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Preface

The nexus between engineering and biological science including medicine is a rich area
of scientific endeavor in terms of understanding physiological and pathophysiological
processes. Advances in computer technology and medical instrumentation have led to
opportunities to improve data acquisition, signal processing, and analysis. Much has been
written about heart rate variability (HRV) with more to come as engineers, computer scien-
tists, physicists, mathematicians, and clinicians unravel its mysteries. Cardiac rhythms are
complex and reflect the physiological or pathophysiological neural control and feedback
mechanisms over time. HRV is a statistical measure of the changes in heart rate or the inter-
beat intervals over time, and may be obtained from recordings as short as 10 seconds or
several days in length. However, clinical diagnostic/therapeutic utility and the usefulness
of HRV are still being debated in the literature and are limited in application.

Automated stratification of cardiovascular diseases by HRV of patients at rest provides
an additional clinical tool with high accuracy and reliability that does not require patient
participation and can be corrected for age and gender. Recordings of HRV can be obtained
from a person either in a supine or sitting position or while on a head-up tilt device. In all
cases, short recordings with no active participation required provide a highly useful tool
in clinical settings.

It is not the intention of this book to provide detailed descriptions of the methods asso-
ciated with preprocessing of the heart rate time series and related analytical methods, but
rather to provide an overview of the field from an engineering and medical perspective,
describing the current state of the art applied to understanding pathophysiological pro-
cesses in disease and disease progression. This book aims to describe the complex time
series of the heart rate and how to interpret results for a better understanding of informa-
tion obtained by the diverse methods applied in HRV analysis and its role in health and
disease.

Developing engineering solutions allows clinical science and medical diagnostics to
move forward and improve patient care by identifying often asymptomatic disease pro-
gression early. HRV analysis has progressed from applying simple time-domain- and
frequency-domain–based methodology to applying more complex algorithms toward dis-
covering better and more meaningful descriptors of the inherent variability of the heart
rate over time and its meaning. Some of these algorithms are discussed in the following
chapters. Biosignal processing and analysis remains an exciting field as it continues to
expand, providing novel measures relevant to diverse fields such as biomedical engineer-
ing, computing, physics, mathematics, and medicine, to name a few. Linear methods of
time and frequency analysis have given way to nonlinear analysis such as fractal geometry
and entropy-based methods. These include multiscale entropy, where the scaled measures
are thought to provide additional useful information. In many cases, these have led to the
identification of subtle changes in the HRV associated with pathological processes even
though the physiological meaning is yet to be found.

For any analysis to provide meaningful results, the method applied has to match the
data to be analyzed. Hence the basis for HRV can be placed at the bidirectional regulatory
mechanisms of the autonomic nervous system (ANS). Parasympathetic input acts as a heart
rate brake, slowing heart rate, whereas the sympathetic component or withdrawing of the
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parasympathetic input of the ANS increases heart rate. The ANS is further regulated by the
brainstem, subcortical, and cortical areas, with which it essentially has a closed loop. Anx-
iety, depression, and schizophrenia are examples of cortical pathologies that affect HRV.
Parkinson’s disease and brainstem pathology as well as peripheral pathophysiology such
as associated with diabetes further change the heart rate pattern. These changes in HRV
or the specific HRV results are not specific for a particular pathology but hint at a change
away from body homeostasis that can be used for supporting a clinical diagnosis and inter-
pretation with involvement of the ANS as well as an indicator of treatment effectiveness.

The first chapter of the book provides historical context and an introduction to basic
biosignals analysis, including some recent advances in HRV algorithm development. It is
intended mainly for physicians to familiarize themselves with this area of inquiry. The
remaining chapters provide biological and clinical examples of how various HRV mea-
sures are applied in biology and specifically in autonomic neuroscience, exercise physi-
ology, cardiac function, renal disease, mental health, fetal health, and pediatrics. The key
difference from contemporary HRV-related books is that the current book provides addi-
tional insights into the pathophysiological link between physiologically understandable
mathematical indices of HRV and ANS function in health and disease.

MATLABⓇ is a registered trademark of The MathWorks, Inc. For product information,
please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
USA Tel: 508-647-7000
Fax: 508-647-7001
Email: info@mathworks.com
Web: www.mathworks.com

mailto:info@mathworks.com
http://www.mathworks.com
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Introduction to ECG Time Series Variability
Analysis: A Simple Overview

Herbert F. Jelinek, David J. Cornforth, and Ahsan H. Khandoker

CONTENTS

1.1 Preliminary Considerations When Measuring HRV ........................................................2
1.2 HRV Methods: A Short Introduction ..................................................................................4
1.3 Time Domain Measures of HRV ..........................................................................................5
1.4 Frequency Domain Measures of HRV ................................................................................6
1.5 Nonlinear Measures of HRV ................................................................................................6
1.6 Clinical Utility of HRV ..........................................................................................................7
References ........................................................................................................................................8

Physiological rhythms or oscillations are the manifestation of a complex physiological sys-
tem. The clinical community has long recognized that alterations in physiological rhythms
are associated with disease and therefore have clinical value. Oscillations in cardiovascular
systems are reflected in electrocardiogram (ECG) time series variability. For example, beat
to beat variability in heart rate or heart rate variability (HRV) analysis has experienced a
tremendous increase in interest from both the engineering community and medical pro-
fession, as well as from the social science, economic, and health sectors. What follows is a
brief overview of the chapters included in this book, noting that each chapter was a team
effort by the various laboratories around the globe that work in this field. This book is
organized to provide a historical overview of the domain by Andreas Voss in Chapter 2
and a basic overview of HRV analysis and review of the basics of biosignal processing
by Dragana Bajić and her coauthors in Chapter 3. Chapter 3 is aimed at readers who are
new to this field or who need an overview of the basic concepts. From these introductory
chapters, the book moves on to provide some groundbreaking computational applications
by Gaetano Valenza and colleagues (Chapter 4) as well as the laboratory of Alberto Porta
and colleagues in Chapter 5. Danuta Makowiec and coauthors discuss how graph theory
may be applied to HRV analysis in Chapter 6. Many of these applications require on-site
coding and Mika Tarvainen introduces Kubios in Chapter 7, which is a shareware program
available from the World Wide Web that provides the opportunity to investigate biosignals
processing and obtain the fundamental time and frequency domain measures as well as
some nonlinear attributes of the biosignals. This software includes preprocessing options
and time and frequency domain analysis as well as nonlinear HRV analysis options, for
those that require a user-friendly application for HRV analysis. The remainder of the book
then concentrates on several areas of clinical applications with the aim to introduce the
reader to the utility of HRV. In some cases, other biosignal variability analysis methods are
discussed, such as blood pressure and electroencephalogram (EEG) analysis, which can be
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2 ECG Time Series Variability Analysis: Engineering and Medicine

coupled to heart rate tachograms. An important aspect of the clinical chapters is the inclu-
sion by the authors of explanations of why they used the algorithms and they also propose
more advanced methods that address the research problem better.

Thus, in Chapter 8, David Cornforth and Herbert Jelinek ask the question of how com-
plexity measures deepen our understanding of pathophysiological processes associated
with cardiac rhythm. Chapter 9, by Tatjana Lončar-Turukalo et al., is the first chapter to
address biosignal coupling between blood pressure and HRV. Chandan Karmakar and
coauthors then take the reader, in Chapter 10, back to a fundamental aspect of heart rate
and its variability by discussing the tone-entropy feature at multiple scales.

This book does not only address how to classify or identify cardiac rhythm pathology
but also covers how HRV can be used to assess the effects of training in sport and as a
means of staying healthy, which is discussed in Chapter 11 by Kuno Hottenrott and Olaf
Hoos. Using HRV to assess the patient response to a virtual reality neurological rehabili-
tation is the subject of Chapter 12, by Herbert Jelinek et al., while HRV compared to tra-
ditional outcome measures in cardiac rehabilitation is covered by Hosen Kiat’s group in
Chapter 13. In Chapter 14, Ian Baguley and Melissa Nott examine changes in autonomic
nervous system function in acute brain injury. Chapters 15 by Andrew Kemp and Daniel
Quintana and Chapter 16 by Karl-Jürgen Bär and Andreas Voss discuss psychiatric disor-
ders and HRV. Ahsan Khandoker, in Chapter 17, presents the recent progress in fetal ECG
and fetal HRV technique. Chapter 18, by Janice Russell and Ian Spence, reviews HRV anal-
ysis in anorexia nervosa and eating disorders in general. In Chapter 19, Juha Perkiömäki
and Heikki Huikuri discuss applying HRV in clinical practice following an acute myocar-
dial infarction. Matthias Baumert outlines HRV analysis in cardiac control during normal
and hypertensive pregnancy (Chapter 20). Jaqueline Phillips and Cara Hildreth then intro-
duce, in Chapter 21, telemetry use in animal models of kidney disease. The last chapter
then reaches the cellular level and investigates beat-to-beat variability in cardiomyocytes
covered by Helmut Ahammer and colleagues from Graz.

However, before any biosignal analysis takes place, a number of issues have to be con-
sidered, which are briefly outlined below.

1.1 Preliminary Considerations When Measuring HRV

Methodological considerations form the crux of any research as they are a big part of using
HRV as a tool in clinical practice. The number of methods proposed over the last 50 years
has risen dramatically as our understanding of the physiology and pathophysiology of
cardiac rhythm has grown. Time domain, frequency domain, and nonlinear methods of
HRV analysis have to be chosen carefully depending on the information about the biosignal
that is required.

A standard ECG signal is shown in Figure 1.1. This type of signal has been exhaustively
studied and the diagnostic value of the different features is well established. The QRS com-
plex, with R being the peak of the wave or fiducial point, is used as a surrogate point to the
p-wave peak in determining the interbeat time for HRV analysis.

For HRV analysis, several preprocessing considerations have to be met. Noises in the
recording and ectopic beats have to be removed. How do we deal with removed or miss-
ing beats? Manual selection of noise and ectopics is time consuming and also less likely
to lead to identical outcomes if repeated. Therefore, automated preprocessing algorithms
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FIGURE 1.1
Normal ECG signal showing the RR interval.

have been proposed (Marzbanrad et al. 2013; Karlsson et al. 2012; Kim et al. 2009;
Thuraisingham 2006; Wessel et al. 2000; Sapoznikov et al. 1992). RR intervals are events
that are not evenly spaced and therefore for some HRV analysis, especially frequency
domain analysis, resampling is required and consequently the resampling frequency be-
comes important (Clifford and Tarassenko 2005; Struzik and Hayano 2006; Moody 1993).
Current algorithms for HRV analysis tend to be applied to tachograms with reduced
sampling frequency in order to minimize the data size, increase analysis speed, or as a
prerequisite for evenly distributed data, while retaining high clinical accuracy (Grant et al.
2011). Resampling frequencies that have been applied for HRV analysis vary between 1
and 10 Hz with low sampling frequencies possibly leading to a loss of information. In addi-
tion, the resampling frequency also affects the HRV results in particular frequency domain
measures (Singh et al. 2004). Choosing an appropriate resampling frequency is not only
a function of the Nyquist frequency of the signal of interest but also of the HRV analysis
employed (Abubaker et al. 2014). Within the context of preprocessing and resampling, the
length of the recording also needs to be considered. In clinical practice, 10-second, 12-lead
ECGs are routinely recorded in addition to longer Holter recordings, which are usually
recorded for between 24 and 72 hours. However, recording lengths of 2, 5, 10, 20, or 30
minutes as well as 2 hours are not uncommon and are often a function of the HRV method
used (Smith et al. 2013; Kemp et al. 2012; Grant et al. 2011; Dekker et al. 2000; de Bruyne
et al. 1999; Sinnreich et al. 1998; Saul et al. 1988). HRV algorithms such as very low fre-
quency power (VLF) or approximate entropy (ApEn) may not be suitable for use with very
short recording periods although when applying even these in clinical practice, they may
be sufficiently robust to provide useful information for the clinician (Jelinek et al. 2014).
Teich et al. have shown that some measures provide reliable results using recordings of
only a few minutes (Teich et al. 2001). In addition, when comparing HRV results, recording
lengths need to be of the same duration. Automated preprocessing to remove noise and
ectopic beats, resampling, and consideration of length of recording all play an important
role in obtaining meaningful results in clinical practice and research. Finally, testing for
stationarity is a step often neglected. Biological signals are inherently nonstationary and
measures such as the correlation dimension or power spectral analysis are strongly influ-
enced by the nonstationarity of the signal. To address this point rather than determining
the extent of nonstationarity, it is suggested that when applying the power spectral analy-
sis using a fast Fourier transform, 5-minute segments are analyzed and averaged to avoid
nonstationarity features. One reason for this is that there is currently a lack of understand-
ing relating to what constitutes too much nonstationarity when applying HRV measures
that are sensitive to this characteristic of biosignals. One solution is to divide a tachogram
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into segments and determine the average of the segments. A measure of nonstationarity is
a large standard deviation difference between the two segments (Palazzolo et al. 1998; Gao
et al. 2013; Camargo et al. 2013; Pacheco et al. 2012; Chen et al. 2002; Źebrowski et al. 1999;
Lempel and Ziv 1976).

1.2 HRVMethods: A Short Introduction

The interval between successive R peaks is known as the RR interval (inverse of heart
rate). RR intervals are obtained from the recorded ECG and the RR variation can be sub-
jected to further analysis through a variety of algorithms in order to yield variables with
good discriminant power, based on the difference of RR interval variability with respect to
the total recording interval (Pan and Tompkins 1985; Karlsson et al. 2012; Kim et al. 2009;
Marzbanrad et al. 2013; Storck et al. 2001; Thuraisingham 2006). For the purposes of fur-
ther analysis, the RR interval is expressed as the time between beats (measured in millisec-
onds), and this can be plotted against time to produce the graph shown in Figure 1.2, which
illustrates the natural variation of RR intervals over a recording period. The extent of vari-
ation is indicative of a healthy cardiac system, as the heart rate is continuously varied to
adapt to current needs of oxygenation and perfusion. It is the absence of such a variation
that can indicate cardiac disease, especially arrhythmia and risk of sudden cardiac death
(Friedman et al. 1975; Huikuri et al. 2003; Kong et al. 2011; Lane et al. 2005; Lombardi et al.
2001; Mäkikallio et al. 2005; Myerburg 2001; Sabir et al. 2013; Singer et al. 1988).

HRV analysis is a simple, sensitive, and noninvasive method for measuring cardiac
rhythm and refers to the beat-to-beat variation in heart rate. It is the result of complex
interactions between the autonomic nervous system, endocrine influences, and vasomo-
tor and respiratory centers (Kautzner and Camm 1997; Chandra et al. 2003; Thayer et al.
2010; Porges 2007). A variety of measures can be derived from this, and fall into the three
categories of time series measures, frequency domain measures, and complex or nonlinear
measures. The analysis of HRV, applying time and frequency domain analysis, has been the
subject of extensive work (Akselrod et al. 1981; Billman et al. 2015; Schroeder et al. 2004;
Liu et al. 2003; Brennan et al. 2002a; Agelink et al. 2001; Umetani et al. 1998; Stein et al. 1994;
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Kleiger et al. 1992; Bigger et al. 1992a). These methods have either focused on the magni-
tude of RR interval fluctuations around its mean, or on the magnitude of fluctuations in
given frequency bands. More recent work has addressed the nonlinearity and nonstation-
arity characteristics of the ECG signal and development of suitable methods such as those
based on Poincaré plot analysis and entropy as well as fractal analysis (TFESC 1996; Cerutti
et al. 2009; Cornforth et al. 2015; Cysarz et al. 2000; Goldberger and West 1987; Ho et al.
2011; Hu et al. 2010; Karmakar et al. 2009; Lerma et al. 2003; Lombardi 2000; Peng et al. 1995;
Pincus 1991; Porta et al. 2007; Richman and Moorman 2000; Skinner et al. 2011; Stanley et al.
1999; Stein et al. 2005; Teich et al. 2001; Thuraisingham and Gottwald 2006; Voss et al. 2007;
Wessel et al. 2000). All of these can be derived from the RR interval time series through
suitable mathematical functions.

HRV provides information only on the changes in the interval length between heartbeats
over the length of the recording. It is noninvasive and easy to obtain from an ECG recording
of any length and with most ECG recording equipment.

For example, an estimate of HRV using the standard deviation of RR intervals (SDRRs)
found that this is higher in well-functioning hearts but can be decreased in coronary
artery disease, congestive heart failure, and diabetic neuropathy (Kleiger et al. 1987).
Although time and frequency domain analysis are useful in disease detection, when
only a simple derived measure is required, such as the SDRRs, it is often no better
than the average heart rate and in fact contains less information for risk prediction after
acute myocardial infarction (Perkiömäki 2011; Reed et al. 2005; Mäkikallio et al. 2005; de
Bruin et al. 2005; Anderson and Horne 2005; Huikuri et al. 2003; Abildstrom et al. 2003;
Mäkikallio et al. 2001; Odemuyiwa et al. 1991). This indicates that more advanced mea-
sures of HRV should be explored, which enable risk prediction based on single-patient
RCG recordings. Some of the measures derived from the RR interval fluctuations are now
discussed.

1.3 Time Domain Measures of HRV

Time domain measures include the mean and SDRRs recorded. The number of pairs of suc-
cessive intervals that differ by more than 50 ms, divided by the total number of intervals,
yields a parasympathetic measure (pNN50%). The root mean square of successive differ-
ences (RMSSD) and the triangular index (Triang. index) are also parasympathetic mea-
sures. The triangular interpolation of the interval histogram (TINN) is the estimated width
of the density distribution. This is believed to be sensitive to physical and emotional load
or to the intensity of the sympathetic nervous system tone.

The Poincaré plot is a visual representation of the time series and is constructed by plot-
ting each consecutive RR interval as a point where y=RR(t) and x=RR(t− 1). From this
plot, a fitted ellipse leads to estimating SD1 (short-term correlation) and SD2 (long-term
correlation) (Figure 1.3; Kamen and Tonkin 1995; Tulppo et al. 1996; Brennan et al. 2002b).
An extension is the recurrence plot, which represents a sequence of length n as a point in
n-dimensional space, then represents similar pairs as points on a two-dimensional space.
The recurrence rate (REC) is the density of these similar points, determinism (DET) is the
percentage of recurring points, identified by diagonal lines, and Lmean is the mean length
of diagonal lines exceeding a threshold (Javorka et al. 2008; Chua et al. 2008).
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Poincaré plot for a sequence of RR intervals allows the estimation of SD1 and SD2.

1.4 Frequency Domain Measures of HRV

Frequency domain methods divide the spectral distribution into very low, low, and high
frequency regions (Figure 1.4). Low frequency power (LF) is believed to be indicative of
both parasympathetic and sympathetic activity, high frequency power (HF) is indicative of
parasympathetic activity, and VLF amplitude is closely connected with psycho-emotional
state and the functional condition of the brain (TFESC 1996). Other work has shown the
importance of VLF—range analysis, and that the capacity of VLF fluctuations of HRV is a
sensitive indicator of management of metabolic processes and reflects deficit energy states
(Kuusela et al. 2003; Bigger et al. 1992b). The ratio of low to high frequency components,
which is indicative of sympathovagal balance, may also be calculated as well as the total
power (TFESC 1996). Any component of the power spectrum may also be divided by the
total power, to express it in normalized units (n.u.).

1.5 Nonlinear Measures of HRV

The variation in cardiac rhythm has mainly been suggested to be of nonlinear determin-
istic nature rather than due to stochastic noise. Nonlinear methods include a vast sample
of biosignal processing algorithms. Examples are detrended fluctuation analysis (DFA),
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Power spectrum of RR intervals showing VLF, LF, and HF regions.

fractal dimension, symbolic dynamics, and entropy measures such as sample entropy,
Renyi entropy, and the Lyapunov exponent. DFA is an estimate of the fractal correlation of
the RR interval series; it provides an exponent expressing short-term correlations (alpha1)
and another expressing long-term correlations (alpha2). Some of these measures are pre-
sented in other chapters of this book.

1.6 Clinical Utility of HRV

There is no consensus that any single technique is the single best means of characteriz-
ing and differentiating HRV signals in physiology from pathology; rather, investigators
agree that multiple techniques should be performed simultaneously to facilitate com-
parison between methods, techniques, and studies. Before the measurement of HRV can
be considered to be of any clinical value, however, therapeutic interventions are needed
in the patients who present with abnormal values. Ongoing research should provide
important information, for example, whether antiarrhythmic therapy or antidepressant
therapy can improve HR variability in patients with arrhythmia or depression. The mea-
surement of HRV by various methods remains a fascinating research subject but not
yet a routine clinical tool. If the intensive research into various aspects of HRV contin-
ues to increase exponentially as it has done during the last decade, it is possible that
the measurement of HRV methods will become a routine clinical procedure compara-
ble with the measurement of blood pressure or plasma cholesterol in the not-too-distant
future.
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Heart rate variability (HRV) is an expression of the immense complex interplay (Voss
et al. 2009) of various biological systems and subsystems (Figure 2.1). Heart rate (HR)
is strongly modulated by the combined effects of the sympathetic and parasympathetic
nervous systems that are effecting heartbeat generation in the sinoatrial node. Therefore,
measurement of changes in HR over time (HRV) provides information about physiolog-
ical and/or impaired autonomic functioning. In a healthy subject, these variations are
strongly correlated with central activity, breathing, circadian rhythm, vasomotion, and
exercise (Hainsworth 2004).

In healthy subjects, the sinoatrial node located at the posterior wall of the right atrium
initiates each beat of the heart. Due to the unstable membrane potential of the myocytes
located in this region, action potentials are generated periodically at a fairly constant fre-
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FIGURE 2.1
Simplified scheme of regulation of heart rate as an interplay of various biological systems and subsystems. (Cour-
tesy of Philos Transact A Math Phys Eng Sci.) (From Voss, A. et al., Philos Trans A Math Phys Eng Sci, 367 (1887),
277–96, 2009.)
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quency. This relatively constant frequency generated by the autorhythmicity of the sinoa-
trial node is modulated by many factors that add variability to the HR signal at different
frequencies (Stauss 2003; Task Force 1996) and over different scales (Cerutti et al. 2009).

Various studies (Ashkenazi et al. 1993; Busjahn et al. 1998; Voss et al. 1996a) suggest
that there is a genetic component in HR generation and HRV, in addition to family envi-
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ronmental influences (Figure 2.2). Further on, there are partly considerably influences of
gender and age on short-term and long-term HRV (Murata et al. 1992; Ryan et al. 1994;
Voss et al. 2015; Boettger et al. 2010).

The measurement of HRV from the electrocardiogram (ECG) or pulse curve is a bed-
side or an ambulant, noninvasive, low-cost, and simple to perform method, requiring
standard medical equipment and dedicated software. The latter reflects the physiological
or impaired balance of autonomic nervous system (ANS) regulation based on dedicated
HR oscillations. Parasympathic (vagal) activation corresponding to rapid dynamic control
through acetylcholine targeting muscarinic receptors (high frequencies of the power spec-
trum) and sympathetic innervations have slower interaction via the β-adrenergic receptors.
However, the autonomic regulation on the ventricular repolarization is not limited to the
sinus nodal periodicity; there is a direct impact of the autonomic regulation on the cardiac
cell of the ventricles (Couderc 2009).

From an electrophysiological standpoint, the P-to-P (PP) intervals reflect the variability
of sinus node activity (Figure 2.3). However, reliable detection of P-waves is more diffi-
cult than QRS complex detection (dominant R peak) for several reasons, for example, low
amplitudes, low signal-to-noise ratio, amplitude and morphological variability, and others.
Nevertheless, RR intervals also reveal information about sinus node activity with sufficient
accuracy because the spontaneous fluctuations of the PR interval are mostly lower than 2–4
ms (Esperer 1992).

Excluding arrhythmic events and artifacts from the RR-interval time series, we obtain
the normal-to-normal (NN)-time series representing sinus node activity. The RR- or NN-
interval time series plotted over time or beats are called tachograms.

HRV is a measure of variations in the HR over time (beats). Figure 2.4 shows the variation
of the HR in a healthy subject and in patients with different impairments of the autonomic
regulation.
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2.1 History of HRV

Oscillations of the blood pressure and HR (pulse) have been known for a very long time.
In the following review, some of the milestones in HR (pulse) detection and analysis are
discussed.

Papyrun Eburs, an Egyptian papyrus (Figure 2.5) from about 1552 BCE, is the oldest
preserved medical document. The papyrus contains chapters on different diseases and it

FIGURE 2.5
Papyrus Ebers, Kol.44, Universitätsbibliothek Leipzig (Courtesy of Reinhold Scholl). This page lists several possi-
bilities to treat heart diseases. Unfortunately, the original pages related to pulse analysis got lost over the postwar
years.
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also includes a surprisingly accurate description of the circulatory system, noting the exis-
tence of blood vessels throughout the body and the heart’s function as a center of the blood
supply (Enersen 2015). In this context, the heart pulse and changes of the heart pulse are
already mentioned. The Egyptians regarded the pulse as the voice of the heart and attempts
to understand that voice led to an extensive pulse lore (Van Praagh and Van Praagh 1983).

Herophilos of Chalcedon (fourth century BCE) is an outstanding representative of
ancient medicine. He is rightly counted as the father of anatomy. He was interested in
different branches of medicine. Herophilos also found that the pulse is the result of the
contractions and expansions of the arteries. However, he could not exactly explain where
the pressure (pneuma) came from and suggested that “pneuma in the arteries could come
from any proximate source.” He did not see the direct connection between pulse and the
heart (von Staden 1989).

Rufus of Ephesus, a famous ancient physician, lived approximately from 80 to 150 CE.
He was the first to describe the relation between heart and pulse. He proposed (Bujalkova
2011) that the heart—as the origin of warmth, life, and pulsation—consists of the head, the
bottom, and the heart cavities. The thicker left chamber is arterial, while the thinner right
chamber, which is wider than the left one, is venous. Along both sides of the heart–head,
he described wing-shaped free cavities which move synchronously with the pulsation of
the heart—the so-called “heart ears.”

Claudius Galen (Galen of Pergamon, about 129–200) and his scholarly teachings defined
the practice of medicine in Western Europe for 1500 years. Galen was also an expert on the
pulse; many consider him to be the originator of pulse diagnosis. He wrote at least 18 books
on the pulse including at least eight treatises that described using pulse for diagnosis and
predicting the prognosis of disease (Billman 2011). He stated that the power of pulsation
has its origin in the heart itself and further that the fact that the heart, removed from the
thorax, can be seen to move for a considerable time is a definite indication that it does not
need nerves to perform its own function. Although Galen did not discuss the mechanism
of the heart’s automatic activity, he concluded that the pulsative faculty of the heart has
its source in its own substance (Fye 1987). One of his more famous observations was that
a woman’s pulse sped up when she heard the name of her lover (Fullerton and Silverman
2009).

Stephen Hales (1677–1761) was the first to report that the beat-to-beat interval (BBI) and
arterial pressure level varied during the respiratory cycle (Billman 2011).

Later on, in the eighteenth century, Albrecht von Haller’s (1708–1777) observations on
the heartbeat were his most significant contribution to cardiovascular physiology. He con-
firmed that the heart continues to beat despite the lack of any connection to the nervous
system. Based on these experiments, he proposed that the heart muscle had intrinsic irri-
tability that was stimulated by blood flowing over the organ’s walls (Fye 1995). He also
noticed that the beat of a healthy heart is not absolutely regular (Stys and Stys 1998).

Since its description by Carl Ludwig (1816–1895) in 1847 the mechanism of respiratory
sinus arrhythmia (RSA) has been the subject of considerable research interest (Galletly and
Larsen 1998). RSA is the variation in heartbeat interval with respiration.

This was followed in 1865 by Traube and in 1876 by Mayer, who published their results
about periodical vasomotion and periodical blood pressure variations; these variabilities
are known in the modern physiology (Esperer 1992).

In 1882, physiologist Augustus Desiré Waller recorded an ECG from his dog Jimmy
and, later in 1887, for the first time (published), an ECG recording from a human
(AlGhatrif and Lindsay 2012) using a capillary electrometer (Alexander Muirhead, an
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electrical engineer and pioneer of telegraphy, may have recorded a human ECG earlier
in 1870 but this is controversial).

Dr. Willem Einthoven (1860–1927), a Dutch physiologist inspired by the work of Waller,
refined the capillary electrometer even further and finally developed, in 1901, a new
string galvanometer with very high sensitivity, which he used in his electrocardiograph
(AlGhatrif and Lindsay 2012). This was the basis for future developments that made
electrocardiography available for clinical use. In 1924, Einthoven was awarded the Nobel
Prize in Physiology or Medicine for the invention of the electrocardiograph.

In 1935, Matthes performed the first pulse oximetry (PO) at the human ear (Matthes and
Hauss 1938), the basis of a simpler method to record HR than the ECG.

In 1936, Anrep, Pascual, and Rössler proposed that the HR sinus arrhythmia is caused
by the regulation of cardiac vagal outflow involving the same neuronal processes that
generate the respiratory rhythm and reside within the brainstem (Garcia et al. 2013). This
was more or less the introduction of interaction analyses in the investigation of couplings
within the ANS.

The first device for ambulatory electrocardiography monitoring was developed in 1947
by Norman Holter (1914–1983). To become convinced of the usefulness of the ambulatory
ECG in the late fifties, Holter conducted research on 200 patients in Great Falls (Gawłowska
2009). The experiment was successful in revealing some cases of exertional angina. This
opened the possibility of investigating long-term HRV under normal circumstances and
was at the same time the beginning of telemetry.

Hon and Lee (1963, 1965) noticed that fetal distress was accompanied by the changes in
beat-to-beat variation of the fetal heart, even before there was detectable change in HR.
This study was one of the very first applications of HRV analysis in clinical use.

Beginning in the early 1970s, several groups (Hyndman et al. 1971; Sayers 1973; Chess
et al. 1975; Penaz et al. 1978; Akselrod et al. 1981) applied power spectral analysis to inves-
tigate the physiological basis for the individual frequency components that compose the
periodic variations in HR (Billman 2011). Power spectral density (PSD) analysis performed
using the fast Fourier transform (FFT) of RR-interval series or autoregressive (AR) meth-
ods reveal mainly three spectral components. In humans, these components are the high
frequency (HF), the low frequency (LF), and the very low frequency (VLF) components.
Most research concentrates on the LF and HF components due to the length of recording
required for correct VLF analysis.

New developments following FFT or AR modeling are due to most of the biomedical sig-
nals recorded being nonlinear, nonstationary, and non-Gaussian in nature and therefore, it
can be more advantageous to analyze them with higher order statistics/spectra compared
to the use of second-order correlations and power spectra (Chua et al. 2010).

Although HRV was well recognized as a physiological phenomenon in the ensuing cen-
turies, it was only widely appreciated in the 1960s and 1970s that a decrease in HRV accom-
panied autonomic failure and that this loss of HRV could be used as a measure of impaired
autonomic function (Freeman and Chapleau 2013).

In 1978, Wolf et al. was the first to show that patients after a myocardial infarction (MI)
with a reduced HRV had increased mortality. This was confirmed by Myers et al. (1986)
who showed that HRV was reduced in cardiac patients known to be at increased risk of
sudden cardiac death (SCD), when compared to those who were not at increased risk.
These differences were greatest in power spectral methods. Then Kleiger et al. (1987) found
that in patients recovering from MIs, those with the smallest HRV (standard deviation of
RR intervals) had the greatest risk of dying suddenly. This finding set the basis for the
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use of HRV in post-acute myocardial infarction (AMI) risk stratification where it still holds
its place as a tool of established practical value. Numerous studies have since supported
the notion that decreased vagal activity, as indexed by HRV, predicts mortality in high risk
as well as low risk populations.

During the 1980s, personal and bedside computers were available worldwide to measure
and analyze HRV with simpler and more mobile computer-based techniques (Smith and
Smith 1981). This offered much more distributed computational power and led to an expo-
nential increase of studies that related to the analysis of HRV in the various fields of biology
and medicine. In 1977, we counted about 160 Pubmed HRV references; this increased from
897 in 1987 to 3730 in 1997 and in 2015, we counted more than 17,500.

As a consequence of the outcomes from several studies, it became evident relatively early
that autonomic regulation cannot be sufficiently characterized by calculating only a single
index from the HRV (Cerutti et al. 2009). Therefore, combinations of indices only from HRV
analysis or combinations of indices from HRV analysis and indices either from other bio-
logical signals (Guzzetti et al. 1991; Voss et al. 1996b) and/or medical parameters (Pedretti
et al. 1993; Schmidt et al. 1996) were investigated in a multivariate approach.

One objective of coupling analyses was to characterize in more detail the behavior of
known interactions such as baroreflex and RSA to get information about their physiolog-
ical and pathophysiological developments. However, beneath these prominent autonom-
ically mediated coupling mechanisms, there were many more such couplings within the
ANS expected because of the very complex structure of HR generation (see Figure 2.1).
One of the first approaches to obtain more information about the interplay of systems
underlying autonomous regulation was introduced by Aarimaa et al. (1988); they inves-
tigated the interaction of HR and respiration in newborn babies by using the frequency
cross-spectral densities of HRV and an impedance respirogram (Aarimaa et al. 1988). An
overview of various available coupling analysis methods is provided in Schulz et al. (2013).
Some prominent methods are described in the following methods section.

Beginning with the introduction of chaos theory to many different research fields, it was
found that methods derived from nonlinear dynamics (NLD) provide new insights into the
HRV changes under various physiological and pathophysiological conditions. They pro-
vide additional prognostic information and complement traditional time- and frequency-
domain analyses of HRV (Voss et al. 2009).

Pioneering work was performed by the group of Glass (Guevara et al. 1981; Glass 1988)
who introduced nonlinear approaches into heart rhythm analysis. Period-doubling bifur-
cations, in which the period of a regular oscillation doubles, were predicted theoretically
and observed experimentally in the heart cells of embryonic chickens. Form, qualitative
change, oscillation, stability, and other important biological notions found inherent expres-
sion in the new mathematical approach of NLD (Garfinkel 1983); Ritzenberg et al. (1984)
were the first to provide evidence of nonlinear behavior in the ECG with the arterial blood
pressure traces of a dog that had been injected with noradrenaline. The first approaches
of HRV analyses based on nonlinear fractal dynamics were performed by Goldberger and
West (1987). It was suggested that self-similar (fractal) scaling may underlie the 1/f-like
spectra (Kobayashi and Musha 1982) as seen in multiple systems (e.g., interbeat interval
variability and daily neutrophil fluctuations). They proposed that this fractal scale invari-
ance may provide a mechanism for the “constrained randomness” underlying physiolog-
ical variability and adaptability. Especially in the 1990s and later, various different NLD
approaches were developed. Some of the most prominent ones are described in more detail
in the methods section. To prove the ability of these methods, it is necessary to check the



22 ECG Time Series Variability Analysis: Engineering and Medicine

data for nonlinearity. One of the tests for nonlinearity is the surrogate data test. The method
of using surrogate data in nonlinear time series analysis was introduced by Theiler et al.
(1992).

In 1996—as a milestone in the history of HRV analysis—an international task force con-
sisting of members from the European Society of Cardiology and the North American Soci-
ety for Pacing and Electrophysiology published a report about standards of measurement,
physiological interpretation, and clinical use of HRV (Task Force 1996).

After usable PO monitoring devices were available for reasonable prices in the mid-
90s, they became standard equipment in clinical monitoring. A regular PO monitoring
device continuously displays the arterial oxygen saturation value, SpO2, and the cur-
rent HR (pulse rate), averaged over some time interval. This inspired some researchers to
assess the reliability of the detected PR and sometimes a photoplethysmographic (PPG)-
derived breathing rate, both of which are also very interesting in telecare or when moni-
toring outpatients. However, pulse rate variability as an estimate of HRV has proved to
be sufficiently accurate only for healthy (and mostly younger) subjects at rest (Schafer
and Vagedes 2013).

A selection of further important methods, discoveries, developments, and applications
are briefly discussed in Sections 2.2 through 2.5

2.2 Methods of HRV Analysis Based on Sinus Rhythm

In the following, we discuss some of the most prominent applied HRV analysis approaches
that have shown clinical relevance without claiming that the presented selection of
approaches is complete. These HRV approaches are further summarized in Table 2.1(Con-
tinued), with emphasis on their main properties regarding short- and long-term analyses,
requirement of stationarity of the HR time series, and main output indices as well as rec-
ommendations and limitations for their application.

2.2.1 Linear Methods—Time Domain

HRV analyses in the time domain evaluate variability by determining the variations of
normal-to-normal RR intervals (NN intervals) over a period of time. Here, a huge amount
of statistical and geometrical indices can be directly determined from the NN intervals or
can be derived from the differences between NN intervals. These indices involve mean,
standard deviation, counting of the samples above or below a certain threshold, and other
statistical measures that are based on the distribution of the data and not their order (Bravi
et al. 2011). The most commonly used statistical and geometrical time-domain indices are
as follows (Task Force 1996):

• meanNN: the mean value of NN intervals
• SDNN: the standard deviation of all NN intervals as a measure of global variability
• SDANN: the standard deviation of the averages of NN intervals in all 5-minute seg-

ments, which estimates the long-term components of HRV
• RMSSD: the square root of the mean squared differences of successive NN intervals,

which estimates the short-term components of HRV
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• SDNN index: the mean of the standard deviations of all NN intervals for all
5-minute segments

• SDSD: the standard deviation of differences between successive NN intervals
• NN50: the number of successive NN intervals differing by more than 50 ms from the

preceding interval
• pNN50: NN50 divided by the total number of all NN intervals
• HTI: the HRV triangular index, which estimates overall HRV by determining the

ratio of the total number of NN intervals to the number of NN intervals in the modal
bin (128 Hz is the standard)

• TINN: the triangular interpolation of the NN interval histogram, created by deter-
mining the baseline width of the minimum square difference triangular interpolation
of the highest peak of the histogram of all NN intervals.

2.2.2 Linear Methods—Frequency Domain

HR fluctuations, which reflect modulation of sinus node activity by autonomic and other
homeostatic mechanisms, can be quantified and displayed using frequency-domain anal-
ysis. Frequency-domain measures use spectral analysis of a sequence of RR intervals and
provide information on how power (variance) is distributed as a function of frequency or as
a function of time and frequency. The introduction of power spectral analysis in HRV anal-
ysis provided a useful noninvasive technique for analyzing the autonomic mechanisms
that control HR (Akselrod et al. 1981). Spectral analysis of the resting HR commonly pro-
duces several prominent peaks (Sayers 1973). Several animal and human experiments with
pharmacological blockade of the ANS (Freeman 2006) have shown that the sympathetic
and parasympathetic nervous systems mediate HR fluctuations in different frequency
bands (Akselrod et al. 1981; Pagani et al. 1986).

Power spectrum analysis enables a quantitative representation of the contributing fre-
quencies to an underlying biosignal. Thereby, these frequencies are classified as VLF (≤ 0.04
Hz), LF (0.04–0.15 Hz), and HF (0.15–0.4 Hz) for short-term recordings. For long-term
recordings (24 hours), the VLF band can be further subdivided into the VLF (0.003–0.04 Hz)
and the ultralow frequency (ULF; ≤ 0.003 Hz) bands. The ULF band may represent the cir-
cadian rhythm, the VLF band is possibly affected by temperature regulation and humoral
systems, the LF band is sensitive to changes in cardiac sympathetic and parasympathetic
nerve activity, and the HF band is synchronized to the respiratory rhythm and is primar-
ily modulated by cardiac parasympathetic innervation (Stauss 2003; Valentini and Parati
2009). In addition, the components of higher frequencies (greater than 0.15 Hz) reflect oscil-
lations of HR mediated by respiration via the RSA. The HF peak is also known to represent
the respiratory frequency and is driven by the vagus nerve as indicated by the strong res-
piratory pattern of cardiac vagal motoneurons in the nucleus ambiguous (Rentero et al.
2002). In addition to the frequency bands, the total power (TP) of the spectrum (area under
the curve) can be estimated as the variance of the NN interval segments (5 minutes, 24
hours) under investigation. The LF and HF power can also be represented in normalized
units as LFn = LF/(LF + HF) and HFn = HF/(LF + HF).

As discussed above, many studies have presumed that LF power, especially if adjusted
for HF power, TP, or respiration, provides an index of cardiac sympathetic “tone” and that
the ratio of LF/HF power indicates “sympathovagal balance.” However, recently, Gold-
stein et al. (2011) hypothesized that with or without adjustment for HF power, TP, or
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respiration, LF power seems to provide an index not of cardiac sympathetic tone but of
baroreflex function! Manipulations and drugs that change LF power or LF/HF may do so
not by affecting cardiac autonomic outflows directly but by affecting modulation of those
outflows by baroreflexes.

For spectral analyses, the PSD function can be calculated either by parametric (AR
models: Blackman–Tuckey’s method, Welch’s method, Burg’s method, and Yule–Walker’s
method) and nonparametric (FFT) approaches or at least by applying the Lomb peri-
odogram (a method to find periodicities in unevenly spaced data). Here, the Lomb method
seems to be superior for PSD estimation of the HR spectrum than the FFT or AR models
(Laguna et al. 1998).

To overcome the limitation of stationarity for estimating the power spectrum, several
time-frequency approaches were introduced: the short-time Fourier transform (STFT), the
Wigner–Ville transform (WVT), and the wavelet transform (WT).

2.2.3 Nonlinear Dynamics

Linear time and frequency-domain measures are often not sufficient to quantify the
complex dynamics of HR generation. Therefore, various efforts have been made to apply
nonlinear techniques (especially from NLD) to analyze HRV (Voss et al. 2009). These
methods differ from the traditional time- and frequency-domain HRV analyses because
they quantify the signal properties instead of assessing the magnitude of the HRV. They
assess the self-affinity of heartbeat fluctuations over multiple time scales (fractal measures);
the regularity/irregularity or randomness of heartbeat fluctuations (entropy measures);
the coarse-grained dynamics of HR fluctuations based on symbols (symbolic dynamics);
and the heartbeat dynamics based on a simplified phase-space embedding (Voss et al.
2009).

2.2.3.1 Power Law (Scaling Exponent β)

The frequency dependence of the power spectrum of heartbeat fluctuations was first
reported in 1982 by Kobayashi and Musha in a normal young man. They found when
plotting the power spectrum and frequency, f , of these RR intervals on a log–log graph
(bilogarithmic scale), the plot can be described by a straight line with a slope equal to −1.
In a log–log plot, the power law slope between 10−2 and 10−4 Hz is linear with a negative
slope and reflects the degree to which the structure of the RR interval time series is self-
similar over a scale of minutes to hours (Kleiger et al. 2005). The so-called 1/f relationship
means that the power decreased approximately as a reciprocal of the underlying frequency,
f . The slope of the regression line is also referred to as the scaling exponent, β, and provides
an index for the long-term scaling characteristics.

2.2.3.2 Detrended Fluctuation Analysis (Fractal Scaling Exponent α1 and α2)

This method is based on a modified random walk analysis and was introduced and applied
to physiologic time series by Peng et al. (1995). It quantifies the presence or absence of
fractal correlation properties in nonstationary time series. The detrended fluctuation anal-
ysis (DFA) is based on the computation of the fractal scaling exponent α1 for short-term
fractal scaling properties (calculated for the range n= 4–16 heartbeats) and the fractal scal-
ing exponent α2 of long-term fractal scaling properties (calculated for the range n= 16–64
heartbeats; Peng et al. 1995). DFA offers clinicians the advantage of a means to investi-
gate long-range correlations within a biological signal due to the intrinsic properties of the
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system producing the signal, rather than external stimuli unrelated to the “health” of the
system (Seely and Macklem 2004).

2.2.3.3 Multifractal Analysis

Monofractal measures (DFA) assume that the same scaling properties are presented
throughout an entire time series (Seely and Macklem 2004). The multifractal DFA (MDFA),
introduced by Kantelhardt et al. (2002), is an alternative approach for the multifractal char-
acterization of nonstationary time series based on a generalization of the monofractal DFA.
Furthermore, Ivanov et al. (1999) demonstrated that the multifractal time series (biological
dynamical system) require a large number of local scaling exponents to fully characterize
their scaling properties. Multifractality in heartbeat dynamics indicates that the nonlinear
control mechanisms involve coupled cascades of feedback loops in a system operating far
from equilibrium (Goldberger et al. 2002). Thus, the multifractal method may add diag-
nostic power to contemporary analytic methods of the heartbeat (and other physiological)
time-series analysis. The multifractality of heartbeat time series also enables us to quantify
the greater complexity of the healthy dynamics compared to those of pathological condi-
tions. Ivanov et al. (1999) found a loss of multifractality for a life-threatening condition,
congestive heart failure (CHF), and that the healthy heartbeat is even more complex than
previously suspected.

2.2.3.4 Symbolic Dynamics

Kurths and Voss introduced symbolic dynamics into HRV analysis (Kurths et al. 1995; Voss
et al. 1996b) by developing special optimized measures for the analysis of HR dynamics.
The application of symbolic dynamics has been proven to be sufficient for the investi-
gation of complex systems and describes dynamic aspects within time series (Voss et al.
1996b). The concept of symbolic dynamics is based on a coarse-graining of the dynamics
of the original HR time series applying a defined number of symbols. To classify dynamic
changes within the NN interval time series, the NN intervals are first transformed into
a symbol sequence with symbols from a given alphabet A={0, 1, 2, 3}. Thus, 64 differ-
ent word types using three successive symbols from the alphabet to characterize symbol
strings are obtained. The resulting histogram contains the distribution of each single word
within a word sequence. Based on the probability distribution of each word type, several
indices can be calculated: the Shannon and Renyi entropy of the word distribution, a com-
plexity measure; the number of seldom (p< 0.001) or never occurring word types referred
to as forbidden words; wpsum02, the relative portion of words consisting only of the sym-
bols “0” and “2” (measure for decreased HRV); wpsum13, the relative portion of words
consisting only of the symbols “1” and “3” (measure for increased HRV); wsdvar, the stan-
dard deviation of a word sequence; phvarX, the portion of high-variability patterns in the
NN interval time series >X ms; and plvarX, the portion of low-variability patterns in the
NN interval time series <X ms.

Porta et al. (2001) introduced short-term symbolic dynamics (SSD) by fulfilling the needs
of short-term analysis. Here, the short-term HR time series consisting of approximately
300 NN intervals can be analyzed. Thereby, the HR time series (NN interval) is trans-
formed into a symbol sequence with the alphabet A={0, 1, 2, 3, 4, 5} based on six equally
distributed class ranges and patterns of length 3 are constructed. These patterns are then
sorted into four families. These are patterns with zero variation (0V), patterns with one
variation (1V), patterns with two like variations (2LV), and patterns with two unlike varia-
tions (2UV). To obtain more detailed information about the dynamics of HR, some new
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pattern families can also be introduced (Heitmann et al. 2011; Schulz et al. 2010):
ramp/ASC (three successive symbols form an ascending ramp), decline/DESC (three suc-
cessive symbols form a descending ramp), PEAK (second symbol is larger than the other
two symbols forming a peak), and VAL (second symbol is smaller than the other two sym-
bols forming a valley). A further extension of the classical symbolic dynamic approach
represents the segmented SSD. The segmented SSD was introduced in order to describe
nonlinear aspects within long-term RR time series by applying a 24-hour segmentation
algorithm in an enhanced way (Voss et al. 2010b; Schulz et al. 2014).

2.2.3.5 Correlation Dimension

Correlation dimension (CD) analysis of the heartbeat time series is based on the algorithm
of Grassberger and Procaccia (1983). The CD can be thought of as a measure of the number
of independent variables needed to describe the total system in phase space (Bogaert et al.
2001). It can be used to quantify the complexity of a dynamic system or a HR time series. In
the presence of chaos, an attractor in phase space characterizes the dynamics of the system
and its complexity can be quantified in terms of the properties of the attractor (Beckers
et al. 2006). Low values of CD indicate that the complexity of the system is lost and that
sympathetic and vagal stimulation are necessary to create complex dynamical systems of
HR variations (Bogaert et al. 2001). Kanters et al. (1996) claimed that the CD of HRV signals
is mostly due to linear correlations between the RR intervals. In general, CD values are
decreased in cardiac diseases in comparison to healthy subjects. Hence, the algorithm of
Grassberger and Procaccia (1983) is only applicable for the long-term time series and an
increasing interest to overcome this limitation is under way.

Raab and Kurths (2001) introduced the method of large-scale dimension densities (LAS-
DID) that allows the analysis of very short data sets for higher dimensional spatio-temporal
systems and low-dimensional systems. Thus, it is possible to calculate the LASDID for
short time series and obtain an overview of the changes in the dimension density in long
time series (24 hours) (Raab et al. 2006a,b).

2.2.3.6 Lyapunov Exponent �/Finite-Time Growth Rates �k
The Lyapunov exponent (λ) is a quantitative nonlinear measure to characterize a dynam-
ical system and it quantifies the sensitivity of a system to initial conditions. A positive λ
indicates a sensitive dependence on initial conditions and is considered the most relevant
index of the presence of chaos in data (Eckmann and Ruelle 1985). The Lyapunov exponent
determines the amount of instability or predictability of the system. A fully deterministic
system will have a zero λ since it is fully predictable, whereas a random system will have
large positive λ indicating no predictability (Yeragani et al. 2004). In practice, there are two
algorithms available to estimate λ. The algorithm proposed by Wolf et al. (1978) is limited
because of the required large data sets, stationarity, and long computing time. The method
proposed by Rosenstein et al. (1993) overcomes these limitations and may be superior for
the application to small cardiovascular data sets. In healthy individuals, the HRV of sinus
rhythm has characteristics of chaos-like determinism, with a positive λ (Hagerman et al.
1996). The Lyapunov exponent reflects the “overall” properties of the instantaneous HR
regulating system, which is why one cannot deduce from this measure-specific individual
changes in the regulating system. A decrease in λ of the HR time series has been attributed
to a decreased cardiac vagal function (Hagerman et al. 1996; Zwiener et al. 1996). In gen-
eral, the Lyapunov exponent of HR time series is lower in diseased patients in comparison
to healthy subjects.
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Another approach derived from the concept of Lyapunov exponents to analyze the short-
term predictability in RR intervals is suggested by Wessel et al. (2000); the method of finite-
time growth rates λk. For HR time series, λk can be interpreted as an index of regularity.
The smaller λk is the larger is the number of epochs with regular or predictable short-term
dynamics in the HRV time series indicating a loss of short-term variability (Meyerfeldt
et al. 2002).

2.2.3.7 Poincaré Plot Analysis

Poincaré plot analysis (PPA) represents a nonlinear quantitative technique of phase-space
characterization, whereby the shape of the plot can be categorized into functional classes,
as suggested by Kamen et al. (1996). PPA allows the calculation of HR dynamics with
trends (Kamen et al. 1996; Weiss et al. 1994). The Poincaré plots are the two-dimensional
graphical representation (scatter plots) of each NN interval or in the time series plotted
against the subsequent NN interval. PPA provides a visual and quantitative analysis of NN
interval sequences. Babloyantz and Destexhe (1988) qualitatively and quantitatively ana-
lyzed ECGs with Poincaré sections in 1988. Thereby, the shape of the plot that is assumed
to be influenced by changes in the vagal and sympathetic modulation. The plots provide
detailed beat-to-beat information on the behavior of the heart (Kamen et al. 1996). Typ-
ically, PPA shows an elongated cloud of points oriented along the line of identity. Only
for graphical illustration, an ellipse characterizing the shape of the cloud of points can
be drawn in the plot where the center of the ellipse is the mean NN value. In general,
three indices are calculated from the Poincaré plots: the standard deviation of the instan-
taneous NN-interval variability (minor axis of the ellipse—SD1), the standard deviation
of the long-term NN-interval variability (major axis of the ellipse—SD2), and the axes
ratio (SD1/SD2) (Brennan et al. 2002; Kamen and Tonkin 1995). Analysis of Poincaré plots
revealed increased randomness in beat-to-beat HR behavior demonstrated by an increase
in the ratio between short-term and long-term HRV, suggesting that more random short-
term HR behavior may be associated with a complicated clinical course (Laitio et al. 2000).
This measure has not been used extensively for risk stratification and has proven useful
for detecting preprocessing problems that significantly influence the calculation of HRV
variables (Kleiger et al. 2005).

A further extension of the PPA is the segmented Poincaré plot analysis (SPPA), which
was introduced by Voss et al. (2010a) as a nonlinear approach of phase-space characteriza-
tion for the nonlinear quantification of NN time series based on the traditional PPA. Here,
the cloud of points is rotated 45◦ clockwise around the main focus of the plot. The cloud of
points is segmented into 12× 12 equal rectangles whose size depends on the standard devi-
ations SD1 (height) and SD2 (width) of the NN time series of the Poincaré plot. The number
of points within each rectangle, related to the total number of points (N), was counted to
obtain the single probabilities pij (row number: i= 1− 12, column number: j= 1− 12). Based
on these single probabilities, the individual probability of each row (SPPA_r_i) and each col-
umn (SPPA_c_ j) can be calculated by summation of the related single probabilities.

2.2.3.8 Recurrence Plots

Eckmann et al. (1987) introduced the method of recurrence plots (RPs) to visualize the
recurrences of a trajectory (dynamical system) in its phase space. RPs are used to obtain
information on nonstationary and aperiodicity of HR time series. The RPs can be quanti-
fied by four main features: isolated points (reflecting stochasticity in the signal), diagonal
lines (index of determinism), and horizontal/vertical lines (reflecting local stationarity in



30 ECG Time Series Variability Analysis: Engineering and Medicine

the signal) (Bravi et al. 2011). The combination of these elements creates large-scale and
small-scale patterns from which is possible to compute several features, mainly based on
the count of the number of points within each element (Bravi et al. 2011). For the quantifica-
tion of RP, Zbilut and Webber (1992) have provided the recurrence quantification analysis
(RQA) tool, where different indices derived from RP are defined as recurrence point den-
sity, diagonal segments and paling in the RP, recurrence rate, determinism, average length
of diagonal structures, entropy, and trend (Wessel et al. 2001).

The most important structures for RQA are diagonal and vertical lines. Diagonals reflect
the repetitive occurrence of similar sequences of states in the system dynamics and express
the similarity of system behavior in two distinct time sequences. Verticals result from a
persistence of one state during some time interval (Javorka et al. 2009; Marwan et al. 2002,
2007).

2.2.3.9 Approximate Entropy/Sample Entropy

The approximate entropy (ApEn) represents a simple index for the overall “complexity”
and “predictability” of time series (Pincus 1991). ApEn can be used to determine the degree
of irregularity or disorder within a HR time series, measuring the underlying complexity
of the system producing the dynamics. ApEn compares runs of patterns in time series; if
similar patterns in a HR time series are found, ApEn estimates the logarithmic likelihood
that the next intervals after each of the patterns will differ (i.e., the similarity of the patterns
is more coincidence and lacks predictive value) (Ho et al. 1997). Two input parameters, m,
the length of compared patterns and r, which defines the criterion of similarity, have to be
fixed prior to the computation of ApEn. ApEn has revealed good statistically validity for
m= 2 and r= 15% of the standard deviation of the HR time series. If a time series has more
regularity and less complexity, the value of ApEn will be small. On the other hand, if a
time series has more irregularity and complexity the value of ApEn will be higher. Pincus
and Goldberger (1994) suggested that the reduction in entropy during pathology repre-
sents the system decoupling from external inputs or a reduction in the influence of these
inputs.

The term “sample entropy” (SampEn) was introduced by Richman and Moorman (2000)
as an improvement over the ApEn, acting as a simple index for the overall complexity
and predictability of a time series (Pincus 1991). SampEn reflects the conditional proba-
bility that two sequences of m consecutive data points, which are similar to each other
(within given tolerance r), will remain similar when one consecutive point is included,
where self-matches are not included in calculating the probability. Changes in SampEn
were interpreted in terms of the altered ANS control of either the atrial or the ventricular
myocardium (or both) during discrete physiological states.

2.2.3.10 Multiscale Entropy

Entropy-based measures like ApEn and SampEn only evaluate regularity on one scale, the
shortest one, and ignore other scales. Costa et al. (2002) introduced a new method called
multiscale entropy analysis (MSE). Applying this method, multiple time scales were used
to measure system complexity because the time series that are derived from the complex
biological systems are likely to present structures on multiple spatiotemporal scales. The
main advantage of MSE over other analysis methods is its ability to measure complex-
ity according to the concept of complexity defined as “a meaningful structural richness”
(Costa et al. 2005). MSE is based on consecutive coarse-grained time series determined by
a scale factor τ.These coarse-grained time series for scale τ are obtained by taking the arith-
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metic mean of τ neighboring original values without overlapping. For scale 1, the coarse-
grained time series is simply the original time series representing classical SampEn. MSE
demonstrates that healthy dynamics are the most complex dynamics. Under pathologic
conditions, MSE reveals a decrease in system complexity. Costa et al. (2002) found that the
pathologic dynamics associated with either increased regularity/decreased variability or
with increased variability due to loss of correlation properties are both characterized by a
reduction in complexity. MSE seems to provide useful insights into the control mechanisms
underlying physiologic dynamics over different scales (Costa et al. 2005). In the case of HR
interval time series, it was suggested to extract the slopes of the MSE curve over the scales
from τ= 1 to 5 and from τ= 6 to 20 (Costa et al. 2005; Bravi et al. 2011).

2.2.3.11 Compression Entropy

An approach to describe the entropy of a text was introduced in the framework of algo-
rithmic information theory. Here, the entropy (Kolmogorov–Chaitin complexity) of a given
text is defined as the smallest algorithm that is capable of generating the text (Li and Vitányi
1997). Although it is theoretically impossible to develop such algorithm data, compres-
sion techniques might be a sufficient approximation. Ziv and Lempel (1977) introduced a
universal algorithm for lossless data compression (LZ77) using string-matching on a slid-
ing window. Today, this algorithm is widely used and implemented in compression utilities
such as GIF image compression and WinZip®. This algorithm can be applied in a modi-
fied way for analysis of HR time series (Baumert et al. 2004, 2005). Here, the compression
entropy HCE of heartbeat time series is affected by the sample rate, the window length,
and the lookahead buffer size. HCE indicates to what extent data from HR time series can
be compressed using the detection of repetitive sequences. Reduced short-term fluctua-
tions of HRV result in increased compression. It seems that entropy reduction reflects a
change in sympathetic/parasympathetic HR control, probably an increase of the sympa-
thetic influence and reduced vagal tone (Baumert et al. 2005). Assuming that the com-
pressibility of a HR time series is a measure of its nonlinear complexity, the complexity of
HR in patients is reduced and, therefore, HCE decreases with increasing risk (Truebner et al.
2006).

2.2.3.11.1 Coupling Analyses of the Cardiovascular and Cardiorespiratory System

The analysis of the relationships within and between dynamic systems has become more
and more a topic of great interest in different fields of science, for example, economics,
physics, and life sciences. Especially in the medical field, the understanding of driver-
response relationships between regulatory systems and within subsystems is of growing
interest. In particular, the focus has recently moved toward the assessment of the strength
of the relations and the directionality of couplings as two major aspects of investigations for
a more detailed understanding of physiological regulatory mechanisms (Schulz et al. 2013;
Porta and Faes 2013). Thereby, the cardiovascular and cardiorespiratory systems are char-
acterized by a complex interplay of several linear and nonlinear subsystems. For the anal-
yses of the cardiovascular and cardiorespiratory regulatory systems as well as the quantifi-
cation of their interactions, a variety of linear as well as nonlinear uni-, bi-, and multivari-
ate approaches have been proposed. The most applied approaches used to assess direct
and indirect couplings can be grouped using traditional domain classification: Granger
causality (GC), nonlinear prediction, entropy, symbolization, and phase synchronization.
Commonly applied linear approaches include cross-correlation analysis in the time domain
and cross-spectral power density or coherence analysis in the frequency domain, both of
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which are used to investigate the interrelationships between two time series. However,
linear approaches are insufficient to quantify nonlinear structures and the complexity
of the interplay of physiological (sub) systems is why nonlinear time series analysis
seem to be often more suited to capture complex interactions between different time
series.

These coupling approaches are partly based on the notion of GC, implying that if one
time series has a causal influence on a second time series the knowledge of the past of the
first time series is useful to predict future values of the second time series (Granger 1969;
Wiener 1956). In biomedical applications, evaluation of causality is commonly performed
by looking for directional dependencies within a set of multiple time series measured in
the physiological system under investigation (Faes and Nollo 2010). There exist different
concepts to assess GC—linear and nonlinear approaches.

Linear approaches based on parametric multivariate autoregressive models (MAR)
and favoring the time and frequency domain. Starting in 1982, in the time domain, the
linear GC (Geweke 1982), the causal transfer function (Faes et al. 2004), and, in 2012, the
F-test and the Wald test (Bassani et al. 2012), as well as approaches based on predictabil-
ity improvement and partial process decompositions (Porta et al. 2012), became of impor-
tance. The causal transfer function between closed loop interacting signals was proposed
by Faes et al. (2004) and was validated in the field of cardiovascular and cardiorespira-
tory variability. Thereby, two time series x and y were described by a bivariate AR model,
and the causal transfer function from x to y was estimated after imposing causality by
setting to zero and then the model coefficients representative of the reverse effects from
y to x.

In the frequency domain, these approaches targeting to the oscillatory nature of physi-
ological variables and the peculiarity of specific control mechanisms of working in accor-
dance to well defined time scales (Porta and Faes 2013). In this domain, partial directed
coherence (PDC; Baccala and Sameshima 2001) and enhanced versions of this (e.g., normal-
ized short time partial directed coherence [NSTPDC]) (Adochiei et al. 2013) are the most
famous ones. These approaches are based on a fitted AR model and can detect direct and
indirect causal information transfer since they measure exclusively direct effects between
time series in multivariate dynamic systems. NSTPDC was introduced in 2013 for nonsta-
tionary signals to evaluate dynamic coupling changes and to detect the level and direction
of couplings in multivariate- and complex dynamic systems.

Coupling approaches that are based on entropies have in common that they analyze
a putative information transfer between time series. The concept of entropy addresses
the uncertainty or predictability of a time series and was first introduced by Shannon in
1948 to quantify the information content within a time series. Here, the concept of mutual
information analysis (MUI) was first introduced by Pompe in 1993 and can be applied to
detect and quantify nondirectional linear and nonlinear interdependencies within one time
series (univariate) or between different (bi- and multivariate) time series. MUI measures
the information that x and y share in units called “bits” because of the application of log2
(Hoyer et al. 2002). Later on, Porta et al. (1999) introduced the cross-conditional entropy
(CEx/y) based on the conditional entropy as a modification of the Shannon entropy. CEx/y
quantifies the degree of coupling between two normalized time series (x, y) and repre-
sents a measure of the complexity of x with respect to y. In 2000, Schreiber introduced an
information theoretical approach—the transfer entropy (TE) (Schreiber 2000) that is able
to distinguish between driving and responding elements, to detect asymmetries in the
interaction and to quantify the extent to which the dynamics of one process influences
the conditioned transition probabilities of another. TE measures causality by a prediction
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improvement approach and extends the concept of Shannon entropy by taking into account
the probabilities of transitions rather than static probabilities.

In 1998, Schaefer et al. used the concept of phase synchronization of chaotic oscillators
(Schäfer et al. 1998) to analyze irregular nonstationary and noisy bivariate time series,
applying the cardiorespiratory synchrogram, which is able to detect different synchronous
states (n:m) and the transitions between the two time series (HR, respiration), and to distin-
guish between different periods of synchronization using their instantaneous phases. Here,
the term “phase synchronization” is used to denote the state when a relation only between
the phases (Φ1, Φ2) of interacting signals sets in, but the amplitudes remain chaotic and
nearly uncorrelated (Pikovsky et al. 2001). Later on, in 2001, Rosenblum et al. proposed
an approach also based on phase synchronization to detect and quantify the direction of
the coupling of two time series by examining directly the oscillation phases. In 2010, Voss
et al. (2010a) introduced the SPPA approach as a nonlinear approach of phase-space char-
acterization for the nonlinear quantification of NN time series based on the traditional
PPA. Thereby, the cloud of points is segmented into 12× 12 equal rectangles whose size
depends on the standard deviations SD1 (height) and SD2 (width) of the NN time series of
the Poincaré plot. For the quantification single probabilities (pij) within each rectangle, the
number of points within every rectangle is counted and normalized by the total number
of all points. Based on these single probabilities, all row (i) and column (j) probabilities
are calculated by summation of the related single probabilities. This approach was fur-
ther enhanced for bi and multivariate coupling analyses using two-dimensional segmented
Poincaré plot analysis (2DSPPA; Schulz et al. 2014; Seeck et al. 2013) and three-dimensional
segmented Poincaré plot analysis (3DSPPA; Fischer and Voss 2014).

Coupling approaches that are based on symbolization enable a coarse-grain quantitative
assessment of short-term dynamics of time series through the direct analysis of successive
signal amplitudes that are based on discrete states (symbols). In 2002, Baumert et al. pro-
posed the joint symbolic dynamics (JSD) approach that is based on the analysis of bivariate
dynamic processes by means of symbols. Here, two time series were transformed in sym-
bol sequences of different words. Therefore, a bivariate sample vector X of two time series
(x, y) is transformed into a bivariate symbol vector S where n is beat-to-beat values using
a given alphabet A={0, 1}. JSD considers short-term beat-to-beat changes by allowing the
assessment of overall short-term cardiovascular and cardiorespiratory couplings (CRCs).
This approach was further enhanced in 2013 by Schulz et al. who introduced a new high-
resolution version of JSD (HRJSD) that is characterized by three symbols which are formed
on the basis of a threshold (l ≠ 0) for symbol transformation and which clusters the cou-
pling behavior into eight word-type families for the quantification of cardiovascular and
CRC patterns (Schulz et al. 2015). This circumvented the problems encountered by the clas-
sical JSD to distinguish between decreases and steady state as well as between small and
large changes of autonomic regulation due to l= 0 and A={0, 1}. JSD approaches have the
main advantages that they are not sensitive to nonstationary time series and are capable of
capturing nonlinear bivariate couplings by a simple procedure.

In summary, linear and nonlinear coupling approaches that are used to quantify direct
or indirect interactions provide new insights into alterations of the cardiovascular and
cardiorespiratory system and lead to an improved knowledge of the interacting regula-
tory mechanisms under different physiological and pathophysiological conditions. These
approaches represent promising tools for detecting information flows in a multivariate
sense. They also might be able to provide additional prognostic information in the medi-
cal field and might overcome or at least complement other traditional univariate analysis
techniques.
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2.3 Methods of HRV Analysis Not Based on Sinus Rhythm

2.3.1 Heart Rate Turbulence

Since the description of an early acceleration and late deceleration in HR following
ventricular premature beats, called “heart rate turbulence” (HRT) (Schmidt et al. 1999),
considerable progress has been made in the understanding of physiological mechanisms
underlying this regulatory process (Voss et al. 2004). HRT characterizes short-term fluc-
tuations in sinus cycle length that follow spontaneous ventricular premature complexes
(VPCs) (Schmidt et al. 1999). The response to an endogenous disturbance of the HR–blood
pressure sequence provides unique insights into regulation phenomena. In contrast to
alternative methods that use exogenous stimuli as the baroreflex stimulation with phenyle-
phrine, the HRT method enables a quantification and characterization of blood pressure
regulation mechanisms caused by intrinsic triggers (Voss et al. 2004).

In normal subjects, the sinus rate briefly accelerates initially and subsequently decel-
erates compared with the pre-VPC rate, before returning to baseline. A similar pattern
can also be induced by pacing, either by programmed ventricular stimulation or by an
implanted device such as a cardiac defibrillator (Bauer et al. 2008).

The physiological mechanisms involved in HRT (the initiation of a short-term blood pres-
sure regulation via the baroreflex) offers not only an explanation of why this method is
particular suitable for risk stratification after MI but also gives new insights into different
consequences of arrhythmias on cardiac mortality (Voss et al. 2004).

HRV, HRT, and baroreflex sensitivity, like many other physiological phenomena, reflect
complex interactions between cells, tissues, and organs. The Task Force on Sudden Car-
diac Death of the European Society of Cardiology recently recommended a risk stratifica-
tion strategy that combines a marker of structural damage (such as left ventricular ejection
fraction [LVEF]) with markers of autonomic imbalance (Papaioannou 2007).

2.4 Applications of HRV Analysis

Since the pioneering studies of the 1970s and 1980s, the field has rapidly expanded. Time
and frequency and NLD techniques have been used to quantify HRV in various diseases
and under various physiological conditions. Some of the most important application fields
are as follows:

• Heart disease
• Monitoring and anesthesia
• Hypertension
• Sleep disorders
• Diseases of the central nervous system and brain damage
• Fetal and neonatal development and pregnancy
• Autonomic neuropathies and diabetes
• Mental stress, fatigue, and concentration
• Mind-body exercises
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• Sports and physical activity
• Physiological influences on HRV
• Sepsis, inflammations, organ diseases, genetics, wellness, and so on

Some of these fields are discussed in more detail in the following sections. However,
because of the amount of available publications and findings, the provided information
must be incomplete and only a few references were selected.

2.4.1 Heart Disease

Heart failure is a clinical syndrome, with diagnosis based on a combination of typical
signs and symptoms together with appropriate clinical tests (Krum and Abraham 2009).
Considerable advances have been made in management of heart failure over the past few
decades. Nevertheless, heart failure remains a major public health issue, with high preva-
lence and poor outcomes. Enhanced diagnostic precision coupled with early intervention
could lessen the burden of disease. HRV has been proposed as an additional diagnostic tool
as low HRV also increases the relative risk of death from cardiovascular diseases (Dekker
et al. 2000) and increases the risk for SCD (Goldberger et al. 1984).

Reports from the original Framingham Heart Study cohort and the Framingham Off-
spring Study indicate that reduced HRV (decreased vagal tone or increased sympathetic
tone) predicts not only increased risk for all-cause mortality but also deaths from coronary
heart disease and CHF (Tsuji et al. 1996; Rubin et al. 2010).

Impaired autonomic activity has been shown to be an independent predictor of mor-
tality after MI. Early decreases in HRV were shown (Stapelberg et al. 2012) to occur fol-
lowing MI and were then linked prognostically to mortality risk (Kleiger et al. 1987, 2005;
Malik et al. 1990; Farrell et al. 1991; Casolo et al. 1992; Bigger et al. 1996; Voss et al. 1998;
Camm et al. 2004; Huikuri and Stein 2013). It was found that within 2 months follow-
ing MI, there is a significant recovery of HRV, which has been linked to the reestablish-
ment of autonomic cardiac control (Lombardi et al. 1987). After 12 months, there is further
significant recovery but HRV remains reduced compared to non-MI sufferers (Schwartz
et al. 1988; Bigger et al. 1991). Over periods greater than 1 year, several studies demon-
strated that HRV remains lowered post-MI and is associated with an increased risk of
death (Bigger et al. 1992). The relative risk of mortality after MI is significantly higher in
patients with decreased HRV (Kleiger et al. 1987; Bigger et al. 1988), regardless of time since
AMI.

Certain abnormalities of autonomic function in the setting of structural cardiovascu-
lar disease have been associated with an adverse prognosis, including various markers
of autonomic activity that have received increased attention as methods for identifying
patients at risk for sudden death. As such both the sympathetic and the parasympathetic
limbs can be characterized by tonic levels of activity, which are modulated by, and respond
reflexively to, physiological changes (Lahiri et al. 2008).

In the Defibrillator in Acute Myocardial Infarction Trial (DINAMIT), HRV was used as a
risk indicator and stratifying entry criterion but was not successful (Hohnloser et al. 2004).

An improvement in cardiac performance from cardiac resynchronization therapy (CRT)
positively alters the autonomic control of HR and beta-blocker therapy seems to potentiate
autonomic improvement combined with CRT (Gardini et al. 2010). Therefore, HRV might
be a useful parameter for identifying patients who respond to CRT and who may require
additional interventions (Xhyheri et al. 2012).
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Research has also concentrated on attempts to predict the timing of the onset of fatal
ventricular tachyarrhythmias (VTA; Wessel et al. 2000). However, the evidence of the value
of HRV in predicting VTAs is less clear (Reed et al. 2005).

For a long time risk stratification in patients with dilated cardiomyopathy (DCM) seemed
to be not or less successful (Grimm et al. 2003; Goldberger et al. 2014). However, the appli-
cation of blood pressure variability (BPV; Voss et al. 2012b) and later the introduction of
SPPA (Voss et al. 2010a, 2012a) led to a remarkable improved risk stratification in these
patients.

Most cardiovascular drugs that improve morbidity and mortality, including beta-
blockers, angiotensin converting enzyme (ACE) inhibitors, and statins, also increase HRV.
Metoprolol, quinapril, captopril, enalapril, and atorvastatin have been shown (Bilchick and
Berger 2006) in separate studies to increase HRV. The clinically observed increase in HRV
with beta-blockers is likely related to the concomitant beneficial effects on the parasympa-
thetic nervous system and renin–angiotensin–aldosterone axis. Importantly, beta-blockers
may diminish the predictive value of HRV after MI, at least for sudden death (Huikuri
et al. 2003).

Although several studies have reported on the clinical and prognostic value of HRV
analysis in the assessment of patients with cardiovascular diseases, this technique has not
yet been fully incorporated into routine clinical practice (Xhyheri et al. 2012).

2.4.2 Monitoring and Anesthesia

ANS dysfunction may complicate the perioperative course in the surgical patient under-
going anesthesia, increasing morbidity and mortality, and, therefore, it should be consid-
ered as an additional risk factor during pre- and postoperative evaluation (Bauernschmitt
et al. 2004; Mazzeo et al. 2011). Furthermore, ANS dysfunction may complicate the clinical
course of the critically ill patients admitted to intensive care units, in the case of trauma,
sepsis, neurologic disorders, and cardiovascular diseases, and its occurrence adversely
affects the outcome. In the care of these patients, the assessment of autonomic function may
provide useful information concerning pathophysiology, risk stratification, early prognosis
prediction, and treatment strategies. Given the role of ANS in the maintenance of systemic
homeostasis, anesthesiologists, critical care specialists, and surgeons should recognize as
critical the evaluation of ANS function.

2.4.3 Hypertension

One of the most important risk factors for cardiovascular diseases is hypertension. This
association has been found in various studies. Autonomic dysfunction has been demon-
strated before hypertension is established as well as in its early stages (Singh et al. 1998).
Patients with hypertension exhibit increased LF power and reduced circadian patterns
(Guzzetti et al. 1991). Langewitz et al. (1994) found decreased HF power and also a loss
of circadian rhythm. The Framingham Heart Study (Singh et al. 1998) is one of the major
studies which found reduced HRV in men and women with systemic hypertension and
that LF power of HRV was associated with new onset hypertension in men.

The findings from large, epidemiological studies also provide strong evidence that vagal
tone, as measured by HRV, is lower in subjects with hypertension than in normotensives
even after adjustment for a range of covariates. Importantly, these studies suggest that
decreases in vagal tone may precede the development of this critical risk factor for cardio-
vascular disease (Thayer et al. 2010). Analyzing HRV and other related parameters may



Historical Development of HRV Analysis 37

be useful at enhancing our knowledge of the underlying pathophysiology, which in turn
may improve therapeutic approaches for the subsets of hypertensive patients with signs of
autonomic dysfunction (Carthy 2014).

2.4.4 Sleep Disorders

HRV has been applied to understand autonomic changes during different sleep stages. It
has also been applied to understand the effect of sleep-disordered breathing (SDB), peri-
odic limb movements, and insomnia both during sleep and during wakefulness. HRV has
been successfully used to screen people for possible referral to a sleep laboratory. It has also
been used to monitor the effects of continuous positive airway pressure (CPAP) therapy as
part of sleep apnea treatment (Stein and Pu 2012).

Sleep is not just the absence of wakefulness but a regulated process with an important
restorative function. Based on electroencephalographic recordings and characteristic pat-
terns and waveforms one can distinguish wakefulness and five sleep stages grouped into
light sleep, deep sleep, and rapid-eye-movement (REM) sleep. In order to explore the func-
tions of sleep and sleep stages, Penzel et al. (2003) investigated the dynamics of sleep stages
over the night and of HRV during the different sleep stages. Sleep is a complex biological
phenomenon regulated by different biological pathways. Sleep stages and intermediate
wake states have different distributions of their duration and this allowed Penzel et al. to
create a model for the temporal sequence of sleep stages and wake states, showing that the
sympathetic tone is strongly influenced by the sleep stages. Cardiovascular autonomic con-
trol plays a key role, varying among the transition to different sleep stages. In addition, the
sleep-autonomic link has to be considered bidirectional (Tobaldini et al. 2013); in fact, auto-
nomic changes can importantly alter sleep regulation and, on the other side, sleep distur-
bances can profoundly alter the physiological cardiac autonomic modulation. Nowadays,
an increasing prevalence of sleep disorders such as SDB and neurological sleep-related dis-
turbances have been described. The assessment of autonomic cardiovascular control using
classical linear (Burr 2007) and, more recently, nonlinear (Migliorini et al. 2011) analysis
of HRV has been widely used as a noninvasive tool to provide important information on
autonomic changes in physiological and pathological sleep.

2.4.5 Diseases of the Central Nervous System and Brain Damage

It was reported by Lowensohn et al. in 1937 that normal cyclic changes in HR are reduced in
the presence of severe brain damage (Lowensohn et al. 1977). Variability decreases rapidly
if intracranial pressure rises and the rate of return of variability reflects the subsequent
state of neuronal function, even when intracranial pressure has been restored to normal.
They suggested that HRV may reflect the functional state of the central nervous system.
However, these findings did not consider the influence of mean HR and of the respiratory
pattern (Jennett 1977).

Low HRV has been observed in schizophrenic patients (Jindal et al. 2005; Bär et al. 2005).
The mechanisms by which the vagal activity is suppressed in schizophrenia are obscure
(Koponen et al. 2008), but disturbances in the corticosubcortical circuits modulating the
ANS have been suggested by Bär et al. (2005). Previous studies have also suggested a role
for the amygdala, insula, prefrontal cortex, and temporal lobes in cerebrogenic cardiovas-
cular disturbances and sudden death (Williams et al. 2004).

Low HRV has also been found in association with the use of tricyclic antidepressants,
clozapine, and thioridazine (Silke et al. 2002; Bär et al. 2008). Thus, the dysfunction of the
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cardioregulatory system may also be associated with functional and medication-related
mechanisms rather than structural changes (Koponen et al. 2008).

Depressive patients frequently complain of symptoms of ANS dysfunction, such as dry
mouth, diarrhea, and insomnia. These clinical observations propose the assumption of
altered autonomic function in these patients. In contrast to these clinical assumptions,
inconsistent results have been found in the studies of HRV in depressive patients (Voss
et al. 2008; Stapelberg et al. 2012; Bär et al. 2004; Kemp et al. 2012).

2.4.6 Fetal and Neonatal Development and Pregnancy

Well-defined periods of active (AS) and quiet sleep (QS) are detected (Curzi-Dascalova
1995) as early as 27 weeks gestational age (w GA). Beyond 35 w GA, the amount of inde-
terminate sleep is reduced to <10% and, up to the normal term, sleep is marked by the
prevalence of AS. AS differs from QS by faster respiratory rate and HR, more central res-
piratory pauses, lower amplitude of HF HRV (parasympathetico-dependent), and higher
amplitude of LF HRV (sympathetico-dependent). In artificially ventilated infants, breath-
ing is more dependent on the ventilator in QS than in AS. When they reach term, compared
with normal full-term newborns, infants with intrauterine growth retardation or prema-
turity do not show significant differences of sleep structure, but present faster heart and
respiratory rates, more respiratory pauses, and less HRV in both AS and QS; however,
sleep-states-related cardiorespiratory modulations appear similar.

Pregnancy is discussed in more detail in Section 2.5.2.
The first postnatal period for preterm infants is characterized by periods of AS and QS

states, with intermediate undetermined sleep phases. Preterm newborns have an imma-
ture ANS regulating brain and metabolic activity, HR, respiration, blood pressure, and
body temperature. Porges and Furman (2011) showed that newborns initially use primitive
brainstem–visceral circuits via ingestive behaviors as the primary mechanism to regulate
physiological state (bodily functions). However, in addition to progressive maturation, cor-
tical regulation of the brainstem develops during the first year of life (Longin et al. 2006).
In QS, a decrease of HRV accompanied by less chaotic HR fluctuations has been investi-
gated by applying linear and nonlinear methods in healthy full-term and preterm neonates
with comorbidities (Doyle et al. 2009). Reulecke et al. (2012) found that CRC is not yet
completely developed in very preterm neonates with 26–31 w GA. Significantly differ-
ent regulation patterns in bivariate oscillations of HR and respiration during AS and QS
can be recognized. On the one hand, these patterns were characterized by predominant
monotonous regulating sequences originating from respiration independently from HR
time series in AS, and to a minor degree in QS, and on the other hand by some prominent
HR regulation sequences in QS independent of respiratory regulation.

2.4.7 Autonomic Neuropathies and Diabetes

Autonomic dysfunction has been related to a wide range of diabetic complications and
to progression of the disease. Wheeler and Watkins (1973) documented the reduction or
loss of beat-to-beat HRV of diabetics with autonomic neuropathy and demonstrated that
the HRV was “abolished” by atropine but “unaltered” by sympathetic blockade. These
authors hypothesized that the loss of HRV associated with diabetic autonomic neuropathy
was due to vagal cardiac denervation (Freeman and Chapleau 2013).

Autonomic dysfunction has been related to a wide range of diabetic complications and to
progression of the disease. Early detection of subclinical autonomic impairment through
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HRV measurements in diabetic individuals may be important for risk stratification and
subsequent therapeutic management, including pharmacologic and lifestyle interventions
(Singh et al. 2000; Liao et al. 2002; Astrup et al. 2006; Xhyheri et al. 2012).

Diabetic subjects show parasympathetic impairment as assessed by frequency-domain
measures, shifted toward the LF side and decline of the time-domain measures, namely
SDNN, RMSDD, NN50 count, and pNN50. Autonomic dysfunction is associated with
both an inadequate metabolic control of the disease and occurrence of diabetic neuropa-
thy (Vinik et al. 2003). Further on, in disease progression, diabetic patients with autonomic
dysfunction have a poor cardiovascular prognosis (8-year mortality up to 23%; Rathmann
et al. 1993).

The results from the Diabetes Control and Complications Trial in patients with type 1
diabetes show that intensive glycemic control can prevent HRV imbalance, slowing the
deterioration of autonomic dysfunction over time (Diabetes Control and Complications
Trial Research Group 1993).

The prospective association between autonomic dysfunction, indexed by high HR and
low HRV, and the development of diabetes was examined by Carnethon et al. in 8185
middle-aged men and women from the Atherosclerosis Risk in Communities (ARIC) Study
(Carnethon et al. 2003). During the 8-year follow-up period, 1063 persons developed type
2 diabetes. Compared to those in the highest quartile of LF power, those in the lowest
quartile had a 1.2-fold greater risk of developing diabetes after adjustment for age, race,
gender, study center, education, alcohol use, smoking, heart disease, physical activity, and
body mass index (BMI). Those with HR in the highest quartile had 1.6 greater risk of dia-
betes than those in the lowest HR quartile with similar results for analyses restricted to
those with normal fasting glucose (Thayer and Sternberg 2006). Thus, early identification
of cardiovascular autonomic neuropathy permits timely initiation of therapy (Xhyheri et al.
2012). Recently, it was found that in the general population aged 55–74 years, the preva-
lence of autonomic nervous dysfunction is increased not only in individuals with diabetes,
but also in those with different degrees of glucose intolerance. It is associated with mortal-
ity and modifiable cardiovascular risk factors that may be used to screen for diminished
HRV in clinical practice (Ziegler et al. 2015).

2.4.8 Mental Stress, Fatigue, and Concentration

Mental stress is reported to enhance sympathetic activity, alter sympathovagal balance,
and reduce total HRV power (Malliani et al. 1991). Stress response is associated with
increased energy expenditure (Tyagi et al. 2014) along with associated changes in HR,
breath rate, and blood pressure. Psychosocial factors such as stressful life events, general
stress, hostility, depression, and anxiety are also emerging as risk factors for cardiovas-
cular diseases (Thayer and Sternberg 2006; Valentini and Parati 2009). Decreased HRV
has been associated with several psychosocial conditions and states. Among them, work
stress as a further psychosocial factor is strongly associated with HRV (Thayer et al. 2010).
Several studies implicate altered ANS function and decreased parasympathetic activity
as a possible mediator in this link. Low HRV is consistent with the cardiac symptoms
of panic anxiety as well as with its psychological expressions in poor attentional control
and emotion regulation, and behavioral inflexibility (Friedman and Thayer 1998). Simi-
lar reductions in HRV have been found in depression (Thayer et al. 1998), generalized
anxiety disorder (Thayer et al. 1996; Kemp et al. 2014), and posttraumatic stress disorder
(Cohen et al. 1999).
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2.4.9 Mind and Body Exercises

Mind–body interventions tend to facilitate autonomic flexibility, enhance self-regulation,
and induce relaxation that is characterized by parasympathetic dominance (Taylor et al.
2010) and increased HRV (Takahashi et al. 2005).

Yoga practitioners are reported to have lower HR, breath rate, blood pressure
(Bharshankar et al. 2003), higher HRV (Muralikrishnan et al. 2012), and greater metabolic
variability compared to nonyoga practitioners and metabolic syndrome patients with
reduced oxygen requirements during resting conditions and more rapid poststress recov-
ery (Tyagi et al. 2014). Regular yoga practitioners were also found to have higher vagal
tone at all baseline states and higher variance to autonomic and metabolic measures dur-
ing all active interventions with greater autonomic reactivity to, and recovery from, mental
arithmetic stress.

The analysis of the circadian patterns of cardiophysiological parameters before and after
eurhythmy therapy showed significant improvements in HRV in terms of greater day–
night contrast caused by an increase of vagal activity and calmer and more complex HRV
patterns during sleep (Seifert et al. 2013).

2.4.10 Sports and Physical Activity

The ANS is mainly involved in regulating the resting HR and the transient HR changes
accompanying physical activity and after physical activity (Borresen and Lambert 2008).

In recent years, time- and frequency-domain indices and NLD indices of HRV has also
gained increasing interest in sports and training sciences. In these fields, HRV is currently
used for the noninvasive assessment of autonomic changes associated with short-term and
long-term endurance exercise training in both leisure sports activity and high-performance
training. Furthermore, HRV is being investigated as a diagnostic marker of overreaching
and overtraining. A large body of evidence shows that, in healthy subjects and cardiovas-
cular patients of all ages, regular aerobic training usually results in a significant improve-
ment of overall as well as instantaneous HRV (Hottenrott et al. 2006). These changes, which
are accompanied by significant reductions in HR both at rest and during submaximal exer-
cise, reflect an increase in autonomic efferent activity and a shift in favor of enhanced vagal
modulation of the cardiac rhythm. Regular aerobic training of moderate volume and inten-
sity over a minimum period of 3 months seems to be necessary to ensure these effects,
which might be associated with a prognostic benefit regarding overall mortality.

Regular physical activity affects HR at rest and at submaximal exercise intensity, as well
as during the recovery after exercise (Borresen and Lambert 2008). From rest through
increasing intensities of exercise, HR shows a gradual increase up to a peak value. Sev-
eral studies using pharmacologic blockade have shown that such increase is primarily due
to parasympathetic withdrawal, whereas at greater workloads, more pronounced increases
of HR result from the combination of parasympathetic withdrawal and sympathetic activa-
tion, although even at very high-intensity exercise, there is never a total parasympathetic
withdrawal (Valentini and Parati 2009). Regular physical activity training at submaximal
exercise elicits a reduction of HR at rest (Wilmore et al. 2001; Smith et al. 1989) and at sub-
maximal exercise, whereas maximum HR slightly decreases or remains unchanged with
chronic training (Borresen and Lambert 2008). A number of studies with heterogeneous
protocols in terms of follow-up duration, frequency, and duration of exercise sessions sug-
gest that regular endurance training, besides increasing exercise tolerance and endurance,
decreases resting HR (Valentini and Parati 2009). A decrease in intrinsic rhythmicity, a
more predominant parasympathetic activity, and a slight decrease in the sympathetic
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contribution (Smith et al. 1989) have been suggested to mediate such change. Although
many reports agree in demonstrating a decrease in HR at submaximal load (Wilmore et al.
2001; Skinner et al. 2003), most of the evidence suggests that maximal HR shows a negligi-
ble change with regular endurance training.

2.4.11 Physiological In�uences on HRV

The dynamical fluctuations of biological signals provide a unique window to investigate
the underlying mechanism of the biological systems in health and disease. However, before
characterizing and interpreting impaired (pathophysiological) autonomic regulation due
to an impaired HRV, the physiological basis must be known.

2.4.11.1 Influences of Age, Gender, and Ethnicity

It has been shown that the HRV strongly depends on age and gender. HRV reduces with
aging and women up to the menopause exhibit higher vagal and reduced sympathetic
activity compared to men (Ryan et al. 1994; Voss et al. 2015).

Choi et al. (2006) showed that three short-term HRV indices (HF, LF power, and LF/HF)
were significantly related to age in Caucasian Americans but not in African Americans. The
effect of age, ethnicity, and the age-by-ethnicity interaction on HF and LF power was sig-
nificant, even after controlling for gender, BMI, and blood pressure. They concluded that
young African Americans manifested a pattern of HRV response similarly to older Cau-
casian Americans. These results suggest that young African American individuals might
show signs of premature aging in their ANS.

2.4.11.2 Influences of Lifestyle

Smokers exhibit increased sympathetic and reduced vagal activity as measured by HRV
analysis leading to reduced HRV. One of the mechanisms by which smoking impairs the
cardiovascular function is its effect on ANS control (Hayano et al. 1990; Niedermaier et al.
1993). Altered cardiac autonomic function, assessed by decrements in HRV, is associated
with acute exposure to environmental tobacco smoke (ETS) and may be part of the patho-
physiologic mechanisms linking ETS exposure and increased cardiac vulnerability (Pope
et al. 2001). In addition, it was shown that the vagal modulation of the heart was blunted in
heavy smokers, particularly during a parasympathetic maneuver (Rajendra Acharya et al.
2006).

HRV reduces with the acute ingestion of alcohol, suggesting sympathetic activation
and/or parasympathetic withdrawal. Malpas et al. (1991) and Rajendra Acharya et al.
(2006) have demonstrated vagal neuropathy in men with chronic alcohol dependence using
24-hour HRV analysis. Many additional lifestyle factors and behaviors influence HRV such
as drugs, diet, sleep, and fitness, but these are not discussed here.

2.5 Time Course of HRV Analysis in Two Different Fields

2.5.1 HRV in Patients with DCM

Cardiomyopathy diseases are characterized by modifications of the heart muscle accom-
panied by abnormal findings of chamber size and wall thickness and/or an inadequate
heart blood pumping function. The most common type of cardiomyopathy is DCM, which
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is defined by a left and/or right ventricular dilatation and dysfunction in the absence
of coronary artery disease, hypertension, valvular disease, or congenital heart disease
(Elliott et al. 2008). DCM is characterized by left ventricular dilation that is associated
with systolic dysfunction. Diastolic dysfunction and impaired right ventricular function
can develop (Jefferies and Towbin 2010). In the United States, the estimated incidence of
DCM is 5–8 cases/100,000 population per year and the prevalence is 36 cases/100,000 pop-
ulation (Cooper 2005). Based on extrapolations, the global incidence of DCM is approx-
imately 50 million new cases per year (Lassner et al. 2014). Furthermore, in the United
States, for heart failure patients of age less than 60 years, 45% of the heart transplanta-
tions result from the consequences of DCM (Cooper 2005). Alone in the United States, the
cost burden of caring for patients with DCM per year is $4–10 billion (Digiorgi et al. 2005;
O’Connell and Bristow 1994) and until now only limited success in health care has been
achieved. Therefore, in recent years, increased efforts have been made to investigate the
causes and the progression of DCM, to optimize the treatment of DCM patients, and for
early detection of patients at a high risk for a SCD contributing to the finding of an optimal
timing for either prophylactic defibrillator implantation or, at worst, a cardiac transplanta-
tion (Voss et al. 2013).

HRV analysis in the field of DCM research began in the 1990s, mostly applying linear
time, and frequency-domain HRV analysis. Recent studies of nonlinear HRV have become
of great interest for DCM since linear HRV analysis revealed insufficient results in risk
prediction of cardiac events.

In contrast to linear HRV indices providing only a small contribution to risk stratification
in DCM (Grimm et al. 2003, 2005), nonlinear HRV analyses (Voss et al. 2007) and methods
for analyzing BPV (Voss et al. 2012b) have shown new insights into the changed cardiovas-
cular variability especially in DCM patients at high risk for a cardiac event compared to low
risk patients. Nonlinear indices quantifying the structure and/or complexity of heartbeat
time series and thus providing additional independent prognostic information in DCM
will probably lead to improved risk prediction in DCM patients when combined with
linear HRV indices, clinical parameters, or biochemical markers. Furthermore, an inter-
esting approach to achieve improvements in the diagnosis of DCM and risk prediction
in DCM is the combination of HRV analysis methods with methods investigating several
other biosignals such as blood pressure, pulse wave, and respiration. Here, one obtains
information about interactions, couplings, and synchronizations between these different
regulatory systems.

The chronological order of HRV analysis in DCM below presents the most significant
research results received until now (without a guarantee of completeness).

In 1991, the spectral analysis technique of HRV was applied to obtain a more detailed
characterization of the changed autonomic profile in DCM (Binkley et al. 1991). This was
achieved by comparing the power density spectra (Welch method, duration of RR-interval
time series = 4 minutes) of 10 patients with idiopathic DCM (six males and four females,
age= 49± 11 years) and 15 healthy males (age= 29± 7 years) at baseline and in response to
pharmacologic interventions stimulating the sympathetic drive and reducing the parasym-
pathetic tone. A parasympathetic withdrawal in DCM patients compared to healthy sub-
jects was demonstrated, characterized by a considerably reduced HF band (p< 0.05) and
high to LF areas (p< 0.01). Furthermore, parasympathetic withdrawal was demonstrated
as an integral component of the autonomic imbalance characteristic in DCM, which can be
detected noninvasively by the spectral analysis of HRV.

In 1993, researchers investigated possible mechanical influences leading to a reduced
HRV in 20 DCM patients (Mbaissouroum et al. 1993). This was achieved by correlation of
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echocardiographic Doppler measures of the left ventricular function and sometime domain
indices (MeanNN, RMSSD, pNN50, SDNN, and SDANN). The authors found a strong
correlation between the left ventricular filling time and SDNN (r= 81%) and SDANN
(r= 79%), respectively. Thus, they suggested a shortened left ventricular filling time in
DCM as one important factor for the reduction of the HRV in DCM patients that usu-
ally have a higher HR than the healthy subjects. Because of the additional independent
means of HRV indices, they proposed to also apply HRV indices for the assessment of
DCM patients in addition to standard hemodynamic and imaging approaches.

In 1996, Fei et al. investigated long-term HRV (24-hour Holter ECG) in 41 patients with
CHF secondary to idiopathic DCM performing a treadmill exercise test (Fei et al. 1996).
From the frequency domain, the TP (p= 0.009) and LF (p= 0.003), but not the HF compo-
nent of HRV were significantly lower in DCM patients (n= 10) with chronotropic incompe-
tence compared with those without chronotropic incompetence. SDNN but not MeanNN
from time-domain analysis was also significantly lower in DCM patients with chronotropic
incompetence (p= 0.030). The authors assumed that decreased HRV in patients with
CHF who have chronotropic incompetence could be explained by a relation between
chronotropic incompetence and an abnormal autonomic influence on the heart in these
patients. Also in 1996, Ponikowski et al. demonstrated the use of depressed time and fre-
quency HRV indices calculated from 24-hour ambulatory ECGs for risk stratification of
ventricular tachycardia and cardiac death (Ponikowski et al. 1996). The authors investi-
gated 50 patients with moderate to severe CHF (n= 12 caused by idiopathic DCM and 38
caused by ischemic heart disease [IHD], 45 males and 5 females, age= 59± 9 years, New
York Heart Association [NYHA] II-III). Applying multiple regression analysis, decreased
HF power was the only independent predictor of the presence of ventricular tachycardia
independently of LVEF and MeanNN. Performing a univariate Cox analysis, lower SDNN,
SDANN, SD, LFn, and HFn values (p< 0.01) were found to have the potential as indepen-
dent predictors of cardiac death in patients who subsequently died. The Kaplan–Meier
survival analysis revealed that SDNN and SDANN dichotomized at median values were
the best predictors of mortality. In 1997, Ponikowski et al. confirmed these results in a
study investigating a larger group of patients with moderate to severe CHF (90 males, 12
females, mean age 58 years, NYHA class II to IV) including CHF due to idiopathic DCM in
24 patients and IHD in 78 patients (Ponikowski et al. 1997). In multivariate analysis, they
obtained SDNN, SDANN, and LF as independent predictors of survival (83 survivors and
19 deaths during a 20-month follow-up). In 1996, Hoffmann et al. performing also 24-hour
HRV analysis, found that “neither time- nor frequency-domain indices of HRV differed sig-
nificantly between idiopathic DCM patients with (n= 10) and without (n= 61) subsequent
major arrhythmic events” (including sustained ventricular tachycardia, ventricular fibril-
lation, and SCD) (Hoffmann et al. 1996). They found only a trend toward lower SDANN
(p= 0.06) and lower pNN50 (p= 0.08) in patients with major arrhythmic events indicating
a tendency toward attenuated parasympathetic activity in these DCM patients compared
to arrhythmia-free DCM patients.

In 1997, Szabó et al. demonstrated the suitability of a decreased SDNN and pNN50 index
(from 24-hour ECG time series) reflecting an impaired vagal tone to predict an increased
risk of a cardiac death and death due to progressive pump failure (Szabo et al. 1997). They
investigated 159 patients from which 16 patients died due to SCD and 14 due to progressive
pump failure during a follow-up of 23 months. In the same year, Fauchier et al. found
that the patients with idiopathic DCM (n= 93), even those without CHF, had significantly
decreased 24-hour time-domain indices (MeanNN, SDNN RMSSD) compared to healthy
subjects (n= 63), which was related to left ventricular dysfunction and not to ventricular
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arrhythmias (Fauchier et al. 1997). The use of multivariate regression analysis determined
an increased left ventricular end-diastolic diameter (p= 0.0001), a reduced SDNN (p= 0.02),
and an increased pulmonary capillary wedge pressure (p= 0.04) as predictors of cardiac
death (n= 12) or heart transplantation (n= 8).

In 1997, Yi et al. demonstrated that a SDNN value <50 ms (24-hour recording) was suit-
able to identify (p= 0.0004) patients with idiopathic DCM who were at increased risk of
developing a progressive heart failure (n= 28) from a group of 64 DCM patients includ-
ing also patients who remained clinically stable (n= 36) during a follow-up of 2 years (Yi
et al. 1997). Also in 1997, Mortara et al. found that in stable CHF (87 patients without
nonsustained ventricular tachycardia [NSVT] and 55 patients with presence of NSVT) the
assessment of arterial baroreflex function, but not HRV frequency-domain analysis (LF,
HF, and LF/HF), allows the identification of patients at high risk of NSVT (Mortara et al.
1997). Hoffmann et al. (2000) found a higher NYHA index, lower LVEF, increased LVEDD
(all p< 0.05), and only slightly lower SDNN value (p= 0.08) in DCM patients with NSVT on
Holter (n= 42) compared to patients without NSVT (n= 95) (Hoffmann et al. 2000). RMSSD
and pNN50, reflecting primarily tonic vagal activity, and BRS, reflecting predominantly
reflex vagal activity, were not different in patients with and without NSVT.

In 1998, Menz et al. compared baroreceptor sensitivity (BRS, phenylephrine method) and
24-hour time-domain HRV (SDNN, SDANN, and pNN50) as measures of cardiac auto-
nomic tone in patients with coronary artery disease (CAD, n= 49) and idiopathic DCM
(n= 130) (Menz et al. 1998). Only in a subgroup of patients with an LVEF ≤30% did they
find significant lower HRV indices (p< 0.05), but there was an unchanged BRS in patients
with CAD compared to patients with idiopathic DCM. CAD and idiopathic DCM patients
with an LVEF ≤30% showed comparable alterations in cardiac autonomic tone. In the same
year, Grimm et al. demonstrated preliminary results of the prospective Marburg Cardiomy-
opathy Study (MACAS, 24-hour Holter ECG recordings) based on 159 patients with idio-
pathic DCM (40 females, 119 males, age= 49± 12 years, LVEF= 32± 10%) (Grimm et al.
1998). They reported that patients with a depressed LVEF <30% (n= 54) were characterized
(p< 0.05) by a higher occurrence of left bundle branch blocks, NSVT, and T-wave alternans
and by a decreased SDNN and BRS in comparison to patients with a preserved LVEF ≥30%
(n= 76).

In 1999, Fauchier et al. performed a study to evaluate the prognostic value of 24-hour
time and frequency-domain HRV analysis for sudden death, resuscitated ventricular
fibrillation, or sustained ventricular tachycardia in 116 patients with idiopathic DCM
(91 males, age= 51± 12 years, LVEF= 34± 12%; Fauchier et al. 1999). Using multivari-
ate analysis, they could demonstrate that only a decreased SDNN index (p= 0.02, opti-
mal cut-off level 100 ms) and ventricular tachycardia during the ECG recording (p= 0.02)
predicted sudden death and/or arrhythmic events (n= 16 patients within a mean follow-
up of 53± 39 months). Also in 1999, Jansson et al. investigated the treatment effects of
captopril (ACE inhibitor) and metoprolol (selective beta-adrenergic receptor blocker) on
the long-term HRV in 38 DCM patients (29 males, 9 females) with mild to moderate symp-
toms of heart failure. After 6 months of therapy, captopril treatment increased TP and LF in
the frequency domain but there were no changes of time-domain indices found. Metoprolol
treatment increased both time- and frequency-domain indices of HRV. They concluded that
both drugs might have additive effects that are of prognostic importance in DCM patients.
In 1999 and 2002, Malberg et al. showed that DCM patients (n= 27) were characterized by
a 40%–50% lower number of systolic blood pressure/BBI fluctuations (p< 0.05) and a sig-
nificantly lower BRS (p< 0.05) compared to healthy subjects (n= 27), which was confirmed
for the first time using the short-term (30 minutes) linear dual sequence method (DSM;
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Malberg et al. 1999, 2002). Additionally, they determined a parameter set of six indices of
HRV, BPV, and DSM that classified 96% of DCM patients and healthy subjects correctly. In
contrast to the standard baroreflex sequence method achieving 76% accuracy in classifying
DCM patients, the DSM method achieved an improved accuracy of 84%. Bonaduce et al.
(1999) demonstrated that LF/PF and pNN50 from 24-hour HRV analysis but not indices
from the Poincaré plot had an independent and incremental prognostic value for CHF
caused by CAD (n= 57) and idiopathic DCM (n= 40); this seemed useful in risk stratifica-
tion of patients at high risk of cardiac death (32 patients during a 39± 18 months follow-up;
Bonaduce et al. 1999).

Galinier et al. (2000) obtained IHD, cardiothoracic ratio ≥60%, and SDNN <67 ms as
independent predictors for all-cause mortality (n= 55 patients during a 22± 18 months
follow-up) in a DCM patient group (n= 190, age= 61± 12 years; Galinier et al. 2000). For pre-
diction of SCD (n= 21), IHD and from the frequency domain at daytime (10:00 h–19:00 h) lnLF
power <3.3 were found to be independent predictors. In the same year, Lanza et al. found
an association between LF/HF ratio <1.2 and cardiac death (p< 0.03), arrhythmic events
(p< 0.004), and total cardiac events (p< 0.002) investigating 24-hour Holter recordings of
56 patients with idiopathic DCM (age = 49 ± 16 years; Lanza et al. 2000). Using a multi-
variate Cox analysis, a LF/HF ratio <1.2 was the only independent predictor of arrhythmic
events (p< 0.02) and the most powerful predictor of total cardiac events (p< 0.009).

In 2001, Malfatto et al. first investigated the correlation between an autonomic unbalance
present in CHF and the ethology of the disease in 21 patients with ischemic heart failure
and 21 with idiopathic DCM (Malfatto et al. 2001). In patients with ischemic heart failure, a
greater sympathetic activation at rest under spontaneous breathing was found (higher LF
and LF/HF, lower HF, p< 0.05) compared to patients with idiopathic DCM.

Mahon et al. found a significantly reduced (p= 0.01) short-term scaling component α1
(DFA on 24-hour Holter recordings) in both DCM patients (n= 24) and in asymptomatic
relatives of DCM patients (n= 22) who have a left ventricular enlargement compared to
healthy controls (n= 14) (Mahon et al. 2002). Furthermore, the time-domain index SDNN,
the HRV triangular index and the frequency-domain indices ULF and VLF were markedly
lower (p< 0.05) in DCM patients than in relatives or healthy controls. Also in 2002,
Schumann et al. (2002) found a parameter set consisting of two short-term indices, LF/TP
from linear frequency-domain and WPSUM13 from nonlinear symbolic dynamics, which
was applicable for the early detection of several heart diseases (CAD: 30 males, 4 females,
age= 62± 11 years; DCM: 41 males, 9 females, age= 52± 10 years; and MI: 42 males,
8 females, age= 58± 9 years). For classification between the different heart diseases, a
parameter set consisting of 24-hour long-term linear time-domain indices (meanNN,
SDANN) and both a short- and a long-term Shannon entropy index of the AR spectrum
were optimally suited.

In the following year, Hohenloser et al. determined only the microvolt-level T-wave alter-
nans and BRS as significant univariate predictors of ventricular tachyarrhythmic events
(p< 0.035 and p< 0.015, respectively) in 137 DCM patients (18 patients with ventricular
tachyarrhythmic events during the 18-month follow-up) but not HRV indices from the
time domain (meanNN and SDNN; Hohnloser et al. 2003).

In 2003, Minamihaba et al. investigated 24-hour ambulatory electrocardiography
recordings from 32 IHD patients and 29 DCM patients presenting the ability of the HRV
triangular index and SDNN to be indicators of disease severity in myocardial dysfunc-
tion, while MeanNN and LF/HF did not have such ability (Minamihaba et al. 2003). In
the same year, Grimm et al. prospectively found in 343 patients with idiopathic DCM
from the MACAS study that a reduced LVEF and a lack of beta-blocker use are important
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arrhythmia risk predictors, whereas signal-averaged ECG, BRS, HRV, and T-wave alter-
nans do not seem to be helpful for arrhythmia risk stratification (46 patients during a
52± 21-month follow-up had sustained ventricular tachycardia, ventricular fibrillation, or
sudden death; Grimm et al. 2003, 2005).

Following this work, Carvajal et al. reported on the ability of CD analysis to discrim-
inate between 55 DCM patients (45 males, age= 52± 10 years) and 55 healthy controls
(39 males, age= 50± 10 years). CD values were significantly lower (p< 0.01 for lag val-
ues ≥5) in DCM than in controls (Carvajal et al. 2005). In contrast to healthy subjects,
in DCM patients, no differences were found between CD values during day and night.
Also in 2005, Anastasiou-Nana et al. investigated the prognostic value of iodine-123-
metaiodobenzylguanidine myocardial uptake and HRV in 52 DCM patients (age= 56± 12
years of age) from which 14 patients died during a 2-year follow-up (Anastasiou-Nana
et al. 2005). They found similar time- and frequency-domain variables in survivors and
nonsurvivors. A univariate Cox regression analysis indicated HF to be a predictor for sud-
den death (p= 0.041) but not a predictor for all-cause mortality.

In 2006, Rashba et al. demonstrated results from the Defibrillators in Nonischemic Car-
diomyopathy Treatment Evaluation (DEFINITE; 274 participants, 200 males, age= 59± 12
years) trial showing that a preserved 24-hour HRV (SDNN >113 ms) was an indicator of
an excellent prognosis in DCM patients during a 3-year follow-up (Rashba et al. 2006).
Patients with preserved HRV may not benefit from prophylactic ICD placement.

Palacios et al. (2007) were the first to evaluate the prognostic value of nonlinear auto-
nomic information flow (AIF) measures in patients with idiopathic DCM compared to
linear standard HRV measures (Palacios et al. 2007). From AIF, most of the indices were
determined to be suitable in discrimination between healthy subjects (n= 12, age= 42± 15
years of age) and DCM patients (n= 32, age= 48± 11 years of age), but from the frequency
domain only lnLF was suitable. For the prognosis of DCM patients, the linear indices
SDNN, HFn, LFn, and VLF, and the nonlinear AIF index PD(dHF) reflecting the HF band
information flow could significantly discriminate 10 high-risk patients after aborted SCD
from 22 low-risk patients without SCD after a 3-year follow-up.

In 2008, Klingenheben et al. found only a blunted BRS as a predictor of arrhythmic
events (15 patients during a 22± 17-month follow-up) in 24-hour Holter recordings of 114
DCM patients (“Frankfurt DCM database”), whereas HRV and HRT achieved no predic-
tive power for detection of arrhythmic events (Klingenheben et al. 2008).

In the following year, Valencia et al. tried to improve the risk stratification for cardiac
death (n= 26) and SCD (n= 12) in 194 male patients with idiopathic DCM from the MUSIC2
database (Muerte Subita en Insuficiencia Cardiac; 3-year follow-up) using an entropy rate
methodology (Valencia et al. 2009). Left atrium size enlargement, decreased linear HRV
indices SDNN, and LFn during daytime and lower entropy rates during day- and night-
time were found to be independent predictors of an increased risk of death reflecting a
lower HRV and an increase in regularity of the short-term HRV in high-risk DCM patients.
A linear combination of entropy rate and SDNN determined during the daytime resulted
in a specificity of 95% (85%) and sensitivity of 83% (81%) in discrimination between low-
risk DCM patients and high-risk DCM patients at high risk for SCD (cardiac death).

