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ix

 Preface     

  The driving force behind this book is a comment by Albert Einstein 
that heads the fi rst chapter:  “ Science without epistemology is — insofar 
as it is thinkable at all — primitive and muddled. ”  Einstein said these 
words in 1949 on the heels of a revolution in epistemology driven by 
the monumental advance in physics during the fi rst half of the twentieth 
century, where the unintelligibility of physics in terms of everyday 
physical categories had become clear to everyone. It would, however, 
be a mistake to place the aim of Einstein ’ s quote on the twentieth 
century. Indeed, the d é nouement of intelligibility began with Galileo 
and Newton, when knowledge of the physical world was freed from 
the requirement of a causal description, the Aristotelian ground of 
science, and became associated with mathematical equations serving 
as quantitative descriptions of the effects exerted by hypothesized rela-
tionships, such as gravitation. The potency of these descriptions derived 
from the ability to check the accuracy of predictions based upon them 
through experimentation and the ability to derive new relations from 
them whose accuracy of prediction could also be experimentally estab-
lished. The fi rst half of the twentieth century brought the full fl owering 
of the mathematical – experimental duality underlying the epistemology 
of science along with the full appreciation that the scientifi c  truth , or 
validity, of a mathematical model lay with the concordance of model -
 based predictions with experimental observations. 

 Given the advances in experimental technology and computational 
power, along with the enormous importance of biology to life, it is not 
surprising that many are predicting that the twenty - fi rst century will 
belong to biology; however, according to Einstein, this will only 
happen if the proper epistemological ground is set. It is our contention 
that this has not been done; on the contrary, there is a lingering, and 
sometimes strident, call for biology to maintain a pre - Galilean stance. 
This manifests itself in various ways: a lack of demarcation between 
biological science, metaphysics, and everyday categories of under-
standing; a desire for intelligible explanation rather than a strict scien-
tifi c epistemology based on a mathematical – experimental duality; 
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x Preface

 “ empty talk, ”  to use Einstein ’ s phrase, instead of rigorous mathemati-
cal models; little or no attention to proper statistical validation; and a 
forlorn hope for simple description of extremely diffi cult and complex 
phenomena. It is our contention, present throughout the book, that the 
successful pursuit of biological science requires a proper attention to 
scientifi c epistemology. 

 The epistemology of biology is governed, both experimentally and 
mathematically, by the nature of the subject matter, that is, the phenom-
ena being studied. Since the cell is the basic unit of life, its epistemol-
ogy must drive biological epistemology in general, up to and including 
the organism level. The following 1935 quotation from Conrad 
Waddington applies to the organism level but it arrives there from its 
starting point in the cell, the details of which were unknown at the time: 
 “ To say that an animal is an organism means in fact two things: fi rstly, 
that it is a system made up of separate parts, and secondly, that in order 
to describe fully how any one part works one has to refer either to the 
whole system or to the other parts. ”  Biology is not physics and it is not 
chemistry. The study of cells at the biological level is not about chemi-
cal relations; rather, it is fi rst and foremost about the regulatory appa-
ratus that governs the integration of cellular activities in such a way as 
to form a living system. As Waddington put it,  “ If there is a  ‘ secret 
life, ’  it is here we must look for it. ”  

 Taking a historical perspective, Waddington ’ s systems view of bio-
logical science was timely because it was in the 1930s when Norbert 
Wiener and others were formulating the basis of systems theory in the 
framework of the newly developing theory of random processes. In 
1948, Wiener noted  “ the essential unity of the set of problems centering 
about communication, control, and statistical mechanics, whether in the 
machine or in living tissue. ”  This unity results from the demands placed 
on a self - organizing dynamical system, whether it be natural or 
man - made. 

 The fruitful pursuit of biological knowledge requires one to take 
Einstein ’ s admonition as a practical demand for scientifi c research, to 
recognize Waddington ’ s characterization of the subject matter of 
biology, and to embrace Wiener ’ s conception of the form of biological 
knowledge in response to its subject matter. It is from this vantage point 
that we consider the epistemology of the cell.     

 E dward  R. D ougherty  
 M ichael  L. B ittner  
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Epistemology of the Cell: A Perspective on Biological Knowledge, First Edition. 
Edward R. Dougherty, Michael L. Bittner.
© 2011 the Institute of Electrical and Electronics Engineers, Inc. Published 2011 by 
John Wiley & Sons, Inc.

Science and Knowledge     

  CHAPTER 1 

       Science without epistemology is — insofar as it is thinkable at 
all — primitive and muddled. 

   — Albert Einstein    

 Science is a product of the human mind — and a very recent product 
at that. One can reasonably argue that science began in ancient Greece, 
certainly to the extent that it was given formalization by Aristotle; 
however, science, in the sense that it has become understood over the 
last four centuries, was unknown to the ancient civilizations. There is 
a point in time that will concern us throughout this book. That point is 
Galileo. There is a pre - Galilean and a post - Galilean mind. The pre -
 Galilean mind is  “ everyday ”  as it looks out upon the physical world. 
It can be mathematical, as in the case of Archimedes; it can be philo-
sophical, as in the case of Plato; it can be empirical, as in the case of 
Aristotle. Nonetheless, the categories with which it organizes its per-
ceptions and the manner in which those perceptions arise through 
sensation take the data of the world as it presents itself to everyday 
understanding. The mind remains within the bounds of a na ï ve realism, 
one that sees a rock as a hard, extended body, or gravity as a cause. 
Words like  “ body ”  and  “ cause ”  arise from a noncritical view of knowl-
edge, one that takes the physical world as it appears (the solidity of 
rock) and identifi es physical relations with explanations created to 
make sense of the world (cause and effect). The great epistemological 
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2 Epistemology of the Cell: Perspective on Biological Knowledge

achievement of science has been to overcome the lure of appearance 
and explanation. This is not to say that appearance and explanation do 
not have their place in human knowledge; it is that they do not have a 
place in scientifi c knowledge. 

 Implicit in the latter statement is that we can characterize a specifi c 
kind of knowledge to be called  “ scientifi c. ”  This characterization lies 
outside of science, from whose perspective it is a priori. This is not to 
say that it is prior to experience, rather, that it is prior to the organiza-
tion of experience within scientifi c categories. Scientifi c epistemology 
must address the representation of knowledge and its truth. These are 
not unrelated and their characterization is at the core of scientifi c 
knowledge; indeed, the modern understanding of representation and 
truth with regard to sensibility differentiates the pre - Galilean and post -
 Galilean minds. Wilhelm Windelband defi nes epistemology in the fol-
lowing way:  “ The problems, fi nally, which arise from the questions 
concerning the range and limit of man ’ s knowing faculty and its rela-
tion to the reality to be known form the subject - matter of epistemology 
or theory of knowledge ”  (Windelband,  1958 ). Taking the word  “ range ”  
to refer to the kind, or nature, of the knowledge under consideration, 
the nature of scientifi c knowledge is determined by its manner of rep-
resentation and its criteria for truth; its limitations are determined by 
the limits of its form of representation and the degree to which its 
criteria of truth can be applied, and its relation to reality is determined 
by the manner in which its representation is connected to physical 
phenomena and the relation between scientifi c truth and physical 
phenomena. 

 These are tough issues. If they were easy, then the Greco - Roman 
world would have answered them with its store of philosophical, math-
ematical, and empirical skills. One is not born with a post - Galilean 
perspective. It requires wrenching the everyday mind out of its natural 
condition and into one at odds with the natural one. Ordinary intuition 
and the beliefs of the tribe must be stripped from the adolescent mind 
by a rigorous education that tears one loose from the safe moorings of 
everyday common sense. The desire for full understanding and cer-
tainty must be relegated to the immaturity of youth and the mature 
scientist must live with stringent limitations and radical uncertainty. 

 Burning questions that are most natural for the scientist to ask, 
simply because, from the perspective of the human person, science 
seems to point that way, must be left untouched by science because 
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CHAPTER 1 Science and Knowledge 3

they transcend the limitations of scientifi c representation and truth. The 
following words of Immanuel Kant open the preface of the fi rst edition 
of the  Critique of Pure Reason :

  Human reason, in one sphere of its cognition, is called upon to consider 
questions, which it cannot decline, as they are presented by its own nature, 
but which it cannot answer, as they transcend every faculty of the mind. 
It falls into this diffi culty without any fault of its own. It begins with 
principles, which cannot be dispensed with in the fi eld of experience, and 
the truth and suffi ciency of which are, at the same time, insured by experi-
ence. With these principles it rises, in obedience to the laws of its own 
nature, to ever higher and more remote conditions. But it quickly discov-
ers that, in this way, its labors must remain ever incomplete, because new 
questions never cease to present themselves; and thus it fi nds itself com-
pelled to have recourse to principles which transcend the region of experi-
ence, while they are regarded by common sense without distrust. It thus 
falls into confusion and contradictions, from which it conjectures the 
presence of latent errors, which, however, it is unable to discover, because 
the principles it employs, transcending the limits of experience, cannot be 
tested by that criterion. The arena of these endless contests is called 
Metaphysic.  (Kant,  1952 )    

 Keep these words in mind as you read this book. These are hard 
words, perhaps too hard for those who want science to satisfy their 
spiritual needs. These words are a warning to those who desire to 
understand  “ remote conditions ”  with principles  “ regarded by common 
sense without distrust. ”  They tell of a region outside the domain of 
science, one in which legitimate scientifi c inquiry cannot venture. Kant 
aims to demarcate the proper domain of science, one that cannot  “ tran-
scend the region of experience. ”  

 As the scientist, if remaining within the confi nes of science, must 
forego the answers to questions toward which science points, the sci-
entist must forego the natural human desire for certainty. This occurs 
at two levels. First, there is uncertainty in the sense that a scientifi c law 
will give exact knowledge of events in the future, given the present 
state of nature. There are no such laws. As stated by Hans Reichenbach 
in  The Rise of Scientifi c Philosophy ,

  Gone is the idea of the scientist who knows the absolute truth. The hap-
penings of Nature are like rolling dice rather than like revolving stars; 
they are controlled by probability laws, not by causality, and the scientist 
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4 Epistemology of the Cell: Perspective on Biological Knowledge

resembles a gambler more than a prophet. He can tell you only his best 
posits (predictive statements) — he never knows beforehand whether they 
will come true.  (Reichenbach,  1971 )    

 Second, there is uncertainty in the sense that one is assured that a 
scientifi c law will stand the test of time and remain unchanged in per-
petuity. There is no such assurance. Not only do scientifi c laws lack 
certainty in what they say about the future, the laws themselves stand 
open to refutation with new observations. The Newtonian laws give 
way to relativity theory and the fundamental dogma of molecular 
biology — DNA to RNA to protein — gives way to posttranscriptional 
regulation. Better technology leads to an ever - expanding scope of 
observations, going ever further outside the range of everyday human 
sensibility. Among scientifi c theories there is a kind of survival of 
the fi ttest. Philipp Frank states,  “ Experience is responsible for the 
natural selection that determines which system is the fi ttest for survival 
and which has to be dropped ”  (Frank,  1961 ). Karl Popper agrees,  “ The 
scientifi c method ’ s aim is not to save the lives of untenable systems 
but, on the contrary, to select the one which is by comparison 
the fi ttest, by exposing them all to the fi ercest struggle for survival ”  
(Popper,  1959 ). 

 Science is a paradoxical enterprise. It cannot answer questions 
whose answers we long for. It cannot tell us with certainty what events 
will occur no matter how accurate our measurements. It lacks objectiv-
ity, in the sense that there is knowledge independent of the mind in 
which that knowledge is manifested. In these ways, science resembles 
faith. The following words of Soren Kierkegaard could easily be applied 
to science by simply changing the word  “ faith ”  to the word  “ science ” : 
 “ If I wish to preserve myself in faith I must constantly be intent upon 
holding fast the objective uncertainty, so as to remain out upon the 
deep, over seventy thousand fathoms of water, still preserving my faith ”  
(Kierkegaard,  1941 ). Of course, the epistemology of the scientist is 
very different from that of Kierkegaard ’ s knight of faith; indeed, they 
are so different that no stress arises from being both a scientist and a 
knight of faith. Where they agree, however, is in acting in the face of 
uncertainty. 

 Unless the scientist is going to stand on the sidelines, like Hamlet 
in a lab coat, he or she must act on posits. The bridge must be built and 
the patient treated, and both of these actions can best be accomplished 

c01.indd   4c01.indd   4 6/16/2011   1:59:59 PM6/16/2011   1:59:59 PM



CHAPTER 1 Science and Knowledge 5

as translations of science into action, and translation is performed best 
when the proper epistemological outlook is maintained. Reichenbach 
writes his own soliloquy for Hamlet. It concludes with the following 
words (where one should interpret the word  “ logic ”  as  “ science ” ): 
 “ There I am, the eternal Hamlet. What does it help me to ask the logi-
cian, if all he tells me is to make posits? His advice confi rms my doubt 
rather than giving me the courage I need for my action. Logic is not 
made for me. One has to have ever more courage than Hamlet to be 
always guided by logic ”  (Reichenbach,  1971 ). Perhaps the scientist is 
not out with Kierkegaard ’ s knight of faith over seventy thousand 
fathoms — perhaps only over twenty thousand fathoms. 

 Those with open eyes cannot return to the childhood of science, 
back before Galileo into a world where science merged with metaphys-
ics and both were presumed to hold the promise of objective truth, 
independent of the epistemological constraints of the human mind. 
Today, the limitations and uncertainty of science are more limiting 
and uncertain than in Kant ’ s day. Nevertheless, science and its mani-
festations in technology now play a major role in human destiny and 
a cavalier attitude toward its epistemology is dangerous. The situation 
is most problematic in biology, which is the science of life. In biology, 
the answers we desire are among the deepest and actions derived 
from biology, particularly in medicine, are among the most consequ-
ential. In biology, perhaps more than anywhere else in science, one 
might be tempted to weaken the epistemological demands in order to 
satisfy a desire for metaphysical knowledge or arrive at a new treatment 
for cancer. 

 Many researchers appear to believe that epistemological issues are 
too arcane and not relevant to their interest in advancing science. On 
the contrary, epistemology is primary. How can one intentionally and 
effi ciently advance science without knowing the nature of science? 
Inattention to epistemology results in research that appears scientifi c 
but fails to have depth, or even worse, is scientifi cally unsound. Albert 
Einstein writes,  “ The reciprocal relationship of epistemology and 
science is of a noteworthy kind. They are dependent upon each other. 
Epistemology without contact with science becomes an empty scheme. 
Science without epistemology is — insofar as it is thinkable at all —
 primitive and muddled ”  (Einstein,  1949 ). Only through deep refl ection 
on epistemology can one come to grasp what it means to possess sci-
entifi c knowledge of Nature and therefore be in a position to effectively 
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6 Epistemology of the Cell: Perspective on Biological Knowledge

seek such knowledge. Signifi cant effort must be spent escaping the 
na ï ve realism of everyday consciousness so that the deep relationships 
within Nature shine forth. Einstein penned the following words in a 
letter:

  I fully agree with you about the signifi cance and educational value of 
methodology as well as history and philosophy of science. So many 
people today — and even professional scientists — seem to me like some-
body who has seen thousands of trees but has never seen a forest. A 
knowledge of the historic and philosophical background gives that kind 
of independence from prejudices of his generation from which most sci-
entists are suffering. This independence created by philosophical insight 
is  –  in my opinion  –  the mark of distinction between a mere artisan or 
specialist and a real seeker after truth.  (Einstein,  1944a )    

 In accepting the proposition that  “ science without epistemology 
is — insofar as it is thinkable at all — primitive and muddled, ”  a biologist 
must possess both a general perspective on scientifi c epistemology and 
an appreciation of the specifi c attributes of biological knowledge that 
specialize it within the general framework. As energy and matter lie at 
the basis of physical knowledge, the cell, as the basic unit of life, lies 
at the basis of biological knowledge. A properly biological epistemol-
ogy must recognize that the cell is more than a product of many 
physical/chemical reactions, that these interactions must be regulated 
by the cellular components toward specifi c goal states that may be 
aimed at producing a cell locked into a particular differentiated state 
or shifting the cell to another differentiated state. This means viewing 
the cell as a system that fulfi lls the functions necessary for survival, 
such as regulation of protein production, communication among com-
ponents, information integration, response to external signals, self -
 organization in response to internal changes or external stimuli, and 
reproduction. 

 Biology is the study of organisms, physical systems capable of 
retaining and utilizing information to execute processes that utilize 
available energy to organize matter for facilitation of their own persis-
tence and reproduction. Reproduction can involve the passing on of 
slightly varied copies of the information as well as the combining 
of information from individuals possessing somewhat different sets of 
information. This constantly generated variance in organisms over time 
can produce different levels of fi tness of the offspring organisms for 
particular environments. If the differences are suffi ciently large to be a 
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CHAPTER 1 Science and Knowledge 7

selective advantage, such variances can spread throughout the popula-
tion of such organisms. 

 The appearance of a theory of evolution in combination with a 
growing appreciation of the magnitude of the changes in extant organ-
isms over time, through studies of the fossil record, served to focus 
attention on biology as a very long - running, continuous process. This 
in turn raised questions about how the information in organisms is 
coded and used to produce the range of capabilities within and across 
organisms. The clear adaptation of organisms to their environments 
raised questions about how the processes operating in biological 
systems are controlled to allow highly variable responses appropriate 
to both rapid and long - term changes in the environment. The persis-
tence of organisms focused attention on how the extraordinarily 
complex biological processes required for an organism ’ s survival could 
be made suffi ciently robust to account for long life spans. 

 As in physics, the fi rst types of relationships characterized in 
biology were ones where the process involved relied on simple, linear 
relationships. Study of the metabolic products common in organisms 
was an early and fruitful branch of chemical research and, by the begin-
ning of the 1900s, clear patterns of Mendelian heredity could be seen 
for diseases such as alcaptonuria, where the enzyme that catabolizes 
homogentisic acid is inactive and persons with the disease produce 
black urine, a result of the oxidation of excreted homogentisic acid. 
The general method of associating mutations of specifi c enzymes with 
failures to metabolize a particular substrate, biochemical genetics, was 
extremely successful in producing a clear understanding of the stepwise 
enzymatic manipulation of small molecules involved in anabolism, 
catabolism, and energy production. 

 The prodigious success of biochemical genetics along with its very 
intuitive, easily understood methodology has deeply infl uenced how 
biologists think about and approach the study of biological processes. 
Metabolic processing relies on chains of enzymatic transformation of 
small molecules, where each step in the process is obligatory and each 
is typically carried out by a single catalytic entity. The processing is 
extremely effi cient, with very little redundancy of activity and only 
modest branching and merging of the process chains. Much of the 
regulation of metabolic pathways is carried out at the level of the indi-
vidual steps through feedback based on product levels, where either the 
amounts of enzyme made or the activity level of the enzyme are 
adjusted depending on changes in the concentration of its metabolic 
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8 Epistemology of the Cell: Perspective on Biological Knowledge

product. In analogy to physics, anywhere in biology that simple linear 
relationships are an appropriate approximation of the key interactions 
responsible for a particular phenomenon, model building is rapid and 
produces useful predictions that enable control. Unfortunately, biolo-
gists now face the barrier that confronted physics at the end of the 
nineteenth century: Most processes have suffi ciently many condition-
ing infl uences that simple linear relationships cannot produce useful 
predictive models for them. 

 Human beings seem to possess a deeply rooted desire to character-
ize Nature in terms of simple relationships whose effects are easily 
intuited once a descriptive model is constructed. In physics, this desire 
can be best illustrated in the study of gravity. Newton ’ s model is very 
straightforward and can be thought of in a way that appeals to our own 
commonsense description of the world, namely, things fall as though 
attracted in some way to the Earth. However, by 1900, there was suf-
fi cient experimental data to show that predictions made concerning 
Mercury ’ s orbital precession using this simple distance - attenuated, 
attractive force model were suffi ciently inaccurate to warrant reconsid-
ering the model. Most effort was aimed at trying to fi nd an explanation 
of the discrepancy that would fi t within the Newtonian model. In the 
end, only a very different model, Einstein ’ s, was able to produce a 
better fi t and make new predictions beyond the reach of the old model, 
such as gravitational lensing, and thus become the model of choice. In 
getting to this model, all of the comfortable assumptions about invari-
ance in time and space had to be rejected and, as in quantum - mechanical 
physics, much of our universe became alien and nonintuitive. Recently, 
as physicists have been acquiring more and better data on larger scale 
objects, such as galaxies, discrepancies from the Einstein model have 
arisen and are provoking the same desires to fi nd an accommodating 
adjustment or produce a theory with a substantial difference. In the 
current phase, there are competing hypotheses, such as one that would 
remove the discrepancies by assuming that 94% of the universe is 
composed of  “ dark ”  matter that can only be sensed indirectly and one 
that would alter the way in which gravitational force changes over 
distance (Moffat,  2008 ). Whatever change eventually occurs will 
further distance us from our intuitive understandings. 

 Acceptance of the need for models that will not provide biologists 
with simple, intuitive, and easily intelligible pictures of what they are 
studying will no doubt prove as diffi cult as it has been in physics. Even 
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now, where it seems clear that the models physicists can produce will 
always be provisional, with new and different forms of data showing 
that the existing model only provides usefully accurate predictions for 
some restricted range of situations where further possible complica-
tions are not in play, there remains a desire among some for a grand 
unifying theory that will provide a simple and intuitive model of every-
thing. Like physicists, biologists must confront the issue of intelligibil-
ity. In particular, no notion played a more central role in the ancient 
and medieval concept of the knowledge of Nature than did causality, 
and that is where we begin.        
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Causality and the 

Three Pillars of 

Aristotelian Science     

  CHAPTER 2 

       The law of causality, I believe, like much that passes muster 
among philosophers, is a relic of a bygone age, surviving, 
like the monarchy, only because it is erroneously supposed to 
do no harm. 

   — Bertrand Russell    

 Biological science is threatened from two opposite sides, the rational 
and the empirical. The rationalists are unhappy with the empirical 
requirements of science and the empiricists are unhappy with the ratio-
nal requirements of science. Neither are happy with the limitations and 
uncertainty engendered by the mathematical – experimental duality that 
underlies modern science. Owing to the long history of entanglement 
between science and metaphysics, it is not surprising that the rationalist 
threat has a much longer history and is still vibrant today. The radical 
empiricist agenda is more recent and has gained enormous momentum 
in the last half century. 

 In this chapter, we will begin at the beginning, which for Western 
philosophy means Plato and a strong rejection of the empirical as a 
basis for knowledge. The critical statement in this regard is given in 
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12 Epistemology of the Cell: Perspective on Biological Knowledge

Plato ’ s allegory of the cave in  The Republic . The following words of 
Socrates to Glaucon form the heart of the matter:

  And now, let me show in a fi gure how far our nature is enlightened or 
unenlightened: — Behold! human beings living in an underground den, 
which has a mouth open towards the light and reaching all along the den; 
here they have been from their childhood, and have their legs and necks 
chained so that they cannot move, and can only see in front of themselves, 
being prevented by the chains from turning round their heads. Above and 
behind them a fi re is blazing at a distance, and between the fi re and the 
prisoners there is a raised way; and you will see, if you look, a low wall 
built along the way, like the screen which marionette players have in front 
of them, over which they show the puppets    . . .    And do you see men 
passing along the wall carrying all sorts of vessels, statues and fi gures of 
animals made of wood and stone and various materials, which appear over 
the wall? Some of them are talking, others silent.    . . .    [The prisoners] are 
like ourselves and see only their own shadows, or the shadows of one 
another, which the fi re throws on the opposite wall of the cave?  (Plato, 
 1952 )    

 We are the prisoners who are condemned by the human condition 
to see only shadows, the ephemeral shadows of sensibility that are thin 
refl ections of a deeper reality, one that is permanent and, unlike the 
shadow world, not always passing away. True knowledge is knowledge 
of the  forms  that constitute that deeper reality and these can only be 
reached by reason. Empirical knowledge is shadow knowledge and 
leaves us in perpetual darkness. Mathematics, which to the ancient 
Greek mind meant geometry, is unchanging and independent of the 
senses. As a mathematical entity, a triangle is a form that has perma-
nence and mathematical knowledge of triangles is true knowledge, 
whereas any physical instance of a triangle is only a crude shadow 
of a mathematical triangle and knowledge of physical triangles is a 
vulgar kind of knowledge. Like mathematics, metaphysical knowledge 
is not transient and concerns the truly real, not shadows. It is not sur-
prising then that Plato took so little interest in natural science. 
Nonetheless, his placing the physical far below the metaphysical has 
had great impact for over 2000   years. The metaphysician is enlight-
ened; the physical scientist is not. In deprecating the natural sciences 
in favor of metaphysics, Plato has had the effect of encouraging scien-
tists to weaken the scientifi c enterprise by infusing it with metaphysi-
cal speculation. 
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 Aristotle diverged from Plato in the sense that he paid serious atten-
tion to the physical world, in particular, biology. He made many obser-
vations and made serious efforts to record and explain them. 
Nevertheless, whereas Plato ’ s view of science had a general negative 
effect on the progress of science by disparaging the empirical ground 
of knowledge, Aristotle ’ s negative infl uence was much more specifi c 
and perhaps more detrimental. Of course, the benefi t of his emphasis 
on observation cannot be overstated; however, when it comes to the 
authenticity of knowledge, he is no less metaphysical than Plato. In 
Book III of the  Physics , Aristotle writes,  “ Knowledge is the object of 
our inquiry, and men do not think they know a thing till they have 
grasped the  ‘ why ’  of it (which is to grasp its primary cause) ”  (Aristotle, 
 1952 ). The shadows in Plato ’ s cave point to a deeper reality beyond 
the shadows. Insisting upon an answer as to why points to a deeper 
reality (cause) beyond the phenomena (shadows). 

 Whereas Plato left the deeper reality to the abstract, mystical world 
of forms, and therefore had little impact on actual scientifi c inquiry, 
Aristotle related the  “ why ”  to the phenomena via the concept of causal-
ity, thereby having a huge impact on the future development of science. 
As described by Aristotle, causality has to do with providing categories 
of explanation. Knowledge is explanation surrounding the question of 
why and based on four causes, which, according to Aristotle,  “ perhaps 
exhausts the number of ways in which the term  ‘ cause ’  is used. ”  

 Let us describe the four causes of Aristotle as defi ned in the  Physics  
(Aristotle,  1952 ). A material cause is  “ that out of which a thing comes 
to be and persists. ”  It is  “ the bronze of the statue, the silver of the bowl, 
and the genera of which the bronze and the silver are species. ”  A formal 
cause is  “ the form or the archetype, i.e. the statement of the essence, 
and its genera,    . . .    and the parts in the defi nition. ”  An effi cient cause is 
 “ the primary source of the change or coming to rest; e.g. the man who 
gave advice is a cause, the father is the cause of the child, and generally 
what makes of what is made and what causes change of what is 
changed. ”  A fi nal cause is  “ the end, or that for the sake of which a thing 
is done, e. g. health is the cause of walking about.    . . .    The same is true 
also of all the intermediate steps which are brought about through the 
action of something else as means toward the end. ”  The same analysis 
is provided by Aristotle in the  Metaphysics . 

 It is clear what Aristotle means by a material cause but this does 
not agree with the modern use of the word  “ cause. ”  It is also clear that 
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14 Epistemology of the Cell: Perspective on Biological Knowledge

he uses the terminology  “ fi nal cause ”  to refer to purpose, or design, 
and this too is at odds with current commonplace usage. The meaning 
of a formal cause is more obscure, referring to essence, for instance, 
what makes the statue a statue. Again, this lacks connection with 
current usage. On the surface, an effi cient cause seems more in accord 
with our ordinary understanding of causality. But what does it mean to 
be  “ the primary source of the change or coming to rest? ”  Perhaps if 
one thinks of a moving billiard ball hitting another billiard ball at rest, 
then a casual observer might say in the vernacular that the moving bil-
liard ball is the  “ cause ”  of the motion of the previously stationary bil-
liard ball. But this everyday appeal to causality lacks any quantitative 
description. The latter would involve velocity, impact angle, elasticity, 
friction, air resistance, and so on. Note that we have avoided trying to 
defi ne  “ causality ”  in its current usage, instead allowing the reader to 
simply recognize the obvious difference or agreement with Aristotle ’ s 
usage. Not only are we not interested in parsing Aristotle ’ s usage, since 
our ultimate interest is in modern science, but, as will become apparent, 
defi ning causality in any meaningful sense is problematic. 

 Our concern with the epistemology characterized by Aristotle ’ s 
conception of causal knowledge is the orientation toward the science 
of Nature engendered by it and the resulting impact on the future devel-
opment of scientifi c epistemology. In this regard, three points are fun-
damental to Aristotle ’ s epistemology:

   1.     To know is to explain;  

  2.     Explanation must involve a causal relation; and  

  3.     There is no demarcation between physics and metaphysics, so 
that the same causal categories are stated in both the  Physics  
and the  Metaphysics .    

 Much of the history of scientifi c epistemology has been about demol-
ishing these three pillars of Aristotelian epistemology and overcoming 
their retarding effect on the development of science. 

 Since clarity regarding the proper domains of science and meta-
physics plays a key role throughout this book, having discussed 
Aristotle ’ s four causes, let us provide a working defi nition of metaphys-
ics. When characterizing the philosophical problems concerning  “ our 
knowledge of the actual world, ”  Windelband forms a partition:
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  The general questions which concern the actual taken as a whole are 
distinguished from those which deal with single provisions of the actual. 
The former, viz. the highest principles for explaining the universe, and 
the general view of the universe based on these principles, form the prob-
lems of  metaphysics     . . .    The special provisions of the actual are Nature 
and History.  (Windelband,  1958 )    

 Natural science comes under the province of Nature. 
 The grand issues that concern explaining the universe as a whole 

comprise the problems of metaphysics. Metaphysical explanations go 
beyond explanations of individual conditions (provisions) within the 
world to a universality encompassing all individual conditions, not 
simply as a collection of conditions, but integrated within the context 
of the whole. Metaphysics does not concern this or that scientifi c prin-
ciple but rather the deeper reality governing scientifi c principles in 
general. For instance, as a metaphysical category, fi nal causality does 
not refer to a specifi c purpose but rather to the teleological principle 
itself, that actions within the world have purpose. 

 At the beginning of the seventeenth century, Francis Bacon agrees 
with Aristotle that causality is the ground of knowledge; however, 
Bacon separates Aristotle ’ s four causes as to whether they apply to 
physics or metaphysics: material and effi cient causes to physics, formal 
and fi nal causes to metaphysics. But Bacon does not make a demarca-
tion between science and metaphysics. While he sees no place for fi nal 
causes in science, his preference for authentic scientifi c understanding 
lies with formal causes. In the  Novum Organum  he writes,

  It is a correct position that  “ true knowledge is knowledge by causes. ”  And 
causes again are not improperly distributed into four kinds: the material, 
the formal, the effi cient, and the fi nal.    . . .    The effi cient and the material 
(as they are investigated and received, that is, as remote causes, without 
reference to the latent process leading to the form) are but slight and 
superfi cial, and contribute little, if anything, to true and active 
science.    . . .    For though in nature nothing really exists besides individual 
bodies, performing pure individual acts according to a fi xed law, yet in 
philosophy this very law, and the investigation, discovery, and explanation 
of it, is the foundation as well of knowledge as of operation. And it is 
this law with its clauses that I mean when I speak of  forms .    . . .    Now if 
a man ’ s knowledge be confi ned to the effi cient and material causes (which 
are unstable causes, and merely vehicles, or causes which convey the 
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form in certain cases) he may arrive at new discoveries in reference to 
substances in some degree similar to one another, and selected before-
hand; but he does not touch the deeper boundaries of things. But whoso-
ever is acquainted with forms embraces the unity of nature in substances 
the most unlike, and is able therefore to detect and bring to light things 
never yet done.  (Bacon,  1952 )    

 Bacon separates himself from Plato by noting that forms do not 
give existence and only individual bodies exist in Nature. These bodies 
act according to a fi xed law and  “ investigation, discovery, and explana-
tion of it ”  is the foundation of knowledge. This law, which by Bacon 
is called a  “ form, ”  is not within Nature; rather, it is metaphysical and 
governs Nature. It is in the domain of metaphysics where  “ true and 
active science ”  resides. Knowing the material out of which something 
comes to be or the source of change for a body ’ s change of motion is 
 “ superfi cial ”  in comparison with knowledge of form. Effi cient and 
material causes do not touch  “ the deeper boundaries of things. ”  

 Bacon distinguishes physics and metaphysics, and science inter-
sects both, with the more important aspect of science, that being formal 
cause, lying within metaphysics. While the language of Bacon might 
be muddled, one should not overlook the advance in scientifi c perspec-
tive. Bacon drops fi nal cause and regards effi cient and material causes 
as superfi cial. Suppose we go a bit further than he and drop all refer-
ence to effi cient and material causes. Then we are left with only what 
he calls a formal cause. Let us examine this formal  “ cause. ”  First, it is 
not within Nature. Second, it represents  “ true science. ”  Third, it cor-
responds to a law governing natural behavior. Fourth, it allows the 
scientist  “ to detect and bring to light things never yet done. ”  Thus, if 
we drop the word  “ cause, ”  drop the appeal to explanation, and drop the 
characterization of a natural law as being metaphysical, then it would 
be seen that Bacon has at least one foot in modernity. We are not saying 
that Bacon dropped Aristotle ’ s effi cient and material cause, nor that he 
disagreed with Aristotle regarding explanation, nor that by law he 
meant anything beyond simple cause and effect, nor that he put aside 
metaphysics, but we are saying that one can see the outlines of modern 
science forming in his mind. 

 Bacon desires a method to ascertain scientifi c knowledge based on 
experiment, not the abstract reasoning common in the medieval period, 
and he recognizes that more is required than Aristotle ’ s anecdotal 
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observations. Given that true knowledge rests upon causality, then the 
form of knowledge and its acquirement should conform to the causal 
relation. Thus, causality becomes inextricably linked to induction: 
When we observe that event  B  follows whenever event  A  is observed, 
then a cause - and - effect relation is in some (unspecifi ed) sense  “ logi-
cally ”  induced between  A  and  B . For Bacon, this relation is a formal 
cause and goes beyond the list of observations to a deeper knowledge 
of reality. For Bacon, scientifi c knowledge is causal knowledge and this 
knowledge is reached by the  “ logical ”  process of induction upon 
observing one event, the effect, repeatedly following the other, the 
cause, without exception. Think of a billiard ball  A  repeatedly sent into 
billiard ball  B . Each time, ball  B  begins to move when hit by ball  A , 
the latter being the effi cient cause. For Bacon, a deeper relation, one 
possessing true scientifi c knowledge, is induced in the relation that any 
moving body  A  hitting a stationary body  B  will always result in the 
stationary body moving. This more general relation about bodies in 
general would constitute a formal cause. It is metaphysical and it is 
induced from repeated observations. 

 Bacon recognizes that haphazard observation will not yield the 
kind of structured observations that lead to the discovery of inductive 
relationships. Perhaps his salient contribution is recognizing the need 
for experiments. He writes,

  There remains simple experience which, if taken as it comes, is called 
accident; if sought for, experiment. But this kind of experience is no better 
than a broom without its band, as the saying is — a mere groping, as of 
men in the dark, that feel all round them for the chance of fi nding their 
way, when they had much better wait for daylight, or light a candle, and 
then go. But the true method of experience, on the contrary, fi rst lights 
the candle, and then by means of the candle shows the way; commencing 
as it does with experience duly ordered and digested, not bungling or 
erratic, and from it educing axioms, and from established axioms again 
new experiments.  (Bacon,  1952 )    

 Because causality lies at the basis of knowledge, Bacon formulates 
experimental design with the hope of revealing sequences of events from 
which to induce causal relations. The fact that he ties causality to induc-
tion means that, in some sense, he has dropped effi cient and fi nal causes 
from his understanding of science and transformed a formal cause into 
the metaphysical counterpart of a collection of effi cient causes. 
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 Modern science, in particular, breaking the dependency of science 
on causality, arrives with Galileo, in great part because he recognizes 
that science should concern itself with quantifi able relations among 
phenomena. Galileo does not deny causality; rather, he sets the issue 
aside and gets on with pragmatic description. In  Dialogues Concerning 
Two New Sciences , Galileo puts these words into the mouth of Salviati:

  The present does not seem to me to be an opportune time to enter into 
the investigation of the cause of the acceleration of natural motion, con-
cerning which various philosophers have produced various opinions, 
some of them reducing this to approach to the center; others to the pres-
ence of successively less parts of the medium [remaining] to be divided; 
and others to a certain extrusion by the surrounding medium which, in 
rejoining itself behind the moveable, goes pressing and continually 
pushing it out. Such fantasies, and others like them, would have to be 
examined and resolved, with little gain. For the present, it suffi ces our 
Author that we understand him to want us to investigate and demonstrate 
some attributes of a motion so accelerated (whatever be the cause of its 
acceleration) that the momenta of its speed go increasing, after its depar-
ture from rest, in that simple ratio with which the continuation of time 
increases, which is the same as to say that in equal times, equal additions 
of speed are made.  (Galileo,  1954 )    

 In the terminology of phenomenology, Galileo  brackets  causality, 
ignores it, and gets on with the business of obtaining relations between 
phenomena. There would be  “ little gain ”  in examining the kind of 
 “ fantasies ”  put forth by philosophers to explain acceleration in terms 
of causality. It is more benefi cial to  “ investigate and demonstrate some 
attributes of motion. ”  Although Galileo does not deny causality, he 
rejects it as a requirement for knowledge. Aristotle ’ s grip is broken. 

 In general, Galileo is dissatisfi ed with words. These constitute 
ersatz knowledge, the result being both an illusion of knowledge and 
an impediment to actual knowledge owing to satisfaction with empty 
phrases. In  Dialogue Concerning the Two Chief World Systems , when 
the Aristotelian Simplicio comments that everyone knows that bodies 
fall on account of gravity, Salviati responds,

  You are wrong, Simplicio; you should say that everyone knows that it is 
called  “ gravity. ”  But I am not asking you for the name, but the essence 
of the thing. Of this you know not a bit more than you know the essence 
of the mover of the stars in gyration. We don ’ t really understand what 
principle or what power it is that moves a stone downwards, any more 
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than we understand what moves it upwards after it has left the projector, 
or what moves the moon round.  (Galileo,  2001 )    

 Observation shows that bodies fall, and perhaps something called 
causality is operating here, but to simply say that there is a cause and 
to name it provides no knowledge. A name tells us nothing about the 
object being named or even if such an object exists. Moreover, under-
standing the power that moves a stone downwards is not a prerequisite 
for providing a quantitative relation between the stone and the earth. 
In general, cogitating on words can lead one away from the phenomena 
rather than toward a characterization of their attributes. 

 While Galileo may have initiated modern science, the epistemol-
ogy of scientifi c knowledge takes shape with Isaac Newton: its math-
ematical structure, its relational nature, its predictive connection with 
phenomena, and its idealization, in the sense that relations between 
phenomena are characterized under the assumption of unrealistic con-
ditions with the recognition that in actuality such conditions will have 
some effect, for instance, Galileo ’ s assumption of a frictionless plane. 
Consider gravity. Newton formulates a mathematical law of gravitation 
that relates the distance, mass, and acceleration. The gravitational law 
is mathematical, relational, idealized insofar as, when put into practice, 
it ignores confounding effects such as air resistance, and it can be 
related to phenomena via experiment. The gravitational law mathemati-
cally characterizes a relation in such a way that the relation can be used 
to make predictions, thereby providing a means for validation and 
application. The mathematical structure represents a precise, intersub-
jective, and operational form of knowledge. 

 The gravitational law contains no reference to some physical 
process behind the relations, in particular, there is no mention of a cause 
of acceleration. Regarding causality, Bertrand Russell states,

  In the motions of mutually gravitating bodies, there is nothing that can be 
called a cause, and nothing that can be called an effect; there is merely a 
formula. Certain differential equations can be found, which hold at every 
instant for every particle of the system, and which, given the confi guration 
and velocities at one instant, or the confi gurations at two instants, render 
the confi guration at any other earlier or later instant theoretically calcu-
lable.    . . .    But there is nothing that could be properly called  “ cause ”  and 
nothing that could be properly called  “ effect ”  in such a system.  (Russell, 
 1913 )    
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 Like Galileo, Newton is not denying causality; he is bracketing it. Like 
Galileo, he is breaking with Aristotle and Bacon in formulating knowl-
edge that does not depend on causality. 

 Near the beginning of  The Principia: Mathematical Principles of 
Natural Philosophy , Newton makes his intent clear when he writes, 
 “ For I here design only to give a mathematical notion of these forces, 
without considering their physical causes and seats ”  (Newton,  1952 ). 
The following words, written near the end of  The Principia , are striking 
for their time:

  Hitherto I have not been able to discover the cause of those properties of 
gravity from the phenomena, and I frame no hypothesis; for whatever is 
not deduced from the phenomena is to be called an hypothesis; and 
hypotheses, whether metaphysical or physical, whether of occult qualities 
or mechanical, have no place in experimental philosophy. In this philoso-
phy particular propositions are inferred from the phenomena, and after-
ward rendered general by deduction. Thus it was the impenetrability, the 
mobility, and the impulsive forces of bodies, and the laws of motion and 
of gravitation were discovered. And to us it is enough that gravity does 
really exist, and acts according to the laws which we have explained, and 
abundantly serves to account for all the motions of the celestial bodies, 
and of our sea.  (Newton,  1952 )    

 Newton has not discovered the cause from the phenomena and, until 
this is done, cause has no place in experimental philosophy (science). 
Later when speaking of gravity, he adds,

  But our purpose is only to trace out the quantity and properties of this 
force from the phenomena, and to apply what we discover in some simple 
cases as principles, by which, in a mathematical way, we may estimate 
the effects thereof in more involved cases: for it would be endless and 
impossible to bring every particular to direct and immediate observation. 
We said, in a mathematical way, to avoid all questions about the nature 
or quality of this force.  (Newton,  1952 )    

 The knowledge of which Newton speaks is mathematical, but it is not 
mathematics devoid of relation to human experience. It is empirically 
grounded. 

 From an epistemological perspective, there are two critical points. 
First, Newton is  “ to avoid all questions about the nature of gravity. ”  As 
he said earlier,  “ it is enough that gravity does really exist. ”  Something 
exists, but as Galileo had said, we know nothing of its substance. 
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Second, the mathematical system is not meant to include all factors, 
but is of suffi cient predictive power that it can  “ estimate ”  effects in a 
more general setting. Owing to the predictive nature of the mathemati-
cal system, it can be empirically tested independently of the reasoning 
leading to it. 

 Galileo and Newton do not deny causality as a category of knowl-
edge, but they widen the scope of knowledge to include mathematical 
systems that relate phenomena, while bracketing  “ questions about the 
nature ”  of the phenomena. The physical substance behind the mathe-
matical relations is bracketed so that physical knowledge is constituted 
by mathematical knowledge, with the proviso that the mathematical 
knowledge be explicitly related to observations. Although both Galileo 
and Newton held on to the notion of causality, thereby not breaking 
completely free of Aristotle ’ s infl uence, they brought about a radical 
epistemological transformation by describing relations among phenom-
ena with mathematical formulas, absent a causal explanation, the kind 
of explanation that had ultimately led to  “ fantasies, ”  to use Galileo ’ s 
terminology. 

 When Galileo and Newton bracket causality, they not only begin a 
search for noncausal knowledge, thereby going beyond Aristotle, they 
also permit themselves the luxury of not coming to grips with the 
meaning of causality. In particular, if we focus on Bacon ’ s perspective, 
which is essentially a metaphysical formalization of Aristotle ’ s effi cient 
cause, then there is a temporal aspect to causality in that the cause 
occurs prior to the event and this temporality plays a key role in the 
inductive method, as understood by Bacon. David Hume raises a crucial 
epistemological question for science and metaphysics: Are a cause and 
its effect merely related via temporal priority, with the cause prior to 
the effect, or is there more than temporal contiguity? To wit, is there 
something that touches  “ the deeper boundaries of things, ”  as Bacon 
would have it? Is there a necessary connection between the cause and 
the effect? Hume argues that in using the phrase  “ cause and effect, ”  we 
mean the latter. In  An Enquiry Concerning Human Understanding , he 
writes:

  When one particular species of events has always, in all instances, been 
conjoined with another, we make no longer any scruple of foretelling one 
upon the appearance of the other, and of employing that reasoning, which 
alone can assure us of any matter of fact or existence. We then call 
one object, Cause; and the other, Effect. We suppose that there is some 
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connexion between them; some power in the one, by which it infallibly 
produces the other, and operates with the greatest certainty and strongest 
necessity.  (Hume,  1952 )    

 But do repeated conjoined observations warrant the supposition of 
a necessary connection? Is there a ground in reason or a physical 
ground for judging there to be a necessary connection? Hume states 
emphatically that there is no such ground. Belief in causality rests not 
on reason, but on habit. In one of the key passages in scientifi c episte-
mology, he writes,

  But there is nothing in a number of instances, different from every single 
instance, which is supposed to be exactly similar; except only, that after 
a repetition of similar instances, the mind is carried by habit, upon the 
appearance of one event, to expect its usual attendant, and to believe that 
it will exist. This connexion, therefore, which we  feel  in the mind, this 
customary transition of the imagination from one object to its usual atten-
dant, is the sentiment or impression from which we form the idea of power 
or necessary connexion. Nothing farther is in the case. Contemplate the 
subject on all sides; you will never fi nd any other origin of that idea. This 
is the sole difference between one instance, from which we can never 
receive the idea of connexion, and a number of similar instances, by which 
it is suggested. The fi rst time a man saw the communication of motion by 
impulse, as by the shock of two billiard balls, he could not pronounce that 
the one event was  connected : but only that it was  conjoined  with the other. 
After he has observed several instances of this nature, he then pronounces 
them to be  connected.  What alteration has happened to give rise to this 
new idea of  connexion ? Nothing but that he now  feels  these events to be 
 connected  in his imagination, and can readily foretell the existence of one 
from the appearance of the other. When we say, therefore, that one object 
is connected with another, we mean only that they have acquired a con-
nexion in our thought.  (Hume,  1952 )    

 In  A Treatise of Human Nature , Hume states,

  [The] supposition that the future resembles the past is not founded on 
arguments of any kind, but is derived entirely from habit, by which we 
are determined to expect for the future the same train of objects to which 
we have been accustomed.    . . .    All our reasonings concerning causes and 
effects are derived from nothing but custom and belief is more properly 
an act of the sensitive than of the cogitative part of our nature.  (Hume, 
 1951 )    
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 The sticking point is necessity. In the  Treatise , Hume writes,  “ From 
the mere repetition of any past impression, even to infi nity, there never 
will arise any new original idea, such as that of a necessary connexion; 
and the number of impressions has in this case no more effect than if 
we confi ned ourselves to one only ”  (Hume,  1951 ). Repetition may lead 
to increased expectation, but not necessity — and certainly not to some 
deeper relationship. Induction does not depend upon causality; in fact, 
it is the opposite. Belief in causality is itself an unwarranted leap from 
repeated observations. 

