a crucial role in
the gender difference for the autonomic activity [133]. Estrogen modulates the
autonomic nervous system activity, suppressing sympathetic activity and elevating
the parasympathetic tone. Some experimental studies in rats suggested that the
inhibition of sympathetic system is more appreciable in females, for whom
the release of noradrenaline is lower [134]. In addition, estrogen is associated
with an increase of acetylcholine release, whereas the testosterone increases the
noradrenaline synthesis [135].

All these aspects support the hypothesis that the parasympathetic activity is
greater in females and the sympathetic tone is more relevant in males. Other recent
studies suggested that estrogen level also influences the nervous density and nervous
growth factor. The anti-apoptopic effect of this hormone can explain how the aging
influence on the autonomic activity is more evident in males than in females [135].

Although female sex hormones have been implicated in protecting females
against several cardiovascular diseases, the mechanism by which this occurs is
still unknown [136]. During resting conditions, healthy men and women have
similar blood pressure but heart rate tends to be higher in women. Some studied
suggested that gender differences in baroreceptor reflex regulation of sympathetic
nerve activity may provide a mechanism by which females are protected against the
development of hypertension [136]. A previous study about response to postural
changes indicated that, when changing from sitting to standing positions, the
increases in heart rate and total peripheral resistance were greater in women than
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men [137]. A possible mechanism of protection against hypertension in females,
if the form of hypertension is initiated by retention of sodium and water, can
be detected in the reflex-mediated inhibition of sympathetic nerve activity which
increases blood volume and activates cardiopulmonary receptors. Under these
conditions, females may inhibit sympathetic nerve activity more efficiently, leading
to a greater excretion of sodium and water and delaying the onset of hypertension.

Gender differences had been also found in response to adrenergic nerve stimula-
tion and it was supposed the presence of differences in the clearance of released
noradrenaline. An increase in adrenaline clearance in women was studied by
Lenders et al. [138]. Also the sympathetic activation of the adrenal medulla resulted
to be attenuated in females and this finding could explain the supposed gender
differences in cardiovascular responses to stress [139].

The pathophysiological states of cardiovascular system present many differences
due to gender in the incidence and clinical course. For example, gender-based
differences exist in the prognosis after myocardial infarction [140, 141] and non-
ischaemic cardiomyopathy [142, 143].

Experimental and clinical studies suggested the presence of sex-specific dif-
ferences in cardiac hypertrophy and in patients who are more than 60 years old,
with better left ventricular remodelling in women than in men. The improvement in
the systolic function and left ventricular adaptation were more pronounced before
menopause and tended to disappear thereafter [143]. However, it remains to be
proven if the difference in behavior of the cardiac autonomic nervous system
in men and women contributes to the large gender differential in morbidity and
mortality of heart disease [144, 145]. In Table 1.4 the sex-related differences in the
pathophysiological incidence in the two genders, given the results in the literature,
are shown.

r['.able 14 Qender-relgted Gender
differences in autonomic
nervous system activity

during physiological and
disease states (modified Prevalence of Raynaud’s syndrome F>M

Physiological or disease state difference

Disease state

from [135]) Prevalence of presyncope/syncope F>M
Survival of non-CAD heart failure F>M
Survival after myocardial infarction M>F
Risk of ventricular arrhythmias M>F
Central obesity M>F
Physiological state

Systolic blood pressure rise on aerobic M > F
exercise

Haemodynamic response to isometric | M > F
exercise

Tolerance to cold temperature M>F
Tolerance to repeated hypoglycaemia |M > F

CAD coronary artery disease
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The quantification of heartbeat complex dynamics has been proven to provide
relevant information on psychophysiological and pathological states [146] being
modulated by aging [146, 147]. Previous research highlighted a strong relationship
between the aging process and cardiovascular dynamics, as well as respiration,
physical activity and electrodermal response.

The analysis of breathing patterns in elderly patients, using both standard and
nonlinear analyses, showed several differences in the autonomic regulation due to
aging [148, 149]. Studying physical activity in elderly, the reduction in circadian
activity rhythm amplitude has been linked to the development of dementia in older
women [150]. Concerning cardiovascular variability, many HRV correlates have
been related to age using both standard and nonlinear methods. Specifically, a
significant decrease of the standard parameters, defined in the time and frequency
domains, was found in elderly people, with major influence on men [151, 152]. Ryan
et al. showed a significant loss of HRV high frequency power (0.15-0.40 Hz) and
of the ratio between the low frequency and the high frequency spectral power, in
elderly men and women [153]. Nonlinear scaling properties in HRV series from
elderlies were studied in 24 h recordings using Detrended Fluctuation Analysis
(short- and long-term correlations indexes), Lyapunov exponent, and Approximate
entropy [154]. A day-night modulation was found in all nonlinear HRV indices,
which significantly correlated with age.

Recently, short-term HRV series have been studied as related to age. Particularly,
Voss et al. studied HRV standard and nonlinear features extracted within 5 min series
gathered from 1906 subjects, as divided into two groups: age 25—49 years, and 50—
74 years [155]. Results revealed that compression entropy, Detrended Fluctuation
Analysis, Poincaré plot analysis, Segmented Poincaré plot analysis, Irreversibility
analysis, and symbolic analysis were statistically different between the two groups.
This results confirmed previous evidences [156], highlighted that cardiovascular
complexity changes according to age.

Extensive further details on gender/age differences in ANS dynamics, with
special focus on cardiovascular complexity, can be found in the chapter authored
by Schroeder et al.
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Chapter 2

Symbolic Dynamics, Poincaré Plot Analysis

and Compression Entropy Estimate Complexity
in Biological Time Series

Steffen Schulz and Andreas Voss

Abstract Methods from nonlinear dynamics have shown new insights into alter-
ations of the cardiovascular system under various physiological and pathological
conditions, and thus providing additional prognostic information. In this chapter
prominent complexity methods of non-linear dynamics as symbolic dynamics,
Poincaré plot analyses, and compression entropy are introduced and their algo-
rithmic implementations and application examples in clinical trials are provided.
Especially, we will give their basic theoretical background, their main features and
demonstrate their usefulness in different applications in the field of cardiovascular
and cardiorespiratory time series analyses.

2.1 Introduction

Linear time and frequency domain measures are often not sufficient enough to quan-
tify the complex dynamics of physiological systems and their related time series.
Therefore, various efforts have been made to apply nonlinear complexity measures
to analyze, e.g. the heart rate variability (HRV) [1]. These approaches differ from
the traditional time- and frequency domain HRV analyses because they quantify the
signal properties instead of assessing only the magnitude or the frequency power of
the heart rate time series. They assess the self-affinity of heartbeat fluctuations over
multiple time scales (fractal measures); the regularity/irregularity or randomness
of heartbeat fluctuations (entropy measures); the coarse-grained dynamics of HR
fluctuations based on symbols (symbolic dynamics) and the heartbeat dynamics
based on a simplified phase-space embedding [1].

Symbolic dynamics is based on a coarse graining of the dynamics of a signal.
The time series (in our cases the ECG or the noninvasively recorded blood pressure
curve) are transformed into symbol sequences with symbols of a given alphabet.
Some detail information is lost but the coarse dynamic behavior retains and
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can be analyzed. Depending on the time series we have to define the type and
number of symbols. Long time series allow a higher number of symbols (a higher
resolution of the dynamics) than short time series. Combining successive symbols
into usually called ‘words’, enable the extraction of patterns that represent different
system states. In the literature different applications of symbolic dynamics can be
found in respect to biological time series analyses, ranging from cardiovascular
physiology to the field of neuroscience. In cardiovascular physiology, symbolic
dynamics was applied, e.g. for the determination of the sympathovagal balance
towards a sympathetic activation and vagal withdrawal during graded orthostatic
challenge [2], for monitoring the complexity of the cardiac control [3], to evaluate
the maternal baroreflex regulation during gestation [4], to investigate autonomic
regulation (cardiorespiratory system) during acute psychosis in patients suffering
from paranoid schizophrenia and their healthy first-degree relatives [5], to detect
pathological states and improve the risk stratification in cardiology [6]. In the
field of neuroscience, symbolic dynamics was applied, e.g. to characterized brain
microstates [7], to study the recurrence of microstates during stimulus [8], to
detect determinism in periictal intracranial electroencephalographic signals [9], to
predict epileptic seizures [10], to assess causal relations between brain signals
under different levels of consciousness [11], to detect the development of epileptic
seizure [12, 13], and to investigate the central-autonomic coupling in mental
disorder [14, 15].

Poincaré plot is a popular HRV analysis tool among clinicians due to its ability
to visually represent nonlinear dynamics of HRV. It is a geometrical representation
of a time series in a Cartesian plane [16]. Poincaré plot analysis (PPA) represents a
nonlinear quantitative technique of phase-space characterization, whereby the shape
of the plot can be categorized into functional classes, as suggested by Kamen et
al. [17]. PPA allows calculating of heart rate dynamics with trends [17, 18]. The
Poincaré plots are two- or three-dimensional graphical representation (scatter plots)
of each NN interval or in the time series plotted against subsequent NN intervals.
Babloyantz et al. [19] qualitatively and quantitatively analyzed electrocardiograms
with Poincaré sections starting in 1988. Typically, PPA shows an elongated cloud of
points oriented along the line of identity. Only for graphical illustration an ellipse
characterizing the shape of the cloud of points can be drawn in the plot whereas
the center of the ellipse is the mean NN value. In general, the Poincaré plot can be
evaluated quantitatively through the computation of the SD indexes of the plot [20].
Three indices be calculated: the standard deviation of the instantaneous NN interval
variability (minor axis of the ellipse-SD1), the standard deviation of the long term
NN interval variability (major axis of the ellipse-SD2) and the axes ratio (SD1/SD2)
[21, 22]. Thereby, the Poincaré plot provides information about the beat-by-beat
behavior of the heart [21]. Analysis of Poincaré plots revealed increased randomness
in beat-to-beat heart rate behavior demonstrated by an increase in the ratio between
short-term and long-term HRV suggested that more random short-term heart rate
behavior may be associated with a complicated clinical course [23]. This measure
has not been used much for risk stratification, but has proved useful for detecting
editing problems that significantly influence the calculation of HRV variables [24].



2 Symbolic Dynamics, Poincaré Plot Analysis and Compression Entropy. . . 47

However, it has been shown that the indices SD1 and SD2 of Poincaré plot analysis
represent more or less only linear features of the heart rate dynamics [25]. Therefore,
new methods of analyzing the Poincaré plots were developed to retain the nonlinear
features [26, 27]. Poincaré plot is commonly applied to assess the dynamics of HRV
[28-30] and in risk stratification, e.g. for sudden death [26], in patient suffering from
dilated cardiomyopathy [31], in cardiac arrhythmia subjects [32, 33].

Among the various approaches that have made progress in the quantification
of HRV complexity, entropy measures have gained a significant interest. Shannon
entropy, conditional entropy, approximate entropy and sample entropy, respectively
are some of the most applied approaches of entropy estimation [34, 35]. Com-
plexity analysis can be performed through the evaluation of entropy and entropy
rate. Entropy (e.g., Shannon entropy) calculates the degree of complexity of the
distribution of the samples of a signal [34]. For HRV analysis, entropy is not
calculated directly over the samples of the biological time series but over patterns
of length L (i.e., ordered sequences of L samples). In this case, entropy measures
the complexity of the pattern distribution as a function of L [34]. In 1977 Ziv and
Lempel [36] developed a universal algorithm for lossless data compression (LZ77)
using string-matching on a sliding window. Lossless compression ensures that the
original information can be exactly reproduced from the compressed data. The LZ77
algorithm is widely used and implemented in compression utilities such as GIF
image compression and WinZip®. LZ77 was modified by Baumert et al. in 2004 [37]
to analysis heart rate time series called the compression entropy (H,). in the field
of spontaneous fluctuations of cardiovascular oscillations entropy based methods
were applied to investigate fetal development [38], to determine age effects on the
autonomic system [39—41], in differentiating pathological states from healthy states
[42—46], for monitoring cardiac autonomic function [34, 47], in typifying the effects
of a pharmacological treatment [48—51], and in predicting risk [37, 52].

In this chapter, some of the prominent complexity measures and their enhance-
ments as symbolic dynamics, Poincaré plot analyses and compression entropy are
introduced and their algorithmic implementations and applications in clinical trials
are discussed. Especially, we will give their basic theoretical background, their main
features and demonstrate their usefulness in different applications in the field of
cardiovascular and cardiorespiratory time series analyses.

2.2 Methods

2.2.1 Symbolic Dynamics

Symbolic dynamics did start with Hadamard’s ideas about complex systems in
1898 [53]. The most important result of his work was the simplified description
of sequences that can arise in geodesic flows on surfaces of negative curvature. He
introduced a finite set of forbidden symbol pairs and defined possible sequences as
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those that do not contain any forbidden symbol pair. Later on, Morse and Hedlund
[54] used this method in 1938 to prove the existence of periodic and other dynamics
in different classical dynamical systems. They showed that in many circumstances
such a finite description of a systems dynamics is possible and performed their
investigations by finding interesting sequences satisfying the constraints defined by
the corresponding symbolic dynamical system.

In 1983, Aizawa [55] reported that symbolic dynamics could be systematically
constructed near the onset point of chaos by taking into account the topological
similarity of the Lorenz map and Hao [56] investigated symbolic dynamics applying
sequences of two, three and more letters. Although symbolic dynamics was origi-
nally developed as a method to study basic structures and behavior of dynamical
systems, the methods and the technology have found significant application in
various fields of sciences. Some of the major fields for applications of symbolic
dynamics are linear algebra, data storage (coding), data transmission (information
theory), data analysis and processing as well as life sciences. One of the first life
science applications were from Paulus et al. [57] who applied symbolic dynamics
in animal experiments.

The research groups of Kurths and Voss were the first who introduced symbolic
dynamics into heart rate variability analysis in 1993 [58] and later 1995 [59] and
1996 [6] developing special optimized measures for analysis of the heart rate
dynamics. The introduced measures were finally validated in risk stratification based
on data from 572 patients after myocardial infarction [60].

The analysis of symbolic dynamics has been proven to be sufficient for the
investigation of complex systems and describes dynamic aspects within time
series [6, 61, 62]. The concept of symbolic dynamics is based on a coarse-
graining of the dynamics. To classify dynamic changes within, e.g. heart rate
time series RR;,RR,, ... ,RR, they were transformed into a symbol sequence
S1s .- Sy,8;i €A with four symbols from the alphabet A ={0,1,2,3} (Fig. 2.1).
There, according to the transformation rules in equation p is the mean beat-to-beat
interval (RR), a is a special scaling parameter equal to 0.1 and RR,, is the beat-to-beat
interval at the time point n.

O:u<RR, <(l4+a)xpu

l1:(1+a)*xu <RR; <00

2:(1—a)*xu <RR; < u

3:0<RR; <(1—a)*xu

wherei =1,23....
In this way some detailed information is lost but the more general dynamic
behavior can be analyzed [59]. It is important to mention that small changes
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RR, RR, RR, RR, RR, RR
]
1 J f | Jr | 'II‘II ".
-h\“-/ L—-“'f/ L'“Hf/ | LMH'I/ |/l b

0 .. 8 3 2y 4 Transformation into symbol
sequence; A= {0,1,2,3}

Time series (RR-intervals)

332 Word sequence
(words of 3 successive symbols)

plword types)

‘000 '001" ... ‘033" ... 333" word types

Probability distribution
of word types

Fig. 2.1 Basic principle of symbolic dynamics analyses based on RR-intervals

of the threshold parameters a and p do not significantly influence the analysis
results. There are several quantities that characterize such symbol strings. We
obtain 64 different word types (000,001, ..., 333) using three successive symbols
from the alphabet A to characterize symbol strings. The Shannon [63] and Rényi
[64] entropies calculated from the distribution of word types p(word types) are
suitable measures to quantify the dynamic behavior of heart beat time series and
their complexity. High values of these entropies refer to higher complexity in the
investigated heart beat time series, vice versa.

An example of word type distributions (histograms) obtained from BBI time
series of white noise, a healthy subject, a patient suffering from coronary heart
disease and a patient suffering from atrial fibrillation are shown in Fig. 2.2.

The Shannon entropy (Hgpannon) 1S the classical measure of information and is
defined as [59]

k
Hgpannon = _Ziz 1pilOgZPi

where p is the probability distribution of every single word type and k (=64) is the
total number of word types. The Rényi entropy generalizes the Shannon entropy and
is estimated from «-weighted probabilities distributions (for HRV analysis often an
« value of 0.25 or 4 is in use) by [59]

k
1
HRenyia = _SIOgZ Zp?'

i=1
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Fig. 2.2 Symbolic dynamics: Tachograms and word distributions (histograms) obtained from BBI
time series applying symbolic dynamic analysis of (a) white noise, (b) a healthy subject, (c) a
patient suffering from coronary heart disease and (d) a patient suffering from atrial fibrillation.
(BBI = beat-to-beat intervals)

The word type distribution p differs between short (30 min) and long term (24 h)
measures in healthy subjects as well as patient with ischemic cardiomyopathy.

Another procedure which based on word distribution is to count the number of
words with length 3 that seldom or never occur so called ‘forbidden words’

-
pwn = TWT <0.001
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with pyp; as probability of word types i occurrence, N is the number of all words
and nyp; is the number words in type i defined by nyg; = Zsz’j with Wj; as single
word j of word type i.

A high number of forbidden words reflect a reduced dynamic behavior in the
heart beat time series. If the heart beat time series is highly complex in the
Shannonian sense, only a few forbidden words are found. Words with a probability
less than 0.1% were counted. The parameter ‘wsdvar’ is a measure of heart rate
time series variability depending on a word sequence. The resulting word sequence

{w1,wa, ws, ...} is transformed into a sequence {Sl , 85,85, ... }, where ‘wsdvar’ is

defined as the standard deviation of this sequence S;. Further, a high percentage of
word, which consist only of symbols ‘0’ and ‘2’ define the parameter ‘wpsum(2’
that is a good measure of decreased HRV, conversely a measure of increased HRV
is given by ‘wpsum13’ (symbols ‘1’ and ‘3’).

In 1999 Wessel et al. [65] applied a new method of long-term symbolic dynamics
in patients with dilated cardiomyopathy. They investigated 24 h heart beat time
series which allow a higher number of symbols than short-term time series. For
the transformation of the time series they used five symbols from the alphabet
A=1{0,1,2,3,4,5} instead of four symbols. Thereby, a higher resolution of the
analysis was given. The time series are subdivided into short word sequences (bins)
of word length k. The number of word types depends on the number of RR-intervals
within the time series and is given by word types = (number of symbols)™°rd length,

For example for a 24 h recording (mean heart rate: 80 bpm, number of
symbols = 6, word length = 4, word types = 1296) the time series has a length
N of 115,200 RR-intervals in the tachogram, so that there are about 89 words in
each bin.

N 115199
= =89
wordtypes 64

p(wp) =

The accuracy of the word distribution will be reduced by too few words per bin.
Voss et al. [6] defined a heuristic basis of 20 as the averaged minimal number of
words per bin.

Calculating the percentage of words consisting only of a unique type of symbols
is other approach to find epochs of low or high variability. In this way 6 successive
symbols of a simplified alphabet [6], consisting only of symbols ‘0’ or ‘1’,
A =10, 1} were observed. Here the symbol ‘0’ stands for a difference between two
successive beats lower than a special limit (5, 10, 20, 50, and 100 msec) whereas ‘1’
represents those cases where the difference between two successive beats exceeds
this special limit:

1" - |RR, — RR,—1| < limit

‘0" : |RR, — RR,_1| < limit
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Words consisting only of a unique type of symbol (either all ‘0’ or all ‘1)
were counted. For low variability (‘plvar’) of sequences containing six consecutive
‘0’ were assessed, whereas for high variability (‘phvar’) six consecutive ‘1’ were
evaluated. There, an increase of ‘000000’ (plvar5, plvarlO, plvar20) sequences
resulting in increased values of ‘plvar’ and a decrease in ‘111111’ (plvar20, plvar50,
plvar100) sequences leading to reduced values of ‘phvar’ indicate reduced system
complexity.

In 2001 Porta et al. [34] introduced a modified procedure of symbolic dynamics.
Here the length of the RR-intervals was limited to 300 beats. The full range of the
sequences was uniformly spread on 6 levels (0 to 5), and patterns of length L = 3
were constructed [66]. All patterns with L = 3 were grouped without any loss into
four families. These were: (1) patterns with O variations—0 V, (2) patterns with
1 variation—1 V, (3) patterns with 2 like variations—2LV and (4) patterns with 2
unlike variations—2UV. The rates of occurrence of these patterns will be indicated
asOV%,1V%,21LV% and 2 UV% [67].

To obtain more detailed information about the dynamics of heart rate some
new pattern families were introduced [44, 68]: ‘ramp’/‘ASC’ (three successive
symbols form an ascending ramp), ‘decline’/‘DESC’ (three successive symbols
form a descending ramp), ‘PEAK’ (second symbol is larger than the other two
symbols forming a peak) and ‘VAL’ (second symbol is smaller than the other two
symbols forming a valley).

A further extension of the classical symbolic dynamic approach represents
the segmented short term symbolic dynamic. The segmented short-term symbolic
dynamics (SSD) was introduced in order to describe nonlinear aspects within long-
term RR time series applying a 24-hour segmentation algorithm in an enhanced
way [45, 69]. Therefore, the related time series were segmented in both 1 min
overlapping and non-overlapping time windows of 15 min, 30 min or 60 min
duration. Within each of these windows a symbol- and word transformation were
performed in accordance to the classical symbolic dynamics approach with the
scaling parameter a = 0.1 [58]. For each segment (s = 1...S, S—number of
segments) from the 24-hour interval time series, several parameters based on the
word distribution were estimated:

— pWO000s to pW333s — Probability of occurrence of each word type
(000,001, . ..,333) within the interval time series;

— pTH]1g to pTH20s—Number of words with a probability higher than a threshold
pTH (1-20%);

— m_pWO000 to m_pW333 as the mean values and s_pWO000 to s_pW333 as the
standard deviations of the parameters pW000gs to pW333g and pTH 15 to pTH20s;

— Shannon_pWxxx—The Shannon entropy calculated from the distribution of each
single word type ‘xxx’ over all windows were estimated as a suitable measure to
quantify the dynamic behavior and the complexity of the word type occurrence
in the windowed time series.

Cysarz et al. [3, 70] investigated different approaches for the transformation of
the original time series to the symbolic time series. They investigated three different
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transformation methods as: (1) symbolization according to the deviation from the
average time series (0-method), (2) symbolization according to several equidistant
levels between the minimum and maximum of the time series (max-min-method),
(3) binary symbolization of the first derivative of the time series (binary A-coding-
method). Each method was applied to cardiac interbeat interval series RRi and
its difference ARR;, and the occurrence of short sequences (“words”) of length
k = 3 were analyzed. The sequences of length k were categorized according to their
amount of variations between successive symbols as proposed by Porta et al. [34].
They could show that all methods are capable of reflecting changes of the cardiac
autonomic nervous system, here during head-up tilt. In addition, they demonstrated
that changes of cardiovascular regulation during pharmacological challenges can
be assessed by the analysis of symbolic dynamics derived from the RR interval
series independently of the specific symbolic transformation rule. Finally, they
concluded that the ‘standard’ setting of the different parameters of the investigated
methods yield reasonable results and can be used in future clinical studies. However,
more refined results could be obtained by an optimized setting of the parameters.
Especially, the impact of the parameters should be investigated in more details.
Recently methods have been developed to analyze couplings in dynamic systems.
In the field of medical analysis of complex physiological system is a growing
interest in how insight may be gained into the interaction between regulatory
mechanisms in healthy and diseased persons. For the analyses of the physiological
regulatory systems (cardiovascular, cardiorespiratory) as well as the quantification
of their interactions, a variety of linear as well as nonlinear methods ranging
from parametric models in the time- or in the frequency domain to model-free
approaches in the information domain have been proposed [71]. Linear methods
are partly insufficient to quantify nonlinear structures and the complexity of
physiological systems (time series)—the joint symbolic dynamics (JSD) [4, 72] and
high resolution joint symbolic dynamics (HRJSD) [73] overcomes the limitations.

2.2.1.1 Joint Symbolic Dynamics — (JSD)

In 2002, Baumert et al. [4] introduced the method of joint symbolic dynamics (JSD)
to investigate the nonlinear interaction between blood pressure and heart beat time
series in a more complex way. This method based on the analysis of dynamic
processes by means of symbols [6] and allows a simplified quantification of the
dynamics of two time series. Therefore, both time series were transformed into
symbol sequences of different words. The symbol sequences consist only of ‘0’
and ‘1’, increasing values are coded as ‘1’ and decreasing and unchanged values are
coded as ‘0’, respectively, and words of length 3 were formed using a shift of one
symbol in time series. Following indices were estimated:

— Normalized probabilities of all single word type (k = 64) occurrences were
computed as (JSD1-JSD64) using an 8x8 word distribution density matrix;
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— SumSym—Symmetric word types where the pattern in both time series are
equal (for cardiovascular time series this index reflecting baroreflex-like response
patterns);

— SumDiam—Diametric word types, where the response of the first time series
to second time series changes is asymmetric (for cardiovascular time series this
index reflecting the opposite of baroreflex; patterns);

— JSDshannon—The Shannon entropy computed over all 64 word types in the word
distribution matrix.

With the JSD method a rough assessment of the overall short-term bivariate inter-
actions can be obtained. In 2011, Kabir et al. [74] proposed a tertiary symbolization
scheme and quantified the relative frequency of word types, capturing RSA patterns
and thereby adding physiological a-priori knowledge to the analysis. To address the
issue of different frequencies between cardiac and respiratory oscillators, Hilbert
transformation was introduced to obtain the instantaneous respiratory phase (RP)
sampled at the R peak in ECG, yielding beat-to-beat symbol sequences of changes
in RR interval and respiratory phase. [75].

2.2.1.2 High Resolution Joint Symbolic Dynamics — (HRJSD)

HRIJSD was introduced to quantify the effect of antipsychotics on cardiovascular
couplings in patients suffering from acute schizophrenia [73]. The idea of HRJSD is
to classify frequent deterministic patterns lasting three beats (symbols). The HRISD
approach enables the classification and characterization of short-term cardiovascular
regulatory bivariate coupling patterns which are dominating the interaction gener-
ated by the autonomic nervous system. In contrast to other coupling approaches
HRIJSD emphasizes a clear characterization how the couplings are composed by the
different regulatory aspects of the autonomic nervous system. HRJSD based on the
classical JSD [4] analyzing dynamic processes by means of symbols. HRJSD has
been successful applied to investigate cardiovascular, cardiorespiratory and central-
autonomic couplings [5, 14, 76, 77].

In short, HRJSD works in the way that both time series (e.g. heart rate (BBI)
and respiratory frequency (RESP)) were transformed into symbol sequences (word
length of 3) applying 3 symbols A = {0,1,2} and a threshold level /gg; and Iggsp for
symbol (Fig. 2.3).

Threshold levels for symbol transformation are: no threshold (similar to JSD);
the spontaneous baroreflex sensitivity based on the sequence technique [78, 79] and
25% of the standard deviation of the investigated time series as an adapted threshold
to the individual physiological dynamic variability.

Thereby, X represents a bivariate sample vector with xgg; and xrgsp as the n
beat-to-beat values of BBI and RESP, respectively.

X = { [ngl’xﬁESP]T } Y EeR

n=0,1,...
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Fig. 2.3 Basic principle of High Resolution Joint Symbolic Dynamics (HRJSD) analysis: (top)
Transformation of the bivariate sample vector X (BBI = beat-to-beat intervals [ms]; RESP = res-
piratory frequency [s]) into the bivariate symbol vector S (‘0’: decreasing values; ‘1’: equal values
and ‘2’: increasing values); (middle): Word distribution density matrix W, (27x27); (bottom): Word
pattern family distribution density matrix Wf (8x8) with 8 pattern families wf, rfgg; row sum of
specific word family and cfggsp column sum of specific word family
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For the symbol transformation X is afterwards transformed into a bivariate
symbol vector S defined as

s= {2 se0

with the following definitions

0: (f — 1) <
$BBl — ) 1. _BBI < (xfﬁ11 _ ngI) < [BBI

2 (62— a) >

. (-RESP ESP RESP
0: (xn—i-l _xff ) <-l

SRESP — 1: _lRESP < (xs_lif_ﬁl’ —xfESP) < lRESP .

n —

2. (xfff’;slp _ xﬁESP) ~ JRESP

Symbol sequences S was subdivided into short words (bins) w; of length
k = 3. Three symbols led to 27 different word types for BBI (wggy) and RESP
(wrgsp) (word types ranging from: 000,001, ...,221,222). Symbol sequences with
increasing values were coded as “2”, decreasing values were coded as ‘0’ and
unchanging (no variability) values were coded as ‘I’. All single word types
wpprresp (total number of all word type combinations 27 x 27 = 729) were
afterwards grouped into eight pattern families wf whereby the sum of probabilities
of all single word families’ occurrences p(wf) was normalized to 1 (Fig. 2.3).. The
8 pattern families (EO, E1, E2, LUI, LDI1, LA1, P, V) represent different aspects
of autonomic modulation (strong and weak increase/ decrease, no variability,
alternations) and were sorted into an 8x8 pattern family density matrix Wf resulting
in 64 cardiorespiratory coupling patterns. The pattern definition (Fig. 2.4) is as
follows:

— EO, E1 and E2—No variation within the word consisting of three symbols of type
‘0’, ‘1’ and “2’, respectively.

— LUl and LD1—One variation within the word consisting of two different
symbols with low increasing behavior (LU1) and low decreasing behavior (LD1)
of BBl and SYS.

— LA1—One variation within the word consisting of two different alternating
symbols of type ‘0’ and ‘2’ with an increasing-decreasing behavior of BBI and
SYS.

— P and V—Three variations within the word consisting of three different symbols
with peak-like behavior (P) and with valley-like behavior (V) of BBI and SYS.

Besides the 64 coupling patterns, 8 pattern families for BBI and RESP the sum
of each (n = 8) column cfresp (¢fEO, cfE1, cfE2, cfLU1, c¢fLD1, cfLAl, cfP, cfV), the
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Word Definition Effect on
family HR SYS/RESP  EEG
EO no variation within the word consisting of three symbols of type '0’ T l l
(decreasing BBI, SYS & EEG behavior; '000")
no variation within the word consisting of three symbols of type '1'
E1 R —_— —_—
(unchanging BBI, SYS & EEG behavior; '111")
E2 no variation within the word consisting of three symbols of type '2' l T T
(increasing BBI, SYS & EEG behavior; '222")
one variation within the word consisting of two different symbols
LU1 | withlow increasing behavior of BBI, SYS & EEG N |/ /
('122','022','112','221",'220','211",'121",'212")
one variation within the word consisting of two different symbols
LD1 with low decreasing behavior of BBI, SYS & EEG / \ \
('011','001','002','110",'100','200",'010",'101")
one variation within the word consisting of two different /'\/" \/'\ \/"\
LA1 alternating symbols of type '0" and '2" with an increasing-
decreasing behavior of BBI, SYS & EEG ('020','202") NN AN | NS
three variations within the word consisting of three different
P symbols with peak-like behavior of BBI, SYS & EEG ('120','201", \/ /\ /\
'210")
three variations within the word consisting of three different
\'4 symbols with valley-like behavior of BBI, SYS & EEG ('021,'102’, /\ \/ \/
'012")

Fig. 2.4 Definition of 8 pattern families of High Resolution Joint Symbolic Dynamics (HRISD)
(HR = heart rate; BBI = beat-to-beat intervals; SYS = systolic blood pressure; RESP = respira-
tory frequency; EEG: mean power EEG time intervals in relation to BBI)

sum of each (n = 8) row rfgp; (/fEQ, rfE1, rfE2, rfLU1, rfLD1, rfLA1, rfP, rfV) and
the Shannon entropy (HRJSDghannon) Of Wf as a measure of the overall complexity
of the coupling (can be determined.

8

HRJSDShannon = _Z [p (WfiJ) logzp (Wfld)]

ij=1

Being a unique feature of the HRJSD approach in contrast to other coupling
approaches is the identification of different physiological regulatory patterns gener-
ated by the interplay of the involved physiological regulatory systems. From the
aspect of biomedical signal processing based on symbolic analysis, the HRISD
approach, based on a redundancy reduction strategy and grouping of single-word
types into eight pattern families, enables a detailed description and quantification
of bivariate couplings. As a further unique feature in contrast to the classical
JSD approach and other coupling approaches [15, 80] HRISD emphasizes a clear
characterization of how the couplings are composed, with regard to the different
regulatory aspects of the interacting systems. To summarize, HRJSD approach
creates a bridge between univariate and bivariate symbolic analyses, allowing
the quantification and classification of deterministic regulatory bivariate coupling
patterns depending on the experimental conditions at hand [73].
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As a further enhancement on joint symbolic dynamics analyses we have recently
extended the HRJSD approach to analyses three signals for multivariate analyses
(mHRIJSD). Thereby, X represents a trivariate sample vector with e.g. xgpy, ysys and
Zresp as the n beat-to-beat values of BBI, SYS (systolic blood pressure) and RESP,
respectively.

T
X = { [xfBl’yrSlYS,ZfESP] } N xeR
n=

In mHRJISD X is afterwards transformed into a trivariate symbol vector S

defined as
S = { [szI,siYS,stSP]T } s€0,1,2.
n=0,1,...

8 pattern families (EO, E1, E2, LU1, LDI1, LAI, P, V) were derived from each
of the three time series and sorted into an 8x8x8 pattern family density matrix
Wf leading to multivariate coupling pattern. As an example, the pattern family
‘EQ’ from BBI time series is coupled with the eight pattern families from SYS
and 8 from RESP as: BBI-EO/SYS-EO/RESP-EO, BBI-E0/SYS-EO/RESP-E1, BBI-
EO0/SYS-EO/RESP-E2, BBI-EO/SYS-EO/RESP-LUL, ..., BBI-EO/SYS-V/RESP-V.
Thus, the pattern family ‘E0’ (BBI-EO/SYS-EO/RESP-EQ) contains word types that
consist only of the ‘0’ symbol. On one hand, this means that BBI decreases over
three values and which were therefore coded by ‘0’ three times (representing an
increase of the mean heart rate over three values) whereas on the other hand, SYS
values increases and RESP values decrease over three values.

2.2.1.3 Joint Conditional Symbolic Analysis — (JCSA)

In 2015, Porta et al. [81] extended the short-term symbolic dynamics procedure
[34] to a bivariate and multivariate ones—the joint symbolic analysis (JSA) and
the joint conditional symbolic analysis (JCSA). In principle, they created for two
time series (x, y) for each time series separately the pattern 0 V, 1 V, 2LV and
2UV. Afterwards, joint patterns by associating one pattern of x and one of y
were formed. Thereby, coordinated activity between x and y was investigated by
considered introducing two categories: (i) coordinated (C) joint Scheme (0 V-0 V,
1 V-1V, 2LV-2LV and 2UV-2UV) and (ii) uncoordinated (UNC) joint scheme
with different classes (e.g. 1 V and 2UV). The percentage of 0 V-0 V, 1 V-1V,
2LV-2LV and 2UV-2UV patterns (i.e. 0 V-0 V%, 1 V-1 V%, 2LV-2LV% and
2UV-2UV%) was computed by dividing their amount by the number of C ones
and, then, by multiplying the result by 100. In the case of JCSA, x and y were
conditioned on a third signal s (e.g. the respiratory phase: inspiration (INSP) and
expiration (EXP) phases, the transitions from INSP to EXP (INSP-EXP) and vice
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versa (EXP-INSP) over s). Thus, e.g. the coordinated pattern 0 V-0 V, 1 V-1V,
2LV-2LV and 2UV-2UV whose symbols are associated with events all occurring
in the inspiratory (INSP) phase are classified as 0 V-0 V|nsp, 1 V-1 V|nsp,
2LV-2LV|nsp and 2UV-2UV/|nsp. Analogously, they defined 0 V-0 V|gxp, 1 V-
1 Vl|gxp, 2LV-2LV |gxp and 2UV-2UV |gxp as the joint patterns whose values are all
linkable to the expiratory (EXP) phase. The percentage of the 0 V-0 V, 1 V-1V,
2LV-2LV and 2UV-2UV patterns occurring in the INSP phase (i.e. 0 V-0 V%|nsp,
1V-1 V%INSPs ZLV—ZLV%INSP and 2UV—2UV%|INSP) were computed by leldll’lg
the number of the 0 V-0 V, 1 V-1V, 2LV-2LV and 2UV-2UV patterns occurring
in the INSP phase by the number of coordinated patterns (C) occurring in the INSP
phase and, then, by multiplying the results by 100 [81, 82].

