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Advances in our knowledge of the molecular basis of cancer are at the heart of the
present revolution in clinical oncology. The identification of tumor-specific molecular
alterations has led to new means of diagnosis and classification, and the characteriza-
tion of critical pathways regulating tumor growth is providing the potential for less
toxic, more effective targeted therapy. Nonetheless, these advances had previously
occurred at an agonizingly slow pace, i.e., one gene at a time. That investigative pace
has now been dramatically altered by the completion of a draft of the entire human
genome and the development of miniaturized high-throughput technology for genetic
analysis. These extraordinary accomplishments now permit not only the monitoring of
every gene sequence in a single experiment, but also a comprehensive analysis of the
complex coordinated programs and pathways that contribute to the clinical phenotype
of cancers. This rapid and comprehensive approach to the investigation of tumor biol-
ogy has the potential to dramatically shape the future of clinical oncology.

Expression Profiling of Human Tumors: Diagnostic and Research Applications is in-
tended to provide an introduction and overview to comprehensive gene expression profil-
ing of human tumors, one of the most promising new high-throughput investigative
approaches in molecular biology. The intent was to provide not only a primer for the
technology and analytical methods, but also an early assessment of the state-of-the-art
with respect to both successes and pitfalls. These successes are significant and include
methods of more precise diagnosis, and identification of prognostic markers, therapeutic
targets, and gene expression patterns that predict therapeutic response. Nonetheless, there
are significant challenges to further success, such as procurement and processing of
appropriate samples, improvement and validation of technical approaches, and refine-
ment of analytical methods for the resulting complex datasets. We have attempted to
provide a balance between the basic science aspects of this work and its application to the
clinical setting, but we have focused on the analysis of human tissue samples as providing
the most direct means of translating findings to clinical practice. There are many complex
issues that need to be considered as this type of work goes forward, and we hope this text
will serve as a starting point for future discoveries.

The emphasis here on gene expression profiling is not intended to suggest that this
should be considered the ultimate view of the molecular biology of the cancer cell. On
the contrary, we all look forward to the day when analysis at the protein level is as
comprehensive and provides as much detail as the present attempts of global gene tran-
script measurements. Obviously, the closer we come to assessment of the actual func-
tion of each molecule, the more accurate our abilities to correlate those with the clinical
phenotype. Proteomics holds the promise to better achieve that goal, but is still in its
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infancy, with even greater hurdles to overcome than we presently face with sequence-
based expression analysis. We leave that topic for future publications.

We would like to express our deep appreciation to the many authors who have pro-
vided overviews of work in their fields. These individuals have contributed their time and
effort to provide highly useful information for others (sometimes while being badgered
by the Editors!). We would also like to thank Ms. Fabienne Volel and Ms. Shirley Tung
for excellent assistance. Finally we thank our families for their patience and support.

Expression Profiling of Human Tumors: Diagnostic and Research Applications
clearly depicts the rapid advances that are occurring in clinically important areas and
that will no doubt increasingly impact clinical care. We sincerely hope that our book
provides information useful to all basic or clinical investigators concerned with the
molecular basis of cancer and the improvement of cancer care.

Marc Ladanyi, MD

William L. Gerald, MD, PhD
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1
Introduction: Present and Potential Impact

of Expression Profiling Studies of Human Tumors

Marc Ladanyi and William L. Gerald

Expression profiling refers to the process of measuring the expression of thousands
of individual genes simultaneously in a given tissue sample. The resulting patterns of
gene expression reflect the molecular basis of the sample phenotype and can be used
for sample comparisons and classification. In broad terms, there are two main methods
of expression profiling: hybridization-based and sequencing-based. In the former, RNA
is extracted from the sample, converted to cDNA or cRNA, and hybridized to a DNA
microarray. DNA microarrays are either nylon membranes, glass slides, or synthetic
“chips,” to which are attached nucleic acid probes as cDNA clones or cDNA clone-
specific oligonucleotides corresponding to hundreds to tens of thousands of genes (1,2)
(see Chapters 2 and 3). Sequencing-based approaches involve high-throughput
sequencing of cDNA libraries generated from tumors (the Cancer Genome Anatomy
Project [CGAP], Web site: http://cgap.nci.nih.gov/) or specialized techniques for effi-
cient mass sequencing of short “tags” of each cDNA molecule derived from a tumor
(serial analysis of gene expression [SAGE]) (3,4) (see Chapter 4). Because of its labor-
intensive nature, sequencing-based expression profiling will remain purely an investi-
gative technique, but microarray-based expression profiling is likely to be eventually
applied in a clinical setting, at least in some form. The general concepts of tumor
gene expression profiling and its potential impact on clinical oncology and pathology
have been explored in detail in recent commentaries and reviews (5–9). The aim of the
present book is to provide an overview of the emerging “wisdom” in cDNA microarray
technology, experimental design, and data analysis (see Chapter 6), as applied to the
study of human tumors. We hope that it will serve both as an introduction to the field
for beginners, as well as a “progress report” for those already active in the field. Ulti-
mately, we hope this synthesis of work in the area will contribute to improved
approaches for the comprehensive molecular analysis of human cancer.

As presented in detail in the latter part of this book (see Chapters 8–20), investiga-
tors in the field of expression profiling of human tumors initially performed studies in
which tumors of different morphology or different primary sites were shown, perhaps
not surprisingly, to have clearly distinguishable patterns of gene expression (10–13).
In the evolving jargon of this field, this type of diagnostic classification by analysis of
expression profiles is sometimes called “class prediction.” These proof-of-principle
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studies served to validate cDNA microarray technology, and researchers soon shifted
their focus to identification of molecularly defined tumor entities (usually with associ-
ated clinical relevance) that were inapparent by conventional pathologic analysis (“class
discovery”). Indeed, new unsuspected biological subsets have been thus detected
among cutaneous melanomas (14), breast carcinomas (15), and pediatric acute lym-
phoblastic leukemias (16). In other cases, there has been what could be termed “class
rediscovery” or “class confirmation.” Initial expression profiling experiments in breast
cancers (17) led to the rediscovery of the previously described, but subsequently ne-
glected, immunohistochemical distinction of basal vs luminal cell type breast carci-
noma (18). Studies of B lineage diffuse large cell lymphoma (DLCL) have confirmed
the presence of a subset of germinal center-derived cases (associated with a favorable
prognosis) as anticipated by older data on the prognostic significance in B cell DLCL
of BCL2 expression or the follicular lymphoma-associated BCL2 rearrangement due to
the t(14;18) (19–22). Likewise, the observation that sarcomas or acute leukemias with
different specific translocations have specific expression profiles (11,16,23,24) con-
firms the validity of previously established morphologic–cytogenetic entities.

Pathologists have for many years been performing a simple form of expression pro-
filing, namely immunohistochemistry. In problematic cases, multiple immunostains
are usually performed as a panel, which provides information useful to refine a differ-
ential diagnosis. These panels are necessary, since there is no single native protein
whose expression is 100% specific and 100% sensitive for a given diagnosis. Presented
with the results of these immunostains, the pathologist routinely performs a mental
computation of combinatorial probabilities that takes into account the published speci-
ficity and sensitivity of each antibody for a given diagnosis, along with the risk of a
technical false positive or false negative result in the case under study, while estimat-
ing the overall likelihood of the same combination of positive and negative results
occurring in diagnoses lower on the differential diagnostic list. It is well accepted that
moving from single immunostains to panels of immunostains has improved final
diagnostic accuracy. In that sense, moving from panels of several immunostains to
high-throughput expression profiling of hundreds or thousands of markers, with
appropriate software to interpret the data and provide a diagnostic prediction with a
probability score, would seem to be a logical and inevitable next step in this progres-
sion. Indeed, some argue that full-scale clinical implementation of expression profiling
is feasible and desirable in the near future (9,12,25). Others consider a more incremen-
tal scenario more realistic, with the demand for microarray-derived markers and sub-
classifications satisfied in the near term by the transfer of key markers into standard
clinical immunohistochemistry laboratories (6,8).

There is a considerable gulf between the practical world of hospital-based molecular
diagnostic laboratories and some of the predictions prompted by high-throughput
genomics work. Hopeful statements, such as one made in 1999 that “doctors will be
offering gene expression profiles to some patients in the next 3 yr” (25), failed to con-
sider the many issues in moving complex assays from research laboratories to clinical
laboratories. Because of regulatory, billing, quality control, and test validation con-
cerns, combined with limited resources, academic molecular diagnostic laboratories
are extremely selective in their test menus. Furthermore, it is not yet clear that, consid-
ering the present cost of microarrays, large-scale expression profiling for “class predic-
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tion” is more cost-effective than established diagnostic approaches, i.e., histopathol-
ogy, supplemented in selected cases by immunohistochemistry, cytogenetics, or spe-
cific molecular assays, although many believe that this may only be a matter of time.

Obviously, aside from diagnostic classification, expression profiling has the poten-
tial to identify biological and clinical subsets that cannot be reliably recognized by
pathologic analysis. Indeed, its greatest promise is the potential to provide prog-
nostically useful information. In studies addressing prognostic classification, there has
been some variability in the results obtained so far by different groups addressing simi-
lar questions. This variability is, perhaps, more notable in prognostic studies than in
class prediction studies, and it serves as a reminder that the field of expression profil-
ing of human tumors is so young that for most tumor types, the issues of interlaboratory
and interplatform reproducibility are only beginning to be addressed. For example, two
large breast cancer expression profiling studies differed considerably in the results of
unsupervised clustering: one identified three major subsets, i.e., estrogen receptor-posi-
tive luminal cell type, basal cell type, and ERBB2-amplified type (17), while the other
detected only two major subgroups according to estrogen receptor status and lympho-
cytic infiltration (26). Moreover, in the latter study, well-established clinical markers,
such as ERBB2 and estrogen receptor were not found within a list of 70 genes linked to
breast cancer prognosis by the microarray analysis. Expression profiling studies of
B cell DLCL provide another example of variable results. The first study used unsu-
pervised clustering to identify genes whose expression dichotomized 42 B lineage
DLCL into cases derived from germinal center B cells or activated B cells, respec-
tively, and demonstrated the prognostic significance of this distinction (27). When a
second group used supervised analysis to identify prognostic subsets among 58 B lin-
eage DLCL, these two lymphoma subsets were not reproduced, and a completely dif-
ferent set of prognostic markers were identified (28). Moreover, a reanalysis of their
data using the differentially expressed genes identified in the first study failed to con-
firm the prognostic significance of the germinal center B cell vs activated B cell dis-
tinction. Technically, these differences may be due to different microarray platforms,
different statistical analytic methods, or the variability introduced by relatively small
patient numbers. Biologically, the differences may also reflect the likely “multidimen-
sional” nature of prognostically significant genes or pathways, i.e., the presence of a
matrix of several independent and additive prognostic categories for given cancer types.
Larger, more systematic, and more standardized studies will be needed to sort out these
variability issues. Such studies will benefit from careful tumor ascertainment and bank-
ing, as outlined in Chapter 7.

In the short term, however, the immediate clinical impact of tumor expression pro-
filing is in the identification of new diagnostic and prognostic markers, which can be
studied individually by more conventional and accessible techniques. Expression pro-
filing studies are performed using cDNA microarrays representing tens of thousands of
genes, and the clustering algorithms typically use the several thousand genes most dif-
ferentially expressed among the tumors in question. However, the end result is often a
very reduced subset of differentially expressed genes (e.g., 1–100), which can essen-
tially be used to replicate the same clustering. In many cases, the differences in the
expression of these genes can be detected robustly at the protein level by immunohis-
tochemistry. The availability of the tissue microarray approach accelerates the valida-
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tion of these new immunohistochemical assays, as described in Chapter 5. We are
already seeing the first wave of such markers moving from expression profiling studies
into clinical application. A second larger wave of markers will result from widespread
efforts in academic and commercial laboratories to generate new antibodies for the
products of the many differentially expressed genes without currently available anti-
body reagents. Thus, regardless of the issues that might delay the clinical implementa-
tion of microarray-based expression profiling of human tumors, these studies are
already having an immediate clinical impact through the high-throughput identifica-
tion of new markers of diagnosis and prognosis and the resulting influx of new immuno-
histochemical assays into clinical laboratories.
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2
cDNA Microarrays

Paul S. Meltzer

INTRODUCTION
Cancer can be viewed as a disease of disturbed genome function. The phenomena of

aberrant growth, differentiation, invasion, and metastasis are the phenotypic manifes-
tations of an underlying genetic process. Ultimately, irrespective of whether this is the
result of point mutation, translocation, deletion, gene amplification, or methylation,
the malignant phenotype is mediated by a characteristic pattern of gene expression.
Identifying the genes whose expression differs between normal tissues and tumors and
among tumor types has long been a focus of cancer researchers. This endeavor was
tremendously accelerated by the development of technologies for the parallel analysis
of gene expression. This chapter will focus on one of these technologies, cDNA
microarrays. The ability to measure the expression of tens of thousands of genes in a
tumor specimen has revolutionized our ability to describe cancers. A rapidly burgeon-
ing literature offers hope that this improvement will translate into improved diagnosis
and prognosis, as well as accelerate the discovery of new therapeutic targets.

The pivotal concept enabling cDNA microarray technology is simple. Rather than
maintaining libraries of cDNA clones as stocks of bacteria mixed in suspension,
libraries can be stored as collections of individual clones arrayed in microtiter plates.
This essential aspect of expressed sequence tag (EST) library sequencing projects pro-
vides a residual physical resource that can be used for other purposes (1). Libraries in
this format can be screened for individual genes of interest by replacing the traditional
colony lift with a filter prepared by transferring bacteria from the source plates to a
hybridization membrane (2). Such filters can also be hybridized with labeled cDNA
prepared from a cell source of interest (3,4). By quantitating the hybridization signal,
an estimate of the expression of the gene corresponding to each cDNA can be obtained.
The cDNA microarray, which has now found wide use in all fields of biomedical
research, is the much refined descendant of this simple concept. The fundamental ele-
ments, which are necessary to carry out this analysis, are arrayed libraries of cDNA
clones, a means for producing hybridizable arrays of these cDNAs, a system to detect
hybridization signal, and a means to quantitate those signals link them to the individual
cDNAs and compare these data across sample sets. The following discussion will
briefly consider the individual elements of the system and the considerations in experi-
mental design that are of particular relevance to cancer research.
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cDNA LIBRARIES

One of the great attractions of the cDNA microarray platform is its flexibility, and in
principle, one can construct arrays from any cDNA library that the investigator might
select. One could construct clone arrays that represent specific pathways or protein
classes or even use nonsequenced libraries from a tissue of interest. In practice, most
researchers use clones that have been culled from EST sequencing projects. There are
now over 4.4 million sequences in the National Center for Biotechnology Information
(NCBI) database of ESTs. Given that the number of genes in the human genome is two
orders of magnitude lower, it is apparent that there is considerable redundancy in the
EST sequence data. Using the EST sequence data and the mRNA sequences of known
genes, bioinformatic tools have been used to cluster sequences into groups represent-
ing individual transcripts. The most widely used system, Unigene, is maintained by
NCBI (5,6). Each individual cluster is designated by an identifier that can be used to
extract the set of sequences that constitute that cluster. Clone sets are selected to represent
each Unigene cluster. These clones must then be physically retrieved from their source
plates and rearrayed into sets for microarray fabrication. Ideally, each clone is
sequence-verified at the time it is rearrayed to maintain a high standard for sequence
authenticity in the final rearrayed library.

Each strategy for microarray production has intrinsic strengths and weaknesses.
Ultimately, one would like to have the option of constructing microarrays that include
a complete representation of the genome. To accomplish this, it would be necessary to
retrieve a cDNA clone for each gene, a goal that is limited by a number of factors,
including the still incomplete annotation of the human genome sequence. It is rela-
tively easy to access the genes that have been encountered multiple times in the course
of sequencing EST libraries. However, although over 800 libraries have contributed
data to the Unigene database, some genes, which may be expressed only in special-
ized tissues or at developmental stages that have not been sampled, may not be repre-
sented at all. Genes that have been sequenced only a few times may be difficult to
locate, depending on how effectively libraries have been archived. These consider-
ations have not posed major limitations for expression profiling studies of human can-
cers, but the possibility that key genes may be missing from a given microarray is
important to bear in mind when considering the results of any study. In addition, the
Unigene clustering system undergoes periodic revision (builds) as new data becomes
available, so clusters are not stable over time. There are also significantly more clusters
(over 100,000) than the estimated number of human genes, and there is certainly both
noise (due to artifactual cDNA clones) and redundancy (multiple clusters for the same
gene) within Unigene. Over 36,000 clusters are represented by only a single sequence.
These are difficult to access and may include clones that represent library artifacts or
genes with very low expression.

Another limitation inherent to cDNA libraries is the problem of preserving sequence
authenticity. In general, for microarray applications, libraries of rearrayed sequence-
verified clones are used. However, in the manipulation of tens of thousands of bacterial
stocks, it is inevitable that a residual level of error remains, and investigators must bear
this caveat in mind. Despite all these difficulties, cDNAs have major attractions. They
are readily available at a relatively low cost and can be manipulated with familiar tech-



cDNA Microarrays 13

niques. Once clones are obtained, an unlimited supply of DNA for printing can be
obtained by polymerase chain reaction (PCR), and the clones themselves are a conve-
nient source of probes for follow-up studies. The cDNA technology lends itself to spe-
cialized projects potentially utilizing special purpose libraries constructed from material
of interest to an investigator and potentially enriched for disease-specific genes, which
might not be included in generic clone collections. Finally, of the various expression
microarray technologies, only cDNA arrays lend themselves to the determination of
gene copy number by comparative genomic hybridization, an analysis that adds a
potentially important dimension to tumor profiling studies (7,8).

How big does a cDNA microarray have to be to generate useful information for
tumor profiling? It is quite clear that full genome-scale arrays are not necessary, as the
world literature to date falls short of this level. Most investigators conclude that they
would like to use the largest available array, because the analysis is a destructive pro-
cess, and sample sets may be more limiting than the arrays themselves. However,
although this issue has not been studied systematically, there seems to be a decline in
useful information as genes are added to arrays. If one imagines a list of genes ranked
as to their frequency of expression in tissues, the lower portion of this list will contain
genes that are very infrequently expressed and, therefore, are less likely to be expressed
in any given tissue of interest. This tends to counterbalance the tendency of cDNA
clone sets to be limited to the 10,000–20,000 Unigene clusters representing the most
commonly expressed genes.

CONSTRUCTING MICROARRAYS

Once a clone set has been selected, fabricating microarrays is quite straightforward.
The technology is dependent on the use of a robotic device to deposit DNA (typically a
PCR product) from each clone on a solid support, usually a glass microscope slide (9).
As an alternative to glass, microarrays can also be printed on nylon membranes for use
in radioactive detection systems rather than the fluorescence-based detection used for
glass microarrays. Detailed protocols for cDNA spotting are readily available. Robots
for printing microarrays are produced by several manufacturers. The printing proce-
dure is sufficiently simple that many institutions have established facilities for con-
structing microarrays, and expertise in array fabrication is now quite widespread.
Commercial sources of spotted cDNAs are now available and represent an alternative
to locally fabricated microarrays. It should be noted that once a spotting facility has
been established, only minor modifications are necessary to spot alternative DNAs,
such as synthetic oligonucleotides.

There is one important consideration that investigators who plan to use microarrays
for tumor classification should bear in mind. It is extremely important that data sets,
which are designed to provide this type of information, be generated in as homoge-
neous a fashion as possible. This maximizes the possibility of recognizing smaller dif-
ferences in expression between sample subgroups and minimizes the number of false
positives due to nonuniformities in technique. Of the many sources of this type of
error, slide-to-slide variation is perhaps the most important. Generally, within a print
batch, this error is relatively small and well compensated for by the use of a two-color
hybridization scheme. However, when comparing batches of slides printed at different
times, a large number of variables can interact to result in significant nonuniformities
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between batches. This can present a problem, which is relevant to project design.
For example, if a given printing system can generate a batch of 100 slides, then no
more than 100 specimens can be compared within a single batch. Switching to a second
batch of slides for the next 100 specimens may yield data that can still be useful, but it
will not be as satisfactory for recognizing the smaller differences between samples,
which may be of the greatest interest to clinical investigators. This difficulty can poten-
tially be overcome by improvements in printing technique, but these are most likely to
take place within an industrial environment. This issue, at the very least, deserves con-
sideration in the design of tumor profiling studies using cDNA microarrays.

MEASURING GENE EXPRESSION ON cDNA MICROARRAYS (FIG. 1)

In order to generate the primary expression data, a labeled representation of the
sample mRNAs must be prepared for hybridization to the microarray. Each feature on
the array is referred to as a “probe,” and the mixture derived from the sample is the
“target.” Fluorescence detection has emerged as the most useful methodology when
coupled with the use of glass microarrays (9). Fluorescence allows for simultaneous
hybridization of an unknown and a reference sample, each labeled with distinct fluoro-
chromes. This forgives, to a large extent, any imperfections in array fabrication and
allows a very accurate and sensitive measurement of the unknown relative to the refer-
ence source. As an alternative, radiolabeled targets can be hybridized to nylon mem-
brane microarrays. This presents some difficulties in image analysis, but is a viable
alternative if access to glass arrays is not possible.

For hybridization, the mRNA from the sample is converted to a labeled derivative
by reverse transcription to cDNA. A modified nucleotide is included in the cDNA
synthesis reaction. A fluorochrome can be incorporated directly, coupled to a reactive
group (as in the aminoallyl labeling strategy), or used in secondary detection. The dynamic
range and signal intensity are two of the critical variables affecting labeling methods.
Investigators using tissue samples prefer to minimize sample requirements. The direct
incorporation of a fluorescent dye requires 20–100 µg of total RNA, while aminoallyl
labeling requires 1–20 µg RNA. These are quantities that are easy to achieve with small
tissue specimens. The use of smaller samples requires an amplification step. This can
be accomplished by incorporating one or more cycles of in vitro transcription driven
from a bacteriophage RNA polymerase promoter incorporated in the primer used for
cDNA synthesis. Using this approach, useful data has been obtained from minute quan-
tities of RNA (10,11). Investigators using amplification techniques should be aware
that consistent labeling techniques should be used for a given project. Microdissection,
with comparison of tumor and normal cells, is particularly attractive as an approach to
directly identify genes that are cancer- rather than tissue-specific in their expression
pattern (12,13).

For two-color hybridization, it is necessary to select a reference sample. In prin-
ciple, the primary requirement of this material is a similar pattern of gene expression to
the tumors for which it will be compared. If many genes, which are strongly expressed
in the tumors, are expressed in the reference sample at near background levels, then the
sample-to-reference ratio will be unreliable. This requirement for similar expression
may be difficult to meet. One approach is to use a related cancer cell line or, as an
alternative, a pool of cell lines. There are distinct advantages to using a pool. Specifi-
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Fig. 1. cDNA microarray data flow. (A) Representations of the cellular mRNA pool are prepared by reverse transcription and hybridized to a
robotically printed microarray. Each spot on the array represents a cDNA clone that can be assigned to a specific gene. Microarrays are typically
hybridized with a mixture of tumor and reference samples, each labeled with a distinct fluorochrome. (B) After hybridization, the fluorescent
images are captured in a scanner, and the quantitative hybridization signals are extracted for each array element using image analysis software.
(C) Data from a series of samples is stored in a relational database, analyzed with statistical methods appropriate to the research question posed in
the study, and displayed for inspection. Two of several available types of data display are used.
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cally, each component of the pool will eliminate some low denominator genes, and
variations between batches of cells are minimized across the pool. Ideally, a project is
not started until sufficient reference RNA is available to complete the entire project.
It is important to carry out test hybridizations to determine the suitability of a reference
RNA before proceeding. Normal tissue truly representing the cancer progenitor cell is
not generally available in sufficient quantity for use as a reference. The exception may
be those situations where microdissected material will be amplified and where flanking
normal cells might also be obtained for similar processing.

A recurring question in tumor processing is the influence of admixed normal stro-
mal, endothelial, and inflammatory cells on the pattern of gene expression. Because it
is significantly easier to generate data from whole tissues compared to microdissected
cells, the vast majority of data in the literature has been obtained in this fashion.
The signature of many important components of tumors, such as endothelial, smooth
muscle, and inflammatory cells, can be recognized during data analysis, especially if
suitable representatives of these cells are included in the database. One can argue that,
since the biological properties of a tumor depend on the function of all the various cell
types represented in the tumor tissue, information derived from the tissue as a whole
actually adds value to the dataset. For example, it may be important to recognize sub-
sets of tumors with higher content of inflammatory cells. It is important to note that,
although subtraction in silico can provide a reasonable guide to the interpretation of
expression patterns, one cannot formally prove that this result is correct without addi-
tional experimentation. In general, the difficulties of follow-up studies to verify con-
clusions drawn from in silico subtraction (in situ hybridization, immunohistochemistry,
or reverse transcription PCR [RT-PCR]) must be weighed against the limitations
imposed by cDNA amplification methods. In principle, analysis of microdissected
malignant cells will provide a high degree of cell type specificity, but this comes at a
considerable cost in terms of specimen processing, as well as carrying the risk of dis-
torting the relative abundance of mRNAs in the amplified product.

After hybridization, a fluorescence image of the microarray is obtained with a scan-
ning device, and the image file is processed with feature extraction software, which
converts the raw image to numerical data corresponding to the level of fluorescence in
each channel. Commercial instruments and software packages for this purpose perform
well. Microarray users must become familiar with the properties of their scanner and
use appropriate setting to maximize dynamic range and obtain consistent results
between scans. Because it is impossible to use perfectly equivalent amounts of sample
in each channel, it is necessary to normalize the sample and reference channels. Two
strategies are in wide use, normalization by global intensity or by the use of a set of
minimally variable housekeeping genes. The normalized processed data are then out-
put as a spreadsheet for further analysis.

DATA ANALYSIS

Data from a series of tumor samples with expression levels for thousands of genes
can present a challenge for analysis. A method for data storage and retrieval in a data-
base is essential. This need not necessarily require the use of enterprise scale data-
bases, but some form of data storage is required. For example, commonly available
software, such as FileMaker Pro, can accommodate the needs of many projects.
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Although expression profiling studies are sometimes contrasted with traditional
hypothesis-driven research, in order to make sense out of microarray data, the
researcher must still have a concept of the main questions which it is hoped that a given
sample set might answer. Appropriate selection of analysis tools will depend on the
questions to be addressed. Certain key questions pervade most cancer-related
microarray research: Can two or more types of cancer be discriminated? What genes
discriminate them most clearly? Are there genes that discriminate tumors from nor-
mal tissues? Are there subsets within tumors of the same apparent class? Are there
correlations between expression profiles and other molecular or pathological proper-
ties of the tumor? Are there correlations between expression profiles and clinical vari-
ables, such as outcome and response to therapy? With what degree of confidence can it
be said that these results are not due to chance alone? Do the genes, which arise from
these analyses, fall into biologically recognizable pathways? Are these pathways rel-
evant to the tumor phenotype or as potential targets for therapy?

These important questions and the need to develop the mathematical tools to address
them have attracted the attention of computer scientists, engineers, and biostatisticians.
Numerous computational approaches have been developed, and these will not be
reviewed in detail here. However, certain important principles deserve emphasis.
The questions listed above vary in difficulty. Some are very easy. For example, finding
genes that distinguish colon cancer and glioblastoma will not be a great challenge, and
numerous reports support the concept that different cancer types have distinct gene
expression profiles (14,15). On the other hand, finding genes that discriminate among
stages of colon cancer might be significantly more challenging. There is no reason to
be sure, a priori, that every question can be answered with confidence by gene expres-
sion profiling. For example, the chemosensitivity of a metastatic clone may not be
predicted from the gene expression profile of the corresponding primary tumor. As the
differences in gene expression narrow between groups of samples, which define clini-
cally relevant groups, the analysis will be less and less forgiving of noise in the data,
and the importance of the primary data quality increases. Similarly, larger numbers of
samples in each group will be necessary to achieve statistically significant results. Once
gene lists are developed, which appear to answer the question posed, they should be
used to develop a formal rule-based classifier that might be applied to new samples
(16,17). Ideally then, experimental designs should also include a blinded test set, which
can be used to validate the results obtained from a “training” set.

Because the number of genes in microarray data sets is always much larger than the
number of samples, there will always be some number of genes that appear to differ
significantly between groups based on chance alone. There is no method that can prove
that this is not the case for any given gene, but probabilistic methods can provide an
estimate of the probability that the results are due to chance fluctuations in the data.
Alternative methods to address this issue include random permutation tests, leave-one-
out analysis, and the introduction of gaussian noise into the data (18–20). These meth-
ods help establish whether the data contain an overabundance of genes, which
discriminate the samples compared to what would be expected at random. Addition-
ally, it is important to use one of several available methods to rank the genes that
discriminate among samples, in order to identify the genes that have the greatest impact
on separating groups (17,18). Even with apparently good results, there may be aspects
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of the data related to sample selection that will not be apparent until a confirmatory
study is attempted. In the end, as in other types of clinical research, there is no substi-
tute for a truly independent confirmatory study.

The methods used to analyze microarray data can be divided broadly into supervised
and unsupervised approaches. Clinical correlative studies will utilize supervised meth-
ods that divide the samples into groups, for example, responders and nonresponders,
according to a known variable, and then search for genes that differ between groups
(21–23). Alternatively, microarray datasets present the opportunity for class discovery.
This entails the use of unsupervised techniques to search for properties of sample sets
that emerge from the data analysis without utilizing the known classification data for
the analysis. Unsupervised analysis provides the opportunity to discover unexpected
complexities among samples sets. There are a number of excellent examples of the
application of this approach to a variety of cancer types (24–28).

VALIDATION OF MICROARRAY DATA

How reliable are microarray data? This question is somewhat laboratory-specific,
depending on the precise methodology used. It is also dependent on where a given data
point falls on the spectrum of gene abundance. Genes expressed at low levels will not
be measured as accurately as more abundant transcripts. In general, when compared to
conventional methods, microarray data from experienced laboratories are remarkably
accurate (29). Although validation by Northern blot or quantitative PCR methods
may be required to confirm or extend important results, inherent data accuracy is usu-
ally not a major concern when a pattern of expression is reinforced by a large number
of samples. It is somewhat problematic that there may not be an alternative technique
that can be used to confirm the expression levels of dozens or hundreds of genes at the
same level of accuracy as microarrays, especially when expression levels between
sample groups vary by less than two-fold. In this case, the best validation will be
obtained from microarray analysis of an additional sample set.

Confirmation at the protein level can also be difficult, since for most genes, a suit-
able antibody will not be available. Even in the case of genes for which good antibod-
ies capable of staining tissue sections exist, the assay may not have the same dynamic
range as hybridization-based methods. In-depth correlation of mRNA and protein
expression levels for multiple genes will not be accomplished until accurate quantita-
tive proteomic methods become available.

Tissue microarrays for in situ mRNA hybridization or immunohistochemistry pro-
vide the possibility of confirmatory studies on large numbers of samples (30). Image
analysis of mRNA in situ hybridization is remarkably quantitative and agrees well with
cDNA microarray data (31). This technology for analyzing a single gene in numerous
samples nicely complements the ability of cDNA microarrays to analyze numerous
genes in relatively small numbers of samples.

INTERPRETING GENE LISTS

Microarray analysis, whether supervised or unsupervised, ultimately generates lists
of genes that discriminate among samples. Making sense of these gene lists presents a
significant challenge. Gene names can be misleading, and the majority of genes are
linked to little or no functional information. Currently, there are only limited tools that
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can automatically parse gene lists into functional categories. Automation of these tasks
is an area of active research, but at the present time, only expert perusal of the gene list
can optimize gene interpretation in the context of a particular biological question. How-
ever, this carries risks. Even if careful statistical methods have been applied to reach
this stage of data analysis, there is a real temptation to overinterpret gene lists by draw-
ing tenuous but attractive connections. Most of the interpretations that arise from
exploring microarray data are better considered hypotheses than conclusions. It is
important to bear in mind that additional forms of experimentation may well be neces-
sary to establish a conclusive connection between a gene and the tumor in which it is
expressed.

DISSEMINATING MICROARRAY DATA

The data generated from microarray research far exceeds, in quantity, the limita-
tions set by the usual journal format. Currently, data are provided to the scientific com-
munity over the Internet by Web supplements to publications and Web sites maintained
by individual laboratories. Public databases have been established at NCBI and Euro-
pean Molecular Biology Laboratory (EMBL), and standards are being developed for
the minimal information that should accompany microarray data for publication (32).
The availability of significant amounts of data via on-line repositories has led to a
number of publications that have reanalyzed existing data, which is a phenomenon that
will surely increase dramatically in the future.

CONCLUSION

Although only a brief period has passed since its introduction, cDNA microarray
technology has been widely adopted. As more and more studies have confirmed the
ability of this technology to contribute to tumor classification and to the recognition of
clinically important endpoints, enthusiasm has continued to grow. With time, the qual-
ity of microarray data has continued to improve, allowing a progressively higher reso-
lution view of gene expression. This information seems certain to improve tumor
classification and, through its impact on therapeutic target discovery, to provide new
opportunities for cancer treatment.
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Oligonucleotide Microarrays

Marina Chicurel and Dennise Dalma-Weiszhausz

INTRODUCTION

Oligonucleotide Microarrays:
Tools for Decoding Cancer’s Molecular Signatures

Oligonucleotide microarrays are fast earning a privileged position in the toolboxes
of many cancer researchers. Driving their rise in prominence is a rapidly growing list
of the technique’s accomplishments, including the discovery of new tumor classes, the
assignment of clinical samples to known tumor classes, the elucidation of molecular
pathways underlying cancer behavior, the prediction of clinical outcomes, and the iden-
tification of potential targets for therapeutic intervention.

Oligonucleotide microarrays have uncovered molecular signatures and clues to the
physiology of leukemia (1), lymphoma (2), melanoma (3), as well as cancers of the
breast (4), lung (5), prostate (6), colon (7), oral epithelium (8), bladder (9), ovaries
(10), and liver (11,12). Recent highlights include the discovery of molecular signatures
that help distinguish clinically relevant classes of breast tumors (4), the identification
of candidate genes involved in colon cancer progression (7), and the elucidation of a
molecular mechanism underlying metastasis in melanoma (3). For example, oligonucle-
otide microarrays have contributed to several basic and clinical advances in the
study of the most common malignant brain tumor in children, medulloblastoma. Oli-
gonucleotide arrays allowed Pomeroy and coworkers to distinguish medulloblastomas
from other brain tumors with very different prognoses (13). They also provided clues
as to the cellular origins of medulloblastomas, helping resolve a long-standing contro-
versy regarding their classification. In addition, data from oligonucleotide arrays sug-
gested the involvement of signaling pathways in metastatic medulloblastoma that could
be inhibited by known drugs, including one recently approved by the Food and Drug
Administration (FDA) for the treatment of a form of leukemia (14). Perhaps most
impressive, microarray-based profiling yielded the most significant predictor of
medulloblastoma outcome currently available (13).

This chapter uses recent examples to illustrate the power of monitoring the expres-
sion levels of thousands of genes at once to decode cancer’s molecular signatures.
It describes the design, manufacture, and use of oligonucleotide arrays and discusses
the technology’s strong points and limitations.
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WHY USE OLIGONUCLEOTIDE MICROARRAYS?

Introduction: The Challenge of Predicting Cancer’s Next Move
and the Power of Monitoring Many Genes at Once

Few diseases are as heterogeneous as cancer. Conventional histopathology has teased
apart hundreds of different tumor classes. However, the difficulty of predicting cancer
behavior betrays the existence of a much greater diversity. Tumors that look alike under
the microscope can vary widely in their progression and their responsiveness to therapy.
For instance, researchers have compiled a long list of breast tumor markers, including
histologic criteria, lymph node metastases, the expression of steroid and growth factor
receptors, estrogen-inducible genes, and mutations in the TP53 gene, yet the ability to
predict the disease’s progression and its reaction to treatment is still poor. The handful
of current distinctions of breast cancer fail to reflect the many biologically significant
classes that have recently been predicted to exist (15).

The fundamental problem is that cancer phenotypes result from alterations of many
regulatory pathways and structural components, each including dozens of proteins.
Single markers offer only a tiny window into the overall complexity (16). Thus, find-
ing better ways of classifying and subclassifying tumors to understand, predict, and
modify their behaviors is a top priority in cancer research.

Technologies that can monitor many cellular components in parallel offer the possi-
bility of capturing a more complete picture of a tumor and, potentially, predicting its
behavior more reliably. Because of their key role as effectors of cell function, proteins
would seem to be the ideal candidates for such larger scale monitoring. Indeed, much
effort is being directed at improving and developing technologies to track proteins
(17,18). Current methods to monitor protein levels include Western blots, two-dimen-
sional gels, chromatography, mass spectrometry, protein–fusion reporter constructs,
and the characterization of polysomal RNA.

Protein-based approaches are generally more difficult to perform, less sensitive, and
have a lower throughput than RNA-based methods (17). Since changes in mRNA abun-
dance usually reflect changes in protein levels, they can provide much information
about a cell’s physiological state. In addition, many of the mutations that affect tumor
cells occur in signal transduction pathways that directly or indirectly regulate tran-
scription factors. Based on data from several types of cancers, it is estimated that
between 0.2–10% of all transcripts are differentially expressed between cancer and
normal tissues (7). Since a typical mammalian cell expresses 10,000–20,000 differ-
ent transcripts, global analyses of gene expression patterns could yield as many as
2000 transcripts offering clues to the disease process and acting as potential diagnostic
or prognostic markers.