Voss et al. first applied the SPPA in 2010 to assess its prognostic value for discriminat-
ing between idiopathic DCM patients at high risk (n= 14, age= 51± 15 years) and low-risk
(n= 77, age= 52± 9 years) for SCD (Voss et al. 2010a). Two nonlinear column indices from
SPPA (column 5 and column 8) demonstrated its suitability for a significant discrimination
(p< 0.002) between the low- and high-risk DCM patients (Figure 2.6) whereas the linear
short-term indices SD1, SD2, and SD1/SD2 from Poincaré analysis were comparable in
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FIGURE 2.6
Results of segmented Poincaré plot analysis (SPPA) of a healthy subject (top), a low risk dilated cardiomyopathy
(DCM) patient (bottom, left) and a high risk DCM patient (bottom, right); the probability of occurrence of points
calculated from columns 5 and 8 is presented for each subject on the number line (center); light gray rectangles:
probability of occurrence <5%, dark gray: probability of occurrence >5%.

both risk groups. In addition, indices from the lagged SPPA, applied by Voss et al. (2012a),
obtained significant differences between low and high-risk DCM patients (p= 0.00002; sen-
sitivity = 86%; specificity = 71%; Voss et al. 2012a). The use of multivariate statistics led
to a sensitivity of 93%, specificity of 86%, and an area under the curve of 92% discrimi-
nating low and high risk. Considering the same low- and high-risk DCM patient groups,
Voss et al. (2012b) demonstrated that BPV analysis also seems be useful for risk stratifica-
tion of sudden death in patients with idiopathic DCM (Voss et al. 2012b). They found a
significantly changed dynamics of blood pressure regulation (increased BPV) in high-risk
patients. One BPV index from the nonlinear symbolic dynamics revealed especially signif-
icant univariate differences (p< 0.001; sensitivity: 86%; specificity 78%).

In 2013, Valencia et al. applied nonlinear HRV analysis methods (conditional entropy,
refined multiscale entropy [RMSE], DFA, and linear time and frequency HRV analysis
to the beat-to-beat series), for single and multiscale complexity analysis of HRV in 212
ischemic DCM patients (MUSIC2 database; Valencia et al. 2013). Beside an increase of NT-
proBNP, NYHA, and left atrial size and a reduced LVEF, decreased nonlinear conditional
entropy during nighttime (p< 0.05) was found in patients with a high risk for a SCD (n= 13)
or a cardiac death (n= 30) in general compared to low-risk patients. Additionally (p< 0.05),
decreased SDNN, LF/HF, and LFn during daytime, decreased short-term scaling exponent
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α1 from DFA during daytime, decreased nonlinear SampEn, and increased long-term scal-
ing exponent from DFA during both day- and nighttime in patients at high risk for a cardiac
death in general were reported.

In 2014, Goldberger et al. performed a meta-analysis taking into account 45 studies with
6088 patients (77% were male, age= 53± 15 years, LVEF= 31± 11%) to estimate the per-
formance of 12 commonly reported risk stratification tests as predictors of arrhythmic
events in patients with nonischemic DCM (Goldberger et al. 2014). For meta-analysis, they
extracted raw event rates and used mixed effects methodology in combination with a trim-
and-fill method to estimate the influence of missing studies on the results. The highest odds
ratio was determined for fragmented QRS and T-wave alternans (odds ratios: 6.73 and 4.66,
95% confidence intervals: 3.85–11.76 and 2.55–8.53, respectively). HRT and BRS were not
suited for the prediction of arrhythmic outcomes. They suggested that the most probably
combinations of risk stratification tests would be required to optimize risk stratification in
nonischemic DCM. However, from HRV, only the index SDNN was considered! Also in
2014, Pezawas et al. investigated 60 DCM patients (median age = 57 years) and 30 healthy
subjects (median age = 59 years) at multiple time points (initial assessment, assessment
after 3 years and after a median follow-up of 7 years) applying the following methods:
pharmacological BRS testing, standard time- and frequency-domain HRV analysis (SDNN,
LF, and HF), exercise microvolt T-wave alternans and signal-averaged ECG, and corrected
QT-time (Pezawas et al. 2014). Performing single time point analysis, microvolt T-wave
alternans, BRS, and SDNN at initial testing added significant information regarding car-
diac death observed in 21 patients. In the multiple time points analysis, only the microvolt
T-wave alternans revealed additional information (p< 0.001) on resuscitated cardiac arrest
(n= 7) or arrhythmic death (n= 10).

Valencia et al. (2015) investigated the suitability of the nonlinear symbolic dynamics
analysis of RR and QT cardiac series for the differentiation between 44 ischemic DCM
patients (26 males, age= 46± 17 years) and 64 healthy subjects (39 males, age= 50± 15
years) from the Intercity Digital ECG Alliance (IDEAL) database (Valencia et al. 2015).
From the time-domain parameters a significantly decreased SDNN and increased MeanQT
and MeanQTc during day- and nighttime and the whole 24-hour period were observed in
the DCM group compared to the healthy group (p< 0.01). Both LFn and LF/HF from the
frequency domain were significantly reduced (p< 0.01) in DCM patients but only during
daytime or the whole 24-hour period. From symbolic dynamics, an increased occurrence
rate of patterns without variations (0V%) and a reduced occurrence rate of patterns with
one and two variation(s) (1V% and 2V%) were especially suitable indices for the detec-
tion of DCM patients (p< 0.0005, accuracy >80%). In the same year, Bas et al. investi-
gated the suitability of the phase-rectified signal averaging (PRSA) method applied on
24-hour-ECG recordings for improved risk prediction in 42 idiopathic DCM patients from
the IDEAL database (Bas et al. 2015). Acceleration and deceleration indices from the PRSA
method demonstrated the capacity to significantly discriminate (p< 0.001) healthy subjects
from DCM patients and high-risk from low-risk patients on a higher level than tradi-
tional temporal and spectral measures, reflecting more regularity of the ANS in high-
risk DCM patients. Fischer et al. (2015) could significantly separate 56 low-risk (46 males,
age= 55± 10 years) and 13 high-risk (10 males, age= 54± 11 years) DCM patients having
an increased risk of SCD with indices from BPV and QT variability but not with indices
from time- and frequency-domain HRV analysis (MeanNN, SDNN, RMSSD, LF, HF, and
LF/HF) (Fischer et al. 2015). They found that QTV analysis in a multivariate approach
has the ability for improved risk stratification in DCM patients with an increased risk of
SCD. With a parameter set consisting of one diastolic BPV index (Shannon from symbolic
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dynamics) and one QT variability index (QTVlog), a sensitivity of 92.3% and specificity
of 89.3% for discrimination between high and low risk DCM patients was achieved. With
a parameter set consisting of two indices from the ECG analysis (indices from SPPA and
QT variability), a sensitivity of 92.3% and specificity of 80.4% for risk discrimination was
obtained.

In summary, studies about HRV analysis in DCM clearly present a reduced HRV and
increased regularity in beat-to-beat time series both in DCM patients compared to healthy
subjects and in DCM high-risk patients compared to DCM low-risk patients. However, in
the literature, there exists a large discrepancy about the prognostic value of linear time-
and frequency-domain HRV indices for risk identification in DCM patients. Several stud-
ies report on decreased linear HRV indices (SDNN, SDANN, RMSSD, pNN50, LF, HF, and
LF/HF) in DCM patients with a high risk for arrhythmia events and cardiac death but other
studies disprove the suitability of linear HRV indices for risk stratification. In all likelihood,
differences in recording and analysis conditions including the length of the analyzed NN
time series, methods, patient selection (inclusion and exclusion criteria), measurement con-
ditions, follow-up duration, and study end-point definitions could be responsible for dif-
ferent results.

From nonlinear HRV analysis, especially entropy measures (entropy rate, conditional
entropy, SampEn, and AIF), SSD indices and Poincaré plot indices (from SPPA and lagged
SPPA) were found to be useful for risk stratification in DCM. Improvements in diagnosing
DCM and in risk stratification were obtained by performing multivariate analysis and com-
bining nonlinear methods in HRV analysis with analysis of further cardiovascular signals,
for instance, blood pressure.

In general, HRV analysis, particularly in the nonlinear domain, seems to be a promising
tool for risk assessment in DCM patients, and should be further investigated in large cohort
studies.

2.5.2 HRV in Women Suffering from Preeclampsia

Hypertensive disorders during pregnancy are a leading cause of preterm birth, maternal
and fetal morbidity, and mortality; 6%–8% of all pregnant women are affected (NHBPEP
2000). Among them preeclampsia (PE) is the most severe one. Fetal growth restriction and
PE together affect around 10%–15% of all pregnancies worldwide (Cottrell and Sibley 2015).
There are currently no therapies available to treat these pregnancy disorders. In addition,
PE is linked to an increased risk for cardiovascular events, death, and stroke in women later
in life. Therefore, PE is a considerable risk factor for long-term health in women (Amaral
et al. 2015).

Early identification of pregnancy-induced hypertension (PIH) could facilitate treatment
to avoid severe complications. The identification of specific ANS impairments character-
ized by changed HRV (and BPV) could help to detect at an early stage the high-risk patients
in the group of women with PE.

The National High Blood Pressure Education Program Working Group on High Blood
Pressure in Pregnancy classifies hypertension in pregnancy to one of four conditions:
(1) chronic hypertension (CH), (2) gestational or PIH, (3) CH with superimposed PE, and
(4) PE.

CH is defined as a blood pressure of more than 140/90 mmHg on two measurements
before the 20th week of gestation or persisting beyond 12 weeks after delivery. PIH
describes the development of hypertension after 20 weeks of gestation without protein-
uria whereas PE is a multisystem disorder characterized by hypertension in combination
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with proteinuria in the second half of pregnancy (Zamorski and Green 2001; NHBPEP
2000; Leeman and Fontaine 2008). Although the etiology of PE is not yet fully under-
stood, it is well established that PE is accompanied by low circulating blood volume and
an increase in peripheral vascular resistance (Roberts and Redman 1993; Borghi et al. 2011).
It is associated with disturbed placental development followed by endothelial dysfunction
and can result in severe complications for the mother such as cerebral hemorrhage, lung
edema, or liver hemorrhage and rupture. For the fetus, intrauterine growth restriction and
preterm birth are possible consequences leading to a high risk of infant mortality or mor-
bidity (VanWijk et al. 2000; NHBPEP 2000).

The first applications of HRV on fetal ECGs were found by Hon and Lee (1965) investi-
gating fetal distress alterations in BBIs before HR changed. The application of HRV analysis
in women suffering from hypertensive disorders and especially from PE started mostly in
the middle of the 1990s.

In 1994, Eneroth-Grimfors et al. computed the variability in HR, blood pressure, and
breathing movements in 12 healthy pregnant women, 13 preeclamptic women, and 10 non-
pregnant controls using an AR spectral analysis algorithm (Eneroth-Grimfors et al. 1994).
HRV was quantitated as the area under the spectral curve and a t-test was performed on
logarithmic values. Women with PE were characterized by a significantly reduced HF peak
compared to healthy pregnant (p= 0.03) and nonpregnant (p= 0.02) women. The present
results indicate that PE is associated with decreased vagal control of the heart.

Ekholm et al. (1997) studied noninvasive electrocardiographic signals and arterial blood
pressure from 14 women with PIH and 16 women with uncomplicated pregnancies of sim-
ilar duration while breathing (1) with normal tidal volume at a frequency of 15 breaths per
minute and (2) breathing tidal volume as deeply as possible at a frequency of six breaths
per minute (Ekholm et al. 1997). For analysis of HR and systolic BPV, the AR model of spec-
tral analysis was calculated. HR and systolic BPV were significantly increased in women
with PIH compared to normotensive pregnant women (HF component of HRV [p= 0.02]
while the women were breathing with a normal tidal volume).

In the following year, Eneroth et al. evaluated HRV applying time- and frequency-
domain measures of 24-hour Holter ECG (Eneroth and Storck 1998). They investigated
three groups of patients (15 preeclamptic, 15 women hospitalized due to other complica-
tions, and 15 healthy pregnant women) in the 28th–33rd weeks of gestation. Preeclamp-
tic women had significantly longer NN intervals during the daytime compared to the
other groups. Frequency-domain measures did not differ between the groups. Interest-
ingly, the power of the maternal HR spectrum was clearly depressed, which affects the
results. Nearly at the same time, Greenwood et al. performed standard microneurography
to quantify single impulses of action potentials, together with processed multiunit bursts
from fibers innervating the leg muscles, investigating vascular vasoconstrictive properties,
HR, and finger arterial blood pressure at rest and their responses to standard isometric
hand-grip exercise and cold pressor tests (Greenwood et al. 1998). Therefore, 13 patients
with PIH and 11 healthy pregnant women were analyzed; PIH had higher levels of finger
arterial blood pressure, more than 3 times the amount of single impulses of action poten-
tials (per min and per 100 cardiac beats) and twofold the amount of multi-unit bursts. In
the same year, Lewinsky et al. recorded 512 consecutive BBI maternal ECGs of 11 nonpreg-
nant, 25 healthy pregnant, and 15 preeclamptic women in the rest left-lateral and supine
positions and applied power spectral analysis to determine the relationship of sympathetic
and parasympathetic tone as well as RSA to HRV (Lewinsky and Riskin-Mashiah 1998).
As one result, healthy and preeclamptic women showed a significant decrease in RSA and
an increase in sympathetic tone compared with nonpregnant women. Furthermore, only
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preeclamptic women shifting from the left lateral to the supine position demonstrated
a marked increase in power within the VLF (0.04–0.15 Hz) range. In conclusion, PE is
characterized by sympathetic overactivity and mediated by an increase in sympathetic
nervous tone.

In 1999, Eneroth et al. analyzed the maternal power spectrum with an AR algorithm
(LF peak—attributed to sympathetic tone, HF peak power (0.15–0.40 Hz)—reflecting vagal
tone) of 24-hour Holter ECGs investigating 15 nonpregnant and preeclamptic women
in the 32nd–36th weeks of gestation and 3–6 months postpartum, respectively (Eneroth
et al. 1999). The power spectrum of maternal HRV did not differ between preeclamptic
and nonpregnant women. However, the amplitude of all components became significantly
higher after delivery compared to those during pregnancy except for the HF component in
preeclamptic women, but the HF component was significantly lower in preeclamptic than
in nonpregnant women (p= 0.03). In conclusion, Eneroth et al. indicated impaired vagal
modulation even in the nonpregnant women, unlike those who had a normotensive preg-
nancy. In the same year, Ursem et al. applied 12 seconds of Doppler flow velocity waveform
recordings from the umbilical artery at 10–20 weeks of gestation in 12 nulliparous women
who subsequently developed PIH and gestational age-matched healthy nulliparous preg-
nant women, determining absolute values and beat-to-beat variability in fetal HR, peak
systolic velocity, and time-averaged velocity (Ursem et al. 1999). In the results only vari-
ability in peak systolic velocity and time-averaged velocity were decreased in women who
subsequently developed PIH. Therefore, the authors propose that the variability of the
umbilical artery flow velocity is associated with the mechanical changes in the vascular
bed of women who later develop PIH.

Yang et al. (2000) evaluated the changes of HRV in 17 nonpregnant, 17 healthy pregnant,
and 11 preeclamptic women applying frequency-domain analysis of short-term from sta-
tionary BBI measuring to evaluate the total variance, LF, HF, ratio of LF to HF (LF/HF),
and LF in normalized units (LF%; Yang et al. 2000). After that, the natural logarithm trans-
formation was applied to variance, LF, HF, and LF/HF for the adjustment of the skew-
ness of distribution. They found higher LF/HF and LF%, but lower RR value and HF in
the healthy pregnant group compared to the nonpregnant group as well as lower HF, but
higher LF/HF in the preeclamptic compared to all other groups. In conclusion, it was sug-
gested that a healthy pregnancy is associated with a facilitation of sympathetic regulation
and an attenuation of parasympathetic influence of HR, enhanced in preeclamptic preg-
nancy.

One year later, Greenwood et al. compared peripheral sympathetic discharge, its vaso-
constrictor effect, and its baroreceptor control during pregnancy and postpartum in
21 healthy pregnant, 21 nonpregnant women, and 18 women suffering from PIH by
muscle sympathetic nerve activity (MSNA) assessed from multiunit discharges and from
single units with defined vasoconstrictor properties (s-MSNA; Greenwood et al. 2001).
The s-MSNA in healthy pregnancies (38+/−6.6 impulses/100 beats) was greater (p< 0.05)
than in nonpregnant women (19+/−1.8 impulses/100 beats) despite similar age and body
weight, but less than in PIH women (p< 0.001) (146+/−23.5 impulses/100 beats), whereby
MSNA followed a similar trend. Cardiac baroreceptor reflex sensitivity (BRS) was impaired
in healthy pregnant and PIH women relative to nonpregnant women. After delivery, sym-
pathetic activity decreased to values similar to those obtained in nonpregnant women
with an increase in BRS. Furthermore, sympathetic output decreased in healthy pregnant
women despite an insignificant change in blood pressure.

In 2004, Faber et al. also recorded continuous HR and blood pressure in 80 healthy preg-
nant women, 19 women with CH, 18 with PIH, and 44 with PE assessed by time- and
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frequency-domain analysis, NLD, and BRS (Faber et al. 2004). One result of their study
was the markedly altered BPV in all three hypertensive groups compared to healthy preg-
nancies, especially in PE patients. Although the increase in PE patients did not lead to
elevated spontaneous baroreflex events, BPV changed in CH and PIH paralleled by alter-
ations in baroreflex parameters. The HRV is unaltered in CH and PE, but significantly
impaired in PIH. Faber et al. concluded that the parameters of the HRV, BPV, and BRS differ
between various hypertensive pregnancy disorders. Thus, distinct clinical manifestations
of hypertension in pregnancy have different pathophysiological, regulatory, and compen-
satory mechanisms. In the same year, Rang et al. recorded the continuous HR and blood
pressure by Portapres (TNO, Amsterdam, The Netherlands) during orthostatic stress, dur-
ing rest in a supine and sitting position, and during paced breathing for periods of 1 minute
at breathing frequencies of 6, 10, and 15 breaths/min (Rang et al. 2004). They applied HRV
analysis for 21 pregnant woman with (multigravid) and without (primigravid) a history of
PE, before pregnancy and at 6, 8, 12, 16, 20, and 32 weeks of gestation as well as 15 weeks
after delivery with a classification after delivery as healthy pregnancy or PE (eight women).
In this study, the spectral analysis was applied by analyzing baroreflex gain HRV and BPV
as well as the phase angle between both the signals at LF (approximately 0.1 Hz) and HF
(respiratory rate). Summarizing, women suffering from PE showed a significantly higher
mean arterial pressure before and during pregnancy (p= 0.001), a significantly larger ini-
tial blood pressure drop to orthostatic stress before and in the first half of pregnancy
(p= 0.002), and a significantly larger negative phase difference during supine rest at LF
from 8 weeks onward (p= 0.003). These findings are compatible with increased resting
sympathetic activity and decreased circulating volume, already present before and early in
pregnancy.

The difference of instability and frequency-domain variability in HRs among healthy
fetuses, preeclamptic fetuses, and fetuses affected by PE and growth restriction was inves-
tigated through of the antepartum fetal HRs by Yum et al. (2004). Very short-term inter-
mittency (C1alpha) and the spectral powers were calculated to evaluate the instability and
frequency-domain variability, respectively. The preeclamptic fetuses showed abnormally
high C1alpha and LF as well as HF. The fetuses affected by PE and growth restriction
showed even higher C1alpha and abnormally reduced LF than that of the preeclamptic
fetuses. Conclusively, preeclamptic fetuses and fetuses affected by severe PE and growth
restriction showed a greater abnormal instability and an abnormally reduced variability at
LF range when compared to the HRs.

In 2005, Walther et al. recorded 30 minutes continuous blood pressure (Portapres sig-
nals, 200 Hz) under resting conditions from 16 pregnant women with CH (mean age:
30 years; range: 25–33 years) and 35 healthy pregnant women (mean age: 28 years; range:
24–30 years) starting at the 20th week of pregnancy every 4th week until delivery (Walther
et al. 2005). As one result, the CH group had significantly increased blood pressure compared
to healthy pregnant women (140 mmHg [132]–[148] vs. 111 mmHg [105]–[132]; p< 0.001)
and an increased HR was found in both groups during the second half of pregnancy. Conse-
quently, decreased HRV was distinctively presented in the CON group. Furthermore, both
groups indicated increasing LF/HF related to a decrease in HF and a significant increase in
LFn (LF power in normalized units), but no significant difference in HRV. In the contrast,
VLF increased exclusively in woman suffering from CON.

Baier et al. (2006) applied discrete hidden Markov models (HMMs) to classify preg-
nancy disorders by recording RR and systolic blood pressure time series from 15 women
with PIH, 34 with PE, and 41 healthy pregnant women beyond the 30th gestational
week (Baier et al. 2006). The observation sequence was analyzed by symbolic dynamics.
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HMMs were found to be sufficient to characterize different BPV with five to ten hidden
states and HRV using 15 hidden states. PE and PIH revealed different pathophysiologi-
cal autonomous regulation. In the same year, Voss et al. recorded high-resolution ECGs
and noninvasive continuous blood pressure signals simultaneously for 30 minutes to ana-
lyze HRV, BPV, and BRS (Voss et al. 2006). Thirty-two healthy pregnant women (age 28
years, range 24–31 years), 16 women with abnormal uterine perfusion and normal out-
come (AP–NO, age 29 years, range 28–33 years), and 19 women with abnormal uterine
perfusion and pathologic (e.g., PIH or PE) outcome (AP–PO, age 26 years, range 25–30
years) were monitored every fourth week from the 20th week of pregnancy until delivery.
The healthy pregnant women presented pregnancy-induced adaptation of cardiovascu-
lar control; in the course of gestation, BPV was increased while parameters of HRV and
BRS were reduced. However, no changes during the second half of pregnancy could be
observed in pregnancies with abnormal perfusion. Additionally, variability parameters
were significantly altered in women with abnormal perfusion compared with healthy preg-
nant women, more pronounced in AP–PO compared with AP–NO. Abnormal uterine per-
fusion, independently of the pregnancy outcome, had a significant impact on maternal
cardiovascular control. In the same year, Walther et al. recorded 30 minutes of noninva-
sive continuous blood pressure recordings to extract time series of systolic blood pressure
(SBP) as well as diastolic blood pressure (DBP) values for the further analysis of HRV, BPV,
and BRS (Walther et al. 2005). The data from 102 pregnancies with different uterine perfu-
sions (pulsatility index >1.45: n= 17; bilateral notch: n= 11; pulsatility index and bilateral
notch: n= 30; normal uterine Doppler: n= 44) were investigated to predict the PE (n= 16).
The authors identified a combination of two variability indices (HF of DBP, VLF/TP of
HRV) and one index from extend baroreflex sensitivity analysis, the number of tachycardic
baroreflex events (Malberg et al. 2007), to predict PE several weeks before clinical manifes-
tation with a sensitivity of 87.5%, a specificity of 83.7%, and a positive predictive accuracy
(PPA) of 50.0%. While combining these results with Doppler investigations of uterine arter-
ies, PPA increased to 71.4% (with a sensitivity of 93.7% and a specificity of 85.7%).

Baumert et al. investigated the monthly recorded ECGs from 32 healthy pregnant women
with normal outcome, 32 pregnant women with abnormal perfusion (15 women with
normal outcome and 17 women with developed PE or PIH), and 10 healthy nonpreg-
nant women as controls (CON), starting from the 20th week of gestation until 3 days
postpartum (Baumert et al. 2010). The objective of this study was to quantify longitudi-
nal changes in ventricular repolarization during pregnancy. The QT(c) interval was unal-
tered in healthy pregnant women compared to CON, but the QT interval–HR hystere-
sis lag was shorter and the QT interval–HR regression residual was higher. Significantly
smaller QT interval–HR regression residuals and a trend toward shorter QT(c) intervals
could be found in pregnancies with abnormal uterine perfusion compared with healthy
pregnant women. In conclusion, pregnancy has a significant effect on ventricular repo-
larization, whereby pregnancies with abnormal uterine perfusion and subsequent patho-
logical outcomes have equal ventricular repolarization that precedes clinical symptoms.
In the same year, Riedl et al. investigated the couplings between respiration, SBP and
DBP, and HR from the data of 13 healthy pregnant women and 10 women suffering
from PE applying nonlinear additive AR models with external input for a model-based
coupling analysis following the idea of GC (Riedl et al. 2010). As the main result, they
found that the coupling structure among HR, SBP, DBP, and respiration for healthy and
preeclamptic women is the same and reliable. However, a significant increased respira-
tory influence on DBP could be found for preeclamptic women (p= 0.003) and the non-
linear respiratory influence on the HR is significantly different between the two groups
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(p= 0.002). Interestingly, the influence of SBP on HR is not selected, which indicates that
the BRS estimation strongly demands the consideration of causal relationships between
HR, blood pressure, and respiration. Finally, their results point to a potential role of respi-
ration for understanding the pathogenesis of PE. Stutzman et al. (2010) studied the effects
of an exercise program in normal weight and overweight/obese pregnant women on blood
pressure and cardiac autonomic function determined by HRV and BRS (Stutzman et al.
2010). Twenty-two healthy pregnant women were recruited at 20 w GA (normal weight,
n= 10; overweight/obese, n= 12) and assigned to either an exercise (walking) group or
control (nonwalking) group, randomly. Women in the walking groups participated in a
16-week, low-intensity walking program and blood pressure, HRV and BRS were measured
at rest and during exercise at the beginning (20 w GA) and end (36 w GA) of the walking
program. One result indicated that women in the control groups (especially overweight
women) showed changes in blood pressure, HRV, and BRS compared to the nonwalking
group. Overweight women in the control group revealed an increased resting SBP of 10
mmHg and DBP of 7 mmHg. In addition, the authors found a declined HRV in the control
group, but not in the walking group and a reduction in BRS and NN interval at rest in all
groups except the walking normal weight group.

In the same year, Voss et al. (2010c) investigated alterations in cardiovascular regula-
tions, applying the JDS method and revealing nonlinear interactions/couplings between
two time series. Therefore, they investigated continuous, noninvasive 30-minute blood
pressure and ECG from 20 healthy pregnant women before and after the 25th week of
gestation as well as nine women with CH, nine with PIH, and 17 suffering from PE. It
was shown that couplings in the cardiovascular regulation system were changed consid-
erably between the first and the second part of gestation in healthy pregnancy. Further on,
significant changes of these couplings led to a significant differentiation between healthy
pregnancy and PE and between the CH or PIH and PE.

Seeck et al. investigated the differences in women suffering from PE with various other
hypertensive pregnancy disorders (mean age 28.2 years, range 19–38 years, standard devi-
ation 5.2 years) by applying the SPPA for the first time (Seeck et al. 2011). Continuous blood
pressure was recorded for 30 minutes from 69 pregnant women with hypertensive disor-
ders (29 with PE, 18 with CH, and 22 with PIH). The SPPA method as well as the traditional
PPA method found highly significant differences (p< 0.001) between PE and other hyper-
tensive disorders analyzing the DBP, but only the SPPA method revealed highly significant
differences regarding the SBP. With SPPA they could increase the power of discrimina-
tion between chronic and gestational hypertension and PE to an area under the receiver
operating characteristic (ROC) curve of 0.85 (versus 0.69 without using SPPA). In the same
year, Tejera et al. applied an artificial neural network for the classification of women with
healthy, hypertensive, and preeclamptic pregnancies in different gestational ages using
maternal HRV indices composed by time intervals between consecutive NN heartbeats
(Tejera et al. 2011). Considering also maternal history and blood pressure they obtained for
PE a discrimination sensitivity of about 80% and a specificity of 85%–90%. Later on, they
performed a comparative analysis of BPV and HRV complexity during pregnancy, apply-
ing a mixed unbalanced model for longitudinal statistical analysis as well as conventional
spectral analysis, Lempel–Ziv complexity (see compression entropy), SampEn, approxi-
mated entropy, and DFA (Tejera et al. 2012a). In this study, they recorded 563 short (10
minute) ECGs from 217 pregnant women (135 healthy, 55 hypertensive, and 27 preeclamp-
tic women) in several gestational ages in the sitting position. They reported significant
differences between the hypertensive and healthy pregnant women with important con-
siderations related to pregnancy adaptability and progression as well as the relationship
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of complexity and blood pressure with factors such as maternal age, familial history of
diabetes, or hypertension. In a further study, they explored the correlations between HRV
indices (complexity and spectral variables, calculated from short-term EGCs) and biochem-
ical markers during the third trimester of the same healthy, hypertensive, and preeclamptic
pregnancies (Tejera et al. 2012b). They found positive relations of complexity indices with
hemoglobin concentration in the pathologic group and uric acid blood levels. The LF was
negatively correlated with uric acid and creatinine concentration but positively correlated
with platelet levels.

In 2013, Ramirez Avila et al. applied recurrence-based methods (RQA and the novel
epsilon-recurrence networks) to distinguish pregnancies that develop life-threatening PE
prior to the manifestation of the disease in the second trimester (Ramirez Avila et al. 2013).
Therefore, they investigated HRV and systolic and diastolic BPV. They examined the cou-
pling structures in the phase space, considering certain indices, for example, recurrence
rate, determinism, laminarity, trapping time, and longest diagonal and vertical lines. The
result of a quadratic discriminant analysis classified healthy pregnancies and upcoming
preeclamptic patients with a sensitivity of 91.7% and a specificity of 45.8% in the case of
RQA and 91.7% and 68% when using epsilon-recurrence networks, respectively.

In 2014, Voss et al. applied the bivariate segmented Poincaré plot analysis (BSPPA) to
data of 35 pregnant women suffering from CH, PIH, and PE, investigating 30 minutes of
noninvasive SBP and BBIs to quantify their couplings. They revealed significant differ-
ent couplings between CH, PIH, and PE indicating that cardiovascular regulation can be
considerably altered depending on the type of hypertensive disorder. An optimal mul-
tivariate set to distinguish best between CH and PE was estimated (sensitivity of 100%,
specificity of 77.8%, and AUC of 90.8%) consisting of two BSPPA indices. In the same year,
Fischer and Voss introduced the new 3DSPPAs, investigating 30 minutes of BBIs, respi-
ration phase (RESP), noninvasive SBP, and DBP from 10 healthy nonpregnant women, 66
healthy pregnant women, and 56 hypertensive pregnant women (CH, PIH, and PE; Fis-
cher and Voss 2014). SPPA3 discriminated the best between PIH and PE concerning cou-
pling analysis of two or three different systems (BBI, DBP, RESP and BBI, SBP, DBP) reach-
ing an accuracy of up to 82.9% (Figure 2.7). This could be increased to an accuracy of up
to 91.2% by applying multivariate analysis differentiating between all pregnant women
and PE.

Walther et al. (2014) recorded high-resolution ECG and noninvasive continuous blood
pressure monitoring from 14 healthy pregnant women and 13 women with PE within
4 days before and 4 days after delivery and compared this to the values of 14 nonpreg-
nant women. Blood pressure remained elevated 4 days postpartum, but markers for arte-
rial stiffness normalized in women suffering from PE. However, none of the HRV and BRS
parameters, altered due to either pregnancy or disease, returned back to normal levels 96
hours after the delivery, suggesting that 4 days after the delivery, the maternal cardiovas-
cular system is still strongly affected by pregnancy independent of the health status.

The recently introduced new laboratory test, Elecsys (Roche, Penzberg, Germany), ana-
lyzes the angiogenic and antiangiogenic factors soluble fms-like tyrosine kinase (sFlt-1) and
placental growth factor (PIGF) and their ratio (sFlt-1)/PIGF to assess PE (Verlohren et al.
2010). Maternal serum concentrations of sFlt-1 and PIGF significantly separated healthy
women and women with PE. The best performance was obtained in the identification of
early-onset PE (area under the ROC of 0.97).

Pregnant women with suspected PE require intensive monitoring or hospitalization.
The prediction of PE using Elecsys is successful starting from a gestational age of greater
than 20 weeks. A combination of this test together with HRV and/or BPV analysis could
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FIGURE 2.7
Three-dimensional segmented Poincaré plot analysis (SPPA3) shows the coupling between the three signals BBI,
SBP, and RESP from a healthy nonpregnant woman (left), healthy pregnant woman (middle), and a woman suf-
fering from preeclampsia (right). BBI, beat-to-beat intervals; RESP, respiratory rate; SBP, systolic blood pressure.

probably lead to an earlier prediction. Further on, HRV is known to be a risk stratifier in
various heart diseases. Therefore, HRV and BPV analyses could be applied to determine
the individual risk for the future development of cardiovascular diseases in PE women.

2.6 Outlook

The neuronal control of breathing and HR are closely linked, functionally as well as
anatomically. CRC is strongly related to the occurrence of RSA. RSA is characterized by
an HR increase during inspiration and a decrease during expiration and is dependent on
both the frequency and the depth of respiration. Respiratory-mediated HRV is the most
widely used index of cardiac parasympathetic function. The beat-to-beat variability of HR
is predominantly mediated by the vagus nerve. The amplitude of the beat-to-beat varia-
tion with respiration is the most commonly used measure (Freeman 2006). Many disease
states are present with cardiorespiratory instabilities and dysautonomia. Such cardiorespi-
ratory dysautonomias include apnea of prematurity, sudden infant death syndrome (SIDS),
obstructive sleep apnea, familial dysautonomia, and Rett syndrome (Garcia et al. 2013).

Cardiovascular homeostasis is maintained by input from baroreceptors in the carotid
sinus and aortic arch (the “high pressure baroreceptors”) and cardiopulmonary volume
receptors in the atria, great veins, and ventricles (the “low pressure baroreceptors”). An
increase in blood pressure inhibits efferent sympathetic outflow to the heart and peripheral
vasculature and promotes efferent parasympathetic activity to the heart. This leads to a
decrease in HR, systemic vascular resistance, and blood pressure. In contrast, a fall in blood
pressure leads to an increase in HR and blood pressure (Fritsch et al. 1986; Andresen 1984).

The most specific classification domains of variability such as the time domain, the fre-
quency domain, and the generalized nonlinear domain are still valid since the introduc-
tion of the task force. The task force itself was originally created to provide guidelines.
With the help of these guidelines, medical science made considerable progress in discov-
ery of physiological interrelations of autonomic regulation and its impairment. However,
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nowadays, these guidelines are (at least partly) out of date (Bravi et al. 2011). For instance,
they recommended that equipment designed to analyze the HRV include the three spe-
cific statistical measures, plus one specific geometrical measure (Bravi et al. 2011). Several
suggested methods (e.g., the power law approach) could not be proven to contribute to
medical-oriented HRV analyses. The HF band, for instance, is limited to 0.4 Hz, leading in
cases of elevated breathing rates (e.g., in patients with DCM or in schizophrenic patients) to
miscalculations. Most of the positive validated methods from NLD were developed during
the last 15–20 years and, therefore, are not included in the task force. Even though recently
an updated paper was published (Sassi et al. 2015) several of these restrictions remained.

A new classification system is therefore needed to create new guidelines, one that is capa-
ble of giving a place to the increased number of techniques that currently are not classified
but have been proved in representative studies to be effective in disease identification and
assessment of health risk.

Although various studies have reported on the clinical and prognostic value of HRV
analysis in the assessment of patients with different diseases, in most cases, this technique
has not been fully established in medical practice. The reasons for this are manifold, lead-
ing to different or partly opposite results of HRV analyses for specific disease processes.
Among the most important ones are as follows:

• Specific differences in the patient groups (inclusion and exclusion criteria, medica-
tion, comorbidities, risk factors, reference groups, etc.)

• Different length of the investigated time intervals
• Poor signal quality (increases the error in the precision of QRS complex detection)
• Dependency on signal preprocessing techniques (sampling frequency, applied filter

technique, etc.)
• Recording conditions, as daytime (dependency on circadian rhythm), same/

changing investigators (subjective influences), activity (lying in bed, ambulant, exer-
cise), position (sitting, laying), and so on

• Same indices calculated with different methods (e.g., spectral indices as LFn, HFn
from Fourier transform or from AR methods)

• Too low number of enrolled patients
• Univariate versus multivariate analyses
• Mostly retrospective studies, missing prospective and randomized studies

The analysis of causal and noncausal relationships within and between dynamic sys-
tems has become more and more a topic of great interest in different fields of science, for
example, economics, physics, and life sciences. Especially in the medical field, the under-
standing of driver–response relationships between the regulatory systems and within sub-
systems is of growing interest. In particular, the focus has recently moved toward the
assessment of the strength of the relations and the directionality of couplings as two major
aspects of investigations for a more detailed understanding of physiological regulatory
mechanisms and physiological networks (Schulz et al. 2013; Schulz and Voss 2014; Bashan
et al. 2012).

The cardiovascular and cardiorespiratory systems are characterized by a complex inter-
play of several linear and nonlinear subsystems. For the analyses of the cardiovascular
(Fischer and Voss 2014) and cardiorespiratory regulatory systems (Garcia et al. 2013) as well
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as the quantification of their interactions, a variety of linear as well as nonlinear uni-, bi-,
and multivariate approaches have been proposed. However, linear approaches are insuf-
ficient to quantify nonlinear structures and the complexity of physiological (sub)systems’
interplay suggests that nonlinear time series analysis may be often more suited to cap-
ture complex interactions between different time series (Schulz et al. 2013; Schulz and Voss
2014).

For the investigation of these systems, bivariate approaches are commonly applied.
However, it can be assumed that the application of multivariate approaches (e.g., 3DSP-
PAs (Fischer and Voss 2014), partial transfer entropy (pTE; Vakorin et al. 2009), nonuni-
form multivariate embedding (Faes et al. 2012), and PDC (Baccala and Sameshima 2001)
will be increasingly used instead of bivariate ones since they improve the characterization
of causal or noncausal interrelationships. Thereby, the assessment of these couplings and
their causality can be performed by applying either linear or nonlinear time series analysis
approaches. While nonlinear methods study complex signal interactions, linear methods
favor the frequency-domain representation of biological signals (characterization of con-
nectivity between specific oscillatory components). The application of linear and nonlinear
approaches used to quantify direct or indirect as well as causal or noncausal relationships
might provide new insights into alterations of the cardiovascular and cardiorespiratory
system and possibly will lead to improved knowledge of the interacting regulatory mech-
anisms under different physiological and pathophysiological conditions. These approaches
represent promising tools for detecting information flows in a multivariate sense. They also
might be able to provide additional prognostic information in the medical field and might
overcome or at least complement other traditional univariate analysis techniques (Schulz
et al. 2013).

While HRV is a very simple and noninvasive method for recording data, the data itself,
and its meaning, remain at least partly difficult to interpret. More research is needed to clar-
ify further the interpretation of HRV; such research is promising in terms of better under-
standing both diseases and also their treatments.
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3.1 Introduction

Digital signal processing is a tool that is used not only in classic engineering but also in
a range of multidisciplinary applications. To understand the benefits that a particular sig-
nal processing method offers, the researchers must be aware of the theory underlying the
method, as well as the limitations thereof.

At first glance, there is a wide range of excellent introductory books, primers, and tutori-
als on signal processing. Unfortunately, many such texts assume that the reader is familiar
with mathematics and stochastic processes theory at university level and sometimes with
fundaments of communications theory. The reader should be fluent in mathematical terms,
theorems, and lemmas in order to benefit from such material. On the one hand, signal pro-
cessing penetrates all aspects of contemporary life, but on the other, a would-be consumer
of the benefits that signal processing offers may find this material challenging.

The aim of this chapter is to describe the introductory topics of signal processing using no
mathematical terms and no mathematical expression. Another important issue is to show
that signal processing is not a magic wand that gives a solution at a single sweep. Signal
processing has its limitations and wielding the powerful tools it offers requires carefulness
and understanding. A correct approach is based on interdisciplinary teamwork.

This chapter is not intended for signal processing experts, who might find the descriptive
approach without the mathematical strictness too simplified. It is intended for the absolute
beginners who do not wish to study mathematics in order to understand, for example,
what power spectrum density estimation really means.
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3.2 From Analog to Digital: A Necessary Prerequisite for Signal Processing

A classical electrocardiograph (ECG) is an analog signal. It is continuous in time, mean-
ing that it is defined at any instant in time. It is also continuous in space, meaning that
its amplitude can assume any possible value. The resolution of analog signals is infinitesi-
mally small and such signals appear in a continuous manner, just like the sinusoidal signal
presented in Figure 3.1a.

On the other hand, most computers are digital machines that do not have an infinitesi-
mally small resolution. Digital computers are fundamentally based on discrete or discon-
tinuous numbers and cannot process a signal that is continuous in time or continuous in
amplitude. An analog signal needs to be converted into digital form to become fit for com-
puter input and for subsequent processing. For this reason, almost every research paper on
cardiovascular signal analysis contains a statement similar to the following: “The arterial
blood pressure signal was digitized at 1000 Hz and transmitted to the computer equipped
with the corresponding receiver.” This statement describes the process of conversion from
a continuous analog biomedical signal into a digital representation of that signal. This pro-
cess is achieved by an analog-to-digital (A/D) conversion performed in the electronic cir-
cuits of the computer or in some attached electronic device, in order to provide a sequence
of numbers that is readable and treatable by the computer.

The A/D conversion consists of two processes:

• Sampling (to make a signal discrete in time)
• Quantization (to make a signal discrete in space)

The final output of an A/D convertor is a stream of numbers expressed as binary digits
(bits), which only consist of two symbols—zero and one. For example, the number “35”
could be represented as “00100011,” although there are several alternate representations.

3.2.1 The Sampling Theorem

While analog signals are appropriate for ECG signals written on millimeter paper, digi-
talization offers many possibilities to all aspects of medical data analysis, from electronic
wristbands that record sleep patterns to the most sophisticated diagnostic devices.
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(a) Analog sinusoidal signal. (b) Discrete signal samples (light gray dots) and the signal reconstructed from the
samples (gray line, the same as the original signal).
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The concept of digital medical data relies upon findings published in a historic paper by
Claude Shannon, an American mathematician and cryptographer, in 1949: “Communica-
tion in the presence of noise” (Shannon 1949). Shannon proved that a signal, under some
constraints, can be represented by a series of its discrete samples. So the sinusoidal sig-
nal from Figure 3.1a can be represented by a series of its amplitudes (samples) shown in
Figure 3.1b. From these samples, a likeness of the original signal can be reconstructed. The
fidelity of that reconstruction depends upon the quality of the digitization process. In the
example above, the “blood pressure signal was digitized at 1000 Hz.” This rate of 1000 Hz
indicates that the signal was sampled 1000 times per second, which is appropriate for the
blood pressure signal and would enable the original signal to be constructed with no loss
of information. Shannon’s theory is able to predict the sampling rate necessary to allow the
signal to be perfectly reconstructed.

Before Shannon’s work, there existed some abstract mathematical elaborations, as well as
heuristic engineering trials, but without a clear application possibility. The only compara-
ble achievement on sampling was “On the transmission capacity of the ‘ether’ and of cables
in electrical communications” (Kotelnikov 1933). The paper was written and presented in
Russian and its importance was recognized immediately. But, according to Lukatela (1979,
1982), the Soviet authorities locked the paper in, thus successfully removing it from the
eyes of outer world. In spite of this obstacle, Kotelnikov’s contribution was (much later)
acknowledged and praised worldwide. In the year 2000, at age 92, Vladimir Aleksandovich
Kotelnikov received the US IEEE Alexander Graham Bell Medal.

3.2.2 Quantization

The previous section treated sampling in time, but it is also necessary to perform quantiza-
tion, since an analog signal can take any possible amplitude value, so it is still continuous
in space and far from the required stream of zeros and ones.

This procedure—quantization—is illustrated in Figure 3.2. The upper panel (a) shows
a continuous signal. Its time samples (dark gray dots) lie within the regions called

t
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FIGURE 3.2
(a) Original signal and its samples (light gray dots). (b) Discrete amplitude values of the signal samples (red dots);
discrete samples can get one out of four possible values, coded as 100, 101, 110, or 111.
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quantization levels, bounded by light gray dashed borders. To each signal sample placed
within the same quantization region, the same value is associated. It is shown by light gray
dots in panel (b). Since there are four pairs of light gray dashed borders (four quantization
levels), the light gray dots—that is, quantized samples—can assume only one out of four
different values. The signal becomes double discrete: after the sampling made it discrete in
time, the quantization made it discrete in space.

The A/D conversion is complete when the doubly discrete signal is coded, and there are
many ways of doing this, which depend on the equipment being used. The four discrete
amplitude levels shown in Figure 3.3 could be coded using the numbers +1, +2, +3, and
+4. But it is more convenient to present them as binary numbers. In this example, the four
amplitude levels are finally coded using three bits per sample and denoted 1 00, 1 01, 1 10,
and 1 11 (the first “1” is the sign “+”). The original signal and its final form—a stream of
binary digits (bits)—are presented in Figure 3.3, where black rectangles correspond to the
ones and zeros.

Unfortunately, as Figure 3.2b shows, the dark gray dots (original samples) and light gray
dots (quantized samples) do not overlap; the quantization procedure has induced errors, in
the form of quantization noise. These errors are irreversible; they remain within the signal
reconstructed from the quantized samples. The amount of error introduced depends on the
number of quantization levels in the quantization process. The quantization levels define
an important parameter—a resolution of the signal.

Intuitively, if the number of quantization levels increase, the region borders would be
closer together, so the difference between the original signal sample and its quantized
counterpart (the error) would be smaller and the signal resolution would increase. This is
illustrated in Figure 3.4. The upper panel (a) presents the original signal quantized in two
ways: with eight levels and with 64 levels. Both quantized signals are a staircase-shaped
approximation of the original one, but the 64-level approximation looks much better. The
“much better” appearance is justified in the lower panel that shows the quantization error,
which is much lower for the 64-level case.

The theoretical measure that describes the relationship between the signal and the cor-
responding error induced by quantization is called signal-to-(quantization) noise ratio. If
this ratio is large, then the signal is much stronger than the noise and the noise can be
neglected. Biomedical signal acquisition systems are as a rule designed to keep the signal
resolution sufficiently high, keeping the quantization error unnoticeable.

FIGURE 3.3
The original signal (gray line) and its digital counterpart—a binary stream of “ones” and “zeros.”



A Descriptive Approach to Signal Processing 79

0 150100
Time (s)

Q
ua

nt
ize

d 
am

pl
itu

de

(a)

50 200

8 Levels
64 Levels

–1

0

1

0 150100
Time (s)

(b)

50 200

Q
ua

nt
iza

tio
n 

er
ro

r 0.3
0.2
0.1
0.0

–0.1
–0.2
–0.3
–0.4

0.4 8 Levels
64 Levels

FIGURE 3.4
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An outcome of the inadequate sampling frequency: the reconstructed signal differs from the original signal

3.2.3 Limits of Digitalization

To recap, A/D conversion consists of sampling and quantization. The latter procedure
induces negligible errors, while the first one allows for perfect signal reconstruction if some
constraints are satisfied. These constraints are an important issue. To illustrate the problem,
consider an example presented in Figure 3.5. It presents the same sinusoidal signal as in
Figure 3.1a, but with samples taken at wider intervals apart. The signal reconstructed from
these samples is obviously wrong, but it does not mean that the sampling theorem does not
work. It only means that it is not applied correctly. The sampling theorem acknowledges
that any signal is made up of a range of frequencies, but can be completely determined by
sampling at twice the rate of the highest frequency. Figure 3.1b illustrates this principle, as
the sampling intervals, shown by the gray dots, occur at twice the frequency of the signal.

An example that illustrates the difference between signals with “quick” and “slow”
changes is shown in Figure 3.6. It presents the heart rate recorded from two different
species—from a healthy human in lying position and from a freely moving rat. The points
in time when the samples are taken are marked with dashed lines. The sampling rate that
is sufficient for a human signal fails to capture most of the changes in the faster signal
recorded from a small animal. So, for small animals, the sampling instants should be more
frequent.



80 ECG Time Series Variability Analysis: Engineering and Medicine

Time (s)
190180170160

Wistar rat
Healthy human

150

330

360

390

60

30

H
ea

rt 
ra

te
 (b

pm
)

0
200

Sampling points are not dense enough
to capture quick changes in black signal

184183182181180

360

330

60

30

0

390

185

Zoom

FIGURE 3.6
Signal with “quick” changes (black line) and “slow” changes (gray line); sampling epochs (vertical dashed lines)
are not “dense” enough so most of the quick changes in the black signal are “missed.”

Relying on the observations of “quick” and “slow” is not a precise method for assess-
ment of the maximum frequency component of the signal, and therefore, to calculate the
sampling rate required. A useful approach to achieve this is to describe the signal in the
frequency domain.

3.3 Frequency Domain and Power Density Spectrum

While it is quite simple to observe the signal as it is recorded in time, as health care profes-
sionals have done since the first commercial ECG equipment appeared—a presentation of
a signal in the frequency domain might appear quite abstract. One of the most well-known
methods to achieve this is the Fourier transform. This is based on the theory that a signal
can be represented as a sum of sine and cosine signals. A sine signal periodically repeats
itself along the time axis, like the one shown in Figure 3.1a. It has the properties of ampli-
tude, which refers to the vertical range of the signal, and frequency, which is the number
of repetitions that occur during one second. If a period of a sine is equal to 0.1 seconds,
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than the sine repeats 10 times during a second and its frequency is 10 cycles per second or
10 Hz (Hertz). A cosine is the same as a sine, except that it is shifted in time. These sine and
cosine components are known collectively as the spectrum of the signal.

A simple example is a decomposition of a rectangular signal. A perfect decomposition
would have an infinite number of frequency components but only the first four are pre-
sented in Figure 3.7, upper panel. The first component has the largest amplitude and the
lowest frequency. The subsequent components are smaller in amplitude but larger in fre-
quency. The middle panel shows the successive summation of sine components. The more
sine signals that are added, the better is the approximation of the rectangular signal. In the
lower panel, each component is represented by a point with the same color as the ones
in the top panel. The difference is that in the lower panel, the horizontal axis shows fre-
quency and the vertical axis the amplitude of the spectral component. This is known as a
frequency domain presentation. Such a graph can be used to determine which frequency
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(a) Four sine components in time domain: from bottom to top their respective frequency is increasing. (b) Rectan-
gular waveform approximated by summing the first two, three, and four sine components. (c) Sine components
in the frequency domain.
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components are significant: the higher ones have lower amplitudes and can be neglected.
The fast changes in the signal are a consequence of high frequency components.

Observing Figure 3.7c, the highest significant frequency may be determined. The mini-
mum sampling rate (i.e., sampling frequency) that must be used to reconstruct the original
signal up to and including this frequency component is two times this frequency.

This analysis is possible if the signal can be decomposed into the sum of sine and cosine
waveforms and obtain their ordinates in the frequency domain. However, the Fourier
transform treats periodic signals of infinite duration: if the signals do not repeat over infi-
nite time, this process is not strictly valid. Biomedical signals do not fit into this category
so some tricks have to be applied. As an illustration of this problem, a spectrum of a sam-
pled sine signal with a frequency of 1000 Hz and of finite duration is shown alongside
its ideal theoretical counterpart in Figure 3.8. The gray dot shows the frequency ordinate
obtained using a Fourier transform if the signal is periodic and infinite. If the signal is not
infinite, the black figure centered around 1000 Hz is obtained, along with side lobes repre-
senting other frequencies that are introduced by the discontinuities of a finite signal. If the
act of sampling is also taken into account, further reflections are obtained above and below
1000 Hz, shown by the additional mirror images of the central figure shown at left and
right.

In order to present a finite aperiodic biomedical signal in the frequency domain, a math-
ematical technique is used to estimate its strength at different frequencies, to obtain an
estimate of its power spectral density (PSD). This is a different but related process: the
Fourier transform calculates the exact amplitude of a signal at an exact frequency, while
from biomedical signals, an estimate is made to represent what is happening in the vicin-
ity of a particular frequency.

It is important to stress that this is an estimate and not an exact process. Consequently,
there exists a range of parametric and nonparametric methods, each one yielding esti-
mates that are similar, but not exactly the same. The parameters taken from such esti-
mates are also similar, but not exactly the same. There is no standard that would sug-
gest which estimation method should be used, so researchers are free to choose one out
of the numerous approved methods. The maximal frequency component that could be
extracted from a signal is at a half of the sampling frequency. An illustrative example
is presented in Figure 3.9, which shows the estimates of PSD of an animal (rat) heart
rate signal. The estimates are evaluated using three usual methods: periodogram, Weltch,

Consequence
of sampling

Infinite sine signal in
frequency domain

Sine signal of finite
duration Consequence

of sampling

1000 f (Hz)

FIGURE 3.8
Sine signal in the frequency domain: gray dots indicate ideal sine signal; the finite sampled sine signal contains
some other spectral components.
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FIGURE 3.9
Alternative estimates of the power spectral density of a heart rate signal from Wistar rat. (a) Periodogram method.
(b) Weltch method. (c) Burg method.

and Burg. Although the estimates obtained using different methods seems to be different,
they all point out the frequency regions where most of the signal power is concentrated.
All methods clearly show that the heart rate signal of a Wistar rat has increased power
in the vicinities of 1 and 2.25 Hz. The estimates differ in smoothness, not in component
estimation.
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3.4 Stationary Signals

In addition to the fact that spectral components of a signal can only be estimated, there is
another fact that must be considered: the estimation of PSD may have to be stationary for
the entire length of the signal. Statistical theory defines the stationarity at many levels. But
in practical applications, it is usually assumed that signals are wide sense stationary (WSS).
One reason for such an assumption lies in a fact that strict sense stationarity is difficult, if
not impossible, to prove.

WSS implies that statistical parameters, such as mean and variance, have to be stable,
no matter at what point in the signal they are estimated. Since the estimation of statistical
parameters is based on time averages, a test for stationarity checks whether the parts of
signal are turbulent or not. For example, the heart rate signal shown in Figure 3.10 is not
stationary in mean, since its partial mean values (time averages), taken at different places
along the time axis, differ too much. It is possible to perform an informal test for stationar-
ity by visually inspecting the graph of such a signal.

The stationarity is of particular importance in PSD estimation because, although the dis-
cussion so far has covered the detection of the fast-changing components of the signal, the
slow components are also important. This is illustrated in Figure 3.11. The signal available
is a sinusoidal signal that is gradually increasing because it is added to another sine signal
of much lower frequency. The composite signal is obviously not stationary. Unfortunately,
the signal is too short to deduce which one out of the two low-frequency sine signals is a
cause of the increasing trend in the short signal from Figure 3.11. The only solution is to
measure the signal over a longer time period, so that the spectrum estimation would give
the correct result.

For this reason, the signals for estimation cannot be too short. Knowing this limitation,
one must be careful not to make conclusions based on signals that are too short. On the
other hand, if the signal is long, there are more chances that it would become nonstation-
ary. This is usually a consequence of subject movement. It can be easily recognized and
removed from the signal.
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FIGURE 3.10
Nonstationary high-resolution signal of Wistar rat subjected to air-jet stress.
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FIGURE 3.11
Nonstationary sine signal (dark gray line), too short to find out which one out of two low-frequency sine signals
is a cause of the increasing trend.

3.5 Conclusion

This chapter provides an explanation of signal processing basic functions, without going
into the mathematics of probability and random processes. However, just as a medical
doctor can talk to a patient without highly sophisticated medical terms, anatomic names,
and chemical formulae, signal processing features can be explained without the mathe-
matical formulae, strict theorems, or lemmas. It is the hope that this text will contribute to
interdisciplinary understanding of biosignal time series analysis. For the same reason, the
literature list is quite small. For deeper insight into the problems, there are many books
written for engineers, since they contain less mathematics and more application examples.
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4.1 Introducing Physiological Models of Cardiovascular Control and Related
Parametric Formulation

In the last few decades, mathematical modeling and signal processing techniques have
played an important role in the study of cardiovascular control physiology and heartbeat
dynamics. An example application of these methodological approaches is given by the
extensive number of studies on cardiovascular control dynamics mediated by the auto-

87
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nomic nervous system (ANS). This system is very often investigated through analysis of
event series obtained by computing the time intervals between two consecutive R-waves
as detected from the electrocardiogram (ECG), that is, the RR intervals. Because the heart-
beat is controlled by the ANS, the RR series show preferred oscillations around their mean
value, defined as heart rate variability (HRV) [1,2]. The parametric models discussed later
in this chapter have been extensively used to characterize each RR interval value as depen-
dent on a linear regression of its previous RR values, providing an effective formulation to
explain these peculiar periodic oscillations.

4.1.1 ANS Control of the Heart Rate

The ANS comprises the sympathetic nervous system (SNS) and parasympathetic nervous
system (PNS). In general, increased SNS activity (and/or diminished PNS tone) leads to
an increase in heart rate (HR), whereas low SNS activity or high PNS activity causes HR
to decrease. The two autonomic branches act synergically to modulate the heartbeat in
order to maintain blood pressure at controlled levels, and HRV is the result of their bal-
ancing action. Several studies report on a significant relationship between ANS dynamics
and cardiovascular mortality [1,2]. Consequently, a huge effort has been devoted to the
analysis and modeling of HRV in order to provide effective and reliable quantifiers of
ANS dynamics. Extensive description of the physiological mechanisms behind the gen-
eration of HR fluctuations can be found in Refs. [1–4]. The effect of these SNS–PNS inter-
actions results in two main oscillatory components that are usually differentiated in the
HRV spectral profile [1–4]: (a) the high-frequency (HF) band (0.15–0.40 Hz), which reflects
effects of respiration on HR, also referred to as respiratory sinus arrhythmia (RSA); and
(b) the low-frequency (LF) band (0.04–0.15 Hz), which represents oscillations related to reg-
ulation of blood pressure and vasomotor tone including the so-called 0.1 Hz fluctuation.
The less studied very low-frequency (VLF) band (<0.04 Hz) is thought to relate, among
other factors, to thermoregulation and kidney functioning. In this sense, linear analysis
and parametric modeling aimed at identifying a limited number of oscillatory compo-
nents represent a very efficient and parsimonious methodological tool. Nevertheless, the
information behind heartbeat dynamics goes beyond the simplistic identification of lin-
ear components. Several nonlinear measures of HRV, in fact, such as Lyapunov exponents,
1/f slope, approximate entropy (ApEn), and detrended fluctuation analysis (DFA), have
been widely used to uncover nonlinear fluctuations in HR that are not otherwise apparent
[1,2,5]. Consequently, such measures provided important quantifiers of cardiovascular con-
trol dynamics, mediated by the ANS, and they have been found to be of prognostic value
in aging and diseases [6–13]. Although the detailed physiology behind complex dynamics
of heartbeat variations has not been completely clarified, nonlinear HRV dynamics may be
partly explained by the various nonlinear neural interactions and integrations occurring at
the neuron and receptor levels, and they underlie the complex output of the sinoatrial node
in response to changing levels of efferent autonomic inputs [14]. It is thought that the com-
plexity of healthy dynamics can be understood to be an essential part of their capability to
adapt to a varying environment.

4.1.2 A Brief History of Linear and Nonlinear Parametric Models of Heartbeat Dynamics

HRV is the discrete time series that serves as a gold standard to evaluate autonomic func-
tions in healthy subjects and in patients with different pathologies, which can or cannot be
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strictly related to the cardiovascular system. The first historical studies (from 1920) high-
lighting the emergence of HRV as a physiologically meaningful measure were focused on
RSA. Since 1978, when Wolf et al. [15] described the relationship between decreased RR
variability and mortality in postmyocardial infarction, several methodologies and mea-
sures have been proposed and are now described in the literature [1,2] ranging from simple
descriptors to nonlinear models.

In 1973, Sayers first proposed a spectral analysis of HRV, although it was used to evalu-
ate autonomic control on the cardiovascular dynamics since 1981 [16]. Since then, spectral
analysis has been taken as a reference method for the identification and quantification of
the principal oscillations that characterize HRV, especially during significant parasympa-
thetic changes. Fourier-based techniques were initially pursued for HRV spectral analy-
sis, maybe for their simplicity and widespread diffusion. However, a major limitation of
this approach is related to poor spectral resolution, especially when short time frames are
used [17].

Parametric modeling based on a simple linear regression on the past heartbeat event,
instead, is able to achieve a better spectral resolution even for short frames of data [18]
(although the model order and parameter estimation have to be optimized). As mentioned
above, parametric modeling refers to a (proper) mathematical description of the physio-
logical system under study. Such a mathematical description is characterized by a formula
defined by parameters that have to be estimated and tuned by looking at observed physio-
logical data. In the case of the linear autoregressive (AR) model of ANS dynamics through
HRV data, parametrization means that the prediction of the next heartbeat is defined as
an algebraic sum (i.e., positive and negative weighted sums) of past RR intervals. The first
parametric estimates of HRV started being published in the early 1980s by Jarisch et al. [19],
Brovelli et al. [20], Baselli et al. [21], Giddens et al. [22], Bartoli et al. [23], Kitney et al. [24],
Pagani et al. [25], and Lombardi et al. [26]. In 2005, Barbieri et al. [27] proposed to embed
such widely used parametric linear modeling within a point-process framework through
which the RR interval series is seen as a binary stochastic (i.e, having a random proba-
bility distribution or pattern that may be analyzed statistically but may not be precisely
predicted) series characterized by interevent probability functions. With this approach, the
methodological knowledge gained so far was enriched with instantaneous estimates in the
time and frequency domain, and goodness-of-fit measures (see details in Section 4.2.3).

Since the early 1990s, several studies suggesting the use of nonlinear autoregressive
(NAR) models for heartbeat dynamics have been published [28–30]. In particular, NAR
modeling has been used to determine whether chaotic determinism is present in a resting-
state heartbeat time series through Lyapunov exponents [28], and to evaluate the degree
of nonlinearity of HRV [29] and low-dimensional chaotic dynamics [30]. Of note, in 2002,
the application of nonlinear autoregressive moving average (NARMA) models for heart-
beat dynamics [31–33] was proposed. These NARMA models have been used to describe
the closed loop between HR and baroreflex control [32] to predict the outcome of inva-
sive cardiac electrophysiological studies through Lyapunov exponents [31] and to search
the possible presence of determinism in HRV series [33]. As a clinical outcome, it has
been shown that NAR model-based HRV analysis improves the assessment of several
clinical conditions including dilated cardiomyopathy [34], obstructive sleep apnea syn-
drome with and without hypertension [35], and postural changes [36,37]. Recently, we
built on this literature by embedding NAR modeling within a point-process framework
[38–44]. In this case, a major methodological improvement was the use of the Laguerre
expansion of the Wiener–Volterra AR terms in order to achieve a more effective system
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identification [38,40,45]. Of note, this method is ideal for modeling physiological systems
because it accounts for the nonlinear and time-varying behavior of stochastic systems. The
basic mathematical formulation related to all these pioneering studies is reported in the
following sections.

Finally, it is worthwhile mentioning that a significant part of the parametric modeling
proposed in the literature to assess cardiovascular functions involves multivariate model-
ing. As an example, multivariate parametric models were proposed to assess the relation-
ship between arterial blood pressure, HR, and respiratory control [46–49]

In this chapter, we describe the use of linear and nonlinear parametric models whose
definition is governed by stochastic mathematical functions with a finite number of param-
eters, which are able to provide a better spectral resolution on short frames of data. In the
case of heartbeat dynamics, these models refer to autoregressive (AR) models. A general
block scheme for the kinds of parametric modeling considered in this chapter is shown in
Figure 4.1.

The RR interval series is seen as the output of an AR system (the cardiovascular sys-
tem) which is controlled by the ANS. The regression can take into account linear and
nonlinear combinations of the past events. In the case of nonlinear regression models, the
Wiener–Volterra models can be considered. Finally, it is possible to perform the regression
on the actual RR intervals or on its variations, that is, considering the derivative series.
Once the model parameters are estimated, it is possible to extract several features of ANS
dynamics through proper quantitative tools. In the next section, linear parametric mod-
els are described considering the standard and point-process formulation, followed by the
related quantitative tools and feature extraction. The same logical flow is adopted for the
description of the nonlinear parametric models. Concluding the chapter, exemplary appli-

ANS

Cardiovascular control

Autoregressive modeling

Linear models Nonlinear models

Laguerre expansion

Derivative series

AR ARL NARL NAR

RRj

FIGURE 4.1
An overview of the linear and nonlinear parametric modeling described in detail in this chapter. ARL and
NARL stand for linear and nonlinear autoregressive (AR) model with the Laguerre expansion of the kernel,
respectively.
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cations including HRV assessment through point-process nonlinear models during postu-
ral change protocols and after cardiac heart failure (CHF) are reported.

4.2 Linear Parametric Models

4.2.1 Preprocessing

Before estimating the RR interval series, a preprocessing step with the ECG signal is usually
required. This step aims at increasing the signal-to-noise ratio (SNR) of the signal as well
as extracting and subtracting the signal baseline. Removing such an oscillation, in fact,
usually improves the performance of the algorithms for automatic wave detection. The
baseline can be defined as a deviation from the ECG isoelectric line below approximately
0.5 Hz and is due to electrode movement artifacts, and respiration activity. Once the ECG is
preprocessed, an R-wave (or more generally a QRS complex) detection algorithm should be
used. This choice depends on the characteristics of the specific ECG signal (see reviews in
Refs. [50,51]), for example, SNR, signal power, and ECG leads. Nevertheless, not all of the
RR intervals obtained by the automatic QRS detection algorithm are correct. Any technical
artifact (i.e., errors due to the R-peak detection algorithm) in the RR interval time series
may interfere with the analysis of these signals. Therefore, an artifact correction algorithm
is needed. In this case, a proper piecewise cubic spline interpolation method [52,53] can be
adopted. Moreover, physiological artifacts could also be present in the RR series as ectopic
beats and arrhythmic events. Therefore, checking by visual inspection for physiological
artifacts should always be performed and only artifact-free sections must be included in
further analysis. Next, a previously developed algorithm [54] based on the point process
statistics (local likelihood) that is able to perform a real-time RR interval error detection
and correction is also presented.

As a standard definition, the interval between two successive QRS complexes is defined
as the RR interval (tR−R) and the HR (beats per minute) is given as

HR= 60
tR−R

(4.1)

As HR is a time series comprised of a sequence of nonuniform RR intervals, this signal
should be further resampled at a certain frequency before performing further processing.
Many studies report resampling rates between 2 and 4 Hz. Of note, a resampling rate of 7
Hz has been suggested in Refs. [55–57] as the most appropriate value. A popular heartbeat
resampling algorithm is the one proposed by Berger et al. [58]. This algorithm is based on
using an arbitrary frequency at which the HR samples will be evenly spaced in time and
using a local time window defined at each HR sample point as the time interval extending
from the previous sample to the next. Successively, the number of RR intervals (including
fractions of them) that occur within this local window are counted. The value ri of the HR
at each sample point is taken to be ri = fr −ni∕2, where fr was the sampling frequency of the
resulting HR signal and ni was the number of RR intervals falling into the local window
centered at the ith sample point [58].

Note that interpolation is not mandatorily required to perform a parametric HRV anal-
ysis. It is possible, in fact, to consider the RR interval series as an intrinsically discrete
stochastic series, or as a non-uniform discretization of a continuous signal.
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4.2.2 The AR Model

Considering the heartbeat dynamics as a sequence of N samples {y(1), ..., y(n)} represent-
ing a single realization of a discrete-time AR stochastic process, it is possible to write the
following model:

y(n) =
p
∑

k=1

a (k) y (n− k) +w (n) (4.2)

where n is the discrete-time index, a(k) are AR coefficients, p is the model order, and w(n) is
a zero-mean white noise of variance equal to σ2. Consequently, the AR(p) model is charac-
terized by the AR parameters {a[1], a[2], ..., a[p], σ2}. Equation 4.2 can also be expressed in
the z-transform domain:

Y(z) =Y(z)

( p
∑

k=1

akz−k

)

+W(z) =H(z)W(z) (4.3)

where Y(z) and W(z) are the z-transform of y(n) and w(n), respectively, and

H(z) = 1
1−

∑p
k=1 akz−k

(4.4)

Several methods can be used to estimate the AR model parameters. A standard approach
is a last square-based method, which estimates the ak coefficients by minimizing the fol-
lowing cost function:

JN =
N
∑

n=1

ψN−neN(n)2 (4.5)

where eN(n) = y(n) −
∑p

k=1 a (k) y (n− k) and 0<ψ ≤ 1 is the forgetting factor.
Of note, as a step further, in order to take into account the nonstationarity of the RR inter-

val series, the AR model estimation has been made time-varying [37,59–62] such that its
parameters are estimated sample-by-sample through a recursive relationship a(n+ 1, k) =
F[a(n, k)] [59], with F standing for a linear or nonlinear function.

Concerning the model order, its estimation can be performed using Akaike’s final predic-
tion error, Akaike’s information criterion [63], the Bayesian information criterion, Parzen’s
criterion of AR transfer function, and Riassen’s minimum description length method [64].
However, it has been demonstrated that these criteria underestimate the actual model
order [64], and it has been recommended that an order not less than p= 16 should be used
for spectral analysis of short RR time series resampled at 4 Hz [64]. Suggestions concern-
ing other practical issues using parametric modeling of heartbeat dynamics can be found
in Refs. [65–67].

Of note, the abovementioned standard parametric modeling has been successful in a
huge number of clinical applications including hemodialysis [68], presence of ectopic beats
[69], and postural changes [70].

4.2.3 Point-Process Framework

The point-process framework primarily defines the probability of having a heartbeat event
at each moment in time. Defining t∈ (0,T] as the observation interval and 0≤u1 <⋯<uk <
uk+1 <⋯<uK ≤T as the times of the events, it is possible to define N(t) =max{k ∶uk ≤ t}
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as the sample path of the associated counting process. Its differential, dN(t), denotes a
continuous-time indicator function, where dN(t) = 1 when there is an event (the ventric-
ular contraction), or dN(t) = 0 otherwise. The left continuous sample path is defined as
Ñ(t) = limτ→ t− N(τ) =max{k ∶uk < t}. Given the R-wave events {uj}

J
j=1 detected from the

ECG, RRj =uj −uj−1 > 0 denotes the jth RR interval. Assuming history dependence, the
inverse Gaussian probability distribution of the waiting time t−uj until the next R-wave
event is [27]

f (t|t, ξ(t)) =

[

ξ0(t)
2π(t−uj)3

]
1
2

× exp{−1
2

ξ0(t)[t−uj −μRR(t,t, ξ(t))]2

μRR(t,t, ξ(t))2(t−uj)
} (4.6)

where j= Ñ(t) is the index of the previous R-wave event before time t, t = (uj,RRj,
RRj−1, ...,RRj−M+1) is the history of events, ξ(t) is the vector of the time-varing parameters,
μRR(t,t, ξ(t)) is the first-moment statistic (mean) of the distribution, and ξ0(t)> 0 is the
shape parameter of the inverse Gaussian distribution. Since f (t|t, ξ(t)) indicates the prob-
ability of having a beat at time t given that a previous beat has occurred at uj, μRR(t,t, ξ(t))
can be interpreted as the expected waiting time until the next event occurs. The use of an
inverse Gaussian distribution f (t|t, ξ(t)), characterized at each moment in time, is moti-
vated both physiologically (the integrate-and-fire initiating the cardiac contraction [27])
and by goodness-of-fit comparisons [71]. Here, the instantaneous mean μRR(t,t, ξ(t)) is
expressed as a linear combination of present and past RR intervals:

μRR(t,t, ξ(t)) = γ0 +
p
∑

i=1

γ1(i, t)RRÑ(t)−i (4.7)

It has been shown that performing the estimations on the derivative RR interval series
improves model performance and the achievement of stationarity within the sliding time
window W (usually 70<W < 90 seconds) [38–44,72–74]:

μRR(t,t, ξ(t)) =RRÑ(t) +γ0 +
p
∑

i=1

γ1(i, t)
(

RRÑ(t)−i −RRÑ(t)−i−1

)

(4.8)

In both equations, the coefficients γ0 and {γ1(i)} correspond to the time-varying zero- and
first-order coefficients, respectively. Since μRR(t,t, ξ(t)) is defined in continuous time, it
is possible to obtain an instantaneous RR mean estimate at a very fine timescale (with an
arbitrarily small bin size Δ), which requires no interpolation between the arrival times of
two beats. Given the proposed parametric model, all linear indices are defined as a time-
varying function of the parameters ξ(t) = [ξ0(t), γ0(t), γ1(1, t), ..., γ1(p, t)].

The unknown time-varying parameter vector ξ(t) is estimated by means of a local max-
imum likelihood method [27,75,76]. Briefly, given a local observation interval (t− l, t] of
duration l, a subset Um∶n of the R-wave events is considered. Specifically, m=N(t− l) + 1
and n=N(t). At each time t, the unknown time-varying parameter vector ξ(t) is found such
that the following local log-likelihood is maximized:

L(ξ(t) |Um∶n) =
n−1
∑

k=m+P−1

w(t−uk+1) log[ f (uk+1 |uk+1
, ξ(t))] + log

∞

∫
t

f (τ |t, ξ(t)) dτ (4.9)
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where w(τ) = eϖτ is an exponential weighting function for the local likelihood. In Equation
4.9, the latter term accounts for the next, not yet observed, RR interval (right censoring). A
Newton–Raphson procedure is used to maximize the local log-likelihood in Equation 4.9
and compute the local maximum likelihood estimate of ξ(t) [75]. Because there is signifi-
cant overlap between adjacent local likelihood intervals, the Newton–Raphson procedure
is started at t with the previous local maximum likelihood estimate at time t−Δ, where Δ
defines the time interval shift to compute the next parameter update.

The model goodness-of-fit is based on the Kolmogorov–Smirnov (KS) test and associ-
ated KS statistics (see details in [27,77]). Autocorrelation plots are considered to test the
independence of the model-transformed intervals [27]. Once the order {p} is determined,
the initial model coefficients are estimated by the method of least squares [78]. In order
to provide reliable results, just like other dynamical methods, these point-process-based
processing techniques require an uninterrupted series of RR intervals, with a minimum
recommended length of 60 seconds. Nevertheless, peak detection errors and ectopic beats
often determine abrupt changes in the RR interval series that may result in substantial devi-
ations of the HRV indices, especially in changes in the dynamics. In addition, they could
potentially bias the statistical outcomes. Therefore, the actual heartbeat data can be prepro-
cessed using a previously developed algorithm [54] based on the point-process statistics
(local likelihood) that is able to perform real-time RR interval error detection and correc-
tion. Specifically, the algorithm assesses whether the actual observation is in agreement
with the resulting model or if, instead, the alternative hypothesis of an erroneous beat is
more likely.

4.2.4 Quantitative Tools and Feature Extraction

The abovementioned approaches based on linear parametric modeling allow for two levels
of quantitative characterization of heartbeat dynamics: time-domain estimation and linear
power spectrum estimation. Namely, given the RR interval series, estimates of mean RR,
RR interval standard deviation, mean HR, and HR standard deviation can be extracted.
Of note, using the point-process framework, instantaneous time-domain and frequency-
domain estimates of heartbeat dynamics can be derived. In particular, the instantaneous
time-domain characterization is based on the first- and the second-order moments of the
underlying probability structure of heartbeat generation [27].

Although features defined in the time domain are simple and widely used, they are
unable to discern between SNS and PNS activity (although RMSSD can be considered to
reflect mainly PNS activity since it is computed as differences between successive beats).
Frequency-domain analysis has been extensively pursued, contributing to the understand-
ing of the autonomic background of RR interval fluctuations in the HR record. The linear
power spectrum estimation, in fact, reveals the linear mechanisms governing the heartbeat
dynamics in the frequency domain as regulated by the ANS.

Using a standard linear parametric AR model, the power spectral density (PSD) of y(n)
can be calculated as follows:

Py( f ) = σ2Δt
|1−

∑p
k=1 akz−k

|

2
z=ej2πfΔt

(4.10)

where Δt is the sampling rate of y(n).
Using a point-process linear model, it is possible to compute the time-varying para-

metric (linear) autospectrum Py( f , t) given the time-varying parameter set ξ(t) for the
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instantaneous RR interval mean μRR(t,t, ξ(t)). In order to facilitate the description of the
spectral and bispectral estimation using point-process nonlinear models, Equation 4.10 can
be rewritten as follows [79]:

( f , t) =Sxx( f , t)H1( f , t)H1(−f , t) (4.11)

where Sxx( f , t) = σ2
RR, and H1( f ) = Γ′1( f )−1 with Γ′1( f1) standing for the Fourier transform of

the extended AR kernel γ′1(i) defined as

γ′1(i) =

{

1, if i= 0
−γ1(i) if 1≤ i≤M

(4.12)

When performing the regression on the derivative RR interval series (see Equation 4.8),
the time-varying parametric autospectrum of the RR intervals is given by multiplying its
derivative spectrum ( f , t) in Equation 4.11 by the quantity 2(1− cos(ω)) [40,72].

Three main oscillatory components are usually differentiated in the HRV spectral profile
[1,2]: the HF band (0.15–0.40 Hz), which reflects the effects of respiration on HR, historically
also referred to as RSA; the LF band (0.04–0.15 Hz), which represents oscillations related to
regulation of blood pressure and vasomotor tone; and the VLF band (<0.04 Hz), which is
thought to relate, among other factors, to thermoregulation and kidney functioning. How-
ever, the VLF band is usually <0.04 Hz and is almost never considered as an ANS marker
because it is related more to thermal regulation [80]. Broad evidence supports vagal origin
of the HF component [1,2,81]. In contrast, the interpretation of the LF band is controversial.
In fact, the current opinion on the fact that the LF power and LF/HF ratio are indices of
sympathetic cardiac control and autonomic balance, respectively, is highly challenged and
suggest that the HRV power spectrum, including its LF components, is mainly determined
by the parasympathetic dynamics [81]. Moreover, the LF and HF power in normalized
units (i.e., LFnorm=LF∕(LF+HF) and HFnorm=HF∕(LF+HF)) are proposed to give more
information about the sympathovagal balance [1].

Concerning the calculation of the abovementioned spectral features, by integrating Equa-
tion 4.10 (when considering standard linear AR models) and by integrating Equation 4.11
(when considering standard point-process linear AR models) in each frequency band, it is
possible to compute the VLF, LF, and HF indices.

4.3 Nonlinear Parametric Models

In this section, nonlinear parametric models are formally defined and applied to exemplary
nonlinear physiological dynamics such as heartbeat dynamics. Here, the prediction of the
next heartbeat is defined as an algebraic sum of past RR intervals, including higher order
combinations of such values. In our exemplary applications reported below, we focus on
quadratic and cubic combinations.

4.3.1 NAR and NARMA Models

A NAR model can be expressed, in a general form, as follows:

y(k) =F(y(k− 1), y(k− 2), ..., y(k−M)) + ϵ(k) (4.13)
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where y(k) is a time series, M is the maximum lags considered for the process, and ϵ(k) are
independent, identically distributed Gaussian random variables, which account for uncer-
tainties and possible unmodelled dynamics. This model can be can be written as a Taylor
expansion:

y(k) = γ0 +
M
∑

i=1

γ1(i) y(k− i) +
∞
∑

n=2

M
∑

i1=1

⋯
M
∑

in=1

γn(i1,⋯ , in)
n
∏

j=1

y(k− ij) + ϵ(k) (4.14)

where the quadratic kernel γ2(i, j) is assumed to be symmetric. We also define the extended
kernels γ′1(i) and γ′2(i, j) as

γ′1(i) =

{

1, if i= 0
−γ1(i) if 1≤ i≤M

(4.15)

γ′2(i, j) =

{

0, if ij= 0 ∧ i+ j≤M
−γ2(i, j) if 1≤ i≤M ∧ 1≤ j≤M

. (4.16)

The AR structure of Equation 4.14 allows for system identification with only exact knowl-
edge on output data and with only a few assumptions on input data (noise assumptions).

NAR models can be seen as a special case of NARMA models, which can be expressed,
in a general form, as follows:

y(k) =F(y(k− 1), y(k− 2), ..., y(k−My), ϵ(k), ϵ(k− 1), ..., ϵ(k−Me)) (4.17)

where ϵ(k) are independent, identically distributed Gaussian random variables, and My
and Me are the maximum lags considered for the process and noise terms, respectively.
Consequently, an extended version of the NARMA model can be can be written as

y(k) = γ0 +
M
∑

i=1

γ1(i) y(k− i) +
∞
∑

n=2

M
∑

i1=1

…
M
∑

in=1

γn(i1,… , in)
n
∏

j=1

y(k− ij)

+
M
∑

i=1

ϕ1(i) ϵ(k− i) +
∞
∑

n=2

M
∑

i1=1

…
M
∑

in=1

ϕn(i1,… , in)
n
∏

j=1

ϵ(k− ij) (4.18)

4.3.2 Laguerre Expansion of the Input–Output Volterra Kernels

Let the jth-order discrete-time orthonormal Laguerre function be (see Figure 4.2)

ϕj(k) = α
k−j
2 (1−α)

1
2

j
∑

i=0

(−1)i
(

k
i

)(

j
i

)

αj−i(1−α)i, (k≥ 0)

where α is the discrete-time Laguerre parameter (0< α< 1), which determines the rate
of exponential asymptotic decline of these functions. Usually, the choice of the Laguerre
parameter α is rather critical in achieving efficient expansions.
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FIGURE 4.2
(Left) First four Laguerre functions for α= 0.2 plotted over the first 25 lags. The order of each Laguerre basis is
indicated under brackets. (Right) The third Laguerre functions for α= 0.1, 0.2, 0.3, 0.4. The corresponding α value
is indicated in parentheses.

Given the Laguerre function, ϕj(k), and the signal, y(k), the jth-order Laguerre filter out-
put is

lj(k) =
∞
∑

i=0

ϕj(i) y(k− i) (4.19)

whose computation can be accelerated significantly by use of the following recursive rela-
tion [82]:

l0(k) =
√

α l0(k− 1) +
√

1−α y(k− 1) (4.20)

lj(k) =
√

α lj(k− 1) +
√

α lj−1(k) + (4.21)
√

α lj−1(k− 1), j≥ 1 (4.22)

Using Laguerre expansion up to order P for the linear terms and up to order Q for the
nonlinear ones, since the {ϕi(t)} form a complete orthonormal set in functional space 2,
we can write [83]

γ0 = g0 (4.23)

γ1(i) =
P
∑

m=0

g1(m)ϕm(i) (4.24)

γ2(i, j) =
Q
∑

m=0

m
∑

n=0

g2(m,n)ϕm(i)ϕn(j) (4.25)
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Here g0, g1(m), and g2(m,n) are constant coefficients. As the expansion goes to zero as i and
j go to infinity, the expansion can be truncated at delay M. Using Equations 4.19 and 4.23
through 4.25, it is possible to write

y(k) = g0 +
P
∑

i=0

g1(i) li(k− 1) +
Q
∑

i=0

i
∑

j=0

g2(i, j) li(k− 1) lj(k− 1) + ϵ(k) (4.26)

Equation 4.26 is the nonlinear autoregressive with Laguerre expansion (NARL) model. In
this case, the number of parameters to estimate is N={1}+ {(P+ 1)} + {(Q+ 1)(Q+ 2)∕2}.
The AR order M of the NAR model corresponding to the NARL model depends on how
fast the Laguerre functions decay to 0. It is also noteworthy that when α= 0 the filter output
becomes lj(k) = (−1)jy(k− j) and the NARL model corresponds, apart from the sign, to the
NAR model.

Quantitative tools of NAR or NARL modeling are defined through their equivalent
input–output Wiener–Volterra models. The general scheme of such a quantitative char-
acterization is shown in Figure 4.3.

The input–output model of a general NAR dynamical system can be written using a
Wiener–Volterra [84] series as

y(k) = h0 +
M
∑

i=1

h1(i) ϵ(k− i) +
∞
∑

n=2

M
∑

i1=1

…
M
∑

in=1

hn(i1,… , in)
n
∏

j=1

ϵ(k− ij) (4.27)

where the functions hn(τ1, ..., τn) are the Volterra kernels, which represent the nonlinear
dynamic system.

Just like for a linear AR model, there is an equivalent infinite-memory moving average
model, in fact, a quadratic NAR (or NARL) model can be linked to an input–output Volterra
model, driven by the same noise term. The transformation between Equations 4.14 and
4.27 can be performed in the frequency domain by using the following relationships [85]
between the Fourier transforms of the Volterra kernels of order p, Hp( f1,… , fn), and the
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FIGURE 4.3
Block diagram of the point-process quantitative tools derivation.
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Fourier transforms of the extended NAR terms, Γ′1( f1) and Γ′2( f1, f2):

ρ
∑

k=mid(ρ)

∑

σ∈σρ

Hk( fσ(1),… , fσ(r),ωσ(r+1) + fσ(r+2),… , fσ(ρ−1) + fσ(ρ)) × Γ′1( fσ(1))⋯Γ′1( fσ(r))

× Γ′2( fσ(r+1), fσ(r+2))⋯Γ′2( fσ(ρ−1), fσ(ρ)) = 0 (4.28)

where ρ is a given integer representing the kernel order, mid(ρ) = ⌈ρ∕2⌉, r= 2k−ρ and σρ is
the permutation set of Nρ. Obviously, there is the need to truncate the series to a reasonable
order for actual application. In this chapter, we model cardiovascular activity with a cubic
input–output Volterra by means of the following relationships with the NARI:

H1( f ) = 1
Γ′1( f )

(4.29)

H2( f1, f2) =−
Γ′2( f1, f2)

Γ′1( f1)Γ′1( f2)
H1( f1 + f2) (4.30)

H3( f1, f2, f3) =−
1
6

∑

σ3

Γ′2
(

fσ3(1), fσ3(2)

)

Γ′1
(

fσ3(1)

)

Γ′1
(

fσ3(2)

) ×H2

(

fσ3(1) + fσ3(2), fσ3(3)

)

. (4.31)

Once the vector of the AR time-varing parameters ξ(t) is estimated, it is possible to derive
instantaneous quantitative tools such as the nth-order spectral representations.

4.3.3 Point-Process Framework

A nonlinear stochastic model embedded within a point-process framework is able to
instantaneously assess the complex cardiovascular dynamics. Just like the previous for-
mulation of point-process linear models, the core of the framework is the definition of the
interbeat probability function to predict the waiting time of the next heartbeat, that is, the
R-wave event, which in this case is a linear and nonlinear combination of the previous
R-wave events. In particular, we describe the most performant model we developed so
far which combines the inhomogeneous inverse Gaussian point-process framework previ-
ously defined in Refs. [27,86] with a novel AR structure linked to input–output definitions
based on Laguerre expansions of the Volterra kernels [82,87–90]. This method employs
the orthonormal basis of the discrete-time Laguerre functions to expand the kernels and
reduces the number of unknown parameters that need be estimated. In order to define the
related quantitative tools, we link a second-order NAR model with Laguerre expansion
of kernels (hereinafter called NARL) to an equivalent infinite-order input–output Volterra
model, which we then truncate at the third order. Therefore, NARL estimates allow for
the instantaneous estimation of the high-order polyspectra [85], such as bispectrum and
trispectrum [91,92].

Here, we propose a novel formulation based on the Laguerre expansions where the pre-
vious RR intervals are embedded, with the instantaneous RR mean defined as

μRR(t,t, ξ(t)) =RRÑ(t) + g0(t) +
p
∑

i=0

g1(i, t) li(t−) +
q
∑

i=0

q
∑

j=0

g2(i, j, t) li(t−) lj(t−) (4.32)
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where

li(t−) =
Ñ(t)
∑

n=1

ϕi(n)
(

RRÑ(t)−n −RRÑ(t)−n−1

)

(4.33)

is the output of the Laguerre filters just before time t. The coefficients g0,{g1(i)} and {g2(i, j)}
correspond to the time-varying zero-, first-, and second-order NARL coefficients, respec-
tively.

The corresponding NAR Wiener–Volterra model with degree of nonlinearity 2 and long-
term memory [82] becomes

μRR(t,t, ξ(t)) =RRÑ(t) +γ0 +
∞
∑

i=1

γ1(i, t) (RRÑ(t)−i −RRÑ(t)−i−1)

+
∞
∑

i=1

∞
∑

j=1

γ2(i, j, t) (RRÑ(t)−i −RRÑ(t)−i−1) × (RRÑ(t)−j −RRÑ(t)−j−1) (4.34)

Note that, even if there is a parallel in the degree of nonlinearities between the NAR and the
NARL models (e.g., you can explicate the quadratic function of the previous observation
RR intervals), the latter reflects a very different characterization.

4.3.4 Quantitative Tools and Feature Extraction

The abovementioned approaches based on nonlinear parametric modeling allow for three
levels of quantitative characterization of heartbeat dynamics: time-domain estimation, lin-
ear power spectrum estimation, and higher order spectral (HOS) representation. Next,
the parametric estimation of spectrum, bispectrum, and trispectrum is described in detail
considering the point-process formulation as a reference model. It is straightforward, in
fact, to consider the estimates from the standard nonlinear parametric formulation as
a particular case of the point-process dynamical estimates occurring at t= t∗. Note that
the bispectrum complements the linear dynamical information given by the spectrum by
providing a quantification of the nonlinear interactions between the system frequencies.
Through bispectral analysis, for instance, it is possible to obtain enhanced estimates of
the parasympathetic dynamics (see the bispectral HH index) as well as estimates of the
dynamical interaction between low frequencies and high frequencies (see the bispectral
LH index).

To summarize, the necessary steps to estimate the quantitative tools from nonlinear mod-
els are as follows:

1. From γn(...) find γ′n(...).
2. Compute the Fourier transforms Γ′n(...) of the kernels γ′n(...).
3. Compute the input–output Volterra kernels Hk(...) from the Γ′n(...) of the AR model.
4. Estimate the nth-order spectra such as the instantaneous spectrum ( f , t) and bis-

pectrum Bis( f1, f2, t).

4.3.4.1 Dynamic Spectrum Estimation

The linear power spectrum estimation reveals the linear mechanisms governing the heart-
beat dynamics in the frequency domain. In particular, given the input–output Volterra ker-
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nels of a NAR model for the instantaneous RR interval mean μRR(t,t, ξ(t)), it is possible
to compute the time-varying parametric (linear) autospectrum [79]:

( f , t) =Sxx( f , t)H1( f , t)H1(−f , t) − 3
2π ∫

H3( f , f2,−f2, t)Sxx( f2, t)df2 (4.35)

where Sxx( f , t) = σ2
RR. The time-varying parametric autospectrum of the RR intervals is

given by multiplying its derivative spectrum ( f , t) by the quantity 2(1− cos(ω)) [72]. Of
note, estimates from standard parametric nonlinear models are defined by Equation 4.35
at a certain time as t= t∗. Just like described for linear modeling (see Section 4.2.4), by inte-
grating Equation 4.35 in each frequency band, it is possible to compute the index within
the VLF (VLF = 0.01–0.05 Hz), LF (LF = 0.05–0.15 Hz), and HF (HF = 0.15–0.5 Hz) ranges.

4.3.4.2 Bispectrum Estimation

The HOS representation allows for the consideration of statistics beyond the second order,
and phase relations between frequency components otherwise suppressed [92,93]. HOS,
also known as polyspectra, are spectral representations of higher order statistics, that is,
moments and cumulants of third order and beyond. HOS can detect deviations from lin-
earity, stationarity, or Gaussianity. Particular cases of HOS are the third-order spectrum
(bispectrum) and the fourth-order spectrum (trispectrum) [93].

A general definition of the bispectrum is as follows:

B( f1, f2) =
+∞
∬

t1,t2=−∞
c3(t1, t2) e−j(2πf1t1+2πf2t2)dt1dt2 (4.36)

with the condition
|ω1|, |ω2|≤ π for ω= 2πf

The c3(t1, t2) variable represents the third-order cumulant, which is defined as follows:

c3(t1, t2) =E{s(t1)s(t2)s(t1 + t2)} (4.37)

where s(t) is a square integrable stationary signal with zero mean. Thus, the bispectrum
measures the correlation among three spectral peaks, ω1,ω2, and (ω1 +ω2) and estimates
the phase coupling.

Concerning the bispectral parametric estimation of nonlinear models, let H2( f1, f2, t)
denote the Fourier transform of the second-order Volterra kernel coefficients. The analyti-
cal solution for the bispectrum of a nonlinear system response with stationary, zero-mean
Gaussian input is [94]

Bis( f1, f2, t) = 2H2( f1 + f2,−f2, t)H1(−f1 − f2, t)H1( f2, t) ×xx( f1 + f2, t)xx( f2, t)
+ 2H2( f1 + f2,−f1, t) ×H1(−f1 − f2, t)H1( f1, t)xx( f1 + f2, t)xx( f1, t)
+ 2H2(−f1,−f2, t)H1( f1, t)H1( f2, t) ×xx( f1, t)xx( f2, t) (4.38)

Of note, an expression similar to Equation 4.38 was derived in the early work of Brillinger
[95], and later in the appendix of Ref. [96].

Given the dynamical bispectrum Bis( f1, f2, t), at each t, it is possible to estimate the bis-
pectral features as described in detail in the following section.
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4.3.4.3 Feature Extraction

Of note, it has been demonstrated that the bispectrum has several symmetry properties
[97], which divide the ( f1, f2) plane in symmetric zones. Therefore, the bispectrum of a real
signal is uniquely defined by its values in the triangular region of computation, 0≤ f1≤
f2 ≤ f1 + f2 ≤ 1, provided there is no bispectral aliasing [98–100]. Specifically introducing the
bispectral parameter, P(a), which is invariant to translation, DC level, amplification, and
scale. It is defined as follows:

P(a) = arctan
(

Ii(a)
Ir(a)

)

(4.39)

where

I(a) = Ir(a) + jIi(a) =

1
1+a

∫
f1=0+

B( f1, af1)df1 (4.40)

for 0< a≤ 1 and j=
√

−1 where a is the slope of the straight line on which the bispectrum is
integrated.

Mean magnitude and phase entropy [101] are also calculated within the triangular region
of computation. Mean magnitude is defined as

Mmean =
1
L

∑

Ω
|B( f1, af1)| (4.41)

and phase entropy is

Pe=
∑

n
p(Ψn)log(p(Ψn)) (4.42)

p(Ψn) =
1
L

∑

Ω
1
(

Φ
(

B( f1, af1)
)

ϵΨn
)

(4.43)

Ψn ={Φ|−π+ 2πn∕N ≤ϕ≤−π+ 2π(n+ 1)∕N} (4.44)

with n= 0, 1, ...,N− 1, where L is the number of points within the triangular region of com-
putation, Φ refers to the phase angle of the bispectrum, Ω refers to the space of the defined
triangular region of computation, and 1(.) is an indicator function, which is equal to 1 when
the phase angle Φ is within the range of bin Ψn in Equation 4.44.

The mean magnitude of the bispectrum can be useful in discriminating between pro-
cesses with similar power spectra but different third-order statistics. However, it is sensi-
tive to amplitude changes.

The normalized bispectral entropy (P1) is equal to

P1 =−
∑

n
pnlog(pn) (4.45)

where

pn =
|B( f1, af1)|

∑

Ω |B( f1, af1)|
(4.46)
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and Ω is the triangular region of computation.
The normalized bispectral squared entropy (P2) is calculated as

P2 =−
∑

n
pnlog(pn) (4.47)

where

pn =
|B( f1, af1)|2

∑

Ω |B( f1, af1)|2
(4.48)

and Ω is the triangular region of computation.
In addition, the sum of logarithmic amplitudes of the bispectrum can be computed

as [102]

Hbis1(t) =
∑

Ω
log(|Bis( f1, f2, t)|) (4.49)

As is well known, the sympathovagal linear effects on HRV are mainly characterized by
the LF and HF spectral powers. Through bispectral analysis, it is possible to further eval-
uate the nonlinear sympathovagal interactions by integrating |B( f1, f2)| in the appropriate
frequency bands. Specifically, it is possible to evaluate

LL(t) =

0.15

∫
f1=0+

0.15

∫
f2=0+

Bis( f1, f2, t)df1df2 (4.50)

LH(t) =

0.15

∫
f1=0+

0.4

∫
f2=0.15+

Bis( f1, f2, t)df1df2 (4.51)

HH(t) =

0.4

∫
f1=0.15+

0.4

∫
f2=0.15+

Bis( f1, f2, t)df1df2 (4.52)

4.3.4.4 Dynamic Trispectrum Estimation

Brillinger [103], Billings [84], Priestley [104], and others have demonstrated that there is a
closed-form solution for homogeneous systems with Gaussian inputs. Thus, the transfer
function of a m-order homogeneous system is estimated by the following relation:

Hm( f1, ..., fm) =
Syx...x(−f1,⋯ ,−fm)

m!Sxx( f1)⋯Sxx( fm)
(4.53)
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where the numerator is the m+ 1−nth order cross-polyspectrum between y and x. This
result is a generalization of the classical result from the transfer function of a linear system
resulting from m= 1. Therefore, the cross-trispectrum (Fourier transform of the third-order
moment) can be estimated as

 ( f1, f2, f3, t) ≈ 3!xx( f1, t)xx( f2, t)xx( f3, t) ×H3( f1, f2, f3, t) (4.54)

4.4 Exemplary Applications

In this section, we describe two exemplary applications of the above-described point-
process NARL model on actual heartbeat data gathered from healthy subjects undergoing
postural changes, and patients with severe CHF.

4.4.1 Postural Changes

In this study, we validate the point-process NARL as related to real physiological dynam-
ics in a study of the RR interval time series recorded from 10 healthy subjects under-
going a tilt-table protocol (75◦ head-up tilt over 50 seconds); see further details in Refs.
[27,105,106]. Briefly, each subject was first placed horizontally in a supine position, with
restraints used to secure him/her at the waist, arms, and hands. The subject was then tilted
from the horizontal to the vertical position and returned to the horizontal position. The
study was conducted at the Massachusetts Institute of Technology (MIT), General Clin-
ical Research Center (GCRC) and was approved by the MIT Institutional Review Board
and the GCRC Scientific Advisory Committee. Of note, tilt-table recordings have been
widely recommended for the study of both stationary and nonstationary HRV assessment
[1,27,105,107,108]. A single-lead ECG was continuously recorded for each subject during
the study, and the RR intervals were extracted using a curve length-based QRS detection
algorithm [109].

To perform a proper model order selection, we integrated the KS and autocorrelation
analysis by considering the AIC criterion ( for comparison analysis exclusively) using the
first 5-minute recordings of resting state. For the NARL model, we obtained 4≤P≤ 8 as the
optimal linear order and 3≤P≤ 4 and 2≤Q≤ 3 for the nonlinear model. One representative
KS and autocorrelation plot is shown in Figure 4.4. For all the considered subjects, nearly
all of the KS plots and more than 97% of the autocorrelation samples were within the 95%
confidence bounds. The tracking results are shown in Figure 4.5.

We further applied an established time-domain method [110] to the RR time series in
order to test the presence of nonlinearity in the heartbeat intervals. The outcomes from the
nonlinearity test further validate that the nonlinear terms estimated by our goodness-of-fit
procedures are not a result of an overfitting identification. Specifically, data coming from
the tilt-table protocol is characterized by a relevant presence of nonlinearity and nonsta-
tionarity in the RR time series for all the considered subjects (see [40]).

We also evaluated the statistical differences between the supine and upright epochs
before and after the slow transitions of the tilt-table protocol. The difference was expressed
in terms of P-values from a nonparametric rank-sum test [111], under the null hypothe-
sis that the medians of the two sample groups are equal. Given the rank-sum statistics,
we also calculated the area under the receiver operating characteristic (ROC) curve [112],
hereinafter area under the curve (AUC). The results from the tilt-table dataset are shown in
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FIGURE 4.4
KS plot (left) and autocorrelation plot (right) from a representative subject of the tilt-table protocol using a point-
process nonlinear model. The dashed lines in all plots indicate the 95% confidence bounds.
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Tables 4.1 and 4.2. We computed standard recommended time domain and morphological
features such as the root mean square of successive differences of intervals (RMSSD), the
percentage of successive differences of intervals which differ by more than 50 ms (pNN50%
expressed as a percentage of the total number of heartbeats analyzed), and the triangular
index (TINN) [1].

From our model linear coefficients, we computed the instantaneous RR standard devi-
ation (a time-varying version of the SDNN [1]) as well the LF and the HF power and

TABLE 4.1

Standard and Instantaneous Measures of HRV: Results from the Tilt-Table
Experimental Dataset.

Standard Time-Domain Measures of HRV

Statistical Index Rest Tilt P value AUC

RMSSD(ms) 32.1± 12.6 19.7± 4.5 <0.05 0.699
NN50(count) 31.0± 29.0 6.0± 5.5 <0.02 0.728
pNN50(%) 10.2± 9.5 1.74± 1.4 <0.02 0.728
HRV_tri_ind 8.03± 1.4 7.3± 1.6 >0.05 0.661
TINN (ms) 195.0± 70.0 150.0± 45.0 >0.05 0.641
σRR(ms) 21.3± 6.7 14.81± 4.7 <0.03 0.717

Instantaneous Standard Frequency-Domain Measures of HRV

Statistical Index Rest Tilt P value AUC

LF (ms2) 373.4± 217.0 287.7± 135.9 >0.05 0.420
HF (ms2) 242.4± 140.4 82.04± 61.1 <0.03 0.719
LF∕HF (n.u.) 0.96± 0.57 2.30± 2.13 >0.05 0.632

P values are obtained by rank-sum test between the Rest and Tilt epochs. Values are
expressed as X=Median(X) ±MAD(X).

TABLE 4.2

Instantaneous Higher Order Measures of HRV: Results from the Tilt-Table
Experimental Dataset

Instantaneous Higher Order Measures of HRV

Statistical Index Rest Tilt P value AUC

P(a) 0.02± 0.45 −0.22± 0.72 >0.05 0.599
σP(a) 0.71± 0.19 0.36± 0.19 <0.02 0.739
Mmean(103) 67.4± 28.8 40.7± 21.4 <0.05 0.653
Pe 5.19± 0.08 5.33± 0.06 <0.05 0.747
P1 8.81± 0.24 9.03± 0.27 >0.05 0.578
P2 7.61± 0.42 7.83± 0.8 >0.05 0.554
Hbis1(103) 162.7± 6.4 153.0± 3.5 <0.02 0.742
LL(106) 163.9± 146.2 162.2± 135.4 >0.05 0.542
LH(106) 429.7± 229.8 183.2± 82.9 <0.02 0.743
HH(106) 974.5± 632.1 289± 194.5 <0.005 0.789

P values are obtained by rank-sum test between the Rest and Tilt epochs. Values are
expressed as X=Median(X) ±MAD(X).
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their ratio (i.e., sympato-vagal balance, LF∕HF), whereas by estimating the dynamic bis-
pectrum by the nonlinear coefficients (see Equation 4.38), we computed all the bispec-
tral features defined in Section 4.3.4.3. All features were calculated instantaneously with
a 5-ms temporal resolution. To average among the group, we considered the median
values over the estimated instantaneous time series according to the protocol timeline.
Values are expressed as median and its respective absolute deviation (i.e., for a feature
X, X=Median(X) ±MAD(X), where MAD(X) =Median(|X−Median(X)|)). As a first out-
come, we can observe that the values and the confidence intervals of all the linear features
are quite similar among the different models, thus demonstrating that the inclusion of non-
linear terms in the model does not effect the linear part of the signal. Nevertheless, it is
important to note that the NARL model provides the best overall results in terms of sta-
tistical difference between the rest and tilt conditions. This demonstrates that choosing the
most proper model is important even in the computation of less complex measures, such as
variance. Also note that all significant higher order indices show better P-value and AUC
when compared with standard measures.

From a clinical point of view, our results suggest that linear AR parametric models clearly
relate to the sympathovagal physiological model. In addition, a more comprehensive and
reliable characterization of the ANS functions on cardiovascular control can be performed
through nonlinear models and related estimates. Our results also demonstrate that time-
varying models and related estimates are also needed to properly identify critical events
in heartbeat dynamics. On the other hand, it is important to point out that, although non-
linear features derived by the nonlinear parametric model have proved very effective in
characterizing autonomic dynamics, current knowledge on the nonlinear correlates does
not relate to specific physiological processes, thus calling for more evolved nonlinear mod-
els that can go beyond the black box approach. A major achievement of linking nonlin-
ear estimates to specific physiological mechanisms would be to obtain specific biomarkers
allowing effective clinical stratifications in health and disease.

4.4.2 Cardiac Heart Failure

The second heartbeat dataset was retrieved from a public source: Physionet (http://
www.physionet.org/) [113]. It consists of RR time series recorded from 14 CHF patients
(from the BIDMC–CHF Database) and 16 healthy subjects (from the MIT–BIH Nor-
mal Sinus Rhythm Database: http://www.physionet.org/physiobank/database/nsrdb/).
Each RR time series was artifact-free (upon human visual inspection and artifact rejection)
and lasted about 50 minutes (small segments of the original over 20-hour recordings).These
recordings have been taken as a landmark for studying complex heartbeat interval dynam-
ics [6,7,10,114]. Of note, the NARL model gives the best fit results for 27 of the 30 sub-
jects [40]. This is due to the capability of the Laguerre coefficients to intrinsically embed
all the previous information (i.e., long-term memory). In addition, having less regressors
improves the performance of the parameter identification. Using this data, we studied the
difference between healthy and CHF subjects. The difference was expressed in terms of P-
values from a nonparametric rank-sum test [111], under the null hypothesis that the medi-
ans of the two sample groups are equal. Given the rank-sum statistics, we also calculated
the area under the ROC curve [112], hereinafter AUC. These longer recordings provide an
ideal dataset for nonlinear and complex HRV analysis, as demonstrated by the large num-
ber of published outcomes [7,10,114]). Results are shown in Tables 4.3 and 4.4. Here, in
addition to the standard measures considered for the first protocol we also computed sev-
eral widely used nonlinear features such as the ApEn [115], the sample entropy (SampEn)

http://www.physionet.org/
http://www.physionet.org/
http://www.physionet.org/physiobank/database/nsrdb/
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TABLE 4.3

Standard and Instantaneous Measures of HRV: Results from the Second
Experimental Dataset

Standard Time-Domain and Nonlinear Measures of HRV

CHF (n= 14) Healthy (n= 16) P value AUC

RMSSD 0.0121± 0.0036 0.0432± 0.0145 >4e−4 0.888
NN50 13.5± 12.00 912.50± 633.00 >3e−4 0.892
pNN50 0.2357± 0.2246 21.5406± 15.4908 >1e−4 0.919
TINN 0.1575± 0.0650 0.2975± 0.0500 >3e−4 0.892
ApEn 1.2130± 0.1032 1.2177± 0.1066 >0.05 0.495
SampEn 1.5670± 0.2690 1.4092± 0.1522 >0.05 0.633
DFA-α1 0.8498± 0.2191 1.0820± 0.1467 >0.05 0.709
DFA-α2 1.1552± 0.1335 0.9286± 0.0544 < 0.05 0.736
σRR(ms) 8.31± 2.2 24.7± 7.0 >5e−4 0.875

Instantaneous Standard Frequency-Domain Measures of HRV

CHF (n= 14) Healthy (n= 16) P value AUC

LF(ms2) 7.28± 6.1 316.0± 127.2 >1.5e−5 0.973
HF(ms2) 30.59± 21.0 606.1± 344.7 >5e−4 0.879
LF∕HF (n.u.) 0.08± 0.1 0.86± 0.7 >0.04 0.728

P values are obtained from the rank-sum test between the CHF and healthy subject
groups. Values are expressed as X=Median(X) ±MAD(X).

TABLE 4.4

Instantaneous Higher Order Measures of HRV: Results from the CHF
Experimental Dataset.

Instantaneous Higher Order Measures of HRV

CHF (n= 14) Healthy (n= 16) P value AUC

P(a) −0.33± 0.29 −0.21± 0.3 >0.05 0.518
σP(a) 0.62± 0.22 0.48± 0.06 >0.05 0.312
Mmean(103) 16.65± 8.24 81.6± 57.9 >2e−3 0.848
Pe 5.05± 0.14 5.26± 0.04 >3e−3 0.830
P1 9.25± 0.06 8.76± 0.42 >5e−3 0.808
P2 8.57± 0.20 7.34± 0.75 >3e−3 0.821
Hbis1(103) 146.7± 7.06 166.5± 6.7 >4e−4 0.853
LL(106) 8.6± 7.8 211.9± 134.0 >2e−5 0.960
LH(106) 46.6± 34.0 549.6± 351.5 >2e−4 0.911
HH(107) 19.2± 14.5 230.1± 190.9 >7e−3 0.795

P values are obtained from the rank-sum test between the CHF and healthy subject
groups. Values are expressed as X=Median(X) ±MAD(X).

[116], and the DFA [114]. Results show that, on average, the CHF patients show signif-
icantly lower σRR. However, σRR depends on linear estimates exclusively, leading to the
need for complementary nonlinear measures. If we reasonably hypothesize that the NARL
bispectral estimation allows for the evaluation of the interactions between the sympathetic
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and parasympathetic systems, our results indicate that on average the CHF patients show
lower interactions between the two peripheral nervous systems, evaluated by means of LL,
LH, and HH. These findings are in agreement with the current literature whereby disorders
in these interactions may lead to abnormalities (e.g., heart failure [117]). With respect to
the considered standard morphological and nonlinear features, most of the NARL spectral
and bispectral features show more significant results. Specifically, differently than what is
found in the shorter tilt-table protocol, here the LF and the LL values related to slower auto-
nomic influences (possibly sympathetic) show the most significant decrease, with the high-
est AUC among all other parameters. This relevant outcome may be possibly attributed to
the capability of the Laguerre coefficients to better capture the slow dynamics (i.e., long-
term memory) when longer data are available.