 If, as Aristotle and Bacon believe, scientifi c knowledge is knowl-
edge of causes, and if causality rests on habit and custom, then the 
ground of scientifi c knowledge is brought into question. If, as Hume 
argues, the concept of a necessary connection between phenomena is 
subjective, then does not this entail the subjectivity of scientifi c knowl-
edge? Hume did not miss this point. Regarding his conclusion that the 
connection between cause and effect is arrived at by habit and exists 
only in human thought, in the  Enquiry , he writes,

  And what stronger instance can be produced of the surprising ignorance 
and weakness of the understanding than the present? For surely, if there 
be any relation among objects which it imports to us to know perfectly, 
it is that of cause and effect. On this are founded all our reasonings con-
cerning matter of fact or existence. By means of it alone we attain any 
assurance concerning objects which are removed from the present testi-
mony of our memory and senses. The only immediate utility of all sci-
ences is to teach us, how to control and regulate future events by their 
causes. Our thoughts and enquiries are, therefore, every moment, employed 
about this relation: Yet so imperfect are the ideas which we form concern-
ing it, that it is impossible to give any just defi nition of cause, except what 
is drawn from something extraneous and foreign to it. Similar objects are 
always conjoined with similar. Of this we have experience.  (Hume,  1952 )    

 In these few words, Hume rattles the foundations of scientifi c 
knowledge. If all reasoning concerning matter of fact or existence is 
founded on causality and the utility of all sciences is to control Nature 
through the regulation of events via their causes, and if causality is 
simply a product of habit, then scientifi c understanding rests on habit, 
or custom, not on objective physical relations, in which case it is indeed 
very weak. 

 All reasoning concerning matter of fact is not founded on causality 
and Hume should have been aware of this. While he may have shown 
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there to be nothing of consequence in the brackets that Galileo and 
Newton put aside, his skeptical assault does nothing to undercut the 
mathematical – experimental structure of modern science as conceived 
by its founders. Their scientifi c theories do not rest upon causality. 
Nevertheless, in showing that the brackets contain a ghost — at 
least insofar as causality represents some intrinsic physical reality 
apprehensible to the understanding — Hume deals a severe blow to our 
conception of our place in the universe. Einstein writes,  “ Man has an 
intense desire for assured knowledge. That is why Hume ’ s clear message 
seems crushing: the sensory raw material, the only source of our knowl-
edge, through habit may lead us to belief and expectation but not to the 
knowledge and still less to the understanding of lawful relations ”  
(Einstein,  1944b ). Hume forever buried the Aristotelian concept of 
science. Moreover, he fundamentally went beyond Galileo and Newton. 
The latter knew that the mathematical theories of science are idealized 
and can only be used to  “ estimate ”  behavior. When Hume wrote,  “ the 
mind is carried by habit, upon the appearance of one event, to expect 
its usual attendant, ”  he made the monumental shift from causality to 
expectation, thereby recognizing that scientifi c statements are inher-
ently probabilistic; indeed, in the  Treatise , the section dealing with the 
fundamental issues surrounded causality is entitled,  “ Of the Probability 
of Causes. ”  

 Modernity fully arrives with Hume (and not just in science). He 
does not bracket causality as a scientifi c category; he dismisses it as 
a scientifi c category by showing that it has no grounding in reason or 
in Nature, at least insofar as is empirically discernable. Necessary con-
nections are subjective impressions, not objective relations. Observations 
lead to expectation, a probabilistic category, not to certainty. Scientifi c 
certitude is a fi ction, a product of a leap of thought. Hume wrote the 
 Treatise  in 1739. Two centuries later, Erwin Schr ö dinger writes,  “ It can 
never be decided experimentally whether causality in Nature is  ‘ true ’  
or  ‘ untrue. ’  The relation of cause and effect, as Hume pointed 
out long ago, is not something that we fi nd in Nature but is rather a 
characteristic of the way in which we regard Nature ”  (Schr ö dinger, 
 1957 ). 

 Pierre - Simon Laplace, who is among the founders of probability 
theory and a great physicist, recognizes the uncertainty in making pre-
dictions but attributes this uncertainty to ignorance. In  A Philosophical 
Essay on Probabilities , he writes,
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  The curve described by a single molecule in air or vapor is regulated in 
a manner just as certain as the planetary orbits; the only difference between 
them is that which comes from our ignorance. Probability is relative, in 
part to this ignorance, in part to our knowledge. We know that of three or 
greater number of events a single one ought to occur; but nothing induces 
us to believe that one of them will occur rather than the others. In this 
state of indecision it is impossible for us to announce their occurrence 
with certainty.  (Laplace,  1953 )    

 While he recognizes the need for a probabilistic approach to Nature 
and is writing more than a half century after Hume ’ s  Treatise , Laplace 
holds on to causality as existing in Nature. In the following famous 
passage, he advocates a complete determinism:

  We ought then to regard the present state of the universe as the effect of 
its anterior state and the cause of the one which is to follow. Given for 
one instant an intelligence which could comprehend all the forces by 
which nature is animated and the respective situation of the beings who 
compose it  –  an intelligence suffi ciently vast to submit this data to analysis 
 –  it would embrace in the same formula the movements of the greatest 
bodies of the universe and those of the lightest atom; for it, nothing would 
be uncertain and the future, as the past, would be present in its eyes. 
 (Laplace,  1953 )    

 By conditioning full deterministic knowledge on a  “ suffi ciently 
vast ”  intelligence, Laplace does not claim that human beings can achieve 
a completely deterministic theory of Nature; nevertheless, he postulates 
determinism in Nature based on causality in Nature. This causality is 
not simply temporal contiguity. His words,  “ the present state of the 
universe as the effect of its anterior state and the cause of the one which 
is to follow, ”  clearly suggest that there is more to cause and effect than 
anterior to posterior. The advent of probability theory does not bring 
about the demise of causality in science; rather, it is Hume ’ s recognition 
that belief in causality derives from custom and  “ is more properly an 
act of the sensitive than of the cogitative part of our nature. ”  

 Laplace prefaces his determinism with causality but this need not 
have been the case. He could have hypothesized a superior intelligence 
that knew all the laws of mathematical physics and could at one instant 
make all the necessary measurements, and that Nature is completely 
described by these laws. Still, this hypothesis is not rooted in human 
knowledge of Nature. Indeed, it is a vacuous hypothesis from which 
virtually any desirable conclusion could follow. 
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 Immanuel Kant agrees with Hume that the principle of causality is 
not a product of reason. In the  Prolegomena to Any Future Metaphysics , 
he writes,  “ [Hume] maintained justly that we can in nowise discern 
through reason the possibility of causation, namely, the reference of the 
existence of one thing to the existence of another, which is necessitated 
by the former ”  (Kant,  1891 ). However, whereas for Hume, habit under-
lies belief in causality, for Kant, causality is a category of understand-
ing. It is a form imposed on phenomena by the nature of the human 
mind. The mind imposes forms on the data of sensation, and scientifi c 
knowledge is limited by these forms. The way things appear, such as 
being spatially coordinated and connected by causality, are due to sub-
jective a priori conditions for knowledge. One cannot know things apart 
from the manner in which they conform to these a priori mental forms. 
Of these categories of understanding, of which causality is one, Kant 
writes in the  Critique of Pure Reason :

  Now the question is whether there do not exist,  a priori  in the mind, 
conceptions of understanding also, as conditions under which alone some-
thing, if not intuited, is yet thought as object. If this question be answered 
in the affi rmative, it follows that all empirical cognition of objects is 
necessarily conformable to such conceptions, since, if they are not presup-
posed, it is impossible that anything can be an object of experience. Now 
all experience contains, besides the intuition of the senses through which 
an object is given, a conception also of an object that is given in intuition. 
Accordingly, conceptions of objects in general must lie as  a priori  condi-
tions at the foundation of all empirical cognition; and consequently, the 
objective validity of the categories, as  a priori  conceptions, will rest upon 
this, that experience (as far as regards the form of thought) is possible 
only by their means. For in that case they apply necessarily and  a priori  
to objects of experience, because only through them can an object of 
experience be thought.  (Kant,  1855 )    

 The last line of this quotation is the crux: Only through the categories 
can an object of experience be thought. The mind, in its very structure, 
imposes causality on our experiences as a prior condition for thinking 
about the experiences. 

 Kant ’ s argument imposes causality upon the phenomena we experi-
ence but not on the  things - in - themselves  that underlie the phenomena, 
the  noumena , as he calls them. We cannot experience the things - in -
 themselves because they lie outside our sense experience. Kant asserts 
the existence of things - in - themselves, which for a strict empiricist like 
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Hume cannot be asserted. Kant does not ascribe causality to the things -
 in - themselves, only to the phenomena we experience, and that because 
our minds impose causality on the phenomena as a condition of think-
ing about them. Whereas Galileo and Newton bracket causality, Kant 
moves it from Nature to the mind. 

 Relative to Hume, Kant takes three steps forward and one step 
back. As for the latter, he returns to causality by making causality, not 
expectation, a category of understanding. Among Kant ’ s categories, 
causality is a category of relation, in this case, between cause and effect. 
Surely the mind relates events. But if there is contiguity between a prior 
event  A  and a posterior event  B , then why insist that the mind imposes 
the category of causality as the relation between them? If causality is 
more than mere temporal contiguity, then the category seems to say 
that the mind imposes the belief that there is some occult connection, 
precisely the notion that Newton bracketed and Hume rejects as having 
no logical or empirical foundation. Hume has already seen that the 
functional category of understanding is expectation. Observation of 
event  A  leads one to expect event  B . Hume sees correctly that expecta-
tion is a probabilistic concept and considers it subjective. Laplace 
thinks expectation is a consequence of ignorance. Kant, Galileo, 
Newton, and Laplace, all among the greatest geniuses in human history, 
remain tied to the Aristotelian epistemology. There is simply no empiri-
cal or logical reason to raise the idea of causality. If experience shows 
that event  A  tends to precede event  B , or even if in our experience event 
 A  has always preceded event  B , then why go beyond saying that upon 
observation of event  A  we expect to observe event  B ? Hume recognizes 
that there is no empirical or logical reason for introducing a category 
beyond expectation. What he fails to see, and what would await the 
twentieth century to be understood, is the manner in which expectation 
would be incorporated into a rigorous mathematical theory of probabil-
ity and how scientifi c knowledge would be constituted in a probabilistic 
framework. 

 Kant moves the situation forward in three regards. First, he insists 
that mind imposes human categories on the way in which Nature is 
humanly understood. He agrees with Hume that causality cannot be 
grounded in Nature, but argues that it is more than habit because, in 
conjunction with other categories of understanding, it is imposed upon 
experience. He writes,  “ I proceeded to the deduction of these concep-
tions, which I was now assured could not, as Hume had pretended, be 
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derived from experience but must have originated in the pure under-
standing ”  (Kant,  1891 ). One need not agree with Kant that the catego-
ries lie in the domain of metaphysics, in the sense that they  “ determine 
the whole range of the pure Reason, in its limits as well as in its content, 
completely according to universal principles. ”  Yet, the point remains 
that human experience does not arrive  qua  experience; rather, as human 
experience it arrives via the structure of the human mind. The mind 
imposes connectivity upon events. For Hume, there is no connecting 
mind. For him, experience is a succession of atomistic sense impres-
sions disconnected from each other. We ourselves do not escape his 
critique. The mind is nothing but a bundle of perceptions. In the  Treatise , 
Hume writes,

  The mind is a kind of theatre, where several perceptions successively 
make their appearance; pass, repass, glide away, and mingle in an infi nite 
variety of postures and situations. There is properly no  simplicity  in it at 
one time, nor  identity  in different [times], whatever natural propension 
we may have to imagine that simplicity and identity. The comparison of 
the theatre must not mislead us. They are the successive perceptions only 
that constitute the mind.  (Hume,  1951 )    

 For Hume, there is no mind to organize successive perceptions into a 
coherent whole because the perceptions, themselves,  “ constitute the 
mind. ”  Kant puts mind, as an organizing and connecting entity, prior 
to experience. 

 Einstein recognizes Kant ’ s error in postulating Euclidean geometry 
and causality as a priori categories of understanding and he does not 
believe that specifi c categories are intrinsic; nevertheless, he contends 
that thinking requires the use of concepts not dependent on sensory 
experience. He writes,

  Then Kant took the stage with an idea which, though certainly untenable 
in the form in which he put it, signifi ed a step towards the solution of 
Hume ’ s dilemma: whatever in knowledge is of empirical origin is never 
certain (Hume). If, therefore, we have defi nitely assured knowledge, it 
must be grounded in reason itself. This is held to be the case, for example, 
in the propositions of geometry and in the principle of causality. These 
and certain other types of knowledge are, so to speak, a part of the imple-
ments of thinking and therefore do not previously have to be gained from 
sense data (i. e., they are  a priori  knowledge). Today everyone knows, of 
course, that the mentioned concepts contain nothing of the certainty, of 
the inherent necessity, which Kant had attributed to them. The following, 
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however, appears to me to be correct in Kant ’ s statement of the problem: 
in thinking we use, with a certain  “ right, ”  concepts to which there is no 
access from the materials of sensory experience, if the situation is viewed 
from the logical point of view. (Einstein,  1944b)  

     . . .    The theoretical attitude here advocated is distinct from that of Kant 
only by the fact that we do not conceive of the  “ categories ”  as unalterable 
(conditioned by the nature of the understanding) but as (in the logical 
sense) free conventions. They appear to be  a priori  only insofar as think-
ing without the positing of categories and of concepts in general would 
be as impossible as is breathing in a vacuum.  (Einstein,  1949 )    

 Einstein does not assume that the categories appear as intrinsic to 
the understanding but that they are  “ free conventions ” ; nevertheless, 
he does assert the necessity of categories for thinking. Whereas for 
Hume the mind is nothing but a succession of perceptions, for Einstein 
there is a mind that thinks in the framework of categories. 

 In arguing that, even if causality is the underlying principle upon 
which science is based, its application lies at the level of the phenom-
ena, Kant is making a second, fundamental point: whatever ultimately 
lies behind the phenomena is outside the domain of science. A strict 
empiricist like Hume dogmatically asserts that one cannot speak of 
anything lying behind the phenomena. Kant argues otherwise and, in 
doing so, is more in line with Newton, who believes that gravity exists, 
although he can say nothing about it except what is revealed by the 
mathematical formulas expressing phenomenal relations. Insofar as 
science is concerned, Galileo, Newton, and Kant bracket physical sub-
stance, but among the three, Kant does not bracket causality. He places 
it in a different place — in the mind, but not as Hume would have it, as 
habit, but as a prior condition for experience. 

 This does not end the story. Kant, as an epistemologist and moral 
philosopher, tries to accomplish two goals at once. First, he wants to 
establish causality as a basis for science, and as a proper subject for 
metaphysics. This is accomplished by making causality a category of 
understanding because, for Kant, the categories are proper subjects for 
metaphysics. Second, he wants to preserve human freedom, or else 
morality disappears. His solution is a Cartesian duality. As a subject of 
science, human action is viewed in the light of cause and effect, so that 
the necessary condition for moral action, freedom, does not exist. 
However, causality and its consequent elimination of moral action only 
apply to the phenomenal world because that is the world experienced 
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through the categories of understanding. Causality does not apply to 
the noumenal world, and freedom resides therein. Putting metaphysics 
aside, the key point for science is that science studies phenomena and 
whatever categories our understanding imposes on phenomena apply 
to phenomena. As a subject of science, human behavior is determined, 
but only as a subject of science. While Kant no doubt had the intent of 
establishing the possibility of metaphysics, this does not mean that he 
did not hit upon a third key point: Science is a product of the human 
mind and, because science is limited by its epistemology, the mind is 
only bound to the conclusions of science when it operates within the 
categories of the understanding, which themselves are limited to phe-
nomenal experience and therefore are not operative outside the domain 
of that experience. 

 Whereas Kant sees Hume ’ s arguments concerning the lack of 
empirical ground for causality as defi nitive, the empiricist John Stuart 
Mill wishes to empirically ground science in the aftermath of Hume, 
which, for him, means grounding induction and, in turn, causality. In 
 A System of Logic, Ratiocinative and Inductive , he writes,  “ At the root 
of the whole theory of induction is the notion of physical cause. To 
certain phenomena, certain phenomena always do, and, as we believe, 
always will, succeed. The invariable antecedent is termed the  ‘ cause, ’  
the invariable consequent, the  ‘ effect ’     ” (Mill,  2002 ). There are four 
salient points regarding Mill ’ s view:

   1.     No necessary connection is implied by causality;  

  2.     The effect must be the  “ invariably and unconditionally conse-
quent ”  of the cause;  

  3.     Causality makes no reference to what is behind the phenomena; 
and  

  4.     Causality is  “ coextensive with human experience. ”     

 In one of those instances where a philosopher neatly sums up his 
view, Mill writes,

  The notion of causation is deemed by the schools of metaphysics most in 
vogue at the present moment to imply a mysterious and most powerful 
tie, such as cannot, or at least does not, exist between any physical fact 
and that other physical fact on which it is invariably consequent, and 
which is popularly termed its cause: and thence is deduced the supposed 
necessity of ascending higher, into the essences and inherent constitution 
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of things, to fi nd the true cause, the cause which is not only followed by, 
but actually produces, the effect. No such necessity exists for the purposes 
of the present inquiry, nor will any such doctrine be found in the following 
pages. The only notion of a cause which the theory of induction requires 
is such a notion as can be gained from experience. The Law of Causation, 
the recognition of which is the main pillar of inductive science, is but the 
familiar truth that invariability of succession is found by observation to 
obtain between every fact in nature and some other fact which has pre-
ceded it, independently of all considerations respecting the ultimate mode 
of production of phenomena, and of every other question regarding the 
nature of  “ Things in themselves. ”   (Mill,  2002 )    

 In one sense, Mill escapes Hume ’ s criticism by abandoning any 
notion of necessary connection and making induction purely sequential, 
but he falls completely fl at by missing Hume ’ s critical scientifi c point 
regarding the impossibility of arriving at the unconditional invariability 
of succession by any fi nite number of observations. 

 Mill recognizes that causality cannot be as simple as that of a single 
event being the sole cause of an effect. Regarding the complexity of 
causation, he states,  “ But the real cause is the whole of the antecedents, 
the whole of the contingencies of every description, which being real-
ized, the consequent invariably follows. Yet even invariable sequence 
is not synonymous with causation. The sequence, besides being invari-
able, must be unconditional ”  (Mill,  2002 ). Clearly,  “ the whole of the 
antecedents, the whole of the contingencies of every description ”  has 
no bounds and may very well be the entire universe, which would 
reduce the entire notion of cause and effect to a statement about uni-
versal determinism. This would be a restatement of Laplacian determin-
ism absent any individual causal relations within the universe. It is 
therefore not surprising that Mill adopts an essentially Laplacian posi-
tion, except that unlike Laplace, who appeals to a  “ suffi ciently vast ”  
intelligence, Mill remains within the realm of human experience. He 
writes,

  The state of the whole universe at any instant, we believe to be the con-
sequence of its state at the previous instant; insomuch that one who knew 
all the agents which exist as the present moment, their locations in space, 
and all of their properties, in other words, the laws of their agency, could 
predict the whole subsequent history of the universe, at least unless some 
new volition of a power capable of controlling the universe should super-
vene.  (Mill,  2002 )    
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 If causality depends on knowing all the antecedents composing a 
cause, then surely it is not coextensive with human experience. On the 
other hand, expectation is very much coextensive with human 
experience. 

 Mill recognizes that, when applying induction in the course of 
scientifi c discovery, haphazard observation will not do. On fi nding 
causal relations, he writes,

  In the analysis of sequences into conditional and unconditional, the fi rst 
operation is to ascertain and distinguish antecedents and consequents. The 
next step is to trace the connexion between antecedents and consequents, 
and this we can do only by a consideration of some of the antecedents or 
consequents under other conditions; we must either fi nd an instance in 
nature suited to our purposes, or by an artifi cial arrangement of circum-
stances make one. When we make an artifi cial arrangement, we are said 
to experiment; and experimentation has great advantages over observation 
in that it often enables us to obtain innumerable combinations of circum-
stances which are not to be found in nature.  (Mill,  2002 )    

 But instead of the Galilean – Newtonian recognition that experimental 
constraint leads to relations that  “ estimate ”  relations among naturally 
occurring phenomena, Mill wants to use experiment to obtain  “ innu-
merable combinations of circumstances, ”  a goal that on its face is 
impossible. 

 In trying to circumvent Hume ’ s attack on causality on strictly 
empiricist grounds, Mill returns to a pre - Galilean world in the sense 
that, although necessary connection is abjured, causality remains a 
requirement for knowledge. Hume ’ s analysis regarding uncertainty and 
the impossibility of concluding a necessary connection, one that is 
unconditional and invariable, is impenetrable because the certainty of 
formal logic does not apply to human interaction with Nature. 
Expectation, not causality, is coextensive with human experience. 
Indeed, it may be coextensive with animal experience, at least with 
those possessing greater degrees of intelligence, for instance, dogs. 
After surprisingly little training, one can point in a direction and Maggie 
will run that way, expecting a thrown ball to land in her pathway, and, 
never looking back, grab the ball in her mouth off the bounce. Should 
we presume from repeated observations of this behavior that Maggie 
has come upon the notion of an effi cient cause, a group of antecedents 
which when occurring somehow in the proper conjunction result in the 
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ball invariably falling in her path? Mill ’ s problem is that he wants to 
bring metaphysics in through the backdoor. Aristotle was correct in 
placing the four forms of causality in the  Metaphysics , but not correct 
in placing them in the  Physics . Mill ’ s hope of grounding causality in 
invariable and unconditional empirical sequences had already been 
doomed by Hume. Whereas Kant had recognized Hume ’ s achievement, 
Mill did not. 

 In his famous essay,  On the Notion of Cause , Russell demonstrates 
the impossibility of giving precise meaning to several different attempts 
to defi ne  “ cause. ”  He settles on the previously cited defi nition of Mill 
as perhaps the best attempt at a viable defi nition:  “ The Law of Causation, 
the recognition of which is the main pillar of inductive science, is but 
the familiar truth that invariability of succession is found by observa-
tion to obtain between every fact in nature and some other fact which 
has preceded it. ”  But this attempt fails owing to the impossibility of 
supplying it with a suitable notion of event and the  “ insuperable dif-
fi culties, ”  which Russell carefully articulates, of trying to defi ne the 
timing between a cause and an effect. Recognizing that Mill ’ s reasoning 
regarding induction and causality are based on the appearance of uni-
formities in nature, Russell addresses the issue:

  It must, of course, be admitted that many fairly dependable regularities 
of sequence occur in daily life. It is these regularities that have suggested 
the supposed law of causality; where they are found to fail, it is thought 
that a better formulation could have been found which would have never 
failed. I am far from denying that there may be such sequences which in 
fact never do fail. It may be that there will never be an exception to the 
rule that when a stone of more than a certain mass, moving with more 
than a certain velocity, comes in contact with a pane of glass of less than 
a certain thickness, the glass breaks    . . .    What I deny is that science 
assumes the existence of invariable uniformities of sequence of this kind, 
or that it aims at discovering them. All such uniformities, as we saw, 
depend upon a certain vagueness in the defi nition of the  “ events. ”  That 
bodies fall is a vague qualitative statement; science wishes to know how 
fast they fall. This depends upon the shape of the bodies and the density 
of the air. It is true that there is more nearly uniformity when they fall in 
a vacuum; so far as Galileo could observe, the uniformity is then com-
plete. But later it appeared that even there the latitude made a difference, 
and the altitude. Theoretically, the position of the sun and moon must 
make a difference. In short, every advance in a science takes us farther 
away from the crude uniformities which are fi rst observed, into greater 
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differentiation of antecedent and consequent, and into a continually wider 
circle of antecedents recognized as relevant. The principle  ‘ same cause, 
same effect, ’  which philosophers imagine to be vital to science, is there-
fore utterly otiose. As soon as the antecedents have been given suffi ciently 
fully to enable the consequent to be calculated with some exactitude, the 
antecedents have become so complicated that it is very unlikely they will 
ever recur. Hence, if this were the principle involved, science would 
remain utterly sterile.  (Russell,  1913 )    

 Russell neatly sums up his view of causality:  “ The law of causality, 
I believe, like much that passes muster among philosophers, is a relic 
of a bygone age, surviving, like the monarchy, only because it is erro-
neously supposed to do no harm ”  (Russell,  1913 ). 

 No doubt Hume is disturbing to those who desire certitude. To the 
extent that science must be grounded on certainty, or unconditional and 
invariable sequences, his analysis is devastating. In  The Rise of Scientifi c 
Philosophy , Hans Reichenbach writes,  “ Empiricism broke down under 
Hume ’ s criticism of induction, because it had not freed itself from 
a fundamental rationalist postulate, the postulate that all knowledge 
must be demonstrable as true. For this conception the inductive method 
is unjustifi able, since there is no proof that it will lead to true conclu-
sions ”  (Reichenbach,  1971 ). The point is that science does not depend 
on unconditional sequences, does not base its formulations on a notion 
of  “ logical ”  induction, and does not does not have a notion of certainty. 
One need not turn to physics to see this; it is readily recognized 
in biology, where the subject matter begins with the cell, whose behav-
ior is conceptualized as a random dynamical process. This does not 
mean that science is ungrounded, only that it must be grounded in 
probability theory and statistical inference, not in deterministic logic 
and induction.        
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Scientifi c Knowledge     

  CHAPTER 3 

       A concept without a percept is empty; a percept without a 
concept is blind. 

   — Immanuel Kant    

 The ancients, in particular, Aristotle, recognized that observation was 
necessary to gain knowledge of the physical world. Reason applied to 
observations, not reason alone, yields pragmatic knowledge of Nature. 
This is emphasized by the second - century Greek physician Galen in 
his treatise,  On the Natural Faculties , when, in regard to the effects of 
a certain drug, he refutes the rationalism of Asclepiades when he writes, 
 “ This is so obvious that even those who make experience alone their 
starting point are aware of it    . . .    In this, then, they show good sense; 
whereas Asclepiades goes far astray in bidding us distrust our senses 
where obvious facts plainly overturn his hypotheses ”  (Galen,  1952 ). 
For the ancients, the philosophy of Nature might have dealt with prin-
ciples of unity, ideal forms, and fi nal causes, but natural science was 
observation followed by rational analysis. This was especially so during 
the Roman period, as evidenced by their remarkable engineering 
achievements. 

 What the ancients lacked is the idea of a controlled scientifi c 
experiment. Nor was this idea familiar to Ptolemy. The modern experi-
mental method, as promulgated by Bacon and put into practice by 
Galileo, does not rely on accidental observations but instead constrains 
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its focus to the phenomena of interest in order to mitigate to the extent 
possible the effects of confounding variables. For modern science, 
reason does not enter the picture following observations; rather, it fi rst 
provides a protocol for the observations so their analysis will character-
ize relations of interest and not be confounded by a multitude of sec-
ondary variables. For modern science, reason steps outside of Nature 
and constrains the manner in which Nature presents herself for analysis. 
While such constraint causes inexactitude relative to the knowledge of 
all variables and their interactions, Nature ’ s complexity precludes such 
full knowledge anyway. For modern science, reason brings focus to the 
scientifi c enterprise. 

 Everything begins with the notion of a designed experiment — that 
is, methodological as opposed to unplanned observation. Rather than 
being a passive observer of Nature, the scientist structures the manner 
in which Nature is to be observed. The monumental importance of this 
change is refl ected by the inclusion of the following statement concern-
ing the early modern scientists, in particular, Galileo and Torricelli, by 
Immanuel Kant in the preface of the second edition of the  Critique of 
Pure Reason :

  They learned that reason only perceives that which it produces after its 
own design; that it must not be content to follow, as it were, in the leading -
 strings of nature, but must proceed in advance with principles of judgment 
according to unvarying laws, and compel nature to reply to its questions. 
For accidental observations, made according to no preconceived plan, 
cannot be united under a necessary law. But it is this that reason seeks for 
and requires. It is only the principles of reason which can give to concor-
dant phenomena the validity of laws, and it is only when experiment is 
directed by these rational principles that it can have any real utility. 
Reason must approach nature with the view, indeed, of receiving informa-
tion from it, not, however, in the character of a pupil, who listens to all 
that his master chooses to tell him, but in that of a judge, who compels 
the witnesses to reply to those questions which he himself thinks fi t to 
propose. To this single idea must the revolution be ascribed, by which, 
after groping in the dark for so many centuries, natural science was at 
length conducted into the path of certain progress.  (Kant,  1952 )    

 Kant, after surveying a century and a half of the scientifi c land-
scape, echoes the words of Bacon, who prior to the breakthroughs of 
Galileo had referred to accidental experience as  “ a mere groping, as of 
men in the dark, that feel all round them for the chance of fi nding their 

c03.indd   36c03.indd   36 6/16/2011   2:00:00 PM6/16/2011   2:00:00 PM



CHAPTER 3 Scientifi c Knowledge 37

way. ”  With a controlled experiment, reason devises a design to probe 
Nature in accordance with a conceptual model that has been partially 
formed by reason itself. Nature is not viewed as an unlimited store of 
empirical information to be randomly gathered up as if the scientist 
were a squirrel groping about an infi nite fi eld in search of nuts; instead, 
reason formulates a constrained space of relations and an experimental 
design to further constrain the space toward a conceptual system that 
better expresses the phenomenal relations of interest. 

 The product of an experiment is a set of measurements that form 
the data of sensibility, the empirical (as opposed to a rational) basis 
for knowledge. In themselves, measurements do not constitute scien-
tifi c knowledge. They must be integrated into a conceptual system. 
Scientifi c knowledge is constituted via synthesis of the observed mea-
surements. These are related to variables and relations among the vari-
ables. The change brought about by the  “ new science ”  of the seventeenth 
century is based on the integration of two fundamental principles: (1) 
the design of experiments under constrained circumstances to extract 
specifi cally desired information; and (2) the mathematical formulation 
of knowledge. The two principles arise from the two sides of the sci-
entifi c problem, the source of knowledge and the representation of 
knowledge in the knower. 

 No doubt there was a strong tendency in ancient Greece toward 
discovering truth in mathematics without concern for applications. 
Plato, for instance, saw the pure forms of mathematics being real, not 
the shadows on the wall of the cave but the real forms giving rise to 
the shadows. Yet, one need only think of Archimedes ’  mathematical 
analyses of fl uidics and mechanics to see that some ancients recognized 
an important role for mathematics in understanding the physical world. 
But just as the ancient and medieval worlds had observations without 
an experimental framework, they had mathematics without a clearly 
defi ned relationship to the observations. Bacon tried to address both of 
these defi ciencies via designed experiments aimed at induction of 
causal relationships. He had the right inclination but the wrong 
concept — causality. Galileo and Newton had the right concept —
 mathematical relations. 

 Scientifi c knowledge necessarily takes the form of mathematics for 
four reasons: (1) scientifi c knowledge is based on quantitative measure-
ments, be they logical or numeric; (2) scientifi c knowledge concerns 
relations and mathematics provides the formal structure for relations; 
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(3) the validity of a scientifi c theory depends on predictions and this 
requires a quantitative structure from which to generate predictions and 
a theory of probability in which the goodness of predictions can be 
quantifi ed; and (4) mathematics provides a formal language suffi ciently 
simple so that both the constituting theory and the experimental proto-
cols for prediction are intersubjective, once the underlying mathemati-
cal representation of the theory is agreed upon. 

 There is much more to a model than the defi ning relations, that is, 
the general principles of the model. A great power of the scientifi c 
epistemology lies in the deducibility of logically necessary relations 
from the defi ning relations — the  hypothetico - deductive method . This 
deduction can reveal critical relations not at once apparent in the defi n-
ing relations. A full mathematical model consists of the defi ning rela-
tions and all relations logically deduced from these. The knowledge 
constituted by the derived relations is implicit in the defi ning structure 
but only becomes apparent when derived explicitly. Often, the most 
striking aspects of a scientifi c theory are represented by derived 
relations — for instance, the consequences of Newton ’ s gravitational 
law and of Maxwell ’ s equations. Key applications are typically the 
result of consequences of the basic model. 

 A mathematical model alone does not constitute a scientifi c theory. 
The model must be related to phenomena: a model ’ s formal structure 
must be related to the empirical ground of science. Verifi cation of a 
system requires that the symbols be tied to observations by some 
semantic rules that relate not necessarily to the general principles of 
the mathematical model themselves but to conclusions drawn from the 
principles. In other words, the theory is tested by checking measurable 
consequences of the theory. The conceptual system must be related to 
the experimental methodology. Phillipp Frank summarizes the situation 
both historically and epistemologically:

  Reichenbach had explicitly pointed out that what is needed is a bridge 
between the symbolic system of axioms and the protocols of the labora-
tory. But the nature of this bridge had been only vaguely described. 
Bridgman was the fi rst who said precisely that these  relations of coordina-
tion  consist in the description of physical operations. He called them, 
therefore,  operational defi nitions .  (Frank,  1961 )    

 The operational defi nitions are an intrinsic part of a scientifi c 
theory, for without them there would be no connection between the 
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mathematics and observation, between the conceptual system and the 
experiments. The conceptual system must have consequences that can 
be checked via their relation to sensory observations. The mathematical 
equations may relate abstract symbols, but there must be a well - defi ned 
procedure for relating the consequences of the equations to quantifi able 
observations, such as the compression of a spring, the level of mercury 
in a thermometer, or the quantity of a particular mRNA in a cell. In 
sum, a scientifi c theory consists of two parts: (1) a mathematical model 
composed of symbols (variables and relations between the variables); 
and (2) a set of operational defi nitions that relate the symbols to data. 

 In Kantian terminology, the mathematical model  constitutes  the 
object of our knowledge, but the validity of that knowledge must be 
assessed via experiment. Thus, the experiment and the mathematical 
model form two inseparable requirements for scientifi c knowledge. 
Either without the other cannot yield scientifi c knowledge. Kant 
famously puts the duality this way,  “ A concept without a percept is 
empty; a percept without a concept is blind. ”  The key issue is the 
manner and the extent to which the model must be related to experi-
mental outcomes. 

 Recalling Hume and taking expectation as the ground of scientifi c 
knowledge leads to the crux of scientifi c epistemology: Predictive rela-
tions characterize model validity and are necessary for the existence of 
scientifi c knowledge. Scientifi c truth is pragmatic truth and this truth 
is contained in the predictive capacity of a scientifi c theory. Scientifi c 
knowledge is about the future. Past observations may lead one to con-
struct a theory but the theory must predict the future. Riechenbach 
writes,  “ A mere report of relations observed in the past cannot be called 
knowledge. If knowledge is to reveal objective relations of physical 
objects, it must include reliable predictions. A radical empiricism, 
therefore, denies the possibility of knowledge ”  (Reichenbach,  1971 ). 

 Prediction is not certitude. Instead of causality, science involves 
conditional distributions that describe the probability of a  target  random 
variable  Y  given the values of a set of  predictor  random variables, 
 X  1 ,  X  2 ,    . . .    ,  X m  . In particular, given the predictor random variables, the 
best prediction (relative to mean square error) for the value of  Y  is 
its conditional expectation. Causality is replaced by conditioning. 
Statements concerning conditional prediction can be validated via 
experimentation. The meaning of a statement can be rigorously 
defi ned within the framework of probability theory and its relation to 
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measurable phenomena can be mathematically characterized within the 
theory of statistics. If the predictor variables are temporally antecedent 
to the variable to be predicted, then we have forward prediction. The 
terms  “ cause ”  and  “ effect ”  never appear. 

 There must be a predictive framework for validation because the 
scientifi c truth, or validity, of the model depends on the accuracy of 
predictions arising from the model. A model ’ s formal structure must 
lead to experimental predictions in the sense that there are relations 
between model variables and observable phenomena such that experi-
mental observations are in accord with the predicted values of corre-
sponding variables. The model is connected to the experimental 
methodology by the operational defi nitions and these serve to transform 
mathematical predictions within the model to empirical predictions 
within the experimental methodology. 

 The general epistemological perspective seems clear, but its appli-
cation to particular settings is not specifi ed. Where is the model to come 
from and how does one characterize model validity relative to a mea-
surement process? Einstein states,

  In order that thinking might not degenerate into  “ metaphysics, ”  or into 
empty talk, it is only necessary that enough propositions of the conceptual 
system be fi rmly enough connected with sensory experiences and that the 
conceptual system, in view of its task of ordering and surveying sense 
experience, should show as much unity and parsimony as possible. 
Beyond that, however, the system is (as regards logic) a free play with 
symbols according to (logically) arbitrarily given rules of the game. 
 (Einstein,  1944b )    

 According to Einstein, the model (conceptual system) is a creation 
of the  “ imagination. ”  The manner of this creation is not part of the 
scientifi c theory. The classical manner is that the scientist combines an 
appreciation of the problem with refl ections upon relevant phenomena 
and, based upon mathematical knowledge, creates a model. As Einstein 
states, this creation is free except that it must conform to the rules of 
the mathematical game. 

 Einstein ’ s prescription does not lead to a unique, absolute truth 
because validation is a process and the  “ truth ”  of the theory is relative 
to that process. At issue is what is meant by  “ enough propositions ”  
being  “ fi rmly enough connected with sensory experiences. ”  The model 
must be connected to observations but the specifi cation of this connec-
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tion in a given circumstance is left open. This specifi cation constitutes 
an epistemological issue that must be addressed in mathematical 
(including logical) statements. Absent such a specifi cation, a purported 
scientifi c theory is meaningless. Reichenbach states,  “ The reference to 
verifi ability is a necessary constituent of the theory of meaning. A 
sentence the truth of which cannot be determined from possible obser-
vations is meaningless ”  (Reichenbach,  1971 ). Because a model consists 
of mathematical relations and system variables must be checked against 
quantitative experimental observations, there is no nonmathematical 
way to describe the requirements and protocols to assess model validity. 
Hence, mathematics is essential to the structure of the model and its 
verifi cation. 

 Suppose a geneticist recognizes phenotypic effects from blocking 
the promoter region of a gene to prevent transcription or from using 
RNAi to suppress signaling. The geneticist might then propose a math-
ematical model of the form ( g     →    0)    ⇒    ( p 1    →     p 2), where  g     →    0 means 
that the protein product of gene  g  never reaches its target,  p 1    →     p 2 
means phenotype  p 1 is transformed to phenotype  p 2, and  ⇒  is proba-
bilistically interpreted as prediction. The model is validated by an 
experiment designed to refl ect conditions under which the model is 
hypothesized. If the geneticist were to make observations without 
specifying a precise mathematical model (including a probability dis-
tribution to characterize the probabilistic aspects of the model) and a 
protocol for predictive validation, then there would be no scientifi c 
knowledge. 

 A scientifi c theory is incomplete without the formal specifi cation 
of achievable measurements that can be compared with predictions 
derived from the conceptual theory and the manner in which the mea-
surements are to be compared with the conceptual system, in particular, 
the choice of validity criteria and the mathematical properties of those 
criteria as applied in different circumstances. The validity of a theory 
is relative to this specifi cation, but what is not at issue is the necessity 
of a set of relations tying the conceptual system to operational measure-
ments. It makes no sense to argue about the validity of a scientifi c 
theory without specifying the validation protocol. A scientifi c theory is 
intersubjective, but the epistemological criteria underlying a particular 
validation are open to debate. Once the validation requirements are 
specifi ed, the mathematical model (conceptual system) is valid relative 
to the validation criteria and to the degree that the requirements are 
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satisfi ed, that is, to the degree that predictions demanded by the valida-
tion protocol and resulting from the mathematical model agree with 
experimental observations. 

 One might question the decisive role of prediction by asking 
whether it not be called  “ science ”  if one simply categorizes observa-
tions based on some defi ned set of criteria, such as with taxonomy. 
Certainly such categories represent a form of knowledge and their 
assembly, which can require great effort and ingenuity, are part of the 
scientifi c enterprise, but they no not constitute scientifi c knowledge 
unless they are utilized within some predictive framework. Reichenbach 
states,  “ Scientifi c philosophy has constructed a  functional  conception 
of knowledge, which regards knowledge as an instrument of prediction 
and for which sense observation is the only admissible criterion of 
nonempty truth ”  (Reichenbach,  1971 ). Scientifi c knowledge is worldly 
knowledge in the sense that it points into the future by making predic-
tions about events that have yet to take place. Richard Feynman fi rmly 
asserts,  “ Knowledge is of no real value if all you can tell me is what 
happened yesterday ”  (Feynman,  1998 ). Scientifi c knowledge is contin-
gent, always awaiting the possibility of its invalidation. Its truth or 
falsity lies in the verity of its predictions and, since these predictions 
depend upon the outcomes of experiments, ultimately the validity of 
scientifi c knowledge is relative to the methodology of verifi cation. 
William James writes,  “ Truth happens to an idea. It becomes true, is 
made true by events. Its verity is in fact an event, a process, the process 
namely of its verifying itself, its verifi cation. Its validity is the process 
of its validation ”  (James,  1963 ). This is a long way from Plato ’ s cave. 
The prisoners in the cave see only shadows but reason can reach deeper 
to the true forms casting the shadows. These exist in some timeless 
place where there is no idea of process. It is also a long way from 
Aristotle ’ s three pillars: causality, explanation, and metaphysics. For 
Aristotle, reason could explain the observations by placing them within 
some rational structure, in his case it being a causal structure, intrinsic 
to the whole of reality, it thereby being metaphysical. In both cases, for 
Plato and Aristotle, truth is metaphysical, it being a property of an idea 
that, while it might be only partially revealed in observations, is intrin-
sic to the idea. For science, the truth of an idea depends on the process 
of validating its truth. Since many processes might be used there are 
many truths. Change this process and the truth may change. 

c03.indd   42c03.indd   42 6/16/2011   2:00:00 PM6/16/2011   2:00:00 PM



CHAPTER 3 Scientifi c Knowledge 43

 Aristotle provides four causes as the basis for explanation, in par-
ticular, explanation of the physical world. Irrespective of the continuing 
appeal to causality, explanation remains ubiquitous and is perhaps the 
greatest impediment to meaningful scientifi c inquiry. In  Webster ’ s 
Unabridged Dictionary , the fi rst usage for the word  “ explain ”  is  “ to 
make plain, clear, or intelligible ” ; and intelligible means understand-
able or comprehensible, in particular, in philosophy, understandable by 
the intellect ( Webster ’ s New Twentieth Century Dictionary ,  1978 ). 
Aristotle ’ s four causes represent categories of intelligibility whose 
explanatory usage makes the world understandable. Humans observe 
the world around them and try to understand it. Aristotle sees regularity 
in change, objects being shaped out of material, ideas of form guiding 
material changes, and purpose to change. Two millennia before the 
critical philosophy of Kant, he naturally formalizes these everyday 
observations into categories of understanding. They make the world 
intelligible by explaining it in terms of categories grasped by the intel-
lect. They satisfy the desire to give order to the physical world and 
comprehend the  “ why ”  of that order. Using the four causes, Nature is 
grasped directly. She becomes accessible to the human intellect. The 
result is a rationalist approach to Nature: reason working a posteriori 
on observations, or perhaps in the absence of observations, to construct 
a mental picture of the world. For physical science, this would mean a 
picture in terms of overtly physical categories corresponding to physi-
cal substance, such as particles, gravity, and force. 

 When Newton writes,  “ And to us it is enough that gravity does 
really exist, ”  he is bracketing causality along with whatever  “ physical ”  
substance is represented by the phenomena observed. What perhaps 
Newton did not realize is that this bracketing would become permanent 
in the sense that today there is no explanation of gravitation as a 
physical substance; indeed, one is hard pressed to say what is meant 
by a  “ physical substance. ”  What is certain, however, is that the 
Newtonian gravitational law and the more modern theories in terms of 
the curvature of space are mathematically clear and make excellent 
predictions. 

 When discussing the enormity of the transformation wrought by 
Galileo and Newton, Morris Kline writes,  “ What science has done, 
then, is to sacrifi ce physical intelligibility for the sake of mathematical 
description and mathematical prediction ”  (Kline,  1985 ). Sacrifi cing 

c03.indd   43c03.indd   43 6/16/2011   2:00:00 PM6/16/2011   2:00:00 PM



44 Epistemology of the Cell: Perspective on Biological Knowledge

physical intelligibility does not involve an abandonment of knowledge; 
on the contrary, it involves the recognition that everyday human catego-
ries concerning Nature — those that arise from the ordinary interaction 
with the physical world, such as pushing and pulling — are not suitable 
for describing phenomenal relations. Kline goes on to say,

  The insurgent seventeenth century found a qualitative world whose study 
was aided by mathematical abstractions. It bequeathed a mathematical, 
quantitative world that subsumed under its mathematical laws the con-
creteness of the physical world. In Newton ’ s time and for two hundred 
years afterwards, physicists spoke of the action of gravity as  “ action at a 
distance, ”  a meaningless phrase that was accepted as a substitute for 
explaining the physical mechanism, much as we speak of spirits or ghosts 
to explain unseen phenomena.  (Kline,  1985 )    

 A mathematical theory is intelligible because it is a product of the 
human intellect; the world about us is not the product of human 
intellect. 