The likelihood of finding distinguishing features is greatly enhanced by screening
thousands of genes simultaneously, instead of single genes at a time. In addition, stud-
ies provide information on multiple fronts. A study designed to identify new tumor
classes, for example, may also reveal clues about the basic biology of cancer, as well as
suggest candidate genes for therapeutic intervention. In addition, the numerous results
generated by large-scale gene expression experiments often include previously reported
correlations that act as internal controls, providing some degree of built-in validation
and replication (17).
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Another advantage of monitoring large-scale patterns of gene expression is that, by
providing high resolution portraits of cancer, these technologies provide proxies for
abnormalities in complete molecular pathways (19). Single marker assays detect
alterations at very specific nodes in a biochemical or signaling pathway and conse-
quently, are unable to detect upstream or downstream disruptions, which may be func-
tionally equivalent to alterations of the marker gene or protein. In contrast, monitoring
many transcripts at once can provide patterns that reflect the functional status of entire
pathways. The estrogen receptor (ER), for example, is often used as a prognostic marker
for breast cancer. Almost 75% of breast cancers expressing ER will respond to
tamoxifen treatment, whereas less than 5% of nonexpressing tumors respond. The stan-
dard method for assessing ER status is immunohistochemistry. Yet, by monitoring a
single node in the ER pathway, alterations in other components of the pathway can be
missed. Illustrating the potential of microarrays for bypassing this limitation, West and
colleagues identified 100 genes whose expression correlated strongly with ER status,
including genes involved in the estrogen pathway, as well as genes that encode pro-
teins that synergize with ER (4).

Many changes that distinguish cancers from each other and from normal tissues may
be subtle or variable, making them individually unreliable. Yet, by monitoring many of
these changes simultaneously, as a composite pattern, it is sometimes possible to iden-
tify more robust signatures. Pomeroy and coworkers, for example, found that the
expression of a handful of genes encoding ribosomal proteins correlated with a poor
outcome in medulloblastoma tumors. To achieve statistically significant predictions,
however, they required additional genes whose expression correlated with a favorable
outcome, including several genes characteristic of cerebellar differentiation (13).
A particularly striking illustration of the power of distributed patterns was provided by
Alon et al. (20), who showed that even quite subtle changes in gene expression, when
taken together, can provide reliable information. They were able to distinguish tumor
and normal colon tissue with expression profiling even after removing the 1500 genes,
out of a total of 6500, that showed the most significant differences in expression (20).

Oligonucleotide Microarrays: Specificity, Reproducibility, and Quantitation

There are many ways to monitor patterns of gene expression. A straightforward
approach is to sequence cDNAs, or small parts of cDNAs, generated from the mRNAs
expressed within a tissue. For example, the Cancer Genome Anatomy Project (CGAP),
a program implemented by the National Cancer Institute to collect information on genes
associated with cancer development has generated over one million human expressed
sequence tag (EST) sequences from over 180 cDNA libraries (21,22). Serial analysis
of gene expression (SAGE) is another method that has provided much information on
transcriptome patterns associated with cancer (23). Like EST sequencing, SAGE relies
on sequencing cDNAs, but streamlines the process by stringing together multiple
sequence tags that uniquely identify individual transcripts.

The strategy offering the highest density of information output, however, is the use
of microarrays of oligonucleotides or cDNAs. The basic concept is simple: labeled
cDNA or cRNA targets derived from the mRNA of a tissue are hybridized to nucleic
acid probes attached to a solid support. By monitoring the amount of label associated
with each DNA location, it is possible to infer the abundance of each species repre-
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sented on the array. Although hybridization has been used for decades to detect and quan-
tify nucleic acids, the combination of the miniaturization of the technology and the
large and growing amounts of sequence information, have enormously expanded the
scale at which gene expression can be studied (17,24).

Microarray technology combines at least five different components (25,26): (i) a
solid support; (ii) a device for either spotting the nucleic acid probes or for synthesiz-
ing them in situ; (iii) a fluidics system for exchanging solutions during hybridization
and washing; (iv) a scanner to detect the labeled targets; and (v) computer programs to
store, process, and mine the data (Fig. 2A). There are many variations to this basic
theme (e.g., 27–29), but the two most commonly used platforms are cDNA spotted
arrays and in situ synthesized oligonucleotide arrays. cDNA arrays are made by
robotically depositing DNA fragments, such as polymerase chain reaction (PCR) prod-
ucts derived from cDNA clones, onto coated glass slides (see Chapter 2). Oligonucle-
otide arrays, on the other hand, are manufactured by synthesizing oligonucleotides
directly onto glass. Although oligonucleotide arrays can also be made by spotting, the
term oligonucleotide microarray usually refers to in situ synthesized arrays.

Each technology has its strengths and weaknesses, and some researchers have sug-
gested the two systems may be most effectively used in parallel (30). Others have
developed hybrid methods that attempt to capitalize on the strengths of both platforms
(31), although these methods suffer from their own limitations (32,33).

Because cDNA arrays can be made in the laboratory, they are particularly useful in
studies requiring very small batches of project-specific arrays. They are also well suited
for studies in which the array design has to be modified frequently. In addition, because
they rely on spotting rather than synthesis, cDNA arrays enable the study of genes that
have not yet been sequenced.

cDNA arrays require managing banks of cDNA clones and are generally unable to
provide the specificity, reproducibility, and standardized quantitation of transcript lev-
els offered by oligonucleotide arrays (Table 1) (34–37). In addition, oligonucleotide
arrays yield reproducible results because their design and manufacture are highly ste-
reotyped and consistent. This helps generate reliable results that are more easily com-
pared between studies and are uniquely well suited for clinical applications. The high
degree of control in design and manufacture also means less setup time for the end-
user. Researchers do not have to manufacture or test the quality and reproducibility of
the arrays, which translates into less setup time to get results. The scaleable manufac-
turing of oligonucleotide arrays allows for the production of a wide range of array sizes
and facilitates the production of large sets of identical arrays. Oligonucleotide arrays
are, therefore, particularly powerful for developing databases, because different
samples from different sites can be readily compared. At the same time, the design and
manufacturing of arrays is flexible, allowing for the creation of custom arrays, a pro-
cess that has been streamlined by the development of on-line tools to search databases
of previously manufactured probe sets in conjunction with biological databases. Even
though it is now common to use a universal normalization control sample, cDNA arrays
are often limited to providing ratios of RNA levels between an experimental condition
and a control condition, whereas oligonucleotide arrays can provide measurements of
transcript levels that allow for interexperimental comparisons.
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Oligonucleotide Microarrays and Tumor Profiling

A rapidly growing list of accomplishments attests to the powerful capabilities of
oligonucleotide arrays. One of the earliest and clearest demonstrations of the potential
of using these arrays for classifying tumors was reported by Golub and colleagues (1).
By analyzing the expression patterns of 38 acute leukemia samples, the authors identi-
fied 1100 genes that are differentially expressed between acute myeloid leukemia
(AML) and acute lymphoblastic leukemia (ALL). They then developed a class predic-
tor based on the expression patterns of the 50 genes whose expression most closely
correlated with the class distinction. The predictor proved 100% accurate, making
strong predictions for 29 of 34 new samples. The results were particularly striking,
because the procedures for collecting samples involved various preparation protocols
and different sources of tissue, including both peripheral blood and bone marrow.

The authors also tested the feasibility of using microarrays to discover new tumor
classes. Using an algorithm called a self-organizing map to automatically group the
38 leukemia samples based solely on their expression profiles, they independently gen-
erated classes that largely corresponded to AML, T-lineage ALL, and B-lineage ALL
tumors. These results indicated that tumor classes could be discovered without previ-
ous biological knowledge.

Although the main contribution of this study lies in the proof-of-concept showing
how microarray data can be used for class discovery and prediction, it also provided
new clues about the physiology of leukemia. For example, AML correlated with the
expression of high levels of the leptin receptor, a molecule previously found to have
anti-apoptotic function in hematopoietic cells.

A wealth of recent studies using oligonucleotide arrays have similarly uncovered
both expression-based classifiers and clues to cancer’s physiology (e.g., 2,5–9,11–
14,38). Pomeroy et al., for example, identified an expression signature that far outper-
forms current markers for predicting patient survival associated with medulloblastoma,
while helping clarify the cancer’s cellular origins (1). Experts argued whether medullo-
blastomas were members of a class of primitive neuroectodermal tumors (PNETs) aris-
ing from a common cell type in the subventricular germinal matrix, or whether they
were distinct from PNETs, arising from progenitors of cerebellar granule cells. Based

Table 1
Performance Characteristics of GeneChip Microarrays

Routine use Current limita

Starting material 5 µm total RNA Single cellb

Detection specificity 1:100,000 1:106

Absolute quantitative accuracy ±2x ±10%
False positives <2% 0%
Discrimination of related genes 70–90% identity 95% identity
Dynamic range (linear detection) ~500-fold ~104-fold
Probe pairs per gene/EST 11–20 4
Number of genes per array ~12,000 ~40,000

aExperimental: under development at Affymetrix.
bSemiquantitative.
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on expression patterns, Pomeroy and colleagues found that medulloblastomas and
PNETs fell into distinct groups. They also discovered that two transcription factors,
ZIC1 and neuronal stem cell leukemia (NSCL)-1, previously found to be specific to
cerebellar granule cells, were among the genes that most highly correlated with the
medulloblastoma group.

Other studies have identified genes involved in tumor progression. Clark and
coworkers, for example, found 32 genes that correlated with metastasis in melanoma
(5). To test the biological significance of their array-based findings, the authors exam-
ined the effects of altering the expression of one of the genes, RhoC, a regulator of the
actin cytoskeleton. Suggesting a causal role for RhoC in metastasis, cells that over-
expressed the gene produced significantly more pulmonary metastatic nodules than
control cells, while cells lacking functional RhoC suffered a dramatic reduction in their
metastatic potential. Genes potentially involved in the transition from adenoma to car-
cinoma have also been identified through oligonucleotide microarrays, although not
yet functionally tested (9). Still other oligonucleotide array studies have revealed
potential contributors to cancer initiation. For example, Alevizos et al. found that many
of the genes that were down-regulated in oral cancer cells coded for enzymes in the
xenobiotic pathway, which is a metabolic pathway that degrades toxic compounds
including carcinogens (10). Alterations in xenobiotic metabolism may thus contribute to
an increased susceptibility to carcinogens, such as those present in tobacco and alcohol.

Oligonucleotide arrays have also illuminated the downstream players in several can-
cer-associated pathways, including those activated by BRCA1 (39), EGR1 (40), p53
(41,42), and MYC (43). Harkin et al., for example, established BRCA1-inducible cell
lines and used oligonucleotide arrays to analyze gene expression following induction
(39). The authors found 23 genes and ESTs that increased their expression in response
to BRCA1 induction.

Besides providing windows into the basic biology of cancer, microarray data are
identifying candidate therapeutic targets. Based on their microarray studies, Mac-
Donald et al. have suggested that inhibitors of platelet-derived growth factor receptor
α (PDGFRA) and RAS proteins may be of therapeutic value against medulloblastoma
(2). The authors discovered that PDGFRA and downstream members of the RAS/mito-
gen-activated protein kinase signaling pathway were up-regulated in metastatic
medulloblastoma tumors. As previously mentioned, several inhibitors of the pathway
pinpointed in this study are currently available, including imatinib mesylate (Gleevec®,
Novartis, Vienna, Austria), a drug recently approved by the FDA for the treatment of
chronic myeloid leukemia.

Oligonucleotide arrays may also provide valuable information regarding drug
response, potentially reducing the time-consuming and expensive process of testing
drugs for safety in animal models, and helping future physicians tailor treatments to
individual patients. Gerhold and coworkers, for example, recently demonstrated the
feasibility of using oligonucleotide microarrays to measure expression profiles of genes
involved in drug metabolism (44).

DESIGNING OLIGONUCLEOTIDE MICROARRAYS

Many of the benefits of oligonucleotide arrays stem from the design of probes to
optimize sensitivity, specificity, and reproducibility (34–37). To illustrate the under-



Oligonucleotide Microarrays 29

lying principles, this section will focus on one of the most commonly used oligonucle-
otide microarrays, the GeneChip® array from Affymetrix (Santa Clara, CA, USA).

Unlike probes used in other arrays, in situ-synthesized probes can be designed based
on a consistent set of rules to optimize hybridization. For example, palindromes can be
avoided, reducing hairpin loops that interfere with intermolecular hybridization. The
probes can also be optimized for hybridization under particular pH, salt, and tempera-
ture conditions by taking into account melting temperatures, and using empirical rules
that correlate with desired hybridization behaviors.

Key to the design of GeneChip arrays is the match-mismatch probe strategy (Fig. 1B).
For each probe designed to be perfectly complementary to a particular target sequence,
a partner probe is designed that is identical except for a single base mismatch in its
center. These probe pairs, called the perfect match probe (PM) and the mismatch probe
(MM), allow the quantification and subtraction of signals caused by nonspecific cross-
hybridization. The difference in hybridization signals between the partners, as well as
their intensity ratios, serve as indicators of specific transcript abundance. Whereas
evaluating the performance of features on cDNA microarrays relies on monitoring the
hybridization of a few selected probes (e.g., 32), PM/MM partners allow for global and
specific evaluations of oligonucleotide probe performance.

Monitoring nonspecific signal in a probe-specific manner is particularly valuable
for detecting and quantifying low abundance transcripts. Using arrays to perform a
genome-wide analysis of gene expression in Caernohabditis elegans, for example, Hill
and colleagues reported they could unambiguously detect control transcripts diluted as
much as 1:300,000 (45).

A huge advantage of selecting probes based on sequence is the possibility of uniquely
identifying target transcripts. By using probes from regions of genes that greatly diverge
between family members, GeneChip arrays are able to distinguish transcripts that are
as much as 90% identical (44). In addition, probes can be designed to distinguish
between alternatively spliced transcripts, which is an important capability given esti-
mates that at least 30% of all human genes are alternatively spliced.

In general, each target transcript is represented by between 11 and 20 different
PM/MM partners (46). This multiplicity is important for obtaining reliable results,
because even when using a consistent set of rules for probe design, sequence-specific
variations in hybridization are one of the most significant sources of array noise (Fig. 1B).
Applying an analysis of variance (ANOVA) test to data from 21 oligonucleotide arrays
containing more than 7,129 probe sets, Li and Wong reported that the variation due to
probe effects was, in most cases, at least five times greater than that contributed by
interarray variation (47). Multiple probe pairs help deal with this variation, providing
statistical measurements of probability and confidence for each queried transcript,
resulting in improved tolerance of polymorphisms, hybridization inconsistencies,
sequence similarities, and errors in sequence databases (37). Multiple probe pairs also
allow assessment of a sample’s mRNA integrity; the lower the ratio between the
hybridization signals of probes complementary to the 3' vs the 5' ends of a transcript,
the less likely the sample has been degraded (Fig. 1B).

Wodicka et al. tested the ability of oligonucleotide arrays to reliably measure rela-
tive levels of transcripts. They hybridized the entire genome of the yeast Saccharo-
myces cerevisiae to expression arrays of the same organism (48). Since most genes are
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Fig. 1. Schematic representation of the synthesis, design and wafer format of
GeneChip oligonucleotide arrays. (A) Light-directed combinatorial chemistry. A light source
is used to activate the surface of the wafer upon which the oligonucleotides will be synthesized.
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present in the same copy number in the yeast genome, the authors expected to obtain
very similar intensity signals across the entire array. Indeed, they found that the inten-
sities of 80% of the hybridization signals were within two-fold of each other. Other
studies have demonstrated that the results generated by oligonucleotide arrays are in
close agreement with those obtained using Northern blot analysis (46), SAGE (49), and
TaqMan® (Applied Biosystems, Foster City, CA, USA) (44).

One of the major strengths of oligonucleotide arrays is their ability to yield stan-
dardized measurements of transcript abundance with a dynamic range of linear detec-
tion spanning at least 500-fold (Table 1) (36,46,48). Several factors contribute to these
quantitative abilities, including the use of PM/MM pairs, the inclusion of multiple
probes per transcript (probe set), and the design of probes based on a consistent set of
rules. The uniform conditions under which oligonucleotide probes are synthesized also
contribute to the technique’s quantitative reliability (36,48). In contrast to the deposi-
tion of DNA onto spotted arrays, which can result in patchy distribution of the probe
molecules and consequent variations in the signal detected, manufacturing probes
in situ results in uniform coating of the array substrate.

MANUFACTURING OLIGONUCLEOTIDE ARRAYS

GeneChip arrays are manufactured using photolithographic methods and equipment
adapted from the semiconductor industry (Fig. 1) (34,37,50). The use of a solid-phase
synthesis procedure circumvents the need for handling large numbers of clones or run-
ning PCR amplifications. The first step in the manufacturing process involves coating
a 5-in square of glass with synthetic linkers modified with photolabile protecting
groups. A chrome photolithographic mask with windows spanning between 18 and
20 µm2 is then placed over the coated glass. The windows are distributed across the
mask based on the first nucleotide in the sequence of each desired probe. When light is
projected through the mask, the exposed linkers become deprotected and available for
coupling to a nucleoside (Fig. 1A). The coated surface is then flushed with a solution
containing either A, C, T, or G nucleosides, carrying removable protection groups.
Uncoupled active sites are then capped by acylation so that, once again, the glass is
covered by a lawn of protected molecules. A second mask is placed over the chip to
allow the next round of deprotection and coupling. The process is repeated until the
probes reach their full lengths, usually 25 nucleotides, which balances the needs for

(Figure 1 caption continued from previous page) The use of a photolithographic mask allows
activation to be limited to specific sites, or features, such that nucleotide incorporation can be
controlled to generate the desired sequences. Using solid-phase synthesis methods, nucleotides
carrying a photolabile protecting group are sequentially added to the feature. In this example, a
thymidine is added first. A different mask is used for the next synthetic step (cytosine). The
process is repeated until the 25-nucleotide sequence is completed. Using strategies that stream-
line synthesis, the procedure can be accomplished in less than 25 steps. (B) Expression array
design. Microarrays can be manufactured for tracking the expression levels of a multitude of
genes. This design includes the PM sequence and the MM sequence. Each gene is represented
by 11–16 oligonucleotide probes. (C) The glass wafer is sliced to create microarrays or “chips.”
The center image (B) shows a microarray’s pattern of fluorescence emission. The picture on
the left (A) depicts the packaging of the microarray. The picture on the right (C) shows a
magnified array feature, in which millions of copies of a single oligonucleotide reside.
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signal intensity and sequence specificity (36). The distribution of probe partners is
randomized to avoid potential biases from differences in hybridization conditions
across the array.

Depending on the number of probes per array, between 50 and 400 chips can be
generated from one 5-in square wafer. This parallel process significantly enhances
reproducibility. In addition, the multiplicity of probes per gene and DNA molecules
per probe location, each location harboring between 3 and 7 million DNA molecules,
contributes to the array’s robustness (Fig. 1C). Also, because the number of synthesis
steps depends on the length of the probes and not the number of probes, array manufac-
ture is scaleable (37). Since each position in the sequence of an oligonucleotide can be
occupied by one of four nucleotides, one might expect that, to synthesize a particular
array of 25-mers, one would require 25 × 4, or 100, different masks. Yet, the number of
masks can be significantly reduced by orchestrating the synthesis process, so that
different probes are synthesized at different rates, and for some applications, single
masks are used for more than one synthesis step. Harnessing the power of this approach,
5-in wafers with as many as 60 million 25-mer probes are being developed by Perlegen
Sciences (Santa Clara, CA, USA).

The density of probe locations, or features, has also been rising steadily. Affymetrix
has manufactured 1.28-cm2 chips with over 400,000 features (Fig. 1C). The Human
Genome U133 array set, sporting 18-µm2 features and 11 probe partners per gene, is
designed to contain over 1 million features representing approx 38,000 transcripts
(44,000 probe sets) distributed across two standard-sized arrays. This very high den-
sity offers the possibility of monitoring global patterns of gene expression, while using
fewer arrays and less labeled target. Also, since the underlying principles of design and
manufacture remain constant, current arrays are backward compatible with older ver-
sions of scanners, software, and fluidics systems.

Further improvements in probe density are limited by two factors. In principle,
hybridization efficiency can suffer if individual probe molecules are clustered too
tightly (37). Additionally, the resolving power of the current scanners (3 µm) that read
the hybridization signals limits the degree to which feature size can be reduced (37).

Although most oligonucleotide arrays in use today are manufactured following the
steps outlined above, several potentially useful variations have been developed
(31,32,51,52). For example, instead of using expensive chrome masks with etched win-
dows to specify each step of synthesis, Singh-Gasson developed a maskless synthe-
sizer that uses virtual masks, i.e., computer-generated images that are projected onto a
glass wafer using a digital micromirror array. The synthesizer has successfully pro-
duced oligonucleotide arrays with 76,000 features, each measuring 16 µm2.

Another approach relies on technology developed originally for ink-jet printers (31).
Blanchard and colleagues developed a photolithographic procedure to generate arrays
of hydrophilic islands surrounded by a highly hydrophobic background (31). Water
applied to the surface of the array forms separate droplets over the hydrophilic islands,
which can be used as wells for performing DNA synthesis reactions. To deliver small
amounts of synthesis reagents to each well, Blanchard et al. (31) built small ink-jet
pumps, similar to those used in some ink-jet printers. Instead of delivering one of four
different colored inks, each of the tiny pumps delivers one of the four DNA nucleo-
sides as they are guided to the appropriate wells by an x-y stepping stage and a com-
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puter. Although the technique offers flexibility and low cost synthesis, ink-jet dispens-
ers have some drawbacks. For example, the dispensers’ glass heads are fragile and tend
to clog. In addition, their operation can require larger volumes of fluid than other spot-
ting devices (30).

Hughes et al. recently constructed a second-generation version of Blanchard’s origi-
nal synthesizer and tested its expression profiling capabilities (32). Using 60-mer oli-
gonucleotides as probes, the team reported they could reliably detect transcripts present
at a concentration equivalent to one copy per cell in a complex biological sample.
However, the study only examined the hybridization behaviors of a small subset of
sequences. In addition, the 60-mer probes failed to provide the hybridization specific-
ity attainable with shorter probes. Whereas a single-base mismatch is sufficient to
destabilize the hybridization of a 25-mer probe, 60-mers require, on average, five or
more mismatches to reduce hybridization signals by more than 50%. Thus, the use of
60-mers results in decreased specificity due to cross-hybridization.

USING OLIGONUCLEOTIDE MICROARRAYS

Sample Preparation: Avoiding the Pitfalls

A major challenge in using either cDNA or oligonucleotide arrays for tumor profil-
ing is navigating the many pitfalls associated with tissue selection and preparation.
Low sample quality probably underlies many apparent inconsistencies across micro-
array studies and has seriously marred the clinical relevance of many reports.

One problem is that messenger RNA is a very labile molecule, which is susceptible
to degradation by the RNases abundantly present in most tissues. Many of the tradi-
tional treatments used for preserving the morphology required for accurate tumor
diagnosis are incompatible with the extraction of intact RNA. The crosslinking caused
by formalin fixation, for example, severely compromises the quality of the RNA that
can be extracted. On the other hand, protocols that help protect RNA, such as rapid
freezing, can disrupt microscopic morphology (16).

To cope with these difficulties, some researchers are turning to alcohol-based fixa-
tion, which has the potential of preserving both morphology and RNA integrity (53,54).
Even these methods fall short, however, if tissues are not processed quickly. As described
by Perou and coworkers in their work with breast tumors, the prolonged handling of
samples after surgical resection induces significant changes in gene expression pat-
terns, including the induction of c-fos and junB (15). Key to obtaining high quality
samples, then, is establishing effective collaborations between surgeons, pathologists,
and researchers.

It is also important to assess RNA integrity once the samples have been collected.
Stamey et al., for example, collected samples of prostatic tissue within 15 min of inter-
ruption of blood flow to the prostate and froze the tissue immediately, thereby provid-
ing excellent conditions for preserving RNA (8). Yet even under these conditions,
5 out of 22 samples showed signs of considerable degradation. After inspecting the
RNA by agarose gel electrophoresis and spectrophotometry, the authors used a test
microarray, the GeneChip Test3 array, to determine the ratio of 3' to 5' transcript levels
of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and overall transcript levels
for 24 housekeeping genes (55). Only 17 of the 22 samples were selected for subse-
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quent experimental analysis based on having GAPDH ratios lower than three, and pro-
ducing detectable signals for more than 40% of the housekeeping genes.

Tissue Heterogeneity: A Multitude of Complicating Factors

One of the strong points of expression profiling is its potential for providing robust
molecular signatures. As previously mentioned, the signature provided by multiple
markers can sometimes weather sample variability and heterogeneity much better than
that provided by a single marker. Indeed, there is hope that gene expression data will
allow the detection of a small number of cells diluted in complex mixtures. Martin and
colleagues, for example, recently identified a set of 12 genes that allowed high sensi-
tivity detection of disseminated tumor cells in the blood of 77% of patients with inva-
sive breast cancer (56).

However, heterogeneity still hinders the procurement of molecular information that
is unambiguously associated with cancer and, consequently, can seriously limit its pre-
dictive value. To pinpoint mechanisms underlying tumor behavior, identify candidates
for therapeutic intervention, and obtain predictors of tumor behavior with solid foun-
dations in the disease process, experiments should be designed to account for and
minimize heterogeneity within and between tissues, diversity in cell type composition,
variability between individuals, and changes in tissues associated with disease
progression.

In identifying expression patterns associated with disease progression, for example,
it is useful to first distinguish tumors based on pre-established markers. Stamey et al.
showed that the most robust histologic predictor of progression in radical prostatec-
tomy samples was the amount of Gleason grade 4/5 tissue present in the largest tumor
harbored by the prostate’s peripheral zone (57). The Gleason classification scheme is
based on the architectural patterning of tumor glands, ranging from grade 1, corre-
sponding to very well differentiated glands, which is similar in structure to those found
in normal prostate, to grade 5, corresponding to very poorly differentiated tissue lack-
ing individual separate gland units. Based on these findings, Stamey and coworkers
focused on Gleason grade 4/5 tumors to search for expression patterns that correlated
with disease progression (8). In contrast, an independent study, which also examined
expression profiles associated with prostate cancer, did not specifically select Gleason
grade 4/5 tumors (58). It is likely that at least some of the differences in results between
the two studies can be attributed to the second study’s failure to account for this kind of
tumor heterogeneity.

Heterogeneity in the types of cells comprising tumors can also affect expression
profiling. When Welsh et al., for example, screened the expression profiles of 27 ova-
rian tumors for genes whose expression correlated with malignancy, many of the genes
they identified were characteristic of stromal tissue and infiltrating B cells (12). Only
after excluding 14 tumors, which expressed these genes at particularly high levels, did
they obtain a list that was highly enriched for known or suspected markers of epithelial
malignancy. Differences in smooth muscle content between tumors and normal tissues
can also affect tumor profiling studies. Alon and colleagues found that colon tumors
whose expression patterns clustered with normal tissues had higher muscle content
than nonoutliers (20). Similarly, outlying normal tissues that clustered with tumors had
relatively low amounts of smooth muscle.
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Even cancers that do not form solid tumors, such as lymphomas and leukemias,
are burdened by the complications of tissue heterogeneity. Bone marrow aspirates, for
example, contain many different cell types. Although procedures for isolating sus-
pended cells, such as centrifugation through Ficoll® gradients (Amersham Pharmacia
Biotech, Piscataway, NJ, USA), have been well established, the sorting process itself
may induce changes in gene expression.

The selection of noncancerous controls also suffers from complications due to
normal tissue heterogeneity. For example, the prostate can be anatomically divided
into three zones that differ radically in their cancer-harboring potential. The periph-
eral zone gives rise to 80% of prostate cancers, the central zone appears to be cancer-
resistant, and the transitional zone gives rise to benign prostatic hyperplasia and the
remaining 20% of malignant cancers. Normal cells from the peripheral zone would
appear to be, therefore, ideal controls for the study of most prostate cancers. Yet, in
men over 50 yr old, the epithelium of the peripheral zone is frequently atrophied,
which severely limits the amount of tissue available for collection. In addition, the
available tissue often suffers from dysplasia, which gives rise to cancer and, there-
fore, cannot be considered a truly normal control. Even tissue that appears normal in
the light microscope may be genotypically abnormal or exhibit a disrupted pattern of
gene expression. Deng et al. observed genotypic abnormalities in normal tissue adja-
cent to breast carcinomas (59).

Other factors contributing to heterogeneity are the environmental and genetic back-
ground of the host. The treatment history of a patient can affect a tumor’s expression
pattern. Although Perou et al. showed that samples taken from the same breast tumor
before and after treatment with doxorubicin were, in most cases, more similar to each
other than either was to samples from other tumors, in 3 out of 20 cases, there was a
significant change in tumor expression patterns that correlated with drug treatment
(15). In addition, the genetic background of the host may help dictate a tumor’s behav-
ior by directly affecting the physiology of tumor cells or the behaviors of surrounding
tissues that interact with the tumor.

In Vitro, In Situ, and In Silico Methods to Cope with Tissue Heterogeneity

A first step towards dealing with tissue heterogeneity is documenting tissue collec-
tion procedures carefully so that data can be more readily compared across studies.
In addition, approaches that can help circumvent at least some of the problems caused
by heterogeneity include the use of cell lines, performing in silico subtractions, and
using microdissection tools (16).

Cells in culture have provided valuable information about cancer behavior and
complemented tumor profiling studies. Many studies examining cancer-associated sig-
naling pathways, for example, have made good use of cell lines carrying expression-
inducible genes (39,41). However, cell lines often fall short of recapitulating the
in vivo situation. Gene expression is greatly influenced by environmental conditions,
including the presence of soluble factors, extracellular matrix molecules, and inter-
actions with various cell types, all of which are conditions that are radically altered in
cell culture. Indeed, the colon carcinoma cell lines included by Alon and coworkers
expressed such unique patterns of gene expression that cluster analysis separated them
into a group distinct from both tumor and normal in vivo tissues (20).
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Cell lines can help deal with tissue heterogeneity in ways other than acting as sim-
plified model systems for cancer cells. Using microarrays sporting 9703 cDNAs to
obtain expression profiles of 60 cancer cell lines, Ross et al. discovered that the expres-
sion profiles of cancerous human breast tissue had recognizable counterparts in spe-
cific cell lines, thus providing a window into tumor cell type composition (60). Tissue
samples expressed genes associated with breast cell lines, such as the ER gene, as well
as genes associated with stromal and immune cell lines.

Such information suggested the possibility of using in silico analyses to tease out the
compositions of heterogeneous tumors. Indeed, by analyzing the expression profiles of
65 crudely enriched breast tumors and 17 cell lines of stromal, endothelial, mammary
epithelial, and immune cellular origins, Perou et al. were able to identify at least eight
groups of genes expressed by primary tumors that reflected the presence of multiple
cell types (15). Using algorithms to approximately gauge the relative abundance of the
noncancerous cell subpopulations, they were then able to subtract these gene clusters
from the data and generate a list enriched in tumor-specific transcripts.

The approach suffers from a few limitations, however. It is difficult to capture a
truly complete expression profile of a complex mixture of cells, because low abun-
dance transcripts tend to be swamped by abundant species. The time it takes for an
RNA or DNA molecule to find and hybridize with its complementary partner is deter-
mined by the concentration of the partners and the diversity of sequences present in the
mixture. Within a given amount of time, transcripts present at low levels in a highly
diverse mixture are less likely to find their partners than abundant RNAs. This is poten-
tially problematic, since low abundance transcripts often code for regulatory proteins,
such as transcription factors, with key cellular functions.

Another complication is the emerging realization that noncancerous cells within a
tumor can have gene expression signatures that are dramatically different from those of
healthy tissues. A comparison of the expression patterns of endothelial cells derived
from the blood vessels of malignant colorectal tissue and endothelial cells from normal
vessels, for example, revealed 79 differentially expressed transcripts (61). These results
suggest that to perform accurate subtractions, it may be necessary to obtain expression
profiles of noncancerous cells specifically associated with tumors.

Laser capture microdissection (LCM) is now making it much easier to obtain such
small subpopulations from a variety of tissues (62). More importantly, in some cases,
it is offering a superior alternative to in silico subtraction by providing well-isolated
samples of cancerous cells, which can be normalized to total DNA, total number of
cells, or levels of control markers (10,53,63–65). The study of small areas of tissue in
particular, such as precancerous lesions, stands to benefit greatly from LCM.

LCM relies on a laser beam to transfer cells selected under a microscope onto a
polymer film. To release the captured cells’ RNA, the film is incubated with an extrac-
tion buffer. For example, by applying this technique to both normal and cancerous oral
epithelial cells, Alevizos et al. recently identified 404 transcripts associated with oral
cancer using oligonucleotide arrays (10). The clustering of normal samples and tumor
samples into two highly distinct groups indicated that LCM succeeded in isolating pure
homogenous samples.

Although the difficulty of obtaining sufficient amounts of RNA for hybridization to
microarrays has limited the adoption of this technology, several studies (10,63,64,66)
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have developed amplification procedures that circumvent this problem. Luzzi and
colleagues recently used two rounds of linear amplification to perform expression pro-
filing of ductal carcinoma using oligonucleotide arrays (64). The authors used LCM-
derived RNA to synthesize double-stranded cDNA coupled to a T7 promoter, but
instead of producing labeled target directly from the cDNA as is usually done, they
used the cDNA to generate unlabeled antisense RNA. A second round of amplification
was then performed by using the amplified RNA as a template for synthesizing cDNA
again. After second-strand synthesis, this amplified cDNA was used to produce labeled
target. Based on expression levels of internal controls, the authors showed that their
procedure was reproducible and yielded a sensitivity and precision comparable to stan-
dard methodologies that rely on 200–1000 times more RNA.

Despite these advances, LCM has its limitations. LCM requires specialized equip-
ment and training. In addition, working with highly localized samples of tissue is not
always desirable. Sampling a small subset of cells in a heterogeneous tumor harboring
multiple malignant clones, which behave very differently from each other, for example,
can provide a biased view and an oversimplification of the global picture (67).

Target Preparation, Hybridization, and Signal Detection

Most target preparation protocols use total RNA or poly(A)+ RNA as a template for
synthesizing cDNA or cRNA while incorporating biotinylated or fluorescently labeled
molecules (Fig. 2A) (37). This step usually results in only a modest amplification of
the starting material due to the ability of DNA and RNA polymerases to read templates
multiple times. If a greater amplification is required, as described for LCM, additional
synthetic steps can be inserted in the protocol. However, it is important that these
amplifications maintain relative abundance levels to provide accurate results.

To monitor the subsequent hybridization step, labeled targets are spiked with labeled
control transcripts. Each GeneChip array, for example, contains probe sets for several
prokaryotic genes that serve as hybridization controls when complementary labeled
RNAs are mixed with the experimental target. Typical hybridizations are performed at
45°C for 16 h. Washing of the arrays, and staining when biotin-tagged targets are used,
can be done either manually or robotically. Using the GeneChip Fluidics Station 400,
arrays can be processed in over 1 h.

Laser scanners are used to detect the hybridization signals. These devices have been
steadily improving since the first generation of scanners was developed by adapting
confocal microscopes. Current scanners have a 3-µm resolution, scan over 20 lines per
second, detect as few as 400 phycoerythrin-labeled molecules in a 20 × 20 µm feature,
and generate confocal images consisting of 25 million pixels in less than 10 min (37).

The push to collect more data faster is fostering the development of, not only higher
density arrays, but also methods to streamline array processing. The capacity of fluid-
ics systems is being increased, and systems for automating the loading of arrays for
scanning are being developed. Zarrinkar et al. recently increased the capacity for paral-
lel processing by using “arrays of arrays,” glass wafers that contain 49 individual oli-
gonucleotide arrays (68). During hybridization, the arrays and samples are kept isolated
from one another by a silicone seal. Since washing and staining do not require array-
specific handling, the hybridization chamber is subsequently converted into a flow cell
for applying solutions over the entire set of arrays as a single unit. Using this technol-
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Fig. 2. Expression assay format and experimental design for tumor profiling. (A) Total
poly(A) RNA from tumor, as well as normal cells are isolated. Double-stranded cDNA is syn-
thesized, and labeled cRNA is obtained through in vitro transcription. The labeled cRNA is
then hybridized to the probe arrays. The probe array is subsequently scanned, and fluorescence
emission is prepared for data analysis. (B) The leave-one out approach is a commonly used
strategy to build classifiers of tumor types and subtypes. For n samples, an n-1 predictor is
built. This predictor is used to calculate the classification of the missing sample. Each of the
samples is then removed, in turn, and classified based on the “overall predictor,” which takes
into account all other (n-1) samples.

38
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ogy, Welsh and colleagues completed a tumor profiling study of ovarian cancer in a
single experiment and in a fraction of the time required by conventional methods (12).

Data Analysis

Most of the time invested in tumor profiling studies, however, occurs during data
analysis. The process often continues even after the analysis of a dataset has been pub-
lished, as new statistical methods offer the possibility of extracting new or higher qual-
ity information.

The first step in dealing with the vast amounts of data generated by individual arrays
(a single 12,000-gene GeneChip array produces 87 megabytes of information [33]) is
to prepare the data for mining. Nonspecific signals are removed by subtracting MM
signals from PM signals and calculating the ratio of their intensities. To assess the
threshold above which differences in PM and MM values are meaningful, the back-
ground noise due to random variations in pixel intensity must be determined and
removed. Finally, transcript levels are calculated by combining the data from probes
representing the same transcript. Software packages to perform these calculations have
been steadily improving. The latest package produced by Affymetrix, the Microarray
Suite 5.0, for example, provides measures of statistical significance (p values) and
confidence limits for the results of each probe set, and allows the user to adjust the
balance between sensitivity and specificity. Initiatives to increase the openness of the
microarray data analysis and management tools are currently underway.

Regardless of whether the goal of a study is to find new genes and pathways involved
in cancer, discover new tumor classes, or develop predictors for known tumor classes,
the key to subsequent data analysis is to reduce the number of experimental variables
and to home in on a small subset of informative genes. A common first step is to set a
statistical threshold to identify genes whose expression varies significantly between,
but not within, two conditions of interest, such as normal vs tumor tissues. A student
t-test, for example, can be applied to single out genes with differences in expression
levels below a particular p value. The method used, however, should be compatible
with the statistical distribution of the data.

A number of algorithms can then be used to group together tissue samples or genes
with similar properties. Because of the large number of expression measurements, how-
ever, the significance of these correlations must be evaluated. Common approaches
include setting aside samples for independently testing genes of interest (Fig. 2B) and
applying permutation tests in which the data are scrambled or noise is introduced to
determine how much the identified correlations differ from correlations that could arise
randomly.