2.2.1.4 Symbolic Coupling Traces — (SCT)

A further JSD extension represents the symbolic coupling traces (SCT) introduced
by Wessel et al. [83]. SCT based on the analysis of structural patterns and enables
the detection of the direction (bidirectional) of time-delayed couplings in short-term
bivariate time series. Using the classical JSD algorithm two time series x(f) and
¥(1) were transformed into symbol sequences s.(f) and s,(¢) using also the alphabet
A ={0,1} and afterwards series of word w,(¢) and w,(¢) of length / = 3 were formed.
In contrast to JSD a delay-time probability matrix IT(7) = (p;(r)) was estimated
describing how word W; would occur in w, at time ¢ and W; would occur in w, at
time (1 + 7) with p;; as the joint probabilities of the words. For the quantification of
SCT used only the symmetric and diametric traces of the bivariate word distribution
matrix (BWD), thereby excluding random effects and including only significant
coupling information whereby following measures can be calculated:

The trace T of the matrix I1(7) defined as

T(tr) =) ;—,p;j(r) represents the fraction of both time series, which are struc-
turally equivalent to each other at lag t;

The trace T (t) of the matrix IT(7) defined as
are structurally diametric at lag 7 (d is the number of different patterns). Both
parameters vary from O to 1 and comprise the diagonals of the BWD only. Finally,
the difference AT = T—T can be calculated to determine the exact detection of lags
(delayed couplings) between two time series. Thereby, T only captures influences
which preserve the structure of the transmitted pattern of dynamics (symmetrical
influences) and T only quantifies influences which inverts the dynamical structure
of the driver (diametrical influence) [84]. The lags t should limited to 20 <7 <20
(sampling units) in order to focus on short time-delayed dependencies only. The
main advantages of SCT are its ability to detect delayed coupling (time lags), its
applicability to moderately noisy time series (< 10 dB) and its insensitivity to non-
stationarities. [71, 85].
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2.2.1.5 Specifics and Restrictions

SD: Detailed information will be lost; outliers (ectopic beats and noise) influence
symbol strings; the accuracy of the word distribution will be reduced by too few
words per bin (heuristic basis of 20 as the averaged minimal number of words per bin
are needed [6]; no stationarity required; short- and long term time series analyses;
only short-term fluctuations can be investigated depending on the word length (3—
6 symbols).

JSD/HRIJSD: Coarse-graining without any information about information flow;
based on a bivariate redundancy reduction strategy to group single word types
into eight pattern families; allowing a detailed quantification and classification
of deterministic regulatory bivariate coupling patterns depending on experimental
conditions; no stationarity required; short- and long term time series analyses;
only short-term fluctuations can be investigated depending on the word length (3
symbols).

SCT: High noise levels (>10 dB) influence detection of delayed coupling; critical
significance level has to calculated; no stationarity required; short- and long term
time series analyses; only short-term fluctuations can be investigated depending on
the word length (3 symbols).

2.2.2 Poincaré Plot Analyses

The Poincaré plot analysis (PPA) is a method that allows calculating of heart beat
dynamics with trends [17, 18, 86]. The Poincaré plots are two-dimensional graphical
representation (scatter plots) of each RR-interval or in the time series plotted against
the subsequent RR-interval.

It provides a visual and quantitative analysis of RR-interval sequences.
Babloyantz et al. [19] qualitatively and quantitatively analyzed electrocardiograms
with Poincaré sections in 1988.

Thereby, the shape of the plot, that is assumed to be influenced by changes in the
vagal and sympathetic modulation, can be used to classify the sequence into one of
several classes. The plots provide detailed beat-to-beat information on the behavior
of the heart [17]. Typically, PPA shows an elongated cloud of points oriented along
the line of identity. Only for graphical illustration an ellipse characterizing the shape
of the cloud of points can be drawn in the plot whereas the center of the ellipse is the
mean RR value. In general, three indices are calculated from the Poincaré plots: the
standard deviation of the instantaneous BBI variability (minor axis of the ellipse—
SD1), the standard deviation of the long term BBI variability (major axis of the
ellipse—SD?2) and the axes ratio (SD1/SD2) [21, 22, 86].

The level of short-term variability can be quantified by SD1 and the level of long-
term variability is given by SD2. SD1 and SD2 are calculated using:

Xy = (X1, X2, ..., %y—1) and X,4+1 = (x2,X3,...,Xy)
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Xn — Xn+1

SD1 = [VAR————
V2

SD2 = VARM

75

where VAR is the variance, x,, is a time series withn=1, ... ,N —1 (N-length of
time series) and x,, is the same time series shifted by one.

Laitio et al. [23] showed that an increased SD1/SD2 ratio was the most
powerful predictor of postoperative ischemia. Stein et al. [87] also demonstrated
that an increased SD1/SD2 ratio had the strongest association with mortality.
Further, Mikikallio et al. [88] found for healthy subjects SD1/SD2 =~ 0.2, for
post infarction patients with ventricular tachyarrhythmia SD1/SD2 ~ 0.3 and for
patients with a previous myocardial infarction who had experienced ventricular
fibrillation SD1/SD2 ~ 0.6. Voss et al. [61] found a significant reduced value for
SD1 & 15 in patient with dilated cardiomyopathy in comparison to healthy subjects
SD1 = 24. Furthermore, Voss et al. showed [89] that the cloud of the Poincaré
plot are characterized by high variability for healthy subjects; reduced to a narrow
distribution of the cloud for patients at high risk; and arrhythmias producing separate
clouds in the Poincaré plot. Arrhythmias can be easily visually detected connecting
each single point of the cloud by trajectories. Moreover, they presented first attempts
of lagged- and three-dimensional Poincaré plots.

An example of standard Poincaré plots obtained from BBI time series of white
noise, a healthy subject, a patient suffering from coronary heart disease and a patient
suffering from atrial fibrillation are shown in Fig. 2.5.

2.2.2.1 Segmented Poincaré Plot Analysis — (SPPA)

The SPPA approach was introduced by Voss et al. [26] as a nonlinear approach
of phase-space characterization for the nonlinear quantification of NN time series
based on the traditional Poincaré plot analysis. Thereby, the cloud of points is
segmented into 12 x 12 equal rectangles whose size depends on the standard
deviations SD1 (height) and SD2 (width) of BBI, SYS and DIA NN time series
of the Poincaré plot.

Thereby, the cloud of points presented by PPA is then rotated o = 45 degrees
around the main focus of the plot allowing for a simplified SD1/SD2 adapted
probability-estimating procedure (Fig. 2.6). Starting from the main focus of the plot,
a grid of 12 x 12 rectangles is drawn into the plot [27]. For the estimation of the
single probabilities (p;;) within each rectangle the number of points within every
rectangle is counted and normalized by the total number of all points. Based on
these single probabilities all row (i) and column (j) probabilities are calculated by
summation of the related single probabilities as:

— SPPA_r_i = single probability of each row with i = 1-12,
— SPPA_c_j = single probability of each column with j = 1-12.
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Fig. 2.5 Poincaré plot analysis: Standard Poincaré plots of BBI time series of (a) white noise, (b)
a healthy subject, (c) a patient suffering from coronary heart disease and (d) a patient suffering
from atrial fibrillation. (BBI = beat-to-beat intervals)
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Fig. 2.7 Segmented Poincaré plot analysis: Segmented Poincaré plots of BBI time series of (a)
white noise, (b) a healthy subject, (¢) a patient suffering from coronary heart disease and (d) a

patient suffering from atrial fibrillation. (BBI = beat-to-beat intervals)

Additionally, the Shannon entropy [bit] of the 12 x 12 probability matrix

quantifying its disorder or uncertainty will be estimated.
An example of segmented Poincaré plots obtained from BBI time series of white

noise, a healthy subject, a patient suffering from coronary heart disease and a patient

suffering from atrial fibrillation are shown in Fig. 2.7.

2.2.2.2 Bivariate Segmented Poincaré Plot Analysis — (2DSPPA)

2DSPPA [90] based on the univariate SPPA [26] and works in the way that BBI
time series were plotted over systolic or diastolic blood pressure (SYS, DIA) NN
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time series. In this study, the interactions between BBI and SYS, BBI and DIA as
well as between SYS and DIA were investigated. Based upon the single probabilities
(see SPPA), all row (i) and column (j) probabilities were calculated by summation
of the related single probabilities:

— 2DSPPA_r_i = single probability of each row with i = 1-12,
(e.g. BBI-SYS_r_1 = the single probability of the BBI time series plotted over
the systolic blood pressure (SYS) NN time series in row 1)

— 2DSPPA_c_j = single probability of each column with j = 1-12.

2.2.2.3 Trivariate Segmented Poincaré Plot Analysis — (3DSPPA)

Three-dimensional SPPA (3DSPPA) uses three shifted signals from a time series
(univariate) or three different signals (multivariate: e.g. BBI, SBP, DIA and RESP)
plotted in several box models. 3DSPPA based on specific subdivisions of a cubic box
model which is similar to SPPA [16, 91] and is able to investigate multivariate cou-
plings between subsystems, e.g. of cardiovascular and cardiorespiratory autonomic
regulation. Thereby, the 3DSPPA considers two varying positions of the cloud of
points:

— Non-rotated version
— Rotated version [91].

According to the size of the boxes within the 3D cubes plot the cubic box model
is subdivided into 12 x 12 x 12 equal dimensioned cubelets for a total number of
N = 1728 cubelets. In addition, 3DSPPA considers two approaches differing in the
dimension of the cubelets calculated for both the rotated and non-rotated position of
the cloud of points:

— Adapted 3DSPPA (calculation of the standard deviations SD1 and SD2 of the
time series; cubelet size is adapted to the calculated SD with regard to the axis;
3D cubic box model consists of 12 x 12 x 12 equal cubelets whereby the center
of the cubic box represents the main focus of the cloud of points)

— Predefined 3DSPPA (3D cubic box model represents the basic model with regard
to all investigated subjects).

In accordance to SPPA for each cubelet the probability of occurrence (p,.q) of
data points within the cubelet is calculated where the indices r represents the row, ¢
the column and d the depth of the specific cubelet (1-12) [16, 91].

2.2.24 Lagged Segmented Poincaré Plot Analysis — (LSPPA)

The SPPA does not provide information about physiological changes, and espe-
cially, their relation to frequency bands corresponding to high-frequency (HF), low-
frequency (LF) and very low-frequency (VLF) bands. To overcome this limitation,
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Fig. 2.8 Basic principal of time correlation analysis applying lagged segmented Poincaré plot

analysis (LSPPA) for BBI time series (lags: m = 1, m = 3). (BBI = beat-to-beat intervals; BBl =
transformed BBI after segmentation)

the lagged segmented Poincaré plot analysis (LPPA) was introduced (Fig. 2.8) [27].
LSPPA based on SPPA considering NN, as a function of its subsequent NN, 4,
by a lag of one (m = 1). Thereby, the lag is defined as the distance between the
investigated NN. Assuming that LSPPA can describe time correlations, we have
investigated the patterns of LSPPA, applying lags from m = 1-100. To make the
calculated results comparable, we used the same time series length for each lag by
cutting an offset (specific number of NN; offset = 100-m) at the end of each time
series leading to:

NN, = (NN1 ,NN,, ..., NNN_m_offse,)
and

NN,4m = (NN2,NN3, ..., NNy—oper)

For each lag, the normalized probability of point occurrence in rows and columns
related to the 12 x 12 rectangle grid is evaluated. According to SPPA, the size
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of the rectangles is adapted on SD1 and SD2 and depends on m in the lagged
version of SPPA where the corresponding frequency f is calculated as follows:
f 1/m*meanNN. For a mean heart rate of 60 beats/min (meanNN = 1000 msec)
the lowest frequency resolution will be 0.01 Hz. Afterwards, the lags are combined
into eight different clusters covering the most significant frequencies (Fig. 2.9). The
defined clusters include 5-11 lags independently to usually considered frequency
bands. Each cluster consists of at least 75% lags with highly significant indices.
Lower clusters include 5-6 lags, whereas the upper ones include 10-11 lags,
according to the degree of differences between the related frequencies [27, 91].
The clusters correspond to the standardized frequency bands as HF-band (0.15-
0.4 Hz) corresponds to cluster I, LF-band (0.04-0.15 Hz) corresponds to (clusters
II and III), and VLF-band (0.003-0.04 Hz) corresponds to (clusters IV-VIII).
Thus, LSPPA is able to provide additional information about various oscillations
of the underlying physiological mechanisms of autonomic regulation as respiratory
(0.145-0.6 Hz), intrinsic myogenic (0.052-0.145 Hz), neurogenic/sympathetic
(0.021-0.052 Hz) and endothelial (0.0095-0.021 Hz) activities [27] (Fig. 2.9).
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2.2.2.5 Complex Correlation Measure — (CCM)

Karmakar et al. [92] introduced the Complex Correlation Measure (CCM) quantify-
ing temporal aspect of the Poincaré plot and is a function of multiple lag correlation
of a investigated time series and incorporating point-to-point variation of the signal
in contrast to the standard SD1 and SD2 PPA indices.

CCM is computed in a windowed manner embedding the temporal information
of the investigated time series. Here, a moving window of three consecutive points
from the Poincaré plot is considered and the area of the triangle formed by these
three points is computed that measures the temporal variation of the points in the
window. If three points are aligned on a line then the area is zero, which represents
the linear alignment of the points. Moreover, since the individual measure involves
three points of the two dimensional plot, it is comprised of at least four different
points of the time series for lag m = 1 and at most six points in case of lag
m > 3. Hence the measure conveys information about four different lag correlation
of the signal. [16, 92] CCM may be used to study the lag response behavior of any
pathological condition in comparison with normal subjects [16].

2.2.2.6 Specifics and Restrictions

PPA /SPPA/LSPPA: SD1 and SD2 dependent on other time-domain measures; short-
and long term time series analyses; identifies outlier (ectopic beat or artefact); multi-
lagged Poincare” plot analyses provide more information than any measure from
single lagged Poincare” plot analyses [93]; different lag plots (e.g. m = 3) better
reveal the behavior of the signal than the single lag plot; Poincaré plot at any lag
m is more of a generalized scenario, where other levels of temporal variation of the
dynamic system are hidden [16]; SPPA retains nonlinear features of the investigated
time series, therefore overcoming some limitations of traditional PPA.

CCM is not only related to the SD1 and SD2, but it also provides tempo-
ral information, which can be used to quantify the temporal dynamics of the
system [16].

2.2.3 Compression Entropy

An approach to describe the entropy of a text was introduced in the framework of
algorithmic information theory. Here, the entropy (Kolmogorov-Chaitin complex-
ity) of a given text is defined as the smallest algorithm that is capable of generating
the text [94]. Although it is theoretically impossible to develop such an algorithm
data compression techniques might be a sufficient approximation. Ziv and Lempel
[36] introduced in 1977 an universal algorithm for lossless data compression (LZ77)
using string-matching on a sliding window. Today, this algorithm is widely used
and implemented in compression utilities such as GIF image compression and
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WinZip®. The algorithm is briefly described here that a sequence x =x;,x2, ... X,
of symbols of length L of a given alphabet ® of size & = |®| has to be compressed.
Subsequences X, , Xm 41, ... ,X, of x will be denoted as xJ,. The algorithm keeps
the most w recently encoded symbols in a sliding window. The not-yet-encoded
sequence of symbols is stored in the look-ahead buffer of size b. The compressor
positioned at p the first string in the look-ahead buffer looks for the longest string

match of length n between the not-yet-encoded string and the strings xﬁ*’“l and

the already-coded string in the sliding window xﬁ:x;rzﬂﬂ beginning at position
v. Therefore, the matching string is fully described by n and v. In short, the LZ77

algorithm operates in the following steps:

1. Encode the first w symbols without compression,

2. Set the pointer p = w + 1,

3. Find for some v in the range of 1 <v <w the largest n in the range of 1 <n <b
such that X0~ = x’;:xiz—’_"_l.

4. Encode the integers n and v into unary-binary code and the symbol x,;, € ©
without compression,

5. Set the pointer p to p = n + 1 and go to step 3 (iterate).

Assuming that the source is an ergodic process and the length of the compressed
text is large (L — co) the entropy of the compressed string H, is determined as the
length M of the compressed string divided by the length L of the original data series
[37, 95].

H.=M]/L

This algorithm can be applied in a modified way for analysis of heart beat time
series [37]. Here, the compression entropy H, of heart beat time series is affected by
the sample rate s, the window length w and the look-ahead buffer size b and hence
denoted as H"’. In summary, H5"** indicates in which extent data from heart
beat time series or each other time series can be compressed using the detection
of repetitive sequences. H, decreases with increasing window length w but the
influence of the look-ahead buffer size b on H, is only marginal. The parameters w
and buffer b were optimized to H* (w = 7, b = 3) [96]. The dependency of H:"**on
w and b suggests a sensitive of H5"**to vagally rather than sympathetically mediated
components of HRV. Assuming that the compressibility of a time series is a measure
of its nonlinear complexity, the complexity of heart rate in high-risk patients is
reduced and, therefore, compression entropy decreases with increasing risk [96].

Examples of compression entropy (compressibility) obtained from BBI time
series of white noise, a healthy subject, a patient suffering from coronary heart
disease and a patient suffering from atrial fibrillation are shown in Fig. 2.10.

2013, Baumert et al. [35] investigated the compressibility of heart rate time
series on multiple time scales, using a coarse-graining procedure applying the
H, algorithm ten times. Thereby, scale one corresponds to the original time
series, higher scales (2-10) were obtained by coarse-graining procedure, using
the procedure proposed by Costa et al. [97] multiscale entropy algorithm. Here,
an one-dimensional discrete time series, {x;, ...,X;, ... ,Xxy}, the coarse-grained



2 Symbolic Dynamics, Poincaré Plot Analysis and Compression Entropy. . . 69

2500
2000
o
2 1500
o
—_
o
=]
E 1000
=
=
500
0
He3,3=1 Hc3,3=0.86 Hc3,3=0.67 He3,3=0.96
White noise Healthy subject ~ Coronary heart  Atrial fibrillation
disease
= BBI number of original time series = BBI number of compressed time series

Fig. 2.10 Compression entropy: Compressibility (window length, w = 3, buffer length, b = 3)
for BBI time series. Illustrative comparison of the length of the original (blue) vs. compressed
(orange) BBI time series of white noise, healthy subjects, patients suffering from coronary heart
disease and atrial fibrillation. (BBI = beat-to-beat intervals)

time series {x(7)} determined by the scale factor 7 is constructed by x](.f) =

1/t ]l:‘[=(]'—1)‘r L1 X where 7 represents the scale factor and 1 <j<L/t. In other
words, coarse-grained time series for scale t were obtained by taking arithmetic
mean of t neighboring original values without overlapping. For scale 1, the coarse
grained time series is simply the original time series. They concluded that multiscale
investigation of compressibility may provide an alternative method for entropy
assessment of biomedical signals over different time scales and be particularly
useful for heart rate complexity analysis.

A limitation of all univariate methods is that they are not able to quantify the
direct interrelationships between different time series. Therefore, they have limited
power to reveal the underlying physiological mechanisms responsible for changes
in time series complexity.

Recently, Li and Vitanyi [94] compared several entropy and entropy rate based
methods. They investigated the hypothesis that the linear model-based (MB)
approach for the estimation of conditional entropy (CE) can be utilized to assess the
complexity of the cardiac control in healthy individuals in comparison to nonlinear
model-free (MF) methods such as corrected ApEn, SampEn, corrected CE, two
k-nearest-neighbor CE procedures and permutation CE. They found, that the MB
approach can be utilized to monitor the changes of the complexity of the cardiac
control, thus speeding up dramatically the CE calculation. They concluded that,
due to that the remarkable performance of the MB approach challenges the notion,
generally assumed in cardiac control complexity analysis based on CE, about the
need of MF techniques and could allow real time applications.
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2017, Schumann et al. [98] introduced the cross-compression entropy (CH.).
CH. combines the data compression technique based on symbol transformation
and the principle of causality. It estimates to which extent a time series (target)
can be compressed by another (source) beyond its own past. The improvement
of compression considering the source signal is equivalent to an increase of
predictability of the target’s future. Therefore, CH, represents a measure of causality
between coarse-grained time series in compliance with the notion of Wiener and
Granger [99]. First, the input time series are transformed into sequences of symbols
[77]. In analogy to the univariate compression procedure, a memory window and a
buffer window are shifted along the target series [37, 96]. Additionally, a memory
window is defined in the source series that is used to encode the target symbols. The
target buffer window covers B, symbols Y,’,’+B’, starting at the current data point
Y, (coding position). These target symbols are encoded using the symbols of the
source memory window X”_,, with length M,. The longest subseries Xﬁ:ﬂ:i;’ff_z,
lasting n source symbols starting at element v, that matches the target sequence
Y5+"_' is extracted. Instead of encoding the whole target string, the starting point v
and the length n of its equivalent in the source memory and the successor X, 1,
is stored. Hence, n target symbols can be passed and the new coding position
is Xp +n+1-

If there is a redundant substring, of the same length or longer, included in the
target memory, compressibility is not improved by taking the source signal into

. . . . p—My+k+1-2
account. Therefor matching source symbols are ignored, if a substring Yp_My kel

with a length of / > n in the target memory matches Y2+,

CH_x — y is defined as the proportion of iterations that can be saved compressing
Y; by X; with respect to the original length of Y;. Assuming the input ¥; of length Ny
is compressed by X; in N, iterations, CH is calculated by the equation below.

NO - Ncom

CHexsy = No

Because redundant symbol patterns at different positions in the source window
(start v) can contribute to the compression, CH, allows the delay of coupling to
vary during the time of acquisition. The interaction across various time scales
can be covered by CH, due to a variable length of redundant symbol substrings
n. Although CH, is very flexible, it is easy to interpret and has the natural
boundaries of zero and one. The compression algorithm is well known and easy to
implement. Symbolization is robust to outliers and does not require stationarity of
the data.

2.2.3.1 Specifics and Restrictions

Dependency on sampling rate, the window length, the look-ahead buffer size and a
threshold; implementation has to consider integer numbers; relatively insensitive to
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artefacts and non-stationarity which have only a locally limited influence; short-term
method where longer lasting patterns reflecting especially sympathetically mediated
influences are not or only partially considered for compression; short- and long term
time series analyses.

2.3 Clinical Applications

2.3.1 Schizophrenia: Cardiorespiratory System

Schizophrenia is a severe mental disorder associated with a significantly increased
cardiovascular mortality rate. However, the underlying mechanisms leading to
cardiovascular disease (CVD) are not fully known. For the quantitative analyses
of the cardiorespiratory system in univariate and bivariate ways, several linear and
nonlinear time series analysis approaches were developed. Studies indeed showed
that the coupling between the cardiovascular system and respiration is strongly
nonlinear [100]. Therefore, linear methods seem to be inappropriate and not able
to fully address physiological regulatory mechanisms within the cardiovascular
system. Methods based on entropies have the common feature that they analyze a
putative information transfer between time series and address either the uncertainty
or predictability of time series. Complexity analysis can be performed by evaluating
the entropy and entropy rate. Entropy (e.g., Shannon or Renyi) calculates the
degree of complexity of a signal’s sample distribution. However, a limitation
of all univariate nonlinear methods is that they are not able to quantify the
direct interrelationships such as the nonlinear influence of respiration on heart
rate. Therefore, they have limited power to reveal the underlying physiological
mechanisms responsible for changes in cardiorespiratory complexity [76].

We investigated [76, 101, 102] non-medicated 23 patients with schizophre-
nia (SZ; 12 male; 30.4 £ 10.3 years) and 23 healthy subjects (CO, 13 male;
30.3 £ 9.5 years) matched regarding to age and sex (Table 2.1) to quantify heart
rate- and respiratory variability (HRV, RESPV) and their dynamics as well as the
cardiorespiratory coupling (CRC).

Patients were included only when they had not taken any medication for at
least 8 weeks. Diagnosis of paranoid schizophrenia was established when patients
fulfilled DSM-IV criteria (Diagnostic and statistical manual of mental disorders,
4th edition. Psychotic symptoms were quantified using the Positive and Negative
Syndrome Scale (PANSS). A careful interview and clinical investigation was
performed for all controls to exclude any potential psychiatric or other disease
as well as interfering medication. The Structured Clinical Interview SCID II and
a personality inventory (Freiburger Personlichkeitsinventar, FPI) were additionally
applied for controls to detect personality traits or disorders which might influence
autonomic function. This study complied with the Declaration of Helsinki. All
participants gave written informed consent to a protocol approved by the local Ethics
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Table 2.1 Clinical and demographic data of enrolled study participants

Healthy subjects Schizophrenic patients
Data (CO)x (SZ)
Number of participants 23 23
Gender (male/female) 13/10 12/11
Age (mean = std. in years) 303 +9.5 304 £+ 10.3
PANSS, mean (min-max) n.a. 85.7 (43-124)
SANS, mean (min-max) n.a. 49.6 (14-81)
SAPS, mean (min-max) n.a. 60.9 (6-108)

Psychotic symptoms for acute schizophrenia were quantified using the scale for the assessment of
positive symptoms (SAPS) and negative symptoms (SANS) and positive and negative syndrome
scales (PANSS); n.A. means not applicable

Committee of the University Hospital Jena. Patients were advised that the refusal of
participating in this study would not affect future treatment.

From all subjects a high resolution short-term ECG (1000 Hz sampling fre-
quency) and synchronized calibrated respiratory inductive plethysmography signal
(LifeShirt®, Vivometrics, Inc., Ventura, CA, U.S.A.) were recorded for 30 min.
Investigations were performed between 3 and 6 p.m. in a quiet room which was
kept comfortably warm (22-24 °C) and began after subjects had rested in supine
position for 10 min. Subjects were asked to relax and to breathe normally to
avoid hyperventilation. No further instruction for breathing was given. Subjects
were asked explicit not to talk during the recording. Following time series were
automatically extracted from the raw data records as:

— Time series of heart rate consisting of successive beat-to-beat intervals (BBI) and
— Time series of respiratory frequency (RESP) as the time intervals between
consecutive breathing cycles.

Quantification of HRV, RESPV and CRC was done by applying several com-
plexity approaches as symbolic dynamics (SD), compression entropy (Hc), sample
entropy (SampEn), Poincaré plot analysis (PPA), Higuchi fractal dimension (HD),
high resolution joint symbolic dynamics (HRJSD), cross conditional entropy (CCE),
cross multiscale entropy (CMSE) and normalized short time partial directed coher-
ence (NSTPDC) [71, 76, 103].

The nonparametric exact two-tailed Mann-Whitney U-test (SPPS 21.0) was
performed to non-normally distributed indices (significant Kolmogorov-Smirnov
test) to evaluate continuous baseline variables as well as differences in autonomic
indices between SZ and CO. The significance level was set to **p < 0.01
(Bonferroni-Holm adjustment: ***p < (0.001). In addition, all results were presented
as mean =+ standard deviation.

We found (Table 2.2, Figs. 2.11, 2.12, and 2.13) significant difference in
HRV, RESPV and their dynamics as well as in CRC in SZ in comparison to
CO (p < 0.001). Especially, we demonstrated by different complexity based
measures (univariate, bivariate) that HRV was characterized by reduced complexity
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Table 2.2 Univariate statistical analysis results of heart rate- and respiratory variability in the
complexity domain to discriminate between patients suffering from schizophrenia (SZ) and healthy
subjects (CO)

CON SZ
Index p Mean =+ Std Mean =+ Std
SD SDRenyi025_BBI HE 3.74 £ 0.37 3.47 £0.37
Forbword pg; *E 15.04 &+ 13.25 2591 + 12.35
SDRenyi02s RESP K 323 £0.15 3.47 £0.19
Forbword grgsp o 31.61 £ 4.53 23.65 £+ 6.41
Hc Hc Bai HoAk 0.82 £0.10 0.69 £+ 0.10
Hc resp n.s. 0.59 £ 0.08 0.59 £ 0.12
SampEn SampEn gg; *E 2.29 £ 0.30 1.96 + 0.47
SampEn_ggsp n.s. 1.32 +0.37 1.49 £ 0.50
PPA SD1/SD2 gg; HoAk 0.46 £ 0.16 0.29 £ 0.11
SD1/SD2 ggsp HoAk 0.11 £ 0.03 0.18 £ 0.06
HD HDgsa HE 1.14 £ 0.03 1.19 £ 0.05
HRJSD HRIJSDgenyio2s HoAk 4.06 £ 0.11 437 £ 0.15
CCE CCEuf ppi-RESP HE 0.12 £ 0.07 0.16 £ 0.08
CMSE CMSEcae1 HAk 2.13 £ 0.67 1.43 £ 0.42
NSTPDC Hgppi—RrEsp HE 0.78 £ 0.07 0.71 £ 0.09
Hresp—BBI o 0.76 £ 0.05 0.71 £ 0.05

BBI beat-to-beat intervals, RESP time intervals between consecutive breathing cycles, SD symbolic
dynamics, Hc compression entropy, SampEn sample entropy, PPA Poincaré plot analysis, HD
Higuchi fractal dimension (RSA respiratory sinus arrhythmia), HRJSD high resolution joint
symbolic dynamics, CCE cross conditional entropy, CMSE cross multiscale entropy; NSTPDC
normalized short time partial directed coherence, mean value & standard deviation, p univariate
significance (**p < 0.01, ***p < 0.001, n.s. not significant)

(Figs. 2.11, and 2.12), whereas RESPV was characterized by increased complexity
and CRC was reduced accompanied by reduced complexity in schizophrenia.

These results suggest a parasympathetic withdrawal and an ongoing sympathetic
predominant activation in cardiac autonomic regulation. Bér et al. [43] suggested
that the reduction in heart rate complexity indicates that heart rate cannot adapt
to different requirements arising from posture or exertion and that the heart is at
higher risk of developing arrhythmias in those patients. Voss et al. [104] found
also reduced HRV (linear, nonlinear) in schizophrenic patients and their relatives,
indicating an impaired autonomic function, widely believed to be caused by a
reduced vagal tone. They further stated that at this moment the association of
a reduced HRV and higher cardiac risk (high mortality rates) for those patients
has not been satisfactorily proven. In general, the reduction in cardiac complexity
supports the thesis of a changed sympathetic/parasympathetic heart rate control
in schizophrenic patients [1]. A reduction of cardiac complexity (the increase of
cardiac regularity) is considered as a marker of pathology.

Considering respiration and respiratory variability (Fig. 2.13) as well as their
complexity we found, in accordance to previous findings [102, 105, 106]. Homma
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Fig. 2.11 Compression entropy: Compressibility (window length, w = 3, buffer length, b = 3)
for BBI time series. Illustrative comparison of the length of the original (blue) vs. compressed
(orange) BBI time series for patients suffering from (right) schizophrenia (Hé”3 = 0.69) and (left)
healthy subjects (H>* = 0.82). (BBI = beat-to-beat intervals)
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Fig. 2.12 Symbolic dynamics: Word distributions (histograms) obtained from BBI time series
applying symbolic dynamic analysis of (a) healthy subjects and (b) patients suffering from
schizophrenia. (BBI = beat-to-beat intervals)

et al. [107] stated that the final respiratory output involves a complex interaction
between the brainstem and higher centers, including the limbic system and cortical
structures. Respiration is primarily regulated for metabolic and homeostatic pur-
poses in the brainstem and also changes in response to changes in emotions, such
as sadness, happiness, anxiety or fear. Williams et al. [108] could show a functional
disconnection in autonomic and central systems for processing threat-related signals
in patients with paranoid schizophrenia and hypothesized that paranoid cognition
may reflect an internally generated cycle of misattribution regarding incoming fear
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Fig. 2.13 Poincaré plot analysis: Standard Poincaré plots of BBI time series of (a) a healthy
subject and (b) a patient suffering from schizophrenia, and of respiratory frequency intervals
(RESP) of (c) a healthy subject and (d) a patient suffering from schizophrenia. (BBI = beat-to-beat
intervals; RESP = respiratory frequency)

signals due to a breakdown in the regulation of these systems. Boiten et al. [109]
found that respiration patterns reflect the general dimensions of emotional response
that are linked to response requirements of the emotional situations. Furthermore,
the ratio of inspiration time to expiration time is closely related to emotions,
but however, are inconsistent discussed [109]. The found alterations in RESPV
likely can be explained that a dysregulation of arousal, as suggested in paranoid
schizophrenia in amygdalae prefrontal circuits, might contribute to the correlation
of psychopathology and breathing alterations [102]. In contrast to HRV respiration
was characterized by increased entropy indices (SDgenyio25_rEsp, SampEn_ggsp, and
HDRSA) describing the complexity and randomness of the respiratory time series.
HDgsa indicating that fractal characteristics (morphological structure) of the RSA
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signal were increased in SZ indicating that the underlying rhythm of the RSA
signal is randomly fluctuating. These findings pointing to increased irregularity of
respiration. It could be shown that a small change in respiratory functioning may
lead to background symptoms of panic and anxiety in any disorder as a results of the
link between the central nervous system and respiration [110]. It is well proven that
schizophrenia is related to panic attacks [111, 112], further supporting the altered
CRC in SZ might be at least partly related to panic attacks in the acute psychotic
state. It was shown that changed complexity indices, resulting from depressed organ
function, a loss of interaction among subsystems, an overwhelming action of a
subsystem over others and an impairment of regulatory processes, is a clear hallmark
of a pathological situation [113]. We believe that the found alterations in CRC might
reflect arousal and permeant stress situation in acutely ill SZ patients. This can be is
confirmed by comparable physiological changes within the cardiorespiratory system
in healthy subjects during stress conditions [102].

In conclusion, we showed that complexity indices from HRV; RESPV and
CRC analyses could contribute to enhanced risk stratification in schizophrenic
patients and possible will identify in the near future those patients at higher risk
cardiovascular disease. At the moment we are just at the beginning to understand
the interrelationship between the cardiorespiratory system in psychotic states and
the related brainstem neural networks and control mechanisms.

2.3.2 Schizophrenia: Blood Flow

We investigated the impairment of microcirculation in schizophrenic patients by
means of spectral analysis of blood flow signals and to determine if microcirculation
is unequally altered in different tissue depths. Furthermore, the impact of gender
and age on the spectral parameters of the Laser Doppler Flowmetry (LDF) signal
in healthy and diseased microcirculation were analyzed. The Segmented Spectral
Analysis (SSA) algorithm was applied to LDF signals of a provoked post-ischemic
stage and compared to the traditional total spectral analysis (TSA). 15 healthy
subjects (CON, mean age 32.4 years) and 15 patients (PAT, mean age 33.0 years)
were enrolled. Spectral analysis was performed on two LDF signals at a depth
of 2 mm and 6-8 mm. Features in five frequency subintervals were determined.
Our results indicate that microcirculation is strongly impaired in patients. SSA
of blood flow revealed differences between CON and PAT in all three frequency
intervals referring to local vasomotion (endothelial p = 0.03; sympathetic p = 0.02,
myogenic p = 0.03) as well as the respiratory (p = 0.02) and cardiac (p = 0.006)
bands in the deeper tissue. In contrast, in the near-surface tissue only the endothelial
(p = 0.006) and cardiac (p = 0.006) components were altered. Furthermore, SSA
determined a gender- and age dependency regarding blood flow. In conclusion, we
could demonstrate that microcirculation in schizophrenic patients is significantly
impaired and that blood flow in the near-surface skin and in the superficial muscle
tissue is affected differently, depending on its location in the near-surface skin
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or in the superficial muscle tissue. These alterations of microcirculation are more
pronounced in the deeper tissue depth of about 6—8 mm and are influenced by gender
and age. [114].

2.3.3 Idiopathic Dilated Cardiomyopathy

Identifying idiopathic dilated cardiomyopathy (IDC) patients who are at risk of
sudden death is still unsolved. The presence of autonomic imbalance in patients with
IDC might predict sudden death and tachyarrhythmic events. The aim of this study
was to analyze the suitability of blood pressure variability (BPV) compared to heart
rate variability (HRV) for non-invasive risk stratification in IDC patients. Therefore,
continuous non-invasive blood pressure and high-resolution electrocardiogram were
recorded from 91 IDC patients for 30 min. During a median follow-up period
of 28 months (range: [17-38] months), 14 patients died due to sudden death or
necessary resuscitation due to a life-threatening arrhythmia. HRV and BPV analyses
were performed in time domain, frequency domain, and nonlinear dynamics. We
found that dynamics of blood pressure regulation was significantly changed in high-
risk patients, indicating an increased BPV. BPV indexes from nonlinear symbolic
dynamics revealed significant univariate (sensitivity: 85.7%; specificity 77.9%; area
under receiver-operator characteristics [ROC] curve: 87.8%) differences. In an
optimum multivariate set consisting of two clinical indexes (left ventricular end-
diastolic diameter, New York Heart Association) and one nonlinear index (symbolic
dynamics), highly significant differences between low- and high-risk IDC groups
were estimated (sensitivity of 92.9%, specificity of 86.5%, and area under ROC
curve of 95.3%). In sum, diastolic BPV indexes, especially those from symbolic
dynamics, appear to be useful for risk stratification of sudden death in patients with
IDC. [115].