 Consider the electromagnetic fi eld theory that is responsible for so 
much technology in the modern world. The theory, rooted in James 
Clerk Maxwell ’ s equations, is completely understood because it is a 
mathematical theory. Its applications depend on the behavior of detec-
tors as predicted by the theory. But what is the nature of the physical 
substance behind these? The thoughts of Maxwell on this subject are 
given in his paper,  On Faraday ’ s Lines of Force , and should be read 
by every student of science:

  The fi rst process therefore in the effectual study of the science, must be 
one of simplifi cation and reduction of the results of previous investigation 
to a form in which the mind can grasp them. The results of this simplifi ca-
tion may take the form of a purely mathematical formula or of a physical 
hypothesis. In the fi rst case we entirely lose sight of the phenomena to be 
explained and though we may trace out the consequences of given laws, 
we can never obtain more extended views of the connexions of the 
subject. If, on the other hand, we adopt a physical hypothesis, we see the 
phenomena only through a medium, and are liable to that blindness to 
facts and rashness in assumption which a partial explanation encourages. 
We must therefore discover some method of investigation which allows 
the mind at every step to lay hold of a clear physical conception, without 
being committed to any theory founded on the physical science from 
which that conception is borrowed, so that it is neither drawn aside from 
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the subject in pursuit of analytical subtleties, nor carried beyond the truth 
by a favorite hypothesis.  (Maxwell,  1855 )    

 Maxwell recognizes that the mathematical approach  “ may lose 
sight of the phenomena to be explained, ”  but the danger of adopting a 
 “ physical hypothesis ”  is that it may lead to  “ blindness to facts and 
rashness. ”  To wit, human intuition based upon everyday interaction 
with Nature can distort one ’ s view by leading to a rationalist approach 
to science that results in bending the observations to fi t a  “ favorite 
hypothesis. ”  How polite! 

 After discussing how analogies with physically based models are 
often useful for the arrival at satisfactory theories, even when a model 
may relate to a different physical setting than the one being considered, 
Maxwell comments that he will analogize lines of force as  “ fi ne tubes 
of variable section carrying an incompressible fl uid. ”  After discussing 
the aim and methodology of the fl uid analogy, he writes,

  I propose, then, fi rst to describe a method by which the motion of such a 
fl uid can be clearly conceived; secondly to trace the consequences of 
assuming certain conditions of motion, and to point out the application of 
the method to some of the less complicated phenomena of electricity, 
magnetism, and galvanism; and lastly to shew how by an extension of 
these methods, and the introduction of another idea due to Faraday, the 
laws of the attractions and inductive actions of magnets and currents may 
be clearly conceived, without making any assumptions as to the physical 
nature of electricity, or adding anything to that which has been already 
proved by experiment. By referring everything to the purely geometrical 
idea of the motion of an imaginary fl uid, I hope to attain generality and 
precision, and to avoid the dangers arising from a premature theory pro-
fessing to explain the cause of the phenomena. If the results of mere 
speculation which I have collected are found to be of any use to experi-
mental philosophers, in arranging and interpreting their results, they will 
have served their purpose, and a mature theory, in which physical facts 
will be physically explained, will be formed by those who by interrogating 
Nature herself can obtain the only true solution of the questions which 
the mathematical theory suggests.  (Maxwell,  1855 )    

 Maxwell proceeds  “ without making any assumptions as to the 
physical nature of electricity. ”  Nevertheless, he remains hesitant, adding 
that the mathematical theory is only suggestive of the  “ true solution. ”  
Looking back to Aristotle and the desire for physical intelligibility, he 
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hopes for  “ a mature theory, in which physical facts will be physically 
explained. ”  Maxwell is not alone in this dissatisfaction. Kline writes,

  Despite the Herculean efforts to determine physically what an electric 
fi eld and a magnetic fi eld are, scientists are unsuccessful.    . . .    We do not 
have any physical account of the knowledge of the electromagnetic waves 
as waves. Only when we introduce conductors such as radio antennae in 
electromagnetic fi elds do we obtain any evidence that those fi elds exist. 
Yet we send radio waves bearing complex messages thousands of miles. 
Just what substance travels through space we do not know.  (Kline,  1985 )    

 As Newton brackets causality and the physical nature of gravity in 
favor of mathematical relations, Maxwell brackets the physical waves 
behind the fi eld theory. The upshot of all this bracketing is that the 
subject of physics (as science) is embedded within mathematics. We 
accept that the physical world is not intelligible (in the standard 
Aristotelian sense, which is really the everyday sense), but we are not 
debilitated because the mathematical structures allow us to build 
devices that respond according to the equations and thereby produce 
pragmatic effects in the physical world. 

 Classically, the scientist worked with models whose basic terms 
referred to ideas whose origins lay in prescientifi c perceptual experi-
ence, terms such as  “ particle, ”   “ wave, ”  and  “ force. ”  Moreover, the 
frames of experience, such as Euclidean three - dimensional space and 
linear time, had their origins in the commonplace perception of every-
day phenomena. With the advent of quantum mechanics and general 
relativity, recognition of the prime importance of the mathematical 
apparatus with regard to representation and prediction increased, along 
with the recognition that any intuitive appreciation of this apparatus is 
secondary. In  The Mysterious Universe , James Jeans writes,

  The fi nal truth about phenomena resides in the mathematical description 
of it; so long as there is no imperfection in this, our knowledge is com-
plete. We go beyond the mathematical formula at our own risk; we may 
fi nd a [nonmathematical] model or picture that helps us to understand it, 
but we have no right to expect this, and our failure to fi nd such a model 
or picture need not indicate that either our reasoning or our knowledge is 
at fault.  (Jeans,  1930 )    

 Nonmathematical reasoning may be useful for the scientist in 
exploratory thinking, but scientifi c knowledge is constituted in a math-
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ematical model. One might use a metaphor of observers holding lights 
on approaching trains to make an intuitive point concerning relativity, 
but the scientifi c theory lies properly within the equations. Any attempt 
to force a nonmathematical understanding creates the risk of having a 
diminished (or erroneous) scientifi c theory because it substitutes readily 
understandable and often convincing descriptions in place of strict 
scientifi c knowledge, which must take a mathematical form. 

 We cannot expect to have scientifi c knowledge within the catego-
ries of everyday understanding because everyday understanding is 
inadequate for quantitative predictive models. This point is strongly 
emphasized by Feynman in the following statement made before begin-
ning a series of lectures on quantum electrodynamics to an audience of 
nonspecialists:

  What I am going to tell you about is what we teach our physics students 
in the third or fourth year of graduate school — and you think I ’ m going 
to explain it to you so you can understand it? No, you ’ re not going to be 
able to understand it    . . .    You see, my physics students don ’ t understand 
it either. That is because I don ’ t understand it. Nobody does    . . .    It is 
whether or not the theory gives predictions that agree with experiment. It 
is not a question of whether a theory is philosophically delightful, or easy 
to understand, or perfectly reasonable from the point of view of common 
sense. The theory of quantum electrodynamics describes Nature as absurd 
from the point of view of common sense. And it agrees fully with experi-
ment. So I hope you can accept Nature as she is — absurd.  (Feynman, 
 1985 )    

 The absurdity is not intrinsic to Nature. Absurdity is a human category 
and the absurdity of Nature is relative to human intelligibility. The 
philosophical notion that the human mind has the capacity to under-
stand Nature in everyday categories has gone by the wayside. 

 Science has not abandoned reason; rather, the role of reason has 
changed. Scientifi c knowledge is constituted in a most pure form of 
reason, mathematics, but the truth of that knowledge is not ascertained 
directly by reason, nor is that knowledge required to conform to ordi-
nary categories of intelligibility. In one sense, reason loses its lofty 
position because it cannot remain independent in its judgments; they 
must be tied to phenomena in well - defi ned ways. To put the matter 
more forcefully, reason is no longer trusted. The Enlightenment, in the 
person of its two greatest philosophers, Hume and Kant, turns reason 
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upon itself and exposes its limitations, at least in its pure form. When 
Maxwell speaks of discovering a method that allows the mind not to 
be  “ carried beyond the truth by a favorite hypothesis, ”  he is warning 
of the danger of unchecked reason, a warning given more forcefully by 
Hume, who, in the  Treatise , asserts,  “ Reason is, and ought only to be 
the slave of the passions, and can never pretend to any other offi ce 
than to serve and obey them ”  (Hume,  1951 ). Whereas Maxwell is 
concerned about tilting one ’ s reason in the direction of a favorite 
hypothesis owing to  “ that blindness to facts and rashness in assump-
tion which a partial explanation encourages, ”  Hume, with is usual fl are 
for directness, states that reason is a servant of desire and therefore 
cannot be trusted as an arbiter of its own deliberations. One not only 
should be wary of blindness to the facts affecting explanations but also 
recognize that explanations may be constructed in such a way as to 
 “ serve and obey ”  the passions. Consider two protagonists who fi rmly 
believe in the products of their individual reason. Even if it were pos-
sible to decompose their arguments into their logical components, it 
may be next to impossible to fi nd an error in either, the problem being 
that somewhere down deep they are arguing from competing premises. 
A critical aspect of scientifi c validity is that we need not consider their 
reasoning. We need only test their claims, which can be done because 
they must each provide operational defi nitions in conjunction with 
their models. 

 Perhaps modernity has to some extent deprived reason of its lofty 
position; however, it has also made reason more powerful in other 
ways. First, it has made an extraordinary leap away from the immediate 
perceptions that were previously the grist for its understanding of the 
natural order. This entails a huge leap in creativity. Einstein writes, 
 “ Experience, of course, remains the sole criterion for the serviceability 
of mathematical constructions for physics, but the truly creative prin-
ciple resides in mathematics ”  (Einstein,  1933 ). The veracity of a sci-
entifi c model lies in experience, but its conception arises from the 
imagination, an imagination freed from the fetters of Euclidean geom-
etry, linear time, certainty, causality, and other relics of the past. Second, 
when confronting Nature, reason no longer is confi ned to groping 
through aimlessly collected data; instead, it views Nature though an 
experimental fi lter based upon its own needs. In this regard, William 
Barrett writes,
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  Rationalism does not surrender itself here to the brute facts. Rather, it sets 
itself over the facts in their haphazard sequence; it takes the audacious 
steps of positing conditions contrary to fact, and it proceeds to measure 
the facts in the light of these contractual conditions. Reason becomes 
 “ legislative of experience ”   –  this was the decisive point that Kant ’ s genius 
perceived as the real revolution of the new science.  (Barrett,  1979 )    

 Third, science has abandoned the rational explanation of Nature and 
reason no longer is stuck looking backward in an attempt to explain 
the past; rather, its role is to foretell the future. Regarding the mathe-
matical theory that constitutes scientifi c knowledge, Reichenbach 
states,

  If the abstract relations are general truths, they hold not only for the 
observations made, but also for observations not yet made; they include 
not only an account of past experiences, but also predictions of future 
experiences. That is the addition which reason makes to knowledge. 
Observation informs us about the past and the present, reason foretells the 
future.  (Reichenbach,  1971 )    

 To be able to predict the future puts great power into the hands of 
scientists, because it facilitates the predictable transformation of Nature 
resulting from human action in the world. According to Barrett,  “ The 
scientist constructs models, which are not found among the things given 
him in his experience, and proceeds to impose those models upon 
Nature ”  (Barrett,  1979 ). This is the key to powerful translational 
science, a subject on which we will subsequently have much to say. 

 An advantage of a causality - based epistemology or, more generally, 
a deterministic epistemology, is that, assuming suffi cient knowledge, 
there is no uncertainty. This is Laplace ’ s position, given a suffi ciently 
intelligent being. In practice, measurements are not perfectly precise, 
so there is always uncertainty as to the value of any variable. This 
uncertainty is not part of a deterministic epistemology but rather per-
tains to the actualization of the epistemology in the measurement 
process. From a classical perspective, one might look forward to ever 
increasingly precise measurements without limit, so that, in principle, 
the measurement error could be negligible. This assumption vanishes 
with the quantum theory, where, in principle, there is a hard limit. 
According to the Heisenberg uncertainty principle, at any moment in 
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time, the product of the uncertainty in position and momentum of a 
particle must exceed  h /2  π  , where  h  is Planck ’ s constant. The position 
and momentum can be measured separately without an intrinsic bound 
on accuracy, but not jointly. The uncertainty posited by Heisenberg is 
intrinsic to human interaction with Nature. Epistemologically, the state 
of Nature, as perceived by human beings, is not independent of human 
observation and therefore there is no  “ objective ”  scientifi c reality inde-
pendent of human observation. 

 This conclusion does not compel one to relinquish a deterministic 
natural philosophy. Just as Hume recognized that causality is  “ a char-
acteristic of the way in which we regard Nature, ”  to use Schr ö dinger ’ s 
phrase, so too is determinism. Recalling Windelband ’ s defi nition of 
metaphysics, determinism represents a worldview and therefore a meta-
physical, not a scientifi c, category. It can neither be proven nor dis-
proven by empirical observations. 

 There are, however, fundamental constraints imposed on science 
by observational limitations. Since a model can only be verifi ed to the 
extent that its symbols can be tied to observations in a predictive frame-
work, the ability to design and perform suitable experiments, including 
the availability of technology to make the desired measurements, is 
mandatory. Limitations on experimentation can result in limitations on 
the complexity or content of a theory. To be validated, a theory must 
not exceed the experimentalist ’ s ability to conceive and perform appro-
priate experiments. With the uncertainty theory, modern physics appears 
to have brought us beyond the situation of where the limitations on 
observation result only from insuffi cient experimental apparatus to the 
point where the limitations are unsurpassable in principle. In this vein, 
Schr ö dinger writes,

  It really is the ultimate purpose of all schemes and models to serve as 
scaffolding for any observations that are at all conceivable.    . . .    There 
does not seem to be much sense in inquiring about the real existence of 
something, if one is convinced that the effect through which the thing 
would manifest itself, in case it existed, is certainly not observable. 
 (Schr ö dinger,  1957 )    

 In other words, without observable effects due to an object, the object 
is not a suitable subject for scientifi c inquiry. 

 Yet we need not go to the uncertainty theory to appreciate 
Schr ö dinger ’ s point. The inability to experience absolute simultaneity 
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and other such absolutes played a key role in Einstein ’ s approach to 
relativity theory. He writes,

  A further characterization of the theory of relativity is an epistemological 
point of view. In physics no concept is necessary or justifi able on an  a 
priori  basis. A concept acquires a right to existence solely through its 
obvious and unequivocal place in a chain of events relating to physical 
experiences. That is why the theory of relativity rejects concepts of abso-
lute simultaneity, absolute speed, absolute acceleration, etc.; they can have 
no unequivocal link with experiences. Similarly, the notions of  “ plane, ”  
and  “ straight line, ”  and the like, which form the basis of Euclidean geom-
etry, had to be discarded. Every physical concept must be defi ned in such 
a way that it can be used to determine in principle whether or not it fi ts 
the concrete case.  (Einstein,  1993 )    

 A second imposition on scientifi c theory imposed by observational 
limitations concerns the kind of mathematical models to be employed 
in scientifi c theories. If there is intrinsic uncertainty in the measure-
ments relating to a model, then a deterministic model is intrinsically 
limited in its ability to lead to accurate predictions because phenomenal 
predictions tied to the model via its operational defi nitions will be 
affected by the uncertainty and therefore validation is problematic. 
Consequently, probabilistic models, taking uncertainty into account, are 
preferable. Whereas imprecise measurements always affect model vali-
dation, the uncertainty principle makes this problem intrinsic. This does 
not mean that deterministic models are no longer useful. In the classical 
setting, when measurement error is very small in comparison with the 
values being measured, it can be ignored. This is also the situation in 
the macroscopic world when it comes to intrinsic measurement uncer-
tainty because Planck ’ s constant is very small and the uncertainty can 
be practically ignored. 

 Classical measurement uncertainty plays a signifi cant role in 
biology. Consider the large amount of processing involved in gene 
expression measurements on microarrays or the even greater amount 
required for mass spectrometry - based proteomics. In these cases, the 
measurements are highly variable and dependent on the particular 
fi ltering methods employed in obtaining them. Even should these mea-
surement processes be greatly improved over time, the uncertainty 
arising from model constraint will remain, this latter uncertainty being 
inherent in the model paradigm. Cell function involves the interaction 
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of hundreds of thousands of genes and proteins, so that any functional 
model must greatly constrain its focus. Hence, the relations among the 
model variables are stochastic because they are affected by changes of 
latent variables outside the model. 

 Deterministic models may be suitable for phenomena not subject 
to consequential changes outside those internal to the system; however, 
they typically are unsatisfactory for modeling complex interactive 
physical systems subject to consequential external latent variables. In 
 Theory of Random Functions , after accepting phenomenological inter-
dependence as a fundamental law of dialectical materialism, Vladimir 
Pugachev explains the compatibility of that determinist metaphysical 
position with a stochastic scientifi c epistemology:

  By virtue of this [law], each observable phenomenon is causally related 
to innumerable other phenomena and its pattern of development depends 
on a multiplicity of factors    . . .    Only a limited number of these factors 
can be established and traced. For this reason, if we observe the same 
phenomenon many times, it is seen that besides its general properties, 
there are certain special features which are only typical of a particular 
observation.  (Pugachev,  1965 )    

 If we repeatedly observe a dynamical process and make measurements 
on some set of variables over time, we cannot expect the measurements 
to remain the same across the different trials because, even if we could 
somehow replicate the initial state of the variables for each trial, unless 
the process were completely isolated so that the variables being mea-
sured were unaffected by no others but themselves, its evolution will 
depend upon variables outside the set. 

 Like determinism, interpreted as a world view, randomness is a 
metaphysical category that can neither be proven nor disproven by 
empirical observations. The assumption of a stochastic model is a sci-
entifi c decision, not a metaphysical perspective. Andrei Kolmogorov, 
discoverer of the modern measure - theoretic approach to probability 
theory, puts the modeling issue in the following way:  “ The possibility 
of using, in the treatment of a real process, schemes of well - determined 
or of only stochastically defi nite processes stands in no relation to the 
question whether the real process is itself determined or random ”  
(Kolmogorov,  1931 ). The so - called  “ real process ”  is not a subject of 
scientifi c knowledge. Even if cell function were deterministic, this 
determinism would not likely be refl ected in a practical gene network 
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model because the genes in the model would undoubtedly be affected 
by events (latent variables), including genes, outside the model, thereby 
imparting a stochastic nature to the model. This would be the case even 
without considering experimental effects. This recognition is critical to 
the science of the cell and to translational science related to controlling 
cell behavior. 

 This brings us to the general topic of randomness in biology. All 
too often the word  “ random ”  is tossed about without heed to a rigorous 
defi nition. For instance, the time between two events, such as between 
completion of transcription to initiation of translation, is said to be 
random, or the occurrence of an event, such as a specifi c gene mutation, 
may be described as random. What is the meaning, if any, of these 
expressions? 

  Webster ’ s Unabridged Dictionary  defi nes the adjective  “ random ”  
as,  “ without aim or purpose; haphazard ”  ( Webster ’ s New Twentieth 
Century Dictionary ,  1978 ). Purpose is defi ned in two ways. The fi rst 
is  “ that which a person sets before himself as an object to be reached 
or accomplished; aim; intention; design. ”  Under this defi nition, a 
random occurrence is one not intended or designed. For the two afore-
mentioned biological examples, this would say that there is no intended 
or designed time between the completion of transcription and the initia-
tion of translation, and that mutations are neither intended nor designed. 
This is clearly not what is meant by  “ random ”  in science because 
science, as an empirically based discipline, is not concerned with inten-
tions outside the phenomena. The second  Webster  defi nition of purpose 
is an  “ end in view; the object for which something exists or is done. ”  
Under this defi nition, a random occurrence is one without object. But 
this puts us back into the domain of causality because it says that events 
occur without fi nal cause, and even Bacon places fi nal causality within 
metaphysics. 

 Although we cannot appeal to  Webster ’ s Dictionary  for a defi nition 
of randomness for science, the relation to fi nal cause opens the door to 
an alternative view of randomness, that a random event is one not 
determined by causality. Here there is a mixture of two concepts, deter-
minism and causality. Let us fi rst dismiss causality because if a random 
event were defi ned as a noncausal event, then randomness would be 
defi ned as a negation of a nonscientifi c category and therefore would, 
itself, be nonscientifi c. Hence, we arrive at a random event being one 
that is not determined. But this throws us back upon determinism, 
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absent a notion of causality, and randomness would be defi ned as non-
determinism, a metaphysical, not a scientifi c, category. 

 Randomness is indeed related to determinism, not in terms of phe-
nomena but in how phenomena are modeled within science. Consider 
the time  r  between transcription and translation. For a specifi c instance, 
 r  represents a single measurement and takes the mathematical form of 
a real number. However, our interest is not with a single observation 
of time but rather the class of measurements. Thus, the time between 
transcription and translation varies depending on a host of conditions 
within the cell and the time is represented as a random variable, which 
we will denote by  R . Here, the word  “ random ”  appears as part of the 
term  “ random variable, ”  which has a precise mathematical defi nition. 
The nature of the random variable  R  is more subtle than that of a simple 
real number and it was not until the twentieth century that we had a 
suitable defi nition of a random variable, that being a measurable func-
tion from a probability space into the space of real numbers. This defi -
nition requires the defi nitions of a measurable function and a probability 
space, which in turn require the defi nition of a probability measure, the 
upshot being that it requires the development of the mathematical 
theory of measure to be able to give meaning to the word  “ random ”  in 
regard to its scientifi c usage. 

 To extend this simple case to one more representative of a biologi-
cal system, consider a dynamical process, say the amount of the protein 
product, Wnt5a, corresponding to the gene WNT5A, in a cell. 
Dynamically, this measurement is represented as a variable of the form 
 x ( t ), where  t  denotes time and  x ( t ) is a numerical value whose units 
depend upon the measurement procedure. If we track this abundance 
for a single cell, we get a time function that is deterministic, the latter 
meaning, by defi nition, that there is a certain value at each time point. 
However, we are typically interested in the behavior of Wnt5a for an 
arbitrary cell and, then, the measurement is not deterministic, the abun-
dance trajectory being different for different cells. In this case the 
measurement is represented as a time - dependent random variable, 
denoted  X ( t ), again the word  “ random ”  appearing as part of the math-
ematical term  “ random variable. ”  The deterministic variable  x ( t ) takes 
values in some numerical space, such as the logical space {0, 1}, the 
integers, or the real line, depending on the quantization of the measure-
ment procedure. The random variable  X ( t ) is a function from a probabil-

c03.indd   54c03.indd   54 6/16/2011   2:00:00 PM6/16/2011   2:00:00 PM



CHAPTER 3 Scientifi c Knowledge 55

ity space into a numerical space. Whereas  x ( t ) is referred to as a  “  time 
function, ”   X ( t ) is referred to as a  “ random time function, ”  a  “ random 
time process, ”  or a  “ stochastic process. ”  In every instance the word 
 “ random ”  is used, it requires a defi nition in terms of the underlying 
mathematical spaces. None of this makes any suppositions concerning 
things - in - themselves. In the context of science,  “ random ”  is simply a 
word adopted by mathematics and defi ned therein within the frame-
work of axiomatic probability theory. 

 To see what happens when one tries to use the word  “ random ”  
loosely, consider the following statement by Francisco Ayala:

  Mutations are said to be accidental, undirected, random, or chance events. 
These terms are often used as synonyms, but there are at least three dif-
ferent senses in which they are predicated of the mutation process. First, 
mutations are accidental or chance events, in the sense that they are rare 
exceptions to the regularity of the process of DNA replication, which 
normally involves precise copying of the hereditary information, encoded 
in the nucleotide sequences. Second, mutations are accidental, random, 
or chance events also because there is no way of knowing whether a given 
gene or genome will mutate in a particular cell or in a particular genera-
tion. We cannot predict which individuals will have a new mutation and 
which ones will not, nor can we predict which gene will mutate in a given 
individual. This does not imply that no regularities exist in the mutation 
process; the regularities are associated with stochastic processes, to which 
probabilities can be assigned. There is a defi nite probability (although it 
may not have been ascertained) that a given gene will mutate in any given 
individual. Moreover, it is not true that a mutation is just as likely to occur 
as any other mutation. Third, mutations are accidental, undirected, random, 
or chance events in a sense that is very important for evolution; they are 
unoriented with respect to adaptation.  (Ayala,  2008 )    

 Note the terms Ayala is grouping with  “ random. ”  Both  “ accidental ”  
and  “ undirected ”  agree with  Webster ’ s  because they relate to unin-
tended events. So it seems that he is in agreement with  Webster ’ s  and 
at the outset leaves the domain of science for psychology or metaphys-
ics. Yet his fi rst defi nition does not speak of intent; rather, he uses 
randomness to describe a process that exhibits rare exceptions to regu-
larity, hence, seeming to imply that randomness applies to a noncausal 
process, in the sense of Mill, thereby making it, at best, a metaphysical 
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category or, at worst, meaningless. Skipping momentarily to the third 
defi nition, this defi nes random as being noncausal in the sense of fi nal 
cause, again metaphysical. The second defi nition is the only one suit-
able for science. Although he does not go into a careful mathematical 
characterization of mutations forming a stochastic process, one can be 
given. Ayala ’ s contention that all three defi nitions are used in biology 
is where the problem lies. The fi rst and third have nothing to do with 
science. 

 Many important problems of classical physics can be addressed 
with deterministic models and, to a great extent, conform to human 
understanding. This happens for two reasons. First, the ranges of the 
variables, distance, velocity, mass, and so on, are within the range of 
human experience. Second, very simple models, such as the Newtonian 
gravitational law, lead to good predictions under everyday circum-
stances because the effects of latent variables are fairly negligible. 
Neither of these conditions tend to hold in biology: The complexity 
of the operations within the cell is far outside the normal scope of 
human experience and the massive interrelationships among the cell 
components make it diffi cult to fi nd simple models unless the focus 
is narrowed extensively, and even when this is possible it is likely 
that model stochasticity resulting from latent variables will be much 
too great to ignore. Consider, for example, Conrad Waddington ’ s con-
cluding remarks in his 1966 book,  Principles of Development and 
Differentiation :

  In my opinion, at least, the three problems immediately in front of us are 
these: What is the nature of the change that renders a cell competent, so 
that it is ready to be switched into a particular developmental path? What 
is it that triggers off the switch and puts the cell into a state of determina-
tion, which is only with diffi culty reversible, and can normally be trans-
mitted through several cell generations? Finally, how are the activities of 
all the genes concerned in any developmental pathway tied together, so 
that they proceed in an integrated and orderly manner — or does this, 
perhaps, follow from the answers to the fi rst two questions?  (Waddington, 
 1966 )    

 At biology ’ s fundamental place within natural science, that being 
regulation, Waddington points to the requirement that biological knowl-
edge depend on the theory of multivariate dynamical processes, which 
will of necessity be random processes owing to the massive complexity. 
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There is no hope that simple models and elementary deterministic 
mathematics can constitute biological knowledge. Biological knowl-
edge is more removed from everyday understanding than is a great deal 
of physical knowledge and, concomitantly, its mathematical representa-
tion is more abstract. 

 Consider genomics, where, as suggested by Waddington, concern 
is with cellular control mechanisms based on the manner in which 
information stored in DNA is converted into molecular machines with 
various capabilities, including those required to carry out the copying 
of DNA and the transformation of its code into RNA and protein. Via 
interactions among the proteins present in the cell and interactions of 
protein complexes with the DNA, logical relations are produced that 
maintain highly varied patterns of gene expression among the differing 
cell types present in an organism. Cellular control, and its failure in 
disease, results from multivariate decision making and to the degree 
that human understanding of decision making is represented in logic, 
it is natural to employ logical models, perhaps multivalued, to consti-
tute biological knowledge. Since the cell is an information processing 
system, knowledge representation and information theory are funda-
mental aspects of biological knowledge, as is the mathematics of 
control as it pertains to such a system. 

 Taking into account randomness, in the proper sense, and cell 
dynamics, gene regulatory modeling involves stochastic nonlinear 
dynamical systems. These may be continuous or discrete, and they can 
be synchronous or asynchronous. As in all modeling situations, the 
more detailed the model, the greater the computational complexity and 
the more diffi cult the inference from data. Given a network model, at 
least two basic issues arise: (1) the phenotypic issue — characterizing 
the steady - state behavior of the system, where it settles following 
transient behavior; and (2) the translational issue — determination of 
intervention strategies to favorably alter the steady - state behavior of 
the system. It is usually very diffi cult to characterize the steady - state 
distribution of the system in terms of system parameters. Even if this 
is done, can one really claim to have an understanding of the steady -
 state distribution in terms of sensory intuitions regarding the genes? 
Even under the coarsest quantization, a binary network, and only 20 
genes, the transition probability matrix of a Markov chain regulatory 
model possesses dimensions 1,048,576    ×    1,048,576 and this matrix 
determines a steady - state distribution with 1,048,576 states. The 
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behavior of such a network is virtually unintelligible. One is often 
mystifi ed at how tiny variations in the parameters dramatically alter 
steady - state behavior. Often, mathematical analysis in terms of low -
 order statistical characteristics of a dynamical process allows applica-
tion of the system, albeit with varying degrees of performance loss, 
but even then intuition of properties entailed by the low - order analysis 
is rare except for very simple covariance structures, which themselves 
usually arise from simplifying the full covariance structure of the 
model. The effort to glean some physical, in this case, physical biologi-
cal, intelligibility by simply looking at a graphical model composed of 
arrows between related genes, absent the dynamical structure of the 
network, is a striking example of ignoring Jeans ’ s warning about 
moving away from the mathematics to mental pictures, often known 
as visualizations. 

 The dependency on mathematics and the lack of intuition are even 
more extreme when one wants to use the regulatory model to determine 
therapeutic policies (Shmulevich and Dougherty,  2010 ). Fundamental, 
and often diffi cult, mathematical analyses must be performed to arrive 
at control strategies, and these are especially involved if one wishes to 
achieve robust strategies not overly sensitive to inaccurate system iden-
tifi cation or imperfect application of control, both of which are ubiqui-
tous in complex settings. There is no hope of obtaining categorical 
understanding of a control policy ’ s performance by considering the 
phenomena themselves. Moreover, again referring to Jeans, graphical 
visualizations convey no dynamical information and depending on such 
visualizations for therapeutic applications is reckless. 

 If human beings had sensory experience of traveling near the speed 
of light, then perhaps our ordinary understanding would grasp changing 
masses and clocks slowing or speeding up. If we had sensory experi-
ence at the quantum level, then perhaps we would display no surprise 
at the behavior of a photon in the famous double - slit experiment. Our 
diffi culties of understanding arise because the categories of our ordi-
nary understanding relate to our sensory experiences. These diffi culties 
extend to biology. We have no sensory experience with networks of 
thousands of nonlinearly interacting nodes exhibiting feedback, distrib-
uted regulation, and massive redundancy. Recalling Feynman, Nature 
is absurd from the human perspective because we lack the categories 
of understanding with which to intuit it — be it physics or biology.        
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Cells and Factories     

  CHAPTER 4 

       The processes which keep an animal alive have to be quite as 
highly organized as the operations in the most complicated 
mass - production factory. 

   — Conrad Waddington    

 Biology concerns living organisms. These exist in the physical world. 
Therefore biology depends upon physics. Each cell consists of a host 
of molecules that form the building blocks of structures within the cell 
and are involved with interactions both interior and exterior to the cell. 
Therefore, biology depends upon chemistry. But the subject matter of 
biology is not that of physics or chemistry; otherwise, biology would 
be a branch of physics or chemistry. Biology concerns the operation of 
the cell in its pursuit of life, not the molecular infrastructure that forms 
the physiochemical underpinnings of life. The activity within a cell is 
much like that within a factory. In the latter, machines manufacture 
products, energy is consumed, information is stored, information is 
processed, decisions are made, and signals are sent to maintain proper 
factory organization and operation. All of these functions also take 
place within a cell and it is through analogy with a factory that we 
approach the epistemology of the cell. 

 The factory analogy has been used before. In his 1935 book,  How 
Animals Develop , Waddington writes,

  The processes which keep an animal alive have to be quite as highly 
organized as the operations in the most complicated mass - production 
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factory. If there is a  ‘ secret life, ’  it is here we must look for it, among the 
causes which bring about the arrangement of innumerable separate pro-
cesses into a single harmonious living organism. …  To say that an animal 
is an organism means in fact two things: fi rstly, that it is a system made 
up of separate parts, and secondly, that in order to describe fully how any 
one part works one has to refer either to the whole system or to the other 
parts.  (Waddington,  1935 )    

 Whereas Waddington is referring to an animal as a system com-
posed of organized macrostructures, our concern is the cell as a system 
of microstructures, a system whose constituent parts were beyond the 
experimental capability of Waddington ’ s day. Nonetheless, the princi-
ple is the same. The task of biology is to look for the  “ secret life, ”  as 
Waddington calls it. We can forgive Waddington for referring to the 
 “ causes ”  that bring about a harmonious living organism as he was 
writing before the advent of systems theory and concomitant with the 
development of quantum mechanics and stochastic processes. One need 
only change the word  “ causes ”  to  “ regulatory apparatus ”  and 
Waddington ’ s statement becomes fully modern. The function of no 
constituent part in a factory, or in the cell, can be described fully 
without reference to the system. 

 The hardware units within a factory, whether mechanical, electri-
cal, or chemical, do not constitute the factory. These require specialized 
knowledge to build and are necessary for the factory to function but, 
in and of themselves, they simply compose a collection. They become 
part of a factory when their functioning is organized and regulated 
according to a logical program that integrates and orders their activities 
in such a way as to produce the desired products and maintain their 
proper functioning within the overall operation of the factory. If we 
strip away all of the components — the robots, the computers, the com-
munication devices, the relays, and so on — that is, the units within the 
factory that could be individually used for any number of purposes, 
what remains, and what constitutes the factory as an entity, is the regu-
latory logic that controls the dynamics of the factory. 

 The same can be said for a cell if we strip away that which is purely 
physical and chemical. While it is true that transcription factors are 
required to implement the regulatory cell logic, the chemical interac-
tions involved in the functioning of the transcription factors are a 
subject for chemistry, in the same way that the electrical impulses that 
carry the instructions to robots in a factory are a subject for physics. 
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One can know all of these reactions but be no closer to understanding 
the livingness of the cell. One can list a multitude of the interactions 
between molecules within the cell, as one could write down the entire 
instruction set of a computer, but without the program that regulates 
the manner in which the instructions are used, there are only the symbols 
of codes, not functioning codes that convey information. 

 A fi rst and necessary step for modeling cellular processes and their 
regulation is, therefore, to begin to consider what level of regulation 
would be a useful target of study. This consideration is a form of detail 
triage that must be applied as a consequence of the considerable com-
plexity in some types of cellular regulation. At the simplest level of 
regulation, the core functions of metabolism deal with the most basic 
and ubiquitous functions required for the cell to be able to carry out 
any further function. As would be expected for functions that have been 
continuously selected for continuity of operation and maximal effi -
ciency for as long as organisms have existed, their regulation is tuned 
to maximize the operational utility of individual steps. There are some 
cases where these processes may need a large regulatory adjustment, 
such as hypoxia, or scarcity of an exogenously supplied carbon source 
used to derive energy or construct macromolecules. Yet for the most 
part, adaptations of the processes to variation in source materials and 
requirements for energy on the input side and energy expenditure and 
molecular construction on the output side fall well within the capability 
of adjustments determined at the local level. 

 There are critical issues that a well - run factory must confront, each 
with an analogue within the cell. A factory, or computer system, must 
handle interrupts. A factory is not a closed system. It has inputs and 
outputs, and it also has unplanned emergencies, such as the failure of 
some component, the loss of its primary energy supply, or a change 
in the demand for its products. Interrupts do not occur with fi xed regu-
larity, and in this sense every input can be considered an interrupt 
because the timing of input arrivals cannot be synchronously regulated. 
In order that the factory not completely shut down for an extended 
time, which could result in economic failure, its operational program 
must have procedures for redirecting the activities within the factory 
to handle the interrupt until such time that the effects of the interrupt 
have passed and the factory can return to normal function, a sort of 
homeostasis. Consequently, a factory ’ s activities must be modeled sto-
chastically. Basically, while all nodes within the factory may appear 
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to function with complete regularity under  “ normal ”  functioning, in 
fact, the factory is affected by many latent variables unaccounted for 
no matter how complex the model and these give the factory a sto-
chastic character. 

 Cells have a similar approach to managing their responses to criti-
cal changes that could lead to death or substantial damage to the organ-
ism. These actions fall in the category of stress responses, system - wide 
alterations that deal with various environmental insults and cellular 
malfunctions. In these situations, many processes may need to be halted 
and many others instituted. A familiar example of this kind of regula-
tion is the response to damage from ionizing radiation. At this level of 
regulation, the concept of cellular context becomes evident. An organ-
ism has many different kinds of cells and reacts to damage to them in 
quite different ways. Cells that produce the precursors of short - lived 
cells needing frequent replacement, such as blood cells or cells that line 
the gut, are typically much more likely to invoke a death response when 
their DNA is damaged than cell types like neurons, which are very slow 
to replicate. The same stimulus is interpreted in different ways in these 
cells even though the mechanism of recognizing the damage is the 
same. In these cases, the interpretation of the recognition of damage is 
conditioned by interactions with different genes present in the different 
cell types. In regulatory processes, where chains of signals are used to 
induce systemic changes in the functions a cell is currently performing, 
the presence or absence of particular gene products that mediate the 
turning on and off of the production or function of the gene products 
targeted by the regulatory action can be used to specify whether one or 
another particular bank of genes will be acted on and whether the action 
will be an induction or cessation of their action. This capacity to use a 
single detector of a particular environmental shift to specify differing 
particular responses for cell types posing distinct types or levels of risk 
to the organism in their reaction to a threatening environmental action 
or an internal malfunction is one of the ways in which cells have devel-
oped to provide the organism in which they reside with the optimal 
response to a particular type of damage. 

 It is common for a factory, or computer system, to function on a 
clock, meaning that the timing of activities is quantized so that all 
activities are begun and completed in discrete time intervals, 0,   τ  , 2  τ  , 
3  τ  ,    . . .    . This is accomplished via delays that hold operations so that 
new operations begin only at times that are multiples of the basic 
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period,   τ  . For instance, think of a classical human assembly line, where 
each task is executed during a time interval  k τ   to ( k     +    1)  τ  . No matter 
when within the interval the task is completed, the next task is not 
begun until the next time interval. Another example, and one highly 
relevant to cells, concerns processes that require multiple inputs, for 
instance, the assembly of a product that requires multiple preassembled 
components. When assembly is clock - regulated, product assembly 
begins at a clock tick, even if all components are in place. This kind 
of coordination by a clock results in  synchronous  operation. A more 
effi cient way to operate is to do away with a clock and base all activity 
on readiness. Product assembly commences once all components have 
arrived, excess components being held in queues awaiting their part in 
assembly. In a computer system, this means that instructions are exe-
cuted once all necessary inputs (data and logical inputs) are ready. This 
kind of execute - when - ready system results in  asynchronous  operation 
and, in the context of computation, is sometimes referred to as a  data 
fl ow  system. Asynchronous operation is more effi cient but also more 
diffi cult to control, requiring more complex regulatory logic. Ignoring 
interrupts, a synchronous system can be modeled deterministically, but 
an asynchronous system is inherently stochastic because variability in 
individual operation times is not normalized by clock periods. 
Nevertheless, if the regulatory logic can handle an asynchronous 
system, then there is signifi cant gain in effi ciency. 

 A factory requires redundancy to keep operations running smoothly. 
In the worst - case scenario, the failure of a single operation can halt 
factory operations. These kinds of catastrophic failures are avoided by 
eliminating their points of occurrence or, perhaps more simply, by 
building in redundant operations, for instance, backup generators. 
Multiple subsystems can be employed with backup capabilities. 
Optimization of redundancy is nontrivial because too much redundancy 
renders the overall operation too costly. Redundancy is made more 
effi cient by using subsystems that can perform multiple tasks and 
therefore be able to serve as backups when needed. If a unit fails, the 
regulatory logic needs to be able to reconfi gure the operations automati-
cally to maintain productivity, albeit perhaps at a reduced level if 
backup systems are less effi cient (and therefore less costly). Fault toler-
ance is enhanced by the ability for autonomous correction of failures, 
for instance, by error correction code that checks for faults and corrects 
these faults when discovered. Regarding the development of control 
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systems to regulate this kind of autonomous reconfi guration, Pugachev 
writes,

  It is also feasible to distinguish another category of control systems which 
are capable of analyzing their own operating conditions and using this 
information to produce an optimum performance. The simplest systems 
of this type, which incorporate elements for automatically adjusting par-
ticular parameters according to an analysis of input and output data, are 
called  self - adjusting  systems. Complex systems of this kind are capable 
of adapting themselves completely at each instant to the results of their 
analysis of external conditions and previous performance. These are said 
to be  self - organizing . It is quite clear that no theory of error under average 
operating conditions is adequate for the design of self - adjusting and self -
 organizing systems. A special theory is required which will solve the 
complex problems involved in processing the input data and utilizing it 
to best advantage in any particular case. Both problems can be tackled by 
the modern theory of optimal systems.  (Pugachev,  1965 )    

 Self - organization is more than simple redundancy. It allows a system 
to reconfi gure itself to achieve optimal (practically, close to optimal) 
performance under varying conditions. 

 A fundamental way to achieve redundancy, as well as effi ciency, is 
through the use of parallelism. Parallel assembly of independent com-
ponents is obviously benefi cial, as is regulatory parallelism. If a 
sequence of signals must be sent to various points in the system to result 
in a fi nal instruction, then fault tolerance is achieved by sending mul-
tiple signals through different paths. If one path is blocked, the signal 
will still arrive via another. In fact, the fi nal instruction may be assem-
bled from packets of code that have been sent through multiple chan-
nels, with the packets including instructions on how they should be 
assembled at the end point. This approach provides both redundancy 
and enhanced speed of operation in cases where one channel is slowed 
owing to too much traffi c or technical problems. In such a system, any 
channel or processor may be carrying or implementing many tasks 
simultaneously. 

 Cells also use redundancy and parallelism to deal with damage and 
malfunction. Redundancy is commonly observed in a cell ’ s response 
to ionizing radiation. One gene involved in a wide variety of stress 
related responses is tumor protein 53 (TP53). TP53 serves as a central 
hub in the network of stress response and it can activate an array of 
responses, yet it is not always required for the occurrence of such 
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responses. Many stress response processes can be successfully mounted 
even in the absences of this protein, even though when TP53 is present 
it drives that particular process. In these cases, other proteins have been 
identifi ed that are competent to drive the response in TP53 ’ s absence. 
Such redundancy offers a sound way for cells to minimize the risk of 
failure of a critical function. 

 To study regulation in metabolic processes, the appropriate experi-
mental designs and analyses will necessarily differ from the designs 
and analyses used for examining regulation in stress response. In shift-
ing from regulatory relationships that are simple, linear, context -
 independent, and not highly branched to those that are complex, 
nonlinear, context - dependent, redundantly represented, and both highly 
branched and interpenetrating, one must take into account the vastly 
increased number of ways the process of interest can be confi gured. 
Consider the consequences of carrying out a stress response study 
where the experimental plan is based on linear expectations, such as 
challenging a cell line with wild - type TP53 and a mutated derivative 
of that cell line not producing functional TP53, and then determining 
which genes are induced by radiation in the TP53 wt  line that were not 
induced in the TP53 mut  line. If one were to interpret these results as 
indicating that only those genes induced in the TP53 wt  line and not in 
the TP53 mut  line are normally dependent on TP53 wt , one would be sub-
stantially in error. The numerous TP53 wt  responses that can be induced 
independently of TP53 wt  through redundant mechanisms would be 
incorrectly considered to be not normally dependent on TP53 wt . 
Confronting this problem requires one to envision a different type of 
network architecture, where the possible antecedents of a step in a 
pathway are multiple and produce the same outcome. One way to do 
so is to formulate a test that asks what happens when the gene of inter-
est is active. If the results in that case are in agreement with the results 
when it is inactive, it must be considered as a possible controlling gene 
for which there is a redundant controller. This is obviously is not defi ni-
tive; however, it will identify realistic possibilities that would not even 
be considered by an analysis that makes linear assumptions. 

 Closely related to parallelism is locality: Operating decisions 
should, wherever possible, be made at the local level. This means that 
control is distributed throughout the factory. Hierarchical control suffers 
from at least three serious fl aws. First, it is unable to effi ciently respond 
to changed conditions at the local level. If a machine is beginning to 
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operate unsatisfactorily, perhaps needing overhaul or replacement, this 
is seen immediately at the local level and, presuming the ability to 
rectify the situation exists at the local level, is most effi ciently handled 
there, or as close to the operational location as possible to maintain 
overall functioning of the system. If a long chain of command is 
required to make the decision as to how to proceed, this takes time and 
can lead to a delay in decision making, and thus a consequent down-
time. A second problem with hierarchical control is fragility. The longer 
the chain of command, the more likely it will be broken along the way 
and no decision be forthcoming — in an extreme case, the center of the 
hierarchical regulatory system might fail, thereby bringing the entire 
factory to a stop. Finally, a long hierarchical chain can result in the 
decision resting in the hands of a decision maker less qualifi ed relative 
to the specifi c machine. 

 As stated in our discussion about metabolism, the functions most 
commonly shared and heavily engineered by selection have extremely 
local regulation of activity. In many cases, the enzymes that carry out 
a particular function are autoregulatory, having interactions with the 
metabolite that they produce that let them adjust their level of catalytic 
activity based on the local abundance of their product. The fi neness of 
this control is suffi cient to produce both high levels of rapid adaptabil-
ity to fl uctuations anywhere in the network of operations and a level of 
stability that centrally driven regulation cannot achieve. 