4.5 Final Remarks and Perspectives

In this chapter, a mathematical overview of parametric models used for HRV analysis is
presented. These parametric models are usually based on AR relationships and are pre-
ferred over the nonparametric ones because of the high resolution in the frequency-domain
analysis even with short time series (once the model parameters are estimated, reliable
AR-based estimates can be obtained using only a few seconds of heartbeat dynamics). The
model order and the parameter vector, however, need to be effectively estimated in order
to obtain reliable features in the time and frequency domain. We split the chapter into two
main logical parts, which are related to linear and nonlinear models. Each part includes
the standard and point-process mathematical formulation, followed by the most common
quantitative tools and feature extraction that can be applied.

As a general consideration, the parameter estimation of linear models is easier to per-
form with respect to nonlinear models. This is due to the higher number of parameters
and higher sensitivity to the input signal amplitude variation that are intrinsic in the non-
linear formulation (because of the quadratic and cubic history dependence). Nevertheless,
nonlinear models are able to provide the same quantitative tools as linear models (i.e.,
measures defined in the time and frequency domain), with additional estimates related
to higher order statistics such as bispectrum and trispectrum. Last but not least, series of
heartbeat dynamics can be seen as the output of the cardiovascular system, which is indeed
a nonlinear system in normal conditions [14]. Of note, as described in Section 4.2.3, by
performing the regression on the derivative series, the NARL model improves the achieve-
ment of stationarity [40,72] and consequently improves system identification. These state-
ments are also confirmed by the experimental results reported in Section 4.4. The results
from nonlinearity tests performed on actual RR interval series gathered on healthy subjects
undergoing structured (postural changes) and unstructured activities, in fact, demonstrate
that the RR interval series is indeed an output of a nonlinear system [40]. Moreover, such
nonlinearity tends to be lost during pathological conditions such as severe CHF. Moreover,
goodness-of-fit analyses through KS statistics and autocorrelation plots demonstrate that
nonlinear models outperform the linear ones by achieving a better prediction of the next
heartbeat event [40]. Of note, nonlinear models also allow the definition of other measures
of complexity related to entropy [44,118,119] and Lyapunov exponents [41,73,120].

Concerning the difference between the standard (linear and nonlinear) and point-
process implementation, it has been demonstrated how the latter approach outperforms
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the former one by significantly improving the prediction of the next heartbeat event [27].
Moreover, the point-process approach is exclusively able to provide goodness-of-fit mea-
sure as well as instantaneous estimates in the time and frequency domain, both relevant
features required by an effective statistical signal processing tool.

4.6 Summary

One of the greatest advancements in applied mathematics has been its use in the func-
tioning of biological and physiological systems. The nature and complexity of the mod-
eling mathematical framework of choice spans from very high dimensional mathematical
objects aimed at reproducing each single element participating in the biological/physiolog-
ical system in question, to very simple (often black box) formulations aimed at characteriz-
ing the overall dynamics of selective features and variables of interest. Among these mod-
els, parametric models (as opposed to nonparametric models, which do not assume any
basic structure of the system generating the experimental data) are defined by mathemati-
cal formulations derived by using a finite number of parameters associated with the phys-
iological system dynamics under study. These parameters are usually collected together
to form a single k-dimensional vector revealing the physiological dynamics under study.
Once estimated, the model is fixed, and does not change to accommodate the complexity
of the data, as can easily happen when using nonparametric models. Throughout a his-
torical overview of the most relevant methodologies based on parametric models for HRV
analysis, this chapter points out how parametric models have proven to be a fundamental
methodological tool for the assessment of the ANS control of heartbeat dynamics.

The chapter further reports details on advanced probabilistic models for instantaneous
HRV assessment. Specifically, we focus on one of the most recent advances in linear and
nonlinear regressive models used for HRV analysis where point-process theory is exploited
to characterize the probability of any heartbeat occurrence. As the interbeat probability
function is defined at each moment in time, it is possible to obtain instantaneous esti-
mates of heartbeat dynamics, opening new dramatic scenarios in understanding under-
lying physiological linear and nonlinear processes.

Finally, we report the most significant features that can be extracted from both linear and
nonlinear parametric models and conclude the presentation with some exemplary appli-
cations, such as HRV assessment during postural change protocols and after CHF.
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5.1 Introduction

Heart rate variability, that is, the spontaneous fluctuations of the inverse of heart period
(HP) over time, is one of the most studied physiological time series. The key features of
its success are: the relevance of the information encoded in it (Akselrod et al., 1981; Task
Force of the European Society of Cardiology and the North American Society of Pacing
and Electrophysiology, 1996), thus making more and more clinically relevant HP vari-
ability assessment; and the richness of the observed dynamics (Goldberger, 1996), thus
prompting for the application of virtually any tool for signal processing to it. Most of the
approaches applied to HP variability are model-based, being spectral analysis grounded
on autoregressive modeling of the most frequently exploited one in univariate applica-
tions (Pagani et al., 1986). Model-based approaches are largely utilized in multivariate
applications as well (Xiao et al., 2005; Porta et al., 2006, 2009) to describe the influences
of determinants driving HP fluctuations through well-known physiological pathways.
Among the determinants of HP variability, systolic arterial pressure (SAP) variability
and respiration (RESP) play a relevant role by contributing directly to HP oscillations
through the baroreflex (Baselli et al., 1994; Mullen et al., 1997; Porta et al., 2000b) and the
coupling between respiratory centers and vagal outflow (Baselli et al., 1994; Triedman
et al., 1995; Eckberg, 2003; Porta et al., 2012b), respectively. While the univariate model-
based approach allows the description of the time course and frequency content of HP
variability (Task Force of the European Society of Cardiology and the North American
Society of Pacing and Electrophysiology, 1996), the multivariate model-based techniques
permit the description of the relationship between HP variability and its determinants in
terms of gain (Baselli et al., 1994; Patton et al., 1996), phase (Halamek et al., 2003; Porta
et al., 2011), correlation (Porta et al., 2000b), degree of association along a given temporal
direction (Porta et al., 2002; Nollo et al., 2005), and directionality of the interactions (Porta
et al., 2012a, 2013b; Faes et al., 2013).

While the importance of model-based approaches is indubitable, model-free data-driven
multivariate techniques are gaining more and more attention. This interest is motivated
by the awareness that the description of the multivariate data set might be imprecise, and
even incorrect, when the predefined model class does not match with the mechanism gen-
erating the recorded dynamics. Since, in physiological systems, the full description of the
data–generating mechanism is more an exception than a rule, especially in integrated sys-
tem physiology, the likelihood that the data-generating mechanism is perfectly described
by a given model class is very low. In addition, even in the fortunate case of matching
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between a model class and data-generating mechanism, model parameters and their num-
ber should be estimated from noisy realizations, thus leading to discrepancies between the
true parameters and the estimated ones and, consequently, between the dynamics gener-
ated by the model and by the original system (Soderstrom and Stoica, 1988). The waiver
of making assumptions about the data-generating mechanism not only has contributed to
an increase the appeal and popularity of model-free data-driven multivariate approaches
but also has enlarged the possibility to describe time series dynamics without forcing them
to fulfill to hypotheses that clearly do not hold in reality (e.g., linearity and/or Gaussian
distributions).

The aim of this study is to emphasize the importance of model-free data-driven mul-
tivariate approaches in describing HP variability and cardiovascular control mechanisms
responsible for inducing HP changes via modifications of different cardiovascular vari-
ables such as SAP and RESP. The goal was achieved through the application of a previously
proposed model-free data-driven multivariate framework devised to assess complexity
and causality over a multivariate set composed by several, simultaneously recorded, car-
diovascular variability series (Porta et al., 2014). The approach was applied to assess: the
complexity of the cardiac control, through the evaluation of the amount of irregularity of
HP variability in a multivariate space accounting for HP, SAP, and RESP; and the degree of
involvement of the cardiac baroreflex and cardiopulmonary pathway in governing cardio-
vascular interactions, through the evaluation of the strength of the causal link from SAP
and RESP to HP variability. Modifications of complexity and causality during supine rest-
ing condition (REST) and during the orthostatic challenge resulting from active standing
(STAND) were quantified as a function of age.

5.2 Methods

5.2.1 Estimating Complexity from HP Series via a Model-Free Data-Driven Multivariate
Approach

We make reference to Porta et al. (2014) for the description of the model-free data-
driven multivariate framework for the assessment of complexity of HP variability given
the universe of knowledge Ω={HP,SAP,RESP}. Two approaches were considered (Porta
et al., 2014). The first approach exploited a local predictability (LP) technique based on a
k-nearest-neighbor approach (Farmer and Sidorowich, 1987; Abarbanel et al., 1994; Porta
et al., 2007c). The HP complexity was estimated as the degree of HP unpredictability
when past values of the same series and present and past samples of SAP and RESP
were known. The degree of unpredictability was assessed as the degree of uncorrelation
between the original and predicted signals (Porta et al., 2007c). It ranged from 0 to 1,
where 0 indicated perfect predictability and null complexity, while 1 indicated null pre-
dictability and maximal complexity. The second approach computed the HP complexity
as the residual HP uncertainty given past samples of the same series and present and
past values of SAP and RESP. The residual HP uncertainty was quantified via conditional
entropy (CE) estimated again via a k-nearest-neighbor approach (Porta et al., 2013a). The
CE was divided by the Shannon entropy of HP series to obtain an index of complexity
ranging again from 0 to 1, where 0 indicated perfect predictability and null complexity,
while 1 indicated null predictability and maximal complexity (Porta et al., 2007a). The key
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feature of both LP and CE methods for the assessment of HP complexity was the con-
struction of a multivariate nonuniform optimal embedding space where the dynamical
interactions among HP, SAP, and RESP were unfolded and univocally described (Vla-
chos and Kugiumtzis, 2010; Faes et al., 2011; Porta et al., 2014). The embedding space
was multivariate, nonuniform, and optimal because it could be formed by time-delayed
components of different signals (here HP, SAP, and RESP); the time separation between
adjacent components could be variable and the components were selected such a way to
produce the maximal reduction of unpredictability or uncertainty in the case of LP and
CE methods, respectively (Porta et al., 2014). The overall procedure was iterated until
the minimum of HP unpredictability or uncertainty was reached (Porta et al., 2014) and
the number of components at the minimum was labeled as qHPLPo and qHPCEo , respec-
tively. The degree of unpredictability and uncertainty at qHPLPo and qHPCEo , respectively,
was indicated as the normalized complexity index (NCI) and indicated as NCIHPLP and
NCIHPCE . Since the optimal embedding space could be formed by components of HP, SAP,
and RESP, all these signals could contribute to qHPLPo . We indicated in the following with
qHP→HPLPo , qSAP→HPLPo , and qRESP→HPLPo the number of components of HP, SAP, and RESP
contributing to qHPLPo with qHPLPo =qHP→HPLPo+ qSAP→HPLPo+ qRESP→HPLPo . The relations
qHP→HPLPo = 0, qSAP→HPLPo = 0, and qRESP→HPLPo = 0, respectively, indicated that HP, SAP,
or RESP did not influence the current value of HP. When qHP→HPLPo ≠ 0, qSAP→HPLPo ≠ 0,
and qRESP→HPLPo ≠ 0, the minimal delay of past values of HP, SAP, and RESP on the cur-
rent value of HP could be estimated, respectively. Similar decomposition of qHPCEo could
be obtained with qHPCEo =qHP→HPCEo+ qSAP→HPCEo+ qRESP→HPCEo and the minimal delay
of interactions from HP, SAP, and RESP to HP could be estimated as well provided that
qHP→HPCEo ≠ 0, qSAP→HPCEo ≠ 0, and qRESP→HPCEo ≠ 0, respectively.

5.2.2 Estimating Causality Indexes from SAP and RESP to HP a via a Model-Free Data-Driven
Multivariate Approach

We make reference to Porta et al. (2014) for the description of the model-free data-driven
multivariate framework for the assessment of causality indexes from SAP to HP along
the cardiac baroreflex and from RESP to HP along the cardiopulmonary pathway given
the universe of knowledge Ω={HP,SAP,RESP}. Two approaches were considered (Porta
et al., 2014), based on the notion of Granger causality (Granger, 1980) and transfer entropy
(Schreiber, 2000).

The first approach estimated the strength of the causal relation from a cause series to an
effect one via a causality ratio (CR) quantifying the fractional decrement of the unpredictabil-
ity of the assigned effect resulting from the inclusion of the presumed cause in the restricted
set of signals that intentionally excluded the presumed cause (Granger, 1980). More specifi-
cally, if the presumed cause was SAP, the effect was HP and the reduced set was {HP,RESP};
the fractional decrement of the HP unpredictability due to the inclusion of SAP measured
the strength of the causal relation from SAP to HP along the cardiac baroreflex (Porta et al.,
2014). This index is indicated as CRSAP→HPLP in the following. If the presumed cause was
RESP, the effect was HP and the restricted set was {HP,SAP}; the fractional decrement of
the HP unpredictability due to the inclusion of RESP quantified the strength of the causal
relation from RESP to HP along the cardiopulmonary pathway (Porta et al., 2014). This
index is indicated as CRRESP→HPLP in the following. CRSAP→HPLP = 0 and CRRESP→HPLP = 0
indicated that the enlargement of the embedding space by including SAP and RESP respec-
tively did not lead to the addition of any components of SAP and RESP, respectively, thus
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suggesting the absence of causality from SAP and RESP to HP. Conversely, CRSAP→HPLP < 0
and CRRESP→HPLP < 0 indicated that SAP and RESP, respectively, carried unique information
about the future HP evolution that could not be derived from any signal in the restricted set,
and according to the concept of Granger causality (Granger, 1980), it could be stated that
SAP and RESP Granger-caused HP, respectively.

The second approach assessed the strength of the causal relation from a cause series to
an effect one via a CR quantifying the fractional decrement of the information carried by
the effect series resulting from the inclusion of the presumed cause in the restricted set of
signals that deliberately excluded the presumed cause (Schreiber, 2000). In this case, the
indexes measuring the strength of the casual relation from SAP and RESP to HP along the
cardiac baroreflex and cardiopulmonary pathway respectively are labeled as CRSAP→HPCE

and CRRESP→HPCE in the following. Analogously to the LP approach, CRSAP→HPCE = 0 and
CRRESP→HPCE = 0 suggested the absence of causality from SAP and RESP to HP, while
CRSAP→HPLP < 0 and CRRESP→HPLP < 0 indicated the presence of a causal relation from SAP
and RESP to HP, respectively.

5.3 Experimental Protocol and Data Analysis

5.3.1 Experimental Protocol

We studied 100 nonsmoking healthy humans (54 males). The age of the subjects ranges
from 21 to 70 years. The overall range of age was uniformly divided into five bins of size
of 10 years. Table 5.1 summarizes the characteristics of the overall population and of any
subgroup in the considered bins of age. The population was balanced in terms of gender to
limit the influences of this confounding factor on the analysis (Barnett et al., 1999). All the
subjects were apparently healthy, had no history, and no clinical evidence of any disease
based on clinical and physical examinations, laboratory tests, standard electrocardiogram
(ECG), and a maximum cardiopulmonary exercise test conducted by a physician. They
were not taking any medication known to interfere with cardiovascular control. Smokers
and habitual drinkers were excluded from this study. All subjects were evaluated in the
afternoon. The experiments were carried out in a climatically controlled room (22–23◦ C)
with relative air humidity at 40%–60%. Subjects were instructed not to consume caffeinated
and alcoholic beverages as well as not to perform strenuous exercises on the day before the
recording. They were also instructed to ingest a light meal at least 2 hours prior to the test.

TABLE 5.1

Characteristics of the Population

Age Bin (Years) All Ages 21–30 31–40 41–50 51–60 61–70

Number of
subjects

100 (54 M/46 F) 20 (10 M/10 F) 20 (11 M/9 F) 20 (10 M/10 F) 20 (10 M/10 F) 20 (13 M/7 F)

Age (years) 45 (21–70) 26 34 45 55 65
Weight (kg) 71 (43–100) 71 69 70 71 72
Height (cm) 167 (146–197) 168 168 167 169 164
BMI (kg ⋅ m−2) 25 (17.4–33.4) 23.9 24.8 25.4 25.1 26.7

M = male; F = female; BMI = body mass index. Values are given as median (1st quartile–3rd quartile).
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On the day of the experiment, the subjects were interviewed and examined before the
test to verify whether they were in good health and had a regular night of sleep. Prior to
the recording, the volunteers were made familiar with the equipment and with the experi-
mental procedure. During the entire protocol, the subjects breathed spontaneously but they
were not allowed to talk. The study was performed according to the Declaration of Helsinki
and it was approved by the Human Research Ethics Committee of the Federal University
of São Carlos (protocol number 173/2011). A written informed consent was obtained from
all subjects.

ECG (modified lead I), continuous plethysmographic arterial pressure (Finometer PRO,
Finapress Medical System, The Netherlands), and respiratory movements via thoracic belt
(Marazza, Monza, Italy) were digitalized using a commercial device (BioAmp Power Lab,
AD Instruments, Australia). Signals were sampled at 400 Hz. The arterial pressure was
measured from the middle finger of the left hand maintained at the level of heart by fixing
the subject’s arm to his/her thorax. All the experimental sessions of the protocol included
two periods in the same order: (1) 15 minutes at REST and (2) 15 minutes during STAND.
Before REST, we allowed 10 minutes for stabilization. The arterial pressure signal was
cross-calibrated in each session using a measure provided by a sphygmomanometer at the
onset of REST. The autocalibration procedure of the arterial pressure device was switched
off after the first automatic calibration at the onset of the session. Analyses were performed
after about 2 minutes from the start of each period.

5.3.2 Beat-to-Beat Variability Series Extraction and Index Calculation

After detecting the QRS complex on the ECG and locating the peak of the QRS complex
using parabolic interpolation, HP was approximated as the temporal distance between
two consecutive parabolic apexes. The maximum arterial pressure inside of the nth HP,
HP(n), was taken as the nth SAP, SAP(n). The signal of the thoracic movements was
downsampled once per cardiac beat at the occurrence of the first QRS peak delimit-
ing HP(n), thus obtaining the nth RESP measure, RESP(n). The occurrences of QRS and
SAP peaks were carefully checked to avoid erroneous detections or missed beats. After
extracting the series HP={HP(n),n= 1,… ,N}, SAP={SAP(n),n= 1,… ,N} and RESP=
{RESP(n),n= 1,… ,N}, where n is the progressive cardiac beat counter and N is the total
cardiac beat number, sequences of 256 consecutive measures were randomly selected
inside REST and STAND periods, thus focusing on short-term cardiovascular regulatory
mechanisms (Task Force of the European Society of Cardiology and the North Amer-
ican Society of Pacing and Electrophysiology, 1996). If evident nonstationarities, such
as very slow drifting of the mean or sudden changes of the variance, were present
despite the linear detrending, the random selection was carried out again. Traditional
time domain parameters such as the mean and the variance of HP and SAP were cal-
culated and indicated as μHP, μSAP, σ2

HP, and σ2
SAP. They were expressed in ms, mmHg,

ms2, and mmHg2, respectively. RESP values were expressed in arbitrary units (a.u.). The
possible immediate (i.e., within the same cardiac beat) effects of SAP and RESP on HP
(Eckberg, 1976; Porta et al., 2012a) were accounted for by testing the presence of zero-
lag interactions of SAP(n) and RESP(n) on HP(n). The number of nearest neighbors, k,
was set to 30 for both LP and CE approaches (Porta et al., 2014). The maximal num-
ber of lagged components derived from each series and tested for the construction of
the optimal embedding space was fixed to 10 and the maximal number of components
forming the multivariate embedding space was fixed to 15. This choice imposed that



Assessing Complexity and Causality in Heart Period Variability 123

qHP→HPLPo , qSAP→HPLPo , qRESP→HPLPo , qHP→HPCEo , qSAP→HPCEo , and qRESP→HPCEo ranged from
0 to 10, while qHPLPo and qHPCEo ranged from 0 to 15.

5.3.3 Statistical Analysis

After pooling together all the data regardless of age and the experimental condition (i.e.,
REST and STAND), we performed a paired t-test to check the significance of the difference
between the optimal number of samples, qHPo , leading to the minimal unpredictability or
uncertainty of the HP series assessed according to the LP and CE approaches, respectively.
If the normality test (Kolmogorov–Smirnov test) was not fulfilled, the Wilcoxon signed
rank test was utilized. After pooling together all the data regardless of age, the same test
was exploited to evaluate the effect of the orthostatic challenge (i.e., STAND) on traditional
parameters (i.e., μHP, σ2

HP, μSAP, and σ2
SAP) and, after having assigned the method (i.e.,

LP or CE), on NCI and CR. Two-way repeated measures analysis of variance (one factor
repetition, Holm–Sidak test for multiple comparisons) was utilized to test the significance
of the differences between the number of samples of HP, SAP, and RESP contributing to
qHPo within the same method (i.e., LP and CE) and between methods within the same
parameter. The χ2 test was utilized to test the effect of the experimental condition within
the method (i.e., LP or CE) and the effect of the method within the experimental condition
(i.e., REST or STAND) on the percentage of subjects with immediate influences from SAP
and RESP to HP (McNemar’s test). Linear regression analysis of μHP, σ2

HP, μSAP, and σ2
SAP

on age was carried out. Pearson product-moment correlation coefficient was calculated.
The same analysis was carried out to check the dependence of NCI and CR, as computed
from LP and CE approaches, on age. Statistical analysis was carried out using a commercial
statistical program (Sigmaplot, ver.11, Systat Software, San Jose, CA, USA). A p< .05 was
always considered significant.

5.4 Results

5.4.1 Representative Examples of Complexity and Causality Analyses of HP Dynamics

Figure 5.1 shows a representative example of HP, SAP, and RESP series recorded at REST
in a healthy young subject (age = 26 years) and in a healthy old individual (age = 70 years).
This example shows a tendency of the HP series toward a reduction of HP variance,
σ2

HP, with age in the presence of an unchanged HP mean, μHP: μHP and σ2
HP are 899

ms and 1758 ms2, respectively in Figure 5.1a and 871 ms and 579 ms2, respectively in
Figure 5.1d. Conversely, SAP mean, μSAP, and variance, σ2

SAP, tend to increase: μSAP and
σ2

SAP are 119 mmHg and 8 mmHg2 in Figure 5.1b and 155 mmHg and 64 mmHg2 in
Figure 5.1e. In this example, NCIHPLP and NCIHPCE are 0.35 and 0.78, respectively, in the
young subject and they are lower in the old individual (i.e., 0.19 and 0.68), thus indicating
a reduction of complexity in terms of unpredictability and amount of information of the HP
series. In the young subject, CRSAP→HPLP and CRSAP→HPCE are−0.03 and 0 and CRRESP→HPLP

and CRRESP→HPCE are −0.59 and −0.19. In the old individual, CRSAP→HPLP and CRSAP→HPCE

are equal to those derived from the young one. Conversely, in the old subject, CRRESP→HPLP

and CRRESP→HPCE are less negative (−0.34 and −0.06).
Figure 5.2 shows a representative example of HP, SAP, and RESP series recorded dur-

ing STAND in a healthy young subject (age = 30 years) and in a healthy old individual
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FIGURE 5.1
HP, SAP, and RESP series recorded at REST in a healthy young (age = 26 years) subject are shown in (a), (b),
and (c), respectively, while those recorded in the same condition in a healthy old (age = 70 years) individual are
depicted in (d), (e), and (f), respectively.
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FIGURE 5.2
HP, SAP, and RESP series recorded during STAND in a healthy young (age = 30 years) subject are shown in (a),
(b), and (c), respectively, while those recorded in the same condition in a healthy old (age = 70 years) individual
are depicted in (d), (e), and (f), respectively.
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(age = 70 years). This example shows a tendency toward an increase of μHP and to a
decrease of σ2

HP with age: μHP and σ2
HP were 588 ms and 784 ms2 in Figure 5.2a and 732 ms

and 201 ms2 in Figure 5.2d. μSAP exhibits a marked increase from 117 (Figure 5.2b) to
162 mmHg (Figure 5.2e), while σ2

SAP is similar (i.e., 21 and 17 mmHg2). In this example,
NCIHPLP is 0.13 in the young subject and higher in the old individual (i.e., 0.19), thus indi-
cating an increase of complexity in terms of unpredictability of the HP series. NCIHPCE is
more balanced, 0.61 and 0.62 in the young and old subject, respectively. In the young sub-
ject, CRSAP→HPLP , CRSAP→HPCE , CRRESP→HPLP , and CRRESP→HPCE are −0.36, 0, 0, and 0. In the
old subject, CRSAP→HPLP becomes less negative (i.e., −0.09) and CRSAP→HPCE , CRRESP→HPLP

and CRRESP→HPCE are similar (i.e., 0, −0.02, and 0, respectively).

5.4.2 Optimal Number of Components and Zero-Lag Interactions

The bar graph in Figure 5.3 shows the mean (plus standard deviation) of the total num-
ber of components (i.e., the optimal embedding dimension), qHPo , leading to the smallest
unpredictability of the HP series according to the LP technique, and to the minimal amount
of information carried by the HP series according to CE. Values of qHPo were pooled
together independently of the experimental condition (i.e., REST and STAND) and age.
The LP and CE approaches had different levels of parsimoniousness: the number of com-
ponents necessary to reduce the HP uncertainty to the minimum was significantly smaller
than the one needed to decrease the unpredictability to the nadir (the median value of
qHPLPo and qHPCEo was 4 and 2, respectively).

qHPo was decomposed into three terms, qHP→HPo , qSAP→HPo , and qRESP→HPo , featuring
the number of HP, SAP, and RESP samples contributing to the reduction of unpredictabil-
ity and uncertainty of the HP series. Figure 5.4 reports the mean (plus standard deviation)
of qHP→HPo (white bar), qSAP→HPo (gray bar), and qRESP→HPo (black bar) as a function of
the method (i.e., LP and CE). Values of qHP→HPo , qSAP→HPo , and qRESP→HPo were pooled
together regardless of the experimental condition (i.e., REST and STAND) and age. The
LP approach led to values of qHP→HPLPo larger than qSAP→HPLPo and qRESP→HPLPo , while
qSAP→HPLPo and qRESP→HPLPo were similar. The CE technique clearly suggested a differ-
ent importance of HP, SAP, and RESP in diminishing HP uncertainty. Indeed, qHP→HPCEo

was the largest value and qSAP→HPCEo was the smallest one. The difference between qHPLPo

CELP

q H
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0

7
*

FIGURE 5.3
Bar graph shows mean plus standard deviation of the optimal total number of components, qHPo , leading to the
smallest unpredictability of HP series according to the LP approach (i.e., qHPLPo ) and to the minimal amount of
information carried by HP series according to CE (i.e., qHPCEo ). The values of qHPo were pooled together regardless
of the experimental conditions (i.e., REST and STAND) and age. The symbol * indicates a significant difference
with p< .001.
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FIGURE 5.4
Grouped bar graph shows mean plus standard deviation of the number of HP (qHP→HPo , white bar), SAP
(qSAP→HPo , gray bar), and RESP (qRESP→HPo , black bar) samples contributing to the optimal number of compo-
nents, qHPo , leading to the smallest unpredictability of HP series according to the LP approach (i.e., qHP→HPLPo ,
qSAP→HPLPo and qRESP→HPLPo ) and to the minimal amount of information carried by HP series according to CE
(i.e., qHP→HPCEo , qSAP→HPCEo , and qRESP→HPCEo ). The values of qHP→HPo , qSAP→HPo , and qRESP→HPo were pooled
together regardless of the experimental condition (i.e., REST and STAND) and age. The symbol * indicates a
significant difference with p< .05 within the same index while varying the method. The symbol # indicates a
significant difference with p< .05 within the same method while varying the index.
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FIGURE 5.5
Grouped bar graphs show the percentage of subjects with immediate effects (i.e., zero-lag interactions) from SAP
to HP (a) and from RESP to HP (b) as a function of the experimental condition (REST and STAND). The percentage
was calculated by accounting solely for subjects with qSAP→HPo ≠0 and qRESP→HPo ≠0 in (a) and (b), respectively.
Black bars represent the percentage of subjects with immediate effects assessed according to LP approach, while
the white bars represent that computed according to CE. Subjects were pooled together independently of age. No
significant difference was detected.

and qHPCEo , reported in Figure 5.3, was explained in Figure 5.4 in terms of a significant
decline of qHP→HPCEo , qSAP→HPCEo , and qRESP→HPCEo compared to qHP→HPLPo , qSAP→HPLPo ,
and qRESP→HPLPo , respectively.

Figure 5.5 shows the effect of the orthostatic stimulus on the percentage of subjects
exhibiting immediate effects (i.e., zero-lag interactions) from SAP to HP (Figure 5.5a)
and from RESP to HP (Figure 5.5b). Subjects were pooled together independently of age.
Among subjects with qSAP→HPo ≠ 0 and qRESP→HPo ≠ 0, the percentage of subjects with
immediate effects did not vary with the type of approach (i.e., LP or CE) and the exper-
imental condition (i.e., REST or STAND).
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FIGURE 5.6
Bar graphs show mean plus standard deviation of HP mean, μHP (a), HP variance, σ2

HP (b), SAP mean, μSAP (c),
and SAP variance, σ2

SAP (d) as a function of the experimental condition (i.e., REST and STAND). Values of μHP,
σ2

HP, μSAP, and σ2
SAP were pooled together regardless of age. The symbols * and § indicate a significant difference

with p< .001 and p< .05, respectively.

5.4.3 Effects of Orthostatic Challenge on HP Complexity and Causality Indexes

Figure 5.6 shows the bar graphs of μHP, σ2
HP, μSAP, and σ2

SAP (mean plus standard devia-
tion) as a function of the experimental condition (i.e., REST and STAND). Values of μHP,
σ2

HP, μSAP, and σ2
SAP were pooled together independently of age. STAND induced a signif-

icant decrease of μHP (Figure 5.6a) and σ2
HP (Figure 5.6b) and a significant increase of μSAP

(Figure 5.6c) and σ2
SAP (Figure 5.6d).

Figure 5.7 reports the bar graphs of NCIHP (mean plus standard deviation) as a func-
tion of the experimental condition (i.e., REST and STAND) estimated by the LP and CE
approaches. Values of NCIHP were pooled together independently of age. Both LP (Fig-
ure 5.7a) and CE (Figure 5.7b) techniques detected a significant decrease of NCIHP during
STAND, thus suggesting that the orthostatic challenge reduced unpredictability and uncer-
tainty of the HP series.

Figure 5.8 reports the bar graphs of CRSAP→HP and CRRESP→HP (mean minus standard
deviation) as a function of the experimental condition (i.e., REST and STAND) estimated
by the LP and CE approaches. Values of CRSAP→HP and CRRESP→HP were pooled together
independently of age. CRSAP→HPLP became significantly more negative during STAND
(Figure 5.8a) and this trend revealed an augmentation of the strength of the causal link
from SAP to HP. CRSAP→HPCE was unable to detect the same effect of STAND (Figure 5.8b).
STAND affected CRRESP→HP as well (Figure 5.8c and d). Indeed, CRRESP→HP significantly
moved toward 0, thus indicating a reduced strength of the causal link from RESP to
HP. This finding was confirmed both by CRRESP→HPLP (Figure 5.8c) and CRRESP→HPCE

(Figure 5.8d).
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FIGURE 5.7
Bar graphs show mean plus standard deviation of NCI of the HP series, NCIHP, in (a) and (b), as a function of the
experimental condition (REST and STAND). The bar graph in (a) is relevant to indexes computed according to
the LP approach, while the bar graph in (b) is relevant to those calculated according to CE. Values of NCIHP were
pooled together regardless of age. The symbol * indicates a significant difference with p< .001.
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FIGURE 5.8
Bar graphs show mean minus standard deviation of CR from SAP to HP, CRSAP→HP, in (a) and (b), and of CR
from RESP to HP, CRRESP→HP, in (c) and (d) as a function of the experimental condition (REST and STAND). The
bar graphs in (a) and (c) are relevant to indexes computed according to the LP approach, while bar graphs (b) and
(d) are relevant to those calculated according to CE. Values of CRSAP→HP and CRRESP→HP were pooled together
regardless of age. The symbol * indicates a significant difference with p< .001.

5.4.4 Linear Regression Analysis on HP Complexity and Causality Indexes on Age

Table 5.2 reviews the results of linear regression analysis of time domain HP and SAP
variability parameters on age at REST. While μHP was unrelated to age, σ2

HP, μSAP, and σ2
SAP

were found significantly correlated with age. The correlation coefficient, rP, was negative
in the case of σ2

HP, thus indicating that the magnitude of the HP variations progressively
decreased with age and was positive in the case of μSAP and σ2

SAP, thus evidencing that
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TABLE 5.2

Linear Regression Analysis of Time-Domain HP and SAP Variability
Parameters on Age at REST

rP p Significance

μHP 0.0418 6.80× 10−1 No
σ2

HP −0.391 5.77× 10−5 Yes
μSAP 0.243 1.48× 10−2 Yes
σ2

SAP 0.403 3.22× 10−5 Yes

μHP =HP mean; σ2
HP =HP variance; μSAP = SAP mean; σ2

SAP = SAP variance; rP =
Pearson product-moment correlation coefficient; p= probability of type-I error;
Yes/No= the variable is/is not significantly related to age with p< .05.

TABLE 5.3

Linear Regression Analysis of Time-Domain HP and SAP Variability
Parameters on Age during STAND

rP p Significance

μHP 0.306 1.97× 10−3 Yes
σ2

HP −0.430 7.88× 10−6 Yes
μSAP 0.299 2.54× 10-3 Yes
σ2

SAP 0.0104 9.18× 10−1 No

μHP =HP mean; σ2
HP =HP variance; μSAP = SAP mean; σ2

SAP = SAP variance; rP =
Pearson product-moment correlation coefficient; p=probability of type-I error;

Yes/No= the variable is/is not significantly related to age with p< .05.

TABLE 5.4

Linear Regression Analysis of Model-Free Data-Driven Multivariate
Indexes of HP Complexity on Age at REST

rP p Significance

NCIHPLP −0.357 2.69× 10−4 Yes
NCIHPCE −0.317 1.33× 10−3 Yes

NCIHPLP , NCIHPCE =normalized complexity index of HP series derived from LP and
CE approaches; rP =Pearson product-moment correlation coefficient; p=probability
of type-I error; Yes/No= the variable is/is not significantly related to age with
p< .05.

both SAP and the magnitude of its changes increased with age. It is worth noting that p
assessed over σ2

SAP was three orders of magnitude larger than that relevant to μSAP.
Table 5.3 summarizes the results of linear regression analysis of time-domain HP and

SAP parameters on age during STAND. Different from REST, μHP was significantly linearly
correlated with age. rP was positive, thus suggesting that orthostatic challenge induced a
tachycardic response becoming less and less important with age. Similarly to REST, the
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progressive decrease of σ2
HP and the gradual increase of μSAP were significant. During

STAND no linear relation was detected between σ2
SAP and age.

Table 5.4 reports the results of linear regression analysis of HP complexity parameters
on age at REST. NCIHPLP and NCIHPCE were significantly linearly correlated with age. rP
was negative, thus suggesting a progressive loss of complexity of HP dynamics with age.
Table 5.5 summarizes the results of linear regression analysis of HP complexity indexes
on age during STAND. This table suggests a different behavior between HP complexity
indexes assessed according to LP and CE techniques. Only NCIHPLP was found signifi-
cantly related to age (the type-I error probability of the linear relation of NCIHPCE on age
was close to the significance level). rP of NCIHPLP on age was positive, thus suggesting that
HP variability during STAND became more and more unpredictable with age.

Table 5.6 reports the results of linear regression analysis of parameters assessing causal-
ity from SAP and RESP to HP on age at REST. Both CRSAP→HPLP and CRSAP→HPCE were
unrelated to age. Conversely, both CRRESP→HPLP and CRRESP→HPCE progressively became
less negative with age (rP was positive), thus suggesting that aging reduced the strength
of the causal link from RESP to HP. Table 5.7 summarizes the results of linear regres-
sion analysis of parameters assessing causality from SAP and RESP to HP on age dur-
ing STAND. Causality analysis indicated another different behavior between the LP and
CE approaches. Indeed, while CRSAP→HPLP was significantly linearly correlated with age,
CRSAP→HPCE was unrelated to it. rP of CRSAP→HPLP on age was positive, thus indicating
that the strength of the causal link from SAP to HP became gradually weaker and weaker

TABLE 5.5

Linear Regression Analysis of Model-Free Data-Driven Multivariate
Indexes of HP Complexity on Age during STAND

rP p Significance

NCIHPLP 0.244 1.42× 10−2 Yes
NCIHPCE 0.179 7.52× 10−2 No

NCIHPLP , NCIHPCE =normalized complexity index of HP series derived from LP and
CE approaches; rP =Pearson product-moment correlation coefficient; p=probability
of type-I error; Yes/No= the variable is/is not significantly related to age with
p< .05.

TABLE 5.6

Linear Regression Analysis of Model-Free Data-Driven Multivariate
Causality Indexes from SAP and RESP to HP on Age at REST

rP p Significance

CRSAP→HPLP −0.0677 5.03× 10−1 No
CRSAP→HPCE 0.0203 8.41× 10−1 No
CRRESP→HPLP 0.201 4.47× 10−2 Yes
CRRESP→HPCE 0.380 9.47× 10−5 Yes

CRSAP→HPLP , CRSAP→HPCE = causality ratio from SAP to HP series derived from LP
and CE approaches; CRRESP→HPLP , CRRESP→HPCE = causality ratio from RESP to HP
series derived from LP and CE approaches; rP =Pearson product-moment correla-
tion coefficient; p=probability of type-I error; Yes/No= the variable is/is not signif-
icantly related to age with p< .05.
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TABLE 5.7

Linear Regression Analysis of Model-Free Data-Driven Multivariate
Causality Indexes from SAP and RESP to HP on Age during STAND

rP p Significance

CRSAP→HPLP 0.326 9.51× 10−4 Yes
CRSAP→HPCE 0.00152 9.88× 10−1 No
CRRESP→HPLP −0.149 1.40× 10−1 No
CRRESP→HPCE −0.182 7.00× 10−2 No

CRSAP→HPLP , CRSAP→HPCE = causality ratio from SAP to HP series derived from LP
and CE approaches; CRRESP→HPLP , CRRESP→HPCE = causality ratio from RESP to HP
series derived from LP and CE approaches; rP =Pearson product-moment correla-
tion coefficient; p=probability of type-I error; Yes/No= the variable is/is not signif-
icantly related to age with p< .05.

with age. The LP and CE approaches provided similar results in the case of causality from
RESP to HP: indeed, both CRRESP→HPLP and CRRESP→HPCE were unrelated to age.

5.5 Discussion

5.5.1 Discussion of the Methodological Findings

The first part of the discussion is mainly devoted to methodological issues supporting the
relevance of applying model-free data-driven multivariate techniques in studies carried
out to elucidate mechanisms underpinning cardiovascular regulation and, more specif-
ically, to quantify the complexity of the cardiac control and the strength of the causal
relations among cardiovascular variables. In this section, a subsection is devoted to the
comparison between two traditional approaches for the assessment of complexity and
causality (i.e., LP and CE) in the context of the analysis of cardiovascular control. This com-
parison was allowed by the peculiar characteristic of the specific model-free data-driven
multivariate framework adopted in this study (Porta et al., 2014).

5.5.1.1 On the Importance of Applying a Model-Free Data-Driven Multivariate Framework
for the Evaluation of the Cardiovascular Control from Spontaneous Physiological
Variations

The present study stresses the importance of applying a model-free data-driven multi-
variate approach for the characterization of HP variability and its dependence on varia-
tions of physiological variables different from HP such as SAP and RESP. Traditionally,
parameters helpful to describe HP variability were computed via both model-free (Aksel-
rod et al., 1981) and model-based (Pagani et al., 1986) univariate techniques. However, the
univariate approach fails in accounting for possible influences of physiological variables
over HP variability, thus providing a limited interpretation of the HP dynamics, prevent-
ing the understanding of the origin of HP changes and limiting the clinical application of
HP variability indexes due to the lack of association to specific physiological mechanisms.
In order to overcome these shortcomings, multivariate model-based approaches have been
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proposed (Baselli et al., 1994; Mullen et al., 1997; Xiao et al., 2005; Porta et al., 2006, 2009).
These methods were found very helpful in providing a more complete picture of HP vari-
ability via the quantification of transfer functions linking fluctuations of cardiovascular
variables to HP changes (Mullen et al., 1997; Xiao et al., 2005) and the decomposition of HP
variability into the contributions attributable to specific physiological mechanisms (Porta
et al., 2006, 2012b). However, these methods hypothesize that the interactions among vari-
ability series could be faithfully explained in terms of linear relations usually described
by standard linear multivariate regression models (Baselli et al., 1994; Mullen et al., 1997;
Xiao et al., 2005; Porta et al., 2006, 2009). Even though the hypothesis of linearity might
hold in several experimental conditions and the small amount of HP changes, especially in
pathological subjects, might allow the linearization of a nonlinear system about the mean
values of the variables, linear dynamics or small variations cannot be considered ubiqui-
tous features in HP variability studies. In addition, even if one of the two abovementioned
prerequisites holds, the general structure of the adopted model class might lead to inef-
ficient reproduction of the HP dynamics especially when the model order was kept low
to avoid overparametrization. According to these considerations, model-free data-driven
techniques should be favored in exploratory studies based on little information about the
underlying system, while model-based approaches should be considered as a secondary
option. Conversely, due to the usual superior computational efficiency of model-based
approaches compared to model-free ones, model-based techniques should be privileged
when more robust information about the system’s behavior is provided. However, even
in this case the application of a model-free data-driven multivariate approach should not
be discarded because it can provide an additional check about the final conclusions of the
analysis.

5.5.1.2 Application of a Model-Free Data-Driven Multivariate Framework for the Evaluation
of Complexity of HP Dynamics and the Causal Relations from SAP and RESP to HP
Variability

The model-free data-driven multivariate approach to the assessment of complexity of a
time series and to the evaluation of the strength of the causal relations between two series
while accounting for the confounding influences of signals different from the presumed
cause and assigned effect proposed in Porta et al. (2014) was applied to HP, SAP, and
RESP series recorded to quantify the influences of aging on cardiovascular regulation. The
adopted approach is completely different from more traditional techniques for the assess-
ment of complexity of HP variability and this difference is the consequence of its multi-
variate nature. Indeed, in the usual definition, complexity is evaluated according to the
degree of irregularity of the HP dynamics computed solely on the basis of the past history
of HP series via both LP (Sugihara et al., 1996; Porta et al., 2000a, 2007c) and CE
(Pincus et al., 1993; Porta et al., 2000c, 2007b, 2013a; Richman and Moorman, 2000; Javorka
et al., 2008). Conversely, complexity evaluation provided by the adopted approach is based
on the past history of all the signals included in the multivariate universe of knowledge
Ω={HP,SAP,RESP}. Therefore, while traditional indexes measure low complexity only in
the presence of repetitive patterns in the designated effect signal (i.e., HP), with our defini-
tion, low complexity may also be encountered when complex dynamics of the effect signal
are explained by the dynamics of the other signals included in Ω.

The exploitation of a multivariate universe of knowledge Ω={HP,SAP,RESP} is partic-
ularly attractive in cardiovascular variability studies. Indeed, even though the vast major-
ity of the applications assessing cardiovascular variability interactions are based on a
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bivariate universe of knowledge Ω={HP,SAP}, for example, in the case of the assess-
ment of baroreflex sensitivity (Laude et al., 2004), it was demonstrated that RESP is a
latent confounder for the HP-SAP variability interactions (Porta et al., 2012a; Bassani et al.,
2013) due to contemporaneous RESP actions on both HP and SAP variability (Saul et al.,
1991; Baselli et al., 1994). Therefore, conditioning for RESP is mandatory to correctly dis-
ambiguate the temporal directions of the interactions between HP and SAP, thus sug-
gesting that the minimal set of cardiovascular variability series deserving attention to
describe cardiovascular regulation is Ω={HP,SAP,RESP}. The importance of consider-
ing Ω={HP,SAP,RESP} is dramatically evident in experimental conditions in which the
RESP drive is particularly powerful such as during controlled respiration especially at
slow breathing rates (Porta et al., 2012a) and under mechanical ventilation during gen-
eral anesthesia (Bassani et al., 2013). However, it is worth stressing that, since the forma-
tion of Ω is arbitrary, results are fully dependent on the specific view underpinning its
construction. Defining Ω={HP,SAP,RESP} and HP as the assigned effect, the underlying
view mainly accounts for baroreflex control of HP and respiratory-related influences on
HP mainly mediated by the variations of the vagal outflow, while modifications of HP
due to changes of peripheral resistances or sympathetic outflow independent of cardiac
baroreflex are disregarded. Nevertheless, the adopted fully multivariate approach might
allow future enlargement of Ω, thus virtually accounting for any correlation between the
assigned effect and the presumed cause and due to the common action of sources on
both.

5.5.1.3 Comparison between LP and CE Approaches for the Assessment of Complexity of
HP Dynamics and Causal Relations from SAP and RESP to HP Variability

The model-free data-driven multivariate approach adopted in this study allowed the com-
parison between two different approaches for the assessment of complexity HP dynamics
and causal relations from SAP and RESP to HP variability. The two approaches, largely
exploited in the literature for the assessment of both complexity (Sugihara et al., 1996; Porta
et al., 2000a,c; Pincus et al., 1993; Richman and Moorman, 2000) and causality (Granger,
1980; Schreiber, 2000; Porta et al., 2014) are based on LP and CE. The comparison of the
two approaches in the context of HP variability analysis pointed out that the both the LP
and CE methods found an amount of past HP samples helpful to reduce unpredictabil-
ity and uncertainty of HP dynamics, qHP→HPo , significantly different from 0. This finding
suggests that exogenous sources taken into account in this study (i.e., SAP and RESP) were
unable to account for all the prima facie causes of HP changes, thus prompting for the search
for additional, significant determinants of the HP dynamics. Alternatively, resonance prop-
erties of mechanisms capable of regulating HP independently of SAP and RESP should be
hypothesized.

Regardless of age and experimental conditions, the LP approach identified a total num-
ber of components helpful to reduce HP unpredictability and uncertainty to a minimum,
qHPo , greater than the CE technique. It might be hypothesized that comparison between
original and predicted HP dynamics might unveil dependencies over past samples that the
direct assessment of degree of HP uncertainty cannot discover. This difference between the
LP and CE approaches leads to the different ability of the two approaches in detecting
the effects of STAND. Indeed, while both the LP and CE approaches detected the decrease
of complexity of HP dynamics and of the strength of the causal relation from RESP to HP
during REST, the increase of the strength of the causal link from SAP to HP was detected
only by the LP method during STAND. Since a major involvement of cardiac baroreflex
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control is expected during STAND, the disappointing performance of CE might indicate
an excessive parsimoniousness of CE preventing the inclusion of a sufficient number of
SAP samples in the optimal embedding space. This parsimoniousness is certainly help-
ful to limit the rate of false detection of causality when causality is not present (i.e., false
positives), but it might increase the rate of false negatives (i.e., the probability of missing
causality when a causal link exists). The greater parsimoniousness of CE might also explain
the reduced statistical power of the CE approach in detecting the progressive increase of
complexity of HP dynamics with age during STAND (the probability of type-I error was
close to the significance value) compared to the LP approach.

5.5.2 Discussion of the Experimental Findings

The second part of the discussion is mainly devoted to experimental considerations rele-
vant to the application of a model-free data-driven multivariate technique to HP, SAP, and
RESP series for the evaluation of the complexity of the cardiac control, as assessed through
HP variability, and of the degree of involvement of cardiac baroreflex and cardiopulmonary
pathway, as evaluated via the quantification of the strength of the casual relation from SAP
and RESP to HP variability, respectively. This part discusses findings linked to orthostatic
challenge and to senescence.

5.5.2.1 Effect of Orthostatic Challenge on HP and SAP Traditional Parameters

After pooling together all the subjects independently of age, orthostatic challenge induces
a decrease of HP mean and variance and an increase of SAP mean and variance. This result
is in agreement with (Cooke et al., 1999; Laitinen et al., 2004; Porta et al., 2011; Turianikova
et al., 2011) considering cohorts of subjects with narrower ranges of age. This finding was
interpreted as a consequence of the vagal withdrawal and/or sympathetic enhancement
induced by the caudal shift of blood induced by the postural change. While the increase
of tonic sympathetic activity and/or its modulation (i.e., the amplitude of the changes of
sympathetic activity about its mean value) was proved (Cooke et al., 1999; Furlan et al.,
2000), changes of vagal activity and its modulation were usually inferred from HP vari-
ability (Montano et al., 1994; Cooke et al., 1999; Porta et al., 2007d).

5.5.2.2 Effect of Orthostatic Challenge on Complexity of HP Dynamics and Causal Relations
from SAP and RESP to HP Variability

This study confirms that STAND induces a significant decrease of complexity of HP
dynamics (Turianikova et al., 2011). The most likely mechanism responsible for this finding
is the decrease of vagal modulation directed to the heart limiting respiratory sinus arrhyth-
mia (Montano et al., 1994; Cooke et al., 1999; Porta et al., 2007d; Turianikova et al., 2011).
The reduction of vagal influences directed to the heart prevents fast HP changes, thus lim-
iting the number of temporal scales that can be exploited by the cardiovascular control to
regulate HP and, consequently, the dynamical complexity of HP variability (Porta et al.,
2007b, 2012c). This finding corroborates previous results indicating that the complexity of
HP dynamics is under vagal control. Indeed, it decreased gradually with the magnitude
of the orthostatic challenge during graded head-up tilt (Porta et al., 2007b, 2012c), it was
markedly reduced during cholinergic blockade induced by high dose of atropine (Porta
et al., 2007c, 2012c), and it was unaffected by beta-adrenergic blockade induced by pro-
pranolol or after central blockade of the sympathetic outflow to the heart and vasculature
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carried out by clonidine (Porta et al., 2012c). Our study supports further the hypothesis
of the inability of respiratory influences to impinge on the heart. Indeed, the strength
of the causal relation from RESP to HP was significantly reduced during STAND (Porta
et al., 2012b). This finding suggests that the reduction of the respiratory sinus arrhythmia
observed during STAND (Montano et al., 1994; Cooke et al., 1999; Porta et al., 2007d; Turi-
anikova et al., 2011) is more likely to be the result of the uncoupling of the HP dynamics
from the respiratory-related fluctuations of the vagal outflow than the effect of a decrease of
the gain of the transfer function between the vagal outflow and HP variability. In addition,
this study suggests a further possible explanation for the decrease of complexity of HP vari-
ability during STAND. Indeed, we found that the magnitude of the causal link from SAP
to HP increased during STAND (Porta et al., 2012b), thus indicating an increased impact
of SAP variability on HP dynamics and, consequently, an augmented role of baroreflex
in the HP regulation during STAND. The increased impact of SAP on HP during STAND
played a direct role in decreasing HP complexity because it produces a larger decrement
of unpredictability and of information carried by HP. The major involvement of baroreflex
in regulating HP during orthostatic stress is not surprising: indeed, baroreflex is the main
reflex involved in the maintenance of blood pressure levels in the presence of the reduction
of venous return induced by the change of posture. This observation corroborates previous
findings suggesting the increased role played by baroreflex in governing HP–SAP variabil-
ity interactions during passive orthostatic stress (Nollo et al., 2002, 2005; Porta et al., 2011,
2013c). This result is particularly robust because it is independent of the type of approach
actually exploited to estimate causality; indeed, it was found by both the LP and CE tech-
niques in the present study, a model-free approach in the information domain in Porta et al.
(2011) and Nollo et al. (2002), a model-based approach in the time domain in Porta et al.
(2013c), and a model-based approach in the frequency domain in Nollo et al. (2005).

5.5.2.3 Effect of Age on HP and SAP Traditional Parameters

We confirm that at REST, the mean HP is unrelated to age (Laitinen et al., 2004), mean
SAP progressively increases with age (Laitinen et al., 2004), and HP variance gradually
decreases (Beckers et al., 2006; Kaplan et al., 1991; O’Brien et al., 1986). The tendency of
SAP variance to increase with age at REST observed in Laitinen et al. (1999) was found to
be to significant in this study. Several mechanisms have been advocated to explain these
relations with age: (1) the depressed pacemaker activity of sinoatrial node myocytes (Larson
et al., 2013); (2) the gradual augmentation of tonic sympathetic activity as measured from
postganglionic sympathetic nerves directed to skeletal muscles (Seals and Esler, 2000; Parker
Jones et al., 2003); (3) the progressive increase of norepinephrine concentrations (Ziegler
et al., 1976; Parker Jones et al., 2003; Barnett et al., 1999); (4) the continuing decline of vagal
modulation as assessed from the amplitude of respiratory sinus arrhythmia in the time or
frequency domain (Hrushesky et al., 1984; Beckers et al., 2006); (5) the gradual alteration
of the adrenoceptor function (Kelly and O’Malley, 1984); (6) the progressive diminution of
the responsiveness of the sinus node to sympathetic outflow (Lakatta, 1993; Barnett et al.,
1999; Laitinen et al., 2004); and (7) the regular decrease of baroreflex sensitivity (Laitinen
et al., 2004; Barnett et al., 1999; Veermann et al., 1994; Parker Jones et al., 2003).

During STAND, we confirm the positive dependence of HP mean and the negative rela-
tion of HP variance on age (O’Brien et al., 1986; Barnett et al., 1999), the positive correlation
of SAP mean with age (Veermann et al., 1994), and the lack of a linear relation between SAP
variance and age (Veermann et al., 1994; Barnett et al., 1999). These results were explained
by the reduced effect of the postural maneuver on the cardiovascular variables due to
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the diminished responsiveness of the sinus node to neural inputs in response to stressors
(Lakatta, 1993; Esler et al., 1995; Barnett et al., 1999; Laitinen et al., 2004), by the reduced
responsiveness of the vasculature to vasodilatator agents (Elliott et al., 1982) and in reaction
to stimuli (Veermann et al., 1994; Barnett et al., 1999; Laitinen et al., 2004), by the increase
of peripheral resistances (Laitinen et al., 2004), and by the decreased baroreflex efficiency
in response to the postural challenge (Laitinen et al., 2004).

5.5.2.4 Effect of Age on Complexity of HP Dynamics and Causal Relations from SAP and
RESP to HP Variability

This study confirms the gradual decrease of complexity of HP dynamics with age (Kaplan
et al., 1991; Pikkujamsa et al., 1999; Takahashi et al., 2012; Viola et al., 2011; Beckers et al.,
2006). The result was obtained by exploiting a multivariate set of information about the
behavior of the cardiovascular control system (i.e., HP, SAP, and RESP series), thus possi-
bly avoiding inaccuracies of the reconstruction of the system dynamics that might happen
using only one signal due to the presence of subsystems unobservable from HP series. As a
consequence of its multivariate nature, the exploited approach is completely different from
traditional approaches using only HP series to quantify the complexity of the cardiac con-
trol (Kaplan et al., 1991; Pikkujamsa et al., 1999; Takahashi et al., 2012; Viola et al., 2011). The
gradual decrease of the complexity of HP variability appears to be robust because it was
detected by both the LP and CE approaches. As a new finding, STAND was associated with
a progressive increase of HP complexity with age measured according to the LP approach.
Since HP complexity during STAND decreased as a result of the sympathetic activation
and vagal withdrawal, this finding indicates a reduced ability of the cardiovascular sys-
tem to cope with the postural challenge leading to more and more limited reduction of HP
complexity in response to postural challenge with age. This finding is less evident with CE
(the type-I error probability is larger than the selected level of significance but close to it),
although the tendency is the same (i.e., correlation coefficient is positive). Therefore, we
suggest the use of complexity indexes and the response to orthostatic challenge to quantify
the reduced ability of cardiovascular control of elderly subjects to cope with stressors.

Regardless of the technique exploited to assess causality at REST, we did not find any
linear relation of the strength of the causal link from SAP to HP on age. This finding sug-
gests that the importance of the causal link from SAP to HP was not modified by aging.
This result might appear surprising at the first sight because it was observed that baroreflex
sensitivity gradually fell with age (Barnett et al., 1999; Parker Jones et al., 2003; Laitinen
et al., 1998). However, it is worth recalling that the decrease of the gain of the relation from
SAP to HP does not necessarily imply diminished strength of the causal link from SAP to HP
because the two indexes bring complementary information (Porta et al., 2013b,c). In addi-
tion, since at REST, the dominant direction of interactions is from HP to SAP (Porta et al.,
2011, 2013b), the unmodified importance of the causal relation from SAP to HP with age
stresses again the negligible involvement of the cardiac baroreflex in governing the HP–SAP
variability interactions during REST. During STAND, we observed a gradual reduction of
the strength of the causal link from SAP to HP with age, thus suggesting a progressively less
efficient baroreflex control with age. This result was pointed out only by the LP approach
likely because it is easier for this approach to explore higher dimensional phase spaces
compared to the CE technique. We suggest that causality indexes from SAP to HP might
be fruitfully exploited to monitor the degree of efficiency of cardiac baroreflex control and
its deterioration with senescence, especially during a baroreflex challenge such as STAND.
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Another relevant finding of this study is the progressive decrease with age of the strength
of the causal link from RESP to HP at REST. This finding was independent of the paradigm
utilized to assess causality; indeed, the same result was obtained using both the LP and CE
approaches. This finding corroborates recent observations (Nemati et al., 2013; Iatsenko
et al., 2013). This result might be the consequence of the progressive increase of tonic sym-
pathetic activity and vagal withdrawal leading to a gradual uncoupling between respira-
tory centers and the heart. During STAND, the strength of the causal link from RESP to
HP was unrelated to age. This result was independent of the technique utilized to assess
causality. Since STAND induces a sympathetic activation and vagal withdrawal (Cooke
et al., 1999; Furlan et al., 2000) and, consequently, a reduction of the respiratory sinus
arrhythmia (Veermann et al., 1994; Javorka et al., 2008), it can be concluded that the residual
respiratory sinus arrhythmia might be insufficient for tracking modification of the strength
of the HP–RESP causal coupling with age or, alternatively, HP changes at the respiratory
rate might be driven by SAP changes through the stimulated cardiac baroreflex instead of
being the result of central respiratory influences.

5.6 Conclusions

This study applied a model-free data-driven multivariate framework for the assessment of
the complexity of HP variability and its causal interactions with SAP and RESP series. The
study demonstrated the practical usefulness of the approach in describing HP variability
and its ability to quantify the contribution of specific physiological mechanisms to cardio-
vascular regulation. Indeed, the method was found helpful to monitor changes associated
to the senescence process and to assess the response of the cardiovascular control to an
orthostatic challenge. The approach does not require prior assumptions about the physio-
logical mechanisms underpinning HP dynamics and its relation with SAP and RESP and
produces practical indexes necessitating the setting of very few parameters, essentially
limited to the number of nearest neighbors necessary for coarse graining the multivariate
embedding space. Given these features, the adopted model-free data-driven multivariate
approach is highly recommended in any exploratory analysis in which classical multivari-
ate model-based approach might be inappropriate due to the presence of nonlinearities
and/or the absence of any reasonable physiological hypothesis about the mathematical
relations linking the cardiovascular variables. Given the promising results, the proposed
indexes should be tested on larger databases of healthy and pathological individuals along
with more traditional HP variability indexes with the aim at assessing their extra value.
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6.1 Introduction

Network methods have been successfully used to capture and represent properties of
multilevel complex man-made systems (Havlin et al. 2012) and living organisms (Bashan
et al. 2012). The use of network representations in the characterization of time series com-
plexity is a relatively new but quickly developing branch of time series analysis (Donner
et al. 2010; Fortunato 2010). The most direct method is to map a time series into a graph
in which the vertices represent signal values, while edges link values that are consec-
utive in a signal. The correspondence between the time series formed by consecutive
cardiac interbeat intervals, so-called RR-intervals, and such networks was studied by
Campanharo et al. (Campanharo et al. 2011). The topology in these networks appeared
as a clique, that is, each state is reachable from any other in a single step. Understanding
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RR-interval dynamics arising from a network with such a structure is not straightforward.
It appears, in general, that information provided by a network graph strongly depends
on the nature of sequences and our knowledge about the underlying dynamics (Fortunato
2010; Havlin et al. 2012). Therefore, the use of network methods, for example, visualization
or/and structure decomposition, is effective only if they are used in conjunction with other
sources of learning. We show how the tools developed within the scope of complex net-
works can be fruitfully applied to the qualification and quantification of short-term heart
period dynamics. Fluctuations in RR-intervals are known to have a scale-invariant struc-
ture which demonstrates fractal (Kobayashi and Musha 1982; Yamamoto and Hughson
1991; Peng et al. 1995) and multifractal (Ivanov et al. 1999) properties. These fluctuations
appear as a result of many component interactions acting over a wide range of time and
space scale. Competing stimuli from the autonomic nervous system are assumed to be
the reason for the fractal organization observed in RR-intervals (Struzik et al. 2004). By
observing subsequent changes in RR-intervals—ΔRR—beat-to-beat information about the
resulting force of these interactions is obtained, and important dynamical aspects about the
autonomic competitive regulation can be described by changes in RR-intervals, namely by
RR-increments (Makowiec et al. 2013a, 2014). Signal increments ofΔRR can be decomposed
into their magnitude (absolute value) and their direction (sign). Magnitude of |ΔRR| and
sign of ΔRR analysis have been used to investigate the scaling properties of RR-intervals
(Ashkenazy et al. 2001). It has been found by detrended fluctuation analysis that magni-
tude series are long-range correlated, while sign series are anticorrelated (i.e., correlation
follows the power-law with exponents 0.74 for |ΔRR| and 0.40 for sign(ΔRR)). Further-
more, it has also been shown that during sleep, the strength of these correlations varies
depending on the stage of the sleep: rapid-eye-movement (REM) or other (non-REM) sleep
stages (Kantelhardt et al. 2002). It appears that both the strongest anticorrelations in the
sign signals, and largest exponents for long-range correlations for the magnitude signals
are in REM sleep. Furthermore, the nonlinear properties of the heartbeat dynamics are
more pronounced during REM sleep (Schmitt et al. 2009). During sleep, the heart rate
is mostly regulated by the autonomic nervous system and is less influenced by physical
or mental activity. Moreover, during the night, vagal (parasympathetic) predominance is
present, which makes this period a useful state to observe autonomic activity (Bonnemeier
et al. 2003). The nonlinear tools (Shannon entropy, corrected conditional entropy) applied
to measuring heart rate variability during physiological sleep have shown that the REM
stage is characterized by a likely sympathetic predominance associated with a vagal with-
drawal, while the opposite trend is observed during non-REM sleep (Tobaldini et al. 2013).
Previous studies have also shown that alternations in nocturnal heart rate variability have
clinical importance, for example, may explain why sudden cardiac death in many cases
occurs during sleep (Huikuri et al. 1994; Vanoli et al. 1995).

Heart transplantation surgery destroys the nerve connections between the organism and
the graft—the donor heart is completely denervated, the vagal ganglia at the sinus node
are cut off from medulla oblongata and brain-stem system signals. The regulation is driven
by the intrinsic heart mechanisms and the concentration of many circulating humoral sub-
stances (e.g., adrenal catecholamines, angiotensin II, aldosterone), which follow the activ-
ity of sympathetic nerves (Klabunde 2012). The lack of vagal activity has the effect, for
example, that heart transplant recipients have a resting heart rate higher than the aver-
age in healthy people, and their heart rate variability is significantly reduced (Bigger et al.
1996). The exception is a small respiratory sinus arrhythmia (Radaelli et al. 1996; Eckberg
2003), which is assumed to be an effect of the intracardiac reflex (Armour 2008; Zarzoso
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et al. 2013) or mechanical stretch of the sinus node. Cardiac reinnervation has been demon-
strated in long-term heart transplant recipients (van de Borne et al. 2001; Porta et al. 2011;
Cornelissen et al. 2012), but it seems that it is limited to the sympathetic nerves. Therefore,
a comparison of the nocturnal heart rate variability in healthy young individuals and heart
transplant patients gives a unique opportunity to show the impact of autonomic (espe-
cially vagal) activity on heart rate regulation. Following Ashkenazy et al. (2001), to dis-
cover in which way properties of networks constructed from RR-increments demonstrate
nonlinear or/and linear dependences among consecutive RR-intervals, we investigated
properties of artificially modified RR-interval data (Schreiber and Schmitz 2000). In the fol-
lowing, we argue that network methods are successful in detecting nonlinear properties in
the dynamics of autonomic nocturnal regulation in short-term variability. Two modes of
visualization of networks constructed from RR-increments are proposed. The first is based
on the handling of a state space. The state space of RR-increments can be modified by a bin
size used to code a signal and by the role of a given vertex as the representation of events
occurring in a signal. The second mode relies on the matrix representation of the network
on the two-dimensional plane. This approach is similar to the accepted method, known
as the Poincaré plot representation of time series for evaluation of heart rate variability.
The methods introduced will be applied to nocturnal Holter signals recorded from healthy
young people and from cardiac transplant recipients. Thus, we obtain a way to filter out the
intrinsic heart rate variability from the autonomic drive and then to quantify complexity in
the short-term RR-interval variability related to nocturnal rest. Changes in RR-increments
in a heart deprived of autonomic control provide insight into beat-to-beat dependences in
forces governing the intrinsic heart dynamics.

6.2 Method

6.2.1 Groups and Signals Studied

Twenty-four-hour Holter electrocardiogram (ECG) recordings during a normal sleep–wake
rhythm were analyzed in two study groups. The first group, the Young, consisted of healthy
young volunteers (18 females, 18 males, ages 19–32). The second group, the HTX, com-
prised heart transplant patients (surgery at ages 28–65). Data from the HTX group was
constructed of 20 recordings obtained from 10 patients without any signs of heart graft
rejection, who had undergone surgery more than 12 months previously. The Holter record-
ings were first analyzed using Del Mar Reynolds Impresario software and screened for
premature, supraventricular and ventricular beats, missed beats and pauses. Finally, the
signals were thoroughly manually corrected and annotated.

As the method of signal preprocessing may impact the results, only long, good-quality
fragments of ECG were analyzed. Since the analysis concentrates on hours of sleep, the
RR-intervals were analyzed from 24:00 to 04:00 in the case of the Young group and from
22:00 to 05:00 in the case of signals from the HTX group. Such time intervals were long
enough to build a sequence containing 10,000 RR-intervals obtained by joining the parts
which had more than 500 normal-to-normal RR-intervals, that is, RR-intervals between
two subsequent heart contractions initiated by the sinus node. What is worth noting is that
all the signals constructed were built from less than seven consistent parts. Selection of the
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parts was independent of the sleep stage—REM or non-REM. The number of 10,000 points
was chosen to ensure proper statistical relevance.

6.2.2 Signal Preprocessing

Our Holter equipment provides data with a 128 Hz sampling frequency. Therefore, the
RR-intervals have a limited resolution: 1s/128= 7.8125 ms, which can be approximated as
8 ms. This value, denoted asΔ0, is accepted as the signal resolution. To decrease the number
of different values appearing in a sequence of RR-intervals, we use a binning procedure
based on multiples of Δ0. Namely, we always set the bin size to Δbin as Δbin = kΔ0 for k=
1, 2,… . The bin quantization described has the effect that RR-intervals take values which
are multiples of the bin size Δbin. As a consequence, RR-increments are also multiples of
Δbin, namely, ΔRRt ∈{0,±Δbin,±2Δbin,±3Δbin,…}. The two types of artificially modified
cardiac signals were constructed for their further use in statistical tests:

• Shuffled signals, which were obtained by random shuffling of RR-intervals
• Surrogate signals, which were calculated by randomization of phases in the Fourier

transform of RR-intervals

The analysis of shuffled signals tests the presence of dependencies in the signals studied,
while the analysis of surrogate signals provides information about whether these depen-
dences are linear or not (Schreiber and Schmitz 2000). Signals of both types were prepared
with the help of the TISEAN software (Hegger et al. 1999). For each cardiac signal, we pre-
pared 10 shuffled signals (surrogates -i0 -I) and 10 surrogate signals (surrogates
-S -I) with different random seeds. A network was constructed separately for each sig-
nal analyzed. Then the mean network for each of the groups of signals studied was estab-
lished by collecting networks corresponding to the same class of subjects. The confidence
interval (CI) for each element of the mean network was also estimated. Calculations were
performed with the special software prepared by us.

6.2.3 Transition Network for RR-Increments

Let RRΔbin
={RR0,RR1,… ,RRt,… ,RRN} be a time sequence of RR-intervals binned with

a Δbin. Let �RR={ΔRR1,ΔRR2,… ,ΔRRN} be a time sequence of RR-increments, that is,
ΔRRt =RRt −RRt−1. Discrete values of the set �RR serve as states in the state space of the
transition network indexed by the bin value Δbin.

Let K denote the number of different states in the network state space, and let us arrange
them as follows. If the smallest state is Δmin =mint �RR and the greatest state is Δmax =
maxt �RR, then the vertices of a network are labeled consecutively as

Δ(1) =Δmin, Δ(2) =Δ(1) +Δbin, … , Δ(K) =Δmax =Δ(1) + (K− 1)Δbin. (6.1)

A directed edge (Δ(I),Δ(J)) from a vertex Δ(I) to a vertex Δ(J) is established if Δ(I) and Δ(J)
represent a pair of consecutive events in a time sequence �RR. Namely, there is a moment
in time t= 1,… ,N− 1, for which (ΔRRt,ΔRRt+1) = (Δ(I),Δ(J)). If a given pair of increments
occurs many times in �RR, the weight of this edge w(Δ(I),Δ(J)) increases accordingly to
represent counts of occurrences.
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Note that the weight of the edge w(Δ(I),Δ(J)) measures the size of a set consisting of the
following events:

w(Δ(I),Δ(J)) = |{(RRt−1,RRt,RRt+1)∶ where (6.2)
Δ(I) =RRt −RRt−1, Δ(J) =RRt+1 −RRt for t= 1,…N− 1}|

This means that

if Δ(I) ⋅Δ(J) > 0, both increments are negative or both are positive, we observe a run of
accelerations or decelerations, accordingly
if Δ(I) ⋅Δ(J) < 0, we observe an alternation between an acceleration and a deceleration
or vice versa

This completes the construction of the transition network from a given time series. The
resulting network is directed and weighted. The sums of weights of edges adjacent to a
given vertex (total number of incoming and total number of outgoing edges) provide the
basic network characteristics (called the in degree and out degree, respectively), which
quantify the role of the vertex in a network. But a network constructed from time series is
specific in that each outgoing edge from a given vertex is accompanied by an edge incoming
to this vertex (with the exception of vertices representing the first and last events in con-
sistent parts of a signal), which implies that the in and out degrees of each vertex can be
considered to be equal to each other. This degree, if normalized by the length of time series,
is directly related to the probability p that an event represented by Δ(I) occurs in a signal.

The modular structures, also called the community structure in networks, have been
shown to be relevant to the understanding of the structure and dynamics of the system
studied (Havlin et al. 2012). However, this problem has been found to be difficult and has
not yet been satisfactorily solved (Kumpula et al. 2008; Fortunato 2010). Here, we propose
to investigate modularity in the transition network by the so-called p-core graph (Seidman
1983; Kumpula et al. 2008). The p-core graph is constructed from a given network by the
removal of all the vertices with a probability less than p. Then, all the edges which con-
nected these deleted vertices with the other parts of a network are removed. The sum of
normalized weights in the resulting subgraph is called the volume of the p-core graph. A
decay in this volume with an increasing p value is known as the network disintegration
(Makowiec et al. 2013b).

6.2.4 Transition Network Graph

Visualization of a transition network is challenging because usually a transition network
consists of many vertices which are densely, often completely, interconnected. The plot
of such a network may be barely readable. Therefore, the graph organization requires a
special effort.

There are parameters in the method which have to be thoroughly tuned:

Δbin—the bin size which is used in preprocessing RR-intervals and which determines
the number of states in the state space
p—the probability of neglected events, which also allows a reduction in the number
of states
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Since states in the state space are ordered according to the values of their labels, see
Equation 6.1, we plot them in a circle arranged clockwise according to increasing value of
the vertex label from Δmin to Δmax. Moreover, if we call two vertices Δ-neighboring when
the magnitude of difference between their labels is equal to Δ, then we can code transitions
between Δ-neighboring vertices by colors.

Here, we use the following color code:

- Violet to mark 0-neighboring vertices, that is, loops describing events of two adjacent
accelerations or decelerations of the same value; the case of the 0→ 0 loop denotes
the situation when three consecutive RR-intervals have the same value.

- Green to mark Δbin-neighboring vertices, that is, transitions to the nearest neighbors
in the state space; they denote the smallest possible observable changes in subse-
quent accelerations and/or decelerations within a given binning.

- Blue to mark transitions for 2Δbin-neighboring vertices.
- Red to mark transitions between 3Δbin-neighboring vertices.
- Yellow to mark the transitions linking 4Δbin-neighboring vertices.
- Black to mark transitions of a size larger than 4Δbin which, for example, in the case

of Δbin = 8 ms means changes of at least of 40 ms.

Moreover, we use also the width of an edge to visualize the weight of a given transition.
In the following, we use the popular software PAJEK (Batagelj and Mrvar 1998) to plot

graphs of transition networks.

6.2.5 Matrix Representation of a Transition Network

Adjacency matrixes and transition matrixes are standard representations of any network
(Fortunato 2010). For a transition network with K vertices, the adjacency matrix A is a
K×K matrix. The number of the outgoing edges from vertex Δ(I) to vertex Δ(J) is counted
and designated as A(I)(J). If there is no edge between these vertices, then A(I)(J) = 0. Hence

A(I)(J) =
{

w(Δ(I),Δ(J)) total number of edges fromΔ(I) toΔ(J);
0 in other cases.

In the following, we normalize counts w(Δ(I),Δ(J)) by the total number of events. As a result,
A(I)(J) stands for the probability of a given transition. When referring to a signal with RR-
increments, A(I)(J) stands for the probability that the value Δ(J) occurs after Δ(I) in a signal.
The transition matrix T is obtained by dividing elements of each row (I) ∶ (1),… , (K) of the
matrix A by the total weight of vertex Δ(I). Thus,

T(I)(J) =
w(Δ(I),Δ(J))

∑

Δ(I) w(Δ(I),Δ(J))
.

Therefore, T describes a Markov walk on a network where a walker being in vertex Δ(I)
moves to Δ(J) with a probability T(I)(J).

It appears that the contour plots of adjacency and transition matrices provide a readable
visualization of transition networks obtained from RR-increments even in the case when
the bin size is equal to the resolution of signals. Manipulations in the range of the axes allow
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one to pass through the whole range of values obtained. However, when departing from
(0, 0), less probable events with larger standard errors are estimated. The large variations
between neighboring points lead to an unclear picture if the plots are constructed from
signals binned with a small bin size. Therefore, in the following, we limit our interest to the
ranges of RR-increments which contain the most probable events, ignoring the remaining
ones. In the case of the Young group, the range is (−100, 100) and for the HTX group the
range is (−30, 30).

Each point (Δ(I),Δ(J)) of the contour plots can be resolved into the three RR-interval pat-
terns as described by Equation (6.2). Moreover, these events can be translated into codes
of short-term variability proposed by Porta et al. (2007): 0V—0 variation, 1V—1 variation,
2LV—2 likely variations, and 2UV—2 unlikely variations. The relation between three RR-
interval patterns and their description by 0, 1, or 2 variations is shown in Figure 6.1.

6.3 Results

6.3.1 Graphs of Transition Networks for the Young Group

In the presentation of our results, we first refer to some graphs which demonstrate the
possibilities of the introduced visualization method. In particular, these graphs clarify
the influence of the parameters Δbin and p on the graph shape. In Figure 6.2, there
are six graphs which represent networks obtained from the signals of the Young group
(Figure 6.2a through d) and their surrogates (Figure 6.2e and f). The left column networks
were prepared with signals binned with Δbin = 8 ms, while the right column graphs come
from signals binned with Δbin = 64 ms. The graphs in the first and third rows show vertices
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FIGURE 6.1
The patterns of changes in RR-intervals corresponding to particular parts of the matrix representation of a net-
work of RR-increments (a) and their interpretation as variations 0V, 1V, 2LV, and 2UV—codes proposed by Porta
et al. (2007) (b). Red arrows indicate decelerations, green arrows denote accelerations, and blue arrows corre-
spond to no-change events.
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FIGURE 6.2
The p-core graphs with p= 5% (a, b, e, and f) and p= 1% (c and d) of the mean networks obtained from signals of
young persons binned inΔbin =Δ0 = 8 ms (a, c, and e) andΔbin = 8Δ0 = 64 ms (b, d, and f), and surrogates obtained
from signals from young persons (e and f). The crucial transitions—the thickest edges—are described by the mean
of probability given in percentages ±95% CI. (c and d have the same weights as a and b, respectively). The colors
of the values match the colors of the edges.
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which correspond to deceleration/acceleration events appearing in a signal with proba-
bility p> 5%. The graphs in the second row contain vertices representing more rare events
because only vertices with p> 1% are plotted. All the graphs are complete, which means
that each vertex is connected to all the others. The color of the edges corresponds to the
size of the change in the way defined in Section 6.2.4. The weight of an edge is represented
by its width. The global weights of the most important transitions are described addition-
ally by giving their probability value in percentages and ±95% CI. We see that the (0, 0)
transition is the most frequent in all the graphs, namely the transition from no-change to
no-change occurs the most often. However, the probability of observing such an event is
different depending on the binning applied to the signals. The bin size works like a magni-
fying glass, making it possible to perceive the event in greater detail. For example, vertex 0
in the network constructed from signals binned at 64 ms (Figure 6.2b) represents the whole
p-core graph (a) obtained at p= 5%. The graphs in Figure 6.2 specify the ingredients of
heart period variability. The widths of arrows, hence the numbers in the graphs, describe
the roles played by the particular changes in the overall heart dynamics. Then, a clinician
can decide whether the structure of such a decomposition is regular or whether it exhibits
some peculiar patterns since different pathophysiologic processes alter the heart period
variability. Figure 6.2 also gives graphs obtained from networks constructed from surro-
gates of cardiac signals of the Young group—see parts (Figure 6.2e and f). It follows that
with 5% accuracy and at Δbin = 8 ms, the basic spectrum of events constituting the cardiac
dynamics is similar to the spectrum of events resulting from the linear dynamics left in the
surrogate signals. This might indicate that dynamical relationships among the most impor-
tant events are of a linear type. However, when the analysis is performed withΔbin = 64 ms,
we see that the cardiac graph is significantly different from the graph of the surrogates.
The difference lies in the presence of the vertex −128, which indicates that nonlinear mech-
anisms are present and they are involved in sharp accelerations. Surprisingly, the lack of
a symmetrical vertex representing decelerations +128 may additionally point to the com-
plex mechanisms engaged only in sharp accelerations. Graphs obtained for the shuffled
signals of the Young group are not presented because they are barely readable. Moreover,
when signals are binned with Δ0, the p-core graph of p= 5% consists of only a few vertices
(Figure 6.2a), while the number of vertices grows sharply, if we decrease the probability
p to 1% (Figure 6.2c). Hence, the graph in Figure 6.2a, rather superficially describes the
dynamics of the system, since a slight change in any parameter strongly influences the
graph shape. This is a typical observation with complex dynamics. This is different in
the case of signals binned with Δbin = 64 ms; compare Figure 6.2b and d. Therefore, the
volume of a given p-core graph gives an important message about how dynamical forces
presented by a graph are meaningful for the overall dynamics of the system studied.
Here, the volumes of the p-cores presented in Figure 6.2 are (a): 27± 14%, (b): 89.1± 1.0%,
(c): 84.7± 1.4%, (d): 97.1± 0.2%, (e): 26.3± 3.2%, (f): 76.2± 1.0% (mean ±95%CI).

6.3.2 Graphs of Transition Networks for HTX Group

The signals with RR-intervals obtained from patients after HTX are plain in the sense that
consecutive RR-increments do not differ much. Therefore, it becomes possible to present
readable p-core graphs even when p is low, for example, p= 1%, and the bin size is equal
to the signal resolution Δbin = 8 ms. Moreover, graphs obtained from modified HTX sig-
nals, their surrogates and shuffled signals, are also clear. All these graphs are shown in
Figure 6.3.
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FIGURE 6.3
The p-core subgraphs of the mean transition networks obtained from signals from HTX (a) and their surrogates
(b), and shuffled signals (c) at p= 0.01 in bin Δ0 = 8 ms. The most important transitions—the thickest edges—are
described by their probabilities given in percentages ±95% CI.

Figure 6.3 demonstrates the following:

• How different the graph obtained from HTX_shuffled is from all the other graphs.
This indicates that adjacent RR-intervals resulting from intrinsic mechanisms of vari-
ability are strongly correlated.

• There is similarity between graphs representing signals HTX and HTX_surrogates.
However, note that there is a noticeable difference in the probability of transitions
between no-change vertex 0 and vertices 0,±8. This observation may indicate that
dependences between RR-intervals cannot be approximated by linear relationships.

• There is a similarity between graphs of HTX and those of the Young which are
binned at an interval eight times longer than the HTX series; see Figure 6.2d. This
approximate similarity may give rise to the conjecture that the variability driven
by autonomic regulation enhances eight times the magnitude of fluctuations of the
intrinsic heart period variability.

6.3.3 Network Disintegration

The decay of the volume of the p-core when p is increasing can provide information about
the collective structures in the system dynamics. Figure 6.4 shows these decays for all sig-
nals studied binned at Δbin = 8 ms. It appears that the network formed from signals of the
HTX group is significantly more resistant to the vertex removal than all the other net-
works. This network decays the slowest. Moreover, its p-core volume stays unchanged at
83.2± 1.3% for 8%< p< 18%. This firmed core is built from transitions between the three
vertices 0 and ±8. A similar network core also emerges from the network constructed from
surrogate signals of the HTX group. Its volume of 76.8± 1.5% is significantly lower than
the volume of the network constructed from original cardiac signals (by Mann–Whitney
U test, p= .011) for all p in the interval described. This fact may indicate that the network
organization resulting from the cardiac signals relies on important nonlinear dependences.

On the contrary, a similar property does not hold in the case of the disintegration of the
network constructed from the Young group signals. The volume of the p-core decays in the
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Network disintegration by the volume of p-core resulting from subsequent removal of vertices with probability
less than p.

same way in both networks: the network made from cardiac signals and the network made
from surrogate signals. The disintegration of both networks goes fast, for example at p=
10%, the network volume is about 5± 2% in both cases. Obviously, the networks obtained
from shuffled signals decay more quickly when compared to the networks produced from
cardiac series (Figure 6.4).

6.3.4 Adjacency and Transition Matrices for the Young Group

Figure 6.5 shows contour plots of both matrices: adjacency A and transition T obtained
from signals recorded from the Young group. Together, the plots obtained from surrogates
of these signals and shuffled RR-intervals are presented. All the plots represent signals
binned at Δ0 and for changes smaller than 100 ms for A and smaller than 70 ms in case
of T.

From the plots in Figure 6.5, it is evident that shuffled RR-intervals provide different
matrix representations. The meaningful smaller probability of events corresponding to
small accelerations or decelerations (i.e., probability of events around (0,0)) is a noticeable
effect of the independence of RR-intervals. Moreover, the symmetry in these matrices is
different from symmetries which are present in other plots. These symmetric features can
be explained by elementary counting of the sets built from the three RR-interval events of
the specific type. Since the state space of RR-intervals is discrete and limited, the values of
RRt for any t= 1, 2,… ,N take one of the values from the set of K′ different values:

RR(1) =min RRΔbin
<RR(2) =RR(1) +Δbin < ⋯< RR(K

′) =max RRΔbin
. (6.3)

For simplicity, let us assume that all events of Equation 6.3 are equally probable, p(RR(I)) =
K′∕N. Then, the number of possible monotonically growing three-element sequences
(RR(I),RR(J),RR(M)) with I < J <M constructed from these values, namely patterns of the
2LV type, is K′(K′ − 1)(K′ − 2)∕3. On the other hand, from each sequence of the 2LV type,
one can construct two different three-element sequences of the 2UV type. Hence, the total
probability of events of the 2UV type is twice as large as of the 2LV type. In the case when
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(left column), for their surrogates (middle column) and shuffled signals (right column). Contour representations of
A show logarithms of A values given in percentages from 0.001% to 1%. Contours representing T are plotted in
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events from the list described in Equation 6.3 are not distributed uniformly, the calcula-
tions are more demanding, but finally they lead to the conclusion that if Δ(I)Δ(J) < 0, then
events (Δ(I),Δ(J)) are more probable than (−Δ(I),Δ(J)) or (Δ(I),−Δ(J)).

In addition, comparing A matrices obtained from cardiac signals and their surrogates,
Figure 6.5 first row, we see:

1. There is a small deficiency of events close to (0, 0) in cardiac signals when com-
pared to signals with surrogates.

2. There are three regions in A in which cardiac signals dominate their surrogates.
They can be described as three RR-interval events of the type:

(a) 2LV, but related only to large decelerations
(b) 1V, when after a small change, a large acceleration occurs
(c) 2UV, but only for a large deceleration after a large acceleration

By large changes above, we mean RR-increments greater than 30 ms.

6.3.5 Adjacency and Transition Matrices for HTX Group

In the absence of any influence of the autonomic nervous system, the network representa-
tion of RR-increments consists of considerably fewer vertices than for a typical healthy
person, as has been already shown in Figure 6.3. Figure 6.6 presents results aimed at
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widening our understanding of the nonlinear effects of the intrinsic mechanisms con-
trolling the heart contractions. Note that the contour plots in Figure 6.6 are in different
scales from the plots representing signals of the Young group in Figure 6.5. We see in
Figure 6.6 similar symmetric features in all three plots with A matrices, namely that alter-
nating changes with Δ(I) ⋅Δ(J) < 0 are more dominant than monotonic changes. Following
our discussion in the previous subsection about the imprints of randomness, this observa-
tion may imply stochastic independence of the underlying dynamics. However, the cardiac
dynamics is more concentrated around transitions from a no-change event to the small-
est increments possible, namely to ±8,±16 ms, than if it resulted from random sources.
Furthermore, a closer analysis of A (compare Figure 6.3a and b) reveals that the system
represented by the cardiac signals is less likely to stay in the no-change vertex, and changes
of size 16 ms between vertices representing transitions of +8 and −8 ms in size occur
more often in the cardiac signals [p(8,−8) = p(−8, 8) = 11± 1%] than in their surrogate series
[p(8,−8) ≈ p(−8, 8) ≈ 8.4± 0.2%]. Additionally, a comparison between the corresponding T
matrices provides important distinctions between cardiac signals and their surrogates in
the system reaction after the larger accelerations, namely, if Δ<−16 ms. It appears that
when accelerating, the system is more resistant to a pendulum-like reaction. This has the
effect that the RR-interval is able to retain the shorter rhythm for the next contraction. In
Figure 6.7, we show plots of differences between matrix graphs arising from cardiac sig-
nals of the Young group when the signals are binned withΔbin = 64 ms, and the HTX group.
We see that a similarity is apparent between the dynamics underlying these two systems.
The basic distinction relies on events of the 2LV type, where two subsequent accelerations
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or two subsequent decelerations are involved. Since such persistence could be involved in
some overall purpose like actual bodily needs, the next supposition can be formulated as
follows. While the intrinsic heart control mechanisms are devoted to keeping the home-
ostasis, the control of the autonomic nervous system aims at satisfying physical demands.

6.4 Conclusions

Network structure methods are able to visualize, describe, and differentiate heart rate
dynamics in healthy young subjects and HTX patients. The resulting plots can be consid-
ered as an alternative way of assessing heart rate variability. Our method, based on beat-
to-beat dependencies, provides the spectrum of short-term correlations. This spectrum
resolves the heart rate variability at the required accuracy (if tuned by p the probability of
neglected events) and/or zoomed (by changes in the bin size Δbin). Using these methods,
the general dynamical properties of heart rate can be defined as correlated or not correlated
(employing the comparison of raw and shuffled signals), and linearly or nonlinearly cor-
related (comparing raw signals and signals with shuffled phases of the Fourier transform).
The essential feature of complex dependencies in nocturnal heart rhythm in our group of
healthy young persons is related to large RR-increments, both decelerations and accelera-
tions. This feature manifests itself in that large accelerations are more likely antipersistent,
while large decelerations are more likely persistent. This observation also seems to be an
important indicator of healthy heart rate.

Moreover, since the vagal part of autonomic regulation is considered responsible for
large RR-increments, we may hypothesize that vagal activity is a crucial source of com-
plexity in short-term heart rate variability. In healthy young individuals, the change in
vagal tone during sleep (e.g., change from high vagal activity to its withdrawal between
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non-REM and REM sleep stages) allows us to observe the specific patterns of heart rate
dynamics. We interpret the nonlinear relationship observed between consecutive acceler-
ations and decelerations in the case of bigger changes (accelerations and decelerations of
more than 35 ms) as an effect of vagal activity. Although in HTX patients, heart rate regu-
lation is mostly intrinsic with no autonomic control, the relationship between consecutive
accelerations and decelerations is also observed, but in this case, the scale of changes is
much lower. RR-increments vary as fluctuations around a homeostatic state. However, the
organization of this homeostatic state in the case of raw signals shows that it involves
dynamical forces more strongly than if the dynamics were driven by linear forces only. In
posttransplant patients, the nonlinear dependencies are also characterized by the appear-
ance of sequences made of bigger (>20 ms) accelerations followed by smaller decelerations
(<10 ms). This means that an increase in heart rate is not so effective as in healthy individ-
uals but is still possible. We hypothesize that this pattern of heart rate in HTX patients may
be a result of gradual sympathetic reinnervation.
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7.1 Introduction

Heart rate variability (HRV) is a commonly used tool when trying to assess the function-
ing of cardiac autonomic regulation. It has been used in a multitude of studies related to
cardiovascular research and different human well-being applications, as an indirect tool to
evaluate the functioning and balance of the autonomic nervous system (ANS) [1]. One of
the main clinical scenarios where HRV has been found valuable is the risk stratification of
sudden cardiac death after acute myocardial infarction [1–4]. In addition, decreased HRV
is generally accepted to provide an early warning sign of diabetic cardiovascular auto-
nomic neuropathy [1,2], the most significant decrease in HRV being found within the first
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5–10 years of diabetes [5,6]. Besides these two main clinical scenarios, HRV has been stud-
ied with relation to several cardiovascular diseases, renal failure, physical exercise, occupa-
tional and psychosocial stress, gender, age, drugs, alcohol, smoking, and sleep [1,2,7–10].

Both sympathetic and parasympathetic branches of the ANS are involved in the reg-
ulation of heart rate (HR). Sympathetic nervous system (SNS) activity increases the HR
and decreases the HRV, whereas parasympathetic nervous system (PNS) activity decreases
the HR and increases the HRV [11]. The control of the autonomic output involves several
interconnected areas of the central nervous system, which form the so-called central auto-
nomic network. In addition to this central control, arterial baroreceptor reflex as well as
respiration are known to induce quick changes in the HR. Typically, the most conspicuous
oscillatory component of HRV is the respiratory sinus arrhythmia (RSA), where the vagus
nerve stimulation is being cut off during inhalation, and thus, the HR increases during
inhalation and decreases during exhalation. This high frequency (HF) component of HRV
is thus centered at respiratory frequency and is considered to range from 0.15 to 0.4 Hz.
Another conspicuous component of HRV is the low frequency (LF) component ranging
from 0.04 to 0.15 Hz. The HF component is mediated almost solely by the PNS activity,
whereas the LF component is mediated by both SNS and PNS activities and is also affected
by baroreflex activity [1,3,11]. The origin of the LF oscillations is however considered to be
dominated by the SNS and the normalized power of the LF component could be used to
assess sympathetic efferent activity [12,13].

This chapter introduces the commonly used time-domain, frequency-domain, and non-
linear HRV analysis methods, also giving some ideas as to how to extend these methods
for analysis of nonstationary HRV time series. The computations of these analysis methods
are described with enough detail to be able to make correct interpretations of the results
and to understand the interdependencies between the different parameters. In the presen-
tation of the HRV analysis methods, we focus on the ones available on the Kubios HRV
software [14,15] (available at http://www.kubios.com), which is an easy to use software
package making the various HRV analysis methods usable by physiologists and clinicians
all over the world.

In addition to the presentation of the analysis methods, some important issues in the
assessment of HRV time series are presented. These include two preprocessing steps and
estimation of the RSA component. The two preprocessing steps, which both can have a
major impact on the assessment of HRV, are (1) correction of ectopic and other aberrant
beats and (2) removal of the very low frequency (VLF) trend from the HRV time series. The
effects of these preprocessing steps are illustrated with real data in order to fully under-
stand their impact on HRV analysis results and possible misinterpretations. The effect of
respiratory rate on the HRV is then demonstrated and ways to incorporate this in the HRV
analysis are described.

7.2 HRV Time Series

The HRV time series is a series of consecutive heartbeat time intervals, that is, time intervals
between consecutive R-waves in an electrocardiogram (ECG) or simply RR intervals. The
R-wave occurrence times can be detected using a QRS detection algorithm such as the
well-known Pan–Tompkins algorithm [16]. The term normal-to-normal (NN) is sometimes
used when referring to these beat-to-beat intervals, merely to indicate that the consecutive

http://www.kubios.com
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QRS complexes result from normal SA-node depolarization, excluding for example pre-
mature ventricular beats and other arrhythmic events. Throughout this chapter, the term
RR is used to denote beat-to-beat intervals resulting from the normal sinoatrial (SA)-node
depolarization.

Derivation of RR interval time series from ECG is illustrated in Figure 7.1. If we assume
that the ECG recording includes N+ 1 heartbeats, then the RR interval series has N data
points

RR= (RR1,RR2,… ,RRN) (7.1)

This time series is not equidistantly sampled, but needs to be presented as a function of
time, that is, the nth RR interval is observed at time tn. Equidistant sampling is assumed by
standard spectral estimation techniques such as those based on discrete Fourier transform
or autoregressive (AR) modeling. This aspect has not been considered in all the early HRV
studies where the spectrum is calculated directly from the RR interval tachogram (see Fig-
ure 7.1). When using the tachogram for spectrum estimation, an assumption of equidistant
sampling is erroneously made, which can cause distortion to the spectrum and the spec-
trum can not be considered to be a function of frequency but rather is a function of cycles
per beat [17,18].

One commonly used approach to take care of the nonequidistant sampling of the RR
time series is to use interpolation methods in converting the nonequidistantly sampled
time series to equidistantly sampled time series [1]. Several different interpolation methods

Detected RR intervals

RR interval tachogram

RR interval series (with two possible ways of interpolation)

RR1 RR2 RR3 RR4 RR5

RR1

1 432 5

RR2 RR3
RR4

RR5

RR1

t1

t0 t4t3t2t1 t5

t4t3t2 t5

RR2 RR3
RR4

RR5

FIGURE 7.1
Derivation of RR interval time series: detection of RR intervals from ECG (top panel), RR interval tachogram
(middle panel), and interpolated RR interval time series (bottom panel). In the bottom panel, linear (dashed
line) and cubic spline interpolation (dotted line) trajectories of the nonequidistantly sampled RR time series are
illustrated.
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have been applied for this task among which cubic spline interpolation, providing smooth
interpolation over the beat-to-beat intervals, has been used in several studies and is also
adopted in the Kubios HRV software package. After interpolation, standard spectrum esti-
mation methods can be applied to assess the HRV spectra. The interpolation rate should be
selected high enough to avoid aliasing, basically at least as high as the baseline HR. Typ-
ical choices for the interpolation rate are 2–4 Hz. Regardless of the interpolation rate, the
baseline HR needs to be high enough when compared to the respiratory rate in order to
avoid aliasing in the RSA component [19]. For example, a respiratory rate of 0.3 Hz can be
observed successfully (without aliasing) from RR time series only if the HR is higher than
36 beats/min (0.6 Hz). Normally, this is not an issue because respiratory rate is decreased
in rest and increases during exercise, that is, the changes are parallel to those in the HR.

Other approaches for HRV spectral estimation, which do not assume equidistant
sampling, include the Lomb–Scargle periodogram [20–22], the integral pulse frequency
modulation (IPFM) model [17,23], and the point-process model [24]. The Lomb–Scargle
periodogram is a generalization of discrete Fourier transform, which does not assume
equidistant sampling. The IPFM models the neural modulation of the SA node from the
beat occurrence times (sequence of delta functions). According to this model, the mod-
ulating signal is integrated until a reference level is achieved after which an impulse is
emitted and the integrator is set to zero. The spectrum for the sequence of delta functions,
also called spectrum of counts, is finally computed using the estimated modulation signal.
The point-process model relies on the assumption that the stochastic properties of the RR
intervals are governed by an inverse Gaussian renewal model.

7.3 Time-Domain Analysis Methods

The time-domain analysis methods described below are computationally simple linear
methods that are applied directly in the time domain to the series of consecutive RR inter-
val values. All of these time-domain methods are included in the Kubios HRV software
and are summarized in Section 7.1.

Given the N point beat-to-beat RR interval time seriesRR= (RR1,RR2,… ,RRN), the mean
RR interval (RR), and the mean HR(HR) are computed as

RR= 1
N

N
∑

j=1

RRj and HR= 1
N

N
∑

j=1

60
RRj

(7.2)

It should be noted that the mean HR (HR) is not equal to 60∕RR due to the nonlinear rela-
tionship between beat-to-beat RR interval and HR values. This means that the distributions
of these two time series are also different as illustrated in Figure 7.2.

In addition to mean values, several parameters that measure the variability within the
beat-to-beat RR interval values have been defined. The standard deviation of RR intervals
(SDNN) is defined as

SDNN=

√

√

√

√

√

1
N− 1

N
∑

j=1

(RRj −RR)2 (7.3)
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FIGURE 7.2
Interrelationship between RR interval and heart rate. (a) Mathematical relationship between RR interval and HR.
(b) Illustrations of RR interval and HR time series histograms extracted from 1-hour HRV recording of healthy
female subject.

Both short-term and long-term HRV influence SDNN, and thus, it is a measure of overall
HRV. Short-term, beat-to-beat HRV is better captured by the standard deviation of succes-
sive RR interval differences (SDSD) defined by

SDSD=

√

E
{

ΔRR2
j

}

−E
{

ΔRRj

}2
(7.4)

If the RR series is stationary E{ΔRRj}=E{RRj+1}−E{RRj}= 0 and SDSD is approximated
by the root mean square of successive differences (RMSSD) parameter, which is defined as

RMSSD=

√

√

√

√

√

1
N− 1

N−1
∑

j=1

(RRj+1 −RRj)2 (7.5)

Another HRV parameter calculated from successive RR interval differences is the NN50,
which is defined as the number of successive intervals differing more than 50 ms and is
often reported as a percentage value (pNN50), that is,

NN50=nbr of
{

RRj+1,RRj; j= 1⋯N− 1 | (RRj+1 −RRj)> 50 ms
}

(7.6)

pNN50= NN50
N− 1

× 100% (7.7)

In addition to the above time-domain measures of HRV, there are two geometric mea-
sures that are commonly used to assess HRV data. These are the HRV triangular index
(HRVi) and the triangular interpolation of the RR interval histogram (TINN). Both of these
geometric measures are calculated from the RR interval histogram. HRVi is obtained by
dividing the integral of the histogram (i.e., the total number of RR intervals) by the height
of the histogram (i.e., the number of RR intervals at the modal bin). The value of this
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parameter is affected by the selected bin width, and thus, a bin width of 1/128 seconds
was recommended in [1] to obtain comparable results between different studies. TINN is
defined as the baseline width of a triangle fitted on the RR interval histogram. HRVi mea-
sures the peakedness of the RR interval distribution, smaller values of HRVi indicating a
more peaked distribution. TINN, on the other hand, estimates the baseline width of the RR
interval distribution, thus providing an estimate of overall HRV.

7.4 Frequency-Domain Analysis Methods

The frequency-domain measures of HRV assess the HRV time series in the frequency
domain, that is, through power spectral density (PSD) analysis. In the Kubios HRV
software, the spectrum of the RR interval time series is estimated using two standard
approaches: Welch’s periodogram based on discrete Fourier transform and AR spectrum
estimation. Both of these spectrum estimation methods assume equidistant sampling, and
thus, the RR interval time series is interpolated using cubic spline interpolation (the default
interpolation rate in Kubios HRV being 4 Hz) prior to spectrum estimation. Let us denote
the interpolated RR interval time series with x= (x1, x2,… , xL), where L is the length of the
interpolated series.

7.4.1 Welch’s Periodogram

A periodogram power spectrum estimate is defined as the squared absolute value of sig-
nals discrete Fourier transform [35], that is,

Px(fk) =
1

Lfs

|

|

|

|

|

|

L−1
∑

j=0

xje
−i2πjk∕L

|

|

|

|

|

|

2

(7.8)

where L is the length of the signal, fs is the sampling frequency, and fk =
k
L

fs, k= 0…L− 1. It
can be shown that the periodogram is an asymptotically unbiased estimate of the spectrum,
meaning that the expected value of the periodogram approaches the true spectrum when
data length approaches infinity. However, the periodogram is not a consistent estimate
of the spectrum because the variance of the periodogram is approximately equal to true
spectral power and does not approach zero when data length approaches infinity.

The variance of the periodogram can be reduced by using certain periodogram modifica-
tions such as Welch’s periodogram. In this periodogram modification, the signal is divided
into overlapping segments, each segment is windowed to decrease the leakage effect, and
the periodograms of these windowed segments are finally averaged to reduce the variance.
Welch’s periodogram is defined as

PWelch(fk) =
1
M

M
∑

m=1

⎛

⎜

⎜

⎝

1
DfsU

|

|

|

|

|

|

D−1
∑

j=0

wjx
(m)
j e−i2πjk∕D

|

|

|

|

|

|

2
⎞

⎟

⎟

⎠

(7.9)

where x(m)j = x(m−1)(D−s)+j is the mth overlapping segment (segment length D points and
overlap s points), M is the number of overlapping segments and wj is the window function
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(in Kubios HRV, a smooth Hanning window is used). The periodogram of each segment
needs to be scaled with the segment length (D) and, sampling frequency (fs) as well as
the energy of the window function (U= 1∕D

∑D−1
j=0 w2

j ) in order for the Parsevals theorem
(preservation of energy) to hold. If the individual segment periodograms are independent
(observations of spectrum), the variance of Welch’s periodogram is reduced in relation to
the number of segments M due to averaging, that is, to minimize variance M should be as
high as possible. The number of segments can be increased by decreasing segment length
(D) or by increasing overlap (s) between successive segments. By increasing segment over-
lap the correlation between the segments increases, and thus, the variance is not expected
to decrease in relation to increase in M. Furthermore, decreasing of the segment length
leads to decrease in frequency resolution. In the Kubios HRV software, the default value
for segment overlap is 50% and the segment length needs to be defined based on the length
of the available data.

7.4.2 AR Spectral Estimate

In the AR spectrum estimation approach, the interpolated RR time series is modeled with
an AR model of specific order and the spectrum estimate can be produced from the esti-
mated model parameters. An AR model of order p is given by

xt =
p
∑

j=1

ajxt−j + et (7.10)

where aj (j= 1… p) is the AR(p) parameters and et is the model residual. The AR model can
be considered as one-step prediction equations where the current value of the time series
is predicted as a weighted sum of p previous values, the weights being the AR parameters
to be solved. Equation 7.10 also has a system interpretation where et (a noise process) is
the input and xt is the output of an infinite impulse response (IIR) system defined by the
AR parameters. Parameters of the AR model can be estimated, for example, by solving
the set of linear equations, t= 1…L in 7.10, using least squares (LS) estimation, that is,
minimizing the squared norm of the model residual terms. In the Kubios HRV software,
the AR parameters are estimated using a combined forward and backward prediction LS
solution [35].

The AR spectrum estimate can be obtained from the estimated AR parameters and is
defined as

PAR(f ) =
σ2

e∕fs
|

|

|

1+
∑p

j=1 aje−i2πjf∕fs |
|

|

2
(7.11)

where σ2
e is the variance of model residual, fs is the sampling rate, and aj are the AR param-

eters. Equation 7.11 rises from the system interpretation of the AR model, where σ2
e∕fs is the

spectrum of a white noise process and the remaining part (on the right-hand side of Equa-
tion 7.11) is the spectrum of the IIR system defined by the AR parameters. The model resid-
ual et is white noise only when the AR model is fitted into a pure AR process. Real-world
signals are, however, rarely AR processes that cause bias to the AR spectrum estimate, but
this bias can be minimized by choosing the AR model order optimally.

The basic idea in optimal AR model order selection is to observe the improvement in
model fit (decrease of σ2

e ) as a function of model order p. The optimal model order is
obtained from the point where the curve σ2

e as a function of p levels off. Detection of this
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point is not always easy and several model order selection criteria, such as Akaikes infor-
mation criteria (AIC), final prediction error (FPE), and minimum description length (MDL),
have been developed to simplify this selection. For HRV analysis, it has been recommended
that an AR model order not less than p= 16 should be used [36].

Figure 7.3 illustrates the effect of the model order on the AR spectrum quality. Three
different model order selection criteria (AIC, FPE, and MDL) are computed for a 5-minute
RR interval data recording from a healthy male subject during supine rest. It is observed
that all three criteria level off at around order p= 16 which could thus be taken to the
optimal model order. The AR spectrum with model order 16 does show similar structure
to the Fourier fast transform (FFT)-based spectrum (Welch’s periodogram computed with
150-second window and 50% overlap), but a higher model order (p= 24) produces even
better correspondence between the two spectrum estimation techniques. However, if an
order substantially lower than what is indicated by the model order selection criteria (e.g.,
p= 8) is selected, the AR model can not fully model the oscillations within the RR time
series (i.e., the model residual is not white noise) and the spectrum estimate is thus missing
details.

RR interval time series

AR model order selection criteria

Welch’s periodogram AR spectrum estimates
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FIGURE 7.3
An illustration of autoregressive (AR) model order selection showing how the AR spectrum estimate compares
to Welch’s periodogram at different model orders.
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One property, which is especially advantageous in assessing HRV spectrum, is that the
AR spectrum estimate can be decomposed into distinct spectral components [37]. The
decomposition is based on the factored form of Equation 7.11 given by

PAR(f ) =
σ2

e∕fs
∏p

j=1(z−αj)(z−1 −α∗j )
, z= ei2πf∕fs (7.12)

where αj is the roots of the AR polynomial given in the denominator of Equation 7.11 and
α∗j is the complex conjugates of the roots. Each root produces a peak in the spectrum and
the power of the spectral peak depends on how close to the unit circle the root is in the
complex domain. The spectral component produced by a single root αj can be estimated
by assuming the effect of other roots is constant in the vicinity of frequency fj, where the
specific root αj is positioned. The sum of the spectral components of all roots should be
equal to the overall AR spectrum.

7.4.3 Parameterization of the Spectrum

The HRV spectrum is typically divided into VLF (0–0.04 Hz), LF (0.04–0.15 Hz), and HF
(0.15–0.4 Hz) bands. This division is based on the current physiological understanding
regarding cardiovascular regulatory systems. For example, the HF component is known
to reflect parasympathetic nervous activity, whereas the LF component is affected by both
SNS and PNS activations. Changes in cardiac autonomic regulation can thus be evaluated
from these spectral features. Standard frequency-domain parameters computed from HRV
spectra are summarized in Table 7.1 and their computations are described below.

Let us next denote the power spectrum estimate, computed using any relevant method
(e.g., Welch’s periodogram or AR spectrum), as P(fk), where fk is the discrete frequencies
between zero and the Nyquist frequency (half of the sampling frequency). The power
within some specific frequency band is computed by integrating the spectrum, that is, by
evaluating the area under the curve as illustrated in Figure 7.4. The powers of VLF, LF, and
HF bands are thus computed from

PVLF =
∑

fk∈[0−0.04]Hz

P(fk)Δf (7.13)

PLF =
∑

fk∈[0.04−0.15]Hz

P(fk)Δf (7.14)

PHF =
∑

fk∈[0.15−0.4]Hz

P(fk)Δf (7.15)

where Δf = fk − fk−1 is the bin width of a bar chart representing the spectrum and P(fk) is the
heights of the columns in the bar chart (see Figure 7.4). As mentioned in Section 7.4.2, the
AR spectrum can be divided into distinct spectral components as illustrated in Figure 7.4.
In such case, the band powers are not computed by summing over frequencies within a
prespecified frequency band as in Equations 7.13 through 7.15, but summing over the fre-
quency components lying within a prespecified frequency band. The absolute band powers
described above are usually given in units ms2 or s2 and a logarithm is often taken from
the absolute power values in order to make these values normally distributed (e.g., over
the patient population) for statistical analyses.
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TABLE 7.1

Summary of Standard HRV Parameters Divided into Time-Domain, Frequency-Domain, and
Nonlinear Categories

Parameter (Units) Description of the Parameter

Time-Domain Parameters

Mean RR (ms) The mean of the beat-to-beat RR intervals

Mean HR (bpm) The mean of beat-to-beat heart-rate values in beats per minute

SDNN (ms) Standard deviation of RR intervals

RMSSD (ms) Square root of the mean-squared differences between successive RR intervals

NN50 (beats) Number of successive RR intervals that differ more than 50 ms

pNN50 (%) Percentage of successive RR intervals differing more than 50 ms (NN50
divided by the total number of RR intervals)

HRVi HRV triangular index, obtained by dividing the area of the RR interval
histogram by the number of RR intervals at the modal bin of the histogram [1]

TINN (ms) Triangular interpolation of RR interval histogram, which provides the
baseline width of a triangle fitted to the histogram [1]

Frequency-Domain Parameters

VLF power (ms2, %) Spectral power of the VLF component (typically ranging from 0 to 0.04 Hz)
presented in absolute units (ms2) or in percentage of total power (%):

VLF power (%)=VLF power (ms2)∕Total power (ms2) × 100%
LF power (ms2, %, n.u.) Spectral power of the LF component (typically ranging from 0.04 to 0.15 Hz)

presented in absolute units (ms2), percentage of total power (%) or
normalized units (n.u.):

LF power (%)=LF power (ms2)∕Total power (ms2) × 100%
LF power (n.u.) =LF power (ms2)∕[Total power (ms2) −VLF power (ms2)] × 100%

HF power (ms2, %, n.u.) Spectral power of the HF component (typically ranging from 0.15 to 0.4 Hz)
presented in absolute units (ms2), percentage of total power (%) or
normalized units (n.u.):

HFpower (%)=HF power (ms2)∕Total power (ms2) × 100%
HFpower (n.u.) =HF power (ms2)∕[Total power (ms2) −VLF power (ms2)] × 100%

LF/HF Ratio between LF and HF component powers

Peak frequency (Hz) LF and HF component peak frequencies (frequency corresponding to the
maximum power within the frequency band)

Nonlinear Parameters

SD1, SD2 (ms) Standard deviation of the Poincaré plot perpendicular to the line-of-identity
(SD1) and along the line-of-identity (SD2) [25,26]

α1, α2 Slopes of short term (α1) and long-term (α2) fluctuations in DFA [27,28]

ApEn Approximate entropy [29,30]

SampEn Sample entropy [30]

D2 Correlation dimension [31,32]

Lmean, Lmax (beats) Mean and maximum line lengths of diagonal lines in RP [33,34]

REC, DET (%) Recurrence rate (percentage of recurrence points in RP) and determinism
(percentage of recurrence points which form diagonal lines in RP)

ShanEn Shannon entropy of diagonal line lengths probability distribution

DET, determinism; HF, high frequency; HR, heart rate; HRV, heart rate variability; LF, low frequency; RP, recur-
rence plot; REC, recurrence rate; RMSSD, root mean square of successive differences; TINN, triangular interpola-
tion of RR interval histogram; VLF, very low frequency.
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FIGURE 7.4
Computation of LF and HF powers from power spectral density estimates.