2.3.4 Depression

Due to that major depressive disorders (MDD) are associated with an increased
risk for cardiovascular morbidity and mortality and it is known that MDD are
accompanied with an autonomic dysfunction with increased sympathetic and/or
reduced parasympathetic activity to data only limited information are available
about the degree and complexity of cardiovascular regulation. We investigated 57
non-medicated depressed patients in comparison to 57 healthy subjects matched
with respect to age, gender and group size and the influence of MDD on autonomous
nervous system by means of linear and nonlinear indices from heart rate- and blood
pressure variability (HRV, BPV). Complexity indices from nonlinear dynamics
demonstrated considerable changes in autonomous regulation due to MDD. For the
first time we could show that non-medicated depressed patients who were matched
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with respect to age, gender and group size reveal a significant changed short-term
as well as long-term complexity of cardiovascular regulation. Complexity indices
from nonlinear dynamics showed considerable changes in autonomous regulation
caused by the disease depression. This finding was supported by linear indices only
from BPV. These results suggest substantial changes in autonomic control probably
due to a change of interactions between different physiological control loops in
MDD. [44].

2.3.5 Pregnancy

Hypertensive pregnancy disorders affect 6-8% of gestations representing the most
common complication of pregnancy for both mother and fetus. In this study, 10
healthy non-pregnant women, 66 healthy pregnant women and 56 hypertensive
pregnant women (chronic hypertension, pregnancy induced hypertension and PE)
were investigated applying the three-dimensional segmented Poincaré plot analyses
(3DSPPA) to detect hypertensive pregnancy disorders and especially pre-eclampsia
(PE). From all subjects 30 min of beat-to-beat intervals (BBI), respiration (RESP),
non-invasive systolic (SBP) and diastolic blood pressure (DBP) were continuously
recorded and analyzed. Non-rotated adapted 3DSPPA discriminated best between
hypertensive pregnancy disorders and PE concerning coupling analysis of 2 or 3
different systems (BBI, DBP, RESP and BBI, SBP, DBP) reaching an accuracy
of up to 82.9%. This could be increased to an accuracy of up to 91.2% applying
multivariate analysis differentiating between all pregnant women and PE. In
conclusion, 3DSPPA could be a useful method for enhanced risk stratification in
pregnant women [91].

2.4 Conclusion

It becomes apparent that cardiovascular regulation is one of the most complex sys-
tems in human due to the fact, that a variety of factors influencing the cardiovascular
system (e.g. heart rate) [103]. The application of nonlinear dynamics is motivated
by the fact that the control systems of the cardiovascular system have been shown to
be nonlinear because of its high complexity and the nonlinear interactions between
the physiological subsystems [103, 116]. Several of nonlinear indices have been
proven to be of diagnostic relevance or have contributed to risk stratification. In
this chapter we focused on the nonlinear methods symbolic dynamics, Poincaré
plot analysis, and compression entropy and their recent enhanced versions. The
introduced complexity methods revealed new insights into the changed autonomic
nervous system under various physiological and pathophysiological conditions,
provide additional prognostic information and definitely complement traditional
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time and frequency domain analyze. These methods have already been proven to be
of diagnostic relevance or have contributed to risk stratification in different diseases.

Several metrics assessing the system’s complexity and information flow among
its components are based on symbolization techniques. Indices derived from
symbolic dynamics might provide a reliable alternative to markers of complexity
and causality that can be derived from model-based multiple linear regression
approaches in time and frequency domains [117-120]. In the medical field, it can be
expected that symbolic dynamics will have a powerful impact in the coming years by
playing a significant role in tailoring individual treatments, improving diagnostics
and therapy, managing patient data and reducing the cost of healthcare systems via
a more precise risk stratification [15].

Research on HRV has proven that Poincaré plot analysis is a powerful tool to
evaluate short term and long term HRV. Researchers have investigated a number
of methods: converting the two- or three-dimensional Poincaré plot into various
one-dimensional views; segmented the plot to retain nonlinear properties of the
underlying system; multiple lagged plot analysis to investigate time correlation of
the system; the fitting of an ellipse to the plot shape; and measuring the correlation
coefficient of the plot. Poincaré plot analyses play a more and more important role
and—as an advantage—are easier to understand and interpret [16].

Methods based on entropies have in common that they analyze a putative
information transfer within one or between time series and address the uncertainty or
predictability of time series. Compression entropy represents only one complexity
measure within the big group of methods calculating entropy and/or entropy rates.
This method is easy to apply, working time efficiently and allows straightforward
physiological interpretations.

Applications of these introduced methods in future studies are very promising
and should (depending on the complexity of the investigated system) be performed
in a multivariate manner complemented with linear and further successful non-linear
approaches.
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Chapter 3

Information Decomposition: A Tool to Dissect
Cardiovascular and Cardiorespiratory
Complexity

Luca Faes, Giandomenico Nollo, and Alberto Porta

Abstract This chapter reports some recent developments of information-theoretic
concepts applied to the description of coupled dynamical systems, which allow to
decompose the entropy of an assigned target system into components reflecting
the information stored in the system and the information transferred to it from the
other systems, as well as the nature (synergistic or redundant) of the information
transferred to the target. The decomposition leads to well-defined measures of
information dynamics which in the chapter will be defined theoretically, computed
in simulations of linear Gaussian systems and implemented in practice through
the application to heart period, arterial pressure and respiratory time series. The
application leads to decompose the information carried by heart rate variability
into amounts reflecting cardiac dynamics, vascular and respiratory effects on these
dynamics, as well as the interaction between cardiovascular and cardiorespiratory
effects. The analysis of head-up and head-down tilt test protocols demonstrates
the relevance of information decomposition in dissecting cardiovascular control
mechanisms and accept or reject physiological hypotheses about their activity.

3.1 Introduction

The short-term autonomic regulation in humans is accomplished through the
combined activity of several physiological systems, including the cardiac, vascular
and pulmonary systems, which have their own internal regulation but also interact
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with each other in order to preserve the homeostatic function [1]. The effects of this
complex regulation are manifested in the time course of the output physiological
variables of the various organ systems. For instance, it is well known that the beat-
to-beat variability of the heart period (HP) results from the activity of important
physiological regulatory mechanisms, including the cardiovascular effects from
systolic arterial pressure (SAP) to HP manifested through the so-called baroreflex,
the cardiorespiratory effects from respiration (RESP) to HP known as respiratory
sinus arrhythmia, as well as central neuroautonomic commands that affect the
heart rate dynamics independently of the cardiac baroreflex and cardiopulmonary
pathways [2]. An important but poorly addressed aspect of physiological regulation
is the fact that all these mechanisms do not operate independently of each other,
but rather constitute intertwined elements of the overall control of the heart rate. A
clear example of the interrelation among cardiovascular and cardiorespiratory mech-
anisms is the coexistence of the central respiratory drive modulating cardiac vagal
motor neuron responsiveness (effect RESP—HP) with the mechanical vasculo-
pulmonary influences transmitted to the sinus node through the cardiac baroreflex
(effect RESP—SAP—HP) [3]. These mechanisms are often simultaneously active
together with the cardiac baroreflex mediating the effects of SAP on HP unrelated to
respiration, and a variety of mechanisms modulating HP dynamics independently of
RESP and SAP, such as the central commands independent of afferent inputs which
originate from respiratory and vasomotor centers in the brainstem [4].

In order to dissect these physiological mechanisms and clarify their relative
contribution to the complexity of the cardiac dynamics, there is the need of
devising methods able to quantify the predictable portion of these dynamics, to
investigate how this portion arises from internal HP dynamics and from causal
interactions driven by SAP and RESP, and to explore how collective causal
interactions (e.g., {RE,SAP}—HP) arise from different effects (e.g., SAP—HP,
RF—HP, RF—SAP—HP). In the present work, this issue is approached in the novel
framework of information dynamics [5, 6], considering three nested information
decomposition strategies fully dissecting the statistical dependencies within a net-
work of dynamical systems composed of a target system and two connected source
systems. The three decompositions allow to separate: (i) the predictive information
about the target system into amounts quantifying the information storage in the
system and the joint information transfer from the source systems [7]; (ii) the
information storage into the internal information ascribed exclusively to the target
dynamics and three interaction storage terms accounting for the modification of the
information shared between the target dynamics and the sources [8, 9]; and (iii) the
joint information transfer into amounts of information transferred individually from
each source when the other is assigned (conditional information transfer) and a term
accounting for the modification of the information transferred due to cooperation
between the sources (interaction information transfer) [10]. With this approach, we
first define several entropy-based measures of information dynamics, stating their
properties and reciprocal relations. Then, we provide a data-efficient approach for
the computation of these measures, which yields their exact values in the case of
stationary Gaussian systems. Even though these hypotheses might appear to be quite



3 Information Decomposition: A Tool to Dissect Cardiovascular. . . 89

restrictive at the first sight, they are largely exploited in multivariate modeling of
cardiovascular variability interactions [2, 11, 12], and have often been found to be
satisfied in well-controlled experimental protocols for which computations based on
Gaussianity have yielded comparable results than model-free nonlinear approaches
[8, 13]. Here we exploit the theoretical framework and the proposed computation
approach, applied to short term HP, SAP and RESP time series measured from
healthy subjects, in order to elucidate the mechanisms of cardiac, cardiovascular
and cardiorespiratory regulation in the resting supine position, and to assess the
reciprocal modification of these mechanisms induced by two stimulations known to
evoke adjustments in the cardiovascular control related to opposite effects on central
circulatory volemia, i.e. head-up tilt (HUT) [9, 14] and head-down tilt (HDT) [10].

3.2 Basic Concepts of Probability and Information Theory

We start recalling some basic concepts of probability and information theory [15],
which will be used respectively in Sect. 3.3.1 to provide a mathematical framework
for the description of physiological networks, and in Sect. 3.3.2 to define the
measures of information dynamics descriptive of the dynamical structure of these
networks.

A random variable is a mathematical variable whose value is subject to
variations due to chance. In this work we will deal with continuous random
variables, i.e. variables that can take values inside an infinite-dimensional set
usually denoted as the domain. The generic scalar random variable V with domain
Dy is characterized by its distribution function, intended as a function which
assigns a probability to each measurable subset of Dy. Formally, the probability
for the variable V of taking values within the interval [a,h]CDy is determined
by the integral Pr{aSVSb}:fffv(v)dv:FV(b)—Fv(a), where fy is the probability
density function of the variable and Fy is its cumulative distribution function.
The cumulative distribution quantifies the probability that the variable V has v as
its upper bound, Fy(v)=Pr{V<v}, while the probability density is mathematically
defined as the derivative of the cumulative distribution, in a way such that
Fy(v) = 7 oofv()du. These definitions extend in a straightforward way to the
generic k-dimensional variable W=[W,, ... ,W,] by defining the joint probability
density fw(wi, . ..,w;) and performing multiple integration over the domain of each
scalar component to get the cumulative distribution. Moreover, the conditional
probability density of V given W expresses the probability of observing the value
v for V given that the values w=wj,...,w; have been observed for Wy,... ,W;:
SuwvIW=fuw@.wi, ... . wlfwwi, ... ,we).

Probability distributions are represented in a convenient way in the framework
of information theory. The central quantity in this framework is the entropy of a
random variable, intended as a measure of the uncertainty about the outcomes of
this variable. Specifically, the (differential) entropy of the continuous variable V
measures the average amount of information contained in V or, equivalently, the
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average amount of uncertainty about V that is resolved upon revealing its outcomes
veDy:

H(V) = — / Fr () log fy (v)dv. 3.1)
Dy

The definition in Eq. (3.1) extends easily to a generic k-dimensional variable
W by performing multiple integration over the domain of each scalar component.
Then, the conditional entropy of V given W is defined using the conditional density
function as follows

H((V|W) =— / Sfv.w (v, w)log fyiw (vIw) dvdw, (3.2)

Dy .,.Dw

measuring the residual information contained in V when W is assigned, intended as
the average uncertainty that remains about the outcomes of V when the outcomes of
W are known.

Entropy and conditional entropy are related to each other by the equation
H(V)=H(V|W)+I(V;W), where I[(V;W) is the mutual information (MI) between V
and W defined as

Sviw (v|w)

dvdw, 3.3
f) G-3)

I(V;W) = / Sfvw (v,w)log

Dy,Dw

measuring the amount of information shared between V and W intended as the
average reduction in uncertainty about the outcomes of V obtained when the
outcomes of W are known. Moreover, the conditional mutual information (CMI)
between V and W given a third variable U, I(V;W|U), quantifies the information
shared between V and W which is not shared with U, intended as the average
reduction in uncertainty about the outcomes of V provided by the knowledge of
the outcomes of W that is not explained by the outcomes of U:

I(V;W|U) =H(V|U)—H(VIW,U) (3.4)
=I1(V;UW)—-I(V;U) "’ '
where each conditional entropy or mutual information term is computed according
to (3.2) and (3.3), respectively.

Another interesting information-theoretic quantity is the interaction information,
which is a measure of the amount of information that a target variable V shares with
two source variables W and U when they are taken individually but not when they
are taken together:

[(V:W:U) = (V:U) +1(V;W) =1 (V.U W). 3.5)
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Fig. 3.1 Entropy diagram (left) and mutual information diagram (right) depicting the relations
between the basic information-theoretic measures defined for three random variables V,W,U: the
entropy H(.), the conditional entropy H(.|.), the mutual information I(.|.), the conditional mutual
information I(.;.|.), and the interaction information I(.;.;.)
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Alternatively, the interaction information can be intended as the amount of
information bound up in the set of variables {V,W,U} beyond that which is present in
the individual subsets {V,W} and {V,U}. Contrary to all other information measures
defined in (3.1, 3.2, 3.3, and 3.4) which are never negative, the interaction infor-
mation defined in (3.5) can take on both positive and negative values, with positive
values indicating redundancy (i.e., I(V;U,W)<I(V;U)+I1(V;W)) and negative values
indicating synergy (i.e., [(V;U,W)>I(V;U)+I1(V;W)) between the two sources U and
W that share information with the target V.

Mnemonic Venn diagrams of the information measures recalled above, showing
how these measures quantify the amounts of information contained in a set of
variables and shared between variables, are shown in Fig. 3.1. The several rules
that relate the different measures with each other can be inferred from the figure;
for instance, the chain rule for entropy decompose the information contained in
the target variable V as H(V)=I(V;U,W)+H(V|U,W), the chain rule for mutual
information decomposes the information shared between the target V and the
two sources W and U as I(V;UW)=I(V;U)+I(V;W|U)=I(V;W)+I(V;U|W), and
the interaction information between V, W and U results as I(V;U;W)=I(V;U)-
I(V;UW)=1I(V;W)-1(V;W|D).

Note that, since the natural logarithm is commonly used in the computation of
entropy and mutual information for continuous variables, all the measures defined
above are expressed in natural units, or nats.

3.3 Information Decomposition in Networks of Interacting
Physiological Dynamic Systems

3.3.1 Dynamic Systems, Stochastic Processes and Their
Probabilistic Description

In this study, we consider the heart, the respiratory system and the vascular system
as dynamical systems that assume diverse states at different instants of time. These
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systems are also assumed to be stochastic, meaning that their current state does
not depend only on the inputs to the system and on its initial state but also on
the outcome of a random experiment. Therefore, the evolution over time of these
systems can be only described in probabilistic terms using stochastic processes.
Specifically, the states visited by the cardiac system X over time are represented by
the heart period variability described as a stochastic process X={X,}, n=,1,2,...,
where the random variable X,, describes the n-th heart period, i.e. the state assumed
by X at the n-th time step. Using the same notation, we denote the stochastic
processes descriptive of respiration and systolic arterial pressure variability as
Y={Y,} and Z={Z,}, n=,1,2, ..., which represent the dynamic states visited by
the respiratory and vascular systems, respectively. The three systems taken together
constitute the physiological network S={X,Y,Z}, whose activity is described by the
vector stochastic process S={S,}, where the vector random variable S,=[X, ¥,
Z,1" quantifies in probabilistic terms the state of the overall observed system at
the n-th time step. Then, a realization of the stochastic process X is the time series
x=[x] x2 ...xy], containing the values of heart period collected over N consecutive
heartbeats. The same holds for the sequences of the consecutively measured SAP
values and respiration samples, indicated respectively with the time series y=[y;
v2...yn])s and z=[z; z2...zy]. The three synchronous sequences are collected in
the multivariate time series s=[s153 . .. Sy 1, Sp=[% Yu 2217, n=1, ... ,N, which takes
the form of an MxN data matrix representing a realization of the vector process S
(M =3 in this case). An overall description of the physiological network and related
processes and time series is presented in Fig. 3.2.

Systems Processes Time Series
Cardiac System - Y H._'\.” L : A .~ x - Heart period
<L o h
X A A 1 " 1 - '."-'p'°1 H '|”"|| || ||'ar|'«.1r.',l(‘. ] '.J';l"m,
_.AJ AW ¥ L__,\__"/' '-,__M‘,J' NN VAW
Respiratory System — - Respiration
y G SN S ”M\f" A}W i l\ i M ”IJW
\ |L— \ (N
— O i n -
Vascular System c;/”_: %m ?x,_, 'r_:/... 1 . z - Systolic .IIDressme
i I\ \ I f\ il - f Il"l \
4 RS l \ I\ L N H I\ LiE LY W
"-\ | '»"-.\x I| '-f\.\_. I '-..-*\\HJ -/\ Il \ ol by '».'\,v".ul vy W.rl I \".'
-J 4 ) J |

1 sec 1 n 200

Fig. 3.2 Representation of a physiological network based on the theory of dynamical systems.
The cardiac, respiratory and vascular systems are seen as the dynamical systems X, Y and Z,
which visit different states at each heartbeat. The evolution of the network across time is quantified
by the stochastic processes X, Y and Z: the state of the network at time » is described by the random
variables of the present heart period X, respiratory amplitude Y,, and systolic arterial pressure Z,.
A realization of these processes is the multivariate time series {x,y,z}
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When considered individually, each stochastic process describing the dynamic
activity of a node of the observed physiological network is characterized by a family
of probability density functions, or equivalently by the corresponding family of
cumulative distribution functions. Accordingly, the temporal statistical structure of
the process X is described by the probability density functions fx, (x,) or by the
cumulative distribution functions Fx, (x,) ,n =, 1,2, ..., N. The probability density
is then defined in a straightforward way for the other processes, fy, (Vn) .fz, (z1)
, for joint variables taken from the same process, fy, .x, (Xn ... Xy), and
for sets of vector variables taken from the overall vector process S={X Y Z},
fsnl...snk (S,” e ,Snk), Vai,....n,Vk>1.

Setting a temporal reference frame in which n represents the present time, we
denote as X, the random variable describing the present of X, and as X,” =[X;
XoXp2 X117 the (n-1)-dimensional vector variable describing the past of X. The

same notation applies for ¥ and Z, and extends to S, = [SIT s7---8T, S,f_l]T to
denote the 3(n-1)-dimensional vector variable describing the past of S. In general,
the operation of separating the present from the past allows to consider the flow of
time and to study the causal interactions within and between processes by looking at
the statistical dependencies among these variables. In fact, the dynamic properties of
a system are studied in the information domain introducing the concept of transition
probability, which is the probability associated with the transition of the system
from its past states to its present state. Thus, the state transition of the network
S relevant to the system X is described by the conditional probability density
fx,is~ (xals;)) . which reduces to any restricted conditional density in particular
cases (e.g., when only the individual dynamics of the process X are of interest, the
conditional density fx,x— (x,|x;) is considered).

A useful property of stochastic processes is stationarity, which defines the
time-invariance of any joint probability density taken from the process, i.e.,
fsnlmsnk (Sm e ,Snk) = fsnlmsnk_'_m (S,,l S ,Snk) Vnai,...,ng, Vm,k > 1. For sta-
tionary processes, we use the shorthand notation fs (S, , . . ., S,,) for the probability
density. When the process is stationary, the fact that the probability density is
the same at all times allows to pool together the observations measured across
time order to estimate the densities, thus enabling the estimation of probabilities
from individual realizations. For a stationary stochastic process, also the transition
probabilities are time-independent, i.e. fx, s (¥alS,,) = fx,y,ls7,,, (VntmlSpim) =
Is (x,1|Sn_) Vn,m > 1. An important class of dynamic processes is that of Markov
processes, which are processes for which the present depends on the past only
through a finite number of time steps. Specifically, the process X embedded
in the network S is a Markov process of order m if its transition probability
function satisfies the condition fs(x, | s, )=fs(X,|Sy-m> - - - .Sn-1). The Markov property
allows to investigate the state transitions relevant to the considered target process
by restricting the analysis to the consideration of the past m states visited by
the network. Stationarity constitutes the basis for the theoretical computation
of information-theoretic quantities in the simulations of Sect. 3.4, and of their
estimation on cardiovascular time series described in Sect. 3.5.
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3.3.2 Information Decomposition in Multivariate
Stochastic Processes

In the following we present a framework to dissect the information contained in
the target system of a network composed by several interacting dynamic systems
into amounts reflecting basic elements of information processing, like the new
information generated at each time step, the information stored in the system, the
information transferred to it from the other connected systems, and the redundant
or synergistic modification of the information transferred from two source systems
towards the target. Here, ‘information’ and its constituent elements are quantified
through the utilization of well-known standard information theoretic measures like
those defined in Sect. 3.2, applied by taking as arguments for these measures proper
combinations of the past and present states of the considered stochastic processes.

Let us consider a ‘target’ system in our network, say X, and interpret the
remaining systems Y and Z as ‘source’ systems. The ‘information’ contained in
the target X varies at each time step in a way such that, when the network transits
from past states to the present state, new information is produced about X in
addition to the information which is carried from the past states of the whole
network S={X,Y,Z}. In the framework of information dynamics [5, 8], this process
is described by defining entropy-based functionals which characterize the dynamical
structure of the target process X by relating the present state X, to the past states
of the overall process S, . Here, assuming that S is a Markov process of order m,
the whole past S, is truncated at lag m, i.e., S, =S'=[ST_,--ST_ 1T (the same
holds for the past of the individual processes: X" =[X,1*Xym]’, Y"=[Yy1Yoml?,
Z;”:[Zn_lu-Zn_m]T). The amount of information contained in the target process X at
time n is defined as the entropy of the variable X,:

Hy = H(X,), (3.6)

where, under the assumption of stationarity of the process X, dependence on the
time index n is omitted in the formulation of the entropy Hx. Then, exploiting the
chain rule for entropy, the target information can be decomposed as

Hy = Px + Ny =1 (X, S))) + H (X,IS})) (3.7)

where Py = I (X,:S) is the prediction entropy of the target X, which quantifies
the predictive information of X as the information shared between the present X,
and the past of the whole network S/, and Ny = H (Xn|SZ’) is the newly generated
information that appears in the target process X after the transition from the past
states to the present state, measured as the conditional entropy of the present of X
given the past of the whole network S'. The decomposition in Eq. (3.7) evidences
how the information carried by the target of a network of interacting processes can
be dissected into an amount that can be predicted from the past states of the network,
which is thus related to the concept of information stored in the target node the
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network, and an amount that is not predictable from the history of any observed
system, which is thus related to the concept of new information produced at the
target node.

The predictive information quantifies how much the uncertainty about the current
state of the target system is reduced by the knowledge of the past states visited by
the overall multivariate system. To understand the contribution of the different parts
of the multivariate system to this reduction in uncertainty, the predictive information
can be decomposed into amounts related to the concepts of information storage and
information transfer. Specifically, the prediction entropy of the target process X can
be expanded as

Py =Sx + Tyzx =1 (X: X)) + 1 (X,: Y © Z'|X)) (3.8)

where @ denotes vector concatenation (Y;," ®Z" = [Y;f'TZ,'I”'T]T). In Eq. (3.8),

Sy =1 (Xn;X;”) is the self entropy of X, which quantifies the information storage
in the target as the amount of information shared between the present of the target
X, and its past X, and Tyz.x = I (X,; Y & Z"|X") is the joint transfer entropy
from (Y, Z) to X, which quantifies the information jointly transferred from the two
sources Y and Z to the target X as the amount of information contained in the past
of the sources Y, @ Z" that can be used to predict the present of the target X, above
and beyond the information contained in the past of the target X)". This second
decomposition resulting from Eq. (3.8) is useful to dissect the whole information
that is contained in the past of the observed network and is available to predict the
future states of the target into a part that is specifically stored in the target itself, and
another part that is exclusively transferred to the target from the sources.

In turn, the information storage can be further expanded into further levels of
information decomposition that evidence how the past of the various processes
interact with each other in determining the information stored in the target. In
particular, the self entropy of X is expanded as

Sx = Sxjvz + Ly, =1 (Xu XJ Y @ 7)) +1 (X X5 Yy @2Z7),  (3.9)

where Syiyz = I (X XY & Z7) is the conditional self entropy of X given Y
and Z, which quantifies the so-called internal information in the target intended as
the amount of information contained in the past of the target X" that can be used
to predict the present X, above and beyond the information contained in the past
of the sources Y;' @ Z, and IY., , = I (X,: X" Y;" @ Z)) is the interaction self
entropy of X in the context of the network process {X,Y,Z}, which quantifies the
so-called interaction information storage measured as the interaction information of
the present of the target X,,, its past X", and the past of the sources Y ® Z!". In turn,
the interaction self entropy can be expanded as

X X X X X X X
]x;y,z = [X;Y + [X;Z - ]x;y;z = Ix;y|z + IX;ZlY + IX;Y;Z’ (3.10)



96 L. Faes et al.

where I§;Y = I(X,,;X,’,”; Y,T) and If;z = I(X,,;X,’,”;ZZ’) are the interaction self

entropies of X in the context of the bivariate processes {X,Y} and {X,Z}, I;Y‘Z =
1 (X,,;X,’,”; Y;T|ZZ”) and Igf('ZIY =1 (Xn;X,T;ZﬂY,’l”) are the conditional interaction

self entropies of X in the context of the full processes {X,Y,Z}, and 1§§;Y;Z =
1 (Xn; Xy ZZ’) is the multivariate interaction entropy between X, Y and Z in the
context of the network process {X,Y,Z}, which quantifies the so-called multivariate
interaction information of the present of the target X, its past X, the past of
one source Y/, and the past of the other source Z. This last expansion puts in
evidence basic atoms of information about the target, which quantify respectively
the interaction information of the present and the past of the target with one of
the two sources taken individually, and the interaction information of the present
of the target and the past of all processes. This last term expresses the information
contained in the union of the four variables (X, X', Y7*, Z"), but not in any subset
of these four variables.

Finally, as a last decomposition of the information transfer, we show how the
joint transfer entropy can be expanded to evidence how the past of the sources
interact with each other in determining the information transferred to the target.
Specifically, the joint transfer entropy from (Y,Z) to X can be expanded as

Tyzx = Ty—x + Tzx — I)YK;Z\X =Ty-xiz + Tzxyy + 1¥;z|x’ (3.11)

where Ty_x = I (X,; Y"|X") and Tz—x = I (X,;; Z!"|X") are the transfer entropies
from each individual source to the target in the context of the bivariate processes
(X,Y}and {X.Z}, Ty—x)z = I (Xo: Y"|X7 @ Z7) and Tz xjy = I (X3 Z|X2  YT)
are conditional transfer entropies quantifying the information transfer from one
source to the target conditioned to the other source in the context of the whole
network process {X,Y,Z}, and I§;z|x = I(X: Y™ Zr|xr) = I(Xs Y'X") —
1(X,; Y| X" @ ZI") is the interaction transfer entropy between Y and Z to X in the
context of the network process {X,Y,Z}, which quantifies the so-called interaction
information transfer measured as the interaction information of the present of the
target X,,, and the past of the two sources Y, and Z), conditioned to the past of the
target X",

The Venn diagram depicting all the decompositions defined above is shown
in Fig. 3.3. The diagram evidences how the information contained in the target
process X at any time step (all non-white areas) splits in a part that can be
explained from the past of the whole network (predictive information, coloured
areas) and in a part which is not explained by the past (new information, gray). The
predictable part is the sum of a portion explained only by the target (information
storage, red shades) and a portion explained by the sources (information transfer,
blue shades). In turn, the information storage is in part due exclusively to the
target dynamics (internal information, Sxy z) and in part to the interaction of
the dynamics of the target and the two sources (interaction information storage,
Ij(‘; y:z» Which is the sum of the interaction storage of the source and each target
plus the multivariate interaction information). Similarly, the information transfer
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H(X, X, Y5 Z)))

H(Zy) :

Fig. 3.3 Graphical representation of the information theoretic quantities resulting from the
decomposition of the information carried by the target X of a network of interacting stationary
processes S={X,Y,Z}. The entropy decomposition dissects the entropy of the process (Hy) as the
sum of the new information (Ny, gray) and the predictive information (Py, colored areas). The
predictive information decomposition dissects Py as the sum of the information storage (Sx, red
shades) and the information transfer (Tzy—x, blue shades). The information storage decomposition
dissects Sy as the sum of the internal information (Sx|yz), conditional interaction terms (I))g

Hy=H(X,)

H(X,)

ZlY
and Ifg.y‘ ) and multivariate interaction (I3.y.,). The information transfer decomposition dissects
Tzy—sx as the sum of conditional information transfer terms (77— x|y and Ty_.x|z) and interaction
information transfer (If,(. Z1x ). Figure redrawn from [10]

can be ascribed to an individual source when the other is assigned (conditional
information transfer, Ty _ x1z , Tz — x1y) Or to the interaction between the two sources
(interaction information transfer, I;‘;Z‘ +)» Note that all interaction terms can take
on either positive values, reflecting redundant cooperation between the past states
of the processes involved in the measures while they are used to predict the
present of the target, or negative values, reflecting synergetic cooperation; since
the interaction terms reflect how the interaction between source variables may lead
to the elimination of information in the case of redundancy or to the creation of
new information in the case of synergy, they quantify the concept of information
modification. This concept and those of information storage and information transfer
constitute the basic elements to dissect the more general notion of information
processing in networks of interacting dynamical systems [6].

3.4 Computation of Information Dynamics

The practical computation of the measures appearing in the information decom-
positions presented in Sect. 3.3 presupposes to provide estimates of the entropy,
MI and conditional MI for the vector variables enclosing the present and the past
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of the observed processes. In the most general case, and when nonlinear effects
are relevant, non-parametric approaches are recommended to yield model-free
estimates of entropy and MI [7]. However, the necessity to estimate entropies of
variables of very high dimension may impair the reliability of model-free estimators,
especially when short realizations of the processes are available. In this study
we present an estimation approach which is based on assuming a joint Gaussian
probability density for the observed stationary Markov processes and exploiting
exact derivations that hold in this case [8].

3.4.1 Linear Gaussian Computation

In this section we provide a derivation of the exact values of information dynamics
under the assumption that the observed dynamical network S={X,Y,Z} is composed
by Gaussian systems. Specifically, we assume that the overall vector process S=[X
YZ]" has a joint Gaussian distribution, which means that any vector variable S,; =

T . . .
[s,fl .. .s,,kT] obtained sampling the process at times ny, ... n, Vi, ... n,Vk>1,

has the known probability density

1 —
IO E——— S (3.12)

V@O 1Bl

where d is the dimension of Sy, . = E[S,Sy] is the covariance matrix of S,
and |*| is the matrix determinant. Particularizing the density (3.12) to the variables
representing the present of the target process and the past of the target and source
processes in the network, and exploiting the basic information-theoretic relations
(3.1, 3.2, and 3.3), the measures of information dynamics for joint Gaussian
processes can be obtained as follows.

The entropy of the target process X evaluated at time # is given by the known Eq.
[15]

Hy = H(X,) = %m (2mea® (X)), (3.13)

where o(X,)=E[X,2] is the variance of the target process. Moreover, exploiting a
central result published in [16], we derive that the conditional entropy of the present
of the target given the past m points of the whole network process S is given by

Ny = H (X,|S)') = %m (2meo® (X,ISY)) . (3.14)

where 62(X,|S") is the partial variance of X, given S!, quantified as the variance of
the prediction error of a linear regression of X,, on S’. The same formulation holds
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for any ‘restricted’ linear regression where one or more of the processes composing
S=[X,Y,Z] are excluded from the set of regressors. Thus, the regression of X,
performed respectively on X', X' ®Y,", X)'®Z), Y'®Z), and X' DY, DZ", yields
the partial variances 0%(X,|X™), 0*(X,|X"®Y™), 62(X,|X"®Z™), 62(X,|Y"DZ™),
and 0%(X, | X" @Y™ Z™"). Then, the variance of X and the different partial variances
can be combined as follows to estimate predictive information, information storage
and joint information transfer,

_1 o (Xy)
Py =3In 20,157
, (3.15a)
S, — 1n 02(X,) T — 1 a2(X,,|XZ1)
X = 20 o2xxy) VX T 2 oy, xrevprezy)
bivariate and full internal information
2 m 2 m
1 o (Xn|Yn) 1 o (Xn‘zn)
SX|Y -2 ln Uz(anx,T@Y;”) ’ SX|Z ) ln Uz(Xn‘X;,"’@ZZ’)
, (3.15b)
s — o (Xa|Yrezm)
Xz =3 W k. xperrez
and bivariate and conditional information transfer
2 m 2 m
_1 o2 (X, 1x1") _1 o2 (Xalx")
Trox = 3G ey T22x = 2 N G ez
(3.15¢)

o2 (X xm@Y!")
o2 (X Xr @YDz

2 m m
TY—>X|Z = %11’1 %7 TZ—)X\Y = %ln
The interaction terms of the various decompositions are then obtained directly
from the quantities in Eqs. (3.15a, 3.15b, and 3.15c): the interaction information
storage terms are I§;Y = Sx — Sx|y and I)’((;Z = Sx — Sx|z for the bivariate processes,
and 1§§;yz = Sy — Sx|y z for the whole network process; the conditional interaction
= Sx|y — Sx|v.z; the interaction

storage terms are I¥ = Sx|z — Sx|r.z and Ifg

XYz
information transfer is I;(;le
interaction information is I5.y., = Sx — Sxjy — Sx|z + Sx|v.z-

Thus, the computation of all measures of information dynamics for jointly
Gaussian processes is straightforward once the partial variance of the present of
X given the various combinations of the past of X, Y and Z are obtained. The partial
variance of X,, given the generic d-dimensional vector variable V, which in our case

can be any of X', X'®Y)', X"®Z", Y'®Z), and X' DY DZ", is given by [8, 16]

Z|Y
= Ty—x + Tz—x — Tyz—x; and the multivariate

0r (X,|V) =02 (X)) - E X V) (V) ' EX V) (3.16)

where X(X,,; V) is an 1xd vector containing the covariances between X,, and each
scalar element of V, and X(V) is the dxd covariance matrix of V. Therefore, the
computation of the partial variances amounts to evaluating the relevant covariance
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and cross-covariance matrices between the present and past variables of the
various processes, to be inserted in (3.16). In general, these matrices contain as
scalar elements the covariance between two time-lagged variables taken from the
processes X, Y, and Z, which in turn appear as elements of the autocovariance of
the whole observed process S=[X Y Z]T, defined at each lag k>0 as T'y=E[S,
ST,.«]. Now we turn to show how this autocovariance matrix can be computed
from the parameters of the vector autoregressive (VAR) formulation of the process
S=[xYZzZ"

Si=> ASii+U,, (3.17)
k=1

where m is the order of the Markov process, A are MxM coefficient matrices and
U, is a zero mean Gaussian white noise process with diagonal covariance matrix A.
The autocovariance of the process (3.17) is related to the VAR parameters via the
well known Yule-Walker equations:

m
r, = ZA,Fk_,+8k0A, (3.18)
=1

where 8 is the Kronecher product. In order to solve Eq. (3.17) for I';, with k=0,
1,..., m—1, we first express Eq. (3.16) in a compact form as ¢, =A¢,_ + E,,
where

A A, A,
P RS LA B A 17, N
O Ty O
(3.19)
Then, the covariance matrix of ¢,, which has the form:
o Iy Ty
¥ =E[¢,¢,] = F.T ho P2 ] (3.20)

r, ., I, T

can be expressed as W = AW AT+ E where E = E [EnEZ] is the covariance of E,,.
This last equation is a discrete-time Lyapunov equation, which can be solved for ¥
yielding the autocovariance matrices I'y,...,I',, . Finally, the autocovariance can
be calculated recursively for any lag k>m by repeatedly applying Eq. (3.18). This
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shows how the autocovariance sequence can be computed up to arbitrarily high
lags starting from the parameters of VAR representation of the observed Gaussian
process.

3.4.2 Theoretical Example

In this Section we show the computation of the terms appearing in the information
decompositions defined in Sect. 3.3 using simulations. In order to make the
interpretation free of issues related to practical estimation of the measures, we
simulate Gaussian VAR processes and exploit the procedure described in Sect.
3.4.1 to quantify all measures of information dynamics. Specifically, we consider
a stationary multivariate Gaussian process S={X,Y,Z}, with temporal statistical
structure described by the following VAR model:

X, =cYpa+2Z,1+U,
Y, =V, : (3.21)
Z,=—-08Z, ,+(1—-0) Y, + W,

where U, V and W are univariate Gaussian processes of zero mean and unit variance,
uncorrelated with each other and without temporal structure. The process (3.21) is
a continuous Markov process of order m=2, for which the present variable S, has
a multivariate Gaussian probability distribution of the form (3.12). The temporal
structure of the process is depicted by the graphical representations of Fig. 3.4a,
where interactions within and between processes are depicted specifying all time-
lagged influences (left), focusing on the influences from the past to the present
of the processes (middle), and evidencing the influences among processes in a
compact representation (right). The process X has no internal dynamics, but it
exhibits temporal structure arising from the causal interactions originating from Y
and Z, both occurring with lag 1. The process Z has autodependency effects at lag
2, and is the target of a causal interaction originating in ¥ and occurring with lag
1. The process Y has no temporal structure at all. The simulation parameter c sets
the strength of the causal effects originating from the process Y in a way such that
higher values of ¢ determine stronger coupling from Y to X and weaker coupling
from Y to Z.