 When observing a factory involving many subsystems, the high 
dimensionality of the operation is typically apparent, but what might 
be overlooked by the casual observer is the multivariate character of 
the individual decisions or operations within the overall structure. 
Multiple inputs are often required before execution. It is not simply 
that multiple components are required to execute a specifi c assembly; 
more signifi cantly, multiple signals are required for a regulatory deci-
sion. For instance, there may be numerous sensors detecting changes 
in performance at various points and a decision to check a unit or pull 
it out of service may depend on multiple sensory signals. So too might 
a decision to override the standard control within some part of the 
factory and change to some specialized logic, for instance, to deal with 
an interrupt. The incoming signals may be quantized to binary form, 
so that binary logic is used to evaluate the multivariate information and 
make a binary decision as to whether action is to be taken. In the case 
of response to a potentially catastrophic interrupt, information is 
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directed into some control point whose default value is 0 but whose 
value changes to 1 to canalize part of the system into a reconfi gured 
state of operational control until the threat has passed. A cursory view 
of control points within the factory might reveal a sequence of changes, 
thereby giving the impression that the behavior of such a pathway 
might reveal the regulatory logic; however, although each point in this 
pathway might infl uence its successor, it is likely that each point is 
infl uenced by multiple signals and that the pathway only represents a 
trace of this activity along a certain set of points, not a dynamical tra-
jectory in the full state space. In this sense, such a pathway represents 
marginal knowledge of the operations. 

 In cells, not only are there multiple inputs involved in a decision, 
there also are alterations in the hardware components that interpret the 
inputs, making the responses context - sensitive. In these cases, in addi-
tion to having multiple controller genes direct the same operation, a 
controller gene will now provoke a particular response only part of the 
time. This occurs when a controlling gene is capable of acting to 
produce a certain set of regulatory results only when its actions are 
interpreted by a particular set of gene products that are variably present. 
If one examines a set of samples in which such variable interpretation 
is acting, using an analytical approach that measures correlation of gene 
transcription on the assumption that a gene exerting a controlling effect 
on a target gene should show strong correlation in expression activity, 
then the context - dependent controller will likely be overlooked. Its 
correlation with its contextually controlled targets is only evident when 
the controller is in the proper context. This is a widespread problem in 
gene control, since in the cell, every gene being expressed is regulated 
by other genes and frequently there are multiple regulatory conditions 
for a gene to be expressed, so that any set of samples is likely to have 
many genes being controlled by different genes in different samples, 
thereby making simple correlation a poor way to identify regulatory 
connections. 

 An important control mechanism that leads to this kind of con-
founding occurs with canalizing genes. Just as a factory has control 
points that canalize components of the system into reconfi gured states 
based under certain critical conditions, Waddington recognized the 
existence of genes that canalize a biological system into constrained 
channels of behavior (Waddington,  1942 ). The constraints he had in 
mind were those that facilitate reliable development of an organism 
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even when presented with large perturbations. A key characteristic of 
a canalizing gene is its ability to override other regulatory instructions. 
In terms of a model of transcriptional consequences, this kind of control 
leads to a signifi cant number of genes at various transcript abundance 
levels, and under the transcriptional control of other genes, to move to 
a single state when the broadly controlling gene is active — thereby 
exercising overriding control. We are not referring to sequential canali-
zation, whereby a specifi c action of the master enforces a cascade of 
actions among a single highly correlated cohort of genes important in 
a single process, but rather where a gene has such broad regulatory 
power and its action sweeps across a such a wide swath of processes 
that the full set of affected genes are not highly correlated under normal 
conditions. 

 Canalizing genes are frequently found in signaling pathways that 
deliver information from a variety of sources to the machinery that 
enacts central cellular functions such as cell cycle, survival, apoptosis 
and metabolism. DUSP1 antagonizes the activity of the p38 mitogen -
 activated kinase, MAPK1 (ERK), which is a central component of the 
pathway by which extracellular signal - regulated kinases send mito-
genic signals (Chang and Marin,  2001 ); thus, MAPK1 is canalizing in 
its phosphorylated state and DUSP1 is canalizing when it dephosphory-
lates MAPK1. As is often the case in such key pathways, there are 
multiple opportunities for canalizing behavior along the signal trans-
ducing pathway. Some of the earliest observations of canalization along 
the mitogenic pathway involved the RAS gene family, members of 
which were found, in cancer, to have frequent mutations in their 12th 
codon that produce uncontrolled proliferation (Tabin and Weinberg, 
 1985 ). Another locus of signal integration by a canalizing gene is in 
the area of stresses to the genome by the TP53 gene. The list of cellular 
stress responses where this gene exerts strong control continues to 
expand into new regulatory territories (Gomez - Lazaro et al.,  2004 ). 
While canalizing genes can be extremely potent, their potency is none-
theless circumscribed by other features of the regulatory apparatus 
operating in the particular cell where control is attempted. A clear and 
very instructive example of this is the capability of a translocation gene 
formed from the fusion of the BCR and ABL genes to induce a cancer 
phenotype, a canalizing result of extraordinary scope, but an induce-
ment only possible in a very particular subset of precursor cells at a 
specifi c point in their differentiation into myeloid cells. 
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 Once a factory exceeds a very small number of interconnected 
components, coordinating its operations goes beyond a commonsense, 
nonmathematical approach. Reminded of Galileo ’ s disparagement of 
words as constituting knowledge in the case of gravity, the situation 
with a complex system is orders of magnitude more resistant to every-
day language and intuition. There are two basic operational issues 
concerning a factory: characterization and control of its operations. 
First, we want to characterize the input and output of the factory; 
second, we want to organize the operations so as to achieve optimal 
(or at least satisfactory) performance. Both characterization and control 
require a suitable conceptualization of the factory. Such a conceptual-
ization must be mathematical for two reasons. First, characterization 
and control involve relations among the components and mathematics 
provides a relational language, and second, mathematics provides a 
language in which complexity can be represented in such a way as to 
be amenable to analysis. Not only are complex systems beyond ordi-
nary intelligibility and intuition — indeed, their performance is often 
highly counterintuitive — but they also typically cannot be fully repre-
sented mathematically because there are too many relations and, even 
should one achieve a very precise and highly involved mathematical 
description, it may well be intractable relative to solutions of the prob-
lems of interest, such as optimizing some set of relations within the 
system. Hence, rather than completely characterize system outputs in 
terms of system inputs, we satisfy ourselves with characterizing proper-
ties of the output in relation to certain properties of the input. In such 
typical situations, we try to select variables on the input side that have 
big impact on important variables on the output side. 

 Given that biology appears to be solving its control problems using 
the same sorts of approaches but doing so in a much more complex 
environment, it would be reasonable to assume that progress in biologi-
cal science will require adopting the same stance as engineering has 
already found useful, and necessary, in dealing with complexity — with 
the constraints being even more demanding in biology owing to a much 
greater degree of complexity. Hence, research must focus on fi nding 
levels of operation of biological control where prediction based on 
some input variables produces useful levels of prediction on the output 
variables. 

 Just as a factory ’ s constituent parts — electrical, mechanical, and 
chemical — are required for the factory to exist, the physical - chemical 
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constituent parts of a cell are required for the cell to exist. Moreover, 
just as the constituent parts of a factory do not constitute the factory, 
but rather the regulatory (operational) logic of the factory defi nes the 
factory as an operational system whose purpose is to consume energy, 
maintain itself, and produce an output, the constituent parts of a cell 
do not constitute the cell, but rather the regulatory (operational) logic 
of the cell defi nes the cell as an operational system whose purpose is 
to consume energy, maintain itself, and propagate. For both factory and 
cell, the regulatory logic determines the relations between the physical 
structures within the system and between the system and its environ-
ment. By regulatory logic we do not simply refer to simple binary 
deterministic logic but to mathematical functions, possibly binary in 
nature, that provide operational control within the framework of random 
processes. The roles of regulatory logic in the factory (or complex 
machine) and the cell are congruent because the key to the characteriza-
tion of this logic lies in communication (between components) and 
control (of components) — that is, in systems theory, which therefore 
determines the epistemology of the cell. 

 This basic insight was put forward more than 60 years ago, well 
before the discovery of the double helix, when, in the original 1948 
edition of  Cybernetics: or Control and Communication in the Animal 
and Machine , Norbert Wiener stated in regard to himself and Arturo 
Rosenblueth, his physiologist collaborator,  “ Thus, as far back as four 
years ago, the group of scientists about Dr. Rosenblueth and myself 
had already become aware of the essential unity of the set of problems 
centering about communication, control, and statistical mechanics, 
whether in the machine or in living tissue ”  (Wiener,  1948 ). 

 Biology studies relations between molecules (chemical structures), 
not the molecules or the forces between molecules. The recognition 
that biological knowledge concerns regulatory logic and the consequent 
intracell operational organization of molecular structures, as well as, 
by extension, intercell organization, entails the concomitant recognition 
that biological systems, in their extraordinary complexity, are beyond 
everyday intelligibility and intuition. Moreover, it facilitates answers 
to two fundamental epistemological questions: (1) What form does 
biological knowledge take? (2) How is biological knowledge vali-
dated? The question as to form relates to the type of mathematics 
involved in modeling the relations that characterize regulatory knowl-
edge. This depends on the nature of the relations being considered; 
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however, the general mathematical framework will be formed within 
the theory of stochastic multivariate dynamical processes. Validation 
depends on the mathematical model constituting the biological knowl-
edge and, since this knowledge concerns operational regulation, valida-
tion will involve operational predictions derived from the mathematical 
regulatory model. 

 At this point we recall Maxwell ’ s desire for  “ a mature theory, in 
which physical facts will be physically explained. ”  The high complex-
ity and fl uidity of interactions engendered by biological processes and 
regulation engenders an analogy, albeit one that is no doubt oversimpli-
fi ed. The changing states of the macromolecules we measure in the cell 
are like the measurements made by sprinkling iron fi lings on a surface 
exposed to an electromagnetic fi eld in the sense that we see the induc-
tion of orderly behavior due to the operation of processes that we do 
not experience directly and we try to characterize those processes 
according to the simple measurements that we can make. We suffer the 
same limitations as the physicists: The manifestations of the action of 
the system we want to study reveal only a shadow of what is going on.  

  EXAMPLE: A CONTEXTUAL MODEL OF 
GENE REGULATION 

 To illustrate key epistemological points, we consider a regulatory model 
that incorporates latency, context - dependence, distributed regulation, 
multivariate gene interaction, and stochasticity (Dougherty et al.,  2009 ). 
Because regulation is parallel and distributed, if one views the cascade 
of activities resulting from the action of a single regulatory gene, both 
the strength and specifi city of subsequent activities in the cascade may 
be expected to diffuse through subsequent steps in the cascade. As the 
regulatory effects propagate, they are progressively modifi ed or limited 
by interactions with other factors modulating gene transcription. 

 One can view genes at various positions in a regulatory cascade as 
being either masters or slaves, keeping in mind that this is a relative 
characterization and that in certain situations a gene might act as a 
master, while in others in might act as a slave. If the situation were one 
of strict, complete control of one gene by another at all times, then gene 
 g  being a master of gene  g  1  in a binary  ON – OFF  genetic regulatory 
model would mean that  g     →     ON  implies  g  1     →     ON , and that  g     →     OFF  
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implies  g  1     →     OFF . This kind of strict control is not indicative of dis-
tributed regulation; indeed, in a distributed environment,  g     →     ON  
would not necessarily imply  g  1     →     ON , since  g  may only be able to set 
 g  1     →     ON  in coordination with other genes. 

 To illustrate the resulting context - dependent behavior of a model 
system, suppose genes  g  1  and  g  2  are fully controlled by genes  g ,  g  0 , and 
 g  00  (which may be in turn regulated, or affected, by other genes in any 
number of cascades). Table  4.1  shows a possible regulatory structure 
for fi ve genes and Fig.  4.1  shows a network diagram consistent with 
this structure. Genes  g  0  and  g  00  are not part of the model; however, their 
states are physically codeterminative along with the model master  g  of 
the model slaves  g  1  and  g  2 . The four possible combinations of the states 
of  g  0  and  g  00  determine four possible contexts,  C  1 ,  C  2 ,  C  3 , and  C  4 , for 
the model. Given the context, the relationship of the state of  g  to that 
of its slaves is determinative; however, absent knowledge of the context, 
it is not. If  g  1     =    1 and  g  2     =    1 in context  C  1 , then  g     =    1; if  g  1     =    1 and 
 g  2     =    1 in context  C  4 , then  g     =    0. It cannot be that  g  1     =    1 and  g  2     =    1 in 
contexts  C  2  and  C  3 .     

 Conceptually, the regulatory action within the model is viewed as 
a system with inputs corresponding to the regulating master genes for 
the slave genes; however, the system is not fully described by the input 
gene values alone, but by these inputs in conjunction with the context. 

  Table 4.1 
Truth Table Showing the Consequences of 
Regulatory Inputs from Genes  g ,  g  0 , and  g  00  
on Genes  g  1  and  g  2  

   Contexts      g  0       g  00       g       g  1       g  2   

   C  1     1    1    1    1    1  

  1    1    0    0    0  

   C  2     1    0    1    0    1  

  1    0    0    1    0  

   C  3     0    1    1    1    0  

  0    1    0    0    1  

   C  4     0    0    1    0    0  

  0    0    0    1    1  

c04.indd   72c04.indd   72 6/16/2011   2:00:20 PM6/16/2011   2:00:20 PM



CHAPTER 4 Cells and Factories 73

Biologically, the context is determined by the manner in which the 
slaves are responding to latent genes external to the model network. 
Together, the latent genes act in a manner as to select a network 
(system) context. One can imagine a set of input lines entering the 
overall system, a family of subsystems (contexts) within the system, 
and the system output being a single line whose information is selected 
from among the subsystems. This would be the structure of a computer 

     Figure 4.1     Regulatory inputs from genes  g ,  g  0 , and  g  00  on genes  g  1  and  g  2  for four 
contexts. [Dougherty, E. R., Brun, M., Trent, J. M., and M. L. Bittner,  “ A Conditioning -
 Based Model of Contextual Regulation, ”   IEEE/ACM Transactions on Computational 
Biology and Bioinformatics , 6(2), 310 – 320, April, 2009.  ©  2009 IEEE].  
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system whose output is determined by a multiplexer, with the multi-
plexer ’ s decision being determined by a selection input to it. The model 
system behaves deterministically so long as it remains in a fi xed context. 

 We now describe the master – slave model (Dougherty et al.,  2009 ), 
restricting ourselves to a single master gene  g  and a corresponding set 
 S     =    { g  1 ,  g  2 ,    . . .    ,  g r  } of slaves (see Dougherty et al.,  2009 , for a more 
general formulation). The genes in  S  may be infl uenced by genes other 
than  g . Let  Y  be the binary expression value for  g  and  X     =    ( X  1 ,  X  2 ,    . . .    , 
 X r  ) be the binary - valued expression vector for the slaves. Control by  g  
is of the following form: if  Y     =    1, then all genes in  S  take on the value 
1 with high probability. We let  p     =     P ( Y     =    1) be the probability that 
 g     →     ON . 

 If  Y     =    1, even though the master is  ON , context - dependent regula-
tion may affect the slaves. For any slave  g k      ∈     S , the conditional prob-
ability of  g k   being  ON  is given by

    P X Yk k( | ) ,= = = −1 1 1 δ     (4.1)  

where the magnitude of   δ  k   depends on the extent to which the infl uence 
of the master on  g  k  is diminished by contextual effects. To illustrate the 
meaning of this conditional probability, consider Table  4.1 . Partitioning 
the probability according to the contexts yields

    P X |Y

P Y X |C P C

P Y |C P C

j j

j

j j

j

( )

( ) )

( ) )
1

1

1

4

1

4
1 1

1

1

= = =

= =

=

=

=

∑

∑

(

(

,     (4.2)  

where  P ( C j  ) is the probability of the context  C j  . The size of   δ   1  depends 
on the conditioning of the contexts and their probabilities. Suppose 
contexts  C  2  and  C  4  cannot occur, so that  P ( C  2 )    =     P ( C  4 )    =    0. Table  4.1  
shows that

    P Y X C P Y C( | ) ( | )= = = =1 1 11 1     (4.3)  

and

    P Y X C P Y C( | ) ( | ).= = = =1 3 31 1     (4.4)   
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 Thus,  P ( X  1     =    1| Y     =    1)    =    1 and   δ   1     =    0. Conditioning with the control 
that  X  1     =    1 when  Y     =    1 occurs due to contexts  C  2  and  C  4 , so that if they 
do not occur, there is no such conditioning. A similar analysis applies 
to  P ( X  2     =    1| Y     =    1), and in this case conditioning with the control that 
 X  2     =    1 when  Y     =    1 occurs due to contexts  C  3  and  C  4 .   δ  k   is called the 
 conditioning  parameter. 

 If  Y     =    0, then the probability that  X k      =    1 depends on contextual 
effects when the master is not actively regulating the slaves. We let

    P X Yk k( | ) .= = =1 0 η     (4.5)   

 From Table  4.1 , partitioning the probability according to the contexts 
yields

    P X |Y

P Y , X |C P C

P Y |C P(C

j j

j

j j
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( ) ( )
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1

1

1
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0

= = =
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=

=

∑

∑
.     (4.6)   

 Again suppose contexts  C  2  and  C  4  cannot occur. From Table  4.1 , we 
see that

    P Y X C P Y X C( , | ) ( , | ) ,= = = = = =0 1 0 1 01 1 1 3     (4.7)   

 so that  P ( X  1     =    1| Y     =    0)    =    0 and   η   1     =    0. A positive value of   η   1  means 
that it can be that  X  1     =    1 absent the forcing control of the master when 
 Y     =    1. A similar analysis applies to  P ( X  2     =    1| Y     =    0). We refer to   η  k   as 
the  cross - talk  parameter because genes outside the model are turning 
the slaves on. 

 The model is determined by the two conditional probabilities defi n-
ing the conditioning and cross - talk parameters. They characterize our 
understanding of regulation in the model. If there is very little condi-
tioning and little cross talk, then   η  k   is substantially smaller than 1    −      δ  k  . 

 Cross talk poses implications for experimental design. Suppose one 
takes a large number of samples over unknown contexts. It may be that 
a master exhibits tight control (perhaps with no external conditioning) 
across all study samples for which the master is  ON , but when that 
master is  OFF , the behavior of the slaves is controlled by other genes. 
If under this other control the slaves are uniformly distributed  ON  and 
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 OFF , we have the situation   η  k      =    0.5. If the probability mass of the 
contexts in which  g     →     OFF  greatly outweighs the mass of those con-
texts for which  g     →     ON , then the determinative effect of  g  on the slaves 
can be very low across the study samples. Essentially, the experimenter 
is blinded. Even worse, the experimenter can be severely fooled. If the 
slaves are mostly  OFF  outside the control of the master, so that the 
cross - talk parameter is very small, even if the master exhibits little 
control when it is  ON , it might well show a stronger determinative 
effect than a master that exhibits tight control (when  ON ) but has slaves 
that respond signifi cantly to experimental conditions outside the study 
examples for which the master is  ON .  

  EXAMPLE: THE HYPOTHETICO - DEDUCTIVE 
METHOD IN CELL BIOLOGY — STRUCTURAL 
INTERVENTION 

 In this example, we provide an illustration of the deductive power of 
the scientifi c method in the context of cell biology. We will consider a 
network model for the mammalian cell cycle (Faure et al.,  2006 ) and 
show how this basic network model (the hypothesis) leads via deduc-
tion to important knowledge for cell behavior and the development of 
therapeutic intervention, to the extent that the model is valid, an issue 
we do not consider here. 

 The proposed mammalian cell cycle model is a  Boolean network  
model (Kauffman,  1993 ). In the Boolean model, gene expression is 
modeled as a binary value, 0 or 1, indicating down -  or up - regulation, 
respectively, the binary value representing expression abundance being 
below or above some given threshold. The state of the network at any 
discrete time point, 0, 1, 2,    . . .    , is given by a vector of 0s and 1s, called 
the  gene activity profi le  ( GAP ), which gives the state of each gene in 
the network. There are regulatory rules that give the value of each gene 
at time  t  as a logical function of some set of gene values at time  t     −    1. 
If there are  n  genes in the network, then there are 2  n   states. As a Boolean 
network evolves through time, it eventually reaches some set of states 
through which it cycles endlessly, this set of states being known as an 
 attractor cycle  and each state in an attractor cycle being known as an 
 attractor state . The attractor cycles of a Boolean network characterize 
its long - run behavior. 
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 A  probabilistic Boolean network  ( PBN ) is a collection of Boolean 
networks in which the PBN is governed by the regulatory logic of one 
of the constituent networks, known as  contexts , until a random switch-
ing variable calls for a change, in which case a context is randomly 
selected for governing the PBN until another switch is randomly called 
for (Shmulevich and Dougherty,  2010 ). The random switches represent 
changes in latent variables outside the model, just the kind of effect 
previously discussed in the contextual modeling of gene regulation. The 
PBN model is further randomized by allowing the possibility of random 
gene perturbations with some small probability. The general defi nition 
of a PBN does not restrict gene values to binary values, so that its 
contexts can be more general than Boolean networks; however, for 
simplicity we will assume binary context networks, that is, Boolean 
network contexts. 

 The PBN regulatory and probabilistic structures result in the model 
being a Markov chain in which the state transitions are governed by an 
 m 2  n      ×     m 2  n   transition probability matrix, where  m  is the number of 
contexts. Specifi cally, if we label the  m 2  n   states, each of the form 
(  κ  ,  x ), where   κ   is a context and  x  a GAP, by 1, 2,    . . .    ,  m 2  n  , if the 
network is in state  j  at time  t     −    1, then there is a probability  p jk   of tran-
sitioning to state  k  at time  t  and this probability can be derived from 
the defi ning network structure. Letting  N     =     m 2  n  , the transition probabil-
ity matrix is defi ned by

    P =

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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p p p
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N
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.     (4.8)   

 There exists a steady - state distribution giving the probabilities of 
being in each of the  m 2  n   states in the long run, meaning that there are 
probabilities   π  (1),   π  (2),    . . .      ,   π  ( m 2  n  ) such that, no matter what state the 
network is currently in, the probability of being in state  j  after a very 
large number of transitions converges to   π  ( j ). By defi nition, the attrac-
tors of a PBN consist of all attractors among its contexts. These play 
a major role in determining steady - state (long - run) behavior. 

 Returning to the mammalian cell cycle network, for a normal 
mammal, cell division coordinates with growth in a process tightly 

c04.indd   77c04.indd   77 6/16/2011   2:00:21 PM6/16/2011   2:00:21 PM



78 Epistemology of the Cell: Perspective on Biological Knowledge

controlled via extracellular signals indicating whether a cell should 
divide or remain in a resting state. The positive signals (growth factors) 
instigate the activation of the key gene Cyclin D (CycD). Two other 
important genes are retinoblastoma (Rb) and p27. Rb is a tumor -
 suppressor gene expressed in the absence of the cyclins that inhibits 
Rb by phosphorylation. Gene p27 is also active in the absence of the 
cyclins. Whenever p27 is present, it blocks the action of CycE or CycA 
and Rb can also be expressed, even in the presence of CycE or CycA. 
Hence, it stops the cell cycle. In this wild - type cell cycle model, when 
p27 is active, the cell cycle can be stopped in cancerous situations. 

 Following a proposed mutation in Faryabi et al. ( 2008 ), assume 
p27 is mutated and always off. In this cancerous scenario, p27 can 
never be activated. This mutation introduces a situation where both 
CycD and Rb might be inactive. As a result, in this mutated phenotype, 
the cell cycles in the absence of any growth factor. We consider the 
logical states in which both Rb and CycD are down - regulated as unde-
sirable states, when p27 is mutated. Table  4.2  summarizes the mutated 
Boolean functions derived from the functions given in Faryabi et al. 
( 2008 ), where a PBN consisting of nine genes, CycD, Rb, E2F, CycE, 
CycA, Cdc20, Cdh1, UbcH10, and CycB, is constructed based on the 
regulatory logic of Table  4.2 . The illustration of the relationship between 
these genes in the PBN is shown in Fig.  4.2 . The above order of genes 

  Table 4.2 
Logical Regulatory Functions for Mutated Boolean Cell Cycle 
Network 

   Order     Gene     Regulating Function  

   x  1      CycD     Extracellular signals  

   x  2      Rb       CycD CycE CycA CycB∧ ∧ ∧   

   x  3      E2F       Rb CycA CycB∧ ∧   

   x  4      CycE       E F Rb2 ∧   

   x  5      CycA       ( ) ( ( ))E F CycA Rb Cdc Cdh UbcH2 20 1 10∨ ∧ ∧ ∧ ∧   

   x  6      Cdc20      CycB   

   x  7      Cdh1       ( )CycA CycB Cdc∧ ∨ 20   

   x  8      UbcH10       Cdh Cdh UbcH Cdc CycA CycB1 1 10 20∨ ∧ ∧ ∨ ∨( ( ))   

   x  9      CycB       Cdc Cdh20 ∧ 1   
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is used in the binary representation of the logical states, with CycD as 
the most signifi cant bit and CycB as the least signifi cant bit. It is 
assumed that the extracellular signal to the cell cycle model is a latent 
variable. The growth factor is not part of the cell and its value is deter-
mined by the surrounding cells. The expression of CycD changes inde-
pendently of the cell ’ s content and refl ects the state of the growth factor. 
Depending on the expression status of CycD, one of two context 
Boolean networks is obtained. The fi rst context is determined from 
Table  4.2  when the value of CycD is equal to 0. Similarly, the second 
context is determined by setting the value of CycD to 1. In this cancer-
ous scenario, a good therapeutic strategy would be to intervene in such 
a way as to avoid the states with simultaneously down - regulated CycD 
and Rb. Ignoring transient states and focusing on long - run behavior, 
this means intervening so as to reduce the steady - state probability mass 
of such states.     

 Suppose our intent is to intervene by making a one - bit perturbation 
to one of the logical regulatory functions, there being 18 such functions 
in all, nine for each context (note the use of the word  “ perturbation ”  in 
two senses, one representing a random change of gene value and the 
other an alteration to the regulatory logic). A one - bit perturbation alters 

     Figure 4.2     Logical regulatory graph for the mammalian cell cycle network: blunt arrows 
stand for inhibitory effects; normal arrows stand for activations. [Qian, X., and E. R. 
Dougherty,  “ Effect of Function Perturbation on the Steady - State Distribution of Genetic 
Regulatory Networks: Optimal Structural Intervention, ”   IEEE Transactions on Signal 
Processing , 56(10), Part 1, 4966 – 4975, October, 2008.  ©  2009 IEEE].  
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the transition probability matrix because it alters gene regulation. To 
choose the optimal one - bit change, one can employ the mathematical 
theory developed in Qian and Dougherty ( 2008 ) that provides an ana-
lytic expression giving the new steady - state distribution after a one - bit 
intervention in terms of the original steady - state distribution and the 
original transition probability matrix. For each one - bit function pertur-
bation, we use this theory to fi nd the amount of benefi cial shift in the 
steady - steady distribution, the benefi cial shift being the gain in prob-
ability mass across all the desirable states. As found in Qian and 
Dougherty ( 2008 ), the two best one - bit perturbations are obtained with 
the regulatory functions for Rb and E2F in the second context, with 
these changes reducing the undesirable steady - state mass to 0.0346 and 
0.0380, respectively. While this solves the mathematical problem in the 
abstract, as always one has to take other interests into account. For 
instance, we must choose a perturbation that can be physically imple-
mented and we should choose one that alters the individual steady - state 
probabilities as little as possible while obtaining the most overall gain 
in the probability of desirable states. There are many possible criteria, 
the key being analysis within the framework of a basic mathematical 
model constituting biological knowledge (see Qian and Dougherty, 
 2008 , for a more detailed discussion). 

 The intent in this example has been to demonstrate the hypothetico -
 deductive method in the framework mathematical model characterizing 
regulatory logic in a cell. The basic scientifi c model is a gene regulatory 
network, in this case, a PBN. From the model, one can deduce the 
steady - state distribution. Although we have not done so here, one can 
also quantitatively characterize long - run network sensitivity to altera-
tions in the network (model) structure (Qian and Dougherty,  2009 ). 
Biological knowledge is represented by both the network model and 
its steady - state distribution. These represent biological knowledge just 
as Maxwell ’ s equations and relations deduced therefrom represent 
physical knowledge. In the case of biology, the knowledge concerns 
regulation and system dynamics. Shifts in the steady - state distribution 
resulting from function perturbations also represent biological knowl-
edge. Moreover, these can be used in a translational sense to arrive at 
therapeutic intervention strategies to alter the steady - state distribution 
so as to lower the probability of entering a cancerous state. 

 The model we have described incorporates only quantized gene 
expression and discrete time. It can be considered an approximation to 
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a fi ner model, say, one involving genes and regulatory proteins (tran-
scription factors), real values for the expression levels of genes and 
proteins, and continuous time rather than discrete time. In this case, 
one would have a differential equation model. However, to apply com-
putational methods one may choose to discretize a continuous model 
to arrive at a matrix model, which would be an approximation of the 
continuous differential equation model (Ivanov and Dougherty,  2006 ). 
One could also reduce a gene – protein model to just a gene model 
(Goutsias and Kim,  2004 ).  

  EXAMPLE: INTRINSICALLY MULTIVARIATE 
PREDICTIVE (IMP) GENES 

 A key characteristic of a canalizing gene is its ability to override other 
regulatory instructions. In terms of a model of transcriptional conse-
quences, this kind of control leads to a signifi cant number of genes at 
various transcript abundance levels, and under the transcriptional 
control of other genes, to move to a single state when the broadly con-
trolling gene is active — thereby exercising overriding control. This will 
result in a considerable change in the predictability of the controlling 
gene by those genes it controls. When not active, the controlling gene 
will not be predictable to any signifi cant degree by its subject genes, 
either alone or in groups, since their behavior will be highly varied 
relative to the inactive controlling gene. When the controlling gene is 
active, its behavior may not be well predicted by any one of its targets, 
but can be very well predicted by groups of genes under its control. 
This property of being intrinsically multivariate predictive (IMP) can 
be characterized mathematically. In this example, we briefl y describe 
the mathematical model and provide a biological example relating to 
the canalizing gene DUSP1. Although not necessary, for simplicity we 
assume that gene values are quantized to the binary values 0 and 1. 

 We utilize the  coeffi cient of determination  ( CoD ), which measures 
the degree to which the transcriptional levels of an observed gene set 
can be used to improve prediction of the transcriptional level of a target 
gene relative to the best possible prediction in the absence of observa-
tions. Formally, given two predictor random variables,  X  1  and  X  2 , and 
a target random variable,  Y , the CoD of the pair ( X  1 ,  X  2 ) with respect 
to  Y  is defi ned by
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    CoD X X
X X

Y
Y

Y
1 2

1 2,
( , )

,( ) = −ε ε
ε

    (4.9)  

where  ε   Y   is the error of the best predictor of  Y  in the absence of other 
observations and  ε   Y  ( X  1 ,  X  2 ) is the error of the best predictor of  Y  based 
on observations  X  1  and  X  2 . (Dougherty et al.,  2000 ). The pair ( X  1 ,  X  2 ) 
is said to be  IMP  for  Y  with respect to   λ   and   δ  , for 0    ≤      λ      <      δ      ≤    1, if 
the maximum of  CoD Y  ( X  1 ) and  CoD Y  ( X  2 ) is less than or equal to   λ   and 
 CoD Y  ( X  1 ,  X  2 )    ≥      δ   (Martins et al.,  2008 ). The defi nitions of both the CoD 
and IMP extend directly to more than two predictor variables, but here 
we will restrict ourselves to two predictor variables. The mathematical 
properties of IMP predictors have been studied in regard to various 
issues such as predictive power, predictor logic, and the entropy among 
the predictors. 

 We now illustrate the manner in which intrinsically multivariate 
prediction relates to the canalizing gene DUSP1. DUSP1 can serve as 
an effective antagonist to a variety of processes stimulated by activated 
MAPK, including both proliferation and apoptosis (Smalley,  2003 ) and 
it has been recognized to be a functional antagonist to chronic replica-
tion driven by growth factors (Noguchi et al.,  1993 ). In its role as a 
guard against the high levels of proliferation frequently associated with 
cancer in mature, differentiated tissue, DUSP1 acts by dephosphorylat-
ing a mitogen - activated kinase, MAPK1, a protein that serves as an 
integration point for a diverse set of cellular processes in addition to 
proliferation. A signifi cant fraction of the downstream transcriptional 
consequences of the dephosphorylation of MAPK1 signaling derives 
from the inability of the dephosphorylated MAPK1 to activate tran-
scription factors by phosphorylating them. Thus, a DUSP1 - induced 
change in MAPK1 phosphorylation status is expected to have a very 
signifi cant effect on the abundance of the transcripts of many genes. 

 The data set employed contains 31 melanoma samples with 587 
gene expression measurements (Bittner et al.,  2000 ). Gene expressions 
are binarized to indicate change or no change relative to a reference 
expression level for each gene individually. A change can be under -  or 
over - expression. Both cases are labeled as 1, whereas no signifi cant 
change from the reference is labeled as 0. Treating each gene as a target, 
and given   λ   and   δ  , the objective is to obtain a list of predictor pairs 
that are IMP with respect to   λ   and   δ   for the gene. For   λ      =    0.2 and both 
  δ      =    0.7 and 0.8, DUSP1 has the largest number of IMP predictor pairs 
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among all the genes, 176 for   δ      =    0.7 and 19 for   δ      =    0.8. The extent of 
DUSP1 ’ s control is exemplifi ed by the fact that 21 different genes 
appear in the 19 IMP predictor pairs for   λ      =    0.2 and   δ      =    0.8. These 
predictor pairs, along with the relevant CoDs, and the optimal predictor 
logics are shown in Table  4.3  (Martins et al.,  2008 ). The logic codes 
refer to the following predictor logics:  Y     =     X  1     ∧     X  2  (0001),   Y X X= ∧1 2 
(0010), and   Y X X= ∧1 2  (1000). In the most extreme case, the CoDs 
for RTN1 and TEAD1 individually predicting DUSP1 are both 0 but 
the CoD for their joint prediction of DUSP1 is 1.      
 

 

 

  Table 4.3 
List of  IMP  Pairs for  DUSP 1 with   λ      =    0.2 and   δ      =    0.8 

    X  1       X  2      Logic      CoD  1       CoD  2       CoD  12   

  RTN1    TEAD1    0001    0.0000    0.0000    1.0000  

  CHN1    TOP1    0001    0.0000    0.1429    0.8571  

  CASP3    STOM    0001    0.1429    0.0000    0.8571  

  EDG1    TEAD1    0001    0.0000    0.0000    0.8571  

  MMP3    TEAD1    0001    0.0000    0.0000    0.8571  

  TGFB1    FOS    0001    0.0000    0.0000    0.8571  

  UAP1    T0P1    0100    0.0000    0.1429    0.8571  

  TCF4    TEAD1    0001    0.0000    0.0000    0.8571  

  T0P1    SERPINE1    0010    0.1429    0.0000    0.8571  

  T0P1    TEAD1    0001    0.1429    0.0000    0.8571  

  T0P1    PLOD2    0010    0.1429    0.0000    0.8571  

  LAMA4    PCAF    0001    0.0000    0.0000    0.8571  

  SERPINE1    PSFL    1000    0.0000    0.0000    0.8571  

  IFIT1    TEAD1    0001    0.0000    0.0000    0.8571  

  NR4A3    FOS    0001    0.0000    0.0000    0.8571  

  CYP27A1    TEAD1    0001    0.0000    0.0000    0.8571  

  CYP27A1    ESTs    0010    0.0000    0.0000    0.8571  

  PCAF    FOS    0001    0.0000    0.0000    0.8571  

  ESTs    FOS    0001    0.0000    0.0000    0.8571  
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Translational Science     

  CHAPTER 5 

       The intention and the result of a scientifi c inquiry is to obtain 
an understanding and a control of some part of the universe. 

   — Arturo Rosenblueth and Norbert Wiener    

 More than providing predictions of the future, science provides the 
basis for controlling the future. Scientifi c knowledge is operational 
knowledge; indeed the operational defi nitions of a scientifi c theory 
provide the means of validation by relating the abstract symbols of the 
mathematical model to physical operations. Transforming the mathe-
matical model therefore corresponds to transforming the physical 
world. In this sense, scientifi c knowledge is translated into action. 
 Translational science  transforms a mathematical model, whose purpose 
is to provide a predictive conceptualization of some portion of the 
physical world, into a model characterizing human intervention (action) 
in the physical world. Scientifi c knowledge is translated into practical 
knowledge by expanding a scientifi c system to include inputs that can 
be adjusted to affect the behavior of the system and outputs that can 
be used to monitor the effect of the external inputs and feed back infor-
mation on how to adjust the inputs (Dougherty,  2009a ). 

 The scientifi c enterprise is pragmatic, its conception of truth being 
based on predictions in the future, so that scientifi c knowledge is con-
tingent, always open to refutation by new observations. Translational 
science goes further. It aims to characterize intentional intervention in 
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the physical world for the purpose of attaining a desired end. Since any 
physical action upon a physical system resulting from human action 
must be understood in terms of measurements relating to those physical 
actions, the translational scientifi c model is itself a scientifi c model. It is 
the purpose to which a model is put that makes it translational. Indeed, 
for the applied scientist, a model is ipso facto translational because the 
intent is to use it to accomplish some end. In this vein, Rosenblueth and 
Wiener write,  “ The intention and the result of a scientifi c inquiry is to 
obtain an understanding and a control of some part of the universe ”  
(Rosenblueth and Wiener,  1945 ), where for Wiener “understanding” 
means a mathematical model. For them, science and translational 
science are inextricably linked, the ultimate purpose of acquiring scien-
tifi c knowledge being to translate that knowledge into action. 

 The conceptualization of a transformation of a physical process 
takes the form of a mathematical operator on some mathematical 
system, which itself is a scientifi c model for the state of nature absent 
the transformation. There are two basic operator problems concerning 
systems. The fi rst is  analysis : Given a system and an operator, what 
can be said about the properties of the output system in terms of the 
properties of the input system? It might be mathematically diffi cult to 
characterize completely the output system given the complete input 
system or we may only know certain properties of the input system, so 
that the best we can hope for is to characterize related properties of the 
output system. 

 The second basic operator problem, the one most relevant to trans-
lational science, is  synthesis : Given a system, we would like to design 
an operator to transform the system in some desirable manner. Whereas 
the purpose of science, absent translation, is to gain knowledge of the 
natural world, translational science is about changing it, and synthesis 
is the act of designing operations to make those changes. Synthesis 
represents the critical act for human intervention and forms the existen-
tial basis of engineering. One could proceed in a trial - and - error manner, 
trying one operation after another and observing the result. In this case, 
the operator is not constructed based on knowledge of the scientifi c 
system and synthesis is not part of translational science; rather, it is a 
form of groping in the dark, where one tries one operation after another 
in the hope of getting lucky, operator mining instead of data mining. 
Such groping in the dark does not preclude analysis, and therefore does 
not preclude translational scientifi c knowledge; however, the critical 
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engineering aspect, that being operator creation for the purpose of 
transforming nature, is not translational in the scientifi c sense. 

 For synthesis to properly occur within translational science requires 
that synthesis begin with a mathematical theory constituting the rele-
vant scientifi c knowledge and the theory be utilized to arrive at an 
optimal (or close to optimal) operator for accomplishing the desired 
transformation under the constraints imposed by the circumstances. In 
that sense, translational scientifi c synthesis, which is synonymous with 
modern engineering, begins with optimal time series fi ltering in the 
classic work of Kolmogorov ( 1941 ) and Wiener ( 1949 ) — although the 
latter was published in 1949, an unpublished version appeared in 1942. 
One begins with a scientifi c model and expands the model by adjoining 
operators with which to desirably alter the behavior of the original 
system. A criterion exists by which to judge the goodness of the response 
and the goal is to fi nd an optimal way of manipulating the system. In 
the classic Wiener – Kolmogorov theory, the scientifi c model is a signal 
and the translational problem is to linearly operate on the signal so as 
to transform it to be more like some ideal (desired) signal. The synthesis 
problem is to fi nd an optimal weighting function and the goodness 
criterion is the mean square difference between the ideal and fi ltered 
signals (for a detailed account of the translational nature of the Wiener –
 Kolmogorov theory, see Dougherty,  2009b ). 

 Synthesis via mathematical optimization within the framework of 
a scientifi c model does not mean that one can obtain a corresponding 
physical transformation, but it does provide both a target for physical 
design and a benchmark for performance. Pugachev writes,

  The theory of optimal operators does not enable operators to be found 
directly which can be embodied forthwith in real constructions. It only 
enables those mathematical operations on input signals to be determined 
for which the theoretical limit of accuracy is achieved, for given probabil-
ity characteristics of the mode of operation and noise, having regard to 
the nature of the problem and the intrinsic properties of the available data. 
Accordingly, the practical value of the theory of optimal operators con-
sists mainly in the fact that it makes possible the determination of the 
theoretical optimum towards which the design engineer must strive in 
designing a real control system.  (Pugachev,  1965 )    

 Having conceptualized the translational problem and found an 
optimal solution within the mathematical formalization of the problem, 
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the scientist and mathematical engineer can now turn to the technologi-
cal design engineer to build a device that acts in the physical world in 
a manner corresponding to the optimal operator within the translational 
scientifi c model — or at least approximates to a satisfactory degree the 
action of the optimal operator. 

 Although there exists no standard protocol, synthesis in transla-
tional science generally involves four steps: (1) construct the mathe-
matical model; (2) defi ne the optimization problem; (3) solve the 
optimization problem; and (4) to the extent possible, physically imple-
ment the solution. One might argue that, unless a reliable model exists, 
costs determined, and an optimal operator implemented, posing and 
solving the optimization problem is of little benefi t. On the contrary, 
the existence of a translational mathematical system can guide the 
scientist in building a model that can be fruitfully applied, the theoreti-
cal engineer in studying costs and benefi ts that accrue from certain 
kinds of actions, and the technological engineer in devising improved 
devices or treatments. In a properly functioning relationship, the scien-
tist does not hand the engineer a set of data and ask the engineer to fi nd 
something in it; instead, assuming there is a translational goal, then the 
overall enterprise should be guided by the goal and this goal should 
already have led to a carefully designed experiment aimed at elucidat-
ing relationships deemed useful for achieving the goal. 

 For translation, a critical issue is to form the conceptualization at 
the right level of abstraction. The model must be suffi ciently complex 
to permit the translational problem to be formulated within it to a 
degree suffi cient for the application at hand and it must be simple 
enough that the translational problem is not obscured by too much 
structure, the necessary parameters can be well enough estimated, and 
the optimization is mathematically and computationally tractable. The 
desire for simplicity drives much of the work of engineers: Reduce 
(compress) the model to achieve tractability while at the same time 
keeping suffi cient information so that the resulting solution, while 
suboptimal from the perspective of the full model, is still acceptable. 
To achieve this end, it is important for the success of the translational 
enterprise that there be tight interaction between the scientist and engi-
neer when it comes to model complexity. 

 There can be many ways of formulating a mathematical model 
constituting the same scientifi c knowledge, but the  right  representation 
(mathematical formulation) can be crucial both for recognizing how to 
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pose the translational problem and for solving it. Many problems have 
stood unsolved for some time until someone discovers the appropriate 
transformation of the system that puts it in a form more suitable to 
solution (sometimes very easily once the system is transformed). In 
addition to facilitating a mathematical solution, the proper formulation 
may pave the way for successful implementation of the physical system. 

 Translational science is mathematical engineering, applied math-
ematics with a translational purpose. Whereas the pure mathematician 
is motivated by internal mathematical questions, the applied mathema-
tician develops mathematics for science or engineering. Both can be 
excellent mathematicians; their domains are different, although there 
is no clear line of demarcation between them. The theoretical physicist 
and theoretical biologist are of necessity practitioners of applied math-
ematics. Their expertise is quite different from the experimental physi-
cist or experimental biologist, who must design experiments to answer 
questions or validate hypotheses arising from theoretical speculation. 
All of these categories lie on a continuum; nevertheless, they must 
be recognized because each contributes to scientifi c knowledge in its 
own way. 

 Wiener recognized the diffi culties that the mathematical require-
ment of science and translational science would present for medicine 
when, in 1948, he wrote,

  It is these boundary regions of science which offer the richest opportuni-
ties to the qualifi ed investigator. They are at the same time the most 
refractory to the accepted techniques of mass attack and the division of 
labor. If the diffi culty of a physiological problem is mathematical in 
essence, ten physiologists ignorant of mathematics will get precisely as 
far as one physiologist ignorant of mathematics. If a physiologist who 
knows no mathematics works together with a mathematician who knows 
no physiology, the one will be unable to state his problem in terms that 
the other can manipulate, and the second will be unable to put the answers 
in any form that the fi rst can understand. Dr. Rosenblueth has always 
insisted that a proper exploration of these blank spaces on the map of 
science could only be made by a team of scientists, each a specialist in 
his own fi eld but each possessing a thoroughly sound and trained acquain-
tance with the fi elds of his neighbors; all in the habit of working together, 
of knowing one another ’ s intellectual customs, and of recognizing the 
signifi cance of a colleague ’ s new suggestion before it has taken on a full 
formal expression. The mathematician need not have the skill to conduct 

c05.indd   89c05.indd   89 6/16/2011   2:00:23 PM6/16/2011   2:00:23 PM



90 Epistemology of the Cell: Perspective on Biological Knowledge

a physiological experiment, but he must have the skill to understand one, 
to criticize one, and to suggest one. The physiologist need not be able to 
prove a certain mathematical theorem, but he must be able to grasp its 
physiological signifi cance and tell the mathematician for what he should 
look.  (Wiener,  1948 )    

 In the kind of collaboration envisioned by Wiener, the mathemati-
cian must be an expert mathematician and possess the ability to criticize 
and suggest appropriate experiments, and the experimentalist must be 
an expert scientist and be able to grasp the scientifi c signifi cance of a 
mathematical proposition and guide the mathematician in the process of 
symbolic formalization. Wiener is not calling for so - called multidisci-
plinary individuals who are neither expert scientists nor expert mathema-
ticians; rather,  “ each is a specialist in his own fi eld. ”  There is little benefi t 
in a brilliant biologist surrounding himself with assistants possessing 
only superfi cial training in mathematics, nor for a fi rst - rate applied 
mathematician to work with any but the best biologists. Rosenblueth 
was a brilliant physiologist and he chose to work with the greatest math-
ematical engineer of the twentieth century. Together they produced 
seminal work in systems biology (Wiener and Rosenblueth,  1946 ). 