Statistical significance, however, is not always indicative of biological significance.
Expression patterns may result from chance associations or from artifacts of sample
preparation. Hughes et al. (69) have found that spurious correlations may emerge when
profiling cells with unstable genomes. The authors discovered that yeast strains, which
either lacked or harbored extra chromosomes, had altered transcript levels correspond-
ing to the chromosomal alterations. The mRNA abundance of nearly every gene on
trisomic chromosomes was increased, while that of monosomic chromosomes was
decreased. Since many cancer cells are aneuploid, these correlations are likely to sur-
face frequently in tumor profiling. Indeed, Perou and colleagues found that, due to an
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amplification of a region of chromosome 17, breast tumors overexpressing Erb-B2 also
overexpressed several neighboring genes (15). If not accounted for, these correlations
could be misleading when identifying mechanisms and potential therapeutic targets.

Microarray studies aimed at discovering new tumor classes or novel relationships
between genes often use clustering analyses. These methods rely on unsupervised
algorithms, in which the data are searched for patterns without imposing preconceived
assumptions. They draw inferences from the expression data alone, without incorpo-
rating known biological, clinical, or demographic information. Self-organizing maps
(SOMs) (70), hierarchical algorithms (71), and k-mean clustering algorithms (72) are
examples of such techniques. Although some of these algorithms allow users to impose
some constraints on the clusters generated (70), the methods’ main strength lies in
providing systematic and unbiased analyses of expression data. As previously
described, Golub et al. (3) first demonstrated the potential of this approach by applying
a SOM to automatically group 38 leukemia samples based on the expression pattern of
6817 genes. The SOM-generated clusters closely paralleled known ALL and AML
classes. Since this proof-of-principle study, many studies have revealed entirely new
classes of tumors (e.g., 7,15,73,74).

For some applications, it is useful to incorporate prior knowledge into the analyses.
When Pomeroy and coworkers applied an SOM algorithm to a group of 60 medullo-
blastoma samples, for example, the tumors segregated into two well-defined groups
that correlated with a bona fide biological parameter, i.e., the expression of ribosomal
proteins, but the groups were not significantly correlated with clinical outcome (1).
To direct their search towards a clinically relevant classification scheme, the authors
subsequently applied a k-nearest neighbors algorithm, which is a supervised learning
algorithm. Supervised algorithms can be trained to search for expression patterns asso-
ciated with particular attributes and then used to predict those attributes in new
unknown samples. Supplying the algorithm with expression data that had been sorted
based on patient survival, the authors identified a set of genes that predicted patient
outcome extremely accurately. Eighty-five percent of the patients that were predicted
to have good outcomes survived over a 5-yr period, compared to only 22% of those
predicted to have poor outcomes. The expression-based predictor proved superior to
previously identified prognostic factors, including disease distribution and the expres-
sion of the TrkC neurotrophin receptor. Other supervised algorithms that have yielded
promising tumor classifiers include weighted voting algorithms (3,4), the support vec-
tor machine method (75), Bayesian models (6), and artificial neural networks (76).

However, many challenges remain. Comparisons between some of the methods have
revealed strengths and weaknesses of each algorithm and provide some guidelines for
selecting among the many available options. For example, nearest neighbor methods
(1) are relatively intuitive and user-friendly, but provide less insight into mechanisms
underlying class distinctions than classification trees (77). Systematic comparisons of
many methods, however, have not been performed, and since the development of clas-
sifier algorithms is an active area of research, new options are continuously emerging.

Much effort is currently being directed at developing more systematic methods for
the initial selection of gene subsets, which should help optimize noise reduction and,
consequently, improve classifiers’ predictive abilities. In addition, statisticians are
developing methods to more reliably detect variations in low abundance transcripts,
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which can be easily lost in the experimental noise. This is of particular importance in
the study of cancer biology, since alterations of cellular pathway regulators, many of
which are expressed at low levels, are frequently associated with the disease (33).

Another ongoing challenge is the development of improved visualization methods
to facilitate data examination and interpretation (78). Eisen et al. developed a now
widely used visualization method in which relationships among genes or tissues are
represented by phylogeny-like trees (71). More recently, Kim et al. used a three-
dimensional approach to present their data (79). Groups of related genes were repre-
sented as mountains, with the entire expression signature appearing as a mountain
range. Distances correlated with gene similarity and mountain heights represented the
density of genes in a similar location.

THE WAY AHEAD

Making the most of the wealth of tumor profiling data greatly depends on building
databases to share and compare data across studies. Indeed, ongoing efforts to catalog
expression data are already bearing fruit, but many challenges remain. As described by
Aach and colleagues, a useful way of managing expression data systematically is to
convert them into estimates of relative abundance (ERAs), which are measurements of
the fractional abundance of an RNA in a single condition (80). Although GeneChip
arrays provide measurements of transcript levels that can be readily transformed into
this format, other methods, such as cDNA arrays, do not. Additional factors interfere
with establishing consistent standards, even when using ERAs. There is a lack of agree-
ment as to how the multiple measurements of single transcripts generated by GeneChip
experiments, for example, should be combined or selected for further analysis (80).
In addition, a lack of consistency in transcript nomenclature and incompatibilities in
the software for acquiring, storing, managing, and analyzing results also hinder data
comparison.

Like any new clinical tool, microarrays will have to undergo a rigorous appraisal of
their sensitivity, specificity, and predictive value (24). In addition, the full maturation
of these tests will depend on the adoption of statistical methods that not only predict
the probability of a tumor belonging to a particular category, such as ER positive or
negative as in the case of breast tumors, but provide a formal assessment of the uncer-
tainty associated with that determination (6). Expression patterns that significantly stray
from a canonical signature used as a classifier might reflect intra-tumor heterogeneity
or a state of transition between two tumor classes. In either case, knowledge of this
degree of uncertainty should help health professionals weigh the therapeutic alternatives.

Some investigators worry that the high costs of oligonucleotide microarrays will
limit the speed with which they are introduced into clinical practice (24). They predict
that high costs will initially restrict their use to well-funded research units. However,
several factors counter this concern. The clinical benefits provided by microarrays will
almost certainly outweigh their costs. The ability to predict therapeutic outcomes, for
example, should greatly reduce the number of failed treatments, and result in huge
savings and dramatic improvements in the quality of patient care. The prices of oligo-
nucleotide arrays have been steadily dropping, while the amount of information per
chip has increased from approx 250 to nearly 20,000 transcripts.
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The most critical factor for bringing microarray-based tests to maturity will prob-
ably be the large-scale validation of the many new and rapidly emerging discoveries.
Well-designed studies that integrate clinical and histological data and are based on
large numbers of samples are sorely needed. Indeed, several studies have already sug-
gested the importance of sample number (1,2,4,15,74,81). There is little doubt that
DNA microarrays, and oligonucleotide arrays in particular, have a bright future as tools
for tumor profiling. But as is true of any technology in its infancy, it will require
responsible upbringing.
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INTRODUCTION

Due to considerable research investment in the Human Genome Project, we will
have access to the complete sequence information on all the genes encoded by the
human genome within the next few years. Although this information will be of great
value, it will not be sufficient to provide full understanding of the complex pathophysi-
ology of diseases such as cancer. A more daunting task that lies ahead in this “post-
genome era,” is to understand how the different genes are altered in the various cancers
and how complex gene interactions produce particular outcomes.

Studies aimed at tackling that challenging next level of complexity are well under-
way. In fact, in the last few years we have witnessed a revolution in technical
approaches to analyze the transcriptome of the cancer cell. Numerous techniques have
been developed for the analysis of global gene expression changes, in which thousands
of gene targets can be assayed simultaneously. One of the first efforts utilized for ana-
lyzing gene expression in a global fashion has been basically a “brute force” approach
to sequence as many clones as possible from tissue-specific cDNA libraries; the cDNAs
analyzed in this way are known as expressed sequence Tags or ESTs. These efforts
were led by consortia such as that of MERCK/Washington University and, in particu-
lar, by the Cancer Genome Anatomy Project (CGAP) (1–3). These data were made
available to the public via the GenBank® dbEST database and via the Unigene sequence
cluster database (http://www.ncbi.nlm.nih.gov/UniGene).

More recently, other approaches were developed for analyzing gene expression
changes, as described in various chapters in this text. Several of these currently very
popular approaches rely on the microarraying of cDNAs or oligonucleotides on solid
matrices. The readout in these techniques relies on comparative hybridization with
labeled probes (i.e., cDNAs). All of these techniques require expensive hardware for
arraying, scanning, and analysis of the experiments. In parallel with such develop-
ments, a completely different technical approach for the analysis of global gene
expression was described a few years ago by Velculescu, Kinzler, and Vogelstein (4).
Serial analysis of gene expression (SAGE) is an extremely powerful, efficient, and
comprehensive approach for analyzing gene expression profiles. Since its inception,
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SAGE has become one of the leading functional genomics methodologies, and various
groups in academia and industry have demonstrated the utility of SAGE for novel gene
and pathway discovery, for biomarker identification, and for gene expression profiling
of numerous disease and normal conditions in multiple species.

ADVANTAGES AND PRINCIPLES OF THE SAGE METHODOLOGY

SAGE provides a statistical description of the mRNA population present in a cell
without prior selection of the genes to be studied, and this constitutes the major advan-
tage of SAGE vs gene expression chip-based assays. In other words, microarray
approaches are limited to the study of the genes represented in the chip (i.e., the genes
or ESTs had to have been cloned or their sequence known a priori). Secondly, for the
interpretation of results, the cDNA and oligonucleotide microarray approaches usually
rely on the comparative expression of specific transcripts in a population relative to the
expression of other transcripts (e.g., housekeeping control transcripts) in the same popu-
lation (5). Alternatively, normalization of expression can be performed by comparing
the relative expression of transcripts from a specific sample to a master control sample
(mixture of RNAs from multiple cell lines) (6). Thirdly, and not less important, there
are now multiple gene expression microarray platforms available that introduce a mul-
titude of variables (starting by the content and annotation of each array), making com-
parisons of similar studies from various laboratories very difficult. In fact, very recently
a detailed study was reported matching mRNA measurements from two different
microarray techniques (cDNAs vs Affymetrix [Santa Clara, CA, USA]). The conclu-
sion of the study was that, in general, corresponding measurements from the two plat-
forms showed very poor correlation. The authors further suggested that gene or
probe-specific factors influence measurements differently in the two platforms (7).
Thus, this constitutes a major hurdle for comparative studies across platforms and ulti-
mately for reaching meaningful conclusions on the validity of specific observations on
global gene expression patterns.

Major advantages of the SAGE method are: (i) that the information generated is
digital in format; (ii) that the data obtained can be directly compared with data gener-
ated from any other laboratory or with data available in public databases; and (iii) the
information generated is virtually “immortal,” and it has the advantage of being con-
stantly updated and subject to reinterpretation, since the more we learn on the identifi-
cation of new transcripts, the more complete and accurate the SAGE datasets become.

SAGE IS BASED IN THREE MAIN PRINCIPLES

The first of the three main principles of SAGE is that a short sequence tag of 14 bp
is sufficient to identify uniquely the 3' end of most possible transcripts, provided that
the tag is obtained from a defined position within the transcript. To this end, in one of
the first steps of SAGE, a 4-bp cutter enzyme is used (usually NlaIII) to anchor the site
of the tag as the last restriction site for such enzyme (CATG for NlaIII) prior to the
poly(A) tail of each mRNA (see method below and Fig. 1). Four-base pair cutter
enzymes such as NlaIII are able to digest the DNA, on average, every 256 bp. Second,
the concatenation of tags and cloning of individual unique concatamers of ditags
allows for the efficient sequencing of multiple transcript tags per clone (typically
30–50 tags/clone). Thus, this method is several-fold (30- to 50-fold) more efficient
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Fig. 1. Schematic depiction of the SAGE procedure. As template for cDNA synthesis, poly(A)
RNA is isolated or directly captured from cell lysates using oligo(dt)-coated beads. The anchor-
ing enzyme most frequently used is NlaIII (a 4-bp cutter), which leaves the 3' of transcripts
attached to the beads. The sticky CATG 5' overhangs are used to ligate specific linkers. These
linkers have built in the recognition motif for the tagging enzyme, usually BsmFI.  This enzyme
cuts the cDNA 14–15 bp 3' from the recognition motif, releasing the tags with the linkers. These
tags are ligated tail to tail and amplified by PCR generating a 102-bp product (gel image 1). After
purification, ditags are released from the linkers, giving rise to a product about 26 bp in size
(gel image 2). These ditags are concatenated (gel image 3), cloned (gel image 4), and sequenced.
The abundance of each tag in the cloned products is directly proportional to the abundance of the
corresponding transcript in the original sample. The relative abundance of a transcript is calcu-
lated by dividing each specific tag count by the total number of tags sequenced.
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than sequencing of ESTs, in which each clone represents a single transcript. Third, the
expression level of a transcript is directly proportional to the number of times a specific
tag is observed in the final count.

An additional key feature of the SAGE technique that makes it quite powerful, more
than other differential gene expression techniques such as differential display, is that in
the initial step, one obtains both quantitative information on the abundance of each
mRNA and a partial sequence. This approach generates sequence information that
allows not only the identification of all the transcripts being expressed in a normal or
cancerous cell at any given time, but also provides quantitative information on the
relative abundance of each of the transcripts. These data allow for the immediate analy-
sis of the statistical significance of differences between samples.

One disadvantage of SAGE is that the methodology is not ideally suited for the
comparison of multiple samples (e.g., hundreds of samples) in a relatively short time,
in contrast with microarray approaches. However, this is only a limitation of the
sequencing power of the laboratory performing the studies. Obviously, if the sequenc-
ing power is increased, the ability of analyzing multiple samples increases proportionally.

SUMMARY OF THE SAGE PROCEDURE

The SAGE procedure has previously been described in detail by Velculescu et al.
(4). The various steps of the SAGE methodology are schematically depicted in Fig. 1.
Briefly, polyadenylated RNA is prepared, and double-stranded cDNA is synthesized.
Alternatively, mRNAs can be directly captured from cell lysates (MicroSAGE proce-
dure). Biotinylated-oligo(dT), or oligo(dT) bound to magnetic beads, is used as primer
for first strand synthesis. The captured cDNAs are then digested with an “anchoring”
restriction enzyme, usually NlaIII, which leaves a 3' overhang. The 3' fragments are
then isolated using the magnetic beads or streptavidin-coated beads. Two linkers, each
containing the recognition sequence for a “tagging” restriction enzyme (type IIs
restriction enzyme), usually BsmFI, are ligated onto the NlaIII overhangs. The tagging
enzyme produces a staggered cut, offset by about 14–15 bp 3' from the recognition
sequence. Subsequent digestion with BsmFI and blunt end fill-in produces fragments
of each cDNA molecule containing unique 14- to 15-bp sequences (including the NlaIII
sequence) that provide a “SAGE tag” specific to each expressed gene. The abundance
of each tag in the population is proportional to the abundance of the corresponding
mRNA in the original RNA population. These tags are then ligated tail-to-tail, ampli-
fied by polymerase chain reaction (PCR), and the linkers are released by digesting with
NlaIII again. The resulting ditags are purified, concatenated, and cloned. Each
concatamer insert results in a randomly organized “series” of ditags of approx 20–24
bp, each flanked by the recognition sequence of the primary anchoring enzyme NlaIII,
i.e., the CATG sequence. Approximately 30–40 individual tags are produced per clone.
In a typical experiment, approx 2000–3000 clones are sequenced to yield SAGE librar-
ies of 60,000–100,000 transcript tags.

By sequencing the cloned tag concatamers and determining the frequency distribu-
tion of the total tag population (i.e., determining the abundance of each tag species),
one obtains a statistical picture of the relative abundance of the different mRNAs
expressed in the original cell population. Statistical analysis and comparison between
different samples is performed following Zhang et al. (8).
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DATA ANALYSIS AND BIOINFORMATICS

SAGE tag information can be extracted from analyzing the sequencing files by vari-
ous means or by using proprietary software developed by the K. Kinzler laboratory
(John Hopkins University, School of Medicine, Baltimore MD, USA). In order to match
tag identity, the experimental tag library information obtained is compared with virtual
tag libraries generated in silico from nucleotide sequences obtained from all cDNA
sequences reported and archived at the GenBank databases (National Center for Bio-
technology Information [NCBI]). These comparisons with existing databases can be
performed using the mentioned SAGE software, via resources developed by the NCBI
(SAGEmap resources) or by using simple tag extraction procedures that can be devel-
oped using commercially available software tools (e.g., FileMaker Pro).

Upon analysis of the experimental SAGE library, one obtains quantitative informa-
tion on three types of transcripts: (i) tags identifying known genes; (ii) tags identifying
anonymous expressed sequences (i.e., EST clusters) obtained from the GenBank EST
databases; and (iii) tags identifying transcripts with no matches in any of the available
databases. This last feature is in itself a very important difference with other techniques
for the study of global gene expression, since it allows one the potential identification
and cloning of novel genes.

The SAGE software (Johns Hopkins University) has also various built-in statistical
analysis tools that can be used to analyze datasets. The program is able to calculate the
relative likelihood that a difference would be seen by chance for an individual tag or an
entire project. For each p chance calculation, simulations can be performed assuming
the null hypothesis, and the p chance value represents the fraction of simulations that
yielded a difference equal or greater than the observed difference. This is a relative
probability of obtaining the observed differences due to random variation. The general
approach and rationale followed has been previously described (8,9).

Further analysis of SAGE data, e.g., the comparison of multiple SAGE libraries, can
be performed using other publicly available software tools such as the clustering pro-
grams developed at Stanford University (10) (Fig. 2).

PUBLICLY AVAILABLE SAGE RESOURCES

Investigators in collaboration with the NCBI have developed a very valuable
centralized resource for the archiving and analysis of SAGE data (SAGEmap). This
on-line resource has been developed and maintained by the National Cancer Institute’s
initiative named the CGAP (1,11). The main goal of this effort is to facilitate the study
of gene expression from normal tissues, cancer tissues, and model systems. This data-
base can be found at (http://www.ncbi.nlm.nih.gov/SAGE). At the time of this writing,
the SAGEmap database consisted of a total of over 5.5 million transcript tags repre-
senting more than 110 libraries from various tissues and cell lines, all of which is infor-
mation that has been deposited by various laboratories from around the U.S.

It is essential for the correct matching of SAGEtag to genes that the true 3' end of
transcripts be identified. Thus, the SAGEmap resource is linked to the Unigene NCBI
database, which contains the unique clusters of complete cDNAs and the correspond-
ing matching ESTs sequences to date that have been deposited in GenBank. The best
possible SAGE tags for each Unigene cluster are identified, a link is provided, and
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Fig. 2. Representative hierarchical clustering analysis of normal and tumor SAGE libraries.
Breast carcinomas: T3, T12, T9, T1, T7, T4, T6, 347, (348 corresponding metastasis), 259,
(260 corresponding metastasis); normal breast tissues: MEP and BRN. T1–T12 from the Aldaz
laboratory and the other samples as previously reported by Porter et al. (30). Ovarian carcino-
mas: OVT6, OVT7, OVT8, and OC14. Pancreatic carcinomas: Panc96 and Panc91. Colon
tumors: Tu98 and Tu102; normal colon: NC1 and NC2. Gastric carcinoma xenografts: GASCa
X101 and CASCa G234; normal gastric tissue: normagast. All the SAGE libraries analyzed
with exception of T1–T12 were downloaded from (http://www.ncbi.nlm.nih.gov/SAGE).
Libraries were normalized to 50,000 tags/library. The absolute abundance of each SAGE tag
correlates with red color intensity, black with tag not present. Only some representative clus-
ters are shown. Cluster 1, genes highly expressed in gastric tissue-derived samples, normal and
tumors; cluster 2, tags highly abundant in colon samples; cluster 3, tags highly expressed in
gastrointestinal tissues and pancreatic carcinomas; cluster 4, ovarian carcinoma gene cluster,
note that mesothelin is also expressed in pancreatic tumors (25); cluster 5, genes predominantly
expressed in breast tumors.

52
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virtual analysis on the relative expression of each of such tags can be performed by
analyzing their relative expression (virtual Northern blot) in the various archived tumor
and normal SAGE libraries.

Novel algorithms and tools are under development in various laboratories from
around the world to characterize with greater certainty the 3' end untranslated regions
(UTR) of genes, as well as to better define the complexity of alternatively spliced tran-
scripts, all of these being of much importance in correct SAGE tag identification.

TECHNICAL ADVANCES IN THE USE OF SAGE

Various investigators reported improvements and adaptations of the SAGE method-
ology for multiple novel applications, in particular when dealing with small samples
and hence low amounts of template RNA. Examples of this are the methods known as
MicroSAGE, SAGE lite and the SAGE Adaptation to Downsized Extracts (SADE)
(12–15). SADE was used in studies aimed at characterizing mouse kidney and brain
transcriptomes. In the kidney studies, it was shown that it is possible to generate
expression libraries from specific microdissected nephron segments. The identifica-
tion of molecular markers for specific brain areas was also described (14). Other
examples that allow the analysis of specific cell subpopulations using SAGE rely on
the direct capture of mRNAs in cell extracts from purified cell populations obtained via
various methods, such as immunopurification or microdissection (15,16).

SAGE USES IN HUMAN GENOME MINING AND ANNOTATION

As previously mentioned, SAGE data is perpetual, and available databases become
constantly updated in parallel with our constant improvement in understanding the com-
plete human genome. A recent development of value in helping to better mine the
human genome was the report of a modification of the SAGE technique that allows one
to obtain longer SAGE tags. This will lead to a better and unique gene identification of
the 3' ends of genes and, in turn, facilitates the isolation of novel genes. This improve-
ment known as LongSAGE relies on the use of the enzyme MmeI as the tagging
enzyme, which allows one to obtain 21-bp long tags instead of the 14-bp long tags
obtained with the standard method (17).

A significant effort is also underway on the construction of an accurate Human
Transcriptome Map, which will be a Web-based application that can be used to gener-
ate expression profiles of any chromosomal region. This approach is based on the map-
ping of the individual SAGE tags to specific chromosomal regions (18).

Representative Uses of SAGE in Cancer-Related Studies

In the following section, I will mention some representative cancer SAGE studies of
the many published on several tumor types by various groups; this enumeration of
studies does not attempt to be an exhaustive review on the topic.

Colon and Pancreatic Cancer

The first comprehensive analysis of global gene expression in human cancer was
performed using SAGE (8). The utility of this approach was demonstrated by compar-
ing normal colon samples with colon and pancreatic tumor samples and cancer cell
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lines (8). The data demonstrated the power of the SAGE technique and also gave a very
good idea of the complexity of the problem. The investigators analyzed approx 300,000
transcripts representing approx 45,000 different genes, expressed at levels ranging from
1 to >5000 transcript copies/cell. They identified 289 transcripts that were expressed at
significantly different levels between the colon tumors and normal colon tissue.
Of these, 108 transcripts were expressed at higher levels in the colon cancers (an aver-
age increase of 13-fold). Interestingly, they did not find large differences when com-
paring primary tumors with tumor cell lines, indicating many of the changes in gene
expression were retained when comparing primary tumors and cell lines. However,
this must be interpreted with caution, because other SAGE studies have found signifi-
cant differences in the profiles of bulk tumors and cell lines, similar to findings in
cDNA microarray studies. Zhang et al. (8) also identified, for the first time, a series of
transcripts with potential to serve as novel cancer biomarkers in the clinic. Investiga-
tors demonstrated that findings by SAGE are easily validated by other expression meth-
odologies, such as Northern analysis or reverse transcription PCR (RT-PCR) or
real-time quantitative RT-PCR.

It is precisely in the area of identification of novel tumor markers (for all tumor
types) where SAGE has been demonstrated to be the most useful. For instance, tissue
inhibitor of metalloproteinase type I (TIMP1) was identified as a potential marker for
pancreatic cancer by SAGE, but serum levels of this protein were observed elevated
only in a small fraction of patients with pancreatic cancer when compared with normal
controls. However, when the serum detection of this marker was combined with that of
additional serum markers, CA19-9 and carcinoembryonic antigen, the detection of
pancreatic cancer patients increased to 60% of 85 patients (19). This demonstrated
that by analyzing SAGE data, it was possible to identify cancer serum biomarkers, and
by combining suboptimal markers, it was possible to considerably improve the speci-
ficity of cancer detection.

In recent studies, comparison of SAGE libraries from pancreatic adenocarcinomas
was performed with that of normal tissues, and thus, additional markers were identi-
fied, and these included lipocalin, trefoil factor 2, and prostate stem cell antigen
(PSCA). PSCA was confirmed overexpressed in 60% of primary pancreatic adeno-
carcinomas (20).

St. Croix et al., using a modified SAGE procedure (MicroSAGE) and tumor en-
dothelial cell purification steps, described studies that allowed the identification of
differentially expressed genes in endothelial cells isolated from normal vs malignant
colorectal tissues (15). Several genes were identified as potential pan endothelial
markers, including angiomodulin insulin-like growth factor binding protein IGFBP7),
hevin, various collagens, Von Willebrand factor, osteonectin (or secreted protein acidic
and rich in cysteine [SPARC]), IGFBP4, CD146, and others. A total of 79 genes were
identified as differentially expressed between normal and tumor-derived endothelium.
Representative genes from the tumor-specific group, triethylenemelamine (TEM)
genes, were also tested in tumor samples from other tissues (lung, breast, brain, pan-
creas), and a similar pattern of expression to that observed in colon cancers was
observed (15).

Very recently, SAGE libraries were prepared from microdissected colon metastatic
cells, aided by immunopurification of colon tumor epithelial cells. The tags purified in
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this manner were compared with SAGE libraries from normal and malignant, but
nonmetastatic, colon epithelium. Numerous transcripts were identified as of interest;
among them the transcript for PRL-3 was found consistently overexpressed in meta-
static lesions. PRL-3 encodes a tyrosine phosphatase that is located at the cytoplasmic
membrane. Furthermore, the investigators demonstrated that the PRL-3 gene, located
in chromosome 8q24.3, is amplified in a fraction of metastatic colon tumors (16).

These last two studies illustrate the power of SAGE approaches to analyze the
expression profiles of specific tumor subpopulations by combining microSAGE
approaches and cell purifications steps. Both studies hold promise to identify novel
targets for potential therapeutic intervention in tumor angiogenesis (15) and metastasis
development (16).

Central Nervous System and Childhood Tumors

SAGE was also used in the gene expression characterization of pediatric tumors,
such as medulloblastoma and rhabdomyosarcoma. It was determined that the genes
orthodenticle homolog 2 (OTX2), zinc finger protein 1 (ZIC1), and hairy homolog
(HES6) were highly overexpressed in medulloblastoma tumors (21). Interestingly,
homologs of these genes encode proteins with known developmental functions in
Drosophila. It was determined that OTX1 and OTX2, in particular, appear to be spe-
cific nuclear markers for medulloblastoma and, thus, have potential diagnostic–prog-
nostic value. HES6, a helix-loop-helix protein involved in differentiation and putative
inhibitor of HES1 transcriptional repressor activity, was found overexpressed in both
tumor types (reported at the SAGE 2000 Conference by Michiels et al.).

In other studies, SAGE analysis of neuroblastoma cells identified the human homo-
logue gene of the Drosophila Delta gene (Delta-like 1 [DLK1]) as unusually highly
expressed. This finding, in turn, suggested involvement of the Delta-Notch pathway in
neuroblast differentiation (22).

Recently, SAGE analysis of primary glioblastoma cells led to the identification of
the homolog of the melanoma-associated antigen gene family (MAGE-E1) as over-
expressed in glioblastoma cells. MAGE-E1 expression was only detected in brain and
ovary, among normal tissues. Although the function of this gene is unknown, it holds
potential to serve as a glioma marker (23).

Other studies identified numerous candidate gene markers, which are overexpressed
in glioblastomas, but not in normal tissues; examples of this are the genes Annexin A1
and GPNMB (11,24). Similarly, the gene neuronatin was identified as being expressed
in medulloblastomas, but not in normal cerebellum. Recently, a novel gene encoding a
ring finger B-box coiled-coil protein named (GOA) was detected by SAGE as
overexpressed in astrocytomas (25).

Lung Cancer

SAGE was also used to analyze the transcriptome of non-small cell lung cancer
comparing with normal lung tissues. One of the overexpressed genes in this tumor type
was the PGP9.5 transcript. This gene was detected in over 50% of primary tumors and
cell lines, and advanced tumors were more likely to overexpress PGP9.5 (26). PGP9.5
is a ubiquitin hydrolase normally expressed in the neuroendocrine cells of the bron-
chial epithelium. A yeast two-hybrid screening approach was used to identify potential
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PGP9.5 interacting proteins. Among the interacting proteins, the RAN-BPM, ubiquitin-
conjugating enzyme (UBC9), and Jun activation domain binding protein 1 (JAB1) genes
were identified. The JAB1 was originally identified as co-activator of c-Jun, and
recently it was shown to promote the degradation of p27kip1. It was observed that JAB1
and PCP9.5 co-localize in cell perinuclear and nucleolar regions. The investigators
speculated that this complex may contribute to the degradation and hence inactivation
of p27kip1 and that such effect may be of relevance in lung cancer progression (reported
by Hibi et al. at the SAGE 2000 Conference).

Recently, hierarchical clustering was used to analyze SAGE data, comparing nor-
mal lung epithelial cells and non-small cell lung cancers. One hundred fifteen tran-
scripts were identified that clearly distinguished both groups (i.e., normal and tumors),
and furthermore, it was possible to differentiate non-small cell lung cancer histological
subtypes. Adenocarcinomas were characterized by high level of expression of small
airway-associated or immunologically related proteins, and the p53 target genes p21
(CDKN1A) and 14-3-3 were consistently underexpressed. Squamous cell carcinomas
were characterized by overexpression of genes involved in detoxification or anti-
oxidation. These observations were validated by real-time PCR analyses in larger num-
bers of samples, importantly indicating that an analysis of a limited number of SAGE
libraries was sufficient to provide information significant for defining tumor-specific
molecular signatures, which could then be extrapolated to a larger scale analysis (27).

Ovarian, Breast, and Prostate Cancer

SAGE was also employed for the generation of gene expression profiles from ova-
rian primary tumors, ovarian cancer cell lines, and normal ovarian surface epithelial
cells. Again these profiles were useful to identify differentially expressed genes. Many
of the genes found up-regulated in ovarian cancer represent surface or secreted pro-
teins such as claudin-3 and -4, mucin-1, Ep-Cam, and mesothelin (28). Interestingly,
the gene mesothelin was recently reported as also highly expressed in the vast majority
of ductal pancreatic adenocarcinomas (29) (see also Fig. 2, cluster 4). The lipid homeo-
static proteins ApoE and ApoJ were also found highly expressed in ovarian cancer.
Interestingly, glutathione peroxidase 3 (GPX3) was observed as highly expressed
mostly in ovarian clear cell tumors and has the potential to represent a specific marker
for this subtype (28).

In breast cancer studies, epithelial populations from normal breast epithelium and
ductal carcinoma in situ (DCIS) lesions were obtained and analyzed with SAGE. Vari-
ous chemokine and cytokine genes, such as HIN1, leukemia inhibitory factor (LIF),
interleukin (IL)-8, and growth-related oncogene (GRO), were observed to have a
decreased expression in DCIS when compared with normal tissue. Several transcripts
were also identified as specific for DCIS; an example of this is psoriasin, an S100
binding protein (30). It was also reported that promoter methylation is the main mecha-
nism by which expression of the gene HIN1 is silenced in many DCIS and invasive
breast cancer lesions. This gene is a small cytokine with no homology to other genes,
and it is likely to be involved in growth control (31). The p53 gene target 14-3-3 had
also been shown previously by SAGE to exhibit lower expression in breast carcinoma
cells in vitro due to hypermethylation when compared to normal epithelial cells (32).
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The effects of estrogen on gene expression in breast cancer estrogen-dependent cells
were also investigated using SAGE. Charpentier et al. (33) demonstrated that a discrete
number of genes were found to be up-regulated as the result of estradiol treatment.
The resulting SAGE libraries from this study are available to the public as a searchable
database at (http://sciencepark.mdanderson.org/ggeg). Among the up-regulated tran-
scripts, five novel genes were identified and cloned (E2IG1–5). E2IG1 is a putative
serine–threonine kinase with homology to small heat-shock proteins, and E2IG4 is a
leucine-rich protein very likely secreted to the extracellular environment. The
paracrine–autocrine factors stanniocalcin 2 (STC2) and inhibin β-B (a transforming
growth factor [TGF] β-like factor) were also identified as highly up-regulated by the
estrogen treatment. Interestingly, STC2 and E2IG1 were found exclusively over-
expressed in estrogen receptor positive breast cancer cell lines and primary tumors and,
thus, have the potential to serve as breast cancer biomarkers of use in the clinic (33).
The observation of STC2 as an estrogen target and its association with estrogen recep-
tor, first detected by SAGE studying MCF7 cells, was later confirmed by cDNA
microarrays in analysis of primary breast carcinomas (5,34).

Studies are also underway to generate a high-resolution transcriptome analysis of
breast cancer using SAGE, breast cancer libraries are being generated at the 100,000
tag level per library, and over 1.8 million breast cancer SAGE tags have already been
sequenced. Combining this effort with the information already available in public data-
bases will allow us to obtain a comprehensive gene expression profile of breast cancer
lesions (35).

SAGE studies were also performed with prostate cancer samples; some specific tran-
scripts were observed up-regulated in tumor epithelial cells, while others were found
increased in tumor stroma (36). In other studies, the transcript for PMEPA1, a gene
mapping to chromosome 20q13, was detected by SAGE to be up-regulated by andro-
gen treatment in the LNCaP prostate cancer cells and appears to be a direct target for
transcriptional regulation by the synthetic androgen R1881 (37).

SAGE IN PATHWAY DISSECTION
AND ANIMAL MODELS OF HUMAN CANCER

SAGE was also used to better define and dissect specific molecular pathways,
such as the adenomatous polyposis coli (APC)/β-catenin pathway. The c-Myc gene
was identified as a downstream target of APC action, since it is down-regulated by
the TCF4/β-catenin transcription complex (38). In turn, also using SAGE, the CDK4
gene was identified as a target up-regulated by c-Myc (39). The peroxisome proliferator-
activated receptor δ (PPARδ) was identified as a target of the APC/β-catenin/TCF path-
way using SAGE (40). In other studies, various targets in the p53 gene pathway were
also identified using this methodology, such as the various p53-induced genes (PIGs)
in a model of p53-induced apoptosis (41), and the 14-3-3-ε protein was also first dis-
covered as a p53 target via SAGE analyses (42). N-myc-transfected neuroblastoma
cells were also analyzed with SAGE, and numerous downstream targets of interest
were identified (43). As previously mentioned, SAGE was also used to analyze cell
pathways transcriptionally regulated by sex steroid hormones (33,37).

Studies were also recently performed analyzing the transcriptional response of
human tumor cells to hypoxic conditions. These studies led to the identification of at
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least 10 new hypoxia-regulated genes, all induced to a greater extent than vascular
endothelial growth factor (VEGF), which is a known hypoxia-induced mitogen that
promotes blood vessel growth (44).

Recent SAGE studies were performed using a p53 null mouse model of mammary
epithelial in vivo preneoplastic progression. This led to the identification of several
new and unsuspected targets directly or indirectly dysregulated by the absence of p53
in normal mammary epithelium in vivo. These studies also allowed us to analyze the
dramatic physiologic effects of hormonal treatment in mammary gland differentiation
(45) (database available at [http://sciencepark.mdanderson.org/ggeg]). In other studies
using a mouse model of skin carcinogenesis, the gene expression profile of squamous
cell carcinomas induced by UV-light has been compared with that of normal skin (46).

In summary, since its inception, the use of SAGE has grown dramatically. The numer-
ous publications using this methodology for a multitude of applications have validated
the approach and demonstrated the power of this methodology for the analysis of glo-
bal gene expression. As discussed, it was used in numerous cancer-related studies and
has been particularly useful for the identification of novel tumor markers. One of the
main advantages of the SAGE approach has also been its value as a powerful gene
discovery tool. Rather than a competing methodology with other global gene expres-
sion approaches, SAGE is a complementary approach that in conjunction with other
methodologies contributes to achieving a more comprehensive and quantitative picture
of the transcriptome under study.
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Tissue Arrays
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INTRODUCTION

Background and Practice

The development of high-throughput technologies, including DNA arrays and
proteomics approaches, has led to a tremendous increase in data acquisition. Numerous
groups have reported differentially expressed genes and proteins in a variety of normal
and malignant tissues. In fact, many groups are using high-throughput techniques to
define new tumor classifications. As important genes are identified by various high-
throughput technologies, it is critical to correlate these studies with tissue expression to
define the precise cell of origin of a particular transcript or protein. In many DNA array
experiments, for example, nonpurified cells are used as a starting material. The RNA
from cells to be analyzed is commonly admixed with that from a variety of other cells.
In the case of tumor tissues, contaminating stromal cells, blood vessels (endothelial
cells and smooth muscle), and other normal cells are typically present. It is difficult,
therefore, to be certain that a differentially expressed gene is derived from the cell of
interest rather than a “contaminating” cell. Some studies have validated findings using
standard techniques based on archival formalin-fixed paraffin-embedded tissues,-
including immunohistochemistry (IHC) and in situ hybridization (ISH). ISH and IHC
are techniques that can localize the expression of a gene or protein to specific cells in
tissues. These techniques can be performed with fixed tissues, while fresh or frozen
tissue is required for DNA microarray studies. The amount of archival paraffin-embed-
ded tissue far exceeds the tissue that is adequately preserved for RNA or protein
extraction and, thus, can be used to expand the scope and significance of these studies.
In the past, the use of these standard approaches to analyze the in situ expression of
genes or proteins in tissues has been a slow and labor-intensive process, requiring the
processing of numerous slides at a rate of one gene product per slide. Furthermore, a
significant amount of tissue is required to perform many tests on a single specimen.
Although automated stainers from various manufacturers can facilitate these tech-
niques, they are not widely used and may not be of particular use to investigators who
work with newly characterized reagents. The use of high density arrays composed of
many tissue samples provides a highly efficient means to validate and extend molecu-
lar studies of human cancers.
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Development of Tissue Multiblocks

The benefit of analyzing a large number of tissues simultaneously is not a recent
realization. Various laboratories have developed techniques, including a variety of
multiblock preparations to analyze a large number of tissues on a single slide. Battifora
developed a method to create a multispecimen tissue block formed from rods with
a relatively small cross-sectional area (1). While many specimens could be located in a
compact area, it was difficult to track the identity of the various specimens. Battifora
then reported an improved technique in which tissues were placed in groups in parallel
grooves in a mold and embedded in a stacked manner. They were arranged so that a
section of the block includes a spaced array of cross-sections of each of the embedded
specimen strips (2). While this method formed tissue samples into a grid pattern in
which it was possible to track the identities of individual samples, the method was
time-consuming and not suitable for assembling a single block from hundreds of core
samples from individual blocks. Also, the original block was damaged by the proce-
dure. This technique never gained widespread popularity, possibly due to its inherent
technical difficulties. It did have the advantage that it could be applied readily to the
study of fresh tissues. Other “homemade” techniques have been used to place multiple
tissues in a single block with cork borers of various diameters and arranging the cores
in molten paraffin. The number of cores, however, was still limiting, and it was diffi-
cult to form a perfect grid pattern. More recently developed techniques require special-
ized equipment, but result in hundreds of consistently arranged cores of tissue in a
single block.