The relative powers of the VLF, LF, and HF bands can be presented in percentage val-
ues as

PVLF (%)=
PVLF (ms2)
PTotal (ms2)

× 100% (7.16)

PLF (%)=
PLF (ms2)

PTotal (ms2)
× 100% (7.17)

PHF (%)=
PHF (ms2)

PTotal (ms2)
× 100% (7.18)

In addition, the relative powers of the LF and HF bands can be presented in normalized
units (n.u.) as

PLF (n.u.) =
PLF (ms2)

PTotal (ms2) −PVLF (ms2)
× 100% (7.19)

PHF (n.u.) =
PHF (ms2)

PTotal (ms2) −PVLF (ms2)
× 100% (7.20)

and the power ratio between them can be simply computed as

LF∕HF=
PLF (ms2)
PHF (ms2)

(7.21)

The relative powers of different frequency components and the LF/HF ratio are useful
when examining the proportion of LF to HF, which is known to reflect sympatho-vagal
balance. One advantage in using relative powers is that the high interindividual variability
known to exist in the absolute HRV power values is not an issue, because the values are
normalized with the total power.
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7.5 Nonlinear Analysis Methods

Considering the complex regulation of the cardiovascular system, it is quite obvious that
the HRV time series features cannot be fully captured using linear methods. Therefore,
various nonlinear methods have been applied to HRV to fully capture the characteristics
of the beat-to-beat variability. However, nonlinearity of a method per se is not a guarantee
of capturing useful information from the HRV time series. Furthermore, the physiologi-
cal interpretation of the results obtained using nonlinear methods is sometimes difficult.
Therefore, it is important to compare the results from nonlinear methods against those
obtained from the standard linear methods.

In Kubios HRV software, nonlinear properties of HRV can be assessed using measures
such as Poincaré plot, approximate (ApEn) and sample entropy (SampEn), correlation
dimension, detrended fluctuation analysis (DFA), and recurrence plot (RP) analysis. The
nonlinear methods implemented in Kubios are summarized in Table 7.1 and described
shortly in the following.

7.5.1 Poincaré Plot Analysis

The Poincaré plot is a graphical presentation of the correlation between consecutive RR
intervals, that is, a plot of RRj+1 as a function of RRj [25,26]. The shape of the plot is
quantified by fitting an ellipse into the data points (RRj,RRj+1) oriented along the line of
identity (LOI) where RRj =RRj+1. The width and length of the ellipse are determined by
the standard deviations of the points perpendicular to and along the LOI as illustrated in
Figure 7.5. The standard deviation perpendicular to the LOI is denoted by SD1 and stan-
dard deviation along the LOI by SD2. SD1 is considered to reflect short-term (beat-to-beat)
variability, which is mainly caused by RSA. It can be shown that the SD1 is related to the
time-domain measures SDSD (or RMSSD) by [25]

SD1=

√

SDSD2

2
≃

√

RMSSD2

2
(7.22)

The standard deviation along the LOI denoted by SD2, on the other hand, measures overall
variability, that is, aggregate of short-term and long-term variabilities and has been shown
to be related to the time-domain measures SDNN and SDSD (or RMSSD) by [25]

SD2=

√

2 SDNN2 − SDSD2

2
≃

√

2 SDNN2 − RMSSD2

2
(7.23)

The ratio of these two standard deviations, that is, SD1/SD2 can thus be considered to
yield a nonlinear index for the balance between short-term beat-to-beat variability and
longer term variability.

7.5.2 Entropy Measures

ApEn and SampEn are two commonly used entropy measures, both measuring the com-
plexity or irregularity of the signal [29,30]. A generalization of SampEn is provided by
multiscale entropy (MSE) described after ApEn and SampEn. These three entropy mea-
sures are included in the Kubios HRV software. Another entropy measure that has drawn
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FIGURE 7.5
Parametrization of the Poincaré plot with the ellipse fitting procedure. SD1 and SD2 are standard deviations at
directions x1 and x2, where x2 is the line of identity (LOI) having RRj =RRj+1.

attention lately is Renyi entropy, which is also an MSE measure including Shannon entropy
as a special case [38].

Considering the values of ApEn or SampEn, large values indicate high irregularity
whereas smaller values indicate a more regular signal. The computations of these entropy
values starts by forming length m embedding vectors uj:

uj =
(

RRj,RRj+1,… ,RRj+m−1

)

, j= 1, 2,… ,N−m+ 1 (7.24)

where m is the embedding dimension and N is the number of beats. Then, for every uj, the
relative number of vectors uk, for which the distance to uj is small enough, is calculated.
At this point, the computations of ApEn and SampEn diverge, but in both measures the
distance between any two vectors uj and uk is defined as the maximum absolute element-
wise difference:

d(uj,uk) =max
{

|RRj+n −RRk+n|
|

|

|

n= 0,… ,m− 1
}

(7.25)

In ApEn, the relative number of vectors uk for which d(uj,uk)≤ r is defined as

Cm
j (r) =

nbr of
{

uk
|

|

|

d(uj,uk)≤ r
}

N−m+ 1
∀ k (7.26)

The value of Cm
j (r) is always between 1∕(N−m+ 1)≤Cm

j (r)≤ 1. ApEn is obtained by first
averaging the natural logarithms of every Cm

j (r) as

Φm(r) = 1
N−m+ 1

N−m+1
∑

j=1

lnCm
j (r) (7.27)
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Equations 7.24 through 7.27 are then reevaluated for embedding dimension m+ 1 and
ApEn is obtained as

AppEn(m, r,N) =Φm(r) −Φm+1(r). (7.28)

In SampEn, the self-comparison of uj is excluded when computing Cm
j (r), that is,

Equation (7.26) is replaced with

Cm
j (r) =

nbr of
{

uk
|

|

|

d(uj,uk)≤ r
}

N−m
∀ k≠ j (7.29)

where now 0≤Cm
j (r)≤ 1. SampEn is obtained by first averaging the terms Cm

j (r) with

Φm(r) = 1
N−m+ 1

N−m+1
∑

j=1

Cm
j (r) (7.30)

and then (after reevaluating the same for embedding dimension m+ 1) evaluating

SampEn(m, r,N) = ln
(

Φm(r)
Φm+1(r)

)

(7.31)

The values of ApEn and SampEn depend on three factors, the embedding dimension
m, the tolerance value r, and number of beats N. Both entropy measures are estimates for
the negative natural logarithm of the conditional probability that a time series of length
N, having repeated itself within a tolerance r for m points, will also repeat itself for m+ 1
points. In the Kubios HRV software, the default values for the embedding dimension and
tolerance are m= 2 and r= 0.2 SDNN. Fixing the tolerance value on standard deviation of
the time series enables comparison of different time series acquisitions. Finally, it should be
mentioned that the length N of the time series also has an effect on the entropy measures,
but when N increases both ApEn and SampEn approach their asymptotic values.

7.5.2.1 Multiscale Entropy

MSE is an extension of SampEn in the sense that it provides sample entropy values as a
function of a scale factor [39]. A course-graining process is applied to extract different scales
from the original RR interval time series. Computation of MSE involves the following two
steps:

1. Several course-grained time series are extracted from the measured RR data by
averaging the beat-to-beat data within nonoverlapping windows of increasing
length τ. In the Kubios HRV software, the scale factor τ is selected to range between
τ= 1, 2,… , 20 and the length of the course-grained time series is N∕τ (N being the
number of beats).

2. SampEn is calculated for each course-grained time series and the MSE is obtained
by presenting the SampEn values as a function of the scale factor τ. MSE for scale
factor τ= 1 involves no course graining and returns standard SampEn.
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7.5.3 Correlation Dimension

The correlation dimension is also a measure of the complexity or strangeness of the data,
and is expected to give information on the minimum number of dynamic variables needed
to model the complex system [31,32]. The computation of the correlation dimension starts
similarly as for the entropy measures described above, that is, length m embedding vectors
are first formed according to Equation 7.24 and then the relative number of vectors uk
for which the distance to uj is below a prespecified tolerance is computed according to
Equation 7.26. The distance between two embedding vectors uj and uk is now, however,
defined as

d(uj,uk) =

√

√

√

√

m
∑

l=1

(

uj(l) −uk(l)
)2

(7.32)

The average of the terms Cm
j (r) (computed according to Equation 7.26) is then computed

according to Equation 7.30. The correlation dimension, denoted with D2, is defined as the
limit value

D2(m) = limr→0
lim

N→∞

logΦm(r)
log r

(7.33)

In practice, this limit value is approximated by the slope of the regression curve
(log r, logΦm(r)) [32]. Specifically, the slope is calculated from the linear part of the log–log
plot as shown in Figure 7.6. The slope of the regression curves tend to saturate on the finite
value of D2 when m is increased, but for higher values of m longer data sequences would
be required. In the Kubios HRV software, the default value for the embedding dimension
is m= 10.

7.5.4 Detrended Fluctuation Analysis

DFA evaluates correlations within the RR interval time series. The correlations can be
extracted for different time scales as described below [27,28]. First, the RR time series is
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FIGURE 7.6
Approximation of the correlation dimension D2 from a (log r, logΦm(r)) plot.
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integrated according to

y(k) =
k
∑

j=1

(

RRj −RR
)

, k= 1,… ,N (7.34)

which is simply the cumulative sum of zero mean RR interval values. This integrated series
is then divided into length n nonoverlapping segments and within each segment a local
trend is estimated by fitting a LS line into the segment data points. The integrated series
y(k) is then detrended by subtracting the local trends yn(k) segment-by-segment. The root
mean square value of the integrated and detrended RR series is then calculated as

F(n) =

√

√

√

√
1
N

N
∑

k=1

(

y(k) − yn(k)
)2 (7.35)

The computation of F(n) is repeated over different segment lengths (scales) and typically
F(n) increases as a function of n. The presence of fractal scaling is assessed by looking at a
linear relationship of logF(n) and logn. In HRV research, the scales are usually divided to
reflect short-term and long-term fluctuations. The default values in the Kubios HRV soft-
ware for the scales are 4≤n≤ 12 for short-term and 13≤n≤ 64 for long-term fluctuations.
The short- and long-term fluctuations are then characterized by the slopes α1 and α2 of lin-
ear regression lines fitted separately in the log–log graph (logF(n), logn) on scales 4≤n≤ 12
and 13≤n≤ 64 as illustrated in Figure 7.7.

The different values of α are interpreted as follows [27]:

0< α< 0.5: Indicates correlation where large RR interval values are likely to be fol-
lowed by small values and vice versa
α= 0.5: White noise
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FIGURE 7.7
Computation of the detrended fluctuation analysis (DFA) short-term and long-term fluctuation slopes (α1 and α2,
respectively) from a (logn, logF(n)) plot.
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0.5< α< 1: Indicates persistent long-term correlation where the large RR interval val-
ues are likely to be followed by large values and vice versa
α= 1: 1∕f noise
1< α< 1.5: Indicates different kinds of correlated noise
α= 1.5: Brownian noise (integration of white noise)

Furthermore, the value of α can also be considered as an indicator of RR interval time series
smoothness, that is, the larger the value of α the smoother the time series.

7.5.5 RP Analysis

RP analysis is yet another nonlinear method for assessing the complexity of RR time series
[33,34,40]. Similar to the entropy measures computation, embedding vectors

uj =
(

RRj,RRj+τ,… ,RRj+(m−1)τ

)

, j= 1, 2,… ,N− (m− 1)τ (7.36)

where m is the embedding dimension and τ is the embedding lag, are extracted from the
RR time series. Vectors uj can be considered to represent the RR time series trajectory in
m-dimensional space. The RP is a symmetric binary matrix such that the value in the jth
row and kth column RP(j, k) is

RP(j, k) =
{

1, d(uj −uk)≤ r
0, otherwise

(7.37)

where d(uj −uk) is the Euclidean distance between uj and uk given in Equation 7.32 and
r is a fixed threshold. An example of RP for HRV data if presented in Figure 7.8. Short
line segments of ones parallel to the main diagonal, which are typical for RP matrices of
correlated data, are clearly observed. The lengths of the diagonal line segments are related
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FIGURE 7.8
Recurrence plot matrix for 10-minute RR time series (black = 1 and white = 0).
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to the duration for which two embedding vectors are close to each other. In Kubios HRV,
the default values are for the embedding dimension m= 10 and threshold r=

√

mSDNN
(embedding delay is fixed to τ= 1).

Several parameters for quantifying the RP have been proposed in [33], some of which are
summarized here. Recurrence rate (REC) gives the ratio of ones and zeros in the RP matrix,
that is,

REC= 1
(N−m+ 1)2

N−m+1
∑

j=1

N−m+1
∑

k=1

RP(j, k) (7.38)

where N−m+ 1 is the number of rows and columns in the RP matrix when τ= 1. In addi-
tion, several parameters assessing the lengths of the diagonal lines have been proposed.
To exclude recurrences caused by nondiagonal trajectory movements, a threshold of mini-
mum diagonal line length lmin = 2 is applied. Furthermore, the longest observed diagonal
line (excluding the main diagonal) is denoted with lmax. Divergence (DIV) is defined as the
inverse of lmin = 2, that is,

DIV= 1
lmax

(7.39)

and it has been shown to correlate with the largest positive Lyapunov exponent [40]. The
average diagonal line length (lmean), on the other hand, can be computed from

lmean =

∑lmax
l=lmin

lNl

∑lmax
l=lmin

Nl

(7.40)

where Nl is the number of length l lines. The determinism (DET) of the time series is
defined as

DET=

∑lmax
l=lmin

lNl

∑N−m+1
j,k=1 RP(j, k)

(7.41)

Finally, the Shannon information entropy of the line length distribution is defined as

ShanEn=−
lmax
∑

l=lmin

nl lnnl (7.42)

where nl is the number of length l lines scaled with the total number of lines, that is,

nl =
Nl

∑lmax
j=lmin

Nj

(7.43)

7.6 Considerations in the Assessment of HRV

This section tackles the three following important issues related to HRV analysis:

1. What is the effect of trend on HRV analysis? Often HR shows gradual increase or
decrease during the recording period, which give rise to trend or baseline changes
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in the RR interval time series. It is not always easy to understand how the trend a
effects different HRV parameters and how to handle it.

2. How do we handle incorrect beat detections, ectopic, and other aberrant beats?
Almost always (at least in longer recordings) RR interval recordings include one
or more such artifacts. It is commonly understood that only normal-to-normal RR
intervals (originating from sinus rhythm) should be included in the analysis, but
the effect that even one single abnormal beat can have on different HRV parameters
is not easy to perceive.

3. What is the effect of respiration on HRV and how do we take this into account in
HRV analysis? RSA is one of the two main components of HRV and quite often the
RSA component is evaluated using standard assumptions of respiratory frequency.

In each of these three cases, illustrative examples are given to help the reader understand
the effects that these issues have on HRV analysis and avoid the possible pitfalls of misin-
terpretation of HRV analysis results.

7.6.1 The Effect of Trend and Artifacts on HRV Analysis

Accurate estimation of different HRV parameters necessitates a sufficiently long ECG
recording. In principle, the recording should last at least 10 times the wavelength of the
investigated frequency component. This would indicate that the HF component of HRV
(RSA component) can be reliably estimated from as short as 1-minute data segments (if
the LF bound of the RSA component is at 0.15 Hz). The LF component would then need
approximately twice as long of a data segment to be assessed, whereas many of the non-
linear parameters require at least 5 minutes of data to have reasonable accuracy. In order
to standardize different studies investigating short-term HRV, 5-minute recordings have
been recommended unless the nature of the study dictates otherwise [1]. However, record-
ings should be free from artifacts or other disruptive components to optimally assess the
normal beat-to-beat HRV.

7.6.1.1 Very Low Frequency Trend Components of HRV

An HRV time series often includes nonstationarities like slow linear or more complex
trends, that is, changes in the average HR. These baseline changes of HR can be notice-
able even within short-term recordings and they can have quite significant effects on dif-
ferent HRV parameter values as illustrated below. The origins for such nonstationarities in
HRV are discussed, for example, in [11]. One approach to get around the nonstationarity
problem is to systematically test for nonstationarities and select only stationary segments
for analysis as suggested in [41]. The representativeness of these stationary segments in
comparison with the whole HRV signal was, however, questioned in [42]. The representa-
tiveness of the selected segment is actually one common dilemma among HRV researchers,
that is, dealing with nonstationarities like slow trends or occasional HRV anomalies caused,
for example, by atypical breathing patterns or unexpected postural changes. In general, it
is advisable to visually verify that the selected segment does not include atypical HRV pat-
terns or clear outliers and that the segment is representative in comparison with the whole
HRV signal.

To deal with VLF trends of arbitrary form, we have proposed a smoothness priors
regularization-based method for trend removal [43]. In this method, we do not need to
set any model for the trend. The only assumption is smoothness of the trend, which is
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implemented by adding a smoothness prior regularization term (smoothness induced by a
second-order difference operator) into a standard LS minimization problem. If we denote
a length L RR interval time series as x=

(

x1, x2,… , xL
)

and consider that it consists of two
components

x= xStat + xTrend (7.44)

where xStat is the stationary part of the RR series and xTrend is the trend. Using the smooth-
ness priors regularization (for details see [43]), the estimate for the trend and detrended RR
series are obtained in the form

xTrend =
(

I+λ2DT
2 D2

)−1
x (7.45)

xStat = x− xTrend (7.46)

where I is an identity matrix and D2 is a second-order difference matrix. In MATLABⓇ

(http://www.mathworks.com), the trend estimation can be performed in a few simple
lines:

L = length(x);
lambda = 500;
I = speye(L);
D2 = spdiags(ones(L-2,1)*[1 -2 1],[0:2],L-2,L);
xTrend = (I+lambdaˆ2*D2’*D2)\x;
xStat = x-xTrend;

When applied to equidistantly sampled time series, the smoothness priors detreding
method was shown to be equal to a time-varying highpass filter [43]. The amplitude
response of this filter is presented in Figure 7.9, which illustrates the time-varying ampli-
tude response (Figure 7.9a) and the amplitude response for different values of the smooth-
ing parameter λ (Figure 7.9b). It is observed that the form of the amplitude response is
mostly constant, but the beginning and end of the RR data is processed differently. Thus,
the method is not comparable to the simple learning tools interoperability (LTI) highpass
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filter and the beginning and end of the data are estimated nicely without any tricks.
Smoothness of the trend (or the cutoff frequency for trend removal) is adjusted by the
smoothing parameter; bigger values of λ produce smoother trend estimates (lower cutoff
frequency for detrending).

7.6.1.2 Artifacts in HRV Recordings

The artifacts in HRV recording can be divided into technical and physiological artifacts.
The technical artifacts include missing beat detections or misplaced beat detections. The
performance of the QRS detection algorithm has a direct effect on the number of these arti-
facts. Low signal-to-noise ratio due to poorly fastened electrodes or movement artifacts
increases the number of misdetections. Physiological artifacts include premature ventricu-
lar beats (ectopic beats) and other arrhythmic events. Several different correction methods
for handling such artifacts have been proposed within the past few decades. The proposed
methods involve deletion, interpolation, or filtering techniques to edit the artifact beats.
A recent review of HRV artifact correction methods can be found in [44].

In Kubios HRV, there are two possibilities for correcting artifacts. If an ECG has been
recorded, then one should always fix artifacts caused by R-wave misdetections by edit-
ing the R-wave peak detections from the ECG data using the tools available for that. Any
changes made to the R-wave detections are saved on the MATLAB MAT file while sav-
ing the results of the analysis. The MAT file can be reopened in Kubios, which enables
the user to return to the file without losing the changes made to the R-wave detections.
If ECG is not measured or the artifacts cannot be corrected by editing R-wave detections,
Kubios HRV offers simple artifact correction options. The user can select between very
low, low, medium, strong, and very strong correction levels. The different correction levels
define thresholds (very low = 0.45 sec, low = 0.35 sec, medium = 0.25 sec, strong = 0.15
sec, very strong = 0.05 sec) for detecting the RR intervals differing abnormally from the
local mean of the RR interval. These correction thresholds are for HR of 60 beats/min; for
higher HRs the thresholds are decreased (because the variability is expected to decrease
when HR increases). Detected artifacts are corrected by applying a piecewise cubic spline
interpolation method.

7.6.1.3 The Effects on HRV Analysis

Next, we examine briefly the impact that trend or small number of artifacts within the RR
interval time series can have on different HRV analysis parameters. To do this, we selected
a 5-minute ECG recording of a healthy young male subject measured during supine rest.
The ECG data did not originally include any abnormal beats. The beat-to-beat RR intervals
were extracted from the ECG using the built-in QRS detector of Kubios HRV software and
authenticity of beat detections were visually verified. The original RR interval time series
and its Fourier spectrum (estimated using Welch’s periodogram method) are presented
in Figure 7.10a. The trend was then removed using the smoothness priors method (λ=
1000). The detrended RR time series and its Fourier spectrum as shown in Figure 7.10b.
The reduction of the VLFs (frequencies below 0.04 Hz) is evident.

Two artifacts were then produced in the RR time series by removing one beat detection
(simulating a missed beat detection) and by bringing forward one beat detection (simu-
lating a premature ventricular contraction). These simulated artifacts and corresponding
Fourier spectra are shown in Figures 7.10c and d. It is observed that the two simulated
artifacts cause an observable increase in spectral power in both the LF and HF bands. It
is worth noting also that for the artifact-free data, the HRV spectrum shows a quite nice
peak around 0.28 Hz, which was the respiratory frequency of the subject as assessed from
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FIGURE 7.10
RR interval time series and Fourier spectra for (a) original 5-minute artifact-free RR interval time series,
(b) detrended RR time series, (c) RR time series including one simulated artifact (premature ventricular beat),
and (d) RR time series with two artifacts (one missed peak detection and one premature ventricular beat).

the ECG using the ECG derived respiration (EDR) methodology [45]. For the data with
the simulated artifacts, the RSA component is not as easily distinguished due to spectral
leakage.

The effect of the trend and the simulated artifacts shown in Figure 7.10 on commonly
used short-term HRV analysis parameters is illustrated in Table 7.2. Naturally, the trend
removal mainly affects parameters such as SDNN, TINN, and Poincaré SD2, which all
reflect long-term variability. The peaked artifacts, which appear as clear outliers within the



Analysis and Preprocessing of HRV—Kubios HRV Software 181

TABLE 7.2

The Effect of Trend and Artifacts (Illustrated in Figure 7.10) on HRV Analysis
Parameters

Original Detrended One Simulated Two Simulated

Parameter (Units) RR Dataa RR Datab Artifactc Artifactsd

Time-Domain Parameters

Mean RR (ms) 1222 1222 1222 1227

SDNN (ms) 63.9 50.1 67.8 96.7

RMSSD (ms) 60.1 59.9 99.6 141.7

pNN50 (%) 43.5 43.5 43.9 44.9

HRVi 15.44 11.76 10.74 11.71

TINN (ms) 298 238 690 1024

Frequency-Domain Parameters

VLF power (ms2) 2046 374 336 480

LF power (ms2) 862 826 1101 2122

HF power (ms2) 822 822 3144 3859

LF power (n.u.) 51.2 50.1 25.9 35.4

HF power (n.u.) 48.8 49.9 73.9 64.4

LF/HF 1.05 1.00 0.35 0.55

Nonlinear Parameters

Poincaré plot, SD1 (ms) 42.6 42.4 70.6 100.4

Poincaré plot, SD2 (ms) 79.3 56.3 64.7 92.8

ApEn 0.99 1.06 1.18 1.17

SampEn 1.73 2.12 1.75 1.36

Correlation dimension, D2 3.70 4.24 4.12 3.67

DFA, α1 1.04 0.96 0.76 0.66

DFA, α2 0.93 0.41 0.37 0.29

DFA, detrended fluctuation analysis; HF, high frequency; HRV, heart rate variability; LF, low
frequency; VLF, very low frequency.
a

Original normal-to-normal RR interval data as shown in Figure 7.10a.
b

Original RR data after removing the trend using the smoothness priors method as shown
in Figure 7.10b.

c
Detrended RR data with one simulated artifact as shown in Figure 7.10c.

d
Detrended RR data with two simulated artifacts as shown in Figure 7.10d.

RR time series, cause a major increase in HRV parameters reflecting strength of variability
in one way or another, that is, SDNN, RMSSD, TINN, LF and HF absolute powers, and
Poincaré indices SD1 and SD2 all increase. Nonlinear measures of HRV complexity or pre-
dictability such as ApEn and SampEn, correlation dimension, and detrended fluctuation
analysis parameters do not show such clear changes. Based on the data of only one sub-
ject, we cannot of course say much about the sensitivity of different HRV parameters to
artifacts. However, it is easy to understand (and was shown here as well) that parameters
measuring the HRV amplitude or power in one way or another are significantly affected
by outliers such as missed peak detections or ectopic beats. Therefore, such outliers should
always be either corrected or excluded from analysis.
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7.6.2 Analysis of RSA

The most conspicuous component of HRV is usually the HF component ranging from 0.15
to 0.4 Hz. The HF component is commonly known as the RSA due to how this higher fre-
quency oscillatory component is originated. During inhalation, the vagus nerve is unstim-
ulated resulting in lowered vagal (parasympathetic) input to the heart. Therefore, the HR
increases during inhalation and then again decreases during exhalation. In addition to res-
piratory rate, the depth of respiration also affects HR regulation.

The effect of respiration on the HRV time series and spectral components (LF and HF
components) is illustrated in Figure 7.11, which shows an RR interval recording of a
healthy young male subject during a controlled breathing test. During the test, the sub-
ject breathed at constant rates for 3-minute periods by following a visual control given on
a computer screen. The respiratory rates carried out in the test were 0.3, 0.2, 0.17, 0.12, and
0.1 Hz (proceeding from highest to lowest). At the beginning and the end of the test, the
subject breathed spontaneously.

Lowered respiratory rate has been associated with increased HRV [46,47], which is also
illustrated in Figure 7.11. The increase in the RSA component power (HF component
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FIGURE 7.11
RR interval time series and autoregressive spectrum estimates for altered respiratory rates. The controlled respira-
tory frequencies were (a) 0.3 Hz, (b) 0.2 Hz, (c) 0.17 Hz, (d) 0.12 Hz, and (e) 0.1 Hz. Each controlled respiratory rate
was maintained for 3 minutes; the beginning and the end of the recording consisted of spontaneous breathing.
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observed a clear spectral peak at respiratory frequency) for lower respiratory rates is sub-
stantial (note the increasing y-axis scale on the spectral plots). This figure illustrates plainly
how important it is to know a subject’s respiratory rate for HRV analysis. For example, if
one would interpret the HRV spectrum presented in Figure 7.11e without knowing the res-
piratory rate, they could report a strong LF component and weak HF (RSA) component
indicating high sympatho-vagal balance, even though the weak HF component observed
would truly be just a harmonic component induced by overlapping LF and HF compo-
nents at 0.1 Hz. When there is a risk that the LF and HF components might overlap, spec-
tral decomposition approaches, such as those presented in [37,48], are useful for estimating
these component powers more reliably.

7.7 Conclusions

In this chapter, we have introduced the commonly used time-domain, frequency-domain,
and nonlinear HRV analysis methods. All the presented analysis methods are available
in Kubios HRV software, which is available at http://www.kubios.com [15]. Kubios HRV
supports several input data formats for ECG data and beat-to-beat RR interval data. The
software has a built-in QRS detection algorithm and easy-to-use tools for artifact correc-
tion, trend removal, and analysis sample selection (i.e., selecting one or more time periods
from the data for analysis). The software includes several adjustable settings, which are
necessary to optimize the methods for different kinds of HRV data. The main purpose of
Kubios HRV software is to provide a reliable and easy-to-use analysis tool for researchers
who use HRV recording in their studies and have the necessary knowledge to interpret
and report the results. Thus, Kubios HRV provides the user only the values of the various
HRV analysis parameters, whereas finding the appropriate interpretation or meaning of
the results is left to the user.

HRV is known to provide quantitative information of ANS, that is, of the balance
between sympathetic and parasympathetic tones. Decrease in HRV is related to increased
sympatho-vagal balance, that is, sympathetic tone is emphasized compared to parasym-
pathetic tone, and vice versa. Some of the HRV analysis parameters have quite clear inter-
pretation regarding the division between sympathetic and parasympathetic activities. This
division is done easiest using frequency-domain parameters, that is, LF and HF compo-
nent powers. The HF component is known to originate solely from parasympathetic neural
activity, whereas the LF component is affected by both sympathetic and parasympathetic
but predominated by sympathetic neural activity. Therefore, the HF power both in abso-
lute units as well as in percentage or normalized units indicates parasympathetic neural
activity, and LF/HF ratio or LF power in percentage or normalized units can all be used as
indices of sympatho-vagal balance.

Some division between sympathetic and parasympathetic neural activities can also be
done from the HRV time-domain parameters. For example, the time-domain parameters
that evaluate RR interval differences between successive beats, such as RMSSD, NN50,
and pNN50, can all be considered to be more affected by parasympathetic neural activity,
simply because the HF (HF component) oscillations of parasympathetic origin are affected
more on successive beat interval differences than the slower (LF component) oscillations.
The SDNN, on the other hand, which is the standard deviation of beat intervals, reflects
overall variability without any clear division between sympathetic and parasympathetic

http://www.kubios.com
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neural activities, except of course the fact that HRV is overall higher when parasympthetic
tone is emphasized (rest and digest) compared to when sympathetic tone is emphasized
(fight or flight). Nonlinear measures of HRV are often hardest to interpret, that is, hard-
est to relate to known physiology. However, some of the nonlinear parameters have been
observed to capture HRV features undetectable by standard linear parameters, and thus,
nonlinear parameters may provide additional information of clinical significance.

One challenge in interpreting HRV findings is the comparability between the multi-
tude of studies reporting HRV analysis results. The guidelines for HRV analysis published
in 1996 [1] have been somewhat followed in the majority of HRV studies, which makes
comparing of studies easier. However, over 20 years have passed since these guidelines
were published and several new methodologies (especially nonlinear analysis methods)
for HRV analysis have been proposed ever since. The preprocessing steps like artifact cor-
rection and trend removal described in this chapter should always be carefully considered
and reported because they both have significant effects on the HRV analysis results. Finally,
respiratory frequency has a direct influence on HRV, and thus, respiration should ideally
always be measured along with the HRV.
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8.1 Introduction

Cardiac rhythm is controlled by membrane properties of the sinoatrial node and the activ-
ity of the neurohormonal and autonomic nervous system (ANS) modulation (Valensi et al.,
2002; Vinik et al., 2003). There are two extrinsic ANS influences that determine the natu-
ral rhythm of the human heart, known as the sympathetic and parasympathetic signals.
Generally, sympathetic activity decreases the interbeat (RR) intervals and decreases heart
rate variability (HRV), whereas parasympathetic activity increases the RR intervals and
increases HRV (Berntson et al., 1997).

In order to investigate the ANS modulation of HR, we examined cardiac autonomic neu-
ropathy (CAN), a disease often presenting as a complication of diabetes, which affects the
ANS. CAN is characterized by peripheral nerve damage leading to abnormal regulation of
the heartbeat by the ANS (Tarvainen et al., 2013; Pop-Busui, 2010) and may manifest in up
to 60% of individuals with type-2 diabetes at different stages during disease progression
(Ziegler et al., 1992). One would expect CAN to be characterized by changes in the HRV,
so an important question is whether CAN is detected from an analysis of HRV using only
the beat-to-beat interval.

187
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8.2 Measures of HRV

HRV is concerned only with changes in the time between successive heartbeats. It is non-
invasive and easy to obtain from a surface lead III electrocardiogram (ECG) recording for
short recording periods or from Holter data if longer recording periods are required as
may be the case for analyzing circadian changes. The RR intervals are extracted from the
ECG as a time series. A variety of measures can then be derived from this and fall into
three categories: time series measures, frequency domain measures, and complex or non-
linear measures (TFESC, 1996; Sacre et al., 2012; Khandoker et al., 2009). All of these can
be derived from the RR interval time series through suitable mathematical functions. It
remains to ask what further processing is appropriate in order to reveal details of the oper-
ation of the ANS, and in the context of this chapter, to determine which measures are able
to discriminate between healthy participants and stages of CAN progression in patients.

Research efforts have been ongoing to develop advanced algorithms for the characteriza-
tion of HRV. This is important since standard measures can lead to incorrect interpretation
of pathology (Rodriguez et al., 2007; Goldberger and West, 1987). The aim of nonlinear
methods is to address the nonlinearity and nonstationarity as well as complexity of HR
time signals. Several methods, multiscale entropy (MSE), multifractal detrended fluctua-
tion analysis (MFDFA), and multiscale Rényi (MSRényi) entropy, have been extensively
applied (Stanley et al., 1999; Ivanov et al., 1999; Costa et al., 2003; Ihlen, 2012). However,
whether these algorithms have similar or different sensitivities in classifying pathology has
only recently been investigated. To date, some studies have shown that there is a reduction
in HRV with progression of CAN, which may be related to continued increases in blood
sugar levels (Tarvainen et al., 2014; Jelinek et al., 2007; Karmakar et al., 2013).

8.2.1 Nonlinear Measures

Nonlinear methods include fractal analysis and entropy measures. Nonlinear analysis
methods have recently enjoyed increased interest from researchers and are acknowledged
as providing information complimentary to that resulting from linear measures, for iden-
tifying risk of future morbidity and mortality in diverse patient groups (Francesco et al.,
2012; Kunz et al., 2012; Pivatelli et al., 2012; Schiecke et al., 2014). Fractal analysis examines
scale invariance within the time series formed by the intervals between heartbeats. There
is a variety of fractal measures, depending on the methods used to obtain the estimate,
as well as multiscale versions of these measures. For example, sample entropy considers
sequences of RR intervals of a given length. This length can be altered to provide addi-
tional measures. Rényi entropy is a generalization of Shannon entropy, where an exponent
determines the order of the entropy measures obtained, and a width parameter determines
the pattern length over which comparison occurs. Thus, both sample entropy and Rényi
entropy can be implemented as multiscale measures.

Multiscale measures provide a series of measures, rather than a single measure, as a
function of some scaling factor. The way in which multiple scales are implemented differs
between the methods examined here. MSE examines RR intervals at a number of different
scales in order to provide multiple measures based on the same time series. MFDFA and
the MSRényi entrophy are multiscale in the sense that a parameter is used to control the
order or power that a quantity is raised to. This can take multiple values and so provides
multiple measures.
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8.2.1.1 Multiscale Sample Entropy

The entropy H(X) of an RR interval time series {x1, ..., xn} expresses the uncertainty of the
n intervals as a random variable X, where

H(X) =−
n
∑

i=1

p(xi) log p(xi) (8.1)

The probability pi may be estimated from the RR interval data by discretizing the range
of values for X and dividing the number of times that X falls within its discretizing band
by n. This is the histogram method. However, there is no need to be limited to consider-
ing a single RR interval as the variate x. Instead, a sequence of m contiguous RR intervals
Xm(i) = {xi, ..., xi+m−1} can be examined, which allows the estimation of a probability for
Xm(i). The probability of each unique Xm(i) is then calculated. In this application of multi-
scale analysis, the histogram method rapidly becomes impractical, as the sequence length
m is increased and consequently the number of unique sequences increases. Instead, the
probability may be estimated by counting the number of sequences, which are similar
when their elements xi are compared and the difference is less than a threshold r. This is
the method commonly used in estimation of the sample entropy. The number of sequences
cm(i) are counted having length m and starting at j(j≠ i)Xm(j)where each scalar comparison
|xi− xj|≤ r. The total number of sequences of length m across the entire series is given by

cm =
n−m+1
∑

i=1

cm(i) (8.2)

The sample entropy can then be seen as the probability that a sequence of RR intervals of
length m that repeats itself within a threshold r will also repeat itself if the sequence length
is extended to m+ 1. Sample entropy calculates the negative logarithm of the ratio of two
measures A and B:

SampEn=−logA
B

(8.3)

where B= cm is the number of matches from sequences of RR intervals of length m and
A= cm+1 is a similar measure calculated using sequences of length m+ 1 (Richman and
Moorman, 2000).

MSE extends this concept by using coarse-grained copies of the original data series:

yτj =
1
τ

jτ
∑

i=(j−1)τ+1

xi (8.4)

where τ is the scale factor and 1≤ j≤n∕τ, and the xi of Equation 8.2 is replaced by yj, so
that MSE is a function of the scale (Richman and Moorman, 2000; Costa et al., 2002, 2005).
The implementation of the algorithm used in this work was from PhysioNet (2017).

8.2.1.2 Multifractal Detrended Fluctuation Analysis

Detrended fluctuation analysis (DFA) is a fractal-like measure that examines the self-
similarity properties of a time series, in this case a sequence of RR intervals. In the following
discussion, we follow the implementation of Ihlen (2012) for determining the multifractal
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DFA. For the convenience of the reader, we have provided a summary of Ihlen’s work
translated from MATLABⓇ code into a series of equations. The MATLAB code is available
online (MATLAB Central, 2014).

A given sequence of RR intervals {x1, ..., xn} is transformed into a random walk by sub-
tracting the mean from each value and calculating the cumulative sum as

Xk =
k
∑

i=1

(xi − x) (8.5)

The transformed series, Xk, is divided into sequences of length s and a straight line is fitted
to each sequence by minimizing the sum of the squared errors to provide a slope and
offset. It is possible to use higher order polynomials to fit the segments, but in our work,
we always use a linear fit. The root mean square (rms) error of the fit εν is calculated for
each segment ν of length m as

εν =

√

√

√

√

m(ν+1)
∑

i=mν
(Xi − X́i)2 (8.6)

where X́i is the estimated value of Xi. The mean rms error is found for all segments of
length m as

εm =

√

√

√

√
1

n∕m

n∕m
∑

ν=1

ε2
ν (8.7)

Using the graphical technique for estimation of the fractal dimension, the values of εm are
plotted against the scale m, using a logarithmic scale for both axes, and the slope of the
resulting curve is calculated. This slope is the result of the process of DFA.

In order to derive a multifractal measure for DFA, Equation 8.3 is modified by substitut-
ing an exponent q that can be varied as a parameter of the method:

εq,m =

(

1
n∕m

n∕m
∑

ν=1

εqν

)1∕q

(8.8)

where n∕m is the number of segments in the complete series of length m.

8.2.1.3 Rényi Entropy

The Rényi entropy is naturally a multiscale measure, as it generalizes the Shannon entropy
and includes the Shannon entropy as a special case (Rényi, 1960). The ability of Rényi
entropy to discriminate levels of cardiac risk using different scales has been demonstrated
(Kurths et al., 1995). Rényi entropy H is defined as

H(α) = 1
1−α

log2

( n
∑

i=1

pαi

)

(8.9)

where pi is the probability that a random variable takes a given value out of n values and
α is the exponent or order of the entropy measure. When α is varied this provides the
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multiscale measure. H(α) is simply the logarithm of n. As α increases, the measures become
more sensitive to the values occurring at higher probability and less to those occurring at
lower probability, which provides a picture of the RR length distribution within a signal.
However, the entropy requires an estimate of probabilities, and there are a number of ways
in which this can be determined. Previous work described two main methods of estimating
probabilities: the histogram method and the density method (Cornforth et al., 2014). That
work showed that the density method is superior in terms of providing a measure that can
discriminate different classes of CAN, while providing a measure that is complimentary
to, rather than duplicating, the standard deviation of the RR intervals.

The histogram method estimates the probability that an RR interval assumes a value
within a given range. For each range, there will be a number of RR intervals assuming
this value, and this can be used to estimate the probability pi of Equation 8.9. An exam-
ple is shown in Figure 8.1. Here, the RR intervals have been detrended and normalized to
have a mean of zero. The histogram method has advantages in terms of its low computa-
tional effort and its ability to allow a simple visualization of the distribution of RR values.
However, its reliance on bins introduces an artificial discretization, leading to a boundary
problem where an individual value may be included in one bin or the other depending
on a very small perturbation. This can be ameliorated by using a smoothing method that
spreads data points into adjacent bins, but does not take into account how close a particu-
lar data point was to the bin boundary. In addition, this method is problematic when the
assumption of a single RR interval is relaxed. If it is desired to estimate the probability of a
sequence of RR intervals, rather than a single RR interval, other methods may be required.

The density method also estimates a probability, but does this in a continuous, rather
than a discrete space. The density method allows one to estimate the probability of a
sequence of RR intervals of length m by considering the sequence as a point in an
m-dimensional space. This method uses a notional density of space around a point, which
is compared to all other sequences, also represented as points in the same space. Points are
compared using a distance measure, and the two sequences are considered to be similar if
the distance in each dimension is less than a given threshold. This is the method used in the
calculation of sample entropy described above, which counts all sequences that are closer
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FIGURE 8.1
An example of a histogram of detrended RR intervals.
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FIGURE 8.2
A probability density function calculated from the same data as Figure 8.1. Notice that a continuous, rather than
a discretizing, estimate of the density has been obtained.

to a chosen sequence given a specific threshold r. However, this depends on choosing a
suitable value for the threshold, so still retains the problem of a discretization.

In order to provide a truly continuous measure of probability, an adjustment to the above
method may be used to remove the need for a hard threshold. Here, a Gaussian kernel is
centered on each point (representing a sequence of m RR intervals in m-dimensional space),
and a contribution is added for each of the other points, based on the distance between the
points. This results in a “score” for each point, which can be converted into a probability.
This is small if all other points are far away, leading to a low probability, and large if the
point has many close neighbors, leading to a high probability. This score or density measure
is calculated for the sequence of RR intervals with index i, as the sum of all contributions
from other sequences with index j:

ρi =
1

σ
√

2π

n
∑

i=1

e−
dist2

ij
2σ2 (8.10)

using a distance measure

dist2
ij =

m
∑

k=1

(xi+k − xj+k)2 (8.11)

where σ is the dispersion of the function and replaces the threshold r. This provides a
continuous rather than a discretized estimate of probability, and an example is shown in
Figure 8.2, which was calculated from the same data used in Figure 8.1.

8.3 Empirical Comparison

The work reported here used data from the Charles Sturt Diabetes Complications Screen-
ing Group (DiScRi), Australia (Jelinek et al., 2006). The study was approved by the Charles
Sturt University Human Ethics Committee and written informed consent was obtained
from all participants. All recordings were obtained in a temperature-stable environment
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following a 5- to 10-minute rest period in a supine position by all participants. The
sampling rate was set to 400 samples/sec and recordings preprocessed according to the
method described by Tarvainen et al. (2002). A 20-minute lead II ECG recording was taken
from participants attending the clinic, using a Maclab Pro with Chart 7 software (ADIn-
struments, Sydney). Participants were comparable for age, gender, and HR, and after initial
screening, those with heart disease, presence of a pacemaker, kidney disease, or polyphar-
macy (including multiple antiarrhythmic medication) were excluded from the study. The
same conditions were used for each participant. The status of CAN was defined using the
Ewing battery criteria (Khandoker et al., 2009; Javorka et al., 2008; Ewing et al., 1985), and
each participant was assigned as either without CAN (71 participants), early CAN (67 par-
ticipants), or definite CAN (11 participants). From the 20-minute recording, a 15-minute
segment was selected from the middle in order to remove start-up artifacts and movement
at the end of the recording. From this shorter recording, the RR intervals were extracted.
No other information was used in this study. The RR interval series for each participant
was detrended, and the measures used were determined from these data (Tarvainen et al.,
2013).

The MSE was calculated using the default parameters of sequence lengthm= 2, threshold
r= 0.15, and coarse-graining factors 1–10. As the recordings are only 15 minutes in length,
this restricts the length of sequence m and the scale of coarse graining τ. Note that when
τ= 1, the measure is equivalent to the sample entropy without multiscaling. The MFDFA
was calculated using integer values of order from −5 to +5. A range of scaling expo-
nents similar to MFDFA, α from −5 to +5 was used to determine the MSRényi entrophy.
The MSRényi entropy was then calculated using sequence length m= 16 and σ= 0.16 (see
Section 8.2.1.3). For each measure, a Mann–Whitney test was performed to compare the
normal to the early CAN group, the early to the definite CAN group, and the definite CAN
to the normal group.

8.4 Results

Figure 8.3 shows the results of a comparison of disease classes using MSE calculated from
RR intervals. The x-axis shows the scale factor τ of Equation 8.4 from 1 to 10, that is, the
level of coarse graining applied to RR intervals. The y-axis shows the Area Under the
receiver operating characteristic curve (AUC). The minimum value of AUC is 0.5, indi-
cating a result no better than random chance, and the maximum value is 1, indicating
perfect separation of the classes (Mason and Graham, 2002). Each line shows a compari-
son between two of the participant groups. The three comparisons are normal versus early,
early versus definite, and definite versus normal. Only three results are greater than 0.6,
and these are all for normal versus early comparisons, using a scale factor τ of 1 (equivalent
to the sample entropy), 6, and 8 RR intervals. All other points show little difference from
0.5, the level corresponding to random choice between classes. These results offer little evi-
dence that MSE is able to discriminate classes of participants and may not be useful in a
clinical setting.

Results for MFDFA are shown in Figure 8.4 with a scaling factor range q between −5
and +5 (Ihlen, 2012). High values of AUC were obtained for comparisons between normal
and definite, especially for negative values of q, suggesting that this approach is able to
yield results that are useful in discrimination of CAN from normal suggesting this may be
a useful clinical measure.
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FIGURE 8.3
Results of comparison between different classes of participants using multiscale entropy (MSE), expressed as Area
Under the receiver operating characteristic Curve (AUC).
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FIGURE 8.4
Results of comparison between different classes of participants using multifractal detrended fluctuation analysis
(MFDFA) variables calculated from RR interval series, expressed as Area Under the receiver operating character-
istic Curve (AUC).

The best measures for discriminating classes of CAN were for q=−2. As an intuitive
explanation for this negative exponent, we observe that this is related to the standard devi-
ation of the reciprocal of rms errors. The relative success of the measures for negative q
suggests that the transformation involved in the inverse maps these values of rms error
into a space where disease classes are more distinct.

AUC values greater than 0.8 can be considered to have clinical significance, and thus,
this method shows some promise for the detection of CAN in a clinical setting. Several of
the tests comparing early CAN with other classes provided results above 0.6, suggesting
detection of early CAN may be possible.

The result of calculating AUC for Rényi entropy based on probabilities calculated using
the density method is shown in Figure 8.5. The range of exponents α for the MSRényi cal-
culation varied from −5 to +5 (Equation 8.9). All of the comparisons between normal and
CAN showed that high values of AUC results greater than, or close to, 0.8 indicate clinical
usefulness. MSRényi results were more consistent across classes than the other methods
studied, with results associated with negative α decreasing with disease progression and
vice versa. The difference between negative and positive values for the exponent α has
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FIGURE 8.5
Results of comparison between different classes of participants using MFDFA variables calculated from RR inter-
val series. Results are shown as Area Under the receiver operating characteristic Curve (AUC).

been explored in previous work (Cornforth et al., 2014). That work showed that although
positive values of α provide higher discrimination of classes, with corresponding lower
p values, the entropy values resulting from positive exponents were highly correlated with
the standard deviation. While the standard deviation is a useful measure of HRV, it falls
into the category of linear measures of HRV discussed above and is correspondingly sim-
pler to calculate than Rényi entropy. In terms of clinical practice, the standard deviation
has also been shown to be less discriminatory for disease condition (Goldberger and West,
1987), and therefore, the Rényi entropy results based on positive exponents of α are of
less interest. The measures based on negative exponents of α are more interesting since
they clearly discriminate between classes but may provide information complimentary to
that derived from time-domain measures such as the standard deviation. More work is
required to understand the meaning of negative exponents in multiscale or multifractal
analysis.

Results comparing early CAN with the other classes show promise in discriminating the
early stages of CAN and thus a combination of HRV measures to discriminate between
CAN subtypes and CAN progression may provide useful clinical information when it
includes results from both linear and nonlinear measures (Tarvainen et al., 2014; Cornforth
et al., 2014).

8.5 Conclusion

CAN is a disease that involves nerve damage leading to abnormal control of HR. CAN
affects the heart rhythm and in turn, leads to associated arrhythmias and heart attack. An
open question is to what extent this condition is detectable by the measurement of HRV.
An even more desirable avenue of research is to detect CAN in its early, preclinical stage,
with the hope that this can lead to improved treatment and treatment outcomes.

Nonlinear analysis methods have been shown to offer increased sensitivity for identify-
ing risk of future morbidity and mortality in cardiac patients. In particular, Rényi entropy
has shown significant differentiation of cardiovascular disease.
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9.1 Introduction

The arterial baroreceptor reflex (BRR) is a key neurogenic control mechanism of the arte-
rial blood pressure (BP) that acts as a negative feedback corrector. It counteracts BP devi-
ations from a reference set point by modulating heart rate (HR) and peripheral resistance.
The BRR is crucial for maintaining BP during postural challenge, including active stand-
ing and passive upright tilt (Eckberg 2008). By contrast, the BRR is suppressed during
exercise and stress to allow simultaneous increase of BP and HR required for “fight and
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flight” response (Raven et al. 2005; Bajic et al. 2010). Remodeling of the autonomic nervous
system (ANS) control of the cardiovascular system, and of the baroreceptor function,
occurs in cardiovascular diseases (La Rovere et al. 2008). Permanent resetting of the BRR
characterizes primary hypertension, while reduction of BRR sensitivity (BRS) has been
found to predict bad outcomes (Di Rienzo et al. 2009). Deregulation of BP in neurologic
disorders associated with ANS dysfunction (dysautonomia) is due to impairment of BRR
function.

The need to evaluate BRR function, both as a diagnostic tool and as an assessment of
the efficacy of treatment, has driven the development of novel techniques for spontaneous
BRR assessment. The main advantage of spontaneous BRR assessment is that it precludes
the use of vasoactive drugs (vasoconstrictors and vasodilators) that interfere with cardio-
vascular autonomic response and represent a significant risk for the patient. Therefore,
methods aimed to estimate spontaneous BRR (sBRR) sensitivity from spontaneous fluc-
tuations of BP have been developed. However, clinical application of new techniques is
hindered for several reasons. First, the assessment of spontaneous BRR requires continu-
ous BP measurement with equipment that is not available in most clinical settings. Second,
the equipment for continuous noninvasive BP measurement provides implementation of
sBRR assessment procedures, whose complexity precludes easy recognition by medical
practitioners. Finally, the establishment of reference values for integration of more intuitive
methodological approaches into commercially available devices is still a matter requiring
further scrutiny. For all these reasons, the widespread validation of sBRR in clinical settings
is delayed.

In the following sections, basic physiological knowledge on the BRR and its pathophys-
iological relevance are briefly described. This is followed by the elaboration of methods
for assessment of sBRR sensitivity/gain. An insight into the methodology of the most fre-
quently used method for evaluation of sBRS, the sequence technique, from the user point
of view, is given. Recommendations are provided for the valid clinical application of the
sequence technique. These include the necessity of signal quality assessment prior to anal-
ysis and the rules for sequence identification. New temporal sequence parameters for the
assessment of the sBRR set point and sBRR operating range are suggested, and their use-
fulness is demonstrated in physiological experimentation in rats. Finally, an efficient pro-
cedure for the evaluation of the degree of randomness in the spontaneous cardiovascular
fluctuations is proposed.

9.1.1 Physiological Background of BRR

BP and HR interact on a beat-to-beat basis to maintain adequate circulation to all organs,
especially the brain. The BP and HR fast interactions have been shown to be mediated
via the ANS, that is, the BRR. Receptors that sense changes in BP, the baroreceptors, are
located in large arteries of the thorax and the neck, most densely in the aortic arch and
the carotid sinuses. The information about the change of BP is transmitted via the vagus
nerve (X) and the glossopharyngeal nerve (IX) to the nucleus of the solitary tract (NTS) in
the medulla oblongata and further to the hypothalamus. The main integration of the auto-
nomic response directed to peripheral blood vessels and the heart occurs in the rostral ven-
trolateral medulla (RVLM) for the sympathetic outflow and in the vagal nuclear complex
(nucleus ambiguus, dorsal vagal nucleus) for the parasympathetic outflow. There are two
possible scenarios for BP changes (Figure 9.1). Scenario 1 assumes that BP increases. In this
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FIGURE 9.1
Baroreceptor reflex (BRR) arch. Sy: sympathetic efferent branches of the BRR; PSy: parasympathetic efferent
branch of the BRR. Scenario 1: when blood pressure (BP) is perturbed toward an increase (red), the BRR will
increase the parasympathetic tone to the heart and withdraw the sympathetic tone to the heart and the blood
vessels. This will slow down the heart and induce peripheral vasodilation, both of which will restore basal values
of BP. Scenario 2: when BP is perturbed toward a decrease (green), the BRR will reduce vagal outflow to the heart
and enhance sympathetic outflow to the heart and the blood vessels. This will accelerate the heart, vasoconstrict
blood vessels, and increase BP.

case, the BRR shifts the autonomic cardiovascular control to the vagus and withdraws sym-
pathetic influence to the cardiovascular system. The vagal activation will slow down the
heart and withdrawal of sympathetic influence will lead to arterial vasodilation and reduc-
tion of the peripheral resistance. Altogether, this will produce a decrease of BP and restora-
tion of basal values. Scenario 2 supposes that BP decreases. In this case, the BRR shifts
the autonomic balance to the sympathetic control of the cardiovascular system, which will
increase HR and peripheral resistance, and restore the basal level of BP. As a consequence
of the BRR, functioning BP and HR will oscillate around the set point. The period of BP
and HR oscillations induced by the BRR ranges from seconds to hours, and contributes to
both short-term and long-term BP and HR variability (HRV).

Since perturbations of BP elicit HR response, HR oscillations are delayed with respect
to BP oscillations, for the time needed for transmission and the processing of information
by the ANS. It has been shown that the responses directed to the heart mediated by sym-
pathetic and parasympathetic efferent nerves have different time lags. Parasympathetic
nerves respond to rapid rises in BP and produce an almost immediate slowing of the heart,
with 200–600 ms delay in humans (Seidel et al. 1997). On the other hand, sympathetically
mediated cardiovascular effects are more sluggish and occur with a delay of 2–3 seconds in
humans. Under basal physiological conditions, the HR is controlled mainly by parasym-
pathetic, that is, vagal activity (La Rovere et al. 2008), while exercise and stress increase
sympathetic influence on the cardiovascular system.
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9.1.2 Pathophysiological Relevance

Cardiovascular diseases are accompanied by BRR remodeling. In primary hypertension,
the BRR works around a higher BP set-point value due to the chronic hyperadrenergic
state. Depressed sensitivity of the BRR was found to parallel deterioration of the clinical
status of cardiovascular patients and to predict poor survival. Reduced BRS (cardiac vagal
branch) has been found to be an independent marker of the risk of mortality and major
adverse cardiovascular events in hypertensive patients (La Rovere et al. 2001; Ormezzano
et al. 2008; Narkiewicz and Grassi 2008), moderate-to-severe chronic heart failure (Mortara
et al. 1997), obstructive sleep apnea (Ryan et al. 2007), and myocardial infarction (La Rovere
et al. 2001).

The Autonomic Tone and Reflexes After Myocardial Infarction (ATRAMI) clinical trial
demonstrated that besides conventional markers, such as depressed left ventricular ejec-
tion fraction (LVEF) and the presence of nonsustained ventricular tachycardia (NSVT),
markers of reduced vagal activity, such as depressed BRS and HRV, are strong predictors
of cardiac mortality after myocardial infarction (La Rovere et al. 2001). It was suggested
that the use of BRS and HRV significantly improves the sensitivity of risk stratification
in myocardial infarction survivors. The ATRAMI study demonstrated that depressed BRS
indicates more accurately patients at the risk of total or arrhythmic mortality, who, accord-
ing to the traditional risk stratification markers, were not included in the high-risk pop-
ulation (Wellens et al. 2014). On the other hand, BRS has been found to be a modest risk
stratification marker for a sudden cardiac death in patients with nonischemic dilated car-
diomyopathy (Goldberger et al. 2014).

An impairment of the BRR function characterizes degenerative neurologic disorders (pri-
mary dysautonomia) and secondary dysautonomia induced by autoimmune disorders,
diabetes mellitus, Parkinson’s disease, and multiple sclerosis. Moreover, some drugs as
well as brain injuries can be a cause of autonomic deregulations and malfunction of the
BRR. In these patients, the inability of the BRR to control BP during postural challenge will
trigger syncope (Fu and Levine 2014). On the other hand, some disorders may be accom-
panied by BRR overcompensation that elicits a hypertensive crisis that can cause serious
complications (Fessel and Robertson 2006).

9.2 BRS Assessment—Brief Review

The complex BRR control has a time-dependent gain and nonlinear characteristics along
the negative feedback path. The assessment of the overall BRR function is challenging due
to the complexity of the most effective BRR branch: the regulation of the peripheral resis-
tance in the body (Di Rienzo et al. 2009). Thus, the assessment of BRR effectiveness is usu-
ally simplified to the evaluation of BRR gain only from the BRR branches directed to the
heart.

For the assessment of BRR gain, the changes of HR and BP in time (or on beat-to-beat
basis) should be available. HR can be determined from the recorded ECG by measuring
the interval between the peak of the QRS waves (RR interval [RRI]), as HR is inversely
proportional to the RRI. The changes in BP on beat-to-beat basis can be presented by
changes in maxima of the BP waveform during one beat, that is, systolic BP (SBP). The
BRR gain/sensitivity (measured in ms/mmHg) reflects the relative change in the RRI fol-
lowing a unitary change in BP. BRS is modulated in time by central influences to enable the
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cardiovascular response to the daily challenges (Smyth et al. 1969; Di Rienzo et al. 1997).
Thus, techniques enabling its dynamic assessment have flourished, complementing tradi-
tionally available pharmacological techniques producing static BRS estimates.

As the BRR aims to buffer short-term BP variations, an evaluation of its influence on
HR, that is, RRIs, can be achieved by inducing the changes in BP that provoke an RRI
response, and then by characterizing the RR–SBP relationship. Limited means are avail-
able to uncover the RR–BP relationship, since the physiological subsystems cannot easily
be isolated from their environment without altering their normal behavior. Additionally,
the variation of physiological control parameters is physiologically limited. Consequently,
the RR–SBP relationship can only be analyzed in a limited homeostatic range. In the analy-
sis of the HR BRR, the control variable BP can be varied by introduction of loading doses of
short-acting vasoactive drugs: vasodilators (e.g., sodium nitroprusside), which provoke a
fall in BP, and vasoconstrictors (e.g., phenylephrine), which induce a rise in BP. Over these
imposed arterial pressure changes, the RR–SBP relationship is a sigmoid with a thresh-
old, an approximately linear part, and a saturation point. The baseline operating BP point,
which the BRR tends to maintain, is localized in an almost linear sigmoid region (Hunt
and Farquhar 2005). Different methods can be used to estimate a static reflex gain, but usu-
ally linear regression is applied and BRS is calculated as a slope of the fitted line. It has
to be noted that if BP fluctuates, BRS may also change as the function of frequency of BP
oscillations around a set point.

The techniques for BRS estimation can be roughly divided into traditional techniques,
yielding static BRS estimates obtained in a laboratory environment, and modern tech-
niques providing dynamic BRS estimates from spontaneous BP and HR fluctuations.

9.2.1 Traditional Techniques—Static Approach

This first technique to assess BRS used in physiology was developed by Smyth in 1969.
The Oxford method introduced by Smyth induces the increase in BP by bolus injections
of vasoactive medication phenylephrine with minimal effect on the sinoatrial node. This
method is focused on the HR BRR branch and measures changes in RRIs provoked by
induced changes in BP. The limitation of the Oxford method is that only vasoconstrictors
are used, exploring only a limited part of the RR–SBP sigmoidal curve and mainly the
vagal component of the BRR. The modified Oxford method introduced the use of vasodilators
to produce a fall in the BP and a response of the sinoatrial node partly mediated by sym-
pathetic branches (Rudas et al. 1999). BRS is estimated by the means of linear regression
between SBP and one-beat-delayed RRI values in the time span between the beginning and
the end of the induced change in BP.

There are several limitations of the pharmacological approaches. The methodology
requires stable laboratory conditions and drug implementation through intravenous can-
nulation, which limits its applicability both in experimental and clinical settings. The major
limitation is the lack of selectivity in the response to the induced BP changes. Stimulation of
the BP also simultaneously stimulates some other reflex receptors, for example, cardiopul-
monary receptors, which may interfere with arterial baroreceptors. The use of vasoactive
drugs may affect the properties of baroreceptors, the central nervous system (CNS) part of
the reflex arc, and the response of the sinus node (La Rovere et al. 2008).

To induce the changes in BP without the use of vasoactive drugs, other noninvasive alter-
natives are possible: Valsalva maneuver, the neck chamber technique that leads to a lower
body negative pressure in humans and stimulates the ANS response. The Valsalva maneu-
ver is carried out by performing a forced expiration against a closed glottis or obstruction.
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This kind of straining is usually used to test the cardiac function and the autonomic con-
trol of the heart. The induced changes in BP are followed by an adequate change in RR
response, which are used to calculate BRS under linear regression. The neck chamber tech-
nique is based on the application of measurable positive or negative pneumatic pressure
in the neck region to enable selective activation or deactivation of the carotid barorecep-
tors. This method is easier to use than the pharmacological methods and better tolerated
by the subjects, producing a satisfactory range of BP changes in both directions (Eckberg
et al. 1975). However, all of these “traditional” techniques require standardized environ-
mental conditions, provide a limited insight into BRR function, and evaluate RRI changes
due to BP changes induced by external stimulation. These induced graded changes in BP
enable an investigation of the whole sigmoidal stimulus–response curve resulting in static
BRS estimates in stable controlled conditions. However, the procedure brings about con-
siderable risk of untoward cardiovascular events and is contraindicated in people with
cardiorespiratory disease. In addition, this static BRS estimation does not reflect BRS under
spontaneous behavior and has no information on dynamic changes of BRS (Di Rienzo et al.
2001).

9.2.2 Modern Techniques—Dynamic Approach

In the 1980s, the first methods appeared to quantify HR BRR gain without pharmacological
or mechanical perturbations. These methods aimed to estimate BRS from spontaneous BP
fluctuations over several hours, or over a short stationary segments 5 to 10 minutes long.
Since the spontaneous changes of BP are small, it is supposed that BP fluctuates in the
vicinity of the BRR set point, thus in the approximately linear region of the RR–SBP
sigmoid. Modern techniques can be classified as: time-domain techniques, frequency-
domain (spectral) techniques, and model-based techniques.

9.2.2.1 Time-Domain Techniques

The most popular time-domain method is the sequence technique introduced by Di Rienzo
et al. (1985) and further described in Bertinieri et al. (1988). The method is based on the com-
puterized scanning of beat-to-beat series of SBP and RRI values in search of spontaneous
SBP monotonic pressure changes (SBP ramps) over at least three or more consecutive heart-
beats followed by unidirectional RR monotonic changes (RR ramp). When the SBP ramp
and the related RR ramp fulfill conditions with respect to the minimal value of the sequence
length, amplitude change, and/or correlation coefficient, the BRR sequence (BS) is formed.
The delay of the RR ramps with respect to the SBP ramps is evaluated according to the esti-
mated BRR time delay from a change in SBP to a reflex response in RR. BRS is estimated
as the mean of the regression line slopes between the SBP and RR values included in each
sequence. The BRR origin of these spontaneous fluctuations was confirmed by sinoaortic
denervation in cats, resulting in a significant decrease in the number of sequences (86%)
(Bertinieri et al. 1988; Di Rienzo et al. 2001). BRS obtained with the sequence technique is
highly correlated with BRS obtained by the Oxford method (Parlow et al. 1995).

The dual sequence method is the brief modification of the sequence technique (Malberg
et al. 2002). The delay of SBP and RR is modified and allowed to be up to three beats,
instead of the former fixed one-beat delay (in humans). This modification allowed identi-
fication of delayed BRR response and more BS.

The cross-correlation baroreflex sensitivity (xBRS) method proposed in Westerhof et al.
(2004) requires the resampled SBP and RR series at 1 Hz. The regression is carried out on
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the values included in the 10-second window, with a delay between SBP and RR series that
maximizes their cross-correlation. Subsequently, the starting window point slides 1 second
to the next SBP and RR sample. Finally, the geometric average of these local estimates over
the available recording is taken as a BRS estimate. Since a 10-second window is applied,
different effects can be included and they cannot be separated.

The events technique introduced in Gouveia et al. (2009) proposes the use of BRR events
(BEs), segments with high SBP–RR correlation regardless of the value and sign of SBP and
RR amplitude changes. BEs are variable in length and BRS is estimated as the global regres-
sion slope of the SBP and RR values identified in all BE. The global estimator and relaxed
conditions of BE validation compared with BS improve robustness and reproducibility of
the BRS estimation.

9.2.2.2 Frequency-Domain Techniques

The spectral analysis of SBP and RR series has also been used successfully to obtain BRS
estimates. The spectral estimates of SBP and RRI series are obtained and their spectra and
cross-spectra are analyzed. The evaluation of BRS by spectral methods is based on the
assumption that spontaneous oscillations of BP would elicit oscillation around the same
frequency in RR series due to the BRR feedback mechanism (La Rovere et al. 2008). The
main frequency bands considered in humans are the LF band (0.04 Hz–0.15 Hz) centered
on the 0.1 Hz frequency of the Mayer waves and the HF band (0.15 Hz–0.4 Hz).

The α method (Pagani et al. 1988) determines BRS as the square root of the ratio between
RR and SBP spectral power estimated in a frequency region around 0.1 Hz, or at the respi-
ratory frequency (around 0.3 Hz) in humans. Measurements are retained only if the coher-
ence between the two signals is greater than 0.5. The transfer function method, originally
proposed by Robbe et al. (1987), estimates BRS as the average value of the gain of the trans-
fer function between SBP and RRI in the 0.07–0.14 Hz frequency range in humans. This
method also considers only those points where the coherence is greater than 0.5 in order
to guarantee reliable transfer function estimates. The limitations of frequency-based meth-
ods are associated with requirements for reliable spectral estimation: 5 to 10 minute long
stationary recordings, filtering or manual inspection, and removal of artifacts and ectopic
activity.

The major disadvantage of the time- and frequency-domain methods as originally pro-
posed is the open-loop assumption, with SBP as an input and RR as an output. They neglect
the closed-loop anatomical structure of the arterial BRR arch. The feed-forward effect of HR
(i.e., RRIs) on BP acts simultaneously with the BRR. The time-domain and spectral meth-
ods cannot reveal whether observed changes in the SBP and RRIs are the result of feedback
(BRR) or feed-forward interaction (Starling and Windkessel effects). Therefore, their major
limitation is the inability to acknowledge causality (Porta et al. 2000a).

9.2.2.3 Model-Based Techniques

The main aim of the model-based techniques is the evaluation of BRR gain capable of
imposing causality, that is, evaluating the fraction of RR variability driven by BP changes.
The models should take into account the sources of RR variability acting independently
of BP (Porta et al. 2000a). The autoregressive (AR) multivariate techniques, based on sim-
plified models of the entire cardiovascular system, can provide a closed-loop evaluation
of the interactions between RR and SBP (Barbieri et al. 2001). One of the first closed-loop
models proposed by Baselli et al. (1988) identifies the interaction between RR and SBP
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and considers that respiration influences BP mechanically and consequently RRIs through
a feedback loop. Patton et al. (1996) compared measures of open-loop HR BRR gain in
the time domain with closed-loop autoregressive moving average (ARMA) analysis and
concluded that ARMA modeling yielded lower BRS estimates, but closely correlated with
time-domain estimates. Barbieri et al. (1997) suggested a trivariate model including respi-
ration as the third signal and Porta et al. (2000a) introduces respiration as an exogenous
signal modeled as an AR process acting independently on RR and SBP signals. The model
proposed by Nollo et al. (2001) describes the causal relationship between RRI and SBP
by dividing the RRI variability in SBP-related and -unrelated parts. Barbieri et al. (2001)
applies the time-domain, spectral, and AR approach, concluding that the absolute values
of obtained estimates highly correlate but differ in absolute values, with open-loop esti-
mates overshooting the closed-loop results more than 30%.

Barbieri et al. (2005) developed a statistical model of human heartbeat intervals to study
heartbeat dynamics. The model was built taking into consideration the point-process nature
of the RRIs, their dependence on autonomic influences directed to the sinoatrial node, and
time-variant characteristics of these influences introducing nonstationary conditions. The
idea is further developed to include BP as a covariate in the heartbeat interval point-process
model (Chen et al. 2011). The closed-loop bivariate parametric AR model provides dynamic
assessment of the BRR gain within the feedback BP–RR transfer function and estimation of
the feed-forward RR–BP frequency response. The estimation of BRS based on the linear
bivariate system assumes a purely linear RR and BP relationship, which is valid around
the BP set point. Although this methodology has its limitations (sensible initialization of
model parameters, neglecting of respiration influences), it enables an estimation of BRS in a
dynamic fashion, instantaneous HR, HRV, the coherence, and cross-bispectrum, which may
be used for ambulatory monitoring in clinical practice (Chen et al. 2011).

9.2.3 Comparison of Different BRS Estimation Techniques

BRS estimates provided by modern techniques differ in absolute values when compared
with static methods. The methodological diversity is deepened with variations in imple-
mentation procedures of these techniques, significantly affecting reproducibility of the
results. These ambiguities inspired a comparative study carried out on the EUROBAVAR
data set consisting of noninvasive recordings obtained in a nonhomogeneous population
of 21 subjects, two of which had established BRR failure (Laude et al. 2004). Within this
study, 21 different techniques were compared including spectral analysis (11 procedures),
the sequence method (7 procedures), and one exogenous model with the AR input method
(XAR). The study enables insight into BRS estimates obtained by different methods, the
influence of different implementations of one method on BRS estimates, ability of the meth-
ods to detect BRR failure in patients, and reproducibility of the procedures.

Without the gold standard, this kind of comparative study can only assess the individual
performance of each method and determine the equivalent procedures. The EUROBAVAR
study shows that BRS estimates obtained by spectral and sequence technique are closely
correlated and clustered. Moreover, the results indicate that different implementation pro-
cedures and changes in parameters relevant to these methods do not affect agreement
between the procedures. The EUROBAVAR study further suggests that an effort should be
made to tune the techniques in order to improve the detection of BRR impairment (Laude
et al. 2004).

The availability of techniques for spontaneous BRS assessment and their clinical poten-
tial reported in clinical studies indicates the potential relevance in everyday clinical
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practice. Some of the techniques are already incorporated in commercially available equip-
ment and their valid use largely depends on the availability of reference values, as well
as on awareness of their methodological limitations. For further methodological details,
the indicated references should suffice, and comprehensive reviews can be found in Parati
et al. (2000), Laude et al. (2004), and La Rovere et al. (2008). Reference values for patients
after myocardial infarction and in patients with heart failure for traditional and some time
and frequency methods are summarized in La Rovere et al. (2008).

9.2.4 Nonlinear Approach to HR and BP Interactions

Complex interaction of cardiovascular variables and control mechanisms result in the non-
linear nature of BP and HR dynamics. BRR feedback control includes some nonlinear fea-
tures (Di Rienzo et al. 2009) such as the baroreceptor sensing mechanism, sigmoid RR–SBP
relationship, stochastic resonance phenomenon (Hidaka et al. 2000; Soma et al. 2003), and
resetting phenomenon (McCubbin et al. 1956; Seagard et al. 1992).

BP and heart period interactions have been studied using nonlinear approaches to com-
plement the BRS estimation techniques, offering new indices reflecting patterns, similarity,
synchronization, and time delays. To quantify the BP and RR interactions, joint symbolic
dynamics methods have been used (Baumert et al. 2005, 2015). Symbolic dynamics offers
flexible transformation rules and word formation, revealing and quantifying physiologi-
cally relevant patterns in RR–BP dynamic interaction. Although some studies show addi-
tional value of symbolic analyses, a systematic comparison for establishing clinical research
value has not yet been conducted (Baumert et al. 2015). Besides, the optimal threshold val-
ues for symbolization procedures require further investigation.

Fischer and Voss (2014) proposed three-dimensional segmented Poincaré plot analysis
(SPPA3) suitable for coupling analysis between two and three different systems. SPPA
enhances Poincaré plot analysis to retain the nonlinear features of systems’ dynamics by
observing the three-dimensional phase space subdivided into 12× 12× 12 equal cubelets
according to the predefined range of signals. The method is based on probability of occur-
rence of data points in each cubelet, for which reliable estimation longer recordings are
required (30 minutes).

Quantification of RR–BP interactions can be done using other nonlinear approaches,
cross-sample entropy (Richman and Moorman 2000), cross-multiscale entropy (Costa
et al. 2002), information-domain synchronization index (IDSI) (Porta et al. 2000b), and
information-based similarity index (Yang et al. 2003). These methods were applied to
detected BRR impairment in young patients with subclinical autonomic dysfunction in
type 1 diabetes mellitus in Javorka et al. (2011), revealing some discrimination poten-
tial. Nevertheless, the significance of the estimated nonlinear measures requires further
study.

The BRR mechanism has been mainly analyzed using linear approaches, relying on the
assumption that the RR–BP relationship is linear around the BP set point. Linear analy-
sis is based on solid theoretical grounds and provides methodological approaches with
very clear interpretation. Complex interaction with other cardiovascular control mech-
anisms and nonlinear features of the BRR control loop justify the use of the nonlinear
approaches. While the linear methods offer limited information about the underlying com-
plex processes, the nonlinear approach suffers from the course of dimensionality (Wessel
et al. 2000). Long stationary time series are required for the reliable estimation of nonlinear
descriptors, a condition rarely met in the clinical practice. Additionally, nonlinear indices
usually lack the clear interpretation offered by linear descriptors.
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9.3 The Sequence Method—Implementation Procedure

9.3.1 Importance of the Signal Quality Assessment

The sequence method requires two input streams: RRI data and SBP time series. These data
are derived from acquired electrocardiogram (ECG) and BP data. Alternatively, in animal
experimentation, if only direct BP measurements are available, the interval between two
successive BP maxima (pulse interval [PI]) can be used instead of the RRI series.

However, the derivation of these two data streams is not a straightforward task. Regard-
ing RR extraction, automatic ECG delineation has been evolving for more than 40 years.
Nowadays, when computational power does not present an issue, performance of the ECG
delineation methods is the only objective for further enhancements. An exception to this
rule would be ECG analysis in battery-driven devices, where rational energy consumption
is the basic limitation. There are numerous ECG delineation algorithms available, includ-
ing novel ones based on wavelet transforms, artificial neural networks, filter banks, genetic
algorithms, and so on. The basic principles of QRS detection using these and many more
methods are reviewed in Kohler et al. (2002), where the full list of references is given to
obtain the details on each method. On the contrary, there are only several published algo-
rithms on BP waveform delineation. Since pressure detection algorithms are necessary for
most types of pulse oximeters and devices that monitor cardiac output, most of these algo-
rithms are proprietary, developed by medical device companies. Consequently, researchers
implement their own algorithms that lack the performance, robustness, and generality of
ECG parameterization techniques. Most of these algorithms are not even rigorously vali-
dated.

The feature extraction and detection parts of the BP delineation algorithm depend on the
way the BP is recorded. BP can be recorded directly from the radial or brachial artery using
an intra-arterial catheter resulting in continuous BP waveform. A noninvasive alternative
approach is BP monitoring on beat-to-beat basis using Finapres technology, for example.

Direct BP measurement potentially introduces complications and requires technical
expertise to be implemented. Nonetheless, arterial catheterization with continuous pres-
sure transduction remains the accepted standard for BP monitoring in hospitals. In exper-
imental animals, the techniques for measuring BP have improved considerably over the
past decade. Methods for direct measurement of BP are generally preferred because of
their ability to continuously monitor dynamic BP changes. BP can be directly measured
in experimental animals using radiotelemetry techniques or via indwelling catheters con-
nected to externally mounted transducers.

Seemingly easy, the derivation of the RRI data and BP features presents a challenging
task for real-time analysis, especially considering fast morphological and pattern changes
induced by pathology, respiration, movements, and inevitable noise components. Gener-
ally, ECG and BP delineation are already included in advanced commercial devices for car-
diovascular assessment, or the software tools are publicly available on Internet. The time
series of cardiovascular variability, which are extracted with these demanding delineation
procedures, should be plotted and carefully examined for possible misdetections. The pre-
processing procedures depend on the analysis requirement, but removal of artifacts and
ectopic beats seem to be a universal demand. The automatic procedures eliminate the arti-
facts and arrhythmias using filtering procedures over RR to output the series of normal-to-
normal intervals (NN). One adaptive filtering algorithm presented in Wessel et al. (2000)
can be used for RR/PI series filtering with the MATLABⓇ implementation freely available
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at http://tocsy.pik-potsdam.de/. However, this filtering procedure cannot be applied in
real time, but only after signal acquisition, and it also does not apply to SBP time series.

To illustrate the necessity of visual examination and/or preprocessing of series of car-
diovascular variability prior to any further analysis, we present an example of an extracted
HR series in beats per minute (bpm) from radiotelemetry recording of a laboratory rat
(Figure 9.2). The BP recording sampled at 1000 Hz served as the source trace for PI and
SBP extraction. The HR trace in the upper panel, extracted by commercially available
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FIGURE 9.2
(a) HR series in beats per minute (bpm) with one of the erroneous parts enlarged. (b) The enlarged part with HR
and resampled BP trace reveling that four errors in HR result from four beat omissions. Source: Bajic, D. et al.,
Biomedical signals in BANs: Pre-channel issues, In Proceedings of European Wireless 2011, Vienna, Austria, VDE
Verlag, Berlin, Offenbach. Reprinted with permission.
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software, reveals the omissions in the BP delineation procedure, which is confirmed in the
bottom panel. The lower trace of the bottom panel in Figure 9.2 is BP originally recorded
at 1000 Hz, but resampled for export at 20 Hz for the faster visual verification of the peak
detection procedure. The resampled BP trace helps identify the sources of errors in the
extracted HR signal, which include omission of a beat, double beat recognition, and noise
corrupting part of BP signal. Each correctly detected peak is marked with a light gray dot,
while the misdetections producing errors in HR signals are marked with dark gray squares.
Any frequency or time-domain analysis of the compromised signal parts would yield dis-
putable and erroneous results.

9.3.2 The Sequence Identi�cation Procedure

The sequence method analysis is performed by an examination of beat-to-beat SBP and
RR time series in search of spontaneous sequences of three or more consecutive heart-
beats in which SBP and RR strictly monotonically change in the same direction. If SBP
progressively increases and, usually with a species-specific BRR delay, RRI progressively
lengthens, then RR+/SBP+ increasing (positive) sequences are obtained. Vice versa, if SBP
progressively decreases and RRI shortens, then RR/SBP decreasing (negative) sequences
are found (Di Rienzo et al. 2001).

When studying the reflex neural control of the sinus node, using RR (or PI extracted from
BP in animal experimentation when ECG is not available) is more appropriate than HR,
according to Iellamo (2001) and Waki et al. (2006). This is primarily because the relation-
ship between the frequency of stimulation of vagal efferent nerves and RR (or PI) interval
responses is linear, while the relationship between HR and vagal stimulation is hyperbolic
(Parker et al. 1984; Daly 1997).

The progressive beat-by-beat increase in SBP is called positive (increasing) SBP ramp,
whereas the progressive decrease in SBP is called the negative (decreasing) SBP ramp. These
ramps present the input to the baroreceptors, while the corresponding progressive change
in RR or PI (RR [PI] ramp) is taken as the response of the BRR to the SBP input (Di Rienzo
et al. 2001).

Not all of the SBP–RR segments exhibiting concordant monotonic increase are considered
BSs. The BS is formed only if the SBP ramp and the related RR ramp fulfill the conditions
with respect to the minimal values of sequence length, amplitude change, and/or corre-
lation coefficient. The parameters required for determination of whether a BS is identified
are as follows:

Mmin—the minimal sequence length in interbeat intervals (IBIs) or alternatively
Mmin+1 (SBP, RR) pairs (beats)
dSBP—the minimal amplitude change between consecutive SBP values
dRR—the minimal amplitude change between consecutive RRI (or dPI if PI time series
is used)
rmin—the minimal correlation coefficient of the linear SBP–RR regression line (addi-
tional or alternative condition)

The threshold values set in humans for these parameters are dSBP = 1 mmHg, while dRR
ranges from 1 to 6 ms, with the most usual value being 5 ms (Di Rienzo et al. 2001; Laude
et al. 2004; Gouveia et al. 2009). A minimal correlation coefficient of the linear SBP–RR
regression line rmin can be set as an additional or alternative condition. If applied, its usual
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value is 0.7 or 0.8 (Laude et al. 2004; Gouveia et al. 2009). According to some studies, dSBP,
dRR, and rmin in small animals can be set to zero (Oosting et al. 1997; Laude et al. 2008,
2009). Even in humans, some studies suggest the amplitude threshold d is not needed if a
value of 0.8 is imposed on the rmin (Laude et al. 2004).

The latency introduced by the BRR, τ (beats), determines the delay of the RR ramps with
respect to the SBP ramps. It is species dependent: in humans, it is usually set to one beat,
and in rats between three and five beats (Laude et al. 2004, 2008; Bertinieri et al. 1988;
Oosting et al. 1997; Di Rienzo et al. 2001; Porta et al. 2002; Baselli et al. 1994).

9.3.3 BRS Estimate and the Temporal Features

For each validated BRR sequence BSi, i= 1,… , I, consisting of Mi >Mmin(IBI), BRSi is esti-
mated as the slope of the linear regression line of SBP and RR values, obtained using the
ordinary least-squares method. In Figure 9.3, the sequence of length Mi = 3(IBI) recorded
from a male Wistar rat is presented. The regression line is dotted. Its slope presents the
local BRSi estimate. The global BRS estimate is obtained by averaging the slopes of all the
BS found:

BRS= 1
I

I
∑

i=1

BRSi (9.1)

Temporal sequence parameters and additional BRR features can be extracted from the
sequence method analysis. These can be used to compare experimental groups or as
intraindividual comparisons, based on the analysis of available SBP and RR time series. In
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cases when RRI series is not available, PI series can be used instead without any changes
in the parameter definition. These features include the following:

NS—number of sBRR sequences per minute; normalization should be done if record-
ings of different duration are compared.
NR—number of SBP ramps per minute.
BEI—sBRR effectiveness index is the ratio between the number of SBP ramps fol-
lowed by a concomitant reflex RRI modulation and the overall number of SBP ramps
observed in a given time window (proposed in Di Rienzo et al. 2001).
NSBP–RR—mean number of SBP–RR pairs in one sequence (beats).
SSBP—SBP swing is the mean difference (in mmHg) between the highest and lowest
SBP value in one sequence (Figure 9.3).
SRR—RR swing is the mean difference (in ms) between the highest and lowest RR
value in one sequence (Figure 9.3).
ΔSBP and ΔRR—SBP and RR increment—absolute SBP and RR increments (in mmHg
and ms, respectively) are the mean absolute difference between the successive SBP
and RR values in one sequence (Figure 9.3).
sBRR Operating Range (sequence coverage area [SCA])—a rectangle region in the SBP–
RR plane between the lowest and the highest sequence points in both dimensions
without 5% outlier points (proposed in Bajic et al. 2010).
sBRR Upper and Lower Limit—the average value of the first and the last vigintile in
both dimensions (SBPLL, SBPUL, RRLL, and RRUL), as proposed in Bajic et al. (2010). A
vigintile is a quantile of order 0.05, or 5% of outlier points.
sBRR Set Point—calculated as a median value of all SBP–RR sequence points.

The last three temporal parameters are introduced in Bajic et al. (2010) and shown in
Figure 9.4. The two areas in Figure 9.4 correspond to the two phases in the experiment
where a Wistar rat was exposed to mild emotional stress mimicked by a short-lasting
exposure to an air-jet from a pressurized bottle directed to the back of its head. The air-
jet induced a typical startle reaction followed by an escape. An example of concomitant
changes of SBP and PI is shown in Figure 9.5. The details on this investigation can be
found in Bajic et al. (2010).

9.4 The Caveats of the Sequence Technique

The sequence method is the most frequently used technique for BRS assessment for its
noninvasive nature, ease of implementation, and understandable formulation. However,
several questionable issues might appear in a practical application of this technique.

9.4.1 Reference Threshold Values

The main limitation of the sequence technique in the case of autonomic dysfunction is the
absence of BS, whose validation requires conforming to several criteria concerning length,
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threshold (minimal amplitude change), and/or minimum correlation between SBP and
RR/PI samples included in potential BS. The sequence method applies only to one-fourth
of available beats, leaving the rest of the recording out of the analysis (Bertinieri et al. 1988).
Moreover, these criteria should be relaxed or changed when different species are analyzed,
such as dogs, cats, rats, and mice. If the strict criteria for BS validation hold, the sequence
method is likely to fail in patients with impaired BRR (Davies et al. 2001). Several thresh-
olds required for sequence identification are set in the study in anesthetized cats (Bertinieri
et al. 1988 and transferred to humans without evidence on their optimality (Davies et al.
2001). The alternations in threshold values changes the number of the sequences found and
thus the BRS estimate.

To overcome this limitation, a set of reference threshold values optimal for the use in
humans is required. Davies et al. (2001) found that by decreasing BP and RRI amplitude
thresholds in patients with congestive heart failure (CHF), the agreement of the sequence
method estimates with traditional techniques is optimized. Another possible methodologi-
cal improvement, recently proposed in Gouveia et al. (2009), is a replacement of BS with BE
validated based only on correlation coefficient criteria. This comparative study has shown
that the events technique provides a BRS estimate that correlates with the basic sequence
method estimates. Longer BEs incorporate an average of 50% of all beats into analysis and
provide BRS estimates in cases without identified BS.

9.4.2 BRR Sequences or Random Occurrences?

Another important issue regarding the sequence technique is the nonselective inclusion of
all the sequences meeting the imposed criteria in BRS estimation. One side of this problem
is, as discussed earlier, that the sequence method is not able to evaluate the fraction of RR
variability driven by SBP changes (Porta et al. 2000a). Consequently, the produced BRS
estimate lumps the properties of both the feedback and feed-forward path. This drawback
can be surpassed by using model-based approaches that assume a closed-loop RR–SBP
relation (Barbieri et al. 2001).

The other side of the problem is whether these sequences reflect true physiological RR
and SBP (BRR or non-BRR) interactions or accidental, random occurrences. By random
occurrence, we consider a chance alignment of increasing or decreasing SBP samples, fol-
lowed by a chance alignment of unidirectional RR/PI ramp. The differences among suc-
cessive samples are usually small and due to random fluctuations (noise), but occasionally
they would be aligned, fulfilling the criteria of the BS with a minimal length. This problem
may not be so evident in humans, since the strict criteria for sequence validation would
largely disable the inclusion of these random occurrences. Yet, even in humans, this may
happen if the minimum length of the BS is set to three beats. The major problem arises
when the sequence technique is applied on animal experimentation data: the smaller the
animal, the more relaxed are the criteria for sequence validation. When it comes to rats
or mice, the only criteria is the sequence length (three or four beats) (Oosting et al. 1997;
Laude et al. 2008). Unfortunately, these criteria include a significant number of random
occurrences. If no amplitude threshold is required for BS validation, it is highly proba-
bly that some of such chance alignments are counted as BSs. Since animal experimenta-
tion is often used in pharmacological experimentation for drug testing and elucidating its
effects, reliable estimates on the functioning of the main short-term BP regulator are clearly
valuable.

To test the hypothesis of whether a sequence obtained from the time series presents a
physiological response, the method of surrogate data is used (Theiler et al. 1992). The
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method of surrogate data successfully explores the underlying patterns within data (Blaber
et al. 1995). Two different types of surrogate data can be used, depending on the type
of investigated SBP–RR interactions. The hypothesis that sequences are real physiologi-
cal responses of the RRI to changes in SBP, and not a random alignment, can be tested by
replacing the RRI time series with isospectral surrogate data. Briefly, isospectral surrogate
data can be obtained by inverse Fourier transform of the original series spectra, keeping
the amplitudes but randomizing the phases, thus removing the phase relationship between
SBP and RRI data. If temporal signal features are observed, isodistributional (ID) surrogate
data present “the control experiment” to estimate the degree to which observed interactions
may be due to completely random fluctuations (noise) in the data. ID surrogates are gener-
ated by randomly permuting the temporal order of the original signal samples, presenting
a set of independent and identically distributed (i.i.d.) random variables with the same
mean, variance, and distribution as the original time series.

The authors of the classic review paper (Schreiber and Schmitz 2000) recommend that the
actual testing using surrogate data should be carried out as a rank test. This means that for
achieving the level of significance (1−α) 100% in a two-sided test, a total of S= (2K∕α)− 1
surrogate sequences have to be generated, where S is a positive integer. For example, for
a significance level of 95%, at least 39 surrogate sequences have to be generated. Larger
K values give a more sensitive test, yet the authors suggest using K= 1 in order to mini-
mize the computational effort of generating surrogates. This recommendation means that,
for each original SBP–RRI series pair, 39 surrogate pairs have to be generated. For each
surrogate pair, the sequence technique parameters have to be calculated in order to esti-
mate the time averages for surrogate data. These computations present an excessive and
unavoidable effort.

Considering the frequent usage of the sequence technique and the following exhausting
surrogate testing, we have developed the Markov model outlined below to derive formulae
for the temporal sequence parameters (distribution, length, and number of sequences) in
ID surrogate data. The obtained expressions present ensemble averages of these sequence
method parameters, that is, their expected numbers, as a function of the minimal sequence
length, the amplitude thresholds, and the observed SBP–RR time series length N (Loncar-
Turukalo et al. 2011).

9.4.2.1 The Markov Model

To describe the temporal statistics of sBRR sequences, the model must “count” succes-
sive occurrences of the increasing or the decreasing signal amplitudes. The signal samples
will be denoted xi, i= 1,… ,N, and the amplitude changes of consecutive signal samples
Δi = xi+1 − xi, i= 1,… ,N− 1 form a signal of successive differences, which we refer to as
Δ-signal. A difference can be positive, negative, or “idle.”

Δi =

⎧

⎪

⎨

⎪

⎩

positive, xi+1 − xi > d
idle, |

|

xi+1 − xi
|

|

≤ d
negative, xi+1 − xi <−d

, d≥ 0, i= 1,… , N− 1 (9.2)

The amplitude range of the biological signals is physiologically limited, thus the same is
valid for their ID surrogates. For this reason, it can be shown that for a certain number i of
the successive differences with the same sign, the probability that the L+ 1th difference in
the row has the same sign will be almost zero. When the samples are shuffled, such as in
ID surrogate data, the probability of occurrence of the longer ramps is further decreased.
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The proposed model is a discrete, homogenous, and ergodic Markov chain describing
successive increases and decreases of amplitudes in pairs of ID surrogate data, with a
bounded number of states, L (Figure 9.6).

The states of the model in Figure 9.6 are labeled from n= 1 to n=L, counting either the
consecutive Δ-signal samples or (ΔSBP, ΔPI) sequence pairs of the same sign (states n> 1).
The state 1 corresponds to the Δ-signal sample (or (ΔSBP, ΔPI) pair) that is either idle or
different from the previous one.

Transition probabilities pn+1,n =Pr{Δk ∈ (n+ 1)|Δk−1 ∈n} reflect the likelihood that the
sample Δk will retain the same sign (and thus transit to the state n+ 1) as the previous
sample Δk−1 (belonging to state n, as nth successive difference in the row). The model state
equations are

P(n) =P(1) ⋅
n−1
∏

i=1

pi+1,i, n= 2,… ,L;
L
∑

n=1

P(n) = 1 (9.3)

The occurrences of ramps in different ID surrogate series are independent. The sequence
state probability is the joint probability that a particular SBP surrogate Δ-signal sample
and its PI counterpart are both the nth one in a row and of the same sign; therefore, the
following holds:

PSEQ(n) =
P(n)2

2
, n= 2,… ,L, PSEQ(1) = 1−

L
∑

i=2

PSEQ(i) (9.4)

The ramp passes through the state n if its length exceeds or is equal to n (Figure 9.6). The
probability that a sample Δi is an element of the ramp of length l is called the “ramp prob-
ability,” h(l). The state probability P(n) comprises all the probabilities h(l), l≥n of ramps
longer than or equal to n.

P(n) =
L
∑

l=n

h(l), n= 1,… ,L (9.5)

The same analogy is valid for sequences and we introduce “sequence probability” hSEQ(l).
The string of length k is a subset of k model states starting at an arbitrary model position

(unlike the ramp that starts at the first model position), see Figure 9.6. The relationship

1 2 3

...

p43

1–pL+1,L = 1

pL+1,L = 0
1–p541–p431–p321–p21

L...4 p54

...

n...

1–pn+1,n

String

p32p21 pn+1,n

FIGURE 9.6
Model that counts successive Δ-signals of the same sign in ID surrogate data; gray states: a ramp of length
l = 3; underlined states: a string of length k= 3. Source: Loncar-Turukalo, T. et al., IEEE Transactions on Biomedi-
cal Engineering, 58, 16–24, 2011. Reprinted with permission. © 2011 IEEE.
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between the probability of string of length k, S(k) and state probabilities P(n) is given by

S(k) =
L
∑

n=k

P(n), k= 1,… ,L (9.6)

The expression for string probabilities as a function of length n and the amplitude threshold
d are given in Table 9.1 (Loncar-Turukalo et al. 2011).

It is easy to show that the string probability, if the amplitude threshold d is set to zero, is
equal to

S(n, d= 0) = 2
(n+ 1)!

, n≥ 1 (9.7)

Knowing the string probabilities S(n, d) and the relations (Equations 9.3 through 9.6), state,
ramp, and transition probabilities can be derived. Setting the amplitude threshold to zero
(d= 0), these probabilities can be expressed as

P(n, d= 0) =
2 ⋅ (n+ 1)
(n+ 2)!

,n≥ 1, PSEQ(n, d= 0) =
4 ⋅ (n+ 1)2

[(n+ 2)!]2
,n> 1 (9.8)

h(n, d= 0) =
2[(n+ 1)2 +n]

(n+ 3)!
, hSEQ(n, d= 0) =

4[(n+ 1)2(n+ 3)2 − (n+ 2)2]
[(n+ 3)!]2

(9.9)

pn+1,n =
(n+ 2)

(n+ 1)(n+ 3)
; pSEQn+1,n =

(n+ 2)2

(n+ 1)2(n+ 3)2
(9.10)

When the sequence technique is applied with amplitude thresholds, two different thresh-
old values dSBP and dPi have to be applied to the surrogates of the PI and SBP series
(Table 9.1). Also, the state probabilities PPI(n) and PSBP(n) of the corresponding surrogates
are not the same. Then the probabilities PSEQ(n) are evaluated as follows:

PSEQ(n, dSBP, dPI) =
PSBP(n, dSBP) ⋅PPI(n, dPI)

2
(9.11)

TABLE 9.1

String Probabilities S(n, d)

n S(n, d)

2 2
3! −

d
a
+ 3⋅d2

4⋅a2

3 2
4! −

d
2⋅a
+ d2

a2 −
2⋅d3

3⋅a3

4 2
5! −

d
6⋅a
+ 5⋅d2

8⋅a2 −
25⋅d3

24⋅a3 +
125⋅d4

192⋅a4

5 2
6! −

d
24⋅a

+ d2

4⋅a2 −
3⋅d3

4⋅a3 +
9⋅d4

8⋅a4 −
27⋅d5

20⋅a5

Source: From Loncar-Turukalo, T. et al.,
IEEE Transactions on Biomedi-
cal Engineering, 58, 16–24, 2011.
Reprinted with permission. ©
2011 IEEE.

Note: The parameter a is equal to σ̂⋅
√

3,
where σ̂ is the standard deviation
estimated from the original data.
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The increasing and decreasing sequences in ID surrogate data are expected to occur with
the same probability. To describe them separately, the string, state, and sequence probabil-
ities must be reduced to half whereas the transition probabilities remain the same.

9.4.2.2 The Temporal Sequence Parameters in ID Surrogate Data

The model provides formulae for the temporal parameters of sBRR sequences in ID sur-
rogates, as functions of the recording length N (i.e., number of SBP–PI pairs), a minimal
sequence length M (IBI) (i.e., M+ 1 SBP–PI pairs), and amplitude thresholds dSBP and
dPI (here expressed as d) (Loncar-Turukalo et al. 2011). The formulae can be applied either
to refer to a single ID surrogate series, resulting in the expected values for ramps, or they
can be applied to the pairs of SBP–PI ID surrogate data to provide these averages for
sequences.

• T(M): expected ramp (or sequence) length in ID surrogate data, expressed in number
of IBI, if M is the minimal sequence length:

T(M, d) =M− 1+

L
∑

n=M
P(n, d)

L
∑

n=M
(1− pn+1,n) ⋅P(n, d)

(9.12)

• HN(n): the length histogram is the expected number of ramps (or sequences) of
length n(IBI) in a record of duration N SBP–PI ID surrogate pairs:

HN(n) = (N− 1) ⋅ h(n, d), n= 1,… ,L (9.13)

• NS(M,N): total number of ramps (sequences) in a record of ID surrogates data of
length N,when the minimal sequence length is set to M(IBI):

NS(M,N, d) = (N− 1) ⋅P(M, d) (9.14)

• BEI(M): BRR effectiveness index, defined as the ratio of the number of sequences in
pairs of SBP–RR ID surrogate data and the number of ramps in the SBP ID surrogate:

BEI(M) =NS_SEQ(M,N, d)∕NS_SBP_RAMP(M,N, d) (9.15)

The thorough validation of these formulae is done in recording of laboratory rats (Loncar-
Turukalo et al. 2011). Having HR five times as fast as humans, the recordings in rats pro-
vide longer stationary segments necessary for reliable estimation of probabilities for longer
sequences. The results obtained from this validation are presented in Tables 9.2 through 9.4.
The sequence method is applied without amplitude thresholds, according to Oosting et al.
(1997). The details on the experimental protocol and the data used for the model validation
can be found in Loncar-Turukalo et al. (2011). However, the temporal sequence parameters
in ID surrogate data of human SBP and RR series are accurately predicted by the model as
well (Loncar-Turukalo et al. 2010).

If the model is used to calculate the expected value of BRR-like sequences in ID surrogate
data pairs, an excellent level of agreement between formulae value (the first row), and the
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TABLE 9.2

State Probabilities PSEQ(n, d= 0),n= 1,… , 4 for Sequences

PSEQ(1) ± σ PSEQ(2) ± σ PSEQ(3) ± σ PSEQ(4) ± σ

Equation 9.8 0.967 0.03125 0.00222 9.65× 10−5

Surrogate 0.968± 0.00062 0.02985± 0.00051 0.00198± 0.00011 0.000074± 0.00001∗∗
Original 0.972± 0.00722 0.024± 0.00561 0.00323± 0.0016 0.00049± 0.00043

Source: From Loncar-Turukalo, T. et al., IEEE Transactions on Biomedical Engineering, 58, 16–24,
2011. Reprinted with permission. © 2011 IEEE.

Note: Expected value (Equation 9.8) and time averages estimated from ID surrogates. Values
estimated from real data (original) is presented as an illustration.
The statistical significance of the values as evaluated by Equation 9.8 vs. SURROGATE,
was assessed using repeated measures ANOVA test at levels p< 0.05 (∗), p< 0.01 (∗∗),
p< 0.005 (∗∗∗).

TABLE 9.3

Number of Sequences H1000(n) of length n= 1,… , 5, Normalized per 1000 SBP–PI
Pairs

HN(2) ± σ HN(3) ± σ HN(4) ± σ HN(5) ± σ

Equation 9.13 29.03 2.126 0.0936 0.00277
Surrogate 28.66± 0.42 2.009± 0.097 0.0827± 0.0146 0.00331± 0.00081
Original 20.739± 4.53** 2.742± 1.237* 0.4458± 0.4389** 0.19395± 0.07592**

Source: From Loncar-Turukalo, T. et al., IEEE Transactions on Biomedical Engineering, 58, 16–24,
2011. Reprinted with permission. © 2011 IEEE.

Note: The statistical significance of ORIGINAL versus SURROGATES was assessed using a
repeated-measures ANOVA test at levels *p< .05, **p< .01, ***p< .005.
Expected value (Equation 9.13), the time averages estimated from ID surrogates and the
number found in original SBP–PI data.

TABLE 9.4

Correlation Coefficient r(n) of Sequences of Length n= 2,… , 5

r(2) ± � r(3) ± � r(4) ± � r(5) ± �

Surrogate 0.91± 0.005 0.90± 0.001 0.376± 0.07 0.03± 0.015
Original 0.92± 0.01 0.93± 0.02 0.92± 0.05** 0.92± 0.09**

Source: From Loncar-Turukalo, T. et al., IEEE Transactions on Biomedical Engineering, 58, 16–24,
2011. Reprinted with permission. © 2011 IEEE.

Note: The statistical significance of original versus surrogates was assessed using repeated
measures ANOVA test at levels *p< .05, **p< .01, ***p< .005.

averages calculated from generated surrogates (the second row) is observed (Table 9.2).
The time averages calculated from the original SBP–PI pairs are added in the third row for
comparison.

The number of sequences of the specific length per 1000 SBP–PI pairs (histogram
H1000(n)) is presented in Table 9.3, again in accordance with the expected values calculated
by the formula and the time averages of the generated ID surrogate data set. The sequences
of length n(IBI) ≥ 3 (i.e., sequences of length four or more SBP–PI pairs) in the original data
significantly outnumber the corresponding sequences in ID surrogate data.



220 ECG Time Series Variability Analysis: Engineering and Medicine

The statistical differences in the number of sequences motivated the analysis of the cor-
relation coefficient in sequences of different length, as a measure of the linear association
between the corresponding samples that form a sequence (Table 9.4). In ID surrogate pairs,
the correlation coefficient significantly drops with the increase of the sequence length. In
the original data, the correlation coefficient preserves the high values. The correlation coef-
ficient of the sequences in the SBP–RR series exceed the threshold set to rmin = 0.8. In sur-
rogate data, only 37% of n= 4 sequences, 3% of n= 5 sequences, and no n= 6 sequences
exceed rmin = 0.8. This high linear coupling of long SBP–PI sequences, nonexistent in ran-
dom data, suggests their strong relationship with physiological events, regardless of their
origin (Rothlisberger et al. 2003).

While calculating the sequence histogram H(n), it was noticed that the sequences of
length n(IBI)= 3 (four SBP–PI pairs) in original data have high correlation coefficient r(n)
and significantly outnumber the sequences in ID surrogate data (Tables 9.3 and 9.4). This
high linear coupling of long SBP–PI sequences does not exist in random and surrogate
data. It suggests that the longer sequences are more likely to be an outcome of physiologi-
cal events. Conversely, all the sequences of length n= 2 (IBI) (i.e., three SBP–PI pairs) have a
high correlation coefficient, both in original and in random or surrogate data. This implies
that it is difficult to estimate whether sequences of length n= 2(IBI) are due to random or
to physiological fluctuations. This finding reinforces a proposal from Oosting et al. (1997)
that the threshold that specifies minimal sequence length in rats should be set to at least
M= 3 (IBI), that is, to four SBP–PI pairs. Thus, the number of sequences would be reduced,
but the likelihood that a sequence is an outcome of an sBRR event is increased.

The validation study on humans showed that the number of long sequences is signif-
icantly larger in original data, with very high correlation coefficient, which rules out the
possibility of accidental occurrences (Loncar-Turukalo et al. 2010). This may serve as an
indication of the minimal sequence length M= 3 (IBI) (four SBP–PI pairs), for which cor-
relation between streams of random data is lost. This analysis suggests that the threshold
for correlation coefficient rmin = 0.8 can be used in combination with the increased minimal
sequence length M= 3 (IBI) to validate the sequence, since the chance of random occur-
rences with such properties is negligible. These results further reinforce the idea suggested
in Gouveia et al. (2009) that instead of BSs, BE can be used with a threshold imposed only
on the correlation coefficient among SBP–RR data points belonging to the event segment.
Our study confirms that long segments with high correlation coefficients are rare in ran-
dom data.

9.5 Conclusions

The need to evaluate BRR function both as a diagnostic tool and as an assessment of the
efficacy of the existing treatment has driven the development of new techniques for sBRR
assessment, and its gain/sensitivity (sBRS). This chapter provides an insight into analysis
of spontaneous BP and HR fluctuations and possibilities of computer-aided assessment of
BRR function. The overview of available methods and the corresponding references should
lead the reader to their more detailed methodological description. Within the chapter,
details are provided on the sequence method, the most frequently used technique for BRS
assessment for its noninvasive nature, ease of implementation, and understandable for-
mulation. The use of the sequence method requires careful preprocessing and clear rules
for sequence identification, depending both on the species and adopted methodological
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procedure. However, questions remain on the reference values and interpretation of the
obtained results, and we have tried to refer the reader to some comprehensive overviews
of reference values available in the literature.

The importance of spontaneous BRR investigation and popularity of the sequence tech-
nique has yielded numerous methodological variants of the originally proposed proce-
dure in order to obtain more reliable estimates, especially in BRR failure patients. We have
addressed this issue, introducing the reader to the available methods and methodological
studies based on the sequence technique, which aim to overcome the problem of sponta-
neous BRS assessment. Two major limitations have been studied: the absence of BSs and
the random sequence occurrences. In the cases where BSs are absent, the possible options
are to relax the strict criteria for sequence validation, or to preserve only the correlation
coefficient threshold leading to an assessment based on BE (Gouveia et al. 2009)

Regarding the question of automatic inclusion of random sequences in BRS estimation,
their presence can be estimated by running the surrogate data test. To avoid the exhaust-
ing surrogate testing, we contributed a Markov-based model and resulting set of formulae
for the straightforward calculation of the expected number of random sequence occur-
rences, distribution of their lengths, and their average duration in ID surrogate data of
arbitrary length N. The formulae are functions of particular sequence parameters: the min-
imal sequence length M (expressed in IBI), the amplitude thresholds dSBP and dPI, and
the time series length N. The derived expressions can be easily implemented to check
the expected number of random sequence occurrences among the overall number of the
sequences found in the original SBP–RR time series. The presented analysis has also con-
firmed that applying the minimal sequence length M= 3 (IBI) and the threshold for corre-
lation coefficient rmin = 0.8 rules out the random sequence occurrences.

The more comprehensive approach to BRS estimation requires the use of model-based
techniques for sBRS estimation capable of imposing causality, that is, evaluating the frac-
tion of RR variability driven by BP changes. These models also take into account sources
of RR variability acting independently of BP. Nonlinear approaches have been addressed
as a potential tool to complement linear approaches, which offer limited information about
the underlying complex processes. However, the systematic comparison for establishing
clinical research value of nonlinear indices is still missing (Baumert et al. 2015). Dynamic
BRS estimations have revealed time-variant BRR control, dependent on physiological con-
ditions, and the importance of continuous BRR monitoring. Analysis and monitoring of
nonstationary dynamics of BRR regulatory mechanisms continues to be an active research
topic.
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10.1 Introduction

Diabetes mellitus (DM) affects more than 366 million people around the world (Alam
et al. 2009). One of the serious clinical complications of DM is cardiovascular autonomic
neuropathy (CAN), which gradually results in abnormalities of heart rate (HR) control
and vascular dynamics (Kuehl and Stevens 2012; Vinik and Ziegler 2007). The occurrence
of confirmed CAN in diabetes patients is approximately 20%, and increases up to 65%
with age and diabetes duration (Spallone et al. 2011). Ewing et al. reported a mortality
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rate of 53% after 5 years in a cohort of diabetic patients with CAN versus 15% in the
control group (i.e., diabetic patients without CAN) (Ewing et al. 1980). CAN progression
may lead to severe postural hypotension, exercise intolerance, enhanced intraoperative
instability, increased incidence of silent myocardial infarction, and ischemia (Vinik and
Ziegler 2007). Around 75% of people with diabetes die from cardiovascular disease such
as heart attack and stroke, which includes autonomic neuropathy as a cause (Krolewski
et al. 1977; Nathan et al. 2005). Early detection of CAN in diabetic patients and inter-
vention is therefore of prime importance to reduce the increased mortality of diabetes
patients. The presence and severity of CAN are difficult to diagnose at the subclinical
stage due to the absence of overt symptoms. As a result, it creates a potential negative
impact on the quality of life of patients and those with the preclinical asymptomatic dis-
ease (Spallone et al. 2011; Vinik and Ziegler 2007). To enable early treatment intervention
and improved outcomes requires accurate and sensitive measures for detecting subclinical
CAN.