 Wiener ’ s conception of collaboration puts strong demands on the 
educational process. The mathematician cannot be a scientifi c dilettante 
carrying his toolbox from one discipline to another searching for some 
problem that directly fi ts some existing theory; rather, the mathemati-
cian should possess suffi cient biological knowledge and experimental 
profi ciency to recommend and evaluate experiments. The mathemati-
cian need not know the physical details of carrying out an experiment 
but must be able to reason from a mathematical model to an operational 
conception in the physical domain. In the other direction, the biologist 
need not know the formal mathematical structure behind a theory or 
possess the ability to prove theorems but should appreciate the manner 
in which relevant theorems manifest themselves in the physical world. 
Implicit is that the relevant theorems be understood. While a biologist 
need know neither the measure - theoretic underpinnings of probability 
theory nor proofs of theorems in the theory of random processes, 
because biological knowledge of the cell is constituted within the 
theory of stochastic dynamical systems, he or she should be familiar 
with basic defi nitions and theorems that relate to fundamental cellular 
processes — for instance, those pertaining to the covariance structure of 
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stochastic processes and the steady - state distribution of a Markov 
chain. Indeed, how can a biologist appreciate the experimental or theo-
retical requirements relating to a Markovian regulatory model without 
knowing the basics? Wiener ’ s investigative paradigm does not preclude 
the advancement of knowledge when the spheres of the mathematician 
and experimentalist are disjoint; rather, it proscribes the manner of 
effi cient investigation and the path to deep discoveries. Basically, 
Wiener posits two requirements: (1) the mathematician and experimen-
talist are experts in their respective fi elds; and (2) the domain of inter-
section between their knowledge sets is suffi ciently large to allow 
fruitful interaction. Education should aim to achieve these goals.  

  EXAMPLE: EXTERNAL CONTROL IN GENE 
REGULATORY NETWORKS 

 In Chapter  4 , we considered translational synthesis in the form of 
structural intervention in a mammalian cell cycle network. The trans-
lational character of the intervention is refl ected in four aspects of the 
intervention protocol:

   1.     The interaction among key genes in the cell cycle was modeled 
(via a probabilistic Boolean network);  

  2.     An optimization criterion was posited (minimize the undesirable 
probability mass in the steady state);  

  3.     A class of actions was specifi ed (one - bit perturbations in the 
regulatory rules); and  

  4.     Mathematical methods were used to fi nd an optimal action (via 
Markov chain perturbation theory).    

 Whereas structural intervention involves a single change to the 
regulatory logic of a gene network, in the present example we will 
consider translational intervention in the form of external control over 
time. At each time instant whether and how an external action should 
be taken to best achieve a desired goal must be decided (Datta and 
Dougherty,  2007 ). External control takes advantage of the fact that the 
dynamic behavior of a probabilistic Boolean network can be modeled 
by a Markov chain, thereby making intervention in PBNs amenable to 
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the theory of Markov decision processes. Control is generally based on 
fl ipping (or not fl ipping) the value of a control gene. The translational 
problem is to arrive at a series of intervention decisions whose objective 
is to decrease the long - run likelihood of states favorable to pathological 
cell functionality. 

 To accomplish this goal, the task of fi nding an effective interven-
tion strategy has been formulated as a classical sequential decision -
 making optimization (Datta and Dougherty,  2007 ). Two kinds of costs 
contribute to measure the goodness of an intervention at any stage in 
the treatment process: (1) a cost that discriminates between the desir-
able and undesirable states of the system; and (2) a cost of intervention 
that quantifi es the negative effect of an intervention, say, drug treatment 
or chemotherapy. These are combined into a total cost per stage and 
the objective of the decision maker is to minimize the accumulated cost 
associated with the progression of the network. To wit, given the state 
of the network, an effective intervention strategy identifi es which action 
to take so as to minimize the overall cost. The devised intervention 
strategy can be used as a therapeutic strategy that alters the dynamics 
of aberrant cells to reduce the long - run likelihood of undesirable states 
favorable to the disease. 

 In this framework, the translational problem assumes the existence 
of an external regulator and a binary intervention input  u ( t ) at each 
stage  t . The value, 0 or 1, of the intervention input  u ( t ) specifi es the 
action on a control gene. Treatment alters the status of the control gene. 
If treatment is applied,  u ( t )    =    1, then the state of the control gene is 
toggled; otherwise, the state of the control gene remains unchanged. 
Given the cost - per - stage function, the objective is to derive an optimal 
intervention strategy from among a class of allowable strategies. 
Essentially, a strategy is a function that, at each stage, takes as input 
the current state (and perhaps the history) of the network and outputs 
a decision:  u ( t )    =    0 or  u ( t )    =    1. The decision maker searches for an 
optimal strategy that minimizes the expected cost aggregated over the 
long - run progression of the regulatory network. These kinds of prob-
lems have a long history in control engineering (Bertsekas,  1995 ). 

 We illustrate the methodology in a case where the intervention 
objective is based on a study in which experimentally increasing the 
levels of the Wnt5a protein secreted by a melanoma cell line via genetic 
engineering methods directly altered the metastatic competence of that 
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cell as measured by the standard in vitro assays for metastasis and in 
which an intervention that blocked the Wnt5a protein from activating 
its receptor, the use of an antibody that binds the Wnt5a protein, sub-
stantially reduced Wnt5a ’ s ability to induce a metastatic phenotype 
(Weeraratna et al.,  2002 ). These observations suggest a control strategy 
that reduces the WNT5A gene ’ s action in affecting biological regula-
tion, because disruption of this infl uence could reduce the chance of a 
melanoma metastasizing, a desirable outcome. In (Pal et al.,  2006 ), a 
seven - gene PBN containing the genes WNT5A, pirin, S100P, RET1, 
MART1, HADHB, and STC2 was considered. Desirable states were 
those in which WNT5A was down - regulated, the control gene was 
pirin, a cost function was defi ned to refl ect the goal and the cost of 
intervention, and the optimal long - run control strategy was derived by 
dynamic programming optimization techniques. Figure  5.1 (a) shows 
the original steady - state distribution of the gene regulatory network  
absent control and Fig.  5.1 (b) shows the steady - state distribution of the 
controlled network. We observe a marked decline in the undesirable 
probability mass (black) in the controlled network.   

 The classical intervention optimization just described has two 
drawbacks. First, it requires inference of the Markov chain associated 

     Figure 5.1     Steady - state distribution of PBN: (a) original network; (b) with intervention. 
Desirable states are gray and undesirable states are black. [Pal, R., Datta, A., and E. R. Dougherty, 
 “ Optimal Infi nite Horizon Control for Probabilistic Boolean Networks, ”   IEEE Transactions on 
Signal Processing , 54(6), Part 2, 2375 – 2387, June, 2006.  ©  2009 IEEE].  
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with the PBN, and second, the computational complexity of the opti-
mization algorithm increases exponentially with the number of genes 
in the model. Both the inferential and computational impediments to 
the design of control strategies can be eased by utilizing only partial 
information regarding the model. The resulting policy may be subop-
timal from the perspective of the full model, but it may be all that is 
possible given the inference and computational requirements of the 
full model. One such suboptimal long - run policy is based on the mean 
fi rst passage times of the network and utilizes the heuristic that it is 
preferable to reach desirable states as early as possible and preferable 
to leave undesirable states as early as possible (Vahedi et al.,  2008 ). 
Another such policy checks to see if changing the transition probabil-
ity matrix for a given control gene in a particular state benefi cially 
alters the steady - state distribution by increasing the steady - state prob-
abilities of desirable states and implements such changes over time 
(Qian et al.,  2009 ). In the fi rst case, the set of mean fi rst passage times 
constitutes the partial knowledge required for the algorithm, and in the 
second, the steady - state distribution constitutes the required partial 
knowledge. 

 If we simply focus on the diffi culty of inferring a full model, then 
there are two engineering approaches that can be employed: adaptive 
control (Kumar and Lin,  1982 ) and robust control (Nilim and El Ghaoui, 
 2005 ). In adaptive control, the model and the control strategy are simul-
taneously estimated online as the data sequence is input into the adap-
tive algorithm. Not only does this avoid the need for full model 
estimation, it also allows the controller to adapt to changes in underly-
ing physical processes that would perturb the model. With robust 
control, it is assumed that the model is not known with certainty, so 
that the model is assumed to belong to an  uncertainty class , and the 
control strategy is designed to take into account the performance across 
the entire uncertainty class. For instance, in the case of PBNs, robust-
ness can be with respect to regulation or the effect of latent variables 
on the model (Pal et al.,  2008 ). Adaptive and robust methods result in 
control strategies that are suboptimal relative to optimization for the 
full model, but they often provide good performance when certain 
knowledge of the full model is not available. Whereas the scientist 
might not be satisfi ed with such uncertainty with regard to the scientifi c 
model, the translational scientist has an application in mind and poses 
the problem in a way compatible with the state of partial knowledge. 
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If the goal is curing patients, then the experimentalist needs to be 
guided by the engineer to design the kind of experiments that best 
support the translational goal and the engineer needs to be guided by 
the clinician as to the kind of effects that the translational solution 
should provide.    
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Stochastic Validation: 

Classifi ers     

  CHAPTER 6 

       The elaborate mechanism built on the theory of infi nitely 
large samples is not accurate enough for simple laboratory 
data. Only by systematically tackling small sample problems 
on their merits does it seem possible to apply accurate tests 
to practical data. 

   — Ronald Fisher    

 Having discussed the role of validation in providing a notion of truth 
in scientifi c epistemology, in this chapter we will consider concrete 
examples of validation in stochastic modeling in order to illustrate 
various issues that arise. Because both model formation and model 
validation involve observations, we will see that the two are not unre-
lated and, in fact, can be strongly dependent. The discussion will focus 
on particular models because only in that way can the epistemological 
subtleties of stochastic modeling be made concrete. We will pay much 
attention to classifi er models. There are three reasons for this: (1) they 
have been studied for many years; (2) they are relatively simple; and 
(3) although the mathematical issues are technically diffi cult, they can 
be described in relatively simple terms, so as to illustrate the epistemo-
logical issues. Owing to their fundamental role in biological knowl-
edge, in the next chapter we will consider validation of regulatory 
network models. Consideration of two model families will illustrate 
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how validation criteria must be specifi cally tailored to a particular 
model family. 

 To begin, let us return to Newton, in particular, his second law of 
motion, which relates force and acceleration. Everyday human experi-
ence leads us to believe that there is some relation between pushing or 
pulling a body and the acceleration of the body. A billiard ball is sta-
tionary and remains so until hit by another billiard ball, the greater the 
impact, the greater the acceleration. To obtain scientifi c knowledge, one 
can design an experiment in which force and acceleration can be mea-
sured and obtain a relation between them by varying the amount of 
force. For instance, a block can be pulled across a frictionless plane 
with varying levels of force to produce varying levels of acceleration. 
It is observed that the force and acceleration are proportional, meaning 
that there is a relation  f     =     ma , where  f  is the force,  a  the acceleration, 
and  m  the constant of proportionality, called the mass of the body. This 
equation represents Newton ’ s second law. Force and acceleration are 
vectors and  f  is the resultant of all the forces acting on the body. 

 When the experiment is performed, the equation will not fi t the 
data perfectly. One reason is measurement error. As experimental capa-
bility increases, measurement error will be reduced; nonetheless, it will 
never be completely eliminated. Moreover, even if there were perfect 
measurement accuracy, a second imperfection in the fi t would remain, 
that being the effect of forces outside those being measured, for instance, 
friction from the  “ frictionless ”  plane, air resistance, and the gravita-
tional effect of Saturn. Try as one might, there will be a host of latent 
factors that cannot be taken into account. Not only do these latent 
factors affect the data, they do so in a stochastic manner, such as the 
changing position of Saturn relative to the experimental setting. Thus, 
force and acceleration must be treated as random variables. In fact, the 
situation is more complicated than this because the supposed  “ constant ”  
of proportionality is not constant, mass depending on velocity. Hence, 
the mass is changing during the duration of the experiment, so that the 
range of the experiment affects the distribution of the measurements. 
In actuality, even absent experimental error, one would not obtain a set 
of data points lying on the line  f     =     ma , but a scattering of data pairs 
( f ,  a ). Thus, a better scientifi c model than the equation  f     =     ma  would 
be a probability distribution governing the random variable pair ( F ,  A ). 

 A scientifi c theory is neither true nor false in an absolute sense. 
Newton ’ s second law is a good example. The  “ truthfulness ”  of the law 
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depends on the accuracy of its predictions and predictive capability 
determines the validity of the law. Validity is conditional: The condi-
tions under which the law is applied set the range of its predictive 
accuracy and therefore its degree of  “ truthfulness. ”  If the body is small, 
then the gravitational effects of Saturn are negligible; at low velocities 
mass is virtually constant; and a carefully designed experimental appa-
ratus can minimize effects such as friction. The model  f     =     ma  possesses 
functional validity under certain conditions; that is, if the physical 
conditions are such that the effects of latent factors are negligible. 
Depending on one ’ s desire to increase the scope of the relation between 
force, mass, and acceleration, the complexity of the model must be 
increased and a probabilistic framework employed to take into account, 
to the extent possible, the effects of factors outside the model. One 
might argue that, if one includes all forces acting on the body, so that 
there are no latent factors, then (assuming we ignore the change of 
mass) the model  f     =     ma  would hold exactly, so that stochasticity is 
simply a result of ignorance or experimental incompleteness. But this 
argument would bring us back to Laplace ’ s  “ suffi ciently vast ”  intelli-
gence. It is an empirically vacuous argument to suggest that all forces 
could be taken into account. One might make a metaphysical argument 
but this would be outside the domain of science. 

 All scientifi c models are idealizations and the scope of any scien-
tifi c theory depends upon the intention of the scientist, who decides the 
portion of Nature to be probed. The wider the fi eld of relations desired, 
the greater the experimental burden and the greater the complexity of 
the resulting mathematical model. In his seminal treatise on random 
geometrical measurements, Georges Matheron states,

  In general, the structure of an object is defi ned as the set of relationships 
existing between elements or parts of the object. In order to experimen-
tally determine this structure, we must try, one after the other, each of the 
possible relationships and examine whether or not it is verifi ed. Of course, 
the image constructed by such a process will depend to the greatest extent 
on the choice made for the system of relationships considered possible. 
Hence this choice plays  a priori  a constitutive role (in the Kantian 
meaning) and determines the relative worth of the concept of structure at 
which we will arrive.  (Matheron,  1975 )    

 Science is about modeling relations among phenomena and the 
set of relations in Nature is vast. Hence the scientist ’ s choice of the 
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universe of relations to be examined frames at the outset the very kind 
of mathematical structure that can potentially result because this choice 
determines the manner in which Nature is to be probed, that is, the 
aspects of Nature to be modeled. Ipso facto, the chosen model repre-
sents a choice of idealization on the part of the scientist. Since the 
model constitutes scientifi c knowledge relative to the phenomenal rela-
tions considered, the scientist ’ s choice regarding the relations to be 
considered represents an a priori decision as to the nature and scope of 
that knowledge. This choice, if made in the framework of a sound 
conceptualization of the problem at hand, differentiates a prudently 
designed experiment from  “ groping in the dark. ”  Science uses a long -
 barrel rifl e, not a shotgun. 

 Scientifi c focus depends not only on mathematical and experimen-
tal considerations but also on the interest of the scientist. Consequently, 
subjectivity enters the scientifi c enterprise. A virtually unlimited number 
of experiments can be performed and those relatively few actually 
performed are somehow determined by psychological, cultural, and 
metaphysical considerations. Schr ö dinger writes,  “ A selection has been 
made on which the present structure of science is built. That selection 
must have been infl uenced by circumstances that are other than purely 
scientifi c ”  (Schr ö dinger,  1957 ). The selection is infl uenced by the inter-
ests and goals of the investigator. Schr ö dinger emphasizes the emotive 
drive in scientifi c practice and reinforces the inherent pragmatism of 
science when he writes,  “ The origin of science (is) without any doubt 
the very anthropomorphic necessity of man ’ s struggle for life ”  
(Schr ö dinger,  1957 ). 

 Suppose a biologist believes that a certain transcription factor is 
related to the expression of a certain gene. To model the relation, an 
experiment is performed with a particular cell line and measurements 
are randomly taken across different cells over time to produce a set of 
measurements, ( x  1 ,  y  1 ), ( x  2 ,  y  2 ),    . . .    , ( x n  ,  y n  ), where  x i   and  y i   measure 
the mRNA abundances for the gene,  g  1 , governing the transcription 
factor and the gene,  g  2 , hypothesized to be under the regulatory control 
of the transcription factor, respectively. Notice that the model does not 
involve the transcription factor directly because the measurement 
process provides gene expression readings. If the abundances are pro-
portional, then one would expect the correlation coeffi cient between 
them to be close to 1 and, if this is what the data show, then one might 
hypothesize a linear relation of the form  y     =     cx . This is the situation in 
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Fig.  6.1 (a), where the data points are close to the line  y     =     x /2, and one 
might proceed under the assumption that the slight variation is mainly 
due to experimental error. In parts (b) and (c) of the fi gure, the data 
points are increasingly scattered and in these instances it would be 
imprudent of assume the variation is due only to experimental error; 
instead, one would better conclude that there is a probabilistic relation 
between the random variables  X  and  Y , and that this relation should 
be modeled by a probability distribution. Model distributions corre-
sponding to the parts of Fig.  6.1  are shown in Fig.  6.2 . In each case, 
the surface is defi ned by a probability distribution function  F ( x ,  y ). The 
mathematical interpretation of  F ( x ,  y ) is that, given any region in 
the ( x ,  y ) plane, the probability of a random measurement pair ( X ,  Y ) 
falling in the region is given by the volume under the surface deter-
mined by the region. The validity of such a probability distribution 
depends on the accuracy of such probabilities in regard to future obser-
vations: Does the model  F ( x ,  y ) predict well the distribution of actual 
measurements?   

 The same line,  y     =     x /2, appears in all parts of Figs.  6.1  and  6.2 . If 
there were a proportional relation between the  x  and  y  measurements, 

     Figure 6.1     Scatter plots with different degrees of dispersion.  
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     Figure 6.2     Distributions from which the data points of Fig.  6.1  have been randomly sampled.  

−4 −2 0 2 4
−2

0
2

0
0.25

0.5
0.75

1

−4 −2 0 2 4
−2

0
2

0
0.25
0.5

0.75
1

−4 −2 0 2 4
−2

0
2

0
0.25
0.5

0.75
1

(a) (b) (c)

c06.indd   101c06.indd   101 6/16/2011   2:39:17 PM6/16/2011   2:39:17 PM



102 Epistemology of the Cell: Perspective on Biological Knowledge

then one could say that the line represents a deterministic model refl ect-
ing this relationship; however, such a statement makes no sense in a 
probabilistic model. To understand the meaning of the line, recall 
Hume ’ s notion of expectation: If we observe event  A , then we expect 
to observe event  B , but there is no certainty. Also recall Newton ’ s state-
ment in the  Principia :  “ Our purpose is    . . .    to apply what we discover 
in some simple cases as principles, by which, in a mathematical way, 
we may estimate the effects thereof in more involved cases. ”  If there 
were a deterministic proportional relation between the expression,  x , of 
gene  g  1  and the expression,  y , of gene  g  2 , then, given a measurement 
of the expression of  g  1  we could directly compute the expression of  g  2 . 
However, in the probabilistic setting, given the expression of  g  1 , the 
expression of  g  2  is a random variable possessing its own distribution, 
known as the  conditional distribution  of  Y  given  x . The average value 
of  Y  given  x  is known as the  conditional expectation  of  Y  given  x  and 
is denoted by  E [ Y | x ]. In Hume ’ s terminology, this is the value of the 
expression of gene g 2  that we expect given the expression measurement 
 x  for gene  g  1 . In Newton ’ s terminology, this is our estimate of the 
expression of  g  2  given we have observed expression  x  for  g  1 . These 
terminologies refer to the uncertainty that must arise from focusing on 
a set of variables and ignoring others, but they refer to different aspects 
of it. Conditional expectation (Hume) refers to the average value of  Y  
given the observation  x , which is a statement about the model [the joint 
probability distribution,  F ( x ,  y ) for  X  and  Y ]. Estimation (Newton) 
refers to our predictions regarding future occurrences. Expectation and 
estimation are tied together because (with suitable mathematical defi ni-
tions) the optimal estimate of future predictions is the conditional 
expectation. 

 For a specifi c point  x , the conditional expectation  E [ Y | x ] is a 
number. If we let  x  vary then it becomes a function, which in our 
examples has been a straight line, but need not be. The conditional 
expectation function is a partial representation of the full probability 
distribution. The degree of partiality is characterized by the accuracy 
of predictions. If the conditional expectation is used as an estimate of 
future observations, then prediction accuracy for a specifi c observation 
 x  is refl ected by tightness of the conditional distribution around the 
point  E [ Y | x ]. This is measured by the  conditional variance , which is 
simply the variance of the conditional distribution. From the perspec-
tive of the entire distribution of  X  and  Y , the degree of partiality is 
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characterized by the tightness of the full distribution  F ( x ,  y ) about the 
line  E [ Y | x ] determined by letting  x  vary. Referring to Fig.  6.2 , the con-
ditional variances increase from part (a) to part (b) to part (c), so that 
the partial description given by the conditional expectation line becomes 
poorer. 

 Continuing with the biological problem at hand, it is much more 
likely that the relation between gene expressions will be nonlinear in 
nature, for instance, due to thresholds governing activation and deacti-
vation. Moreover, owing to the high degree of interaction in the regula-
tory system of the cell and the chemical basis of signal transmission, 
one is likely to observe a high degree of stochasticity owing to latent 
factors and variability in transmission timing. Thus, the data are likely 
to be scattered with no discernable linear relationship between the 
variables, thereby indicating a joint probability distribution for the gene 
expressions exhibiting substantial variance and a nonlinear conditional 
expectation. This is the situation in Fig.  6.3 , where the data indicate 
three distinct regions, depending on the expression level  x  1  of gene  g  1 : 
(1) a low, essentially constant, basal expression level,  y  1 , for gene  g  2  
for  x  1     ≤     u  1 ; (2) a somewhat linear increase in  g  2  expression for increas-
ing  g  1  expression for  u  1     <     x  1     <     u  2 ; and (3) a leveling off of  g  2  expression 

     Figure 6.3     Scatter plot and conditional expectation.  
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at  y  2  for  u  2     ≤     x  1 , indicating that beyond  u  2 , greater  g  1  expression has 
little or no effect. The solid line indicates the conditional expectation 
of a particular probability distribution (not shown) that provides a good 
model for the data. Note that, according to the data, a good model 
would have to exhibit small conditional variance in the regions of 
constant conditional expectation and greater conditional variance in the 
region of increasing conditional expectation.   

 Epistemologically, the conditional expectation can also serve as a 
mathematical model for the random variables  X  and  Y , albeit one that 
contains less predictive power than the full joint distribution of  X  and 
 Y . To see this, suppose we ask the following question: What is the 
probability that a randomly observed pair ( X ,  Y ) will fall in some region 
in the plane? This question is answerable from the joint distribution but 
it is not answerable from the conditional expectation function or from 
knowledge of all the conditional distributions. Now consider the fol-
lowing question: For a randomly observed pair ( X ,  Y ), if  X     =     x , what 
is the probability that  y  1     ≤     Y     ≤     y  2 ? This question is answerable from the 
joint distribution and from the conditional distribution but it is not 
answerable from the conditional expectation. Finally, consider the 
question: For a randomly observed pair ( X ,  Y ), if  X     =     x , what is the 
optimal prediction for  Y ? This question can be answered from the con-
ditional expectation because the optimal prediction is the conditional 
expectation, as well as from the joint distribution and the conditional 
distributions because the conditional expectation can be derived from 
these. In sum, there is increasing predictive power as we move from 
the conditional expectation, to the conditional distribution, to the joint 
distribution. 

 The preceding propositions concerning increasing predictive power 
are based on the assumption that the full distribution is known, the 
conditional distributions are mathematically derived from the full joint 
distribution, and the conditional expectations are derived from the 
conditional distributions. Scientifi cally, however, one has a model 
whose accuracy depends on the accuracy of predictions made from the 
model and, in practice, certain model parameters are estimated from 
empirical data. While it may be desirable to model the joint distribution, 
it may require much less data to obtain an accurate estimate of the 
conditional expectation function, to the extent that predictions based 
on the directly estimated conditional expectation are better than those 
based on the conditional expectation derived from the estimate of the 
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full joint distribution. Although in principle it may be better to have a 
more complex model that reduces to a simpler model by eliminating 
or fi xing certain variables within the complex model, epistemological 
judgments concerning model superiority must ultimately rest with pre-
dictive capacity. 

 This issue is prominent in translational science, where often a sci-
entist ’ s conceptualization is a mean approximation, which is the con-
ditional expectation function. Systems are then designed, not on a full 
probabilistic description of the variables, but on the conditional expec-
tation, both in engineering and statistics, where the conditional expecta-
tion function is typically referred to as the regression function. To 
increase the predictive accuracy, and therefore the performance of any 
operational system derived from the model, it is common to replace the 
deterministic model  y     =     E [ Y | x ] by  y     =     E [ Y | x ]    +     N , where  N  is a random 
variable called  “ noise. ”  The  “ noise ”  term is put in to partially take into 
account the variability inherent in the joint distribution, which itself is 
diffi cult to model. The model  y     =     E [ Y | x ]    +     N  is  “ between ”  the condi-
tional expectation and the full joint distribution. Whether or not this 
additive noise model is benefi cial depends on the degree to which it 
increases prediction accuracy relative to the deterministic model. 

 For the reasons mentioned at the beginning of the chapter, we will 
pay particular attention to classifi cation. Consider the gene expression 
random variables corresponding to the data in Fig.  6.3  and suppose that, 
based on the value of  X , we are interested in predicting when the regu-
lated gene is expressing above some threshold; for instance, when 
 Y     ≥     t     =    ( y  1     +     y  2 )/2. A binary decision is to be made: Predict that the 
expression of the regulated gene will exceed  t  or not exceed  t , depend-
ing on the observed value of  X . If we label the regions  y     ≥     t  and  y     <     t  
by 1 and 0, respectively, and denote the predicted label by   ψ  ( X ), then, 
from the fi gure, it looks like a reasonable decision procedure should be 
of the form   ψ  ( X )    =    1 if  X     ≥     x t   and   ψ  ( X )    =    0 if  X     <     x t  , where  x t   is an 
appropriately chosen decision boundary on the  x  - axis. Stated in this 
manner, this is a binary classifi cation problem. If the regulation were 
deterministic, then one would simply have to choose  x t   to be the point 
on the  x  - axis corresponding to the point  t  on the  y  - axis and the decision 
would always be correct. In the current probabilistic setting, there is 
no value  x t   that will give perfect classifi cation accuracy. The misclas-
sifi cation error, which is the probability of an erroneous decision, is the 
sum of two probabilities: the probability that  Y     =    1 and   ψ  ( X )    =    0 plus 
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the probability that  Y     =    0 and   ψ  ( X )    =    1. We would like a boundary 
point  x t   that minimizes this error. If we knew the actual joint distribu-
tion of the random variables, then we could fi nd a boundary value to 
minimize the error, but we do not. We have two choices, use the data 
to estimate the joint distribution and fi nd the optimal boundary value 
for this estimated distribution as the boundary value or use the data to 
directly fi nd a boundary value via some rule applied to the data. Unless 
there is a very large amount of data, the latter approach is typically 
better, assuming a good rule can be found, owing to the diffi culty of 
obtaining a good estimate of the true joint distribution. This principle 
is often stated as classifi cation is easier than distribution estimation. 
Having obtained a classifi cation boundary, the true error is obtained 
using the true distribution, which we do not know. Thus, there needs 
to be a rule to estimate this error. When done, we will have a classifi er 
defi ned by a boundary point and an estimated error. The epistemologi-
cal question concerns the manner in which these constitute a mathe-
matical model and the validity of that model. We shall now rigorously 
defi ne this general classifi cation problem and use it as a detailed case 
study of model validation. 

 The binary classifi cation problem involves a random vector  X     =    ( X  1 , 
 X  2 , … ,  X n  ) and a random variable  Y , where  Y  is constrained to take on 
the values 0 and 1, called  labels .  X  1 ,  X  2 , … ,  X n   are called  features  and 
the joint distribution of  X  and  Y , known as the  feature - label distribu-
tion , takes the form  F ( x ,  y ). This distribution provides the most com-
plete description of the joint behavior of  X  and  Y . Partial description 
is supplied by the conditional distributions of  Y . Since  Y  is discrete, 
these are given by the probabilities of  Y     =    0 and  Y     =    1, given  X     =     x . 
We denote these conditional probabilities by  P ( Y     =    0| x ) and  P ( Y     =    1| x ). 
In this setting, regression is replaced by classifi cation, which is to 
provide the optimal prediction for the label given the value of the 
feature vector. A classifi er   ψ   is a binary valued function of the form 
  ψ  ( x ) that serves to predict the value of  Y . The error of a classifi er is 
the probability of misclassifi cation. This error, denoted  ε [  ψ  ], is given 
by a sum of two probabilities: the probability that  Y     =    0 and   ψ  ( X )    =    1 
plus the probability that  Y     =    1 and   ψ  ( X )    =    0. An optimal classifi er, 
known as a  Bayes classifi er  for the feature - label distribution, is a clas-
sifi er possessing minimum error among all classifi ers. An optimal clas-
sifi er is constructed by choosing, for each  x , the label having the greater 
conditional probability, namely,   ψ  ( x )    =    1 if  P ( Y     =    1| x )    ≥     P ( Y     =    0| x ) 
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and   ψ  ( x )    =    0 if  P ( Y     =    1| x )    <     P ( Y     =    0| x ). There may be more than one 
Bayes classifi er but all possess minimum misclassifi cation error, known 
as the  Bayes error . In analogy to the conditional expectation, the 
feature - label distribution is the complete model and the classifi er rep-
resents partial description. 

 Because the labels are binary, a classifi er partitions the space of 
feature vectors into two decision regions: In one region the classifi er 
labels all points 0 and in the other it labels them 1. The shape of the 
partition depends on the manner in which the labels are distributed over 
the feature space. These  class - conditional distributions  are defi ned by 
the distribution of  x  given label 0 and the distribution of  x  given label 
1. Figure  6.4  shows two Gaussian class - conditional distributions for a 
one - dimensional classifi cation problem. If the classes are equally likely, 
then the Bayes classifi er is defi ned by value of  x  where the two Gaussian 
curves intersect.   

 From a scientifi c perspective, the preceding mathematical consid-
erations are the consequence of a primary modeling decision: the rela-
tion between the features and the label is to be modeled by a probability 
distribution. The  “ real - world ”  situation is not known and must be 
approximated by a model created by reasoning concerning scientifi c 
theory, estimation from data, or a combination of both. The worth of 
any constructed feature - label distribution is judged by its predictive 

     Figure 6.4     Two Gaussian class - conditional densities with the vertical line showing the 
Bayes classifi er.  
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capacity, specifi cally, the agreement of probabilities deduced from the 
model and their frequency counterparts in experimental observations; 
nevertheless, a primary epistemological assumption has been made, 
that being the existence of a feature - label distribution governing the 
behavior of the features and label, and all further analysis is relative to 
it. We are not saying that this ideal distribution exists in some Platonic 
world of forms; rather, it is hypothesized in the mind of the scientist, 
even though the scientist does not know its specifi cation. 

 If classifi cation is our interest, then the goal is to obtain a classifi er 
with minimal error among all classifi ers and this goal must be expressed 
relative to the primary assumption. If the hypothesized ideal feature -
 label distribution were known, then a Bayes classifi er and its error 
could be deduced from it. But it is not known. Therefore, there are two 
choices: (1) construct an approximating feature - label distribution and 
deduce a Bayes classifi er and its error from this distribution; and (2) 
directly construct a classifi er by reasoning concerning scientifi c theory, 
estimation from data, or a combination of both, and estimate its error 
by some procedure. Note the conundrum. Since one does not know the 
ideal distribution, how can the goodness of the approximation be judged 
in the fi rst case and the goodness of the error estimate be judged in the 
second? 

 To concretize these remarks, we consider discrimination between 
phenotypes  A  0  and  A  1  based on the assumption that the different phe-
notypes result from production of a single protein   λ   controlled by 
transcription factors   τ   1  and   τ   2 . Specifi cally, when   τ   1  and   τ   2  bind to the 
promoter region for gene  g , the gene expresses, the corresponding 
mRNA is produced, and this translates into the production of protein 
  λ  , thereby resulting in phenotype  A  1 ; on the other hand, in the absence 
of either   τ   1  or   τ   2  binding, there is no transcription and phenotype  A  0  is 
manifested. Letting  X  1  and  X  2  denote the abundances of   τ   1  and   τ   2 , 
respectively, and  Y  the label, 0 and 1 for phenotypes  A  0  and  A  1 , respec-
tively, the primary epistemological assumption is that the behavior of 
 X  1 ,  X  2 , and  Y  is governed by a joint probability distribution. 

 Suppose it is believed that there exist expression levels   κ   1  and   κ   2  
such that phenotype  A  1  is manifested if  X  1     >      κ   1  and  X  2     >      κ   2 , whereas 
 A  0  is manifested if either  X  1     ≤      κ   1  or  X  2     ≤      κ   2 . This assumption could be 
imposed on the hypothesized ideal feature - label distribution. If so, then 
we could make the following probability statement regarding the class -
 conditional distributions for the feature - label distribution:
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    P X X( | ) .1 1 2 2 1 1> > =κ κand     (6.1)   

 The assumption on the transcription factors can be used to construct a 
classifi er. Defi ne   ψ  ( X  1 ,  X  2 )    =    1 if  X  1     >      κ   1  and  X  2     >      κ   2 , and   ψ  ( X  1 ,  X  2 )    =    0 
if  X  1     ≤      κ   1  or  X  2     ≤      κ   2 . If these conditions were to strictly hold, then the 
classifi er would have zero error. Owing to concentration fl uctuations, 
time delays, and the effects of other factors, one cannot expect to have 
such a simple physical situation. Consequently, Eq.  6.1  is not likely to 
hold and one cannot conclude that the just - defi ned classifi er will have 
zero error. Moreover, absent specifi cation of the ideal distribution, the 
error cannot be directly computed. We will return shortly to the issue 
of error estimation. 

 Suppose we do not know the thresholds   κ   1  and   κ   2 , only that phe-
notype  A  1  occurs if and only if the transcription factors are both suf-
fi ciently expressed. We could proceed by utilizing a procedure, called 
a  classifi cation rule , which upon being applied to sample data yields 
estimates   ̂κ 1 and   ̂κ 2 of   κ   1  and   κ   2 , respectively, that can be used to con-
struct a classifi er. Going further, we might not have any biological 
knowledge giving us confi dence that the classifi er should be of the form 
  ψ  ( X  1 ,  X  2 )    =    1 if and only if  X  1     >      κ   1  and  X  2     >      κ   2 . In this scenario, we 
need to use a classifi cation rule that assumes some  “ reasonable ”  form 
for the classifi er and then estimates the particulars of the classifi er from 
sample data to form a designed classifi er. 

 For illustration purposes, we consider a well - studied classifi cation 
rule that constructs a hyperplane classifi cation boundary, with values 
on one side of the boundary being classifi ed into one class and values 
on the other side being classifi ed into the other class. If the classes are 
equally likely, then the decision boundary is determined by a discrimi-
nant function

    dk k
T

kx x u K x u( ) = − −( ) −( )−ˆ ˆ ˆ1 ,     (6.2)  

where   ̂uk the sample mean for class  k  computed from the data from 
class  k  ( k     =    0, 1),   K̂ is the pooled sample covariance matrix computed 
from all the data, all operations are matrix - vector operations, and 
 T  denotes the transpose. An observed point  x  is classifi ed into class 
1 if  d  1 ( x )    >     d  0 ( x ) and into class 0 otherwise. The classifi cation rule 
defi ned by the discriminant  d k  ( x ) is called  linear discriminant analysis  
( LDA ). If both class - condition distributions are Gaussian with common 
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covariance matrix and we replace the sample means and sample covari-
ance matrix in Eq.  6.2  by the actual means and actual common covari-
ance matrix, then the discriminant would produce the optimal boundary 
between the two classes, this boundary determining the Bayes classifi er. 
In practice, we do not know the actual class - conditional distributions, 
so we use the sample mean and sample covariance matrix estimates. 
Moreover, in practice, the assumptions regarding common covariance 
matrix and Gaussian class - conditional distributions are overly restric-
tive; nonetheless, the rule can work quite well so long as they are only 
mildly violated. 

 Once a classifi er has been designed via a classifi cation rule, it is 
necessary to estimate its error. Relative to the data, error estimation can 
be approached in two ways. One way is to split the data into indepen-
dent  training  and  test  sets, with the classifi er designed by the classifi ca-
tion rule using the training data and the error estimated by the error 
rate on the independent test data. On account of the test data being held 
out from the classifi er design, this method is known as  hold - out  error 
estimation. With hold - out, the error estimate is simply the proportion 
of incorrect classifi cations on the test data. Hold - out is a direct stochas-
tic counterpart to the classical view of validity: A model exists (having 
been designed using training data) and it is tested by examining its 
accuracy on test data. 

 Given no limitation on data availability, we would like to have large 
samples for both classifi er design and error estimation. This is because 
classifi er design usually improves with larger training samples and 
error estimation improves with larger test samples. In practice, holding 
out data from training is often infeasible owing to insuffi cient data. For 
instance, in expression - based classifi cation, data are often severely 
limited, so that holding out test data results in unacceptably poor clas-
sifi er design. Thus, one has to use a different approach, that being to 
use all the available data for design and then to apply an  error estima-
tion rule  using the same data. A simple error estimation rule is to count 
the errors made on the sample data by the designed classifi er and esti-
mate its error by the proportion of errors on the sample. This method 
is called  resubstitution  and, although simple, tends to be biased low, 
often very low, for small samples, precisely when one wants to use it. 
Various other error estimation rules for when the data are not split are 
given in the literature, all with their own benefi ts and drawbacks for 
small samples. 
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CHAPTER 6 Stochastic Validation: Classifi ers 111

 We illustrate classifi cation with two real - world examples based on 
gene expression. The fi rst uses patient data from a study involving 
microarrays prepared with RNA from breast tumor samples from 295 
patients (van de Vijver et al.,  2002 ). Of the 295 microarrays, 115 belong 
to the good - prognosis class and 180 belong to the poor - prognosis class. 
From the original published data set, the expression profi les of 70 genes 
were found to be the most correlated with disease outcome (van ’ t Veer 
et al.,  2002 ). From among these 70 genes, two genes, LOC51203 and 
Contig38288_RC (AN), have been found to be the most discriminating 
for linear classifi cation. Figure  6.5  shows the data for the two genes 
(gray and black dots representing good and bad prognosis, respec-
tively), along with the LDA boundary for the designed classifi er, for 
which the reported estimated misclassifi cation error is 0.0582 (Braga -
 Neto,  2007 ). The classifi er and estimated error have been found by 
classifi cation and error estimation rules, respectively, without splitting 
the data into training and test data (see Braga - Neto,  2007 , for details). 

     Figure 6.5     Linear classifi er separating breast cancer patients with good (gray) and bad 
(black) prognosis using two genes, LOC51203 and Contig38288_RC (AN). [Braga - Neto, 
U. M.,  “ Fads and Fallacies in the Name of Small - Sample Microarray Classifi cation, ”   IEEE 
Signal Processing Magazine , 24(1), 91 – 99, January, 2007.  ©  2009 IEEE].  
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112 Epistemology of the Cell: Perspective on Biological Knowledge

In this case, given such a simple classifi er and a fairly large sample 
being used to design the classifi er and estimate the error, there is war-
ranted hope that the designed classifi er will have approximately 
the same error on the ideal feature - label distribution as it does on the 
sample, where one must keep in mind the primary assumption that the 
real data, already observed and yet to be observed, follow some ideal 
feature - label distribution. A key aspect of classifi cation epistemology 
is to formalize this intuitive notion of approximation.   

 In practice, much smaller samples are commonplace. We consider 
a study using expression data from microarrays for 597 genes to iden-
tify gene combinations for use as glioma classifi ers (Kim et al.,  2002 ). 
Gliomas are the most common malignant primary brain tumors. These 
tumors are derived from neuroepithelial cells and can be divided into 
two principal lineages: astrocytomas and oligodendrogliomas. Using a 
test set of 25 patients, single genes and two -  to three - gene combinations 
have been identifi ed for distinguishing four types of glioma: oligoden-
droglioma (OL), anaplastic oligodendroglioma (AO), anaplastic astro-
cytoma (AA), and glioblastoma multiforme (GM). Figure  6.6  shows a 

     Figure 6.6     Three - gene linear classifi er separating AO (dark gray) from three other 
types of glioma, AA (middle gray), GM (black), and OL (light gray). (Kim et al.,  2002 , by 
permission of  Molecular Cancer Therapeutics ).  
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CHAPTER 6 Stochastic Validation: Classifi ers 113

linear classifi er for discriminating AO from the others using the genes 
PKA C - alpha, TNFSF5, and beta - PPT. The error for the classifi er is 
estimated to be 0.04 using the method of leave - one - out error estima-
tion, which will be discussed shortly. The fi gure looks promising and 
the error estimate is small; however, as we will see, leave - one - out error 
estimation is not reliable for small samples, and 25 patients constitute 
a very small sample.   

 Previously, we remarked that it may be better to use a simple model 
with fewer variables than a more complex model. This situation occurs 
in classifi cation relative to the number of features. If one has a large 
number,  m , of features available and selects any subset of these contain-
ing  k     <     m  features, then the Bayes error for the full set of  m  features 
cannot exceed the Bayes error for the subset of  k  features; however, 
when designing a classifi er from sample data, the situation can be quite 
different. For instance, it is not uncommon for the expected classifi er 
error to decrease as the number of features increases up to a point and 
then increase as the number of features grows beyond that point. This 
is known as the  peaking phenomenon  (Hughes,  1968 ). 

 We consider data generated from Gaussian class - conditional distri-
butions from which to design the classifi ers (see Hua et al.,  2005 , for 
details). The maximum number of features is 30, so that the peaking 
phenomenon can only appear in the graphs when peaking occurs with 
less than 30 features. The surface in Fig.  6.7 (a) shows expected errors 
for LDA using a model in which the class - conditional distributions 
share a common covariance matrix and features are slightly correlated. 
The black line shows the optimal number of features for each sample 
size. Peaking occurs with very few features for sample sizes below 30, 
but exceeds 30 features for sample sizes above 90. In Fig.  6.7 (b), 
assuming common covariance matrix and highly correlated the fea-
tures, even with a sample size of 200, the optimal number of features 
is only 8. The concave behavior and increasing number of optimal 
features in parts (a) and (b) of the fi gure correspond to the usual under-
standing of peaking. But one must beware of easy generalizations. 
Figure  6.7 (c) shows results using a different classifi cation rule (a linear 
support vector machine), which also constructs a linear boundary, based 
on data generated when the covariance matrices are not the same. Not 
only does the optimal number of features not increase as a function of 
sample size, for fi xed sample size the error curve is not concave. For 
some sizes the error decreases, increases, and then decreases again as 
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the feature set size grows, thereby forming a ridge across the expected 
error surface. This behavior is not rare.   

 Having discussed some general classifi cation issues, we now con-
sider model validity in detail. Formally, we defi ne a  classifi er model  
 M     =    (  ψ  ,   ξ  ) to be a pair composed of a {0, 1} - valued function   ψ  ( x ) and 
a number   ξ   between 0 and 1.   ψ   and   ξ   are called the  classifi er  and  error , 
respectively, of the model  M . The mathematical form of the model is 
abstract, with   ξ   not specifying an actual error probability corresponding 
to   ψ  .  M  becomes a scientifi c model when it is applied to a feature - label 
distribution, at which point the question of model validity arises. 

     Figure 6.7     Optimal number of features: (a) LDA in model with common covariance matrix 
and slightly correlated features; (b) LDA in model with common covariance matrix and highly 
correlated features; and (c) linear support vector machine in model with unequal covariance 
matrices. [Hua, J., Xiong, Z., Lowey, J., Suh, E., and E. R. Dougherty,  “ Optimal Number of 
Features as a Function of Sample Size for Various Classifi cation Rules, ”   Bioinformatics , 21(8), 
1509 – 1515, 2005, by permission of The International Society for Computational Biology].  
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CHAPTER 6 Stochastic Validation: Classifi ers 115

 There are two issues regarding model validity. The fi rst, which we 
will refer to as  error validity , concerns the accuracy of   ξ   as an estimate 
of the error of   ψ   relative to the feature - label distribution. This problem 
arises because   ψ   is a decision function that will make the right decision 
with probability 1    −     ε [  ψ  ] and the wrong decision with probability  ε [  ψ  ], 
where  ε [  ψ  ] is the actual error for   ψ   on the feature - label distribution.   ξ   
has been obtained in some manner to estimate the actual error rate. The 
diffi culty is that we do not know the feature - label distribution and 
therefore we cannot fi nd the actual error; indeed, if we knew the 
feature - label distribution we would simply take   ψ   to be a Bayes clas-
sifi er and   ξ   to be the Bayes error. Thus, we cannot defi ne error validity 
in terms of the difference between  ε [  ψ  ] and   ξ  . 