The results of information decomposition performed assuming the process X as
the target, and the processes Y and Z as sources, are reported in Fig. 3.4b. The values
of the measures resulting from the decomposition of the predictive information
defined in (3.8) (left), the decomposition of the information storage defined in (3.9,
and 3.10) (middle), and the decomposition of information transfer defined in (3.11)
(right), computed as a function of the coupling parameter c, are obtained according
to the procedure described in Sect. 3.4.1 starting from the known values of the model
parameters. The behaviour exhibited by the prediction entropy Py at increasing the
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Fig. 3.4 Information decomposition for a stationary Gaussian trivariate process {X.,Y,Z}
of order two, with internal dynamics in Z and causal interactions from Y to X
and from Z to X. (a) microscopic (left), mesoscopic (middle) and macroscopic (right)
graph representations of the process. (b) Decompositions of predictive information,
Px=Sx+Tzy—x, information storage, SXZSX|yz+IXx;Z|y+IXx;y|Z+IX)(;Z;y, and information
transfer, Tzy—x=Tz— x|y +Ty—xiz+F y.zix, performed as a function of the coupling parameter ¢

parameter ¢ from O to 1 is the result of a decreasing trend of the self entropy Sx and
a non-monotonic variation of the joint transfer entropy 7y x. In turn, the decrease
of the information storage with the parameter c is the result of a decrease of the
multivariate interaction information I.,.,, that evidences a shift from redundancy
to synergy, and of a slight decrease of the conditional interaction self entropy Ij((;zly;
note that both the conditional self entropy Sx|yz and the conditional interaction self
entropy I))((;le are always zero regardless of the values of c¢. The trend of the joint
information transfer results from the increase of the conditional transfer entropy
Ty_.x|z and the contemporaneous decrease of the interaction transfer entropy I;‘;Z' ¥
in the presence of a stable conditional transfer entropy 77, x|y. The trends exhibited
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by the measures are descriptive of the causal statistical structure displayed by the
network for the different parameter configurations. Indeed, the absence of internal
information reflects the absence of internal dynamics in the target system. Of note,
the absence of internal dynamics does not prevent the target system from storing
information; in this case, the whole information storage is due to causal interactions
from the sources to the target. The increase of the information transfer from Y
to X given Z, and the constant values of the information transfer from Z to X
given Y, reflect respectively the strong dependence of the coupling Y—X, and the
independence of the coupling Z—X, on the parameter c. Finally, the decrease of
the interaction terms denote the occurrence of a shift from redundant to synergistic
contributions of the sources to the information storage in the target, as well as of
the joint contribution of the two sources to the information transfer: with ¢=0,
the interactions are entirely redundant because all causal effects from Y to X are
mediated by Z; with c=1, the interactions are maximally synergetic because Y and
Z provide information to X according to fully separate mechanisms.

3.5 Application to Physiological Networks

This Section is relevant to the practical computation of the information-theoretic
measures defined in Sect. 3.3, estimated as described in Sect. 3.4, in physiological
networks where the assigned target process is the heart period and the sources
are systolic arterial pressure and respiration. The analysis is focused on the
decomposition of information carried by the cardiac system into an amount of new
information produced by the system at each heartbeat and an amount that can be
inferred by the memory of the whole observed physiological network. The latter
term is further decomposed into the amount of information stored in the cardiac
system and transferred to it from the vascular and respiratory systems. Moreover,
information storage and transfer are further split to evidence contributions ascribed
to the individual source systems as well as interaction terms denoting information
modification due to redundant or synergistic source cooperation. This chain of
decompositions allows to dissect the variability of the heart rate into contributions
which are related to the multiple physiological mechanisms (e.g., the baroreflex and
the respiratory sinus arrhythmia among others) involved into its generation.

The relevance of the measures of information dynamics in reflecting these
mechanisms and their reciprocal activation/deactivation is proved considering two
experimental protocols which are known to produce adjustments of the cardiovascu-
lar control evoked by opposite effects on the central circulatory volemia: head-up tilt
(HUT) is associated with a reduction of venous return and consequent sinoaortic and
carotid unloading of the baroreceptors that lead to vagal withdrawal and sympathetic
activation [17]; head-down tilt (HDT) induces an increase in venous return, central
blood volume and central venous pressure that lead to cardiopulmonary loading and
sympathetic inhibition [18].
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3.5.1 Experimental Protocols and Data Analysis

The analysis exploited two sets of recordings collected during experimental proto-
cols planned to study the effect on the cardiovascular control of postural challenges
associated respectively with unloading (i.e., HUT) and loading (i.e., HDT) of the
baroreceptors. In the HUT protocol [8], we studied 15 young healthy subjects
(seven females, aging from 22 to 32years, median 25years) in whom, after 15min
of adaptation in the resting supine position, the surface electrocardiogram (lead
II), the noninvasive finger blood pressure (Finapres, Ohmeda) and the spontaneous
respiratory flow (based on nasal thermistor) were measured for 10min in the supine
position (REST) and for additional 10min in the 60° upright body position that was
reached passively using a motorized table. The recordings in the HUT condition
started after two minutes from the tilt transition. In the HDT protocol [10], we
studied 13 healthy men aged from 41 to 7lyears (median: 59years) in whom the
electrocardiogram (lead II) and noninvasive finger blood pressure (Nexfin, BMEYE,
Amsterdam, The Netherlands) were recorded with a sampling rate of 400Hz.
Moreover, a respiratory signal was derived from the respiratory-related amplitude
modulations of the ECG. As in the previous protocol, 15min were allowed in the
resting baseline position for subjects’ stabilization before starting the measurements.
Then, each recording session consisted in 10min of baseline recording at REST
followed by 10min of recording during HDT with a table inclination of —25°.
The recordings of the HDT session started Smin after tilting the table. During
the protocol, the subjects breathed according to a metronome at 16breaths/min
to prevent modifications in the magnitude of respiratory sinus arrhythmia due to
alterations of the breathing rate.

After detecting the R-wave on the ECG and locating the R-wave peak using
parabolic interpolation, the temporal distance between two consecutive R-wave
apexes was computed and utilized as an approximation of HP. The maximum of the
arterial pressure inside the n-th HP (i.e. HP,) was taken as the n-th SAP (i.e. SAP,).
In the HUT protocol, the n-th value of the respiratory time series (i.e. RESP,) was
obtained sampling the respiratory nasal flow signal at the time of the R-wave peak of
the ECG denoting the beginning of the n-th HP. In the HDT protocol, the amplitude
of the first QRS complex delimiting HP,, taken as the difference between the ECG at
the R-wave apex and the isoelectric line, was taken as the n-th respiratory value (i.e.
RESP,). In all conditions, the occurrences of R-wave and SAP peaks were carefully
checked to avoid erroneous detections or missed beats, and if isolated ectopic beats
affected HP and SAP values, these measures were linearly interpolated using the
closest values unaffected by ectopic beats.

HP, SAP and R sequences of consecutive synchronous values were chosen inside
the REST and HUT periods for the first protocol, and inside the REST and HDT
periods for the second protocol. The length of the analyzed time series was 300 beats
for the HUT protocol, and 256 beats for the HDT protocol, thus allowing to focus on
short-term cardiovascular regulatory mechanisms [19]. All time series were linearly
detrended before the analysis. Stationarity of the analyzes time series was tested
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using a test that checks the steadiness over time of mean and variance of the selected
sequences [20]. Then, for each subject and experimental condition, realizations
of the observed process S={X,Y,Z} were obtained by normalizing the measured
multivariate time series {HP,, RESP,, SAP,}, i.e. subtracting the mean from each
series and dividing the result by the standard deviation. The resulting time series
{X,, Yy, Y,,} was fitted with a VAR model in the form of Eq. (3.16), where model
identification was performed using the standard vector least squares method and
the model order was optimized according to the Akaike Information Criterion [21].
The estimated model coefficients were exploited to derive the covariance matrix
of the vector process, and the covariances between the present and the past of the
processes were used as in Eq. (3.16) to estimate all the partial variances needed
to compute the measures of information dynamics. In all computations, to account
for fast vagal reflexes capable to modify HP in response to within-beat changes
of RESP and SAP, the present RESP and SAP variables were included into the
vectors representing their past values; this choice, which is in agreement with the
measurement convention that allows zero-lag effects from RESP and SAP to HP
(see Fig. 3.2), corresponds to use [Y,, Y,'] and [Z, Z'], in place of ¥} and Z]", in the
computation of the partial variances performed using Eq. (3.16).

3.5.2 Results and Discussion

Figure 3.5 reports the results of information decomposition applied to the variability
of the normalized HP process X during the HUT protocol. The entropy decom-
position shown in Fig. 3.5a documents that the new information produced by the
process at each heartbeat was significantly lower in the upright body position than
in the supine position. Since entropies are computed for normalized series with
unit variance (Hyx=0.5In2vre in all cases), the decrease of the new information
Nx corresponds to a statistically significant increase of the predictive information
Px=Hx—Nx (see Eq. (3.7)). The significant increase of the prediction entropy
with HUT was the result of an increase of the self entropy of HP accompanied
by unchanged values of the joint transfer entropy from RESP and SAP to HP
(increase of Sx and stable Ty;_.x, Fig. 3.5a). In turn, the significant increase of
the self entropy was due to the observation of significantly higher values of the
conditional self entropy of HP given RESP and SAP and of the interaction self
entropy between HP and SAP given RESP (increase of Syy.z and 1§;Z\Y’ Fig.

3.5b); the interaction self entropy between HP and RESP given SAP, I§;Y| 75 and the
multivariate interaction self entropy, Ii((;y; -, were slightly negative, indicating a small
prevalence of synergistic interaction, and unaffected by HUT. Finally, the unvaried
joint transfer entropy in the upright position resulted from a significant increase
of the conditional transfer entropy from RESP to HP given SAP compensated
by the decrease of the conditional transfer entropy from SAP to HP given RESP

(increase of Tz, x|y and decrease of Ty_, x|z, Fig. 3.5¢), in the presence of unaltered
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Fig. 3.5 Information decomposition during head-up tilt (HUT). Heart period is
measured as the target process X of the physiological network including also
respiration and systolic arterial pressure as source processes Y and Z. (a) predictive
information  decomposition, Px=Hy—Nx=Sx+Tzy—x. (b) Information  storage
decomposition, SX=SX|YZ+IX X;z|y+lx X;y|z+lx x.z.v- (¢) Information transfer decomposition,
Tzy—sx=Tz-x y+Ty—>)qz+IX vzix. All measures are computed as mean-std.dev. over 15
subjects in the resting supine position and in the upright position assumed during HUT. Asterisks
denote statistically significant difference (p<0.05) between supine and upright, assessed by the
Wilcoxon signed rank test. Figure modified from [14]

redundant transfer entropy I;(;ZI - Overall, these results indicate that the transition
from the resting supine position to the orthostatic HUT position is associated with a
higher predictability of the HP node of the physiological network (higher predictive
information), that results from higher information stored in the node and unchanged
information transferred to it. The larger storage is due to larger internal information
(stronger internal dynamics of HP) and larger interaction information between HP
and SAP (higher redundant cardiovascular cooperation); the unchanged transfer is
the balance between an increased baroreflex coupling (higher information transfer
from SAP to HP) and a decreased cardiorespiratory coupling (lower information
transfer from RESP to HP), in the presence of an unchanged redundant interaction
between SAP and RESP while they transfer information to HP.

Figure 3.6 reports the results of information decomposition applied to the
variability of the normalized HP process X during the HDT protocol. The entropy
decomposition of Fig. 3.6a documents that the new information about HP was
significantly higher during HDT than in the baseline resting condition, indicating
a decrease in the predictive information. The lower prediction entropy was reflected
by a lower self entropy (Fig. 3.6a), which in turn was reflected by a lower conditional
self entropy (Fig. 3.6b). All other terms of the information decompositions,
including the joint transfer entropy (7yz—x in Fig. 3.6a) and its constituent factors
(Ty—x|z> Tz—xjy and I;(;z|x in Fig. 3.6¢), as well as the constituent factors of the
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Fig. 3.6 Information decomposition during head-down tilt (HDT). Heart period
is measured as the target process X of the physiological network including also
respiration and systolic arterial pressure as source processes Y and Z. (a) predictive
information decomposition, Px=Hy—Nx=Sx+Tsy—x. (b) Information storage
decomposition, Sxy=Sx|yz+x.zy+Fx.yiz+Fx.zy. (¢) Information transfer decomposition,
TZY_>)(=TZ_>x|y+Ty_>x|Z+IXy;Z|)(. All measures are computed as mean-+std.dev. over 13
subjects in the resting supine position and in the head-down position assumed during HDT.
Asterisks denote statistically significant difference (p<0.05) between supine and head-down,
assessed by the Wilcoxon signed rank test. Figure modified from [10]

interaction self entropy Iy.y , (i.e., I, 1.y, and I§,y,, in Fig. 3.6b), did not
change significantly during HDT in comparison with the baseline resting condition.
These results indicate that, contrary to what happens for HUT, HDT reduces the
predictive information about the HP node of the physiological network, and this
increased complexity is exclusively related to a weakening of the self-predictable
dynamics of the HP (decreased information storage and unchanged information
transfer). In turn, the lower information storage was entirely ascribed to a decrease in
the internal information of the cardiac node, with unchanged interaction terms, and
the stable information transfer was the result of unchanged amounts of conditional
and redundant interaction transfer.

The results obtained for the two studied protocols clearly document the involve-
ment of the cardiovascular control in regulating the dynamics of the heart period
during head-up and head-down solicitation. This involvement is demonstrated by the
changes exhibited by the considered information-theoretic measures in comparison
with the resting supine condition. Interestingly, the main changes documented by
the predictive information decomposition were of opposite sign: the new infor-
mation generated by the cardiac system decreased (and the predictive information
increased) during HUT, while the new information increased (and the predictive
information decreased) during HDT. Moreover, since the joint information transfer
did not change during HUT and HDT compared to the baseline condition, the
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variations of the predictive information were reflected in variations of the same
sign in the information storage: the information stored in the heart period dynamics
increased significantly during HUT, and decreased significantly during HDT. These
results point out that the complexity of the cardiac dynamics, intended as the
predictability of the current HP on its past values and on the past values of
SAP and RESP, is subjected to changes that depend on the type of orthostatic
stimulation: positive orthostatism leads to reduction in HP complexity, while
negative orthostatism increases the HP complexity. Since complexity measures
are under the influence of the autonomic nervous system, with higher or lower
complexity reflecting respectively a shift of the sympatho-vagal balance towards
parasympathetic or sympathetic activation [22], we conclude that the changes of
predictive information and information storage reflect an increase of the sympathetic
activity during HUT, and of the vagal activity during HDT. These results are
compatible with physiological mechanisms that lead to vagal withdrawal and
sympathetic activation during HUT, like the reduction of venous return and the
baroreceptor unloading [23, 24], and to a sympathetic inhibition during HDT, like
the cardiopulmonary loading and the acute central circulatory hypervoleamia [18,
25].

The information storage decomposition documented another common trait of the
cardiac dynamics in the two protocols, i.e. the fact that variations in the information
storage are largely determined by variations in the internal information. Indeed, the
increase of the self entropy during HUT, as well as its decrease during HDT, were
accompanied by statistically significant variations of the same sign in the conditional
self entropy. These results suggest the importance of the internal dynamics of the
cardiac systems, i.e. of predictable HP dynamics that cannot be explained by the
effects of SAP and RESP on HP, in the generation of the information stored in the
system. The internal information reflects mechanisms of regulation of the cardiac
dynamics which are fully unrelated to RESP and SAP, possibly including direct
sympathetic influences on the sinus node which are unmediated by the activation
of baroreceptors and/or low pressure receptors, and central commands originating
from respiratory centers in the brainstem that are independent of afferent inputs
[4, 26]. Thus, the higher internal information found during HUT might reflect the
stronger sympathetic drive directed to the sinus node during the postural stress. On
the other hand, the lower internal information found during HDT might be due to
the activation of a central mechanism, independent on the cardiac baroreflex and
cardiopulmonary stimulation, that makes the cardiac dynamics more complex and
limits their self-predictability.

In both HUT and HDT, the information transferred jointly from RESP and SAP
to HP did not change in comparison with the baseline condition. However, this
similar behaviour was the result of different trends of the information quantities
composing the joint transfer entropy: during HUT, the conditional information
transfer decreased from RESP to HP and increased from SAP to HP; during
HDT, none of the terms composing the information transfer changed significantly.
The opposite trends of cardiovascular and cardiorespiratory information transfer
during HUT document respectively a higher importance of the baroreflex pathway
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and a lower relevance of the cardiopulmonary pathway in contributing to heart
rate variability during positive orthostatism. These results are in agreement with
the increase of the baroreflex coupling and weakening of the respiratory sinus
arrhythmia which are known effects of the postural stress induced by HUT [27,
28]. On the other hand, the invariance of the amounts of joint and conditional
information transfer from RESP and SAP to HP observed moving from rest to HUT
suggests to exclude the cardiac baroreflex control and cardiopulmonary reflexes
from the physiological mechanisms altered by negative orthostatism. These last
results, together with the reduction of the cardiac internal information, support the
central drive hypothesis for the increase of the respiratory sinus arrhythmia which is
known to occur during HDT [26]: indeed, the lower self entropy of HP given SAP
and RESP observed in the absence of alterations in the cardiac baroreflex and in the
cardiopulmonary reflexes could be explained by an enhanced activity of respiratory
centers affecting directly the sinus node, resulting in an increase of respiratory sinus
arrhythmia and in the complexity of the cardiac dynamics.

The analysis of the interaction information transfer documented that SAP and
RESP contribute redundantly to the information transferred to HP in the resting
supine condition as well as during HUT and HDT. Remarkably, the common
information held by the vascular and respiratory systems about the cardiac dynamics
constitutes an important amount (more than 20% in each condition) of the informa-
tion transferred jointly from SAP and RESP to HP. The redundant nature of the
contribution of SAP and R to HP finds explanation in the coexistence of several
mechanisms of cardiovascular and cardiorespiratory regulation, including the direct
effects of RESP on SAP—due to respiratory-related changes of the intrathoracic
pressure—which are then translated to HP through the baroreflex [29], and more
complex interactions and integrations between vasomotor and respiratory centers
occurring at the brainstem level. This amount of redundancy might accomplish a
principle of fault tolerance and harmonization of neural responses which, given its
prevalence over synergy, seems to be more valuable than the reactivity and flexibility
which might derive from synergetic interaction. A similar prevalence of redundancy
over synergy was not documented for the interaction terms involving the past of HP,
i.e. the interaction self entropies between HP and RESP given SAP or between HP
and SAP given RESP, and the multivariate interaction self entropy between HP, SAP
and RESP. These quantities were indeed rather small and often equally distributed
between negative and positive values, indicating the lack of a prevalence of net
synergetic or redundant contributions to the cardiac information storage. Moreover,
these quantities did not change significantly between conditions, with the only
exception of the increase of the interaction self entropy between HP and SAP given
RESP during HUT that can be ascribed to the solicitation of baroreflex effects in
this condition [8]. In general, these results do not exclude the absence of synergistic
interactions in the cardiovascular control, because the approach presented here
estimates the net balance between redundancy and synergy, and because it tends to
favour mathematically the detection of redundancy over synergy [30]. Thus, future
studies assessing redundancy and synergy as independent quantities [14, 30], and
exploring the balance between redundancy and synergy using different estimation
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approaches [7], are needed to understand whether and to what extent synergy plays
a role in the neural control of cardiovascular and cardiorespiratory physiological
networks.

Finally, we remark some limitations of the experimental protocols adopted in the
HUT and HDT studies [8, 10] which may have an impact on the comparison of
the information-theoretic measures performed here. First, the two groups had small
sample size of (15 and 13 subjects) and were not homogeneous in terms of age
and gender, as the HUT and HDT protocols involved respectively young subjects
balanced by gender and older male subjects. Since age and gender are known to
have an impact on cardiovascular variability [31], it is possible that some of the
differences observed in the information measures between the two protocols are
due these factors. Moreover, the different modalities of measurement for respiration
(nasal flow and ECG-derived) are likely determining different phases in the recorded
respiratory time series. Since the information measures computed in this study are
based on VAR models encompassing several interaction lags, we expect a low
impact of the respiration phase bias on our results. However, effects on the measures
of information transfer cannot be excluded, and future works are needed to explore
the effect of different modalities to record respiratory activity on the results of
cardiorespiratory coupling analyses.

3.6 Conclusions

This work introduced a framework for the full quantitative description of the
information carried by the target of a network of interacting dynamical systems,
first evidencing the amounts of new (unpredictable) information produced by the
system at each time step and of information that can be predicted by the past states
of the network, and then dissecting this predictive information through different
decomposition strategies. The decompositions are relevant to separation of the
target predictive information, separation of the information stored in the target
system, and separation of the information transferred to the target from two source
systems. These decompositions yield terms that elucidate the specific contributions
of the individual systems to the target dynamics, as well as terms describing the
balance between redundancy and synergy of the two sources while they contribute
to information storage and information transfer.

A viable approach for the exact computation of these measures has been
presented and applied to simulated networks, allowing us to relate modifications
of the various measures of information dynamics to the causal statistical properties
of the network links. Moreover, we illustrated how information storage, transfer and
modification interact with each other to give rise to the predictive information of
a target dynamical system connected to multiple source systems. In fact, though
confirming that different measures like storage, transfer and modification reflect
different aspects of information processing (respectively, regularity, causality and
synergy/redundancy), we have shown that these measured can undergo concurrent
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modifications in response to specific system alterations. Therefore, we advocate that
the various information dynamics measures should not be computed in isolation, but
rather evaluated together as components of the total statistical dependence relevant
to target process of a multivariate system.

The application to experimental data suggested the importance of adopting infor-
mation decomposition methods to fully assess the cardiac, vascular and respiratory
determinants of short-term heart rate variability. The analysis confirmed known
findings about the variations in the complexity and causality of cardiovascular
and cardiorespiratory variability, but also revealed novel interpretations related
to how the overall predictability of the dynamics of a target system is modified
due to possible interactions between the information sources. Since the proposed
quantities are highly specific and take the form of indexes that can be computed
very efficiently and robustly via traditional multivariate regression analysis of
spontaneously varying variables, they appear to be suitable candidates for large
scale applications to clinical databases recorded under uncontrolled conditions.
Future studies should be directed to extend the decompositions to model-free
frameworks that assess the role of nonlinear physiological dynamics in information
storage, transfer and modification, to explore scenarios with more than two source
processes, and to evaluate the importance of these measures for the assessment of
cardiovascular and cardiorespiratory interactions in diseased conditions. Moreover,
thanks to its generality, the approach might be applied not only to cardiovascular
physiology, but also to any field of science in which interactions among realizations,
representing the behaviour of interacting systems, are under scrutiny.
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Chapter 4
Multiscale Entropy: Recent Advances

Meng Hu and Hualou Liang

Abstract Multiscale entropy is a widely used metric for characterizing the com-
plexity of physiological time series. The fundamental difference to classical entropy
measures is it enables quantification of nonlinear dynamics underlying physio-
logical processes over multiple time scales. The basic idea of multiscale entropy
was initially developed in 2002 and has since witnessed considerable progress in
methodological expansions along with growing applications. Here, we provide an
overview of some recent developments in the theory, identify some methodological
constraints of the originally introduced multiscale entropy analysis, and discuss
some improvements that we, and others, have made regarding the definition of the
time scales, its multivariate extension and improved methods for estimating the
basic technique. Finally, the application of multiscale entropy to the analysis of
cardiovascular data is summarized.

4.1 Introduction

The last decade has witnessed considerable progress in the development of multi-
scale entropy method [1], especially for the analysis of physiological time series
in revealing underlying complex dynamics of the system. The concept of entropy
has been widely used to measure complexity of a system. The idea was initially
developed from the classic Shannon entropy [2]. In mathematics, the Shannon
entropy of a discrete random variable X is defined as: H(X) = — ) P(x)log, [P(x)],
where P(x) is the probability that X is in the event x, and P(x)log,[P(x)] is defined
as 0 if P(x) = 0. From the equation, if one of the events occurs more frequent than
others, observation of that event bears less informative. Conversely, less frequent
events provide more information when observed. Entropy is calculated as zero
when the outcome is certain. Thus, given a known probability distribution of the
source, Shannon entropy quantifies all these considerations exactly, providing a
way to estimate the average minimum number of bits needed to encode a string
of symbols, based on the frequency of the symbols, which also provides a basis
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for the ensuing development within the framework of information theory. Among
many entropy measures developed such as Kolmogorov—Smirnov (K-S) entropy
[3], E-R entropy [4] and compression entropy [58], approximate entropy (ApEn)
[5] has been highlighted as one of most effective methods to provide a relatively
robust measure of entropy, particularly for short and noisy time series. Sample
Entropy [6], as a further development, was used to correct the bias of the ApEn
algorithm. All these entropy methods did not consider the multiscale nature of
the underlying signals, thus could yield misleading results for complex multiscale
system [1]. In reality the signals derived from physiological and complex systems
usually have multiple spatiotemporal scales. Therefore, the multiscale entropy [1]
was proposed as a new measure of complexity in order to scrutinize complex
time series by taking into account different scales. Since its first application to
analysis of human heartbeat time series signal [1, 7], the multiscale entropy has
been increasingly applied to analyze not only cardiovascular signal [8—10], but
also many different physiological time series signals for various applications. For
instance, the multiscale entropy has been employed to perform the analysis of (1)
electroencephalogram [11, 12], functional magnetic resonance imaging [13] and
magnetoencephalogram [14] signals to investigate the nonlinear dynamics in brain;
(2 the gait time series to explore the gait dynamic [15]; (3) the laser speckle contrast
images to examine the aging effect on microcirculation [16]; (4) the lung sound
signal to classify the different lung status [17] and (5) the alternative medicine study
[18]. In addition to the physiological signal, the multiscale entropy recently has
also been utilized to the mechanic fault detection [19-21], the characterization of
the physical structure of complex system [22-24], nonlinear dynamic analysis of
financial market [25-29], complexity examination of traffic system [30, 31] and the
nonlinear analysis in geophysics [32-34].

In terms of methodological development, the multiscale entropy can be imple-
mented in two steps: (1) extraction of different scales of time series, and (2)
calculation of entropy over those extracted scales. In the original development of
the multiscale entropy [1], the scales of data are determined by the so-called coarse-
grained procedure, whereby the raw time series at individual scale is first divided
into the nonoverlapping windows, and each window is then replaced by its average
[31, upon which the sample entropy is applied. For instance, to generate the consecu-
tive coarse-grained time series at the scale factor I, the original time series was first
divided into nonoverlapping windows of length " and the data points within each
window were averaged. For scale one (i.e., I = 1), the coarse-grained time series
is simply the original time series. The length of each coarse-grained time series
is equal to the length of the original time series divided by the scale factor. This
‘coarse-graining’ procedure essentially represents a linear smoothing and decima-
tion to progressively eliminate the fast temporal component from the original signal,
which nonetheless might be suboptimal due to the way the scale is extracted [35]. On
the other hand, the sample entropy has been criticized for the inaccurate estimation
or too sensitive to the choices of the parameters [36]. For example, in sample
entropy, the Heaviside function is employed to assess the similarity between the
embedded data vectors, which is like a two-state classifier: the contributions of all
the data points inside the boundary are treated equally, while the data points outside
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the boundary are abandoned. As a result, sample entropy may vary dramatically
when the tolerance parameter r is slightly changed. As such, different methods have
been developed to improve the multiscale entropy estimation. In this chapter, we aim
to provide a systematic review for these algorithms and offer some insight for future
directions. In what follows, we specifically focus on two aspects of development: (1)
extraction of the scales, and (2) estimation of the entropy. From each step of devel-
opment of the multiscale entropy method, it has also been seen that the multiscale
entropy method has been being utilized in the much expanded areas. Specifically,
we provide a short overview on the application of multiscale entropy to the analysis
of cardiovascular time series. We finally conclude the chapter with discussions.

4.2 Overview of Multiscale Entropy

The multiscale entropy [1] was developed to measure the complexity/irregularity
over the different scales of time series. The scales are determined by the ‘coarse-
grained’ procedure, where the length of the coarse-grained time series is equal to
the length of original time series divided by the scale factor. At each time scale,
sample entropy is used to determine the amount of irregularity to provide the entropy
estimation. The sample entropy is thought of as a robust measure of entropy at a
single scale due to its insensitivity to the data length and immunity to the noise in the
data [6]. It is equal to the negative natural logarithm of the conditional probability
that m consecutive points that repeat themselves, within some tolerance, r, will again
repeat with the addition of the next (m + 1) point.

To compute sample entropy, a time series I = {i(1),i(2), ... ,i(N)} is first
embedded in a m-dimensional space, in which the m-dimensional vectors of the time
series are constructed as x,(k) = (i(k),i(k+ 1), ..., itk+m—1)),k=1~N—

m+ 1. In the embedded space, the match of any two vectors is defined as their
distance lower than the tolerance r. The distance between two vectors refers to as
the maximum difference between their corresponding scalar components. B™(r)
is defined as the probability that two vectors match within a tolerance r in the
m-dimensional space, where self-matches are excluded. Similarly, A”(r) is defined
in the m 4+ 1 dimensional space. Sample entropy is then defined as the negative
natural logarithm of the conditional probability that two sequences similar for m
points remain similar at the next m + 1 point in the data set within a tolerance r,
which is calculated as:

SampEn (I,m,r) = —In (A’”(r))

Bm ( r)

As a result, regular and/or periodic signals have theoretical sample entropy of
0, whereas uncorrelated random signals have maximum entropy depending on the
signal length.

The multiscale entropy can then be obtained by applying the sample entropy
across multiple time scales. This is achieved through a coarse-graining procedure,
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whereby, i.e., at the scale n, the raw time series first is divided into the nonoverlaping
windows with the length of n, and each window is then replaced by its average.
For instance, at the first scale, the multiscale entropy algorithm evaluates sample
entropy for the original time-series. For the second scale (i.e., n = 2), the original
time-series (length L) is first divided into non-overlapping windows of length 2.
Within each window the average is taken, resulting in a new time-series of length
L/2, over which the sample entropy is computed. The procedure is repeated until the
last time scale is accomplished. Therefore the coarse-grained procedure essentially
represents a linear smoothing and decimation (down sampling) of the original time
series. Despite the wide applications, the multiscale entropy approach however has
several limitations:

1. The coarse-graining procedure has the effect of down sampling on original time
series, which reduces the original sampling rate of a time series to a lower rate,
losing the high-frequency component of the signal. Thus, the multiscale entropy
only captures the low-frequency components and thus does not entail the high-
frequency components as the scales were extracted. Yet there is little reason to
ignore the high-frequency components in signal, which may retain significant
information in the system [35, 37].

2. Due to the linear operations, the algorithm for extracting the different scales is
not well adapted to nonlinear/nonstationary signals, particularly in physiological
system. Considering the coarse-grained process as a filter, the features of its
frequency response are poor since it shows side lobes in the stopband [35, 38].

3. With ‘Coarse-graining’, the larger the scale factor, the shorter the coarse-grained
time series. As the scale increases, the number of data points is reduced [39, 40].
The variance of the estimated entropy gets quickly increased; hence the statistical
reliability of entropy measure is greatly diminished.

As a result, several methods have been proposed to overcome these shortcom-
ings. We will review those improvements by focusing on the extraction of the scales
and the enhancements of entropy estimation. Table 4.1 below briefly summarizes
the key information for these methods.

Table 4.1 Summary of developed multiscale entropy methods

Entropy Application

Method Scale extraction estimation | Features example
Multiscale Coarse-graining Sample The first multiscale Heartbeat
entropy [1] procedure; (Linear) entropy entropy method interval data
Composite Modified coarse Sample 1. More accurate Vibration data
multiscale graining procedure entropy multiscale entropy (bearing fault
entropy [39] | (i.e., generating estimation, even data)

multiple when the time series

coarse-grained series is short; 2. Increased

by using the different probability of

starting points of time inducing undefined

series); (Linear) entropy values

(continued)
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Table 4.1 (continued)

Method

Refined
composite
multiscale
entropy [40]

Short-time
multiscale
entropy [42]

Modified
multiscale
entropy [43]

Refined
multiscale
entropy [38]

Generalized
multiscale
entropy [44]

Intrinsic
mode
entropy [37]

Scale extraction

Modified coarse
graining procedure
(i.e., generating
multiple
coarse-grained series
by using the different
starting points of time
series); (Linear)
Modified coarse
graining procedure
(i.e., generating
multiple
coarse-grained series
by using the different
starting points of time
series); (Linear)
Moving average
processing; (Linear)

Low-pass Butterworth
filter; (Linear)

Coarse-graining
procedure with the
higher moment
calculation (e.g.,
variance) to replace

average calculation for

the nonoverlapped
segments; (Linear)
Empirical mode
decomposition; (Non-
linear/nonstationary)

Entropy
estimation

Sample
entropy

Sample
entropy

Sample
entropy

Sample
entropy

Sample
entropy

Sample
entropy

Features

1. More accurate
multiscale entropy
estimation, even
when the time series
is short; 2. Reducing
the probability of
undefined entropy
values

Same with
Composite
multiscale entropy

1. Better accuracy of
entropy estimation
and fewer undefined
entropy, even when
the time series is
short; 2. Heavy
computational cost
and the limited
improvement for
longer time series

1. More accurate
elimination of the
components and
reducing aliasing for
the coarse-graining
procedure;

2. Calculation of
Sample entropy on
each filtered
component

New way to explain
the calculated
entropy results

Adaptive scale
extraction, suitable
for nonlinear/
nonstationary time
series signal

119

Application
example

NA

Pulse wave
velocity signals

Bearing
vibration data

Heart rate
variability

Heartbeat
volatility time
series

Stabilogram
signals

(continued)
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Table 4.1 (continued)

Method
Adaptive
multiscale
entropy [35]

Multiscale
permutation
entropy

[54, 55]

Multiscale
symbolic
entropy [56]

Multiscale
compression
entropy [57]
Multiscale
fuzzy entropy
[36, 63]

Multivariate
multiscale
entropy [65]

Scale extraction

Multivariate
empirical mode
decomposition;
(Nonlinear/
nonstationary)

Coarse-graining
procedure; (Linear)

Coarse-graining
procedure with the
median calculation
to replace average
calculation for the
nonoverlapped
segments; (Linear)
Coarse-graining
procedure; (Linear)

Coarse-graining
procedure; (Linear)

Coarse-graining
procedure; (Linear)

Entropy
estimation

Sample
entropy

Permutation
entropy

Symbolic
entropy

Compression
entropy

Fuzzy
entropy

Multivariate
sample
entropy

4.3 Methods for Scale Extraction

Features

Adaptive scale
extraction, suitable
for nonlinear/
nonstationary time
series signal; Two
scale extraction
directions:

1. fine-to-coarse and
2. coarse-to-fine

1. Robust for the
time series with
nonlinear distortion;
2. Computationally
efficient

1. Highly resilient to
outliers; 2. Robust to
noisy data

Based on data
compression
technique

Improved entropy
estimation with the
stronger relative
consistency and less
dependence on the
data length

Be able to analyze
the multivariate time
series data

4.3.1 Composite Multiscale Entropy

M. Hu and H. Liang

Application
example

Electro-
neurophysiological
data from

monkey

Bearing fault
data

Human heartbeat
recordings

Microvascular
blood flow data

Bearing
vibration signal

Human stride
interval
fluctuations
data; cardiac
interbeat interval
and respiratory
interbreath
interval data

The composite multiscale entropy [39] was developed to address the statistical relia-
bility issue of the multiscale entropy. As described above, in original development of
multiscale entropy, the length of coarse-grained time series is shorter when the scale
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Modified coarse-graining by composite multiscale entropy
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Fig. 4.1 The modified coarse-graining procedure used by composite multiscale entropy

factor becomes larger, leading to the larger variance of sample entropy estimation
at greater scales. Thus large variance of estimated entropy values results in the
reduction of reliability of multiscale entropy estimation.

To address this issue, the composite multiscale entropy was developed to first
generate multiple unique coarse-grained time series at a certain scale factor (e.g., 3)
by changing the starting point (e.g., 1st, 2nd, 3rd) of time series in the coarse-
graining procedure, and then calculate sample entropy on each coarse-grained time
series, and finally take average of all the calculated sample entropy values. Such a
modified coarse-graining procedure is illustrated in Fig. 4.1.