10.1.1 Cardiovascular Symptoms of CAN

A decrease in heart rate variability (HRV) during deep breathing or exercise may be a
sign of autonomic neuropathy and is associated with a high risk of coronary heart dis-
ease in patients with or without diabetes (May et al. 2000). Resting tachycardia is an
early sign, as is loss of HR variation during deep breathing (Ewing et al. 1980). Limited
exercise tolerance is due to impaired sympathetic and parasympathetic responses that
normally augment cardiac output and redirect peripheral blood flow to skeletal muscles.
A prolonged corrected QT interval (QTc) indicates an imbalance between the right and
left sympathetic innervation (Veglio et al. 1999). The abnormal circadian pattern of blood
pressure (BP) is another symptom of CAN, which rises during the night and falls in the
early morning. This abnormal pattern has been shown to correlate with postural hypoten-
sion due to CAN (Nakano et al. 1991). Blunted symptoms of coronary artery disease and
lack of pain because of damaged afferent nerves appear in diabetic patients with CAN
(Airaksinen and Koistinen 1992).

10.2 Clinical Practice for CAN Detection and Staging

The gold standard for the detection and staging of CAN is the noninvasive autonomic
nervous system test battery proposed by Ewing et al. There are five different tests in the
Ewing battery assessment. A brief description of the five tests (Vinik and Erbas 2001) is
given in Sections 10.2.1 through 10.2.5.

10.2.1 Valsalva Maneuver

The Valsalva maneuver is performed by having the participant exhale for 15 seconds,
while maintaining an expiratory pressure of 40 mmHg. Expiratory pressure can be mea-
sured by having the patient blow into a mouthpiece connected to a pressure transducer.
The maneuver is performed at least three times in order to maximize participant compli-
ance and ensure reproducibility. The Valsalva ratio is an index of HR or interbeat length
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(RR interval [RRI]) changes associated with parasympathetic response to forced exhala-
tion. The Valsalva ratio is taken as the maximum RRI in the 30 seconds following expira-
tion divided by the minimum RRI during the maneuver. A ratio of longest to shortest RRI
of less than 1.2 is abnormal.

10.2.2 Deep Breathing

Respiratory sinus arrhythmia is assessed by performance of six deep breaths per minute at
a frequency of 0.1 Hz. The timed breathing is performed with the aid of a metronome or
verbal cues. The response is taken as the mean of the differences between the maximum
and minimum instantaneous HR for each cycle. A minimum of three breaths is required
for inclusion. A difference in HR of less than 10 beats/minute is abnormal. An expira-
tion:inspiration RR can also be determined and is abnormal if the ratio > 1.17.

10.2.3 The 30:15 Lying to Standing Ratio

This is performed by rising from the supine to a standing position. The 30:15 ratio is then
the RRI at the 30th beat divided by the RRI at the 15th beat immediately after standing. A
30:15 ratio of less than 1.03 is considered abnormal.

10.2.4 Orthostasis

Change in systolic BP is calculated as the difference between the systolic BP 2 minutes after
standing and the mean systolic BP for the 20 beats immediately prior to standing. A fall of
more than 30 mmHg is abnormal.

10.2.5 Sustained Handgrip

Participants hold a pressure gauge and exert maximal compression force to determine the
maximal grip force. For the test, the required force exerted by the participant is adjusted to
30% of the maximal grip for 5 minutes. Change in diastolic BP is calculated as the difference
between the maximal diastolic BP before releasing the handgrip and the mean diastolic
BP for the 20 beats immediately prior to commencing the handgrip. A rise of less than
16 mmHg in the contralateral arm is abnormal.

The major drawbacks of the Ewing battery are: (1) it requires patient cooperation (Ewing
et al. 1985), (2) it is unable to be performed when comorbidities are present in the patient
such as heart or lung disease (Pagani 2000), and (3) it is less sensitive to changes associ-
ated with cardiac autonomic neuropathy compared to spectral methods (Ewing and Clarke
1982). A widely accepted alternative to address the abovementioned limitations are the
HRV-based techniques, since the change in HRV is regarded as one of the early signs of
CAN (Spallone et al. 2011). HR and cardiac function are regulated through a complex auto-
nomic neuronal network. Figure 10.1 shows the progression of CAN in diabetic subjects
and indicates that decreased HRV and cardiac autonomic imbalance can be considered as
suitable HRV phenomena for detection of CAN at the subclinical stage. Therefore, a pro-
gression of autonomic denervation that leads to the development of decreased HRV and
cardiac autonomic imbalance, despite being subclinical, can be detected using validated
methods (Camm et al. 1996).
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Parasympathetic denervation
with increase of sympathetic tone

Diagnosis of
type 1 or type 2

diabetes mellitus

Orthostatic
hypotension

Parasympathetic and
sympathetic denervation

Impaired
exercise tolerance

Resting
tachycardia

Subclinical CAN Clinical CAN

Decreased HRV, depressed BRS
Impaired torsion
Cardiac autonomic imbalance

FIGURE 10.1
Progression of cardiac autonomic neuropathy. The earliest detectable subclinical signs of CAN are impaired spec-
tral analysis of HRV and abnormal BRS, which can be present at the time of diagnosis of diabetes mellitus. Ini-
tial parasympathetic denervation enables augmentation of sympathetic tone in the early stages of CAN. Over
time, sympathetic denervation follows and correlates clinically with the development of resting tachycardia and
impaired exercise tolerance. The presence of orthostatic hypotension often indicates the presence of advanced or
severe CAN. BRS, baroreflex sensitivity; CAN, cardiovascular autonomic neuropathy; HRV, heart rate variability.
(Adapted from Kuehl, M. and M. J. Stevens, Nature Reviews Endocrinology, 8, 405–416, 2012.)

10.3 Limitations of Traditional HRV Methods for Diagnosis of CAN

Conventionally used time- and frequency-domain parameters of HRV are not always
suitable for measurement of reduced HRV activity because of the nonstationarity char-
acteristic of the electrocardiogram (ECG) recordings and the presence of nonlinear
phenomena in the HR signal. Spectral analysis methods also lack sensitivity for detect-
ing asymptomatic/preclinical CAN (Karmakar et al. 2013). Positron emission tomogra-
phy (PET) and single-photon emission computed tomography (SPECT) are two nuclear
medicine imaging techniques used for the real-time assessment of cardiac autonomic inner-
vation and might become a more utilized method to diagnose as well as monitor the pro-
gression of CAN (Kuehl and Stevens 2012). But the availability of this diagnostic tool is
limited due to high cost, lack of availability outside of large metropolitan centers, and
trained operator requirements.

Therefore, methods that are noninvasive and independent of patient cooperation are
preferable in the detection and staging of CAN. Only a few studies have applied new
parameters based on nonlinear dynamics theory to HRV analysis in DM patients (Ziegler
1994; Costa et al. 2005; Flynn et al. 2005; Khandoker et al. 2009; Cornforth et al. 2015). A
previous study has shown that sympathovagal balance can be detected even in the time
domain through the tone–entropy (T–E) (Oida et al. 1997). Tone was verified to reflect the
sympathovagal balance by a pharmacological experiment where tone changed in value
consistently and in an HR recovery experiment after exercise where the parasympathetic
division became predominant (Oida et al. 1997). The T–E evaluation process is neither
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influenced by the time period of data acquisition nor by the baseline HR. In addition, the
T–E data processing has no signal deformation process such as a filtering, window, or lim-
iting process. A very important advantage is that there is no need to control respiration
rate in the T–E method, allowing data to be obtained in a natural process (Oida et al. 1999).
Since CAN is reported to be associated with alteration of sympathovagal balance, T–E may
be a better marker for detection and staging of CAN. The conventional T–E method of
quantifying HRV uses successive RRIs with the implicit assumption that the current beat
is influenced by the immediately preceding beat. However, the delay of such influence is
affected by the variation of baroreflex sensitivity and therefore can be greater than one beat
(Cavalcanti and Belardinelli 1996; Ottesen 1997). For example, the baroreflex sensitivity is
reduced in chronic renal failure (CRF) patients (Tomiyama et al. 1980), which augments the
delay in the HR response. Therefore, a heartbeat influences not only the beat immediately
following it but also up to 6–10 beats downstream (Lerma et al. 2003). Lerma was the first
to show this with several researchers confirming higher lag being associated with disease
processes (Lerma et al. 2003; Martinez-Garcia et al. 2012). Thus, successive RRI duplets will
likely underestimate the role of the autocovariance function of RRIs, that is, the ability of
heartbeats to influence a train of succeeding beats. Moreover, the autocovariance function
of RRIs captures additional aspects of HRV (e.g., nonlinearity) that are otherwise masked
by the strong correlation between successive beats if lag 1 (n vs. n+ 1 beats) T–E is used.
Therefore, multilag T–E analysis can overcome the limitations of the present practice of
single lag T–E analysis in HRV studies.

10.4 T–E Method

A RRI or period is defined as the time difference between two consecutive R peaks of the
ECG signal. Let the RRIs time series RR be defined as

R R≡ (R R1,R R2,… ,R RN) (10.1)

where N is the number RRIs. HR acceleration and inhibition can be determined from the
difference of consecutive RRIs. If RRi+1 is shorter than RRi then there is an acceleration of
the HR. Therefore, acceleration of the heart is expressed as a plus difference and inhibition
as a minus difference of RRIs. However, to reduce the impact of HR variation over a wide
range of time and patients, using a normalized variation in RRI is preferred to monitor
the variability. In conventional T–E analysis, percentile change of the successive RRIs with
respect to the first RRI is expressed as the percentage index (PI) and defined as

PI(i) =
RRi −RRi+1

RRi
× 100 (10.2)

The tone is defined as a first-order moment (arithmetic average) of this PI time series as

Tone= 1
N− 1

N−1
∑

i=1

PI(i) (10.3)
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Tone is the balance between accelerations (PI> 0) and inhibitions (PI< 0) of the HR and
represents the sympathovagal balance faithfully as shown in previous studies (Amano
et al. 2005; Oida et al. 1997). Entropy is defined from the probability distribution of PI by
using Shannon’s formula (Shannon 1948):

Entropy=−
n
∑

i=1

p(i) log2 p(i) (10.4)

where p(i) is a probability of PI having values in the range i<PI< i+ 1, where i is an
integer. The entropy evaluates total acceleration–inhibition activities, or total heart period
variations, in a familiar unit of bit.

10.4.1 Multilag T–E Analysis of HRV Signal

For multilag T–E analysis, we have introduced the lag (m) in Equation 10.2 (Section 10.4),
used to derive the PI time series from the RR time series signal. Hence, in the multilag T–E
analysis, PI is expressed as the percentile change of the ith and i+mth RRIs with respect to
the ith RRI and is defined as

PI(i) =
RRi −RRi+m

RRi
× 100 (10.5)

where m is an integer and m= 1 represents the conventional T–E analysis.

10.4.2 Effect of Data Length on Multilag T–E Measurement

An important benefit of conventional (lag 1) T–E evaluation is that it is not influenced by
the time period of data acquisition. However, increasing lag time reintroduces the sensi-
tivity to recording length. Therefore, we analyzed the variation of T–E values with varied
length of RRI data (from 50 to 900 beats) and a range of lags (1≤m≤ 8).

10.4.3 Patients and ECG Signals

After standard exclusion criteria were applied to ensure that any changes in HRV detected
were due to the severity of cardiac autonomic neuropathy, 41 patients with type 2 DM were
included in the study. Fifteen patients had definite CAN (CAN+), while the remaining 26
were negative for CAN (CAN−), that is, they did not have clinical signs and symptoms of
CAN. The detailed demography of patients is shown in Table 10.1.

Exclusion criteria included those with a history of cardiac pathology, hypertension,
or use of antihypertensive or antiarrhythmic medication, and those with less than 85%

TABLE 10.1

Subject Demography of CAN+ and CAN− Groups

Group Total Subject Age (Years) (Mean ± SD) Gender (F, M)

CAN− 26 64± 11 20, 6
CAN+ 15 55± 15 7, 8
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qualified sinus beats. ECGs were recorded over 20 minutes using a lead-II configuration
(Maclab ADInstruments, Australia) and recorded on Macintosh Chart Version 5 with a
sampling rate set at 400 Hz and a notch filter at 50 Hz. ECG signals were edited using
the MLS310 HRV module (version 1.0, ADInstruments, Australia) included with the Chart
software package. A 45 Hz low-pass filter and a 3 Hz high-pass filter were applied prior
to determining the RRIs. Ectopic beats were identified visually and deleted from the ECG
recording. QRS peaks were determined using the algorithm developed by Pan and Tomkin
(Pan and Tompkins 1985) and RRIs calculated. The presence of CAN+ was assessed using
the complete Ewing battery (Ewing et al. 1985).

10.4.4 ROC Area Analysis

In order to retain the relative importance of the selected HRV features, a receiver-operating
curve (ROC) analysis was used (Hanley and McNeil 1982), with the area under the curve
for each feature represented by the ROC area. A ROC area value of 0.5 indicates that the
distributions of the features are similar in the two groups with no discriminatory power.
Conversely, a ROC area value of 1.0 would mean that the distribution of the features of the
two groups does not overlap at all. The ROC is obtained by automatic selection of different
thresholds or cutoff points and calculating the sensitivity/specificity pair for each one of
the cutoff points. The area under the ROC curve was approximated numerically using the
trapezoidal rules (Hanley and McNeil 1982) where the larger the ROC area is, the better
the discriminatory performance.

10.4.5 Classi�cation of CAN Patients

A quadratic discriminant (QD) classifier was applied to test the ability of T–E values
together in detecting CAN+ subjects. The beat sequence length len= 250 and lag m=
{1, 2, 3} was taken for the T–E calculation based on the ROC results for all lengths and lags.
A leave-one-out cross-validation scheme was adopted to evaluate the generalization ability
of the classifiers. Cross-validation procedures have been used in a number of classification
evaluations, particularly for limited data sets (Ripley 1996). In this scheme, the classifier
was trained using 40 records and tested on the remaining record. This was repeated 41
times, so that each record was left out for one round of training and testing.

The following three measures of accuracy, sensitivity, and specificity were used to assess
the performance of the classifiers (Chan et al. 2002; Pang et al. 2003):

Accuracy= TP+TN
TP+FP+TN+FN

× 100

Sensitivity= TP
TP+FN

× 100 (10.6)

Specificity= TN
TN+FP

× 100

where TP is the number of true positives, that is, the classifier identifies a patient that was
labeled as CAN+; TN is the number of true negatives, that is, the classifier identifies a
patient that was labeled as CAN−; FP is false CAN+ identifications; and FN is false CAN−
identifications. Accuracy indicates overall detection accuracy. Sensitivity is defined as the
ability of the classifier to accurately recognize a CAN+, whereas specificity indicates the
classifier’s ability not to generate a false negative (CAN−). All results were statistically
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analyzed using analysis of variance (ANOVA) and assuming unknown and different vari-
ance for testing the hypothesis regarding the mean. The mean of tone values for data length
len= 900 and other lengths (len= 50− 850) are assumed equal. The same test was applied
to the hypothesis for entropy values.

A nonparametric Kruskal–Wallis test was applied to investigate the significance between
age distributions of subjects of the CAN− and CAN+ groups. The effect size—in essence
how much overlap is there between two groups—was investigated using Cohen’s d value
(Cohen 1988). Following this, the power analysis was carried out to justify the repeata-
bility of the difference in T–E values found between two groups for a small sample size.
This provides the probability that the null hypothesis (there is no difference in T–E values
between CAN− and CAN+ groups) is wrong. A large size for Cohen’s d value represents
less degree of overlap between two groups and vice versa. On the other hand, a small p
value indicates that the null hypothesis can be rejected.

10.5 Results

Mean T–E values for both the CAN− and CAN+ group for all lags (1≤m≤ 8) and beat
sequence lengths (50≤ len≤ 900) are shown in Figure 10.1. Mean tone values were lower
for all lags and beat sequence lengths in the CAN− compared to the CAN+ group. In
addition, mean tone values in the CAN− group consistently decreased with increasing lag
for all beat sequence lengths. In contrast, the mean tone values associated with a specific
lag tended to increase with increasing length of the ECG analyzed (not consistent at every
lag). Similarly, the mean tone values in the CAN+ group decreased with increasing lag for
any sequence length greater than 150 beats. However, there was no consistent relationship
between the mean tone values at a specific lag and sequence length.

Mean entropy values were higher in the CAN− than CAN+ group for all lags and beat
sequence lengths (Figure 10.2). The mean entropy values in the CAN− group were mostly
increased (exceptm={6, 7} and len= 50;m= 6 and len= 500) with increasing lags. Similarly,
the mean entropy values for a specific lag increased for most lags investigated with an
increasing recording length of the ECG (beat sequence length). The mean entropy values
of the CAN+ group increased (except lag={8} and len= 50) with increasing lags, while
the mean entropy value for a specific lag showed an increasing trend only up to len= 200
where this trend disappeared.

The association between T–E-related estimates of HRV and beat sequence lengths for
varying lags was analyzed and shown in Figure 10.3 for the associations of two extreme
examples of beat sequence lengths (len= 50, Figures 10.3a and b; len= 900, Figures 10.3c
and d). Similarly, we analyzed the association between T–E-related estimates of HRV and
lag for varying beat sequence lengths. Figure 10.4 shows these associations for two lags.

ROC areas are calculated to measure the performance of tone and entropy features in dif-
ferentiating between CAN− and CAN+ for all lags and beat sequence lengths. ROC areas
of tone for all lags and beat sequence lengths len≥ 250 are summarized in Table 10.3. The
maximum ROC area (= 0.95) between CAN− and CAN+ using tone is found for m= 2 and
len={450 and 800}. For any beat sequence lengths, the maximum ROC area for classifying
the CAN− and CAN+ groups is found for lag m= 2. Beat sequence length of len= 400 for
lag m= 3 also resulted in a maximum ROC.
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FIGURE 10.2
Mean tone and entropy values for the CAN− and CAN+ group for all lags (1 ≤m≤ 8) and beat sequence lengths
(50≤ len≤ 900). (Adapted from Karmakar, C. K. et al., Medical and Biological Engineering and Computing, 51,
537–546, 2013.)

ROC areas of entropy for all lags and beat sequence lengths len≥ 250 are summarized
in Table 10.3. The hypothesis and method for selecting length len≥ 250 are discussed
in detail in the next section. The maximum ROC area (= 0.97) between CAN− and
CAN+ using entropy is found form= 3, len= 750 andm={2, 3} and len={800, 850 and 900}.
Maximal ROC results were also found for other combinations of length and lag as shown
in Table 10.2.

In this study, we have used the QD with leave-one-out (LOO) testing methodology to
quantify the accuracy of T–E values in discriminating CAN+ from CAN−. LOO allows
determination of how accurately an unknown recording is classified into the correct class
(CAN− or CAN+). The beat sequence length len= 250 was used for classification, as T–E
values become consistent (i.e., variation of mean becomes minimal) over multiple lags at
length len≥ 250. In addition, lag m= 1−3 was selected as the maximum ROC area between
CAN− and CAN+ was found at lag 2 and 3 (see Table 10.2) and the result needs to be
compared to lag 1 or conventional T–E analysis. Results of the LOO cross-validation tests
(accuracy, sensitivity, and specificity) of the QD classifier are summarized in Figure 10.5
and Table 10.3. For beat sequence length len= 250, the accuracy reached 100% at a lag
m={2, 3}. The effect size and power (one-tailed and two-tailed) for T–E parameters at lag
m={1−3} and for length len= 250 is shown in Table 10.4.
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FIGURE 10.3
Tone–entropy values in the CAN− and CAN+ group associated with beat sequence length. (a) and (b) show T–E
with respect to increasing length at lag 1 and (c) and (d) show T–E for lag 8. (Adapted from Karmakar, C. K. et al.,
Medical and Biological Engineering and Computing, 51, 537–546, 2013.)

10.6 Discussion

Linear and nonlinear analyses of RRIs have been applied for some time for the classification
of cardiovascular disease and cardiac autonomic neuropathy in particular. These methods
differ in terms of their appropriateness for analysis of the RRI time series, which is non-
stationary and nonlinear, and also with respect to the information they provide including
their sensitivity and specificity (Alam et al. 2009; Costa et al. 2005; Ewing and Clarke 1982;
Huikuri et al. 2009; Lombardi et al. 2001). For many of the current methods, the assump-
tion is that for all consecutive beats, each beat only has influence on the subsequent beat,
whereas it has been shown that each beat in a time series can have an influence on up to
10 beats downstream (Lerma et al. 2003). This opened up the question of finding a method
that allows measuring of this multilag characteristic of RRI time series and its usefulness
in clinical application.
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FIGURE 10.4
Tone–entropy response to changing lag in patients with definite CAN and negative CAN−. (a) and (b) show
the T–E response for sequences 50 beats long, whereas (c) and (d) show the T–E response for sequences
900 beats long. (Adapted from Karmakar, C. K. et al., Medical and Biological Engineering and Computing, 51,
537–546, 2013.)

The results discussed in this chapter and previously published confirm the finding of
Lerma et al. (2003) and Cornforth et al. (2015) that a current beat can influence a beat further
downstream and extend this work by applying multilag analysis to cardiac autonomic neu-
ropathy. Our approach using multilag T–E values of HRV can be used to correctly identify
a patient as CAN+ or CAN−, which takes into consideration the influence an individual
beat has on subsequent beats in the time series. The physiological interpretations of T–E in
various experimental settings were previously reported (Khandoker et al. 2010; Oida et al.
1997). Lower tone values (negative) indicate that vagal activity predominates in the sym-
pathovagal balance in a healthy population at rest (Bootsma et al. 1994; Oida et al. 1997;
Tulppo et al. 2001). This is also reflected in higher entropy values in the healthy (CAN−)
population. Higher tone (nearing zero) and lower entropy values indicate that parasym-
pathetic efferent pathways progressively withdraw their activity (Khandoker et al. 2010).
The major findings of the study are discussed in the following subsections.



238 ECG Time Series Variability Analysis: Engineering and Medicine

TABLE 10.2

ROC Areas of Tone and Entropy for Different Lags and Beat Sequence
Lengths

No of Beats Parameter
Lags

1 2 3 4 5 6 7 8

250 Tone 0.88 0.93 0.90 0.82 0.85 0.82 0.85 0.82
Entropy 0.90 0.95 0.95 0.85 0.90 0.90 0.90 0.85

300 Tone 0.85 0.90 0.88 0.78 0.75 0.82 0.75 0.70
Entropy 0.88 0.93 0.90 0.82 0.90 0.90 0.88 0.82

350 Tone 0.85 0.90 0.85 0.63 0.70 0.75 0.65 0.53
Entropy 0.88 0.90 0.90 0.78 0.88 0.93 0.88 0.78

400 Tone 0.85 0.93 0.93 0.85 0.88 0.85 0.85 0.85
Entropy 0.88 0.90 0.90 0.78 0.82 0.93 0.85 0.80

450 Tone 0.85 0.95a 0.88 0.82 0.88 0.85 0.82 0.82
Entropy 0.90 0.90 0.90 0.78 0.82 0.90 0.85 0.78

500 Tone 0.85 0.93 0.88 0.82 0.82 0.85 0.82 0.80
Entropy 0.90 0.90 0.88 0.78 0.82 0.88 0.85 0.78

550 Tone 0.85 0.88 0.85 0.72 0.75 0.85 0.78 0.72
Entropy 0.90 0.93 0.93 0.78 0.82 0.88 0.85 0.80

600 Tone 0.88 0.93 0.88 0.78 0.78 0.85 0.80 0.70
Entropy 0.90 0.93 0.90 0.75 0.82 0.88 0.85 0.75

650 Tone 0.88 0.93 0.88 0.70 0.78 0.82 0.78 0.72
Entropy 0.90 0.93 0.93 0.75 0.82 0.88 0.85 0.72

700 Tone 0.88 0.93 0.88 0.82 0.80 0.85 0.82 0.78
Entropy 0.90 0.95 0.95 0.78 0.85 0.90 0.85 0.78

750 Tone 0.90 0.93 0.93 0.88 0.82 0.85 0.85 0.78
Entropy 0.90 0.95 0.97b 0.80 0.82 0.93 0.85 0.78

800 Tone 0.90 0.95a 0.93 0.88 0.90 0.93 0.90 0.88
Entropy 0.93 0.97b 0.97b 0.80 0.93 0.95 0.88 0.78

850 Tone 0.88 0.93 0.90 0.80 0.82 0.85 0.80 0.60
Entropy 0.90 0.97b 0.97b 0.80 0.93 0.97 0.88 0.78

900 Tone 0.88 0.93 0.90 0.82 0.82 0.88 0.85 0.82
Entropy 0.90 0.97b 0.97b 0.78 0.88 0.95 0.85 0.78

Note: Boldfaced numbers represent maximum ROC area for tone or entropy for
corresponding beat sequence length.

a
Maximum ROC area of tone for all lags and beat sequence lengths.

b
Maximum ROC area of entropy for all lags and beat sequence lengths.

10.6.1 Physiological Understanding of T–E Measurement

Physiologically, tone was reported to reflect the sympathovagal balance by a pharmacolog-
ical experiment where tone changed in value consistently in an HR recovery experiment
after exercise where parasympathetic rebound is observed (Javorka et al. 2008). On the
other hand, entropy was considered as the total amount of sympathovagal activity. The
nature of T–E was examined in eight healthy volunteers by autonomic perturbation exper-
iments. For these studies, we employed the data set of previous studies (Kamen et al. 1996;
Brennan et al. 2002) because it contained data from the participants over a wide range of
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Classification performance of the quadratic classifier between CAN− and CAN+ subjects using tone and entropy
features with beat sequence lengths len= 250 and lags m={1, 2, 3}. (Adapted from Karmakar, C. K. et al., Medical
and Biological Engineering and Computing, 51, 537–546, 2013.)
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TABLE 10.3

Sensitivity, Specificity, and Accuracy Obtained Using QD Classifier with
Tone and Entropy Feature to Classify CAN+ from CAN− Using the Mini-
mum Beat Sequence Length len = 250 and Lags m={1, 2, 3}

Classifier Lag m Sensitivity (%) Specificity (%) Accuracy (%)

QD
1 93.33 100.00 97.56
2 100.00 100.00 100.00a

3 100.00 100.00 100.00a

a
Shows the maximum classification accuracy found between CAN+ and CAN−.

TABLE 10.4

Effect Size (Cohen’s d) and Power (One-Tailed and Two-Tailed) Values of
Tone and Entropy Features of CAN− and CAN+ Subjects for Beat Sequence
Length Len= 250 and Lags m={1, 2, 3}

Parameter Lag Effect Size Power Power

(Cohen’s d) (One-Tailed) (Two-Tailed)

Tone 1 1.2113 0.9828 0.9611
2 1.4662 0.9982 0.9946
3 1.6036 0.9996 0.9985

Entropy 1 2.1350 1.0000 1.0000
2 2.2820 1.0000 1.0000
3 2.1764 1.0000 1.0000

autonomic conditions. This first data set described by Kamen et al. (1996) and Brennan
et al. (2002) consisted of eight healthy participants (four females, four males) aged between
20 and 40 years (means± SD∶31.2± 6.2). Each participant underwent three autonomic
perturbations: (1) baseline study with subjects in the supine position in a quiet environ-
ment; (2) 70◦ head–up tilt, which increases sympathetic activity and decreases parasympa-
thetic activity; (3) atropine infusion (atropine sulphate, 1.2 mg), which markedly decreases
parasympathetic nervous system activity. In all, 24 records were collected, each containing
1000 RRIs.

Figure 10.6 illustrates a typical example of RRIs, PI time series, and their histograms
selected from each group. Alteration of the distributions is clearly discernible. Individual
and averaged data of T–E in T–E space, where the tone is plotted on the ordinate and
entropy on the abscissa is shown in Figure 10.7. Rectangles show mean± SE. The tone was
found to be negative in the resting control baseline (B). The negative tone increased for 70◦

tilt (T) and further increased to nearly zero (−0.0017± 0.0011) for blockade by atropine (A).
Entropy decreased for tilt and blockade by atropine. Parasympathetic blockade made the
tone almost zero. When both autonomic divisions were blocked, the tone became zero
(Oida et al. 1997). Entropy decreased below 2 bits (1.939± 0.268) for the functionally dener-
vated heart. In contrast, entropy was high at rest. It was shown in a previous study (Javorka
et al. 2008) that the increase in entropy corresponds to autonomic recovery in the heart
reflecting total cardiac autonomic efferent activity.

In Figure 10.8, the results of the autonomic perturbation experiments (dotted rectangles)
are superimposed on the T–E scatter plot of the clinical data. Dotted rectangle represents
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FIGURE 10.6
Typical heart period (RR intervals) time series (left), PI time series deduced from left (center), and its probability
distributions in histogram (right) selected in each group (atropine, 70◦ tilt, and baseline). In histograms, filled
bars represent accelerations (PI> 0), and open bars inhibitions of the heart (PI< 0), respectively. Abbreviations
are defined in the text. (Adapted from Khandoker, A. H. et al., Medical Engineering and Physics, 32, 161–167, 2010.)

mean± SE of each group. The control baseline (B) and tilt group (T) of the autonomic per-
turbation experiments were found to overlap with the N and eCAN+ groups. The defi-
nite CAN group approached the region of parasympathetic blockade (A). These results are
aligned with the effect of CAN progression on the autonomic nervous system, which is
shown in Figure 10.1.

10.6.2 Changes of T–E Values at Different Lags

For any beat sequence length (50 ≤ len ≤ 900), the mean tone value for the CAN− group
decreased with increasing lag. This indicates that the parasympathetic influence of the cur-
rent beat decreases with increasing lag (distant heartbeats) in the CAN− group. A similar
response was found for the CAN+ group with a minimum beat sequence length of 200
beats. Therefore, tone can be considered as a measurement of sympathovagal balance at
multiple lags with the early lag (approximately one to five beats) predominantly indicat-
ing parasympathetic influence.

For any beat sequence length (50≤ len≤ 900), the mean entropy values in the CAN−
group increased (except m={6, 7} and len= 50; m= 6 and len= 500) with increasing lag
(Figure 10.2). Higher entropy values indicate that the degree of both sympathetic and
parasympathetic activity increases with increasing lag in CAN− patients. Similarly, the
mean entropy values in the CAN+ group tend to increase (except lag m={8} and len= 50)
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with increasing lag. The increase in entropy with increasing lag for both the CAN− and
CAN+ group suggests that the correlation between parasympathetic and sympathetic
function decreases with increasing lag. Our results show that the parasympathetic influ-
ence has a range up to lag 5 and then decreases as the sympathetic influence increases.
Therefore, at higher lag, the variance of entropy decreases and becomes more stable as it
mainly reflects the sympathetic and endocrine components.

The influence of a heartbeat on other beats downstream from it may be a function of
sinus arrhythmia as proposed by Lerma et al. (2003) and Shi et al. (2009) with Poincaré plot
analysis. Using Poincaré plot analysis, HRV measures, which are influenced by respiratory
sinus arrhythmia, change their pattern at a lag value of 6 or 7 (Shi et al. 2009). However,
since in our study, the pattern of T–E values did not change (from increasing to decreasing
or vice versa), physiological factors other than respiratory sinus arrhythmia may influence
T–E values at higher lags. Alternatively, this finding may be a function of the different
HRV analysis used here compared to the Poincaré method described in Lerma et al. (2003).
This requires further investigation by evaluating the baroreflex activity in conjunction with
multilag T–E analysis and comparing the results to different HRV algorithms.

10.6.3 Changes of T–E Values with Incremental Beat Sequence Lengths

We have observed the association between the T–E estimation and varying the length of
beat sequences. Conventional T–E analysis (lag 1) is reported as an evaluation process,
which is not influenced by the time period of data acquisition. We have demonstrated here
the effect of varying beat sequence length on T–E values at higher lags when using the
multilag T–E algorithm.

The distribution of both T–E values changes with length for both CAN− and CAN+
groups. This change can be either due to the length/number of beats used for analysis or
due to changes in function of the autonomic nervous system. To reduce the influence of
beat sequence length on the T–E parameters, we have defined the minimum length for reli-
able T–E analysis. The hypothesis behind the minimum beat sequence length is that the
minimum length should be the length for which the mean of the distribution of the param-
eters (T–E) is insignificantly different to the mean of the distribution for maximum data
length. We have tested the hypothesis using an ANOVA analysis between T–E values at
beat length 900 (maximum for this study) and beat lengths down to 50 beats. The ANOVA
analysis was performed for all lags. For the CAN− group the tone value is insignificantly
different for beat lengths ≥250 compared to shorter lengths. In contrast, the entropy val-
ues in the CAN+ group at length 50 showed the same mean distribution as with length
900. Therefore, we selected a minimum length of 250 beats to make the T–E measurement
consistent.

10.6.4 Detection of CAN in Diabetic Subjects Using T–E Analysis

It should be noted that the mean tone values are lower in the CAN− group than in the
CAN+ group for all lags and beat sequence lengths. From a pathophysiological perspec-
tive, this indicates that the parasympathetic predominance found in normal beat regulation
is reduced in CAN+ patients to some extent. Our finding supports our previous results
that heart function with respect to CAN+ resembled that of the parasympathetically den-
ervated heart (Khandoker et al. 2010). The change in the predominance of the parasym-
pathetic activity, measured using tone, is best captured at lag m= 2 or m= 3 rather than
m= 1.
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Another important finding is that the mean entropy values are higher in the CAN− group
than in the CAN+ group for all lags and beat sequence length. Entropy is a measurement
of total autonomic activity (Khandoker et al. 2010; Oida et al. 1997) and in CAN+ sub-
jects this total activity consisting of the sympathetic and parasympathetic influence is less
than in CAN− subjects. However, the reduction in entropy values in the CAN+ group may
be attributed to either a withdrawal of vagal activity, which is reflected by the increased
tone, or increased sympathetic activity. This is again consistent with our previous findings
(Khandoker et al. 2010; Oida et al. 1997; Shi et al. 2009; Tulppo et al. 2001). From a patho-
physiologial perspective, the higher activity of the parasympathetic system in maintaining
a steady HR and the associated higher firing rate of the parasympathetic nerves increase
the likelihood of free radical damage of the nerve terminals and a reduction in the magni-
tude of the parasympathetic influence on HR. The change in neural activity measured by
entropy is best captured at lag m={2, 3} leading to higher accuracy when classifying CAN
using entropy.

Use of multilag T–E analysis introduces a novel analysis of cardiovascular function with
respect to autonomic modulation and can be used to obtain better results in classifying
CAN− and CAN+ patients. From the results of this study, we can conclude that CAN−
and CAN+ can be better differentiated at lag m={2, 3} than at lag m= 1. Moreover, the
data length used for multilag T–E analysis is 250 beats (ECG signal of less than 5 minutes),
which is shorter than the minimum data length required of many time- and frequency-
domain analyses as well as nonlinear algorithms (Teich et al. 2000). Cardiac autonomic
neuropathy manifests as a deterioration of autonomic modulation at two or three beats,
which is in line with findings that the parasympathetic response of HR occurs within two
to five beats. The results of this study suggest that multilag T–E is a sensitive indicator of
sympathovagal balance and activity that may be helpful in detecting CAN.

Although the number of subjects are small in each group of this study, Cohen’s d value
was large for length len= 250 and lags m={1− 3}, which indicates that the two groups are
substantially different and is reflected in the power (Table 10.4). Therefore, we conclude
that the difference in T–E values among CAN− and CAN+ groups as well as the classifica-
tion results found in this study can be repeated or extended for a broader population.

10.7 Conclusion

The results of the conventional T–E analysis indicate the significant alteration of the auto-
nomic system with the severity of CAN in a clear way. The T–E analysis classification could
be useful in recognizing early and definite CAN in diabetic as well as in other patient
groups and individuals at risk of cardiac autonomic neuropathy such as those with a fam-
ily history of diabetes or cardiac disease or the elderly.

In addition, alteration of autonomic nervous system function measured by multilag
T–E can be used to identify CAN subjects with higher accuracy than the conventional T–E
method with shorter ECG recording length.

Further research on a larger sample size is required to further elucidate the findings
of this study and effectiveness of multilag T–E analysis for differentiation between mild
and definite CAN+ in diabetic patients. In the future, it may be worth looking at how the
T–E analysis method performs on subjects with borderline Ewing scores. Nevertheless, the
importance of our findings lies in that the T–E results associated with normal (N), eCAN,
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and dCAN overlap with the results obtained when autonomic function was changed exper-
imentally. Therefore, we propose that our research is the first that reports a robust valida-
tion of an alternative test to the Ewing battery that both indicates the pathophysiological
changes in heart function regulation and correlates with the clinical findings of the Ewing
battery.
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11.1 Introduction

The autonomous regulation of heart rate (HR) and its acute and chronic adaptation to exer-
cise constitutes a classical and important field of cardiovascular research (Rosenblueth and
Simeone 1934; Robinson et al. 1966). Since the end of the twentieth century the application
of heart rate variability (HRV) analysis in sports has grown in importance because of the
introduction of accurate electrocardiogram (ECG) measurements of beat-to-beat variabil-
ity with portable devices (Laukkanen and Virtanen 1998). HRV-related research in exer-
cise science and sports medicine has mainly focused on the general autonomic response
to exercise training in people of different ages and fitness levels. Additionally, extensive
research has been conducted considering general aspects and mechanisms of autonomic
cardiovascular regulation during exercise and recovery. Over the past years especially, the
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monitoring of training load and recovery as well as the early detection of overreaching and
overtraining via HRV analysis has gained significant attention. These aspects are essential
for an effective optimization of short-, mid-, and long-term training processes.

11.2 HRV and Endurance Training

11.2.1 Cross-Sectional Studies

Several epidemiological and population-based trials show that physical activity influences
the autonomic nervous system (e.g., Fagard et al. 1999; Horsten et al. 1999; Rennie et al.
2003). In physically active Swedish woman aged 31–68 years, Horsten et al. (1999) found
a significantly higher overall variability (standard deviation of all NN intervals [SDNN])
and low-frequency (LF) power (+30%) in comparison to their inactive peers of the same sex.
Additionally, the British Whitehall II Trial confirmed a 20% increase of the high-frequency
(HF) power over the lowest quartile of the cohort in subjects of the highest activity quar-
tile (Rennie et al. 2003). Most cross-sectional studies also confirmed that athletes compared
to untrained subjects are characterized by a higher overall variability (SDNN, TP: total
power of all NN intervals) and increased values in time- and frequency-based parame-
ters (RMSSD: root mean square of successive differences, SD1: standard deviation of the
Poincaré plot data around the horizontal axis, HF: high-frequency power) at rest, which
usually go along with nonpathological bradycardia (De Meersman 1993; Goldsmith et al.
1992; Sztajzel et al. 2008). In 24-hour ECG recordings HF power in athletes was increased
fourfold over untrained peers (Goldsmith et al. 1992). Additionally, the amplitude of respi-
ratory sinus arrhythmia (RSA), which was assessed via short-term recordings (3 minutes)
at a rate of six breaths per minute, increased by 60% and indicated a higher vagal nerve
activity when comparing 72 male runners, aged 15–83 years to 72 age- and weight-matched
sedentary control subjects (De Meersman 1993). Especially endurance athletes seem to
show this favorable shift toward increased overall variability and vagal activity (Sztajzel
et al. 2008).

In contrast, other findings question this simple and straightforward relation between
physical activity, aerobic capacity, and increased HRV (e.g., Sacknoff et al. 1994; Martinelli
et al. 2005; Melanson 2000). For example, Sacknoff et al. (1994) found reduced HF power in
athletes (n= 12), although they had a higher overall variability (SDNN) than controls (n=
18) in supine position. A more recent study expressed a similar disparity between time and
frequency analysis as trained cyclists’ SDNN was increased by 50%, while spectral power
was similar to untrained controls (Martinelli et al. 2005). Although time- and frequency-
domain measures of HRV may be greater in active than sedentary individuals, it seems
that HRV does not necessarily increase in a dose-dependent manner with increasing levels
of physical activity (Melanson 2000).

First, these somewhat conflicting results may at least be partially caused by different
approaches of physical activity, training status, and aerobic fitness on the one hand and
modulation of HR on the other hand. For example, vagal-related HRV measures ana-
lyzed at rest under controlled breathing were shown to be positively correlated with aer-
obic power in terms of VO2max (r= 0.53, p< .001,n= 55), but not with weekly training
load (Buchheit and Gindre 2006), which was rather related to heart rate recovery (HRR)
(r= 0.55, p< .001,n= 55). Moreover, when power at the ventilatory threshold is used as
a criterion for aerobic endurance capacity, a relation to cardiovascular autonomic con-
trol may not be detectable (Bosquet et al. 2007). Additionally, interindividual differences
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of breathing frequency can lead to misinterpretations of the HRV spectrum estimates
(Camann and Michel 2002), especially when breathing is not controlled during HRV mea-
surement at rest.

Second, physiological long-term adaptations to exercise play an important role. A satu-
ration effect of vagal-related HRV measures and a dissociation with resting HR was shown
in trained individuals (Kiviniemi et al. 2004). This can be attributed to the saturation of
acetylcholine receptors at the myocyte level (Malik and Camm 1993). Additionally, as
intrinsic changes in sinus automaticity and AV node conduction changes may be present in
endurance athletes, bradycardia is not necessarily caused by autonomic influences (Stein
et al. 2002).

11.2.2 Longitudinal Studies

The majority of studies with a longitudinal design have investigated effects of endurance
training in the short to medium term (3 weeks up to 1 year). Most of these interventions
confirmed that moderate aerobic exercise (Carter et al. 2003; Melanson and Freedson 2001;
Tulppo et al. 2003) in contrast to resistance training (Forte et al. 2003; Madden et al. 2006)
leads to (higher) increases of overall and vagal nerve-mediated HRV parameters at rest.
This usually goes along with a reduction of resting HR. For example, Carter et al. (2003)
reported increases in overall variability in the frequency domain and a reduction of HR at
rest and during submaximal exercise in male and female recreational endurance runners
in the third (n= 12) and fifth decade of their life (n= 12). These adaptations to 3 months
of aerobic exercise were independent of sex and age. Similar effects were observed in
untrained subjects after 8 weeks of moderate aerobic training (at 70%–80% of HRmax),
including 6× 30–60-minute sessions per week (Tulppo et al. 2003). Apart from increased
bradycardia and a shift of spectral power toward the HF band, this study reported a
reduction of the short-term fractal scaling component alpha1, determined by detrended
fluctuation analysis (DFA), after the training period. The exercise-induced alterations of
autonomic regulation of HR toward vagal dominance are supported by a meta-analysis
of trials including training periods of at least 4 weeks (Sandercock et al. 2005). Twelve
studies (298 cases) reported a change in RR intervals with an overall effect size of d= 0.75,
although a subanalysis revealed a trend toward smaller responses of RR intervals in older
subjects. A potentially limited HRV adaptation among the elderly was shown by Perini
et al. (2002). The authors found no change of HRV in 70-year-old subjects after 8 weeks
of aerobic training, although increases in physical fitness (maximal power output [Pmax]:
+25%) and aerobic power (VO2max: +18%) were observed. In this respect, either a longer
intervention period up to 6 months (Levy et al. 1998) or modifications in exercise intensity
(Okazaki et al. 2005) and/or modality might be necessary to improve the HRV response in
the elderly. In particular, a combined strength and endurance training seems to elicit higher
benefits on HR dynamics during rest and at moderate exercise in older men than endurance
training alone (Karavirta et al. 2009). This is in line with the observation of increased HRV
during submaximal (absolute) exercise intensities after aerobic training (Leicht et al. 2003;
Martinmäki et al. 2008). However, HRV parameters usually remain unchanged when the
comparisons are based on relative exercise intensity (% Pmax or HRmax). Not all stud-
ies provide evidence for beneficial effects of aerobic training on HRV at rest (Bonaduce
et al. 1998; Boutcher and Stein 1995) and during exercise (Carter et al. 2003). For example,
Bonaduce et al. (1998) were unable to detect changes in time- and frequency-domain mea-
sures of HRV in both waking and sleeping hours (24-hour ECG) after intensive training
(20 hours) in elite cyclists, although aerobic power increased and resting HR decreased.
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Consequently, regular endurance training does not increase HRV per se. On the other hand,
there seems to be a relation between the individual training response of the cardiovascular
system and HRV. A high vagal activity at rest may provide a favorable condition for contin-
uous improvements of maximal oxygen uptake throughout the training process (Hautala
et al. 2009) and may therefore be used as an important variable in training monitoring (see
Section 11.6).

Apart from the influence of different indices used to detect training-induced changes of
HRV, beneficial effects strongly depend on the continuous interaction of variables of train-
ing load (volume, duration, intensity, and frequency) and individual psychophysiological
capacities to cope with exercise stress throughout the training process (Borresen and Lam-
bert 2008; Buchheit 2014; Hottenrott et al. 2006). Adjusting only one variable, for example,
training duration, does not guarantee improvements in vagal modulation of HR (Uusitalo
et al. 2004).

Hence, this specific dose–response relationship between training load and the HRV
response (Iwasaki et al. 2003) implies that training must be tailored toward subjects’ indi-
vidual age, sex, training status, and training goal in order to be efficient (Hottenrott et al.
2006, 2014).

11.3 HRV During Exercise

11.3.1 General Aspects

The underlying mechanisms for the autonomic regulation of HR during exercise are the
reduced parasympathetic and increased sympathetic modulation of the sinus node, which
regulate nonpathological tachycardia during exercise. The sympathovagal modulation
during exercise changes as a function of intensity with the central command, circulat-
ing catecholamines, and the exercise pressor reflex being the most relevant physiologi-
cal mechanisms that mediate these changes (Iellamo 2001; Williamson 2010). A significant
withdrawal of vagal activity occurs immediately at the beginning of physical exercise and
continuously decreases from light to moderate intensities. The continuous rise of the HR
at heavy and severe exercise intensity is mainly due to increased sympathetic modulation.
Whether a total withdrawal of vagal activity occurs at exhaustion is not clear, as there is
some evidence for small parasympathetic effects on HR that may persist even during high-
intensity exercise (Kannankeril et al. 2004).

Although some authors investigated HRV during static/isometric contractions (Iellamo
et al. 1999; Taylor et al. 1995; Weippert et al. 2013), the majority of previous laboratory stud-
ies have focused on acute effects of dynamic exercise on HRV parameters. Among these
trials, the test designs were very different, including both single and multiple steady-state
exercises at different intensities and duration as well as incremental and ramp protocols on
different ergometer devices. Additionally, the problem of nonstationarity of RR intervals
during exercise conditions as well as a wide range of HRV processing and analysis further
complicate this issue (Lewis and Short 2010; Sandercock and Brodie 2006).

11.3.2 Effects of Exercise Intensity and Aerobic Fitness on HRV

Although the findings on HRV during dynamic exercise are not consistent due to the
above mentioned differences in exercise protocols and HRV methodologies, changes in
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absolute values of amplitude-related HRV parameters of time and frequency analysis seem
to provide a functional dependency with exercise intensity and aerobic fitness (Figure 11.1).

As visualized in Figure 11.1, most studies show an almost exponential decrease of abso-
lute values of overall variability (SDNN or TP as the sum of LF and HF power), HF
and LF power and standard time-dependent measures of HRV (RMSSD), standard devia-
tion of the averages of NN intervals in 5-minute segments (SDANN), standard deviation
of differences between adjacent NN intervals (SDSD), mean squared differences (MSD)
from rest to moderate to heavy exercise intensity (Casties et al. 2006; Hautala et al. 2003;
Karapetian et al. 2008; Lewis and Short 2010; Tulppo et al. 1996, 1998). This particular trend
has also been incorporated in HRV decay constants for LF and HF bandwidths (Lewis and
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FIGURE 11.1
HR (a), 2-D vector analysis of Poincaré plots (SD1n) (b), and HF power (c) in three fitness groups (age matched)
during exercise. Values are means and SD. Kruskal–Wallis H-tests were used at each exercise intensity level
(among all three groups) followed by post hoc analysis (Mann–Whitney U-test) between good fitness group and
poor fitness group. Annotations are as follows: x indicates p ≤ .05, xx indicates p ≤ .01, xxx indicates p ≤ .001, and
ns indicates not significant, for high fitness group compared with poor fitness group. (Reprinted from Tulppo,
M. P. et al., Am J Physiol., 274, H427, 1998. With permission.)
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Short 2007). Although this general trend applies to subjects of different age and fitness lev-
els, athletes with higher aerobic fitness additionally show higher HRV values in time and
frequency domain at light (absolute) exercise intensities (Figure 11.1). Our own data sup-
port the almost exponentially decreasing trend of time- and frequency-dependent HRV
measures of vagal activity with increasing exercise intensity (expressed in % VO2peak,
Figure 11.2). With progressing exercise severity HR increases linearly, while RMSSD and
natural logarithm of high-frequency power (lnHF) decrease in an exponential manner
reaching asymptotic values slightly above 60% VO2peak (Figure 11.2). However, it should
be noted that in contrast to absolute exercise, intensities groups of low and high aero-
bic fitness levels cannot be differentiated from each other, when relative intensity (e.g.,
% VO2peak) is used as a reference.

From a methodological point of view, the reductions of absolute amplitude-based time
and frequency parameters during exercise imply that an unfavorable signal-to-noise ratio
may be reached even at moderate intensities. Although it seems favorable to use relative
spectral power, whereby data can be normalized to total spectral power (LF and HF in %
or normalized units [n.u.], excluding very LF [VLF] bandwidth) or to pre-exercise base-
line values, previous findings on the development of spectral power density distributions
(in % and n.u.) during exercise are inconsistent (Sandercock and Brodie 2006). Older stud-
ies applying classical spectral analysis methods on hardly comparable exercise loads have
shown a variety of changes in relative HF and LF power (in % or n.u.) with increasing inten-
sity: the authors found a decrease in both values, changes in opposite direction (decrease
in HF, increase in LF or vice versa) or no significant change in relative power distribu-
tions (LF/HF ratio) at all (Arai et al. 1989; Bernardi et al. 1990; Casadei et al. 1995; Hager-
man et al. 1996; Perini et al. 1990, 2000). More recent findings confirm a biphasic trend of
the LF/HF ratio, which includes an increase at low intensity and a gradual decrease at
moderate-to-high intensity exercise (Hautala et al. 2003). Additionally, time-variant spec-
tral analysis methods rather consistently indicate that relative HF power tends to be higher
than relative LF power at high exercise intensities (Blain et al. 2005; Cottin et al. 2004). The
underlying mechanisms of these changes in spectral power distribution have already been
mentioned earlier. Bernardi et al. (1989) attributed the HF oscillations during intense exer-
cise primarily to nonneural, respiratory mechanisms, because the central frequency of HF
power is strongly correlated with respiratory frequency. Consequently, for HRV spectral
analysis during exercise it seems favorable to use time-variant spectral methods and an
extended HF bandwidth up to 1 Hz. Alternatively, a time-variant cut-off frequency corre-
sponding to the actual breathing frequency, which is clearly exceeding the Task Force rec-
ommendations (HF: 0.15–0.4 Hz) for resting HRV measurements (Cottin et al. 2006; Lewis
and Short 2010), should be selected for accurate HRV spectral analysis during exercise.

Besides time- and frequency-domain measures, the evolution of nonlinear HRV meth-
ods seems promising for gaining new insights into HR dynamics during exercise. While
the above mentioned nearly exponential decrease of standard amplitude-based HRV mea-
sures during graded exercise hardly allows the differentiation between heavy to severe
exercise intensities, the short-term scaling exponent alpha1 of DFA is not affected by such
limitations. During incremental exercise, alpha1 consistently develops in a biphasic man-
ner: Depending on the resting value (usually between 1.0 and 1.5), stable or slightly rising
values of alpha1 up to 1.5 have been reported at very low to mild intensities indicating a
strongly correlated structure of HR dynamics due to a vagal withdrawal. Conversely, from
moderate-to-high intensity exercise, alpha1 decreases almost linearly (Casties et al. 2006;
Hautala et al. 2003; Platisa et al. 2008).
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FIGURE 11.2
Heart rate (in beats/minute, upper panel), root mean square of successive differences (RMSSD in milliseconds,
middle panel), and natural logarithm of high-frequency power of spectral analysis (lnHF in ms2, lower panel)
during incremental exercise in athletes of three different aerobic fitness levels (high, medium, and low). ns indi-
cates not significant between different fitness levels (two-way mixed ANOVA [aerobic power × relative inten-
sity] with Tukey’s honest significant difference (HSD)/Bonferroni used as post hoc test). (Modified from Hoos,
O., Dynamics and Complexity of Heart Rate Regulation During Endurance Exercise, Philipps-Universität Marburg,
Habilitationsschrift, Marburg, 2010.)
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These consistent findings suggest that the correlative structure of RR intervals is, in
principle, first maintained or slightly increased and then decreases gradually from mod-
erate to severe intensities, indicating that the signal character becomes more and more
random (<0.5) until finally an uncorrelated state is reached. These changes in correlation
properties of heart beat dynamics during exercise have been explained by a random walk
model with stochastic feedback (Ivanov et al. 1998; Karasik et al. 2002; Platisa and Gal
2008).

Our own data support and extend these findings as there is a gradual decrease of alpha1
during graded exercise denoted by significant changes compared to the pevious inten-
sity level (**), whereby degree and progression of uncorrelated HR dynamics significantly
differ between trained and untrained subjects (Figure 11.3). Additionally, a crossover phe-
nomenon may be present, as with intensities above 70% VO2peak both trained groups
(medium and high level) show a more pronounced reduction in alpha1 compared to the
untrained state. This is similar to findings from a recent study with a longitudinal design
(Karavirta et al. 2009), as the authors reported a more pronounced reduction of alpha1 at
moderate intensities (equal to 60%–70% of maximum power [Pmax]) after a concurrent
strength and endurance training. Although the underlying mechanism is still not known,
the differences in decay rate of alpha1 may be related to lower intrinsic HRs (IHR) in
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FIGURE 11.3
Short-term scaling exponent alpha1 of the detrended fluctuation analysis (DFA) during incremental exercise
(% VO2max) in athletes of three different aerobic fitness levels (high, medium, and low). *p≤ .05, **p≤ .01 in
comparison to previous intensity level; (a) p≤ .05 between high and low; (b) p≤ .05 between high and medium;
(c) p≤ .05 between low und medium fitness levels (two-way ANOVA [aerobic power × relative intensity] for
repeated measures and Tukey’s honest significant difference (HSD)/Bonferroni used as post hoc test). (Modified
from Hoos, O., Dynamics and Complexity of Heart Rate Regulation During Endurance Exercise, Philipps-Universität
Marburg, Habilitationsschrift, Marburg, 2010.)
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trained subjects corresponding to a later occurrence of peak values in alpha1–intensity
curves during incremental tests as these peak values may be used as a surrogate measure
for IHR (Platisa et al. 2008). More work in this area is needed to further corroborate these
findings and to elucidate physiological mechanisms underlying changes in nonlinear HR
dynamics during exercise.

11.3.3 Detection of HRV Thresholds

Performance diagnostics and training prescription by means of ventilatory and metabolic
thresholds constitute an important field of exercise physiology. In order to detect HRV-
related thresholds during exercise and to prove their relation to the transition from aer-
obic to anaerobic energy resources two different approaches were established. The first
one is straightforward and seeks to determine the exercise intensity at which a plateau of
standard time-dependent measures of HRV (SDNN, RMSSD, or modifications) or param-
eters of the Poincaré plot (SD1) occur (Karapetian et al. 2008; Tulppo et al. 1996). The
verification of this approach for both genders as well as groups of different age and fit-
ness levels led to a commercially available HR device, which derives the lower limit of
an exercise intensity zone for effective aerobic training from the above mentioned HRV
plateau (Laukkanen et al. 1998). More recently, Karapetian et al. (2008) found that the
deflection point of standard time-dependent measures of HRV (SDNN and MSD) with
subsequent plateau formation correlates with the first lactate or ventilatory threshold
(0.82 ≤ r≤ 0.89) during graded exercise. Based on Bland–Altman criteria for comparison
of methods, the HRV threshold provides sufficient agreement with the aerobic thresh-
old from a practical perspective. However, as mentioned earlier, this approach may be
critical in some cases as the HRV plateau develops within a range of low signal-to-noise
ratio.

The second approach is based on advanced time variant spectral methods (Hilbert
transform, short-term Fourier transform [STFT]) and analyses the changes in instan-
taneous HF oscillations during graded exercise and their correlation with ventilatory
parameters (Anosov et al. 2000; Cottin et al. 2006). This approach takes advantage of the
already mentioned strong association of breathing frequency and depth with the instan-
taneous central frequency and power of spectral HF bandwidth of HRV. In healthy sub-
jects and trained athletes, the estimation of both ventilatory thresholds (first ventilatory
or aerobic threshold: VT1, second ventilatory or anaerobic threshold: VT2) by STFT pro-
vides sufficient accuracy (r> 0.9), when the two thresholds of the product of HF peak
(fHF) and spectral power in the extended HF band (0.15 Hz to maximal breathing fre-
quency [bfmax]), which occur with increasing exercise intensity, are determined (Cottin
et al. 2006, 2007). This applies to both treadmill testing as well as cycling when VT1
and VT2 are detected by the Wasserman method investigating breakpoints in minute
ventilation over oxygen uptake (VE/VO2) and minute ventilation over carbon dioxide
output (VE/VCO2)–intensity curves (Wasserman et al. 1973). The second increase of spec-
tral power in HF band is associated with mechanical stimulation of the sinus node and
mechanoelectric feedback mechanisms, respectively (Cottin et al. 2006, 2007). The latest
findings in this field suggest that both methodological approaches cannot be applied to
all subject groups without limitations. However, the time-variant spectral method seems
to be more accurate in patients with cardiac disease and diabetes (Mourot et al. 2012;
Quinart et al. 2014).
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11.4 Postexercise HRV

11.4.1 General Aspects

HRR immediately after exercise characterizes the reduction of HR within a defined period
of time. HRR is functionally related to vagal reactivation as well as sympathetic withdrawal
(Coote 2010) and constitutes an important predictor of mortality (Cole et al. 1999). The
reduction in HR and especially cardiac parasympathetic reactivation following a training
session seem to be associated with the recovery process of different organ systems. There-
fore, it might be used to assess changes in autonomic input to different organs and the
blood flow required to restore homeostasis (Stanley et al. 2013).

Previous studies using pharmacological blockade have confirmed that vagal reactiva-
tion dominates within the first few minutes after exercise (Kannankeril and Goldberger
2002; Kannankeril et al. 2004), whereas a coordinated cardiac sympathovagal interaction
in conjunction with the clearance of circulating catecholamines dominates in the following
minutes and hours of recovery (Coote 2010). HRV analysis of immediate, mid-, and long-
term recovery from exercise may therefore help to gain insight into the sympathovagal
background of exercise recovery and the autonomic responses to different training loads.
Although there is a large body of studies, the heterogeneity of subjects’ fitness levels, exer-
cise intensities, durations, and modalities of the preceding exercise as well as the variety
of methods used for HRV analysis and the corresponding measuring intervals complicate
a systematic comparison of previous findings.

11.4.2 HRV Response to a Single Exercise Bout—Linear and Nonlinear Dynamics

The body of evidence suggests that most time- and frequency-domain HRV measures
(especially SDNN, RMSSD, SD1, SD2, TP, and HF) made during the acute recovery phase
are reduced after low-intensity exercise (Gladwell et al. 2010; Martinmäki and Rusko 2008;
Ng et al. 2009; Parekh and Lee 2005; Seiler et al. 2007; Terziotti et al. 2001). This is even more
pronounced after heavy to severe exercise bouts (Casties et al. 2006; Buchheit et al. 2009;
Kaikkonen et al. 2008, 2010) and endurance competitions (Cornolo et al. 2005; Hautala et al.
2001; Murrell et al. 2007).

HRV indices rise back to or even above baseline values during short-, mid- or long-term
recovery (1 minute to 72 hours). Thereby, the temporal structure of the recovery process
is highly individual. Within 1–4 minutes after all-out exercise, there already is a very
prominent impact of vagal reactivation (Kannankeril et al. 2004). While absolute variabil-
ity is strongly reduced at the beginning of recovery, RMSSD and spectral power in HF
and LF bandwidth and LF/HF ratio increase (Arai et al. 1989; Goldberger et al. 2006;
Martinmäki and Rusko 2008; Perini et al. 1990). From 15 minutes to 1–3 hours, vagal-related
HRV indices further increase and LF/HF ratio decreases (Casties et al. 2006; Cornelissen
et al. 2010; Martinmäki and Rusko 2008; Mourot et al. 2004; Parekh and Lee 2005; Seiler
et al. 2007; Terziotti et al. 2001). Even after intense exercise bouts and endurance competi-
tions, these indices are usually restored within 48–72 hours (Al Haddad et al. 2009; Cornolo
et al. 2005; Murrell et al. 2007; Niewiadomski et al. 2007). Some authors reported an over-
compensation of vagal-related HRV indices after very intense or prolonged exercise when
sufficient recovery time was provided (Hautala et al. 2001; James et al. 2002; Mourot et al.
2004; Terziotti et al. 2001). This rebound effect is directly related to plasma volume adapta-
tions (Buchheit et al. 2009).
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In summary, these findings strongly suggest that HRV recovery is highly influenced by
the interaction of training intensity and duration. Studies investigating both factors clearly
imply that exercise intensity has the highest impact on HRV recovery (Parekh and Lee 2005;
Kaikkonen et al. 2007, 2010; Seiler et al. 2007).

Regarding exercise intensity, the aerobic threshold may denote a threshold for autonomic
nervous system (ANS)/HRV recovery in highly trained athletes (Seiler et al. 2007). Almost
independent from the exercise duration, loads below the aerobic threshold elicit a faster
recovery of the autonomic nervous system than higher exercise intensities (Gladwell et al.
2010; Martinmäki and Rusko 2008). As displayed in Figure 11.4, this notion is further sup-
ported by our own data. In comparison to 20 minutes of light aerobic exercise (E1), 20 min-
utes of exercise at threshold-intensity (E2) significantly extend the suppression of vagal
modulation during acute recovery, while prolonged aerobic exercise (E3) does not. Addi-
tionally, the training method (interval vs. prolonged exercise) may also play an important
role, because in comparison to interval sessions, continuous exercise protocols of similar
intensity and duration (∼ 85% VO2max over 21 minutes) seem to extend the required recov-
ery time (Kaikkonen et al. 2008).

In a recent meta-analysis, Stanley et al. (2013) show generalized vagal recovery kinet-
ics (15 minutes postexercise) after three different exercise intensities (low: below aero-
bic threshold, <70% VO2max; threshold-like: 70%−82% VO2max, high: above anaerobic
threshold >82% VO2max) in relation to pre-exercise baseline levels. Their findings sup-
port the dominant effect of exercise intensity on acute HRV recovery as the authors found
an increase of (A) 116%/hour after low-intensity exercise, (B) 80%/hour after threshold-
intensity exercise, and (C) 40%/hour after high-intensity exercise. In contrast, there was
no clear relationship between exercise duration and cardiac parasympathetic recovery
(Stanley et al. 2013).

Apart from exercise intensity, HRV recovery depends on the individual fitness level. In
this respect, cross-sectional studies found that trained subjects usually show a faster vagal
reactivation after exercise than untrained subjects (Mourot et al. 2004; Seiler et al. 2007). By
using a longitudinal design, Yamamoto et al. (2001) confirmed a faster vagal reactivation
in cyclists after only 1 week of moderate endurance training (at 80% VO2max, 4× 40 min-
utes/week) and a further enhancement of vagal indices of HR after continuing training for
6 weeks.

Figure 11.5 illustrates the generalized influence of different fitness levels (adjusted for
exercise intensity) as recovery time courses of vagal-related HRV measures are differ-
ent between inactive subjects and moderately as well as highly trained athletes. While
postexercise suppression of cardiac parasympathetic activity is nearly diminished after
15 minutes in highly trained subjects, moderately trained athletes and inactive subjects
require at least 40 minutes and 90 minutes, respectively, for a comparable vagal reactiva-
tion (Stanley et al. 2013).

Furthermore, HRV recovery and vagal reactivation are influenced by postexercise recov-
ery conditions. Especially by using an active cool-down (Takahashi et al. 2002), supine
position (Takahashi et al. 2000) and/or cold water immersion (Al Haddad et al. 2010), the
increase of vagal-related HRV indices after exercise is enhanced.

Until now, a general consensus on the nonlinear dynamics of RR intervals during
recovery has not been reached as only a few studies have focused on nonlinear HRV
indices (Casties et al. 2006; Javorka et al. 2002; Platisa and Gal 2008; Platisa et al. 2008).
However, available findings suggest that the short-term scaling exponent alpha1 increases
independently from training status during recovery (Casties et al. 2006; Platisa and Gal
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Time course of heart rate, linear (RMSSD, lnHF) and nonlinear (DFA alpha1) parameters of HRV during
immediate recovery after different exercise protocols in moderately trained athletes (n= 17; VO2peak= 49.9±
7.3 mL/min/kg). E1: 20 minutes below aerobic threshold; E2: 20-minute anaerobic-threshold intensity; E3:
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FIGURE 11.5
Influences of athletes fitness/training status, adjusted for exercise intensity, on mean parasympathetic activity
(± standard deviation) during the acute recovery period (up to 90 minutes). (Reprinted from Stanley, J. et al.,
Sports Med., 43, 1259–1277, 2013. With permission.)

2008; Platisa et al. 2008), whereas this does not apply to alpha2 (Platisa and Gal 2008).
Alpha1 has been reported to return to baseline values after an immediate overcompensa-
tion phase of about 30 minutes (Casties et al. 2006). Similarly, in untrained subjects sample
entropy (SampEn) is first reduced and regularity of RR intervals is increased, but rises
back to baseline after 30 minutes of recovery (Javorka et al. 2002; Platisa et al. 2008). Fur-
thermore, values of the largest Lyapunov exponent and minimum embedding dimension
(MED) remain increased even after 50 minutes of recovery (Casties et al. 2006). These pre-
liminary results suggest that more regulating systems are involved in the reorganization
of heart beat dynamics during recovery than during resting conditions. Further research is
needed to verify this assumption.

11.5 HRV Analysis as a Tool for Prevention of Overtraining

11.5.1 General Aspects

Performance improvements in athletes require frequent expositions to intensive and exten-
sive training stimuli. As a consequence, training-induced fatigue may persist until the
next exercise session. This accumulation of stress is not uncommon in elite athletes and
leads to insufficient recovery/functional overreaching (FOR). Whereas performance may
still remain at high level in this state, it is lower than the athletes’ personal best. In the
event that training is continued without recovery, there is a high possibility of develop-
ing nonfunctional overreaching (NFOR), which goes along with significant performance
deficits (Ackel-D’Elia et al. 2010; Lehmann et al. 1997; Meeusen et al. 2013). In this state,
several weeks or even months of highly dynamic and individual recovery are necessary
to successfully return to a performance- enhancing training period. Regeneration pro-
cesses are characterized by heterochronous reactions of different, interacting organ
systems and biological signals of high complexity and dynamics. Often the overtrain-
ing syndrome (OTS) can only be diagnosed retrospectively. Its symptoms comprise
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performance deficits, persistent fatigue, lack of motivation, mood changes (with depres-
sive periods), muscle pain, loss of appetite, concentration difficulties as well as increased
susceptibility to infections (Budgett 1998; Roose et al. 2009; Shephard 2001). Due to the
wide variety of symptoms, exercise scientists seek to identify early indicators and predic-
tors of risk for the OTS. NFOR, a transient state of overload with decreased performance for
weeks to months, is also known to decrease adrenal sensitivity to adrenocorticotropic hor-
mone (ACTH) (cortisol release), which is closely related to the activity of the autonomous
nervous system (Lehmann et al. 1997). Consequently, frequent assessments of vagal activ-
ity provide high potential for the early detection of FOR and NFOR. Figure 11.6 shows the
relation between training and overtraining in the sense of a training–overtraining contin-
uum including states of functional and NFOR.

11.5.2 Detection of Overreaching and Overtraining via Resting HRV

The OTS has a multifactorial etiology characterized by physiological, psychological, bio-
chemical, neuroendocrine and neurovegetative disturbances. A subtle balance between
exercise stress and recovery is necessary to elicit optimal adaptations and performance
improvements in high-performance athletes. The dose–response relationship between
training load and HRV adaptations was confirmed by a laboratory study with six untrained
subjects (Pichot et al. 2002). The authors showed that overload led to a stagnation
of parasympathetic indices associated to a progressive increase in sympathetic activ-
ity, whereas a recovery week induced a significant rebound of parasympathetic activity.
Sufficient recovery periods are of high importance in competitive sport, because one exer-
cise session with overload does not necessarily affect HRV (Bernardi et al. 1997; Cornolo
et al. 2005; Hautala et al. 2001; Sztajzel et al. 2006). In contrast, frequent or chronic overload
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FIGURE 11.6
Training–overtraining continuum. (Modified from Hottenrott, K. and T. Gronwald, Leistungssport., 5, 9–13, 2014.)
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in training and competition decreases HRV (Earnest et al. 2004; Iellamo et al. 2002). This
offers great potential for the prevention of overtraining, as the use of HRV measure-
ments allow the early detection of functional limitations of the autonomous nervous sys-
tem (Uusitalo 2001). Previous work suggests that changes in vagal activity are related to
altered individual activity levels and training status. In this respect, physical activity corre-
lates inversely with vagal modulation (Hottenrott et al. 2006) and positively with sympa-
thetic activity (Fraga et al. 2007; Mueller 2007). After several weeks of endurance training,
vagal modulation of the HR increases significantly in both untrained subjects and elite
athletes. Similarly, an overload period up to 3 weeks (W1, W2, and W3) can also result in
elevated vagal activity in supine and standing position (Figure 11.7), while the athlete’s
performance is compromised. Recently, Le Meur et al. (2013) showed that vagal activity
in standing position decreased after a recovery week and running performance increased
above initial values in the FOR group, whereas no change was observed in controls.

This state would count as FOR, when performance can be restored to or above baseline
after a short recovery period (1 week). In case of temporarily decreased vagal activity dur-
ing the overload period with subsequent rises in HRV during recovery, the athletes state
has to be determined as FOR, too. This was often observed in highly trained athletes, who
are already characterized by a high vagal activity (Figure 11.8). However, a critical state
is reached, when vagal modulation does not increase despite reductions of training load
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over several days. By retrospective analysis, Plews et al. (2012) showed that this specific
development of HRV indicates NFOR, and competitive performance may be significantly
reduced.

In case the training process is continued without recovery periods, there is a high risk of
developing the OTS. The transition from FOR to NFOR and overtraining is transient and
therefore, the states are difficult to distinguish, especially in elite athletes with high vagal
activity (Buchheit 2014). In order to correctly assess levels of fatigue and regeneration, the
measurement of additional variables/parameters is required.

Example: Cyclist (Master athlete)
The following case (see figure 11.9) illustrates changes of vagal modulation associated

within one week of high training volume. The cyclist (aged 57 years) passes a total of 1100
km in 6 days, which equals 183 km per day. A recovery day was not scheduled during this
training period.

Spectral analysis of baseline values (collected before training) indicated sympathovagal
balance as LF/HF ratio was about 1. After 195 km cycling on the first day of training, a
reduction of HF power was observed during measurement of HRV in supine position on
the next morning. Following the third day of training, vagal HRV indices dropped below
baseline values and the LF/HF ratio rose to 2.2. This ratio further increased to 2.7 after the
fifth day of training (Figure 11.9). At the same time, RMSSD was decreased below baseline
values (21.2 ms vs. 49.0 ms). Until the fifth day of training, the cyclist reported a fatigue
level of 1 (no fatigue) to 2 (low fatigue). Only on the last day, his rating of fatigue increased
to 3 (medium fatigue). This indicates a discrepancy between objectively measured vari-
ables (HRV) and subjective ratings of perceived fatigue. The intensified training period
was followed by 1 week of recovery. After 2 days, an increase of vagal activity was con-
firmed and on the fifth day of recovery baseline values were reached. However, the LF/HF
ratio should only be interpreted when HRV was assessed during standardized breathing
patterns, because varying respiration rates affect spectral power distributions between HF-
and LF-bandwidths, e.g., a low respiration rate may increase LF power and decrease HF
power. In elite athletes, who maintain a high vagal activity (very low resting HR), NFOR
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can hardly be detected by using HRV. This may be at least in part be due to the saturation
effect of vagal-related HRV indices (Kiviniemi et al. 2004) and long-term monitoring with
at least 3 measurements per week are warranted to describe the athletes’ HRV fingerprint
for individual recovery prescriptions (Buchheit 2014).

11.5.3 HRV and Orthostatic Stress—A Diagnostic Tool

First, the orthostatic test requires the athlete to rest for 5–10 minutes in supine position in a
quiet, slightly darkened room. Second, he or she is requested to quickly change into stand-
ing position and to maintain a relaxed posture for 3–5 minutes. Switching from supine
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to upright position imposes stress by gravitational pooling of the blood in the splanchnic
venous reservoir and leg veins (Stewart et al. 2006). Consequently, the autonomic nervous
system is required to maintain the hemodynamics to avoid cerebral hypoperfusion. This
goes along with specific changes of vagal activity, so that the orthostatic stress test provides
a practical method for the detection of overload and overtraining. Figure 11.10 displays
the temporal course of the HR during the orthostatic stress test. Healthy subjects show a
reaction of the sympathetic branch of the ANS, meaning that passive head-up tilt testing
increases HR, while blood pressure decreases. In exercise science, an orthostatic test usu-
ally requires active standing-up, which leads to a higher magnitude of changes in HR and
blood pressure.

In a longitudinal study, Schmitt et al. (2013) recorded RR intervals in standing and supine
position. By using a validated questionnaire, the athlete’s state was either classified as
“fatigue” or “no fatigue.” The authors found that in supine position fatigue was associ-
ated with increased HR, LF/HF and LF in normalized units, while LF, HF, TP and HF in
normalized units decreased. In standing position, HR also increased and LF, HF, and TP
decreased in athletes reporting fatigue. Hence, the orthostatic test can be used to assess the
autonomous nervous system’s response to training.

Based on previous findings (Buchheit 2014; Plews et al. 2012, 2013; Le Meur et al. 2013)
and our own experiences in coaching elite athletes (Hottenrott, 2007), we show a schematic
framework for typical training-induced changes that can be seen in a tachogram during
orthostatic testing. Figure 11.11a displays the HR during orthostatic testing in healthy
athletes with uncompromised performance. The HR is low in supine position and rises
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FIGURE 11.10
Typical tachogram of the heart rate in supine position, active standing-up and standing position. In healthy sub-
jects, spectral power density depicts a ratio of low frequency (LF) to high frequency (HF) of 50%–50% in supine
position and 75%–25% in standing position, respectively. (Modified from Task Force, Circulation., 93, 1043–1065,
1996.)



Heart Rate Variability Analysis in Exercise Physiology 267

Supine (5 min) Standing (3 min) 

Effect of intensive training (HIT)

Effect of intensive and volume training

Effect of high volume training

(a)

(b)

(c)

(d)

H
ea

rt 
ra

te
 (m

in
–1

)

Baseline (healthy, best condition)  

H
ea

rt 
ra

te
 (m

in
–1

)
H

ea
rt 

ra
te

 (m
in

–1
)

H
ea

rt 
ra

te
 (m

in
–1

)

RMSSD

RMSSD

RMSSD

RMSSD

RMSSD

RMSSD

FIGURE 11.11
Training-induced changes of vagally-mediated HRV measures (RMSSD) displayed in a tachogram of orthostatic
testing (schematic diagram). Shaded areas always refer to the reference HR fluctuations from Panel (a). Panel (a)
HR/RMSSD baseline measurement. Panel (b) HR/RMSSD in response to HIT. Panel (c) HR/RMSSD in response
to high intensity and high volume training. Panel (d) HR/RMSSD in response to high volume training.

rapidly during active standing-up. Subsequently, a counter-regulation occurs. When there
is high circulation stability, HR in standing position remains higher than the HR in supine
position. Standing position also induces a threefold to fourfold decrease of vagal HRV
indices from high baseline values (supine position). High-intensity training over sev-
eral days can lead to sympathetic overreaching, which can be identified by increased
HR and decreased vagal activity in both supine and standing position (Figure 11.11b).
Furthermore, high-volume training combined with some intensive sessions induces sim-
ilar changes of baseline values, whereas there is a lower counter-regulatory response.
Consequently, the HR difference between supine and standing position is reduced (Fig-
ure 11.11c). Changes of the tachogram can also be seen after a week of high-volume
training (> 100% of baseline training duration) at low exercise intensity (Figure 11.11d).
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This kind of training may lead to parasympathetic overtraining, which manifests itself
by a low HR and high HRV in both supine and standing position. Due to a high
vagal activity, there is (almost) no HR difference between both positions. The follow-
ing example (see Figure 11.12) illustrates training-induced alterations of the HR and
vagal activity in an orthostatic test (3 minutes in supine position, 2 minutes in standing
position).

Example: female middle- and long-distance runner (TOP 10, Germany)
The V800 HR monitor (Polar Electro) was used to record HRV daily over 5 minutes

in supine position and over 3 minutes in standing position immediately after wak-
ing up over a period of 3 weeks. Collected data were then analyzed with Polar Flow
(www.flow.polar.com). Figure 11.12 displays the elite runner’s (aged 22 years) tachogram
after an overload training period with 24 hours of mountainbike (MTB) training per week
(day 7), 14 hours of MTB and 2 hours of running per week (day 14) as well as a recovery
period including 7 hours of MTB and 3 hours of running (day 21). According to the train-
ing volume, the autonomic nervous system reduces resting HR and increases vagal activity
(supine/standing position: HR = 41 per minute/42 per minute, RMSSD = 188 ms/159 ms).
The athlete did not develop overtraining but FOR, since the reduction of training volume
within the recovery week also decreased vagal modulation to baseline values.

11.6 Optimization of Endurance Training by HRVMonitoring

Long-term performance enhancements require an optimization of the training process. The
precondition is a systematic planning of training frequency, intensity, and duration. How-
ever, the organism’s response to training stimuli is very complex and highly individual, so
that training adjustments according to the individual physical and regenerative capacities
of the athlete are necessary. The aim of controlling regeneration processes by parameters
of HRV is to be able to adequately balance training load and recovery periods in order to
elicit optimal adaptations to training and to avoid overreaching. As the autonomic ner-
vous system is mainly responsible for processing stimuli evoked at rest or during exercise,
it seems reasonable to assess its activity throughout different training periods and to use
this information to control recovery processes. Therefore, Kiviniemi et al. (2007) used an
algorithm to prescribe training loads (low or high intensity) in accordance with the cur-
rent HRV (Figure 11.13). This procedure has proved successful in recreational athletes, but
its applicability in competitive sports remains to be evaluated. The algorithm of HRV is
based on measurements in supine position. In elite athletes, this model may not allow a
sequence of intensive training stimuli, which are necessary to elucidate favorable exercise
adaptations.

Several studies of small sample size confirmed performance benefits after quantifica-
tion of training loads by individual vagal HRV indices. Using a longitudinal design,
Kiviniemi et al. (2007, 2010) also found that training prescriptions based on daily HRV
assessments allow to individualize and optimize training stimuli in both recreational run-
ners (n= 30) and untrained subjects (n= 48). Following a baseline period, the authors used
HF power (in ln ms² after Kiviniemi et al. 2007) or the SD1 value of the Poincaré plot
(after Kiviniemi et al. 2010) to determine whether training has to be adjusted. Whereas an
increase or no change of HRV resulted in high-intensity training, a decrease or decreas-
ing trend (2 days) of HRV indices led to the prescription of no or low-intensity training.

http://www.flow.polar.com
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Start
Low

High

Low

Rest

Rest

High

LowHRV±

HRV±

HRV+

HRV+
HRV+

HRV+

HRV–

HRV–

HRV–

HRV–

FIGURE 11.13
Algorithm of HRV-guided training prescription. The boxes are labeled with training load (High, Low, or Rest),
and decisions are based on changes in HRV. (Adapted from Kiviniemi, M. A. et al., Eur J Appl Physiol., 101, 743–
751, 2007.)

Exercise guided by daily HRV measurements elicited greater improvements in maximal
power output (+6%–8%) than predefined training (Kiviniemi et al. 2007). The authors
also found that HRV-guided training allows the achievement of significant performance
improvements with lower training loads (Kiviniemi et al. 2010).

Another approach for the control of individual recovery processes is based on the assess-
ment of an individual baseline. For this purpose, different methods are discussed next.
First, it is recommended to measure vagal HRV indices (RMMSD, SD1, and HF) daily over
1–2 weeks of recovery training. Alternatively, session-to-session means of HRV indices can
be calculated. This moving average is analyzed in relation to the current daily measure of
HRV and allows the interpretation of the recovery state. However, it is still unclear how
much the values can deviate from the moving average, before an adjustment of training
loads is necessary. For the assessment of the individual baseline, it is not recommended to
use this method during an overload period. Following this measurement of baseline val-
ues, the athlete can start the scheduled training program. Regular assessments are used to
track HRV changes in relation to baseline values. This allows the coach to intervene and
adjust the individual training scheme in order to provoke favorable adaptations. However,
day-to-day changes of HRV have to be interpreted with caution and should not be used as
basis for training adjustments.

Plews et al. (2012, 2013) found that HRV values averaged over 1 week provide a supe-
rior representation of training-induced changes than HRV values taken on a single day.
In trained athletes, HRV values averaged over 3 days and 7 days both provide accurate
information on the training state. In contrast, recreationally athletes need at least 5 days
of averaging, because their day-to-day variations in Ln RMSSD values are high (Plews et
al. 2012). However, there is some uncertainty about when the deviation of HRV from base-
line indicates a need for training adjustment. In this respect, Buchheit (2014) recommend
to consider HRV changes greater than the smallest worthwhile change (SWC) to be mean-
ingful. Generally a third of within-athlete variation is determined as SWC, while coeffici-
ents of variation of 0.9, 1.6, and 2.5 count as moderate, large, and very large changes
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(Hopkins et al. 2009). This formula cannot be transferred to every athlete, because the
appropriate magnitude of SWC is very complex and highly depends on the training con-
text. For more information on its determination, the reader may be referred to the review
by Buchheit (2014). Another approach for the detection of meaningful HRV changes to
justify training adjustments is proposed by Kiviniemi et al. (2007). The authors used the
difference between the standard deviation of the 10-day HF power and the 10-day average
HF power as daily reference value, which moves day by day over the training period.
When the daily value is lower than the reference value for two successive days, HF
power is defined as decreased. At this point, the coach is expected to intervene and adjust
training load.

The definition and standardization of thresholds, which indicate a need to change the
training load, are challenging and require further research. Nevertheless, changes of HRV
indices allow determining when the athlete should perform low- or high-intensity training
(Figure 11.14). Increases in vagal-related HRV during peak volume-based training loads
may be interpreted as positive adaption to training and reductions as a result of the taper
are potentially a sign of readiness to perform (Plews et al. 2014). When training adaptations
are monitored via HRV, it is necessary to consider the athlete’s individual training phase.
For example, strong fatigue can be tolerated during the preparation period, as there is
sufficient time for recovery. In contrast, HRV changes occurring during the competition
period require the coach to quickly adjust the training load.

Our own studies have shown that not only trained athletes, but also recreational
runners benefit from training guided by HRV measurements. A HRV-based program
included in portable training computers significantly improved maximal oxygen uptake
and velocity at the individual anaerobic threshold (Hottenrott et al. 2014). Despite the
progression of exercise intensity, no mood disturbances occurred over the intervention
period. However, the monitoring of the training status should not be restricted to HRV
measurements as this cannot inform on all aspects of wellness, fatigue, and performance.
Buchheit (2014) therefore recommends the use of HRV assessments in combination with

HRV
Individual

baseline values
(RMSSD, HF, SD1)

Recovery period
or

Moderate training
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FIGURE 11.14
Schematic representation of changes in vagal HRV indices in relation to baseline (8–14 days; regenerative/mod-
erate training) over the training period (daily assessments of RMSSD, HF power, SD1).
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daily training logs, psychometric questionnaires, and noninvasive, cost-effective perfor-
mance tests.

Moreover, activities of daily living and sleep patterns should be considered when HRV
in orthostatic tests is interpreted. This can easily be realized by continous measurement of
HR and HRV by HR monitors, such as the V800 (Figure 11.15).

In conclusion, HRV index RMSSD is a sensitive parameter, which allows the detection
of changes in autonomic regulation elicited by endurance training. Ideally, data for analy-
sis should be recorded with a standardized measurement at rest (over a period of at least
5 minutes) shortly after awakening. For the differentiation of FOR from NFOR, we rec-
ommend to use the orthostatic test, because it may be considered as an adequate tool for
assessing both states. During training periods of high-volume or high-intensity, daily HRV
measurements are advised to adjust training loads based on the athlete’s individual func-
tional state. For training periods of moderate intensity, weekly HRV assessments are sug-
gested to provide sufficient information on exercise-related stress. In competitive sports,
HRV should be measured regularly throughout the year to control the athlete’s response to
different training stimuli, allowing the assessment of individual recovery profiles. Whereas
more frequent measurements are recommended in the transition and competitive phase of
endurance training, a few weekly HRV assessments may be sufficient during the prepara-
tory phase.

7 h 31 min 6 h 44 min 3 h 35 min 2 h 25 min 3 h 43
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FIGURE 11.15
Sleep, rest, and activity of the runner on the seventh day (see Figure 11.12) of training (Polar V800).
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11.7 Summary

In exercise physiology, HRV analysis is considered a useful noninvasive tool for assessing
autonomic modulation of heart rate (HR) during rest, exercise, and recovery. Addition-
ally, HRV is being investigated as a descriptive and diagnostic tool for monitoring indi-
vidual adaptations to short- and long-term training regimens as well as for the detection of
overreaching and overtraining phenomena. At first, this chapter describes evident baseline
changes in HRV due to endurance training referring to both cross-sectional and longitudi-
nal studies. Afterwards, typical changes in HRV variables during exercise and recovery
are presented, and it is shown how these changes are related to training load, exercise
capacity, and/or training status, respectively. In this context, data on dose–response rela-
tions between exercise training and HRV improvement are reviewed and present analysis
methods for HRV-derived threshold detection are shown. Additionally, potentials and con-
straints of the most frequently used time-domain, frequency-domain, and nonlinear meth-
ods are mentioned. Finally, recent perspectives of HRV indices as a tool for prevention of
overreaching and overtraining as well as for individual day-to-day training monitoring are
critically discussed.
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12.1 Introduction

Brain injuries including stroke often require extensive cognitive and physical rehabilita-
tion. Active mental engagement and a positive emotional state are prerequisites for optimal
learning in the rehabilitation of stroke patients. Stroke often affects aspects of gait requir-
ing balance and gait therapy using robot-assisted devices. Ideal cognitive and physical
training conditions are an important prerequisite to obtain optimal robot-assisted thera-
peutic outcomes. Key factors for successful therapy include design of the rehabilitation
task, attention to stress, and the psychological state of patients during robot-assisted gait
therapy. Although the latter is difficult to gauge in real time, patient stress or anxiety can
be inferred from heart rate variability (HRV). This chapter examines the design of robot-
assisted therapy and the effect on HRV of increasing task difficulty. Learning to use a
robot-assisted device for walking is influenced by the level of motivation or stress expe-
rienced by patients. If patients are overchallenged, they may withdraw and have difficulty
learning the task. Psychological tests cannot be conducted while patients are strapped into
the robot-assisted devices and hence alternative measures need to be considered to obtain
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information in real time on cognitive and psychological function. The regulation of heart
rate by the autonomic nervous system is characterized by reciprocal connections to the cor-
tex and deeper cerebral hemisphere (subcortical) structures and thus measures of HRV can
be used as an indicator of cognitive involvement. Using our new method, we process the
psychological state data in real time. We introduce HRV analysis as a first step toward real-
time, auto-adaptive gait training with management of subject engagement. Our method
has the potential to improve rehabilitation results by optimally challenging the patient at
all stages of neurorehabilitation.

Adaptation to a task has been shown to be associated with acute stress response depend-
ing on the nature and difficulty of the task (McEwen 2007). The biological basis for task-
induced stress is outlined by the cognitive-relational theory of stress, coping, and emotions.
The theory emphasizes the continuous interaction between the person’s resources and their
perception of the environment. This reciprocal interaction therefore plays a central role in
neurorehabilitation where the environmental stressor may stay constant for some time as
is the case in gait rehabilitation but the patients’ perception of the task, motivation, coping
mechanisms, and physical capacity of the patients’ abilities may be continuously changing
(Lazarus and Folkman 1987). As such, functional change depends on the patients’ sense
of control. The engagement with the task and the motivation is linked to patients’ coping
mechanisms. If the patients perceive the task to be manageable, of benefit, and within the
constraints of their self-perceived limitation then the engagement with the task is enhanced
(Maddux 1995). HRV is a function of higher cortical, subcortical, and brainstem output; the
lower spinal cord (past T2) is not involved in heart rate regulation.

12.2 Neurobiology of Stroke and Stroke Rehabilitation

Cardiovascular diseases, genetic vascular abnormalities, infectious diseases, trauma,
anoxia, and other conditions can result in central or peripheral nervous system injury. Cen-
tral or peripheral nervous system injury such as stroke, traumatic brain injury (TBI), spinal
cord injury (SCI), Guillain–Barré syndrome (GBS), or cerebral palsy (CP) can result in phys-
ical impairments requiring rehabilitation (Roberts 1970a,b). Stroke results in injury to the
brain and often in sensory and/or motor impairments including paralysis on one side of
the body (hemiplegia), as well as changes in metabolic regulation by the endocrine sys-
tem and autonomic nervous system (Crandall and Wilson 2015; Han et al. 2015; Takahashi
et al. 2015). This effect is due to connectivity patterns emanating from cortical areas and
interacting with the amygdala and hypothalamus located in the cerebral hemispheres and
brainstem, where the output from autonomic nervous system fibers is regulated (Liberini
et al. 1994; Liutkiene et al. 2007). Importantly, there are also retrograde pathways from
peripheral receptors in the blood vessels and heart that reach subcortical and cortical areas
(Viltart et al. 2003; Cao et al. 2004).

The goal of rehabilitation is to reduce motor-related impairments, increase participation
in activities of daily living, and improve quality of life. Spontaneous recovery of motor
skills from stroke plateaus at about 3 months depending on location and level of impair-
ment (Stinear and Byblow 2014). Rehabilitation-based improvements beyond spontaneous
recovery have been demonstrated in poststroke patients inspiring research and applica-
tion of long-term therapies. Ideal training conditions and level of rehabilitation have yet to
be established for various rehabilitation programs especially in the diverse area of stroke
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rehabilitation and robot-assisted device implementation. A particularly difficult part of
rehabilitation assessment is obtaining an indicator of active mental engagement, which
is important for successful outcomes.

The majority of patients in stroke rehabilitation suffer from diffuse and complex comor-
bidities including but not limited to cardiovascular disease. Stroke patients exhibit differ-
ent performance in cognitive and mental activities depending on the location and severity
of the neurological impairment and task requirements. For example, stroke patients often
respond better to implicit rather than explicit task conditions. That is, explicit strategies
are often overridden by the motor planning system, which implements implicit adaptation
independent of the type task or location of lesion (Boyd and Winstein 2006; Mazzoni and
Krakauer 2006). In addition stroke patients are frequently prescribed a medication reg-
imen to address the underlying cardiovascular disease, depression, or anxiety (Paolucci
2008; Law et al. 2009). Injury to the cortex, cerebral hemispheres, or brainstem causes spe-
cific characteristic changes in cognitive function and affects the autonomic nervous sys-
tem. The response to exercise and mental exertion is characterized by a type of push-pull
model where cortical and subcortical activity models peripheral responses and autonomic
function and peripheral and autonomic responses affect cortical and subcortical function
(Thayer et al. 2012; Porges 2001).

12.3 Stroke and the Autonomic Nervous System

Many studies have investigated the statistics of HRV (Ivanov et al. 1999; Pagani et al.
1986, 1995b; Pincus and Goldberger 1994; Stein et al. 2005; Struzik et al. 2004; Teich et al.
2001; TFESC 1996; Tulppo and Huikuri 2004; Valenza et al. 2012; Wessel et al. 2000a,b;
Yamamoto and Hughson 1991). HRV can help identify persons at risk for adverse cardiac
events (Huikuri et al. 1993; Lombardi et al. 2001; Makimattila et al. 2000; Lake et al. 2002).
HRV can also be instrumental in identifying emotional response (Lane et al. 2009; McCraty
et al. 1995; Quintana et al. 2012). Recently, HRV and heart rate asymmetry (HRA) have also
been used to identify mental engagement during tasks (Koenig et al. 2011a,b; Jelinek et al.
2011a,b). In stroke patients, the impaired autonomic nervous system modulation is charac-
terized by an increase in sympathetic output, which leads to a lower HRV (Lakusic et al.
2003, 2005). Although the magnitude of HRV is influenced by differences in underlying
illness or injury or a result of therapies including medications, HRV reflects adaptation of
the organism to physical, cognitive, and emotional conditions (Thayer et al. 2009).

HRV recorded as time or frequency measures or as the complexity of the displayed
rhythm can be determined from electrocardiogram (ECG) recordings of varying length.
Measures of complexity of the heart rate include fractal analysis, detrended fluctuation
analysis, diverse entropy measures, measures derived from the Poincaré plot, and sym-
bolic dynamics (Abásolo et al. 2006; Costa et al. 2002; Peng et al. 1995; Acharya et al. 2006;
Voss et al. 2009; Tulppo et al. 1996; Higuchi 1998; Huikuri et al. 2003). Several novel HRV
features have been developed by our laboratory including the tone–entropy, complex cor-
relation measure, asymmetry index, and multilag Poincaré analysis (Karmakar et al. 2009;
Karmakar et al. 2011; Khandoker et al. 2009b). HRV can also act as a physiological proxy
measurement tool that measures cognitive and emotional engagement and has been shown
to respond to mental and physical stress (Andreassi 2007; Thayer et al. 2009; Matthews et al.
2012; de la Cruz Torres et al. 2008; Delaney and Brodie 2000).
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12.4 Design of the Rehabilitation Task

The use of technology in stroke rehabilitation raises many questions around the design
and the user experience. How will older people, who may never have used a computer
or played video games, interact with such new modes of health delivery using such tech-
nologies? What are the elements of the design of a rehabilitation task that will define the
user experience to encourage participation? Learning and exercise can be exceptionally
challenging for stroke patients (Jelinek et al. 2011b). It is important for rehabilitation and
exercise to be safe, but also to provide a positive experience for the patient. For example,
Bailenson argues that designing an avatar that represents the positive aspects of a player
in immersive virtual reality “transformed self-esteem and social self-perception” (Lanier
2010).

To address the future needs of the applied health sector such as is the case for neu-
rological rehabilitation, home programs, and eMonitoring, where extensive information
technology (IT) and virtual reality-based therapies are found, it is essential that design
works more closely with IT (Minichiello 2012). The use of experiential graphic design
(XGD), which involves the orchestration of moving images, animation, games, graphics,
big data imaging, and typography will be applied to solve difficult problems, in partic-
ular complex health problems known as “wicked problems.” This is a term first used by
Rittel and Webber to frame difficult challenges in social policy and planning (Rittel and
Webber 1984). However, wicked problems have also arisen in domains where complexity
and diversity exist such as health and well-being. Addressing these issues will require a
combination of design and technology working in collaboration. This has been referred
to as “supra-functionality” (McDonagh et al. 2002). Increasingly, these aims are being
addressed through combining traditional approaches with XGD. This involves the use of
digital technologies and design thinking applied in developing and enhancing systems
that present dynamic content through motion graphics and make possible rich interactions
between users and information, in real or virtual spaces.

This will be further advanced by the application of human-centered design to investigate
the relationship between the patient in relation to the interface of products or experience.
Using a range of approaches including digital services, lifestyle modeling, visualization,
and illustration of data and scientific phenomena using codesign and empathetic design
strategies. Empathetic design is the key to the future effectiveness of health systems. While
a great deal of the past has been focused on clinical practices led by health workers, it is
clear that the future requires a different approach with a combination of clinical thinking
and human-centered empathetic design that will enable more self-management of health.
This approach is concerned with understanding the needs of the user in developing an
empathetic design, product, or experience (Krznaric 2014). By combining design practice
and investigative design methodologies with IT, positive experiences can be enhanced
using integrated biofeedback such as continuous HRV monitoring to change the landscape
of virtual reality.

Selection for rehabilitation should thus identify patients that would benefit most in
terms of their neurological impairment and retraining improved functionality with a suit-
able training protocol. In addition, measures that can inform the clinician of any risk for
the individual, such as a sluggish or rapid response to abrupt changes or specific chal-
lenges (cognitive, emotional, and exercise) would improve safety for the patient. Driven
gait orthosis (DGO)-based neurorehabilitation technology such as the Lokomat (Hocoma,
Switzerland) is an exoskeleton used for gait and locomotion training. The Lokomat is
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designed to assist patients with lower limb movement and provide body weight support.
The speed of the system can be kept constant and cadence adjusted to suit the patient.

12.5 The Virtual Environmental Task

The virtual environmental task (VET), which sets the exercise or gait and balance require-
ments, can be viewed on monitors with auditory information projected from speakers.
The VET tasks chosen for the current Lokomat robot-assisted neurorehabilitation required
simultaneous mechanical adjustment by changing the walking direction to collect items
presented along a path and cognitive processing using a computer mouse button to nego-
tiate over barrels that were rolled toward the patient along the virtual path shown on
the monitor. Points were obtained or lost for successfully negotiating the path and pick-
ing up items or failing to complete the task (Koenig et al. 2011b). VET difficulty was
specific for each participant and initially determined during a practice session using the
self-assessment manikin (SAM) questionnaire (Bradley and Lang 1994). Three levels of
difficulty were applied consisting of an underchallenged, optimally challenged, and over-
challenged task condition. SAM was used to verify that the three conditions in the VR
tasks equated with the three motivational stages (boredom, excitement, and overstressed).
The underchallenged condition allowed the participant to collect and jump all items. For
the appropriately challenged condition patients were expected to complete 80%–90% of the
assigned task and for the overchallenged condition less than 10%. Each condition lasted
5 minutes.

12.6 Physiological Recordings

The different levels of mental engagement were also estimated by recording of ECG traces
and determining HRV. The ECG was measured using a lead-II configuration at 512
samples/sec. R wave peaks were determined using the algorithm first suggested by
Tomkins (Hamilton and Tompkins 1986). Interbeat variation and complexity was
determined from the ECG by time-domain, frequency-domain, and nonlinear methods
(Khandoker et al. 2009a; Oida et al. 1999; Osipova et al. 2010). All signal processing was per-
formed using MATLABⓇ 2008 (The Mathworks, Natick, MA, USA, www.mathworks.com).

12.7 Cognitive Engagement

In rehabilitation, the measurement of interest is a measurement that reveals information
about the condition of the patient and how the patient responds to the rehabilitation tasks
and environment. In this situation, information about healthy participants might be used
to help understand how a person differs in their adaptation to an increasing physical and
mental task difficulty level. Since direct measures of brain activity are not possible while
undertaking robot-assisted tasks and psychological questionnaires need to be completed
at completion of the task, HRV measures can be used to directly obtain information on

http://www.mathworks.com
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how participants adapt to a task level over time (Thayer et al. 2012; Quintana et al. 2012;
Schubert et al. 2009; Alm 2004; Porges 1995; Pagani et al. 1991). This is an important com-
ponent of neurophysiological and neuropsychological rehabilitation as the adaptive phase
of mental and physical exertion provides more accurate information on the capacity of the
system, which is hidden in part when the system reaches steady state.

12.8 Adaptation to Task Difficulty

To obtain an indication of whether the HRV can identify changes in motivation associated
with the difficulty of task, seven healthy participants (mean age 24.1± 2.0 years) with no
neurological and physiological impairment were enrolled in a study to investigate adapta-
tion to task difficulty using HRV as a surrogate for mental engagement, applying time and
frequency domain as well as Poincaré plot-derived features (Jelinek et al. 2011b). From the
5-minute recording for each task difficulty, the steady state was set as being the last minute
of each recording and the adaptation to the task as the difference between the last minute of
the current condition and the first minute of the following condition (Koenig et al. 2011b).
In this study, Poincaré plot-derived features were of main interest to identify temporal
characteristics of HRV. The complex correlation method (CCM) was first proposed by
Karmakar and colleagues based on the Poincaré plot description of plotting consecutive
points of RR interval time series (i.e., lag-1 plot) to address the lack of temporal informa-
tion available from the standard descriptors of the Poincaré plot (Karmakar et al. 2011). The
standard descriptors, SD1 and SD2, represent the distribution of signal in two-dimensional
space and carries only information of width and length. CCM describes the variability in
the temporal attributes of the point-to-point variation inherent in the signal rather than a
gross description of the Poincaré plot.

If the Poincaré plot is composed of N points, then the temporal variation of the plot is
composed of all overlapping three-point windows and can be calculated as

CCM(m) = 1
Cn(N− 2)

N−2
∑

i=1

‖A(i)‖ (12.1)

where m represents lag of Poincaré plot, A(i) represents area of the ith triangle, and Cn is
the normalizing constant, defined as Cn =π× SD1× SD2, which represents the area of the
fitted ellipse over Poincaré plot at lag m. The length of the major and minor axes of the
ellipse are 2SD1 and 2SD2, where SD1 and SD2 are the dispersion perpendicular to the line
of identity (minor axis) and along the line of identity (major axis), respectively. Details on
the mathematical formulation of CCM are reported in our previous study (Karmakar et al.
2009).

An increase in the CCM value most likely indicates an increase in parasympathetic activ-
ity, especially if other features including RMSSD or SD1 are also increased. Only SD1 and
CCM differentiated between the level of difficulty in terms of adaptation, suggesting a
rapid response by the parasympathetic nervous system (PNS) to task difficulty from stand-
ing to walking and transition from the underchallenged to appropriate challenged task
level (Figure 12.1). The PNS output is regulated centrally from the prefrontal cortex via the
brainstem and therefore both SD1 and CCM, which provide information on HRV, provide
information on the level of cortical engagement. That is, a change in cortical responsiveness
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FIGURE 12.1
Gradient of changes of different HRV parameters. SDNN, standard deviation of RR intervals; RMSSD, square
root of the mean squared differences of successive normal RR intervals; HFn, normalized high-frequency
power; SD1, Poincaré short-time correlation parameter; CCM, complex correlation measure of Poincaré plot;
Transition 1, standing to walking; Transition 2, walking to underchallenged; Transition 3, underchallenged to
challenged; Transition 4, challenged to overchallenged. Transitions between standing to walking and underchal-
lenged to challenged show significant difference at p< .05.

and engagement, as is expected when novel tasks are presented to a subject, will change
parasympathetic output and HRV.

The advantages of using a Poincaré plot and its SD1 measure and CCM is that these vari-
ables are robust against nonstationarity, and against the effects of respiration and ectopic
beats on the ECG signal (Karmakar et al. 2010, 2011). Parasympathetic input to the HRV
signal decreases when physical exercise is undertaken or an external or internal stressor is
present. Stress decreases function in certain parts of the cortex linked to parasympathetic
function (Broadbent 1971; Kim et al. 2006). The decrease in parasympathetic input leads
to sympathetic dominance and a decrease in HRV (Srinivasan et al. 2006). We found that
the level of challenge is important in how the patient or participant responds to the task
and possibly reflects mental engagement as a function of stress, which in turn is reflected
by changes in HRV. Standing to walking and underchallenged to challenged transitions
brought about the largest change in HRV. Initial conditions of inactivity prior to the exercise
session might be partially responsible for the large adaptation observed in the standing to
walking transition. Similarly, the transition from underchallenged to challenged increases
motivation and cortical activity and therefore the HRV. Further the level of adaptation
dropped for challenged to overchallenged for both SD1 and CCM features as described
above and back toward the walking to underchallenged transition level. This may be due
to the increased physical or cognitive stress associated with the overchallenged condition,
both of which would result in a parasympathetic withdrawal and therefore a lower HRV.

From a corticocardiac reciprocal connectivity perspective, we propose that HRV is linked
to cortical as well as brainstem modulation with the prefrontal cortex having an inhibitory
influence on brainstem nuclei, which in turn inhibits parasympathetic output and therefore
the level of HRV (Porges 2007; Thayer and Lane 2009). The decrease in SD1 and CCM when
the overchallenged condition commenced indicates a withdrawal of the frontal cortex and
emotional positive output. Therefore, the inhibitory output to the brainstem is reduced
leading to an increased inhibition of the parasympathetic output and therefore a balance
toward sympathetic drive and a decrease in HRV as the polyvagal theory has suggested
(Porges 2007).
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12.9 HRV Asymmetry Response to Task Difficulty

A different perspective on adaptation to a task and level of mental engagement can be
obtained by inspecting HRA. HRV is the net outcome of sympathetic (sympathetic nervous
system [SNS]) and parasympathetic (PNS) input to the heart. While SNS input increases
heart rate and decreases HRV, PNS lowers the heart rate and increases HRV. Physiologi-
cally, there is always some variability in the heart rate, due to the imbalance in SNS and
PNS activity levels. The speed at which the heart rate increases or decreases is variable,
which implies that the periods of increasing or decreasing RR interval are also not equal.
As a result, HRA, which reflects the rate at which HR changes, should be a common phe-
nomenon present in the healthy heart, which is reported by Piskorski and Guzik (2007) and
Porta et al. (2008).

The HRA index proposed by Karmakar differs from previous implementations by defin-
ing asymmetry from a geometrical point of view by considering a pattern rather than sin-
gle points of the Poincaré plot (previously used by Guzik et al. [2007] to categorize a point
either as increasing, decreasing, or stable with respect to the previous point and it cap-
tured HRA). Using Shannon entropy to determine HRA, the RR intervals are determined
from the ECG and transformed into the percentage index (PI) and entropy is then deter-
mined from the PI probability distribution by using Shannon’s formula (Oida et al. 1999;
Khandoker et al. 2010). Acceleration of the heart can be expressed as a plus difference and
deceleration as a minus difference by separating the PI distributions into two components.
HRA can then be calculated from the entropy of the positive and negative differences of PI
time series as shown in the following:

HRA=
Entropy of the positive difference part of the PI time series

Total entropy of PI time series

The entropy is defined on the PI probability distribution by using Shannon’s formula:

−
∑

n
p(i)log2 p(i) (12.2)

where p(i) is the probability that PI(n) has a value in the range I <PI(n)< i+ 1, with i an
integer. The entropy evaluates total acceleration–deceleration activities.

No significant difference between the small group of control and stroke patients was
observed for any of the experimental task difficulties. However, the data do indicate the
difference in autonomic nervous system modulation between the stroke and control par-
ticipants with respect to task difficulty (Figure 12.2).

In Figure 12.2, values greater than 0.5 indicate sympathetic influence and acceleration
of the heart rate, whereas values below 0.5 indicate parasympathetic influence and slow-
ing of the heart rate. HRA is a function of the level of sympathetic and parasympathetic
input, which changes when physical exercise is undertaken or an external or internal stres-
sor is present (Kim et al. 2006; Srinivasan et al. 2006). The pilot results shown here are
interesting as at the resting stage stroke patients had a slightly increased sympathetic tone.
Sympathetic activity is increased with increased stress, which may be due to inappropri-
ate anticipation of the robot-assisted tasks ahead. Control subjects had a slightly greater
parasympathetic output as would be expected at rest (Amarenco et al. 2010). The change in
task condition from standing to optimal challenged task difficulty led to a steady increase
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Change in the pattern of HRA.

in parasympathetic predominance in the stroke patients suggesting a possible decreased
motivation in contrast to the controls, who showed an increased sympathetic activity with
increases in task difficulty (Figure 12.2). Task preparation has been suggested to be asso-
ciated with attention or engagement, which may indicate that stroke patients required a
greater preparation response, that is, greater prefrontal cortical activation that leads to an
inhibition of the subcortical sympathoexcitation (Thayer and Lane 2009). The augmenta-
tion of parasympathetic activity in the poststroke patients can also lead to bradycardia
or asystole and sudden cardiac death (Olshansky et al. 2008). When working with stroke
patients and assessing task difficulty effectiveness by applying HRV analysis, the loca-
tion of the stroke plays an important part and may have influenced the results reported
above.

12.10 Stroke Location

We used a 1-minute recording either at the end of the 5-minute task period, which repre-
sented the steady state or the first minute after the task was changed to determine adap-
tation. Stroke patients were divided into subgroups to represent the site of the lesion as
cortical, subcortical including and spinal cord as well as including encephalitis-related
lesions. Entropy was used as a HRV tool to measure the level of task engagement by
patients with stroke and controls during Lokomat robot-assisted gait rehabilitation cou-
pled with a virtual reality task setting (Koenig et al. 2011b). Recent results indicate signifi-
cant differences in the adaptation response between poststroke patient groups depending
on the challenge difficulty (Jelinek et al. 2014). The opposite responses in cortical stroke
and subcortical stroke patients was striking, indicating that cortical stroke patients may be
more stressed due to any change in condition and therefore display a large sympathetic
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surge not seen in the other groups, although spinal and subcortical patient groups had a
large reduction in entropy. This reduction in HRV in the patient group may indicate a lack
of engagement on the task and differs to the control group.

Similarly, adaptation to task condition differed in the patient groups when the change
was from appropriately challenged to overchallenged. The control group showed decrease
in entropy and therefore an increase in sympathetic activity. However, the cortical stroke
group had a lower entropy, indicating that this group may be indeed overchallenged and
not able to respond to the task. In both the subcortical and spinal cord groups HRV entropy
response was more than double that of the control group, which indicates that this group
is extremely challenged.