 In practice,   ψ   and   ξ   are estimated from sample data via a classifi ca-
tion rule  Ψ  and an estimation rule  Ξ , which together constitute a  rule 
model   L     =    ( Ψ ,  Ξ ). The rule model is applied to sample data to obtain 
a scientifi c model   ˆ ( , ˆ[ ])M = ψ ε ψ , where   ψ   and   ̂ [ ]ε ψ  have been deter-
mined by the rules  Ψ  and  Ξ , respectively. Since we do not know the 
actual error,  ε [  ψ  ], of the designed classifi er on the feature - label distri-
bution, we cannot measure error validity by the absolute difference 
 |   ̂ [ ] [ ]ε ψ ε ψ−  | , between the estimated and actual errors of the designed 
classifi er. Instead, we consider the performance of the error estimation 
rule. 

 Based on the primary epistemological assumption, the particular 
data set, say of size  n , from which the classifi er and error estimate have 
been derived via the rule model, is a sample drawn from the ideal 
feature - label distribution and we will assume that it has been drawn 
randomly (leaving the precise defi nition of this to the statistical litera-
ture). Consider all possible samples of size  n  drawn from the feature -
 label distribution and the corresponding classifi ers (constructed via   Ψ  ), 
actual classifi er errors (found from the feature - label distribution), and 
estimated classifi er errors (found via  Ξ ). Given the feature - label distri-
bution, we can compute for each sample the difference   ̂ [ ] [ ]ε ψ ε ψ− . 
The population of these differences comprises the  deviation distribu-
tion , which depends on the feature - label distribution, the classifi cation 
rule, the error estimation rule, and the sample size. A good error estima-
tion rule, within the framework of a given feature - label distribution and 
classifi cation rule, is one for which the deviations are tightly distributed 
about 0. Figure  6.8  shows three deviation distributions. The one with 
the dotted line is tightly concentrated, but not around 0. It suffers from 
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low bias of the error estimation rule, meaning that   ̂ [ ]ε ψ tends to be less 
than  ε [  ψ  ]. The solid line represents a good performing error estimation 
rule: It is tightly concentrated about 0. The dashed line depicts an error 
estimation rule which is unbiased, on average it gives the correct error, 
but which is widely spread so that individual error estimates tend to be 
much too large or much too small.   

 A measure is needed to quantify the tightness of the deviation 
distribution around 0. One way is to take the average value of the 
absolute deviations across all possible samples. This gives the expected 
value of the absolute deviation,   E ε̂ ψ ε ψ[ ] − [ ][ ] . A related measure, 
known as the  root mean square  ( RMS ) difference, is the square root of 
the expected squared deviation:

    RMS = [ ] − [ ]( )⎡⎣ ⎤⎦E ε̂ ψ ε ψ 2     (6.3)   

 The RMS has the useful mathematical property that it can be 
decomposed into the bias,

    Bias ˆ ˆ ,ε ε ψ ε ψ[ ] = [ ] − [ ][ ]E     (6.4)   

 of the error estimator relative to the true error, and the deviation 
variance,

     Figure 6.8     Three deviation distributions.  
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CHAPTER 6 Stochastic Validation: Classifi ers 117

    Var Vardev ˆ ˆ ,ε ε ψ ε ψ[ ] = [ ] − [ ][ ]     (6.5)   

 according to

    RMS Var Biasdev= [ ] + [ ]ˆ ˆε ε 2     (6.6)   

 Other measures are possible. Since our interest is epistemological, 
not the specifi cs of this or that measure, for the sake of the discussion 
we will restrict our attention to the RMS. The RMS is a characteristic 
of the rule model, but it is also dependent on the feature - label distribu-
tion, the classifi cation rule, and the sample size. The validity of any 
classifi er model   ˆ ( , ˆ[ ])M = ψ ε ψ  relative to the accuracy of the error 
estimate is judged by the RMS. The basic idea is that, since we cannot 
know the accuracy of any specifi c error estimate, we will judge validity 
based on a relevant characteristic of the error estimation rule. In this 
way, the RMS provides a measure of validity. If it is small, say 0.05, 
then this indicates that the error estimation rule is accurate, meaning 
credence can be given to errors resulting from it; if it is large, say 0.4, 
then this indicates that the error estimation rule is inaccurate and little 
credence should be given to any classifi er model for which it has been 
employed in the rule model. 

 Since we do not know the feature - label distribution, the RMS 
cannot be computed exactly. All that can be hoped for is that we can 
fi nd an upper bound on the RMS, this taking the form RMS    ≤     B , 
keeping in mind that the bound also depends on the classifi cation rule. 
For most error estimators (when such bounds are known), the bound 
goes to 0 as the sample sizes increase, but it may require a very large 
sample size to make the bound small. 

 If hold - out is used, that is, if the data are split into training and 
independent test data, then there is a very simple bound on the RMS, 
namely,

    RMS ≤ 1

2 m
,     (6.7)  

where  m  is the number of points in the test set (Devroye et al.,  1996 ). 
This bound gives good results. If the test set has 100 sample points, 
then RMS    ≤    0.05. For 400 points, the bound gives RMS    ≤    0.025. 
Moreover, the bound depends on neither the feature - label distribution 
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nor the classifi cation rule. The problem is that for small samples one 
cannot hold out 100 sample points. If only 25 sample points are held 
out, then RMS    ≤    0.1, which may be acceptable in some cases. If, 
however, one has only 75 data points, then holding out 25 points would 
leave only 50 points for classifi er design, thereby signifi cantly increas-
ing the risk of poor classifi er design. The trade - off with hold - out is 
clear: Hold out more points to get better error estimation and get a 
poorer classifi er; hold out fewer points to get a better classifi er and get 
poor error estimation. 

 The hold - out RMS bound of Eq.  6.7  is very general, in that it makes 
no assumptions on the feature - label distribution or the classifi cation 
rule. This is possible because the classifi er is designed on the training 
data and the error is estimated on independent test data. The situation 
is not so simple when the same data are used for design and error esti-
mation. In addition, with small samples, RMS bounds are often much 
larger when the data are not split. 

 Consider the problem of trying to predict whether gene  g  is acti-
vated based on the activations of a set of genes,  g  1 ,  g  2 , … ,  g b  . By activa-
tion and deactivation we mean that there is a threshold value above 
which a gene is considered to be activated (1) and below which a gene 
is considered deactivated (0). The general classifi cation problem in this 
regard is known as  multinomial discrimination . We use the following 
classifi cation rule: for each activation - deactivation pattern ( x  1 ,  x  2 , … ,  x b  ) 
of 0s and 1s observed in the data, defi ne   ψ  ( x  1 ,  x  2 , … ,  x b  )    =    1 if  x     =    1 
more than  x     =    0, where  x  is the {0, 1} - value of  g , and   ψ  ( x  1 ,  x  2 , … , 
 x b  )    =    0 otherwise. If a pattern is never observed in the data, the value 
of   ψ  ( x  1 ,  x  2 , … ,  x b  ) can be assigned in any manner whatsoever. For this 
classifi cation rule we have the following RMS bound, where  n  is the 
sample size and resubstitution is the error estimation rule:

    RMS ≤ 6b

n
    (6.8)   

 (Devroye et al.,  1996 ). If there are six predictor genes and the sample 
size is  n     =    100, then this bound becomes RMS    ≤    0.6, which is useless. 
If we increase the sample size to  n     =    400, then the bound becomes 
RMS    ≤    0.3, which is still not good. For  n     =    10,000, the bound becomes 
RMS    ≤    0.06. To use this bound, a very large sample is needed to insure 
good error estimation. But this begs the question as to why to use 
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resubstitution at all in this instance. With a sample size of 10,000 the 
obvious choice would be to split the data into training and test data and 
not use resubstitution. Indeed, holding out 400 points for testing still 
leaves 9600 points for training and via Eq.  6.7  results in an RMS bound 
of 0.025. 

 The resubstitution error estimation rule, although converging to the 
true error as the sample size increases, is usually optimistically biased, 
and severely so when samples are small. An error estimation rule that 
possesses very little bias is  leave - one - out cross - validation . This esti-
mate is computed by removing one point from the sample, designing 
the classifi er on the remaining sample points, and applying it to the 
left - out point. This is done repeatedly for each point in the sample. The 
error estimate is the fraction of errors made on the left - out points. Like 
resubstitution, the leave - one - out estimate converges to the true error as 
the sample size increases. While the leave - one - out error estimation rule 
is known to have small bias, it is also known to have a large deviation 
variance for small samples, which means large RMS. Again consider-
ing multinomial discrimination, we have the following RMS bound for 
leave - one - out error estimation:

    RMS ≤ + +
−

−1 6 6

1

1e

n nπ( )
    (6.9)   

 (Devroye et al.,  1996 ). If the sample size is  n     =    100, then the bound is 
approximately 0.601, which is approximately the same as resubstitution 
with six predictors. If  n     =    10,000, then the RMS is approximately 
0.184, which is greater than the resubstitution bound of Eq.  6.8 . 

 Although we do not know the feature - label distribution, as dis-
cussed in the transcription factor illustration above, we may make 
assumptions regarding it. Generally, the more we assume about it, the 
tighter the bound will be on the RMS. In the best - case scenario, the 
feature - label distribution is modeled in terms of a small number of 
parameters and the RMS is exactly expressed as a function of these 
parameters. For instance, if there is a single parameter   ω  , then the 
RMS takes the form RMS(  ω  ). Although we do not know the feature -
 label distribution, we would then know that the RMS is bounded 
by the maximum value of RMS(  ω  ) over all possible values of   ω  . The 
RMS for both resubstitution and leave - one - out with multinomial 
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discrimination has been expressed exactly for a Zipf model (Braga -
 Neto and Dougherty,  2005 ). Figures  6.9  and  6.10  show the RMS for 
resubstitution and leave - one - out, respectively, as a function of the 
Bayes error for  b     =    4, 8, 16, and sample sizes  n     =    20, 40, 60. Note that 
the RMS is much greater for leave - one - out when  b     =    4, the RMS is 
much greater for resubstitution for  b     =    16, and there is little difference 
in the RMS when  b     =    8. Under the Zipf modeling assumption with 
sample size  n     =    40, for  b     =    4, RMS    ≤    0.12 for resubstitution and 
RMS    ≤    0.17 for leave - one - out; for  b     =    16, RMS    ≤    0.23 for resubstitu-
tion and RMS    ≤    0.12 for leave - one - out. Notice how much better the 
bounds are under the Zipf modeling assumption as opposed to the 
model - free bounds of Eqs.  6.8  and  6.9 . In practice, the model - free 
bounds are essentially useless.   

 When one derives a classifi er model from a rule model without a 
quantitative mathematical statement regarding the validity of the error 

     Figure 6.9     RMS versus Bayes error for resubstitution in the Zipf model:  n     =    20 (dotted line); 
 n     =    40 (dashed line);  n     =    60 (solid line).  
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     Figure 6.10     RMS versus Bayes error for leave - one - out in the Zipf model:  n     =    20 (dotted line); 
 n     =    40 (dashed line);  n     =    60 (solid line).  
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estimation, for instance, the RMS, then the model is scientifi cally 
vacuous. Absent relevant properties of the error estimation rule, the rule 
is simply a meaningless computation and the scientifi c requirement of 
validation is missing. Admittedly, one might have to qualify the clas-
sifi er model with some assumptions regarding the ideal feature - label 
distribution, but such qualifi cation is not uncommon in science. After 
all, Newton assumed constant mass in his second law of motion. The 
problem lies not in the epistemology but in our knowledge regarding 
the RMS. The RMS depends upon the joint distribution of the error and 
the error estimate, both of these being random variables relative to the 
random sampling process. While one need not know the full joint dis-
tribution, one needs to know at least the second moments of the joint 
distribution. Until very recently, there were no results on the joint dis-
tribution in the literature. To date, the joint distribution of the error and 
error estimate has been discovered for the multinomial model with 
resubstitution or leave - one out (Braga - Neto and Dougherty,  2005 ; Xu 
et al.,  2006 ) and for the model in which both class - conditional densities 
are Gaussian under the further assumption that they share a common 
known covariance matrix and the classifi cation rule is LDA (Zollanvari 
et al.,  2010 ). 

 There is a price to be paid for making distributional assumptions 
to arrive at a useful RMS bound — that is, to be able to claim model 
validity. The price is that model validity is conditional with respect to 
the modeling assumptions. While omitting distributional assumptions 
might seem desirable so as not to limit the scope of the conclusions, 
this is generally a vain hope because the absence of distributional 
assumptions usually renders the entire study vacuous. Scientifi cally 
sound model - free classifi cation is virtually impossible with small data 
sets. One might have reassuring theorems concerning the behavior of 
classifi cation and error estimation rules for very large samples, but 
these say nothing when samples are small. Consider the comment by 
Ronald A. Fisher in 1925 on the limitations of large - sample methods:

  Little experience is suffi cient to show that the traditional machinery of 
statistical processes is wholly unsuited to the needs of practical research. 
Not only does it take a cannon to shoot a sparrow, but it misses the 
sparrow! The elaborate mechanism built on the theory of infi nitely large 
samples is not accurate enough for simple laboratory data. Only by sys-
tematically tackling small sample problems on their merits does it seem 
possible to apply accurate tests to practical data.  (Fisher,  1925 )    
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 In reading Fisher ’ s statement, one should recognize that laws of 
large numbers, that is, theorems concerning the convergence to zero of 
the difference between an estimate of a distributional parameter and 
the parameter as the sample size  “ increases to infi nity, ”  go back to 
Jacob Bernoulli, and that central limit theorems, that is, theorems that 
the Gaussian distribution is the limit of a sequence of other distribu-
tions, go back to De Moivre and Laplace. 

 What if the modeling assumptions do not hold? Indeed, they will 
almost surely not hold for the feature - label distribution. In any event, 
we will never know. This is science, not metaphysics. We sincerely 
doubt whether Galileo believed that he would ever come across a  “ fric-
tionless ”  plane. There are no propositions absent hypotheses. Even if 
one has a very large sample and applies some limit - at - infi nity theorem, 
theorems such as laws of large numbers and central limit theorems do 
not generally tell us how large the number has to be and, to obtain 
how - large statements, conditions have to be imposed. Prior to that, limit 
theorems generally require randomization and other assumptions, such 
as independence, none of these being open to empirical verifi cation. 
The scientist lives in a doubly uncertain world. The rigor of science 
depends on specifying assumptions together with quantifying the 
uncertainty of propositions given the assumptions, which are uncertain. 
The uncertainty of the assumptions was known to Galileo and Newton; 
the quantifi cation of propositional uncertainty is a product of modern 
probability theory and statistics. 

 As previously stated, there are two validation issues regarding clas-
sifi er models; to this point we have only considered one, that being the 
validity of the error estimate, given a designed classifi er. The other 
issue is the validity of the classifi er as an optimal discriminator between 
the two classes. Just as the conditional expectation provides the optimal 
prediction of the value of one random variable based on the observation 
of another and thereby serves as the best scientifi c model for this pre-
diction, a Bayes classifi er provides the optimal discriminator between 
two classes because it possesses the minimum classifi cation error. Thus, 
the validity of a designed classifi er as a scientifi c model for the natural 
class discrimination inherent in the feature - label distribution depends 
on the closeness of its error to the Bayes error, which we do not know. 

 Analogous to the situation with error estimation, we fall back upon 
the expected performance of the classifi cation rule to characterize  clas-
sifi cation validity . Together, a data sample and a classifi cation rule   Ψ   
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yield a classifi er   ψ  . Letting  ε  bay  denote the Bayes error, we defi ne the 
 design cost   Δ     =     ε [  ψ  ]    −     ε  bay , which gives the increase in error above the 
Bayes error resulting from using   ψ   instead of deriving the Bayes error 
from the feature - label distribution. If we average the design cost over 
all possible samples, we obtain the expected design cost,  E [ Δ ], which 
can be used to characterize the validity of the classifi cation rule. 
Qualitatively, a classifi cation rule is valid if  E [ Δ ] is small. A small 
design error does not mean that the classifi er has small error; only that 
its error is close to the Bayes error, which is the intrinsic classifi cation 
error for the feature - label distribution. Although we will not go into 
detail, a well - studied problem in classifi cation theory is to obtain 
bounds on  E [ Δ ] based upon the classifi cation rule and feature - label 
distribution (Vapnik and Chervonenkis,  1974 ). As with error estima-
tion, one can obtain smaller bounds by making assumptions on the 
feature - label distribution and, without such assumptions, the bounds 
are generally useless unless the sample is very large. 

 Taking a different perspective on classifi er performance, one might 
be concerned with deciding the better classifi er between two classifi ers, 
  ϕ   and   ψ  , designed from different classifi cation rules. The better classi-
fi er is the one with smaller error, thereby being closer to the Bayes 
error. Ostensibly, the issue resolves to a classical hypothesis test; decide 
between  ε [  ϕ  ]    ≤     ε [  ψ  ] (  ϕ   is better) and  ε [  ϕ  ]    >     ε [  ψ  ] (  ψ   is better); however, 
once again we are faced with a dichotomy between hold - out error 
estimation and training data - based error estimation. Before considering 
this problem, we say a few words about hypothesis testing. 

 The basic form of a one - sided hypothesis test is  H  0 :   θ   1     ≥      θ   2  (the 
null hypothesis) and  H  1 :   θ   1     <      θ   2  (the alternative hypothesis), which can 
be rewritten as

    
H

H
0 2 1

1 2 1

0

0

:

: .

θ θ
θ θ

− ≤
− >

    (6.10)   

 A test statistic   ρ   is chosen, a critical value  c  is chosen, the null hypoth-
esis is accepted if   ρ      ≤     c , and the alternative hypothesis is chosen if 
  ρ      >     c . The test statistic should refl ect the difference   θ   2     −      θ   1 . There are 
two errors associated with the hypothesis test. Type I error occurs if 
the null hypothesis refl ects the true state of affairs but is rejected. Type 
II error occurs if the null hypothesis does not refl ect the true state of 
affairs but is accepted. Type I and type II errors are typically denoted 
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by   α   and   β  , respectively. A balanced approach to the two hypotheses 
would be to let  c     =    0, so that   ρ      >    0 would mean a rejection of the null 
hypothesis. This would lead to   α   being the probability that   ρ      >    0 and 
  θ   2     −      θ   1     ≤    0, and   β   being the probability that   ρ      ≤    0 and   θ   2     −      θ   1     >    0. With 
this approach,   α   and   β   tend not to be small, so that the probability of 
error is not small. The standard approach is to formulate the hypotheses 
so that the objective of the scientist is to provide empirical support for 
the alternative hypothesis. Hence,  c  is chosen suffi ciently large that 
type I error is small, meaning that, if the null hypothesis is rejected, 
then there is small probability that the alternative hypothesis has been 
erroneously accepted. Of course, if   α   is chosen small, then this pushes 
up the value of   β  , meaning that, if the null hypothesis is accepted, then 
the probability of error need not be small. 

 A diffi culty is that   α   is a function of the actual value of   θ   2     −      θ   1 , so 
that   α      =      α  (  θ   2     −      θ   1 ), and   β   is a function of the actual value of   θ   2     −      θ   1 , 
so that   β      =      β  (  θ   2     −      θ   1 ). Given that the scientifi c focus is on rejecting the 
null hypothesis, the usual way of proceeding is to be conservative and 
choose the value of   θ   2     −      θ   1  satisfying the null hypothesis that maxi-
mizes   α  (  θ   2     −      θ   1 ) and this value is given by   θ   2     −      θ   1     =    0, so that the 
hypothesis test of Eq.  6.10  becomes

    
H

H
0 2 1

1 2 1

0

0

:

: .

θ θ
θ θ

− =
− >

    (6.11)   

 This still leaves type II error as a function of   θ   2     −      θ   1 , but, as stated, the 
goal is providing support for acceptance of the alternative hypothesis 
and type I error measures the probability of incorrectly accepting the 
alternative hypothesis. In this scenario, acceptance of the null hypoth-
esis is not taken as providing scientifi c validity to the null hypothesis; 
however, if the null hypothesis is rejected, validity is ascribed to the 
accepted alternative hypothesis. This validity is measured by the size 
of   α  , which in this setting is called the  level of signifi cance . The choice 
of   α      =    0.05 is commonplace, but lower values, say   α      =    0.01, are used 
to engender more confi dence in the decision. 

 The test statistic is chosen by the scientist because the scientist 
believes that it refl ects the difference   θ   2     −      θ   1 . It provides a measure of 
validity: The greater the test statistic, the greater the validity of the 
scientifi c theory, in this case, the theory saying that   θ   2     >      θ   1  for large 
values of the test statistic. However, here one must be careful. Owing 
to the randomness of the test statistic, a large value of the test statistic 
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with a small sample does not say very much. How large is large 
enough? Both the distribution of the test statistic and the sample size 
must be taken into account. A hypothesis test incorporates these issues. 

 Consider the null hypothesis  H  0 :   μ   2     −      μ   1     ≤    0, where   μ   1  and   μ   2  are 
the means of two different distributions,  F  1  and  F  2 , respectively. The 
alternative hypothesis asserts that the mean of  F  2  lies to the right of the 
mean of  F  1 . An obvious test statistics is   ρ = −X X2 1, where   X1 and   X2 
are the sample means for  F  1  and  F  2 , respectively. A large value of   ρ   
supports the claim of the alternative hypothesis and in this sense quanti-
fi es the validity of the claim. Putting matters in the form of a hypothesis 
test and stating a level of signifi cance puts the test of validity into a 
quantitative form, with the critical value depending on the distribution 
of   ρ   and the sample size. 

 Rather than setting a value of   α  , fi nding the corresponding critical 
value  c , obtaining the test statistic   ρ   from the data, and seeing if   ρ      >     c , 
another approach is to obtain the value of   ρ   and fi nd the lowest level 
of signifi cance for which the value of   ρ   results in rejection of the null 
hypothesis. This value is called the  p  value. Since   α   is the probability 
that the null hypothesis is true and   ρ      >     c , if   ρ   is very large, then the 
maximum value of  c  for which   ρ      >     c  is very large and the correspond-
ing   α   is very small. Basically, the  p  value is a transformation of the test 
statistic and provides an alternative measure of validity to the test sta-
tistic. A  p  value transforms the test statistic in such a way as to provide 
a probabilistic measure: The smaller the  p  value, the greater the validity 
of the theory. Rather than giving an  “ accept ”  or  “ reject ”  decision, the 
 p  value provides a measure of strength. In addition, the  p  value does 
not involve the units of the test statistic. It also takes into account the 
distribution of the test statistic and the sample size. There are down-
sides to the  p  value when taken alone: (1) it hides the relationship of 
the test statistic to the scientifi c theory; (2) it hides the value of the test 
statistic; (3) it hides the sample size; and (4) it relates to type I error 
but not to type II error. 

 A major pitfall with using hypothesis tests,  p  values in particular, 
concerns the problem of multiple hypothesis tests. No matter the level 
of signifi cance and the truth or falsity of the hypotheses involved, as 
the number of hypothesis tests performed tends to infi nity, so does the 
number of accepted alternative hypotheses. Suppose type I error is 0.05 
and one performs  k  independent hypothesis tests, then the expected 
number of erroneously rejected null hypotheses is (0.05) k  and the prob-
ability of at least one test statistic leading to a rejection of the null 
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hypothesis when the null hypothesis is true is 1    −    (0.95)  k  . For instance, 
if  k     =    100, the probability of erroneously accepting at least one alterna-
tive hypothesis is approximately 0.994. A classic problem in statistics 
is to adjust the level of signifi cance to take into account this  “ multiple 
comparisons ”  problem. But this requires careful experimental reporting 
since it is not uncommon for a researcher to consider many hypotheses 
before settling on one. In this situation, validation is compromised 
unless all considered hypotheses are reported so that interaction between 
them can be assessed. Given the tens of thousands of features being 
considered in high - throughput biology and the ability to run thousands 
of hypothesis tests with current computational capability, assessing the 
scientifi c import of reported results can be highly problematic. On a 
closely related issue, it is common for one to try a large number of 
classifi ers, fi nd one with a low error estimate, and positively report on 
that classifi er. Unfortunately, variation in the error estimator means that 
may of the estimates will be optimistic, so that the reported low error 
estimate may simply be a consequence of estimator variance. In Chapter 
 8 , we will consider a variant of this multiple comparisons problem that 
arises from testing a classifi er on many data sets. 

 A second issue concerning hypothesis tests is that the alternative 
hypothesis might be of little value in regard to what one is attempting 
to demonstrate. For instance, suppose one wishes to demonstrate that 
classifi er   ψ   is an effective classifi er on a certain feature - label distribu-
tion. Consider the hypothesis test consisting of  H  0 :  ε [  ψ  ]    ≥    0.5 and  H  1 : 
 ε [  ψ  ]    <    0.5. No matter the value of the test statistic, concluding the 
alternative provides no useful information because, as stated, conclu-
sion of the alternative hypothesis allows the classifi er error to be arbi-
trarily close to 0.5. 

 We now return to the problem of comparing two classifi ers, fi rst 
under the assumption that the classifi ers are given and data are to be 
collected to perform the test. This problem is logically equivalent to 
designing two classifi ers from training data and then using independent 
test data to perform the hypothesis test. We consider the hypothesis test

    
H

H
0

1

0

0

: [ ] [ ]

: [ ] [ ] ,

ε φ ε ψ
ε φ ε ψ

− ≤
− >

    (6.12)  

where rejection of the null hypothesis leads to the conclusion that   ψ   is 
better than   ϕ  . If we let  X  denote the random variable that is 1 when   ϕ   
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makes a correct decision and 0 otherwise, and we let  Y  denote the 
random variable that is 1 when   ψ   makes a correct decision and 0 oth-
erwise, then the hypothesis test concerns the means of  X  and  Y . If we 
split the test data into two independent samples,  S  ϕ    and  S  ψ   , and let   ̂pφ 
and   ̂pψ  be the proportions of correct classifi cations for   ϕ   on  S  ϕ    and   ψ   
on  S  ψ   , respectively, then   ̂pφ and   ̂pψ  are the sample means for  X  and  Y , 
respectively. The test statistic   ̂ ˆp pφ ψ−  is an unbiased estimator of 
 ε [  ϕ  ]    −     ε [  ψ  ] and this is the classical hypothesis test concerning two 
proportions. The test can be performed by taking the standardized 
version of   ̂ ˆp pφ ψ− , which is approximately Gaussian assuming suffi -
ciently large test sets, and performing an ordinary  Z  - test. 

 The preceding reasoning breaks down when the classifi ers and 
error estimates are obtained from the same data; indeed, there is no 
hypothesis test in the ordinary sense because there are no classifi ers 
prior to using the data and therefore no errors to form the hypotheses. 
However, suppose we change our focus to the classifi cation rules, not 
the particular classifi ers produced by the rules. In this case, we have 
two classifi cation rules,  Φ  and  Ψ , and to these there corresponds two 
random variables,  ε [  ϕ  ] and  ε [  ψ  ], giving the errors of the designed clas-
sifi ers across all possible samples of the given size. In this case, the 
hypothesis test involves the expected values (means) of  ε [  ϕ  ] and  ε [  ψ  ] 
and takes the form

    
H E E

H E E
0

1

0

0

: [ [ ]] [ [ ]]

: [ [ ]] [ [ ]] .

ε φ ε ψ
ε φ ε ψ

− >
− >

    (6.13)   

 An obvious test statistic is   ρ ε φ ε ψ= − [ ]ˆ[ ] ˆ , where   ̂ε is some error esti-
mator on the training data. But what do we know about the distribution 
of   ̂ [ ] ˆε φ ε ψ− [ ]? In general, we do not know much. As discussed in 
reference to the RMS, there are only two models for which estimated 
error distributions are known, and only for resubstitution and leave -
 one - out error estimation. Even if one were to make the unwarranted 
assumption that the distribution of the test statistic is Gaussian and 
assume that the mean is zero under the null hypothesis, which would 
be a good approximation for leave - one - out error estimation, the vari-
ances of the error estimators are not known and cannot be estimated 
from a single sample. Based on our current state of knowledge, not 
only is it impossible to compare classifi ers without independent test 
data, but it is also not possible to compare classifi cation rules.    
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Stochastic Validation: 

Networks     

  CHAPTER 7 

       The conventions we adopt must somehow work: they must 
serve us in our coping with Nature. 

   — William Barrett    

 Classifi ers are very simple mathematical structures and their biologi-
cal content is minimal; on the other hand, networks are very complex 
mathematical structures and they constitute the basic modeling mecha-
nism for biological state spaces and regulation. As might be expected, 
network validation is much more complicated than classifi er validation 
and the theory is much less developed. While it is not our intention to 
delve deeply into the validation of network models, we believe it is 
important to at least point out some of the fundamental issues. The 
manner of classifi cation validation is straightforward because a classi-
fi er is simply a decision rule and therefore validation concerns the error 
rate for the decision rule. Networks are an entirely different manner. 
They possess much more structure and therefore operational defi nitions 
must be related to this structure, thereby compelling validation proce-
dures that take into account corresponding structure in the data. 

 If we make the primary epistemological assumption that there is a 
hypothesized ideal network, then validation requires a method to 
compare two networks, in this case, the model and the ideal. Given 
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networks  H  and  M , we need a  distance function ,   μ  ( M ,  H ), quantify-
ing the difference between them. Following Dougherty  (2007) , we 
require that   μ   be a  semimetric , meaning that it satisfi es the following 
four properties:

   1.       μ  ( M ,  H )    ≥    0,  

  2.       μ  ( M ,  M )    =    0,  

  3.       μ  ( M ,  H )    =      μ  ( H ,  M ) [ symmetry ],  

  4.       μ  ( M ,  H )    ≤      μ  ( M ,  N )    +      μ  ( N ,  H ) [ triangle inequality ]. 

 If   μ   should satisfy a fi fth condition,  

  5.       μ  ( M ,  H )    =    0    ⇒     M     =     H ,    

 then it is a  metric . A distance function is often defi ned in terms of some 
characteristic, by which we mean some structure associated with a 
network, such as its regulatory graph or steady - state distribution. We 
do not require a distance function to be a metric because distinct net-
works may share common characteristics. 

 By the term  “ network ”  we mean a mathematical model that involves 
a multivariate state space evolving over time. Unfortunately, it has 
become common parlance in the biological literature to refer to any 
graphical model as a network. For the most part, these so - called  “ net-
works ”  are simply graphical visualizations of lists of relational pairs 
between genes or proteins, or both, and have nothing to do with dynam-
ical behavior. They do not describe biological state trajectories through 
time. We are not saying that the discovery of correlation or codetermi-
nation between genes is unimportant; indeed, these kinds of relation-
ships may represent important characteristics of a biological network; 
however, in and of themselves they do not constitute a network model 
in the dynamical sense. 

 Since our purpose is to highlight basic issues concerning network 
model validity and not to provide a general theoretical discussion of 
networks, we will consider a restricted class of networks that contains 
most of the networks thus far used in genomics and proteomics. We 
assume the underlying network structure is composed of a fi nite set, 
 V     =    { X  1 ,  X  2 ,    . . .    ,  X n  }, of nodes (for instance, gene or protein expressions), 
with each node taking discrete values between 0 and  d     −    1. The corre-
sponding state space possesses  N     =     d n   states, which we denote by  x  1 , 
 x  2 ,    . . .    ,  x   N  . We express the state  x   j   in vector form by  x   j      =    ( x j   1 ,  x j   2 ,    . . .    ,  x jn  ). 
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The corresponding dynamical system is based on discrete time,  t     =    0, 1, 
2,    . . .    , with the state - vector transition  X ( t )    →     X ( t     +    1) at each time instant. 

 We assume that the process  X ( t ) is a  Markov chain , meaning that 
the probability of  X ( t ) conditioned on  X  at  t  1     <     t  2     <     . . .     <     t s      <     t  is equal 
to the probability of  X ( t ) conditioned on  X ( t s  ), the most recent observa-
tion. We assume the chain is  homogeneous , meaning that the transition 
probabilities depend only on the time difference, that is, for any  t  and 
 u , the  u  - step transition probability,

    p u P t u tjk k j( ) ( ( ) | ( ) ),= + = =X x X x     (7.1)   

 depends only on  u . We are not asserting that the Markov property and 
homogeneity are necessary assumptions for biological regulatory net-
works; rather we make these assumptions to facilitate mathematically 
tractable modeling. Under these assumptions, we need only consider 
the transition probability matrix defi ned in Eq.  4.8 , where the one - step 
transition probability,  p jk  , is given by  p jk      =     p jk  (1). Besides the state one -
 step probabilities, we can consider the node one - step probabilities,

    p j r P X t r ti i j( , ) ( ( ) | ( ) ).= + = =1 X x     (7.2)   

 These give the probabilities of the nodes at time  t     +    1 given the state 
at time  t . Suppose that node  X i   at time  t     +    1 depends only on values of 
nodes in a  regulatory set ,  R i      ⊂     V , at time  t , the dependency being inde-
pendent of  t . Then the node one - step probabilities are given by

    p j r P X t r X t x X Ri i l jl l i( , ) ( ( ) | ( ) ).= + = = ∈1 for     (7.3)   

 In this form, we see that the dependencies are restricted to regulatory 
nodes, in the case of gene networks these being the regulatory genes 
for the gene corresponding to  X i  . The network has a  regulatory graph  
( connectivity graph ) consisting of the  n  nodes and a directed edge from 
 x i   to  x j   if  x i      ∈     R j  . There is also a  state - transition graph  whose nodes are 
the  N  state vectors. There is a directed edge from state  x   j   to state  x   k   if 
and only if  x   j      =     X ( t ) implies  x   k      =     X ( t     +    1). 

 A homogeneous, discrete - time Markov chain with state space { x  1 , 
 x  2 ,    . . .    ,  x   N  } possesses a steady - state distribution (  π   1 ,   π   2 ,    . . .    ,   π  N  ) if, for 
all pairs of states  x   k   and  x   j  ,  p jk  ( u )    →      π  k   as  u     →     ∞ . If there exists a 
steady - state distribution, then, regardless of the state  x   k  , the probability 
of the Markov chain being in state  x   k   in the long run is   π  k  . Not all 
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Markov chains possess steady - state distributions. As mentioned in 
Chapter  4 , a probabilistic Boolean network has an associated Markov 
chain that possesses a steady - state distribution under the assumption of 
a positive perturbation probability. 

 Various distance functions can be defi ned, depending upon which 
network characteristic is of interest. Here we describe three distance 
functions in the language of gene regulatory networks (although their 
use is certainly not restricted to gene regulation). For two Boolean 
networks with perturbation possessing the same gene set, with gene 
expressions  X  1 ,  X  2 ,    . . .    ,  X n  , a rule - based distance is given by the pro-
portion of incorrect rows in the function - defi ning truth tables. Denoting 
the state functions for networks  H  and  M  by  f     =    (  f  1 ,  f  2 ,    . . .    ,  f n  ) and 
 g     =    ( g  1 ,  g  2 ,    . . .    ,  g n  ), respectively, since there are  n  truth tables consist-
ing of 2  n   rows each, this distance is given by

    μfun M H, [ ( ) ( )],( ) = ≠
==

∑∑1

2
11

n
I g f

n i k i k

k

N

i

n

x x     (7.4)  

where  I  denotes the indicator function,  I [ A ]    =    1 if  A  is a true statement 
and  I [ A ]    =    0 otherwise. If we wish to give more weight to those states 
more likely to be observed in the steady state, then we can weight the 
inner sums in Eq.  7.4  by the corresponding terms in the steady - state 
distribution,   π      =    (  π   1 ,   π   2 , … ,   π  N  ). 

 If our main interest is in the regulatory graph of a network, then 
we can apply adjacency matrices. Given an  n  - gene network, for  i ,  j     =    1, 
2, … ,  n , the ( i ,  j ) entry in the matrix is 1 if there is a directed edge from 
the  i th to the  j th gene; otherwise, the ( i ,  j ) entry is 0. If  A     =    ( a ij  ) and 
 B     =    ( b ij  ) are the adjacency matrices for networks  H  and  M , respec-
tively, where  H  and  M  possess the same gene set, then the  hamming  
distance between the networks is defi ned by

    μham M H, .
,

( ) = −
=

∑ a bij ij

i j

n

1

    (7.5)   

 Alternatively, the hamming distance may be computed by normalizing 
the sum, such as by the number of genes or the number of edges in one 
of the networks, for instance, when one of the networks is considered 
as representing ground truth. The hamming distance is a coarse measure 
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since it contains no steady - state or dynamical information. Two net-
works can be very different and yet have   μ   ham ( M ,  H )    =    0. 

 Since steady - state behavior is of particular interest, for instance, 
being associated with phenotypes in gene regulatory networks, a natural 
choice for a network distance is to measure the difference between 
steady - state distributions. If   π      =    (  π   1 ,   π   2 , … ,   π  m  ) and   ω      =    (  ω   1 ,   ω   2 , … ,   ω  m  ) 
are the steady - state distributions for networks  H  and  M , respectively, 
then a network distance is defi ned by

    μ π ωss M H, .( ) = −
=

∑ i i

i

n

1

    (7.6)   

 Other norms can be used to defi ne distance functions based on the 
steady - state distribution. 

 The previous examples of network distance functions demonstrate 
a common scenario: A network semimetric is defi ned by a metric on 
some network characteristic, for instance, its regulatory graph and 
steady - state distribution. The metric requirement fails because distinct 
networks possess the same characteristic. To formalize the situation, let 
  λ   M    and   λ   H    denote the characteristic   λ   corresponding to networks  M  
and  H , respectively. If   ν   is a metric on a space of characteristics 
(directed graphs, matrices, probability densities, etc.), then a semimet-
ric   μ   ν    is induced on the network space according to

    μ ν λ λν ( , ) ( , ).M H M H=     (7.7)   

 This is quite natural if our main interest is with the characteristic, not 
the full network itself. 

 Focus on network characteristics leads to the identifi cation of net-
works possessing the same characteristic. Given any set,  U , a relation 
 ∼  between elements of  U  is called an  equivalence relation  if it satisfi es 
the following three properties for  a ,  b ,  c     ∈     U :

   1.      a     ∼     a  [refl exivity],  

  2.      a     ∼     b     ⇒     b     ∼     a  [symmetry],  

  3.      a     ∼     b  and  b     ∼     c     ⇒     a     ∼     c  [transitivity].    

 If  a     ∼     b , then  a  and  b  are said to be  equivalent . An equivalence relation 
on  U  induces a partition of  U . The subsets forming the partition are 
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defi ned according to  a  and  b  lie in the same subset if and only if  a     ∼     b . 
The subsets are called  equivalence classes . The equivalence class of 
elements equivalent to  a  is denoted by [ a ]  ∼  . According to the defi ni-
tions, [ a ]  ∼      =    [ b ]  ∼   if and only if  a     ∼     b . If   ν   is a semimetric on a set  U  and 
we defi ne  a     ∼     b  if and only if   ν  ( a ,  b )    =    0, then

    μ ν([ ] , [ ] ) ( , )a b a b=     (7.8)   

 defi nes a metric on the space of equivalence classes, which means that 
  μ  ([ a ]  ∼  , [ b ]  ∼  )    =    0 implies [ a ]  ∼      =    [ b ]  ∼  . 

 If we defi ne  M     ∼     H  if   λ    M      =      λ    H  , then this is a network equivalence 
relation. If we focus on equivalence classes of networks rather than the 
networks themselves, we are in effect identifying equivalent networks. 
For instance, if we are only interested in steady - state distributions, then 
it may be advantageous to identify networks possessing the same 
steady - state distribution. In this case, if the steady - state distributions 
of  M  and  H  are  F  M    and  F  H   , respectively, then we can replace 
  μ   ss ( M ,  H ) by   ν   ss ( F  M   ,  F  H   ). 

 While the idea of dealing with equivalence classes of networks 
might at fi rst appear abstract, it is epistemologically benefi cial and 
forms the basis for model validation. Suppose we wish to validate a 
proposed network, say, a probabilistic Boolean network,  M  via its 
steady - state distribution. In this case, the problem is to mathematically 
derive the steady - state distribution,  F   M  , from the network model and 
then compare this distribution to an empirical steady - state distribution 
 F  emp , which is a histogram formed from state frequencies of empirical 
data that have resulted from an experiment designed to produce appro-
priate steady - state data. The primary epistemological assumption in this 
case is that there is a hypothesized ideal network from which the 
steady - state data have been drawn. Based on the fact that the experi-
mental validation only refl ects the steady state, model validation cor-
responds to the equivalence class of networks possessing the steady - state 
distribution  F   M  , not to  M  itself. We might possess strong theoretical 
evidence that the behavior of the genes composing  M  can be modeled 
by the proposed probabilistic Boolean network, but the validation has 
only been with respect to the steady - state distribution (and relative to 
whatever test of validation for the steady - state distribution has been 
employed). The proposed network model  M  remains contingent, as are 
all scientifi c models, but observation has supported it, at least in regard 
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to the equivalence class of networks possessing the steady - state distri-
bution  F   M  . Here we should keep in mind Einstein ’ s words that  “ it is 
only necessary that enough propositions of the conceptual system be 
fi rmly enough connected with sensory experiences. ”  Is the steady - state 
validation enough? Perhaps yes if the steady state is our main interest; 
perhaps no if our interests run deeper. 

 This procedure leads to an obvious question: Why would one only 
partially validate the proposed network in this manner? The answer is 
straightforward. It is much easier to design an experiment to produce 
steady - state data in order to evaluate   ν   ss ( F   M  ,  F  emp ) than to design an 
experiment to evaluate   μ   fun ( M ,  H  emp ), where  H  emp  is an empirically 
inferred network. Indeed, if we could reliably infer  H  emp  from data, 
why bother with  M  at all. Just replace it by  H  emp . This is analogous 
to the problem faced in classifi er design: If we can reliably infer a 
feature - label distribution from data, why bother with the proposed clas-
sifi er when we could simply take a Bayes classifi er for the inferred 
feature - label distribution? The whole point of validating a model via 
characteristics is that the corresponding empirical characteristics can 
be more reliably inferred from data than the full model itself, which 
presumably is a creation of the intellect in conjunction with the infer-
ence of some small number of parameters. Moreover, if our interest is 
with the characteristic, for instance, phenotype determination via the 
steady - state distribution, then validation of the characteristic is salient. 

 Once again, the issue is hypothesis testing. We can formulate a 
hypothesis test

    
H

H
0

1

:

: ,

λ λ
λ λ
M H

M H

=
≠

    (7.9)  

where   λ    H   is the characteristic for the ideal network,   ν  (  λ    M  ,   λ   emp ) plays 
the role of a test statistic, and   λ   emp  is computed from independent test 
data. Given the hypothesis test, a critical value   ν   0  is chosen such that 
the null hypothesis is accepted if   ν  (  λ    M  ,   λ   emp )    ≤      ν   0  and the alternative 
hypothesis accepted if   ν  (  λ    M  ,   λ   emp )    >      ν   0 . Two problems immediately 
arise. First, evaluation of type I error requires knowledge of the distri-
bution of the test statistic under the null hypothesis, knowledge we 
almost certainly lack, and evaluation of type II error would require 
some assumption as to a specifi c competing hypothesis and knowledge 
of the distribution of the test statistic under that competing hypothesis. 
Hence, formulating validation in a rigorous statistical fashion is not 

c07.indd   135c07.indd   135 6/16/2011   3:40:34 PM6/16/2011   3:40:34 PM
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likely. Second, the critical value determines the orientation, whether 
we make it diffi cult to reject the null hypothesis or diffi cult to accept 
it. Suffi ce it to say that the choice of the critical value is an epistemo-
logical choice. 

 Model construction typically involves estimating some parameters 
from data. In this case, a model can be expressed in the form  M ( a ), 
where  a  is a parameter vector. For instance, for a Boolean network, the 
model structure is created but the truth tables defi ning the rule structure 
are often inferred from data. By assuming that the model is known prior 
to testing (validation) and that validation is independent of the manner 
in which the model is conceived, we are in fact assuming that there are 
both training and testing data. If data are limited, then training and 
testing may be done on the same data, which affects the distribution of 
the test statistic. Letting   λ   denote the characteristic for the hypothetical 
model to be tested and  z  denote the corresponding empirical character-
istic, since the characteristic depends on the model parameters and 
some of these have been estimated from the sample  S , the characteristic 
takes the form   λ  ( S ) and the corresponding observation is of the form 
 z ( S ). In the case of independent training and testing data, the test dis-
tance takes the form   ν  (  λ  ,  z ( S )); when training and testing are done on 
the same data, it becomes   ν  (  λ  ( S ),  z ( S )). As in the case of classifi cation, 
this kind of resubstitution estimate can be expected to suffer from 
optimistic bias: if  Σ  is the point process generating the sample points, 
then it is very likely that

    E z E zΣ ΣΣ Σ Σ[ ( ( ), ( ))] [ ( , ( ))],ν λ ν λ<     (7.10)  

where the expectation is taken with respect to  Σ . The extent of such 
bias depends on the model, test characteristic, and sample size. Whereas 
substantial effort has gone into studying these kinds of problems in 
classifi cation, there appears to have been little effort in the case of 
networks.  

  EXAMPLE: A DIFFERENTIAL EQUATION 
MODEL FOR PROTEIN CONCENTRATIONS 
IN  ESCHERICHIA COLI  

 Validation of dynamical networks has not been commonplace in genom-
ics; however, it has not been totally absent and here we describe a vali-
dation effort in the case of a model based on piecewise - linear differential 
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equations (Batt et al.,  2005 ). The underlying theory rests on a class of 
piecewise - linear differential equations long used to model gene regula-
tion (Glass and Kauffman,  1973 ) and validation is with reference to a 
quantization of the continuous piecewise - linear differential equation 
model (de Jong et al.,  2003 ). Given the differential equation model for 
protein concentrations based upon the derivatives and various param-
eters, including threshold concentrations, synthesis parameters, and 
degradation parameters, knowing the relative order of certain param-
eters and quotients of parameters results in a partitioning of the phase 
space into a system of domains. The domain system includes transitions 
between domains and a labeling of each domain in terms of the signs 
of the derivatives of the concentration variables and a marker as to 
whether the domain is persistent or instantaneous. Prediction of the 
signs of concentration derivatives can be obtained from the model, 
thereby facilitating model validation. 