The following description of tissue microarray construction and use is not intended
to be a step-by-step protocol (a manual is included with the instrument), rather it is
intended to provide the reader with some specific details of block design and to address
problems that can be prevented with careful planning. Several reviews on the subject
have been written that provide additional details of the technique (3,4).

TECHNIQUES

In 1998, investigators from the National Human Genome Research Institute
(NHGRI) at the National Institutes of Health (NIH), in collaboration with the Univer-
sity of Tampere in Finland and the University of Basel in Switzerland, developed an
instrument that allows hundreds of tissues to be placed in a single block, which they
called a “tissue chip” (5) (Beecher Instruments, Silver Spring, MD, USA) (Fig. 1),
which is also known as a tissue microarray (TMA). The construction of a TMA involves
assembling a paraffin block containing hundreds of tissue cores (0.6 mm in diameter)
derived from different “donor” blocks (Fig. 2). Since the cores are very small, minimal
damage is done to the original block (Fig. 3). The technology is based on precision
micrometers, which move a needle (0.6–2 mm in diameter) in the x- and y-axis.
Micrometer drives are used to position the punch assembly with respect to the recipient
block. The procedure from start to finish and the approximate required time to com-
plete the process is shown in Table 1.

Block Construction

The majority of the work must be done prior to punching the first core and requires
a significant amount of planning. The key to the process is the selection of the starting
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material. Sources of material that can be used to prepare tissue arrays include formalin-
fixed (or other fixative) paraffin-embedded tissue or paraffin-embedded cell blocks
(prepared from tissue culture cell lines). In order to create a cell block of sufficient
thickness to core for the array, at least 109 to 1010 cells are required. The cells are
centrifuged in a 1.5-mL microfuge tube or a 15-mL plastic conical tube to pellet the
cells, fixed in formalin or another suitable fixative, and embedded in paraffin.

The tissue block should contain sufficient tissue to ensure that the tissue will be
represented in the majority of sections. Ideally, donor blocks should be at least 2 to
3 mm thick. Blocks that have been sectioned multiple times for other studies should be
avoided if possible. Thinner blocks can be used, but the cores may be lost from some or
all tissue array sections. Biopsy material with little original tissue should also be used

Fig. 1. The manual tissue arrayer. 0.6-mm punches are shown in detail in inset.

Fig. 2. Diagram of the arraying process. Cores are taken from multiple donor blocks, trans-
ferred to a single recipient block with the manual tissue arrayer, and sections can be cut.
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Fig. 3. A closeup view of an individual 0.6-mm punch with a tissue core is shown (upper
panel). Minimal tissue is taken from a donor block, which is shown with three 0.6-mm cores
removed.

Table 1
Tissue Array Preparation

Step Time required

1. Select patients. Variable
2. Collect blocks and slides. Days to weeks
3. Review stained sections to select areas to core. Days
4. Prepare tissue array. 2 to 3 days
5. Prepare sections. Days

64
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with caution, since removal of cores may prevent future clinical or research use of the
block, and cores derived from these blocks are frequently lost in many of the TMA
sections.

At least one practice array blocks should be constructed from noncritical tissue by
the initial user to become familiar with the technique prior to working with valuable
tissue. A video of the entire process can be viewed at (http://reresources.nci.nih.gov/
tarp). First, all of the blocks and corresponding hematoxylin and eosin (H&E) stained
sections, which are to be included in the array, are collected. An H&E stained section is
reviewed, usually by a surgical pathologist, and the desired area is marked on the slide.
The slide is then aligned with the tissue in the corresponding donor block to localize
the area to be cored. In some cases, the area can be identified and targeted on the
paraffin block itself. This eliminates any problems that might result from slide-block
mismatch, which can result from tissue shrinkage during processing. A well-lit area
should be used for the procedure, possibly with a spotlight on the recipient block to
ensure precise transfer of tissue cores.

The instrument has two punches, which are thin-walled stainless steel tubes sharp-
ened like a cork borer, one slightly larger than the other. A stainless steel stylet pushes
the core of either paraffin or tissue out of the tube. The “recipient punch” is slightly
smaller and is used to create a hole in a recipient paraffin block. The “donor punch” is
larger and is used to obtain a core sample from a donor block of embedded tissue of
interest. The inner diameter of the donor punch tube is designed to correspond to the
outer diameter of the recipient punch tube. Thus, the sample snugly fits in the recipient
block, and a precise array can be created.

An empty standard paraffin block (45 × 20 mm) is placed in the block holder and
locked into place. The micrometers should be zeroed at an appropriate starting position
(at least 5 mm from the edge of the block) prior to insertion of the first core. The first
step is to create a hole in the recipient block with the acceptor punch. This punch
removes a core of paraffin and creates a hole. The inner stylet should be elevated, such
that the end of the punch is empty to ensure complete removal of paraffin from the
recipient block, which prevents excessive paraffin buildup. A removable bridge is used
to support the donor block over the recipient block to prevent damage during punching.
A core is punched from the indicated area of the donor block (aligned with the H&E
section) and transferred to the newly created hole in the recipient block. The needles
are then moved along either the x- or y-axis to create a spacing of 0.1–0.3 mm between
cores, and the next punch is transferred to the recipient block. The procedure is contin-
ued hundreds of times to form a TMA block. Correct placement of the donor and
recipient punches (which differ only slightly in diameter) in the turret and consistently
switching between donor and recipient punches is required for a uniform array with
tightly fitting tissue cores that will not dislodge during sectioning. Incubating the block
at 37°C for approx 15 min also helps prevent core loss or movement. The stylets should
be cleaned intermittently to prevent paraffin buildup on the surface, which will hinder
smooth operation, and may result in damage to donor blocks. They must also be
inspected frequently for damage and replaced as necessary. Several replacement
punches should be available for such a purpose. The movement of the turret is limited
in the y-axis, requiring that the block be rotated 180° prior to being approximately two-
thirds complete, if utilizing the entire recipient block area. Otherwise, the micrometer
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drive digital reading will advance, but the punch holder will not. A row can be skipped
when rotating the block, since it is difficult to exactly align the core based on the dis-
tance from the previous row. The micrometer should also be zeroed at this point.

Using a core diameter of 0.6 and 0.1 mm edge–edge spacing, approx 600 individual
cores (200 donor blocks, if using 3 cores/block) can be placed in a single block.
Although punches are available in several diameters (0.6, 1.0, 1.5, and 2.0 mm),
0.6 mm is the most commonly used. This smaller diameter results in less damage to the
donor block and allows more samples to be arrayed in the recipient block. Larger core
sizes do allow more tissue representation, but may result in greater damage to the origi-
nal block. Each core typically measures 3–5 mm in length. The spacing between adja-
cent cores is determined by the user, but should be at least 0.1 mm. Many groups use a
spacing of 0.1 mm, while others use 0.2 or 0.3 mm. The main advantage to a smaller
distance between adjacent cores is that a greater number can be accommodated in a
single block. A greater distance between cores slightly limits the number of cores that
can be placed in a single block. A representative TMA block and corresponding section
are shown in Fig. 4A. Figure 4B shows the amount of tissue that is represented in a
single core and the amount of spacing between cores.

Sections are cut from the TMA block with a microtome (4–6 µm thick), with stan-
dard handling or with a specialized tape-transfer system (Paraffin Tape-Transfer Sys-
tem; Instrumedics, Hackensack, NJ, USA). Sections should be cut by an experienced
histotechnologist, since specific issues are encountered with this type of block. Repre-
sentative results from a TMA section are shown in Fig. 4. Depending on the types of
tissues arrayed, the block may be difficult to section with the standard method and may
require use of the tape-transfer system for consistent high quality sections. Many groups
prefer to use the tape-transfer system, which is based on slides coated with a UV-poly-
merized adhesive, resulting in a covalent attachment of the tissue to the glass slide.
This type of attachment does not interfere with subsequent studies performed with the
slides. The tissue treated in this manner will not be lost from the slide during subse-
quent harsh or prolonged treatments, such as ISH. The use of the adhesive-coated slides
does, however, add to the cost of the procedure, and some of the morphology is not as
sharp as those sectioned with a standard microtome. Although some practice is required
to ensure technical expertise with the tape-transfer system, an experienced histo-
technologist is not required to produce the sections. The microtome blade should be
changed frequently when performing this procedure.

Approximately 100–200 sections can be cut from a single tissue array block. In an
effort to maximize the number of sections obtained from a block, many sections may
be cut at one time to minimize the “trimming” that occurs every time the block is
reinserted in the microtome. Sections can be deparaffinized and then dipped in paraffin
to prevent oxidation and loss of antigenicity in subsequent IHC experiments, if there is
to be a prolonged interval between sectioning and staining (6).

The orientation of the block is critical, since once sections are cut, it is difficult to
determine the first row. Known tissue, morphologically distinct from that used in
recipient block, such as normal tissue or tissue such as lung infiltrated with a dye, can
be placed in specific nonsymmetric locations (such as in the first core position) to
provide orientation points. Some groups divide the recipient block into quadrants,
which can facilitate orientation.
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Types of Tissue Arrays

Potential users of these techniques include investigators from academic institutions
and diagnostic laboratories to pharmaceutical and biotech companies. The type of block
constructed will vary depending on the needs of the investigator. Different types of

Fig. 4. (A) Representative tissue array block is shown with 0.6-mm cores and 0.2 mm spac-
ing (left) and corresponding H&E stain section (right). (B) A representative photomicrograph
of four adjacent 0.6-mm cores is taken from H&E stained lymphoma tissue array section (shown
at 40×).
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TMA blocks can be constructed, including, but not limited to, tissue from multiple
tumors types, tissue representing disease progression, tissue from a particular clinical
study, or normal controls.

Multitumor TMAs are useful for the initial screening of many tumors for expression
of a particular protein. For example, the expression of a newly described oncogene
found in one tumor type can be analyzed in other tumor types. In one study, investiga-
tors constructed a TMA from 17 different tumor types (397 individual tumors) and
20 normal tissues and studied oncogene (CCND1, cMYC, and ERBB2) amplifications
with fluorescence in situ hybridization (FISH) (7). Amplification of cyclin D1 was
found in several tumor types, including lung, breast, head and neck, and bladder carci-
nomas, and in melanoma. Similarly, TMAs from multiple normal tissues can be used to
determine the normal range of expression of a protein. These studies need not be lim-
ited to human tissues. Normal or disease tissues from mice of different strains or
transgenic or knock-out animals could be used. In order to study neoplastic progres-
sion, a TMA constructed from normal, hyperplastic, dysplastic–in situ disease, and
various tumor grades can be used to examine the expression of a protein thought to be
differentially expressed during this process. For some of these studies, it may be neces-
sary to define more than one area to be sampled, and multiple cores from either areas of
different grades or stages of neoplastic development must be sampled to adequately
represent these areas on the resulting TMA.

One study constructed a TMA containing primary, recurrent, and metastatic prostate
cancer and used FISH to detect gene amplifications (8). Examination of large clinical
cohorts can be facilitated by using TMAs, such as one study that examined Ki-67
expression in a group of prostate cancers (9). Some studies have attempted to validate
cDNA microarray data with tissue arrays (10–12). In renal cell carcinoma, TMA analy-
sis has been used to verify differential vimentin expression (11). Insulin-like growth
factor binding protein (IGFBP2) expression (discovered by cDNA microarray analysis
of gliomas) was associated with progression and poor patient survival based on protein
expression in TMA studies (12). Since DNA microarray studies require high quality
RNA and are, therefore, limited to using snap-frozen tissue, the number of specimens
that can be analyzed is limited. Thus, the differential expression of a single gene is
usually not statistically significant, although groups of genes can be described that,
together, are considered adequate to define separate groups. TMAs can be used to
increase the number of specimens studied so that the expression of a single protein,
such as IGFBP2 in gliomas, can reach the level of statistical significance as an inde-
pendent variable.

Frozen Tissue Arrays

Paraffin TMA methods are limited by the source of donor blocks. Tissues in paraf-
fin-embedded blocks may be unsuitable for some studies. For example, fixation in
formalin results in loss of immunoreactivity for some antigens (13). For FISH
studies, more consistent results are achieved with ethanol-fixed tissues (5). Some of
these limitations can be circumvented by the use of cryosections. Fixation of sections
using this technique can be optimized for studies involving protein, DNA, or RNA.
For IHC studies, the fixative and fixation time can be adjusted to maximize antigen
retrieval. Tumor banks with fresh tissues that are rapidly frozen at <70°C are optimal
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as starting material for these methods. Use of frozen tissue allows adjacent tissue to be
used for RNA extraction and DNA microarray analysis, providing a means of valida-
tion of results.

Two groups have reported the construction of frozen tissue multiblocks. The first
method allows the construction of low density multiblocks from frozen tissue (4). Cur-
rently, it is limited in the number of specimens the block can accommodate (48 3-mm
cores), though the identity of the tissue can be determined by its position in the section.

A mold is created from optimal cutting temperature (OCT) with preformed cylindri-
cal wells in a grid arrangement. The frozen tissue cores (3 mm in diameter) are taken
from frozen donor tissue using a core needle and transferred to the mold to create the
array. The use of adhesive-coated slides (Instrumedics) is recommended with both
methods when cutting frozen tissue array sections, to a greater degree than with paraf-
fin arrays, to ensure consistent high quality sections with maximal core representation.

The second method is a modified use of the manual tissue arrayer (Beecher Instru-
ments) (14). A recipient block is created from OCT, and donor cores are transferred
from frozen tissue to the block with dry ice-chilled punches (0.6 or 1 mm in diameter).
Using this technique, hundreds of cores can be accommodated in the recipient block.
However, due to physical limitations of working with frozen tissue, a larger core size
and greater spacing between adjacent core is necessary to produce a high quality frozen
tissue array.

VALIDATION STUDIES

Since a very small amount of tissue is represented on a single slide, the question of
adequate representation has been examined. In general, if a portion of the tumor is
represented in an individual core, the resulting IHC staining pattern is reliable. There
is no significant “edge effect” seen in individual stained cores. Figure 5 demonstrates
that a TMA section produces readily interpretable results.

The data derived from TMA sections must be reliable in order to use the results in
clinical correlation studies. Several studies have addressed the issue of concordance
between results achieved with the TMA technique compared to standard whole tissue
sections. Kononen et al. (5) used FISH to analyze six gene amplifications (ERBB2,
MYC, CCND1, 17q23, 20q13, and MYBL2) and IHC to detect estrogen receptor and
P53 protein expression in breast cancer tissue specimens and found that the frequen-
cies agreed with published results. Other groups have found that redundancy is neces-
sary for consistently reliable results.

One study examined estrogen receptor, progesterone receptor, and Her2/neu expres-
sion in breast cancer tissues (6), comparing results from TMAs with whole sections.
They concluded that two cores per case are sufficient to achieve a 95% concordance
between TMAs and standard techniques. They argued that adding more cores per
case does not significantly increase the accuracy of the technique, while it does limit
the number of cases that can be studied on a single slide. Another study examined the
expression of P53, Ki-67, and Rb markers, which must be quantitated rather than scored
solely on their presence or absence (15). In this study, three cores per case were signifi-
cantly more accurate than two cores, resulting in concordance rates of up to 98%. Thus,
greater accuracy is required for studies that are semiquantitative rather than requiring a
simple categorical interpretation. In addition, the pattern of antigen expression in a
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Fig. 5. (A) Diffuse large B cell lymphoma stained with H&E (left) and with anti-CD20
immunostain (right). (B) Hodgkin’s lymphoma, mixed cellularity type stained with H&E (left)
and anti-CD30 (right) demonstrating the presence of Reed-Sternberg cells. (C) Colonic adeno-
carcinoma stained with H&E (left) or anti-cytokeratin (cam5.2) (right), which highlights the
epithelial cells. All photomicrographs are taken of 0.6 mm cores at 200×.
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particular IHC experiment (whether expressed by all or only a minority of cells) will
influence the reproducibility of results with the TMA method. Another study showed a
greater discrepancy in expression of neuroendocrine markers in prostate cancer tissues
than the other studies (16). In this case, the expression of the proteins studied
(chromogranin and synaptophysin) was focal rather than diffuse.

DATA ANALYSIS

Given the large amount of data on a single slide, automated analysis of the results
would be extremely helpful to facilitate data acquisition. DNA arrays use an automated
interpretation of the results based either on fluorescence intensity, amount of radio-
activity, or phosphorimager analyses. In the case of DNA arrays, the precise placement
of spots by a robot makes the interpretation relatively straightforward. Although it is
difficult to make a perfectly aligned grid given the nature of paraffin, core placement
with the newer device does result in relatively uniformly placed cores in a grid pattern.
This arrangement makes it possible to automate the analysis of the slide. Unfortunately,
automated analysis of either IHC or ISH data is not yet widely applicable except for
some nuclear stains, such as Ki-67, which has been quantitated with some success
(CAS 200; Bacus Labs). Some companies have developed automated slide scanners to
be able to digitized entire sections (BLISS; Bacus Labs, Lombard, IL, and Interscope
Technologies, Pittsburgh, PA). This technology has been applied most commonly in
the field of telepathology, allowing the remote viewing of a slide for consultation pur-
poses. The digitized image, however, can also be analyzed by a separate software pack-
age that can divide the image up into individual core images, which can then be
analyzed. The images can then be input into a standard database so that accompanying
clinical information can be linked to the images, and all stains from a single specimen
can be grouped together. To date, the analysis of images is done in the standard way, by
a pathologist who can score the result and input it into the database for export into
statistical analysis software. Quantitation of the result is still performed in a subjective
manner. These techniques do allow for archiving of images and construction of data-
bases. In the future, these could be made available over the Internet, allowing inter-
ested individuals access to the primary data. A schema to combine these types of
information has been proposed (17).

FUTURE DIRECTIONS

The Tissue Array Research Program (TARP) of the National Cancer Institute (NCI)
has been working to make tissue arrays available to the academic community. Since a
single slide can contain all of the cases in a particular study, it is ideal for collaborative
projects. Some limited attempts have been made to commercialize arrays. In addition,
an automated tissue arrayer is now available (Beecher Instruments), although at a sig-
nificantly higher cost. However, this instrument automates only array construction.
The laborious task of case review and block selection and the designation of the area to
be cored must still be performed manually. Clearly, as in the evolution of DNA tech-
nology, automation of as many of the steps as is possible is critical. TMAs will become
a central technique to laboratories conducting translational research, since it provides
an efficient method to confirm experimental results in tissues. As experimental studies
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with human tissues increase given the demand for greater clinical applicability of basic
research, it will become necessary to conserve precious tissue resources.

Given the tremendous advances in digital imaging technology and increases in data
storage capacity necessary to store large numbers of high quality images, improve-
ments in automated image analysis should be achieved in the near future, which will
enhance the utility of these techniques. Improvements in instrumentation should also
make the process more efficient and reliable.
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Microarray Data Analysis

Cancer Genomics and Molecular Pattern Recognition

Pablo Tamayo and Sridhar Ramaswamy

INTRODUCTION

Cancer Genomics

Cancer is a genetic malady, mostly resulting from acquired mutations and epige-
netic changes that influence gene expression. Accordingly, a major focus in cancer
research is identifying genetic markers that can be used for precise diagnosis or therapy.
Over the last half-century, investigators have used reductionism to discover such
markers through the study of simple genetic changes, like balanced chromosomal trans-
locations. For example, fundamental insights into the nature of the bcr-abl gene
translocation product resulted in the precise molecular classification of chronic myel-
ogenous leukemia and recently led to the development of the molecularly targeted
tyrosine kinase inhibitor STI571 (Gleevec; Novartis, East Hanover, NJ, USA) for the
treatment of this disease. Ninety percent of human cancers, however, are epithelial in
origin and display marked aneuploidy, multiple gene amplifications and deletions, and
genetic instability, making resulting downstream effects difficult to study with tradi-
tional methods. Because this complexity probably explains the clinical diversity of
histologically similar tumors, a comprehensive understanding of the genetic alterations
present in all tumors is required.

The initial sequencing of the human genome, coupled with technologic advances,
now make it possible to embrace the genetic complexity of common human cancers in
a global fashion. Tools are currently available, or are being developed, for the identi-
fication of all changes that take place in cancer at the DNA, RNA, and protein levels.
In particular, the use of DNA microarrays for the comprehensive analysis of RNA
expression (expression profiling) in human tumor samples holds much promise (see review
articles in ref. 1).

A major challenge with this approach, however, remains the interpretation of com-
plex and biologically “noisy” data in a way that yields new knowledge. We have, there-
fore, focused on developing first-generation approaches to gene expression data
analysis that are suitable for this purpose. Without such analytic tools, DNA microarray
data are useless. This chapter is meant to serve as an introduction to fundamental con-
cepts and techniques that have been developed in gene expression data mining over the
last 3 yr. It is not meant to be a comprehensive review of this rapidly expanding field,
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nor is it a step-by-step set of recipes. Most of the examples described come from our
experience in cancer gene expression data analysis at the Whitehead/Massachusetts
Institute of Technology (MIT) Center for Genome Research over the last 5 yr, but
references to other works are also given when relevant to the discussion.

BASIC DATA ANALYSIS (FIG. 1)

Tumors are heterogeneous mixtures of different cell types, including malignant cells
with varying degrees of differentiation, stromal elements, blood vessels, and inflam-
matory cells. Two tumors with similar clinical stages can vary markedly in grade
and in relative proportions of different elements (e.g., prostatic adenocarcinoma).
Tumors of different grades might potentially differ in gene expression, and different
markers can be expressed either by malignant cells or by other cellular elements.
Because this heterogeneity can complicate the interpretation of gene expression stud-
ies, sample selection is an important issue that must be kept in mind when analyzing
tumor gene expression data.

Multiple sources of variation that must be understood in evaluating any microarray
experiment include the following: (i) varying cellular composition among tumors;
(ii) genetic heterogeneity within tumors due to selection and genomic instability;
(iii) differences in sample preparation; (iv) nonspecific cross-hybridization of
probes; and (v) differences between individual microarrays. In general, biologic varia-
tion is the major source of variation in gene expression experiments. Increasing the
sample number can help in understanding the range of biologic variation in an experi-
ment. Variation owing to technical factors can be addressed by replicating sample
preparation or array hybridization. Although most high-throughput expression profil-
ing centers have informal criteria for what constitutes bad data, however, there are no
generally accepted guidelines (for approaches to microarray experimental design and
the analysis of variation see refs. 2–6).

Fig. 1. Methodology for basic data analysis.
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Basic data analysis consists of preparing datasets for higher level analysis, such as
clustering or class prediction. This preprocessing of raw data can have profound effects
on subsequent analysis and has to be done by considering the idiosyncrasies of the
original gene expression technology platform (i.e., “chip type”). For example, cDNA
microarrays generate gene ratio data between fluorescence intensities of experimental
and control samples on a gene-by-gene basis. In contrast, oligonucleotide microarrays
such as the GeneChip® (Affymetrix, Santa Clara, CA, USA) platform generate abso-
lute expression values from a single sample. Each microarray platform generally has
software packages that provide one file per sample, containing one gene per row. These
sample files are usually combined into multisample files for further analysis. Our dis-
cussion of data analysis starts at this point.

RAW DATA QUALITY CONTROL

The quality of each microarray profile is generally assessed using measurements of
overall microarray fluorescence intensity (e.g., mean, variance), the distribution of fea-
ture or spot intensities, and the proportion of total genes receiving significant signal.
Any microarray that fails these quality control measures is generally excluded from
downstream analysis. Replicate experiments for each sample can be used to focus on
those gene measurements with the highest reproducibility (7,8). With technologic
improvements, however, raw data quality is presently quite good in experienced hands.
Therefore, we currently emphasize the analysis of larger numbers of samples rather
than studying fewer samples and more replicates.

SCALING

Raw gene expression data from multiple samples (chips) is generally scaled to com-
pensate for global differences in chip intensities and microarray-to-microarray varia-
tion. This can be done using simple multiplicative factors to match overall mean
intensities among microarrays. Other more sophisticated methods use model-based
approaches to compensate for probe-specific biases (9).

THRESHOLDING, FILTERING, AND NORMALIZATION

In some cases it may be desirable to threshold and ceiling the data, since very low
and very high microarray fluorescence readings are less reliable and reproducible.
As many clustering and classification algorithms work better with smaller number of
genes, or are especially sensitive to noisy profiles, genes that show low or flat expres-
sion across multiple samples are usually filtered out of datasets. One of the simplest
ways to do this is by using a variation filter, which tests for a minimum fold-change
(max/min), and absolute variation (max – min) among samples and excludes genes not
passing the corresponding thresholds. The precise parameters of variation filters are
problem-, dataset-, and platform-dependent, and different thresholds and stringencies
in the variation filter may be used depending on the particular analysis. After filtering,
and before higher level data analysis, one may also consider normalizing each gene to
a mean of 0 and variance of 1 across all samples. This strategy can be useful if one is
interested in emphasizing relative rather than absolute differences in gene intensity.
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HIGHER LEVEL DATA ANALYSIS:
UNSUPERVISED AND SUPERVISED LEARNING

To date, the higher level computational analysis of gene expression data has cen-
tered on two approaches (10). Unsupervised learning, or clustering, involves the aggre-
gation of a diverse collection of data into clusters based on different features in a data
set. For example, one could divide a group of people into clusters based on any combi-
nation of eye color, waist size, or height. Similarly, one can gather data about the vari-
ous expressed genes in a collection of tumor samples and then cluster the samples as
best as possible into groups based on the similarity of their aggregate expression pro-
files. Alternatively, one could cluster genes across all samples, to identify genes that
share similar patterns of expression in varying biologic contexts. Such approaches have
the advantage of being unbiased and allow for the identification of structure in a com-
plex data set without making any a priori assumptions. However, because many differ-
ent relationships are possible in a complex data set, the predominant structure
uncovered by clustering may not necessarily reflect clinical or biologic distinctions of
interest.

In contrast, supervised learning incorporates the knowledge of class label informa-
tion to make distinctions of interest. A training data set is used to select those features
that best make a distinction. These features are then applied to an independent test data
set to validate the ability of selected features to make that distinction. For example, one
could select a subset of expressed genes that are best able to distinguish between two
cancer types and build a computational model that uses these selected genes to sort an
independent unlabeled collection of those tumor types into the two groups of interest.
However, supervised learning is dependent on accurate sample labels, which can be an
issue given the limitations of histopathologic cancer diagnosis. Sometimes, results from
unsupervised and supervised learning on a single data set can overlap, but this does not
have to be the case.

An important issue with either analytic approach is that of statistical significance of
observed correlations. A typical microarray experiment yields expression data for thou-
sands of genes from a relatively small number of samples, and gene–class correlations,
therefore, can be revealed by chance alone. This issue can be addressed by collecting
more samples for each class studied, but this is often difficult with clinical cancer
samples. Another approach is to perform exploratory data analysis on an initial data set
and apply findings to an independent test set. Findings confirmed in this fashion are
less likely a result of chance. Permutation testing, which involves randomly permuting
class labels and determining gene–class correlations, has also been used to determine
statistical significance (10). Observed gene–class correlations that are stronger than
those seen in permuted data are considered statistically significant.

UNSUPERVISED LEARNING: CLUSTERING

In unsupervised learning techniques, the structure in a data set is elucidated without
using any a priori assumptions or knowledge as part of exploratory data analysis. The
promise of these methods lies in their ability to provide a molecular grouping or tax-
onomy of samples or genes. One of the easiest ways to analyze data in this context is by
using a clustering algorithm (11–13). Objects of interest, usually genes or samples, are
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classified into groups according the how “close” they are to each other. This is accom-
plished by using a “distance,” correlation, or “similarity” function in the clustering
algorithm. For example, one can cluster a set of biological samples by their Euclidean
distances by considering all gene expression values in a dataset:

Distance (sample x, sample y) = ([Ex
gene 1 – Ey

gene 1]2 + [Ex
gene 2 – Ey

gene 2]2 + …)
1/2

Here, Ex
gene 1 is the expression value of gene 1 in the array corresponding to sample x.

A clustering algorithm uses these distances to group samples or genes, and it returns an
organization scheme to classify them (e.g., a set of clusters or a tree).

Unsupervised learning approaches, such as clustering, can be very useful when the
underlying structure of the data is unknown; however, they have the disadvantage,
if unguided, of sometimes producing results that may or may not be relevant to distinc-
tions in the data that are biologically relevant. Clustering often rediscovers already
known subclasses or differences if these distinctions are predominant (e.g., estrogen
receptor positive vs negative breast cancers). However, this approach can also discover
unanticipated relationships, and clustering methods have been used with relative suc-
cess in a number of cancer classification problems. In practice, it is often challenging
to interpret clusters that result from unsupervised learning in cancer datasets. A general
methodology for clustering is shown in Fig. 2.

Some of the first work using this approach in analyzing gene expression involved
time series data. Genes were grouped, or clustered, according to their behavior over
time, first by eye (14) and then by an automated hierarchical technique (15). Hierarchi-
cal clustering is an unsupervised learning method useful for dividing data into natural
groups by organizing the data into a hierarchical tree structure (dendogram) based upon
the degree of similarity between either samples or genes (15). The lengths of branches
in a dendogram reflect degree of relatedness. By examining dendogram branches, pre-
viously unanticipated relationships between samples and genes can be discovered in a
gene expression dataset. Tamayo et al. (1999) (16) introduced the use of self-organiz-

Fig. 2. General methodology for clustering gene expression data.
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ing maps (SOMs) for unsupervised learning in the HL-60 model of leukemia differen-
tiation and found that resulting gene clusters corresponded to pathways involved in the
differentiation treatment of acute promyelocytic leukemia (APL). The SOM is a clus-
tering algorithm, in which a grid of two-dimensional nodes (clusters) is iteratively
adjusted to reflect the global structure in the expression dataset (16). With the SOM,
the geometry of the grid is randomly chosen (e.g., a 3 × 2 grid) and mapped to the
k-dimensional gene expression space. The mapping is then iteratively adjusted to reflect
the natural structure of the data. Resulting clusters are organized in a two-dimensional
grid, where similar clusters lie near to each other and provide an automatic executive
summary of the dataset.

Golub et al. (10) used a two-cluster SOM to automatically cluster an initial set of
38 leukemia samples into two classes based on the expression pattern of 6817 genes
(Fig. 3). They then compared these SOM clusters to the known acute lymphoblastic
leukemia vs acute myeloid leukemia (ALL/AML) distinction. As demonstrated, the
two SOM clusters closely paralleled this morphological distinction with the first clus-
ter containing mostly ALLs (24 out of 25 samples) and the second containing mostly
AMLs (10 out of 13 samples). Thus, the clustering algorithm was effective, but not
perfect at separating samples into biologically meaningful groups.

Golub et al. (10) also searched for further subclassifications of the leukemia samples
by constructing a four-class (2 × 2) SOM (Fig. 4). The clustering algorithm was suc-
cessful at separating the samples into more refined groups reflecting another important
biological distinction: different ALL cell lineages (B and T cell).

Hierarchical clustering (15) was also applied to the same dataset (Fig. 5). Again, this
clustering approach revealed three major leukemia subgroups, suggesting that robust
gene expression differences between different tumor subtypes can be discovered using
unsupervised learning.

Similar studies have recently been described for the subclassification of various
tumor types including breast cancer (17,18), lung cancer (19), and melanoma (20).

Clustering has yielded results that are interpretable in the context of a priori knowl-
edge (i.e., known leukemia subclasses). However, in the absence of such knowledge,
the biological interpretation of clustering results remains a challenge. Often, clustering
results are not in themselves the desired results, but the starting point for further inter-
pretation or experimentation. An area of active research, moreover, involves the statis-

Fig. 3. Clustering of leukemia samples into two groups using a 2 × 1 SOM.
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tical interpretation of clustering results. Often asked questions include, what consti-
tutes a cluster and what is the statistical significance of a given clustering result? There
are presently no good general answers for these important questions, although some
groups have proposed the implementation of formal measures of clustering signifi-
cance, such as the gap statistic (21).

SUPERVISED LEARNING: PREDICTION

Supervised learning or class prediction methods represents another important para-
digm in molecular classification and pattern recognition. The simplest analysis involves
selecting the features (genes) most correlated with a phenotypic distinction of interest.
These features or “marker genes” are biologically interesting in themselves, but they
can also be used as the input of a classification algorithm that uses existing “labeled”
samples to build a model to predict the labels for future samples. For example, marker
genes in a cancer dataset can be fed into a computational classifier to distinguish can-
cer types on the basis of site and/or cell of origin or clinical outcome. This powerful
approach, supervised machine learning or class prediction (13,22), involves data col-
lection, feature selection, model building, validation, and model testing on an indepen-
dent dataset. Supervised learning classifiers can achieve highly accurate molecular
classification if enough samples are available to “train” a classifier. In general, pairwise
comparisons are less challenging than multiclass distinctions. In every case, the com-
parison of a supervised classifier has to be done against the best generally accepted
clinical classification method, such as standard histopathology. In the next few sec-

Fig. 4. Clustering of leukemia samples into four groups using a 4 × 1 SOM.

Fig. 5. Hierarchical clustering of leukemia samples based on the expression of the 330 most
varying genes.
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tions, we will review in more detail the steps necessary to select and validate gene
markers and to build classifiers.

SELECTING AND VALIDATING GENE MARKERS

Genes correlated with a binary class distinction, for example a morphological or
clinical phenotype, can directly be identified and selected by using a “distance” metric,
for example:

• Signal-to-noise ratio = (µA – µB)/(σA + σB) [µ and σ are the means and standard devia-
tion per class]

• t-test statistic = (µA – µB)/(σ2
A + σ2

B)
1/2 [µ and σ are the means and standard devia-

tion per class]
• Pearson correlation coefficient

An example is shown in Fig. 6. The original dataset was created by joining 12 micro-
array datasets, 6 from normal kidney and 6 from renal cell carcinoma samples. Markers
were selected by computing the signal-to-noise score. The mean and standard devia-
tion of the expression values are computed in each class, and then the ratio of the
difference of the means is divided by the sum of the standard deviations. For example,
this calculation as applied to the profile of p53 shown below produces the following:

Signal-to-noise ratio = (µcancer – µnormal)/(σcancer + σnormal) = 1.67

As can be seen in Fig. 7, this gene acts as a marker of the “cancer” phenotype by
being expressed on average at higher level in cancer samples compared with normal
ones. It is important to notice that the difference in absolute expression value may not
always be large. In this example, p53 is a marker, but in general displays low values of
expression.

This basic procedure of selecting differentially expressed genes is useful in two com-
mon analysis situations. The first is associated with selecting statistically significant
markers for more detailed follow-up biological study (e.g., to identify genes that are
differentially expressed in two different cancer types). Selected genes can then be sub-
ject to a literature search or to validation using other experimental assays (e.g., reverse
transcription polymerase chain reaction [RT-PCR], immunohistochemistry, etc.). The
second relates to the problem of feature selection or finding genes to feed into a super-
vised learning classifier. In this case, one is interested in selecting the subset of genes
most likely to be useful in discriminating phenotypes of interest, either as single mark-
ers or in combination with others. This task is better viewed as a preprocessing step in
a classification methodology. Gene selection is required, in part, because many super-
vised learning algorithms perform suboptimally with thousands of input variables and
require some type of dimensionality reduction. A general methodology for supervised
marker selection and classification is shown in Fig. 8. The training of classifiers will be
discussed in detail in a subsequent section.

PERMUTATION TESTS

Once marker genes have been selected, one might want to decide how many of them
to consider for further study. This is a difficult problem because typically there will be
a gradual decrease in the score or correlations in such way that there is no well-defined
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Fig. 6. Top 10 genes that differentiate normal kidney from renal carcinoma as selected from a microarray profiling experiment using the
signal-to-noise (S2N) ratio score.
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boundary between markers and nonmarkers. In most situations, the analysis will con-
centrate on the very top markers and exclude the rest. However, this problem can be
addressed more formally by using permutation testing. This method (10,23) attempts
to solve the marker selection problem by comparing the actual distribution of marker
scores to a reference empirical distribution of scores obtained by permuting the pheno-
type class labels. The markers are viewed as close matches or “neighbors” of an ideal
marker separating the classes. A histogram of scores for each of the ranked marker
genes, corresponding to each permutation (neighborhood), is kept and the significance
of an actual gene marker is obtained by finding the appropriate percentile in the histo-
gram of the correspondingly ranked marker (i.e., the one with the same rank, e.g., best
match, second best match, etc.). There are several advantages to performing a permuta-

Fig. 7. P53 gene expression as a marker of the “cancer” phenotype in normal and neoplastic
kidney samples.

Fig. 8. Methodology for marker selection.
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tion test: (i) the method does not assume a particular functional form for the distribu-
tion or correlation structure of genes; (ii) it is performed on the entire distribution of
marker genes and, therefore, takes into account the gene-to-gene correlation structure;
and (iii) it is a simple, intuitive approach that provides higher statistical power.
In detail, the permutation test procedure for a given comparison of interest (e.g., mark-
ers high in class 0 and low in class 1) is as follows (Fig. 9):

• Generate signal-to-noise (µclass 0 – µclass 1)/(σclass 0 + σclass 1) or other type of scores (t-test,
Pearson, etc.) for all genes being considered using the actual class labels (phenotype) and
sort them accordingly. The best match (k = 1) is the gene “closer” or more correlated to the
phenotype using the signal-to-noise as a correlation function. In fact, one can imagine the
reciprocal of the signal-to-noise as a “distance” between the “phenotype” and each gene as
shown in Fig. 7.