Our results indicate that HRV entropy is a suitable measure to characterize post-
stroke rehabilitation adaptation to varying challenges in robot-assisted neurorehabilitation.
Seven healthy subjects (mean age 24.1± 2.0 years) with no neurological and physiologi-
cal impairment, three right middle cerebral artery stroke patients (mean age 60.3± 8.6),
three subcortical patients (mean age 42.6± 20.1), and three spinal cord patients (mean age
52.6± 29.6) participated in the study. Two patients in the cortical group and one in the sub-
cortical group were on beta-blocker medication. Time post infarct ranged from 1 month to
21 months.

Results for entropy with respect to adapting from the underchallenged condition to an
appropriately challenged condition indicated that entropy in stroke patients increased,
indicating a sympathetic surge, while in spinal cord and subcortical stroke, entropy
decreased over the 1-minute adaption period following the change in condition. The con-
trol group showed no real change in entropy (Table 12.1).

Adaptation response from the appropriate challenged condition to overchallenged
showed that the cortical stroke patients had the least decrease in HRV entropy and there-
fore the least increase in heart rate accelerations. The subcortical stroke group had the
largest decrease in HRV entropy and therefore the most increased sympathetic activity.
The response of both the subcortical stroke and spinal cord groups was larger than the
control group (Table 12.1).

Significant differences were found between the groups comparing the underchallenged
to appropriately challenged condition (p= .026) and also for the change between the appro-
priately challenged to overchallenged condition (p= .027).

Substantial differences between the patient groups were observed for age and also for
time since incident. The cortical stroke patients were the oldest, whereas the subcortical
stroke patients were younger. However, in the spinal cord group, one patient was 19 years
old compared to the other two patients (64 and 75 years). The cortical stroke patients had
the least time since the incident (4± 2.7 months); the spinal cord group had approximately
double that time (8.1± 11 months), and the subcortical group the longest time since the
incident (15.1± 19 months).

TABLE 12.1

Heart Rate Asymmetry at Different Stages

Stage Transition Cortical Stroke Subcortical Stroke Spinal Cord Control

S3–S4 0.27± 0.6 0.57± 0.34 0.45± 0.1 0.04± 0.05
S4–S5 0.13± 0.1 0.4± 0.2 0.37± 0.1 0.18± 0.05

S3, underchallenged; S4, appropriately challenged; S5, overchallenged.
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12.11 Discussion

Robot-assisted training is an important component of neural rehabilitation and requires
motivation and mental engagement for optimal task execution. In a previous report, we
showed that healthy subjects differ in their steady-state outcome to different levels of
physical–mental stimulation tasks as measured by HRV, respiration rate, and skin conduc-
tance level when steady state was reached for each of the three levels of challenge (Koenig
et al. 2011b).

Cortical responsiveness and engagement, as indicated by the level of HRV, is an impor-
tant component in any rehabilitation exercise and possibly more difficult in poststroke
patients where adaptation to the task is an important attribute that translates into the extent
of motivation. Stipulating a corticocardiac axis allows the inference that changes in HRV
reflect cortical arousal and motivation to a task. Adaptation to task difficulty is clearly a
reflection of mental engagement and identifiable by HRV analysis as shown in control sub-
jects, where SD1 and CCM both increased significantly from rest only while transitioning
from an underchallenged condition to an appropriately challenged condition. Appropriate
cortical activity is an important component of neurophysiological and neuropsychological
rehabilitation as the adaptive phase of mental and physical exertion when a novel task is
presented provides more accurate information on the capacity of the system, which is hid-
den in part when the system reaches steady state. The advantages of using a Poincaré plot
and its SD1 measure and CCM is that these variables are robust against the nonstationarity,
respiration, and ectopics of the ECG signal (Karmakar et al. 2010, 2011).

Importantly, we found that the level of challenge is important in how HRV changes and
reflects possible cortical activity. Standing to walking and underchallenged to challenged
transitions brought about the largest cortical response. Initial conditions of inactivity prior
to the exercise session might be partially responsible for the large adaptation observed
in the standing to walking transition. Similarly the transition from underchallenged to
challenged increases motivation and cortical activity and therefore the HRV. Further, the
level of adaptation dropped for challenged to overchallenged for both SD1 and CCM back
toward the walking to underchallenged transition level. This may be due to physical or
cognitive stress, both of which would result in a parasympathetic withdrawal and therefore
a lower HRV. HRV is linked to cortical as well as brainstem modulation with the prefrontal
cortex having an inhibitory influence on brainstem nuclei, which in turn inhibits parasym-
pathetic output and therefore the level of HRV (Thayer and Lane 2009). The decrease in
SD1 and CCM when the overchallenged condition commenced indicates a withdrawal of
the frontal cortex and emotional positive output. Therefore, the inhibitory output to the
brainstem is reduced leading to increased inhibition of the parasympathetic output and
therefore a balance toward sympathetic drive and a decrease in HRV.
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13.1 Introduction

This chapter discusses heart rate variability (HRV) analysis as a tool to identify improve-
ment in cardiac function following cardiac rehabilitation (CR). Two main themes are dis-
cussed. The use of the Borg Relative Perceived Exertion (RPE) scale and the 6-minute walk
test (6MWT) are reviewed as tools for setting an appropriate level of exercise intensity and
quantifying the effectiveness of CR, respectively. Cardiac functional changes using HRV
are compared following CR and either coronary artery bypass grafting (CABG) or percu-
taneous coronary angioplasty intervention (PCI) when exercise intensity was based on the
more traditional assessment for setting exercise intensity using maximal oxygen uptake
(VO2 max).

13.2 Cardiovascular Disease and CR Programs

Cardiovascular disease (CVD) remains the most significant health issue in Australia and
worldwide (Australian Institute of Health and Welfare 2004; Wang et al. 2012). CR pro-
grams were developed as a means of slowing CVD progression and the associated health
burden (Taylor et al. 2004). The ability of CR interventions to directly reduce the incidence
of mortality in those with CVD has been widely documented (Giannuzzi et al. 2003; Leon
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et al. 2005; Taylor et al. 2004). Recently, Suaya et al. (2009) found a consistent reduction
in the mortality over 5 years of patients who enrolled into CR program compared to the
same number of patients matched in their pathology, demographics, and clinical profile,
but who did not attend CR. The reduction in mortality and the long-term survival benefit
continued for the duration of the study (Suaya et al. 2009). Improved cardiac functionality
is a likely outcome linked to participation in these rehabilitation programs and the clinical
effect of attending CR is similar or greater than that provided by statins, or antihyperten-
sive medications (Hansen et al. 2005).

CR programs involve a formal exercise component, with or without additional educa-
tion, counseling, and home-exercising. Exercise intensity in these programs is prescribed
on the basis of formal testing conducted on entry into the program using either heart rate
or oxygen volume measures such as maximum VO2 (VO2 max), or using the more subjec-
tive Borg RPE scale. In addition, CR effectiveness can be similarly assessed by VO2 max
but also by a 6MWT or HRV.

As such HRV can provide valuable prognostic information regarding the stability of the
cardiovascular system and effectiveness of CR programs (TFESC 1996). Reduced HRV is
associated with abnormal or insufficient adaptability of the autonomic nervous system
(ANS) to internal and external environmental stressors, implying the presence of a physio-
logical malfunction and increased risk of adverse cardiac events (Kleiger et al. 1987; Quin-
tana et al. 1997; Weber et al. 1999). HRV analysis has further shown that CR programs using
formal exercise testing have the ability to reduce the likelihood of lethal arrhythmias and
sudden cardiac death (SCD) in those with cardiac disease (Malfatto et al. 1998; Iellamo et al.
2000; Stahle et al. 1999).

13.3 Heart Rate Variability

HRV has traditionally been measured by linear methods in the time and frequency domain.
Time-domain measures are based on simple statistical methods, either derived from the
heart rate or the differences between them (RR intervals) (Tapanainen 2003). It has been
shown that specific physiological processes contribute differently to individual compo-
nents of the HRV spectrum (e.g., high frequency [HF] reflects parasympathetic activity
while low frequency (LF) is mediated by primarily sympathetic activity) (Akselrod et al.
1981; Agelink et al. 2001; De Jong and Randal 2005). While these methods have been used
successfully, research has shown further prognostic information is available that cannot
be examined using linear analyses and is based on linear methods. Complex fluctuations
occurring on multiple time scales, treated as uninformative noise by linear analyses and
the nonstationarity inherent in biological time signals, are now understood to be indicative
of an adaptable system responding to unpredictable stimuli and stress (Goldberger et al.
2002). A loss of this complexity indicates a decrease in the functional responsiveness of the
system, making it more vulnerable to abrupt changes and arrhythmia (Goldberger 1997).
A large body of literature now clearly demonstrates the advantages of nonlinear analyses,
which includes fractal analysis and entropy measures, in fully examining cardiovascular
stability (Carney 1997; Huikuri et al. 1994; Tulppo et al. 2005; Vikman et al. 1999; Cornforth
et al. 2015; Perkiömäki 2011; Sassi et al. 2009; Goldberger et al. 2002; Kobayashi and Musha
1982; Peng et al. 1995; Gao et al. 2013; Pena et al. 2009; Voss et al. 2009; Stein et al. 2008;
Kiyono et al. 2006; Teich et al. 2001; Ivanov et al. 1999).
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Measures of HRV illustrate the changes in heart rate over time, which is a function of
the intrinsic modulation by the sinoatrial node and the contribution of the ANS to cardiac
rhythm and is a valid marker of cardiac autonomic tone.

In the clinical setting, the apparent regularity of a healthy heartbeat is commonly termed
“regular sinus rhythm” (Peng et al. 1995). However, in healthy subjects, there is consider-
able variability in the duration of the beat-to-beat interval (RR interval), due to the com-
peting influences of the sympathetic and parasympathetic branches of the ANS as well
as other factors, including the endocrine system. It is suggested that to maintain health,
this physiological control mechanism and the ensuing beat-to-beat interval must be able
to vary over a wide range to provide flexible adaptation (Bassingthwaighte et al. 1994).
Essentially, higher values of HRV seen in healthy subjects are indicative of greater fluc-
tuation and an adaptable system responding to various influences necessary to maintain
a physiologically healthy heart rhythm. By the same token, HRV is most often decreased
(although increases can also be observed that are deemed pathological) in those with car-
diac pathology as a result of decreased parasympathetic activity, increased sympathetic
activity, or a combination of both (Frenneaux 2007). Patients with diabetes mellitus, heart
failure, postmyocardial infarction, and uncomplicated coronary artery disease all have sig-
nificant reductions in HRV, placing these individuals at an increased risk of ventricular
fibrillation and SCD (Migliaro et al. 2003; Nolan et al. 1998; Tapanainen 2003; Wennerblom
et al. 2000). A significant number of studies have now validated the use of HRV analysis
as an independent predictor of mortality in patients with CVD (Bigger et al. 1992; Zuanetti
et al. 1996; Evrengul et al. 2006; Huikuri et al. 2001; Lake et al. 2002). When compared
with other cardiovascular risk factors, HRV has proven to be superior in its ability to pre-
dict mortality (Nolan et al. 1998; Tsuji et al. 1996). Findings from these studies have led
to the widespread acceptance of the negative prognostic implications of a reduced HRV
and spurred a growing interest into modifications that may alter autonomic balance in a
favorable direction. CR programs offer this possibility.

13.4 HRV, Exercise, and CR

The benefits of exercise for both the primary and secondary reduction of cardiovascular-
related mortality have been extensively documented (Warburton et al. 2006; Murphy et al.
2007; McCauley 2007; Smidt et al. 2005; Houde and Melillo 2002). Improvements in body
composition, enhanced lipid lipoprotein profiles, improved autonomic tone, improved glu-
cose control and insulin sensitivity, reduced blood pressure, improved coronary blood flow,
and enhanced endothelial function following exercise training undoubtedly contribute to
the higher levels of health demonstrated in active individuals (American College of Cardi-
ology, American Heart Association, and European Society of Cardiology 2006; Warburton
et al. 2006).

Given the association between ANS dysfunction and SCD, the capacity of exercise to
shift this balance in a favorable direction has been investigated (Lahiri et al. 2008). A large
number of studies have shown that exercise training increases HRV in athletes, sedentary
individuals, and patients with CVD (Rennie et al. 2003; Iellamo et al. 2000; Malfatto et al.
1996, 1998; Stahle et al. 1999; La Rovere et al. 1992; Coats et al. 1992; Kouidi et al. 2002;
Deligiannis et al. 2015; Karjalainen et al. 2015; Neves et al. 2011; Hautala et al. 2004; Tulppo
et al. 2003). These increases in HRV reflect an enhancement of autonomic tone, which is
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known to increase the threshold for ventricular fibrillation and decrease the risk of cardiac
mortality (Deligiannis 1994). Therefore, the favorable alteration in autonomic tone may be
the most significant benefit to be gained from exercise training in patients with preexisting
cardiac conditions (Jelinek et al. 2013).

La Rovere et al. (1992) first examined the impact of a structured in-hospital physical
training program in 22 patients following a recent myocardial infarction. Participants in
this study trained at 75% of their anaerobic threshold in the first week, which progressed
to 95% in their fourth week. Researchers did not stipulate the frequency of exercise ses-
sions per week. Physical training caused an increase in HRV measured by time- and
frequency-domain analyses, indicating improved autonomic balance in this population
(La Rovere et al. 1992).

Malfatto et al. (1996) also found a favorable shift in autonomic balance in postmyocardial
infarction patients following exercise based on results of HRV analysis. The population
sample in this study was comparable to that in La Rovere et al. (1992) with respect to
age (mean was 47 and 52, respectively, both studies excluding those aged > 70 years) and
gender (22 males, 0 female and 28 males, 2 females). Exercise training in this study was also
highly monitored, requiring participants to train for 1 hour at 80% of their maximal heart
rate, 5 days per week for the 8-week program (Malfatto et al. 1996). Similar to the findings
of La Rovere et al., linear analyses highlighted a persistent increase in parasympathetic tone
on completion of the CR program. Using the same exercise protocol and HRV measures in a
similar population sample as their earlier study, Malfatto et al. further examined the factors
that may alter autonomic balance with their investigation into the interaction between CR
and beta-blocker therapy. They concluded that both therapies resulted in a favorable shift
in autonomic balance toward an increased parasympathetic tone (Malfatto et al. 1998).

An Australian study compared the HRV responses between in-hospital CR (4 days per
week for 6 weeks) and a home-walking program (Leitch et al. 1997). The CR group trained
for 30 minutes in the first week, progressing to 60 minutes by the third week, at 70% of max-
imum heart rate. Participants of CR were provided with the same home-walking program
as the walking group. All measures of cardiac autonomic function (linear HRV analysis
and baroreflex testing) improved in both the home-based and hospital-based programs.

Stahle et al. (1999) investigated the impact of CR on HRV in an elderly population
sample (over 65 years, 81 males, and 20 females) following an acute coronary event. Par-
ticipants were randomly assigned to either 3 months of supervised exercise training per-
formed 3 times per week or a control group. On the training days, the CR group trained
at 85% of their maximal heart rate (determined from maximal exercise test) for 50 minutes.
Researchers used linear HRV analyses to demonstrate that improvements in HRV follow-
ing exercise training are possible in an older population with cardiac disease (Stahle et al.
1999).

It has also been shown that short periods of rehabilitation with intense exercise regimes
have a beneficial impact on cardiovascular function. Oya et al. demonstrated improve-
ments in autonomic after just 2 weeks of exercise training, commencing 1 week after
myocardial infarction. Participants in this study trained twice daily for 30 minutes at the
anaerobic threshold level to achieve improvements in linear HRV parameters (Oya et al.
1999). A similar exercise protocol (2 weeks of training at 85% of maximum heart rate,
6 days per week) demonstrated improved cardiac autonomic function in a male popu-
lation following CABG using linear HRV analysis and baroreflex sensitivity tests (Iellamo
et al. 2000).

Other studies have shown no effect on both linear and nonlinear HRV measures despite
improvements in exercise capacity (Duru et al. 2000; Oliveira et al. 2014). The discrepan-
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cies between the results of different studies have raised important methodological issues
when assessing the effect of CR and HRV changes. These include controlling breathing
frequency, lifestyle factors, and dietary habits, all of which may influence HRV analysis.
Other factors such as time following the myocardial infarct, whether PCI or CABG was
the intervention, and how long since the intervention that CR was commenced needs to
be further investigated. Long-term recovery of the ANS activity and cardiac function is
another important consideration. Following CABG and a 2-week CR program (consist-
ing of 30-minute cycling twice daily) commenced 1-week postsurgery, an improvement
in HRV, exercise capacity, and significantly decreased plasma norepinephrine levels was
observed in the training group. However, parasympathetic function (HF power) did not
improve until 3 months after the intervention (Takeyama et al. 2000) and did not reach the
age-matched normal value even 1 year after surgery (Table 13.1). A comparison of HRV
outcomes following either CABG or PCI and CR follows in the next section.

13.4.1 CR Following CABG or PCI

Many reported studies have not differentiated between CR effectiveness following CABG
and PCI, which are known to have different postintervention recovery profiles. Cardiac
function and rhythm following CABG or PCI differ with parasympathetic function reduced
in patients early following PCI and returning to preintervention level quicker, whereas
cardiac rhythm may remain suboptimal up to several years in post-CABG patients (Wen-
nerblom et al. 2000; Cygankiewicz et al. 2004; Wu et al. 2005; Laitio et al. 2007; Janowska-
Kulińska et al. 2009). However, data evaluating the impact of CR on HRV in outpatients
after CABG are limited (Iellamo et al. 2000; Baumert et al. 2011). Overall return to near nor-
mal sinus cardiac rhythm measured by HRV is not as pronounced in patients with greater
than one affected target vessel and/or with other comorbidities, regardless of cardiac inter-
vention (Tseng et al. 1996; Birand et al. 1998; Wennerblom et al. 2000; Kanadasi et al. 2002).
Following elective coronary angiography, decreased HRV is a reliable and independent
predictor of mortality in patients without prior myocardial infarction (Compostella et al.
2017).

TABLE 13.1

Investigations into the Effect of Cardiac Rehabilitation on HRV

Participant Age

Study Duration Frequency of Training (mean) Sex M/F HRV Effects

La Rovere et al. (1992) 4 weeks Not specified 47± 6 years 22/0 Improved
Malfatto et al. (1996) 8 weeks 5 days/week 54± 7 years 28/2 Improved
Leitch et al. (1997) 6 weeks 4 days/week 57± 1 years 39/10 No change
Malfatto et al. (1998) 8 weeks 5 days/week 40–66 years 47/6 Improved
Oya et al. (1999) 2 weeks 2× daily 7 days/week 59± 6 years 26/2 Improved
Stahle et al. (1999) 3 months 3 days/week 71± 4 years 81/20 Improved
Iellamo et al. (2000) 2 weeks 2× daily 6 days/week 58± 7 years 86/0 Improved
Takeyama et al. (2000) 2 weeks 2× daily 7 days/week 58.8± 6 years 13/0 Improved
Duru et al. (2000) 8 weeks 2× daily 7 days/week 56± 5 years 12/0 Limited improvement
Jelinek et al. (2013) 6 weeks 3 days/week 63.7± 9.4 years 31/7 CABG improved,

PCI no change
Oliveira et al. (2014) 8 weeks 3 days/week 56± 10 years 19/28 No change
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A recent study investigated the impact on HRV of a short-term, 6-week CR applied to
post-CABG and post-PCI during an outpatient CR program and how this compared to cur-
rent measures of exercise capacity using the 6MWT and cardiorespiratory function (VO2
max). In this study, participants were recruited at the same time post-CABG and post-PCI
and attended the CR program three times per week over a 6-week period. Each partici-
pant was given an individualized exercise program consisting of aerobic exercise and was
encouraged to maintain a low to moderate intensity throughout exercise sessions.

Participants were also advised to complete a home-walking program, as recommended
by the National Heart Foundation, to achieve 30 minutes of moderate intensity physical
activity on most or all days of the week. Sixteen participants entered the program follow-
ing CABG and 22 following PCI. Clinically significant improvements in exercise capacity
were observed in both groups. The CR program led to no significant changes in the HRV
indices in the PCI group. However, a significant increase was seen for standard deviation
of NN (SDNN), LF, and HF in the CABG group similar to previous findings (Iellamo et al.
2000). This study did not show that CR improved the parasympathetic tone and autonomic
balance following PCI, contrary to previous findings (Lucini et al. 2002; Tsai et al. 2006). The
study was however based on low-intensity interval exercise training, which may account
for the difference in HRV outcome. Therefore, CR may have a greater effect in patients with
more advanced cardiac dysfunction necessitating CABG. Physiologically, the CABG group
had lower HF power at baseline compared to the PCI group and thus for HRV to return to a
preintervention or preclinical level a greater improvement in HF power following CR may
have been possible (Jelinek et al. 2013). In addition, the extent of improvements in HRV, as
reported by Munk et al. and others, may be a function of exercise intensity and duration of
the program (Munk et al. 2009; Tsai et al. 2006).

Following PCI, it has been shown that HRV indices decrease, in particular
parasympathetic-related measures such as HF power (Airaksinen et al. 1993; Wennerblom
et al. 2000; Kanadasi et al. 2002). The results of some studies indicated that this drop in
HRV is accompanied by increased sympathetic tone but recovers quickly (Tseng et al.
1996; Bonnemeier et al. 2000). Moreover, a variable reaction was also observed, that is,
a decrease in some patients and an increase in others depending on time to reperfusion
(Szydlo et al. 1998; Bonnemeier et al. 2000). A difference in the findings between the CABG
and PCI groups might have resulted from either the extent of collateral circulation being
present or the number of occluded arteries. However, collateral circulation produces only
slight improvement in myocardial perfusion following PCI, contrary to the subjects with-
out collateral circulation presenting a sudden change in myocardial perfusion, with previ-
ous results confirming these findings, as a group with CABG having three or more vessels
obstructed showed more improvement compared to the PCI group (Berry et al. 2007).

13.5 The Borg RPE as a Measure of Exercise Capacity

Formal exercise prescription in CR is based on the findings of either a maximal or submax-
imal exercise test. Results from these tests are used to ensure that participants maintained
the required percentage of their maximal heart rate or VO2 max throughout the program.

However, there is debateable relevance of this current worldwide practice outside of
major CR facilities. The exercise regimes employed by many of the studies reported here
from major metropolitan rehabilitation programs have been tightly controlled, prescribing
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and monitoring training intensity according to the findings of an initial graded exercise
test (such as VO2 max testing). Using these methods allows CR providers to choose a tar-
geted training intensity to elicit desired training responses and provide a mechanism for
more accurate selection of training intensity. However, completing the initial graded exer-
cise test is an expensive and potentially onerous task for CR providers to undertake and
patients to perform. Therefore, an increasing number of CR providers are moving away
from programs based on formal exercise testing to those based on the more subjective Borg
RPE scale (Joo et al. 2004; Whaley et al. 1997; Borg 1982). An increasing number of CR
programs are now prescribing training intensity using the Borg RPE scale. This scale is a
more viable option in CR in local centers as it does not require expensive equipment and
lengthy testing procedures, and is unaffected by medications that commonly alter heart
rate responses to exercise (Joo et al. 2004; Whaley et al. 1997). The Borg RPE consists of a
vertical scale from 6 to 20 with corresponding verbal expressions of progressively increas-
ing sensation intensity (Borg 1982; Mador et al. 1995; Fletcher et al. 1996; Hansen et al.
2005). Participants of CR programs are most commonly advised to exercise at a level of
12–13/20 (“somewhat hard”) on this scale, which approximates 55%–69% of maximal heart
rate (Fletcher et al. 2001; Pollock et al. 1998; National Heart Foundation of Australia and
Australian Cardiac Rehabilitation Association 2004). Studies have shown training with the
RPE scale produces equivalent responses to measures of heart rate, VO2 max, and lac-
tate threshold (Chen et al. 2002, Dunbar et al. 1996, Kang et al. 2003, Potteiger and Evans
1995). The RPE scale has therefore been readily adopted under the assumption that sub-
sequent health outcomes would also be comparable. However, it is important to consider
whether equivalent physiological outcomes (i.e., an improved cardiac autonomic balance)
can be expected following participation in a CR exercise programs using the Borg RPE
scale. While studies have shown that there are no differences between the two approaches
in terms of their ability to improve modifiable risk factors and improve exercise capacity
(Ilarraza et al. 2004; McConnel et al. 1998), data evaluating the clinical applicability of HRV
using the Borg RPE are limited.

In the study by Jelinek et al. (2014), the CR program was conducted over a 6-week period.
HRV and 6MWT measures were collected at the start and again following completion of the
program (Jelinek et al. 2014). Inclusion criteria for the study were in accordance with the
inclusion criteria for the CR program at the Albury Base Hospital located in rural Southeast
Australia. This program receives referrals from inpatient settings following acute events
and revascularization procedures, or direct referrals from general practitioners and special-
ists. No exclusions were made on the basis of age, gender, or cardiac condition with the aim
of increasing the generalizability and external validity of findings. Participants were how-
ever excluded if they were unable to complete the CR program within the 6-week period
or could not participate fully in the designated exercise program. A total of 22 participants
agreed to take part in the study, 15 of whom were used for the final analysis. HRV val-
ues were gathered from a group of age-matched controls without known cardiac disease.
Each participant was given an individualized exercise program devised by a physiother-
apist according to individual physical capabilities. In accordance with recommendations
of the National Heart Foundation of Australia (NHF), all participants were encouraged to
maintain a low to moderate intensity, or between 10 and 13/20 on the Borg RPE scale
throughout the exercise sessions. In addition, participants were prescribed a home-walking
program to achieve 30 minutes of moderate intensity physical activity on most or all days
of the week. Compliance with the home-walking program was assessed through self-
report, using an exercise diary. A 20-minute 12-lead electrocardiogram (ECG) recording
(CardioPerfect, Welsh Allyn, Australia) was obtained and frequency-domain measures
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such as LF and HF power determined. The 6MWT was conducted twice on the initial
assessment to allow for a learning effect in accordance with the American Thoracic Society
Guidelines. Chi-square analysis was used to allow for grouping of HRV data into pos-
itive change, negative change, and no change in HRV and 6MWT. Positive change was
considered as > 10% move toward the group norm, negative change was considered as
> 10% away from the expected group norm, and no change was considered < 10% change
in either direction. Pre- and posttest results were available for 6MWT from 13 patients
and for 15 patients for HRV analysis. Significant differences were seen for LF, HF, and
the LF/HF ratio and indicated an improvement in autonomic balance. The current HRV
improvements seen based on a RPE scale assessment are in line with previous research
with exercise intensity prescribed from a graded maximal exercise test (Iellamo et al. 2000;
Leitch et al. 1997; Malfatto et al. 1996, 2002; Oya et al. 1999; Stahle et al. 2010).

13.6 Medication Use in CR

Although medications are known to affect HRV, it is unlikely that they have a dominant
effect on results of the current study (Kleiger et al. 1991; Kontopoulos et al. 1996; Sandrone
et al. 1994; Malfatto et al. 1998). The most recent of these investigations by Malfatto et al.
examined the combined effect of medication and CR on HRV (Malfatto et al. 1998). The
HRV of patients who were in CR in addition to taking beta-blockers continued to increase
with physical training, indicating a favorable interaction between the two therapies. One
finding particularly relevant to HRV analysis was the observation that the percent shift
in patients participating in CR in addition to taking beta-blockers was not significantly
different from those that were participating in CR alone. Therefore, it can be suggested
that those patients taking beta-blockers would most likely experience a similar increase in
HRV compared to baseline levels (while these may be higher) to those who are not taking
beta-blockers.

13.7 Conclusion

CR interventions are now routine management for patients with CVD as a preventative
measure or following cardiac intervention. A large amount of research has shown that exer-
cise programs are capable of inducing both peripheral and cardiopulmonary adaptations
that improve health outcomes. These results indicate that CR has the potential to improve
cardiac function soon after cardiac intervention. Furthermore, recent research using linear
HRV analysis has highlighted that HRV is a valuable parameter to assess effectiveness of
more traditional CR programs based on VO2 max or programs based on the Borg RPE scale.
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14.1 Introduction

While much of the heart’s function is semiautonomous, the central nervous system (CNS)
exerts a high degree of control over heart rate (HR) via multiple centers located throughout
the CNS. The relative influence of these centers produces beat-to-beat variability that can
be quantified via heart rate variability (HRV) assessment. HRV changes have long been
recognized in health and disease, at rest and during exercise. However, research into how
direct damage to the CNS centers that drive HRV modifies central HR control is relatively
underinvestigated. This chapter presents a brief overview of how the CNS modulates HR
control, before discussing how various forms of acquired brain injury (ABI) may impact
upon these systems. Finally, the clinical significance of HRV in patients with ABI will be
discussed, with examples of how HRV can be used to investigate aspects of injury and
treatment following ABI.
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14.2 Structural Considerations

The heart has two intrinsic drivers of HR, the atrioventricular (AV) and sinoatrial (SA)
nodes, connected by a myelinated nerve tract known as the bundle of His. In the normal
heart, the AV node has an intrinsic rate of around 40 beats per minute (bpm), and in con-
ditions such as complete heart block, the ventricles adopt this slow rate of contraction.
Where the SA node and bundle of His are intact, the higher intrinsic rate of the SA node
(60–80 bpm at rest) drives the rate of ventricular contraction.

Various noncardiac structures modify the firing rate of the SA node, many of which orig-
inate in the brain stem. Moving higher in the CNS, these brainstem centers receive inputs
from the hypothalamus, usually considered the main control center of the autonomic ner-
vous system (ANS; Guyton and Hall 2006). However, the hypothalamus receives inputs
from multiple higher centers, such as the thalami, and the insula and prefrontal cortices
(Takahashi et al. 2015). The fine detail of the innervation of these higher centers remains
uncertain, but animal studies and some human research (Barron et al. 1994; Oppenheimer
2006, 2007; Rincon et al. 2008) point toward the right posterior insula region regulating
sympathetic outflow, while the left posterior insula modulates parasympathetic outflow.
Additionally, cardiac control will be influenced by the adrenal glands (regulating cardiac
rate, contractility, and peripheral vascular tone). Control of these various structures neces-
sitates complex though often poorly characterized feedback loops. Taken together, these
various structures form part of what has been labeled the central autonomic nervous sys-
tem (CAN; Benarroch 1997).

14.3 Acquired Brain Injury

Brain injuries are most usually classified according to their etiology. The first subdivision
for brain injuries derives from their time of onset, with congenital brain injuries occurring
before birth and ABIs accounting for all other forms of postpartum injury. Within ABI,
two broad classes are recognized: traumatic and nontraumatic. The category of nontrau-
matic ABI is extremely eclectic, including etiologies such as infections, tumors, metabolic
conditions, and various degenerative conditions (e.g., multiple sclerosis and dementia)
(Entwistle and Newby 2013), along with environmental and other toxins. Among the most
common nontraumatic ABI are cerebrovascular accidents (CVAs), otherwise known as
stroke. Ischemic stroke follows blockage of the cerebral arterial supply by thrombus or
plaque. Ischemic strokes are typically focal in nature and usually defined by clinical man-
ifestations of large vessel syndromes specific to cerebrovascular territories (Eckerle and
Southerland 2013). In contrast, hemorrhagic stroke, or intracerebral hemorrhage (ICH),
refers to spontaneous bleeding into the brain parenchyma, often in the context of chronic
hypertension or aneurysmal rupture, and accounts for about 5%–15% of acute strokes in
Western countries (Kramer 2013). Hemorrhagic stroke can co-occur with subarachnoid
hemorrhage (SAH), where bleeding occurs into the cerebrospinal fluid.

In contrast, traumatic brain injuries (TBIs) occur when external mechanical force is
applied to the brain. TBI can be divided into blunt (closed) or penetrating (open) injuries.
Blunt TBI is more common in incidence, typically occurring after following motor vehi-
cle accidents, assaults, and falls, while penetrating injuries are usually associated with
gunshot wounds or bladed weapons (Baron and Jallo 2007). Depending on their severity,
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these injuries produce a complex mixture of diffuse and focal lesions, with transient or
permanent neurological dysfunction (Khan et al. 2003). TBI lesions are further classified by
their pathological and morphological properties. Cerebral contusions can occur anywhere
within the brain; however, they are most common in the frontal and temporal lobes of the
brain adjacent to bony surfaces of the skull base. These injuries are likely to produce focal
injury to both cortical and subcortical ANS control mechanisms.

Traumatic SAH can also occur in the interhemispheric fissure or the basilar cisterns and
can result in hydrocephalus (Graham 1996). Diffuse axonal or shear injury (DAI) is an
additional pathological term referring to microscopic axonal damage occurring as a result
of rotational forces. The extent and depth of DAI tends to be proportional to the energy
expended on the brain, with more force resulting in deeper lesions (Khan et al. 2003). In
this way, milder injuries lead to relative disconnection between intra- and interhemispheric
white matter tracts. Deeper lesions adversely affect periventricular regions, the reticular
activating system, and the brainstem. However, only the worst 5% of DAI cases are esti-
mated to be visible on conventional computed tomography (CT) scanning, meaning that
the extent of DAI can only be inferred from the clinical situation, for example, prolonged
depressed consciousness (Baron and Jallo 2007), prolonged posttraumatic amnesia (Khan
et al. 2003), and slowed speed of processing (Felmingham et al. 2004).

14.4 The CAN and Structural Damage

The impact of the structural damage resulting from ABI can be difficult to predict, particu-
larly with regard to the ANS. While structural lesions should be determinants of the auto-
nomic consequences of ABI, a number of practical limitations exist. First, injury patterns
vary considerably from one individual to the next. Structural investigations such as CT and
magnetic resonance imaging (MRI) provide macroscopic information regarding the injury
that does not necessarily inform the observer what residual function exists in the area of
damage. In routine scanning, it is not possible to differentiate between infarcted tissue
and the ischemic penumbra. In this situation, the infarcted area cannot recover, whereas a
variable proportion of the penumbra may be salvageable with appropriate medical inter-
vention. Finally, DAI is often unobservable on scanning, meaning that apparently intact
neurons may be effectively deafferentated from their afferent and/or efferent connections.
The integrity of ANS responses immediately following TBI is therefore likely to depend
on a range of parameters including the overall severity of the injury, the relative contri-
bution of diffuse, focal, and/or hypoxic injury from the primary injury, and the extent of
secondary postinjury brain damage.

Second, while many of the hypothalamic and brainstem nuclei that contribute to the
CAN have been identified, the location and function of other areas are poorly understood.
The clearest example of this is the ongoing debate surrounding the effect of the insular cor-
tices (discussed previously). This limited understanding of anatomical pathways further
limits the clinical usefulness of these CT/MRI investigations in this context. In addition to
these limitations, there can be considerable interindividual variability in the details of CNS
morphology.

For these reasons, there is uncertainty how a particular structural lesion may impact
upon the ability of the CAN to control the ANS. In clinical contexts, therefore, it is prudent
to presume that any autonomic abnormalities present are occurring on the basis of current
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illness rather than structural abnormalities. Therefore, it has been suggested that the impact
of “autonomic dysfunction after acute brain injury is an underrecognized, yet important
source of complications following a variety of neurologic injuries” (Hinson and Sheth 2012,
p. 139).

14.5 Structure versus Function

Another limitation with interpreting the effect of structural lesions on the ANS is that auto-
nomic control is a dynamic process, and its responses will be phasically affected by other
physiological stressors such as sepsis, reduced blood volume, pain, and anxiety. Even if
our knowledge of the CAN was comprehensive, the complicated feedback loops between
stressors may produce unpredictable effects on function. Therefore, to better understand
the impact of ABI on the ANS, it is preferable to use a dynamic measure that can assess the
ANS’s response to the prevailing homeostatic milieu.

One such measure of the state of play in the ANS is HRV. HRV data can be used to
approximate the relative contributions of the sympathetic and parasympathetic arms of the
ANS. While HRV itself is not completely understood, reduced HRV is a common feature of
elevated catecholamines, indicative of heightened physiological stress (Van Ravenswaaij-
Arts et al. 1993). Under control situations, there is a moderately strong relationship between
HR and HRV (r2 = 0.5) (Huikuri et al. 1990). In disease states, reduced HRV power is
partly a general indicator of the severity of disease, but it is also partly a consequence
of increased HR.

14.6 Cardiac Consequences from ABI

In the clinical context of ABI, epidemiological studies, animal studies, and retrospective
data all suggest that brain injury can be associated with cardiac dysfunction syndromes.
The extent of this clinical awareness differs for different etiologies, with greater awareness
of the role of the ANS in diseases showing an acute onset and those tending to have more
extreme symptomatology rather than slow, degenerative diseases.

In nontraumatic ABI, for example, the Northern Manhattan Study (NOMAS) followed
655 poststroke patients, finding 6.7% of patients suffered fatal cardiac events. In this data,
patients with left parietal lobe infarction were at a fourfold increased risk of cardiac death
(Rincon et al. 2008). Associations between frontal, temporal, or insular stroke and fatal
cardiac events were not evident. A direct mechanism for how ischemic stroke increases the
near-term risk for cardiac mortality has yet to be identified (Prosser et al. 2007).

There is some evidence that ischemic strokes involving the insular cortices show greater
cardiac autonomic dysregulation. Oppenheimer et al. (1996) showed that acute left insular
stroke increased basal cardiac sympathetic tone and was associated with a reduced HRV.
Later work by Oppenheimer (2006) identified that injuries adjacent to the right circumin-
sular cortex have led to loss of inhibition. As circumstantial support, Sander et al. (2001)
found insular lesions (and those with increased norepinephrine levels) were associated
with worse patient outcomes, as measured by modified Rankin scores and Barthel indices.
More recently, Gao et al. (2014) highlighted that both insular cortices affect sympathetic
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tone, with the suggestion that right-sided injuries were slightly more likely to produce
sympathetic overactivity. This has been interpreted as suggesting that the inhibition of
sympathetic outflow is greater from the left compared to the right insular cortex. However,
other studies do not support these findings, for example, Barron et al. found that the HRV
(measured by the R-R interval) was reduced regardless of stroke laterality (Barron et al.
1994).

The situation for nontraumatic SAH is somewhat different. There is considerable
research evidence for an excessive, monophasic increase in sympathetic drive postbleed
(Hinson and Sheth 2012). Various causes have been postulated including that the rapid
increase in intracranial pressure (ICP) associated with the onset of bleeding (Masuda et al.
2002), free blood within and around the brain occurring (Hinson and Sheth 2012) or discrete
hypothalamic (Reynolds 1963; Doshi and Neil-Dwyer 1977) or medullary lesions (Ochiai
et al. 2001) producing the hypersympathetic drive. The presence of this hypersympathetic
drive is associated with a recognized increase in mortality (Hamill et al. 1987).

In most cases of acute TBI, ANS control of HR is disrupted in proportion to the degree of
neurologic insult (Goldstein et al. 1998). Focal injuries such as contusions or ICHs carry the
potential to produce localized damage to ANS control centers; for example, focal injury to
the hypothalamus or brainstem would be particularly likely to affect mid-level CAN reflex
centers. In contrast, DAI has the capacity to produce a relative differentiation between mid-
level ANS control centers and mechanisms higher in the CAN hierarchy. This “disconnec-
tion” could hypothetically reduce integration of more complex homeostatic mechanisms.
Severe hypoxic injuries may have a preferential effect on grey matter, therefore making it
relatively more likely to damage neuronal clusters rather than axonal connections (Guo
et al. 2011; Baguley and Nott 2013).

Considered in overview, the impact that ABI will exert on ANS responsivity will be the
cumulative result of damage to the CAN, the integrity of multiple feedback loops, and
threats to physiological homeostasis resulting from the injury. Rather than radiology, the
severity of ANS dysfunction is best inferred from monitoring physiological parameters in
the intensive care unit (ICU).

14.7 HRV and ABI

While HR is immediately interpretable at the bedside, it is a relatively crude tool. Addi-
tional information can be obtained through HRV, but its use in neuroscience and medicine
has been questioned (Benarroch 2007; Thayer et al. 2009). Methods for collecting HRV
information benefit from being noninvasive, with high benefit/cost ratio. HRV measures
can be obtained with minimal cost and labor, producing accurate recordings and informa-
tion on the autonomic system functional condition or response, albeit indirectly. Objective
HRV data are obtainable in the absence of the patient’s collaboration (as in cases of mini-
mally responsive patients with severe ABI), whenever sophisticated experimental designs
and data recording procedures are impracticable (e.g., in the intensive care unit), and
when observation needs to be noninvasive or when long-term observation is necessary
(Riganello et al. 2012). HRV can be obtained in real time or as a post hoc analysis, and
can be reviewed over long periods of time, producing a robust response across numerous
forms of stimuli including physical (e.g., touch, movement, or nociception), medical
(e.g., the effect of propofol or other treatments in the ICU), or psychological (e.g., response
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to voice). Furthermore, HRV analysis becomes more powerful if the data are time-linked
to these stimuli to produce a dynamic snapshot of the individual’s ANS response to
stimuli.

In patients with TBI, reduced HRV power is associated with episodes of increased ICP
and decreased cerebral perfusion pressure, along with increased mortality and disability
(Mowery et al. 2008). These HRV changes may precede changes in ICP, and both increases
in ICP and cardiac uncoupling (low HRV) predict mortality (Mazzeo et al. 2011). Many
investigative research studies involving patients with ABI assume that HRV remains static,
in that if it is “bad” at one point then it will stay bad. Some researchers have suggested that
low power on HRV or high LF/HF ratios are indicative of a poor outcome, or indeed of
brain death (Marthol et al. 2010).

14.8 Paroxysmal Sympathetic Hyperactivity and HRV

As a general rule, the greater the cumulative damage to cerebral ANS pathways, the cruder
and less coordinated the ANS response to homeostatic challenge is likely to be (Baguley
and Nott 2013). Therefore, it is common for the sympathetic drive of patients with severe
TBI to be elevated. This is particularly true in the condition known as paroxysmal sympa-
thetic hyperactivity (PSH). Clinically, PSH presents with episodic increases in HR, respira-
tory rate, temperature, sweating, and blood pressure, often associated with overactive and
uncontrolled muscle movements (spasticity, posturing, and dystonia).

PSH has been defined in a recent international consensus statement as the “syndrome,
recognized in a subgroup of survivors of severe acquired brain injury, of simultaneous, paroxys-
mal transient increases in sympathetic [elevated heart rate, blood pressure, respiratory rate, tem-
perature, sweating] and motor [posturing] activity” (Baguley et al. 2014, p. 1516). This term
has been adopted to replace the 31 eponyms that have previously existed in the liter-
ature including dysautonomia, paroxysmal autonomic instability with dystonia (PAID),
“sympathetic storms,” and so on. In a recent review (Perkes et al. 2010), 349 cases of PSH
were identified, with the most common etiologies being TBI (79.4%), hypoxic brain injury
(9.7%), and stroke (5.4%). However, there are also case reports of PSH following many other
etiologies.

Of all of the physiological parameters that are affected by PSH, data have confirmed that
changes in HR are the most prolonged (Baguley et al. 1999; Hughes and Rabinstein 2014).
The effect of PSH on HR can be seen in Figure 14.1, which presents the mean maximum
data for 35 patients with and without PSH over the first 28 days post brain injury. There
was no discernible group differences until the withdrawal of sedation around day 5. At
this point, maximum HRs are significantly greater in the PSH cohort than in the non-PSH
cohort who were matched for age, sex, and injury severity. This difference became more
evident during the later days of the study period. Group HR differences were persistent
and are easy to measure, suggesting that HR could represent a robust marker of the status
of the disorder.

In contrast to the monophasic hypersympathetic state observed in SAH, PSH often fol-
lows a prolonged, polyphasic course. Furthermore, the observed “paroxysms” fluctuate in
an unpredictable manner, with a single individual showing marked variation in episode
timing, severity, and duration of elevated sympathetic tone. This is observed in the
24-hour Holter monitor data of two individuals with PSH (Figure 14.2). In the upper panel,
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FIGURE 14.1
Mean daily heart rate during initial 4 weeks post traumatic brain injury (TBI) comparing TBI patients with and
without paroxysmal sympathetic hyperactivity (PSH).

paroxysms are easily defined, with the individual’s baseline HR consistent with someone
lying in bed. When the intermittent paroxysms occur, HR rises 60 bpm above this level
for around an hour before showing an initially rapid fall followed by a slower reduction
back to baseline. In contrast, the lower panel presents a patient where normal resting HR
is rarely reached. In this individual’s recording, it is much harder to differentiate where
paroxysms start and end. The maximum HR of both individuals was similar (145 and 142,
respectively); however, this value alone does not convey the complexity of each patient’s
cardiac control across the entire day.

However, describing the course of the disorder cannot be undertaken using maximum
HR as a sole variable. Early data examining HRV in adults with PSH confirmed this con-
jecture. In a study of 16 patients with severe TBI (half with PSH and half without) (Baguley
et al. 2006), 5 minutes of electrocardiogram (ECG) data were processed to determine spec-
tral power across three bands: very low frequency (VLF), low frequency (LF: 0.04–0.15 Hz),
and high frequency (HF: 0.15–0.4 Hz). The latter two bands are considered to equate to
sympathetic and parasympathetic cardiac influences. The resulting data were compared to
16 healthy matched controls. As seen in Figure 14.3, the relative proportion of power in
the three bands was different in each group, with the two TBI groups showing reduced LF
and HF power, and the PSH patients showing significantly less power in these bands than
non-PSH TBI patients.

14.9 Stimulus Dependent Data

Another limitation in the field of PSH research has been the relative uncertainty regarding
diagnosis. By its very nature, patients with high temperatures, tachycardia, and tachypnea
following an ABI are presumed to have sepsis or another immediate medical illness. As a
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FIGURE 14.2
Heart rate variations (HRVs) over a 24-hour period collected via Holter monitor.
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FIGURE 14.3
Relative proportion of very low frequency (VLF), low frequency (LF), and high frequency (HF) power between
clinical groups.
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result, the diagnosis of PSH has been one of exclusion, and as such, requires a high index
of suspicion from the clinician (Perkes et al. 2010). However, group-level data analysis for
HR or HRV did not assist in determining whether an individual was displaying PSH or
not. Furthermore, developing an understanding of the pathophysiology of the condition
has been difficult as the paroxysmal nature of the condition has made it hard to measure
the efficacy of medical intervention.

It had been suggested by multiple authors that a central feature of PSH is an exaggerated
responsiveness to what should be minimally nociceptive stimuli. Case reports of multiple
stimuli including bathing, turning, endotracheal suctioning, passive movement and mus-
cle stretching, constipation or urinary retention, and emotional and environmental stimuli
such as noise have been reported to provoke paroxysms of hypersympathetic drive (sum-
marized in Baguley 2008).

To confirm whether the observed sympathetic hyperactivity was stimulus dependent,
an approach was adopted from psychological research, namely event-related data evalua-
tion. In this paradigm, data before and after a stimulus is recorded, allowing for the effect
of the stimulus on the particular parameter to be gauged. This has been undertaken in
many fields including choice reaction time tasks and interpretation of electroencephalo-
gram (EEG) changes in response to target versus nontarget auditory tones (event-related
potentials). This allows each subject to act as his or her own control, reducing the impact
of the marked intersubject variability (seen in Figure 14.2). It is important in this paradigm
to standardize the stimulus as much as possible to allow between-subject comparison to be
undertaken.

As it relates to this topic, Figure 14.4 provides an example of event-related HRV. This
figure provides data from a spectral analysis of pre-/postdata performed via fast Fourier
transform of resampled data via a Welch window with 50% overlap. Using standard cut-
offs to differentiate the sympathetically mediated LF and parasympathetic HF components,
the prestimulus LF and HF peaks are easily seen. Following application of the stimulus,
there is an increase in the power in the LF band, alongside a reduction in HF power. In this
individual, the LF/HF ratio increased markedly following stimulus application, consistent
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FIGURE 14.4
Spectral analysis of a subject with PSH pre- and poststimulus.
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with sympathetic efflux and reduced parasympathetic activation. It was reasoned that by
applying standardized stimulus across different clinical groups, event-related HRV may
have the capacity to distinguish whether neurological cardiac control is disordered in a
target population.

In order to evaluate this hypothesis, 79 consecutive patients with severe TBI were
recruited from an intensive care setting in the first few days postinjury (Baguley et al.
2009b). Of this group, a subset of 27 patients were assessed prior to and following suc-
tioning of their tracheostomy tube. This routine nursing care task provided a semistan-
dardized, mildly nociceptive stimulus. Subjects were then divided into three groups; those
without symptoms of PSH (n= 11) were taken as a control group. Subjects with PSH were
divided into two groups based on the duration of sympathetic hyperactivity into short
(n= 10) and long (n= 6) duration PSH (defined as sympathetic features lasting less than or
greater than 14 days). These data are displayed in Figure 14.5. Assessing HR responses for
100 beats before and after the stimulus commencement of suctioning found a 2%, 8%, and
16% increase in HR for the subsequent 100 beats for the TBI control, PSH short, and PSH
long groups, respectively.

HRV spectral analysis of individuals in this study suggested CNS cardiac control differ-
ences in the way each group responded to the stimulus (Figure 14.6). In this figure, spectral
analysis of 5 minutes of HR data was performed immediately prior to and poststimulus.
Resting HRs were equivalent at the baseline (y axis); however, HR significantly increased
postsuctioning in the autonomically aroused groups (PSH short and PSH long). In contrast,
between-group differences were evident in LF/HF ratio both prior to and after suctioning.
In particular, there was a graded sympathetic response to the stimulus by group, with the
long-duration PSH group demonstrating greater LF/HF ratios both pre- and poststimulus.

This combined HR/HRV data provided the first empirical evidence that the pathophys-
iology of PSH included an overresponsivity to external stimuli, at least in the first few
weeks postinjury. It had previously been hypothesized that there was an uncoupling of
LF/HF ratio and HR in acute brain injury, with worse injury producing greater uncoupling
(Goldstein et al. 1998). However, there were no significant differences in injury severity
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demonstration purposes only and do not imply that extra data were available.

markers between groups to explain the greater sympathetic activation in the PSH groups.
Further, the colinearity of PSH and non-PSH response patterns suggested an underlying
physiological process in each group, potentially linked to a participant’s individual degree
of stimulus overresponsivity.

Although subject numbers are small (a perennial problem in PSH research) (Perkes et al.
2010), the data are consistent with the suggestion that a neurological process underlies
PSH. There are distinct similarities between the overresponsiveness to stimuli seen in PSH
and to allodynia, a well-understood physiological process whereby nonnociceptive sen-
sations are perceived as painful. In everyday life, many people will have experienced the
allodynia accompanying sunburn, where light touch becomes painful.

Combined with other research, these observations led to an integrative model, the exci-
tatory:inhibitory ratio (EIR) model, being proposed to provide a common pathophysiol-
ogy for a variety of syndromes exhibiting sympathetic hyperactivity (Baguley 2008). This
model proposes, in part, that the hypersympathetic drive results from maladaptive plastic-
ity at the spinal cord level. This hyperactivity is most severe in the early postacute period,
progressively settling over time with the recovery of supraspinal inhibition. This model
was tested in a second event-related HRV study involving 26 survivors of ABI (approxi-
mately 5 years postinjury) with muscle spasticity requiring medical intervention (Baguley
et al. 2009a). These 26 adults with ABI were examined via subgroup analysis: 15 partic-
ipants with a history of severe TBI (seven with PSH and eight without PSH) were con-
trasted against a group of 11 people with a history of stroke. These participants formed
the three groups: the PSH TBI group, the non-PSH TBI group, and the non-PSH ABI
group. This study again employed a semistandardized stimulus, in this case, injection of
Botulinum toxin A as part of spasticity management. HRV data were collected for all sub-
jects in 5-minute intervals preceding, during, and following the intramuscular injections
(Figure 14.7).

As shown in the figure, there were no significant between-group differences in LF/HF
ratio before or after the stimulus. However, the PSH group displayed a very strong and sig-
nificant hypersympathetic response to the stimulus when compared to both other groups.
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This finding supports the EIR model’s hypothesis that the “allodynic” tendency becomes
hardwired into the spinal cord; however, its severity reduces over time due to the recovery
of descending inhibition.

14.10 HRV and Medical Intervention

14.10.1 Medication Trials: n = 1 and Small Case Series

As another component of the event-related HRV “proof of concept” process, HR and HRV
data have been used for preliminary investigation of medication trials. A number of phar-
macological treatments have been promoted for use in PSH (Baguley 2008); however, there
has been a lack of empirical evidence regarding their efficacy. To date, “best practice” has
been guided by anecdotal case reports and small case series (Perkes et al. 2010). The main
limiting factors for efficacy trials have been outlined earlier: small subject numbers and
the marked inter- and intrasubject variability in the severity, duration, and frequency of
paroxysms in PSH. As a consequence, it is hard to objectively state whether an observed
treatment response is due to the intervention or merely to a change in other drivers of the
condition. For this reason, HRV was used in a number of n= 1 trials to determine if mea-
surement of cardiac parameters could gauge treatment efficacy. Two drugs with strong
anecdotal evidence for efficacy in treating PSH were trialed, namely intrathecal baclofen
(ITB) and gabapentin.

14.10.2 Intrathecal Baclofen

Baclofen is a GABA B analog medication that decreases spasticity through its action on
inhibitory interneurons in the spinal cord. Oral baclofen has limited efficacy due to its
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inability to penetrate the blood–brain barrier. In cases of severe spasticity, baclofen can
be injected directly into the cerebrospinal fluid of the spinal cord, thereby bypassing the
blood–brain barrier. Injected in this way, ITB is said to have maximal effect around 90–180
minutes postinjection. A single bolus produces a direct pharmacological effect for approx-
imately 24 hours.

To investigate the utility of ITB, 5-minute HRV data were extracted from Holter monitor
data over a 2-day period centered on a 50 mcg bolus of ITB. Clinically, ITB was being trialed
for severe spasticity in a patient with coincident acute PSH. For the duration of the data
collection period, the patient was nursed supine in bed. This represented an opportunity
to see what effect ITB had on HRV in this context. As can be seen in Figure 14.8, LF/HF
ratio altered dramatically around 4 hours postbolus and this response persisted for more
than 10 hours, until the time the Holter monitor was removed.

14.10.3 Gabapentin

The molecular structure of gabapentin is that of a GABA analog, but the medication pro-
duces selective inhibition of the α2 δ auxiliary subunit of voltage-sensitive Ca2+ channels
in the CNS. The exact mechanism of action of gabapentin remains unknown. Gabapentin
was first reported to have efficacy in treating PSH in a 2007 case series (Baguley et al.
2007); however, further investigation has yet to be published. Using a similar approach to
that outlined above, another patient with PSH following ABI was given a single 300 mg
capsule of gabapentin. Blocks of 5-minute LF/HF ratio data are shown in Figure 14.9,
with the pregabapentin phase in light gray and postgabapentin phase in dark gray. As
displayed, mean LF/HF ratio for the 24-hour period before and after gabapentin halved in
this patient, and the degree of variability decreased substantially.

While not conclusive evidence, these results suggest that HRV analysis may provide
a worthwhile approach in trying to identify which medications are the most useful in
treating the condition, and may also provide further insights into the pathophysiology
of PSH.
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14.11 Conclusion

HR control can be severely affected by ABI, with the consequences partially determined
by the etiology of the ABI. Analysis of HRV provides a robust and dynamic way of inter-
preting CNS control of the heart, and event-related HRV shows a good deal of promise as
a means of establishing treatment efficacy and understanding the underlying pathophysi-
ology of some specific conditions in this context.
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15.1 Introduction

Research on heart rate variability (HRV) has been conducted for more than four decades,
and the increasing interest in this complex psychophysiological phenomenon continues
unabated. A PubMed search for the phrase “heart rate variability” on March 30, 2015,
revealed 12,208 “hits,” and results by year reveals an increasing number of studies since the
1980s (see Figure 15.1). Reasons for this increasing research interest in HRV likely reflect
a combination of factors including relatively noninvasive data collection, low cost, a solid
theoretical framework linking the high-frequency (HF) component of HRV (in particular)
to parasympathetic (vagal) nervous system function and broad implications for well-being
and morbidity. This chapter contains a focused review of this literature in regards to psy-
chiatric disorders in adults, highlights a variety of methodological issues facing researchers
in this field, and provides some recommendations for future studies in this exciting area of
research at the intersection of psychology, psychiatry, and cardiology.

HRV indexes activity in the vagus nerve, the primary nerve in the parasympathetic ner-
vous system. Given its critical role in both mental and physical health (Kemp and Quintana
2013), it is perhaps the most important nerve in the human body. A variety of measures in
the time, frequency, and nonlinear domains can be extracted from HRV analysis. While
HRV measures predominantly reflect vagal function, different measures of HRV index
distinct physiological mechanisms. For instance, HF HRV (0.15–0.4 Hz) reflects respira-
tory processes, low-frequency HRV (LF HRV, 0.04–0.15 Hz) indexes blood pressure control
mechanisms and vasomotor tone, while very low frequency HRV (VLF HRV, 0.0033–0.04
Hz) is driven by thermoregulation and kidney functioning (Reyes et al. 2013). The stan-
dard deviation of NN intervals (SDNN) is a commonly reported time-domain measure,
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FIGURE 15.1
PubMed publication count on the phrase “heart rate variability.”

reflecting all cyclic components responsible for variability. SDNN extracted from long-term
recordings (usually 24 hours) is a robust predictor of adverse cardiovascular events and
mortality (Hillebrand et al. 2013; Huikuri and Stein 2013). Commonly reported measures of
HRV from short-term recordings (2–15 minutes) include the root mean square of successive
differences (RMSSD) and HF HRV. While RMSSD—a time-domain measure—and HF HRV
are highly correlated, the former is less affected by changes in breathing frequency (Penttilä
et al. 2001; Saboul et al. 2013), highlighting the utility of this measure during ambulatory
studies, and in patient populations such as those with an anxiety disorder. Another com-
monly reported measure of vagal function is respiratory sinus arrhythmia (RSA), a mea-
sure that combines heart rate with respiration data, and like HF HRV reflects the ebb and
flow of heart rate associated with respiration. There has also been much research interest in
nonlinear measures of HRV, which assess qualitative properties rather than the magnitude
of heart rate dynamics, although their physiological basis is less clear.

Vagal function is often indexed by resting-state HRV from short-term recordings; it is
psychophysiological marker that reflects an individual’s capacity to flexibly respond to an
environmental stressor (Friedman and Thayer 1998; Kashdan and Rottenberg 2010; Kemp
et al. 2012a). The psychological construct of “flexibility” is a fundamental component of
health (Kashdan and Rottenberg 2010), and HRV may provide a psychophysiological foun-
dation for such flexibility (Friedman and Thayer 1998; Kashdan and Rottenberg 2010).
Vagal dysfunction—which may be indexed by chronic reductions in resting-state HRV—
plays an important role in psychiatric illness, both as a causal factor and as an outcome
of the illness itself. Vagal nerve outflow and connections with other cranial nerves con-
tribute to the capacity for social engagement, impairment of which is a core characteristic
of the psychiatric disorders (Porges 2011; Quintana et al. 2013a). Vagal dysfunction mani-
fests as flattened affect, poor eye gaze, attenuated facial expressions, lack of prosody, and
hyperacusis (Porges 2011). Chronic reductions in HRV are also associated with persevera-
tive cognition (Verkuil et al. 2010), a pathogenic psychophysiological state associated with
worry and rumination that may have a “wear and tear” effect on the human body. HRV
may therefore provide a structural link between mental and physical health.

There is now a significant body of theoretical and experimental evidence for an impor-
tant regulatory role of vagal function over a variety of allostatic systems including inflamma-
tory processes (Huston and Tracey 2010), the hypothalamic–pituitary–adrenal (HPA) axis
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(Porges 2011), and glucose metabolism (Pocai et al. 2005; Wang et al. 2008; see also Thayer
and Sternberg 2006a). Allostasis is a term that describes multisystemic adaptations to
maintain homeostasis, allowing the body to cope with environmental challenges (McEwen
1998). Vagal dysfunction will therefore lead to overstimulation of these allostatic systems,
a condition that has been labeled “allostatic load” (McEwen 1998), increasing risk for med-
ical morbidity (McEwen 2012). Chronic reductions in HRV may therefore provide an early
marker of ill health in psychiatric patients without comorbid medical illness that precedes
other more established risk factors for medical illness.

We now turn our attention to prior studies that have sought to determine the impact of
a variety of psychiatric disorders on HRV in adult populations, many of which have been
conducted in our own laboratory.

15.2 HRV in Psychiatric Disorders

The association between psychiatric disorders—particularly the mood and anxiety
disorders—and HRV has attracted much research attention. Debate has focused in par-
ticular on whether HRV is reduced in the mood and anxiety disorders or whether HRV
reductions are driven primarily by medications for these conditions (Kemp 2011, 2012;
Kemp et al. 2011a,b; Licht et al. 2011a,b; Brunoni et al. 2012). Our meta-analyses on resting-
state HRV in major depressive disorder (MDD) (Kemp et al. 2010), anxiety disorders
(Chalmers et al. 2014), and alcohol dependence (Quintana et al. 2013b) sought to draw
objective conclusions from a contradictory body of evidence, demonstrating robust, small-
to-moderate reductions in HRV. Meta-analysis is an important quantitative technique that
allows researchers to draw conclusions from contradictory findings reported by individual
studies, which may themselves be affected by low study power. Meta-analysis overcomes
this limitation by drawing conclusions on the basis of summary statistics calculated from
multiple individual studies.

The meta-analysis on patients with MDD (Kemp et al. 2010) was conducted to deter-
mine whether otherwise healthy and unmedicated depressed patients display reductions
across a variety of time-domain, frequency-domain, and nonlinear domain measures of
HRV. This was important because cardiovascular disease (CVD) may have led to over-
estimation of the association between depression and resting-state HRV in prior studies.
An earlier study (Licht et al. 2008) based on the large Netherlands Study of Depression
and Anxiety (NESDA) cohort (n= 2373) had also concluded that lowered HRV in depres-
sion was mainly driven by the effect of antidepressants. Supporting the hypotheses of the
more recent study (Kemp et al. 2010), MDD patients (n= 673) displayed lower HRV rel-
ative to healthy controls (n= 407), effect sizes ranging from small (based on time- and
frequency-domain HRV measures) to large (nonlinear measures), highlighting the utility
of nonlinear HRV measures. Depression severity was also negatively correlated with HRV
(r=−0.35, p< .001). Tricyclic antidepressants—but not other classes of antidepressants—
were also associated with substantial HRV reductions, findings associated with a large
effect size over and above the effects observed in unmedicated patients.

The meta-analysis on anxiety disorders (Chalmers et al. 2014) was conducted on a total
of 2,086 patients and 2,294 controls. Like the meta-analysis conducted on MDD, this study
was conducted because prior studies had reported inconsistent findings, again highlight-
ing the need for objective meta-analysis. An earlier study, again on the NESDA cohort



330 ECG Time Series Variability Analysis: Engineering and Medicine

(n= 2, 095), had concluded that while HRV was reduced in the anxiety disorders, that find-
ings were again primarily driven by the effects of antidepressant medications. In the more
recent meta-analysis (Chalmers et al. 2014), anxiety disorders were characterized by lower
HRV (based on HF HRV and time-domain measures), findings associated with a small-to-
moderate effect size. Importantly, medication use and medical comorbidity did not impact
on these findings. Further inspection of specific disorders indicated that patients with
panic disorder (n= 447), posttraumatic stress disorder (n= 192), generalized anxiety dis-
order (n= 68) and social anxiety disorder (n= 90) all displayed moderate reductions in HF
HRV, relative to controls. Patients with specific phobias (n= 61) also displayed reductions
in time-domain measures of HRV, although these findings were associated with a small
effect size. Only obsessive-compulsive disorder was not associated with significant reduc-
tions in HRV, null findings that may have been due to a relatively small sample size (n= 40).
Unfortunately, no meta-analysis was able to be conducted on specific treatments of anxiety
disorders due to the small number of studies investigating this issue, highlighting the need
for further research in this area.

It is important to realize that MDD and anxiety are frequently comorbid conditions:
MDD has high comorbidities with the whole range of anxiety disorders (Goldberg and
Fawcett 2012). Correlations range from 0.62 for generalized anxiety disorder, to 0.52 for
agoraphobia and social phobia, to 0.48 for panic disorder, and to 0.42 for obsessive compul-
sive disorder (Goldberg and Fawcett 2012). The close relationship between MDD and gen-
eralized anxiety disorder, in particular, is thought to relate to shared symptoms—especially
negative affect—and genetic risk factors (Goldberg and Fawcett 2012). Recent studies have
demonstrated that patients with generalized anxiety disorder, in particular, may display
the most robust reductions in HRV (Kemp et al. 2012b, 2014). These findings may relate to
patients inability to disengage from threat detection, even in the absence of any real threat
(Thayer and Lane 2000; Kemp et al. 2012b). This behavioral characteristic may be under-
pinned by prolonged prefrontal inactivity, disinhibition of the central nucleus of the amyg-
dala, and activation of medullary cardioacceleratory circuits (Thayer et al. 2009; Kemp et al.
2012b).

The mood and anxiety disorders themselves are often comorbid with alcohol depen-
dence (e.g. Merikangas et al. 1998), a condition that has also been associated with a body
of contradictory evidence. A large study on 2,947 participants from the NESDA cohort
(Boschloo et al. 2011) had reported that alcohol use, but not its dependence, is associated
with dysregulation of the HPA axis and the autonomic nervous system. Critically, how-
ever, heavy drinkers only displayed an increased heart rate, but no decreases in HRV, as
measured by RSA. The more recent meta-analysis on patients with alcohol dependence
(n= 177) (Quintana et al. 2013b) observed a lowered HRV in this patient group (relative to
nondependent individuals, n= 216), a finding associated with a medium effect size. Inter-
estingly, inclusion of the data reported by Boschloo et al. (2011) did not change the con-
clusions drawn in the meta-analysis (Quintana et al. 2013b). Furthermore, findings were
not dependent on comorbid psychiatric disorders. It is possible that lowered HRV in alco-
hol dependence may underpin some of the behavioral features of the disorder including
social dysfunction (Monnot et al. 2001) and impulse control (Ingjaldsson et al. 2003). Meta-
analytic findings may also help to explain reported epidemiological findings of increased
risk of CVD in alcohol-dependent patients (Corrao et al. 2000).

In addition to findings based on meta-analysis (e.g. Kemp et al. 2010; Quintana et al.
2013a; Chalmers et al. 2014), other work has reported reduced vagal function in multiple,
independent cohorts of patients with the mood and anxiety disorders (Kemp et al. 2012b,
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2014; Alvares et al. 2013; Brunoni et al. 2013). In the largest independent cohort to date
(n= 15, 105), use of antidepressant medications was associated with substantial decreases
in HRV (Kemp et al. 2014). Only generalized anxiety disorder was observed to display
robust, albeit small, reductions in vagal activity after controlling for multiple confound-
ing variables, including medication use. This work used propensity score matching proce-
dures, a technique that involves estimating the difference between groups after accounting
for the covariates that predict group membership. This technique has several advantages
over traditional analytical techniques such as analysis of covariance (ANCOVA) and mul-
tiple regression analysis including reduced bias by accounting for the effects of covari-
ates without reference to the outcome variable (HRV) and the opportunity to analyze data
with some of the advantages of a randomized controlled design (McCaffrey et al. 2013).
Although participants with comorbid depression and anxiety disorders were not observed
to display lowered HRV, it is important to bear in mind that many of the factors that
adversely affect HRV were controlled for in that study. As the mood and anxiety disor-
ders are known to raise metabolic and cardiovascular risk (Nemeroff and Goldschmidt-
Clermont 2012), comprehensive cardiovascular risk reduction strategies in such patients
are needed to minimize subsequent morbidity and mortality.

Interestingly, studies have also observed HRV reductions during remission (Kemp et al.
2010; Braeken et al. 2013; Brunoni et al. 2013; Chang et al. 2013) from the disorder. These
findings suggest that vagal impairment may actually persist despite successful treatment,
perhaps providing a psychophysiological mechanism for the observation that asymp-
tomatic individuals are more vulnerable to future episodes, a phenomenon known as
“kindling” (Post 1992). Persistently lowered HRV may, in part, relate to the impacts of
medications including antidepressants (Kemp et al. 2010, 2014; Licht et al. 2010) and
medications with anticholinergic effects (often prescribed for hypertension and CVD).
Further study on the impact of nonpharmacological therapies will have major public health
significance.

While medication may contribute to persistent HRV reductions when previously ill
patients are well, it was recently demonstrated that unmedicated women (n= 22) with a
history of anxiety disorders also display decreases in HRV (Braeken et al. 2013). These find-
ings indicate that HRV reductions may be revealed in patients with prior psychiatric illness
(in this case anxiety), even in unmedicated individuals. Extending this idea, another study
(on MDD, n= 93 following treatment) by Brunoni et al. (2013) argued that HRV reductions
may be a trait marker of the disorder. This study demonstrated that HRV did not change
following treatment with either a nonpharmacological (transcranial direct current stim-
ulation) or pharmacological (sertraline) intervention, nor was HRV observed to increase
with clinical response to either treatment. Another study however on unmedicated indi-
viduals with a diagnosis of MDD earlier in life (n= 470) (Chang et al. 2013) observed that
while HRV resolved in patients with fully remitted MDD, autonomic dysregulation was
observed in those remitted patients with a history of suicidal ideation (n= 237).

In summary, a variety of psychiatric disorders—including the mood and anxiety dis-
orders, and alcohol dependence—display impairment in vagal function. Further study is
needed to determine whether particular disorders display greater reductions than others,
and the pathways by which these reductions contribute to physical ill health. While
decreases in HRV are generally indicative of autonomic dysfunction (Thayer et al. 2010),
higher values may also reflect an unhealthy, highly irregular heart rate pattern in cardiac
patients (Huikuri and Stein 2013). We now turn our attention to some of the methodologi-
cal considerations facing researchers using HRV in their research activities.
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15.3 Methodological Considerations

Drawing definitive conclusions on the basis of the reported evidence has been made diffi-
cult by a variety of methodological factors, which need to be considered in future research.
A recent study (Moon et al. 2013) that attempted to compare multiple psychiatric disorders
including schizophrenia, bipolar disorder, posttraumatic disorder, and MDD on resting-
state measures of HRV in the time domain, frequency domain, and nonlinear domain pro-
vides a case in point. This study observed robust decreases in patients with bipolar disorder
across a variety of HRV measures. Significant reductions in HF HRV were also observed
in schizophrenia, posttraumatic stress disorder, and MDD relative to controls. While HRV
reductions were observed, Moon et al. (2013) were unable to discriminate among the dis-
orders. A major limitation of this study however was that these patient groups were being
treated with a variety of medications, which may impact on HRV (Kemp et al. 2010, 2014;
Licht et al. 2010). While it is difficult (and often unethical) to withdraw patients from their
medication, it has been the subject of significant debate as to whether different psychi-
atric disorders display lowered HRV over and above their medications, as discussed in
the previous section. Another limitation of this study (Moon et al. 2013) related to group
differences on age, a major confounding variable (Voss et al. 2012), which again makes it
difficult to draw robust conclusions from this study.

In fact, a variety of sociodemographic factors including age, sex, and ethnicity all impact
on HRV. It is well established that HRV decreases with increasing age (O’Brien et al. 1986;
Umetani et al. 1998; Antelmi et al. 2004; Voss et al. 2012), a consequence of modifications
of the cardiovascular system with aging including a loss of sinoatrial pacemaker cells, loss
of vagal function, and an uncoupling of respiratory activity from vagal outflow (Ferrari
2002; Voss et al. 2015). In one of the first studies to investigate this issue on a relatively
large sample of healthy participants (n= 310) (O’Brien et al. 1986), a statistically significant
negative correlation was reported between age and a variety of nonstandard, short-term
measures of HRV across a variety of procedures including rest, a single deep breath, the
Valsalva maneuver, and standing. More recent studies have confirmed these initial findings
using standardized measures of HRV (Umetani et al. 1998; Antelmi et al. 2004; Zulfiqar
et al. 2010; Voss et al. 2012 2015). These more recent studies have also expanded their focus
to sex differences on HRV and their interaction with age (Umetani et al. 1998; Antelmi et al.
2004; Voss et al. 2015).

A study on 260 healthy individuals aged from 10 to 99 years (Umetani et al. 1998)
reported that all measures of HRV extracted from 24-hour long recordings decreased with
age. The mean of the standard deviations of all normal sinus RR intervals for all 5-minute
segments (SDNN index) decreased linearly with aging (r=−0.63)< reaching 46% of base-
line (as defined by values collected from participants in their second decade) by the tenth
decade. The RMSSD HRV measure decreased rapidly, reaching 47% of baseline by the sixth
decade and then stabilized (quadratic pattern, r=−0.62). The authors of this study high-
lighted that age-related declines in HRV make it difficult to distinguish low HRV due to
disease from that due to normal aging. This insight has important implications for the
investigation of HRV differences between patients with psychiatric illness in the elderly,
as the aging process may actually ameliorate any depression-specific differences on HRV.
Indeed, no significant differences have been observed in recent studies on HRV measures
in elderly patients with depression (O’Regan et al. 2014; Licht et al. 2015).

Although the impact of sex is less than that of age (Voss et al. 2015), these differences may
still have important implications for interpreting the findings from studies on psychiatric
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illness. For instance, research has demonstrated that depressed males may display lower
HRV (as measured by time- and frequency-domain measures), while depressed females
may display higher HRV relative to their nondepressed counterparts (Thayer et al. 1998).
The authors of this study in fact highlighted that sex may be a possible explanation for
the contradictory findings that had been reported in the literature up until that time. It is
notable however that this study (Thayer et al. 1998) was conducted on a relatively young,
healthy, and nonclinical population (college students, mean age = 20.37 years). Two recent
studies (Voss et al. 2012, 2015) focused on HRV measures extracted from 5-minute elec-
trocardiogram (ECG) recordings collected under resting conditions in a supine position.
While prior studies have often drawn conclusions based on 24-hour ambulatory ECG
recordings, reliable and valid measures of HRV may also be obtained from shorter record-
ings under standardized and controlled conditions (Anonymous 1996). These recent stud-
ies (Voss et al. 2012, 2015) provide reference values for a variety of linear and nonlinear
indices from 1906 healthy subjects ranging from 25 to 74 years. Findings support previ-
ous observations of decreased HRV with increasing age (Voss et al. 2012). Age-dependent
reductions were particularly apparent across the younger age groups 25–34, 35–44, and
45–54, highlighting the importance of age in younger samples in particular. The major age-
related difference was observed between participants aged 33–44 versus 45–54 years (Voss
et al. 2015). Although women were observed to display a higher complexity of heartbeat
generation in younger ages than men, these effects disappeared with an age older than
55 years, a finding the authors speculated may relate to hormonal restructuring caused by
menopause.

Robust ethnicity effects were recently reported in a meta-analysis of 17 studies published
between 1995 and 2013 (Hill et al. 2015), which demonstrated that HRV is higher in African
Americans (Blacks) than European Americans (Whites). Increased HRV in African Ameri-
cans represents a paradox because these individuals are also characterized by a high preva-
lence of cardiovascular morbidity and mortality (Sharma et al. 2004; Mensah et al. 2005).
These findings highlight the importance of controlling for ethnicity (and/or race) when
considering effects of psychiatric illness and their treatments on HRV. The practice of using
ethnicity and race as a distinguishing feature of populations to improve diagnostic or ther-
apeutic efforts is a common practice in medicine, albeit a controversial one (Cho 2006; Cohn
2006). There is no scientific support for the use of race as a marker of genetic susceptibil-
ity (see Kaplan and Bennett 2003 for discussion), and responses for the same person may
actually change over time, a characteristic that may represent shifts in self-identification
(Fish 2000; Travassos and Williams 2004). It is clear however that while race is a social con-
struct, it is one with biological consequences (Travassos and Williams 2004). The observed
differences on HRV are likely due to a variety of factors including gene–environment inter-
actions and psychosocial issues such as discrimination, on which further study is required.

Major health indicators including smoking and levels of physical activity should also be
considered in HRV studies. A study (Felber et al. 2007) on 1,218 nonsmokers, aged 50 years
and above, reported a 15% reduction in total power, LF power, LF/HF ratio, and ultralow
frequency power of HRV—as measured through 24-hour ambulatory ECG recordings—
in participants exposed to environmental tobacco smoke at home or at work for more than
2 hours per day (n= 80) compared to those not exposed (n= 1034). Importantly, this study
demonstrated that results from HRV collected during the sleep period were similar to
the results from the 24-hour measures, indicating that findings were not merely acute
responses. Smoking is even associated with HRV decreases in depressed patients (n= 77)
(Harte et al. 2013), a particularly striking finding considering that depressed patients are
already characterized by low HRV, as discussed above. This study (Harte et al. 2013)
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reported that depressed smokers (n= 34) display decreased HRV including HF HRV and
RSA relative to depressed nonsmokers (n= 43), even after controlling for demographic and
medical characteristics and medication use (Harte et al. 2013). In another recent study by
the same authors (n= 62) (Harte and Meston 2014), smoking cessation (n= 20) in successful
quitters was associated with increases in HRV at follow-up, 4 weeks after patch discontin-
uation. By contrast, HRV indices among unsuccessful quitters were generally unchanged
across time.

Physical activity also has strong effects over vagal function, such that physically active
individuals display increased variability during the resting state (as reviewed by Carter
et al. 2003; Thayer et al. 2010). One of the first studies reported that fit individuals (n= 18)—
from a group of university students aged 17–25 years—display greater vagal control of the
heart relative to low-fit individuals (n= 16), as determined by time- and frequency-domain
measures of HRV, even after controlling for body mass index (BMI) (Rossy and Thayer
1998). The findings were observed across all tasks including a resting baseline demon-
strating the robustness of these findings. A more recent study on the Whitehall II cohort
(n= 3, 328) of older civil servants aged 45–68 years (Rennie et al. 2003) demonstrated that
moderate and vigorous activity is associated with higher HRV during a 5-minute resting-
state, and these findings remained significant after adjustment for smoking and alcohol
intake. Activity levels in this study were determined by a questionnaire that allows for
a metabolic equivalent (MET) value to be determined, such that 1 MET corresponds to
the metabolic energy expended lying quietly (equivalent to 1 kcal per kilogram of body
weight per hour). Vigorous activity was defined as greater than or equal to 5 MET hours
per week (Rennie et al. 2003). Another randomized-controlled study on sedentary young
adults (n= 149, mean age 30 years) reported that 12 weeks of aerobic conditioning, but not
strength training, enhances autonomic control of the heart, as determined by decreases in
heart rate (3.49 beats per minute) and increases in HF HRV during 10 minutes of quiet rest
(Sloan et al. 2009). These authors further reported that 4 weeks of deconditioning following
the training period led to these measures returning to pretraining levels.

One of the most commonly reported indices of HRV is the HF power component, which
reflects parasympathetic (vagal) contributions that are strongly coupled with respiration.
While some researchers have argued that respiration must be controlled in HRV studies
by having participants breathe at the same rate, others have argued that this is an artificial
control that may confound the visceral–medullary feedback system and shift respiratory
parameters (Porges 2011). A more appropriate solution may be the application of autore-
gressive techniques rather than fast-Fourier transform (FFT), which determines an empir-
ically appropriate breathing frequency for each participant (Kay and Marple 1981; Zisner
and Beauchaine 2014). We further suggest that researchers should consider reporting on
multiple measures of HRV to provide a more comprehensive and robust picture of change
with task or differences between groups. In this regard, RMSSD is less affected by changes
in breathing frequency (Penttilä et al. 2001).

Analytical issues are another issue that HRV researchers need to consider. Psychopatho-
logical studies have often controlled for confounding factors using ANCOVA, yet this sta-
tistical technique is not appropriate when participants have not been randomly allocated
to a group (Miller and Chapman 2001), an issue that we have discussed previously in
regards to HRV (Kemp et al. 2011a,b). The reason for this is that quasi-experimental designs
are subject to what is known as the “Lord’s” or “Simpson’s” paradox, a phenomenon in
which “the association between two variables may be reversed, diminished or enhanced
when another variable is statistically controlled” (Tu et al. 2008). One approach to address
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this issue controls for potentially confounding factors using propensity score matching
(Kemp et al. 2014), which accounts for the effects of covariates before examining differ-
ences between groups on the outcome variable (HRV). While the technique of propensity
score matching has been applied to other areas of research (and epidemiology in particu-
lar), our recent study (Kemp et al. 2014) was the first to apply this technique to the study of
the impacts of psychiatric illness and antidepressant medications on HRV. Another poten-
tial explanation for the contradictory findings reported in the literature may be the choice
to restrict the reporting of measures to time- and frequency-based domains. The reported
effect sizes relating to the association between the mood disorders and common comorbid
conditions and measures of HRV in these domains are typically small. By contrast, findings
based on nonlinear measures of HRV—in MDD at least (Kemp et al. 2010)—are associated
with larger effects, suggesting that nonlinear measures of HRV may be more sensitive to
alterations in patients with MDD. As HRV may reflect nonlinear mechanisms involved in
cardiovascular regulation (Kaplan et al. 1991; Goldberger 1996), HRV alterations may go
undetected if researchers focus solely on conventional measures. Unfortunately, there is a
lack of understanding as to what these nonlinear measures may actually signify (Tan et al.
2009), unlike the solid theoretical foundation for HF HRV, which relates specifically to the
action of the vagus (Akselrod et al. 1981; Kamath and Fallen 1992).

In summary, these many methodological considerations highlight the importance of
examining the association between psychiatric disorders and HRV using a variety of dif-
ferent strategies including meta-analysis (e.g. Kemp et al. 2010; Chalmers et al. 2014),
propensity score matching (e.g. Kemp et al. 2014), and replication in multiple independent
samples (e.g. Kemp et al. 2012b; Alvares et al. 2013; Brunoni et al. 2013). Interested read-
ers are referred to several published reviews (Montano et al. 2009; Quintana and Heathers
2014) for further discussion of methodological considerations relating to HRV research. We
now turn our attention to some of the questions that will keep researchers occupied in the
years to come.

15.4 Future Directions

Research to date has largely focused on whether there is an effect, rather than when, or
how, an effect appears. This focus may, in part, have led to some of the contradictory
and discrepant findings reported in the literature, and subsequent debate, especially when
focusing on time- and frequency-domain measures of HRV. For instance, a study involv-
ing 22-hour ambulatory monitoring (Schwerdtfeger and Friedrich-Mai 2009) demonstrated
that while depression is associated with reduced time-domain HRV (RMSSD) when par-
ticipants are alone, social interactions (with partner, family, or friends) may ameliorate
this effect. These findings are important as laboratory-based recordings involve social
interaction with experimenters, which may inadvertently ameliorate differences between
depressed participants and controls. Social connectedness is associated with increased
HRV (Kok and Fredrickson 2010), and Porges’ polyvagal theory (Porges 2011) provides
a theoretical basis for such findings, which may also be apparent in psychiatric popula-
tions, particularly depressed individuals. It is possible however that examination of group
differences under multiple conditions including resting state, stressor, and recovery from
stressor may elucidate more robust effects in psychiatric disorders, and especially MDD.
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Researchers also need to give consideration to what might moderate HRV reductions
in order to better clarify the conditions under which effects may or may not be observed.
It is possible, for instance, that the effect sizes of the disorders are larger than have been
reported, but that they have been suppressed by not taking into consideration particular
moderating factors. In addition to the above example in regards to social engagement,
certain clinical characteristics may also moderate observed findings. For example, specific
subtypes of depression (e.g., melancholia) or symptoms of a depressive episode or the
anxiety disorders (e.g., somatic symptoms) may have stronger effects on vagal activity. This
particular issue was examined in a recently published report, with findings indicating that
patients with melancholia display more robust reductions in resting-state HRV, relative to
controls, than those patients without melancholic symptoms (Kemp et al. 2014).

Another potential moderator that should be investigated in studies on psychiatric dis-
orders is the impact of ethnic differences. As noted above, recent work has demonstrated
large ethnicity effects on HRV demonstrating that African Americans have higher HRV
than individuals with a white European background (Hill et al. 2015). Curiously, African
Americans also have higher mortality rates from coronary heart disease and stroke (Keenan
and Shaw 2011), a surprising finding considering that increased HRV is usually associated
with reduced, not increased, risk for CVD, a phenomenon the authors (Hill et al. 2015)
labeled as a cardiovascular “conundrum.” These findings highlight a need for further
research to better understand the moderating and mediating mechanisms underpinning
not only decreases in HRV in psychiatric disorders, but also in the downstream causal path-
ways leading to increased morbidity and mortality in the context of established risk mark-
ers such as hypertension, diabetes, abnormal cholesterol, and modifiable factors including
smoking, physical activity, and obesity.

In regards to the causal pathways from psychiatric illness to morbidity and mortality,
researchers still need to determine what might be major mediators of downstream adverse
effects (i.e., physical disease and mortality) in otherwise healthy patients with psychi-
atric illness. Research methodologists argue that “we better understand some phenomenon
when we can answer not only whether X affects Y, but also how X exerts its effect on Y, and
when X affects Y and when it does not.” (Hayes 2013). In this regard, “the how question
relates to the underlying psychological, cognitive, or biological process that causally links X
to Y, whereas the ‘when’ question pertains to the boundary conditions of the causal associ-
ation” (Hayes 2013) Researchers need to move beyond questions like “is there an effect?” to
questions such as “when do effects appear?” (moderation), “how do effects arise?” (medi-
ation), and “how strong are these effects?” (effect size) (Cumming 2012; Hayes 2013). In
doing so, researchers will gain better understanding of the causal pathways involved and
clarify whether, how, and when these effects (HRV reductions) lead to morbidity and mor-
tality. Longitudinal studies also play an important role in finding the right answers to these
questions.

Another important question relates to the effects of different types of treatment—
particularly nonpharmacological treatments—on HRV, and how to ameliorate the adverse
effects of antidepressant medications (Licht et al. 2010; Kemp et al. 2014). Even the most
commonly prescribed class of antidepressants, the selective serotonin reuptake inhibitors
(SSRIs), appear to have adverse effects on HRV (Licht et al. 2010; but see Kemp et al. 2011a).
These considerations have important implications for future research on HRV in psychia-
try and psychology, raising the question as to whether regular physical activity—a health
behavior with powerful beneficial effects on the autonomic nervous system—is able to
increase HRV in participants using antidepressant medications. Given that antidepressant
drugs alone do not seem to protect patients from CVD (Whang et al. 2009; Hamer et al.
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2011; Kemp et al. 2015), longitudinal studies are needed to evaluate the impact of exercise
in patients receiving long-term antidepressant treatment.

In summary, while researchers have generated a significant body of research on which
our understanding of the relationship between HRV and adult psychiatric disorders, has
improved, much research on causal pathways among HRV, psychiatric disorders, and car-
diovascular risks remains to be done.

15.5 Conclusions

Previous studies investigating the association between psychiatric disorders have largely
been correlational in nature. Therefore, it remains unclear whether psychiatric disorders
adversely affect HRV or whether reductions in HRV precede the manifestation of the dis-
order. We suggest here that the relationship between mood and HRV is a bidirectional one.
Higher baseline levels of HRV are associated with increased positive emotions and social
connectedness over a 9-week period (Kok and Fredrickson 2010). Importantly, this study
also showed that increases in positive emotions and connectedness predicted increases in
HRV, independent of baseline levels. The authors concluded that results supported “an
upward spiral relationship of reciprocal causality” such that HRV and psychological well-
being reciprocally and prospectively predict each other. We suggest that this reciprocal
relationship may work similarly in those experiencing psychiatric disorders such that neg-
ative emotions will also reciprocally and prospectively predict each other in a “downward”
spiral relationship.

The vagus nerve clearly plays an important role in the psychiatric disorders. Through
its interconnections with other cranial nerves, it underpins a host of symptoms such as
flattened facial affect and lack of prosody (Porges 2011). A poorly functioning choliner-
gic anti-inflammatory reflex (Tracey 2002)—underpinned by the vagus—contributes to the
chronic low-grade inflammation that is characteristic of depression and other psychiatric
disorders (Berk et al. 2013), subsequently contributing to physical ill-health over the longer
term. As the vagus nerve plays a critical role in the regulation of inflammatory processes
(Tracey 2002) and other allostatic systems (Thayer and Sternberg 2006b), vagal function—
indexed by HRV—is an important factor underpinning individual differences in morbidity
and mortality from a host of conditions and disorders.
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16.1 Background

A large body of evidence has documented shortened life expectancy in patients with
schizophrenia (Osby et al. 2000; Rasanen et al. 2005; Colton and Manderscheid 2006; Bushe
et al. 2010). It has been assumed that suicides, accidents, and cardiovascular disorders
are the main reasons for the excess of premature and sudden deaths among patients
with schizophrenia (Colton and Manderscheid 2006; Loas et al. 2008; Bushe et al. 2010;
Manu et al. 2011). In patients treated with antipsychotics, research has shown evidence
that the incidence-rate ratio of sudden cardiac death (SCD) was doubled in individuals
receiving first- or second-generation antipsychotics in the last month of life (Ray et al.
2009). The dose-dependent effect of antipsychotics on myocardial cell repolarization was
assumed to lead to torsades de pointes, arrhythmias, and finally to ventricular fibrilla-
tion and SCD. In this line of evidence, a recent study reporting autopsy findings in inpa-
tients with schizophrenia showed that cardiovascular disorders were the most common
cause of death (Ifteni et al. 2014). Thus, schizophrenia may represent a disorder with a
specific cardiac vulnerability to SCD (Beary et al. 2012). This assumption is supported
by a recent study by Mothi et al. (2015) showing that cardiovascular and metabolic dys-
function is increased in healthy first-degree relatives of patients. This is very suggestive
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of an overlapping genetic background of cardiac/metabolic conditions and psychotic
disorders.

SCD happens when a malignant arrhythmia is triggered by an acute cardiac event (e.g.,
acute myocardial ischemia, platelet activation, or neuroendocrine variations) on the basis
of a diseased myocardium (e.g., postnecrotic scar or hypertrophy). In addition to coronary
artery disease or diseases of the myocardium, cardiac electrophysiological abnormalities
might predispose to the development of ventricular fibrillation. This is especially impor-
tant after acute myocardial infarction (AMI). Physicians found that various indices of heart
rate variability (HRV) are of predictive value for the outcome of patients after AMI. Subse-
quently, these measures were transferred to other patient populations. Abnormalities were
found for patients suffering from depression, anxiety disorders, alcohol dependence, and,
in particular, patients suffering from schizophrenia (Koschke et al. 2009; Herbsleb et al.
2014; Yeragani et al. 2007; Agelink et al. 2002; Bär et al. 2006a; Jochum et al. 2011; Schulz
et al. 2010). The main difference, however, is the significance of these values. After AMI,
the risk prediction of HRV values for SCD is defined by a measurable endpoint (death). In
contrast, the exact meaning of reduced HRV measures in mental disorders is more diffi-
cult to define, since patients live with the disease and altered cardiac autonomic function
for many years. Therefore, the definite influence of profound autonomic dysfunction in
patients with schizophrenia for reduced life expectancy needs to be shown in long-term
prospective studies.

16.2 Heart Rate Variability

The term HRV refers to a number of measures of different types. In general, nearly all
HRV measures reflect mainly vagal (parasympathetic) modulation at the level of the heart.
HRV is the physiological phenomenon of variation in the time interval between heart-
beats and it is determined by measuring the variation in the beat-to-beat (BBI) interval.
Although HRV measures can be obtained quite easily nowadays, there are numerous
pitfalls. Autonomic indices depend very much on circadian rhythms, the duration and
measurement procedure, the environment, and artefact management. Time-domain and
frequency-domain measures are most often used. In general, if time-domain measures
(e.g., root mean square successive difference [RMSSD]) are extremely low, true autonomic
dysfunction can be assumed. Frequency-domain measures (e.g., high frequency [HF], low
frequency [LF], and very low frequency [VLF]) are very susceptible to artefacts and
quantify the amount of variance in heart rate at different underlying frequencies. Again,
extremely low values of HF are associated with a lack of autonomic vagal modulation of
heart rate.

Besides linear HRV parameters describing the variance of BBI intervals, nonlinear com-
plexity measures have been developed to describe the regularity of heart rate time series.
The application of these analyses has led to a higher sensitivity for detecting autonomic
dysfunction (Baumert et al. 2004; Hoyer et al. 2006), patients at risk for sudden death (Voss
et al. 1996), and survivors of myocardial infarction (Voss et al. 1998). A high complex-
ity of biosignals reflects diverse influences of different regulatory systems. In the case of
BBI interval, these are, among others, neuronal (autonomic nervous system), hormonal
(e.g., cortisol, atrial naturetic peptide [ANP]), and myocardium inherent mechanisms
(Yeragani and Sree Hari Rao 2006). Overall, up to a certain point, the more irregular
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and complex heart rate series are the more adaptive and stable is the underlying system.
Such complexity is only in part reflected in measures of classical moment statistics such
as means and standard errors (e.g., time-domain or frequency-domain measures), which
mainly describe the fluctuation of the biosignal (Goldberger et al. 2002). However, classical
parameters do not contain sufficient information on the regularity pattern of these fluctu-
ations. For example, a sine curve might have the same mean and standard error as a very
irregularly shaped curve, which is why nonlinear measures are required to detect these
differences in system complexity.

16.3 Heart Rates of Unmedicated Patients Suffering from Schizophrenia

“Taking the pulse” has always been the first point of contact between physicians and the
patient. It has recently been suggested that the heart rate corresponds to the rate of energy
needed by the body. A reduction in heart rate of 10 beats per minute a day saves 5 kg of
adenosine triphosphate (ATP). Furthermore, an increase in heart rate of 5 beats per minute
corresponds to a significant increase in atherosclerosis progression. Animal and human
studies show that life expectancy is closely related to the medium heart rate. Increased
resting heart rate has been shown to be a risk factor for reduced life expectancy in both
the general population (Jensen et al. 2013b; Greenland et al. 1999) and in populations with
cardiovascular diseases (Diaz et al. 2005; Jensen et al. 2013a).

In 1899, Kraepelin described extensive autonomic alterations in patients with
schizophrenia, including increased heart rates, altered pupillary function, increased
sweating and salivation as well as temperature changes (Kraepelin 1899). Most of these
described signs suggest increased sympathetic output, decreased parasympathetic mod-
ulation, or both. For a long time, psychiatrists attributed increased heart rates in patients
with schizophrenia to antipsychotic treatment. This assumption is only correct to some
extent. Treatment with clozapine, for instance, is associated with reduced vagal func-
tion and increased heart rates (Agelink et al. 2001; Zahn and Pickar 1993; Iwamoto et al.
2012). However, several studies have reported increased heart rates in first episode and
unmedicated patients (Zahn and Pickar 1993; Bär et al. 2005; Chang et al. 2013; Schulz
et al. 2013c). In a pooled analysis, we found that among 119 unmedicated patients the
heart rate at rest was increased by about 10 beats per minute in over 40% of patients
and by about 20 beats per minute in 25% of patients (unpublished data). It is important
to understand that antipsychotic drugs might increase heart rates due to anticholinergic
side effects even further (Mujica-Parodi et al. 2005). Here, a dose-dependent increase has
been described (Iwamoto et al. 2012). However, other authors have found improved auto-
nomic function after the introduction of antipsychotic treatment, possibly due to changes
in clinical presentation (Chang et al. 2010) or only minor effects of treatment on cardiac
autonomic function (Hempel et al. 2009).

Investigations in healthy first-degree relatives of patients displayed similarly increased
heart rates, although less pronounced (Bär et al. 2010, 2012; Abhishekh et al. 2014; Berger
et al. 2010; Jauregui et al. 2011). Comparable to other findings such as structural brain
changes in healthy relatives of patients with schizophrenia (Oertel-Knochel et al. 2012),
autonomic dysfunction seems to have a genetic basis. A summary of investigations of auto-
nomic domains in patients and their healthy relatives is shown in Figure 16.1.
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FIGURE 16.1
The figure shows investigated autonomic domains in patients with schizophrenia and their healthy first-degree
relatives. Arrows specify increased or reduced values in comparison to controls. Peak heart rates indicate heart
rates during vigorous exercises. Tachygastria is a sympathetic parameter obtained in the electrogastrogram.

16.4 Time- and Frequency-Domain Parameters of HRV in Patients with
Schizophrenia

As described above, HRV is the BBI oscillation of RR intervals over time. It is the result of
complex regulatory mechanisms through which the autonomic nervous system influences
heart rate and keeps cardiovascular parameters within physiological health ranges.

Both time-domain and frequency-domain parameters of HRV show reduced efferent
vagal activity in unmedicated patients (Bär et al. 2005; Berger et al. 2010; Boettger et al.
2006; Henry et al. 2010; Malaspina et al. 1997; Mujica-Parodi et al. 2005; Chang et al. 2009;
Schulz et al. 2015a). Results were obtained by short-time measurements (5 and 30 min-
utes) as well as by 24-hour Holter electrocardiogram (ECG) measurements. Reduced HRV
cannot be explained by increased heart rates alone, nor is it solely related to sympathetic
modulation.

16.5 Complexity Measures of Heart Rate in Patients with Schizophrenia

A concept that is closely connected to that of variability is complexity. It is important to
realize that complexity is different from variability, and there is no simple definition for it.
A time series might show high variability and very low complexity. “Simple” time series
are readily understood, and can be described concisely as having low information content
or low complexity. Conversely, complex series are not easy to understand completely; they
are full of unforeseeable shifting and require lengthy descriptions, making their informa-
tion content high. Complex signals produced by healthy organisms might have dynamic
properties such as nonlinearity (the relationships among components are not additive, so
small perturbations can cause large effects) or nonstationarity (statistical properties of the
system’s output change with time). Thus, high complexity describes to a certain degree
healthy physiological properties, while low complexity describes reduced influence of var-
ious regulatory circuits. Vice versa, the more irregular and complex heart rate series are to
a limit, the more adaptive and stable is the underlying system. Since no single measure is
sufficient to capture the properties of the most complex signals, different complexity mea-
sures are needed. For heart rate in patients with schizophrenia, researchers have mainly
used compression entropy (Baumert et al. 2004; Ziv and Lempel 1977), measures of sym-
bolic dynamics (Kurths et al. 1995; Voss et al. 1996), and approximate entropy (Pincus 1991).
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Similarly to variability parameters, various recent studies have described reduced
complexity of heart rate dynamics in patients with schizophrenia (Bär et al. 2007b, 2008b;
Boettger et al. 2006; Moon et al. 2013; Mujica-Parodi et al. 2005; Jindal et al. 2009; Schulz
et al. 2015a). The reduction in complexity indicates that in patients with schizophrenia,
the heart rate cannot adapt to different requirements arising from posture or exertion and
the heart is at higher risk of developing arrhythmias. In addition, one can speculate that
reduced regulatory influence from the vagal system might contribute to reduced complex-
ity. It is a method-inherent problem that complexity measures cannot be attributed to one
single physiological system.

16.6 Baroreflex Sensitivity

The evaluation of baroreflex sensitivity (BRS) is an established tool for the assessment of
autonomic control of the cardiovascular system. The baroreflex or baroreceptor reflex is
one of the body’s homeostatic mechanisms to maintain blood pressure at nearly constant
levels. The baroreflex provides a negative feedback loop in which an elevated blood pres-
sure reflexively causes the heart rate to decrease. In contrast, diminished blood pressure
reduces baroreflex activation and causes heart rate to increase. A reduction in baroreflex
control of heart rate has been reported in hypertension, coronary artery disease, myocar-
dial infarction, and heart failure (Eckberg and Sleight 1992). There are various methods to
assess BRS. For patients with schizophrenia, the noninvasive sequence method is used
(Bertinieri et al. 1985). Here, spontaneous sequences of at least three consecutive beats
are analyzed when an increased systolic blood pressure (SBP) of at least 1 mmHg causes
an increased BBI interval of at least 5 ms (bradycardic sequence) or a decreased SBP
causes a decreased BBI interval (tachycardic sequence). For each sequence, the regression
between the three SBP values and three BBI values is calculated and the slope (tachy-
cardic slope: tslope; bradycardic slope: bslope) of the regression line is used as an index
of BRS.

Studies in unmedicated patients with schizophrenia show significantly reduced tachy-
cardic and bradycardic slopes (Bär et al. 2007a, 2008a, 2010; Schulz et al. 2013c). Thus,
the fine-tuning of blood pressure and heart rate is severely impaired among acute psy-
chotic patients. Interestingly, blood pressure values and blood pressure variability (BPV)
are only marginally altered in these patients (Bär et al. 2006b). Interestingly this is in con-
trast to findings in depressed patients. Here, the nonlinear dynamics of BPV considerably
improves the detection of autonomic dysfunction in depressed patients in comparison to
linear measures from HRV and BPV. Specifically, complexity indices from BPV seem to mir-
ror major depressive disorders–related autonomic dysfunction more sensitively than those
from HRV (Schulz et al. 2010).

We have therefore concluded that the primary change in psychotic (or schizophrenic)
patients is observed in the heart rate domain. To explain putative mechanisms for reduced
BRS in patients, it is important to realize that powerful negative feedback loops between
heart rate and blood pressure can be inhibited to allow the organism to adjust to demand-
ing environmental stress (inhibition of baroreflex vagal bradycardia [BVB]). Thus, BRS has
been shown to decrease during specific cognitive demands, such as basic arithmetic opera-
tions (Reyes del Paso et al. 2004) or physical activity (Nosaka 1996). Thus, this might imply
that the decrease of efferent vagal activity and the inhibition of BVB in acute schizophrenia
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are actually caused by stress due to psychotic experiences or the psychosis itself, a process
that allows the organism under physiological conditions to adjust to demanding environ-
mental stress.

16.7 Patients’ Breathing Rates

During acute episodes, a putative relation between breathing rates and symptom severity
was described in patients with schizophrenia 80 years ago (Peupelmann et al. 2009a,b; Wit-
tkower 1934; Paterson 1935; Bär et al. 2012). The German Psychiatrist Wittkower described
the breathing rate in psychotic patients to be faster and more regular. In our analysis,
we found that a fast breathing rate is the dominant feature in unmedicated patients and
that it is accompanied by some shallowness of breathing. We also found more variability
within the breathing pattern (Bär et al. 2012; Schulz et al. 2015b). Applying complexity
measures (symbolic dynamics, sample entropy, and compression entropy), we found
significantly increased complexity in respiratory variability. We hypothesize that the vary-
ing cardiorespiratory regulation possibly contributes to the increased risk for cardiac mor-
tality rates in schizophrenia (Schulz et al. 2015a). However, the minute ventilation is not
altered in patients. Interestingly, when healthy subjects breathe in the modus of patients,
we observed increased heart rates and reduced variability (Bär et al. 2012). Healthy rel-
atives of patients do not show changes within their breathing pattern (Bär et al. 2012).
We speculate that the breathing pattern is closely associated with symptoms during acute
episodes, while the HRV pattern seems to be a trait marker. Of course, it is impossible to
disentangle breathing and HRV completely because of their close interrelationship.

The changes within the cardiorespiratory system in schizophrenia seem to be disease-
inherent characteristics and might reflect arousals during the psychosis stage in acutely ill
schizophrenic patients. Relatives are obviously not in the same emotional and psychotic
state as their diseased schizophrenic relatives. Therefore, it seems to be more evident that
the alterations of cardiorespiratory system found in schizophrenia are closely connected
to emotions such as sadness, happiness, anxiety, and fear that appear during this disease
(Schulz et al. 2015b).

16.8 Cardiovascular and Cardiorespiratory Coupling

In recent years, it became of great importance in different fields of science to understand
how regulatory systems interact with each other (directly or indirectly, causally or non-
causally). Therefore, especially in the medical field, several methods for analyzing cou-
plings in biological systems have been developed to quantify the physiological regulatory
mechanisms, especially of the cardiovascular and cardiorespiratory systems, with the aim
to gain insights into the interaction between regulatory mechanisms in healthy and dis-
eased persons (Schulz and Voss 2014). The couplings within and between the cardiovas-
cular and cardiorespiratory systems very likely interact with each other in a linear and
nonlinear way. Interactions within the cardiovascular system can be described as closed
loops with feed-forward (FF) and feedback (FB) mechanisms. On the one hand, blood pres-
sure changes detected by baroreceptors lead to changes in heart rate through the arterial
baroreflex control loop, and on the other hand, heart rate variations affect blood pressure
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via the Windkessel function (Cohen and Taylor 2002). Interactions within the cardiorespira-
tory system are commonly described as the respiratory sinus arrhythmia (RSA), the rhyth-
mic fluctuation of cardiac cycle intervals (RR interval) in relation to respiration (Schulz et
al. 2013a).

Recent advances in nonlinear dynamics and information theory have allowed the multi-
variate study of information transfer between time series. Here, several concepts are avail-
able based on Granger causality, nonlinear prediction, entropies, symbolization, and phase
synchronization that are able to characterize these linear and nonlinear couplings (Schulz
et al. 2013a; Schulz and Voss 2014).

For schizophrenia, there are only a few studies that have investigated cardiovascular and
cardiorespiratory couplings in patients with schizophrenia and their relatives.

For cardiovascular coupling, studies (Bär et al. 2007a; Schulz et al. 2012a, 2013a,c) found
an impaired baroreflex-mediated coupling pattern of cardiovascular regulation in patients
in comparison to healthy subjects, which was further reinforced by anticholinergic effects
of antipsychotic drugs, which might be interpreted as a decreased vagal modulation in
schizophrenia.

For cardiorespiratory couplings, these studies (Bär et al. 2012; Peupelmann et al. 2009;
Schulz et al. 2012a,b, 2015; Schulz et al. 2013, 2015) revealed commonly significantly altered
respiratory regulation (variability and dynamics) and a reduced cardiorespiratory cou-
pling for patients with schizophrenia but not for their healthy first-degree relatives. Schulz
et al. (2015b) applied the high-resolution joint symbolic dynamics (HRJSD) approach and
found altered heart rate pattern, respiratory pattern, and cardiorespiratory coupling in
patients with schizophrenia and only marginal changes for their healthy first-degree rela-
tives in comparison to healthy subjects. We speculate that these findings might be based
on decreased vagal activity within the brainstem, altered or suppressed interaction of
the brainstem and higher regulatory centers, or panic- and anxiety-related changes in the
brainstem due to acute psychosis in those patients. Patients suffering from schizophrenia
revealed cardiorespiratory coupling patterns, which were characterized as less predomi-
nant but more widely distributed in comparison to healthy subjects, indicating a decreased
cardiorespiratory coupling in schizophrenia.In addition, Schulz et al. (2015a) found by
means of normalized short-time partial-directed coherence (NSTPDC) a clear bidirec-
tional coupling, with a driver–responder relationship from respiration (driver) to heart rate
(responder) accompanied by reduced coupling strength in schizophrenic patients, confirm-
ing the results of a restricted RSA modulation in schizophrenia (Figure 16.2). Moreover,
a slight driver–responder relationship from heart rate (driver) to respiration (responder)
could also be recognized in patients.
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Normalized short-time partial-directed coherence (NSTPDC) plots for cardiorespiratory coupling analyses for
(left) healthy subjects, (middle) healthy first-degree relatives, and (right) schizophrenic patients. The arrow on
the top indicates the causal coupling direction from respiration to heart rate (heart rate ← respiration). Coupling
strength ranges from dark blue (no coupling, 0) to dark red (maximum coupling, 1).
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16.9 Exercise and Autonomic Function

Cardiorespiratory fitness is a strong and independent mortality predictor for humans
(Myers et al. 2002). Therefore, it is important to investigate fitness in patients with
schizophrenia, since it might be one approach for modifying the increased cardiac mor-
tality risk associated with the disease. Overall, reduced physical fitness is a commonly
reported trait among patients with schizophrenia that can be improved by means of physi-
cal interventional studies (Herbsleb et al. 2014; Falkai et al. 2013; Pajonk et al. 2010). Oster-
mann et al. (2013) investigated autonomic function during physical exercise. Interestingly,
they showed increased breathing rates and reduced vagal modulation during the entire
test. However, heart rates were only initially increased in comparison to controls. The
authors reported that reduced vagal function during the exercise test correlated with the
inflammatory response after exercise as assessed by tumor necrosis factor-alpha (TNF-α)
levels. This result touches on a further important relationship between vagal modulation
and inflammatory response (Boeckxstaens 2013). Most interestingly, Bär (2015) showed that
chronotropic incompetence (CI), which is a strong predictor for cardiovascular mortality,
is reported in about 60% of patients with schizophrenia taking regular medication. CI is
defined as the inability of the heart to increase its rate commensurate with increased activ-
ity or demand. It has been established as a predictor of cardiovascular events and all-cause
mortality (Lauer et al. 1999). Most interestingly, the authors describe similarly a lack of cat-
echolamine increase and a close correlation between CI and the duration of disease. Thus,
future studies need to investigate the cardiovascular benefit which patients might gain due
to different types of exercise to reduce their potential cardiovascular risk profile (Herbsleb
et al. 2014).

16.10 Psychopathology and Autonomic Function

Autonomic dysfunction is most likely the consequence of long-lasting stressful experiences
associated with the psychotic state, in addition to a genetic underlying predisposition to
autonomic dysfunction as observed in relatives of patients. Therefore, the notion of a rela-
tion between the severity of the disease assessed by the global assessment of functioning
scale (GAF) and autonomic dysfunction is not surprising (Fujibayashi et al. 2009). How-
ever, it is rather interesting that autonomic dysfunction seems to be somehow related to the
degree and amount of delusional states found in patients (Bär et al. 2005, 2007a,b, 2008a).
A clear relation to negative symptoms was less often observed (Boettger et al. 2006). Alto-
gether, there is no simple and linear relation between the severity of a current episode and
the degree of autonomic dysfunction but some relation to the delusional state.