 To illustrate the modeling scheme, we consider the following two -
 equation network modeling the concentrations  x  and  y  of the proteins 
A and B (Batt et al.,  2005 ):

    
dx

dt
s x s y xx x y x= −− −κ θ θ γ( , ) ( , )2     (7.11)  

    
dy

dt
s x yy x y= −−κ θ γ( , ) ,1

    (7.12)  

where   θ x
1 ,   θ x

2, and   θ  y   are threshold concentrations,   κ  x   and   κ  y   are synthe-
sis parameters,   γ  x   and   γ  y   are degradation parameters, and  s   −  ( x ,   θ  ) is a 
step function with  s   −  ( x ,   θ  )    =    1 if  x     <      θ   and  s   −  ( x ,   θ  )    =    0 if  x     >      θ  . According 
to Eq.  7.11 , protein A is produced if and only if neither  x x> θ 2 nor  y     >      θ  y  , 
and when produced it is produced at rate   κ  x  . According to Eq.  7.12 , 
protein B is produced at rate   κ  y   if and only if   x x< θ1. It can be shown 
that fl ow in the phase space can be determined from knowledge of the 
relative order of the threshold parameters and the quotients of the syn-
thesis and degradation parameters. Figure  7.1 (a) illustrates the fl ow in 
the phase space (dots marking equilibrium points) and Fig.  7.1 (b) 
shows the domain partition of the phase space. The domains interior to 
the rectangular partitions are  “ persistent ”  and those forming the bound-
aries of the partition are  “ instantaneous. ”  Figure  7.1 (c) shows the state 
transition graph corresponding to the domain space (dots representing 
self - transitions).   
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CHAPTER 7 Stochastic Validation: Networks 139

 A sequence of domains constitutes a path. A key property is that 
every solution of the original differential equation model corresponds 
to a path in the state transition diagram (however, the converse is not 
true). Consequently, paths corresponding to predicted regulatory behav-
ior can be compared with experimental data. From the perspective of 
the original differential equation model, the paths correspond to char-
acteristics of the model and the original model can be validated via 
these characteristics. 

 Turning to the biological application of immediate interest, an 
 E.   coli  population transitions from exponential growth to a nongrowth 
 “ stationary phase ”  when nutritionally stressed. In Batt et al.  (2005) , 
based on experimental literature, a seven - variable piecewise - linear dif-
ferential equation model is constructed to characterize nutritional stress 
response in  E.   coli . The model consists of six protein concentrations 
corresponding to six genes and one input variable denoting the presence 
or absence of a carbon starvation signal. The genes are involved in the 
cell ’ s response to carbon starvation:  crp  and  cya  (transduction of the 
carbon starvation signal);  fi s  (metabolism);  rrn  (cell growth);  topA  and 
 gyrAB  (modulation of gene expression). The model has seven differ-
ential equations and 40 inequality constraints. 

 Absent the carbon starvation signal, the domain system reaches a 
single equilibrium state (domain) corresponding to exponential growth. 
Starting from this equilibrium state, fl ipping the starvation signal yields 
a 66 - state transition graph possessing a single equilibrium state corre-
sponding to stationary - phase conditions. Validation in Batt et al.  (2005)  
surrounds the question as to whether predictions obtained from this 
model are concordant with experimental data. For instance, the con-
centration of Fis has been experimentally shown to decrease at the end 

     Figure 7.1     Dynamics of the two - gene network: (a) dynamics in the phase space, dots 
marking equilibrium points; (b) domain partition of the phase space, each label signifying 
a domain (interior, boundary, or boundary intersection: a label in the interior denotes the 
interior; a label on a boundary denotes the boundary, and a label on a boundary intersection 
denotes the point at the intersection; (c) state transition diagram, dots indicating self -
 transitions.  [Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M., and 
D. Schneider,  “ Validation of Qualitative Models of Genetic Regulatory Networks by Model 
Checking: Analysis of the Nutritional Stress Response in  Escherichia coli , ”   Bioinformatics , 
21(supp 1), 19 – 28, 2005, by permission of The International Society for Computational 
Biology].   
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of the exponential phase and become steady in the stationary phase, 
which agrees with model predictions. However, preliminary data indi-
cate that the level of DNA supercoiling decreases during and after the 
transition to the stationary phase, which implies that the concentration 
of GyrAB must decrease or the concentration of TopA must increase, 
neither of which is predicted by the model since in all paths the TopA 
concentration remains constant and the GyrAB concentration increases. 
Thus, there are model predictions not in agreement with experimental 
observations and the model. 

 Here we are once again reminded that a scientifi c model is a con-
tingent hypothesis perpetually open to rejection should its predictions 
fail. A model may be validated by existing data as they relate to certain 
aspects of the model, but refuted by new data. In the words of Popper, 
 “ The acceptance by science of a law or a theory is tentative only; which 
is to say that all laws and theories are conjectures, or tentative hypoth-
eses    . . .    We may reject a law or theory on the basis of new evidence, 
without necessarily discarding the old evidence which originally led us 
to accept it ”  (Popper,  1963 ). 

 Before leaving this example, we wish to emphasize the salient role 
played by reduction of the full model to characteristics for the purpose 
of validation. In particular, the state transition diagram in the domain 
space is a consequence of the full piecewise - linear differential equation 
model. There are two technical issues with the validation that should 
be pointed out. First, there is no quantitative specifi cation of the rela-
tions between model variables and the experimental measurements; 
second, the relation between model design and experimental data — for 
instance, their independence — is not clarifi ed. However, these would 
be easy to address and should not cause one to lose sight of the funda-
mental methodology employed. 

 Just as one can evaluate the performance of classifi cation rules, one 
can evaluate network inference procedures. An inference procedure 
operates on data generated by a network  H  and constructs an inferred 
network  M  to serve as an estimate of  H , or it constructs a character-
istic to serve as an estimate of the corresponding characteristic of  H . 
For full network inference, the inference procedure is a mathematical 
mapping from a space of samples to a space of networks, and it must 
be evaluated as such. There is a generated data set  S  and the inference 
procedure is of the form   ψ  ( S )    =     M . If a characteristic is being esti-
mated, then   ψ  ( S ) is a characteristic. 
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 Focusing on full network inference, the goodness of an inference 
procedure   ψ   is measured relative to some distance,   μ  , specifi cally, 
  μ  ( M ,  H )    =      μ  (  ψ  ( S ),  H ), which is a function of the sample  S . In fact, 
 S  is a realization of a random process,  Σ , governing data generation 
from  H . In general, there is no assumption on the nature of  Σ . It might 
be directly generated by  H  or it might result from directly generated 
data corrupted by noise of some sort. Moreover,   ψ   might include fi lter-
ing to reduce noise, missing value estimation, quantization, or normal-
ization in time, space, or quantifi cation. If a particular application is in 
mind, one should generate the synthetic data in such a way as to refl ect 
real-world data and apply the appropriate fi ltering scheme when vali-
dating inference (e.g., see Husmeier,  2003 ).   μ  (  ψ  ( Σ ),  H ) is a random 
variable and the performance of   ψ   is characterized by the distribution 
of   μ  (  ψ  ( Σ ),  H ), which depends on the distribution of  Σ . The salient 
statistic regarding the distribution of   μ  (  ψ  ( Σ ),  H ) is its expectation, 
 E   Σ  [  μ  (  ψ  ( Σ ),  H )], with respect to  Σ . 

 Rather than considering a single network, we can consider a dis-
tribution, H, of random networks, where, by defi nition, the occurrences 
of realizations  H  of H are governed by a probability distribution. This 
is precisely the situation with regard to the classical study of random 
Boolean networks. Averaging over the class of random networks, our 
interest focuses on the expectation,  E  H [ E   Σ  [  μ  (  ψ  ( Σ ), H)]], with respect to 
H. It is natural to defi ne the inference procedure   ψ   1  better than the 
inference procedure   ψ   2  relative to the distance   μ  , the random network 
H, and the sampling procedure  Σ  if

    E E E EH HH H[ [ ( ( ), )]] [ [ ( ( ), )]].Σ ΣΣ Σμ ψ μ ψ1 2<     (7.13)   

 Whether an inference procedure is  “ good ”  is not only relative to the 
distance function, but it is also relative to how one views the value of 
the expected distance. Indeed, it is not really possible to determine an 
absolute notion of goodness. 

 In practice, the expectation is estimated by an average,

    E E Sj j

j

m

H H[ [ ( ( ), )]] , ,Σ μ ψ μ ψΣ = ( )( )
=

∑ H
1

    (7.14)  

where  S  1 ,  S  2 , … ,  S m   are sample point sets generated according to  Σ  from 
networks  H  1 ,  H  2 ,    . . .    ,  H   m   randomly chosen from H. 

 The preceding analysis applies virtually unchanged when a char-
acteristic is being estimated. One need only replace  H  and H by   λ   and 
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 Λ , where   λ   and  Λ  are a characteristic and a random characteristic, 
respectively, and replace the network distance   μ   by the characteristic 
distance. A good deal of bioinformatics effort has gone into inferring 
regulatory graphs (see Werhli et al.,  2006 , and Marbach et al.,  2010 , 
for comparative reviews). 

 As an illustration, we consider inference of a genetic regulatory 
graph. There have been a number of papers addressing the inference 
of regulatory graphs using information - theoretic approaches. In a study 
proposing using the minimum description length (MDL) principle to 
infer regulatory graphs (Zhao et al.,  2006 ), the hamming distance was 
used to compare the performance of the newly proposed algorithm 
with an earlier information - theoretic algorithm, called REVEAL 
(Liang et al.,  1998 ). Figure  7.2  compares the hamming distances 
between the inferred networks and the corresponding synthetic net-
works that generated the data relative to increasing sample size. It 
does so for the REVEAL algorithm and the MDL algorithm using 
three different settings for a user - defi ned parameter ( Γ ). The perfor-

     Figure 7.2     Hamming distance performance for inferring regulatory graphs using 
information theory: REVEAL — solid line,  Γ     =    0.2 — dotted line,  Γ     =    0.3 — dashed line, 
 Γ     =    0.4 — dash - dot line.  [Zhao, W., Serpedin, E., and E. R. Dougherty,  “ Inferring Gene 
Regulatory Networks from Time Series Data Using the Minimum Description Length 
Principle, ”   Bioinformatics , 22(17), 2129 – 2135, 2006, by permission of The International 
Society for Computational Biology].   
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mance measures are obtained by averaging over 30 randomly generated 
networks, each containing 20 genes and 30 edges, with the distance 
function being normalized over 30, the number of edges in the syn-
thetic networks.   

 It is important to recognize that inference performance is a math-
ematical issue concerning operators on random samples. Performance 
of a particular inference procedure depends upon the class of networks 
being considered. Accurate performance analysis requires that the 
sample data be generated from the network class under consideration. 
For this reason, performance analysis using real data is problematic. If 
real data are employed, then the inferred network is compared, not with 
the unknown random network generating the data, but with a model 
network that has been human - constructed from the literature (and 
implicitly assumed to approximate the data - generating network). A 
network  H  (or characteristic) is constructed from relations found in 
the literature and   μ  (  ψ  ( Σ ),  H ) is computed. The aim is to compare the 
result of the inference procedure with some network related to existing 
biological knowledge. The problem is that the constructed network may 
not be a good approximation to the regulatory graph for the system 
generating the data. This can happen because the literature is incom-
plete, there are insuffi ciently validated connections reported in the lit-
erature, or the conditions under which connections have been discovered, 
or not discovered, in certain papers are not compatible with the condi-
tions under which the current data have been derived. As a result of 
any of these situations, the overall validation procedure is confounded 
by the precision (or lack thereof) of the approximation (see Dougherty, 
 2007 , for a mathematical characterization of the problem). 

 The validation of stochastic models is a subtle business and requires 
the solutions to diffi cult statistical problems. Assumptions are inevi-
table, not the least of which is the commonplace assumption that sample 
points are independent, something that can never be absolutely empiri-
cally verifi ed. Na ï ve intuition has no role in scientifi c validation. The 
validation criteria must be carefully articulated, both the assumptions 
on which they depend and the mathematical characterization of their 
satisfaction. In all cases, the nature of our knowledge rests with the 
mathematical theory we have concerning the measurements. That 
cannot be simplifi ed. If either the available theory or one ’ s familiarity 
with the theory is limited, then one ’ s appreciation of the scientifi c 
content of a model is limited. 
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 The epistemology of science is inextricably bound up with the 
stochastic nature of scientifi c models. It is not simply a matter of relat-
ing a model operationally to empirical phenomena, running an experi-
ment, and observing whether the predicted phenomena occur, in 
particular, whether the measurements are suffi ciently close to the 
predicted measurements so that any difference can be attributed to 
experimental error. The stochastic nature of the model insures that the 
variables within the model are random variables possessing some prob-
ability distribution and the measurements must be interpreted as sample 
points of a probability distribution. One may observe an entire trajec-
tory in time so that validation involves the manner in which one or 
more time processes occur with respect to their predicted behavior 
based on the model. In this book, we have avoided continuous - time 
processes and therefore have avoided the measure - theoretic issues sur-
rounding them; nonetheless, the epistemological issues are analogous. 
The key point is that it is insuffi cient to propose a scientifi c model and 
give supporting empirical measurements without explicitly stating the 
validation criteria and characterization of the extent to which those 
criteria are satisfi ed. It is this explicitness that makes scientifi c enquiry 
intersubjective. Two investigators possessing suffi cient training to 
understand the mathematical model and the experimental protocol, suf-
fi cient sensory capability to observe the experimental measurements, 
and suffi cient mathematical training to understand the validation crite-
ria and their quantifi cation will of necessity agree with the mathemati-
cal and operational meanings of the model and the degree of its 
validation. However, they may not agree on whether the model should 
be accepted. That will depend on the degree of validation demanded 
by each. Before that, they might not agree on the validation criteria 
themselves. Intersubjectivity does not apply to agreement on scientifi c 
propositions except to the extent that there is agreement on the overall 
methodology. 

 As Reichenbach has noted, scientifi c truth is based on a  “ functional 
conception of knowledge, ”  and this means that agreement on a scien-
tifi c theory depends fi rst of all on agreement on the criteria of function-
ality. Agreement on the validity of a regulatory model indicates 
agreement on the functionality of that model relative to certain agreed -
 upon validation criteria; it does not indicate agreement on the totality 
of actual interactions in Nature. What is actually  “ out there in the 
world, ”  none of us knows. As Kant so well understood, the nature and 
forms of the things - in - themselves are not for us to know. Einstein states 
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the matter in terms of a metaphor of a man trying to form a mental 
picture of the mechanism of a clock with closed case:

  Physical concepts are free creations of the human mind, and are not, 
however it may seem, uniquely determined by the external world. In our 
endeavor to understand reality we are somewhat like a man trying to 
understand the mechanism of a closed watch. He sees the face and the 
moving hands, even hears its ticking, but he has no way of opening the 
case. If he is ingenious he may form some picture of a mechanism which 
could be responsible for all the things he observes, but he may never be 
quite sure his picture is the only one which could explain his observations. 
He will never be able to compare his picture with the real mechanism and 
he cannot even imagine the possibility or the meaning of such a compari-
son.  (Einstein and Infeld,  1967 )    

 Not only must the scientist ’ s model  “ explain ”  (fi t) current observa-
tions, it must be capable of predicting new observations, with its sci-
entifi c truthfulness depending on the accuracy of these predictions — all 
to be determined without opening the watch. Should it be surprising, 
then, that validation is such a subtle issue, to the point that the criteria 
of validation are themselves  “ free creations of the human mind ” ? True, 
this leaves us with a radical uncertainty as regards Nature, but it does 
not leave us disconnected from Nature. Elsewhere, Einstein writes, 
 “ For even if it should appear that the universe of ideas cannot be 
deduced from experience by logical means, but is, in a sense, a cre-
ation of the human mind, without which no science is possible, never-
theless this universe of ideas is just as little independent of the nature 
of our experiences as clothes are of the form of the human body ”  
(Einstein,  1922 ). The creations are free but they are not independent of 
experience. 

 Centuries of scientifi c struggle have led to an epistemology 
grounded on prediction formalized within the theory of statistics. In the 
end, because they are grounded on agreements as to how they are 
manifested in experiments, our theories embody the kinds of models 
we can make based on the mathematical descriptions of relationships 
available to us. Even though the mathematical descriptions may not 
have any similarity in form to the actual relationships, these models are 
still rigorously tied to Nature, since when the models are tested by 
experimentation using the agreed operational defi nitions they reliably 
produce accurate predictions. We can hardly expect our science to 
be free of uncertainty when the foundations of our mathematics 
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themselves are not free of paradox. When discussing diffi culties in 
mathematics, Barrett writes,  “ The conventions we adopt must somehow 
work: they must serve us in our coping with Nature ”  (Barrett,  1979 ). 
What better words could one apply to the scientifi c enterprise? The 
theories must  “ work, ”  and that means they must satisfy human require-
ments regarding their predictive capabilities in regard to Nature.    
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  CHAPTER 8 

       The objectivity of scientifi c statements lies in the fact that they 
can be intersubjectively tested. 

   — Karl Popper    

 There are strong constraints on scientifi c knowledge and these impose 
a great burden on scientifi c research. It is not easy to predict the future 
and prediction is the basis for scientifi c validity. Moreover, prediction 
is uncertain and must be characterized within a rigorous theory of 
probability. Not only do the phenomena not conform to our common-
sense intuitions; neither does the probability theory that must cha-
racterize uncertainty in our prediction of phenomena. Whether it is 
because we are raised from childhood with a na ï ve causal - deterministic 
mindset or that our mental faculties are insuffi cient, our intuition 
regarding probability is often mistaken. When confronted with the 
subtlety and complexity of multivariate nondeterministic systems, one 
may turn to univariate deterministic  “ insight, ”  thereby leading to ridic-
ulous conclusions. 

 The transformation from causality to expectation as the basis of 
science is paralleled by a student ’ s maturation. A wet - behind - the - ears 
undergraduate reads Hume ’ s  An Enquiry Concerning Human 
Understanding  and a metamorphosis begins: The silliness of childhood 
becomes starkly apparent and all the pylons supporting everyday youth-
ful beliefs are permanently shattered. Shortly thereafter the student 
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reads Kant ’ s  Prolegomena to Any Future Metaphysics  and feels a 
kinship with his famous confession:  “ I readily confess, the reminder of 
David Hume was what many years ago fi rst broke my dogmatic slumber, 
and gave my researches in the fi eld of speculative philosophy quite a 
different direction ”  (Kant,  1977 ). Kant is awakened from his comfort-
able rest in the uncritical pre - Humean world and there is no way back, 
either for him or the shaken undergraduate. But whatever solace the 
student takes in Hume ’ s jolt to Kant quickly dissipates as Kant rede-
fi nes the meaning of phenomena through the lens of his categories of 
understanding. The mind reels as Kant turns reason upon itself.  “ Do I 
really need to suffer through this? ”  the student might ask. Barrett pro-
vides an affi rmative response:

  Kant    . . .    has more than a century of the new science to refl ect upon, and 
he is the fi rst philosopher to understand what has happened. The whole 
of his  Critique of Pure Reason  is not primarily an attempt to set up a 
system of idealistic philosophy; it is the effort, stubborn and profound, to 
grasp the meaning of the new science and its consequences for human 
understanding generally.    . . .    What has happened is nothing less than the 
transformation of human reason itself. (Barrett,  1979 )   

 If the undergraduate wants to take science seriously, then he or she 
must experience this transformation. But this is only the fi rst step 
in the cleavage from one ’ s childhood moorings. Close to the same time, 
the student is introduced to the conundrums of quantum mechanics 
and the brain - teasing problems of a fi rst course on probability theory. 
From that point on, it is a lifetime ’ s work to gain probabilistic intuition. 

 If one goes on to study stochastic dynamical systems, the very 
lifeblood of biological science, one is forced to cling ever tighter to the 
mathematics while recognizing, as Kolmogorov did, the epistemologi-
cal barriers to application. Surely one must pay strict adherence to 
mathematics when playing on a fi eld where stochasticity and massive 
complexity leave intuition notoriously wanting, but there is a danger 
here. Cloaked in the security of mathematics, one might lose sight of 
the science. Perhaps this is what Fisher was thinking when he warned 
against relying on  “ the elaborate mechanism built on the theory of 
infi nitely large samples ”  and not coming to grips with the statistical 
issues that need be addressed  “ to apply accurate tests to practical data. ”  
It is not simply mathematics that is required, but the appropriate math-
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ematics for the scientifi c issues at hand, and this mathematics might 
not be sitting on the shelf. 

 It is not surprising that science is often unpopular, even among 
those who would call themselves scientists. For some, the epistemology 
is too demanding; for others, it is to limiting. In either case, the urge to 
circumvent the constraints leads to a rejection of careful predictive 
experiments and to the substitution of verbal explanations in place of 
precise mathematical language, the latter degradation resulting in 
 “ empty talk, ”  to use Einstein ’ s expression. The rejection of precise 
mathematical models and predictive experiments leads to a disconnec-
tion between the conceptual system and the phenomena, as well as a loss 
of intersubjectivity, the ultimate consequence being a subjectivism that 
is antithetical to legitimate scientifi c enquiry. We believe that subjectiv-
ism has grown stronger throughout the last half - century, to the point 
where today it is ubiquitous in certain areas of science, in particular, the 
one that concerns us in the present book. We are not waxing philosophi-
cal; indeed, we will use classifi cation in conjunction with what is occur-
ring in the genomic literature to support our contention and we will give 
concrete examples from among the studies we have conducted. 

 As discussed in Chapter  6 , classifi cation validity focuses on the 
quality of the error estimate associated with a classifi er. Since the 
purpose of an error estimate is to approximate the true error on 
the feature - label distribution, we would like the estimated and true 
errors to be strongly correlated. From the perspective of RMS, the 
desire for strong correlation can be seen in the following equation, 
which shows that high correlation mitigates the deviation variance 
caused by the individual variances:

   Var Var Var Var Corr Var Vardev ˆ ˆ ˆ , ˆ ˆε ε ε ε ε ε ε ε ε[ ] = −[ ] = [ ] + [ ] − [ ] [ ]2 [[ ],
    (8.1)  

where Corr denotes the correlation coeffi cient. If the sample is large, 
then the individual variances tend to be small, so that the deviation 
variance is small; however, when the sample is small, the individual 
variances tend to be large, so that a large correlation coeffi cient is 
needed to offset these variances. Thus, the correlation between the true 
and estimated errors plays a vital role in assessing the goodness of the 
error estimator. 
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 The correlation is related to the linear regression between the true 
and estimated errors. Whereas nonlinear regression of the true error on 
the estimated error corresponds directly to the conditional expectation 
  E ε ε| ˆ[ ], which gives the best prediction of the true error given the 
estimated error, the linear regression of the true on the estimated error 
arises from approximating the conditional expectation by a linear 
model,

    E a bε ε ε| ˆ ˆ .[ ] ≈ +     (8.2)   

 Since we would like to have the conditional expectation of the true 
error given the estimated error to be close to the true error, meaning 
  E ε ε ε| ˆ ˆ[ ] ≈ , we would like  a  to be close to 1. Geometrically, we would 
like the linear regression to be close to a 45 °  line through the origin. A 
perfectly fl at linear regression would mean that we obtain the same 
prediction of the error no matter the estimated error. 

 Let us fi rst consider a model - based situation in which the class -
 conditional distributions have been modeled by Gaussian distributions 
and linear discriminant analysis has been used as the classifi cation rule. 
In general, a model - based approach to the study of error estimation 
allows one to study the effects of changing different structural param-
eters within the model and exact computation of the true error. A large 
number of samples of size 60 have been randomly drawn from the 
feature - label distribution and, in each case, fi ve features have been 
selected from 200 features by the  t  - test, a classifi er has been designed, 
and its error estimated by leave - one - out. Figure  8.1  shows the scatter 
plot for the true - estimated error pairs and the linear regression of the 
true error on the leave - one - out estimated error. Not only is the scatter 
plot widely dispersed, indicating poor correlation and high variance, 
but the regression line is virtually horizontal.   

 The downside of using a model - based approach to study error 
estimation is that real biological data can usually be expected to be far 
less structured than that resulting from standard models, thereby 
prompting the use of real data in error analysis. Using real data to 
evaluate error estimator performance is problematic from two pers-
pectives, one methodological and the other epistemological. 
Methodologically, the data set has to be suffi ciently large so that it can 
be randomly split into two subsets: (a) a training sample on which to 
train a classifi er and estimate its error using a training sample - based 
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error estimator; and (b) a disjoint test set on which to obtain a precise 
estimate of the true error. The data set has to be large enough that the 
disjoint test set is large enough for precise estimation and that the train-
ing and test sets obtained in successive random splits are close to being 
independent, which can only be done for large data sets because for 
them the dependence is small. 

 Epistemologically, one supposes that the data set has been gener-
ated from some unknown feature - label distribution and that the esti-
mated error rate corresponds to the true error of the classifi er on this 
unknown distribution; indeed, the whole idea of error estimation pre-
supposes an error to estimate. Practically, the data have been obtained 
from some measurement process, say microarray readings on a sample 
of cancer patients in which the patients are divided into two classes. 
If the data set is large enough to satisfy the methodological demands, 
then the epistemological ground of the overall procedure is that, when 
applied to future cancer patients in the two defi ned classes, the classifi er 
will have a fi xed error rate and the error rate computed on the test 
sample is a very accurate estimate of this error rate. There is a serious 
epistemological problem here: What is meant by the  “ defi ned classes ” ? 
If these classes are generated by a tightly controlled experimental 

     Figure 8.1     Linear regression for the true error on the leave - one - out error for sample size 
60 in a Gaussian model using LDA.  
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protocol, then one has some confi dence that the classes are meaningful; 
however, if they are merely defi ned by some set of measurements 
across a widely diverse population, they may, in fact, not be well 
defi ned because, given a patient, it may not be decidable with a strong 
degree of certainty as to which class the patient belongs. To the degree 
that there is a tight experimental protocol resulting in two labeled 
classes, hypothesizing an ideal theoretical distribution from which the 
data have been drawn has justifi cation and error estimation is meaning-
ful; to the extent that data are grouped in some ad hoc manner, labeling 
loses its justifi cation and, not only is the notion of an ideal feature - label 
distribution problematic, but the entire notion of prediction, and there-
fore prediction accuracy, also loses its meaning. 

 Supposing that the data set we have justifi es performance evalua-
tion, we will illustrate error regression and correlation using microarray 
data. We use the same 295 - patient breast cancer data set as used in Fig. 
 6.5 . The data set is reduced to a selection of the 2000 genes with highest 
variance, these are reduced to 50 by using  t  - test feature selection, and 
a classifi er is designed using the LDA classifi cation rule. In the simula-
tions, we divide the data into two sets. The fi rst set consists of 50 
examples drawn without replacement from the full data set. It is used 
for both training and training sample - based error estimation. The 
remaining examples are used as a hold - out test set to get an accurate 
estimate of the true error, which is taken as the true error. This proce-
dure is repeated 10,000 times. Figure  8.2  shows the scatter plot for the 
true - estimated error pairs and the linear regression of the true error on 
the leave - one - out estimated error. As in Fig.  8.1 , there is wide disper-
sion and a virtually horizontal regression line. Figures  8.1  and  8.2  
should provide a stark warning about cross - validation.   

 The fl at regression lines in Figs.  8.1  and  8.2 , which have been 
arrived at by Monte Carlo simulation, raise an obvious question: Can 
there actually be negative correlation and a negatively sloped regres-
sion line between the true error and the leave - one - out cross - validation 
estimate? In the case of multinomial discrimination, it has been dem-
onstrated analytically that negative correlation arises between the true 
error and leave - one - out error estimate for small samples. Figure  8.3  is 
taken from Braga - Neto and Dougherty  (2010) , which gives analytic 
formulas for the correlation between the true and estimated errors for 
the discrete histogram rule. The  x  -  and  y  - axes correspond to the sample 
size and correlation coeffi cient, respectively. A Zipf distribution is 
employed and the fi gure corresponds to the model with Bayes error 
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     Figure 8.2     Linear regression for the true error on the leave - one - out error for sample size 
50 using breast - cancer data and LDA.  
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     Figure 8.3     Correlation coeffi cient for true error with both resubstitution and leave -
 one errors as a function of sample size in multinomial discrimination: solid lines are for 
resubstitution and dotted lines are for leave - one - out. The lines with and without the circles 
correspond to bin sizes  b     =    16 and  b     =    32, respectively.  (Braga - Neto and Dougherty,  2010 , 
by permission of  Pattern Recognition Letters ).   

20 40 60 80 100

0.2

0.15

0.1

0.05

0

C
or

re
la

tio
n 

co
ef

fic
ie

nt

Sample size

c08.indd   153c08.indd   153 6/16/2011   2:00:33 PM6/16/2011   2:00:33 PM



154 Epistemology of the Cell: Perspective on Biological Knowledge

0.10. The solid and dotted lines are for resubstitution and leave - one - out, 
respectively. The lines with and without the circles correspond to bin 
sizes  b     =    16 and  b     =    32, respectively. For  b     =    32, the leave - one - out esti-
mate is negatively correlated with the true error for  n     <    30.   

 A popular way to demonstrate the effi cacy of a proposed classifi ca-
tion rule in biomedical applications is to use ROC curves (receiver 
operating characteristic curves). Leaving the mathematical details to 
the literature, we simply note that the more the curve extends above 
the 45 °  line, the better the classifi er performance, and this is quantifi ed 
by the area under the ROC curve (AUC). When using leave - one - out 
error estimation, variance problems can even be worse than for error 
estimation. The risk of using ROC curves with small samples is exem-
plifi ed in Fig.  8.4 . It comes from a model - based study (Hanczar et al., 
 2010 ) and shows sample sizes 50 and 100. The gray and black curves 
correspond to leave - one - out error estimation and the true error, respec-
tively. The solid lines indicate the mean ROC curves. The dashed lines 
provide the corresponding 95% confi dence bounds. The black dashed 
lines show the effect of random sampling. The gray dashed lines show 
the combined effect of error estimation and random sampling. Leave -
 one - out has signifi cantly widened the confi dence bands, to the point 

     Figure 8.4     ROC confi dence intervals: (a)  n     =    50; (b)  n     =    100.  [Hanczar, B., Hua, J., 
Sima, C., Weinstein, J., Bittner. M. L., and E. R. Dougherty,  “ Small - Sample Precision of 
ROC - related Estimates, ”   Bioinformatics , 26(6), 822 – 830, 2010, by permission of The 
International Society for Computational Biology].   
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where, for sample size 50, they contain the line  y     =     x . Even with sample 
size 100, the lower 95% confi dence bound is barely above the line 
 y     =     x . One can only imagine the medical  “ benefi ts ”  accruing from 
evaluating classifi er performance using small - sample ROC curves.   

 Given the kind of results observed in Figs.  8.1  through 8.3 and 
demonstration of the excessive variance of cross - validation resampling 
methods across a wide array of models (Braga - Neto and Dougherty, 
 2004 ), the large number of papers in the scientifi c literature using cross -
 validation with such small samples is remarkable. It is certainly not the 
case that the variance problems with cross - validation have only recently 
been discovered. In a classic 1978 paper, Ned Glick considered LDA 
classifi cation for one - dimensional Gaussian class - conditional distribu-
tions possessing unit variance, with means   μ   0  and   μ   1 , and a sample size 
of  n     =    20 with an equal number of sample points from each distribution 
(Glick,  1978 ). Figure  8.5  is based on Glick ’ s paper; however, we have 
increased the Monte Carlo repetitions from 400 to 20,000 for increased 
accuracy. The  x  - axis is labeled with  m     =    |  μ   0     −      μ   1 |, with the parentheses 

     Figure 8.5     Standard deviation plots as a function of the distance between the means 
(and Bayes error) for LDA discrimination in a one - dimensional Gaussian model: true error 
(solid); resubstitution error (dots); and leave - one - out error (dashes).  
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containing the corresponding Bayes error. The fi gure shows standard 
deviation plots of the true (solid), resubstitution (dots), and leave - one -
 out (dashes) errors as functions of  m . When the Bayes error is small 
(large  m ), the standard deviations of the leave - one - out and the resub-
stitution errors are close, but when the Bayes error is large, the leave -
 one - out error has a much greater standard deviation. Glick was 
suffi ciently concerned that, with regard to the leave - one - out estimator, 
he wrote,  “ I shall try to convince you that one should not use this 
modifi cation of the counting estimator ”  — not even for LDA in the 
Gaussian model.   

 Recognizing the risks of small - sample classifi er design, authors 
have sometimes proposed using additional computational analyses to 
support the validity of a classifi er. Unfortunately, the supporting 
methods themselves may not have been demonstrated to be informa-
tive. For instance, some papers suggest the use of permutation - based  p  
values for obtaining information regarding the selection of relevant 
genes or for assessing the quality of classifi cation. Essentially, a statis-
tic relating to class discrimination is computed from the data, the class 
labels are randomized some large number of times, the statistic is com-
puted for each relabeling, a histogram is formed from these relabeled 
statistics, and the  p  value of the statistic corresponding to the actual 
labeling is computed. The issue is whether this  p  value is informative. 
If the  p  value gives insight into the distribution of the error or the reli-
ability of the estimated error, then an argument can be made for using 
the  p  value to assess classifi ers. Since the randomly relabeled data 
contain little or no information on the true joint distribution of the 
features and the labels, any insight based on the  p  value must come 
solely from the estimated error. 

 Because the formulation of the relevant hypothesis test is some-
what technical, we leave a precise mathematical description to the lit-
erature (Hsing et al.,  2003 ). Suffi ce it to say that, intuitively, the null 
hypothesis  H  0  is taken to mean that the classifi er does not discriminate 
and the alternative hypothesis  H  1  is taken to mean that it does discrimi-
nate. If  ε  0  and  ε  1  are the error estimates for the randomized and actual 
data, respectively, then  p  is the probability that  ε  0     ≤     ε  1 . The top part of 
Fig.  8.6  gives the  p  value as a function of the estimated error for the 
actual data and the bottom part gives the distribution of the error esti-
mates, these being for three - nearest - neighbor classifi cation, sample size 
40, leave - one - out error estimation, and a Gaussian model for which the 
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optimal classifi er has error 0.10 (Hsing et al.,  2003 ). Comparing the 
two parts of the fi gure, we see that, for the region where the mass of 
the error estimates lie, there is virtually no regression of the  p  value on 
the error estimate. Thus, the  p  value says essentially nothing about the 
error and is therefore useless as a classifi er performance measure. The 
problem is that the hypothesis test is irrelevant to the problem at hand, 
which is the validity of the classifi er model, the key issue being the 
accuracy of the error estimate.   

 Given the massive amount of energy, time, and money spent on 
algorithmically designing classifi ers and obtaining error estimates 
using estimation procedures lacking any semblance of mathematical 
justifi cation — indeed, which have been demonstrated to perform very 
poorly in precisely the kind of environments in which they are being 
used — one is compelled to question the basis on which the results are 
being justifi ed by those producing them. Given the absence of any 
scientifi c ground or even a half - hearted attempt to supply appropriate 
epistemological grounds, we come to the conclusion that it is justifi ca-
tion by faith alone. Scientifi c epistemology is being abandoned in favor 

     Figure 8.6     Regression of the permutation  p  value on the estimated error: Top part:  p  
value as a function of the estimated error for actual data. Bottom part: error distribution.  
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of the great cry of the Protestant Reformation:  Sola fi des ! Of course, 
Martin Luther was speaking of justifi cation and faith in the context of 
religion, but if we check  Webster ’ s  dictionary, we see that the fi rst defi -
nition of faith is  “ unquestioned belief ” ; it is only in the second and third 
defi nitions does that unquestioned belief refer to God or religion. One 
who presents a classifi er and error estimate computed from some data 
set absent any validating criteria to support the conclusions is certainly 
proceeding with unquestioned belief. Had he or she stopped to question 
belief in the results, then the entire matter would have been put on hold 
until there was solid validation. In fact, what we behold is exactly the 
opposite: absolutely no effort at validation. What else can one conclude 
except that the entire study and its conclusion have been justifi ed by 
faith alone? 

 The desire for  sola fi des  is not simply tacit; rather, it has open 
adherents. We quote Julian Simon in the preface to his book,  Resampling: 
The New Statistics :

  Monte Carlo resampling simulation takes the mumbo - jumbo out of sta-
tistics and enables even beginning students to understand completely 
everything that is done.    . . .     Resampling refers to the use of the observed 
data or of a data generating mechanism (such as a die) to produce new 
hypothetical samples, the results of which can then be analyzed. …  Even 
many experts are unable to understand intuitively the formal mathematical 
approach to the subject. Clearly, we need a method free of the formulas 
that bewilder almost everyone.  (Simon,  1997 )    

 Taken as a whole, this set of statements affi rms a  “ scientifi c ”  method 
without a mathematically characterized relation to empirical observa-
tion.  Sola fi des ! Simon denigrates a rigorous scientifi c epistemology 
based on mathematical statistics as  “ mumbo - jumbo ”  that cannot be 
intuitively understood my  “ many experts ”  and should therefore be 
abandoned in favor of something that even beginning students can 
understand. The notion that a beginning student should understand 
statistics is preposterous. It is a diffi cult subject requiring a strong 
background in mathematical analysis and probability theory. Statistical 
theory is often counterintuitive to everyday thinking, especially when 
small samples are involved or the underlying distributions are highly 
complex. Only through rigorous mathematical training can one hope to 
achieve a proper understanding when it comes to diffi cult issues like 
representation of the joint distribution of the true error and estimated 
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error of a classifi er. No doubt, there are situations where resampling 
has benefi ts, but these can only be determined by rigorous probabilistic 
characterization of re - sampling, for instance, rates of convergence or 
bounds on approximations. We have already illustrated in this chapter 
that resampling is quite useless and, in fact, leads to misleading results 
when used in the wrong setting. In general, the conditions under which 
producing  “ hypothetical samples ”  is benefi cial must be understood and 
this can only be done using fundamental theorems — for instance, by 
bounding the RMS in the case of cross - validation error estimation. 

 Simon undercuts his own position in this regard when he writes,

  This leads to valuable student discussion about whether the probability of 
a girl is exactly half (there are about 105 males born for each 100 females), 
whether .5 is a satisfactory approximation, whether four coins fl ipped 
once give the same answer as one coin fl ipped four times, and so on. Soon 
the class decides to take actual samples of coin fl ips. And students see 
that this method quickly arrives at estimates that are accurate enough for 
most purposes. Discussion of what is  “ accurate enough ”  also comes up, 
and that discussion is valuable, too.  (Simon,  1997 )    

 The epistemological issue concerns the meaning of  “ accurate enough ”  
and this can only be addressed via characterization of the binomial 
distribution, which models the repeated coin fl ips. Moreover, Simon is 
depending on Bernoulli ’ s law of large numbers, the oldest such law in 
probability theory, to assure convergence of the probability estimates 
to the probability. Thus, while eschewing theory, he is depending on 
theory to have confi dence in convergence, in addition to the fact that 
he needs to defi ne a suitable notion of convergence to even discuss 
convergence. 

 The kind of loose talk surrounding probabilistic convergence 
exemplifi ed by Simon ’ s  “ accurate enough ”  statement has proven, and 
continues to prove, detrimental to biology. Another example of this 
kind is the loose assumption of normality based on central limit theo-
rems. Early central limit theorems were proven by De Moivre and 
Laplace, but it was Liapunov who fi rst provided very general conditions 
under which a sum of independent random variables will be guaranteed 
to converge to a Gaussian distribution, with more general conditions 
subsequently provided by Lindbergh. Fine, but these are limit theorems. 
Only by imposing distributional assumptions can one get at the rate of 
convergence and, therefore, applicability to real - world problems that 
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do not suppose  “ infi nitely ”  large samples. Again we return to Fisher ’ s 
concern with relying on  “ the elaborate mechanism built on the theory 
of infi nitely large samples. ”  One might posit a categorical assumption 
that a limiting condition is presupposed for application of the conclu-
sions and this is the only assumption required for the resulting analysis; 
however, this kind of assumption is epistemologically unacceptable 
because it is not an assumption on the biological variables. An assump-
tion on the expression - phenotype (feature - label) distribution is a bio-
logical assumption that can be phenomenally tested and therefore leads 
to biologically interpretable limiting conditions, whereas just to make 
a blanket statement regarding the appropriateness of limiting condition 
is unrelated to the phenomena and rests on faith alone. 

 The desire for theory - free science is exemplifi ed by the use of data 
sets, rather than probability distributions, to evaluate the performance 
of proposed classifi cation rules. It is common practice to apply a pro-
posed classifi cation rule on a number of data sets and compare its 
performance with one or more other classifi cation rules. If the proposed 
classifi cation rule is applied to a number of random samples of a certain 
size from a particular feature - label distribution, then the error of each 
can be accurately assessed and the expected error of the classifi cation 
rule accurately determined. One could go further and randomize the 
sample sizes and obtain an accurate average error. The key point is that 
knowledge of the feature - label distribution permits precise error com-
putation. On the other hand, if real data sets are used and these are not 
suffi ciently large to provide a very small RMS for whatever error esti-
mation procedure is being employed, then the error estimates across 
the data sets vary widely from their true values. The result is that, when 
an ordered list of estimated errors is created, the better estimates in the 
list tend to be biased optimistically and the worst tend to be biased 
pessimistically. Thus, reporting the better end of the list creates report-
ing bias (Yousefi  et al.,  2010 ). For instance, if one is testing a classifi ca-
tion rule to be used on various types of cancer data, one might mistakenly 
assume that the rule works better for some kinds of cancer types than 
others, but this might simply be due to randomness in the error 
estimate. 

 The effect of reporting bias is shown in Fig.  8.7 , which comes from 
a simulation study in which  m  samples are drawn from a feature - label 
distribution, an LDA classifi er is designed on each sample, the esti-
mated is computed by cross - validation on each sample, and the error 
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estimates are ordered from the lowest to the highest. Since the true 
errors can be found from the feature - label distribution, the deviation, 
  δ  ( m ), between the lowest error estimate and true error for that sample 
can be computed as a function of the number of samples. This process 
is repeated a large number of times and the average deviation,   μ   dev , 
computed. These average deviations are plotted in Fig.  8.7 (a), the 
dashed and solid lines for samples of sizes 60 and 120, respectively. 
The negative bias is seen in the increasingly negative values for   μ   dev  as 
the number of samples grows. Figure  8.7 (a) does not reveal the full 
extent of the problem because it only measures the difference in esti-
mated and true errors for the sample on which the classier error estimate 
is the lowest. Since the samples are all randomly drawn from the full 
feature - label distribution, the expected performance of the classifi er 
should be the same for all samples. Figure  8.7 (b) shows the average 
deviation between the smallest estimated error and the expected error 
across all the samples. This gives the true extent of the bias and we see 
that it is quite large even when only fi ve samples are drawn. The 
problem with testing on real data is clear: The samples need to be suf-
fi ciently large so that variation in error estimation does not give the 
illusion of good performance, and only a model - based theoretical anal-
ysis can determine suffi ciency.   

 Corresponding to the bias resulting from applying a single classi-
fi cation rule on many data sets is the bias arising from applying many 
classifi cation rules (Boulesteix and Strobl,  2009 ); in particular, trying 
many feature sets (Zhao et al.,  2010 ). We consider LDA in a Gaussian 
model and select two features out of 50. In Fig.  8.8 , the dashed, solid, 

     Figure 8.7     Reporting bias: (a) average deviation of the estimated and true errors for the 
sample showing the least estimated error; (b) average deviation of the estimated error for the 
sample showing the least estimated error and the expected true error across all the samples.  
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and dotted curves show the true error, estimated error, and difference 
between the true and estimated errors, respectively, for all possible 
feature sets, ranked according to their cross - validation estimated errors. 
At the top end of the ranking the estimated errors are optimistic; at the 
low end, they are pessimistic. We only care about the top end. If we do 
an exhaustive search and select the feature set with the lowest estimated 
error, then we can expect that the estimated error is severely low biased. 
Even if one takes a list of feature sets with the lowest estimated errors, 
if the list is too short, then, there may not be any good features sets in 
the list; if the list is too long, then there will likely be good feature sets 
but the list will be of little practical value.   

 A half - century ago, the cavalier attitude regarding scientifi c epis-
temology expounded by Simon (and others) would have been remark-
able, but today it appears to be commonplace, as noted by various of 
papers in regard to biology (Dougherty and Brun,  2004 ; Mehta et al., 
 2004 ; Keller,  2005 ; Braga - Neto,  2007 ; Dupuy and Simon,  2007 ; 
Dougherty,  2008 ; Boulesteix,  2010 ; Jelizarow et al.,  2010 ). Much con-
temporary literature seems to support the abandonment of quantifi able 
relations between theory and observation in favor of faith alone. How 

     Figure 8.8     Error versus ranking curves for a Gaussian model: estimated error — solid 
line; true error — dashed line; error difference — dotted line.  (Zhao et al.,  2010 , by 
permission of  Cancer Informatics ).   
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else can one explain the proliferation of the unjustifi ed used of cross -
 validation, permutation tests, and bootstrap methods? The scientifi c 
literature is now home to a cadre of  “ experts ”  who  “ completely under-
stand everything that is done ”  and whose work is  “ free of the formulas 
that bewilder almost everyone. ”  These new  “ experts ”  are unencum-
bered by deep knowledge and have been spared the humbling rigors of 
the  “ mumbo jumbo ”  in books like Loeve ’ s  Probability Theory  or 
Cramer ’ s  Mathematical Methods of Statistics . Biological science is 
particularly vulnerable to these new  “ experts ”  because biological 
knowledge inheres within the theory of stochastic dynamical systems, 
so that its mathematical foundations and validation are fully dependent 
on random processes and the statistical issues surrounding application 
of those processes. 

 Once experiments have been put aside in favor of data mining (fast 
groping in the dark) and predictions are not characterized in a precise 
mathematical statistical framework, there is not much alternative to 
 sola fi des  if one is going to believe that the resulting models are not 
simply pure mathematical systems. To believe there is meaning to a 
scientifi c theory entails that the theory is related to sensory perceptions. 
In eschewing mathematically rigorous experimental predictions, while 
simultaneously believing a theory contains knowledge, one is express-
ing an unquestioned belief because, ipso facto, any questioning of the 
belief must involve questioning the relation of the model to phenom-
enal observations. Surely, there is no scientifi c questioning of a math-
ematical system absent questioning the empirical viability of the system. 