• Generate 500 or more random permutations of the class labels (phenotype). For each case
of randomized class labels, generate signal-to-noise scores and sort genes accordingly.

• Build a histogram of signal-to-noise scores for each value of k. For example, one for all
the 500 top markers (k = 1), another one for the 500 second best (k = 2), etc. These histo-
grams represent a reference distribution for the kth marker, and for a given value of
k different genes contribute to it. Notice that the correlation structure of the data is pre-
served by this procedure. For each value of k, determine different percentiles (1%, 5%,
50%, etc.) of the corresponding histogram.

• Compare the actual signal-to-noise scores with the different significance levels obtained
for the histograms of permuted class labels for each value of k. This test helps to assess the
statistical significance of gene markers in terms of the distribution of class–gene scores
using permuted labels.

For example, normal kidney vs renal carcinoma marker selection and permutation
testing for each of the selected markers generates the following list shown in Table 1.

Fig. 9. Permutation test based assessment of significance for gene markers.
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Table 1
Normal Kidney vs Renal Carcinoma Marker Selection and Permutation Testing

Number Class S2N Score Perm 1% Perm 5% Median Gene Description

  1 Normal 2.82 2.48 1.97 1.37 J03507 C7 Complement component 7.
  2 Normal 2.21 1.89 1.69 1.22 HG3431-HT3616 Decorin, Alt. Splice 1.
  3 Normal 2.08 1.83 1.56 1.12 Z30644 GB DEF = Chloride channel (putative).
  4 Normal 2.07 1.76 1.47 1.07 J05257 DPEP1 Dipeptidase 1 (renal).
  5 Normal 1.98 1.66 1.41 1.05 U27333 α-1,3 fucosyltransferase 6 (FCT3A).
  6 Carcinoma 1.81 2.38 1.97 1.39 X56494 PKM2 Pyruvate kinase, muscle.
  7 Carcinoma 1.78 1.99 1.74 1.21 X59798 CCND1 Cyclin D1.
  8 Carcinoma 1.67 1.82 1.58 1.13 M22898 TP53 Tumor protein p53 (Li-Fraumeni syndrome).
  9 Carcinoma 1.51 1.72 1.48 1.07 D50855 CASR Calcium-sensing receptor.
10 Carcinoma 1.47 1.66 1.43 1.04 HG662-HT662 Epstein-Barr virus small RNA-associated protein.

The class column represents the class for which the markers are high (low in the other class). The S2N score is the signal-to-noise of each marker. The Perm 1%,
5%, and 50% columns represent the percentiles in the histograms of signal-to-noise scores for permuted labels, for a given value of the rank order. These 10 markers
shown all have signal-to-noise scores better than 5% of the random permutations (p <= 0.05).
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Permutation tests assess the significance of gene markers in terms of class–gene
correlations. If a group of genes fails to pass permutation testing, however, that by
itself does not necessarily imply that it cannot be used to build an effective classifier
(24,25). In subtle phenotypes distinctions, for example, the top marker genes are often
weak and may not show overwhelming statistical significance. This often results from
a gene being expressed only in a subset of samples in a given class. However, such
genes can still be effective when used in combination as input to a classifier. Examples
of this phenomenon can be found in subsequent sections.

Other marker selection methods have been introduced in the literature. For example
the SAM method of Tusher et al. (26) is similar to the one presented above, but includes
a user-adjustable threshold to provide estimates of the false discovery rate. Dudoit et al.
(27) have introduced a method based on step-down adjusted p values using Westfall
and Young’s (28) approach in the context of replicated cDNA experiments. Ideker et al.
(29) used generalized likelihood tests to assess the statistical significance of differen-
tially expressed genes in the context of two channel cDNA microarrays. Newton et al.
(30) and Baldi and Long (31) used empirical Bayes hierarchical models to assess sig-
nificance of differential expression. Lee et al. (7) combined the data from replicates to
estimate posterior probabilities and identify differentially expressed genes. No system-
atic comparison of the error rates and statistical power of all these different methods
have been published yet. Methods have also been proposed to combine both resampling
and explicit control of the false discover rate (32), such as the stepwise permutation-
based procedures of Korn et al. (33).

A logical extension of marker selection is pattern discovery, where one tries to find
subpatterns, i.e., patterns not necessarily involving all of the samples, but that occur
often and may represent groups of co-regulated or correlated genes. Califano et al. (34)
introduced a pattern discovery algorithm (SPLASH) to expose more complex gene
correlations. They extracted statistically significant subpatterns from expression array
data using a geometric hashing algorithm. Although their statistical models were sim-
plistic, their work represented one of the first analytic evaluations of subpattern signifi-
cance in that context. Other attempts to elucidate complex gene–gene correlations or
global correlation structure have used principal component analysis (PCA) (20,35),
singular value decomposition (36), biclustering (37), and plaid (38). Hastie and associ-
ates introduced “gene shaving” as a global approach based on PCA to systematically
expose coherent patterns of co-regulation in gene expression data (39). All these meth-
ods are promising, but face the same challenge in terms of how to effectively separate
biologically relevant signals from the noise.

CLASS PREDICTION

A general methodology for class prediction under the supervised learning paradigm
is shown in Fig. 10. One starts by putting together the relevant samples into a single
dataset, scaling and preprocessing the dataset, and by defining the target phenotype
class based on morphology, tumor type, or treatment outcome clinical information.
The dataset is split in train and test subsets if enough samples are available. If not
enough samples are available, one can perform a leave-one out cross-validation, in
which one sample is held, a predictor is trained on the remaining samples, the left out
sample is classified by this predictor, and the process is repeated iteratively. Once a
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proper training set has been defined, a marker selection methodology is applied. This
step is, in general, useful and facilitates the training of most classification algorithms,
although some classifiers, such as Naïve Bayes or support vector machines (SVM), can
deal with thousands of variables effectively (40,41). Feature selection is generally use-
ful to facilitate subsequent validation of selected genes that are particularly informa-
tive in classification. Once markers have been selected, a classifier can be built using
classification algorithms such as (13,22,42):

• Linear or quadratic discriminants.
• k-nearest neighbors.
• Weighted voting.
• Naïve Bayes.
• Neural networks.
• SVM.
• Decision trees.

If the model has internal parameters that require tuning, this is typically done when
training the predictor. In this way, several models are built using a different number of
marker genes, and the final chosen model is the one that minimizes the total error in
cross-validation. This model can then be validated on an independent test set. Detailed
model-to-model performance comparisons require predictions with different instantiations
of the train and test datasets and have to be made carefully as suggested by Salzberg (43).

STATISTICAL SIGNIFICANCE OF A SUPERVISED CLASSIFIER

The statistical significance of a supervised classifier can be evaluated in several
ways. One of the simplest is to compute a Fisher exact test of the classification confu-

Fig. 10. Methodology for supervised learning.
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sion matrix or use the proportional chance criterion to compare the observed with the
expected classification accuracy for a random predictor (24). When enough samples
are available to produce independent train and test datasets, the proportional chance
criterion is usually a sufficient measure of statistical significance (24). A more sophis-
ticated empirical approach, sometimes useful for weak classifiers or when there are not
enough samples to create an independent test set and when cross-validation must be
used, is the class label permutation (44–46). The phenotype (sample) labels are ran-
domly permuted 1000 or more times, and in each instance, predictive models are
built and tested. Once this is done, one selects the best error rate for each of these
1000 random predictors and makes a histogram of these error rates. The error rate from
the actual predictive model is then compared to this histogram to determine the statis-
tical significance of this prediction (see Fig. 11).

Figure 12 shows the application of this permutation test for the k-nearest neighbor
treatment outcome predictor in Pomeroy et al. (35). This is a cross-validation model
built on 60 medullobalstoma samples capable of distinguishing patients with “good”
and “poor” prognosis on the basis of primary tumor gene expression profiles. An opti-
mal model was defined using the following parameters:

Number of neighbors (k): 3, 5

Number of genes (ng): 1,2,3,4,5,6,7,8,9,10,15,25,50,100

Models were created using the actual treatment outcome labels and also for
1000 random permutation of those labels (keeping the gene expression data the same).
The best predictive model used k = 5 and ng = 8, and correctly predicted 47 out of
60 cases as having “good” or “poor” prognosis. Random class label permutation

Fig. 11. Methodology to assess the statistical significance of a classifier.
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showed that there were 9 models with better performance (lower error rates) than the
actual model. Based on this result, the statistical significance of this medulloblastoma
outcome prediction study was p = 0.009 (9/1000).

PAIRWISE CLASSIFICATION: CLASSIFYING LEUKEMIA SUBTYPES

We next review microarray-based leukemia subclassification (10,23) as an example
of a binary molecular classification problem. Acute leukemias arise from different pre-
cursor cells: lymphoid (ALL) and myeloid (AML). This distinction is critical for
effective leukemia treatment planning and is currently done by assimilation of diverse
information including morphological, cytogenetic, histochemical, and immuno-
phenotypic analysis by an expert physician. Our initial analysis employed a set of
27 ALL and 13 AML samples. A permutation test of the gene markers revealed a
striking excess density of genes correlated with the class distinction. We decided to
employ a weighted voting classifier based on the top 50 genes. Sets of classifiers were
first constructed in cross-validation experiments using the 40 leukemia samples. In one
case, no prediction was made, because the confidence score fell below a predetermined
threshold. For the remaining 39 cases, the prediction accuracy was 100%. While they
initially chose 50 genes for the prediction algorithm, they also found that classifiers
involving as few as 7 genes proved to be 100% accurate in the ALL/AML distinction.
Interestingly, however, among the top 50 genes, no single gene yielded a perfect
predictor. Correct classification, thus, requires multi-gene predictors. Other classifica-
tion algorithms such as Naïve Bayes, k-nearest neighbors, and SVM produce similar
results (47).

The original weighted voting classifier was also tested on an independent collection
of 34 AML and ALL samples. In three cases, the confidence score fell below the thresh-
old for prediction, but the classifier made predictions in the remaining 30 cases, and

Fig. 12. Results of the permutation test for a k-nearest neighbor medulloblastoma treatment
outcome predictor.
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29 out of 30 were correct. The single error had the lowest confidence score of the
samples, just barely passing the threshold. Overall, 69 of 70 samples were correctly
classified either in cross-validation or using the independent test set (98.6%). Other
algorithms also performed fairly well on the independent test set with the SVM model
producing 100% accuracy.

The marker genes, shown in Fig. 13, are highly instructive. Some, including CD22,
CD11c, CD33, and CD79a, encode cell surface proteins for which monoclonal anti-
bodies have been previously demonstrated to be useful in distinguishing lymphoid
from myeloid lineage cells. Others provide new markers of acute leukemia subtype.
For example, the leptin receptor, originally identified as a cell surface receptor in
adipocytes, but showed high relative expression in AML cells. The leptin receptor has
been demonstrated to have anti-apoptotic function in hematopoietic cells. Some of the
markers are typical markers of hematopoietic lineage, but others have biological func-
tion relevant to the cancer. For example, many of the genes encode proteins critical for
S-phase cell cycle progression (Cyclin D3, Op18, and MCM3), chromatin remodeling
(RbAp48), transcription (SNF2b and TFIIEβ), or cell adhesion (zyxin and integrin-α X),
or are known oncogenes (c-MYB, E2A, EWSR1, and HOXA9).

PREDICTING TREATMENT OUTCOME: LYMPHOMA

Supervised learning classifiers are also well-suited to predict differential treatment
outcome between histologically similar tumors. Here, we review the results of lym-
phoma treatment outcome prediction model of Shipp et al. (48). Diffuse large B cell
lymphomas (DLBCL) are the most common lymphoid neoplasm, and it accounts for
up to 40% of adult (non-Hodgkin’s) lymphomas. Using existing chemotherapeutic regi-
mens only a subset of DLBCL patients is cured. Clinical prognostic models, such as the
International Prognostic Index (IPI), are used to identify different DLBCL risks groups.
The clinical factors used by the IPI (age, performance status, stage, number of
extranodal sites, and serum lactate dehydrogenase [LDH]) are potentially surrogate
markers for the true molecular heterogeneity of the disease and provide a useful but
highly imperfect model for the identification of high-risk patients. Few molecular mark-
ers are, however, broadly useful for lymphoma risk stratification.

Our group studied 58 DLBCL patients uniformly treated with standard cyclophos-
phamide, doxorubicin, vincristine, and prednisolone (CHOP) chemotherapy, where
long-term clinical follow-up was available (48). These patients fell into two groups,
including those with cured disease and those with fatal–refractory disease. They used
supervised learning to determine differential treatment outcome on the basis of pri-
mary tumor gene expression profiles.

Top marker genes for the cured vs failure distinction were selected using the signal-
to-noise ratio (Fig. 14). We developed a supervised classifier using a weighted voting
algorithm (23) and used cross-validation testing to assess the performance of the clas-
sifier. Models containing between 8 and 16 genes yielded statistically significant pre-
dictions, with the highest accuracy obtained using 13 genes. This classifier separated
the 58 patients into two groups according to the predicted class: predicted to be cured
or predicted to have fatal–refractory disease based on the gene expression profiles of
those 13 genes. A Kaplan-Meier plot of these results is shown in Fig. 15 (p = 0.0013
using a standard log-rank test).
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Fig. 13. Top markers of the ALL/AML leukemia subtype distinction. The micrographs on top show the similar
morphology characteristic of these cells.
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Fig. 14. Top markers of lymphoma treatment outcome.

91



92 Tamayo and Ramaswamy

Patients predicted by the classifier to be cured had dramatically improved long-term
survival compared to those predicted to have fatal–refractory disease. The 5-yr over-
all survival (OS) is 70% vs 12%, with nominal log rank p value of 0.00004. As part of
this study, we also built other supervised classification algorithms and obtained similar
results. The fact that treatment outcome can be predicted solely based on gene expres-
sion patterns indicates the existence, at diagnosis, of a gene expression signature of
outcome in DLBCL.

MULTICLASS CLASSIFICATION:
CLASSIFYING MULTIPLE TUMOR TYPES

Multiclass classification problems are inherently more difficult than pairwise com-
parisons. In this section, we review our efforts to perform multiclass tumor classifica-
tion (49,50). We explored the general feasibility of molecular cancer diagnosis of
common human tumors solely on the basis of tumor gene expression profiles. We first
created a gene expression database containing the expression profiles of 218 tumor
samples representing 14 common human cancer classes and devised a multiclass clas-
sification method. Our analytical scheme is depicted in Fig. 16. First, the multiclass
problem was divided into a series of 14 one-vs-all (OVA) pairwise comparisons. Each
test sample was presented sequentially to these 14 pairwise classifiers, each of which
either claimed or rejected that sample as belonging to a single class. This method
resulted in 14 separate OVA classifications per sample, each with an associated confi-
dence. Each test sample was then assigned to the class with the highest OVA classifier
confidence. In mathematical terms: given m classes and m trained classifiers, a new
sample takes the class of the classifier with the largest real valued output class = arg
maxi = 1…m fi, where fI is the real valued output of the ith classifier. A positive prediction
strength corresponds to a test sample being assigned to a single class rather than to the
‘‘all other’’ class.

Fig. 15. Kaplan-Meier survival plot for the treatment outcome predicted groups.
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We then evaluated several classification algorithms for these OVA pairwise classifi-
ers, including weighted voting, k-nearest neighbors, and SVM. Because the SVM algo-
rithm consistently out-performed other algorithms, these results are described in detail.
The SVM algorithm was used recently for pairwise gene expression-based classifica-
tion (41,47,51) and has a strong theoretical foundation (52,53). This algorithm consid-
ers all profiled genes to create descriptions of samples in this high-dimensional space,
and then defines a hyperplane that best separates samples from two classes (Fig. 15).
The position of an unknown sample relative to the hyperplane determines its member-
ship in one or the other class (e.g., breast cancer vs not breast cancer). Fourteen sepa-
rate SVM-based OVA classifiers classify each sample. The confidence of each OVA
SVM prediction is based on the distance of the test sample to each hyperplane, with a
value of 0 indicating that a sample falls directly on a hyperplane. The overall multiclass
classifier assigns a sample to the class with the highest confidence among the 14 pairwise
OVA analyses.

Fig. 16. Multiclass classification scheme. The multiclass cancer classification problem is
divided into a series of 14 OVA problems, and each OVA problem is addressed by a different
class-specific classifier (e.g., breast cancer vs not breast cancer). Each classifier uses the SVM
algorithm to define a hyperplane that best separates training samples into two classes. In the
example shown, a test sample is sequentially presented to each of 14 OVA classifiers and is
predicted to be breast cancer, based on the breast OVA classifier having the highest confidence.
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The accuracy of this multiclass SVM-based classifier in cancer diagnosis was first
evaluated by cross-validation in a set of 144 training samples. This method involves
randomly withholding one of the 144 primary tumor samples, building a predictor based
only on the remaining samples, then predicting the class of the withheld sample.
The process is repeated for each sample, and the cumulative error rate is calculated.
As shown in Fig. 17, the majority (80%) of the 144 calls were high confidence (defined
as confidence >=0), and these had an accuracy of 90% using the patient’s clinical diag-
nosis as the gold standard. The remaining 20% of the tumors had low confidence calls
(confidence <0), and these predictions had an accuracy of 28%. Overall, the multiclass
prediction corresponded to the correct assignment for 78% of the tumors. For half of
the errors, the correct classification corresponded to the second- or third-most confi-
dent OVA prediction.

These results were confirmed by training the multiclass SVM classifier on the entire
set of 144 samples and applying this classifier without further modification to an inde-
pendent test set of 54 tumor samples. Overall prediction accuracy on this test set was
78%, a result similar to cross-validation accuracy and highly statistically significant
when compared with class-proportional random prediction (p < 1016). The majority of
these 54 predictions (78%) were high confidence, with an accuracy of 83%, whereas
low confidence calls were made on the remaining 22% of tumors with an accuracy of
58%. Again for one-half of the errors, the correct classification corresponded to the

Fig. 17. Multiclass classification results. (a) Results of multiclass classification by using
cross-validation on a training set (144 primary tumors) and independent testing with two test
sets: Test (54 tumors; 46 primary and 8 metastatic) and PD (20 poorly differentiated tumors;
14 primary and 6 metastatic). (b) Scatter plot showing SVM/OVA classifier confidence as a
function of correct calls (blue) or errors (red) for Training, Test, and PD samples. A, accuracy
of prediction; %, percentage of total sample number.
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second- or third-best prediction. Of note, classification of 100 random splits of a com-
bined training and test dataset gave similar results, confirming the stability of predic-
tion for this collection of samples.

We next focused on the 28 samples that yielded low confidence predictions in cross-
validation, as the multiclass predictor generally misclassifies these samples. We found
that a large number (17 of 28) were moderately or poorly differentiated (high grade)
carcinomas. It can be difficult to classify such tumors with traditional methods, because
they often lack the characteristic morphological hallmarks of the organ from which
they arise. It has been assumed that these tumors are nonetheless fundamentally
molecularly similar to their better-differentiated counterparts, apart from a few differ-
ences that might account for their clinically aggressive nature. To directly test this
hypothesis, the multiclass classifier was trained on the original 144-tumor dataset and
then applied to an independent set of poorly differentiated tumors. Gene expression
data were collected from 20 poorly differentiated adenocarcinomas (14 primary and
6 metastatic), representing five tumor types: breast, lung, colon, ovary, and uterus.
The technical quality of this dataset was indistinguishable from the other samples in
the study. However, these tumors could not be accurately classified according to
their tissues of origin, compared with the high overall accuracy seen with lower
grade tumors. Overall, only 6 out of 20 samples (30%) were correctly classified, which
is statistically no better than what one would expect by chance alone (p = 0.38). Because
the classifier relies on the expression of thousands of similarly weighted tissue-specific
molecular markers to determine the class of a tumor, these findings indicate that poorly
differentiated tumors do not simply lack a few key markers of differentiation, but rather
have fundamentally distinct gene expression patterns.

DIMENSIONALITY REDUCTION AND PROJECTION:
PRINCIPAL COMPONENTS ANALYSIS

Datasets with a large number of genes are in general difficult to visualize. Principal
component analysis (PCA) is a dimensionality reduction method, which has been used
to visualize complex gene expression datasets in two- and three-dimensional plots
(20,35,54,55). In this approach, one finds standardized linear combinations of vari-
ables, the “principal components,” which are orthogonal and explain all of the variance
in the original dataset. A typical method to obtain a simple projection (multidimen-
sional scaling) of the dataset is to plot the top two or three principal components, which
may account for a significant fraction of the variance, in a scatter plot. One can take
this approach in a completely unsupervised manner, e.g., by using all genes that pass a
data preprocessing step, or in a supervised way by projecting only the top marker genes
of a phenotype of interest.

For example, principle component analysis can be applied to leukemia gene expres-
sion data. The initial set of genes is first subject to a variation filter resulting in a
dataset with 612 genes that displayed the greatest variation across samples. In this
case, the PCA method is used in an unsupervised way. Figure 18 shows a three-dimen-
sional plot of these leukemia samples projected in the space of the top three principal
components. This plot reveals the dominant structure of the dataset corresponding to
the known morphological subclasses of leukemia, clearly separating ALL from the
AML samples and separating the T cell ALL from B cell ALL samples.
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CONCLUSIONS AND ANALYTICAL CHALLENGES
IN MOLECULAR CLASSIFICATION

The analysis of cancer gene expression data is still in its infancy despite impressive
recent progress. As expression profiling technologies mature, the identification of sta-
tistically significant patterns from relatively sparse and noisy data sets remains a major
challenge. Although sophisticated data-mining techniques are already being used to
analyze expression data, most of these techniques achieve robust performance with a
large number of samples and a small number of variables (56). However, gene expres-
sion data sets generally contain small numbers of samples, many profiled genes, and
multiple sources of variation. Future advances will require adapting analytic and statis-
tical techniques to this type of data. In addition, most published work has analyzed a
relatively small number of samples, and most studies await independent confirmation.

A first generation of gene expression analysis methods has been used successfully in
a variety of clustering and classification settings. For example, relatively successful
models have been used to classify a variety of cancer types. Some examples include:

• Leukemias (10,57,58).
• Lymphomas (48,59–61).
• Ewing’s sarcoma (62).
• Brain cancer (35,63,64).
• Breast cancer (17,18,65).
• Lung cancer (19,66,67).
• Prostate cancer (68,69).
• Colon cancer (70,71).
• Gastrointestinal tumors (72).
• Ovarian cancer (73–78).

Fig. 18. Plot of the top three principal components for the 612 most highly varying genes in
the leukemia subtypes dataset. The analysis is unsupervised and reveals the dominant structure
of the dataset corresponding to the morphological subclasses.
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• Melanoma (20).
• Multiple tumors (40,79,80).
• Soft tissue tumors (81).

These studies have undoubtedly contributed to improve our understanding of cancer
classification at the molecular level. However, in most cases, the complexity of the
problem had to be simplified by treating genes as independent variables. While some
studies expose co-regulation, they may not focus on the more complex patterns of
interaction inherent in all biological processes and may further ignore the diversity of
biological mechanisms within a phenotype. For example, in marker selection, one dis-
tinguishes between two phenotypes by determining which genes are up-regulated in
one phenotype and down-regulated in the other. While this is a straightforward pattern
to discover, we know it does not represent the true nature of genes’ interactions. For
example, it does not take into account distinct mechanisms that may yield the same
biological state or subphenotypes and taxonomies that may be as yet unidentified. Even
when clustering and classification methods are shown to be successful, it is often
unclear exactly what the significant features or discovered patterns mean. Extracting
more refined knowledge from the profiles and patterns is a serious scientific bottleneck.

Another important area relates to the integration of datasets generated in different
laboratories using different profiling technologies. Many human cancer studies involve
valuable or rare clinical specimens and are difficult to repeat. Ideally, one should be
able to compare expression data sets obtained in any center, at any time, using any
platform. However, this goal remains unrealized. Spotted array data is usually reported
as ratios between experimental and control expression values and cannot be easily com-
pared with oligonucleotide microarray data. Multiple expression profiling technolo-
gies require more sophisticated methods for data comparison and integration.

Despite initial sequencing of the human genome, we still have only a rudimentary
knowledge of the physiologic roles of most genes. This represents a significant bottle-
neck in linking gene expression profiles to molecular mechanisms of transformation.
There is a need for integrated databases, with complete annotation, comprehensive
gene descriptions, and links to relevant genetic and proteomic information. In addition,
as expression studies are performed in various species, integration of this information
should prove as illuminating as interspecies gene sequence comparisons. Such data-
bases will allow for an understanding of gene expression in the context of all other
available biologic information. Although a number of commercial sources have started
to create such databases, there is much room for improvement.

The challenges described above concern methodological and scientific issues.
However, no computational approach is useful if it is not embodied in a set of soft-
ware tools that scientists in the community can use. There are some academic codes
available by Web download, but often they are not integrated and do not interoperate
in a user-friendly environment. Available commercial codes are generally not cur-
rent with the latest sophisticated techniques and often focus more on visualization of
expression data than analysis and knowledge discovery. Since analysis of gene
expression data remains a significant limitation in cancer genomics, the development
of freely available and transparent analytic software continues to remain a major
challenge.
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The Role of Tumor Banking and Related Informatics

Stephen J. Qualman, Jay Bowen,
Sandra Brewer-Swartz, and Mary France

INTRODUCTION

The majority of this book deals with the diagnostic and research applications of
molecular or tissue array technologies with regard to expression profiling of tumors.
These efforts (1) will only be successful with the logical application of tumor banking
and its associated informatics systems as the translational bridge linking new molecu-
lar information to its clinical significance. The design of tumor banks should be such
that significant effort is devoted to obtaining data on clinical outcomes (2), which per-
mits investigators to know that such data are available for analysis as they pursue their
molecular studies on bank-derived specimens. Tumor banking and its associated
inventory informatics have been recognized for over a decade (3,4) as necessary tools
to advance the science of molecular testing; however, it has only been in the last 2 to
3 yr that the linkage to clinical outcomes has been seen as crucial to achieving this goal
(3). It is estimated that by the year 2005 (5), as much as 10% of clinical laboratory tests
will be based on RNA or DNA analysis.

This chapter will deal with the broad concepts of tumor banking and informatics as
practiced at the Biopathology Centers (BPC) located at the Children’s Research Insti-
tute, Columbus, OH. The BPC provides banking and informatics services to a variety
of cooperative groups, including the pediatric Cooperative Human Tissue Network
(pCHTN), Children’s Oncology Group (COG), Gynecologic Oncology Group (GOG),
and Childhood Cancer Survivor Study (CCSS). The BPC deals with patient specimens
that span the age range of newborns to the elderly; procuring tumor types that include
the spectrum of pediatric solid tumors, selected adult gynecologic tumors (ovarian,
cervical, uterine), and any second malignant (solid) neoplasm in childhood cancer sur-
vivors. In the last decade, the BPC has served nearly 85,000 tumor or related tissue
specimens to over 300 different investigators. These specimens are linked to patient
clinical outcome, because of the BPC’s alliance with the aforementioned cooperative
groups.

This chapter will describe the BPC’s structure with regard to its physical repository
and related tumor–tissue procurement activities, as well as its informatics system as it
relates to data elements, security and data encryption, and specimen inventory. Finally,
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the metrics, which are used to assess both the BPC’s quality control activities and the
BPC’s impact on advancing medical science, will be discussed. It is hoped that docu-
mentation of the BPC’s experiences will serve as a paradigm for others who plan to
procure, bank, and utilize human tumor tissues for research purposes, such as expres-
sion profiling.

BIOREPOSITORY STRUCTURE

Tissue Sources

Cooperative Group Affiliations

The types of specimens that are procured, processed, and stored by the BPC are
dependent upon what is needed by the cooperative groups. By collecting every type of
specimen associated with each group’s protocols, the BPC can assure each group of
uniformity in storage and quality control. While snap-frozen tumor tissue and paraffin
blocks comprise the majority of preparations, the BPC stores everything from buccal
cells to urine.

Cooperative group affiliations have been beneficial to the BPC, because they have
allowed the BPC to be involved in protocol development, performance monitoring,
and educating institutional members. The groups have benefited from utilizing the BPC
banking and pathology services as well, because the BPC provides shipping contain-
ers, specimen procurement supplies, use of a courier account number, and customer
service to the institutions. In addition, the groups know that specimens linked to their
protocols are being managed by experienced staff who stay abreast of the ever chang-
ing shipping and patient protection regulations.

Local Institution(s)

The BPC is located on the Columbus Children’s Hospital campus and maintains a
relationship with the Pathology Department in order to access surgical and autopsy
specimens processed by that department. It is the responsibility of the BPC to inform
the surgical pathologists as to what cases and specimens are of interest to the bank
researchers. Laminated wall charts are provided for posting in the surgical suite, the
frozen section room, the histology laboratory, or the autopsy suite, which illustrate the
types of tissue that can be procured according to tumor type (Fig. 1). These are also
distributed to outside BPC procurement sites. Proof of consent to use the tissue for
research must be obtained before the tissue is stored in the BPC repository.

Funding Sources

In addition to the pCHTN funding for tumor procurement, the BPC is supported by
the GOG, COG and CCSS in order to provide these groups with banking services and
pathology services. All funding is either direct or derivative funding from the National
Institutes of Health (NIH). The baseline amount of funding required to establish a mini-
mal tissue procurement service, independent of personnel costs, is estimated to be
around $20,000 (2). This cost is also exclusive of space (4) and can be further broken
down into initial equipment costs in freezing–storage apparatus, database software,
and annual consumable costs (4).
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Fig. 1. Wall chart for posting in the surgical suite, the frozen section room, the histology laboratory, or the autopsy suite. Variations of this chart
are created to illustrate specific types of tissue procurement, dependent on the tumor studied and the kit prepared for such purposes.



106 Qualman et al.

Space

The BPC presently occupies 2400 ft2 of laboratory, storage, and office space.
Approximately 640 ft2 is used as laboratory space for histology and processing and
distribution of specimens. With sufficient space, specimen processing and distribution
can be done in the same laboratory.

Various types of storage space are needed by the BPC, including 300 ft2 for liquid
nitrogen vapor-phase freezers, –80°C freezers, and a cold room (4°C), while 150 ft2 is
needed for storage of slides, paraffin blocks, touch preparations, and procurement kits.
A minimum of 150 ft2 is estimated to be required for repository purposes (2). Paper-
work, which needs to be accessible to staff, is stored in filing systems within the office
space of the BPC. Several rooms are utilized as office space for the BPC staff, totaling
1300 ft2. Materials that are not frequently accessed may be stored off-site.

Equipment and Staff

Some of the pieces of equipment mentioned below are optional items, but were
deemed as necessary due to the high activity level of the BPC. Laboratory-related staff
consists of two histology technicians, two medical laboratory technicians, two research
assistants, and one research coordinator. A minimum of two employees are probably
required (4) to operate a biorepository, besides a pathologist to provide oversight; these
include a bank coordinator, who maintains the tissue archive in all its aspects, and a
histotechnician, to process tissues for distribution to investigators.

Processing and Distribution Laboratories

The specimens to be banked and/or served to bank researchers are received in the
processing laboratory where they are weighed, labeled, and when necessary, further
processed before being stored or served. The following equipment is routinely used by
the processing and distribution laboratory staff: balances (precision to 0.01 g), centri-
fuge (Ficoll-Hypaque isolation of white blood cell pellets), chemical fume hood, lami-
nar flow hood (sterile handling), and a refrigerator. To maintain tissue integrity, a heat
sealer is used for sealing specimens in plastic bags prior to storage at –80°C and a
Super Mutt Vacuum Sealer (Gramatech, Montebello, CA, USA) is used to package
formalin-fixed tissues (paraffin blocks, scrolls, and slides) in mylar bags.

Storage Facility

Most tissues at the BPC are stored in liquid nitrogen vapor-phase freezers, because
specimens kept at approximately –170°C are of higher integrity than those maintained
at higher temperatures and show less desiccation (2,6). Freezers (–80°C) are used for
short-term tissue storage, and –20°C freezers are used for reagent storage. Manual
defrost units are preferred, as the freeze–thaw cycles of automatic defrost units can
degrade the quality of biologics and reagents.

Paraffin blocks, scrolls, and slides are best preserved in vacuum-sealed mylar bags
with a commercial oxygen absorber at 4°C. Paraffin slides may also be dipped in mol-
ten paraffin prior to storage to preserve tissue antigenicity (7). The BPC utilizes a cold
room (walk-in cooler) (4°C) for storing its vacuum-sealed unstained slides and paraf-
fin blocks.
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Touch preparations, taken and fixed from fresh tumor specimens, were once stan-
dard submissions to the BPC, but are now best performed from segments of snap-
frozen tissue stored at the bank. These can then be fixed and sent to the investigator
with relatively good preservation of antigenicity and morphology.

Histology Laboratory

The histology technicians process fixed specimens and provide review materials to
be used in diagnosing the tissues of the BPC. This includes processing formalin-fixed
tissue into paraffin blocks and preparing an hematoxylin and eosin (H&E) section from
each paraffin block for quality control review, as well as preparing fixed tissues for
investigators (H&E sections, tissue scrolls for ploidy studies, immunoperoxidase slides,
etc.). Frozen sections from optimal cutting temperature (OCT)-embedded frozen tis-
sues are also routinely prepared for immunohistochemistry, in situ hybridizations, or
nucleic acid extractions. The equipment located in the BPC histology laboratory
includes a tissue microarray instrument, a microtome, a cryostat, a tissue processor to
prepare tissue for embedding, an embedding center, and a slide-labeling machine
(the latter labels all slides using the BPC’s anonymous numbering system in order to
protect patient confidentiality).

Specimen Procurement Kits and Storage

The BPC provides submitting institutions with specimen procurement kits to facili-
tate the procurement process and encourage specimen submission. The specimen pro-
curement kits are reusable, insulated, multitemperature specimen containers (Insulated
Shipping Containers, Phoenix, AZ, USA), which allow shipment of both frozen and
ambient temperature specimens in the same package (see Fig. 2A). This kit maintains
ambient and frozen temperatures for more than 48 h, despite the external environment
through which it is transported (Fig. 2B).

The contents of kits are based on the particular group studies. Specimen procure-
ment kits can include all the following kit supplies: OCT molds, 15-mL formalin jars in
styrofoam mailers, foil and specimen baggies, 1.5-mL vials containing 1 mL of
RNAlater™ (Ambion, Austin, TX, USA) for tissue, 2-mL tubes for serum, 2-mL tubes
for urine, 5-mL ethylenediaminetetraacetic acid (EDTA) tubes for anti-coagulated
blood or bone marrow, 15-mL culture tubes, parafilm, charged glass slides in slide
mailers, biohazard stickers, and dry ice labels.

Within the BPC, RNA is extracted from cryostat sections and tissues received in
RNAlater. Some nucleic acid preservation products may reduce the usefulness of speci-
mens for proteomics, so this consideration should be taken into account in the design of
tissue protocols. Tissues sent to investigators for RNA extraction by the BPC may
utilize RNAlater and obviate use of dry ice.

Long-term storage of specimens in vapor-phase liquid nitrogen freezers is done in
small segments (e.g., 5 g or less) in plastic histology cassettes or mega-cassettes, with
the specimens wrapped in aluminum foil to minimize desiccation. OCT-embedded
specimens in cryomolds should likewise be wrapped in foil. Glass vials and pop-top
plastic vials are not adequate storage containers for vapor-phase liquid nitrogen tem-
peratures, as they may readily break or pop open (2). Screw-cap cryovials work well
for storage of serum or urine.
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Specimen Transport

Cooperative group-affiliated institutions must send specimens to the BPC through
air-express couriers within 24 h of procurement, using the dual-chamber (Fig. 2) kits
previously described. Shipments made via overnight carrier must be packaged to con-
form with International Air Transport Association (IATA) Section 1.5.0.2 and Code of
Federal Regulations Section 172.7 (details available from the Web sites of various

Fig. 2. (A) Insulated dual-chamber shipping container. One chamber contains dry ice for
frozen specimens, while the other maintains specimens at room temperature using a gel pack.
(B) Field testing of the kit shows dual maintenance of frozen and room temperature with asso-
ciated specimens in the kit chambers (despite variation in outside ambient temperature) for a
48-h period.
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express courier companies and biohazardous shipping container companies). Research-
ers receiving specimens are billed for shipping charges and an additional specimen-
processing fee associated with the types and numbers of specimens served.

DATA MANAGEMENT AND INFORMATICS

Data Management

The BPC staffs includes three informatics-related employees (computer engineer,
programmer, and database liaison). The computer engineer is on staff during system
design and redesign and is only cost-effective as a temporary position. The program-
mer is needed full-time, because systems are always being amended to meet the chang-
ing needs of the groups. The database liaison works with the staff in assuring that the
systems are meeting the needs of the users (defining them for the programmer) and is
also responsible for sharing data with cooperative groups. The majority of documents
maintained by the BPC are registration documents, operative reports, and pathology
reports. Copies of the associated pathology reports are sent along to researchers with
submitted specimens, but are stripped of patient identifiers. To protect patient confi-
dentiality, documents with patient identifiers are currently kept in lockable cabinets in
locked rooms.

Informatics

Informatics can facilitate patient registration, specimen tracking, tissue cataloging,
quality assurance, and specimen availability. The ability of databases to organize and
present desired information can also aid in tracking informed consent and institutional
compliance and be used to generate tissue bank inventory reports to match investigator
requests with specimen availability.

Design Objectives for a Banking Inventory System
The components of a system must appear seamless to allow for efficient data entry,

queries and report preparation, and must also allow for rapid deployment of new ser-
vices. Consideration should also be made for the future, as systems will become
increasingly diverse; supporting multiple architectures, platforms, and databases.
Exchange of information between different databases at different institutions may also
be or become a concern.

Ideally, an informatics system ensures that data is available over a long period of
time, maintained in a standardized format, able to be disseminated to others as needed,
and collected from collaborative sources and combined.