16.11 Future Perspectives

There are three important areas for future research in patients with schizophrenia. First of
all, studies need to investigate the definite relation between the degree of autonomic dys-
function and the potential risk of cardiovascular events for these patients. At a minimum,
schizophrenic patients at increased risk should be identified. Second, the brain activations
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underlying autonomic dysfunction need to be assessed to elucidate pathophysiological
mechanisms. Third, psychiatric research is focused mainly on mental aspects of the disease,
thereby neglecting obvious physical health needs of patients with schizophrenia. Here, a
joint effort is needed to design interventional strategies in everyday clinical settings to
improve physical health and quality of life of our patients.
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17.1 Introduction

Early identification of fetal risks is a field of increasing interest and significance in most
societies. A large body of research advocates various fetal assessment techniques to evalu-
ate antepartum fetal risks. Such risks indicate the need for intervention that may reduce the
risk of intrauterine death [1–3]. The risks include uteroplacental insufficiency, hypoxia, or
fetal abnormalities. Antenatal fetal assessment may particularly have an impact for some
maternal- or pregnancy-related conditions associated with increased perinatal morbidity
and mortality, which are summarized in Table 17.1 [4].

Fetal assessment is not only necessary for high-risk pregnancies, but also recommended
for all pregnancies in general, since it has been demonstrated that low-risk pregnancies
have a larger contribution in perinatal mortality than high-risk pregnancies [8].

Conventional techniques of fetal assessment include fetal movement counting, amniotic
fluid volume (AFV) test, sonographic assessment and biophysical profile (BPP), contraction
stress test (CST), nonstress test (NST), vibroacoustic stimulation (VAS), Doppler velocime-
try, and integrated methods [1–3,9,10]. Fetal circulation is one of the main concerns in
fetal assessment and is of crucial importance, especially since the evaluation of the heart
action may give more useful information about the fetus during pregnancy [3]. Heart rate
(HR) provides reliable evaluation of the autonomic nervous system (ANS) function, which

359



360 ECG Time Series Variability Analysis: Engineering and Medicine

TABLE 17.1

Maternal, Fetal, and Pregnancy-Related Conditions Which Are Indications for
Fetal Surveillance
Maternal Conditions Fetal- and Pregnancy-Related Conditions

Antiphospholipid syndrome Pregnancy-induced hypertension/preeclampsia
Hypertensive disorders Insulin-requiring gestational diabetes
Hyperthyroidism Decreased fetal movements
Hemoglobinopathies Multiple gestation (with significant growth discrepancy)
Cyanotic heart disease Intrauterine growth restriction (IUGR)
Systemic lupus erythematosus Small for gestational age (SGA) fetus
Chronic renal disease Post-term pregnancies (> 294days)
Prepregnancy diabetes Isoimmunization (moderate to severe)
Advanced maternal age Previous fetal demise (unexpected/recurrent)
Morbid obesity Preterm prelabor rupture of membranes (PPROM)

with oligohydramnios
Polyhydramnios
Chronic abruption

Source: Modified from the table in G. Ramanathan and S. Arulkumaran, Obstetrics and
Gynecology for Postgraduates, 1; P. Steer and P. Danielian, High Risk Pregnancy Man-
agement Options, 1999; R. Liston et al., Journal of Obstetrics and Gynaecology Canada,
29(9 Suppl 4), S3–56, 2007; A. T. Bianco et al., Obstetrics & Gynecology, 91(1), 97–
102, 1998; R. Von Kries et al., European Journal of Pediatrics, 156(12), 963–967, 1997.

regulates the heartbeat dynamics. Therefore, fetal heart rate (FHR) monitoring is com-
monly used to assess fetal well-being and can also provide information about the develop-
ment of fetal ANS.

Based on a study in 1978, around 99.8% of fetal movements that last for more than
3 seconds are associated with FHR accelerations [11]. Therefore, monitoring of FHR using
the NST has become popular for fetal assessment since then. Movement of the fetus with
no acidosis and no neurological depression shows intermittent FHR acceleration [11]. FHR
deceleration is another parameter that is associated with an abnormal status of the preg-
nancy, especially when followed by a womb contraction occurring within a given time
period [12,13]. The NST aims to reduce the rate of fetal compromise caused by fetal hypoxia
or placental insufficiencies.

FHR monitoring is generally performed by cardiotography (CTG) for which the nonin-
vasive Doppler ultrasound (DUS) transducer is used during a 20-minute test. Addition-
ally, a strain gauge or a tocodynamometer is also used to monitor uterine activity. The
NST is defined as reactive if at least two accelerations of more than 15 bpm from the
baseline (which is 110–160 bpm) lasting more than 15 seconds occur within the 20-minute
test. However, the absence of accelerations may be due to fetal sleep and in that case, the
test is extended to 40 minutes [9]. In practice, if the fetus does not show reactivity after
40 minutes, further assessment is performed by the CST or BPP test. VAS can also be used
to interrupt fetal sleep and provoke FHR acceleration, which results in a decrease in the
test duration and the number of false positive tests due to fetal sleep [14]. Another cause of
false-positive results is the gestational age, since 50% of the normal fetuses in 24–28 weeks
and 15% of the ones in 28–32 weeks of pregnancy fail to show reactivity in FHR [15,16].
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Overall, nonreactive FHR may be associated with prolonged fetal sleep, immaturity of
the fetus, ingestion of sedatives by the mother, and cardiac or neurologic anomalies of the
fetus. The false-negative rate of this test is quite low at 0.3%, but the false-positive rate is
around 50% [17].

Although FHR monitoring has been used as an NST or CST to find accelerations, decel-
erations, and baseline variability of FHR, it is not enough for a thorough assessment of the
fetal state. In particular, the usefulness of these conventional methods for detection of fetal
acidemia has been questioned [18]. More advanced quantitative analysis of HR is required
to evaluate FHR changes and complexity in the time and frequency domain. For example,
the root mean square of successive differences (RMSSD) is a time-domain parameter of
FHR variability that is highly correlated with gestational age, and it can be employed
to monitor the development of the parasympathetic nervous system during pregnancy
[19]. The spectrum analysis of FHR variability provides features to detect intrauterine
growth restriction (IUGR) [20–22]. The regularity of R-R interval series can be examined
by entropy approaches [23]. Ferrario et al. applied the approximate entropy and the sample
entropy (SampEn) to FHR signals to identify fetal sufferance and showed that multiscale
entropy (MSE) features can be used to reliably detect the fetal distress associated with the
presence of a pathological condition during pregnancy and at birth [23]. A review of the
FHR variability analysis methods and their application for evaluating fetal well-being and
development is provided in the following sections.

There are several methods that can be used for monitoring FHR noninvasively, including
CTG, ultrasound M-mode analysis, fetal electrocardiography (fECG), and magnetocardio-
graphy (fMCG) [24]. The advantages and shortcomings of these methods are discussed in
the next section.

17.2 FHR Acquisition Techniques

17.2.1 Doppler CTG

FHR monitoring is most commonly performed by CTG for which the noninvasive DUS
transducer is used. An ultrasound beam of 1.5 MHz is transmitted and then reflected back
from the fetal heart to the transducer. Fetal heart movements (from valves or walls of the
heart) cause Doppler frequency shifts of the received signal. FHR estimation is based on
the periodicity of the envelope of the received signal. However the complex and changing
nature of the DUS signal complicates this task. Therefore the estimated FHR is usually
constrained to high and low limits and beat-to-beat FHR variation is also bounded.

Although this is an efficient and effective established method, beat-to-beat HRV is diffi-
cult to obtain and usually an averaging process is performed. Another shortcoming is that
there is no single well-defined fiducial point in the waveform to identify each heart cycle
[24]. Accurate low frequency (LF) domain spectral analysis can be still achieved by DUS,
while high frequency (HF) measures needs to be improved [20].

DUS can provide more information about the fetal heart in addition to the FHR. The
Doppler shift of the ultrasound beam, which is reflected from moving valves of the fetal
heart and collected by the transducer, uncovers the opening and closure of the fetal car-
diac valves [25–27]. Using one-dimensional DUS, the timings of cardiac valve motions are
estimated and used to evaluate different systolic and diastolic cardiac intervals [27–30].
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Obtaining these timings from the DUS signal requires signal processing because they can-
not be identified from the raw signal; therefore, signal filtering and decomposition are
required.

Early studies in the 1980s proposed noninvasive methods based on band-pass filtering
approaches to extract the HF component of the DUS, from which the valve movements
were identified manually by experts [25,26,31,32]. There are several challenges involved in
identification of valve motion. First, the DUS signal is contaminated by noise and interfer-
ence from movements of other fetal and maternal organs. The content of the DUS signal
is highly variable, and it depends on the respective fetus and transducer orientation [27].
Therefore, several studies suggested applying improved signal processing techniques and
powerful processors, such as short-time Fourier transform (STFT), wavelet analysis, and
empirical mode decomposition (EMD), to extract the information content of the DUS sig-
nal [27,29,30]. Second, manual identification of beat-to-beat opening and closing of valves
is time consuming, requires special expertise, and is subject to inter- and intraobserver and
visual errors. Therefore, automated methods have been recently developed for identifica-
tion of valve motions using the DUS signal and fECG as a reference [33–35].

17.2.2 Fetal Electrocardiography

Obtaining noninvasive fECG through the maternal abdomen has been a vast and challeng-
ing area of research in engineering and clinical technology over the last decade [36–39].
Noninvasive fECG can be used during pregnancy as early as the 18th week of gestation,
while invasive fECG via scalp requires data collection using intrauterine electrodes with
direct contact to fetal skin, which requires uterine rupture and generally can be only used
during labor [40,41].

In noninvasive fECG, data are collected using a set of electrodes placed on the maternal
abdomen. When the signal is obtained by this method, it is weak and has a low signal-to-
noise ratio (SNR), because it has to pass several low conductive layers to reach the maternal
abdomen surface. fECG is not the only signal recorded, but it is mixed with the maternal
ECG and the voltage of fECG (≈ 5–20 μV) is quite smaller than the maternal ECG voltage
(≈ 1, 000 μV). It is also contaminated by maternal respiratory, motion artifacts, and uter-
ine contractions. The movement of the fetus itself also causes nonstationarity of the signal
and changes in the signals recorded by each electrode. fECG is of a 3D form, but unlike the
adult’s ECG, the electrodes are not attached to the fetus itself to collect a specific waveform.
Different and changeable fetal presentation and lack of a standard lead system on maternal
abdomen makes extraction of fECG even more complicated. In brief, the reliable extraction
of fECG as a nonlinear and nonstationary 3D signal from a highly complex abdominal mix-
ture corrupted by noise, which is even greater than the signal, requires signal processing.
Many different methods have been proposed and used for this purpose, including but not
limited to [37,38]:

• Direct fECG analysis: this method is based on peak detection [42] using the raw
signal, which is not always possible since it depends on the fetal orientation and age.

• Adaptive filtering techniques: the purpose may be to cancel the maternal ECG or
other artifacts or to extract fECG by training an adaptive or matched filter [40,43].
Partition-based weighted sum filters [44], least-square error fittings [45] and Kalman
filtering methods [46] are other alternatives. The complication of these methods is
that they require a reference, which may be a maternal ECG or a waveform that is
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similar to interfering signal, in order to exclude it from the mixture. However in the
Kalman filtering approach an arbitrary maternal ECG is used as the reference, which
makes it more practical and promising [46].

• Linear decomposition techniques: these approaches are based on single or multi-
channel decomposition of the collected data, which are assumed to be linear and
stationary mixtures of the signals and noises. The applied methods may use time, fre-
quency, or scaling properties of the signals, such as wavelet analysis methods [47,48];
spatial filtering, such as singular value decomposition (SVD) methods [49–51]; using
the independence of the mixing components through blind source separation (BSS)
techniques [52–54]; or a combination of these approaches [55–57].

Considering the large noise contamination and low signal-to-noise ratio, sole use of BSS
is not promising. This method is not stable for this application, as it tends to extract noise
rather than the tiny fECG signal [38]. A more stable method is blind source separation
with reference (BSSR), which improves BSS methods by adding a learning process with
reference signals, which might be periodic signals mimicking the fECG [58]. For example,
to find the ECG signal from lead II, the lead-II ECG shape is used as a reference to extract
the fECG. Moreover, other reference signals can be found from other fetal heart sources,
such as the continuous Doppler signal [38]. The schematic illustration of this method is
shown in Figure 17.1.

Using the BSSR method, reliable fECG traces can be extracted and shown to be useful
for detecting fetal heart arrhythmia, including premature atrial contractions (PAC), prema-
ture ventricular contractions (PVCs), and sick sinus syndrome (SSS) [38]. However, it is
still difficult to diagnose complete atrioventricular (AV) block, because of the small size of
P waves in some cases. An example of PVC identification from a previous study is shown in

Electric signals from
maternal abdomen

Blind source separation with
reference signals

Nonlinear State
Space Projection

Linearly independent
reference signals

Doppler signals from
fetal heart

FIGURE 17.1
The schematic diagram of the blind source separation with reference (BSSR) fetal electrocardiography (ECG)
extraction system, using Nonlinear State Space Projection (NSSP). (From Y. Kimura et al., Open Medical Devices
Journal, 4, 7–12, 2012; M. Sato et al., Biomedical Engineering, IEEE Transactions on, 54(1), 49–58, 2007.)
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FIGURE 17.2
An example of premature ventricular contractions (PVC) identification. (a) PVC is clearly apparent in red squares,
while normal heart electrocardiography (ECG) is shown in green circles in the panel. (b) The vector ECG of this
case, with PVC clearly shown as an excursion from normal. (c) In the Doppler velocity waveform of fetal blood
flow, a normal ECG (green arrows) corresponds to a normal flow whereas PVC (red arrows) makes a weak blood
flow in (c). (From Y. Kimura et al., Open Medical Devices Journal, 4, 7–12, 2012.)

Figure 17.2 [38]. Normal heart ECG is shown in the light gray circles, while PVC is marked
by dark gray squares. Also as shown in the figure, a normal ECG corresponds to a normal
flow in the Doppler velocity waveform, but PVC results in a weak blood flow. The corre-
sponding vector ECG is shown for this case in which PVC is clearly noticeable. The PVC
case studied here was recognized at 24 weeks of gestation, and persisted throughout the
pregnancy with atrioventricular septal defect (AVSD) as an outcome. This kind of arrhyth-
mia diagnosed during pregnancy can be a marker of congenital heart defects. There are
also transient arrhythmia, usually with functional causes from physiological phenomena
such as hyperactivation of ion channels in the fetal myocardial cell. Furthermore, ectopic
beats, which might be recognized as an important pathologic association, can be detected
using fECG.

The main purpose of analyzing fECG is to estimate R peaks and find HR on a beat-to-
beat basis. From this, other HRV-related features can be estimated. Beat-to-beat FHRV is
precisely coincident for invasively and non-invasively recorded fECG. For example, in a
previous study based on data from two pregnant women with singleton pregnancy and
gestation age of 38–41 years during the first stage of labor, the indirect fECG extracted by
BSSR was compared with invasive fECG. They were found consistent and coincident as
shown in Figure 17.3 (correlation coefficient of 0.998 and less than 0.51 bpm bias according
to Bland–Altman test) [38].

An earlier study compared HRV measures calculated from fECG and from traditional
Doppler CTG, based on 10 subjects between 24 and 38 gestation weeks. An example of
results for a 24-week subject is illustrated in Figure 17.4 [38]. The correlation coefficient and
Bland–Altman plots were used to evaluate the comparisons. It was found that compared to
the DUS method, FHR from fECG provides more details on short-term variability (STV) of
HR [38]. STV is shown to be associated with fetal autonomic activity [59] and can be used
as an effective tool for fetal assessment.
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FIGURE 17.3
Accuracy of fetal electrocardiography (fECG) via the maternal abdominal wall. (a) The red graph shows an instan-
taneous heart rate (HR) tracing pattern of a deceleration calculated from the fECG via the maternal abdomen
(indirect). The blue graph shows an instantaneous HR tracing pattern of the deceleration pattern calculated from
the scalp electrode fetal ECG (direct). Both HRs are almost completely coincident. (b) A linear correlation between
the two HRs. The correlation coefficient was 0.9986. (c) The Bland–Altman plots where a small bias of 0.51 bpm
was significant. The minimum value for the limits of agreement was −0.51 bpm and the maximum was +0.51 bpm
wherein 95% intervals of the points lie within ±1bpm. (From Y. Kimura et al., Open Medical Devices Journal, 4, 7–12,
2012.)

A more accurate estimation of fECG waveform with more details of P wave and T waves
as well as accurate QRS complex will provide additional features such as ST-segment anal-
ysis. Different factors have influence on the fECG waveform, including hypoxia, ion chan-
nel activity of myocardial cells, autonomic nervous activity, and congenital heart defects.
For example, the ST-segment waveform of fECG is changed in case of hypoxia [38,60] and
the QT interval can be used to detect long QT (LQT) syndrome, which carries a high risk for
developing life-threatening arrhythmias and sudden cardiac death in children and adults
[61]. Figure 17.5 shows an example of the changes in fECG waveform during hypoxia based
on previous study. In a previous study, the changes of PR and QT intervals with gestational
age were also investigated. These can be used to assess development of the fetus during
pregnancy [38]. In that study, fECG was successfully extracted using the method illustrated
in Figure 17.1 for 163 out of 179 subjects (91.1%) with singleton pregnancies from 18 to
41 weeks of gestation. Then the terminal point of the T wave and the width of the P wave
were calculated from averaged waves formed over 15 seconds of data with Doppler signals
as reference. The changes of PR and QT intervals with growing gestation weeks are shown
in Figure 17.6 [38,58].
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FIGURE 17.4
Comparison of Doppler cardiotocography (CTG) with noninvasive fetal electrocardiography (fECG) extracted
by BSSR. (a) One example of comparison between fetal heart rate (FHR) from fECG (blue line) and FHR from
traditional Doppler CTG (Doppler, red line) in a singleton fetus at 24 weeks of gestation. The former clearly
had more short-term variability (STV) than the latter. (b) The blue line shows the moving average of fECG over
each of the 15 time points (3.75 seconds) (average fECG). The red line represents the Doppler −30 bpm line.
(c) A linear relationship between the two datasets. The correlation coefficient was 0.970. (d) Bland–Altman plot
showing a significant small bias of 1.3 bpm. The minimum value for the limits of agreement was −1.6 bpm and
the maximum was +1.0 bpm, wherein 95% intervals of the points lie within ±5 bpm. (From Y. Kimura et al., Open
Medical Devices Journal, 4, 7–12, 2012.)

Although invasively recorded fECG through the fetal scalp electrodes provides detailed
ST segment analysis [62,63], beat-to-beat identification of T waves from noninvasive fECG
is more difficult and challenging because of noise and interferences, which contaminate the
fECG signal.

17.2.3 Fetal Magnetocardiography

fMCG is the recording of a very weak magnetic field (10−12 tesla) generated by the flowing
currents in the fetal heart. The superconductive quantum interference device (SQUID) is
a very sensitive sensor that is used to record fMCG. Liquid helium has to be used to cool
SQUID and the instruments of the fMCG are expensive, large in size, and complex [24,64].
fMCG can be measured as early as the second trimester and unlike the fECG, the effect of
the vernix caseosa from the 28th to 32nd weeks of gestation does not affect it.

Examples of the signals recorded by fECG and fMCG, and the averaged waveforms,
are illustrated in Figure 17.7. The fECG is the best of 20 channels while the fMCG is
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FIGURE 17.5
An example of a fetal electrocardiography (fECG) waveform during hypoxia. The left upper panel shows an
11-second trend of the fECG during uterine contractions (UC). The right upper panel shows the fetal car-
diotocogram during a late deceleration. The late deceleration occurred with a uterine contraction. The middle
big panel shows an instantaneous heart rate (HR) tracing pattern of this deceleration calculated from the fetal
electrocardiogram. The dark gray arrow in this panel indicates an abrupt drop of fetal heart rate (FHR). Such sud-
den drops could not be detected in traditional Doppler cardiotocograms (dark gray arrow in right upper panel).
The left middle small panel shows the averaged fetal electrocardiogram waveforms. ST depressions were clearly
noticed. The ST depressions were noted to disappear and the ST elevations were noticed during deceleration.
(From Y. Kimura et al., Open Medical Devices Journal, 4, 7–12, 2012.)
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FIGURE 17.7
The traces of fetal ECG and MCG (a), which are simultaneously recorded, as well as the average waveform for one
cardiac cycle of fECG and fMCG (b). (Modified from M. Peters et al., Journal of Perinatal Medicine, 29(5), 408–416,
2001.)

compromised by the noise due to simultaneous recording of the fECG. This fECG trace
is of the best-quality recordings, which is not guaranteed for any recording at any time.
However, fMCG provides good-quality waveforms as well as an fECG map on the mater-
nal abdomen by means of a trigger; therefore, fECG can be averaged over that. fMCG can
be used as a complement of fECG. The detailed waveforms obtained by this technique
can be used for diagnosing the conduction disorders of the fetal heart and arrhythmias.
However, during fMCG, the patient is not allowed to move and the duration of the test
is usually short, while fECG can be measured at any time and for longer duration with
cheaper and easier to handle equipment [24].

17.2.4 Fetal Echocardiography

Fetal echocardiography is the most informative noninvasive technique for fetal cardiac
assessment. The four-chamber view of the heart is one of the easiest and most useful views
to obtain in fetal echocardiography, by which the position and the size of the heart in
the chest and its inner parts, the structure, and the function of the heart are examined.
The size and contractility of the ventricles and the appearance of the AV valves are among
the features evaluated from the four-chamber view [65]. As an extended basic examina-
tion, views of the outflow tracts can be also evaluated, which include the right and left
ventricular outflow tracts of the heart. The latter is called the “five-chamber view” and
demonstrates the four chambers and the aorta emerging from the left ventricle. The pul-
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monary artery, which opens to the right ventricle, is illustrated in the right outflow tract
view [66]. According to a study of the low-risk population for congenital heart disease
(CHD) screening with prospective study design, a sensitivity of 60.3% was obtained using
the four-chamber view examination, and the sensitivity of the extended examination was
found to be 65.5% [67].

The speed and accuracy of cardiac analysis has been enhanced by the introduction of
Doppler color mapping about two decades ago [68]. The presence and direction of the
blood flow and the presence of small vessels, as well as the areas of turbulence, can be
found and confirmed by means of color doppler.

Pulsed–wave Doppler is recommended for a complete evaluation of the fetal heart, espe-
cially in the case of fetal cardiac malformation or compromise. This technique demon-
strates the blood-flow velocity through the cardiac valves. Overall, the following aspects
of Doppler evaluation are examined: the direction, pattern, and velocity of the flow and
measuring volume flow and function.

M-mode echocardiography is less used in fetal cardiac evaluation but has the main
following applications: measurement of cardiac structures, estimation of left ventricular
function, and evaluation of atrial and ventricular contraction sequence [65]. Although
M-mode can provide an estimation of PR intervals and atrial and ventricular coordina-
tion, the images are often not easy to read and timings may not be accurate. Moreover,
fetal echocardiography is an expensive method and only particular maternal and fetal con-
ditions indicate the need for it. In most cases, primary care physicians or obstetricians
cannot appropriately analyze the heart views and only qualified individuals can perform
this highly specialized examination [69].

17.2.5 Overview of the Cardiac Monitoring Methods

Table 17.2 shows an overview of the advantages and disadvantages of different heart mon-
itoring techniques. More details are provided in [24].

TABLE 17.2

Overview of Different Methods for FHR Monitoring

Methods Apparatus Gestational age Accuracy Remarks

Doppler
ultrasound

Cheap; easy to
handle

20–40 weeks >95% reliable, FHR
short-term variability may
not be observable

Can also be used during
labor and recorded from
16th week; Valve
movements can be
detected

Fetal echo-
cardigraphy

Expensive,
specialized, skilled
personnel required

18–40 weeks 90%–95% reliable FHR,
anatomy, physiology of
heart depends on quality of
images; accuracy intervals
limited

Cardiac scanning is
possible from 11th week
by transvaginal probe

fECG Cheap; easy to
handle

20–40 weeks
possibly with a
dip around
32 weeks

60% reliable in last month,
for FHR beat-to-beat
accuracy, limited fECG
morphology

Can be used during
labor, good for long-term
ambulatory use

fMCG Expensive, skilled
personnel required

20–40 weeks Fully reliable, waveforms
observable in an averaged
signal; accuracy intervals
about 5 ms

Measured in 13th week
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17.3 FHRV Analysis

FHRV can be analyzed in more detail by different mathematical approaches. In adults,
HRV has been extensively investigated for characterizing ANS in controlling HR and gen-
eral ANS function [70]. Fluctuations of the intervals between normal heartbeats provide
information about cardiac autonomic modulation, since they are mediated by autonomic
inputs to the sinus node, where the parasympathetic component of the ANS leads to
increase in the interbeat intervals and the sympathetic component to a decrease in inter-
beat intervals. These fluctuations can be quantified by HRV analysis. Different param-
eters are used for assessment of interbeat interval variability, which range from linear
time- and frequency-domain analysis to nonlinear measurements including entropy, frac-
tal, and multiscale analysis. For fetuses, changes in different FHRV parameters with
gestational age can be investigated to assess the development of sympathetic and parasym-
pathetic components of fetal ANS. In this section, two main categories of methods, that is,
time-domain and the frequency-domain FHRV analysis, are reviewed.

17.3.1 Time-Domain and Complexity Analysis

In time-domain analysis, ectopic beats are usually excluded and normal-to-normal (NN)
beats are considered for analysis. This means that RR intervals, which are due to extra sys-
tole source and suprabifurcational block-type rhythm changes, are removed. Several time-
domain and complexity measurement parameters have been used in previous studies.

17.3.1.1 Linear Time-Domain Analysis

The mean RR interval (mRR) or mean heart rate (mHR) are the simple time-domain mea-
sures. It has been found that mRR slightly increases with gestational age but it is not con-
sistent over all subjects [19]. The decrease of FHR is affected by increasing parasympathetic
activity compensating the acceleration effect of sympathetic tone [71]. Fetal behavioral
states corresponding to quiet sleep, active (REM) sleep, quiet awake, and active awake
also affect the HR [72,73]. For example, decrease of mHR (hence increase of mRR) with
gestational age is almost significant during the quiet/nonaccelerative sleep state, which
shows decreasing basal FHR (Pearson coefficient r2 =−0.293; p= 0.063), but not during the
active/accelerative sleep state [22].

Changes in vagal function are characterized by changes in HRV. This can be analyzed by
the standard deviation (SD) and RMSSD, which are calculated as follows:

SDNN=

√

∑k
i=1(NNi −NN)2

k− 1
(17.1)

RMSSD=

√

∑k
i=2(NNi −NNi−1)2

k− 1
(17.2)

SDNN and RMSSD are the measures of overall variability and STV, respectively, and they
can be used to assess sympathovagal balance [74]. Both of these parameters increase with
gestational age and this increase is more pronounced for RMSSD. The high correlation of
RMSSD (median of Pearson coefficient over subjects: 0.83) can be used as a stable marker
for assessing fetal maturation, especially the development of the parasympathetic nervous
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system [19]. The ratio SDNN/RMSSD is also used as a potential sympathovagal balance
marker. During quiet FHR patterns, SDNN/RMSSD decreases with gestational age, more
significantly before 32 weeks. After 32 weeks, this ratio is more influenced by RMSSD dur-
ing the quiet FHR pattern, which indicates parasympathetic dominance in the second half
of the third trimester. On the other hand, in the active FHR pattern, mHR increases over
basal FHR, SDNN becomes more dominant for SDNN/RMSSD, and SDNN and RMSSD
become strongly correlated. The sympathetic dominance in active FHR patterns is charac-
terized by the relationship of mHR, SDNN, and SDNN/RMSSD after 32 weeks [22].

17.3.1.2 Complexity Analysis

The dynamics of the FHR can be further investigated by complexity analysis. The contrac-
tion or expansion of the HR represented by a nonlinear dynamics model can be analyzed
by the approximate maximal Lyapunov exponent (ApML), while scaling features of the
distribution and the expansion properties of the generating dynamics can be described by
approximate information dimension (ApD1) and approximate entropy (ApEn) [19]. It is
found that ApEn and ApML increase with gestational age, while APD1 does not change
significantly, which shows different sensitivity of these parameters to various features of
temporal complexity. The increasing complexity with gestational age can be explained by
the changing parasympathetic effect during the development of ANS [19].

The ApEn mainly measures the regularity of the signal by investigating the presence of
similar patterns in the time series [23]. A lower value of ApEn during labor was found to
be associated with poorer outcome [75]. Fetal acidosis and distress might also be associated
with lower complexity values measured by ApEn [76]. It was also found in another study
that in quiet periods, ApEn is significantly higher (p< 0.05) for pathological cases (IUGR
and maternal diabetes) compared to normal subjects [21].

SampEn was developed by Richman and Moorman as a modification of ApEn, to over-
come some of its imperfections such as lack of consistency in some cases [77]. These two
measures can be obtained in the MSE analysis scheme to achieve features as a function of
different scales [23,78]. Ferrario et al. have shown by MSE analysis that single-scale entropy
analysis is not sufficient for detection of pathological conditions, because they can affect the
regularity of the signal at different time scales. They have found that entropy values for
fetuses with severe IUGR are significantly lower than nonsevere IUGR and normal fetuses
for the scale factors τ> 3 but not significant at scale factor τ= 1 [79].

MSE entropy measures were also found to be higher for normal fetuses at all scale fac-
tors compared to the fetuses with antepartum pathological conditions and distress at birth
while linear time-domain analysis could not reveal any difference in the same experiment.
The reason might be the increase of regularity in pathological cases because of the loss of
complexity in the regularity mechanisms [23].

17.3.2 Spectral Analysis

fHRV have been further evaluated by power spectral analysis to assess the ANS function.
For this purpose, the power spectral density (PSD) is evaluated at the following fre-
quency ranges: low (LF: 0.03–0.15 Hz), medium (MF: 0.15–0.5 Hz), and high (HF: 0.5–1 HZ)
frequency [21]. According to the previous studies, the HF component is linked to fetal
breathing movements and more visible during quiet state, while MF and especially LF
components are more pronounced during the active state [21,80,81]. Therefore, the respi-
ratory peaks are observable in some short-term traces during the fetal quiet state in the
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frequency range of 0.7–0.8 Hz [21,80]; they are more apparent in mature fetuses (36 weeks)
[81]. Moreover, Karin et al. found a higher level of HRV spectral power for young fetuses
(<30 weeks) compared to mature fetuses, with more stable ANS in the last period of preg-
nancy in both states [80]. However, they used the fast Fourier transform (FFT) for spectral
analysis, which is complicated, and as the fetal heart beats change nonlinearly, the effec-
tiveness of that method has not been established [20,82].

Another issue to consider is that FHR fluctuations are not stationary long term in quiet
nor active states. Therefore, an earlier study suggested the use of a nonparametric test with
the assumption of nonstationarity of the FHR fluctuations and observed stationarity for
periods of less than 300 beats [20]. The autoregression method based on 24-cycle stationar-
ity was used for spectral analysis of stable FHR series obtained from DUS [20]. The changes
of the low-frequency area (LFA) resulting from integration over the LF range (0.025–0.125
Hz) were found to be well correlated with the changes of fetal blood gas levels. The LFA
is associated with the ANS activity related to the sympathetic nerve as the LF component
is correlated with neural sympathetic activity [20,21]. The relationship between changes of
LFA with gestational age is shown in Figure 17.8, which can be explained by the devel-
opment of the sympathetic nerve activity. For example, from 26 to 30 weeks of gestation,
the development of sympathetic nerves and increase in LFA with gestational age are both
rapid, while they are both slow around 32 weeks. Therefore, it is concluded that LFA can
be used to assess the development of fetal ANS [20].

Another study suggested to use the LF(0.08–0.2 Hz)/HF(0.7–1.7 Hz) ratio as an index cor-
responding to sympathovagal balance in the frequency domain [22]. In the quiet state, this
ratio was found to be markedly negatively correlated with gestational age (Pearson coeffi-
cient r2 =−0.360; p< 0.01) for fetuses before 32 weeks of gestation and not noticeable after
that. In the active state, however, this ratio has a positive correlation with age (r2 = 0.389;
p< 0.1) prior to 32 weeks. In the active state, LF/HF is more related to HF, while in the
quiet state, it is more related to LF before 32 weeks and after that it becomes related to HF.
Overall, prior to 32 weeks, LF/HF indicates a more rapidly progressive parasympathetic

3

2.5

2

1.5

1

0.5

0
17 19 21 23 25 27 29 31 33 35 37 39 41

LF
A

Weeks

y = 6.484 – 0.764x + 0.029x2 – 0.00034x3

r = 0.625 

20.1 28.3 37.4

FIGURE 17.8
Alteration of low-frequency area (LFA) of the spectrum of heartbeat fluctuation in normal fetuses during
pregnancy. LFA is calculated on the basis of integration of peaks in the low-frequency domain (0.025–0.125
cycles/beat) in the spectrum. Minimum point, reflection point, and maximum point are indicated with arrows.
(Modified from From T. Ohta et al., Fetal Diagnosis and Therapy, 14(2), 92–97, 1999.)
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effect. Furthermore, HF and LF parameters are negatively correlated with mHR in both
states, while their ratio is positively correlated with mHR only in the active state [22].

Spectral parameters have been found to be promising for discrimination of pathological
subjects from normal ones. Generally, higher spectral power in the LF range and also its
ratio

(

LF
MF+HF

)

is ascertained for normal fetuses [21]. In a previous study, LFA was found
decreased for IUGR. It was shown that in fetuses with IUGR, LFA was correlated with the
concentration of oxygen and the pH level in blood. Overall, LFA was shown to be useful
for monitoring fetal well-being.

According to another study, the LF ratio LF
MF+HF

for both IUGR and maternal dia-
betes subjects was significantly different from normal fetuses ( p< 0.05). The decrease in
LF power component for abnormal fetuses is due to the reduction of the contribution of
neural sympathetic control [21].

The MF component is mainly related to the fetal movements and maternal breathing
effect; its ratio to the total power significantly increased for the fetuses at risk, and can be
described as indicating a disturbed quiet status [21].

17.4 Summary

FHR monitoring is a common method of fetal assessment. For this purpose, FHR can
be obtained by different techniques, each with some advantages and disadvantages
regarding the accuracy, costs, and possible duration of measurement. Furthermore to the
conventional techniques such as Doppler CTG, more detailed HRV analysis can provide
information about fetal well-being and development of the ANS, which can be obtained
using fECG. Linear time-domain measures such as SDNN and RMSSD can be used to
assess sympathovagal balance and fetal development. In addition, there are complexity
measurement techniques including MSE analysis that have been found to be promising
markers to detect severe IUGR and other pathological conditions. FHRV has been further
evaluated by power spectral analysis. In particular, the LF component of the PSD can be
used to evaluate the development of sympathetic nerve activity and the LF/HF ratio can be
used as an index of sympathovagal balance. Despite the current advances, further research
is still required for enhancement of FHR acquisition and processing as well as advanced
FHRV analysis.
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18.1 Introduction

Eating disorders are life-threatening disorders with a high risk of death. Up to 20% of
patients with anorexia nervosa (AN) die prematurely as a result of their illness. While sui-
cide is a major cause of these deaths, a second significant cause is cardiac arrest (Ameri-
can Psychiatric Association 2000). The precise cause of this cardiac arrest is in many cases
unexplained and a variety of factors ranging from chronic hypokalemia and chronically
low plasma albumin to functional and physical changes in the heart have been impli-
cated (Jauregui-Garrido and Jauregui-Lobera 2012). Disturbances of cardiac function are
well documented in patients with AN (Kalager et al. 1978; Casper 1986). These include
slower heart rate, lower blood pressure, decreased heart rate variability (HRV), prolonged
QT intervals, and physical changes in the heart with accompanying functional changes
(Casiero and Frishman 2006). Evidence for a link between the autonomic nervous system
and cardiovascular mortality, including sudden cardiac death, has accumulated over the
last 50 years (Wolf et al. 1978; Kleiger et al. 1987).

379
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18.2 Autonomic Function in Eating Disorders

Changes in the autonomic function in the cardiovascular system can be assessed from var-
ious aspects of the electrocardiogram (ECG). The simplest of these is measurement of QT
intervals. Bradycardia is a common observation in AN patients with longer QT and cor-
rected QT intervals (QTc) than in age- and sex-matched controls and regression to the mean
with recovery (Cooke and Chambers 1995). Here correction for heart rate was done as it
most often is, using Bazett’s correction (QTc = QT/sqrtRR), although some controversy
exists as to the reliability of this correction in all cases and it can overestimate the number
of patients with QT prolongation (Sagie et al. 1993). A meta-analysis of 10 studies, which
examined heart rate and alterations in QT interval, found that while the QTc intervals
tended to be longer in AN patients than in the corresponding controls, these differences
did not reach statistical significance (Lesinskiene et al. 2008). QT interval prolongation may
not have such good predictive value in recognizing patients who are at particular risk of
sudden death (Jauregui-Garrido and Jauregui-Lobera 2012). QT intervals in patients with
eating disorders are generally <600 ms, a duration that has been clearly associated with
significant risk of sudden death (Jackman et al. 1988). While QT interval duration alone
may not have good predictive power, Jáuregui-Garrido suggests that increased QT inter-
val dispersion may be an independent predictor of sudden cardiac death, provided it can
be measured with sufficient reliability (Jauregui-Garrido and Jauregui-Lobera 2012).

18.3 HRV in Eating Disorders

A possible alternative method for assessing cardiac health in emergency department (ED)
patients is by assessing the patterns of cardiac activity. The fluctuations in the time between
heartbeats reflect the convergence of several factors: the intrinsic rhythm of the heart, the
input from the sympathetic and parasympathetic nervous systems, their interplay, and the
effects of circulating factors. The principal factor is generally thought to be autonomic input
and assessment of HRV has been shown to be a useful noninvasive method of assessing
cardiovascular autonomic function in a number of clinical conditions (Task Force 1996).
Assessment of HRV might therefore provide a useful indicator of cardiovascular risk, par-
ticularly of dysrhythmic events in eating-disorder patients. The simplicity of the technique
means that it can be included in the evaluation of patients relatively easily. In this brief
review, the major conclusions of previous studies will be outlined with some discussion of
the problems associated with definition of patient status and some consideration of poten-
tial confounding factors. The results of some of our recent studies are discussed later in
the text.

18.4 HRV in AN

It is beyond the scope of this discussion to attempt a comprehensive review of the literature
on HRV and eating disorders so we have attempted to summarize key observations from
published studies, which allow comparison. Problems in comparing these studies include
the use of different measures of HRV as well as differences in sample sizes and patient
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groups. The results of a number of studies on HRV in AN patients where meaningful com-
parisons were possible are summarized in Table 18.1. The aim is to give an overview of
the main findings of each study. The table does contain some simplifications and does not
attempt to record all the observations in all the studies. Short-term data is only for supine
measurement and data of effects of standing/lying are not included nor are results related
to other eating disorder groups unless noted in Comments.

18.4.1 Time-Domain Analysis

The limited short-term time-domain data (standard deviation of normal to normal [NN]
intervals [SDNN], square root of the mean squared differences of successive NN intervals
[RMSSD], and proportion derived by dividing NN50 by the total number of NN intervals
[pNN50]) from anorexic patients do not present a clear picture. Increases, decreases, and no
changes in time-domain parameters have been reported. The usefulness of these estimates
is limited and comparisons of values from recordings of different durations may not be
appropriate (Task Force 1996). The data from 24-hour studies present a slightly clearer
picture, that is, that there is a general increase in time-domain parameters, which would be
consistent with increased parasympathetic modulation. In contrast the study by Melanson
et al. obtained opposite results but used the smallest sample (six patients) employed in any
study and the results may reflect sampling bias (Melanson et al. 2004).

18.4.2 Frequency-Domain Analysis

Although values for high-frequency (HF) and low-frequency (LF) power in anorexic
patients show variations in different studies, the HF/LF ratio was consistently reduced.
This would be consistent with reduced HRV and might reasonably arise from either
increased sympathetic or reduced parasympathetic modulation of heart rate.

18.4.3 Nonlinear Analysis

Few studies have examined HRV in anorexic patients using nonlinear methods. The
reduced values of the scaling exponent, α, from detrended fluctuation analysis in anorexic
patients compared to controls is also consistent with reduced HRV.

Mazurek et al. (2011) reviewed the literature on HRV as a measure of cardiac autonomic
function in AN. They found conflicting results in the 20 studies of linear and nonlinear
measures from short-term and 24-hour monitoring, which they reviewed, although the
majority reported parasympathetic/sympathetic imbalance with parasympathetic domi-
nance and decreased sympathetic modulation. Lack of uniformity in the studies, small
sample numbers, and many confounding factors led the authors to conclude that at that
stage HRV could only be used as a research tool and not a routine predictor for mortality
risk.

18.4.4 Eating Disorders and Confounding Factors

Two factors that may complicate the identification of the relationship between AN and
changes in HRV are the presence of other psychological factors such as depression and
stress, and the use of medication and biological factors related to altered endocrine
function. Depression is a common comorbidity in ED patients (Hudson et al. 1987). In
patients with a recent myocardial infarction, HRV has been shown to be significantly
lower in patients who were depressed as compared to a similar group of patients without
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TABLE 18.1

HRV Parameters in Eating Disorders

HRV Parameters Affected
Number of Subjects
(Controls)/CommentsStudy Linear Nonlinear

SDNN RMSSD pNN50 LF HF LF/HF TP α ApEn

Short term

Bär et al. (2006) ↑ ↓ N= 15 (C = 15)
Billeci et al. (2015) ↑ ↓ ↑ ↓ N= 27 (C = 15)
Bomba et al. (2014) ↑ ↑ – – ↑ ↓ N= 21 (C = 21)
Casu et al. (2002) – ↓ – N= 13 (C = 16)
Het et al. (2015) – ↑ ↓ N= 28, AN and bulimic

not distinguished (C = 26)
Jacoangeli et al. (2013) ↓ N= 20 (C = 15)
Kollai et al. (1994) ↓ ↓ ↓ N= 11 (C = 11)
Kreipe et al. (1994) ↓ ↓ N= 8 (C = 8)
Lachish et al. (2009) ↓ ↓ ↓ N= 24 (C = 19),

reductions in LF and HF
reversed with refeeding

Melanson et al. (2004) ↓ – – – – – N= 6 (C = 10)
Murialdo et al. (2007) ↓ – – – N= 34 (C = 30), LF also

reduced in 16 bulimic
patients

Nakai et al. (2015) – – – N= 14 (C = 22)
Palova et al. (2012) – ↑ ↓ N= 30 (C = 30)
Rechlin et al. (1998) ↓ – ↓ Only data from acutely

anorexic group; N= 18
(C = 18)

Vigo et al. (2008) – – – ↓ – – – ↓ – N= 17 (C = 19), also
examined bulimic
patient group (N= 19)
who showed reduced
ApEn

Wu et al. (2004) ↓ ↓ ↓ N= 14 (C = 12)
Ishizawa et al. (2008) ↑ ↓ ↑ ↓ N= 32 (C = 37)
24 hour

Cong et al. (2004) – ↑ ↓ N= 6 (C = 11), similar
effects on HF and HF/LF
ratio in 8 bulimic patients

Dippacher et al. (2014) ↑ N= 17 (C = 52)
Galetta et al. (2003) ↑ ↑ ↑ – ↑ ↓ N= 25 (C = 25)
Melanson et al. (2004) ↓ ↓ ↓ ↓ ↓ – N= 6 (C = 10)
Mont et al. (2003) ↑ ↑ N= 31, patients served

as own controls before
and after refeeding

Petretta et al. (1997) ↑ ↑ ↑ ↓ – ↓ N= 13 (C = 10)
Platisa et al. (2006) ↓ ↓ N= 17 (C = 8)
Roche et al. (2004) ↑ ↑ ↓ ↑ ↑ N= 14 (C = 10)
Yoshida et al. (2006) ↓ ↑ N= 9, patients served as

own controls before and
after refeeding

(Continued)
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TABLE 18.1 (Continued) HRV Parameters in Eating Disorders

Key Definitions

↓ Statistically significant reduction
relative to controls

SDNN Standard deviation of all normal to normal (NN)
intervals

↑ Statistically significant increase
relative to controls

RMSSD The square root of the mean squared differences of
successive NN intervals

– No difference from controls pNN50 The proportion derived by dividing NN50 (the number
of interval differences of successive NN intervals greater
than 50 ms) by the total number of NN intervals

Blank cell—not examined or not
reported

LF Spectral power in the low-frequency range (0.04–0.15
Hz)

HF Spectral power in the high-frequency range (0.15–0.4
Hz)

LF/HF Ratio LF/HF
TP Total power—variance of all NN intervals in frequency

range ≤0.4 Hz
α Scaling exponent based on detrended fluctuation

analysis. Quantifies short-term fractal correlation
properties of NN intervals

ApEn Approximate entropy estimates regularity/complexity
of NN interval time series

depression (Carney et al. 2000). Stress has been linked to reduced HRV (Chandola et al.
2009) and levels are often high in patients with eating disorders for a variety of reasons.
Disturbances of endocrine function in eating disorders are well documented (Warren 2011)
and may contribute to alterations of HRV. These include “functional” hypothyroidism and
sympathetic downregulation as mechanisms for energy conservation in AN, and the auto-
nomic instability associated with bingeing and purging behaviors in bulimia nervosa (BN)
and eating disorder not otherwise specified (EDNOS, now termed otherwise specified eat-
ing disorder [OSFED] in DSM-5; see APA [2013]) where body weight is in the normal range
or not so far from this. This is in contrast to AN where body weight is such that body mass
index (BMI) is less than 18.5, usually with endocrine consequences, and BN where body
weight is normal and the patient engages in binge eating behavior at a specified frequency
associated with weight-losing behaviors, most commonly purging, although there is a non-
purging subtype where exercise is usually the preferred weight-losing behavior. In OSFED,
weight is not as low as in AN and the frequency of bingeing and purging behaviors is less
than that specified for BN.

18.5 Studies of HRV in Eating-Disorder Patients

Our group has examined HRV in three different cohorts of patients diagnosed with eating
disorders, ranging in number from 17 to 35 patients, and compared them to equivalent
numbers of age- and gender-matched healthy controls. The majority of patients were
female and suffering from AN although in our first study, we looked at the differences
in HRV between AN patients and those with other eating disorder diagnoses at normal or
relatively normal body weight/BMI (Russell et al. 2010). Later studies have explored the
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effects of treatment, orthostatic changes, and depression on HRV parameters in AN, the
aim being to explore the practical application of this technique to predict medical risk in
this patient population.

18.5.1 AN Compared to Normal-Weight Eating-Disorder Patients

The initial study found reduced linear and nonlinear HRV parameters indicating reduced
complexity in patients with AN (N= 17) and patients of normal body weight (N= 12) diag-
nosed with BN and OSFED. The combined group differed significantly from controls on
almost all HRV parameters at the time of admission to a specialized treatment program
but not after completion of 6 weeks of treatment. However, there were differences (p< 0.05)
between the AN group and the normal-weight eating-disorder group at first assessment.
Undoubtedly, treatment resulted in weight gain in AN patients and cessation of weight-
losing behaviors, primarily restricting, exercising, and purging, in the patient group as a
whole and return of HRV to control values.

18.5.2 Nonlinear Parameters and Treatment Effects

One other study examined linear and nonlinear parameters, respectively, in 18 patients
with AN compared to 31 controls in the first study and 35 patients and 35 controls before
and after treatment (Jelinek et al. 2011). Again differences were no longer significant after
treatment but heterogeneity of the patient group attributed to illness duration was seen as
a problem and nonlinear measures posited to be more helpful in assessing HRV.

18.5.3 Depression and HRV

Depression comorbidity was the focus of another study involving 30 patients with a mean
BMI of 17.9 (AN as defined by DSM-5) and 44 healthy age-matched controls (Jelinek et al.
in press). Thirteen patients were clinically diagnosed with depression and 11 of these met
diagnostic criteria on the Beck Depression Inventory (BDI) for moderate-to-severe depres-
sive disorder. HRV changes were accentuated in the depressed group particularly using
nonlinear parameters and the possibility of increased cardiac risk was inferred. Medica-
tion, mainly antidepressant medication of the selective serotonin reuptake inhibitor (SSRI)
type, was found to exert no significant effect on HRV.

18.5.4 Orthostatic Change and HRV

Whether cardiac risk can be quantified is explored in another study (Jelinek et al. 2017).
Here, it was shown that the differences in HRV between newly admitted AN patients
(N= 35) and controls (N= 43)were enhanced by orthostatic challenge. Vagal predominance
and significant sympathovagal changes were identified in the AN group especially with
nonlinear measures and with patients moving only from sitting to standing (instead of the
more usual lying to standing to obviate patient discomfort and more importantly, major
heart rate changes due to cardiac dysregulation).

18.5.5 Summary of Our Findings

The question remains as to whether measurement of HRV is of practical utility in the
management of eating disorders and then which parameters, what diagnostic groups, and
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under what conditions is this of value. AN is the diagnostic group with the highest mortal-
ity rate and where clinical decisions concerning restrictive treatment often need to be made.
There is more data from our studies and those of other researchers concerning this patient
group and demonstrating reduced HRV suggestive of autonomic imbalance in cardiac reg-
ulation. Nonlinear parameters in our experience may offer a more integrated measure of
the necessary unpredictability or lack thereof in the system conferred by the interplay of
parasympathetic and sympathetic influences. Significant depression seems to accentuate
the reduction in HRV independent of the effect of medication. Effective treatment in a spe-
cialized program returns HRV to control values.

18.5.6 Eating Disorders, HRV, and Medical Risk

Eating-disorder patients in general tend to be quite secretive if not dishonest about their
food- and exercise-related behaviors and the extent of these. AN patients, in particular,
often have impaired decision making and lack insight into their need for treatment; they
frequently falsify their weights so an objective measure of medical risk would be invalu-
able.

Some physicians insist that eating-disorder patients, no matter how emaciated, are med-
ically stable in 24–48 hours even when the patient is in ED and may have received some
intravenous fluids, investigations, little or nothing to eat, and no medical interventions
apart from having to desist from exercise and some of their more overt eating-disordered,
weight-losing behaviors. The patients’ electrolytes and blood count may look normal, par-
ticularly in the presence of mild dehydration. Body temperature might not have been mea-
sured and orthostatic effects on blood pressure and heart rate are likely not to have been
assessed. The patient may have been weighed in street clothes, wearing shoes, and height
is frequently not measured at all and “guestimated” by the patient. Blood pressure might
be somewhat low and a single ECG may only show bradycardia. Tachycardia in this situa-
tion is very worrying as it can indicate covert infection (emaciated patients do not have a
pyrexial response), impending heart failure, or refeeding syndrome (particularly where the
patient has eaten an excess of high-carbohydrate food in an effort to avoid hospitalization).
HRV in the ED situation might be useful in indicating the need for more restrictive treat-
ment or at least a need to keep the patient under closer observation—if only the normal
range had been established, which thus far it has not (Mazurak et al. 2011).

18.5.7 Future Directions

A 24-hour Holter monitor reading, even in an asymptomatic anorexic patient, can be par-
ticularly alarming and shows runs of sinus tachycardia, periods of bradycardia, and even
asystole, nodal, and junctional rhythms, ectopic beats, and runs of supraventricular tachy-
cardias (SVT), which are fortunately mostly benign and self-limited, but cardiac death can
occur and may do so in the presence of normal-looking blood tests. The relationship of
these transient arrhythmic events to HRV needs to be explored either with a short recording
(as described in our studies) immediately before and after or better still at periods through-
out the 24-hour Holter monitoring (as has already been examined in some of the studies
considered by Mazurak and by those listed in our table). This would not be difficult tech-
nically and would permit ascertainment of a more exact relationship of HRV to arrhyth-
mic events to determine whether reduced HRV parameters and which, in particular, are in
proximity to arrhythmic and dysrhythmic events. These could result in death under certain
circumstances such as hypothermia, sleep, hypoglycemia, “functional” hypothyroidism,
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depression, anxiety, and eating-disordered behaviors, alone or in combination with each
other and emaciation. Improvement and reduction of dysrhythmic events with treatment
could also be determined. HRV would thus offer an integrated and objective measure of
cardiac risk and benefits of treatment but there still remains much to be done before HRV
can become a routine part of clinical practice.

18.6 Conclusion

Eating disorders are serious mental and physical disorders and they are becoming alarm-
ingly prevalent in the Western (and Westernizing) world and a major public health prob-
lem. Effective, intensive treatment is becoming increasingly rationed and provision of this
to those who most need it is of high priority and often vigorously disputed by various
parties. Determination rests in the first instance on medical risk and HRV is a promising
technique in this regard, even if more work to determine normal ranges, risk profiles, and
the most useful parameters is necessary.
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19.1 Introduction

Among clinical conditions, heart rate (HR) variability, a measure of cardiac autonomic
regulation, has been most widely studied in patients who have experienced acute myocar-
dial infarction (AMI). The prognostic significance of several HR variability variables, includ-
ing classic time- and frequency-domain parameters as well as some nonlinear and newer
parameters, has been assessed in post-AMI patients. A selection of the studies is briefly
introduced in the present chapter. In these studies, the HR variability parameters have
been measured from 24-hour ambulatory Holter recordings or sometimes from shorter term
recordings. The shorter term recordings have usually been carried out under controlled con-
ditions in terms of breathing, position, or activity. In some studies, the recordings have been
obtained during the hospital stay after AMI, or weeks to months after AMI. The HR vari-
ability analyses have almost invariably been done after editing premature depolarizations
from the beat-to-beat (RR interval) time series. The values of HR variability parameters are
dependent on HR, with values of conventional HR variability variables being more sensi-
tive to HR than the values of newer nonlinear variables. Selection criteria and characteristics
of AMI patients, which have been reported in the literature, have varied dramatically. In
many studies, HR-uncorrected and in some studies, HR-corrected HR variability values
were used. Further the prognostic value of HR variability measurements has been eval-
uated in post-AMI patients who have had well-preserved left ventricular function, mod-
erately decreased left ventricular function or severely depressed left ventricular function.
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In terms of functional class, the post-AMI populations in HR variability studies have varied
from asymptomatic/mildly symptomatic to symptomatic. There have also been differences
in the use of medications, such as beta-blockers, among the post-AMI populations in HR
variability studies. Different studies have also used different endpoints, such as total mor-
tality, cardiac mortality, noncardiac mortality, sudden death, sudden cardiac death, sudden
arrhythmic death, resuscitated death, heart failure death, life-threatening ventricular tach-
yarrhythmias, various nonfatal events, or combinations of different endpoints. Age, gender
distribution, and the involvement of other diseases have also varied between different post-
AMI populations in HR variability studies. These differences in study populations have led
to study results that are not directly comparable, especially with respect to the contribution
of the autonomic nervous system.

A vast majority of studies in post-AMI populations have shown that HR variability
yields prognostic information indicating that reduced HR variability is associated with
increased risk of mortality and adverse events. However, all the abovementioned factors
modify the prognostic significance of HR variability variables. Therefore, it is very diffi-
cult to exactly generalize the findings to all real-world post-AMI populations. It is even
more difficult to extrapolate the findings to an individual post-AMI patient. For these rea-
sons, HR variability is not yet widely applied in practice as a guide for clinical decision
making after AMI. The larger the studied post-AMI population, the greater the chance
of finding a HR variability parameter as a statistically significant predictor of adverse
events. This does not necessarily translate into clinical usefulness for individual post-AMI
patients. It is further noteworthy that if a risk indicator is used in an individual patient’s
risk stratification, there should be a treatment option available that is beneficial particu-
larly to the patient group, which was identified to be at risk. Many beneficial therapies,
such as medications, are applied in the treatment of virtually all patients with AMI, if
there are no contraindications and there is no need for finding subgroups that are at the
greatest risk to start the treatments. The post-AMI patients who have experienced a life-
threatening ventricular tachyarrhythmia after an acute phase without a transient cause
need an implantable cardioverter-defibrillator (ICD) for secondary prophylactic reasons.
The post-AMI patients with severely depressed left ventricular function but without any
history of life-threatening ventricular tachyarrhythmias should receive a primary prophy-
lactic ICD (Moss et al. 2002; Bardy et al. 2005). However, the majority of sudden arrhyth-
mic deaths occur in the post-AMI patients with moderately decreased or well-preserved
left ventricular function (Huikuri et al. 2001). It would therefore be beneficial to find risk
indicators that could predict the risk for sudden arrhythmic death as accurately as possi-
ble, especially in patients with preserved left ventricular function, as most of these deaths
could be prevented by implanting an ICD for primary prophylactic reasons. There are data
to support the concept that HR variability predicts the risk for life-threatening arrhythmic
events in post-AMI patients. An example of such data is the results of the Cardiac Arrhyth-
mias and Risk Stratification after Acute Myocardial Infarction (CARISMA) study. In this
study, the primary endpoint of ventricular fibrillation or symptomatic sustained ventricu-
lar tachycardia was detected using implantable loop recorders in post-AMI patients with
left ventricular ejection fraction (LVEF) ≤40% measured from 3 to 21 days after AMI with
follow-up for 2 years. Several HR variability parameters measured 6 weeks after AMI pre-
dicted the primary endpoint (Huikuri et al. 2009, Figure 19.1). After further research and
developments, HR variability, particularly when combined with other risk indicators, has
the potential to become a useful indicator of the risk for sudden arrhythmic death in post-
AMI patients.
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Heart rate variability
VLF ≤ 5.7 7.0 (2.4–20.3)
HF < 3.5 6.2 (1.3–29.9)
SDNN < 70 ms 4.6 (1.5–13.7)
DFA (α 1) < 0.75 3.5 (1.2–10.1)
LF < 5.5 1.8 (0.6–5.1)

PES
sustained MMVT 4.8 (1.7–13.4)
sustained VT/VF 3.5 (1.3–9.3)

12-lead ECG
QT dispersion > 90 ms 3.7 (1.2–11.0)
QRS duration >120 ms 1.4 (0.5–3.9)

Signal-averaged ECG
SAEG:QRS width ≥ 120 ms 2.9 (1.0–8.3)
SAEG Dur < 40 μV > 40 ms 1.7 (0.7–4.5)
SAEG RMS last 40 ms < 20 μV 1.4 (0.6–3.7)

Heart rate turbulence
Turbulence slope < 2.5 2.8 (1.1–7.2)
Turbulence onset > 0 1.2 (0.4–3.9)

Holter
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FIGURE 19.1
Adjusted hazard ratios with 95% confidence intervals (CI) of the variables as predictors of primary endpoint
in the CARISMA study (see text). Hazard ratios are calculated from predefined threshold values of continuous
variables. Hazard ratios are adjusted for age, prior myocardial infarction, history of congestive heart failure,
and diabetes. The variables are listed in descending order starting with the highest hazard ratio for each risk
stratification method. DFA (α1), the short-term scaling exponent obtained by the detrended fluctuation analy-
sis technique; HF, high-frequency component of power spectrum; LF, low-frequency component of power spec-
trum; LVEF, left ventricular ejection fraction; MMVT, monomorphic ventricular tachycardia; nsVT, nonsustained
ventricular tachycardia; SDNN, standard deviation of all normal-to-normal intervals; VLF, very-low-frequency
component of power spectrum; VPBs, ventricular premature beats; VT/VF, ventricular tachycardia/ventricular
fibrillation. (Reproduced from Huikuri HV et al., Eur Heart J., 30, 689–98, 2009. With permission.)

19.2 HR Variability and the Risk for Adverse Events in Post-AMI Patients

19.2.1 Studies Applying Conventional Methods of HR Variability Analysis

There are a huge number of studies that have shown that decreased HR variability is asso-
ciated with increased risk for mortality and adverse events in post-AMI patients. Some of
the studies are introduced here.

Schneider and Costiloe (1965) studied the prognostic significance of HR variability in
ischemic heart disease and proposed that decreased HR variability in patients with AMI is
associated with a worse prognosis. Wolf et al. (1978) assessed prospectively HR variabil-
ity from electrocardiographic rhythm strips for 176 patients with AMI. They found that
more pronounced sinus arrhythmia was associated with lower in-hospital mortality. The
study by Kleiger et al. (1987) can be considered as a cornerstone study in assessing the
prognostic significance of HR variability in post-AMI patients. Their study was the first
large multicenter trial that showed that reduced HR variability is associated with worse
long-term prognosis in post-AMI patients based on HR variability results in 808 post-
AMI patients from 24-hour electrocardiographic recordings obtained 11± 3 days after AMI.
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Approximately 34% of the patients with the standard deviation of all normal-to-normal
intervals (SDNN) < 50 ms died after a mean follow-up time of 31 months, in compari-
son to approximately 12% of patients who had higher values. The patients with SDNN
< 50 ms had a 5.3 times higher relative risk of death compared with the patients with
SDNN > 100 ms. Reduced HR variability retained its significant prognostic power after
adjustments with other risk indicators.

The triangular index of HR variability was analyzed by Cripps et al. (1991) in 177 patients
with AMI from 24-hour electrocardiographic recordings, which were obtained a median
of 7 days after AMI. The relative risk of sudden death or symptomatic sustained ven-
tricular tachycardia during a median follow-up of 16 months was observed to be seven
times greater in patients with an index of < 25 compared with those with an index of
≥ 25. Odemuyiwa et al. (1991) compared HR variability index and LVEF for the predic-
tion of all-cause mortality, arrhythmic events, and sudden death in 385 post-AMI patients.
They found that HR variability index worked better than LVEF in predicting postinfarc-
tion arrhythmic complications. However, both indexes were equally good predictors of
all-cause mortality. In another study, 24-hour ambulatory electrocardiographic recording
was obtained between 5 and 11 days after AMI in 477 patients. It was observed that the
HR variability index, LVEF, and the frequency of ventricular premature depolarizations
in various combinations of these risk indicators more reliably predicted sudden death in
patients who were aged under 60 years than in older ones (Odemuyiwa et al. 1992). In a
study of 433 survivors of first AMI, the HR variability index was analyzed from 24-hour
ambulatory electrocardiographic recordings obtained before discharge from the hospital.
It was found that HR variability index independently predicted sudden death and total
cardiac mortality only during the first 6 months of follow-up (Odemuyiwa et al. 1994). In
a prospective study of 303 post-AMI patients, the HR variability index was independently
associated with arrhythmic events during 15±7 months of follow-up (Pedretti et al. 1993).

Bigger et al. (1992) analyzed frequency-domain measures of HR variability from 24-hour
electrocardiographic recordings obtained 2 weeks after AMI in 715 patients. They observed
that after adjustments for known risk indicators, the total, ultra-low-frequency, and very-
low-frequency powers of HR variability remained significant and powerful predictors of
mortality. However, low-frequency and high-frequency power had only a moderate asso-
ciation with mortality. The very-low-frequency component of the power spectrum was the
only variable, which more strongly predicted arrhythmic death than cardiac or all-cause
death. In another study, Bigger et al. (1993) assessed the prognostic value of the frequency-
domain parameters of HR variability analyzed from 2 to 15-minute segments of 24-hour
electrocardiographic recordings made 11± 3 days after AMI in 715 patients. They con-
cluded that the frequency-domain values of HR variability analyzed from short recordings
are similar compared with the values analyzed from 24-hour recordings and that they pre-
dict all-cause mortality and sudden cardiac death. In a study including 700 consecutive
post-AMI patients, the time-domain measure, SDNN, analyzed from 5-minute short-term
RR interval data, was found to be a less accurate predictor of 1-year mortality than the HR
variability index analyzed from 24-hour period. Nevertheless, it could be used in preselec-
tion of high-risk patients (Fei et al. 1996).

Consecutive post-AMI patients (n= 226) had 24-hour electrocardiographic recordings on
average 83 hours after AMI. Both time- and frequency-domain variables were analyzed
from the recordings, and patients were followed up for a mean of 8 months. There was sig-
nificant difference in the low-frequency component of HR variability between those who
died and survivors, but the difference in the high-frequency component was less marked.



Applying Heart Rate Variability 393

Time-domain analysis, such as the standard deviation of averaged normal-to-normal
intervals (SDANN), showed also that HR variability was reduced in nonsurvivors com-
pared with survivors. However, there was no significant difference in the percentage of
absolute differences between successive RR intervals > 50 ms (pNN50) or the root mean
square of successive differences (RMSSD) between the groups (Vaishnav et al. 1994). Over-
all HR variability, measured by time-domain variables, was found to retain its indepen-
dent predictive significance for total and cardiovascular mortality in 567 patients with AMI
treated with fibrinolysis and followed up for 1000 days (Zuanetti et al. 1996).

Of interest is that the results obtained by comparing the mean RR interval and HR
variability analyzed from predischarge Holter recordings in 579 post-AMI patients and
LVEF during a 2-year follow-up found that the mean RR interval (HR) and HR variability
were stronger predictors of mortality than LVEF (Copie et al. 1996). The prognostic signif-
icance of HR variability and baroreflex sensitivity were evaluated in 1284 patients with a
recent (<28 days) AMI in the Autonomic Tone and Reflexes After Myocardial Infarction
(ATRAMI) trial. Low HR variability (SDNN < 70 ms) analyzed from 24-hour electrocardio-
graphic recordings obtained 15± 10 days after the AMI or baroreflex sensitivity predicted
cardiac death during 21± 8 months of follow-up, further confirming the prognostic value
of reduced HR variability in post-AMI patients (La Rovere et al. 1998).

Decreased HR variability has been attributed to both arrhythmic and nonarrhythmic
death in post-AMI patients (Hartikainen et al. 1996). It has been suggested that the reduced
HR variability is more closely related to the vulnerability of ventricular fibrillation than
monomorphic ventricular tachycardia in post-AMI patients (Perkiömäki et al. 1997). How-
ever, there has been some contradictory data about the prognostic accuracy of HR variabil-
ity in post-AMI patients with diabetes. Some studies have suggested that the association
between reduced HR variability and mortality is at least as strong in patients with diabetes
as in nondiabetic patients (Whang and Bigger 2003), but other studies have suggested that
diabetes decreases the association (Stein et al. 2004).

19.2.2 Studies Using Nonlinear Methods of HR Variability and HR Turbulence
and Newer Studies

Some studies have suggested that some of the nonlinear parameters of HR variability may
be slightly better predictors of mortality in post-AMI patients than the conventional mea-
surements (Bigger et al. 1996; Mäkikallio et al. 1999a; Huikuri et al. 2000). Some of the
nonlinear HR variability parameters, such as the short-term scaling exponent obtained by
the detrended fluctuation analysis (DFA) technique (Peng et al. 1994, 1995), have some
advantages over the traditional HR variability variables as risk indicators: less depen-
dency on HR, less interindividual and intraindividual variation (Pikkujämsä et al. 2001;
Perkiömäki et al. 2001c; Maestri et al. 2007), smaller relative changes of individual values
over time after AMI (Perkiömäki et al. 2001c), and relatively good comparability of indi-
vidual values between long-term and short-term electrocardiographic recordings (Perk-
iömäki et al. 2001b). Mäkikallio et al. (1999a) analyzed the short-term scaling exponent,
which describes short-term scaling properties of HR variability (Peng et al. 1994, 1995)
in 159 post-AMI patients with LVEF < 35%, who were followed up for 4 years. They
found that the short-term scaling exponent was a better predictor of mortality than other
HR variability measurements including traditional time- and frequency-domain HR vari-
ability indexes. Decreased short-term scaling exponent values have also been associated
with vulnerability to ventricular tachycardia (Mäkikallio et al. 1997), ventricular fibrillation
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(Mäkikallio et al. 1999b), arrhythmic death, and nonarrhythmic cardiac death (Huikuri et
al. 2000) in post-AMI patients. The prognostic value of the short-term scaling exponent
has also been shown in post-AMI patients of whom a high proportion were taking beta-
blockers (Tapanainen et al. 2002; Jokinen et al. 2003). The short-term scaling exponent has
also been observed to predict recurrent nonfatal coronary events (Perkiömäki et al. 2008)
and long-term risk for heart failure hospitalization after AMI (Perkiömäki et al. 2010).
Decreased values of the short-term scaling exponent have also been shown to be associ-
ated with the risk for perpetuating ventricular tachyarrhythmias, but not with risk for self-
terminating ventricular tachyarrhythmias in post-AMI patients with moderately decreased
LVEF. This suggests that there are differences in modifying factors of these arrhythmias
(Perkiömäki et al. 2011).

Bigger et al. (1996) also studied long-term fractal-like scaling characteristics of HR vari-
ability from 24-hour electrocardiographic recordings in 715 post-AMI patients. They found
that the power-law slope was steeper in post-AMI patients than in healthy subjects and
that a steeper power-law slope was a better predictor of all-cause mortality or arrhythmic
death than the conventional power spectral measurements in post-AMI patients.

As mentioned in the introduction, the CARISMA study included 312 post-AMI patients
with LVEF ≤40% measured 3–21 days after AMI. The primary endpoint of the study
was ventricular fibrillation or symptomatic sustained ventricular tachycardia, which were
detected using implantable loop recorders. During the follow-up of 2 years, among the
studied risk indicators, the measures of HR variability were the strongest predictors of the
primary endpoint. Many HR variability parameters, when analyzed from 24-hour electro-
cardiographic recordings obtained 6 weeks after the AMI, predicted the primary endpoint
after adjustments with clinical characteristics (Figure 19.1). The very-low-frequency com-
ponent of the power spectrum performed best. The area under the curve from the receiver
operator characteristics curve for the very-low-frequency component of the power spec-
trum in predicting the primary endpoint was 0.73± 0.07, p= 0.002 (Huikuri et al. 2009).

HR turbulence, a measurement describing the changes of the sinus node–originated RR
interval after ventricular premature depolarizations, has been shown to be a strong pre-
dictor of mortality in post-AMI patients even after adjustments with general known risk
indicators (Schmidt et al. 1999; Barthel et al. 2003; Bauer et al. 2008). Blunted HR turbulence
slope has also been observed to be an independent predictor of sudden cardiac death in
post-AMI patients (Mäkikallio et al. 2005) in a subgroup analysis, particularly in those with
LVEF> 35%, but not in those with LVEF ≤35%. The Risk Estimation Following Infarction
Noninvasive Evaluation (REFINE) study included 322 post-AMI patients with LVEF< 50%.
When assessed at 10–14 weeks after AMI, impaired HR turbulence plus abnormal T-wave
alternans predicted independently the primary outcome of cardiac death or resuscitated
cardiac arrest after a median 47 months of follow-up. Reduced HR variability (SDNN)
only tended to be an independent predictor of the primary endpoint (p= 0.066) in this
study (Exner et al. 2007).

19.3 Factors Influencing the Values and Prognostic Significance of HR
Variability Measurements in Postinfarction Patients

HR variability values are dependent on HR (Sacha et al. 2013a), with values of
nonlinear HR variability measurements being somewhat less dependent than those of the
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conventional measurements (Pikkujämsä et al. 2001; Perkiömäki et al. 2001c; Maestri et
al. 2007). The higher the HR, the lower the HR variability. Some authorities recommend
using HR-uncorrected HR variability values. However, in some studies HR-corrected HR
variability values are also used. HR has been shown to be a strong predictor of mortality
in post-AMI patients (Copie et al. 1996). Increasing the dependence of spectral HR vari-
ability indices on HR by a mathematical modification increases the prognostic power of
HR variability for cardiac death in post-AMI patients (Sacha et al. 2013b). It is also known
that beta-blocker therapy increases HR variability in post-AMI patients (Sandrone et al.
1994; Keeley et al. 1996). However, this increase in the values of HR variability has partly
been attributed to the decrease in HR following beta-blocker therapy. Lampert et al. (2003)
observed that propranolol therapy increased parasympathetic tone measured by HR vari-
ability and improved outcome in post-AMI patients.

It is noteworthy that HR variability parameters are better risk indicators in patients with
more preserved left ventricular function (Mäkikallio et al. 2005) or less severe heart failure
(Mäkikallio et al. 2001) than in those with more severe left ventricular dysfunction or more
advanced heart failure. Furthermore, reduced HR variability is more closely linked to car-
diac death in general than sudden arrhythmic death in post-AMI patients with severely
decreased left ventricular function (Perkiömäki et al. 2001a; Zareba et al. 2003).

An important observation when using HR variability for predicting outcome following
AMI is the timing of HR variability measurement after AMI, as this has a significant influ-
ence on its prognostic value. In the CARISMA study, HR variability was a much more
stronger predictor of life-threatening ventricular tachyarrhythmias when analyzed from
24-hour electrocardiographic recordings obtained at 6 weeks after the AMI than when ana-
lyzed from those obtained at 1 week after the AMI in which case only the short-term scal-
ing exponent determined from DFA significantly predicted the arrhythmias (Huikuri et al.
2009). In the REFINE study, HR variability tended to predict cardiac death or resuscitated
cardiac arrest when measured at 10–14 weeks after the AMI; however, it was not associated
with this endpoint when measured at 2–4 weeks after the AMI (Exner et al. 2007).

In general, HR variability, regardless of the parameters used, can be considered to yield
prognostic information. However, in some studies, some nonlinear methods of HR vari-
ability have been observed to be slightly better predictors of mortality in post-AMI patients
than the conventional methods (Bigger et al. 1996; Mäkikallio et al. 1999a). Furthermore,
some conventional beat-to-beat measures of HR variability, such as the high-frequency
power of the power spectrum, pNN50, and RMSSD, have not constantly been shown to
be associated with outcome in post-AMI patients (Vaishnav et al. 1994). This may due to
common erratic fluctuations of HR in these patients (Huikuri and Stein 2012). When these
erratic fluctuations are removed from the analysis, respiratory cycle-related HR variability
regains its prognostic power (Peltola et al. 2008). HR variability variables have been found
to provide similar or in some studies slightly weaker prognostic information when ana-
lyzed from short-term electrocardiographic recordings than when analyzed from 24-hour
recordings (Bigger et al. 1993; Fei et al. 1996). The type of editing of the RR interval data
also has also significantly different influence on various HR variability variables (Salo et al.
2001). However, premature depolarizations increase the randomness in the short-term scal-
ing exponent and should not necessarily be edited from the analysis (Peltola et al. 2004).
Therefore, the type of editing of the RR interval data may modify the prognostic informa-
tion in HR variability indices.

Age and gender influence the HR dynamics (Lipsitz and Goldberger 1992; Iyengar et al.
1996; Pikkujämsä et al. 1999, 2001). Various medical conditions, such as diabetes, may
also modify the prognostic significance of HR variability in post-AMI patients (Whang and
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Bigger 2003; Stein et al. 2004). Data on the influence of interventions on HR variability and
on its prognostic significance are limited. However, it has been observed that more
random HR dynamics after a coronary bypass operation is associated with a more com-
plicated clinical course (Laitio et al. 2000). Pharmacologic, behavioral, and exercise strate-
gies have been shown to increase HR variability in patients with coronary artery disease
(Nolan et al. 2008). Thus, although HR variability can be considered as a marker of clinical
outcome in post-AMI patients, it has not been established whether the prognosis can be
improved by increasing HR variability by interventions.

19.4 HR Variability in Clinical Decision Making in Postinfarction Patients

At the moment, HR variability cannot be recommended for routine clinical use in the indi-
vidual post-AMI patient’s risk stratification. For a HR variability parameter to be useful
in guiding the post-AMI patient treatment, it should change the patient’s management
in a manner that improves outcome. In the Defibrillator in Acute Myocardial Infarction
Trial (DINAMIT), patients with AMI at 6–40 days previously, LVEF ≤ 35%, and SDNN
≤ 70 ms or HR ≥80 beats per minute as assessed by 24-hour Holter recording at least 3 days
after the infarction were randomized to have ICD therapy or no ICD therapy. There was no
difference in the primary endpoint of all-cause mortality between the treatment groups
during the 30±13 months of follow-up. Although there was a reduction in the rate of
arrhythmic deaths, there was an increase in the rate of nonarrhythmic deaths in those who
were treated by ICD therapy (Hohnloser et al. 2004; Dorian et al. 2010). These findings are
in alignment with the previous observations, which have shown that reduced HR variabil-
ity is associated with the risk for cardiac death in general, but not specifically with the risk
for arrhythmic death in post-AMI patients with severely decreased left ventricular function
(Perkiömäki et al. 2001a; Zareba et al. 2003). Nevertheless, when the information included
in HR variability is combined with information in repolarization variability, such as with
the QT variability index, the patients who experience ventricular tachycardia or ventric-
ular fibrillation requiring ICD therapy can be relatively well identified among patients
with remote AMI and severely depressed left ventricular function (Haigney et al. 2004).
In the CARISMA study, which included post-AMI patients with somewhat better pre-
served left ventricular function, many HR variability parameters analyzed at 6 weeks after
AMI were significant independent predictors of ventricular fibrillation or symptomatic
sustained ventricular tachycardia (Huikuri et al. 2009, Figure 19.1). Furthermore, in the
REFINE study, which included post-AMI patients with even better preserved left ventricu-
lar function than the CARISMA study, the combination of abnormal HR turbulence and
T-wave alternans, predicted independently cardiac death or resuscitated cardiac arrest
(Exner et al. 2007). The Risk Estimation Following Infarction Noninvasive Evaluation—
ICD efficacy (REFINE-ICD) study is including post-AMI patients with LVEF from 36%
to 49%, abnormal T-wave alternans, and impaired HR turbulence measured from 2 to 14
months after AMI. The study subjects are randomized 1:1 to prophylactic ICD treatment
versus control therapy. The primary outcome measure of the study is mortality, and the sec-
ondary outcome measures are the quality of life and cost-effectiveness. The ancillary out-
come measures include cardiac death, arrhythmic death, arrhythmic syncope, appropriate
ICD therapies, inappropriate ICD therapies, system-related complications, and the influ-
ence of the type of ICD or AMI (ST-elevation/non-ST elevation) (Clinical Trial Registration
Information: http://www.clinicaltrials.gov, NCT00673842). After further developments

http://www.clinicaltrials.gov
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and standardizations, HR variability/turbulence, particularly when combined with other
risk indicators, may become useful risk markers in selecting post-AMI patients for
primary prophylactic ICD therapy. Before that ongoing or future large-scale studies, such
as the REFINE-ICD study, should show that post-AMI patients who are risk stratified
to ICD therapy based on HR variability–derived risk indicators benefit from the ICD
therapy.

19.5 Conclusion

The current evidence is strong about the predictive power of many HR variability indexes,
when measured either early or late after AMI. Future studies focusing on randomized trials
using HR variability or HR turbulence as the basis for inclusion into the trial will reveal
the clinical utility of routine measurement of HR variability/turbulence.

19.6 Summary

A large number of studies have shown that various measures of heart rate (HR) variabil-
ity, measured mainly from 24-hour Holter recordings, can predict the future mortality of
postinfarction patients. Both traditional statistical methods, such as time- and frequency-
domain measures of HR variability and HR turbulence, as well as measures based on non-
linear dynamics, such as fractal correlation indexes, have been used in risk stratification.
Despite the predictive power of many HR variability indexes, the measurement of the HR
variability after acute myocardial infarction (AMI) has not become a routine clinical tool.
The lack of clinical utility is mainly due to the lack of studies showing that any therapeutic
intervention could improve the prognosis of patients with impaired HR variability.
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20.1 Introduction

The QT interval of a body surface electrocardiogram (ECG), illustrated in Figure 20.1 [1],
reflects the depolarization and repolarization processes across the ventricular myocardium
20.2 [2]. Since the depolarization process reflected by the QRS complex is relatively stable,
the QT interval is clinically used to measure prolongation or shortening of the ventricular
repolarization process. QT interval prolongation can be either congenital or acquired. The
former is caused by a range of potassium or sodium ion channel mutations, while the latter
is associated with a reduction in repolarization reserve that can be induced by pharmaceu-
tical agents, hypokalemia, or hypomagnesemia. Both conditions have been associated with
increased cardiac mortality [3]. Since the QT interval is dependent on heart rate, it is typ-
ically reported after correcting for it (QTc), by using one of the many available correction
formulas. QTc has gained wide acceptance as a steady-state measure of ventricular repo-
larization.

Ventricular repolarization and, hence the QT interval duration, fluctuate from one
heartbeat to the next, giving rise to so-called QT interval variability (QTV) [4]. During
the last two decades, the study of QTV has received increasing clinical interest as elevated
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FIGURE 20.1
Electrophysiology of the heart. The different waveforms represent characteristic action potentials for each of the
specialized cells found in the heart. The latency shown approximates that normally found in the healthy heart.
(Image taken from Jaakko Malmivuo and Robert Plonsey. Bioelectromagnetism: Principles and Applications of Bioelec-
tric and Biomagnetic Fields. Oxford University Press, 1995.)

QTV has been demonstrated in patients suffering from various cardiac conditions, includ-
ing myocardial infarction and dilated cardiomyopathy [5–7]. Importantly, increased QTV
was shown to be predictive of adverse cardiac events [8,9]. Significant research efforts
have been undertaken to elucidate mechanisms that underlie the beat-to-beat fluctuations
in QT interval and evaluate the clinical significance of QTV. One of the physiological
variables that has been repeatedly linked to QTV is the activity of the sympathetic ner-
vous system [10] and, therefore, the question has been posed whether QTV can be used
as a noninvasive marker of sympathetic outflow directed to the ventricular myocardium.
Since chronically increased sympathetic nerve activity is a key factor in the development
of hypertension and cardiac disease and acute surges in sympathetic activity can trigger
malignant arrhythmias in pathological cardiac substrates, a simple, noninvasive index of
ventricular sympathetic outflow would be highly desirable. However, no such technique is
currently available. Aside from microneurography, which facilitates the invasive measure-
ment of sympathetic nerve activity in human muscle or skin tissue, noradrenaline spillover
[11] and 123I-metaiodobenzylguanidine (123I-MIBG) scintigraphy [12] have been used to
measure cardiac sympathetic activity and innervation, respectively, in humans.

In this chapter, I review the evidence for a relationship between QTV and sympathetic
nervous system activity as reported in the literature and summarize our results obtained
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from the direct comparison between measures of sympathetic activity and QTV. First, I will
address some of the technical considerations regarding the QT interval measurement from
beat to beat.

20.2 Technical Considerations

20.2.1 Beat-to-Beat QT Interval Extraction

Under resting conditions during periods of stable heart rates, the beat-to-beat fluctua-
tions in QT interval are rather small with a standard deviation of less than 5 ms. Con-
sequently, high-resolution ECG sampled at a rate of 500 Hz or higher are recommended,
combined with computerized high-precision ECG measurement. While the QRS complex
can be automatically detected with relative ease, delineation of the T-end is generally chal-
lenging due to its typically slow transient character. Hence, the measurement error that is
produced by conventional QT measurement algorithms such as threshold-based methods
is in most circumstances too large to yield a reliable assessment of the beat-to-beat changes
in QT interval. Consequently, template-based methods have been introduced to increase
the accuracy of measurement. Instead of delineating the T-wave terminus based on some
criteria for each beat individually, template beats are generated that comprise part of or the
whole T-wave, which are subsequently compared and adapted to consecutive heartbeats,
where the relative changes in template duration (time stretching method [7]) or time shifts in
the template (time shifting method [13]) are used to measure QTV.

We recently introduced a template method that involves two-dimensional signal warp-
ing (2DSW) of ECG waveforms [14,15]. Briefly, a template beat is generated in an auto-
mated fashion based on aligning and averaging beats, by using the improved Woody’s
method [16]. The template is then mapped onto a N ×M grid of warping points. Each of
these warping points can be shifted in two dimensions, and the areas they encompass—
including template waveform segments—are warped accordingly. Minimizing the
Euclidean distance, the template waveform is warped such that it resembles the heartbeat
under consideration as closely as possible. Fiducial points, including Q-onset and T-end,
are marked on the template in a semiautomated way, and relative changes in fiducial points
in the template due to warping are tracked to obtain a measure of beat-to-beat QTV. Figure
20.2 illustrates this procedure. The algorithm was proven to be very robust in the presence
of noise and common ECG artifacts [15,17].

20.3 Measures of QTV

QTV is typically measured over either 5-minute time intervals or 256 heartbeats under
quasi-stationary conditions. Several metrics have been proposed for the quantification of
QTV. The most popular time-domain measures, which are also reported in this review, are
summarized below:

• meanQT—average QT interval, uncorrected for heart rate
• sdQT—standard deviation of QT intervals
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FIGURE 20.2
Illustration of the two-dimensional warping algorithm. The template beat (light gray) is mapped to a warping
grid (light gray), which is adapted to the incoming beat (black) by moving the warping points such that the
distance between template and incoming beat is minimized. The optimally fitted template and corresponding
warping points are shown in dark gray.

• QTVar—variance of QT intervals
• QTVN—normalized QT variance, QTVN= QTVar

meanQT2

• HRVN—normalized HR variance, HRVN= HRVar
meanHR2

• QTVI—QT variability index, QTVI=− log
QTVar

meanQT2

HRVar
meanHR2

, where meanHR and HRVar are

average and variance of beat-to-beat heart rate time series, respectively

20.4 Sympathetic Nervous System Activity and QTV

20.4.1 Possible Physiological Mechanisms That Link QTV to Ventricular Sympathetic
Out�ow

Although the role of the autonomic nervous system (ANS)—in particular, the sympathetic
branch—in generating and∕or modulating QTV has not been fully elucidated, it is likely
that the ANS acts at several levels via different pathways.

A significant portion of QTV is the direct consequence of heart rate variability and
mediated via rate-dependent modulation of the action potential duration in ventricular
myocytes. Thus, any vagal or sympathetic influences on the cardiac pacemaker region
(sinoatrial node) would also have secondary effects on the QTV. Within ventricular
myocytes, the sympathetic nervous system can principally act on L-type calcium chan-
nels and the slowly activating delayed rectifier potassium current (Iks). The former affects
myocardial contractility while the latter has an effect on the repolarization process. Beta-
adrenoceptor stimulation during Iks blockade was shown to increase variability in the cel-
lular repolarization duration of canine myocytes [18], supporting the idea that an increase
in ventricular sympathetic outflow may lead to an increase in the QTV.

At the tissue level, transmural differences in action potential duration affect the T-wave
morphology in body surface ECG [19]. This may be altered during periods of sympathetic
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activation [20]. Heterogeneous distribution of β-adrenoceptors, regional arborization of
sympathetic nerves [21], and differential cardiac sympathetic control [22] may contribute
to spatial dispersion in action potential duration across the ventricles during periods of
high sympathetic activity.

The existence of ventricular vagal innervation is now well established. Vagal nerve
activity may alter the action potential duration of ventricular myocytes directly via the
acetylcholine-activated K+ current [23], or indirectly through accentuated antagonistic
effects on the sympathetic nerve terminals, both pre- and postsynaptically [24].

20.4.2 Indirect Evidence on the Relationship between QTV and Cardiac Sympathetic
Activity

A substantial number of interventional studies, using different autonomic stimuli, reported
an increase of QTV during periods of heightened sympathetic nervous system activity.

Acute orthostatic stress is a frequently used paradigm in provocation tests for measur-
ing cardiovascular autonomic responsiveness. The manoeuvre results in an immediate car-
diac vagal withdrawal and sympathetic activation, and studies in normal subjects have
shown increases in QTV in response to (graded) head-up tilt, sitting, or standing up (see
Figure 20.3) [10,25–27], suggestive of a sympathetic and∕or vagally mediated modula-
tion of QTV. A study that reported increased QTV in response to sympathetic activation
induced by acute hypoxia adds further evidence for the relationship between sympathetic
nervous system activity and QTV in normal subjects [28]. A study on the spectral com-
ponents of QTV in normal subjects recorded during interview stress and physical exer-
cise, both of which increasing sympathetic activity, demonstrated increased low-frequency
oscillations (10-second waves, observed as Traube–Hering–Mayer waves in blood pres-
sure) in QTV [29]. A subsequent study by the same authors, in which QTV spectra were
estimated during a mental stress test—while the atria was paced at a constant rate to
exclude heart rate variability–driven QTV—confirmed the increase in low-frequency oscil-
lations during stress and furthermore, suggest a direct, rate-independent influence of the
sympathetic nervous system on QTV [30].

A number of studies involving physical exercise have demonstrated an increase in the
ratio of QTV-to-HRV, expressed as QTVi [31–33], while QTV itself showed inconsistent
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Example of beat-to-beat QT interval variability in a healthy subject measured in the supine position (left) and
during standing (middle) as well as standard deviation of QT intervals (sdQT) obtained from 10 healthy subjects
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deviations.



408 ECG Time Series Variability Analysis: Engineering and Medicine

increase [33], suggesting that HRV reduction is the primary driver of QTVi increase.
Possibly, a reduction in the signal-to-noise ratio of ECG recordings, which often occurs dur-
ing exercise due to movement artifacts and muscle activity artifacts, may explain the incon-
sistent QTV change and render this stress paradigm less suitable for QTV measurement.

Aside from noninvasive interventions, pharmacological studies have been performed
to explore the relationship between ANS activity and QTV. Several studies measured
QTV in subjects with a normal ventricular myocardium in response to pharmacologi-
cal β-adrenoceptor activation and showed consistently an increase in QTV [10,28,34,35].
Pharmacological β-adrenoceptor block showed no effect on QTV when measured during
resting conditions [34,36], but a reduction in QTV when the effect of HRV was removed
during atrial pacing [37]. Possibly, the activity of the sympathetic nervous system is too
low during rest to exhibit a notable influence on QTV, or this influence may be masked by
underlying HRV-driven QTV. Collectively, these studies strongly support the notion of a
qualitative relationship between acute changes in sympathetic activity and QTV in normal
subjects.

Two studies reported QTV in patients with panic disorder (PD) who were subjected to
drugs, which affect the ANS. In patients with PD, the α2-adrenergic antagonist yohim-
bine increased anxiety as well as QTVi, whereas α2-adrenergic agonist clonidine reduced
QTVi [38]. Response to β1- and β2-receptor activation with isoprotenerol was pronounced
in patients with PD compared to normal subjects [39].

In cardiac patients, the response of QTV to acute autonomic stimuli appears to be blurred,
but data are limited. In congestive heart failure patients, baseline QTVi was reported
higher than in normal subjects, but the response to head-up tilt was impaired [26,40].
In another study in patients with heart failure, acute pharmacological β-adrenoceptor
blockade had no effect on QTV [34]. In postmyocardial infarction patients, an anger
recall test did not affect QTVi during β-adrenoceptor blockade [41]. Reasons for the
impaired QTV response to acute changes in autonomic tone may be medications, chronic
changes in autonomic tone, sympathetic dysinnervation, or a reduction in repolarization
reserve.

Cross-sectional studies on β-blocker treatment suggest a link between ANS activity
and QTV. In postmyocardial infarction patients who received β-blockers, QTV measured
in ambulatory ECG was smaller than in patients who did not receive β-blockers, the
former showing values similar to those of normal subjects [42]. This study provides
evidence for sympathetic nervous system involvement in augmenting QTV, but impor-
tantly suggests that QTV, which may indicate pathological repolarization instability in
these patients, can be reversed by attenuating the sympathetic influences. In patients with
ischemic cardiomyopathy-related heart failure, β-blocker treatment over 1 year reduced
QTVi [43].

20.4.3 Direct Evidence for the Relationship between Sympathetic Activity and QTV

Although the qualitative relationship between acute changes in sympathetic activity and
QTV can be considered firmly established—at least in normal subjects as summarized
above—the question remains whether it can serve as a coarse quantitative measure of sym-
pathetic activity or help identifying subjects with sympathetic overactivity. We thus con-
ducted correlation studies in which we compared metrics of the QTV with direct measures
of sympathetic activity or innervation, employing the noradrenaline spillover technique
and MIGB scintigraphy, respectively, as detailed below.
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20.4.3.1 Cardiac Noradrenaline Spillover

Noradrenaline spillover measurement is a biochemical method for measuring organ-
specific sympathetic nervous function. It exploits the relationship between sympathetic
nerve firing rate and spillover of noradrenaline into its venous effulent [44]. It is based on
isotope dilution, where the regional rate of spillover of noradrenaline into plasma can be
determined during constant-rate infusion of radiolabeled noradrenaline:

Spillover=
[(

Cv −Ca
)

+Ca ⋅E
]

⋅PF (20.1)

where Cv and Ca are the plasma concentration of noradrenaline in regional venous and
arterial plasma, E is the fractional extraction of tritiated noradrenaline, and PF is the organ
plasma flow.

In the experiments, a coronary sinus angiographic catheter was introduced via the ante-
cubital venous sheath and placed under fluoroscopic control in the coronary sinus for
blood sampling to measure cardiac noradrenaline spillover. Coronary sinus blood flow
was estimated from the double product (systolic blood pressure × heart rate). During the
catheter study, participants received a tracer infusion of 3H-labeled noradrenaline via a
peripheral vein, after a priming bolus, for the measurement of noradrenaline kinetics by
isotope dilution.

In a retrospective study of 12 patients with major depressive disorder (MDD; 5 males,
7 females; age 45± 15 years) and five patients with PD (3 males, 2 females; age: 32± 9
years), we compared QTV measured in high-resolution ECG (lead III, 1000 Hz, using
PowerLab, AD Instruments, Australia) recorded during rest in the supine position over
5 minutes followed by cardiac noradrenaline spillover measurement [45]. Diagnosis was
based on the Mini International Neuropsychiatric Interview (MINI) and the Composite
International Diagnostic Interview (CIDI). The Hamilton Depression Scale and Hamilton
Anxiety Rating Scale (HamD and HamA, respectively), the Clinical Global Impressions
scale (CGI), and the Beck Depression Inventory (BDI-1) were used to monitor progress.
All patients had Ham D>18; BDI>18; positivity for MDD and PD on MINI and CIDI; and
assessment as having a significant major depression or PD as the primary illness on inter-
view by a psychiatrist. Initial studies were performed within 10 days of a confirmed diag-
nosis of MDD∕PD.

In a subsequent retrospective study of 23 patients with essential hypertension (17 males,
6 females; age 44± 12 years) and 9 normotensive (NT) subjects (7 males, 2 females;
age 38± 13 years), we sought to explore the association between cardiac noradrenaline
spillover and QTV, using the same experimental setup [46]. None of the patients had accel-
erated hypertension, clinical coronary artery disease, heart failure, a history of stroke,
renal insufficiency, or diabetes mellitus. Previous use of antihypertensive therapy was
reported in 11 hypertensive subjects. Antihypertensive therapy was discontinued for at
least 4 weeks before the study. NT control subjects underwent careful clinical evaluation
and serum biochemistry measurements to exclude renal and hepatic disease. None of the
control subjects had a history of incidental disease or blood pressure above 140/85 mmHg.

To explore associations between QTV recorded in the supine position during rest and
cardiac sympathetic activity, we investigated scatter plots and computed correlation coef-
ficients between different metrics of QTV and noradrenaline spillover. In the group of
patients with MDD and PD we did not observe any correlation, while in the study of hyper-
tensive patients, a moderate yet significant positive correlation was observed between
QTVN and cardiac noradrenaline spillover (r2 = 0.31, p= 0.001). Subgroup correlation
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analysis, performed separately for the NT and the hypertensive group, showed a signif-
icant correlation between QTVN and cardiac norepinephrine (NE) spillover in hyperten-
sive subjects (r2 = 0.38, p= 0.002), but not in NT subjects. Further, QTVN was correlated
with resting systolic BP (all subjects; r2 = 0.16, p= 0.02). There was no significant correla-
tion between QTVi and cardiac NE spillover.

These two studies represent the only investigations of QTV and directly assessed car-
diac sympathetic activity available to date, using the spillover measurement technique.
ECG recording obtained from normal subjects and patients with MDD and∕or PD at rest
do not support the idea of using resting QTV as an indicator of baseline cardiac sympa-
thetic activity in subjects with normal cardiovascular function. Resting ECG recordings of
hypertensive subjects, on the other hand, do suggest that a coarse indication of sympa-
thetic (over-)activity may be obtained from QTV assessment. Given that our sample sizes
were small and covered a limited range of cardiac noradrenaline spillover values and fur-
thermore that only ECG lead III was available, which is prone to noise [47], the strength of
association between QTV and spillover might have been generally underestimated. Mea-
surement of ECG in the supine position during rest might not lend itself to assessment
of sympathetic activity as in the absence of pathology or autonomic stimulus. In a subse-
quent study, we sought to assess ECG during standing, when cardiac sympathetic activity
is elevated, using a cardiac imaging technique.

20.4.3.2 123I-MIBG Scintigraphy

Cardiac imaging using (123I-MIBG) scintigraphy allows quantification of sympathetic
innervation of the heart. 123I-MIBG is taken up by sympathetic neurons due to its similarity
to the noradrenaline molecule and can be observed with single photon emission computed
tomography (SPECT). A reduction in cardiac 123I-MIBG uptake is due to low ventricular
β1-adrenoreceptor density and∕or noradrenaline uptake, indicative of sympathetic dysin-
nervation.

We retrospectively analyzed 123I-MIBG data along with short-term ECG from 31 patients
with type-2 diabetes mellitus with no history of cardiovascular disease, cancer, or psychi-
atric or other severe illness [48]. Exercise echocardiography studies were performed in all
patients to verify normal ejection fraction (>50%) and the absence of coronary artery dis-
ease (i.e., no inducible wall motion abnormalities indicative of ischemia).

For 123I-MIBG imaging, patients were premedicated with potassium perchlorate to block
thyroid uptake of radioiodine. A standard camera with a low-energy, high-resolution col-
limator (Symbia, Siemens, Erlangen, Germany) was used in the acquisition of anterior pla-
nar and SPECT (32 projections for 50 seconds each) images 15 minutes (early) and 4 hours
(delayed) following injection of 123I-MIBG. Global cardiac uptake of 123I-MIBG was cal-
culated from both early and delayed planar images by the ratio of tracer activity (mean
count per pixel) in the heart (excluding the cavity) and mediastinum. The delayed heart-
to-mediastinum (H∕M) ratio was primarily used in analyses and to define the presence of
cardiac sympathetic dysinnervation (H∕M ratio < 1.8). Cardiac sympathetic dysinnerva-
tion (i.e., a relative reduction of the SPECT signal) was identified in 16 patients.

Five-minute high-resolution ECG (lead II, 1 kHz, Powerlab, ADInstruments, Australia)
was recorded in the supine position during rest. In a subgroup of 15 patients, ECG was
also recorded for 5 minutes during standing, following a stabilization period of at least
2 minutes, and patients were instructed to maintain the position with minimal movement.
Beat-to-beat QT variability was computed using the template stretching method described
by Berger et al. [7].
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During rest, HRV was significantly reduced in patients with cardiac sympathetic dysin-
nervation, while QTVN was comparable, which resulted in an overall increase of QTVi. The
inverse association of the H/N ratio with QTVi was accompanied by a positive correlation
with the denominator (HRVN), but no relation with the numerator (QTVN). Upon stand-
ing, QTVN was significantly higher in patients with cardiac sympathetic dysinnervation
compared to patients with normal innervation, but HRVN was comparable, resulting
in a significant overall increase in QTVi in patients with sympathetic dysinnervation.
The H/N ratio was inversely correlated with standing QTVN, but not with standing
HRVN.

Several important observations can be made from this study: (1) Sympathetic dysinner-
vation appears to be associated with increased QTV in diabetic autonomic neuropathy.
The underlying mechanisms are not clear but may involve increased spatiotemporal dis-
persion of sympathetic modulation across the ventricular myocardium and∕or increased
variability in the action potential of cardiac myocytes. (2) The QT variability index, QTVi,
that is, the ratio of QT variability to heart rate variability, designed to “normalize” QTV
to HRV, may have equivocal interpretations. Measured in the supine position during rest
in patients with diabetic autonomic neuropathy, it is reflective of vagal dysfunction and
the associated reduction in HRV, while upon standing, characterized by vagal withdrawal
and sympathetic activation, it quantifies sympathetically mediated aspects of cardiac auto-
nomic neuropathy that directly affect QTV. Thus, interpretation of QTVi requires great care
and should include individual appraisal of HRV and QTV values. (3) The quantitative
association between QTV and sympathetic activity may become stronger during periods
of sympathetic activation. Consequently, a measurement protocol designed to exploit QTV
as a simple noninvasive marker of sympathetic activity may involve an autonomic stimu-
lus, evoking sympathetic activation, such as an orthostatic stress test.

Since these observations are solely based on ECG recordings from diabetic patients with
varying degrees of autonomic neuropathy, they might not be extrapolated to the general
population or other pathologies.

20.5 Summary and Future Perspective

In this chapter, I have reviewed the evidence available for the association between car-
diac sympathetic activity and QTV. While increased QTV during periods of sympathetic
activation is a common finding in normal subjects across studies, there is insufficient data
regarding the association between QTV and sympathetic activity in patients with cardiac
pathologies. Possibly, other factors that contribute to ventricular repolarization and repo-
larization reserve may override this association. Aside from a change in cardiac substrate
and autonomic tone, medication may play a significant role. Thus, comprehensive studies
into the relation between sympathetic activity and QTV in cardiac disease are advocated
to identify relevant factors.

There is a paucity of studies aiming to establish a direct relationship between sympa-
thetic activity and QTV. Available data do suggest that QTV could be used as a quan-
titative measure of sympathetic activity, but further studies are required to confirm this
relationship. Measurement modalities need to be refined and experimental protocols estab-
lished. Outcomes are presumably better when conducting ECG measurements during
periods of sympathetic activation, induced by orthostatic stress, for example. Precision
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of QT interval measurement, in particular, in conditions where the repolarization pro-
cess is drastically altered and, consequently, ECG waveforms vary broadly, may need
improvement.

In conclusion, assessment of QTV may provide a simple non-invasive tool for probing
cardiac sympathetic (over)activity in subjects with normal hearts. With a lack of alterna-
tives, it appears reasonable to investigate the QTV approach further.
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21.1 Introduction

Autonomic dysfunction is highly prevalent in patients with chronic kidney disease (CKD).
Sympathetic overactivity is commonly described (Kotanko, 2006; Grassi et al., 2012; Rub-
inger et al., 2013) with direct microneurograph recordings of muscle sympathetic nerve
activity indicating that it is substantially elevated (Converse et al., 1992; Klein et al., 2001,
2003) and that this occurs early in the disease course (Grassi et al., 2011). Classical auto-
nomic tests indicate that vagal outflow is also altered with impaired heart rate responses
to administration of atropine,* respiration, table tilt, or the Valsalva maneuver† (for review

* Atropine: a nonspecific antagonist of muscarinic acetylcholine receptors. Inhibits parasympathetic control of the
heart.
† Valsalva maneuver: a test used to examine autonomic control of the heart by examining the heart rate response
(tachycardia) to forced expiration against a closed airway. In patients with autonomic dysfunction, no tachycardia
is observed (Barbato, 1990).

417
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see Robinson and Carr, 2002). The precise underlying cause for autonomic dysfunction
is unknown and likely multifactorial. With respect to sympathetic overactivity, activa-
tion of the renal afferent nerves,* central and/or peripheral actions of angiotensin II,†

and inhibition of brain nitric oxide synthase‡ have been postulated as likely mechanisms
(Kotanko, 2006). Notably, each of these postulated mechanisms have the capacity to impair
vagal control of heart rate too (e.g., Felder, 1986; Ruggeri et al., 2000; Kawada et al., 2009).
The resulting sympathetic overactivity and vagal insufficiency leads to altered sympatho-
vagal balance at the level of heart in CKD and is a likely contributor to the increased risk
of cardiac death (Herzog et al., 2008; Vaseghi and Shivkumar, 2008).

Heart rate variability (HRV) is widely measured in CKD patients as a means of examin-
ing autonomic regulation of the heart and is consistently reported as reduced, most notably
in those receiving dialysis therapy (Axelrod et al., 1987; Hathaway et al., 1998a; Vita et al.,
1999; Kurata et al., 2000; Furuland et al., 2008; Mylonopoulou et al., 2010; Celik et al., 2011).
Interpreting HRV measures in CKD patients can be difficult due to the progressive nature
of the disease, associated comorbidities such as cardiovascular disease and diabetes, the
demographics of the patient population at risk for CKD and the potential effect of treat-
ment on HRV. In this chapter, the impact of these different variables on HRV within the
CKD population will be discussed with a view toward highlighting the predictive utility
of HRV as marker of patient outcomes.

21.2 HRV and Its Relationship to CKD Progression

While it is largely appreciated that patients with CKD have reduced HRV, at what point
within the development of CKD HRV begins to decline is as yet unknown. It has been
repeatedly documented that HRV is negatively correlated with renal function, implying
that as kidney function deteriorates, HRV reduces (Burger et al., 2002; Tang et al., 2012).
Accordingly, the Renal Research Institute-CKD study (Chandra et al., 2012), a four cen-
ter prospective cohort study of adults with stage 3–5 CKD (see Table 21.1 for description
of CKD staging), and one of only a few studies to measure HRV in CKD patients as kid-
ney function deteriorates, showed that HRV decreased as renal disease severity increased.
In this study, standard deviation of the NN interval (SDNN),§ standard deviation of the
average NN interval (SDANN),¶ very low-frequency (VLF),** and low-frequency/high-
frequency (LF/HF)†† power was lower in stage 5 non-dialysis CKD patients compared with
stage 3 and 4 CKD patients (see Table 21.2), with stage 5 patients exhibiting lower estimated

* Renal afferent nerves: sensory nerves that project from the kidney to the sites within the central nervous system
involved in cardiovascular regulation and respond to renal ischemia, changes in the ionic composition of the renal
interstitium, decreases in renal perfusion pressure, and increases in renal artery, venous, and/or pelvic pressure
(Ciriello and de Oliveira, 2002).
† Angiotensin II: a circulating hormone that is also produced locally within a number of tissues including the
heart, brain and kidneys (Paul et al., 2006).
‡ Nitric oxide synthase (NOS): an enzyme, which occurs in three different forms—eNOS (endothelial NOS),
nNOS (neuronal NOS), and iNOS (inducible NOS)—responsible for producing nitric oxide from L-arginine.
§ Standard deviation of the NN interval (SDNN): reflects all factors responsible for producing heart rate vari-
ability during the recording period.
¶ Standard deviation of the average NN interval (SDANN): reflects changes in heart rate due to cycles of
5 minutes or greater.
** VLF: may reflect hormonal and thermoregulatory influences on heart rate
†† LF/HF ratio: an approach used whereby LF power is divided by HF power in order to normalise for underly-
ing vagal tone thereby revealing the sympathetically mediated oscillations in heart rate.
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TABLE 21.1

CKD Staging Based on eGFR

CKD Stage eGFR (mL/min/1.73 m2)

1 ≥ 90
2 60–89
3 30–59
4 15–29
5 < 15 (or on dialysis)

TABLE 21.2

Baseline HRV Measurements in Stage 3–5 CKD Patients

CKD Stage 3 CKD Stage 4 CKD Stage 5

Overall 30 ≤ eGFR < 60 15 ≤ eGFR < 30 eGFR < 15

(n = 305) (n = 126) (n = 140) (n = 39)

Heart rate (obtained during Holter monitoring)
Mean 24 hours (b.p.m) 73.5± 10.4 73.6± 10.6 73.5± 10.0 73.1± 11.6
Mean day/night difference 7.9± 9.7 8.0± 8.0 8.3± 7.4 6.1± 5.9
Time domain (ms)
SDNN 107.4± 37.5 107.6 ± 36.7 110.4 ± 37.4 95.7 ± 39.3

SDANN 87.4 (25, 258) 88.0 (25, 258) 91.7 (27, 202) 69.3 (34, 147)

ASDNN 47.1± 26.1 41.0(12, 188) 42.5(12, 195) 37.0 (18, 187)
RMSSD 24.6(6, 267) 26.0(6, 267) 22.8(9, 259.5) 22.9 (8, 262)
Frequency domain (ms2)
VLF 1005.5 (36, 7532) 1019.0 (520, 5908) 1084.0 (36, 6252) 589.0 (162, 7532)

LF 310.0 (13, 11 977) 292.5 (13, 6688) 327.0 (16, 11 977) 241.0 (27, 7151)
HF 121.5 (5, 15 123) 141.0 (5, 11 247) 112.0 (16, 15 123) 102.0 (11, 11 445)
LF/HF ratio 2.5 (0.2, 14) 2.3 (0.2, 12) 2.9 (0.2, 14) 2.1 (0.3, 9)

Total power 1555.0 (118, 30 828) 1560.5 (132, 25 058) 1645.0 (118, 30 828) 1131.0 (306, 25 436)

Source: Reproduced from Chandra P et al., Nephrology, Dialysis, Transplantation, 2012 “by permission of Oxford
University Press.” Retrieved from http://ndt.oxfordjournals.org.
Continuous variables are reported as mean ± SD for normally distributed variables and median (min,
max) for skewed variables. Significant differences for CKD Stage 5 versus Stage 3 and 4 are shown in
bold (p< .05).

glomerular filtration rate (eGFR),* increased blood urea nitrogen and increased urine albu-
min to creatinine ratio, indicative of a greater reduction in renal function. Interestingly,
not all indicators of poor renal function are consistently associated with reduced HRV,
with proteinurea, an independent predictor for the development of end-stage renal dis-
ease (ESRD) (Iseki et al., 2003), reported by some as associated with reduced HRV (Poulsen
et al., 1997; Wirta et al., 1999) and not by others (Tamura et al., 2008; Drawz et al., 2013).

* Estimated glomerular filtration rate (eGFR): a test used to estimate the amount of blood that passes through the
glomeruli each minute, thereby indicating how well your kidneys are filtering blood. A decreasing eGFR indicates
that renal function is worsening and is a measure used to classify the stage of CKD (see Table 21.1).

http://ndt.oxfordjournals.org
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It has been suggested by some that this relationship is tied to levels of albuminuria,* with
normal to mild albuminuria promoting a relationship between proteinuria (i.e., kidney
damage) and HRV, while high levels of albumin mask the relationship (Drawz et al., 2013).