As shown in [39], both the simulated (e.g., white noise and 1/f noise) and real
vibration data (e.g., Figs. 8 and 10 in [39]) show that the composite multiscale
entropy yielded the almost same mean estimation with the multiscale entropy,
but with much more accurate individual estimation, which is manifested as the
smaller standard deviation values of entropy estimation on scales by the composite
multiscale entropy than those by the multiscale entropy.

Subsequently, the composite multiscale entropy [40] was refined to further
improve the performance in terms of entropy estimation, as it was observed that
in composite multiscale entropy, though the multiple coarse-grained time series
at individual scales facilitate the accurate estimation of entropy, the method also
increases the probability of inducing undefined entropy. Instead of calculating
average of sample entropy values over all the coarse-grained time series at single
scale, the refined composite multiscale entropy first collected the number of matched
patterns over all the coarse-grained time series for the selected parameter m (i.e.,
collecting the numbers of the matched patterns for both m and m + 1, according
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to the sample entropy algorithm), and then applied the sample entropy algorithm
to calculate the negative natural logarithm of the conditional probability, hence
reducing the probability of undefined entropy values. In the Reference [40], the sim-
ulated data (white noise and 1/f noise) showed that the refined composite multiscale
entropy is superior to both the multiscale entropy and composite multiscale entropy
by increasing the accuracy of entropy estimation and reducing the probability of
inducing undefined entropy, particularly for short time series data. This can be
clearly seen from the Table 2 in [40] that the refined composite multiscale entropy
can still work on the shorter time series data and provide the smaller standard
deviation of entropy estimations on scales than multiscale entropy and composite
multiscale entropy. Furthermore, the refined composite multiscale entropy can be
further improved by incorporating with empirical mode decomposition (EMD)
algorithm for the purpose of removing the data baseline before calculating the
entropy [41].

It should be mentioned that by the same idea of composite multiscale entropy in
generating multiple coarse-grained time series, the so-called short-time multiscale
entropy [42] was independently developed to address the issue of multiscale entropy
when facing with short time series data.

4.3.2 Modified Multiscale Entropy for Short Time Series

As indicated by its name, the modified multiscale entropy was proposed to address
the reliability of multiscale entropy when time series is short [43]. With the same
rationale as the above-mentioned composite multiscale entropy, this method tended
to offer the better accuracy of entropy estimation or fewer undefined entropy when
the time series is short. In essence, the modified multiscale entropy replaced the
coarse-graining procedure with a moving-average process, in which a moving
window with length of scale factor was slid through the whole time series point-
by-point to generate the new time series at the scale. By doing so, data length was
largely reserved, compared to the coarse-graining procedure. For instance, at the
scale of 2, a time series with 1000 data points is changed into a new time series
with 500 data points by the coarse graining procedure, while by the moving-average
procedure, the new time series becomes 999 data points.

In [43], both simulation (white noise and 1/f noise) and real vibration data
were performed to validate the effectiveness of proposed method for short time
series data. For both white noise and 1/f noise with 1 k data points, the modified
multiscale entropy provides the sample entropy curve with the less fluctuation than
the conventional sample entropy in a typical example. By using 200 independent
noise samples for both white noise and 1/f noise, each noise sample contained
500 data points, the results show that the modified multiscale entropy offers the
nearly equal mean of entropy estimations with the sample entropy over independent
samples, but with the less the standard deviation of entropy estimations than the
sample entropy, indicating that the modified multiscale entropy and multiscale
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entropy methods are nearly equivalent statistically; however, the former method
can provide a more accurate estimate than the conventional multiscale entropy. The
applications of methods to the real bearing vibration data also show the consistent
conclusions. However, it should be mentioned that considering the computational
cost and the limited improvement for longer time series, the modified multiscale
entropy is not suitable for direct application in analyzing longer time series. For
instance, from the Table 2 in [43], it is seen that for the 1/f noise with data length of
30 k, the modified multiscale entropy provides the almost same entropy estimations
(including mean and standard deviation over independent samples) with the sample
entropy, but demanding significantly heavier computational cost.

4.3.3 Refined Multiscale Entropy

The refined multiscale entropy [38] is a method to address two drawbacks of
the multiscale entropy: (1) the ‘coarse-graining’ procedure can be considered as
applying a finite-impulse response (FIR) filter to the original series x and then
downsampling the filtered time series with the scale factor, in which frequency
response of the FIR filter can be characterized as a very slow roll-off of the
main lobe, large transition band, and important side lobes in the stopband, thus
introducing aliasing when the subsequent downsampling procedure is applied; and
(2) the parameter r for determining the similarity between two patterns remains
constant for all the scales as a percentage of standard deviation of the original time
series, thus leading to artificially decreasing entropy rate, as the patterns more likely
becomes indistinguishable at higher scale in such a setting.

In order to overcome both shortcomings, the refined multiscale entropy (1)
replaced the FIR filter with a low-pass Butterworth filter, whose frequency response
was flat in the passband, side lobes in the stopband were not present, and the roll-off
was fast, thus ensuring a more accurate elimination of the components and reducing
aliasing when the filtered series were downsampled; and (2) let parameter r be
continuously updated as a percentage of the standard deviation (SD) of the filtered
series, thus compensating the decrease of variance with the elimination of the fast
temporal scales.

The performance of the refined multiscale entropy was verified and examined by
Gaussian white noise, 1/f noise and autoregressive processes, as well as real 24-h
Holter recordings of heart rate variability (HRV) obtained from healthy and aortic
stenosis (AS) groups. It is worth noting that the results of Gaussian white noise and
1/f noise by the refined multiscale entropy are opposite to those obtained via the
multiscale entropy. The main reason leading to this discrepancy is that two methods
apply the different calculations of the similarity parameter, r for the coarse-graining
procedure. In the original multiscale entropy, the parameter r remains constant for
all scale factors as a percentage of standard deviation of the original time series [1],
whereas the parameter r in the refined multiscale entropy is continuously updated
as a percentage of the standard deviation of the filtered series [38]. It has been



124 M. Hu and H. Liang

pointed out [38] that the coarse-graining procedure in original multiscale entropy
eliminates the fast temporal scales as the scale factor increases, acting as a low-
pass filter. As such, the coarse-grained series are usually characterized by a lower
standard deviation compared to the original time series. Thus, if the parameter r is
kept constant for all the scales, more and more patterns will be considered similar
with the increasing scale factor, hence increasing estimated regularity and reporting
artificially decreasing entropy with the scale factor.

4.3.4 Generalized Multiscale Entropy

The generalized multiscale entropy [44] was developed to generalize the multiscale
entropy. In the coarse-graining procedure, a time series was first divided into
non-overlapping segments with the length of scale factor, and then the average
was taken within each segment, which can been thought as the first moment.
Instead of the first moment, the generalized multiscale entropy was proposed to
use an arbitrary moment (e.g., volatility when the second moment) to generate
the coarse-grained time series for entropy analysis. This approach may offer a
new way to explain the calculated entropy results. For instance, when using the
second moment, the multiscale entropy represents the multiscale complexity of the
volatility of data. This approach has been applied to study cardiac interval time
series from three groups, comprising health young and older subjects, and patients
with chronic heart failure syndrome [44]. The results show that the complexity
indices of healthy young subjects were significantly higher than those of healthy
older subjects, whereas the complexity indices of the healthy older subjects were
significantly higher than those of the heart failure patients. These results support
their hypothesis that the heartbeat volatility time series from healthy young subjects
are more complex than those of healthy older subjects, which are more complex
than those from patients with heart failure.

4.3.5 Intrinsic Mode Entropy

The intrinsic mode entropy [37] identified two shortcomings of the multiscale
entropy: (1) the high-frequency components were eliminated by the coarse-graining
procedure, which may contain relevant information for some physiological data, and
(2) the coarse-graining procedure, while extracting the scales, may be not adapted
to nonstationary/nonlinear signal, which is quite common in the physiological
systems.

The intrinsic mode entropy was proposed to directly address these issues by
exploiting a fully adaptive, data-driven time series decomposition method, namely
empirical mode decomposition (EMD) [45], to extract the scales intrinsic to the
data. The EMD adaptively decomposes a time series signal, by means of the so-
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called the sifting method, into a finite set of amplitude- and/or frequency-modulated
(AM/FM) modulated components, referred to as intrinsic mode functions (IMFs)
[45]. IMFs satisfy the requirements that the mean of the upper and lower envelops
is locally zero and the number of extrema and the number of zero-crossing differ by
at most one, and thus represent the intrinsic oscillation modes of data on the different
frequency scales. By virtue of the EMD, the time series x(f) can be decomposed as
x(t) = Zf:l Ci(t) + r(z), where Ci(r),j=1, ... ,k are the IMFs and r(z) is the
monotonic residue. The EMD algorithm is briefly described as follows.

1. Let x(t) = x(2);

2. Find all local maxima and minima of x(¢);

3. Interpolate through all the minima (maxima) to obtain the lower (upper) signal
envelop emin(?) (emax(1);

4. Compute the local mean m(t) =

5. Obtain the detail part of signal c(tf) = x(r) — m(z);

6. Let X(¢) = c(¢) and repeat the process from step 2 until ¢(¢) becomes an IMF.

emin () +emax (1) .
2 B

Compute the residue r(¢) = x(¢) — c¢(f) and go back to step 2 with x(r) = r(z),
until the monotonic residue signal is left.

As such, in the intrinsic mode entropy, a time series is first adaptively decom-
posed into several IMFs with distinct frequency bands by EMD, and then the
multiple scales of the original signal can be obtained by the cumulative sums of
the IMFs, starting from the finest scales and ending with the whole signal, over
which the sample entropy is applied. The usefulness of intrinsic mode entropy
was demonstrated by its application to real stabilogram signals for discrimination
between elderly and control subjects.

It bears noting that relying on the EMD method, the intrinsic mode entropy
inevitably suffers from both the mode-misalignment and mode-mixing problems,
particularly in the analysis of multivariate time series data [46]. The mode-
misalignment refers to a problem where the common frequency modes across a
multivariate data appear in the different-index IMFs, thus resulting that the IMFs are
not matched either in the number or in scale, whereas the mode-mixing is manifested
by a single IMF containing multiple oscillatory modes and/or a single mode residing
in multiple IMFs which may in some cases compromise the physical meaning of
IMFs and practical applications [47]. Both problems can be simply illustrated by a
toy example shown in Fig. 4.2. Because the intrinsic mode entropy is applied to each
time series separately, these two problems may contribute to inappropriate operation
(e.g., comparison) of entropy values at the ‘same’ scale factor from different time
series, for the ‘same’ scale from different time series could be in the largely different
frequency ranges.

Therefore, an improved intrinsic mode entropy method [46] was introduced to
address the potential mode-misalignment and mode-mixing problems based on the
multivariate empirical mode decomposition (MEMD), which directly works with
multivariate data to greatly mitigate above two problems, generating the aligned
IMFs. In this method, the MEMD [48] plays an important role for the extraction
of the scales. The MEMD is the multivariate extension of EMD, thus mitigating
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Fig. 4.2 Example of mode-mixing and mode-misalignment by original empirical mode decompo-
sition

both mode-misalignment and mode-mixing problems. An important step in the
MEMD method, distinct from the EMD, is the calculation of local mean, as the
concept of local extrema is not well defined for multivariate signals. To deal with
this problem, MEMD projects the multivariate signal along different directions to
generate the multiple multidimensional envelops; these envelops are then averaged
to obtain the local mean. The details of MEMD can be found in [48]. Figure 4.3
demonstrates the decomposition of same data as in Fig. 4.2 by the MEMD to
show that MEMD is effective to produce the aligned IMFs. The application of the
improved intrinsic mode entropy approach to real local field potential data from
visual cortex of monkeys illustrates that this approach is able to capture more
discriminant information than the other methods [49].

Thus far, the EMD family has been extensively used in multiscale entropy
analysis [41, 50]. It should be noted that one important extension of EMD, ensemble
EMD [47], has also been applied to multiscale entropy method to solve the mode-
mixing problem [51, 52]. However, the aligned IMF numbers from different time
series are not guaranteed by this method. In addition, to preserve the high frequency
component in entropy analysis, the hierarchical entropy was used essentially based
on wavelet decomposition [53], which is effective for the analysis of nonstationary
time series data.
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Fig. 4.3 Decomposition of same data in Fig. 4.2 by multivariate empirical mode decomposition
(MEMD), showing the aligned decomposed components

4.3.6 Adaptive Multiscale Entropy

The adaptive multiscale entropy (AME) [35] was developed to provide a com-
prehensive means for the scales extracted from time series including both the
‘coarse-to-fine’ and ‘fine-to-coarse’ scales. The method was specifically to address
the issue of multiscale entropy that the high frequency component is eliminated.
With the AME, the scale extraction is adaptive, completely driven by the data
via EMD, thus suitable for nonstationary/nonlinear time series data. Moreover,
by employing the multivariate extension of empirical mode decomposition (i.e.,
MEMD), the proposed AME can fully address the mode-misalignment and mode-
mixing problems induced by univariate empirical mode decomposition for the
analysis of individual time series, thus producing the aligned IMF components and
ensuring proper operations (e.g., comparison) of entropy estimation at one scale
over multiple time series data.

To implement the AME, the MEMD method is first applied to decompose data
into the aligned IMFs. The scales are then selected by consecutively removing either
the high-frequency or low-frequency IMFs from the original data. The way to select



128 M. Hu and H. Liang

the scales results in two algorithms, namely the fine-to-coarse AME and the coarse-
to-fine AME, which essentially represent the multiscale low-pass and high-pass
filtering of the original signal, respectively. The sample entropy is applied to the
selective scales to estimate the entropy measure. When applying this approach to
physiological time series signal (e.g., neural data), two issues [49] had to be solved:
(1) the physiological data are often collected over certain time period from multiple
channels across many trials, which can be represented as a three-dimensional
matrix, i.e. TimePoints x Channels x Trials, thus not directly solvable by the
MEMD; and (2) the physiological recordings are usually collected over many trials
spanning from days to months, or even years, so that the dynamic ranges of multiple
signals are likely to be of high degree of variability, which can have detrimental
effect upon the final decomposition of MEMD. Therefore, the AME adopts two
important preprocessing steps to accommodating the multivariate data. First, the
high-dimensional physiological data (e.g. TimePoints x Channels x Trials) is first
reshaped into such a two-dimensional time series as TimePoints x [Channels x Tri-
als] before subject to the MEMD analysis. It is an important step to make sure that
all the IMFs be aligned not only across channels, but also across trials. Second, in
order to reduce the variability among neural recordings, individual time series in
the reshaped matrix is normalized against their temporal standard deviation before
the MEMD is applied. After the MEMD decomposition, those extracted standard
deviations are then restored to the corresponding IMFs.

Simulations demonstrate that the AME is able to adaptively extract the scales
inherent in the nonstationary signal and that the AME works with both the coarse
scales and fine scales in the data [35]. The application to real local field potential
data in the visual cortex of monkeys suggests that the AME is suitable for
entropy analysis of nonlinear/nonstationary physiological data, and outperforms the
multiscale entropy in revealing the underlying entropy information retained in the
intrinsic scales. The AME method has been further extended as adaptive multiscale
cross-entropy (AMCE) [49] to assess the nonlinear dependency between time series
signals. Both the AME and AMCE are employed to neural data from the visual
cortex of monkeys to explore how the perceptual suppression is reflect by neural
activity within individual brain areas and functional connectivity between areas.

4.4 Methods for Entropy Estimation

4.4.1 Multiscale Permutation Entropy

The permutation entropy [54], instead of the sample entropy, has been applied
to conduct the multiscale entropy analysis [55]. By using the rank order value
of embedded vector, the permutation entropy is robust for the time series with
nonlinear distortion, and is also computationally efficient. Specifically, with the m-
dimensional delay, the original time series is transformed into a set of embedded
vectors. Each vector is then represented by its rank order. For instance, a vector,



4  Multiscale Entropy: Recent Advances 129

[12, 56, 0.0003, 100,000, 50] can be represented by its rank order, [1-5]. We can see
that the rank order is insensitive to the magnitude of the data, though the values may
be at largely different scales. Subsequently, for a given embedded dimension (e.g.,
m dimension), the rate of each possible rank order, out of m! possible rank orders, is
calculated over all the embedded vectors, forming a probability distribution over all
the rank orders. The Shannon entropy is finally applied to the probability distribution
to obtain the entropy estimation.

In the similar fashion, the multiscale symbolic entropy [56] was developed to
reliably assess the complexity in noisy data while being highly resilient to outliers.
In the time series data, the outliers are often illustrated as those data points with
the significantly higher or lower magnitudes than most of data points due to some
internal/external uncontrolled influence. In this approach, the variation at a time
point consists of both the magnitude (absolute value) and the direction (sign). It
is hypothesized that dynamics in the sign time series can adequately reflect the
complexity in raw data and that the complexity estimation based on the sign time
series is more resilient to outliers as compared to raw data. To implement this
method, the original time series at a given scale is first divided into non-overlapped
segments, within each of which the median is calculated to generate a coarse-grained
time series. The sign time series of the coarse grained signal is then generated
by considering the direction of change at each point (i.e., 1 for increasing and 0
otherwise). The discrete probability count and the Shannon entropy are applied to
the sign data to obtain the entropy estimation. The multiscale measure is obtained
when the above procedure goes over all the predefined scales. This method has been
successfully applied to the analysis of human heartbeat recordings, showing the
robustness to noisy data with outliers.

4.4.2 Multiscale Compression Entropy

The multiscale compression entropy [57] has been reported, which replaced the
sample entropy with the compression entropy [58] to conduct the multiscale entropy
analysis. The basic idea of compression entropy is the smallest algorithm that
produces a string is the entropy of that string from algorithmic information theory,
which can be approximated by the data compression techniques. For instance, the
compression entropy per symbol can be represented by the ratio of compressed text
to the original text length, if the length of the text to be compressed is sufficiently
large and if the source is an ergodic process. The compression entropy provides an
indication to which degree the time series under study can be compressed using the
detection of recurring sequences. The more frequent the occurrences of sequences
(and thus, the more regular the time series), the higher the compression rate. The
ratio of the lengths of the compressed to the uncompressed time series is used
as a complexity measure and identified as compression entropy. The multiscale
compression entropy exploits the coarse-graining procedure to generate the scales
of data, over which the compression entropy is applied. This approach has been
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applied to the entropy analysis for the microvascular blood flow signals [57].
In this application, microvascular blood flow was continuously monitored with
laser speckle contrast imaging (LSCI) and with laser Doppler flowmetry (LDF)
simultaneously from healthy subjects. The results show that, for both LSCI and
LDF time series, the compression entropy values are less than 1 for all of the scales
analyzed, suggesting that there are repetitive structures within the data fluctuations
at all scales.

4.4.3 Fuzzy Entropy

In the family of approximate entropy [5], for example, sample entropy [6], the
similarity of vectors (or patterns) from a time series is a key component for accurate
estimation of entropy. The sample entropy (and approximate entropy) assesses the
similarity between vectors based on the Heaviside function, as shown in Fig. 4.4. It
is evident that the boundary of Heaviside function is rigid, which leads to that all
the data points inside boundary are treated equally, whereas the data points outside

Heaviside function

Fuzzy function

r/2 r/2

Fig. 4.4 Heaviside function (dash dotted black) and fuzzy function (solid blue) for similarity in
entropy estimation (modified based on [21]. As figure shown, by the Heaviside function, both
points d2 (red) and d3 (red) are considered within the boundary and both similar to the original
point (i.e., ‘0’); whereas another point d1 (green), very close to d2 though, is considered dissimilar
because it falls just outside the boundary. Thus a slight increase in r will make the boundary
encloses the point d1, and then the conclusion totally changes. However, the fuzzy function will
largely relieve this issue
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the boundary are excluded no matter how close this point locates to boundary. Thus,
the estimation of sample entropy is highly sensitive to the change of the tolerance, r
or data point location.

The fuzzy entropy [36] aimed to improve the entropy estimation at just this point,
based on the concept of fuzzy sets [59], which adopted the “membership degree”
with a fuzzy function that associates each point with a real number in a certain
range (e.g., [0, 1]). The fuzzy entropy employed the family of exponential function
as the fuzzy function to obtain the fuzzy measurement of similarity, which bears
two desired properties: (1) being continuous so that the similarity does not change
abruptly; (2) being convex so that the self-similarity is the maximum. In addition,
the fuzzy entropy removes the baseline of the vector sequences, so that the similarity
measure more relies on vectors’ shapes rather than their absolute coordinates, which
makes the similarity definition fuzzier.

Extensive simulations and application [60] to experimental electromyography
(EMG) suggest that the fuzzy entropy is a more accurate entropy measure than
the approximate entropy and sample entropy, and exhibits the stronger relative
consistency and less dependence on the data length, thus providing an improved
evaluation of signal complexity, especially for short time series contaminated
by noise. For instance, as shown from the Fig. 4.2 in [60], with only 50 data
samples, the fuzzy entropy can successfully discriminate three periodical sinusoidal
time series with different frequencies, outperforming the approximate entropy and
sample entropy. And from the Fig. 5 in [60], it is observed that the fuzzy entropy
can consistently separate the different logistic datasets contaminated by noises with
different noise levels, while it becomes difficult for the approximate entropy and
sample entropy to distinguish those data. In addition to the exponential function,
the nonlinear sigmoid and Gaussian functions have also been used to replace the
Heaviside function for similarity measure [61]. The fuzzy entropy was also extended
to cross-fuzzy entropy to test nonlinear pattern synchrony of bivariate time series
[62]. It has been shown that the fuzzy entropy can be also used in the multiscale
entropy analysis by replacing the sample entropy [63, 64].

4.4.4 Multivariate Multiscale Entropy

The multivariate multiscale entropy [65] was introduced to perform entropy analysis
for multivariate time series, which has been increasingly common for physiological
data due to the advance in recording techniques. The multivariate multiscale
entropy adopts the coarse-graining procedure to extract the scales of data, and then
extends the sample entropy algorithm to multivariate sample entropy for entropy
estimation of coarse-grained multivariate data. The detailed multivariate sample
entropy algorithm can be found in [65]. The simulations and a large array of
real-world applications [66] including the human stride interval fluctuations data,
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cardiac interbeat interval and respiratory interbreath interval data, 3D ultrasonic
anemometer data taken in the north-south, east-west, and vertical directions etc.,
have demonstrated the effectiveness of this approach in assessing the underlying
dynamics of multivariate time series.

It is worth to mention that copula can be used to implement multivariate
multiscale entropy by incorporating the multivariate empirical mode decomposition
and the Renyi entropy [67]. The Renyi entropy (or information) is a probability-
based unified entropy measure, which is considered to generalize the Hartley
entropy, the Shannon entropy, the collision entropy and the min-entropy. The Renyi
entropy has been shown as a robust (multivariate) entropy estimation when its
implementation algorithm is based on the copula of multivariate distribution [67].
The copula [68, 69] can be considered as the transformation which standardizes
the marginal of multivariate data to be uniform on [0, 1] while preserving many of
the distribution’s dependence properties including its concordance measures and
its information, which has been widely recognized in many fields, e.g., finance
[70, 71], physiology [72-74], etc. Thus, the Renyi entropy estimation is based
entirely on the ranks of multivariate data, therefore robust to outliers. As such, the
application of Renyi entropy to the adaptively extracted scales of multivariate data
by the multivariate empirical mode decomposition may provide a potential option
to implement multivariate multiscale entropy.

The above multivariate entropy methods all assess the simultaneous dependency
for multivariate data, while the transfer entropy [75] has been developed to measure
the directed information transfer between time series, revealing a causal relationship
between signal rather than correlation. The multiscale transfer entropy [76] makes
use of the wavelet-based method to extract multiple scales of data, and then measure
directional transfer of information between coupled systems at the multiple scales.
This approach has demonstrated its effectiveness by extensive simulations and
application to real physiological (heart beat and breathe) and robotic (composed
of one sensor and one actuator) data.

4.5 Multiscale Entropy Analysis of Cardiovascular
Time Series

Nonlinear analysis of cardiovascular data has been widely recognized to provide
relevant information on psychophysiological and pathological states. Among others,
entropy measure has been serving as a powerful tool to quantify the cardiovascular
dynamics of a time series over multiple time scales [1] through approximate entropy
[5], sample entropy [6] and multiscale entropy [1]. When the multiscale entropy
was initially developed, it has been applied to analysis of heart beat signal for
diagnostics, risk stratification, detection of toxicity of cardiac drugs and study of
intermittency in energy and information flows of cardiac system [1, 44, 77]. In
the original publication for the sample entropy [1], the multiscale entropy was
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applied to analyze the heartbeat intervals time series from (1) healthy subjects, (2)
subjects with congestive heart failure, and (3) subjects with the atrial fibrillation.
The analysis results of multiscale entropy show that at scale of 20 (note not
the original scale) the entropy value for the coarse-grained time series derived
from healthy subjects is significantly higher than those for atrial fibrillation and
congestive heart failure, facilitating to address the longstanding paradox for the
applications of traditional single-scale entropy methods to physiological time series,
that is, the traditional entropy methods may yield the higher complexity for certain
pathologic processes associated with random outputs than that for healthy dynamics
exhibiting long-range correlations, but it is believed that disease states or aging
may be defined by a sustained breakdown of long-range correlations and thus loss
of information, i.e., less complexity. This work suggests that the paradox may be
due to the fact that conventional algorithms fail to account for the multiple time
scales inherent in physiologic dynamics, which can be discovered by the multiscale
entropy. In addition, the multiscale entropy has been applied, but not limited, to
analysis of heart rate variability for the objective quantification of psychological
traits through autonomic nervous system biomarkers [78], detection of cardiac
autonomic neuropathy [79] and assessing the severity of sleep disordered breathing
[80], to analysis of microvascular blood flow signal for better understanding of
the peripheral cardiovascular system [57], to analysis of interval variability from
Q-waveonset to T-wave end (QT) derived from 24-hour Holter recordings for
improving identification of condition of the long QT syndrome type 1 [81] and to
analysis of pulse wave velocity signal for differentiating among healthy, aged, and
diabetic populations [42]. A typical example of application of multiscale entropy
to the heart rate variability analysis [80] is to investigate the relationship between
the obstructive sleep apnea (OSA) and the complexity of heart rate variability
to identify the predictive value of the heart rate variability analysis in assessing
the severity of OSA. In the study, the R-R intervals from 10 segments of 10-
min electrocardiogram recordings during non-rapid eye movement sleep at stage
N2 were collected from four groups of subjects: (1) the normal snoring subjects
without OSA, (2) mild OSA, (3) moderate OSA and (4) severe OSA. The multiscale
entropy was applied to perform the heart rate variability analysis, in which the
multiple scales were divided into the small scale (scale 1-5) and the large scale
(scale 6-10). The analysis results show that the entropy at the small scale could
successfully distinguish the normal snoring group and the mild OSA group from
the moderate and severe groups, and a good correlation between the entropy at
the small scale and the apnea hypopnea index was displayed, suggesting that the
multiscale entropy analysis at the small scale may serve as a simple preliminary
screening tool for assessing the severity of OSA. Except the heart rate variability
signal, the multiscale entropy has been proved as a powerful analysis tool for many
other physiological signals, e.g., for analysis of pulse wave velocity signal [42]. In
the study, the pulse wave velocity series were recorded from 4 groups of subjects: (1)
the healthy young group, (2) the middle-aged group without known cardiovascular
disease, (3) the middle-aged group with well-controlled diabetes mellitus type 2
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and (4) the middle-aged group with poorly-controlled diabetes mellitus type 2. By
applying the multiscale entropy analysis, the results show that the multiscale entropy
can produce significant differences in entropies between the different groups of
subjects, demonstrating a promising biomarker for differentiating among healthy,
aged, and diabetic populations. It is worth to mention that an interesting frontier
in nonlinear analysis on heart rate variability (HRV) data was represented by the
assessment of psychiatric disorders. Specifically, multiscale entropy was performed
on the R-R interval series to assess the heartbeat complexity as an objective clinical
biomarker for mental disorders [82]. In the study, the R-R interval data were
acquired from the bipolar patients who exhibited mood states among depression,
hypomania, and euthymia. Multiscale entropy analysis was applied to the heart rate
variability to discriminate the three pathological mood states. The results show that
the euthymic state is associated to the significantly higher complexity at all scales
than the depressive and hypomanic states, suggesting a potential utilization of the
heart rate variability complexity indices for a viable support to the clinical decision.
Recently, an instantaneous entropy measure based on the inhomogeneous point-
process theory is an important methodological advance [83]. This novel measure
has been successfully used for analyzing heartbeat dynamics of healthy subjects
and patients with cardiac heart failure together with gait recordings from short
walks of young and elderly subjects. It therefore offers a promising mathematical
tool for the dynamic analysis of a wide range of applications and to potentially
study any physical and natural stochastic discrete processes [84]. With the further
advance of multiscale entropy method, it is expected that this method will make
much more contributions in discovering the nonlinear structure properties in cardiac
systems.

4.6 Conclusion

This systematic review summarizes the multiscale entropy and its many variations
mainly from two perspectives: (1) the extraction of multiple scales, and (2) the
entropy estimation methods. These methods are designed to improve the accuracy
and precision of the multiscale entropy method, especially when the time series
is short and noisy. Given a large cohort of multiscale entropy methods rapidly
developed within the past decade, it becomes clear that the multiscale entropy is an
emerging technique that can be used to evaluate the relationship between complexity
and health in a number of physiological systems. This can be seen, for instance,
in the analysis of cardiovascular time series with the multiscale entropy measure.
It is our hope that this review may serve as a reference to the development and
application of multiscale entropy methods, to better understand the pros and cons
of this methodology, and to inspire new ideas for further development for years to
come.
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Chapter 5
Introduction to Complex Systems Analysis
with Wavelets

Nicola Vanello and Luigi Landini

Abstract In this chapter the authors deal with a few methods of nonlinear wavelet
analysis for the characterization of nonstationary signals. The methods herein
described can be used in a wide variety of biological signals including ECG,
HRYV, pressure waves and heart sounds. The reader can find both conventional
methods of wavelet analysis such as linear and nonlinear denoising, as well as more
sophisticated methods based on fractal analysis and entropy. Applications of such
algorithms to the analysis of the heartbeat dynamics are also described.

5.1 Introduction

Wavelet based signal analysis provides a powerful means for the analysis of
nonstationary signals. It is a prerequisite to analyse biological time series, such as
the ones derived from the cardiovascular system, that are intrinsically nonstationary
signals. Typical examples include heart rate variability (HRV) [1], pressure waves
[2] and heart sound signals [3]. In this chapter we will introduce both classical
and advanced methods used in the application of the wavelet analysis to biological
signals. In particular, wavelet analysis results in a time-frequency description of
biosignals that proved to be very efficient in handling nonstationary phenomena.
A relevant aspect associated to the use of wavelet analysis is the possibility to
optimize the temporal and the frequency resolution at any scale in the respect of the
Nyquist theorem. It sacrifices the temporal resolution at high frequencies with the
benefit of an increase in the frequency resolution at low frequencies, with important
implications in signal interpretation. A crucial application of wavelet analysis is the
linear and nonlinear wavelet denoising able to reduce the noise overimposed to the
signal bandwidth, causing very low distortion. Moreover, in the wavelet domain it
is also possible to localize and to filter out unwanted components of the signal at
any scale. An important aspect of wavelets decomposition is that it behaves like
a decorrelation transformation, thus optimizing the information associated to its
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coefficients across the different scales. Thus, several measures related to information
theoretic criteria, as entropy [4], can be efficiently estimated and applied to biosignal
interpretation. Moreover, the same property can be exploited to estimate nonlinear
parameters as those describing the fractal [5, 6], or auto-similarity behaviour of
different processes of interest, with relevant implications in the field of signal
processing and modelling.

5.2 Continuous Wavelet Transform

The continuous wavelet transform (CWT) provides the optimal time and frequency
resolution for a given signal [7]. This is achieved by imposing the Nyquist condition
at any sub-band in which the signal is split. In the analysis of biomedical signals, a
time signal can be made up of slowly and quickly (nonstationary signals) varying
components. In these cases, it is necessary to dispose of an analysis technique that
is able to provide the best compromise between time and frequency resolution
at the different frequencies constituting the signal. For signals with low and high
frequencies components the best compromise is:

* high temporal resolution (high degree of detail on the time signal) and adequate
frequency resolution (on the basis of the Nyquist theorem) at high frequencies;
* high frequency resolution and adequate time resolution at low frequencies

These requirements satisfy the condition of maintaining constant the & at each
sub-band of spectrum of the signal, where f is the centre frequency of the sub-band.
The CWT is therefore a signal analysis technique that provides:

 the time-frequency representation (such as the Short Time Fourier Transform
STFT) of a signal, because it temporally locates the spectral components; this
peculiarity is essential for the analysis of non-stationary signals;

* the signal is split into frequency sub-bands and at each sub-band the resolution
dictated by the Nyquist theorem is attributed.

Consequently, the time resolution becomes non redundant.
The CWT is defined as it follows:

oo

TWC (z,5) = / [x(t) Syt (“Tt)] CTE g (5.1)

—00

where a wavelet function is included in the classical definition of the (Short-
Time-Fourier-Transform (STFT) with the following relationship:

V() = isnp (t _s T) (5.2)
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being s the scale factor (inverse of frequency) and t the translation term. The symbol
“*” indicates the complex conjugate The term ‘wavelet’ is synonymous of damped
oscillating wave, typical of a pass-band signal.

An example of a wavelet function is described by the following formula, that
defines a Morlet wavelet:

| PN
U(r) = me""o’e v/ (5.3)

It is recalled that, given the scaling properties of the Fourier transform, the
compression in the time domain produces an expansion in the frequency domain
and vice versa, according to the following relationship:

Flo (Zi)} — |a| X(af) (5.4)

Because the translation parameter t introduces a delay in the frequency domain,
the Fourier transform of the wavelet function can be written as follows:

1 t—1 ~ —jwr
F%$1D< - )} — J5U(sf)e™ (5.5)

being F{¥(1)} = U(f).

Then the wavelet compression (or expansion) corresponds to dilate (or compress)
the corresponding Fourier transform. The time shift, necessary to analyse the entire
signal introduces a phase term in the previous formula, not affecting the modulus.
From the scaling properties of the Fourier transform it is also evident that the
contraction of a factor s of a wavelet in the time domain is equivalent to a dilation
of the spectrum at high frequencies by the same factor (remember that a wavelet is
a bandpass signal). Therefore, the process of scaling achieved by varying s ensures
the coverage of the signal spectrum; the time domain signal coverage is ensured by
the operation of temporal translation.

So, if W, () has a band Af centred at f, then ¥ (£) has a band centred at sAf
and, also, the ratio is constant. The sub-bands are the frequency intervals in which
the signal is divided due to the application of the wavelet transform.

The scale parameter s takes on a meaning similar to the scales used in the maps:
large scales (low frequencies) provide a global characterization of the signal, while
low scales (high frequency) provide detailed information on local trends.

Expansion in quadratic powers and time translations of an entire wavelet function
constitute an orthonormal basis.

The map of Fig. 5.1 (bottom) is obtained by applying the previously procedure
and it represents the CWT of the signal at the top. On the vertical axis the scale is
shown (inverse of frequency).

It is observed that the lines (bottom) at lower scale values are characterized by a
sufficient frequency resolution, while they show a high temporal resolution needed
for localizing the transition zone on the time signal. At higher scales the opposite
phenomenon is observed. The top rows correspond to high scales (low frequencies)
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Fig. 5.1 An example of the application of the CWT to a chirp signal

and they show the frequency details of the chirp signal (which is predominantly
localized in the low frequencies interval).

Therefore, exploiting the representation on the time-frequency plane, the CWT is
capable of representing simultaneously temporal and frequency details of the same
signal. The inverse CWT is calculated by the following formula:

(1) = i_]z [X(r,s)-slzqz* (t_f

where cy is the admissibility constant and X(.) is the Fourier transform of x(t).

)] e drds (5.6)



5 Introduction to Complex Systems Analysis with Wavelets 143
5.3 Discrete Wavelet Transform

Since the wavelet functions are shifted and scaled versions of themselves, it is
evident that a redundant information on the signal in the time-scale representation
is produced. It is known that, in general, the redundancies can make easy the
interpretation. On the other hand, a signal reconstruction based on the sampling
theorem, and thus with a mathematically sufficient number of samples (two samples
per period), can make difficult the visual interpretation of the signal as the signal
morphology is not adequately represented.

It can be shown that a suitable discretization of delay and scale parameters (z, ),
while reducing redundancy in the CWT, allows to reduce its computational cost. A
common approach to the discretization for s and t is the following:

s =50’ T = ktoso’ (5.7)

with j, k integers and greater than zero. By setting the sy and 7 values, the wavelet
function ¥ () = %R\IJ (’_Tr) becomes a function of (j, k) as it follows:

Uatt) = 572w [557 (1= keos} )| (5.8)

When sy =2 and 7( = 1, we obtain the dyadic sampling of the time-scale space,
thatis: s=27 ;7 =k27.