Informatics Programming Standards and Common Data Elements
Information Services departments may have database technology standards from

which a database system can be based, but often there are none. Children’s Research
Institute Core Technologies (CRICT) are the standards used by Children’s Research
Institute in Columbus, OH, and were used as the starting point for the BPC’s informatics
system. These standards were then customized to meet the specific requirements of the
project, resulting in a more specific set of standards called the BIOPATH II Database
Architecture Guide (8). These standards allowed 80% of all banking and pathology
review systems to be part of the core data structure, leaving only 20% for customized
programming.
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The Cooperative Group Chairs, along with the National Cancer Institute, recognized
the need for common data elements across data systems. As a result, the Intergroup
Specimen Banking Committee was formed in 1999 to “identify existing standards, poli-
cies, and procedures, particularly those in common usage, which would address the
needs of intergroup banking, rather than invent new ones. The goal was to deliver a set
of recommendations that would require the least amount of work, change, and expense
to implement, while providing sufficient guidance to the research community to facili-
tate useful banking efforts in support of correlative science, to avoid unnecessary con-
flict, and to ensure a sufficient standard of quality.” (9).

Rather than establish standards of hardware, operating systems, or applications, the
report instead set forth a standard for mandatory common data elements. These com-
mon elements provide for such things as uniform reporting, data exchange, and joint
analysis.

Entities subject to these guidelines are medical institutions that submit specimens to
one or multiple tissue banks–repositories, science review committees, investigators
receiving specimens and responsible for submitting results, and statistical centers (9).

MINIMUM DATA REQUIREMENTS FOR BANKING (9)
• All samples and subsamples must have a unique identifier.
• The system must adhere to standard coding mechanism.
• The system must be able to maintain an up-to-date inventory by a unique identifier to

include the original and current quantity of specimens and where they have been sent,
when (if) they have been returned, and when they have been exhausted. The system must
also be able to invalidate samples.

• The database containing information on sample locations (inventory) may reside at the
bank and does not need to be accessible by systems outside the bank.

• The system must be able to flag (reserve) specimens for a particular study.
• The system must track the type of informed consent for research that is allowed.
• The system must track specimens and allow for withdrawal of consent.
• The system must be able to report and provide query results across groups to facilitate any

combination of a bank per trial, a bank per disease site, or a bank per group per disease
site. Projects may require samples accrued on more than one trial.

• The system must provide quality control–checks on imported data.

INFORMED CONSENT AND CONFIDENTIALITY

Tracking and cataloging informed consent is the key to banking informatics.
Informed consent is the factor by which all tissues are qualified or disqualified for use
by a potential researcher. The Intergroup Specimen Banking Committee recently
endorsed the use of a three-item checkbox format for summarizing levels of informed
consent (9). These levels allow for the patient to designate whether their tissue or case
data may be used for: (i) cancer research; (ii) general medical research; and (iii) future
patient contact for needed clinical follow-up.

LINKAGE AND DE-LINKAGE

Risks posed to subjects from research with their tissues are strongly related to the
identifiability of individual sources of those tissues (10). Data records, which can be
directly or indirectly associated with a person’s name or other identifying information,
are referred to as linked data. Such identifying elements are date of birth, treating
institution, treating physician, medical record numbers, social security numbers, etc.
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The BIOPATH II system uses specialized codes that, by default, “de-link” the speci-
men and clinical outcome data to maintain patient anonymity. If there is patient con-
sent for the data to be linked, the data sets at the BPC and at a Cooperative Group
Statistical Data Center are connected via a virtual private network (see section entitled
Virtual Private Networks), and decoding can occur.

To permanently de-link data, any codes that will link or identify data or tissues with
the donor must be removed, such that even the database manager can no longer trace a
tissue or its related data back to the donor.

Centralized Inventory System

Inventory is at the heart of the tissue bank informatics design (Fig. 3). The inventory
module is linked to cataloging, which provides for tagging and tracking of such things
as informed consent, group ownership, and tissues reserved or specifically collected
for a protocol or study. This ensures that specimens are tracked and distributed appro-
priately and in compliance with the patient’s informed consent, as well as preventing
the total depletion of a tissue sample.

The system design also streamlines tissue intake and serving of investigators. Mate-
rials are received and processed by a research assistant and entered directly into the
system, while specimen shipments are processed through the same interface using the
shipment module. The modules keep a precise record of materials as they are received
and shipped, to produce a real-time inventory of what is available. When specimens are
received and inventoried into the central system, the specimen is linked back to the
specific cooperative group’s case file. A full history of the specimen, from when it was

Fig. 3. Informatics design of BIOPATH II. A centralized inventory system is at the heart of
the design, which can account for both cooperative group and patient-specific data, while main-
taining a real-time inventory of specimen deposits, withdrawals, and residual tissues.
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received to when it was served, is maintained per cooperative group per case. Such
history gives quick and easy access for reporting purposes.

Virtual Private Networks

A virtual private network (VPN) allows for usage of the Internet, normally a
nonsecure medium, for transmission of confidential patient and specimen information
using data encryption.

The use of virtual private networking has been fundamental in streamlining the
patient enrollment and specimen registration process, reducing repetitive keying of
data, and ensuring that information is synchronized between physically separate sites.
This linking of databases can also be used to create virtual tissue banks from the inven-
tory of different sites, thus allowing for the optimal matching of requests and distribu-
tion of tissues to reach a larger market.

The sensitive nature of medical information makes unauthorized disclosures and
data alterations a concern. VPNs can be a cost-effective solution to provide secure
point-to-point transactions utilizing encryption technologies. The primary requirements
for implementation of a secure VPN are:

• Authentication; each end point checks the other and verifies that the transaction belongs to
the secure point-to-point site before accepting the transaction or request.

• Strong data encryption to protect sensitive information.
• Transaction privacy (public–private key encryption).
• Encryption using a key unique to each information exchange session.
• Scalability; a VPN needs to be able to grow to accommodate an increase in connected sites.
• Ability to provide audit information.
• Immediate intrusion–attack detection and response; requires continuous evaluation of

security policies and practices.

METRICS OF PERFORMANCE

Areas of Assessment

Creation of a physical biorepository, receipt of tissues, and development of an
informatics system to monitor all aspects of specimen procurement and dispersal are
merely a starting point for a successful tumor banking operation. Metrics or measures
of the success of a banking operation are best assessed by looking at output, including
what is served, who is served, and what is published. Metrics of what is served can
include evaluations that are both morphologic and molecular in nature. This is in addi-
tion to written evaluations received from investigators served.

Morphologic Assessment

Central morphologic reviews are performed on the formalin-fixed tissues sent via
the dual-chamber kits, which represent the mirror-image of samples of snap-frozen
tumor and normal adjacent tissue also included in the kit. The histologic analyses are
encoded on an informatics form for each histologic type of tumor examined and include
such parameters as assessment of tumor diagnosis, percent tumor, percent stroma, and
percent necrosis.

In a BPC sample of 7000 pediatric and gynecologic tumors examined over a
5-yr period, a diagnostic discrepancy rate of approx 10%, between central and institu-
tional diagnoses, was identified. Although this discrepancy rate might at first appear to
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be quite high, these data in the main reflect sampling problems identified in tissue
aliquots labeled by the institution as “normal” or “tumor,” which were not reflective of
the aliquot’s content (e.g., tissue totally necrotic, normal tissue contaminated by tumor,
etc.). Less than 2% of cases contained true discrepancies between central review and
institutional diagnoses (most of which were minor, reflecting differing opinions as to
tumor grade or subtype). The 10% discrepancy rate does emphasize the need for mor-
phologic review of submitted tissues, so that extremely necrotic or contaminated tissue
aliquots (“normal” with tumor) are not used by investigators. The central review diag-
nosis is the one reported to investigators.

Molecular Assessment

Confirmation of morphologic viability of tissues is only the first step in assessing
the quality of tissues served to investigators. A survey of our pediatric and gynecologic
investigators, as to uses of tissues for research (Fig. 4), revealed that the preponderance
of specimens are used for various types of molecular studies (60% for RNA or DNA
studies), with nearly one-third utilized for protein-based studies (including enzymes,
growth factors, and hormone receptors). Studies involving hybridizations (fluorescence

Fig. 4. Investigator uses of bank tissues as determined by direct query on feedback question-
naires. Sixty-percent (60%) of tissues are used for nucleic acid studies, nearly 25% for
protein-based studies, and the rest for hybridizations (CGH and FISH) along with immuno-
histochemistry. MoAb, monoclonal antibody.
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in situ hybridization [FISH], comparative genome hybridization [CGH]) or immuno-
histochemistry are in the minority (8% of total studies).

With such emphasis on molecular uses of BPC tissues, efforts to assess the molecu-
lar integrity of tissue became necessary. The BPC has looked at the molecular integrity
of its gynecologic specimens by reverse transcription polymerase chain reaction
(RT-PCR) and DNA and RNA electrophoresis performed on ovarian tissues (11).
RT-PCR assay for amplification of the mRNA gene product (177-bp product) of the
HPRT housekeeping gene revealed adequate amplification in 70% of ovarian cases.
RNA electrophoresis (followed by visual estimate of the 18s and 28s ribosomal RNA
bands by ethidium bromide staining) also revealed RNA to be of good quality with mini-
mal degradation in 70% of ovarian tissues. DNA electrophoresis showed the genomic
DNA was of good quality in 100% of ovarian tissues tested. The challenge of adequate
mRNA preservation is further discussed in the section entitled “Future Challenges.”

Investigator Profiles and Publications
Another metric used to assess the effectiveness of a banking operation is defining

who is served and what is published. These questions are answered during the feedback
questionnaire process by asking for updated investigator biosketches and project sum-
maries, along with a summary of current and submitted grant proposals (including those
based on uses of BPC tissues). Direct queries of the investigators are also made on an
annual basis regarding any publications they have produced based on BPC tissues, in
part or total, and this list is compared with Internet listings of the same. All authors are
asked to acknowledge BPC contributions within their papers.

These metric data can serve to validate a tumor bank’s existence and successful
function. One can also look more qualitatively at the contents of each scientific publi-
cation to define those papers that could be construed to be critical to the advancement
of medical science, however, the details of this approach are beyond the scope of this
chapter. Finally, it should be noted that the BPC’s role is not to just serve the estab-
lished investigator; a bank should also have the discretionary power to support the
young investigator with exciting new scientific ideas.

FUTURE CHALLENGES
Tumor banking to advance medical genetic research has recently been identified as

an international priority (12). It has also changed the role of the pathologist from that of
simply a tissue refiner to include a role as a data miner (13). It is important in such an
enterprise to establish a long-term commitment to substantial resources and secure
funding (12); however, the substantive challenges to the success of the enterprise in the
future are really more based on tissue-, informatics-, or ethics-based questions.

Specific Challenges
The specific challenges which need to be addressed by any tumor banking operation

in the future include: (i) doing more research with less tissue; (ii) addressing biohaz-
ards issues in all phases of the banking operation; and (iii) ensuring informed consent
and maintenance of patient confidentiality.

More Research with Less Tissue
In their editorial on “Looking Forward in Pathology” (1), NIH pathologists noted

that “the emphasis is, and will continue to be, on getting more and more specific infor-
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mation from less and less material.” The BPC’s experience with tumor procurement
has been that for most pediatric cancers, about 0.5 g of snap-frozen tumor is procured
per case for research, while in adult gynecologic tumors, the average is more likely 1.0 g
of tissue. In either case, neither amount is sufficient to service multiple investigators
without careful forethought and planning.

While it is true that better education of surgeons, pathologists, and tumor procure-
ment personnel may improve the yields of the procured tumor for research, ultimately,
the amount of tissue made available for research, which would otherwise be discarded
once diagnostic needs are met, is limited by institutional review boards (IRBs) (12).
This limitation of tissues procured is further magnified by the growth in use of core-
needle biopsies and fine-needle aspirations as diagnostic procedures.

Given these limitations on amounts of tissue, preservation on-site of mRNA by
timely snap-freezing of tissues in liquid nitrogen becomes paramount.

The ultimate role of the pathologist as a tumor banker in this setting is that of a tissue
refiner. One of the chief complaints of investigators concerning tumor banks is the lack
of sizeable specimens received for their research. It is incumbent upon the patholo-
gists–bankers, as they review a research proposal, to educate the investigator both on
the inherent limitations of tissue acquisition and on alternate research techniques that
utilize less tissue. Fortunately, with the advent and increased usage of nucleic acid
amplification techniques and FISH, such alternate techniques are more readily avail-
able; moreover, use of microarray technologies, combined with nucleic acid amplifica-
tion, may allow for screening of thousands of genes (1).

Biohazards in the Workplace

With the increasing numbers of individuals infected with hepatitis C or human
immunodeficiency virus (HIV) in the U.S. (14), it becomes incumbent upon any bank-
ing operation to operate under the mandate of “universal precautions,” even though the
BPC does not knowingly accept infected tissues as a stated policy. There are four steps
in developing a biosafety program (14), which include: (i) identifying governmental
and accrediting agency requirements; (ii) identifying site-based risks and biosafety
issues; (iii) developing written working guidelines to improve site-based biosafety;
and (iv) implementing a training program.

The BPC maintains such a biosafety program in its banking operations and provides
yearly universal precautions training to its procuring hospital personnel at cooperative
group meetings. Training of the investigator’s personnel in universal precautions is a
written expectation of the BPC, which must be signed-off on by investigators, before
they receive tissues (6).

Biosafety hazards, as related to specimen containers and transport, have led to
changes in the rules concerning transport of biologic specimens (14). Information con-
cerning such regulations is available through links at the Occupational Safety and Heath
Administration Web site (http://www.osha.gov) (14).

Informed Consent and Patient Confidentiality

In a recent editorial (12) on tumor banking, it was noted that “Ironically, it is the
power of modern genetic analysis that creates the most difficult ethical dilemmas… con-
cern that ‘genetic research’ may uncover information that is unwanted by the patient,
has implications for family members, and could potentially lead to discrimination.”
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The keys to successfully addressing these dilemmas are to: (i) precisely define the
meanings of a genetic test and genetic research (15); (ii) define and implement model
consent forms that address these definitions (16) and meet IRB expectations; and
(iii) maintain the confidentiality of the flow of information from the institution procur-
ing the specimens to the researcher testing them (10). The tumor bank could effectively
serve in the latter role by coding or de-linking tissues provided to researchers, manag-
ing updates of records, and handling requests for further follow-up data, while main-
taining the fiduciary responsibility of protecting patient anonymity (10).

With the evolution of final federal privacy rules concerning “Standards for Privacy
of Individually Identifiable Health Information,” tumor banks may need to take addi-
tional steps to successfully balance the demand for protection of patient privacy with
the need to advance medical research. It is clear, from investigator surveys, that
researchers are demanding more associated clinical data with their specimens. Improv-
ing the informed consent process to allow for acquisition of such data is the key to
advancing such translational research.
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Characterization of Gene Expression Patterns

for Classification of Breast Carcinomas

Irene L. Andrulis, Nalan Gokgoz, and Shelley B. Bull

INTRODUCTION

Breast cancer is an important health problem that has proven to be a challenge for
clinical and basic science research because of intrinsic tumor and cellular heterogene-
ity. In addition, the large number of genes potentially involved in controlling cell physi-
ology complicates the accurate prediction of clinical behavior of breast carcinomas.
The advent of gene expression microarray technology, which can be used for analyses
of thousands of genes, provides a powerful tool to assist in determination of diagnosis,
prognosis, and treatment.

Understanding the development of breast cancer from precursor lesions is critical
for clinical treatment and prevention, however little is known of the molecular events
involved in the progression to cancer. Once breast cancer has developed, the most
important prognostic variable defining the natural history of breast cancer is the num-
ber of involved axillary lymph nodes (1,2). A number of predictive markers exist for
axillary node positive breast cancer, and chemotherapy and hormonal therapy have
been of benefit in reducing the risk of distant metastasis. As a group, women with
axillary node negative (ANN) breast cancer have a good prognosis, however; approx 20%
of individuals will experience a recurrence and die from systemic disease. There is no
singular predictor of outcome for ANN breast cancer. Several clinical trials have indi-
cated that some ANN patients may benefit from adjuvant chemotherapy or hormonal
therapy (3–7) . However, large numbers of women (including those in whom no recur-
rence will occur) must be treated in order to benefit those destined to relapse. It is,
therefore, important to try to develop prognostic indicators for ANN patients who are
more likely to experience a recurrence. Thus, currently available prognostic and pre-
dictive markers are not sufficient for the accurate determination of risk for many breast
cancer patients. Better markers would obviously be of value in individualizing therapy.

Traditional predictors for patients with node positive breast cancer include tumor
size, steroid hormone receptor status, menopausal status, and histologic grade (2,8–
10). Adjuvant treatment for breast cancer includes hormonal therapy and chemotherapy.
Most breast cancers express estrogen receptors (ER) at diagnosis, and ER status is used
in the determination of adjuvant antiestrogen treatment, particularly with tamoxifen.
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Tamoxifen has been shown to be of benefit in the treatment and, more recently, preven-
tion of breast cancer (7,11). Unfortunately tamoxifen resistance can occur in individu-
als who were initially responsive to the drug. This is an area of active investigation,
because of the biological and clinical importance, yet there remain many unanswered
questions on the nature of the development of ER negative tumors and the mechanism
of resistance to tamoxifen (12).

In addition to traditional markers, other potential prognostic variables have been
described, including cell proliferation (13), DNA content (14), neu/ERBB-2 amplifica-
tion–overexpression (15–24), epidermal growth factor receptor (EGFr) status (25,26),
nuclear grading (27), p53 mutation (28–31), cathepsin D (32–35), p27 (36,37), angio-
genesis (38–41), and amplification of 11q13 (42–45).

A number of recent studies have reported the use of gene expression arrays to iden-
tify groups of co-expressed genes, to characterize genes by their expression profiles
over a set of breast carcinoma samples, and to characterize molecular signatures of
breast carcinomas. In this chapter, we describe how gene expression profiling is being
used to classify specimens based on properties of the tumor, such as expression of ER
and ERBB2, as well as BRCA1 and BRCA2 mutation status, to identify gene expression
patterns related to nodal status and clinical outcome, and to predict therapeutic groups
responsive to hormonal and chemotherapeutic agents. The ultimate objective of most
of these studies is to assist in the development of treatment strategies based on tumor
expression profiles.

SUMMARY OF ISSUES IN DESIGN AND ANALYSIS
Biospecimens and Patient Collections

To characterize gene expression patterns in human breast cancer, investigators have
studied array profiles of breast epithelial cell cultures, breast cancer cell lines, and
primary human breast tumors. Most papers describing array data using primary human
tumor material include some histopathological characteristics of the tumors and/or
clinical information on the patient. Aside from ER status of the specimens, which is
generally indicated, studies vary widely in the amount of additional clinical informa-
tion reported (see Table 1). There is also considerable variation in the source of patient
tissue samples, including clinical trial participants, frozen tissue tumor banks, as well
as unselected samples.

Human breast tumors are heterogeneous, and specimens available for molecular gene
expression studies can be expected to contain contaminating normal material. In addi-
tion to the breast carcinoma cells, various amounts of stromal cells, adipose cells,
endothelial cells and infiltrating lymphocytes will be present. Although microdissec-
tion methods can be used to enrich for cancer cells, and methods are being developed
for reliable amplification of mRNA (46), to date most expression profiling has been
performed on breast carcinomas that have not been microdissected. As technology con-
tinues to improve, this is likely to change. Furthermore, it has been argued that, since
the noncancer cells can also be identified by their unique expression signatures, analy-
sis of the intact specimen may provide additional information related to cellular inter-
actions in tumor progression (47,48).

Various types of expression arrays have been used to investigate breast tumor speci-
mens including cDNA arrays, oligonucleotide arrays, and membrane arrays (Table 1).
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For the cDNA and ink-jet spot arrays, a common reference control sample has been
separately labeled and hybridized together with RNA from the cell or tissue sample of
interest. Levels of gene expression in the test sample can be measured relative to
the reference sample, thereby allowing for a consistent comparison between mul-
tiple experiments. It is desirable to choose a reference sample with diversity, so that the
majority of the genes spotted on the array show some minimal level of fluorescence
intensity (48,49). Most studies of breast specimens have pooled mixtures of cell lines
(47,50,51) or pooled cRNA derived from carcinomas (52).

Approaches to Statistical Analysis and Assessment of Validity
Analytic strategy

As in other human cancer applications, the statistical analysis of gene expression
data from microarray studies of breast carcinoma typically follows the process outlined
in Table 2. The initial stage of image processing and quantitation, quality assessment,
and data transformation and normalization to adjust for systematic between array dif-
ferences is carried out for each array, with the methods dependent to a large extent
on the specific array technology being used (53). For cDNA spot arrays for
example, we have observed systematic subarray effects that usually reflect the spatial
position of the gene spot on the array slide. These effects can be identified by scatter
plots and removed by location adjustments. To analyze a set of tumor samples together,
scale adjustment and gene filtering across arrays is generally required. The latter is
intended to eliminate genes that are not well measured or those that show no variation
across the samples being analyzed.

Unsupervised classification methods, such as cluster analysis, are essentially
exploratory in that they do not require any a priori information to group samples by

Table 1
Summary of Microarray Analyses in Breast Cancer

Tumor Array
characteristics characteristics

ER LN Number
Group (reference) Tumors status status Treatment Outcome of spots

Martin et al. (2000) (56)   18 + +* NR + (2 yr)      124a

Perou et al. (2000) (50)   42 + + + NR    8102b

Bertucci et al. (2000) (57)   34 + + + +      176a

Gruvberger et al. (2001) (67)   58 + + NR NR    6728b

West et al. (2001) (99)   49 + + NR NR    5000c

Sorlie et al. (2001) (51)   78e + + + +    8102b

van’t Veer et al. (2002) (52) 117 + + NR + 25,000d

*Stage.
aMembrane arrays.
bcDNA arrays.
cOligonucleotide arrays.
dInk-jet arrays.
eIncludes 42 tumors in Perou et al. (50).
ER, estrogen receptor; LN, lymph node; NR, not recorded.
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characteristics or to group genes by function. Rather, samples are grouped according to
similarity in gene expression patterns, sometimes called signatures (54), and genes are
grouped according to similarity in gene expression profiles. The widely used hierarchi-
cal methods, for example, conduct clustering of samples and genes independently,
although the results may depend on the sample composition and the genes under con-
sideration. Then, once clusters of samples and/or genes have been identified, available
information on gene function and sample characteristics is used in post hoc interpreta-
tion of the clusters. For example, tumor clusters may be compared with respect to
patient outcomes, such as lymph node status or disease-free survival, or to externally
derived tumor characteristics, such as ER or p53 mutation status. Similarly, the signifi-
cance of gene clusters may be interpreted using knowledge about particular genes
within a cluster.

By comparison, supervised methods require clinical or molecular information about
each of the samples, and generally focus on the identification of genes or combinations
of genes selected so as to maximally distinguish among known sample characteristics.
This approach often aims to develop a classifier, or prediction function, that uses a
number of different gene expression measures from a particular sample to classify that
sample into a predefined outcome group. The accuracy of the classifier is then assessed
by comparing the predicted to actual group membership for each sample.

Statistical Validation of Microarray Technology
The validity of microarray technology is an important consideration in its applica-

tion to human cancer studies that aim to improve the classification and treatment of
cancer patients. These can include both internal and external measures as outlined in
Table 3, as well as molecular validation, which is discussed further in the section
entitled Molecular Validation of Expression Profiling Results.

Among the published reports, there have been a few examples of specific reproduc-
ibility studies of arrays, mostly in the earlier studies (see Table 4). In cDNA array
applications, self–self comparisons involving replication of reference control vs con-
trol comparisons, in which no differences are expected, allows assessment of between

Table 2
Statistical Analysis of Gene Expression Data

Preprocessing of each array
• Image analysis.
• Quality assessment.
• Normalization.
• Diagnostic plots.

Selection of array sets and genes to be included in analysis
Unsupervised analysis methods

• Identification of clusters of samples with similar expression signatures.
• Identification of clusters of genes with similar expression profiles.

Supervised analysis methods
• Univariate single gene comparisons among groups of samples.
• Multivariate multiple gene comparisons among groups of samples.
• Prediction and validation of group membership for individual samples.
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array measurement error (50). Sample vs reference control comparisons, with replica-
tions, also allow assessment of within and between sample variation (47,55–58).
In cDNA two-channel arrays with labeling by fluorescent dyes, dye swap repetitions
are one form of replication that also can allow assessment of dye effects and separation
of sample effects from array effects (59,60).

Some authors (53,61) have recommended combining information from as many as
three replicates per sample to decrease variability and increase measurement reliabil-
ity. This is not always feasible with limited breast tumor material, but has been useful
in studies of cell lines (55,56). Only one of the published studies reports the use of dye-
swap averaging in breast tissue samples (52). In comparisons between groups of tumors,
it is between patient variability that is critical, so the arraying of additional patient
samples will increase overall precision and generalizability. For prediction of outcome
for a single sample, however, measurement error is more critical, so averaging of rep-
licate gene expression measures can increase the accuracy of prediction (see also the
Discussion in Simon et al. [49]).

Other sources of evidence to support validity of the microarray technology as applied in
a particular research setting include: (i) observations that multiple gene clones and sample
replicates have similar gene expression; and (ii) observations that array measurements
of previously reported candidate genes are associated with sample groups as expected.

Because of the large number of gene expression probes relative to the number of
samples and the inherent random variability in the system, a number of statistical issues
arise in microarray studies. In unsupervised classification, apparent clusters can be
identified even in the absence of real structure. It is important to assess whether clus-
ters are reproducible and are not due to chance variation. Statistical bootstrapping has
been advocated as one approach to address this (62,63). Similarly, permutation testing
can address the problem of excess false positive findings produced by multiple testing
of group differences for a large number of genes (51,53,58,64). In supervised classifi-
cation and prediction, the inherent overfitting can lead to overoptimistic estimates of
the prediction accuracy, but this can be remedied by internal cross-validation in the
so-called training set used to develop the classifier and by external validation in inde-
pendent test samples.

Table 3
Validation Methods

Internal validation
• Reproducibility studies, replication.
• Statistical.

– Bootstrap for clustering.
– Permutation for multiple testing.
– Cross-validation for prediction.
– Assessment of power by simulation.

• Molecular.
– Confirmation by PCR, IHC.
– Tissue arrays.

External validation
• Confirmation in independent samples.
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Table 4
Aspects of Design and Analysis in Microarray Studies of Breast Carcinomas

Microarray reproducibility studies Unsupervised classification Supervised gene selection
Study (reference) and use of replication of genes and tumors and prediction of tumor groups

Perou et al. (1999) (68) Self–self comparison Hierarchical agglomerative (HA)
of reference control cluster analysis:
vs reference control. 1. Cell lines.

2. Cell lines and breast tissue.
Sgroi et al. (1999) (55) 1. Variability estimated Genes ranked by expression differences

by duplicate hybridizations between invasive or metastatic cells
of three cell populations. compared to normal cells.

2. Duplicates averaged.
Hilsenbeck et al. (1999) (91) Repeat hybridizations Principal components used to contrast

using the same pool of RNA. three tumor type arrays and construct
a prediction region to classify outlier
genes.

Ross et al. (2000) (47) 1. Two of the cell lines, HA clustering:
grown in three independent 1. Cancer cell lines (equal to 60),
cultures. repeated in two different gene sets.

2. Redundant array spotting 2. Cell lines and breast tissue.
of some genes.

Primary Secondary
Martin et al. (2000) (56) 1. Two hybridizations performed HA clustering: Comparison of single gene expression

on different days with different 1. Cell lines and breast tumor and average gene cluster expression
replicate membranes. tissue samples, 124 genes. between tumor groups defined

2. Averaging of quadruplicate 2. Repeated for breast tumors, by ER status, tumor stage, grade, size,
array spots. with 35 genes from four % S phase, and patient age.

3. Averaging of duplicates clinically relevant gene clusters.
or triplicates of some cell lines.

Primary Secondary
Perou et al. (2000) (50) Paired tumors, before and after HA clustering: Weighted voting supervised by two main

chemotherapy. 1. Cell lines and breast tissue. tumor groups found in second cluster
Used to select intrinsic gene set. 2. Paired tumor samples. analysis, with internal cross-validation.
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Primary Secondary

Bertucci et al. (2000) (57) 1. Comparison of duplicate spots. HA clustering: Supervised comparison
2. Two independent hybridizations 1. All samples (tumor and normal), of median expression for each gene

of same RNA. all candidate genes. by Mann-Whitney test:
3. One hybridization 2. Subset of tumors, 1. Two subgroups of tumors identified

with the same probe subset of genes. in cluster analysis.
on two independent arrays. 2. ER+ vs ER– tumors.

3. LN+ vs LN– tumors.
Alizadeh et al. (2001) (48) Comparison of independent copies HA clustering of microdissected

of gene clones on array. breast tumor, cell lines,
and breast tissue.

Ross and Perou (2001) (83) Independent propagations HA clustering of:
of the same cell line, 1. All cell lines, 1287 genes.
obtained from different sources. 2. Cell lines and previously

studied breast tissue samples,
with intrinsic gene set of 476.

Secondary Primary
Gruvberger et al. (2001) (67) Not reported. 1. HA clustering of: Supervised by ER+ vs ER– tumors:

Tumors in training sample, 1. Artificial neural network, with internal
genes selected by supervised cross-validation in training samples,
weighted gene analysis. external validation in test sample.

2. Visualization 2. Repeated using different gene sets.
by multidimensional scaling 3. Weighted gene analysis.
(MDS).

Primary
West et al. (2001) (99) Not reported. Singular value decomposition Bayesian probit regression supervised by

(SVD) of top 100 genes 1. ER+ vs ER–.
in supervised single gene 2. LN+ vs LN–.
analysis, to create a smaller With internal cross-validation in training
number of “super genes.” samples, external validation

in test samples.

(continued)
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Table 4 (continued)

Microarray reproducibility studies Unsupervised classification Supervised gene selection
Study (reference) and use of replication of genes and tumors and prediction of tumor groups

Primary Secondary
Sorlie et al. (2001) (51) Not reported. HA clustering of: 1. Univariate gene selection,

1. Carcinomas supervised by patient survival,
and normal breast tissue, with permutation testing.
using intrinsic gene set. 2. Comparison of overall

2. Repeated in a subset and disease-free survival among five
of carcinomas. tumor groups identified

3. Repeated in all samples, in unsupervised clustering.
using gene set identified
in supervised analysis.

Secondary Primary
Hedenfalk et al. (2001) (58) Estimation of experimental 1. HA clustering of genes Supervised by tumor groups

variance by hybridization identified as discriminators (BRCA1, BRCA2, sporadic no known
of pairs of cDNA in supervised analysis. family history):
on different days. 2. Display by MDS. 1. Modified F-tests and t-tests

to compare groups for each gene,
with permutation to rank genes.

2. Prediction of tumor groups
by a multi-gene compound covariate,
with internal cross-validation.

3. Weighted gene analysis.
4. Mutual information scoring,

with permutation.
Primary

Su et al. (2001) (71) Not reported. HA clustering of tumors to assess Supervised by cancer type:
similarity of tumors 1. Wilcoxon rank-sum test for each gene,
within 11 cancer type classes. comparing class with highest expression

to others, to reduce number of genes.
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2. Support vector machine to rank

selected genes for class prediction,
with internal cross-validation
in training sample,
and external validation in test sample.

van’t Veer et al. (2002) (52) 1. Two hybridizations HA clustering of all genes Supervised by tumor group:
of each tumor with dye reversal, and all tumors 1. Disease-free status at 5 yr
averaged for analysis. (sporadic and BRCA1) (sporadic tumors only).

to describe main tumor 2. ER+ vs ER–.
and dominant gene clusters. 3. BRCA1 vs sporadic within ER– subgroup.

Gene selection by single gene correlation
of expression with group,
internal cross-validation to rank genes
for inclusion in the classifier.

Tumors classified by correlation
of their expression signature
to the average signature of each tumor
group, with internal cross-validation
in training sample
and external validation in a test sample.
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Finally, it is desirable to have an assessment of the statistical power of a microarray
data analysis. Although preliminary estimates of variation in gene expression within
and between samples for a particular microarray system can provide relevant informa-
tion for rough estimates of the number of arrays needed to detect single gene differ-
ences in gene expression between tumor subgroups (49), a priori power determination
for complex multi-gene methods is difficult in hypothesis-generating studies of a
small sample size. Once analyses have been conducted, however, the ability of a particu-
lar study analysis to detect associations of interest can be assessed by statistical simula-
tion studies based on the observed data. Van der Laan and Bryan offer one approach (63).

Statistical Methods
In the published studies summarized in Table 4, unsupervised classification has

mainly been based on clustering, supplemented by visual display using tree-like
dendograms and multidimensional scaling plots. The cluster analyses have relied
exclusively on hierarchical agglomerative methods (65), and to date, other approaches
such as k-means, self-organizing maps, and model-based clustering or simultaneous
clustering of genes and samples have not been applied to breast carcinomas (63,66).
Similarly, the stability of the clusters identified has not been assessed using statistical
validation methods, such as bootstrapping, although several authors have conducted
sensitivity analyses by considering different sets of tumors and/or different sets of genes
(47,50,51,56,57).

More recently, there has been increasing application of supervised methods of analy-
sis, corresponding to studies of tumor sample collections with richer clinical information.
A broad range of univariate (one gene at a time) and multivariate (multiple genes
together) techniques has been applied to identify genes that distinguish among prede-
termined groups of tumors, and to develop classifiers that can be used to predict the
group membership of a tumor. These techniques include univariate two-group com-
parisons such as multiple t-tests, Wilcoxon and Mann-Whitney tests, and log-rank tests
for survival outcomes, as well as the multivariate methods of weighted gene voting
analysis, Bayesian binary regression, artificial neural nets, support vector machines,
and survival models (see Table 4). In several cases, results at the univariate, single
gene stage have been used to reduce the number of genes for consideration at the mul-
tivariate multi-gene stage. There has been good use of permutation testing and cross-
validation to ensure internal validity and reduce false positive findings, as well as the
use of external validation in independent samples.

For the most part, unsupervised classification of genes and tumors and supervised
selection of genes have been used as complementary approaches in an informal fash-
ion. For example, subgroups of tumors identified in cluster analyses have been used to
define comparison groups for subsequent supervised analyses (50,57). In other cases,
supervised methods have been used to identify a subset of discriminating genes that
were then clustered using unsupervised methods (51,58,67).

RESULTS OF ARRAY STUDIES
Examination of Expression Profiles of Cultured Cells and Primary Tumors
Cultured Breast Epithelial Cells and Cancer Cell Lines

Perou et al. (68) performed in vitro experiments using cDNA microarrays of 5531 human
clones to describe the expression patterns of hormone-manipulated cultured human
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mammary epithelial cells (HMEC) and 13 breast tumors. Clustering of co-expressed
genes with consistent patterns of gene expression in breast tumors revealed two differ-
ent gene expression parameters, expression levels of the genes in a “proliferation clus-
ter” and an “interferon (IFN)-regulated cluster.” In previous studies, STAT1 and STAT3
genes had been shown to have high levels of protein expression in primary breast
tumors (69). Perou et al. also demonstrated that a subset of breast cancer tumors had
high levels of STAT1 expression due to induction of IFN-regulated genes and subse-
quently showed high level of STAT3 protein expression in these tumors. In the histo-
logically complex breast carcinomas, the authors also identified gene clusters for
nonepithelial cells such as stromal cells and B lymphocytes that contributed to the gene
expression patterns of the breast specimens.

In a more recent study, Ross et al. used cDNA microarrays to classify cancer cell
lines according to their tissue of origin (47). They performed molecular classification
of 60 cancer cell lines (NCI60) derived from tumors of a variety of tissues and organs,
using arrays of 9703 human cDNAs. They showed a consistent relationship between
gene expression patterns and the tumors’ tissue of origin. Based on the gene expression
profiles, Ross et al. identified groups of genes they considered to represent epithelial,
mesenchymal, stromal, and proliferation clusters. By comparing the gene expression
signatures of two breast cancer specimens to a normal tissue specimen and to cultured
breast cancer cell lines (including MCF7, T-47D, MDA-MB-231, BT-549, and
Hs578T), they were able to distinguish between different cellular counterparts of breast
tumors as reported by Perou et al. (68). Expression of keratin 8 and keratin 19 in the ER
positive (ER+) breast cancer cell lines T47D and MCF7 suggested that these cells had
originated from luminal epithelial cells (70). On the other hand, stromal-like cell lines
Hs578T and BT549 had high levels of expression of collagen genes (COL3A1,
COL5A1, COL6A1) and a smooth muscle cell marker (e.g., TAGLN), which were char-
acteristic of stromal counterparts.

Su et al. (71) also classified human carcinomas by analyzing 100 primary carcino-
mas from 10 diverse tissues of origin including breast. Using expression arrays of
12,533 oligonucleotides, they identified highly restricted tumor-specific expression
patterns and demonstrated the feasibility of predicting the tissue of origin of a carci-
noma based on expression patterns.

Comparisons of Normal Breast Epithelial Cell and Breast Carcinoma Patterns

Several studies have compared expression profiles of normal breast epithelial cells
and breast carcinomas (68). Sgroi et al. (55) performed laser capture microdissection
(LCM) on a single mastectomy specimen to isolate morphologically normal breast epi-
thelial cells, invasive breast carcinoma cells, and metastatic (from a lymph node) cells
and compared their expression patterns. Of 8084 cDNAs examined, 90 exhibited dif-
ferences of twofold or greater between the normal and invasive or metastatic carci-
noma cells. Among the differentially expressed genes, those exhibiting the greatest
changes were apolipoprotein D (72), SWI/SNF (73), and heat-shock factor 1 (HSF-1) (74).

Bertucci et al. (57) studied gene expression of eight normal tissue specimens from
Clontech (Palo Alto, CA, USA) and 34 primary breast carcinomas using 176 gene
arrays. Hierarchical clustering was performed on the tumors and genes, and despite the
small sample size, they identified at least two subgroups of tumors with distinct clini-
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cal outcomes. They also compared gene expression between normal tissue and tumor
specimens, between ER- and ER+ tumors, and between ANN tumors and tumors with
10 or more involved lymph nodes. The transcription factor GATA-binding protein 3
(GATA3), which has been previously shown to be correlated to ER gene expression
in breast cancer (75), showed high levels of expression in the ER+ tumor group. Other
genes including the MYB proto-oncogene (76), X-box binding protein 1, p53 (77), and
insulin-like growth factor (IGF) 2 (78,79) were also differentially expressed in ER+
compared to ER- tumors. They also found a correlation between ERBB2 expression
and nodal status.