21.3 Covariates of Reduced HRV in CKD

In the Chronic Renal Insufficiency Cohort study (Drawz et al., 2013), when SDNN, esti-
mated from standard electrocardiogram (ECG) recordings of 10-second duration, was strat-
ified into the following quartiles: < 8.5, 8.5 to < 14.9, 14.9 to < 25.5 and greater than 25.5 ms,
CKD patients whose SDNN estimates fell into the lower quartile, in addition to having
a lower eGFR, were older, more likely to be hypertensive, have cardiovascular disease
(i.e., coronary artery disease and heart failure) and/or diabetes, be anemic, and not exer-
cise. In addition to this, increased body mass index, left ventricular mass index, smoking,
higher C-reactive protein levels, increased high-density lipoprotein levels, elevated serum
phosphorus levels, and the use of beta-blockers are associated with reduced HRV in CKD
patients (Cashion et al., 2005; Brotman et al., 2010; Chandra et al., 2012; Suzuki et al., 2012).
Thus, impaired renal function is not the only determinant of reduced HRV in CKD patients,
exemplifying the complexity of the relationship between reduced HRV and CKD. The fol-
lowing covariates are of notable mention.

21.3.1 Diabetes

Perhaps the most significant covariate affecting HRV in CKD patients is diabetes. This is
probably largely driven by the fact that cardiovascular autonomic neuropathy is a com-
plication of diabetes leading to a functional denervation of parasympathetic activity and
initially a relative increase in sympathetic activity, before sympathetic denervation also
results (for review of cardiovascular autonomic neuropathy in diabetes see Kuehl and
Stevens, 2012). This loss of autonomic regulation of heart rate results most often in a reduc-
tion in HRV. Accordingly, patients with either type I or type II diabetes exhibit reduced
SDNN, RMSSD,† and HF‡ power (Pagani et al., 1988; Bernardi et al., 1992; Singh et al.,
2000; Giordano et al., 2001; Mylonopoulou et al., 2010; Jaiswal et al., 2013). As illustrated
in Figure 21.1, CKD patients with diabetes exhibit a lower level of HRV (Hathaway et al.,
1998a,b; Giordano et al., 2001; Mylonopoulou et al., 2010; Chandra et al., 2012), poten-
tially driven by the fact that lower eGFR is more strongly associated with reduced HRV
(lower SDNN and RMSSD) in diabetic than non-diabetic CKD patients (Drawz et al., 2013).
Together this suggests that there is a compound relationship between CKD and diabetes
on HRV, such that the presence of both diabetes and CKD has an additive effect on HRV
resulting in a further reduced HRV in this patient population. This may explain why dia-
betic ESRD patients undergoing dialysis are at greater risk of mortality than non-diabetic
ESRD patients (Locatelli et al., 2010; Verdalles et al., 2010).

* Albuminuria: presence of excessive amounts of the protein albumin in the urine. Can be used to detect patients
with CKD that don’t have reduced renal function (i.e., eGFR < 60 mL/min/1.73 m2) and indicates that the kidneys
are damaged (Johnson et al., 2012).
† Square root of the mean squared differences of successive NN intervals (RMSSD): a measure of short-term
variations in heart rate that correlates with high-frequency oscillations in heart rate.
‡ High-frequency (HF) power: represents vagal control of heart rate and is influenced by respiration.
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FIGURE 21.1
Differences in time-domain (a) and frequency-domain (b) estimates of heart rate variability (HRV) between stage
4 chronic kidney disease with diabetes (CKD4+DM), stage 4 chronic kidney disease patients without diabetes
(CKD4), patients with diabetes mellitus (DM), and healthy subjects (HS). ap< .05 versus HS. bp< .05 versus DM.
HF, high-frequency power; LF, low-frequency power; pNN50, proportion of successive pairs of NN intervals that
differ by more than 50 ms; RMSSD, square root of the mean of the square of successive NN intervals; SDANN, SD
of the averages of 5-minute NN intervals; SDNN, SD of all normal RR (NN) intervals; VLF, very low-frequency
power. (Adapted from Mylonopoulou M et al., Nephrology, Dialysis, Transplantation, 2010 “by permission of Oxford
University Press.”)

21.3.2 Anemia

Anemia, a common feature of CKD patients (Horl, 2013), has a negative impact on auto-
nomic function, leading to reduced parasympathetic function and a relative increase in
sympathetic function (Connes and Coates, 2013). Accordingly, in anemic disorders such as
sickle cell anemia, thalassemia, and iron deficient anemia, HRV is reported as reduced
(Franzoni et al., 2004; Yokusoglu et al., 2007; Hedreville et al., 2014). The underlying
cause of autonomic dysfunction in anemia is not well established, but may relate to aber-
rant respiratory neural drive or hypersensitive autonomic responses to hypoxia (Sangka-
tumvong et al., 2008a,b; Connes and Coates, 2013). Given that the peripheral chemoreflex,
which responds to hypoxia, is tonically activated in CKD patients, contributing to the ele-
vated level of sympathetic nerve activity (Hering et al., 2007), it is possible that similar
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mechanisms underlie the link between anemia and reduced HRV in CKD patients. In
support, normalization of hemoglobin levels using epoetin* in stage 4 CKD patients with
renal anemia resulted in an improvement in frequency-domain estimates of HRV (both
total power [TP] and LF power) but not time-domain measures (Furuland et al., 2008).

21.3.3 Age

Within the general healthy population, HRV declines with age (van Dijk et al., 1991; Ziegler
et al., 1992; Umetani et al., 1998; Fluckiger et al., 1999; Agelink et al., 2001) and as such, it is
unsurprising that age is such a strong covariate. However, while age independently affects
HRV, it is likely that it has a greater effect for CKD patients. In a group of CKD patients
receiving hemodialysis aged 19–85, Di Leo et al. (2005) showed that a significant negative
correlation between HRV (measured as LF power) and age existed (see Figure 21.2). While
HRV also correlated with age in the healthy control subjects, the slope of this correlation
differed significantly between the two groups, implying that age has a greater negative
impact on HRV in CKD subjects.

Age is repeatedly reported as a determinant of HRV in adult CKD cases; however, it does
not appear to be causally related to HRV in pediatric CKD cases. Analysis of HRV estimates
taken from children enrolled in the Chronic Kidney Disease in Children study (Barletta
et al., 2014), using a linear mixed-model, indicated that age was not a variable affecting
HRV estimates. Whether this reflects differences in the underlying cause of kidney disease
in pediatric versus adult cases and therefore a different pathophysiology is unknown. Cer-
tainly, in support of this theory, different factors are associated with a reduction in HRV in
pediatric cases, with hypertensive CKD children exhibiting lower HRV than normotensive
CKD children (Barletta et al., 2014), a pattern not observed in adult cases (Tamura et al.,
1998; Kurata et al., 2000).
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FIGURE 21.2
Comparison of linear regression models (age vs. low-frequency [LF] band value) obtained in controls (filled cir-
cle and thick line) and in uremics (open circle and thin line) on lying (a) and on standing (b) positions. There
was a significant difference in the slope of regression line on lying (p< .03) and on standing (p< .04). Retrieved
from http://www.nature.com/ki/index.html. (Reprinted by permission from Macmillan Publishers Ltd: Kidney
International 67: 1521–1525, copyright 2005.)

* Epoeitin: stimulates the bone marrow to produce more red blood cells and is therefore a treatment used for
anemia.

http://www.nature.com/ki/index.html
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21.4 Prognostic Value of HRV in CKD

Regardless of the underlying etiology of reduced HRV in CKD patients, a reduction in
HRV has repeatedly been shown to be associated with an increased risk of mortality, car-
diovascular or renal outcome (Brotman et al., 2010; Chandra et al., 2014). The specific HRV
parameters reported vary depending on the study design and not all HRV parameters have
been shown to be associated with these endpoints. Most notably, a reduction in SDNN,
SDANN, ASDNN,* TP, LF, and LF/HF ratio have been identified as independent risk fac-
tors (Fukuta et al., 2003; Oikawa et al., 2009; Chandra et al., 2012). Accordingly, Suzuki et al.
(2012) demonstrated that hemodialysis patients who died due to all causes had exhibited
reduced SDNN, SDANN, TI, VLF, LF, and LF/HF. Both the Renal Research Institute-CKD
study (Chandra et al., 2012) and the Atherosclerosis Risk in Communities study (Brotman
et al., 2010) demonstrated that a low LF/HF ratio was associated with a higher risk of dete-
rioration in renal function, with the Atherosclerosis Risk in Communities study showing
that this association remained even after correction for classical risk factors such as dia-
betes, hypertension, and low baseline renal function. Specifically, in hemodialysis patients
that exhibit left ventricular hypertrophy, a LF/HF ratio greater than 1.9 is associated with
greater survival (Nishimura et al., 2010). Both retrospectively and prospectively, it has been
demonstrated that CKD patients (stage 3+) that died of coronary artery disease, peripheral
artery disease, congestive heart failure, acute myocardial infarction or a cardiac arrest had
shown reduced TP, VLF, LF, and LF/HF ratio compared with survivors (Fukuta et al., 2003;
Cashion et al., 2005; Oikawa et al., 2009; Chandra et al., 2012). Lesser used indices of HRV,
such as reduced triangular index† (Hayano et al., 1999; Fukuta et al., 2003), ultra-low fre-
quency‡ (Fukuta et al., 2003), and scaling exponent α1

§ (Suzuki et al., 2012) have also been
identified as potential predictors of an increased risk of mortality.

In a clinical setting, simple readily obtainable HRV estimates need to be utilized if HRV
can realistically be used as a means of risk stratification for CKD patients. Perhaps the sim-
plest of HRV measures is the time-domain estimate SDNN. A SDNN less than 50 ms has
been reported to be associated with an increased risk of sudden death in CKD patients
(Hathaway et al., 1998a, Hayano et al., 1999), while if the threshold is reduced to 75 ms,
SDNN is also an independent predictor of all-cause and cardiovascular-related death
(Oikawa et al., 2009). Nevertheless, it must be pointed out that while using a SDNN of
50 ms carries a good sensitivity (60%), negative predictive value (99%) and accuracy and
specificity (83%), the positive predictive value is low (7%) (Hathaway et al., 1998a) and
thus a number of false positives will be detected. Furthermore, not all changes to HRV may
be reflected by a change in SDNN (Goldberger and West, 1987) and a greater number of
frequency-domain measures than time-domain measures of HRV have been established to
predict a clinical outcome for CKD patients (Chandra et al., 2012). Therefore, a low SDNN
(75 ms or less) may serve as a good clinical screening tool to identify patients potentially at
risk of an adverse outcome, who require wider HRV measurements to further stratify their
risk and therefore require closer clinical monitoring.

* Mean of the standard deviation in all 5-minute segments of a 24-hour period (ASDNN or SDNN index): mea-
sures variability due to oscillations shorter than 5 minutes in duration.
† Triangular index: a geometrical method to estimate HRV, which gives the integral of the density of distribution
of all NN intervals divided by the maximum density of distribution.
‡ Ultra-low-frequency power: reflects very long-term influences on HRV such as exercise.
§ Scaling exponent α1: short-term fractal component used to quantify the complexity of heart rate.
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Interestingly, and perhaps counter-intuitively, an increased level of HRV has also been
shown to predict an increased risk of mortality in CKD patients. In the Chronic Renal Insuf-
ficiency Cohort study (Drawz et al., 2013), both low and high levels of SDNN and RMSSD
were associated with an increased hazard ratio for all-cause mortality. This is consistent
with that observed in the Rotterdam Study, where in elderly patients, both a decrease and
an increase in HRV, measured as SDNN, was associated with an increased risk of cardiac
mortality (Bruyne et al., 1999). The underlying cause of this relationship is unknown, but
has been postulated to indicate an underlying dysfunction at the level of the sinoatrial
node (Drawz et al., 2013).

21.5 Effect of Treatment on HRV

Given the association between reduced or increased HRV and an increased risk of both all-
cause and cardiovascular-related mortality in CKD patients, there would appear a strong
necessity to implement treatment strategies in CKD patients that have a positive effect on
HRV.

21.5.1 Antihypertensive Therapy

Intriguingly, given the known association between blood pressure and HRV in the general
population (Singh et al., 1998), mean blood pressure does not correlate with HRV estimates
in CKD patients (Tamura et al., 1998; Kurata et al., 2000). This suggests that either hyperten-
sion is not driving the reduction in HRV in CKD patients or that the use of antihypertensive
therapy, in and of itself, is reducing HRV. In support of the latter, there are some reports that
the chronic use of beta-blockers is associated with reduced HRV in CKD patients (Chandra
et al., 2012). This contrasts with the reported observations that use of beta-blockers is asso-
ciated with an improvement in HRV in patients with chronic heart failure (Lin et al., 1999,
2004) and following myocardial infarction (Molgaard et al., 1993; Lurje et al., 1997). Fur-
thermore, this finding is paradoxical given the fact that acute administration of propranolol
results in an increase in the HF component of HRV, with albeit a nonsignificant increase in
LF power also noted (Tory et al., 2004). The latter finding suggests that in CKD patients,
a shift in sympathovagal balance toward sympathetic dominance is suppressing HRV and
that by acutely inhibiting cardiac sympathetic tone, by blockade of beta-adrenoceptors, car-
diac vagal tone is facilitated resulting in an improvement in HRV. The exact mechanisms
underlying the negative effect of long-term beta-adrenoceptor blockade on HRV in CKD
patients, however, is unknown.

Mixed reports exist with regard to the effects of angiotensin II inhibitors, another
class of antihypertensive medications favored in CKD patients (Ripley, 2009; Kidney
Health Australia, 2012) on HRV. In patients enrolled into the Renal Research Institute-
CKD study, there was no association between the use of angiotensin converting enzyme
inhibitors or angiotensin II receptors blockers and the level of HRV (Chandra et al., 2012).
Conversely, others have shown that treatment with the angiotensin-converting enzyme
inhibitor ramipril resulted in a 49% reduction in HRV (measured as SDNN) (Ondocin and
Narsipur, 2006). Finally, treatment with the angiotensin II receptor blockers losartan, can-
desartan, or valsartan have been shown to have no effect on HRV (Shigenaga et al., 2009;
Peters et al., 2014), while others have shown that treatment with olmesartan improves HRV
(measured as SDNN) and weakens the correlation between glomerular filtration rate and
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HRV (Sato et al., 2013). The latter finding may be the key to the wide variation in findings
in relation to the use of angiotensin II inhibitors and HRV, with an improvement in renal
function necessary for a positive therapeutic effect.

21.5.2 Lifestyle Modi�cation

While the use of antihypertensive therapy has been shown to have variable effects on
HRV, lifestyle modification through the incorporation of exercise, has a positive beneficial
effect on HRV in CKD patients. Following a 10-month exercise program, involving up to
40 minutes of cycling followed by 30 minutes of muscle strengthening exercises performed
three times weekly, Kouidi et al. (2009) demonstrated an improvement in both time- and
frequency-domain measures of HRV in chronic hemodialysis patients (see Figure 21.3).
Remarkably, the number of individuals with an SDNN less than 70 ms and exhibiting Lown
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class > II arrhythmias* decreased significantly. Given that a reduction in HRV is known to
be associated with an increased risk of sudden cardiac death (La Rovere et al., 1998) and
that a SDNN of 70 ms or less has specifically been shown to be associated with an increased
risk of death in CKD patients (Hathaway et al., 1998a; Hayano et al., 1999; Oikawa et al.,
2009), this finding strongly supports the utility of exercise as a therapeutic intervention to
improve HRV and reduce cardiovascular risk in CKD patients. It is possible that shorter
term incorporation of an active lifestyle will provide similar improvements in HRV, with
Deligiannis et al. (1999), in an earlier study, showing that exercising three to four times per
week for 6 months, involving 50 minutes of aerobic exercise, while providing no improve-
ment in renal function or hematocrit levels, resulted in a marked improvement in HRV and
reduction in the incidence of arrhythmias. In both the studies cited, however, HRV was not
assessed during the training program and therefore, it is not known how soon an improve-
ment is observed. Nevertheless, the fact that exercise can improve HRV in association with
a reduction in the incidence of arrhythmias, in spite of the fact that there is no improvement
in renal function or anemia, two variables independently associated with reduced HRV in
CKD patients (Chandra et al., 2012; Drawz et al., 2013), strongly supports the incorpora-
tion of exercise as a therapeutic measure to improve HRV and reduce cardiovascular risk
in hemodialysis patients.

21.5.3 Dialysis

Understanding how dialysis therapy affects HRV can be difficult due to the fact that dial-
ysis therapy in itself can alter HRV as well as having long-term effects on HRV. When
considering the acute effects (i.e., within the dialysis session and immediately following
dialysis treatment), how HRV changes is variable and relates to the hemodynamic stability
of the patient during the dialysis session.

In patients who are hemodynamically unstable and exhibit hypotension during the dial-
ysis session, LF/HF ratio and LF power, but not HF power, decreases over the course of the
treatment (Yamamoto et al., 2012). These changes in HRV are not gradual and more likely
localized to the period of intradialytic hypotension. Barnas et al. (1999) demonstrated that
in hypotension-prone patients, up until 10 minutes prior to the development of hypoten-
sion, LF/HF power remained unchanged. When hypotension was observed, LF/HF levels
decreased below baseline and returned to baseline levels in association with a restoration
in blood pressure. Thus, these changes in HRV may reflect autonomic changes precipitat-
ing and resulting from the sudden change in blood pressure. Additionally, baseline levels
of HRV may reflect a predisposition to intradialytic hypotension, as dialysis patients that
exhibit lower HRV estimates, when measured by both frequency (VLF, LF, and LF/HF)
and time (SD and SDANN) domain methods, prior to treatment, exhibited intradialytic
hypotension (Sato et al., 2001; Rubinger et al., 2004).

Conversely, in patients who experience intradialytic increases in blood pressure, how
HRV changes can be clearly segregated on the basis of whether heart rate has increased
or decreased with those exhibiting tachycardia showing an increase in HRV, as measured
using frequency-domain analysis, while those exhibiting bradycardia showed no change

* Lown classification of arrhythmias: A grading system used to classify the degree of ventricular arrhythmia.
Class 0= no ventricular premature beats. Class I≤ 30 ventricular premature beats an hour. Class II≥ 30 ventricular
premature beats an hour. Class III = presence of multiform ventricular extrasystoles. Class IVa = two consecu-
tive ventricular premature beats. Class IVb = three or more consecutive ventricular premature beats. Class V =
presence of R-on-T phenomenon.
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in HRV (Rubinger et al., 2012). This dichotomy on the basis of heart rate response may
explain why others, who don’t report intradialytic heart rate responses, demonstrate no
intradialytic change in HRV in hypertension-prone dialysis patients (Chou et al., 2006).

Mixed reports exist with respect to the effects of hemodialysis on HRV in hemodynam-
ically stable patients, with some reporting that HRV declines (Rubinger et al., 2004; Tong
and Hou, 2007), whereas others report that it improves (Celik et al., 2011; Yamamoto et al.,
2012) during the course of the dialysis session. A number of factors relating to the dialysis
conditions may impact on whether HRV improves and the extent to which it improves.
When the dialysis solution is administered at 37◦C, only an increase in LF/HF ratio is
observed, whereas if the solution is chilled to 35◦C then an increase in TP and LF power,
and the LF/HF ratio is observed (Zitt et al., 2008). The choice of dialysis solution is also a
determinant with administration of an icodextrin-based dialysis solution, allowing for bet-
ter metabolic and fluid overload control, resulting in an increase in TP, LF, and HF power.
In contrast, in those that receive a glucose-based dialysis solution, all HRV parameters
declined (Orihuela et al., 2014). The different processes undertaken during a dialysis ses-
sion also impact upon HRV. When the ultrafiltration and diffusion phases of dialysis ses-
sion are isolated, at the end of the ultrafiltration phase, SDNN, SDANN, and RMSSD are
decreased, with the reduction in SDNN positively correlated with the ultrafiltration rate.
Throughout the subsequent hemodialysis session, these values return to baseline levels
(Galetta et al., 2001).

Beyond the acute response, studies looking at the long-term effects of dialysis therapy
show an improvement in HRV. At 3 months following commencement of dialysis therapy,
HRV as estimated by time domain (SD, SDNN, and SDANN) improved (Mylonopoulou
et al., 2010). Such improvements are also evident at 1 year post commencement dialysis
therapy and are observed to a greater extent in patients receiving continuous ambulatory
peritoneal dialysis compared with those receiving hemodialysis (Dursun et al., 2004) sug-
gesting that more vigorous regulation of body fluid status and removal of uremic toxins
results in a greater improvement in HRV. Supporting this, studies conducted over a 3-year
follow-up period indicate that those with a Kt/V* value greater than 1.2 HRV improves.
When in the range of 1–1.2 HRV remains mainly unchanged, while in those less than
1 HRV tends to decline (Laaksonen et al., 2000).

21.5.4 Renal Transplantation

The effects of renal transplantation on HRV are variable and certainly, there is no imme-
diate improvement in HRV (Yang et al., 2010). While not consistently observed (Kurata
et al., 2004; Parisotto et al., 2008), HRV does appear to improve over the longer term and by
4–6 months post-translation, HRV as measured by frequency-domain estimates is increased
(Yildiz et al., 1998; Yang et al., 2010) and by 12 months, both time- and frequency-domain
estimates are increased (Rubinger et al., 2009). Interestingly, the delay in HRV improvement
does not appear to relate to any ongoing improvements in kidney function. Yang et al. (2010)
who examined HRV in transplant recipients over a 6-month follow-up showed that while
renal transplantation produced an immediate and sustained reduction in serum creatinine
levels noted by 1 month post-transplantation HRV did not improve until 6 months post-
transplantation despite the fact that there was no further reduction in serum creatinine levels

* Kt/V value: a measure of dialysis adequacy that expresses the volume of dialyser cleared during a dialysis
session as a proportion of a patient’s body mass made up of water. For dialysis to be adequate, a patient’s Kt/V
value should be greater than 1.2.
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between 1 and 6 months post-transplantation. When patients are stratified on the basis of
their pretransplantation HRV levels into patients with low HF power (< 3 In(ms2)) and high
HF power (≥3 In(ms2)), only patients with low HF power showed an improvement in HRV
by 6 months post-transplantation (see Figure 21.4). It must be noted, however, that a reduc-
tion in HF power, which is a measure of cardiac vagal function (Anonymous, 1996; Stauss,
2003), is not consistently observed in CKD patients (Vita et al., 1999). Nevertheless, early
studies using classical tests to examine parasympathetic function, for example, assessment
of the expiration/inspiration ratio, supine/standing ratio, and assessment of baroreflex
function show that 6-month post-transplantation performance on these tests is improved
(Agarwal et al., 1991). Whether similar functional improvements in sympathetic regulation
of the cardiovascular system exist is debatable. While metaiodobenzylguanidine imaging*
suggests an improvement in sympathetic innervation of the heart as early as 3 months post-
transplantation, this does not correlate with any improvement in HRV (Kurata et al., 2004).
Although argument exists as to whether the HRV parameters measured (LF and LF/HF) are
sufficiently sensitive measures of sympathetic control of the heart (La Rovere et al., 1998;
Stauss, 2003), which may explain this discordance, previous studies using more classical
measures of sympathetic function (e.g. cold pressor test, blood pressure response to men-
tal arithmetic, or loud noise and plasma noradrenaline levels [Agarwal et al., 1991]) show
no improvement in sympathetic function at 6 months post-transplantation. Therefore, the
variability that exists with regard to the timing of HRV improvement may relate to the
underlying autonomic cause of reduced HRV, with parasympathetic dysfunction resolved
at an earlier time point than sympathetic dysfunction.
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end-stage renal disease (ESRD) patients undergoing hemodialysis (pre-TX) and 6 months after renal transplanta-
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from Transplantation Proceedings, 42(5), Yang, W.S et al., Heart rate variability during hemodialysis and following
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* Metaiodobenzylguanidine (MIBG) imaging: used to image cardiac noradrenaline reuptake and therefore the
synaptic availability of noradrenaline at the heart. Reflects sympathetic neurotransmission.
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21.6 HRV in Animal Models of CKD

Using the Lewis polycystic kidney (LPK) rat model, our group has used HRV to examine
autonomic control of heart rate. The LPK is a rodent model of autosomal recessive cystic
kidney disease resulting from a mutation in the never in mitosis gene a—related kinase 8
(Nek8) gene (McCooke et al., 2012). This rat model presents with renal cysts by 3 weeks of
age, hypertension by at least 6 weeks of age that continues to increase through to 18 weeks
of age in parallel with a progressive deterioration in renal function, which becomes signifi-
cantly compromised by 12 weeks of age (Phillips et al., 2007; Salman et al., 2014). The major-
ity of our work to date has used HRV to investigate autonomic regulation of the heart at
12 weeks of age following the establishment of hypertension yet prior to the development
of renal failure. At this particular age, frequency-domain estimates of HRV do not differ
in the LPK compared with its control, the Lewis rat, under conscious conditions (Hildreth
et al., 2013a). Under anaesthetized conditions, however, all frequency-domain parameters
(i.e., TP, VLF, LF, and HF powers) are reduced in the LPK (Harrison et al., 2010). The latter
may suggest a greater vulnerability of the autonomic nervous system to general anesthetics
in CKD and therefore, potentially, a greater risk of cardiac events during anesthesia.

While at 12 weeks of age, HRV parameters are not altered under conscious conditions,
there is an overall decline in HRV as the kidney disease progresses in the LPK. Using
radiotelemetry to obtain intra-arterial recordings of blood pressure in conscious LPK from
10 to 16 weeks of age, corresponding with the time frame over which renal function
markedly deteriorates in the LPK (Phillips et al., 2007), and examining HRV using the
pulse interval, we have demonstrated that the LF component of HRV only is reduced in
the LPK (see Figure 21.5; Hildreth et al., 2013b). The lack of any change in HF power in
the conscious LPK suggests that vagal control of heart rate, to a large degree, is preserved.
Nevertheless, it is probable that sympathovagal balance is altered culminating in an overall
decline in the ability of the autonomic nervous system to appropriately regulate heart rate.
Supporting this notion, as renal disease progresses in the LPK, baroreceptor reflex control
of heart rate declines (Hildreth et al., 2013b; Salman et al., 2014) and the changes in rest-
ing heart rate that result following injection of methylatropine, reflective of cardiac vagal
tone, are mildly reduced, while that resulting following injection of atenolol, reflective of
cardiac sympathetic tone, are greatly increased (see Figure 21.6). This latter finding brings
forward an important cautionary note regarding the interpretation of LF power, which is
regarded by some as an index of cardiac sympathetic tone, and that LF power may not
reflect the degree of sympathetic tone present. This is particularly pertinent to CKD as a
disease cohort as sympathetic overactivity is present both patients (Klein et al., 2001, 2003;
Grassi et al., 2011) and the LPK rat (Phillips et al., 2007; Salman et al., 2014, 2015), whereas
LF HRV power is consistently reported as reduced (Fukuta et al., 2003; Di Leo et al., 2005;
Harrison et al., 2010; Suzuki et al., 2012; Hildreth et al., 2013b).

21.7 Concluding Remarks

HRV serves as a useful clinical marker of disease severity and outcome in patients with
CKD/ESRD. The underlying cause of reduced HRV for CKD patients remains unknown
and is complicated by the large number of covariates that are independently associated
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Comparative changes in heart rate (HR) in response to injection of methylatropine (2 mg/kg i.p.; a) and atenolol
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was calculated for each 5-minute bin relative to a 5-minute recording immediately prior to injection. Data were
analyzed using a two-way ANOVA with strain and time as variables and data presented as the average change
in HR over the 60-minute recording period. In both strains, regardless of age, methylatropine (a) produced an
increase in HR, the magnitude of which was smaller in the LPK. Conversely, atenolol (b) produced a decrease
in HR that was significantly greater in the LPK at both ages studied. *p< .05, **p< .01, ***p< .001; n= minimum
6 per group.

with reduced HRV, the most notable being diabetes, older age and anemia. As HRV
improves both in the long-term following dialysis therapy and renal transplantation, the
kidney certainly places a driving role in instigating the autonomic dysfunction that con-
tributes to the reduced HRV. Patients with SDNN estimates lower than 75 ms represent
those most at risk of all-cause and cardiovascular-related mortality and those with esti-
mates lower than 50 ms are at greater risk of sudden cardiac death. Using HRV to identify
“at risk” patients may help to reduce mortality rates, through implementation of lifestyle
modification, such as exercise, or more aggressive management of residual renal function.
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22.1 Introduction

Heart rate (HR) constantly changes on a beat-to-beat basis due to autonomic influences on
the pacemaker process of the sinoatrial node. These changes can be quantified as heart rate
variability (HRV). In principle, HRV is caused by complex nonlinear interactions between
sinoatrial node cells and the autonomic nervous system. However, a certain degree of beat-
to-beat variability (BBV) is also intrinsically present—not only on the level of isolated
heart but although within the isolated sinoatrial node and even at the level of the sin-
gle sinoatrial node cell (Lombardi and Stein 2011; Papaioannou et al. 2013; Zaniboni et al.
2014). Intrinsic BBV was also studied in spontaneously beating embryonic chick heart cells
(Clay and DeHaan 1979) and neonatal rat ventricular cells (Ponard et al. 2007) since both
show fluctuating beat-to-beat intervals. Diminished HRV is a common clinical phenotype
expressed by critically ill patients and has been already proven as a valuable prognostic
tool in human neonatal sepsis (Griffin et al. 2005; Moorman et al. 2011). Particularly, in
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clinical conditions associated with systemic inflammation like in multiorgan dysfunction
syndrome and sepsis, a reduction in HRV and an increase in cardiac cycle regularity are
crucial (Godin et al. 1996; Rassias et al. 2005). For instance, reduction in both variability
and regularity could be observed in human volunteers that were subjected to endotox-
emia (Godin et al. 1996). Currently, it is not well known whether a reduced HRV in sepsis
rather reflects an altered input from the autonomic nervous system or a remodeling of the
sinoatrial node cells. Experimental evidence suggests that a loss of interorgan communica-
tion may be important for HRV reduction in sepsis (Godin et al. 1996; Scheff et al. 2012).
The pacemaker channel comprises an important final common pathway for autonomic HR
regulation translating autonomic input into sinus node pacemaking. This mixed cation
current (Na+ and K+) carried by HCN channels contributes to the diastolic depolarization
in the action potential of sinoatrial node cells and is therefore a potential contributor to
alterations in HR characteristics in sepsis. Sepsis is induced by lipopolysaccharide (LPS),
an endotoxin and a major component of the outer cell wall of Gram-negative bacteria. We
recently reported a massive reduction of HCN channel availability under elevated endo-
toxin levels (Zorn-Pauly et al. 2007; Scheruebel et al. 2014) possibly impairing the response
of the pacemaker current to autonomic fluctuations. LPS was also shown to reduce intrin-
sic BBV. Contractility measurements in neonatal rat myocytes demonstrated a narrowing
of BBV under the influence of LPS (Schmidt et al. 2007). Further, in measuring action poten-
tials in spontaneously beating chick embryonic ventricular myocytes, we could show that
LPS decreases (1) the firing rate and (2) the BBV by applying entropy as well as fractal
estimators (Ahammer et al. 2013).

Measuring BBV of isolated cells in vitro instead of HRV in vivo provides standardized bio-
logical conditions and therefore interpretations of underlying mechanisms and functions
may be easily determined. On the other side, HRV can most often be analyzed directly
using standard electrocardiogram data streams, whereas BBV must be measured in an
experimental setup. However, two data acquisition methods can be accomplished with-
out extensive effort: transmembrane electrode measurement techniques and optical video
capturing.

22.2 Methods

22.2.1 Cell Isolation

Ventricular myocytes were isolated from embryonic chick hearts as previously described
and modified (Koidl et al. 1980; Pelzmann 1996). Hearts of 7-day embryos were removed,
and the ventricles were chopped off, minced, and transferred to flasks containing 0.25%
trypsin (bovine pancreas; Boehringer Mannheim, Deisenhofen, Germany) in a nominally
Ca2+- and Mg2+-free Hanks’ balanced salt solution (HBSS; in mM: 137 NaCl, 5.4 KCl, 0.34
Na2HPO4, 0.44 KH2PO4, 4.2 NaHCO3, and 5 glucose, pH 7.4). The flasks were placed in a
shaker bath at 37◦ C for 7 minutes. The resulting cell suspension was gently agitated with
a pipette and filtered through a 100-μm mesh to dissociate the cells from tissues and cell
clumps. HBSS supplemented with fetal calf serum (5% final concentration) was added to
stop trypsin activity. The cell suspension was centrifuged at ∼100 g for 5 minutes at 4°C,
the supernatant was discarded, and the cell pellet was resuspended in fresh trypsin-free
HBSS two times. After the third centrifugation step cells were resuspended in cell cul-
ture medium (M199 [Sigma] supplemented with 4% fetal calf serum, 2% horse serum, and
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0.7 mM glutamine, pH 7.4) to yield a density of 5× 105 cells/mL. The cell suspension was
transferred to plastic culture dishes that were incubated at 37◦ C in a water-saturated atmo-
sphere of 95% air and 5% CO2. Muscle cells were separated by this procedure from non-
muscle cells by the differential attachment technique due to the adherence of nonmuscle
cells to the culture dishes. Aliquots (0.6 mL) of the cell suspension containing the nonad-
hesive cardiomyocytes were transferred after 0.5–2 days to cell culture dishes (Greiner,
Austria) containing microscope slide coverslips. This procedure allowed the myocytes
to adhere to the glass surface, where they could divide and form small clusters of cells.
Experiments were performed on small clusters 12–36 hours after the cells were plated.

22.2.2 Electrode Measurements

Intracellular recordings of spontaneous action potentials were performed with glass
micropipettes (microelectrodes). Glass capillaries with filaments were used to pull micro-
electrodes with a very small tip pore diameter of 0.3 µm or less in order to prevent ion
exchange between the intracellular fluid and the pipette filling solution. Microelectrodes
were filled with 3 M KCl and had a resistance of 10–30 MΩ. For action potential record-
ing, the coverslip with attached myocytes was placed in an experimental chamber of an
inverted microscope (Zeiss, Axiovert). Cells were superfused with extracellular solution
(in mM: 137 NaCl, 5.4 KCl, 1.8 CaCl2, 1.1 MgCl2, 2.2 NaHCO3, 0.4 NaH2PO4, 10 Na-HEPES,
and 5.6 glucose, with pH adjusted to 7.4 with NaOH) at 36–37°C with a flow rate of
1.5 mL/min. Impalement of the microelectrodes was established by mechanical force, that
is, by guiding the microelectrode with a hydraulic three-dimensional (3D) micromanipula-
tor to the cell under the microscope until the microelectrode penetrated the cell membrane.

22.2.2.1 Signal Recording

Microelectrodes were connected to a battery operated amplifier (Electro 705, WPI,
Sarasota, FL). The reference electrode for potential measurements was a chlorided silver
wire immersed into the experiment chamber. Electrical signals were digitized using a USB-
powered analog to digital converter (NI USB-6210, National Instruments, Austin, TX) with
a sample rate of 50 kHz and a resolution of 16 bit. Online monitoring was performed with
custom written software (LabVIEW, National Instruments, Austin, TX). Signal data were
stored in a DADiSP (DSP Development Corporation, Newton, MA) compatible binary
format.

22.2.2.2 Determining the Beat-to-Beat Interval from Electrode Measurement

Action potentials recorded from spontaneously beating cells showed a steep upstroke
phase when the cell was activated. This upstroke from –20 mV to +20 mV allowed the
determination of the instance of time at which a cell was activated by a simple threshold
criterion. For this work, a threshold of 0 mV was used.

After detection of all consecutive beats within a signal recording, beat-to-beat intervals
were calculated as differences in milliseconds between the actual beat and the previous
beat.

22.2.3 Video Analysis

Microscopic techniques are commonly used in order to visualize biological tissues or
cells. Beside aspects of magnification, illumination, and resolution, the most important



442 ECG Time Series Variability Analysis: Engineering and Medicine

parameter in order to visualize beating single cells is contrast. Obviously, contrast should
be as high as possible. Several illumination techniques such as bright field illumination,
axial illumination, oblique illumination, dark field illumination, and Rheinberg illumina-
tion show distinct values of contrast, but actually contrast of cells with thickness of about
10 μm is not very high for all of these techniques. Improved contrast can be achieved by
specimen staining, especially by using fluorescence dyes, or by using phase contrast, polar-
ized light, and differential interference contrast (DIC). Second to contrast, it is important
to record images that show a decent intensity change, at least on a restricted area, for
beating cells. Particularly, staining techniques of living cells are prone to intensity varia-
tions due to high interexperiment variabilities. Usually, polarized light configurations as
well as DIC show less intensity changes and therefore, phase contrast seems to be very
appropriate.

Using inverted microscopes and appropriate equipment to keep cells alive, it is usu-
ally very convenient to observe living cells at least for time spans of several minutes
or even more. Digital cameras for still images as well as video cameras can be easily
mounted using standardized mechanical interfaces, for example, C-mounts. Therefore,
with microscopes, spontaneously beating cardiomyocytes can be investigated by man-
ual inspection as well as by video recording. Obviously, manual inspection can only be
used to determine the overall status or health of cells. Quantitative evaluations are very
limited and particularly BBV cannot be treated or investigated satisfactorily. Otherwise,
digital recordings of images or image sequences allow postprocessing and storage of
data.

Taking and analyzing videos seems to be appropriate for BBV analyses but care has to
be taken in order to set parameters properly. Modern equipment paired with user-friendly
software allows the recording of videos without considering detailed settings, but certainly
these videos most often cannot be used for quantitative evaluations. It is absolutely neces-
sary to adjust parameters involved accordingly. The most important parameters are region
of interest (ROI), recording length, frame rate, and data compression. A detailed descrip-
tion of these parameters follows, because they limit the huge range of equipment, which is
offered by several manufacturers.

22.2.3.1 Region of Interest

The microscope’s field of view depends on the magnification as well as additional optical
elements such as mirrors or lenses in the optical path. Most often the field of view recog-
nized by eye through the ocular lens is not the same size as the field of view of the digital
camera, simply because of separated optical paths. The field of view of the camera may
be smaller than the field of view of the ocular lens. However, this discrepancy should not
be an issue as long as the camera captures the whole of a single cell’s body or even more.
If the field of view of the camera captures more than a single cell, it might be advisable
to reduce this field. Otherwise, background material is recorded, increasing the amount of
memory needed without adding useful information. Field of view can be reduced to the
part of an image that shows the most prominent intensity change caused by cell contrac-
tion. Narrowing down a ROI very close to the strongest contracting area inside the field of
view seems to be appropriate, but overall (slow) movement of a cell on the glass during
the total recording time can lead to a relative displaced position of the ROI at the end of
the recording. A compromise between memory consumption and high recording quality
during the whole recording process must be found.
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22.2.3.2 Recording Length

Standards for measuring of HRV were defined by the task force of the European Society of
Cardiology and the North American Society of Pacing and Electrophysiology (Malik et al.
1996). Accordingly, short-term recordings should last 5 minutes and long-term recordings
24 hours. Naturally, HRV in vivo is not identical to BBV of cells in vitro, but nevertheless,
a strong relation between these two measures is biologically obvious. Standards or regula-
tions for in vitro assays do not exist and therefore it seems appropriate to fulfill at least the
task force’s standards if possible.

Short-term recordings of isolated cells can be performed routinely with the microelec-
trode technique (at least 5 minutes), but according to experience, long-term recordings
cannot be achieved since the impalement of myocytes possibly impairs a cell’s vitality.
Video recordings offer the possibility of long-term recordings, but in practice, high-speed
recordings of more than several minutes might lead to an enormous memory demand,
which would be unmanageable. Details of frame rate settings will be described in the next
section.

It might be worth considering a reduction of recording time to 5/2 or maybe 5/3 minutes
because the resting HR of embryonic cardiomyocytes is often two to three times higher
compared to human. With a recording length of 5 minutes and a resting HR of 1 Hz, a
total number of 300 beats will be recorded, leading to 300 beat-to-beat durations or in other
words to 300 data points for subsequent data analyses. A total of 300 data points is quite
enough for conventional statistics such as mean, variances, and so on, but for nonlinear
analyses, such as calculation of fractal dimensions or entropies, this number is rather low.
Therefore, we conclude that the recording length of video analyses for BBV studies should
preferably not be smaller than 5 minutes.

22.2.3.3 Frame Rate

The number of images taken per second for commercial videos or home entertainment
must be higher than the human visual system can separately recognize. Then a smooth
and fluid viewing experience is maintained. In order to fulfill this requirement, the Euro-
pean PAL and French SECAM systems work with 25 full images per second (50 half
images/second) and the American NTSC format uses 30 full images per second (60 half
images/second). There exist a vast number of subsystems implementing slightly changed
specifications. Additionally, videos can be recorded by using several data format contain-
ers, with or without compression.

A frame rate of 25 Hz (25 full images/second) is undoubtedly quite enough to get an
adequate subjective viewing experience, but for following quantitative and mathematical
analyses, it is simply too low for analysis of BBV. Each single image must be considered
as a single data point in between a beat and the next beat. In order to measure the beat-to-
beat duration, it is absolutely necessary to get enough data points (images) between two
beats. Assuming a resting beat rate of 1 Hz, the duration of one beat to the next beat is
obviously 1 second. Since Shannon, we know that a sampling frequency of 2 Hz (500 mil-
liseconds sampling time) is enough to reconstruct a continuous 1 Hz signal. Unfortunately,
in the case of beat-to-beat durations and analyses of their variations, Shannon’s theorem
cannot be applied. It is mandatory to get the duration time of every single beat as accurate
as possible and a sample frequency much higher than two times the average signal fre-
quency is needed. For every beat, the time point (time stamp) of, for example, the maximal
contraction of the cell must be determined. The difference between two time points gives
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the beat-to-beat duration. Assuming an accuracy of 1%, 100 images must be taken from
one beat to the next. This leads to a sampling duration of 10 milliseconds or a sampling
frequency of 100 Hz. Accordingly, this means a frame rate of 100 frames per second (fps).
Table 22.1 shows some values for the video frame rate depending on accuracy of measure-
ments and on the resting beat rate. Obviously, the frame rate demand increases further
with increasing resting beat rate.

It can clearly be seen in the table that common video frame rates up to 30 Hz would lead
to far too high errors. An accuracy of only 10% would lead to an error of 100 milliseconds
at a resting beat rate of 1 Hz. An erroneous variation of 100 milliseconds for an average
duration of 1 second is far too high in order to reputably investigate beat-to-beat variations.

In summary, a minimum frame rate of at least 100 fps for the video recording should
be used and common frame rates of 25 Hz or 30 Hz should be avoided. Some low-cost
devices can be operated with higher frame rates, maybe up to 150 Hz, but preferably, higher
frame rates should be used and hence, only very expensive high-speed camera systems can
be used.

Several systems, especially low-cost cameras, show an additional severe source of error,
which must be mentioned. These cameras are usually connected to a computer (PC or lap-
top) via USB or FireWire interfaces. Video capturing software handles the camera settings
such as the frame rate, recording time, ROI settings, and so on. Interactively, the recording
can be started and after the preset time, the record stops automatically. Although it seems
that low-cost systems are appropriate to record beating cells in order to investigate BBV, a
closer look reveals their inadequacy. The main aspect that must be considered is the abso-
lute time duration between two recorded images. Unfortunately, these time durations are
not exact. The main reason is that a computer is not a measurement device; it is rather a
multitasking information processing unit. A computer is steadily operating several tasks
and it is not guaranteed that time intervals between captured images have exactly the same
length.

Experiments with an USB-connected camera and a theoretical sampling time of 100
milliseconds showed sporadically erroneous image-to-image intervals of up to 160
milliseconds. This led to a smaller number of total recorded images, too. In brief, the physi-
cal and real-time interval between two subsequent images should have an exact value, but
low-cost systems cannot ensure this demand. A varying or sporadically increased image-
to-image interval might subjectively not be visible during viewing a video but introduces
an artificial variation and statistics for beat-to-beat measurements. These variations and
their statistics overlay with the physiological statistics and introduce errors, which must
be avoided.

TABLE 22.1

Video Recording Frame Rates for Several Accuracies
and Resting Beat Rates

Resting Beat Rate

Accuracy 1 Hz 2 Hz 3 Hz
10% 10 fps 20 fps 30 fps
1% 100 fps 200 fps 300 fps
0.1% 1000 fps 2000 fps 3000 fps

Note: fps, frames per second
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Therefore, only high-speed camera systems ensuring exact image-to-image time dura-
tions are appropriate. The software should only provide an interactive graphical user
interface (GUI) to set parameters and should trigger hardware, which records the images
directly to a hard disk.

22.2.3.4 Data Compression

Consumer cameras for taking video as well as still images usually compress images in
order to save storage space. Unavoidably, lossy compression formats, for example, JPEG
and others, introduce color as well as intensity artifacts. These artifacts may prevent exact
quantitative analyses, because very often calculations directly using gray values of an
image are performed. As an example, the co-occurrence matrix of gray value pairs at a
distinct distance can be used to calculate several statistical second-order parameters such
as energy, entropy, correlation, homogeneity, and others. For such calculations, lossy com-
pression should be avoided.

Fortunately, moderate compression artifacts are not crucial when videos are taken in
order to determine the times from beat to beat of a beating cell. For measuring the time
duration between two subsequent beats, it is necessary to find characteristic subsequent
time points (images) with the most changing gray values. Local distributions of gray values
are not important as an image is always treated as a whole. Having stated this, it must be
mentioned that excessive compression should be avoided, as undesirable and disturbing
gray value fluctuations may occur. Compression rates can be set manually (e.g., for the
JPEG codec) and should be compared initially to uncompressed data evaluations.

22.2.3.5 Determining the Beat-to-Beat Interval from Video Streams

After recording a video with the required parameters and quality, video and signal analy-
ses have to be applied to obtain the beat-to-beat intervals.

The aim of the video analysis is to perform the described data reduction, that is, to obtain
a single one-dimensional (1D) time signal out of the huge amount of images of the recorded
video.

If the analyzed video was perfect for analysis, straightforward and simple image calcu-
lations would produce satisfying results. The most obvious method would be to compare
the pixel values of each frame with the corresponding pixel values of the first frame of the
video, for example, for each frame to calculate the difference of each gray value to the value
of the same pixel in the first frame and sum up over all absolute values of these differences.
These types of procedures work fine for perfect videos in which the sample (cell) holds
exactly its position and background, illumination, and so on do not change throughout the
whole recording. However, problems arise due to deviations from this perfect recording,
having their origins in a broad variety of different influences, which are described in detail
in Section 22.2.3.2. To overcome these challenges, the following more advanced procedure
was implemented in MATLABⓇ.

In a first step, the whole video, containing N images Ii (i= 1…N), was divided into
k= 1…K shorter sequences (subsequences), denoted by {Ikj } and with j as image index
of images inside the subsequence k. The subsequence lengths were manually chosen in
a way that they contain at least one full beat. Within each of these subsequences k, our
algorithm searched for two frames showing different states, one frame that represents the
baseline, that is, no contraction, Bk < and one that represents the maximum contraction
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of the cell, Mk. First, a difference image of these two images was calculated for each
subsequence k:

Dk = |

|

|

Mk −Bk||
|

From this difference image, all pixel positions p= (x, y), where Dk(p) shows an absolute
value larger than a given threshold t1, were determined:

Pk ={pk} ∶= {p|Dk(p)> t1}

These pixels were used for calculating a 1D signal in the following manner.
From the baseline frame Bk of the actual subsequence k to the baseline frame Bk+1 of the

next subsequence, difference images of each frame of the subsequence k with the baseline
frame were calculated:

Dk
j =

|

|

|

Ikj −B
k|
|

|

Based on these difference images, a set of pixel positions belonging to k− 1, k, or k+ 1 and
having a value larger than a threshold t2 were selected for the actual “measurement”:

Pm ={pm} ∶= {p∈{Pk−1,Pk,Pk+1}|Dk
j (p)> t2}

The values of Dk
j at these positions were summed up to obtain a single data point skj of the

signal:
skj =

∑

p∈ Pm
Gray value(Dk

j (p))

The resulting time signal Sk for a subsequence k was then the set of all individual sums skj :

Sk ={skj }

To take into account the different numbers of pixels contributing to each subsequence and
data point, all elements skj of the set Sk were normalized with

skj =
skj −min(Sk)

max(Sk)

Thus, the baseline had a value around 0 and the maximum value, that is, during maximum
contraction, was 1.

Finally, this was calculated for all K subsequences to obtain a set of time signals:

S={Sk=1,… ,Sk=K}

With the time signals S, the beat-to-beat time intervals were extracted using signal analysis
routines in intelligent quality management (IQM; Kainz et al. 2015). First, outliers in the
time signal may be treated with mean or median filtering techniques. Then two different
techniques were applied to determine the intervals. Results obtained by using a manually
defined threshold were compared to results obtained by using a more advanced but still
simple to implement moving average curve (MAC) algorithm (Lu et al. 2006). For this
study, the manual threshold and also the offset value for the MAC algorithm were set to
0.5 for the normalized signals.
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22.2.3.6 Quantitative Analysis of BBV

Electrode measurements as well as video analyses give 1D data point series of interbeat
intervals. These time series can similarly be analyzed as in vivomeasured normal-to-normal
heartbeat intervals NN. Therefore, time-domain methods such as the standard deviation
of the NN interval (SDNN) or the number of pairs of adjacent NN intervals differing by
more than 50 milliseconds (NN50) can be calculated. Frequency-domain methods such as
powers in distinct frequency ranges (very low frequency [VLF], low frequency [LF], and
high frequency [HF]) or ratios of these (LF/HF) are appropriate, too.

Recently, nonlinear methods, such as calculations of entropies or fractal dimensions,
have also become popular. Entropies measure disorder whereas fractal dimensions mea-
sure space-filling properties of the system under investigation. Both measures are useful
in order to measure the complexity of a system by analyzing a measured 1D time signal.
Although complexity is not exactly defined, it is widely accepted that it should have low
values for very regular and deterministic systems and it should have higher values for
more irregular (e.g., nonlinear) systems. For very irregular systems (e.g., random distribu-
tions), the concept of complexity is still not clear. The first group of concepts for complexity
involves measures that show the highest value for randomly distributed signals. Contrar-
ily, the second group of concepts shows very low values for highly irregular (random)
signals. Although the second group of concepts may sound more intuitive and natural, the
first group of concepts has far more concrete implementations and has very successfully
been applied for several decades. Therefore, in order to not overcomplicate this study, we
leave out the concepts of the second group.

Within the first group of complexity concepts, particularly the approximate entropy as
well as the sample entropy should be mentioned (Lake et al. 2002). The sample entropy is
an extension of the approximate entropy in order to avoid data point length dependencies.
Therefore, approximate entropy should be avoided for electrode measurements, because
individual records usually have different lengths. Video recordings can have constant data
series lengths, but interstudy comparisons may suffer from this aspect, too. Therefore, cal-
culation of the sample entropy should be preferred.

Fractal dimensions, also belonging to the first group of complexity concepts, can be calcu-
lated by performing phase space reconstructions or by direct time-domain methods. Direct
time-domain methods seem to be preferable, because they are very well suited for short
data point series. Phase space reconstructions, on the other hand, need a lot of data points
and are most often very prone to noise. Higuchi (1988) proposed a very robust method
to determine the fractal dimension by summing up differences of data points at distinct
distances in between. Furthermore, it is well suited for short data point series.

22.3 Challenges

22.3.1 Electrode Measurements

For data analysis, signal recordings of at least 5 minutes are desired as stated above. During
this period of time, the impalement of the microelectrode has to be stable to acquire usable
data. Experience has shown that small movements of the cells due to the flow of extracel-
lular bath solution as well as the contraction movement itself force the tip of the microelec-
trodes out of the cells and render the acquired data useless. After loss of impalement, it is
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not recommended to repeat the measurement with the same cell since obviously the cell
membrane is damaged and the vitality of the cell cannot be guaranteed anymore. Hence, a
new spontaneously beating cell has to be found and impalement of the microelectrode has
to be repeated, which makes the procedure very time consuming.

22.3.2 Video Analysis

Although it seems straightforward and easy to implement, video analysis of beating cells
is not that easy to accomplish. A single image out of a video stream can be interpreted
as a time stamp of the temporal beating signal. Each single image gives only one single
value of the current state of the cell and nothing more. Then, several of these single values
are used to define a beat-to-beat interval. Data reduction is therefore enormous. A typical
image of 500× 500 pixels has 2.5× 105 image pixels. Measuring with a minimum frame rate
of 100 fps and an assumed average beat rate of only 1 Hz, we get on average 100 images
per beat-to-beat interval. Therefore, 2.5× 107 data points reduce to only one value for the
beat-to-beat interval. For higher frame rates or higher beat rates, this reduction ratio is fur-
ther increased. This enormous amount of data reduction involves sophisticated hardware
as well as software algorithms. Minimum frame rates must be high enough in order to
measure the beat intervals with high enough accuracy and therefore, high-speed capturing
video recording systems are necessary.

The quality of the extractable data is strongly dependent on the quality of the recorded
video. Hence, previous to any analysis of the video stream, creating optimal settings during
the recording, for example, spatial and temporal constant illumination, is important.

Computational effort is often rather high in video analysis and depends among other
things on the image size. Therefore, in a first step, the analyzed region in a video may be
reduced by introducing a ROI, which contains only important data for analysis, that is, the
cell or conglomerate of cells under investigation (sample), still keeping in mind a possi-
ble overall movement of the sample during recording time. These ROIs may either be set
manually or automatically. Automated setting and possible adjustment of ROIs during the
process of video analysis is difficult due to the different and changing shapes of the investi-
gated samples and requires sophisticated image and video analysis algorithms. However,
satisfying results can be obtained with a far less complex manual setting of a fixed ROI.

Several other challenges arise due to the experimental setup and the sample itself. To
obtain a useful and reliable outcome, the following points have to be handled by the video
analysis software:

1. The video may start during a contraction, that is, the first frame cannot be taken as
a reference.

2. The sample may move (usually slowly) during the recording, for example, due to
the flow of extracellular bath solution.

3. The video may suffer from jittering, for example, due to vibration of the sample,
camera, etc. and digitalization effects (e.g., the border of the cell may “jump” from
one pixel to its neighbor and vice versa).

4. The intensity of the contraction may vary, that is, the number of pixels from which
the beats can be extracted may change during recording.

5. Small and moving impurities (dust or air bubbles) may be present in all or some
parts of the video.
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6. The stream of the extracellular bath solution may create flickering and brighter
and darker areas due to optical effects.

Also after the conversion of the video into a time signal, problems have to be tackled. The
extraction from the beat-to-beat intervals can be performed by applying different algo-
rithms such as simple thresholding or MAC. The slope of each beat peak is finite and
changes both within the peak and from peak to peak. Hence, the choice of method may
influence the outcome. Therefore, the obtained results must be treated carefully and dif-
ferent methods should be compared for differences (e.g., by using different values for the
manually set threshold or comparing a manually set threshold with MAC).

22.4 Discussion

The crucial and most challenging aspect of measurements with microelectrodes is the
establishment of stable impalements over a long period of time. To improve stability, float-
ing microelectrodes could be used. Therefore, the microelectrodes are not rigidly attached
to the amplifier system but are attached with a thin silver wire (approximately 100 μm
diameter) to the amplifier system. This allows the microelectrode to float with the contrac-
tion movement within a small range and ensures stable impalement. However, with this
method, the microelectrode has to be positioned directly above the cell, which means at
least partly blocking the optical path.

Another crucial aspect concerns data analysis. Beat-to-beat intervals have to be deter-
mined with high accuracy. The currently used simple threshold criterion to determine the
activation time of the cell only performs reasonably when (1) the upstroke is steep enough
and (2) the signal waveform is constant over the measurement period.

Video and signal analyses were used to convert the videos into time signals and extract
beat-to-beat intervals subsequently. The most challenging aspects in video analysis were to
get rid of the disturbing influences from the (slow) movement of the cells and the variations
of contraction intensity during recording time.

These challenges were tackled by an algorithm that divided the whole video into shorter
subsequences, in which pixels with maximum differences between minimum and maxi-
mum contraction were identified and used to extract the time signal for every subsequence
individually. Subsequently, they were merged to obtain the full-time signal.

As mentioned previously in the context of measurements with microelectrodes, in the
subsequent time signal analysis, the methods used to determine the beat-to-beat intervals
from the time signals have certain performance characteristics that are only reasonable if
the signals fulfill specific criteria (steep upstroke and similar shape of the beats).

Statistical analyses of BBVs can be performed by using identical algorithms for inves-
tigating HRVs. Conditions and requirements are quite similar and accordingly, interpre-
tations and conclusions can be made similarly. Calculations of the sample entropy and
the Higuchi dimension seem to be especially appropriate and probably will give reliable
results.

However, future developments may strengthen on analyses, specially constructed for
BBVs. Specialized algorithms could overcome limitations of varying signal lengths for elec-
trode measurements or may include more of the huge amount of image data for video
streams.
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23.1 Aim

In this chapter, we review and discuss the influence of genetic polymorphisms on heart
rate variability (HRV). One of the first studies that investigated the heritability of HRV
patterns compared age-matched twins. The successful correlation found between genetic
markers and HRV opened the possibility of identifying further genetic risks for cardiovas-
cular diseases (CVDs) by studying other genetic polymorphisms that may be associated
with HRV.

23.2 Genetic Polymorphisms

Since the first mapping of chromosomes and their association with mutations in Drosophila
melanogaster (Hunt 1910; Sturtevant 1913), the biomedical field has turned its attention
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to the effect of genetic polymorphism and their associated diseases. The identification of
disease risk genes now allows for a possible earlier diagnosis based on genetic polymor-
phisms, especially if it is a single gene polymorphism, and a more informed prognosis.
Many genetic polymorphisms are currently being used as direct targets for treatment of
diverse diseases, but also need to be considered when prescribing medication, due to pos-
sible gene product interaction with the medication (Ma and Lu 2011).

Differences in the genetic sequence between individuals, or genetic polymorphisms,
make up the foundation of diversity in biological organisms. Genetic polymorphisms
require at least two variants in the population of a species, of which the least common one
cannot be explained by recurrent mutations (Ford 1965). These polymorphisms have been
studied using mostly restriction fragment length polymorphisms (RFLPs) and microsatel-
lite markers. RFLP is based on the use of restriction enzymes, which cut the DNA sequence
at a known position in order to compare the length of the sequence fragments between
individuals (Botstein et al. 1980). RFLP was first used in 1983 for the mapping of the Hunt-
ington disease gene (Gusella et al. 1983). Micro- and mini-satellite markers (variable num-
ber of tandem repeats [VNTRs]) mark repetitive DNA sequences, which include repeated
DNA motifs and have also been studied for gene mapping (Ellegren 2004).

Methods for genetic analysis have relied on polymorphisms for more than two decades,
but the current focus has shifted to single nucleotide polymorphisms (SNPs). This is the
most common type of genetic variation in humans and is defined as a position in the
sequence with at least two variants. The rarer variant has a frequency of at least 1%. SNPs
are quite common and can be found as 1:1000 base pairs (bp) in the human genome. They
are used in clinical tests, forensics, and, as in the case of HRV, to identify genes related pri-
marily to CVD, but have also been shown to be important in renal disease and psychosis
(Wang et al. 1998). SNP mapping has become cheaper and more efficient with the devel-
opment of new methods. Mapping started with Sanger DNA sequencing and is now mov-
ing on to alternative methods, such as pyrosequencing. Unlike Sanger sequencing, which
is time-consuming, labor-intensive, and requires labeling, pyrosequencing is efficient and
the time necessary for the detection of SNPs has been significantly decreased. This makes
pyrosequencing an ideal method for the comparison of variants in large-scale screening
tests. It is based on the detection of fluorescence in proportion to the correct number of
nucleotides incorporated into the sequence (Fodor et al. 1991; Southern at al, 1992;
Ronaghi et al. 1998).

23.3 Heart Rate Variability

HRV is the temporary variation between sequences of consecutive heartbeats. On an
electrocardiogram (ECG), it is observed as the successive RR interval of adjacent QRS
complexes. This variability is produced by continuous changes to the sympathetic and
parasympathetic balance of heart rhythm (Nasimi and Hatam 2011). It is a reflection of the
many physiological factors that alter the baseline rhythm of the heart.

HRV can be interpreted as a quantitative indication of the heart’s ability to adapt to
changes in the internal and external environment such as posture, anxiety, and weather
conditions. The heart needs to quickly and efficiently respond to stimuli in order to com-
pensate for any stressors that may impede normal bodily function. HRV analysis is a good
measure of cardiac health and in some cases the state of the autonomic nervous system
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(ANS), which is responsible for maintaining proper cardiac activity (Acharya et al. 2006).
Abnormalities in HRV, however, can also be associated with brainstem pathology such as
Parkinson’s disease and cortical dysfunction, including depression and schizophrenia, as
well as interactions between the peripheral and central nervous system, which through
intricate neurological connectivity patterns lead to a change in ANS regulation of the heart
(Baguley 2008; Russell 2010; Kemp et al. 2012; Barbieri et al. 2013; Schulz et al. 2015).

23.4 Techniques to Measure HRV

HRV can be evaluated from an ECG trace recorded from patients in a supine position. In
this method, a continuous ECG is recorded and the QRS complex is detected. The first step
in analysis is the removal of nonsinus beats and artefacts (Pumprla et al. 2002). After this
editing, the RR intervals are recorded and various calculations can be made. The simplest
method involves time-domain measures. Calculations include the mean RR interval, mean
heart rate (HR), and the difference between the shortest and longest RR interval. The sim-
plest variable to calculate is the standard deviation of the RR intervals (SDNN index). This
can be achieved by plotting a histogram of the RR duration against the number of RR inter-
vals. It is generally measured over a 2-minute to 24-hour time period and encompasses
short-term high-frequency (HF) variations and low-frequency (LF) variations, providing
a nonspecific, global measure of variation (Malik 1998). Another technique of measuring
HRV is frequency-domain analysis. This is usually presented graphically by plotting the
amount of variation in a recording on the y-axis against the frequency on the x-axis. The
area under the curve at different frequencies is a quantitative measure of the amount of HF
and LF cyclical variability in the recording This is a basic representation of how variance,
also known as “power,” distributes as a function of frequency (Pumprla et al. 2002) and
encompasses short-term HF variations and LF power variations, providing a nonspecific,
global measure of HRV (Malik 1998).

23.5 Neuropathies

Neuropathies result from functional disruption and pathologic changes in the nervous
system. The molecular basis of neuropathies is complex and a number of pathological
mechanisms are believed to be involved in the disease progression. These include dis-
orders of polyol metabolisms, disorders of fatty acid metabolism, accumulation of gly-
cated proteins, endoneuronal ischemia/hypoxia, destruction of nerve growth factors and
axonal transport, immunological processes, and oxidative stress (Schönauer et al. 2011).
Changes in the biochemical environment, in conjunction with genetic predisposition and
environmental factors, can lead to peripheral as well as central nervous system neuropa-
thy. Diabetes is an example of changes in the blood biochemistry possibly caused by hyper-
glycemia and oxidative stress, which affects peripheral ANS and peripheral somatic nerve
function.

Environmental and genetic factors contribute to the onset and development of complica-
tions associated with diabetes, such as neuropathy, which leads to diffuse and widespread
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damage of peripheral nerves and small vessels (Vinik et al. 2003). The mechanisms for
the development of diabetic neuropathies remain unknown, though the causes are most
likely multifactorial and involve environmental and lifestyle factors, as well as genetic
predisposition.

The widespread distribution of the ANS means that virtually all organs are affected by
diabetic autonomic neuropathy, making the understanding of the genetic basis vital for
improved methods of treatment and diagnosis (Witzel et al. 2015). The nerves innervating
the cardiovascular system are usually affected first (Rolim et al. 2008), making it an option
for a clinical marker for diagnosis. Autonomic neuropathy includes clinical symptoms such
as resting tachycardia, postural hypotension, abnormal pupillary responses, gastroparesis,
and impotence (Said 2007).

23.6 Cardiac Autonomic Neuropathy

Cardiac autonomic neuropathy (CAN) is a common autonomic dysfunction and plays a
large role in both type 1 (T1DM) and type 2 diabetes mellitus (T2DM) complications, by
contributing a significant cause of mortality through increasing cardiac arrhythmias and
leading in many cases to sudden death (Pop-Busui 2010).

The T2DM patients inherit a variety of different genetic factors that together with envi-
ronmental factors can be additive and increase the risk of complications such as diabetic
CAN. However, not only long-term diabetic patients with lack of good glycemic control
are affected. Patients with near optimal glycemic control have also been seen to develop
complications, despite the application of risk management strategies (Kennon et al. 1999).
This implies genetic factors contribute to the susceptibility for cardiovascular complica-
tions, such as genetic polymorphisms in candidate genes.

There are various noninvasive ways to measure CAN. Five cardiovascular reflex tests
are most often used and known as the Ewing battery maneuver (Ewing et al. 1985). The
Ewing battery, however, cannot be used if patients have cardiorespiratory disease and/or
are extremely obese, frail, or arthritic.

Candidate genes, copy number, and genetic variants likely interact with epigenetic and
microRNA systems to influence biological pathway products associated with disease risk.
This involves association mapping to identify marker alleles present at different frequen-
cies in cases possessing a trait versus control.

23.7 Genome-Wide Association

Genome-wide association studies (GWAS) apply a case-control approach, examining the
genetic variants in a large number of individuals. This enables the identification of a variant
that can be associated with a disease (Kuivaniemi et al. 2014). The focus lies on SNPs, which
are inherited and therefore offer an ideal marker for mapping any genetic variation in
individuals. This approach suffers from the limited ability to reach statistical significance
as well as complications arising from the multitude of SNPs involved. A large number
of participants are necessary for this approach, making it impractical for recruitment of
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participants if the disease is rare. Currently, in the diabetic field, GWAS has been applied
to the studies of T2DM, retinal, and renal vascular complications (Hindorff 2014).

The alternative method for discovery of pathological genetic changes is the candidate
gene approach. This method involves the genotyping of key genes, using SNP haplotypes,
then testing the phenotype of the SNP haplotypes. The candidate gene approach takes
advantage of information on gene location and function of the protein product. Positive
association or linkage of the gene to the disease implies they are correlated.

23.8 Genetics in HRV

Interest in the genetic background of HRV increased when it was realized that many CVDs,
such as blood pressure (BP) and steady-state HR, have a genetic background. In 1996, Voss
et al. applied a twin study to the search for a genetic component in HRV and the influence
of genetics on the different HRV measures. This provided clinicians with a phenotype for
patients at risk for cardiac arrhythmia and evidence for the genetic heredity of HRV. How-
ever, the frequency-domain parameters included in the Voss et al. study were not linked to
genetic differences or family background. Studies on HRV were expanded in the following
years, with HRV turning into a more precise marker by introducing different HRV analysis
methods and parameters that were more robust against the nonstationarity and nonlinear-
ity inherent in the HR over time in order to assess the risk of CVDs, such as coronary heart
disease (CHD). Reduced total HRV was linked to an increase in risk of sudden cardiac
death (SCD) (Bigger et al. 1992). On this basis, Sinnreich et al. (1998) examined the famil-
ial association of HRV indices. The HRV indices had been determined using short-Holter
recordings. They discovered a significant correlation between parent and offspring, pro-
viding further evidence for familial resemblance and a genetic contribution to individual
differences in HRV.

Research continued to focus on the genetic background of HRV and soon the question
arose of whether chronic diseases exacerbate the underlying genetic background of HRV.
Uusitalo et al. (2007) focused on how environmental and somatic factors affected HRV
in a population-based study in middle-aged men. Age contributed largely to a negative
effect on HRV, except for LF/HF. Body mass index (BMI) and medication were also shown
to influence HRV. With these findings, Uusitalo et al. were able to make a case for the
influence of environmental factors on HRV, alongside the genetic aspects, which would be
important to identify specific effectors on cardiac health.

Since the heredity of HRV had been demonstrated numerous times, it was and still is
necessary for research to focus on the specific genes influencing HRV. Extensive rodent
studies were able to identify the first batch of candidate genes. Kreutz et al. (1997) led
the development in this field when they found a link between a locus on chromosome 3
in rats, thought to correspond to a K+-channel, and HR regulation. Howden et al. (2008)
delved deeper into rodent studies on HRV, despite the ambiguity which could be found
in the literature between findings of genetics in HR regulation and HRV (Campen et al.
2002; Hoit et al. 2002; Tankersley et al. 2002; Tankersley et al. 2007). They based their study
on inbred strains of mice and focused on the within- and between-strain differences in HR
and HRV. With this, they were among the first to systematically examine the genetic factors
involved and provided a basis for the study of the specific interactions between underlying
pathways and genotypes in HR.
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23.9 Candidate Genes Involved in HRV

23.9.1 Angiotensin-Converting Enzyme

Attention has largely been focused on genes encoding the angiotensin-converting enzyme
(ACE). In diabetic neuropathy and HRV variability, it has been identified as a candidate
gene in regard to its role in HRV. Differences in ACE concentration in plasma between
individuals were linked to a major gene polymorphism (Rigat et al. 1990). ACE is a central
player in the renin–angiotensin system (RAS) (Kennon et al. 1999), a cardiovascular regu-
latory system, which regulates cardiovascular function and BP (Nishikino et al. 2006). RAS
has been shown to be elevated in patients with metabolic syndrome (MetS) (Sharma 2004),
suggesting a link to CAN. ACE is involved in the activation of angiotensin II (Ang II),
through which vascular contraction, renal function, fluid homeostasis, and sympathetic
nerve activity are regulated. Ang II also leads to the production of reactive oxygen species
(ROS), increasing oxidative stress and damaging NO synthases (Elton et al. 2010).

The polymorphism is associated with ACE levels found in the plasma of patients and
refers to the presence (insertion, denoted I) or absence (deletion, denoted D) of a 287-bp
sequence of DNA in intron 16 of the ACE gene (rs4340) (Gayagay et al. 1998). The highest
levels of ACE can be found in the homozygous DD genotype, followed by the ID and
II genotypes (Agerholm-Larsen et al. 2000). Though the successful inhibition of ACE in
hypertension (HT) and CVD treatments has made it an obvious choice as a candidate gene
to be studied for influence of genetic factors, it is unclear how the different ACE genotypes
are associated with pathology. Positive association between the ACE polymorphism and
carotid intima-media thickness has been reported in one study (Sayed-Tabatabaei et al.
2006), while being refuted in another (Islam et al. 2006). Part of the controversial nature of
the ACE polymorphism is the fact that while it is intronic, which leads to its removal in the
splicing process, it is still able to exert a functional effect in the form of higher plasma levels
of ACE. Its absence drives the change in ACE plasma levels and proven by a number of
studies, which were able to show that the ACE DD genotype exhibits higher rates of Ang I
to Ang II conversion (Ueda et al. 1995; Buikema et al. 1996).

It is still unclear how the DD genotype is responsible for the higher levels of ACE
observed and a number of explanations have been brought forward. In the 1990s, it was
first suggested that the effect of the ACE I/D polymorphism may be the result of a linkage
disequilibrium with another adjacent gene (Cambien et al. 1994). The degree of linkage dis-
equilibrium between the D allele and some other variant of the gene could cause this upreg-
ulation (Schunkert 1997). Simultaneously, it was proposed that the higher levels resulted
from different splicing patterns. ACE pre-mRNA would either include the sequence (inser-
tion) or it would be absent (deletion) after differential splicing, altering the mature RNA
and therefore modifying the final product (Rigat et al. 1990). The insertion itself could then
change the splicing process of ACE precursor mRNA by interfering with the lariat for-
mation step (Smith et al. 1989). Though the mechanisms are still unknown, it is believed
that the observed genetic influence in serum levels of ACE is based on differences at
the transcriptional level (Schunkert 1997). More recently, it has been proposed that the
insertion/deletion itself is likely not to play a direct part in controlling ACE transcription,
but rather forms a linkage disequilibrium with regulatory elements of the ACE gene
(Schunkert 1997).

The influence of the genetic variation in ACE on HRV has mostly been studied in its rela-
tion to the effect it has on HRV measurements and analysis in combination with diabetes.
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Diabetes is closely linked to CVD by accelerating atherosclerosis through an increase in
oxidative stress, constant low-level inflammation, and endothelial dysfunction (Matheus
et al. 2013; Maschirow et al. 2015). The DD genotype has been shown to be related to an
increase in HRV and could hence be shown to be heritable (Busjahn et al. 1998). Yet, the I/D
genotype does not influence HRV following a myocardial infarction (Steeds et al. 2002).
The II genotype in T2DM was specifically associated with autonomic imbalance in HRV
measures, denoted by a decrease in LF. Noting that HRV is also decreased significantly
in subjects with CAN, the link between obesity, autonomic imbalance, and T2DM will be
likely to make screening of HRV beneficial for patients. The assessment of genetic risk fac-
tors contributing to CAN adds another dimension to prognosis and treatment procedures.

In summary, the ACE I/D polymorphism is of growing interest in the field of clinical
research. Its physiological consequences have been recognized as an important factor in the
development of numerous CVDs. Various other studies have highlighted the interactions
between gene polymorphisms and myocardial infarction, coronary artery disease, obesity,
MetS, and most importantly in the context of this study, T2DM and CAN.

Unfortunately, the literature on the nature of the interaction between the ACE I/D poly-
morphism and CVD has been inconsistent when examined on a global scale. Still it can
safely be concluded from these findings that ACE influences HRV in combination with dia-
betic status and consequential neuropathies (Marzbanrad et al. 2014). Diabetic and genetic
status of the ACE gene has been shown to be significantly linked to the HRV measures:
entropy, total power, LF power, SD1, SD2, RMSSD, and SDNN. This implies that genetic
variants in genes, which are assumed to play a role in diabetic neuropathies, will need to
be considered for their effect on HRV in consideration of a patient’s pathological (diabetic)
status (Marzbanrad et al. 2014).

23.9.2 Transcription Factor 7-Like 2 (TCF7L2) Gene Polymorphisms

TCF7L2 gene polymorphisms have shown a strong association with an increased risk of
T2DM in European populations. Additionally, research suggests that certain TCF7L2 poly-
morphisms are specifically linked to CAN among other diabetes-related complications,
including retinopathy and coronary artery disease.

TCF7L2 is a DNA-binding transcription factor that plays an important role in canonical
Wnt signaling by binding β-catenin. Wnt signaling has defined roles in determining cell
fate, survival, proliferation, and movement, and has a recognized function in embryonic
development as well as carcinogenesis (Savic et al. 2011). Furthermore, and with partic-
ular importance to diabetes, Wnt signaling attenuates the synthesis of GLP-1 by intesti-
nal L cells. GLP-1 is insulinotropic and also mimics insulin in glucose regulation, energy
homeostasis, and food intake. Consequently, it is proposed that TCF7L2 gene variants may
predispose individuals to T2DM by indirectly altering GLP-1 levels. Indeed, TCF7L2 poly-
morphisms are correlated with impaired GLP-1-induced insulin secretion and pancreatic
β-cell function (Loos et al. 2007; Boccardi et al. 2010). However, direct links between HRV
and this gene polymorphism have not yet been reported.

23.9.3 Choline Transporter—CHT1

The process of high-affinity choline uptake into cholinergic nerve terminals provides
choline as a substrate for synthesis of the neurotransmitter acetylcholine (ACh) by the
enzyme choline acetyltransferase (ChAT). Cholinergic neurons transmit signals to a variety
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FIGURE 23.1
Effects of common genetic variants linked to diabetic neuropathies. (From Witzel, I. I. et al., Front Endocrinol
(Lausanne), 6, 88, 2015.)

of target cells in the central and peripheral nervous systems, and thus are involved in
numerous biological processes, including the autonomic innervation of the heart. In the
central and peripheral nervous systems, choline transporter (CHT) is expressed almost
exclusively in cholinergic neurons (Black and Rylett 2012). Presently only one study has
shown a link with a polymorphism in CHT and HRV (Neumann et al. 2005). Another study
investigated the same polymorphism in diabetics with CAN; interestingly, a correlation
was seen suggesting a role of CHT1 in CAN (Parson 2011).

23.9.4 Other Potential Polymorphisms That May Link to HRV

Figure 23.1 refers to a number of polymorphisms that have been linked to diabetic
neuropathies that are known to be linked to CAN, by using methods other than HRV
(Witzel et al. 2015). Thus, associations of polymorphisms of these genes with HRV should
be investigated. These genes include the aldose reductase gene (AKRB1), apolipopro-
tein E (APOE), 5,10-methylene-tetrahydrofolate reductase (MTHFR), nitric oxide synthase
(NOS3), and vascular endothelial growth factor (VEGF) (Witzel et al. 2015).

A number of other genetic polymorphisms that may influence HRV, but with tenuous
evidence, have been identified in the literature and can be found in the Table 23.1.

23.10 The Future: Epigenetics in HRV

Focus has shifted from providing evidence for the genetic heritability of HRV to the spe-
cific genes involved in leading to interindividual differences. Naturally, the next step will
be to study the influence of environmental factors in HRV and how they affect genes via
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TABLE 23.1

Genes Linked to Heart Rate Regulation, Heart Rate Variability, and HRV-Related Cardiovascular
Diseases

Gene Polymorphism Influences References

Direct influence on HRV parameter

CYP11B2 AT1R C344T A1166C LF/HF in supine
position

Stolarz et al. (2004)

ApoE Isoforms: E2, E3, E4 HRV change in mental
stress

Ravaja et al. (1997)

Angiotensin II Receptor T1 A11666C ↑ SDNN Mitro et al. (2008)

GSTT1 null I105V ↓ HRV Probst-Hensch et al. (2008)

AKAP 10 I646V ↑ resting HRV; ↓ HRV
(SDNN)

Tingley et al. (2007)

LQT1, LQT4 To be identified QTc interval with
congenital long QT
syndrome

Busjahn et al. (1999)

KCNH2 (HERG) K897T Max QT interval Pietila et al. (2002)

Influence on heart rate regulation

SCN2A Locus: HR-SP1 HR regulation Kreutz et al. (1997)

Influence on cardiovascular diseases

NSD1 Reference Table 1 Congenital heart defects Cecconi et al. (2005)

F12 C46T ↓ (c) FXII, myocardial
infarction; coronary
artery disease

Roldan et al. (2005)

ZC3H12A To be identified MCP1 induced protein;
ischemic heart disease

Gombojav et al. (2008)

ET2 A985G Hypertension Sharma et al. (1999)

CAV3 To be identified Cardiac myocyte
hypertrophy

Cribbs et al. (2001)

AKAP 10, A kinase anchoring protein 10; ApoE, Apolipoprotein E; AT1R, type-1 angiotensin II receptor;
CAV3, caveolin-3 muscle-specific protein; CYP11B2, aldosterone synthase; ET2, endothelin 2; F12, coagula-
tion factor XII; GSTT1, glutathione S-transferase 1; HERG, human ether-a-go-go-related gene; NSD1, nuclear
receptor SET domain containing gene 1; SCN2A, type-2 voltage-gated sodium channel; ZC3H12A, zinc finger
CCCH type containing 12A.

epigenetics. Epigenetic changes have influenced how pathological conditions are perceived
and treated. Mechanisms include histone modification, in which the amino end of the his-
tones is changed through methylation, phosphorylation, and so on (Pinney and Simmons
2012), inducing activation or repression of transcription and DNA methylation, which can
trigger gene activation as well as repression (Jayaraman 2012). These two mechanisms have
the ability to influence each other, for example, methylation of Lysine 9 on histone 3 leads
to an increase in DNA methylation. Noncoding RNAs, such as miRNAs, have also been
identified as epigenetic gene regulators.

Epigenetic modifications have been shown to influence diseases such as diabetes, with
maternal nutrition or gestational diabetes influencing the risk of diabetes in offspring
(Jayaraman 2012; Pinney and Simmons 2012; Lehnen et al. 2013).
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It can be safely assumed that in addition to continuing candidate gene studies, research
on HRV will move on to the effects of epigenetics and focus on treating those with an
epigenetic predisposition to the disease accordingly before the onset of complications.

23.11 Conclusions

The research focus on HRV will enable us to gain a better understanding of diabetic
neuropathies and will help create a model to better understand the causes of diabetic
neuropathies. Early subclinical detection of diabetic neuropathy, by assessing genetic pre-
disposition as well as metabolic control and physiology of diabetic patients, is critical in
facilitating early intervention and prevention of the potentially serious consequences of
diabetic neuropathy. Current studies are still not informative enough and limited by a
lack of reproducibility and insufficient statistical power. It will be necessary to increase
the sample sizes in future studies in order to access current genetic risk factors. Once this
has been achieved, the development of a pathway model will elucidate how these risk fac-
tors may be contributing to diabetic neuropathies by interacting in as yet unknown ways.
The knowledge of genetic polymorphisms will also allow accurate quantification of T2DM
risk in order to develop models of pathogenesis, which hold diagnostic and prognostic
potential.
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After Myocardial Infarction
Atropine, 38
Autocorrelation plots, 94, 104
Automated preprocessing, 2, 3
Autonomic dysfunction, 349, 352, 417, 418
Autonomic nervous system (ANS), 16, 159, 228,

241, 243, 298
cardiovascular system, control of, 200
dynamics, 88
dysfunction, 36
function, 359–360, 370–372
modulation, 187
role of, 406
stroke and, 283
vulnerability of, 429

Autonomic neuropathy, 38–39
Autonomic regulation, 16, 21, 154
Autonomic stimulus, 410
Autonomic tone, 299
Autonomic Tone and Reflexes After Myocardial

Infarction (ATRAMI), 202
Autonomic vagal modulation, 346
Autoregressive (AR) model, 20, 92
Autoregressive moving average (ARMA) model,

206
Autoregressive multivariate techniques, 205

467
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Autoregressive spectrum estimation, 165–167
Autorhythmicity, 15
Avatar, 284

B

Baclofen, 322–323
Baroreceptor reflex (BRR), 199–200

caveats of sequence technique
Markov model, 215–218
reference threshold values, 212–214
sequences/random occurrences, 214–215
temporal sequence parameters, 218–220

estimation techniques, 206–207
pathophysiological relevance, 202
physiological background, 200–201
sequence method-implementation procedure

estimate and temporal features, 211–212
importance of the signal quality

assessment, 208–210
sequence identification procedure,

210–211
temporal sequence parameters, 211

Baroreceptor reflex sensitivity (BRS), 34, 349–350
assessment, 202–203

comparison of estimation techniques,
206–207

modern techniques-dynamic approach,
204–206

nonlinear approach to HR and BP
interactions, 207

traditional techniques-static approach,
203–204

estimate and temporal features, 211–212
Baroreflex vagal bradycardia (BVB), 349
BDI, see Beck Depression Inventory
Beat-to-beat interval, 299

electrode measurement, 441
QT variability, 405, 407, 410
video streams, 445–446

Beat-to-beat variability (BBV)
of cardiomyocytes, see Cardiomyocytes,

beat-to-beat variability
data compression, 445
in heart rate, 4
recording length, 443
region of interest, 442
series, 122–123

Beck Depression Inventory (BDI), 384
Beta-blocker therapy, 36, 300, 424
Bingeing, 383
Biological signals, 3
Biomedical signals, 82

Biophysical profile (BPP), 359, 360
Bispectral squared entropy, 103
Bispectrum estimation, 101
Bivariate Segmented Poincare plot analysis

(BSPPA), 55
Blind source separation with reference (BSSR),

363
Blood pressure (BP), 39, 199

cardiovascular autonomic neuropathy, 228,
229

congestive heart failure, 214
deregulation of, 200
heart period interactions, 207
parasympathetic nerves, 201

Blood pressure variability (BPV), 349
BMI, see Body mass index
BN, see Bulimia nervosa
Body mass index (BMI), 39, 383, 384
Body weight, eating-disorder patients, 383, 384
Borg Relative Perceived Exertion (RPE) scale,

297
BP, see Blood pressure
Bradycardia, 380, 385
Brain damage, diseases of, 37–38
Brain injury, 282
Breathing

deep, 228, 229
frequency, 324, 328
rate, 350

BRR, see Baroreceptor reflex
BRS, see Baroreceptor reflex sensitivity
BSPPA, see Bivariate segmented Poincare plot

analysis
Bulimia nervosa (BN), 383
BVB, see Baroreflex vagal bradycardia

C

CABG, see Coronary artery bypass grafting
CAN, see Cardiovascular autonomic

neuropathy; Central autonomic
nervous system

Cardiac arrest, 379
Cardiac Arrhythmias and Risk Stratification

after Acute Myocardial Infarction
(CARISMA) study, 390–391, 394–396

Cardiac autonomic function, 347
Cardiac consequences, 314–315
Cardiac heart failure (CHF), 107–109
Cardiac noradrenaline spillover, 409–410
Cardiac rehabilitation (CR), 297–301, 304
Cardiac reinnervation, 143
Cardiac rhythm, 4, 299
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Cardiac sympathetic activity, 407–408
Cardiomyocytes, beat-to-beat variability

cell isolation, 440–441
electrode measurements, 441, 447–448
video analysis

beat-to-beat interval, 445–446
challenges, 448–449
data compression, 445
frame rate, 443–445
quantitative analysis, 447
recording length, 443
region of interest, 442

Cardiomyopathy, 41–42
Cardiorespiratory coupling, 31–33, 350–351
Cardiorespiratory fitness, 352
Cardiorespiratory system, 350
Cardiotocography (CTG), 361–362
Cardiovascular autonomic neuropathy (CAN),

187–188, 193–195, 227, 456
cardiovascular symptoms of, 228
detection and staging, 228–230
discriminate classes of, 191, 193
HRV methods, 230–231
progression, 188, 195
progression of, 230
subclinical, 229–230
T–E method, see Tone–entropy method

Cardiovascular control, 87–88
autonomic nervous system, 88
linear and nonlinear parametric models,

88–91
Cardiovascular coupling, 31–33, 350–351
Cardiovascular disease (CVD), 202, 297–298, 329
Cardiovascular dysfunction, 345
CARISMA study, see Cardiac Arrhythmias and

Risk Stratification after Acute
Myocardial Infarction study

Caveats of sequence technique
Markov model, 215–218
reference threshold values, 212–214
sequences/random occurrences, 214–215
temporal sequence parameters, 218–220

CCM, see Complex correlation measure
CD, see Correlation dimension
Central autonomic nervous system (CAN),

312–314
Central nervous system, diseases of, 37–38
Central peripheral nerve injury, 282
Cerebral palsy (CP), 282
CH, see Chronic hypertension
Chaos theory, 21
Charles Sturt Diabetes Complications Screening

Group, 192

ChAT, see Choline acetyltransferase
CHF, see Cardiac heart failure
χ2 test, 123
Choline acetyltransferase (ChAT), 459
Choline transporter, 459–460
Chronic hypertension (CH), 49–50
Chronic kidney disease (CKD)

age, 422
anemia, 421–422
animal models of, 429
antihypertensive therapy, 424–425
diabetes, 420–421
dialysis therapy, 426–427
heart level in, 418
heart rate variability and, 418–420
lifestyle modification, 425–426
prognostic value of, 423–424
renal transplantation, 427–428

Chronic Renal Insufficiency Cohort study, 420,
424

Chronotropic incompetence (CI), 352
CIDI, see Composite International Diagnostic

Interview
Circadian rhythm, 36, 57
CKD, see Chronic kidney disease
Classical autonomic tests, 417
Clinical cardiovascular autonomic neuropathy,

230
Cognitive engagement, 285–286
Community structure in networks, 145
Comorbid psychiatric disorders, 330
Complex correlation measure (CCM), 283
Complex dynamics, 26
Complexity analysis, 298, 371
Composite International Diagnostic Interview

(CIDI), 409
Compression entropy, 31–33, 348, 350
Concentration, 39
Continuous blood pressure recording, 53
Continuous space, density method, 191
Contraction stress test (CST), 359–361
Coronary angiography, 301
Coronary artery bypass grafting (CABG), 297,

301–302
Coronary artery disease, 346
Coronary heart disease, 35
Coronary sinus blood flow, 409
Corrected QT interval (QTc), 228, 367, 380
Correlation dimension (CD), 28, 173
Cortex, 287, 291
Cortical engagement, 286
Counseling, 298
Coupling approaches, 32–33
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CP, see Cerebral palsy
CR, see Cardiac rehabilitation
Cross conditional entropy, 32
Cross-correlation baroreflex sensitivity (xBRS)

method, 204
Cross-sectional studies, 250–251
CST, see Contraction stress test
CTG, see Cardiotocography
CVD, see Cardiovascular disease

D

DBP, see Diastolic blood pressure
DCM, see Dilated cardiomyopathy
DD genotype, 458, 459
Defibrillator in Acute Myocardial Infarction

Trial (DINAMIT), 396
Defibrillators in Non-Ischemic Cardiomyopathy

Treatment Evaluation (DEFINITE), 46
Definite cardiac autonomic neuropathy (dCAN),

193
Dehydration, 385
Delusion, 352
Density method, 191
Depolarization process, 403
Depression, 39, 346, 409

in eating-disorder patients, 381, 383
heart rate variability and, 384
severity, 329

Design, of rehabilitation task, 284–285
Determinism (DET), 5, 89, 176
Detrended fluctuation analysis (DFA), 6–7,

26–27, 173–175, 189–190, 393
DGO, see Driven gait orthosis
Diabetes mellitus (DM), 38–39, 227

cardiac autonomic neuropathy, 187, 230–231
chronic kidney disease, 420–421

Dialysis therapy, 418, 426–427, 431
Diastolic blood pressure (DBP), 53
Digital computers, 76
Digitalization, limits of, 79–80
Dilated cardiomyopathy (DCM), 36, 42–43, 404
DINAMIT, see Defibrillator in Acute Myocardial

Infarction Trial
Discrete signal analysis, 76–78
Dispersion, Rényi entropy, 192
Distance measurement, 191, 192
Divergence (DIV), 176
DM, see Diabetes mellitus
Doppler cardiotocography (CTG), 361–362
Dose-dependent effect, 345
Driven gait orthosis (DGO), 284
Drosophila melanogaster, 453–454

DSM/DSM-5, 45, 383, 384
2DSW, see Two-dimensional signal warping
Dual sequence method, 204
Dynamic spectrum estimation, 100–101
Dynamic trispectrum estimation, 103–104

E

Early cardiac autonomic neuropathy (eCAN),
193–195

Eating disorder not otherwise specified
(EDNOS), 383

Eating disorders
anorexia nervosa, 380–383
autonomic function in, 380
bulimia nervosa, 383

Ectopic beats, 2–3
EDNOS, see Eating disorder not otherwise

specified
Education program, 49, 298
eGFR, see Estimated glomerular filtration rate
EIR model, see excitatory:inhibitory ratio
Electrocardiographic recordings, 16, 20, 188, 193

in acute myocardial infarction patients,
391–395

Electrode measurements, beat-to-beat interval,
441, 447–448

Electrolytes, 385
Emaciation, 385
Empathetic design, 284
End-stage renal disease (ESRD), 419
Endurance training

cross-sectional studies, 250–251
longitudinal studies, 251–252

Engagement, task, 282
Entropy, 5, 7, 232, 288

approximate, 30, 170–172, 371, 447
compression, 31–33
measurement, 361, 371

Environmental stressor, 282
Equidistant sampling, 161
ESRD, see End-stage renal disease
Estimated glomerular filtration rate (eGFR),

418–419
Ethnicity, race and, 333
Event-related heart rate variability, 321
Ewing battery assessment, 228–230
Excitatory:inhibitory ratio (EIR) model, 321
Exemplary applications

cardiac heart failure, 107–109
postural changes, 104–107

Exercise, 40, 299–301, 383, 385
capacity, 302
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intensity, 252–257
training, 302

Experiential graphic design, 284

F

Fast Fourier transform (FFT), 20
Fatigue, 39
fECG, see Fetal electrocardiography
Fetal circulation, 359
Fetal development, 38
Fetal echocardiography, 368–369
Fetal electrocardiography (fECG), 362–366, 368
Fetal heartbeat fluctuations, 372
Fetal heart rate monitoring

Doppler cardiotocography, 361–362
echocardiography, 368–369
electrocardiography, 362–366, 368
magnetocardiography, 366–368

Fetal heart rate variability (FHRV), 370–373
Fetal magnetocardiography (fMCG), 366–368
Fetal maturation, 370
FFT, see Fast Fourier transform
FHRV, see Fetal heart rate variability
Field of view, camera, 442
First-degree relatives, 347
fMCG, see Fetal magnetocardiography
Fourier transform, 3, 80, 82
Fractal analysis, 21, 188
Fractal scaling exponent (α1 and α2), 26–27
Frame rate, 443–445
Frequency-domain analysis, 6, 25–26, 164, 168,

205, 298, 346, 427, 455
in anorexic patients, 381
autoregressive spectrum estimation, 165–167
biomedical signals, 82
parameterization of spectrum, 167–169
power spectral density, 82–83
rectangular signal, decomposition of, 81
Welch’s periodogram, 164–165

G

Gabapentin, 323–324
GAD, see Generalized anxiety disorder
GAF, see Global assessment of functioning
Galen, Claudius, 19
Gaussian distribution, 93
Gaussian kernel, 192
GBS, see Guillain–Barré Syndrome
Gender, 41
Generalized anxiety disorder (GAD), 39, 330–331
Genetic polymorphism, 453–454

Genome-wide association studies (GWAS),
456–457

Global assessment of functioning (GAF), 352
Glucose-based dialysis, 427
Granger causality, 31
Guillain–Barré Syndrome (GBS), 282
GWAS, see Genome-wide association studies

H

Hales, Stephen, 19
Hamilton Anxiety Rating Scale, 409
Hamilton Depression Scale, 409
Handgrip, 229
Hanks’ balanced salt solution (HBSS), 440
Healthy relative, 347, 350
Heart disease, 35–36
Heart period (HP)

age effect on, 136–137
assessment of complexity, 133–134
complexity and causality indexes, 123–125,

127–131
orthostatic challenge on, 134–135
Shannon entropy of, 119
unpredictability/uncertainty, 120

Heart rate (HR), 14, 160, 199, 439
complexity measure, 348–349
control, 227
fluctuations, 25
parasympathetic nerves, 201
response, 427
in Schizophrenia, see Schizophrenia, heart

rate in
sinus arrhythmia, 20
of unmedicated patients, 347–348
vs. RR interval, 163

Heart rate asymmetry (HRA), 282, 288, 290
Heart rate turbulence (HRT), 34, 394
Heart rate variability (HRV), 1, 14, 298–299,

454–455
and acquired brain injury, 315–316
in anorexia nervosa, 380–383
assessment, 176–177, 311

effect of trend and artifacts, 177
very low frequency trend components,

177–179
autonomic nervous system control, 88
candidate genes involved in, 458

angiotensin-converting enzyme, 458–459
choline transporter, 459–460
potential polymorphism, 460
TCF7L2 gene polymorphism, 459

cardiac autonomic regulation, 389
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cardiovascular autonomic neuropathy,
230–231

CARISMA study, 390–391
chronic reductions in, 328–329
in CKD, see chronic kidney disease
clinical utility of, 7
in eating disorders, 380, 383–386
effects on, 179–181
empirical comparison of, 192–193
and endurance training, 250–252
epigenetics, 460–462
exemplary applications

cardiac heart failure, 107–109
postural changes, 104–107

exercise intensity and aerobic fitness, 252–257
fetus, see Fetal heart rate variability
frequency-domain analysis, see

Frequency-domain analysis
genetics in, 457
influencing factors, 394–396
Kubios software, see Kubios software
linear parametric models, 91–95
measures of nonlinear methods, see

Nonlinear measures
methods, 4–5
multilag T–E analysis, 232
nonlinear analysis, see Nonlinear analysis

methods
optimization of endurance training, 268–272
and orthostatic stress, 265–268
paroxysmal sympathetic hyperactivity and,

316–317
physiological influences on, 41
Poincaré plot representation, 143, 243
in post-AMI patients, 389–390
postexercise, 258–261
preliminary considerations, 2–4
prognostic significance, 391–392
in psychiatric disorders, 329–331
PubMed search, 327
reduction in, 408, 440
respiratory sinus arrhythmia, 182–183
during rest, 411
resting, 262–265
results, 193–195
schizophrenia, 346–347
sleep, 142
standard deviation, 191
standardized measures of, 332, 443
techniques to measure, 455
thresholds, detection of, 257
time domain measures, see Time-domain

analysis

time series, 160–162
triangular index of, 392

Heart-to-mediastinum (H/M) ratio, 410
Heart transplantation surgery, 142
Hemodialysis, 427
Herophilos of Chalcedon, 19
HF component, see High frequency component
Higher order spectral (HOS) representation, 100,

101
High frequency (HF) component, 16, 20, 298,

327
High-resolution joint symbolic dynamics

(HRJSD) approach, 351
Higuchi dimension, 449
Histogram method, 191
Holter monitoring, 316, 385
Holter, Norman, 20
Holter signal, 143
Home exercise program, 298
HOS representation, see Higher order spectral

representation
HR, see Heart rate
HRA, see Heart rate asymmetry
HRJSD approach, see High-resolution joint

symbolic dynamics approach
HRT, see Heart rate turbulence
HRV, see Heart rate variability
HTX group, 143

adjacency and transition matrices, 152–154
network disintegration, 150–151
transition networks graphs, 149–150

Human centered design, 284
Hypertension, 36–37, 409

during pregnancy, 49
Hypotension, 426
Hypothalamic–pituitary–adrenal (HPA), 328
Hypoxia, 421

I

ICD, see Implantable cardioverter-defibrillator
ID surrogates, see Isodistributional surrogates
IIR system, see Infinite impulse response system
Image compression, 445
123I-metaiodobenzylguanidine (123I-MIBG)

scintigraphy, 404, 410–411
Impaired renal function, 420
Implantable cardioverter-defibrillator (ICD),

390, 396–397
Independent predictor, 299
Infinite impulse response (IIR) system, 165
Inflammation, 35, 337
In-hospital training, 300
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Injury, 282
brain, 281, 312, see also specific types
focal, 315

Integral pulse frequency modulation (IPFM)
model, 162

Interpolation rate, 162
Intracellular recording, 441
Intrathecal baclofen, 322–323
Intrauterine growth restriction (IUGR), 361, 371,

373
Inverse Gaussian distribution, 93, 99
IPFM model, see Integral pulse frequency

modulation model
Isodistributional (ID) surrogates, 215, 218–220
IUGR, see Intrauterine growth restriction

J

Joint Symbolic Dynamics (JSD), 33
Junctional rhythm, 385

K

“Kindling,” 331
Kolmogorov–Smirnov (KS) test, 94, 104
Kruskal–Wallis test, 234
Kubios software

AR spectrum estimation approach, 165–167
correlation dimension, 173
detrended fluctuation analysis, 173–175
entropy measures, 170–172
Poincaré plot analysis, 170
Recurrence plot analysis, 175–176
spectrum, parameterization of, 167–169
time-domain analysis methods, 162–164
Welch’s Periodogram, 164–165

L

Laguerre function, 96–99
Least squares (LS) estimation, 165
Leave-one-out (LOO) testing methodology, 235
Left ventricular ejection fraction (LVEF), 34,

392–394
Lempel–Ziv complexity, 54
Lethal arrhythmias, 298
Lewis polycystic kidney (LPK) rat model, 429,

431
LFA, see Low-frequency area
LF component, see Low frequency component
Lifestyle modification, 425–426
Linear coupling approaches, 33
Linear decomposition techniques, 363
Linear dynamics, 258–261

Linear methods
frequency domain, 25–26
nonlinear dynamics, 26
time domain, 22–25

Linear parametric models
autoregressive models, 92
point-process framework, 92–94
preprocessing, 91
quantitative tools and feature extraction,

94–95
Linear regression analysis, 123, 128–131, 422
Linear time-domain analysis, 370–371
Lipopolysaccharide (LPS), 440
Lokomat, 284–285
Lomb–Scargle periodogram, 162
Longitudinal studies, 251–252
Long QT (LQT) syndrome, 365
Long stationary time series, 207
Low-frequency area (LFA), 372
Low frequency (LF) component, 20, 298
LPK rat model, see Lewis polycystic kidney rat

model
LPS, see Lipopolysaccharide
LS estimation, see Least squares estimation
Ludwig, Carl, 19
LVEF, see Left ventricular ejection fraction
Lyapunov exponent, 28–29

M

MAC algorithm, see Moving average curve
algorithm

Major depressive disorder (MDD), 329, 330
Malignant arrhythmia, 346
Markov model, 215–218
Maximal oxygen uptake (VO2max), 297
MDD, see Major depressive disorder
Mean heart rate (mHR), 370
Mean magnitude, 102
Mean RR interval (mRR), 370
Means and standard errors, 347
Medical intervention, 322–324
Medication, 303, 304
Menopause, 41
Mental disorders, 346
Mental engagement, 283
Mental stress, 39
MET, see Metabolic equivalent
Meta-analysis, 329
Metabolic dysfunction, 345
Metabolic equivalent (MET), 334
MFDFA, see Multifractal detrended fluctuation

analysis
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MI, see Myocardial infarction
Microelectrodes, 441, 447–449
Mind/body exercises, 40
Mini International Neuropsychiatric Interview

(MINI), 409
Model-based approaches, 118, 205
Model-free data-driven multivariate approaches

beat-to-beat variability series, 122–123
complexity and causality analyses, 123–125
experimental protocol, 121–122
heart period, see Heart period
linear regression analysis, 128–131
orthostatic challenge, effects of, 127–128
overview, 118–119
SAP and RESP, 120–121, 131–134
statistical analysis, 123
zero-lag interactions, 125–127

Modified Oxford method, 203
Monitoring

and anesthesia, 36
blood pressure, 208
fetal heart rate, see Fetal heart rate monitoring

Mood disorders, 330–331
Mortality, 35, 299
Moving average curve (MAC) algorithm, 446
MSE, see Multiscale sample entropy
MSRényi entropy, see Multiscale Rényi entropy
MUI, see Mutual information analysis
Multifractal detrended fluctuation analysis

(MFDFA), 27, 188, 193
Multilag T–E analysis, 232, 243, 244
Multiscale Rényi (MSRényi) entropy, 188, 193
Multiscale sample entropy (MSE), 30–31,

170–172, 189, 193
Multivariate autoregressive models (MAR), 32
Multivariate model-based techniques, 118
Mutual information analysis (MUI), 32
Myocardial infarction (MI), 20, 381, 404

N

NARMA models, see Nonlinear autoregressive
moving average models

NAR models, see Nonlinear autoregressive
models

NCI, see Normalized complexity index
Neck chamber technique, 204
Negative exponents, 195
Neonatal development, 38
Netherlands Study of Depression and Anxiety

(NESDA), 329
Network disintegration, p-core, 150–151
Neurologic disorder, deregulation of blood

pressure, 200

Neuropathies, 455–456
Neurorehabilitation, 282
Newton–Raphson procedure, 94
New York Heart Association (NYHA), 43
NLD, see Nonlinear dynamics
Noises, 2, 3, 6, 298
Nonequidistant sampling, 161
Non-invasive fetal electrocardiography, 264
Nonlinear analysis methods, 168, 298

in anorexic patients, 38, 381, 382, 384
correlation dimension, 173
detrended fluctuation analysis, 173–175
entropy measures, 170–172
Poincaré plot analysis, 170
recurrence plot analysis, 175–176

Nonlinear autoregressive (NAR) models,
95–96

Nonlinear autoregressive moving average
(NARMA) models, 95–96

Nonlinear coupling approaches, 33
Nonlinear dynamics (NLD), 21, 258–261

approximate entropy/sample entropy, 30
compression entropy, 31–33
correlation dimension, 28
detrended fluctuation analysis, 26–27
Lyapunov exponent, 28–29
multifractal analysis, 27
multiscale entropy, 30–31
Poincaré plot analysis, 29
power law (scaling exponent β), 26
recurrence plots, 29–30
RR-intervals, 143
symbolic dynamics, 27–28

Nonlinear measures, 188
detrended fluctuation analysis, 189–190
of heart rate variability, 6–7
multiscale sample entropy, 189
Rényi entropy, 190–192

Nonlinear parametric models, 95
Laguerre expansion, 96–99
NAR and NARMA models, 95–96
point-process framework, 99–100
quantitative tools and feature extraction, 100

bispectrum estimation, 101
feature extraction, 102–103
spectrum estimation, 100–101
trispectrum estimation, 103–104

Non rapid-eye-movement (non-REM) sleep, 142
Nonstationary sine signal, 3–4, 84
Nonstress test (NST), 360
Nontraumatic acquired brain injury, 314
Nontraumatic subarachnoid hemorrhage, 315
Noradrenaline spillover measurement,

409–410
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Normalized complexity index (NCI), 119
Normalized short-time partial-directed

coherence (NSTPDC), 351
Normalized units, 25
NST, see Nonstress test
NSTPDC, see Normalized short-time

partial-directed coherence
Nucleus of solitary tract (NTS), 200
NYHA, see New York Heart Association
Nyquist frequency, 3

O

Obese, 54
Obsessive-compulsive disorder, 330
Optimization, of endurance training, 268–272
Orthostasis, 229
Orthostatic challenge, 384
Orthostatic stress, 265–268
Otherwise specified eating disorder (OSFED),

383
Oxford method, 203

P

Pacemaker channel, 440
Panic disorder, 408
Papyrun Eburs, 18–19
Parameterization of spectrum, 167–169
Parametric formulation, 87–88

autonomic nervous system control, 88
linear and nonlinear parametric models,

88–91
Parasympathetic activity, 298
Parasympathetic function, 421
Parasympathetic nervous system (PNS), 14, 88,

160, 201, 230, 240, 327
Parasympathic (vagal) activation, 16
Paroxysmal sympathetic hyperactivity (PSH),

316–317
Paroxysms, 316
Parsevals theorem, 165
Partial directed coherence (PDC), 32
Partial process decompositions, 32
PCI, see Percutaneous coronary angioplasty

intervention
p-core graph, 145, 148–150
PDC, see Partial directed coherence
Percentage index (PI), 231–232
Percutaneous coronary angioplasty intervention

(PCI), 297, 301–302
Period-doubling bifurcations, 21
Perioperative course, 36

Peripheral nerve injury, 282
Perturbation, RR intervals, 191
PET, see Positron emission tomography
Pharmacological β−adrenoceptor, 408
Phase entropy, 102
Phase synchronization, 33
Physical training exercise, 300, 352
Physiological recordings, 285
Physionet, 107
Plasma norepinephrine, 301
PNS, see Parasympathetic nervous system
Poincaré plot analysis, 5, 6, 29, 170, 207, 286
Point-process framework, 99–100, 162
Polyvagal theory, 335
Positive exponents, 195
Positive predictive accuracy (PPA), 53
Positron emission tomography (PET), 230
Postexercise, heart rate variability, 258–261
Postinfarction (post-AMI) patients

electrocardiographic recordings, 391–395
left ventricular function, 389–390, 395–396
mortality of, 395, 396
risk stratification method, 390–391

Post-intervention recovery, 301
Postmyocardial infarction, 299, 408
Posttraumatic stress disorder (PTSD), 39
Postural changes, 104–107
Power law (scaling exponent β), 26
Power spectral density (PSD) analysis, 20, 25,

82–84, 164
PPA, see Positive predictive accuracy
Pre-eclampsia, 49
Pregnancy, 38
Premature ventricular contractions (PVCs),

363–364
Prescribing, 302
Probability density function, 192
Profound autonomic dysfunction, 346
Prolonged QT interval, 380
PSD analysis, see Power spectral density

analysis
PSH, see Paroxysmal sympathetic hyperactivity
Psychiatric disorders, heart rate variability in,

329–331
Psychophysiological flexibility, 328
PTSD, see Posttraumatic stress disorder
PubMed search, 327
Pulse curve, 16
Pulse detection, 18
Pulse oximetry, 20
Purging, 383
Pyrexial response, 385
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Q

QRS detection algorithm, 16, 160
QT intervals, 53, 365, 403

in patients with eating disorders, 380
QT interval variability (QTV), 403

beat-to-beat, 405
and cardiac sympathetic activity, 407–408
123I-MIBG scintigraphy, 410–411
measures of, 405–406
noradrenaline spillover measurement,

409–410
and sympathetic nervous system, 404
ventricular sympathetic outflow, 406–407

Quadratic discriminant (QD) classifier, 233
Quantization, 77–79

R

Randomized controlled design, 331
Rapid-eye-movement (REM) sleep, 37, 142
RAS, see Renin–angiotensin system
REC, see Recurrence rate
Receiver operating characteristic curve (ROC),

193–195, 233, 234, 238
Recording length, 3, 5

beat-to-beat variability, 443
Recurrence plot (RP) analysis, 5, 29–30, 175–176
Recurrence quantification analysis (RQA), 30
Recurrence rate (REC), 5
Refeeding syndrome, 385
Reference threshold values, 212–214
REFINE-ICD, see Risk Estimation Following

Infarction Noninvasive
Evaluation—ICD efficacy

REFINE study, see Risk Estimation Following
Infarction Noninvasive Evaluation
study

Region of interest (ROI), 442
Regular sinus rhythm, 299
Rehabilitation task, design of, 284–285
REM sleep, see Rapid-eye-movement sleep
Renal disease progresses, 429
Renal function, 419
Renal Research Institute-CKD study, 418, 423,

424
Renal transplantation, 427–428
Renin–angiotensin system (RAS), 458
Rényi entropy, 171, 188, 190–192, 194, 195
Repolarization, 53
Resampling algorithm, 91
Respiratory sinus arrhythmia (RSA), 19, 88, 160,

182–183, 229, 328

Restriction fragment length polymorphisms
(RFLPs), 454

Risk Estimation Following Infarction
Noninvasive Evaluation—ICD efficacy
(REFINE-ICD), 396–397

Risk Estimation Following Infarction
Noninvasive Evaluation (REFINE)
study, 394, 395

RMSSD, see Root mean square of successive
differences

Robot-assisted devices, 281, 285
Robust ethnicity, 333
ROC, see Receiver operating characteristic curve
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