For example, for j = 2 then s = Y, and the delay assumes multiple values of
1/4 as k increases; for j = 3 (third level of decomposition) then s = 1/8 and the
delay assumes multiple values of 1/8 as k increases, and so on. So at low scales
(high frequencies) the temporal sampling is high, while at high scales the temporal
sampling is lower. In the frequency domain, the frequency resolution increases with
decreasing the frequency, in agreement with the previous assumptions. The discrete
wavelet family with dyadic sampling becomes:

1
Yl = = (% ~K)jk>0 (5.9)

The wavelet basis functions are chosen so as to respect the orthonormality
condition.

It is reasonable to ask whether the dyadic sampling allows to reconstruct the
signal without loss of information. Daubechies shows that it is possible, provided
some type of energy conditions are met [8], conditions which will not discussed
here.

Among the properties of the wavelet transform it is worth to recall the linearity
and the time and scale invariances. The admissibility condition implies that ¥ ()
must be zero at zero frequency, that is, the wavelet function has a bandpass
behaviour. In addition, the mean value in the time domain must be null.
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A subsequent discretization of the time domain ¢ using the variable n, allows
to introduce the fully discretized version of the CWT known as DWT (Discrete
Wavelet Transform). The transfer from the continuous time domain to the discrete-
time domain in wavelet analysis allows a drastic reduction of the algorithm
complexity and computation times.

5.3.1 Mallat Algorithm

Starting from the discrete dyadic wavelet family and their frequency behaviour as
the scale index j changes, Mallat suggests to decompose the discrete signal using
two families of wavelet functions [9]. A family composed of low-pass filters, i.e.
hj x[n] = 22h[2n— k], also called ‘approximation’, and a family composed of high
pass functions, i.e. g «[n] = 2"*g[2n — k] also called ‘detail .

The discrete index k determines the time position of the wavelet function with
respect to the signal, while the index j determines the extent of the temporal sub-
sampling of the signal. The aforesaid pair of filters is known as ‘quadrature mirror
filters’, since such filters have the following mirror symmetry:

gIL—1—n]=(-1)"-hn (5.10)

where L is the number of filter samples.

Starting from the value j = 1, the Mallat algorithm decomposes the signal into
two equal sub-bands, each one equal to half of the signal spectrum to be decom-
posed. A further signal subdivision into sub-bands may be obtained by maintaining
fixed the two filters g[n] and h[n] and by performing a signal compression (also
called decimation or subsampling) at the output of the g[n] and h[n] filters so as to
produce an expansion of the signal bandwidth. The time decimation is allowed since
the signal bandwidth after the application of the band filters has halved. It allows
the subsampling of the signal according to the sampling theorem valid for low-pass
signals. In the case of band-pass signals, available at the out of the g; x(¢) filters,
the sampling theorem for bandpass signals is used. It is governed by the following
relationship:

— 2f max

m

e

5.11)

where f is the sampling frequency and m is the maximum integer not exceeding
f%, where B is the frequency bandwidth of the signal. The above formula becomes
the classic Nyquist theorem for low-pass signals, when f,,x becomes equal to B.
The signal at the first level is under-sampled and hence its bandwidth doubles;
subsequently it enters in the next level of filters, which have the same impulse

response of the previous level. The filters output is still under-sampled and such
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operation is carried out on a number of levels determined by the experimenter
based on the level of detail to be achieved. According to Mallat algorithm, the
decomposed signal is represented by the last ‘approximation’ and all the sequences
of ‘detail’. At each level of decomposition the temporal resolution is halved due
to the under-sampling, confirming that the signals at the lowest frequencies have a
lower temporal resolution (but always respecting the Nyquist theorem) compared to
the signal at higher frequencies. Consequently, the frequency resolution at the lower
frequencies turns out to be higher than that for the highest frequency signals.

The signal reconstruction process at any step, involves: (a) an interpolation by
a factor of 2; (b) the convolution with the reconstruction filters (the same as those
used in the decomposition); (c) the sum of the resulting signals. At any level, the
reconstruction algorithm is described by the following relationship:

M
> e 0 g [0 — 28] + v [ k] -0 [n =20} 512
1 k=1

J
x[n] =

J

where J is the number of decomposition levels, M the number of delay step and yp;gn
and yjow are respectively the high and low frequency components of the decomposed
signal.

5.4 Non Linear Denoising

Let as assume the following additive degradation model:

y=fx +n (5.13)

where f{.) models the degradation process, due for instance to a transmission channel
or a measurement system, x is the unknown input and # is the noise. In the case of
a linear degradation model, a convolutive relationship between the input and the
noiseless output can hold. For a discrete system the convolution can be expressed
using a Toeplitz matrix H, such that the previous equation can be written as

y=Hx +n (5.14)

We recall that in the absence of knowledge about the noise model n, to solve the
inverse problem in order to derive x from the knowledge of H and y, the least squares
method is used. The least squares method is the function that best approximates x
minimizing the norm of the noise. However, in general, the H system can be ill-
conditioned and the solution, if it exists, may not be unique. To find a solution to
such problem, a regularization term is introduced in the minimization procedure.
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Introducing the regularization term, we obtained:
1 2
argm1n§||H-X—y||2—i—)tII‘I’-xH1 (5.15)

where W is the regularization matrix or a matrix which determines which of the
signal components we would penalize, A is a scalar and acts as a regularization
parameter, || ||; is the norm one.

The regularization term privileges the solutions for which the product W -x is
‘sparse’, i.e. characterized by a few significant coefficients, while the remaining
coefficients may be assimilate to noise.

Using an orthonormal operator (that is: WTW =1I) the ¥ transformation can be
applied to the data as follows:

!
argmlnzllyW—ZII§+l||Z||1 (5.16)

where: yg =W -y, z=W.x, X = WTZ If the matrix ¥ is the wavelet transform
operator, then the product ¥ - x is typically ‘sparse’ or compressible. We name such
operation as “Wavelet Regularization” [10]. It brings to the ‘wavelet denoising’,
that is an example of nonlinear filtering in the wavelet domain [11]. In this case the
solution has an explicit form called Soft Thresholding function, and is defined for
each frequency as:

yu, — A if yo; > A
a=sion =10 rbal=i=(1-gq) w )
i+
Yo + A if yu, < —A

By a properly choice of the wavelet function, an efficient denoising can be
obtained which preserves the high frequencies. In Fig. 5.2a an example of the
denoising filter in the wavelet domain using the ‘db1’ windows is shown; in Fig.
5.3a the error due to the filtering operation is shown. The efficiency of the denoising
process is related to the degree of compression of the signal. The more the signal is
compressible, the better is the denoising.

A non-linear filter widely used for the analysis of biomedical signals is the “Total
variation denoising’ [12]. The name means that the goal is to minimize the Total
Variation function of a signal, which corresponds to the sum of all the derivatives of
the signal.

Np
V() =Y |xio — x| = |Dx]], (5.18)
i=1
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Fig. 5.2 (a) An example of denoising in the wavelet domain using the ‘soft thresholding’ filter;
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where N, is the length of the signal. The Total Variation denoising is performed by
solving the following problem:

1
X= argminx§||y—x||§ + ATV (x) (5.20)

To implement the TV denoising it is necessary to use iterative algorithms [13].
In Fig. 5.2b the effect of the Total variation filter is shown, with the relevant error
shown in Fig. 5.3b. As expected the edges are well preserved, while the noise has
been removed.

5.5 Wavelets and Nonlinear Signal Processing

Wavelet analysis has been shown to perform an efficient time-frequency description
of biomedical signals. In fact, as we already discussed, it shows a superior time
resolution at higher frequencies along with a good spectral resolution at lower
frequencies. This property allows for instance to detect rapid and small phenomena
superimposed on large fluctuations in the analysis of heart rate variability [14].
Moreover, it allows a fast description of the signal at different scales allowing
to efficiently detect the phenomena at the bands of interest [15]. The application
of wavelet to the analysis of electrocardiogram, has shown how this approach
is efficient for the description of QRS abnormalities, ECG timing, HRV and
arrhythmias [16]. Here, we will focus on the use of the wavelets in the field
nonlinear signal analysis since wavelets have been found to be an efficient tool
to estimate nonlinear measure of a process. Specifically, they are proposed as a
preprocessing step to detect nonstationary phenomena and thus classify different
regimes within the phenomenon under study. Moreover, they offer a time fre-
quency representation that is suitable for the successive estimation of nonlinear
statistics.

In [17] a double step approach to study nonlinear interactions in a process
is introduced. In a first step, some coefficients {f;} related to a time-frequency
representation of the signal under investigation are estimated using the DWT. The
orthonormal signal basis is indicated as {b;}. In a second step, the coefficients
are combined using a nth-order polynomial operations and results in nonlinear
coefficients {6;} (see Fig. 5.4). The second stage performs several operations on
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Fig. 5.4 Scheme of the two stages process to perform non linear transformation of the input
signal x. The first stage performs linear transformation, while the second calculates non linear
combinations of the first stage coefficients (from [17])

the first level coefficients, at different output nodes. Specifically, some nodes are
product nodes such that their output can be written as:

n(ﬂlvﬂL“-vﬂm) zﬁilﬂi2ﬂi3"‘ﬂin (5.21)

In this case the product is an n-fold product and takes into account all the possible
n-combinations of the m coefficients, so that (1 <i; < --- <i, <m).
The other nodes are summing nodes, such that

n(B1.Bas....Bw) = (Zaiﬁi) (5.22)

i=1

This approach was applied to the analysis of correlation and higher order statis-
tics, Volterra filtering and nonlinear system identification. In all these applications
Wavelet-based representation of the signal was found to outperform the Fourier
transform-based representation [17].

These results were discussed in view of the fact that Wavelets represent an
unconditional basis with good properties. When a signal is represented using an
unconditional basis for a given space, it can be shown that its norm, is limited after
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the attenuation of any set of the coefficients describing the signal. Given a basis {z;}
the signal in the space y can be approximated as x = Zf: | €iZi» where k is the
length of the time series The attenuation coefficients m; can thus be applied to each
element of the basis function, resulting in

k
X = Zm,—ciz,- (5.23)
i=1

If the basis is unconditional in the given space we are sure that the norm of the
attenuated reconstruction, is limited by the norm of the original signal, multiplied
by some finite constant C

HZHX < Clal, (5.24)

This property guarantees that the signal approximation will not increase when
some of the terms in the reconstruction are removed. Moreover, in the case of
wavelets this property holds for many signal spaces [18], thus leading to algorithms
with a good behavior. Specifically, Nowak and Baraniuk [17], showed that the higher
order statistics and correlations were more robustly estimated using Wavelet than
using Fourier Transform, moreover the Volterra filter output were more localized
in time and frequency. Finally, regarding the identification of a nonlinear system,
the Fourier transform resulted in a smoother estimate and in a higher mean squared
error with respect to the one obtained using wavelets.

The wavelet transform was used also a preprocessing step for the study of the
irregularities of the QRS complex [19]. To study such irregularities an analysis in
the phase space was performed estimating the phase portrait, the Lyapunov exponent
and the correlation dimension. The wavelet transform was thought to be efficient
in detecting irregularities: in fact, it was found that when the scale of the wavelet
is chosen properly, the absolute value of the wavelet transform at that scale can
detect signal sharp changes [20]. The wavelet description of the signal was exploited
to estimate a measure of regularity of the QRS complex, based on a Lipschitz
exponent, that can be used to model signal singularities. The nonlinear measures
were then obtained from a time series, with one regularity value estimated for each
QRS complex.

In [21] a recurrence quantification analysis (RQA) was applied to a three lead
vector cardiogram (VCG) signal. The goal was to classify healthy controls and
subject that had a myocardial infarction. The discrete wavelet transform was used to
obtain multiple filter banks. The Daubechies wavelets (db4) were chosen since they
were thought to match the ECG signal pattern, thus resulting in a more compact
description of the signal [22]. Seven details scales and the approximation were
employed. One RQA was then obtained at each scale, merging the information
obtained from the three leads. A feature selection step, for the feature dimensionality
reduction, and a successive classification allowed to achieve a classification rate
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of 92.7%. Interestingly, the most informative features where RQA-based measures
obtained from three different scales (D2 125-250 Hz, D3, 62.5-125 Hz, D5, 15.62-
31.25 Hz).

5.5.1 Nonlinear Phase Coupling

Here, we report a finding by Ivanov et al. [23] who studied the heartbeat dynamics
using wavelet functions. The goal was to reveal possible nonlinear phase coupling
phenomena. Specifically, the R-R interval was analyzed using the derivatives of the
Gaussian function as a mother wavelet, both in healthy and in apnoeas. A scale equal
to eight beats was adopted, and it allowed to remove constant and linear trends in
the time series, while smoothing high frequency changes. The choice of the scale
was performed to optimize the detection of patterns lasting from 30 s to 1 min. The
scale of the wavelet is in fact proportional to the interval over which the changes
might occur. After this operation, different time intervals characterized by different
dynamics can be observed in the transformed series. Using the Hilbert transform
on this series, and studying the amplitude of the analytic signal it was possible to
reveal the changes in the heartbeat dynamics. The results are a cumulative measure
of inter-beat distance variations within a time interval proportional to the wavelet
time scale. Ivanov et al. [23] observed that the distribution of the inter-beat intervals
in healthy subject, after the proposed preprocessing steps, is described by a Gamma
distribution family. Moreover, they found a normalization procedure that allowed to
have a very good fit of the analyzed healthy subjects. This normalization procedure
was not effective with patients suffering from apnea, since the different subjects’
distributions did not collapse to the same values. After Fourier phase randomization
of the inter-beat intervals time series in healthy subjects, the distribution was found
to follow a Rayleigh distribution, while the original data showed a heavier tail.
This distribution is found to describe the instantaneous amplitudes of a Gaussian
process. Moreover, Fourier phase randomization destroys possible phase couplings
due to non-linear dynamics. Taken together these observations lead the researchers
to hypothesize a non-linear phase coupling in heartbeat dynamics in healthy
subjects.

5.5.2 Wavelet Entropy

Spectral entropy measures how the information in the signal is distributed across
different frequencies [24]. In a first application, this quantity was estimated through
the Fourier Transform and STFT for nonstationary signals. However, the limitation
of these procedure regarding the temporal and frequency resolution due to win-
dowing operation are not optimal for nonstationary signals. An Entropy definition,
based on the wavelet transform would allow to exploit the temporal and frequency
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characteristics of the wavelet analysis. For this reason, the entropy based entropy
demonstrated to be effective in different applications within the field of biomedical
signal processing [25].

5.5.2.1 Normalized Total Wavelet Entropy (NTWE)

Given the coefficient of the wavelet transform at level j, C;(k) where k is a time
variable, the energy at level j is defined as

-1
=Y |Gw| (5.25)

k=—N
The relative energy at level j is defined as
__ &
Z/?:l —N &

The values p; can be considered as describing a probability distribution, with
Zj p; = 1 where the summation is performed across the scales ranging from —N to
—1. According to these definitions the NTWE can be estimated as a function of the
scales

pj (5.26)

-1

SwN) = = ) pjlogyp;/Suax (5.27)

j==N

where Syax = log,N. This quantity can be also estimated, for non-stationary signals,
dividing the observed signal in N7 non overlapping temporal windows. In this case,
it is possible to have a temporal average of NTWE

(Sw)=—Y sy (5.28)

while the mean NTWE can be estimated by evaluating the mean wavelet energy at
level j as:

1 i
(E)=—>"¢" (5.29)

and the total mean energy as:

(o) = Y (&) (5.30)
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A mean probability distribution can be defined as

g = —_l(gj) (5.31)
D= (&)
with the corresponding mean normalized wavelet entropy, defined as
N —1
Sw(N) = = Y gjlog,q;/Smax (5.32)

Jj==N

This approach was tested in [25], on fractional Brownian and fractional Gaussian
processes. More details about these processes will be given below, but here we just
highlight that these processes are characterized by a 1/f-like process and they have
been proposed to model many biological phenomena, as brain and heart activity
[26].

Both Sw and Sw were able to discern the processes families characterized by

different scaling parameters. Specifically, Sy was more suitable than Sy to discern
among fBm processes, since in the range of parameters describing such a process is

monotonic function. However, the Sy was found to have its maximum for a gaussian
white noise, and could distinguish more easily between white noise and 1/f-like
process (see Fig. 5.5).

5.5.2.2 Relative Entropy

Given {p;} and {g;} two different probability distributions across scales (Zj pi=1
and Zj g; = 1 with the summation ranging from —N to —1) of the wavelet
coefficients that can be obtained from two different time intervals or from two
different signals, it is possible to obtain the relative entropy, that describes the
similarities between two distributions [24]

-1
Sw(plg) = ) pilog [;ﬁ] (5.33)
]

j=—N

5.5.2.3 Approximate Entropy

Entropy measures were also studied at each frequency scale, by using Approximate
Entropy (ApEn) [27]. This measure is defined exploiting two phase space recon-
structions with different embedding dimensions, m and m + 1. ApEn is related
to the likelihood that vectors in a m-dimensional phase space will remain close,
e.g. within a radius r, also in the m 4 1 dimensional space. This measure thus
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Fig. 5.5 Normalized wavelet entropy for fGn (—1 < a < 1) and fBm process (1 < a < 3). The

performance of Tavares—Lucena wavelet entropy (S;;L) not discussed here) were found to fall
behind those of NTWE. The value of & = 0 corresponds to white gaussian noise. The figure is
reprinted from [25]

reflects the regularity and the predictability of a time series. Given this definition, it’s
possible to estimate ApEn from different frequency bands of a signal, and within the
context of wavelet analysis, from different scales. Specifically, in [28] the ApEn was
estimated on the details and approximation coefficients obtained using DWT. One
difficulty for the application of this approach, it the proper choice of the embedding
parameters, and the radius 7.

5.5.2.4 Application to the Analysis of Cardiac Function

In the field of study of cardiac function, the classification of subjects with con-
gestive heart failure exploiting the analysis of HRV was found to be enhanced by
concomitant use of wavelet entropy measures [4]. In this work, the wavelet entropy
definition given in Rosso et al. [24] were used, adopting Daubechies (db4) and seven
scales. In [29], the same approach was applied to the analysis of heart rate variability
comparing resting and lower body negative pressure conditions. In this work,
however the wavelet entropy measures were estimated on the original ECG signal
within the low frequency band. ApEn, using the wavelet-based approach defined in
[28] was also estimated. Both measures could detect significant differences between
the two conditions.
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5.5.3 Mono and Multi Fractal Processes

The analysis of processes with 1/f behaviour has a large interest within the field
of biomedical signal analysis. As an example, this behaviour was found in resting
state fluctuation of blood oxygenation level dependent signal in the brain, related
to neuronal activity [30]. Also the inter-beat intervals dynamics in the hearth
activity was found to be described by such a power law [23]. This power spectrum
scaling law is related to long-range dependencies or temporal autocorrelation. While
autoregressive models can describe serial correlations, they fail when long range
dependencies occur. Fractional Gaussian noise (fGn) that is the increment process
of a fractional Brownian Motion (fBm) [31] was introduced to have a parsimonious
description of temporal autocorrelation, that could describe several behaviors. For a
fGn the autocovariance at time lags t can be seen as [30, 32]

o2

c(@) == (Je + 17"+ 20 + o= 1P7) (5.34)

where c(7) is the process variance and t is the discrete time lag From this equation
it is possible to see that for t # 0 and H = 0.5 the autocovariance is zero. In this
case the process reduces to a classical Brownian motion, and samples at different
time lags are independent. For H smaller than 0.5 the dynamics of the underlying
process is reversing along time, and an increase in the time series will be, on average,
followed by a decrease and vice-versa. Such a process is said to be anti-persistent.
A H exponent bigger than 0.5 is related to a persistent or positively correlated
behaviour, and the process is said to have a long memory. When H is equal or
close to 0.5 the time course is related to a process without memory. The frequency
content of the time series reflects these behaviors. Since the power spectrum of the
fGn process can be written as the Fourier Transform of the autocorrelation function
so that

+00 too
S(f) = Z c ('L') e—j27‘rfr = 402CHsin2 (7Tf) Z W (535)
o N +J
T oo J=—00

with Cy = T'(2H + 1) sin(w H)/(27)* + 1 where I'(¢) is the gamma function. Using
a Taylor expansion around the origin we have

S(f) ~ o*Cu(mf)*|f)' " (5.36)

As a result the power spectrum of fGn can parameterized in terms of H as
S(f)oc|f|77 withy =1—2H.

Thus, the power spectrum of a long memory, persistent process is thus 1/f-
like. In this case the signal power is mainly located at low frequencies, and the
signal is characterized by slowly varying components. A process with H < 0.5 is
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characterized by rapidly changing components and consequently its power spectrum
is mainly located at higher frequencies.

fGn and fBm were introduced to model processes that show a fractal behavior
[33], i.e. they are self-similar in that they show the same statistical properties
at different scales of analysis. The Hurst exponent is also related to the fractal
dimension by this relationship D = 2 — H. For a time series, D ranges from 1 to 2.
For instance, 1 is the fractal dimension of a straight line, while a Gaussian random
walk is characterized by D equal to 1.5. As D tends to 2, the time series becomes
more rugged.

When the fractal behavior of a process is described by one parameter, the process
is said to be monofractal. When the system is nonstationary, the scaling behavior can
change along time and local Hurst exponent can be defined. In this case, the wavelet
transform can be used to characterize the nonstationarity of a time series.

5.5.3.1 Estimation of 1/f Behavior Using Wavelet

This approach is based on the observation that the wavelet coefficients of a
correlated 1/f process are uncorrelated both along and across the different scales
[34]. This result is a valid approximation, assuming the wavelet filter as a band-pass
filter. As aresults, the wavelet transform can be seen as a decorrelating or whitening

procedure.
The variance of the coefficients can be written as

%
var (dj) = 2_j+l/ S(df withj = —jo,...,—1 (5.37)
2[—1

while for the approximation coefficients

2—jo—1
var (a;,) = 2°*! / ) S(f)df (5.38)

where S(f) is the power spectral density of the process under study. The variances
can be approximated by the following expression, substituting the expression for the
power spectral density

var (dj) ~ 02Ky (H)27PH=D with j = —jo, ..., —1
and

var (a_j,) ~ o*K,(H)20*1=D (5.39)

with K,(H) and K;(H) defined as a function of H. Calculating the base 2
logarithm of the variance a relationship showing an almost linear relationship
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between the log variance of the coefficient and the wavelet scale can be
observed.

log, (var (dj)) ~ —j (2H — 1) + log, (0K 4(H)) (5.40)

withj= —jo, ... , —1.

This observation can be used as the basis for the estimation of the Hurst exponent.

In Wornell and Oppenheim [35] a maximum likelihood approach to the esti-
mation of the Hurst exponent was proposed. The approach was developed under
the hypothesis of 1/f process contaminated by stationary white Gaussian noise.
Specifically, the wavelet coefficients of such a process are normal, independent and
identically distributed [25], and show the dependence properties on H just seen The
Maximum likelihood is expressed as a function of the  =22~! and 02K (H).
These parameters are estimated using an Expectation Maximization algorithm. This
approach is prone to error when the number of observation is small.

5.5.3.2 Multifractal Processes

The time varying properties of biological processes, lead to the need of adopting
a multifractal approach. Regarding this point, the time series can be divided in
windows, under the hypothesis of stationary behavior within each time window.
In Duverney et al. [36], a multifractal approach was used to classify periods of atrial
fibrillation. The analysis of R-R using the discrete wavelet transform, allowed to
estimate period of high variability. The Hurst exponent were thus estimated within
each window. The Hurst exponent was estimated exploiting the relationship between
the wavelet coefficient variance and scale, as shown above. Moreover, an analysis
was made to check the frequency ranges where the differences among healthy sinus
rhythm and atrial fibrillation were located. Specifically, the different information
was spread among the higher frequencies (10~!~1072 Hz). For this reason, the Hurst
exponent was estimated using the five higher frequency scales. Atrial fibrillation
periods were detected using a threshold equal to 0.7 for the Hurst Exponent. The
authors highlighted some limitations to their work as the need of having at least
64 valid consecutive heart beats. This represents a limit for the detection of short
episodes. Moreover, false might occur in case of supraventricular extrasystoles and
tachycardia, while atrial arrhythmias might induce false negatives. Ivanov et al.
[23] studied the local Hurst exponent in interbeat interval time series obtained
from healthy subject and from patients with congestive heart failure. The Hurst
exponent was found to be in the range [0.07,0.17] for healthy subjects thus showing
an anticorrelated behavior. Higher value, approximately equal to 0.22, was found
for patients showing a less anti-correlated behavior with respect to healthy subjects.
This result was interpreted as a signature of a more complex behavior of heartbeat
dynamics with respect to the pathological conditions.
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5.6 Concluding Remarks

In this chapter, the properties that have motivated the use of wavelet transform for
the exploration of nonlinear measures for the characterization of heart activity were
discussed. We have to stress that we did not introduce the use of wavelet packet
decomposition and empirical mode decomposition. The former approach allows a
finer description of the signal under investigation, using a more rich set of details and
approximations [37]. This allows, for instance, to improve the frequency resolution
at lower scales. The latter is often compared to wavelet transform, because it also
allows to efficiently describe nonstationary phenomena and to reduce noise, using a
data driven approach for the signal decomposition [38].
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Chapter 6
Intermittency-Driven Complexity in Signal
Processing

Paolo Paradisi and Paolo Allegrini

Abstract In this chapter, we first discuss the main motivations that are causing an
increasing interest of many research fields and the interdisciplinary effort of many
research groups towards the new paradigm of complexity. Then, without claiming
to include all possible complex systems, which is much beyond the scope of this
review, we introduce a possible definition of complexity. Along this line, we also
introduce our particular approach to the analysis and modeling of complex systems.
This is based on the ubiquitous observation of metastability of self-organization,
which triggers the emergence of intermittent events with fractal statistics. This
condition, named fractal intermittency, is the signature of a particular class of
complexity here referred to as Intermittency-Driven Complexity (IDC). Limiting to
the IDC framework, we give a survey of some recently developed statistical tools
for the analysis of complex behavior in multi-component systems and we review
recent applications to real data, especially in the field of human physiology. Finally,
we give a brief discussion about the role of complexity paradigm in human health
and wellness.
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6.1 What Is Complexity?

6.1.1 Complexity as Emergence of Self-Organization from
Cooperation

In the past, monitoring the activity of systems with many degrees of freedom
was typically limited to a very small portion of it, and often only a single basic
component could be observed or, on the contrary, the overall activity of the system
itself (bulk measurement) could be measured, but without any knowledge about
the detailed evolution of the single components of the system. In the last two
decades or so, many research fields have seen the development of new experimental
techniques opening the way to much more accurate and complete observations of
multi-component systems. More precisely, in many research fields it has become
possible to get simultaneous observations, with high time/space resolution, of all
the single unit activities in the network. As an example, the spiking activity of
many neurons linked through a network can nowadays be simultaneously observed
by means of large arrays of electrodes [1] or by recording calcium fluorescence
through a high-speed high-resolution camera mounted on a microscope [2, 3]. In
this example, the new experimental tools make it available a large set of neuron
spiking data that are recorded in parallel from many units and with great accuracy
(i.e., not bulk measurements).

These large datasets are nowadays available in many research fields: sociology
and economy (e.g., social networks, internet data, GPS mobility data); biology
and physiology with the “-omics” data (e.g., proteomics, genomics, metabolomics,
connectomics) [4-9]. The details of a multi-component system are then known and
typically represented as a complex network (graph) of interacting units, defined as
a set of nodes and links among nodes, thus allowing for the analysis and modeling
of different time and space scales of the system, ranging from the single unit to the
global dynamics.

Many recent studies are unveiling some common features and behaviors (e.g.,
emergence of self-organization, multi-scaling, self-similarity) among data-sets col-
lected from very different multi-component systems. A general opinion is taking
momentum in the scientific community that these common features could be the
signature of some “universal” behavior, which is generically denoted as complexity,
while the systems displaying such behavior are denoted as complex systems [9—
13]. This new paradigm of complexity is triggering many interdisciplinary research
activities involving skill, expertise and ideas from different fields: statistical physics,
probability theory and statistics, stochastic processes, nonlinear dynamical systems,
network science, data mining, signal processing.

In spite of the extensive use of the term “complexity” in hundreds of papers
regarding the study of multi-component systems, a definition of complexity that
is universally accepted in the scientific community does not yet exist and a unified
view of how Complexity should be defined is probably still far from being reached.
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However, some aspects that, as said above, are common to many multi-component
systems, are recognized to be signs or clues of complexity [7, 8, 10-14]:

* A complex system is a multi-component system with many degrees of freedom:
individuals, particles, single units. Each unit is a node in a network with a
complex topology of links among nodes, representing the (nonlinear) interactions
among single units.

e Multi-component and nonlinearity are not sufficient to define complexity. Com-
plexity is associated with the emergence of self-organizing behavior, i.e., the
spontaneous formation of self-organized structures that are triggered by some
cooperative mechanism in the nonlinear dynamics. This emergent behavior
is not related to a master driving the system in a given self-organized state
but, on the contrary, the self-organizing behavior emerges, in some sense,
“spontaneously” from the overall cooperation on the single units.! A master can
be some unit or hub in the network, or an external forcing, affecting directly all
the units, or a great majority of the units, of the multi-component system, thus
having a direct control over all the internal dynamics.

* Non-reducibility: self-organized states have features and space-time scales that
are hardly obtained as a simple (linear) function of an external forcing or by
means of linear coarse graining procedures (e.g., average or weighted sum over
single components).

* The spontaneous emergence of self-organization by the cooperative behavior in
a complex network and without a master is associated with self-similar, i.e.,
mono-fractal behavior, whose signature is seen in the power-law relationships
among different physical quantities. A multiscaling (multifractal) behavior can
also emerge in some physical observable quantities [15]. For example, self-
organized states display long-range space and/or time correlation functions,
given by slow power-law decays in space and/or time. Consequently, the
correlation exponents are an important example of emergent properties. It is
worth noting that the association between self-organization (without a master)
and scaling is so ubiquitous that scaling exponents are often used as an indicator
of complexity and self-organization itself.

The emergence of scaling exponents related to self-organizing behavior is a
intriguing and crucial aspect of complexity. Critical phenomena are an example
of complexity [16] where long-range correlations and mono- or multi-scaling are
always observed in combination with the emergence of self-organized structures
(e.g., clusters of different sizes in the Ising spin model). The origin of scaling
behavior and long-range correlations is well understood in this case. However,

'Cooperative dynamics in multi-component systems always need an external energy source to
sustain self-organization, i.e., the formation of coherent structures from the disordered background.
However, this does not mean that the external forcing, even if pumping energy into the system,
can control the inner mechanisms triggering the emergence of self-organizing behavior. Thus, the
external forcing is not a master explicitly controlling the parameter of self-organized states, such
as time and space scales, but only an external energy supply.
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to our knowledge, for a generic complex cooperative system without a master
the underlying mechanism determining the emergence of scaling behavior is not
yet clear. Heuristically, it is reasonable to suppose that emergence of self-similar
behavior is related to the absence of a master (unit, hub or external forcing). In
fact, when a master determines the dynamics of all the units, then the self-organized
structure should be driven by the same parameters, e.g., time and space scales, of
the master.

As an example, in the laminar motion of a liquid pumped in a pipeline, a
rotation is observed immediately downstream of the pump whose angular velocity
is related to that of the pump itself, with possible differences can be related to
the friction of pipeline wall. No scaling behavior can be observed in this case.
On the contrary, in cooperative dynamics without a master, whatever the scale of
motion, self-organized structures emerge spontaneously and, in this case, long-
range correlations and, in general, mono- or multi-scaling behavior, are always
observed. Then, we can heuristically argue that the “spontaneous” emergence of a
macroscopic, ordered structure from microscopic units requires a set of intermediate
levels of organization, from a few units interacting over local domains and short
time intervals (small scales) to the global level (large scales).” The need for
intermediate levels of organization is essentially the reason why self-organizing
behavior is usually related to a scale-free condition and, thus, to the emergence
of self-similarity, mono-/multi-scaling and fractality.

From the above discussion about the general features of a complex system, we
here propose a definition where the scaling features are explicitly required, even if
the simultaneous presence of cooperative dynamics and absence of a master should
be sufficient to justify the emergence not only of self-organization, but also of the
related scaling features.

Definition 6.1 (Complexity) A multi-component, nonlinear, system is defined to
be complex if

(i) the dynamics are cooperative and trigger the emergence of self-organizing
behavior;
(ii) there is not a master (unit or hub) whose features and parameters can be directly
linked to the features and parameters of the emergent self-organized states.
(iii) The system’s dynamics are monoscaling (self-similar) or multiscaling.

We do not claim to give here a general definition of complexity. However, in
the following we refer to systems satisfying the definition of complexity given
above, a definition which seems to include many real multi-component systems
spanning from socio-economic systems to biological networks. The self-organizing

2Roughly speaking, the emergence of self-similarity is probably the most efficient way to carry
information from the small to the large scales and this could be the reason for the emergence of
this intermediate organizing levels filling the gap from the microscopic to the macroscopic scales.
However, this intriguing problem is not well established and should deserve further investigations,
which are beyond the scope of this chapter.
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behavior associated with mono-/multi-scaling determines the ubiquitous emergence
of power-law dependence of different physical quantities, such as: long-range time
and/or space correlations; the scale-free distribution of the average degree of nodes
in a complex network; the avalanche size distribution in self-organized critical
systems; the cluster size distribution in percolation [16].

Another aspect that has to be mentioned regards the transport properties, which
are usually characterized by anomalous scaling, i.e., non-linear time dependence in
the growth of the variance. This condition is also known as anomalous diffusion
[13, 17-20]. Many authors refer to the tools of fractional calculus to develop
models that are able to reproduce the the power-law behavior of different observable
quantities and, in particular, the anomalous transport properties of a complex
system [17, 21-25].

6.1.2 Metastability of Self-Organizing States:
Intermittency-Driven Complexity

Another property is often observed in multi-component complex systems. This
property concerns the stability of self-organized states, which typically do not
emerge as asymptotic equilibrium states, but are characterized by metastability. In
our opinion, this property, which is often neglected or considered as a side effect,
it is, on the contrary, a crucial aspect deserving a great attention when dealing with
the emergence of self-organization. In more detail, we have the following general
observations [11, 12, 18, 26-32]:

(a) Self-organized states are usually metastable states, i.e., relatively long, but not
infinite, life-times characterize these states. The life-time is defined as the time
interval between some birth time (emergence of self-organizing behavior) and
a death time (decay of the self-organized structure).

(b) An ubiquitous observation in complex systems is that the transitions between
a not-organized state to a self-organized one (birth) and vice versa (death) are
very rapid, usually leaving a mark of their occurrence in some experimentally
measured quantities (e.g., neuron spiking activity). The overall behavior is then
given by an alternation of self-organized and not-organized conditions whose
passages are marked by fast transition events among these two conditions. In
some complex systems the rapid transition can also occur between two different
self-organized states.

(c) The fast transitions events often determines a fast memory drop in the
dynamics, so that self-organized states, and the transition events themselves,
are statistically independent from each other. This is known as renewal
condition [33].

The mathematical description of the metastability described above refers to tools of
probability theory and stochastic processes [13, 18-20, 33-39]. In particular:
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(i) The sequence of fast transition events among self-organized states is described
by a intermittent birth-death point process of self-organization (i.e., coher-
ence): {fy}: a1 > tuito = 0; n = 0,1,2,..., being 1, the occurrence times
of the nth transition event.

(ii) The life-times of coherent structures are defined by the time intervals between
two successive transition events: T,, = t, — t,—1; n = 1,2,.... These times,
hereafter denoted as Waiting Times (WTs), are mathematically treated as
random variables and studied through the tools of probability and statistics.
An ubiquitous feature of WTs is the emergence of a inverse power-law tail
in the Probability Density Function (PDF): () ~ 1/t# [26-32], being
Y(t)dt = Prob{t <T<t+ dr}dr.

(iii) Due to the renewal condition, the sequence of transition events is mathemati-
cally described by a renewal point process, which is defined as a point process
whose WTs T, are mutually independent random variables [33]. Conversely,
in the time interval (,,1,+1) between two events, i.e., in correspondence of a
self-organized state, the dynamics are strongly correlated.’

The inverse power-law tail in the WT distribution is the manifestation of a self-

similar behavior in the cooperative dynamics of the complex system and is also

a crucial emergent property, characterizing the capacity of the complex system to

trigger self-organization. Below we will show how this emergent property can be

exploited as a measure of complexity, at least for the class of complex systems

displaying intermittency associated with metastable self-organized states.
Exploiting the above list, we can give the following

Definition 6.2 (Fractal Intermittency) Given a complex multi-component sys-
tem, we define as Fractal Intermittency (FI) the condition emerging when the
transition events between two metastable, self-organized states are described by the
stochastic point process defined in the above Points (i)—(iii).