Tumor Classification Based on Expression Profiles
Expression Cluster Characteristics of Epithelial Cells

Perou et al. (68) examined tumor specimens from 42 individuals using an 8102 gene
array and identified a cluster of genes with differential co-expression in a subgroup of
tumors not recognized by the currently available histopathological methods. Using
hierarchical clustering, they showed that tumors exhibited great variation in their pat-
tern of gene expression. The molecular profiles not only identified similarities and
differences among the tumors, but in many cases also pointed to a biological interpre-
tation. One of the largest distinct clusters was a proliferation cluster, and the expres-
sion of the genes in this cluster varied widely between tumor samples and generally
was well correlated with mitotic index. As expected, the genes encoding two widely
used immunohistochemical markers of cell proliferation, Ki67 (80,81) and proliferat-
ing cell nuclear antigen (PCNA) (82), were also in this cluster. The authors also showed
that clinical measurement of ER protein levels in tumors correlated well with the varia-
tion of expression of ER on their array.

Tumor Classification Related to neu/ERBB-2 Expression

The normal human mammary gland contains two types of epithelial cells that can
be distinguished by immunohistochemical staining. These are the basal–myoepithe-
lial cells, which express keratins 5/6 and 17, and the luminal cells, which express
keratins 8/18 (70). To develop a system for classifying tumors on the basis of their
gene expression pattern, Perou et al. (50) chose a subset of genes to use as the basis
for cluster analysis. These 496 genes (termed the intrinsic gene subset) showed
greater variation in expression pattern between different tumors than between paired
samples from the same tumor. Using the intrinsic gene subset, they clustered the
breast tumors into four main groups, which they described as ER+/luminal-like,
basal-like, Erb-B2+, and normal breast-like, representing different features of breast
tissue. The ER+ tumor group had high levels of expression of genes characterized as
the luminal profile, including GATA3 (75), and stained with antibodies against
luminal cell keratins 8/18 (70). In contrast, ER- tumors tended to be either basal-like,
expressing keratins 5/6 and/or 17 (70), or were in the group that had high expression
of ERBB2 and related genes.

In a review by Ross and Perou (83), gene expression signatures from 40 breast tis-
sues and 16 breast tissue-derived cell lines were compared. First, they classified cell
lines as basal–epithelial, luminal, and stromal-like–fibroblast subgroups. Then they
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integrated cell line analysis to breast tumor analysis and showed that cell lines, regard-
less of their presumed cell-type origin, clustered together in one branch separate from
all of the tumors. However the cell lines were also similarly subdivided as the tumors
into luminal/ER+, ERBB2 normal breast, and basal-like subgroups. The most distinc-
tive differences in gene expression between tumors and cell lines occurred in the pro-
liferation cluster, indicating that most cell lines were growing much faster than in vivo
tumor cells. These data might be used to identify which cell lines are best models for
different breast subtypes and to define molecular fingerprints that distinguish the biol-
ogy of different cell lines and tumor types.

Sorlie et al. (51) analyzed a total of 78 breast carcinomas, 3 fibroadenomas, and
4 normal breast tissue samples using the intrinsic gene subset (50) as the basis for
tissue classification. Hierarchical clustering separated the tumors into two main
branches. The first one contained three previously defined (50) subgroups (basal-like,
ERBB2+, and normal breast-like) and, in the other branch, the luminal/ER+ group was
divided into three subgroups (luminal subtypes A, B, and C). Tumors of the ERBB2
overexpressing subtype also exhibited high levels of expression of other genes in the
amplicon, such as GRB7 (84). In addition to keratins 5 and 17 (70), the basal-like
tumors also had high levels of laminin (85) and fatty acid binding protein 7 (86). Lumi-
nal subtype A expressed high levels of ERα, as well as GATA 3 (75), X-box binding
protein 1, trefoil factor 3 (87), and other genes.

Expression Patterns Related to p53 Mutation Status

Mutations in the p53 gene are common in breast cancer and have been found to be of
prognostic (31) and predictive significance in some studies (88,89). Breast carcinomas
with p53 alterations are more likely to be ER- and exhibit ERBB2 overexpression
(88,89). It remains to be determined whether mutation in p53 can be an independent
marker of clinical behavior in this disease. Array data may be useful in exploring this
question. Sorlie et al. (51) examined the correlation of p53 status and tumor subclass in
69 tumors of their set, 30 of which had mutations in the p53 gene. They found a differ-
ence in the distribution of p53 mutations among subclasses. The ERBB2 positive and
basal-like subclasses had p53 mutations in 71 and 82% of tumors, respectively, whereas
the luminal subtype A contained p53 mutation only in 13% of the cases. Luminal sub-
type C shared features with the ERBB2 positive and basal-like subclasses, including
p53 mutations in approx 80% of tumors.

We have performed array studies on a group of ANN breast cancers from a prospec-
tive cohort, which was designed to examine the prognostic importance of neu/ERBB2
amplification (17) and p53 mutation (Bull et al., in preparation). We performed hierar-
chical cluster analysis of 81 potential candidate genes from the 19K arrays and found
that the tumors clustered according to ER status and p53 status (Fig. 1). We also com-
pared mean and median log expression ratios to determine the association of several
candidate genes with clinical properties of the tumors. We found that genes identified
by other groups as being associated with ER positivity (such as GATA3) had higher
levels in ER+ tumors in our set and that genes associated with ER negativity (e.g., P-
cadherin) exhibited high levels in ER- specimens (Fig. 1). We also found GATA3 lev-
els to be higher in the tumors without p53 mutations.
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Expression Patterns Related to ER Status

Tamoxifen is a frequently prescribed drug for treatment and prevention of breast
cancer (7,11,90). ER+ tumors may initially respond to tamoxifen, but the development
of tamoxifen resistance is an important clinical problem. A number of groups have
compared microarray data of breast carcinomas based on ER status. Hilsenbeck et al.
(91) compared gene expression arrays of estrogen-stimulated, tamoxifen-sensitive, and
resistant MCF-7 cells grown in a nude mouse xenograft model. They used principal
component analysis of the arrays to identify outlier genes that may be involved in
tamoxifen resistance. An example of an outlier was HSF-1 (74), which was found to be
increased in tamoxifen-sensitive, relative to estrogen-stimulated, tumors.

Martin et al. (56) performed hybridization of RNAs from 18 tumors and 7 breast
cancer cell lines to membrane arrays containing 124 genes. They identified two gene
clusters associated with clinical ER status. One cluster included genes with higher
expression in ER+ cells (e.g., p53 [77] and keratin 19 [92]), and the other contained
genes (e.g., maspin) (93) with higher expression in ER-cells. Gruvberger et al. (67)
specifically investigated gene expression patterns associated with this characteristic in
58 ANN breast carcinomas (28 ER+ and 30 ER-) using cDNA microarrays containing
6728 genes. This group used an artificial neural network to develop a classifier to pre-
dict the ER status of the tumors and ranked genes according to their contribution to the
classifier. They chose the 100 most important genes to classify 47 training samples
(23 ER+ and 24 ER-) and showed that all of the tumors were correctly classified. Some
of the top genes in the classification were ER1, trefoil factor 3 (87), GATA3 (75), and
cyclin D1 (94), whose relative level of expression associated with ER positivity.
In contrast, lipocalin2 (95), P-cadherin (96), ladinin1 (97), fatty acid binding protein 7
(86), and keratin 7 (70) were highly expressed in ER- tumors. The authors showed that
the artificial neural network correctly predicted the ER status of 11 blinded breast can-
cer specimens in a test sample (five ER+ and six ER-). To find the molecular signatures
for ER status, they also used weighted gene analysis (98). One hundred thirteen genes
showed significant variation between the two tumor types, and 50 of these genes also
overlapped with the genes derived from the artificial neural network classification.
Although some of the genes that were able to discriminate ER+ and ER- tumors were
related to differences in estrogen responsiveness, the majority were not. They also used
hierarchical clustering and multidimensional scaling methods to cluster tumors using
the 113 genes selected in the supervised weighted gene analysis. This reproduced the
ER+/- classification except for two ER+ tumors.

West et al. (99) also developed a classifier for breast cancers using Bayesian regres-
sion models. They used 38 arrays (18 ER+ and 20 ER-) as a training sample to select

Fig. 1. (previous page) Cluster analysis using candidate genes of microarray analysis of
ANN breast cancer tumors on 19K cDNA arrays. 19K arrays were generated at the Microarray
Facility, University Health Network, Ontario Cancer Institute (http://www.uhnres.utoronto.ca/ser-
vices/microarray) and log base 2 ratios were normalized using subarray location and scale adjust-
ment. Candidate gene expression levels were clustered using complete linkage clustering methods
from Eisen’s cluster software (ref. 65). The clustered trees and images were displayed using Eisen’s
treeview software. Red squares denote positive expression, green squares denote negative expres-
sion, black squares denote zero expression, and grey squares denote missing values.
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100 genes to include in a multivariate classifier, based on single gene comparisons of
the two groups. They identified a number of genes in the estrogen pathway with higher
expression, such as ER, pS2 (trefoil factor 1) (100), GATA 3 (75), or lower expression,
such as the serine proteinase inhibitor maspin (93). They showed that their 100 gene
classifier could correctly predict the ER status of an independent test sample of nine
tumors. In addition, the authors used the same method for classification of tumors
according to their lymph node status (25 node positive and 24 node negative). Although
the gene expression patterns could classify the nodal status of the patients, more data
was needed for sufficient predictive power for this clinical factor.

Expression Patterns Related to BRCA1 and BRCA2 Mutation Status

Hedenfalk et al. (58) studied the gene expression pattern of three different tumor
types, tumors with mutations in the breast cancer susceptibility genes BRCA1 and
BRCA2, as well as sporadic breast tumors. Tumors with BRCA1 mutations differ mor-
phologically and immunohistochemically from tumors with BRCA2 mutations and also
from sporadic cases (101). The authors analyzed the differential expression of these
three tumor types using a panel of tumors from seven BRCA1 mutation carriers, eight
BRCA2 mutation carriers, and seven sporadic cases. They identified 51 genes whose
variation in expression best differentiated among these tumors. The authors were also
able to show that the gene expression signatures of individual tumor samples could be
used to accurately predict which gene mutations they carried. They identified nine genes
to distinguish BRCA1 mutation carriers from noncarriers and another set of 11 genes to
distinguish tumors that possess BRCA2 mutations from those that did not. Their multi-
gene classifier correctly identified all of the BRCA1 mutation-carrying tumors, how-
ever only five of eight tumors with BRCA2 mutations and 13 out of 14 tumors without
BRCA2 mutations were correctly identified. Using three methods for supervised gene
selection, the group also identified a common set of 176 genes that appear to distin-
guish BRCA1 mutation positive tumors from BRCA2 mutation positive tumors. These
results show that the gene expression signatures of BRCA1 mutation positive and
BRCA2 mutation positive tumors are distinct from each other and also distinct from
sporadic tumors. Genes of two major biological processes, DNA repair and apoptosis,
were found to be up-regulated in BRCA1 tumors.

van’t Veer et al. (52) performed microarray expression analysis that included tumors
from 18 BRCA1 mutation carriers and two BRCA2 mutation carriers, together with
78 sporadic samples. In an unsupervised cluster analysis, 16 out of 18 BRCA1 mutation
carriers were classified into a group of tumors with predominantly ER- status or having
higher lymphocytic infiltrate expression (see below). These results are consistent with
studies indicating that most tumors with BRCA1 mutations are ER- and show lympho-
cytic infiltration (101). In addition, within the ER- tumors, a classification based on the
supervised selection of 100 genes, which distinguished sporadic tumors from those
with BRCA1 mutation, was able to predict these two tumor groups.

Expression Patterns Related to Clinical Data
Expression Patterns Before and After Chemotherapy

One of the first studies to determine the expression profiles of a series of matched
breast cancer specimens was performed by Perou et al. (50). They analyzed 20 pairs of
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tumors taken before and after a 16-wk course of doxorubicin chemotherapy and found
that independent samples from the same individual exhibited distinctive molecular
portraits. Expression patterns for tumors from the same patient were more likely to be
similar to each other than to those of any other patient.

Expression Patterns Related to Clinical Outcome

Sorlie et al. (51) extended the studies of Perou et al. (50) by increasing their sample
size to 85 tissue specimens (including the 40 previously reported) from 84 individuals
and including clinical outcome data. Survival analyses, which included 49 cases with
locally advanced disease but no distant metastases, showed significantly different out-
comes among the patients belonging to five subgroups of tumors identified in unsuper-
vised cluster analysis. The basal-like and ERBB2 positive types were associated with
the shortest survival times. Interestingly, there was a significant difference in outcome
for patients in the luminal group, with the luminal C tumors having the worst outcome.
Because the luminal C subgroup exhibits molecular signatures similar to those of the
ERBB2 overexpressor and basal-like subtypes, overexpression of a common set of
genes may be associated with poor outcome.

Expression Patterns Related to Disease-Free Survival in ANN Breast Cancer
In a recent study, van’t Veer et al. (52) performed microarray expression analysis on

tumors from 98 young (age at diagnosis <55 yr) breast cancer patients. They analyzed
34 tumors from ANN patients who developed metastases within 5 yr, 44 tumors from
ANN patients who were disease-free after a period of at least 5 yr, 18 BRCA1 mutation
carriers, and 2 BRCA2 mutation carriers.

Unsupervised two-dimensional cluster analysis of 98 breast tumors and 5000 genes
was used to describe the main tumor and dominant gene clusters. There were two dis-
tinct clusters interpreted as representing good prognosis and poor prognosis tumors
according to the disease-free survival status of the sporadic tumors in the cluster.
The authors also investigated the association of these data with ER status of the
patients. The majority of the ER- tumors clustered together in the poor prognosis branch
of the tumor cluster. A gene cluster containing the ER gene and genes that are
co-regulated with ER was found to have low expression in the poor prognosis tumor
group while a second gene cluster containing genes that represent lymphocytic infiltra-
tion was found to have higher expression. Sixteen out of eighteen BRCA1 carriers were
also in the poor prognosis group together with ER- tumors and tumors with lympho-
cytic infiltration.

To identify gene expression patterns, which strongly predict outcome, van’t Veer
et al. (52) performed supervised classification using the 78 sporadic ANN patients and
developed a classifier based on 70 genes to predict disease-free survival status at 5 yr.
The prognosis classifier correctly predicted the actual outcome in 83% of the cases.
Genes including cyclin E2 (102), matrix metalloproteinases (MMP)9 (103) and MMP1
(104), and others involved in cell cycle, invasion, metastasis, angiogenesis, and signal
transduction were significantly up-regulated in tumors with poor prognosis signatures.
Other genes, such as ERBB2, ER, and cyclin D1, that may have been expected to be
associated with prognosis were not. However, it should be noted that the importance of
expression of ERBB2 as a prognostic marker is derived primarily from studies using
immunohistochemistry and/or DNA copy number, not mRNA levels.
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To validate the predictive power of these genes, the authors chose an additional
independent set of tumors from 19 ANN breast cancer patients diagnosed at a young
age. In the validation series, 12 individuals had developed metastatic disease within
5 yr, and 7 were disease-free. They investigated the same 70-gene prognosis classifier
for the prediction of outcome and showed a comparable predictive power.

MOLECULAR VALIDATION OF EXPRESSION PROFILING RESULTS

Molecular and Immunohistochemical Techniques

Occasionally, investigators have used Northern blot analysis to validate the results
obtained from gene expression arrays. For example, Bertucci et al. observed high lev-
els of GATA 3 expression in ER+ breast tumors on arrays and confirmed this by North-
ern blotting (57). However, most genes are not expressed at the level of GATA3
mRNA, and investigators do not have access to the amount of tumor RNA that is
required for Northern blot analysis. Thus, other techniques, such as quantitative reverse
transcription polymerase chain reaction (RT-PCR), real-time PCR, immunohistochem-
istry (IHC), and in situ hybridization are likely to be used more frequently for confir-
mation of array data (47,48,50,52,55,68,71).

In some cases, the genes identified in microarray expression studies have been pre-
viously characterized genes for which antibodies were available (47,48,50,52,
55,68,71). In cases of novel genes of potential importance, it may be possible to gener-
ate antibodies to be used for IHC studies. IHC analysis is the simplest method to fur-
ther investigate the possible role of these genes in breast neoplasia. In situ hybridization
can also be used as an adjuvant method to assess gene expression for selected genes of
significant interest. Furthermore, IHC and in situ hybridization can be applied to tumor
tissue arrays (see section entitled Tissue Arrays), to rapidly assess altered expression in
larger panels of tumors and to examine the expression across a morphologic range
from normal to invasive in individual cases.

Tissue Arrays

In addition, tumor arrays and IHC can be used to evaluate the potential importance
of the novel molecular alterations in a large number of specimens. Tumor arrays repre-
sent a method in which hundreds of small samples from separate tumors are arrayed in
a single paraffin block. This approach, as developed by Kallioniemi and colleagues,
allows for the simultaneous analysis of genetic–protein markers in a single test, and is,
thus, ideally suited to screening a large number of potential markers (71,105,106). In a
validation study, Camp et al. found that a minimum number of two tissue cores was
necessary to be representative of expression of a marker in a tumor (107). They also
observed that cores from the center and tumor edge might be required for some markers.

Confirmation of Array Data with Other Techniques

Some studies have used a combination of techniques to validate the array data.
For example, Sgroi et al. performed both RT-PCR and IHC (55). Others have used
IHC on breast tumor specimens, including a number of studies staining with antikeratin
antibodies (47,48,50). In at least one case, Western blot analysis was used to confirm
gene expression (91). Tissue arrays have advantages when combined with IHC and
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were utilized by Hedenfalk et al. to correlate expression array data with protein expres-
sion (58).

THE FUTURE: UNRESOLVED QUESTIONS

The introduction of gene expression arrays to the rapidly moving field of molecular
pathology has elicited excitement balanced with caution. The results to date are
encouraging, because data are already available that show that expression profiling can
be used to distinguish cell type-specific gene clusters (e.g., stromal, epithelial, mesen-
chymal, proliferation) and to classify breast tumors as basal-like, luminal-like, ERBB2
overexpressing, and normal breast-like. Furthermore, gene expression patterns related
to ER status and BRCA1 mutation status have been characterized, and profiles associ-
ated with good prognosis and poor prognosis groups of young ANN patients have been
identified. However, because the development of the technology is recent, predicting
the generalizability of the results to date awaits further studies. A number of studies
include separate validation sets, but acknowledge that validation in additional cohorts
will be necessary to confirm the data.

An unresolved question is whether ER- cells are derived from ER+ progenitors or
whether both types are derived from normal populations that diverged during differen-
tiation. Most mammary epithelial cells do not express ER, yet most primary breast
carcinomas are ER+. Tamoxifen-resistant ER- cells may arise from estrogen-nonre-
sponsive normal cells or may be derived from ER+ breast cancer cells during tumori-
genesis. Further studies will be required to resolve these issues.

The work to date suggests that expression profiling will become an important
research tool to aid in our understanding of tumor development and progression.
The technology will provide a molecular complement to histology and IHC. Sensitive
methods are being developed and refined, which will permit the examination of bio-
logical specimens containing a limited number of cells (such as premalignant breast
lesions) and aid in the determination of the molecular events involved in the develop-
ment and progression of breast neoplasia.
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Microarray Analysis of Colorectal Cancer

Daniel A. Notterman, Carrie J. Shawber, and Wei Liu

INTRODUCTION

The microarray analysis of tumors that originate in solid organs, such as the
lung, bowel, breast, ovary, and pancreas, offers special challenges and opportunities.
The challenges lie in the complexity and heterogeneity of the normal and abnormal
tissues of which these tumors are composed. The opportunities derive from the gener-
ally poor response to therapy displayed by these lesions and the early evidence that
global expression analysis may provide the substrate for a new predictive taxonomy of
cancer. Colorectal cancer has been extensively profiled at the DNA, histopathological,
and clinical levels, and several groups have now added results from arrayed-based sur-
veys of gene expression. Even so, it is not yet possible to offer a comprehensive corre-
lation of these disparate sources of information. Doing so will be the work of the next
generation of microarray science and bioinformatics.

Cancer of the colon and rectum is the second or third most common cause of cancer
in adults in the U.S. (1,2). Clinical research has focused on prevention, early detection,
and optimal selection of patients for adjunctive therapy. Aggressive preventive efforts
may have been successful in reducing the number of new cases. According to
The American Cancer Society, about 107,300 new cases of colon cancer (50,000 men
and 57,300 women) and 41,000 new cases of rectal cancer (22,600 men and 18,400 women)
will be diagnosed in 2002. Colon cancer is expected to cause about 48,100 deaths
(23,100 men and 25,000 women) during 2002, while approx 8500 people (4700 men
and 3800 women) will die from rectal cancer during 2002 (3).

The past decade has provided investigators with a richly annotated framework with
which to correlate changes at the DNA level with the progression of this disease. There
is yet very little broadly collected information regarding the sequential and cumulative
changes in mRNA expression that occur during cancer initiation and progression in
the colon. This is an important limitation, because abnormalities in gene expression are
characteristic of neoplastic tissue (4). Traditional methods of analysis impose a practi-
cal limit on the number of candidate genes whose expression can be conveniently and
simultaneously studied. Highly parallel technologies exploiting sample hybridization
to oligonucleotide or cDNA arrays permit the expression levels of tens of thousands of
genes to be monitored simultaneously and rapidly (5). As the task proceeds of comparing
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alterations in DNA and RNA with the clinical phenotype, it will be possible to advance
the theoretical and experimental understanding of colon tumor formation in two
complementary ways. They are directly, through the identification of individual genes,
particularly those that become abnormal very early (during the transition from dysplas-
tic to neoplastic tissue) and very late (during metastasis), and indirectly, by correlating
distributed patterns of gene expression with the underlying genotype and the clinical
phenotype. This is the work of building a new, molecular taxonomy of colorectal can-
cer, in which specific associations of mRNA expression pattern and DNA mutation
draw the boundaries around classes of tumors with different clinical manifestations.
This has already proved successful in early studies with different model systems
involving B cell lymphoma, malignant melanoma, breast cancer, and lymphoblastic
leukemia (6–9).

In this chapter, we provide a summary of the normal microscopic anatomy of the
colon, a basic description of the clinical manifestations of colorectal cancer, and
summarize work using oligonucleotide arrays to monitor gene expression in colorectal
neoplasms.

THE MICROSCOPIC ANATOMY OF THE COLON

The colon comprises four distinct layers, from inside to outside: the mucosa, submu-
cosa, muscularis externa, and serosa. The colonic mucosa is lined by an absorptive and
mucus-secreting columnar epithelium and contains tubular glands, the crypts of
Lieberkühn. The epithelial stem cells, from which the malignant cells of colorectal
cancer are thought to develop (10,11), are found in the neck of the crypt. Epithelial cell
division occurs in the lower one-third of the crypt, and new cells migrate from the crypt
to the surface, replacing those that undergo apoptosis and slough into the lumen of the
colon.

Just below the epithelial cell layer of the mucosa is the lamina propria, a cellular
region that contains lymphocytes and related cells. A layer of smooth muscle, the mus-
cularis mucosa, demarcates the mucosa from the submucosa. The submucosa contains
connective and adipose tissue, blood vessels, and lymphatic channels. A second layer
of smooth muscle, the muscularis externa, bounds it externally. The serosa is the outer-
most surface of the colon.

An obvious consequence of the fact that samples of colon tissue contain several
tissue planes and cell types, is that expression profiles generated with undissected colon
tissue (normal or malignant) contain patterns that represent each of these components.
Fluctuation in the contribution of each tissue and cell type to the mass of the sample is
characteristic of undissected bulk samples. This is due to both individual biological
variation and to differences in surgical, pathological, and sampling technique. Random
sample-to-sample variation introduces noise into the resulting expression pattern. Sys-
tematic differences between the tissue compositions of samples (e.g., between normal
and neoplastic samples) will introduce bias into the expression profiles. For example,
in our initial experience with gene expression profiles of colon cancer, we found that,
compared with bulk samples of colon cancer, bulk samples of normal colon tissue
usually displayed a greater expression of genes that resulted from smooth muscle and
connective tissue (12). This was attributed to inclusion of more of the intestinal wall in
the normal samples than in the malignant samples when the tissue was resected.
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To a certain extent, it is possible to compensate for bias of this type during data
analysis, but it may be preferable to minimize it by fastidious microdissection. At present,
efforts to microdissect solid tumors in general, and colorectal cancer in particular,
emphasize purification and isolation of the malignant (usually epithelial) cells (e.g.,
see 13). However, by excluding nonmalignant cells from the analysis, the dialogue
between transformed epithelium and supporting vascular and stromal tissue will be
largely overlooked (14,15). Comprehensive expression monitoring of solid tumors
requires breadth (all individual tissue components to be tested following microdissec-
tion and purification) as well as depth (the monitoring technique encompasses all rel-
evant mRNAs). However, it must be acknowledged that, for some categories of solid
tumor, apparently meaningful class discovery has been accomplished using undissected
samples (16,17). Indeed, it may be the case that microdissection and cell type purifica-
tion is important for some organs (e.g., colon), but not for others (e.g., breast). This
difference could be predicated on the histological organization of the hollow organs
compared with the solid glandular organs, such as breast or pancreas. At present, there
is not a sufficiently large experience to understand whether microdissection is neces-
sary (or desirable), and if so, under which circumstances.

CLINICAL MANIFESTATIONS OF COLORECTAL CANCER

A major goal of global expression analysis is to provide information that supports an
enriched system of classification, either alone or in conjunction with clinical and
genetic data. To place this effort in perspective, we sketch the clinical behavior of
colon cancer and outline the major clinical–pathological classification systems.

Adenocarcinoma arises in the epithelial cells of the colon. The tumor consists of a
mass of abnormal glands (hence the name, adenocarcinoma) that invades and, ulti-
mately, may penetrate the deeper contiguous structures. While the malignant compo-
nent of the carcinoma consists of epithelial cells, the tumor is also composed of
vascular and connective elements, which are necessary to support and nourish the
tumor.

Colorectal cancer principally affects those older than 40 yr of age, although it occurs
occasionally in adolescents (18). Ninety percent of tumors are found in people older
than 50 yr. The incidence rate varies about 20-fold in different parts of the world, with
the highest in the West and the lowest in India (19). Migration from a low to a high
incidence region is associated with an increase in disease risk. This suggests that the
environment (probably the diet) can influence the incidence of colorectal cancer (20),
although the occurrence of cancer predisposition syndromes (accounting for about 5%
of all cases of colon cancer) such as familial adenomatous polyposis (FAP) and heredi-
tary nonpolyposis colon cancer (HNPCC) clearly implicate a genetic role. In addition
to the well-characterized genes associated with familial colon cancer syndromes, it is
likely that there are a large number of susceptibility loci, each of which has a very
small effect on an individual’s predisposition to develop colon cancer. Taken together,
these susceptibility genes define the probability that a specific individual, exposed to a
particular environment, will develop colorectal cancer, or having developed cancer,
will respond in a particular way to therapy.

The first morphologically distinct lesion is the congeries of hyperplastic and dys-
plastic glands, which are termed “aberrant crypt foci” (10,21). In aberrant foci, prolif-
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erative cells are no longer confined to the deeper crypt, but may extend to the surface.
The tissue begins to accumulate in a mass, which eventually becomes an adenoma.
Although adenomas are benign, and most do not progress to cancer during a person’s
lifetime, virtually all colon adenocarcinomas originate in adenoma (22,23). Once
formed, adenomas may continue to grow, accumulating more of the histological stig-
mata of the mature cancer. Large adenomas may contain foci of early cancer. Ulti-
mately, the basement membrane beneath these cancer cells is breached, and an invasive
adenocarcinoma arises (10). The malignancy grows centrifugally, expanding into the
lumen of the colon and invading the contiguous bowel wall. Once the muscularis
mucosa is penetrated, and with increasing probability as the tumor grows larger, it
penetrates local blood vessels and lymphatics. This sets the stage for regional and dis-
tant metastasis, to lymph nodes, the lungs, liver, brain, and other sites (24).

The prognosis of colorectal neoplasia closely parallels the clinical stage. A widely
used method for staging colorectal cancer, termed the tumor node metastasis (TNM)
system, stratifies tumors by several parameters: (i) the depth to which the primary tumor
invades the bowel wall (T1–T4); (ii) the absence or presence of metastases to regional
lymph nodes (N0–N3); and (iii) the absence or presence of distinct metastasis (M0–
M1) (25,26). For example, a tumor that has invaded through the muscularis propria to
the serosa (but not beyond) and is not associated with regional lymph node or distant
metastasis would be staged T3, N0, M0. An earlier staging system (the Dukes system
and its modifications) also classifies the tumor based on depth of colon wall penetra-
tion and the presence or absence of metastasis. In the current modification of the Dukes
classification system, stage A tumors are confined to the colon wall, B tumors pen-
etrate the wall, C tumors are associated with nodal spread, and D tumors are compli-
cated by distant metastasis.

The chance of cure decreases with invasion and the presence of regional nodal or
distant metastasis. Cure for patients with early (T1–T2, Dukes A and B) lesions and
neither nodal nor distant metastasis is excellent (27). Long-term survival decreases
sharply with the presence of lymph node disease (approx 50% for a T3, N1, M0 tumor),
and it is unusual in the presence of distant metastatic spread (e.g., T3, N1, M1) (24).

In early stages (i.e., Dukes A and early B stage), treatment is surgical, and complete
resection of the tumor is associated with cure. Various regimens of adjuvant chemo-
therapy are often employed for deeper stage B tumors and in the presence of nodal
metastasis (stage C). It is likely that at least half of the stage B and C patients who do
receive adjuvant chemotherapy would do just as well without this highly toxic form of
management. Unfortunately, the clinical phenotype is not sufficiently precise to permit
prospective discrimination of moderate disease patients who will or will not benefit
from postsurgical chemotherapy. One of the most persuasive arguments for genome-
wide expression profiling of colorectal cancer is that it might provide the opportunity
to prospectively identify those patients who require and would benefit from adjuvant
chemotherapy (24).

MOLECULAR GENETICS OF COLON CANCER
Overview of Molecular Events

Colorectal cancer is a well-defined clinical model for studying the molecular events
of tumor development and progression. There is a linear progression, during which the
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neoplasm develops from hyperplastic epithelium in aberrant crypt foci through
adenoma to carcinoma and metastasis (28). This sequence reflects the accumulation of
specific genetic alterations. It is thought that five to seven genes must be altered
sequentially in order for cancer to develop (10). Two separate sequences of molecular
pathogenesis have been postulated for colorectal cancer, based upon observations in
families with inherited predisposition to colorectal cancer (Fig. 1). The first model is
derived from observations initially made in patients with FAP. Family members with
this condition (which accounts for 1–2% of colorectal cancer) inherit an inactivating
mutation in the adenomatous polyposis coli (APC) gene. Inactivation of the second
allele (occurring in about 1 of 106 colorectal epithelial stem cells) results in the forma-
tion of an adenoma (20). In approx 85% of sporadic forms of colon cancer, a similar
pathogenetic sequence is suspected, although sequential inactivation of both alleles of
APC occurs as a somatic mutational event (29–37). This sequence is characterized by
tumors that display marked chromosomal instability (CIN), but in which the replica-
tion error repair pathway is intact (RER-), at least during the early phase of tumorigen-
esis. The second, more recently described sequence is observed in individuals with a
second type of cancer predisposition, HNPCC. This inherited syndrome is caused by a
germline mutation in one of several genes involved in the replication error repair path-
way. A somatic mutation of this type also initiates approx 15% of sporadic colon can-
cer cases (36,38). Reflecting the defect in replication surveillance, these RER+ tumors
are also characterized by microsatellite instability (MIN).

As indicated in Fig. 1, it is likely that the initial molecular event in RER- tumors is
the inactivation of both alleles of APC (or the constitutive activation of β-catenin),
followed by the mutational activation of K-ras, and mutational inactivation or loss of
the p53 gene. In addition to these three well-characterized DNA alterations, RER- tumors
exhibit CIN as evidenced by loss of heterozygosity (LOH) or gene amplification at
many loci, as well as promoter hypermethylation resulting in silencing of the p16INK4A

and p19ARF genes (39,40). On the other hand, RER+ tumors have inactivated the repli-
cation repair genes, hMSH2, hMLH1, hMSH3, hMSH6, hPMS1, or hPMS2 through
mutations and/or by silencing promoter methylation (38,41). Disruption of this DNA
repair pathway results in mononucleotide repeat slippage in the transforming growth
factor β receptor (TGFβR)-II, Bax and others genes (38,42–45). In contrast to the RER-
tumors, RER+ tumors maintain chromosomal integrity and are diploid, but do contain
thousands of slippage mutations and exhibit MIN (40).

RER- and RER+ tumors have different clinical phenotypes. RER+/MIN tumors are
found predominantly in the proximal colon, they are bulky and poorly differentiated,
progress rapidly from adenoma to invasive cancer, and have a somewhat more favor-
able prognosis. On the other hand, RER-/CIN tumors occur more commonly in the
distal colon or rectum, progress slowly and inefficiently to invasive cancer, and have a
less favorable prognosis following surgical resection.

Many of the abnormalities that disturb the equilibrium between cell proliferation
and death do so by abrogating the normal function of one or more signaling pathways.
Genetic abnormalities result in heritable changes in DNA sequence (e.g., mutations,
insertions and deletions, gene amplifications, LOH). Epigenetic changes produce heri-
table changes in gene expression that occur without changes to the DNA sequence
(e.g., methylation, chromatin remodeling) (46–48). Dysregulation of gene expression
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Fig. 1. Stages in the development of colon cancer. The two different model pathogenetic sequences (RER-/CIN and RER+/MIN) are shown.
Abbreviations are indicated in the text. From ref. 24.

152



Colon Cancer Profiling 153

can arise indirectly as cell autonomous events, secondary to upstream alterations, such
as activation of K-ras or deletion of SMAD4 (36,49,50). Environmental factors may
trigger cellular responses that activate or inactivate signaling pathways; this is likely to
be of key importance in colon cancer. Apart from genetic and epigenetic alterations,
gene products (proteins) may be activated or inactivated through posttranslational
events. This is of great importance in initiating and maintaining the transformed phe-
notype. While posttranslational modifications are only indirectly amenable to DNA
microarray technology, they are being addressed by advances in high-throughput
proteomics (e.g., 51).

EXPRESSION PROFILES OF COLORECTAL TUMORS

As anticipated by the early experience in global expression monitoring of cancer
(6,12), many of the genetic and pathological changes that occur during neoplastic trans-
formation should be reflected by altered patterns of gene expression. Thus, it is not
surprising that cancer investigators have moved rapidly to exploit array technology or
that these early studies have been quite productive. As noted earlier, colon cancer is a
particularly good model system for expression monitoring, since many of the basic
genetic alterations have been described and tied to specific stages in the development
of the cancer. In addition to embellishing and expanding the catalogue of cancer path-
way genes, by developing genome-wide profiles of colorectal cancer and its precursor
lesions, expression monitoring may make it possible to learn if there are specific,
cumulative, and robust changes in mRNA expression during the transition from normal
through hyperplastic, dysplastic, adenomatous, malignant, and metastatic epithelium.
It will be important to learn if changes in gene expression bear a predictable correlation
with changes at the DNA and (eventually) protein level and whether there are specific
reproducible transcriptional patterns that predict the response to therapy, the occur-
rence of metastasis, and ultimate survival.

Serial analysis of gene expression (SAGE) was one of the earliest large-scale efforts
in expression analysis of colorectal cancer, and it was quite successful in identifying a
catalogue of genes that are dysregulated in bulk samples of cancer and in cancer cell
lines (52,53). Although SAGE has the advantage of minimizing the ascertainment bias
that is inherent in the use of microarrays with a predefined transcript set, the process is
labor- and time-intensive. So far, the number of actual tissue samples reported in the
literature is limited, e.g., see a SAGE database located at (http://www.ncbi.nlm.nih.gov/
SAGE) and (http://www.sagenet.org/Cancer/Cancer.htm). Despite these issues, SAGE
enabled a comprehensive comparison between normal and malignant colorectal tissue,
and in limited respects, information gleaned from SAGE and microarray studies of
colorectal cancer is comparable (vide infra).

To monitor mRNA expression in many different cancer samples and in precursor
adenomas, our group first employed the GeneChip® (Affymetrix, Santa Clara, CA,
USA) to measure the mRNA expression of approx 3200 full-length human cDNAs and
3400 expressed sequence tags (ESTs) in 40 tumor samples and 20 paired samples of
normal tissue (12). An important feature of this work is that bulk tissue samples were
employed, and there was no effort to assure that the tissue composition of the normal
and malignant samples was comparable. Extent of disease was estimated from surgical
pathology reports (using a modification of the Duke staging system, see above), and a



154 Notterman, Shawber, and Liu

pathologist determined the percentage of the bulk tumor composed of malignant epi-
thelial cells. In an analysis of the 40 malignant tumors and 20 normal samples, cluster
analysis with an efficient deterministic annealing algorithm correctly discriminated the
tumor from the normal samples with an error rate of <10% (12). It was apparent that
spatial clusters in the visual matrix often denoted functionally related genes. This is
probably a consequence of co-regulation. For example, most of the genes and ESTs
encoding ribosomal proteins cluster together, and their expression intensity is higher in
tumors than in normal samples, which is consistent with previous observations (54).
A large cluster of genes was up-regulated in the normal compared with the tumor
samples. This cluster was composed principally of smooth muscle genes, implying that
some or all of the ability to partition normal from tumor samples might be due to differ-
ences in tissue composition rather than to an intrinsic property of the malignant epithe-
lial cells. Indeed, normal tissue samples consistently displayed greater expression of
identified smooth muscle genes.

Pairing 18 tumor samples with normal tissue from the same patients provided more
information about gene dysregulation in colorectal cancer (55). In developing this cata-
logue of dysregulated genes, a t-test was used to assign a p value to the average differ-
ence in expression between tumor and normal samples (p < 0.001 designated a
significant change). To further cull the list of dysregulated genes, a fourfold change in
average expression between tumor and normal was also required. These filters are arbi-
trary, and an advance in subsequent reports has been the use of various statistical
approaches to place confidence intervals around clusters and changes in individual
gene expression. A comparison of the average gene expression in normal and cancer
tissue is shown in Fig. 2. Points lying above or below the upper and lower boundaries
represent samples in which expression in tumors was either fourfold higher or four-
fold lower, on average, than the corresponding normal sample. Genes for which
expression differences achieved statistical significance are associated with an open
circle (p < 0.001).