  Sola fi des  in science is inseparable from a radical subjectivism with 
regard to Nature. Popper writes,  “ The objectivity of scientifi c state-
ments lies in the fact that they can be intersubjectively tested ”  (Popper, 
 1959 ). The evisceration of the experimental methodology manifested 
in a lack of concern for rigorous statistical estimation represents a 
rejection of intersubjectivity because it leaves the interpretation of the 
experimental results completely subjective. 

 Perhaps during ancient or medieval times one could conceive of 
science based on the physical truth of human conceptions such as space, 
time, and causality, but that time is past and we cannot go back. 
Causality in science cannot be resurrected from Hume ’ s death - dealing 
critique, nor can the  “ truth ”  of Euclidean geometry be resurrected fol-
lowing Einstein ’ s conception of space - time. Even before Hume ’ s dev-
astating attack on causality and the existence of a physically intuitive 
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understanding of natural phenomena, Galileo and Newton had set forth 
on an inexorable course to modernity by bracketing causality, a bracket-
ing from which it has never emerged. Pure reason has been put in her 
place in regard to the knowledge of Nature. If prediction is rejected as 
the fundamental epistemological requirement for relating conceptual-
izations and phenomena, then faith alone is all that remains. 

 In part, the breakdown of scientifi c thinking embodied in theoreti-
cally ungrounded algorithmic approaches to model construction is a 
consequence of an overzealous, even slavish, infatuation with computa-
tion. Ever newer technologies produce data in ever growing orders of 
magnitude and ever faster computers process the data through ever more 
complicated algorithms to produce ever more complex models. Each step 
in the algorithm seems to make sense. Perhaps each step in isolation has 
some mathematical foundation. Maybe so, but the overall algorithm is 
never shown to converge to the solution that it is purported to either reach 
or approximate and the complex model it produces is never validated. 

 The lure of contemporary high - throughput technologies is that they 
can measure tens, or even hundreds, of thousands of variables simul-
taneously, thereby spurring the hope that complex patterns of interac-
tion can be sifted from the data; however, two limiting problems 
immediately arise. First, the vast number of variables implies the exis-
tence of an exponentially greater number of possible patterns in the 
data, the majority of which likely have nothing to do with the problem 
at hand and a host of which arise spuriously on account of variation in 
the measurements, where even slight variation can be disastrous owing 
to the number of variables being considered. A second problem is that 
the mind cannot conceptualize the vast number of variables. Sound 
experimental design constrains the number of variables to facilitate 
fi nding meaningful relations among them. Recall Einstein ’ s comment 
that, for science,  “ the truly creative principle resides in mathematics. ”  
The creativity of which Einstein speaks resides in the human mind. 
There appears to be an underlying assumption to data mining that the 
mind is inadequate when it comes to perceiving salient relations among 
phenomena and that machine - based pattern searching will do a better 
job. This is not a debate between which can grope faster, the mind or 
the machine, for surely the latter can grope much faster. The debate is 
between the effi cacy of mind in its creative synthesizing capacity and 
pattern searching, whether by the mind or the machine. Barrett notes, 
 “ The absence of an intelligent idea in the grasp of a problem cannot be 
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redeemed by the elaborateness of the machinery one subsequently 
employs ”  (Barrett,  1986 ). 

 Refl ecting on Kant ’ s previously quoted passage,  “ It is only the 
principles of reason which can give to concordant phenomena the valid-
ity of laws, and it is only when experiment is directed by these rational 
principles that it can have any real utility, ”  Barrett writes,

  The scientist ’ s mind is not a passive mirror that refl ects the facts as they 
are in themselves (whatever that might mean); the scientist constructs 
models, which are not found among the things given him in his experience, 
and proceeds to impose those models upon Nature. And he must often 
construct those models conceptually before they are translated at any point 
into the material constructions of his apparatus in the laboratory.    . . .     The 
imprint of mind is everywhere on the body of this science, and without 
the founding power of mind it would not exist.  (Barrett,  1986 )    

 Not only does Barrett ’ s comment refl ect Kant ’ s thinking at the end of 
the Enlightenment, it is consistent with Einstein ’ s notion of creativity 
in the twentieth century. Does anyone really believe that data mining 
could produce the general theory of relativity? 

 No doubt, for some the resurgence of groping in the dark is simply 
a consequence of the mystifi cation of technique, a blindness caused by 
the marvels of computation, not an intentional desire to return to pre -
 Galilean science. In the case of data mining, perhaps it is the collective 
amnesia of a horde of technicians drunk on technique. But for others, 
the call to return to pre - Galilean times has been made explicit, and not 
simply as a response to growing data sets and more powerful comput-
ers. Strangely enough, this call to medieval (or earlier) science has been 
made in reference to the complexity of biological systems, this in the 
face of nearly a century of progress demonstrating that the representa-
tion and analysis of complex systems is best, if not only, handled in the 
framework of modern stochastic processes. Following in the footsteps 
of Einstein, Levy, Kolmogorov, Wiener, and other luminaries leading 
the development of stochastic processes in physics and systems theory 
have been the successes of signal processing, communications theory, 
and control theory, all dependent on rigorous mathematical stochastic 
analysis. Calls on the part of biologists to revert to medieval science 
in the face of the successes of systems theory, a theory so suitable to 
biology, are at least as astonishing as the call of computational techni-
cians to abandon the mathematical and experimental bases of scientifi c 
validation. 
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 An explicit call for a return to the medieval past has been made by 
Werner Callebaut and Manfred Laubichler in a editorial entitled, 
 “ Biocomplexity as a Challenge for Biological Theory, ”  in which they 
comment on a statement of Schr ö dinger that we have quoted previously 
and which reads,  “ The relation of cause and effect, as Hume pointed 
out long ago, is not something that we fi nd in Nature but is rather a 
characteristic of the way in which we regard Nature ”  (Schr ö dinger, 
 1957 ). Referring to this quote appearing in Dougherty and Braga - Neto 
 (2006) , they write,  “ Causation is still regarded here, with Hume and 
Kant, as  ‘ a characteristic of the way in which we regard Nature ’  rather 
than intrinsic to Nature, which amounts to nothing less than renouncing 
knowledge of Nature itself ”  (Callebaut and Laubichler,  2007 ). So we 
are to go back to Aristotle! It is astonishing that anyone could approach 
biocomplexity and stochastic dynamical systems with a pre - Galilean 
mindset. 

 Yet biologist Stuart Kaufman explicitly advocates just such a posi-
tion in an essay entitled,  “ Breaking the Galilean Spell. ”  Kaufman 
writes,

  Galileo rolled balls down incline planes and showed that the distance 
traveled varied as the square of the time elapsed. From this he obtained 
a universal law of motion. Newton followed with his  Principia , setting 
the stage for all of modern science. With these triumphs, the Western 
world came to the view that all that happens in the universe is governed 
by natural law.    . . .     The Galilean spell that has driven so much science is 
the faith that all aspects of the natural world can be described by such 
laws. Perhaps my most radical scientifi c claim is that we can and must 
break the Galilean spell. Evolution of the biosphere, human economic life, 
and human history are partially indescribable by natural law. This claim 
fl ies in the face of our settled convictions since Galileo, Newton, and the 
Enlightenment.  (Kauffman,  2008 )    

 Certainly one can criticize Kauffman for a confusion of metaphys-
ics and science, the latter making no claims concerning  “ all that happens 
in the universe. ”  Moreover, it is certainly not a  “ settled conviction ”  that 
science can fully describe the biosphere — quite the opposite, since the 
strong limitations of science constitute one of its key epistemological 
traits. Nonetheless, while Kaufman may not demonstrate a sound 
understanding of scientifi c epistemology, his main point is clear: He is 
dissatisfi ed with the limitations of science. Compelling evidence for 
this is contained in a statement he made in a different article:
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  What we think of as natural law may not suffi ce to explain nature. We 
now know for example, that evolution includes Darwinian pre -
 adaptations — unused features of organisms that may become useful in a 
different environment and thus emerge as novel functionalities, such as 
our middle ear bones, which arose from the jaw bones of an early fi sh. 
Could we pre - state all the possible Darwinian pre - adaptations even for 
humans, let alone predict them? It would seem unlikely. And if not, the 
evolution of the biosphere, the economy and civilization are beyond 
natural law. If this view holds, then we will undergo a major transforma-
tion of science. Partially beyond law, we are in a co - constructing, cease-
lessly creative universe whose detailed unfolding cannot be predicted. 
Therefore, we truly cannot know all that will happen.  (Kauffman,  2007 )    

 Kauffman is dissatisfi ed with science on several accounts, Science 
cannot explain Nature. Science cannot predict outcomes in a set that is 
not well defi ned. Science cannot provide human beings with the knowl-
edge of all that will happen! To alleviate these impediments, he claims 
that  “ we will undergo a major transformation of science. ”  This is a 
remarkable call to return to a time when scientists thought that they 
could explain Nature, mathematicians did not understand set theory, 
and scientists believed that they could predict the entire future of the 
universe. It is diffi cult to say what this means; however, the transforma-
tion he desires would bring us at least to a time when the sun was 
believed to revolve around the Earth. 

 The confusion in the epistemological thicket that Kauffman would 
have us enter is illustrated by his own words. He says that he  “ knows ”  
that  “ evolution includes Darwinian pre - adaptations, ”  but he gives no 
idea of the epistemological ground of that knowledge. He specifi cally 
states that the knowledge is not scientifi c because he says that pre-
adaptations are not predictive. So what is the ground of his knowing? 
The answer seems clear:  Sola fi des .    
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Model - based 

Experimentation in Biology     

  CHAPTER 9 

       An experiment is a question. A precise answer is seldom 
obtained if the question is not precise; indeed, foolish 
answers — i.e., inconsistent, discrepant or irrelevant 
experimental results — are usually indicative of a foolish 
question. 

   — Arturo Rosenblueth and Norbert Wiener    

 From the discussion so far, it might seem as if the building of math-
ematical and logical models to serve as a basis for experimental design 
to test and validate predictions concerning biological behavior is com-
pletely alien to biology. This is certainly not true. Biology has advanced 
in different ways depending on what aspect of biology is being consid-
ered. We will discuss two forms that represent approaches from differ-
ent levels, macromolecular components, a bottom - up approach, and 
cells, a top - down approach. In this discussion, our intent is to focus on 
both the types of experimentation that result when starting from either 
perspective and on the availability of constraints that can focus the 
experimentation so that it becomes more practical to carry out. 

 Within biology, the understanding of which design approach has 
been taken in previous work is itself controversial. Much of molecular 
biology, which focuses on how particular macromolecules carry and 
process information, is often thought to be the result of an entirely 
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bottom up approach. It is certainly true that discoveries in the 1950s 
and 1960s concerning the ways in which nucleic acids code information 
focused a great deal of attention on the various mechanisms that allowed 
this information to be used to control and direct the synthesis of other 
macromolecules. Nonetheless, the foundational work on which the 
coding work was based had its origins in a much higher - level formula-
tion of basic biological problems. The theory of evolution implied the 
existence of numerous capabilities that cells would need in order to 
implement heredity, the passing on of the information specifying an 
organism ’ s type over generations. Work over the 90   years following 
publication of the theory provided both validation of a physical means 
of cell - to - cell passage of information and, ultimately, the implication 
that DNA was the heritable agent. All of this work was directly driven 
by a model that supposed that a descendent of an individual organism 
or of a mating pair of organisms received components carrying infor-
mation from the parent(s) that would have a guiding effect on the 
development of the new individual. The model further specifi ed that 
the information transfer was not perfect, so that there were ways in 
which some fraction of the information could be different from that of 
the source individual(s). A well - known example of mathematical mod-
eling and experimental testing of the model is Mendel ’ s studies of 
heredity. These explicitly tested some of the core concepts of transmis-
sion, modeling the transmission of each parent ’ s contribution in a 
simple mathematical way and introducing the possibility of the contri-
butions being of unequal potency in driving the production of charac-
teristic phenotypes, trait dominance, and recessivity. 

 Thus, the higher level, systems view of the implied capabilities 
required for heredity led directly to the generation of the types of ques-
tions and experiments that came to be recognized as the province of 
the fi elds of genetics and molecular biology. The rapid acceleration 
of progress in these fi elds following the fi rst understandings of the 
mechanics of coding had the effect of making the fi eld seem relatively 
unlinked from the past and has had the effect of blinding many inves-
tigators to the ways in which the original questions played a necessary 
role in guiding the fi eld inexorably toward the mechanisms by which 
molecules carry information and by which the information can be 
used to allow cells to carry out the varied functions required for the 
survival and specialization of cells and of the organism of which they 
are parts. 
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 During this same time period another biological fi eld, development, 
was also experiencing considerable growth and success. Development 
focused more directly on the top - down aspects of cell operations at the 
systems level. Studies in this fi eld were driven to this higher - level view 
because the processes guiding the many intricate changes in cell activi-
ties supporting the development from egg to embryo were initially 
unapproachable from the molecular level and experiments could only 
be carried out at the cell and organism levels. As this complication is 
still well remembered by many developmental researchers, molecular 
biology is seen as a useful tool for trying to understand the components 
of the developmental processes rather than a way of discovering devel-
opmental processes. 

 A number of organisms, such as frogs, newts, and fruit fl ies, produce 
eggs and developing organisms of suitable size and ease of manipula-
tion for direct visual studies of early through late developmental events. 
Frog eggs provided one of the most widely exploited experimental 
platforms for studying early embryonic development. Amphibian eggs 
were a particularly well - suited starting point for following the dynamic 
series of cell multiplications and movements that occur very early in 
embryogenesis and many early thoughts concerning the manner of 
regulating factors and events that might underlie the development of 
the body plan from a single cell were developed during this time. These 
included ideas and clever experiments, where eggs were mechanically 
divided along different axes, demonstrating that the visible differences 
in the architecture of the egg cell were the result of asymmetric deposi-
tion of components important in guiding successful development. 
Simple cell marking and tracking experiments demonstrated that dif-
ferentiation of cells into three particular types forming the ectodermal, 
mesodermal, and endodermal cell layers was key to the development 
of the tubular body plan. Close observations of fi ner patterning in 
insects also stimulated early thoughts on what could possibly produce 
these highly regular partitions of embryonic space, leading theorists 
such as Alan Turing to suggest the presence of  “ morphogen ”  molecules 
whose diffusion through a region of the body could provide a gradient 
that could be sensed and acted upon to produce a wide variety of pat-
terns (Turing,  1952 ). Based on a large number of experimental observa-
tions following the dynamics of change of cell positioning in the 
embryo and the associated types of cell differentiation happening as 
the cells experienced different interactions, developmental biologists 
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accurately predicted cell compartments that would follow a specifi c 
developmental trajectory involving both ultimate spatial placement and 
state of differentiation in the adult organism. They could also accurately 
predict what local interactions at what point in development were 
required to achieve this trajectory, together with the results of artifi -
cially forced interactions of a type not normally experienced. The 
campaign of experimentation carried out in developmental studies is 
the best example of the benefi ts of considering single cells as systems 
and organisms as systems of cells as the primary level of experimental 
focus that has yet been achieved. Excellent reviews of the subject, such 
as that of J. M. W. Slack (Slack,  1983 ), have much to offer anyone 
seriously interested in the design of biological experimentation aimed 
at systems level understanding. 

 These studies of the dynamics of development at the whole -
 organism level have had much the same stimulatory effect on biology 
that the theory of evolution had, and for many of the same reasons. 
Researchers looking to fi nd the ways by which the clearly defi ned steps 
in development could be implemented by cells were searching for 
molecular machinery capable of guiding the cells in very specifi c ways. 
The constraints of having to fi nd system components involved in 
driving very particular types of system processes provided the basis for 
constructing experiments that could identify macromolecules that were 
key to the processes for which a physical description of the starting and 
ending states of the system were available. Molecular biology and 
genetics were used to carry out mutational screens that identifi ed gene 
mutations leading to the disruption of development at a very precise 
step, and molecular biology and biochemistry were used to gain insight 
into the kinds of activities these molecules exhibited. 

 The extraordinarily salutary effects of combining system knowl-
edge that considerably constrains the types of components that might 
serve to guide and carry out embryonic partitioning with knowledge 
derived from genetics, molecular biology, and biochemistry concerning 
genes whose function appears to fi t the requirements produced many 
experiments that effi ciently revealed the key players and many of the 
key relationships that produce the drosophila body plan. As one expects 
of biology, the methods used ultimately rely on the actions and interac-
tions of many macromolecules, making the processes reliant on simple 
components to achieve robustness, while still achieving complex results 
through the multiplicity of factors providing inputs into the fi nal result. 
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The current synthesis of understanding on this subject stands soundly 
on the foundations built from the initial cell centric characterizations 
of development. Much of what was predicted from consideration of the 
early observations, the maternal contributions to the architecture of the 
egg, gradients formed by diffusion of proteins responsible for marking 
out particular tissue territories, and the participation of transcription 
cascades driven by localized transcription factors, was ultimately 
shown to be correct. A clear picture of the key starting points and the 
evolution of the responses that result in a properly developed dro-
sophila embryo is presented in an overview by D. St Johnston and C. 
Nusslein - Volhard (St Johnston and Nusslein - Volhard,  1992 ). 

 The principal difference between an experiment designed with a 
focus on the system components rather than a focus on the system itself 
is that, with a component focus, one is usually trying to make two 
inferences at once, the fi rst being that there are components identifi ably 
connected with some cell state and the second being that some or all 
of those components are part of the process that dictates that cell state. 
This differs signifi cantly from starting with the knowledge that there is 
an observationally supported process that drives the action leading to 
a particular cell state and then developing an experiment to identify 
components of that process. As previously described, prior character-
ization of the dynamics of a process at the cell or organism level pro-
vides natural constraints on the design of the experiment to identify the 
process components. 

 In the bottom - up case, where the process of interest is undefi ned, 
investigators typically use what are called  “ unbiased ”  methods, where 
an extensive number of measurements are made on some quantifi able 
gene characteristic, presence or absence, mutational status, allelic state, 
expression level, protein level, and so on, and then the measured behav-
ior of the analyte is analyzed with regard to some characteristic of 
the cell or organism. The questions asked in a genetics study might 
revolve around whether or not the distribution of a given genetic marker 
is enriched in a set of samples taken from patients who have been found 
to be susceptible to a particular disease relative to a matched set 
of patients who are not susceptible. A molecular biological question 
might revolve around whether a set of colon cancer patients who are 
responsive to a drug have higher or lower expression levels of a par-
ticular protein or set of proteins than is seen in a matched set of patients 
who do not respond to the drug. In these cases, there is no attempt to 
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explicitly follow the dynamics of the cells responsible for the pheno-
type in question. In the genetics case, one either has the disease or not. 
The history of the evolution of the diseased state in the cells affected 
is not a consideration. In the molecular biology case, there is likewise 
no attempt to get a meaningful picture of the dynamics of the sensitive 
and resistant cells as they respond to the drug, only to identify a gene 
that can serve as a predictor of response. In developmental studies, to 
study a drug that distorts embryogenesis, one would apply the drug to 
a model system at various times during embryogenesis and then follow 
the consequences to see when and where the drug causes exceptions 
from the normal, along with how these initial abnormalities perturb the 
subsequent developmental sequences. A focus on the consequences to 
the processes throughout the evolution of the response to the perturba-
tion is a key difference in studies aimed at the system level rather than 
at the component level. 

 The question of the relative merits of the different approaches has 
recently been receiving increasing scrutiny as a result of the 10th anni-
versary of the sequencing of the human genome. Some of those involved 
in the project made very strong claims at the completion of the project 
in terms of the medical benefi ts we could expect to see within the next 
decade. Many reviews of the progress over the last 10   years mention 
the stimulatory effect that the project has had on other types of molecu-
lar measurements now being made on proteins, RNA, metabolites and 
other analytes; however, most also have multiple disclaimers about the 
overall success of the efforts. Harold Varmus writes,

  As several articles in this series will describe, detailed maps of genetic 
markers of human variation, mostly single - nucleotide polymorphisms 
(SNPs), have facilitated many remarkable genomewide efforts to associ-
ate known SNPs with disease predisposition. But this approach has usually 
failed to reveal strongly infl uential haplotypes, and in general, other impli-
cated susceptibility haplotypes collectively account for only a small frac-
tion of the apparent heritable risk. …  Still, genomics and related disciplines 
are more closely aligned with modern science than with modern medicine. 
They produce knowledge that is broad in its scope, but only a few selected 
items of that new information are now widely used as guides to risk, 
diagnosis, or therapy. Physicians are still a long way from submitting their 
patients ’  full genomes for sequencing, not because the price is high, but 
because the data are diffi cult to interpret.  (Varmus,  2010 )    
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 Given these considerations, what differences in understanding of 
functional connections in a system are actually observed in cases where 
genes are studied within the component context and within the system 
context? One example where both types of studies have been employed 
at different times concerns the gene Myc. The Myc gene was originally 
identifi ed in 1982 as a homolog of a viral oncogene (Vennstrom et al., 
 1982 ). The action of the Myc gene was linked by this and other experi-
ments to stimulation of proliferation and this continued to be the area 
in which functional research on the gene was centered. Screening assays 
can frequently be tightly enough designed that the majority of identifi ed 
genes do indeed exhibit a function of the type the screen was designed 
to fi nd. Thus, it is typical that a screen - identifi ed gene is heavily char-
acterized in terms of the function facilitating its detection and not with 
regard to alternative functions. A further description of Myc ’ s function 
was published a decade later (Evan et al.,  1992 ). This work was driven 
by the cellular system level observation that, although Myc - transformed 
cells were indeed proliferating at an extremely high rate, they were also 
dying at a rate only somewhat slower. This key observation was made 
by simple microscopic examination of the cell population over time, 
meeting the fundamental requirement for studying a system, which is 
to observe the system and the cells, and to follow the dynamics of the 
system, taking observations over time. Had such observations been 
made as an integrated part of the screening process, it would have been 
possible to immediately identify both the proliferative and the death -
 inducing functions of Myc. Such information would have been valu-
able, as it indicates that Myc by itself is unlikely to be a high - potency 
driver of cancer and that attempting to control cancer by altering Myc 
function would carry high risk. To date, none of the efforts to control 
cancer based on controlling Myc has proven successful. 

 Early gene association study results illustrate a variety of problems 
that can ensue from taking this approach as a means of arriving at 
methods for controlling a disease. Two discoveries that were heralded 
as indicators that effective therapy was immanent were Huntington ’ s 
chorea and cystic fi brosis (CF). The gene identifi ed for Huntington ’ s 
disease, huntingtin (Htt), was found to be a gene in which a region of 
the sequence coding for the gene product consisted of repeats of the 
codon for glutamine (The Huntington ’ s Disease Collaborative Research 
Group,  1993 ). This region is susceptible to expansion owing to errors 
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in cellular DNA processing. Consequently, a protein containing long 
tracts of highly charged glutamine could be produced and inherited. 
After a long study, it is still unclear how the presence of this protein in 
the brain mediates the degeneration that leads to chorea and dementia. 
It is certainly possible that the effect is not particularly specifi c and 
involves physical interactions with many genes that can interact with 
the long polyglutamine tract. A recent study of whether genes that 
physically associate with Htt can modify the severity of neural degen-
eration in a drosophila model suggests that quite a large number of 
genes may contribute to the disease (Kaltenbach et al.,  2007 ). The 
assumption that a component will have limited functional capabilities, 
thereby making it easy to determine what capability should be targeted 
to treat the disease, is implicit in the bottom - up strategy. 

 CF is a disease caused by malfunction of the exocrine glands, 
causing the production of thick mucus. When this mucus is produced 
in the lungs, it can block the bronchi and lead to more frequent and 
severe respiratory infections. The gene identifi ed for this disease is the 
CFTR gene (Rommens et al.,  1989 ), which is a sodium pump for the 
cell. No gene - targeted therapy has been devised for CF. Direct gene 
function intervention would require that the incapacitation of the pump 
caused by mutation of the gene be repaired or that a functioning gene 
replacement be installed. To date, such manipulations cannot be reli-
ably carried out in tissue within a patient. A form of therapy that has 
greatly lengthened the life span of many CF patients is based upon 
thinking at a higher level of system abstraction than the cell. The 
therapy targets action to the organ level. The treatment consists of 
strapping on a backpack that delivers percussive blows to the back that 
help dislodge the thick mucus, so that it can be coughed up and removed 
from the lung. 

 Given the limitations to producing effective disease interventions 
without systems - level knowledge, are there instances in which one can 
succeed, and how common are these likely to be? Two examples from 
cancer, acute promyelocytic leukemia (APML) and chronic lympho-
cytic leukemia (CML), are in line with the expectation that it is possible 
to act without systems - level knowledge. Both tumors arise from par-
tially differentiated white blood cell precursors and both involve a 
translocation, the joining of two regions of the genome not normally 
adjacent to each other. Each translocation alters the control of the gene 
product production and the structure of the gene product. CML arises 
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from a translocation involving chromosomes 9 and 22, fusing the BCR 
and ABL genes (Nowell and Hungerford,  1960 ). Cells bearing the 
fusion express the fused gene and the activity of the ABL kinase portion 
of the gene has been shown to be responsible for the cancer phenotype. 
CML can be treated with an inhibitor of the kinase activity. APML 
arises predominantly from a fusion between chromosomes 15 and 17, 
fusing the PML and RAR genes (Chen et al.,  1991 ). Cells bearing the 
fusion genes express a fused gene, which contains large regions of both 
genes. Cancer induction is thought to rely on aberrant nuclear localiza-
tion of the fusion gene that allows disruption of the formation of normal 
protein complexes containing the PML gene that regulate apoptosis 
(Koken et al.,  1994 ). APML can be treated with all  trans  - retinoic acid, 
which simultaneously reduces nuclear localization of the fusion gene 
and induces terminal differentiation of the proliferating cells, thereby 
terminating the cancer. 

 Considerable work has been expended in the case of CML to under-
stand the range of cell types that can effectively be transformed by the 
presence of the BCR   :   ABL translocation. Characterization of the induc-
tion of this tumor in mouse models by the introduction of a promoter 
driven BCR   :   ABL fusion gene into mouse blood cells at various degrees 
of differentiation has revealed that circulating blood cells are extremely 
hard to turn into cancers, whereas blood cells from bone marrow, which 
are rich in less - differentiated precursors, are rapidly and quite easily 
transformed into a cancer that is much like CML (Pear et al.,  1988 ). 
This pattern of differential susceptibility to the transforming effect of 
the BCR   :   ABL fusion product suggests that there is a precursor in the 
blood cell lineage possessing an existing set of differentiation - defi ned 
abilities that enable the alterations in genomic regulation produced by 
BCR   :   ABL to drive these cells to the cancerous state of CML. The 
existence of a  “ ready - to - use ”  regulatory network and a single defi ning 
change in how the network is operated allows the production of a 
cancer that will have low levels of genomic alteration and high similar-
ity of expression phenotype across instances of this tumor type. While 
the mechanism of action of the PML   :   ATRA fusion is less clear, what 
is known suggests that APML also requires a  “ ready - to - use ”  regulatory 
network to be effective as a single, system - transforming agent. 

 The value of fi nding these genes in terms of medical utility is 
enormous. Both treatment types produce complete remissions at rates 
above 80% and lengthy overall survival at rates above 70%. In the case 
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of APML, therapy with ATRA was in use on a wide range of leukemias 
prior to fi nding the gene; however, identifi cation facilitated the devel-
opment of a test for the fusion that would direct the treatment to those 
patients who would benefi t. In the case of CML, a therapy aimed spe-
cifi cally against the target kinase was developed and its use was tar-
geted to patients with the fusion using existing tests. These therapies 
are the most effective known treatments of cancer, which makes a 
compelling argument for the possibility of success using a component 
identifi cation approach. 

 Why then are we arguing for systems approaches if component 
approaches can work so well? There are two clear problems with com-
ponent approaches. First, for them to work, the cancer must be of a 
kind that arises from a particular cell type that can be transformed to a 
cancer cell by the action of a single gene. Such tumors are rare, APML 
and CML being the only known examples of such cancers. The require-
ment for a particular genomic event to occur in a cell type that is likely 
to only transiently be in the required state likely means that all such 
tumors are of much lower incidence than the tumors causing the most 
mortality. The second reason to argue for systems approaches is that 
all attempts to produce cancer drugs have been based on component 
level thinking and nearly all have failed to produce therapies of the 
caliber of those for APML and CML. Many genes, such as EGFR, 
ERBB2, and RAS, are frequently altered in gene product abundance or 
structure (or both) in a wide variety of high incidence cancers. Inhibitors 
of these gene products ’  activities have been generated and tested in 
clinical trials. While these drugs can frequently provoke tumor 
responses, such as shrinkage or cessation of further growth, they do not 
provide the high rates of either full remission or lengthy overall survival 
seen in CML and APML. 

 A common observation in the majority of tumors that are not 
readily treatable is the very high extent of change present in these 
tumors ’  genomes. Measurements of the type and abundance of mRNA 
species present in tumors, as well as measurements of regions of altered 
copy number, typically show wide variance between even those tumors 
arising from a single tissue or origin (breast, lung, colon, etc.). Recently 
initiated studies in which the entire genomes of tumors are sequenced 
and compared with the sequence of normal tissue from the same indi-
vidual show great variety in the particular genes mutated in any given 
tumor. It is likely that what we are seeing is that there is a very large 
number of ways for the control exerted in a normal cell to fail and that, 
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after early failures somewhat impair cellular regulation, the pace of 
further failures accelerates, thereby providing each tumor with a large 
repertoire of ways to proliferate and survive. It may be necessary to 
think of these tumors as having gone from the normal state of having 
redundant safety controls to now operating in a state where there are 
redundant risks. Such a picture is concordant with what we now observe 
when targeted cancer therapies are applied to patients. There is an initial 
period where the tumor responds, showing some to considerable shrink-
age and cessation of growth over some period. This interval is then 
followed by a period of considerable tumor growth in a variety of 
places. Following this reversal, treatments with another drug will show 
the same sequence of events, but in a shorter time period. There is a 
growing consensus that, if most tumors already have a multiplicity of 
ways to continue to drive proliferative and survival processes, then 
treatments with combinations of drugs will have to be devised to 
address these multiple tumor capabilities. It would seem that the only 
way forward in this situation is to develop more knowledge of tumors 
as systems. It is unlikely that the sets of capabilities will be totally 
random in composition; rather, there will likely be more common sets 
where the set of later capabilities that arise are infl uenced by the types 
of earlier alterations. Ferreting out these complex relationships will 
require types of testing that specifi cally follow the sequence of events 
that occur when a tumor is challenged with a drug. What processes are 
curtailed and what processes are induced? How does the order and 
timing of drug application affect the response? What combinations and 
delivery modes produce the highest synergy? All of these questions can 
only be asked and answered within the context of following cell opera-
tions as the processes of a system. 

 Given the necessity of systems level cellular analyses to obtain 
suffi cient knowledge for designing more effective disease interven-
tions, how are the relevant experiments to be performed? Several 
constraints drive the choice of platforms for such work. Perhaps the 
most diffi cult requirement is the need to make response measurements 
at suffi ciently frequent intervals to obtain an accurate view of the pro-
gression of the various processes being studied. Ideally, the measure-
ments would be taken in a cell - by - cell basis on a population of 
cells representing the disease state before and during the drug response, 
so that the set of data points at each sampling would be a distribution 
based on each cell ’ s behavior at the time of sampling. Many typical 
forms of measuring gene behavior currently in use do not produce such 

c09.indd   179c09.indd   179 6/16/2011   2:00:39 PM6/16/2011   2:00:39 PM



180 Epistemology of the Cell: Perspective on Biological Knowledge

data sets because the processing of the cells to make the measurements 
requires that the whole population to be sampled undergo processing 
in which the cells are lysed and the macromolecules forming the analyte 
for the assay (DNA, RNA, protein, metabolites, etc.) are mixed and 
then subjected to a measurement that outputs a number representing 
the average relative abundance of the various species of that analyte. 
This kind of analysis provides only an accurate representation of cel-
lular behavior if all cells subjected to the treatment are altering their 
processes quite synchronously, which is often not the case. Obviously, 
if one must sacrifi ce each set of cells subjected to the assay, the experi-
ment would require a set of cells in treatment for each time point being 
sampled. This adds levels of technical variation that could be avoided 
if nondestructive testing could be applied that sampled from the same 
cohort of cells repetitively over time. 

 These demands on experimental design are challenging; however, 
advances in a variety of biological reagents and automated imaging 
devices make it possible to produce at least some types of systems - level 
measurements. As an example, we will describe an approach that we 
have devised that allows one to follow changes in gene regulation for 
a variety of genes and gather data in a nondestructive, gene - by - gene 
analysis. The most suitable nondestructive assay for transcription activ-
ity currently available is the use of fl uorescent reporter genes under the 
transcriptional control of the promoter whose activity is to be assayed 
(Chalfi e et al.,  1994 ). The use of these reporters to allow knowledge of 
when and where in the developing body a gene is active has been 
remarkably informative in studying genes ’  roles in regulating processes 
in embryonic development (Carroll,  2005 ). These reporters can be 
readily delivered to mammalian cells using third - generation lentiviral 
delivery systems (Wu et al.,  2000 ). This kind of assay is also convenient 
in that each reporter assay can be carried out in a small culture chamber, 
such as a single well of a 384 - well culture plate. This allows many 
different promoter reporter derivatives of a single cell line to be simul-
taneously exposed to a stimulus and tracked. Commercial imaging 
systems (MDS ImageXpress Micro) are available that can capture fl uo-
rescent images of hundreds of cells per well for an entire 384 - well plate 
in less than 20   minutes while maintaining an appropriate tissue culture 
environment. As transcriptional responses in mammalian cells are typi-
cally of suffi cient magnitude to be readily detectable at the mRNA level 
4 – 6 hours post treatment, a sampling rate of one per hour is suffi cient 
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to give reasonably detailed descriptions of how mRNA levels are rising 
and falling. Using levels of green fl uorescent protein (GFP) to detect 
such changes adds a uniform delay in the detection dictated by the 
lengths of time required for translation to produce the protein and pro-
teolysis to turn over the existing GFP protein. 

 An example of the kind of output that can be obtained from such a 
system is shown in Fig.  9.1 , which shows the response of a colon cancer 
cell line, HCT116, to the drug lapatinib. The color version of the fi gure 

     Figure 9.1     Time course of response to lapatinib by HCT116 with a promoter - reporter 
for gene MKI67. The left halves of the panels show the image at the current time point. 
The cell nuclei are blue (gray) and the green fl uorescent protein is green (bright). The 
right halves show a histogram (wide yellow [bright] line) of the distribution of cell GFP 
intensities for the current image and all previous images (thin lines colored in a range from 
red to blue from the fi rst to last point).  
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is on the front cover. A time course of response to lapatinib by HCT116 
with a promoter - reporter for gene MKI67 is shown. The left halves of 
the panels show the image of the cells at the current time points, top 
initial and bottom fi nal. The cell nuclei are blue (gray) and the green 
fl uorescent protein in the cell cytoplasm is green (bright). The right 
halves of the panels show a histogram (wide yellow [bright] line) of the 
distribution of cell GFP intensities for the current image and all previous 
images (thin lines colored in a range from red to blue from the fi rst to 
last point). The histogram presents the percent of cells at a given fl uo-
rescent intensity ( y  - axis) plotted against the observed GFP intensity 
( x  - axis). The intensity units are arbitrary camera units of fl uorescence 
per cell, indicated as the exponent of 2. The current time point is indi-
cated by the slider on the  “ hours ”  strip. The transcriptional reporter 
being tracked produces GFP under the direction of the promoter for the 
human gene MKI67, a gene widely used as an index of the level of 
ongoing proliferation (Bryant et al.,  2006 ). Data are extracted from these 
images by using the blue nuclear fl uorescence to carry out segmentation 
to indicate the presence of a nucleus and then fi nding the adjacent loca-
tion of the GFP in the cytoplasm of the cell through segmentation of 
those zones. The amount of GFP intensity per cell is determined and a 
histogram of the percent of cells showing a given log 2  intensity is plotted. 
The set of histograms in panel (b) shows the history of the evolution of 
the transcriptional response of this gene. The cells do not show a con-
tinuous response to the treatment, but instead refl ect switch - like discrete 
control. Over time the cell population shifts from a distribution centered 
at 2 17.5  counts to a distribution centered at 2 14.3  counts, indicating a large 
decrease in promoter activity. Cells without any GFP have a native fl uo-
rescence in the green channel of approximately 2 14  counts.   

 While one could envision long - term studies that would allow col-
lection of response data over many cell lines, reporters, and drugs, the 
cost and time to produce a specifi c study expands as the product of the 
numbers of cell lines, drugs, and reporters. Further technological 
improvements will no doubt increase experimental capacity, but cur-
rently the generation of this kind of data for a specifi c response question 
is limited to specifi c studies comparing the response of four to eight 
cell lines with 6 – 10 drugs using a set of 10 – 20 reporters. Operating at 
this scale, this type of experiment is quite well suited to asking ques-
tions that would address some key questions left frequently unanswered 
during the course of drug development: Does the drug produce the 
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effects it was designed to bring about on targeted pathways and pro-
cesses? Are there either compensatory alterations in the pathway down-
stream of the drug target or in independent competing pathways not 
affected by the drug that render the drug ineffective? Are there recog-
nizable conditions in the disease cell that can indicate likely response 
to the drug? If the drug is ineffective even when its target is present 
and operating in the diseased cell, is it frequently due to another specifi c 
process so that a combination therapy could prove effective? 

 Most of these questions deal with the effects of multiple processes 
operating contemporaneously to produce the drug response. A fair 
number of specifi c ways in which processes that produce the general 
effects of supporting proliferation, survival, or both are known. By 
using as much knowledge as possible, one can make a hypothesis about 
what processes may be operating and develop a simple wiring diagram 
of those systems and their possible interactions. The library of available 
drugs that have a known effect on one or more parts of those processes 
is expanding quite rapidly, so one can use these drugs with or without 
a novel drug whose action is not well characterized to perturb points 
along the hypothesized wiring diagram and make predictions of the 
experimental outcome. The study could be carried out and compared 
with the predictions. Exceptions to the predictions could then be used 
to revise the hypothesis, make new predictions, and experimentally 
verify those. 

 The data generated in these systems studies readily allow one to 
make some simple interpretations. From the temporal sequence of 
changes, one gains knowledge of what changes in transcription precede 
others, making them possible initiators of sets of changes. Data on the 
magnitude of response can suggest which gene products may have 
changed their abundance positively or negatively enough to cross a 
threshold of effectiveness for driving some process. Data on the number 
of cells shifted from one abundance distribution to a discrete higher, or 
lower, level can serve as a measure of the likelihood of events happen-
ing at different times being related. If a large number of cells are 
involved in a shift at a late time point, that effect cannot have been 
mediated (by an effect that only acts within a cell) by an early effect 
that only shifted a small portion of the cells. While these simple ways 
of reasoning from this kind of data can be instructive, it is possible to 
use more powerful analytical methods to fi nd the connections between 
elements of the processes. 
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 The basic preceding experimental design and the kinds of questions 
suggested by it fall into the general category of stochastic processes 
long studied in systems theory and we will now provide a mathematical 
structure going back to the 1930s that captures many of the essentials 
of this design. It is not our intention here to go into any specifi c bio-
logical modeling or provide an extensive account of systems theory; 
however, it is important in a book on biological epistemology to at least 
outline basic underlying representation theory, especially in the context 
of discussing the relationship between experimental design and model-
ing cellular dynamical processes. 

 We consider  n  genes,  g  1 ,  g  2 ,    . . .    ,  g n  , within a particular kind of cell 
evolving over time in a particular situation. The expressions form a 
vector of random variables,

    X( ) ( ( ), ( ), , ( )),t X t X t X tn= 1 2     (9.1)  

where  t  is time and  X k  ( t ) is the expression level of gene  g k   at time  t . 
 X k  ( t ) describes the random fl uctuations of gene  k  at time  t  and its dis-
tribution can be estimated via expression measurements taken at time 
 t . Let us assume that the measurements are taken over discrete time 
with fi xed sampling interval, which without loss of generality we take 
to be 1. Then the measurement times are given by 1, 2, … ,  m  and a full 
probabilistic description of  X ( t ) is given by the probability distribution 
function

   P X x X x X m x X x X m xm n nm( ( ) , ( ) , , ( ) , ( ) , , ( ) )1 11 1 12 1 1 2 211 2 1≤ ≤ ≤ ≤ ≤  
  (9.2)   

 for all values of  x  11 ,  x  12 ,    . . .    ,  x nm  . 
 As should be clear from the preceding probability function, a 

random vector is a complicated mathematical entity and tractability is 
gained by bypassing a full probabilistic description and using only 
second - order information. The cost in doing so is that all higher - order 
information is omitted from consideration — for instance, there is no 
distinction between processes possessing identical second - order 
moments. However, if suffi ciently good predictions can be had by using 
only second - order information, then the increase in mathematical trac-
tability and experimental feasibility are worth the loss, especially when 
a more general approach is experimentally impractical. Among the 
mathematical advantages of using only second - order information is that 
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when one wishes to fi lter a second - order process the optimal fi lter is 
linear, the formulation and derivation of this fi lter being at the center 
of the Wiener – Kolmogorov theory alluded to in Chapter  5 . Should the 
higher - order moments be of suffi cient importance to render worthless 
the predictions from a second - order model, then there is no alternative 
to taking on a more diffi cult modeling and experimental task. 

 The fi rst moments constitute the mean vector,

    mX ( ) ( ( ), ( ), , ( )),t t t tn= μ μ μ1 2     (9.3)  

where   μ  k  ( t ) is the mean of the expression for gene  g k   at time  t . 
 The second moments are more interesting. In a static situation one 

could consider the covariances (correlations) between different genes 
without considering time; however, in a dynamical situation one must 
consider the covariance for a gene relative to its changes across time 
and the covariance for every pair of genes across time. If we let 
 K i   ,   j  ( r ,  s ) denote the covariance between  X i   at time  r  and  X j   at time  s , 
then the covariance matrix takes the form
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    (9.4)   

 for all time pairs ( r ,  s ),  r ,  s     =    1, 2, … ,  m . The covariance matrix sum-
marizes the second - order relations between genes across time. 

 In general, the covariances  K i   ,   j  ( r ,  s ) and  K i   ,   j  ( u ,  v ), relating genes  g i   
and  g j   need not have any particular relation to each other, which means 
that the covariance between  X i   at time  r  and  X j   at time  s , need not be 
the same as the covariance between  X i   at time  u  and  X j   at time  v . From 
an experimental perspective, estimating the covariance between two 
genes between a given pair of time points, say, near the beginning of 
the process, in general says nothing about the covariance between the 
same two genes between a different pair of time points, say, near the 
end of the process. Thus, the experimentalist must take the necessary 
measurements across the entire time process and between all pairs of 
genes in the model. This instability among covariances across time has 

c09.indd   185c09.indd   185 6/16/2011   2:00:39 PM6/16/2011   2:00:39 PM



186 Epistemology of the Cell: Perspective on Biological Knowledge

a second downside in that the mathematics involved with the model 
become more diffi cult, but not impossible. 

 In some engineering applications, the problem simplifi es and a 
number of useful properties are satisfi ed. If the covariance  K i   ,   j  ( r ,  s ) can 
be expressed as

    K r s Ki j i j, ,( , ) ( ),= τ     (9.5)  

where   τ      =     s     −     r , the time differential between  s  and  r , and, in addition, 
if the mean vector is constant, then the random vector  X ( t ) is said to 
be  wide - sense stationary . Wide - sense stationary processes are easier to 
work with and possess advantageous properties. In particular, the cova-
riance matrix simplifi es to
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τ τ τ
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    (9.6)  

where

    k Ki j i j, ,( ) ( , ),τ τ= +1 1     (9.7)   

 for   τ      =    0, 1, … ,  m     −    1. The experimental advantage is evident: Rather 
than having to make suffi cient measurements to estimate all covari-
ances of the form  K i   ,   j  (1, 1),  K i   ,   j  (1, 2), … ,  K i   ,   j  (1,  m ),  K i   ,   j  (2, 1), … ,  K i   ,   j  ( m , 
 m ), one need only estimate  K i   ,   j  (1, 1),  K i   ,   j  (1, 2),  K i   ,   j  (1, 3), … ,  K i   ,   j  (1,  m ). 
In a sense, time does not matter, only time differential. Thus, we need 
only estimate the covariance for two genes across one time interval, 
anywhere in the process. This is what is meant by stationarity: The 
behavior of the process does not depend on the actual time. 

 While wide - sense stationary processes may be useful for modeling 
cellular processes when cells are in a steady state, they are not appro-
priate for modeling cells under the infl uence of drugs; indeed, a cell ’ s 
response to a drug over time varies markedly. Nonetheless, from the 
epistemological perspective, the key point is that the representation of 
Eq.  9.4  is suitable for making predictions, characterizing and answering 
critical questions concerning cell evolution over time, and designing 
therapeutic strategies for dealing with aberrant cell behavior. 
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 The foregoing considerations regarding experimentation relating to 
cellular processes exhibit four general conditions for a sound experi-
ment: (1) a question or set of questions to be addressed; (2) a concept 
of the physical process in whose framework the questions should be 
posed; (3) a mathematical structure to model the variables and the 
relationships that pertain to the questions; and (4) a physical experiment 
to elicit measurements relating to the questions. Without the starting 
point of a question, the remaining conditions are moot — and it had 
better be a carefully considered question. If not, then there is little 
likelihood of the experiment producing worthwhile results. On this 
point, Rosenblueth and Wiener are clear:  “ An experiment is a question. 
A precise answer is seldom obtained if the question is not precise; 
indeed, foolish answers — i.e., inconsistent, discrepant or irrelevant 
experimental results — are usually indicative of a foolish question ”  
(Rosenblueth and Wiener,  1945 ). Biological knowledge, as it is mani-
fested within the epistemology of the cell, requires precise questions.    
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