We chose here to include also the renewal condition (i.e., statistically inde-
pendent events and WTs) in Definition 6.2, as this is, sometimes implicitly,
the definition applied in many theoretical and experimental studies [26, 34-42].
However, the role of the renewal condition is not yet clear and would deserve
further investigations.* FI is the signature of a particular class of complex systems
[12, 13, 20, 30, 31]. This particular kind of complexity is defined by the following

3Surprisingly, even in the presence of the renewal condition, a complex system can display long-
range correlation functions, and the slow power-law decay of the correlation is connected to the
inverse power-law decay in the statistical distribution of the random life-times [26].

4 It is rather intuitive that the fast transition events should always be associated with a memory
drop (low predictability) in the system itself, so that the events should always satisty the renewal
condition. However, this is not experimentally verified in all complex signals. In spite of this,
we are convinced that FI typically involves renewal events and that the renewal process driving
the complexity could be sometimes hidden below a mixture of different contributions to the
intermittency generated by the system, including also the presence of noisy, secondary events.
However, it is possible that an extension of the renewal condition to a slightly non-renewal
condition could be necessary in order to derive more robust models and algorithms for data analysis
based on the FI and IDC paradigms.
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Definition 6.3 (Intermittency Driven Complexity) Let us consider a complex
system, i.e., a multi-component system satisfying Definition 6.1. We define the
Intermittency Driven Complexity (IDC) as the particular class or subset of
complex systems displaying Fractal Intermittency, that is, the kind of metastability
described in the above points (a)—(c) and mathematically represented in the above
points (i)—(iii).

In the following we will limit ourselves to the class of complexity given in
Definition 6.3.

6.1.3 How Intermittent Event Are Generated: A Dynamical
Explanation of Metastability

We do not claim here that all complex systems belong to the IDC class. However,
it is also true that this kind of complexity seems to emerge in a great majority
of complex systems. In fact, fractal intermittency is observed in many multi-
component systems where cooperative dynamics triggers the emergence of self-
organized structures, which are typically metastable and self-similar. Examples of
complex systems displaying a fractal intermittent behavior are: ecological systems
[51], neural dynamics [52], blinking quantum dots [40, 41, 53], social dynamics
[54], brain information processing [26, 28, 30, 31, 48, 49, 55-59], atmospheric
turbulence [19, 20, 22, 39], earthquakes [60], single particle tracking in cell biology
[61-64], molecular biology [18].

In order to give a possible explanation of the dynamical origin of metastability
and of associated complex transition events, we refer to the models discussed
in [65-67]. These authors propose a dynamical model for the brain information
processing, but the paradigm of metastability introduced therein can be used also
as a general paradigm for complex transition events. The brain dynamics are here
modeled through a dynamical nonlinear system living most of the time on a stable
heteroclinic channel. This is essentially a set of trajectories in the vicinity of a
heteroclinic skeleton, consisting of saddle points and unstable separatrices. As
known, this determines a slow motion towards the saddle points. This slow motion
in the neighborhood of the saddle point can be interpreted as a metastable state that
maintains its coherence (i.e., self-organizing behavior) for a long time interval. As
the dynamical system approaches the saddle point a critical time occurs when the

SThis complex behavior is also known as Temporal Complexity [43—47], a term underlining the
difference of the intermittency-based complexity, focused on the study of the temporal structure of
self-organization, with the more known approach focused on the topological and spatial features
of complexity (e.g., the degree distribution in a complex network, the avalanche size distribution)
[47-50].
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motion suddenly changes from a slow to a fast one. In this passage, the system
experiences a sudden acceleration and a consequent rapid motion towards another
saddle point (i.e., another metastable state). This critical time corresponds to the fast
transition event, also associated with a sudden decrease of predictability and, then,
with the drop of self-organization and memory, thus corresponding to the renewal
property.

This very simplified brain model also illustrate another important aspect of
complexity, which is actually a crucial paradigm for living systems. From nonlinear
dynamical systems theory it is known that the above situation is not really typical
of so-called chaotic systems (existence of a strange or fractal attractor), neither
of systems with well-defined stable points or structures, such as limit cycles
giving rise to perfect periodic patterns. Complexity is neither totally disordered
(completely random) nor totally ordered (completely deterministic) In fact, in the
above model, complex behavior is given by an alternation of calm (laminar) and
chaotic (turbulent) motions. Then, complexity is a particular condition emerging in
a intermediate region between total disorder and total order, total randomness and
total determinism.

6.2 Complexity in Biology and Human Physiology

The emergence of self-organization in biological systems is nowadays well estab-
lished [12, 18, 43, 64, 68-70]. There is a lack of general leading principles, which
is a very old problem of theoretical biophysics with respect to other field where the
theoretical research can refer to guiding principles (e.g., the postulates of classical
mechanics). Even though, the search of complexity in biology and physiological
is increasing very rapidly, attracting the interest of many research groups, as it
can be seen from the rapid increase in the rate of publications dedicated to these
topics. For example, systems biology is a very fascinating research field where
the paradigm of complexity could have deep implications. The meaning and the
role of the complexity paradigm in systems biology is deeply discussed in [71], a
interesting paper facing the recent epistemological questions arising in biology and
reviewing the historical debate between the reductionist and the holistic view in
systems biology.

The research activity in biology is very active since many years. Novel experi-
ments are continuously carried out and new experimental data are often available,
so that new findings are obtained and published very rapidly. Biology research is
nowadays so active that it is not rare that some unexpected experimental findings
determines the failure of existing paradigms and models, thus triggering the search
of new paradigms, interpretations and models. An important example comes from
cell biology and, in particular, the important finding of anomalous transport behavior
in the cell environment, such as the motion of lipids or proteins in the cytoplasm and
on the cell membrane [18, 61-64]. An interesting debate about the best modeling
approach to describe anomalous transport in the cell is taking momentum in the field



6 Intermittency-Driven Complexity in Signal Processing 169

of statistical biophysics, as it is not yet clear which one of two modeling approaches
is the best candidate: (i) a intermittency-based transport model (Continuous Time
Random Walk, CTRW) or (ii) a long-range correlated model (Fractional Brownian
Motion, FBM; Generalized Langevin Equation, GLE) [25, 64, 72].

6.2.1 The Challenge of Physiological Complexity

The idea that an integrated view of the different physiological functions is becoming
more and more necessary to better characterize the healthy condition of a subject
(positive or negative) is taking momentum in the scientific community. Making
reference to the availability of -omics data, many research groups are focusing on the
development of complex network models. The goal is not only linking the functions
of different tissues and organs, but also trying to fill the gap between molecular
biology and the physiology of human body by means of theoretical tools and
instruments taken from different fields such as: network theory, statistical physics,
data mining, information science, signal processing [73, 74].

In the following we give a brief survey of brain and heart physiology in the
framework of the complexity paradigm.

6.2.1.1 Brain

The brain is an important example and prototype of complexity. The nodes of the
brain network are the neurons, which are basic units of information transport by
means of electro-chemical activity, and the astrocytes, mainly responsible for the
nutrient supply [75], while the (anatomical) links are given by synapses (connecting
axons and dendrites) and the metabolic pathway involving both astrocytes and
neurons. In recent years the role of astrocytes is being reconsidered. Many studies
are finding that astrocytes could play a more active role in brain dynamics,
including the secretion or absorption of neural transmitters and the propagation of
intercellular Ca?>* waves over long distances in response to stimulation [75-77].
In summary, the topology of brain network is very branched and inhomogeneous,
while brain dynamics are very rich and span over many temporal and spatial
scales. Many research groups are focusing their attention on understanding the
basic self-organizing mechanisms of the neural information processing. This is
done through the characterization of different signals measured in the brain, such as
the functional magneto-resonance imaging (fMRI), measuring indirectly the neural
activity through the oxygen supply by the blood flow, and electroencephalography
(EEG), measuring the electrical neural activity.

In the last two decades, the Fingelkurts brothers deeply investigated the brain
dynamics and developed a conceptual multi-scale model of the brain, the Oper-
ational Architectonics [58, 59, 78]. This is a model of the brain information
processing that is based on the emergence of neural assemblies and operational
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moduli that are self-organized and metastable. Information processing in the
brain is probably the most important example of IDC, as fast transition events
and fractal intermittency were found to characterize the brain collective behavior
[26, 28,78, 79]. In Operational Architectonics neural assemblies are associated with
transient information flow. The temporal evolution of an assembly is given by a fast
self-organizing event (birth), a relatively long quasi-stationary period, and a critical
time when the self-organizing behavior suddenly decays. These sudden changes can
be detected through the EEG signal, thus qualitatively clarifying the relationship
between Operational Architectonics, Fractal Intermittency and IDC.

6.2.1.2 Heart

The heart activity is usually recorded through the electrocardiogram (ECG), which,
similarly to the EEG, is the measure of an electrical activity [80]. However, at
variance with the EEG, the ECG has a well-defined counterpart in autorhythmic
features of the myocardial heart activity, which is driven by a small set of cells
having a pacemaker function, denoted as the sinus-atrial node. This corresponds
to the master hub, controlling directly the heart rhythm, discussed in the FI and
IDC Definitions 6.2 and 6.3. The ECG in a healthy subject is given by the normal
sinus rhythm (NSR), given by a well-known sequence of waves: P, QRS complex
and T. As known, the R wave is given by a sharp peak in the ECG, which is so
easily identified that is used to define the heart beating as the sequence of RR time
distances, which are exactly the time intervals between two successive R peaks.
Thus, the heart rate is given as number of R waves (beats) per minute. The NSR
is identified through a set of reference ranges for some given features of these
waves, mainly time intervals such as, e.g., the time between the beginning of the P
wave and that of the QRS complex (QR interval, about 0.12-0.20 s) Then, standard
criteria commonly used in the clinical practice to evaluate the healthy/unhealthy
cardiovascular status of a patient are given by the mean morphological parameters
of the P-QRS-T sequence.

Another important diagnostic parameter is given by the heart rate variability
(HRV), which involves variations in the RR sequence [81]. At variance with the
mean morphological parameters, the HRV is strictly connected with the correlation
features of the ECG. This does not only add further information to the evaluation
of the subject’s health condition, but it has also a potential predictive capability.
At a first sight the R peaks, being rapid transitions in the ECG signal, could be
considered as good candidates for a event-based description of heart dynamics and
the RR distances as the WTs in the IDC framework. However, the RR time distances
have slow variations from one beat to the next, so that there is a strong correlation
among R peak events due to the quasi-periodicity of the RR time distances. This
violates the renewal condition and the inverse power-law distribution of WTs in the
FI and IDC Definitions 6.2 and 6.3.

It is also worth noting that the well-defined sequence of waves P-QRS-T, which
is the manifestation of the controlling pacemaker function, is not compatible with
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power-law correlations in the original ECG signal. Thus, the RR peaks are not
genuine complex events compatible with the IDC description. In fact, in HRV
there are two kind of superposed dynamical systems. The first one is related to
the sinus-atrial pacemaker, is strongly synchronized, generates the RR sequences,
and is associated with the mechanics of the heart pump. The second, hidden, one
is responsible for the HRV, operates through the modulation of heart beating by
other physiological systems, mainly the autonomic nervous system (sympathetic
and parasympathetic), and is associated with the adaptability of the heart rhythm to
internal and environmental changes [81]. The non-complexity of the first dynamics,
even if producing the very coherent and self-organized structure of heart pumping, is
due to the presence of a master or control hub, i.e., the pacemaker. On the contrary,
the second, hidden, dynamics is responsible for the complexity features of HRV.
This concept is also denoted as memory beyond memory [82] and involves a proper
definition of events marking the variations in the RR frequency. These genuine
complex events are mutually independent and, at the same time, responsible for
the emergence of long-range, power-law, correlations in the HRV.

6.3 Measuring IDC in Signal Processing: A Survey of
Statistical Tools and Algorithms

In the complexity field, the main goal of many research groups working on complex
systems is nowadays the development of algorithms, and associated models, for
the extraction and interpretation of useful information from the big bunch of
available data. Then, the main focus is on the development and testing of reliable
and synthetic statistical indices (e.g., data mining, network analysis [7, 9, 14]).
Following definition 6.1, we recall that the complexity paradigm is essentially
based on the concept of emergence. In particular, we mean here emergence of
self-organized structures from cooperative dynamics. The main idea is that self-
organized structures are the main contributors to different features of the complex
system: transport properties; relaxation curves; response to external stimuli, this
last one involving the adaptability to environmental changes (e.g., homeostasis in
biology and physiology).

Consequently, in the development of models and statistical tools for data analysis
and signal processing the main focus is on the characterization and simulation
of emerging self-organized structures. In this framework, the statistical indicators
extracted from the data analysis usually refer to some global property associated
with the dynamical evolution of coherent, self-organized structures. Along this line,
a complexity measure should characterize the ability of the system to trigger self-
organization from overall cooperation among units without a master.

Coming back to Definition 6.1, point (iii) suggests the main direction in the
development of complexity indices, that is, the self-similarity (mono-scaling) or
multi-scaling, multi-fractal behavior of several observable quantities. In practice,
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this leads us to exploit the power-law behavior of several functions, such as,
for example, the correlation function or the power spectrum, as a measure of
complexity. In the recent literature many complexity measures were proposed and
applied in different contexts and, in particular, in the processing of physiological
signals. The most involved research fields are probably network theory (network
analysis) and data mining, involving information science and statistics [5, 7, 9, 14,
83]. These measures are usually focused on the topological or spatial structure
of the complex network, involving concepts such as metrics and distances (e.g.,
connectivity measures).

We refer the reader to the cited literature for the above measures, while we focus
here on the intermittency driven complexity (IDC). The IDC class can usually be
described in terms of the above topological measures, but other measures can be
introduced in this case. These measures essentially focus on the temporal structure
of the complex system, are clearly inspired to the metastability of the self-organized
states and, thus, exploit the intermittency measures and other indices related to
intermittency.

It is worth noting that these IDC-specific measures, involving the temporal
structure of the complex system, can be related with some topological measures,
but the two kind of measures could be also independent from each other. It is quite
obvious that the existence of these relationships (e.g., correlation) depend on the
observed features and on their dynamical evolution. As an example, let us consider
the motion of a random walker over a scale-free complex network [4], being the
motion given by random jumps between connected nodes. As known, the complex
network is characterized by a scale-free degree distribution with a given power-law
decay. We expect that the temporal features of the walker, such as diffusivity or
return times, can be related to some topological measure of the complex network.
This was proven by the authors of [84], who found that the scale-free property of
the network is inherited by the random walker, showing a power-law decay in the
PDF of the return times and they also found an explicit relationship between the
power exponents of the return time PDF and of the degree distribution. This is a
simple example where temporal and topological measures can be related. However,
we again underline that this depends on the particular system under consideration
and on its dynamical behavior.

In the following we give a brief survey of some IDC-specific complexity
measures, some of which were developed and/or applied by our research group.

6.3.1 The Search for Critical Events in Signal Processing

According to Definition 6.3, IDC system dynamics trigger fast transition events
occurring at some critical time instant when it is almost probable that also a
sudden drop of memory occurs, a mechanism that is related to the passage from
two different self-organized states. Then, IDC-specific measures are based on the
existence of these critical events and on the possibility of extracting these events,
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i.e., their intensities and, especially, their occurrence times, from the experimental
time series. In many complex systems (see, e.g., the fluorescence intermittency in
Blinking Quantum Dots, BQDs, [40, 41]) the emergence of self-organized states is
quite evident and the definition of critical event is also clear and unambiguous. In
these cases a well-defined event detection algorithm can be easily implemented.
This is not always the case, as it happens in brain dynamics or in turbulence,
where more evident transitions are mixed with many ones that are much less evident.
Even worst, the genuine complex events can be hidden by the presence of more
evident fast transitions in the signal that, however, are not complex, which is the
case of R peak events in HRV [82]. Up to our knowledge, there is no general event
detection algorithm that can work for every system, but different methods can be
applied depending on the particular kind of complex system considered. Different
algorithms were in fact developed and applied to BQDs [29, 40-42], atmospheric
turbulence [39], HRV [82, 85-87] and human EEGs [26-28, 57, 78, 79].

6.3.1.1 Brain Events

The search for critical brain events is based on the Operational Architectonics model
by Fingelkurts and Fingelkurts [57, 78] and on the associated event detection algo-
rithm [79]. As said above, the concept of metastable neural assemblies correspond
to the existence of crucial birth/death events. Neural assemblies and crucial events
have a direct manifestation in EEG records by means of an alternation of relatively
long-time quasi-stationary periods (neural assemblies) and quasi-instantaneous fast
transitions between a self-organized neural assembly and a not-organized condition
(death event) or vice versa (birth event). In the not-organized condition the majority
of neurons near the EEG electrode is not firing (hyper-polarization) or, in any
case, the local neural activity is not coordinated or synchronized. Consequently,
the fast transition can be detected in the signals recorded by the nearest EEG
electrodes. In [79] these fast transition events are denoted as Rapid Transition
Processes (RTPs). After the usual artifact removal, the event detection algorithm
for RTPs is applied to the single EEG channels according to the following steps: (i)
a Hilbert transform is applied to the EEG signal; (ii) a moving average is applied
to the resulting transformed signal to obtain a sort of local mean signal. (iii) The
crossings between the transformed signal and its local mean are computed and the
associated crossing times stored. These crossing events are candidates to become
the critical transition events that we are looking for. (iv) A local derivative is
evaluated. This can be done by just taking the two nearest sampling times, let’s
say t, and t,1, and evaluating the corresponding local derivative of the EEG signal:
(EEG(n + 1) — EEG(n))/(t,+1 — t,)- To avoid noisy effects, a local mean of the
derivative is evaluated. (v) The distribution of the local derivative (absolute values)
at the crossing times is computed. (vi) Finally, the RTPs are selected from the totality
of the crossing times considering only the extreme values of the distribution, thus
retaining only the crossing times with the steepest derivative. In our applications,
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we chose to retain the 99th percentile of the derivative distribution.® In the case of
brain data, RTPs represent the prototype of complex events that we are looking for.

6.3.1.2 Heart Events

The main goal of HRV analysis is characterizing the modulation of heart beating by
the autonomic nervous system. This is the main focus of complexity studies as well,
as HRV was found to display long-range, power-law, correlations and, thus, fractal
or multifractal features [82, 88-91].

As discussed in Sect. 6.2.1, the R peaks are the wave of ECG that are most
used to evaluate the heart beating. In order to detect the R peaks, and the associated
QRS complexes, the algorithm are often divided into two main steps: (i) ECG signal
preprocessing; (ii) decision rule for the QRS detection. The techniques used for Step
(i) usually include a bandpass filtering to reduce noise coming by several sources,
such as power line noise and muscle noise. The range 5-30 Hz usually covers most
of the frequency content of the QRS complex [92]. Being Q, R and S sharp cusps,
Step (i) can also include the evaluation of the signal derivative and/or even the
squaring of the filtered signal, or of its derivative, in order to enhance the extreme
values corresponding to local maximum/minimum time points. The decision rule in
Step (ii) is usually given through an amplitude threshold, which is often determined
with some adaptive procedure. The reference time point is generally selected to be
the R-wave, and the sequence of R peak occurrence times {t,;}n[\/:1 is given as the
output of the detection algorithm.

The associated RR time distances are then easily computed from the sequence
of R time points 7, and represent the basic feature exploited for the estimation of
HRYV in terms of complexity measures [82, 88, 90]. We recall that, at the end of
Sect. 6.2.1, we showed that the R peak events are not complex events according
to the IDC Definition 6.3, as they do not satisfy neither the renewal condition nor
the emergence of fractal WT statistics (inverse power-law WT distribution). We
again underline that this aspect is strictly connected to the presence of a control or
master hub (the pacemaker) and indicates the lack of a spontaneous emergence of
self-organization from cooperation in the heart.

Even though, the sequence of R peak events remains the basic feature used to
characterize the HRV, even in the IDC framework. Roughly speaking, we can say
that the dynamics of the single heart beat is not complex, while the variability in the
heart beating (HRV) is complex, at least in healthy subjects [74, 81]. For this reason,
the authors of [82] focused on a different kind of event involving the variations of
RR distances. The algorithm works as follows:

SFor further details about the RTP detection algorithm, we refer the reader to [79] and to [26, 28]
where our implementation is explained.
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(1) A coarse graining procedure is applied by approximating the ideally continuous
values of the RR distances by a set of discrete values with some given step AT.
More precisely, let us consider the sequence of discrete values: T; = i - AT.
Then, the nth WT is approximated by the nearest 7;:

~ ..~ AT ~ AT
T,1—>Ti lfT[——STn<Tl'+— (61)
2 2
(i1) The selection rule is given by selecting the time 7, when a jump between two
different 7; occurs, usually: T; — T+ or T; — T;—;.

The event detection algorithm was shown to be robust in a neighborhood of
AT = 1/30s.

It is worth noting that the heart events extracted with the above algorithm are
a prototype of the hidden complex events discussed at the end of Sect. 6.2.1
and driving the heart pacemaker. However, even this sequence of events contains
both genuine complex events and pseudo-events and this is probably due to the
unavoidable presence of false positives in the event detection algorithm [82].

6.3.2 Complexity Measures for the IDC Class

Let us recall that, according to definition 6.1, a reliable measure of complexity
should be able to estimate the ability of the system to trigger self-organization.
Always from definition 6.1 we guess that the best approach is to evaluate the
scaling features, i.e., the power exponents (e.g., the critical exponents in critical
phenomena). Complexity measures are often developed in the context of network
science [5, 9] or in critical phenomena [8, 16, 93] and usually refer to the topology
of the link structure or to concept associated with information transfer.

Before considering the IDC class, let us give two examples of topological
measures of complexity. The most simple property that can be evaluated in a
complex network is probably the covariance matrix. This can be used to give a
first estimation of the connectivity (without causality relationships among nodes)
and it is often used to define an adjacency matrix by a thresholding technique
applied to the covariance matrix [50, 94]. An important topological measure is given
by the degree distribution, which is defined as the distribution of the number of
link is whatever node of the network. In other words, if we randomly choose a
node, the probability distribution of the links of this same node is defined as the
degree distribution. A crucial result is that, in scale-free complex networks, the
degree distribution is a inverse power-law function, thus revealing some kind of
self-organization characterized by a self-similar behavior among different scales in
the network structure.

From now on we refer only to complex systems in the IDC class. We are inter-
ested in the temporal complexity generated by the sequence of intermittent transition
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events, which, as already said, is modeled through a birth-death, stochastic, point
process of self-organization. After the application of the event detection algorithm,
we get the experimental sequence of events:

Ly: n=0,12,...; =0, (6.2)

being #, the occurrence time of the nth event. The process is equivalently defined by
the sequence of WTs {T,} with {T,, =1, —t,—;; n=1,2,...}.

Then, the formal definition of the birth-death sftochastic point process of self-
organization, associated with the above event sequence, is given through the
following counting process:

N() =max{neN:1, <1} . (6.3)

being N the set of positive integer numbers. The IDC indices must refer to the
statistical features of the point process N(t). However, in the general case, the
complete characterization of the point process N(¢) from an experimental dataset is
practically impossible. In fact, the process N(#) is rigorously and completely defined
when all the k-order statistical distribution of the sequences {t,,} and/or {Tn} are
given’:

Pi(r) =Prob{T, <t:n=1,2,...}
Pz(‘l,’l, ‘1,'2) = PI'Ob{Tn1 < T, T,,Z < Tp;np,npy = 1.2, .. }
P3(11. 72, 73) = Prob{T,, < 11: Ty, < 12: Ty < 73}

Pi(T1, T2, T3, T4) = e

The numerical estimation of these distributions from the data is not only very
demanding, but also clearly limited by the size of the statistical ensemble. For finite
statistical samples it is also well known that the accuracy of the k-point distributions
rapidly decreases as the order k increases. Even the development of theoretical
models with general k-order statistics is a very difficult task.

However, in many models the WT-PDF (7) = P;(t) and the 1|1 conditional
probability:

Pii(uln) = Prob{Tnl <ulT, < 12}

are sufficient to characterize, at least approximately, the point process N(t). This is
exactly true for a Markovian sequence of WTs, and it is even more true for renewal
point processes, whose conditional probabilities do not depend on the previous
history [33]:

"It is also possible to characterize the point process N(f) by using directly the k-point statistical
distribution of N(¢) itself. The statistical features of N(¢) and {Tn} are clearly linked to each other.
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Piin (Tt Tt - -+, T2, T1) = Pi(Tug1) = Y (Tat1) -

Being the WTs mutually independent variables, a renewal point process N(¢) is
uniquely defined by the WT-PDF /(7).

Let us now recall that, as given in definition 6.3, the IDC of a complex system
is associated with the emergence of FI, which is defined in definition 6.2. By this
definition, FI is described by a renewal process with self-similar WT statistics, i.e.,
FI is associated with the emergence of a power-law tail in the WT-PDF:

1
V(r) ~ e (6.4)

which is, as said above, the signature of a self-organization with self-similarity
and, thus, without a master. As a consequence, the signature of IDC emergence
is associated with:

(i) the occurrence of the renewal condition (at least approximately) and
(i) a power-law tail in the WT-PDF.

The power exponent u is then a fundamental feature of the self-organizing behavior
of the system that has been denoted as complexity index in recent literature [12,
20, 29, 30]. With a more precise meaning, we here denote p as IDC index and
we claim that it can evaluate the capacity of the dynamics to trigger intermittent,
complex events and, thus, self-organized, metastable structures whose self-similar
behavior is not directly driven by a master.

The evaluation of the renewal condition and the computation of the IDC index
requires some specific algorithms of statistical data analysis and signal processing.
In the following we give a brief list of some algorithms developed and/or applied
by our group to evaluate the renewal condition and the IDC index p or scaling
exponents related to w itself. For further details about these algorithms, we refer the
reader to the cited literature.

6.3.2.1 Analysis of Renewal Aging

Let us assume to observe a statistical ensemble of independent renewal processes
with same fractal WT distribution. Suppose that the system’s preparation (i.e., initial
condition) is made at + = O and that the starting time of experimental observation
is some ?,. Then, when the WT-PDF v/ () of the single renewal process has a slow
inverse power-law (i.e., u < 3), the ensemble averages depend on the aging time
t,. In particular, the WT-PDF derived from the ensemble v, (7) depends on #, and
it is different from the WT-PDF of the single renewal process, which corresponds
to the WT-PDF for 7, = 0 and is denoted as brand new WT-PDF: ¥ (7) = (7).
The departure of v, (7) from ¥ (7) in a renewal process is a statistical feature that
was named renewal aging [35, 36, 38—42, 95, 96]. In general, aging is a property
of many complex systems associated with the very slow relaxation of the initial
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conditions, also determining a departure from the ergodic condition (e.g., weak
ergodicity breaking [64]).

The above feature can be exploited to give an indication about the “renewal
content” of a time series or, in other words, if a point process is also renewal. Usually
only a single sequence of events is experimentally available, so that the method has
to start with the building of a statistical ensemble. Then, given the series of event
occurrence times {tn}, the renewal aging algorithm works as follows:

(1) M sequences of aged events are built in the following way: the first sequence is
the original one; the second sequence is given by the first one by removing the
first WT; the third sequence is obtained from the second one by removing the
first WT of the second sequence itself; and so on.

(2) A time window of duration 7, is superposed to all sequences and the first
available event with ¢, > ¢, is taken, i.e., t, < t; < t,+1.

(3) The aged WTs are computed: WT,,(¢,) =t, —t,; m=1,M.

(4) Given the sequence {WT,(t,)}, the experimental aged WT-PDF v.7 () is
evaluated. The brand new WT-PDF v/, (7) is also evaluated.

(5) In order to derive the aged WT-PDF in agreement with the renewal condition,
we apply a random shuffling to the experimental WT sequence. The new
sequence has exactly the same brand new WT-PDF ;7 () of the original
WT sequence, but the possible presence of inter-WT dependence has been
destroyed, thus the shuffled WT sequence is renewal. Then, we repeat the steps
from (1) to (4) to evaluate the renewal aged WT-PDF: /(7).

The comparison of the two WT-PDFs can be used to establish if the experimental
WT sequence is renewal or, if not, how it departs from the renewal condition. The
renewal aging analysis was implemented also by using the corresponding Survival
Probability Functions (SPFs), which are defined by:

W(t) = Prob{WT > 7} = /oo Y(r)dr =1— / V(r)dr . (6.5)
T 0

6.3.2.2 Renewal, IDC Index and Diffusion Scaling: The EDDiS Algorithm

The analysis of Event-Driven Diffusion Scaling (EDDIiS) is based on the building of
event-driven random walks, also named Continuous Time Random Walks (CTRWs)
[97-99], and on the estimation of the scaling exponents associated with the resulting
diffusion process. In the case of fractal intermittency, the relationships among the
different diffusion scaling exponents and the IDC index p are known. Then, it is
possible to derive independent estimations of the IDC index p that can be compared
with each other. When the differences between the values of 1 so obtained are inside
the statistical errors, we can reasonably argue that the process is renewal and we also
get a robust estimation of the IDC index u.
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The EDDiS algorithm collects a number of different methods for scaling analysis
and several theoretical results from the theory of CTRWs that are well known in
literature by many years (for a review, see [13, 26] and references cited therein).
However, the joined exploitation of these methods and results with the scope of
evaluating both the renewal condition and estimating the IDC index was carried
out by our group for the first time in [26-28] and the first application was on
ElectroEncephaloGram (EEG) data.

We give here a brief explanation of the algorithm and refer the reader to [13,
20] and references cited therein for further details. The EDDiS algorithm works as
follows:

(1) Given the experimental sequence of events, three different event-drive random
walks are built by applying three walking rules for the instantaneous velocity

§():

(i) Asymmetric Jump (AJ) walking rule: the walker makes a unitary step
ahead at every event occurrence time: £(t,) = +1; (1) = 0if 1, <t <
[FERP

(i) Symmetric Jump (SJ) walking rule: similar to the AJ rule, but the walker
can make positive or negative jumps: £(¢,) = %1, being the sign £ chosen
with a coin tossing prescription: Prob{ + 1} = Prob{ — 1} = 1/2.

(iii)) Symmetric Velocity (SV) walking rule: the walker moves with constant
velocity in a given direction, until a new random direction is chosen
in correspondence of an event by a coin tossing prescription: £(f) =
+1; t, <t < t,41. This walking rule is also known as telegraph signal.

(2) For each walking rule, the associated CTRW is given by the diffusion variable:

X() =X, + / £()dr (6.6)
0

(3) We estimate two different scaling exponent of the diffusion process X(r):

(a) the self-similarity index § of the PDF of X(¢):

1 X
P(.t) = 5 F <76) . 6.7)
The scaling § is computed by applying the Diffusion Entropy (DE) analysis

[100] (see Appendix).
(b) the scaling exponent H of the second moment:

o2(1) = ((X(1) = X)) ~ 2, (6.8)

where X denotes the mean value of X(f). The scaling H is computed by
applying the Detrended Fluctuation Analysis (DFA) [101] (see Appendix).
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The scaling exponents § and H are theoretically exactly known in the case of fractal
intermittency with index p (see [13] for and references therein) and can be used
as reference values for the estimation of the system’s IDC. In fact, as said above,
these scaling exponents can be jointly used to estimate the renewal condition and,
indirectly, the index w [20]. However, § and H can be also used directly as indicators
of IDC, as they were built on the basis of the sequence of events extracted from the
experimental times series.

The functional relationships § = §(u) and H = H(u) are summarized in
Figs. 6.1 and 6.2. Normal scaling is defined by § = H = 0.5 and is the signature
of absence of cooperation and memory, a condition compatible with the central
limit theorem and the emergence of Gaussian PDF and markovian exponential
correlations. On the contrary, § # 0.5 and/or H # 0.5 is associated with cooperation
and spontaneous emergence of self-organization, and the distance from the reference
value 0.5 is a measure of complexity. It is clear from Figs. 6.1, 6.2 that the interesting

Fig. 6.1 Scaling § vs. complexity index p for the three walking rules: AJ (continuous line), SJ
(dotted—dashed line) and SV (dashed line)

Fig. 6.2 Scaling H vs. complexity index p for the three walking rules: AJ (continuous line), SJ
(dotted—dashed line) and SV (dashed line)
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range is 1 < pu < 3, where anomalous diffusion scalings are observed (for the
SJ rule this occurs only in the range 1 < pu < 2), whereas normal diffusion
(H = é§ = 0.5) emerges in the range p > 3.

6.3.2.3 The Problem of Noise and the PANDORA Algorithm

The application of the EDDiS method was originally thought (i) to obtain a second
check about the renewal condition in combination with the renewal aging method
and (ii) to get a reliable estimation of the IDC index p [26]. However, we later
understood that the EDDiS method allows also to take into account the possible
presence of noisy secondary events in the experimental sequence in the estimation
of the IDC index . In fact, during the application of the EDDiS method, a surprising
normal diffusion regime was seen in the long-time behavior of the SV-CTRW, even
if the AJ-CTRW showed superdiffusion (H > 0.5) [26, 27]. This observation was
explained by assuming the presence of noisy non-complex events generated by a
Poisson process with event rate r,, thus generating normal diffusion, mixed with the
genuine complex events, thus generating fractal intermittency. This model is called
Time Mixed Model (TMM). From this assumption, we found that the long-time
normal diffusion in the SV rule was related to the exponential cutoff emerging in
the WT-PDF of the mixed events.

This first result allowed us to explain the divergence among our findings, based
on the EDDiS method, and those of other authors, based on a best fit applied
to the WT-PDF (see, e.g., [102]). In fact, the presence of noisy events does not
only introduce an exponential cutoff in the tail of the WT-PDF, but can also affect
its power-law decay, as an apparent power exponent, completely different by the
genuine IDC index of the complex process, can also appear in the WT-PDF [13, 27].
This makes the application of the EDDIiS method a very reliable statistical tool for
the estimation of w, a feature that is related to the capacity of the event-driven
diffusion processes, especially the AJ rule, to separate the effect of noisy events
from that of the genuine complex point process [19, 20].

Regarding TMM, we also found an interesting scaling law for the long-time
diffusivity coefficient for the SV-CTRW:

D(u,r,, T) TH2 r[’j_3 Dou>2, (6.9)

being 7, the Poisson rate of event occurrence and T the WT scale after which the
complex behavior, marked by the passage to the power-law decay 1/7#, emerges in
the WT-PDF. This scaling is valid for u > 2 and in the limit of small ratios between
Poisson and complex events.

In [13] we suggested a possible algorithm of time series analysis that, exploiting
Eq. (6.9), could be used to evaluate both the IDC index p and the contribution of
noisy events. This algorithm is here denoted as Poisson Added Noise DiffusiOn
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Rescaling Analysis (PANDORA). Given the experimental sequence of event occur-
rence times {z,}, the PANDORA algorithm works as follows:

(1) Let us generate N random sequences of Poisson events {r}, j = 1,2,3,...
with the constrain that the occurrence time of the last Poisson event must be
less than the total duration time of the experimental sequence. Each sequence
has a different Poissonrate ry, k = 1,...,N.

(2) Then, for each k, let us build sequences that are given by the superposition of the
experimental sequence {ti} and of the artificially generated Poisson sequence
with rate ry.

(3) For each k, we apply the SV rule on the generated sequence of events
(real+artificial Poisson) and we evaluate the long-time diffusivity coefficient
Dy = D(r¢). In this way we obtain a set of couples (D, ry) that can be plotted
to get the graph of the numerical function Dy vs.ry.

(4) Itis known that the superposition of two Poisson processes with rates r, and ¢
results in a global Poisson process with total rate given by the sum of the single
rates: it = 7, + rx. When the experimental sequence is affected by a Poisson
noise with rate r,, Eq.(6.9) can be rewritten substituting the rate r, with the
total rate ryo:

Dy = D oy, T) o< T2 (ry + 1) (6.10)

A best fit procedure can now be used to evaluate the three parameters of the
function D(ry), i.e., the IDC index p, the rate r, of the noisy (Poisson) events
and the complexity emergence time T. It is also possible to apply a best fit with
respect to only two parameters: 7, and 7. In this case, u is evaluated from the
EDDiS method.

In order to validate the PANDORA algorithm, we simulated a sequence of complex
events according to a fractal renewal process with u = 2.3. Then, we generated
several TMM sequences where different Poisson processes with rates r were
superposed to the simulated sequence. The long-time diffusivity coefficients D(r)
of the SV-CTRWs were estimated for each r and the resulting function D(r) has
been reported in Fig. 6.3 (circles). The dashed line is a best fit with a power-law
function 7>, whose power exponent is in agreement with that predicted by the
theoretical result given in Eq. (6.10), thus confirming the validity of our approach.

6.4 Applications to Real Physiological Signals

The above algorithms (Renewal Aging, EDDiS and PANDORA), which are based
on the FI and IDC paradigms given in Definitions 6.2 and 6.3, were applied
to different experimental datasets, spanning from BQDs [40, 41] and turbulence
[19, 20, 39] to ECGs and EEGs. In the following we give a brief survey of the
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Fig. 6.3 Simulation study showing the application of the PANDORA algorithm to an artificially
generated sequence of complex events with 4 = 2.3. The diffusivity D(r) has been plotted with
respect to the rate r of the added Poisson noise (circles)

applications carried out in the processing of two physiological signals, the EEG and
the ECG, underlining the main results that were found within the IDC approach.

6.4.1 EEG Complexity

As explained above, the Operational Architectonics model [78] includes concepts
such as neural assemblies and operational moduli that are in agreement with the
paradigm of emerging metastable self-organized states given in the IDC paradigm
(Definitions 6.2 and 6.3). Through the definition of RTP events that mark sudden
changes in the EEG traces and are associated with the fast transition events
among self-organized states, a RTP event detection algorithm was also developed
[79]. A version of this algorithm was implemented and applied by our group to
extract RTP events from observed human EEG records collected in two different
experimental conditions: the resting state condition and the sleep condition. Below
we give a brief survey of the main findings.

6.4.1.1 Resting State

As known, the resting state condition is obtained when the subject is relaxed
with closed eyes. This condition is typically characterized by the simultaneous
emergence of o-waves in several EEG channels. From the RTP events of the single
channels it is possible to define global events as the simultaneous occurrence of
a given minimum number of single EEG events. Both the single channel and the
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global RTP events were analyzed through the EDDiS method to characterize the
complexity and, in particular, to estimate the IDC of the human brain during the
resting state condition. The main experimental findings regarding IDC are [26—
29]: (1) The sequences of global RTP events are compatible with a renewal fractal
process for the global brain dynamics. The values of the global IDC index are in the
range 2.05-2.4, while the values of the global diffusion scaling exponents span over
the interval 0.8—1. (2) The probability of a EEG channel to be recruited into a global
RTP event is higher for EEG channels belonging to the Default Mode Network
(DMN) [103, 104]. (3) The EEG channels with high probabilities of being recruited
into a global event are also those with the most complex behavior, with high values
of the diffusion scaling § that are compatible with superdiffusion. As said above,
these channels belong to the DMN. On the contrary, the EEG channels with low
8 (less complex or non-complex) have low probabilities to be recruited in a global
complex brain event. (4) The variability among subjects of the § scaling indices is
much smaller for the EEG channels that are more complex (inside the DMN) with
respect to the EEG channels that are less complex (outside the DMN). (5) The IDC
indices of single EEG channels in the DMN have almost the same values of the
global IDC index.

From these findings we can argue that the DMN drives the global complex
behavior of the brain in the resting state condition. The small inter-subject variability
suggests a sort of universal behavior of the DMN during the resting state, a result in
agreement with previous findings, being the DMN the most active brain sub-network
during the resting state condition [103, 104].

6.4.1.2 Sleep Condition: Conscious vs. Unconscious

The EDDiS analysis was also applied to EEG data collected during sleep. Twenty
nine nights have been analyzed, focusing on the first cycle that is usually the longest
one [30-32]. As known, sleep is divided into cycles, typically 4 or 5 per night, and
each cycle is divided into four main stages, defined on the presence of different
waves, or graphoelements, and specific rhythms: Ny, N,, N3 (also called Slow Wave
Sleep, SWS) and Rapid Eye Movement (REM) [55]. We focused on the first cycle,
and we considered also the pre-sleep WAKE condition, approximately collecting the
30 min before the beginning of stage N;. Passing through stages N, N, and N3 the
subject goes from a shallow sleep in the N; stage to the deep sleep in the N3 stage
(SWS). The SWS stage is a unconscious state, as the brain dynamics are segregated
during this stage. On the contrary, during the REM stage, when dreaming occurs,
the bran is segregated and a global conscious state emerges similarly to the WAKE
conscious condition [55].

The main results regarding the IDC paradigm in the sleep condition are reported
in Fig. 6.4, where the diffusion scaling exponents H, associated with the global
brain events, are compared for different sleep stages. The pre-sleep WAKE and
REM stages show an anomalous diffusion scaling H = 0.75, which corresponds,
in the renewal condition, to & = 2.5. On the contrary, the SWS (N3) stage
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Fig. 6.4 Comparison of the
scaling H for different sleep
stages

Falt)

reaches the asymptotic normal scaling H = 0.5 after a short-time transient. The
N, stage also reaches an asymptotic normal scaling, but this occurs at times much
longer than the SWS stage. In fact, it is evident an extended short-time range
with an anomalous diffusion behavior. All these results are in agreement with the
concept of segregation-integration in the brain network, associated with emergence
of unconscious-conscious states. This confirms that the global IDC index and/or
the related diffusion scaling exponents can be used to estimate the connectivity
features of the brain neural network. Then, i, H or § can be used as indicators
of consciousness.

6.4.2 ECG Complexity

HRYV is recognized to be a useful clinical tool for the evaluation of cardiac
autonomic changes. The relationship of HRV with the mortality risk following
myocardial infarction has been established since many decades [105, 106]. More
precisely, HRV is reduced in patients recovering from an acute myocardial infarction
and, further, the mortality risk increases as the HRV decreases [107]. This important
result was found by means of time and frequency methods, such as the estimation
of signal variance, usually applied to the RR distance sequence. Clearly, a small
variance indicates low HRV. However, it is well-known that HRV is affected the
parasympathetic and the sympathetic autonomic systems. Further, even if these
relationships are still not completely understood and quite controversial, it is well
established that the heart-autonomic system interactions are strongly nonlinear,
and the overall coupled heart-autonomous system is reminiscent of a globally
cooperative, complex system. Consequently, it seems quite natural to characterize
the HRV in terms of complexity features extracted from the sequence of RR
distances in order to improve the prognosis of different clinical conditions and, in
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particular, the distinction between health and disease. These methods do not strictly
estimate the amplitude of HRV, but its complexity by means of scaling exponents
and long-range correlation features associated with self-similarity, i.e. fractality.

Following this idea, the authors of [86, 87] compared several complexity mea-
sures, also denoted as nonlinear indexes, to investigate the prognostic potentiality
in patient with chronic heart failure (CHF), thus highlighting the importance of
HRYV complexity measures in the prognostic stratification of CHF patients. Among
others, also the § index, computed from the R sequence through DE (see Appendix),
was evaluated. The DE and the § scaling were also used in [82, 85] to evaluate
the complexity and, thus, long-range correlations of RR distances. As said at the
end of Sect. 6.2.1, these authors assumed that the hidden dynamics, related to the
autonomic system and driving the heart pacemaker, are associated with the heart
events extracted with the algorithm discussed at the end of Sect. 6.3.1. The main
results of their analysis were:

(i) The comparison between §, estimated with the DE, and u, estimated by the
WT-PDF, makes evident the existence of hidden dynamics, as the DE is able
to detect the genuine scaling § of the hidden dynamics themselves.

(ii) The scaling § can be used as a measure of complexity.

(iii) Subjects with congestive Heart Failure (cHF) were compared with healthy
subjects and it was found two well distinct regions in the plane (8, €), being
€ the rate of pseudo-events.

Another powerful complexity measure extensively applied to HRV through the
analysis of RR distances is given by the detrended fluctuation analysis (DFA),
evaluating the second moment scaling H and whose algorithm and meaning are
discussed in Appendix. DFA quantifies long-range correlations and, thus, the
presence of (fractal) power-law memory in the signal. The first application to HRV
proved the existence of universal fractal properties in healthy subjects and loss of
fractal, complex, self-organization in heart failure patients [108]. In particular, it
was found a general distinction between a short-time and a long-time behavior:

(1) In the range L < 11 beats, a short-term scaling exponent H;, also denoted as
o1, can be seen. Typical values for healthy subjects are H; ~ 1.

(i) Inthe range L > 11 beats, a long-term scaling exponent H,, also denoted as o,
and different from 1, is evident.

Many authors found evidence that the short-term scaling Hy of heart beating
is related to the subject condition (health status, aging) and can have a better
prognostic capability than that obtained by more conventional measures of HRV
(e.g., variance, power spectrum). Decrease in the H; scaling was shown to be
associated with activation of both vagal and sympathetic outflow, thus resulting in
a more random behavior, i.e., lower complexity, of heart beating [109]. Healthy
elderly subjects display changes in the long-range correlation features of HRV
[110]. The authors of [111] found that altered short-term DFA scaling in HRV
precedes the onset of atrial fibrillation in patients without a structural heart disease.
Similarly, changes in the short-term scaling are observed in ectopic tachycardia
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associated with disturbances in the autonomic system or in ectopic atrial pacemakers
[112]. The application of DFA to patients with acute myocardial infarction (AMI)
showed that lower values of short-term scaling H; are associated with a greater
mortality [113]. DFA was observed to have a prognostic value even in the case of
patients taking beta-blockers after acute myocardial infarction [114].

In general, all these studies indicate that, in subjects with several heart diseases,
fractal or complexity measures change towards values indicating the presence of
more random fluctuations and, thus, less complex behavior in HRV with respect
to healthy subjects. Nonlinear, complexity, indexes have some advantages over
the conventional measures of HRV in risk stratification purposes, such as (i) less
dependency on heart rate, (ii) less inter-individual and intra-individual variations
and (iii) smaller relative changes of individual values over time [86, 87, 115, 116]
(see [117] for a review).

6.5 A Brief Discussion About Wellness, Health and
Complexity

We conclude this chapter discussing an open issue in physiology, biomedicine and
physiological signal processing that will probably attract the interest of the scientific
community in the next years.

Diagnostic methods are based on chemical and physical analyses and on
evaluation of symptoms. When there are no symptoms and the chemico-physical
analyses give results within the normative values, the subject is considered to be in
a healthy condition. However, it is very usual that the general health equilibrium
of a subject with a good general diagnosis could be affected by some subtle, hidden
stress working silently, i.e., much under the threshold of both subject self-perception
and medical analyses. This silent external stress can work for years without any
evidence, especially if it is almost continuous in time (daily) and relatively weak
in intensity. In fact, human physiology is able to respond to a silent and weak
stress factor by means of homeostatic mechanisms determining a shift in the general
physiological equilibrium. This subtle, prolonged condition is probably the most
hard to be detected when looking at single physiological parameters, which are
usually associated with the functioning of single organs or tissues or with some
cell metabolic process.

The above discussion highlights the need for a integrated view of the human
physiology [74, 118] and, thus, for a model coupling the single physiological
systems defined in the standard biomedical analyses. This coupled model surely
requires ideas and concepts taken from the complexity paradigm, as it is based on the
emergence of self-organizing behavior with scaling and self-similarity. Following
this holistic view (“the whole is more than the sum of its parts”), but without
neglecting the complementary reductionist, analytic approach [71], future work and
effort will be probably devoted to the development of a integrated model based on
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complexity paradigm. We expect that this is the best approach to derive a reliable
wellness index, which should be the signature of a general healthy condition. The
wellness index could be considered a sort of pre-nosological global parameter,
able to reveal possible departures from a healthy physiological equilibrium. In this
view, the overall self-organization of the human body is the central aspect to be
understood, and we believe that wellness will probably refer to some kind of global
physiological complex self-organization or physiological complex integration.

An example of a physiological coupling, which is attracting the increasing
interest of many research groups [119-122], is given by the heart-brain coupling,
where self-similarity and scaling indices seem to play a crucial role [91]. The
findings in this new challenging issue indicate that the IDC class of complex systems
could play a crucial role in the study of this integrated view in human physiology,
both through the theoretical development of IDC-based physiological models and
the applications of related signal processing tools.

Appendix: Diffusion Entropy and Detrended Fluctuation
Analysis

Given a diffusive variable X(7); t = 1,2, ... [e.g., the event-driven random walks of
the EDDiS algorithm, Eq. (6.6)], we are interested in evaluating the self-similarity
index § of the PDF, defined in Eq. (6.7), and the second moment scaling H, defined
in Eq. (6.8). § and H are evaluated by means of the Diffusion Entropy (DE) analysis
[13, 20, 100] and of the Detrended Fluctuation Analysis (DFA) [101], respectively.

Diffusion Entropy

Given the PDF P(x, t), the DE is defined as the Shannon entropy of the diffusion
process:

+o00
S(At) = — / p(Ax, At) Inp(Ax, At)ydAx , (6.11)
—0o0

where At here denotes a time lag and not the absolute laboratory time. Using the
self-similarity condition (6.7), it is easy to prove that

S(@) =8InAr+ Sy, (6.12)

where S, = — fjozo F(x) In F(x)dx. Notice that the scaling is in fact asymptotic,
namely it is only exact for t — oo, and an effective time T can be introduced as an
additional fitting parameter:
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S(Af) = §In(At + Ty) + Sx. (6.13)

It is possible to estimate § by considering the graph (At, S(At)) in a log-lin plot and
then fitting Eq. (6.13) to the data.

The computation of S(Af) requires the evaluation of the PDF P(x, Af). This is
done by considering a moving window of length At, so that the set of pseudo-
trajectories X, (k) = X(r + k) — X(r), with0 < k < Ar,r = 1,2, ..., is considered.
The pseudo-trajectories all start from X,(0) = 0, and, for each At, it is possible to
evaluate the histogram P(x, Ar) of the sequence X;(At), X»(At), ... and, then, the
DE S(A¥).

Detrended Fluctuation Analysis

Given the diffusive variable X(r); t = 1,2,..., the DFA essentially estimates the
second moment of a proper detrended time series X(f) — X(f). The detrending can
be done with a n-order polynomial function and the most simple algorithm uses
a linear detrending by a least-squares straight line fit [101]. The DFA algorithm
works as follows: (i) for each discrete time L, the time series X(¢) is split into not-
overlapping time windows of length L: [kL + 1,kL + L], k = 0, 1, .. ; (iii) for each
time window [kL+ 1, kL+ L] the local trend is evaluated with a least-squares straight
line fit: X; 1(f) = a,,t + b, ,; kL < t < (k + 1)L; (iii) the fluctuation is derived in
the usual way: X; (1) = X(t) — Xp () = X(t) —a,, 1 —b,,; kL < 1 < (k + 1)L;
(iv) the mean-square deviation of the fluctuation is calculated over every window:

1 (k+1)L~ 1 (k+1)L B ,
Fz(k,L)zz Yo X0== > (X0 X)) (6.14)

L
1=kL+1 1=kL+1

and, finally, averaged over all the time windows, thus getting F>(L).

In the case of a self-similar process, it results: F(L) ~ L". The parameter H
can be derived by a linear fitting applied to the function z = Hy + C, with z =
log(F(L)) and y = log(L). The DFA output is H = 0.5 for the case of uncorrelated
(white) noise (e.g., Brownian motion), where the integrated process X(¢) display
the typical Gaussian PDF G(x, ) with so-called normal scaling of the variance:
(X?)(t) ~ t. H # 0.5 is denoted as anomalous scaling, is a signature of long-range
(power-law) correlations and, thus, cooperation and complexity. In particular, H <
0.5, also denoted as subdiffusion, corresponds to a anti-correlated (anti-persistent)
signal, while H > 0.5, also denoted as superdiffusion, corresponds to a positively
correlated (persistent) signal.
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Chapter 7
Self-Similarity and Detrended Fluctuation
Analysis of Cardiovascular Signals

Paolo Castiglioni, Marco Di Rienzo, and Andrea Faini

Abstract The beat-by-beat dynamics of several cardiovascular signals, including
heart rate and arterial blood pressure, shows statistically self-similar properties.
This means that shorter segments extracted from these signals may have the same
structure of the whole time series, whenever the vertical axis is rescaled by a proper
scale coefficient. A “self-similar” signal is thus analogous to a geometric fractal
that can be split into small fragments, each containing the whole complexity of
the original object. The self-similar dynamics reflects the nature of the complex
system generating the signal. Therefore, in recent years a large body of research
investigated the self-similar characteristics of cardiovascular signals by estimating
their “self-similarity” scale coefficients for better understanding the mechanisms
of cardiovascular regulation in health and disease, and for risk stratification. This
chapter illustrates the main methods used in literature for assessing the self-
similarity of cardiovascular time series, especially focusing on methods based
on the popular Detrended Fluctuation Analysis (DFA) algorithm. In particular, it
reviews applications of DFA that describe the cardiovascular time series in terms
of fractal models, with one or more scale coefficients. Furthermore, it illustrates
the more recent advancements of the DFA method for describing self-similarity as
a continuous temporal spectrum of scale coefficients and for deriving multifractal
spectra.

7.1 Introduction

The cardiovascular time series show an intrinsic variability spanning over several
time scales, even when recorded in healthy individuals and in steady state con-
ditions. This is likely due to the activity of different control mechanisms that try
to maintain the cardiovascular homeostasis in response to a multitude of external
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perturbations. When relatively long cardiovascular time series are recorded, one
may often recognize a particular feature in their spontaneous variability, named
“self-similarity” [1, 2]. A time series is “self-similar” if any data segment extracted
from the series has the same appearance, independently of the time scale at which
it is observed, provided that its amplitude is properly rescaled. Scale invariance
also characterizes geometric fractals: one may select a small fragment of a fractal,
properly enlarge it and obtain an object with the same structure and the same details
of the original fractal (Fig. 7.1). For this reason, self-similar signals are also called
“fractal” signals.

Investigating the existence and characterizing the properties of self-similarity in
cardiovascular signals appears a potentially useful tool for assessing alterations in
the cardiovascular regulation or for risk stratification. Physics and biology provide
several examples of complex dissipative systems that naturally evolve toward a self-
organized state without an intrinsic time scale [3]. These systems are typically
composed by fractal structures connecting together several components strongly
interacting with each other. Therefore, variables describing the state of such self-
organized complex systems are expected to show scale-invariant dynamics. The
cardiovascular system may be considered a complex system, because composed by a
fractal network of branching vessels [4] connecting different vascular beds strongly
interacting with each other through local and global regulatory mechanisms, based
on fast neural and slower humoral effectors. For this reason, the cardiovascular
dynamics is expected to behave like a self-similar process operating over different
time scales [2], and alterations in local regulations or in the overall integrative
control may lead to changes in cardiovascular self-similarity.

In more formal terms, a time series x(n) is called self-affine if

x(a xn)

x(n) ~ p for any a > 0 (7.1)

ER)

where the symbol “~” indicates that the series at the left- and right-hand sides
of Eq. (7.1) have the same statistical properties. The exponent H, named Hurst
exponent, defines the vertical rescaling factor, a”, that should be applied to preserve
the statistical properties of x(n) when the time axis is stretched by the horizontal
scaling factor a. The Hurst exponent may range between 0 and 1, and only when H
is equal to 1 the series should be called “self-similar” [5]. However, in the field of
cardiovascular signals analysis, the term “self-similarity” is commonly used for any
self-affine series x(n) that satisfies Eq. (7.1) even with H <1 [2], and we will follow
this terminology.

In this chapter, we will first describe the main estimators of H, from the rescaled
range method introduced by Hurst to methods forerunners of detrended fluctuation
analysis, highlighting their applications in the field of cardiovascular signal analysis
and introducing the families of fractional Gaussian noises and fractional Brownian
motions as interpretative models. In the following paragraph, we will introduce the
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Fig. 7.1 Analogy between a fractal object and a self-similar signal. A small fragment of a fractal
object (Mandelbrot’s set, left) looks like the original, if properly enlarged; in the same way, a small
segment of a self-similar time series (Brownian motion, right) resembles the original series, in
statistical terms, if the horizontal and vertical axes are properly stretched

popular detrended fluctuation analysis algorithm, discuss its theoretical aspects and
its applications in physiological and clinical studies of heart-rate self similarity.
In the next and final paragraph, we will illustrate the more advanced methods
for describing multifractality of heart rate and blood pressure based on detrended
fluctuation analysis.
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7.2 Estimation of the Hurst exponent

7.2.1 Hurst and Rescaled Range Analysis

The exponent H is named after the geologist H.E. Hurst who introduced it when he
studied how high one should design a dam capable of storing the annual floods of
the river Nile over a period of n years [6]. Hurst analyzed the records of the Nile
annual flows over several centuries. Given an observation period of n years, he set
the constant outflow of the reservoir, i, equal to the average of the n annual inflows,

x(i):

1 :
w=- Zx(z) (7.2)

i=1

At any given year i, the amount of water in the reservoir, y(i), is the sum of the
differences, year after year, between inflow and outflow:

(i) =Y () — p) (7.3)

J=1

The height of a dam that can store the floods of the river over a period of n years
depends on the range of y(i), R:

R = MAX[y()]_, — MIN[y()]}-, (7.4)

Hurst found that R, normalized by the standard deviation of the flow over the
same period of n years, S, increases indefinitely as a power of n:

R/S o n'? (7.5)

Equation (7.5) indicates that the dynamics of the annual flows of the river Nile is a
scale invariant (or self-similar) phenomenon. In fact, the ratio between two rescaled
ranges evaluated over periods of n; and n; years, does not depend on the absolute
values n; and n;, but only on the ratio (n 1n)H. Interestingly, H was greater than V2.
In the same year, Feller demonstrated that the range of the sum of independent
random variables increases as the square root of n, i.e., H = %2 [7]. Therefore
Hurst found that the annual flows x(i) are not independent each other, implying
the existence of long-term correlations among periods of rain and drought.

With his work, Hurst introduced the first method for estimating H of a stationary
time series x(i), with i = 1,...,N. The method is called Rescaled Range Analysis.
First, (a) one splits x(i) into M consecutive blocks of size n=int(N/M). Next steps
are to calculate, in each block j: (b) the mean p; as in Eq. (7.2); (c) the cumulative
sum of deviations from p;, ¥(i), as in Eq. (7.3); (d) the range of y(i), R;, as in Eq.
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(7.4); (e) the standard deviation of x(7), S;; (f) the rescaled range, Ri/S;. Then, (g)
the M rescaled ranges are averaged obtaining a single value (R/S), associated with
the block size n. The (a—g) steps are repeated several times, splitting the series into
blocks of different size n. If x(i) is self-similar, then (R/S), = k x n’ and H can be
estimated as the slope of the regression line between log(n) and log (R/S),,.

This method, important from a historical point of view, suffers from significant
bias errors [8], and in the field of cardiovascular signals analysis it lost its initial
popularity in favor to other estimators, described in the next paragraphs.

7.2.2 Fractional Gaussian Noises and Fractional Brownian
Motions

Inspired by Hurst’s work, Mandelbrot and van Ness proposed two general families
of self-similar processes with H between 0 and 1: the family of fractional Gaussian
noises, fGy, and the family of their integral, or fractional Brownian motions, fBy
[9]. These families represent a simple model for describing self-similar signals.
They generalize the classic white Gaussian noise, G(i), and its cumulative sum,
the Brownian motion B(i). For a Gaussian noise, the value at any given time i has
a Gaussian distribution and does not depend on the values that occurred before i;
by contrast, for a Brownian motion, at any given time i the increment to the next
value, B(i + 1) - B(i), does not depend on the values before i. According to [9], the
fractional Brownian motion associated with the parameter H, fBy(i), is defined as:

0
: : 5y -4
fBH(l) = fBH(O) + F(H——i—%) / [(l - S)H - (O - S)H ] dB(S)

+ / (i — )2 dB(s) 7.6)

0

It can be easily verified that when H = Y2, Eq. (7.6) gives fBy,(i) = fB1,(0) 4+ B(i).
This means that the family of fractional Brownian motions contains the classic
Brownian motion as special case for H = Y. For H # Y2, the second integral makes
fB(i) a moving average of past B(i) increments weighted by the kernel (i - s) "2,
Mandelbrot and van Ness demonstrated that the increments of By (i) are stationary
and self-similar with parameter H, which means that fGu, (i) is the classic white
Gaussian noise.

An interesting property of the Fourier spectrum of fBy is that it is proportional
to a power of the frequency f:

PSDggy(f) o< 1/fZ+1 (7.7)
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When a time series is differenced, its spectrum is multiplied by £, and thus the
spectrum of fGy is [9]:

PSDigu (f) o< 1/f#~Y (7.8)

When H = Y, Eqs. (7.7) and (7.8) give the well-known 1/f% spectral shape with
p = 0 for white noise and f = 2 for Brownian motion.

Therefore, each H exponent is associated with two processes. One is a fractal
Gaussian noise with 1/f? spectral shape and p < 1, condition that assures stationarity
because the integral of the spectrum is finite. The other one is a fractal Brownian
motion, also with 1/f® spectral shape but exponent B > 1. In this case the process is
nonstationary, because the integral of the spectrum diverges at f = 0 and the variance
of the process increases indefinitely with time [10]. More precisely, Mandelbrot and
van Ness demonstrated that the standard deviation of a sequence of n samples of
fractional Brownian motion increases proportionally with the power H of n:

OfBH X I’lH (7.9)

7.2.3 Spectral Estimators of H

The introduction of these two classes of fractal processes suggested a way for
estimating the Hurst exponent directly from the power spectrum. First, the Fourier
spectrum is estimated over a broad range of frequencies, PSD(f). Second, the
spectrum is represented on a log-log scale, to identify the frequency band where the
plot looks like a straight line, i.e., where PSD(f) is proportional to 1/f?. Third, the
slope of the straight line, —, is calculated fitting a regression line over the identified
frequency band. Finally, if § > 1, the time series is classified as a fractional Brownian
motion and H is estimated as ¥2(f — 1). On the other hand, if § < 1 the time series
is classified as a fractional Gaussian noise and H is estimated as ¥2(f + 1). Since
the first discovery of a “1/f” spectral trend in heart rate recordings [11], a series of
physiological [12-17] and clinical studies [18-28] aimed at deriving information
on long-term cardiovascular regulation estimated f of heart rate or blood pressure
spectra. Interestingly, some of these studies reported systematic deviations of the
spectra from the “monofractal” model [12, 13, 16, 29, 30], implicitly providing
hints of a possible multifractal nature of cardiovascular time series.

However, harmonic components, like respiratory oscillations or Mayer waves,
are superimposed to the 7/f® spectrum of cardiovascular time series. The harmonic
components generate spectral peaks that should be avoided in the evaluation of the
regression slope, B. This is not an easy task when the time series has short duration.
To mitigate this problem, Yamamoto and Hughson [31] proposed to remove the
harmonic components with a coarse-graining procedure. The idea is to coarse grain
the time series, x(i), i = I,...,N, by taking only n samples, one every M with
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M = int(N/n), and by calculating the cross-power spectrum between the coarse
grained series of n samples and any segment of n consecutive samples of the
original series. Because of the scale invariant properties of self-similar signals, the
cross-spectrum of the fractal component equals the original fractal spectrum, while
the cross-spectrum of the harmonic components tends to zero. In this way, it is
possible to remove the harmonic components superimposed to the fractal spectrum,
and to evaluate the P slope more easily. Some authors used this method as a
“preprocessing” technique for better estimating the low and high frequency spectral
powers [32], removing fluctuations of fractal nature [33—35]. Other authors applied
coarse graining to estimate the spectral slope in physiological [36—45] and clinical
[46, 47] studies where relatively short recordings did not allow to estimate B with a
regression fitting over ultra- and very-low frequencies.

Spectral estimators of H do not require knowing a priori whether the time
series belongs to the class of fractional Gaussian noises or to the class of fractional
Brownian motion. In fact, p can be estimated for both families of fractal processes,
and values greater or lower than 1 discriminate between fractional noises or motions.
For this reason, it has been suggested to use spectral methods to preliminary evaluate
whether the time series is a fractional noise or a fractional motion, in conjunction
with more efficient methods (see below) that estimate H for stationary fractional
Gaussian noises only or for nonstationary fractional Brownian motions only [48].

7.2.4 H Estimators for Fractional Gaussian Noise:
Autocorrelation Analysis

Mandelbrot and van Ness also derived the expression of the correlation between
two samples at times i; and i, of a fractional Gaussian noise [9]. They found that
the correlation is positive for all i; and i, if Y2< H< 1, and negative if O< H<%2. The
positive correlation when H>%2 means that if we observe a positive deviation from
the mean at i, then it is more likely to observe a positive than a negative deviation
at time i, and similarly, if we observe a negative deviation at i; it is more likely to
observe a negative deviation at i,. This statistical trend occurs independently from
the distance between i; and i, (even if the probability to observe deviations with
the same sign tends to decrease when |i; - i|increases). For this reason, fractional
Gaussian noises with H > V2 are called “long-memory processes” with “persistent
behavior”. On the other hand, if H < Y2, it is more likely that the deviation from the
mean at i, has the opposite sign of the deviation at i;. Therefore, fractional Gaussian
noises with H < 2 are said to have an “anti-persistent behavior”.

The theoretical analysis in [9] provides the basis for estimating H of fractional
Gaussian noises by calculating the autocorrelation function. Following the notation
in [1], the autocorrelation function p at lag k of a fractional Gaussian noise with
exponent H is:
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1 1
p(k) = > Ik + 1 — |k + Slk— 1% (7.10)

The estimator is based on the calculation of the autocorrelation function of the
time series x(i), with i = [,..,N. The autocorrelogram is estimated as:

= % (x(i) — ) (x (i —k) — )
pk) = ——=— (7.11)
e ,-; () — )
with
1 N
f= gx(i) (7.12)

Bassingthwaighte and Beyer extended Eq. (7.11) to any non-integer, rational
number k [49]. If x(i) belongs to the class of fractional Gaussian noises, p(k) is
calculated for different k values according to Eq. (7.11), and H is estimated by
fitting Eq. (7.10) to p(k) [50]. If x(i) is a fractional Brownian motion, it should
be differenced before applying the autocorrelation method. In the field of the
cardiovascular system studies, the autocorrelation method has been employed for
evaluating the spatial self-similarity of vascular blood flows, x(i), observed in
successive tissue units i [49, 51].

7.2.5 H Estimators for Fractional Gaussian Noise:
Dispersional Analysis

A well know property of the estimator of the mean |1 of n independent Gaussian
random variables with variance o2 is that the standard deviation of the estimator,
o, decreases when n increases as:

0y = — (7.13)

If the data are not independent each other and p is the mean of n consecutive
values of a stationary ergodic process, x(i), with autocorrelation function p(k), then
0, is [52]:

o, = % (1 +2§ (1 —"/n) p(k)) (7.14)
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When x(i) is a white Gaussian noise, p(k) = 0 for k > 1 and Eq. (7.14) coincides
with Eq. (7.13). In this case, 0, decreases proportionally to n”*. More in general, if
x(i) is a fractional Gaussian noise, p(k) follows Eq. (7.10) and:

(7.15)

Equation (7.15) suggests how to estimate H of fractional Gaussian noises from
the dispersion (i.e., the standard deviation) of the mean of n consecutive samples
[53]. Briefly, (a) the series x(i), with i = 1,..., N, is aggregated into consecutive,
non-overlapping blocks of size n; (b) the mean is calculated in each block; (c) the
standard deviation of the means, o(n), is evaluated over all the blocks of size n.
The steps (a—c) are repeated for block sizes between n=1 and n = int(N/4). For
n = 1, o(n) is the standard deviation of x(i). For the largest n, equal to int(N/4),
o(n) is evaluated on at least four blocks, this being considered the smallest number
of blocks that allows a meaningful estimation of the standard deviation. If x(i) is
a fractional Gaussian noise, then Eq. (7.15) holds and the log-log plot of () and
n depicts a straight line, at least on a range of n values. Its slope is calculated by
linear regression over the range of n where the relation between log () and log
n is linear. Finally, H is estimated as slope+1 (Fig. 7.2). In relative dispersional
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Fig. 7.2 Example of heart rate dispersional analysis. Left: beat-by-beat cardiac intervals plotted
at decreasing resolutions, from n = 1 to n = 128 beats, with SD the standard deviation of each
aggregated time series. Right: SD vs. n in a log-log scale; H is derived from the slope of the
regression line evaluated where log SD decreases linearly with log n (from [54] with permission)
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analysis, H is estimated as slope of the regression line between the coefficient of
variation (=standard deviation/mean) and n, plotted in a log-log scale, for n > 1.
If x(i) belongs to the class of fractional Brownian motions, it should be differenced
before applying dispersional or relative dispersional analysis.

In the field of cardiovascular signals analysis, dispersional and relative disper-
sional analysis characterized the fractal properties of heart rate, of sympathetic
nerve discharge, of laser Doppler flowmetry and of membrane potentials of cardiac
myocites [55-57].

7.2.6 H Estimators for Fractional Brownian Motion: Scaled
Windowed Variance

This method exploits the property of the standard deviation of fractional Brownian
motions to increase as the power H of the length of the time series, as indicated by
Eq. (7.9). Given N consecutive samples of a fractional Brownian motion x(i), (a) x(i)
is split into M consecutive, nonoverlapping windows of size n, with M = int(N/n);
(b) mean and standard deviation are calculated in each window j, as:

1 &
== > x() (7.16)
i=n(j—1)+1
1 nj s
G= |— > (x6) - m) (7.17)
i=n(j—1)+1

and (c) the M standard deviations are averaged:
| M
SD, = A_lj;aj (7.18)

The steps (a—c) are repeated for window sizes increasing between n = 2 and
n = N. Then, SD,, is plotted vs. n in a log—log scale, to identify the range where the
plot follows a straight line. H is the slope of the regression line calculated over this
range.

The bridge-detrended variant of this method subtracts from x(i) the line con-
necting the first and last point of the window, before calculating Egs. (7.16) and
(7.17). The line-detrended variant subtracts from x(i) the regression line in each
window. The two detrended variants perform better than the standard method in
terms of estimation bias [58]. The line-detrended variant deserves to be mentioned
because of the close relation with the detrended fluctuation analysis method (see the
next paragraph) in the way deviations from the regression line of each window are
defined.
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The scaled windowed variance method should be applied to fractional Brownian
motions only, or on the cumulative sum of x(i), if x(i) is a fractional Gaussian noise.
In the field of studies of the cardiovascular system, the scaled-windowed variance
method was used to estimate H of cerebral and skin blood flows and of arterial blood
pressure [59-61].

7.3 Self-Similarity by Detrended Fluctuation Analysis

All previously described methods, with the exception of spectral methods, require
knowing whether the time series belongs to the class of fractional Gaussian noises
or to the class of fractional Brownian motions, before evaluating H. This is a major
limitation because most cardiovascular signals show 1/f# spectra with B slope close
to 1, at the boundary between fractal noise and fractal motion. Therefore, when
studying patients and controls, or when the same group is monitored under different
conditions, it might be required to employ different H estimators or different data
preprocessing procedures (like cumulative sum or differencing) within the same
study, making critical the comparison of H estimates. The spectral estimator does
not suffer from this limitation, but its sensitivity to harmonic components restricts
its use to long-time recordings. The coarse-graining method may remove harmonics
superimposed to a 1/f spectral trend. However, this method implicitly assumes that
the scaling exponent is the same at all the scales while it is reported in literature that
B, slope of the spectral trend, may not be the same over a broad range of frequencies.

The Detrended Fluctuation Analysis (DFA) method [62], originally proposed in
1994 for describing the mosaic structure of DNA sequences [63], overcomes the
above limitations. In fact, one does not need to know a priori the fractional class to
which the time series belongs, because DFA provides a scale exponent, o, equal to H
for fractal Gaussian noises and to H+1 for fractional Brownian motions. Moreover,
unlike the power spectrum, the detrended fluctuation function of DFA is relatively
insensitive to harmonic components in x(i) (see Fig. 7.3). These factors, along with
the availability of free code easily accessible to the community of cardiovascular
signal analysis [64], rapidly made DFA the most popular method for the analysis of
self-similarity in cardiovascular signals. As illustrated in the last part of this chapter,
the DFA approach can also investigate specific aspects of multifractality.

7.3.1 DFA Theoretical Aspects

Preliminary step for DFA of a time series x(i) of N samples is to calculate
its cumulative sum, y(i), as in Egs. (7.2) and (7.3). Then, (a) y(i) is split into
M consecutive, nonoverlapping blocks of n samples, with M=int(N/n); (b) a
polynomial trend of order p is calculated in each block by least square fitting
(let’s call y2 (i), with i from 1 to N, the piecewise function obtained by connecting
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Fig. 7.3 Example of the different sensitivity to harmonic components of fractal methods based on
power spectral analysis and based on detrended fluctuation analysis. A time series representing a
Brownian motion process (BM) lasting 1683.5 s and sampled every 0.1 s was synthesized summing
214 uncorrelated increments uniformly distributed between -1000 and 1000; a second time series
was synthesized adding the harmonic component 3000 X sin(2y X 0.1¢) to the same Brownian
motion process (BM+H). The power spectrum of BM-+H (left panel, blue line) shows a clear
peak at the frequency of the superimposed harmonic: this peak may substantially deviate the slope
of the regression line characterizing the power spectrum of the pure Brownian motion (red line) in
a log-log scale. By contrast, the detrended fluctuation function of BM+H (Fy, right panel) shows
an almost imperceptible deviation from the BM slope at the scale corresponding to the period of the
harmonic component (n = 100 samples). For clarity, BM curves were shifted down with respect
to BM+H curves by a factor of 100

the trends of the M blocks); (¢) Fy(n), root mean square of the deviations of the
integrated series y(i) from the local trend y? (i), is evaluated as:

N

Fy(n) = }VZ () —h(0))° (7.19)

i=1

This function measures the variability of detrended fluctuations within blocks of
size n. The steps (a—c) are repeated for different block sizes n. In a variant of this
method, called “detrended moving average”, DMA, the fitting stepwise polynomial
of order p, y?(i), is substituted by a moving average [65], in order to not assume
trends of polynomial nature.

The rationale for evaluating root mean square deviations from the polynomial
trend in Eq. (7.19) derives fro