Tables 1 and 2 list the transcripts displaying a fourfold or greater increase or decrease
in expression level, which was also significant at the p < 0.001 level. Nineteen tran-
scripts (0.48 % of those detected at an intensity of 10 or greater) displayed 4- to
10.5-fold or greater expression in the tumors than the paired normal tissue (p < 0.001),
while 88 transcripts (2.2%) displayed 4- to 38-fold lower expression in the cancer than
the paired normal tissue (p < 0.001). Some of these genes seemed to reflect the excess
smooth muscle and connective tissue in the normal samples and are omitted from the
table. The complete data set, together with the associated p values, is contained in a file
at (http://microarray.princeton.edu/oncology).

As previously reported, metalloproteinases were significantly more highly expressed
in colonic neoplasia than in normal tissue (e.g., L23808, human metalloproteinase [56],
X05231, collagenase [57]). Other gene products were noted that are either linked to
other forms of neoplasia or to the regulation of the cell cycle: GROα (58–60) 100 Kd
co-activator (61), ckshs2 (62), CDC25B (an M-phase tyrosine phosphatase) (63), and
transcription factor IIIA (GTF3A) (64,65).

As is the case in expression studies of breast cancer (8,66), there is a large group of
transcripts whose expression can be related to altered levels of metabolism (rather than
cancer initiation, per se). In addition to the ribosomal protein genes mentioned earlier,
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these include S-adenosylhomocysteine hydrolase (67,68), pyrroline 5-carboxylate
reductase (69), and L-iditol-2 dehydrogenase (70).

Table 2 omits some other gene products having proven association with colon can-
cer, because the p value associated with the expression difference was greater than
0.001 (ranging from 0.001–0.003). These included matrilysin (a matrix metallo-
proteinase) (71,72), matrix metalloproteinase 12 (MMP12) (73), osteopontin (74), and
TGFβ-induced gene product (BIGH3) (75). Agrawal et al. recently confirmed that
osteopontin is a lead marker in colon cancer progression (76). Other transcripts are not
included, because their increase in the tumors was less than the arbitrary cut-off of a
fourfold change (nm23, c-myc). Some transcripts in Table 1 have already been shown
to be down-regulated in cancer. Of particular interest, these are guanylin, which is
known to be a product of colonic epithelial cells (77,78), colon-mucosa-associated
mRNA (down-regulated in adenocarcinoma [DRA]) (79), tetranectin (80,81), hevin
(82,83), and biliary glycoprotein (BGP1) (84,85).

The forgoing indicates that it is possible to glean meaningful information from this
analysis even though the tissue composition of the normal and neoplastic samples may
differ. This is important, because it suggests that the computational techniques used to
partition expression data sets may actually be quite robust, even in a context of sub-
stantial noise and bias. Such robustness is fortunate, since the medical community is
eager to harness array technology to make clinical decisions and predictions. Even if

Fig. 2. Expression intensity in normal compared with tumor samples. The upper and lower
boundaries represent a fourfold difference in the average of the expression of each gene between
carcinoma and normal tissue. Open circle (�), genes for which average expression in carci-
noma was significantly higher or lower than it was in the matched normal sample (p < 0.001).
From ref. 55.
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microdissection or other methods of purification prove important in developing a
molecular taxonomy of colon cancer, it will be an advantage if it is not necessary to
apply these techniques routinely in actual clinical use.

Comparisons with Adenomas

We wished to learn if some of the changes in mRNA expression found in carcino-
mas already exist in this precursor lesion (20,21). To examine this, four adenomas
(each paired with normal colon tissue from the same patient) were analyzed with the
GeneChip. About 2400 unique accession numbers were in common between the some-
what different versions of the array used for these experiments (55). Approximately
385 of this set were the product of genes whose expression changed significantly in the
cancers (at p < 0.01). There was a close correlation (r = 0.5; p < 0.0001) between
adenoma-associated changes in transcript expression and cancer-associated changes in
transcript expression level. Forty-six transcripts were significantly dysregulated in
both the adenoma and the cancer samples (p < 0.01) and are listed in Table 3. It is
possible that the genes listed in Table 3 play a role at a relatively early stage of carcino-
genesis. Of course, it is also possible that many of these abnormalities (as well as those
in Tables 1 and 3) are merely bystanders to the neoplastic process, rather than reflect-
ing a tumor-initiating mutation. Comparison between changes at the DNA, RNA, and
clinical levels is needed to resolve this issue.

To further probe differences between normal tissue, adenomas, and carcinomas, clus-
ter analysis was performed using both the adenomas and cancers, together with the
paired normal samples. A hierarchical clustering algorithm was used for this purpose
(Cluster 2.02, and the resulting expression map was visualized with Treeview 1.45,
both shareware programs available at http://rana.stanford.edu/software) employing an
average linkage rule. Before the program was used, expression levels less than or equal
to zero were deleted, the remaining values were log-transformed, and both vectors of
the data matrix were centered about the mean and normalized, in that order.

The resulting visual representation of the data with its associate dendrogram is shown
in Fig. 3. The principal finding is that the phylogenetic tree is constructed so that the three
tissue types are separated in a manner that respects the conventional pathological classi-
fication of this tumor. The carcinomas and their benign precursors, the adenomas, are
placed on a different trunk than are the paired normal tissues, and these neoplasms are
also separated from one another, occupying adjacent branches of the same trunk. Several
clusters of genes appear to drive this partition. The three most obvious clusters are: Clus-
ter 1 (Fig. 3, right upper panel) represented by a group of gene products that were more
intensely expressed in adenoma than in either adenocarcinoma or normal tissue. This
group contained several transcription factors, of which some have been implicated as
oncogenes (XBP-1, SSRP1, ETS-2, SOX9), ribosomal proteins (S29 and S9), an inducer
of apoptosis (NBK), and a splicing factor (SRp30c). Many of these products are also
listed in Table 1, as one would expect. Cluster 2 (Fig. 3, right lower panel) comprised a
larger cohort of genes that were more highly expressed in adenocarcinoma than in
adenoma or in normal tissue. This cluster contains many of the gene products
already identified (Tables 1 and 2) as being more highly expressed in colorectal neopla-
sia than in normal tissue (e.g., Ckshs2, melanoma growth stimulatory activity (MGSA),
matrilysin, and diverse products related to proliferation and metabolic rate).
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Table 1
Transcripts More Highly Expressed in Adenocarcinoma Than in Paired Normal Tissue (24,55)

Accession no. Description Tumor/normal

X54489 HUMAN GENE FOR MELANOMA GROWTH STIMULATORY ACTIVITY. 10.5
U22055 HUMAN 100 KDA COACTIVATOR MRNA, COMPLETE CDS. 7.3
D14657 Human mRNA for KIAA0101 gene, complete cds. 6.5
M61832 Human S-adenosylhomocysteine hydrolase (AHCY) mRNA, complete cds. 6.0
M77836 Human pyrroline 5-carboxylate reductase mRNA, complete cds. 5.3
D21262 Human mRNA for KIAA0035 gene, partial cds (? nucleolar phosphoprotein). 5.2
M36821 Human cytokine (GRO-γ) mRNA, complete cds. 5.1
L23808 HUMAN METALLOPROTEINASE (HME) MRNA, COMPLETE CDS. 5.1
R08183 Similar to bovin hs 10 kDa protein 1(chaperonin 10)(HSPE1)(NM_002157). 4.8
L29254 Human (clone D21-1) L-iditol-2 dehydrogenase gene, exon 9 and complete cds. 4.7
H50438 M-PHASE INDUCER PHOSPHATASE 2 (Homo sapiens). 4.7
U33286 Human chromosome segregation gene homolog CAS mRNA, complete cds. 4.7
X54942 H. SAPIENS CKSHS2 MRNA FOR CKS1 PROTEIN HOMOLOGUE. 4.4
R32511 Homo sapiens cDNA clone 135395 3' (RNA POL II subunit). 4.3
T87871 Homo sapiens cDNA clone 115765 3' (myoblast cell surface antigen 24.1 DS). 4.2
X05231 Human mRNA for collagenase (identical to metalloproteinase 1). 4.2
R36977 Similar to Homo sapiens general transcription factor IIIA (GTF3A) (mRNA). 4.1
U17899 Human chloride channel regulatory protein mRNA, complete cds. 4.0
X54942 H. SAPIENS CKSHS2 MRNA FOR CKS1 PROTEIN HOMOLOGUE. 4.0

Intensity values <10 are adjusted to 10. Only transcripts with a fourfold difference or greater (p < 0.001) in expression intensity between tumor and
normal are included. Transcripts shown in capital letters were confirmed by RT-PCR. Gene descriptions have been edited.
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Table 2
Transcripts More Highly Expressed in Paired Normal Tissue Than in Adenocarcinoma (24,55)

Accession no. Description Normal/tumor

M83670 Human carbonic anhydrase IV mRNA, complete cds. 37.9
M97496 H. SAPIENS MRNA FOR GUAANYLIN, COMPLETE CDS. 20.2
X64559 H. SAPIENS MRNA FOR TETRANECTIN. 13.8
T54547 H. sapiens cDNA similar to M84526 COMPLEMENT FACTOR D PRECURSOR. 12.0
M95936 Human protein-serine/threonine (AKT2) mRNA, complete cds. 11.4
T55200 H. sapiens cDNA similar to gb:M10942_cds1 Human metallothionein-Ie gene. 8.4
T46924 H. sapiens cDNA similar to gb:U11863 AMILORIDE-SENS AMINE OXIDASE. 8.2
L11708 Human 17 β-hydroxysteroid dehydrogenase type 2 mRNA, complete cds. 8.1
T46933 H. sapiens cDNA clone 70843 3' (11-β dehydrogenase). 7.6
H54425 H. sapiens cDNA similar to gb:M10942_cds1 Human metallothionein-Ie gene. 7.4
M26393 Human short chain acyl-CoA dehydrogenase mRNA, complete cds. 7.2
M82962 Human N-benzoyl-L-tyrosyl-p-amino-benzoic acid hydrolase α-subunit mRNA. 7.1
J03037 Human carbonic anhydrase II mRNA, complete cds. 6.5
T72257 H. sapiens cDNA similar to gb:L07765 LIVER CARBOXYLESTERASE. 6.3
M84526 Human adipsin/complement factor D mRNA, complete cds. 5.9
T76971 H. sapiens cDNA similar to gb:X64177 H. sapiens mRNA for metallothionein. 5.7
H77597 H. sapiens cDNA similar to gb:X64177 H. sapiens mRNA for metallothionein. 5.6
T67986 H. sapiens cDNA clone 82030 3' similar to gb:X14723 CLUSTERIN PRECURSOR. 5.6
R99208 H. sapiens cDNA clone 200586 3' similar to gb:X76717 H. sapiens MT-1l mRNA. 5.6
U03749 Human chromogranin A (CHGA) gene, exon 8 and complete cds. 5.5
R93176 Soares 1NFLS H. sapiens cDNA similar to gb:M33987 CARB. ANHYDRASE I. # 5.3
L02785 H. SAPIENS COLON MUCOSA-ASSOCIATED (DRA), COMPLETE CDS. # 5.3
R94967 H. sapiens cDNA similar to gb:L11924 HEPATOCYTE GROWTH FACTOR. 5.2
J03037 Human carbonic anhydrase II mRNA, complete cds. 5.2
M74509 Human endogenous retrovirus type C oncovirus sequence. 5.2
L11708 Human 17 β-hydroxysteroid dehydrogenase type 2 mRNA, complete cds. 5.2
X77777 H. sapiens intestinal VIP receptor related protein mRNA. 5.1
R69552 H. sapiens cDNA clone 155302 3' (glutamate). 5.1
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R50730 H. sapiens cDNA similar to gb:Z19585 THROMBOSPONDIN 4 PRECURSOR. 5.0
H43887 H. sapiens cDNA similar to gb:M84526 COMPLEMENT FACTOR D PREC. 4.7
U17077 Human BENE mRNA, partial cds. 4.5
U25138 Human MaxiK potassium channel β-subunit mRNA, complete cds. 4.5
X86693 H. SAPIENS MRNA FOR HEVIN LIKE PROTEIN. 4.5
H57136 H. sapiens cDNA similar to SP:A40533 A40533 CAMP-DEP PROTEIN KINASE. 4.5
X73502 H. Sapiens mRNA for cytokeratin 20. # 4.5
J03037 Human carbonic anhydrase II mRNA, complete cds. 4.4
R70806 H. sapiens cDNA similar to gb:X62535 DIACYLGLYCEROL KINASE. 4.4
T51913 H. sapiens cDNA similar to gb:S45630 α-CRYSTALLIN B CHAIN. 4.3
T50678 H. sapiens cDNA contains TAR1 repetitive element (α-tryptase). 4.3
Z50753 H. sapiens mRNA for GCAP-II/uroguanylin precursor #. 4.3
M58286 H. sapiens tumor necrosis factor receptor mRNA, complete cds. 4.3
U08854 Human UDP glucuronosyltransferase precursor (UGT2B15) mRNA, complete cds. 4.3
X52679 Human ASM-2 mRNA for sphingomyelin phosphodiesterase (EC 3.1.4.12). 4.2
T71025 H. sapiens cDNA similar to gb:J03910_rna1 Human. 4.1
M12272 H. sapiens alcohol dehydrogenase class I γ-subunit (ADH3) mRNA. 4.1
M26683 Human interferon-γ treatment inducible mRNA. 4.0
D90313 HUMAN MRNA FOR BILIARY GLYCOPROTEIN, BGP. # 4.0

Intensity values <10 are adjusted to 10. Only transcripts with a fourfold difference or greater (p < 0.001) in expression intensity between tumor and
normal are included. Transcripts (41) representing smooth muscle or collagen are not shown. Transcripts shown in capital letters were confirmed by
RT-PCR. Gene descriptions have been edited. #, also identified in the SAGE database.
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Forty-Six Transcripts Significantly Dysregulated in Both Adenoma and Cancer Samples (p < 0.01, no threshold) (24)

Adenoma Cancer
Accession no. Description expression ratio expression ratio

M61832 Human S-adenosylhomocysteine hydrolase (AHCY) mRNA, complete cds. 2.497 5.143
X54942 H. sapiens ckshs2 mRNA for Cks1 protein homologue. 2.687 4.069
Z46629 Homo sapiens SOX9 mRNA. 1.958 2.909
U18291 Human CDC16Hs mRNA, complete cds. 3.316 2.538
U04313 Human maspin mRNA, complete cds. 8.612 2.200
L09604 Homo sapiens differentiation-dependent A4 protein mRNA, complete cds. 1.568 1.937
M34458 Human lamin B mRNA, complete cds. 1.417 1.800
X68314 H. sapiens mRNA for glutathione peroxidase-GI. 6.452 1.776
Y00971 Human mRNA for phosphoribosyl pyrophosphate synthetase subunit II (EC 2.7.6.1). 1.473 1.763
Z23064 H. sapiens mRNA gene for hnRNP G protein. 1.867 1.613
Z49099 H. sapiens mRNA for spermine synthase. 1.741 1.600
X55715 Human Hums3 mRNA for 40S ribosomal protein s3. 2.079 1.585
M64716 Human ribosomal protein S25 mRNA, complete cds. 2.363 1.490
M86737 Human high mobility group box (SSRP1) mRNA, complete cds. 7.819 1.358
D10522 Human mRNA for 80K-L protein, complete cds. 0.345 0.742
X77366 H. sapiens HBZ17 mRNA. 0.390 0.667
X59841 Human PBX3 mRNA. 0.626 0.667
M63138 Human cathepsin D (catD) gene, exons 7, 8, and 9. 0.371 0.664
X64364 H. sapiens mRNA for M6 antigen. 0.403 0.649
M23254 Human Ca2-activated neutral protease large subunit (CANP) mRNA, complete cds. 0.575 0.603
L27943 Homo sapiens cytidine deaminase (CDA) mRNA, complete cds. 0.618 0.597
M92843 H. sapiens zinc finger transcriptional regulator mRNA, complete cds. 0.449 0.587
D14662 Human mRNA for KIAA0106 gene, complete cds. 0.389 0.526
X15880 Human mRNA for collagen VI α-1 C-terminal globular domain. 0.153 0.470
M80899 Human novel protein AHNAK mRNA, partial sequence. 0.707 0.459
X16354 Human mRNA for transmembrane carcinoembryonic antigen BGPa (formerly TM1-CEA). 0.157 0.416
L07648 Human MXI1 mRNA, complete cds. 0.340 0.405
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Z24727 H. sapiens tropomyosin isoform mRNA, complete CDS. 0.268 0.405
X74295 H. sapiens mRNA for α-7B integrin. 0.444 0.402
X15882 Human mRNA for collagen VI α-2 C-terminal globular domain. 0.080 0.399
U27460 Human uridine diphosphoglucose pyrophosphorylase mRNA, complete cds. 0.379 0.393
L05144 Homo sapiens (clone λ-hPEC-3) phosphoenolpyruvate carboxykinase (PCK1) mRNA, 0.187 0.282

complete cds.
J02854 Human 20-kDa myosin light chain (MLC-2) mRNA, complete cds. 0.067 0.270
L41351 Homo sapiens prostasin mRNA, complete cds. 0.332 0.263
M76378 Human cysteine-rich protein (CRP) gene, exons 5 and 6. 0.081 0.263
M95787 Human 22 kDa smooth muscle protein (SM22) mRNA, complete cds. 0.004 0.253
U28249 Human 11 kDa protein mRNA, complete cds. 0.103 0.247
U17077 Human BENE mRNA, partial cds. 0.049 0.200
L02785 Homo sapiens colon mucosa-associated (DRA) mRNA, complete cds. 0.025 0.197
M83186 Human cytochrome c oxidase subunit VIIa (COX7A) muscle isoform mRNA, complete cds. 0.138 0.169
M82962 Human N-benzoyl-L-tyrosyl-p-amino-benzoic acid hydrolase alpha subunit (PPH-α) mRNA, 0.284 0.156

complete cds.
L11708 Human 17 β-hydroxysteroid dehydrogenase type 2 mRNA, complete cds. 0.151 0.123
X53416 Human mRNA for actin-binding protein (filamin) (ABP-280). 0.033 0.123
X54162 Human mRNA for a 64 kDa autoantigen expressed in thyroid and extra-ocular muscle. 0.197 0.121
X64559 H. sapiens mRNA for tetranectin. 0.885 0.092
M97496 Homo sapiens guanylin mRNA, complete cds. 0.009 0.058

The table is sorted in descending order by cancer expression ratio.
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Fig. 3.



Colon Cancer Profiling 163

The SAGE database also contains a great deal of information regarding differences
in gene expression between bulk samples of normal colon and colon cancer. Using
libraries derived from two bulk normal colon tissues (SAGE NC1 and NC2) and two
bulk colon tumors (Tu98 and Tu102) available at (http://www.ncbi.nlm.nih.gov/SAGE/
sagexpsetup.cgi), the 100 SAGE tags most likely to be differentially expressed between
bulk normal and tumor samples were identified with xProfiler, a tool provided at
SAGEmap. Of these, one (M77349, TGFβ-induced gene product, BIGH3) was identi-
fied in the Affymetrix data set as overexpressed in colon cancer, and six were identi-
fied as more highly expressed in normal colon tissue (guanylin, uroguanylin, carbonic
anhydrase I, and biliary glycoprotein). There are important differences between the
SAGE and Affymetrix results, perhaps due to sample heterogeneity, the limited num-
ber of tissue samples analyzed for the SAGE databases, and the gene assignment dif-
ferences in mapping oligonucleotide probes or SAGE tags. Clearly, it is important to
develop a better understanding of the similarities and differences produced by alterna-
tive approaches to large-scale expression monitoring.

In a reanalysis of our colon cancer data, Getz et al. (86,87) employed a coupled two-
way hierarchical clustering process (CTWC). The approach is an iterative one, in which
the structure that emerges during an earlier partition of the data set is subsequently
employed to develop relatively small stable clusters, in which a limited number of
genes are used to represent each cluster. This approach results in the identification of
submatrices of the total expression matrix, such that it may be simpler to identify bio-
logically or clinically meaningful partitions of the samples than were obscured when
examining the entire original data set. One advantage of this approach is that it reduces
the noise that is introduced by the large number of operationally irrelevant genes. This
may represent a useful approach to reduce the noise associated with sample and epithe-
lial cell heterogeneity (vide infra). Interestingly, using CTWC, Getz et al. (86) showed
that there is a high correlation between a subcluster containing epithelial genes (e.g.,
mucin) and a subcluster containing proliferative genes (e.g., ribosomal proteins). This
strong correlation is limited to the tumor samples; it is not discerned in the normal
samples. This suggests that the malignant epithelium in the cancer samples has a high
rate of proliferation, while the epithelium in the normal samples does not, an idea which
resonates with the anticipated biology. During the preparation of the mRNA samples
for labeling and analysis, we employed two different methods (12). For initial samples,
mRNA was isolated, and for later samples, total RNA was isolated. CTWC correctly
partitioned the early and late samples, uncovering this alteration in the protocol, and

Fig. 3. (previous page) (Left panel) Cluster map and phylogenetic tree resulting from a two-
way pairwise average-linkage cluster analysis. The carcinomas and their benign precursors, the
adenomas, are placed on an entirely different trunk than are the paired normal tissues.
The adenomas and the carcinomas are also separated from one another, occupying adjacent
branches of the same trunk. (Right upper panel, cluster 1) A cluster of gene products that are
more intensely expressed in adenoma than in normal tissue or carcinoma. This grouping con-
tained approx 8–10 genes, the mRNA expression of which appeared to be much higher in the
adenoma samples than in associated normal tissue or the carcinomas. (Right lower panel,
cluster 2) A cluster of gene products that are more highly expressed in carcinoma than in
adenoma or normal tissue. From ref. 55.
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identified the 27 genes that drive this separation (see Fig. 8A in the supplementary
information for ref. 87). This suggests that CTWC, by defining smaller submatrices of
the data set, may enhance the sensitivity and accuracy of sample classification.

In a subsequent refinement of our work, Kitahara et al. (13) reported a survey of
RNA expression in samples of colon tissue taken from surgical specimens of adenocar-
cinoma. The samples were subjected to laser-capture microscopy, and normal and
malignant cells were separately isolated (approx 104 cells/sample). Following T7 lin-
ear amplification, the aRNA was hybridized to cDNA microarrays (9216 cDNAs, of
which 4220 represented genes with known function). Genes with differential expres-
sion were selected based on a permutation test, and selected changes were confirmed
with reverse transcription polymerase chain reaction (RT-PCR) on amplified and
nonamplified samples of RNA. Genes that demonstrated a significant change in more
than half (i.e., at least five of eight samples) were considered as “commonly” up- or
down-regulated. Using this criterion, 44 genes (0.48%) were up-regulated, and 191
(0.99%) were down-regulated. Remarkably, the percentage of down-regulated genes
(0.48%) was identical to that which we observed, while the percentage of up-regulated
genes was slightly lower than we reported (2.2%) (55). Our value is probably a modest
overestimate, due to the greater inclusion of smooth muscle and connective tissue in
the normal bulk samples rather than the tumor. Several of the gene products identified
as abnormally expressed were previously implicated in colorectal cancer, and others
were known oncogenes. Unfortunately, the authors did not make their data available in
a comprehensive, electronic format, so it has not been possible to apply other statistical
approaches to their data set, nor to compare their results with what others have reported.
It would be important to do so, because, as yet, the use of linear amplification prior to
array analyses has not been systematically validated following laser microdissection.

More recently, Yu-Min Lin et al. (88) analyzed the gene expression profiles of
9 adenomas and 11 adenocarcinomas. The samples were microdissected and amplified
following the procedure of Kitahara et al. (13). A cDNA array, which embodied approx
23,000 cDNAs, was used for the analysis and was performed in duplicate. Using a
similar two-way clustering algorithm operating on a subset of 771 genes (selected for
reproducibility and detection in more than 80% of cases), they were able to partition
adenoma from carcinoma, confirming a previous result (55). Using a twofold variation
as denoting up- or down-regulation, 51 genes were up-regulated in adenoma and carci-
noma, as compared with normal epithelium, and 376 were down-regulated. In addition,
a group of genes were differentially regulated between adenomas and carcinomas;
interestingly, as they observe, nearly half of these genes play a role in “bioenergetics,”
including the proteins involved in the response to hypoxia. A comparison of Lin’s
results with the SAGE database (vide supra) and the data of Notterman et al. (55)
revealed some overlap. The methods used to produce the expression profiles in these
studies varied widely (cDNA microarray vs SAGE vs Affymetrix GeneChip; bulk tis-
sue vs laser capture microscopy; T7 amplification of mRNA vs nonamplified mRNA).
Therefore, it is not surprising that the resulting data sets are not congruent. Indeed, it is
gratifying that both of the array experiments were able to partition adenoma and carci-
noma on the basis of distributed gene expression patterns (55,88).

These experiments with colon cancer and adenoma indicate the great potential of
microarray analysis of solid tumors. They make it possible to enumerate a catalogue of
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genes that are dysregulated in both cancer and the precursor adenoma. Many of these
abnormalities are consistent with the literature, and others may signify cancer pathway
genes that are novel or have not previously been associated with colorectal cancer.
Because it is possible to use an unsupervised clustering algorithm to reorganize the
data in a way that respects the existing taxonomy (class prediction), we are encouraged
to think that it may be feasible, with the addition of appropriate clinical and demo-
graphic information, to discover new, clinically relevant classes of colon cancer.
As described elsewhere in this volume, this has been accomplished, in a limited way,
in a variety of tumor types, including B cell lymphoma, melanoma, breast cancer, and
lymphoblastic leukemia (6,7,9,17).

Differences in experimental and analytic techniques mean that comparisons across
different colon expression data sets are not yet robust or even practical. This greatly
encumbers an effort to generalize experimental results. One hopes that in the near
future, scientists will adopt a common experimental approach and a uniform data man-
agement structure so that it will be possible to link the data sets from diverse microarray
expression experiments (even involving different tumor types) originating in different
laboratories (e.g., see MicroArray and Gene Expression Markup Language [MAGE-
ML] described at http://xml.coverpages.org/mageML.html). This will facilitate com-
parisons and meta-analysis, in which genes common to the molecular pathology of
diverse tumors can be evaluated.

It is worth emphasizing that without detailed clinical and genetic information, it is
not possible to learn how particular expression patterns correlate with genotype and
disease phenotype or to develop a molecular taxonomy in which newly discovered
expression patterns serve as an analytic bridge between the underlying genetic sub-
strate and the resulting clinical behavior of the tumor. As mentioned earlier, in the case
of some tumor types, this effort has already been productive; unfortunately, this sort of
correlation has lagged in the case of colorectal cancer.

There are concerns that are more fundamental. Analysis of neoplasia is often predi-
cated upon a comparison of abnormal with normal tissue. We have already described
the problem of sample heterogeneity—normal tissue is composed of hundreds of dif-
ferent cell types, each with its own expression phenotype. However, even if it were
possible to purify samples to 100% normal epithelium, it remains that colon epithelial
cells are not monolithic with respect to their state of differentiation (11). Cells from the
neck of the crypt will have a different expression phenotype than those at the surface or
different regions of the crypt. Each of these cells and their associated mRNA and pro-
tein profile is “normal.” Therefore, following microdissection, the signal observed in
the typical microarray experiment will be a composite of the signals from the different
epithelial cell types. To an unknown extent, discrepancies between studies may be a
function of variation in the specific blend of epithelial cells across individual prepara-
tions. Furthermore, it is possible that a comparison between normal cells at specific
developmental stages (crypt neck vs crypt mouth and surface) and specific tumor
samples would provide insight into the molecular trajectory followed by individual
tumors. In this context, the field needs much more work in defining what is meant by
normal.

There is an analogous problem in the interpretation of data from of tumor speci-
mens. Samples of colon adenocarcinoma are heterogenous with respect to many genetic
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markers, even across individual samples (89). It can be expected, therefore, that there
will be tumor regional differences in expression phenotype; thus, the signal reported
for a particular sample is a weighted composite of the sample’s regional signals. Indeed,
this source of heterogeneity will be enhanced by epithelial cell purification techniques.
Furthermore, it is likely that certain tumor regions have a selective advantage over
others and will be dominant with respect to determining the fate of the tumor (and the
patient). The expression signature related to this region will be the most relevant for
driving a molecular predictive model of tumor progression, but it will be obscured by
the signals from the other regions of the tumor.

It is also worth noting that the normal tissue used in most microarray experiments is
derived from the resected segment of colon. In fact, epithelial cells from this tissue
may already display early preneoplastic characteristics. Failure to characterize care-
fully the genetic and histologic characteristics of these cells risks underestimating the
difference between normal and abnormal.

CONCLUSION
This review of the major efforts in array analysis of colorectal cancer points to the

great promise of this work, but indicates that an approach grounded exclusively on
measurement of mRNA expression has three major limitations.

First, many of the observed expression changes reflect secondary differences in
metabolic and proliferation rates and the tissue environment. Some of these changes in
RNA quantity clearly play a role in fostering the growth of the tumor, but others do not.
It is important to distinguish those expression changes that produce neoplastic growth
from those changes that are secondary to this process of tumor initiation.

Second, there remain important concerns about sample heterogeneity (e.g., varia-
tion in smooth muscle composition due to sampling differences), cellular heterogene-
ity (e.g., “what is a normal epithelial cell?”), subtle abnormalities in normal tissue
adjacent to neoplastic tissue, and regional differences in the genetic background and
expression phenotype of individual tumors.

Third, some RNA changes are true experimental artifacts, imposed by the necessary
period of tissue ischemia between separation of the tumor from its blood supply and
immersion in liquid nitrogen (90) or by differences in experimental technique (87).

In addressing these concerns, it seems reasonable that changes in RNA quantity that
play a causal role in tumor initiation will involve genes that are also altered at the DNA
level (or are just downstream to genes altered at the DNA level). It is likely that the best
approach to managing issues of sample and cellular heterogeneity is to anchor an analy-
sis of expression phenotype to the underlying genetic events and resulting clinical phe-
notype. Thus, for expression monitoring to reach its true potential in the service of
cancer gene discovery, gene expression studies need to be coupled with a parallel
effort to identify alterations at the DNA level and to tie both to the underlying clinical
phenotype.
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Gene Expression Analysis of Prostate Carcinoma

William L. Gerald

INTRODUCTION AND CLINICAL ISSUES

Carcinoma of the prostate is the most common noncutaneous cancer of men in the
U.S. and is expected to affect approx 198,000 individuals in 2001 (1). It is estimated
that more than 1 million men, over the age of 50 yr alive today, will die of this disease.
The incidence of prostate cancer has increased sharply in the last decade, as serum
prostate-specific antigen (PSA) testing has become widely available. This is primarily
due to detection of clinically inapparent and early stage disease. Many early stage pros-
tate cancers are relatively indolent, such that older men with disease often die of other
causes. For example, the estimated lifetime risk of a man developing prostate cancer is
16%, however the risk of dying from the disease is about 3.4% (2). In early stages,
most prostate cancers are curable with local therapy, either surgery or radiation. On the
other hand, more extensively invasive tumors and metastatic disease are much more
aggressive and in many cases lethal. A critical challenge is to develop means to distin-
guish indolent cancers from those that are potentially lethal, so that therapeutic proce-
dures can be tailored to an individual patient.

Androgens play a primary role in development and progression of prostate cancer,
and surgical or medical androgen ablation is a mainstay in therapy. Response to hor-
monal therapy is variable and unpredictable. Virtually all patients so treated eventually
develop androgen-independent prostate cancer. There is no therapy proven to cure hor-
mone refractory prostate cancer, and most patients will eventually die from their dis-
ease (3). The androgen-responsive biochemical pathways that drive prostate cancer
and mechanisms of tumor resistance to androgen ablation therapy are unknown.
A better understanding of androgen-independent tumors and more effective therapies
are needed.

New high-throughput methods, such as comprehensive gene expression analysis,
have potential to provide rapid advancement in characterization of neoplastic disease.
This chapter summarizes gene expression studies relevant to prostate cancer, with a
focus on attempts to identify diagnostic and prognostic markers, characterize the
androgen response pathway, define mechanisms of androgen-independence, and iden-
tify new therapeutic targets. It is clear that even in these early days of expression pro-
filing, there have been significant advances in techniques and methods of analysis,
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which suggest that these studies will further our understanding of the clinical biology
of prostate cancer.

HISTOGENESIS, PATHOLOGY,
AND EPIDEMIOLOGY OF PROSTATE CANCER

The vast majority of malignant tumors of the prostate are epithelial and termed
adenocarcinomas. The prostate normally has several types of epithelial cells. Basal
cells are located between the luminal cells and the basement membrane and form a
continuous layer in the non-neoplastic gland. This cell layer may also contain a stem cell
compartment that differentiates into luminal cells. Neuroendocrine cells are androgen-
independent cells dispersed throughout the basal layer and are believed to provide
paracrine signals that support the growth and function of luminal cells. The luminal
cells are androgen-dependent and produce prostatic secretory proteins. Prostate
adenocarcinomas have features of both basal and luminal cells, raising controversy
as to the cell of origin (4). A likely possibility is that most cancers are derived from the
ill-defined stem cell compartment.

The prostate develops through budding of epithelium from the urogenital sinus into
the surrounding mesenchyme. Prostate formation is, therefore, a consequence of
epithelial–mesenchymal interactions. Likewise, it is believed that the development of
prostate carcinoma is associated with aberrant epithelial–stromal interactions. Specifi-
cally, aberrant growth factor signaling from stromal tissues may play an integral role in
cancer progression (5,6). These paracrine mechanisms have not been well-defined,
however they may be critically important in the early stages of development and play a
significant role in providing a proper microenvironment for metastases (5).

The diagnosis of prostate cancer relies on histomorphologic assessment. Tumors
evolve through a series of stages with increasing degrees of cytologic and architectural
changes. Atypical and dysplastic luminal cell cytology, resembling that of cancer but
associated with an intact basal cell layer, are referred to as prostatic intraepithelial
neoplasia (PIN) (7). PIN is considered a precursor to invasive cancer based on epide-
miologic, phenotypic, and molecular data (8). PIN is associated with abnormalities of
molecular phenotype and genotype intermediate between normal epithelium and can-
cer. Invasive carcinoma lacks a basal cell layer.

Androgens play a primary role in normal prostate function and in the development
and progression of prostate cancer (9–11). Prostate growth and maintenance of its struc-
tural and functional integrity require an adequate level of circulating androgen. Andro-
genic hormones bind to and activate the intracellular androgen receptor, which regulates
specific gene expression. It is the expression of androgen-responsive genes that deter-
mines the balance between cell proliferation, cell death, and the differentiation of a
normal prostatic epithelial cell. Prostate cancer cells are also typically androgen-
dependent, and androgen ablation is the standard systemic therapy for this disease.
Androgen deprivation induces programmed cell death in androgen-dependent normal,
hyperplastic, preneoplastic, and malignant prostatic epithelial cells. Ablation can be
achieved by surgical removal of the testes or chemically with gonadotropin-releasing
hormone analogues, exogenous estrogens, progestational agents, anti-androgens, or
adrenal enzyme synthesis inhibitors, such as ketoconazole and aminoglutethimide. Vir-
tually all patients so treated respond, but eventually develop so-called androgen-inde-
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pendent prostate cancer, which is a serious clinical problem for which no consistently
effective therapy exists. Time to therapy-resistant progression is variable and ranges
between 1 and 3 yr.

Aging is the most significant risk factor for prostate cancer (4). Clinically evident
disease is usually not manifest prior to the age of 60 yr, although precursor lesions and
low stage disease are detected much earlier. The incidence of prostate cancer is signifi-
cantly higher in the U.S. than in many other countries, particularly Asian countries.
Dietary and environmental factors are, therefore, presumed to play a significant but
poorly understood role (12). African-American men are more likely to develop and die
from prostate cancer. Although heredity accounts for only a small percentage of pros-
tate cancer, evidence for genetic susceptibility to prostate cancer is supported by epide-
miological, twin studies, and segregation analyses (13). Chromosomal regions that have
been implicated to contain susceptibility loci include: 1q24-25, 1q42-43, Xq27-28,
1p36, 20q13, 17p11, 8p22-23, and 1p13. No single predisposition locus is by itself
considered responsible for a large proportion of familial cancer. In addition, none of
the susceptibility genes have been definitely identified.

EXPERIMENTAL BIOLOGY OF PROSTATE CANCER

Molecular Genetics

Several excellent reviews of the molecular biology of prostate cancer are available,
and only a few of the more common molecular alterations and their potential signifi-
cance are highlighted here (4,12). The analysis of chromosomal alterations in cancer
has identified many changes reflecting loss or gain of function of particular genes.
Consistent allelic loss is expected to reflect the location of putative tumor suppressor
genes. Loss of heterozygosity at chromosome arms 8p, 10q, 13q, and 17p are frequent
events in prostate cancer, and losses at 6q, 7q, 16q, and 18q also occur. Gains of genetic
material are expected to reflect the location of oncogenes. In prostate cancer, gains at
8q and 7 are fairly common. Individual genes at these loci have not been definitely
assigned a role in prostate cancer, but several reasonable candidate genes have been
proposed based on their location and functional properties.

One of the more common events in early prostate cancer development is loss of 8p
(14,15). Losses have been mapped to at least two regions: 8p12-21 and 8p22. Losses at
8p12-21 occur early in tumor development, and a candidate gene, NKX3A, maps to this
region. NKX3A is highly expressed in the prostate, and disruption of this homeobox
gene in mice leads to defects in prostate development and PIN-like lesions (16,17).
However, the gene is expressed in prostate cancers, and mutations of NKX3A have not
been detected in human tumors.

Loss of 10q is frequent in prostate cancer and apparently more common in advanced
disease. The PTEN gene at 10q23 encodes a lipid phosphatase, whose main substrate is
phosphotidylinositol 3,4,5 triphosphate. Loss of PTEN leads to activation of AKT kinase
activity and decreased sensitivity to cell death, but may also play a role in other cellular
activities associated with neoplastic disease. PTEN mutations are associated with sev-
eral autosomal dominant disorders, which include increased susceptibility to tumors.
In addition, PTEN is mutated in several prostate cell lines and is homozygously deleted
in about 10% of primary tumors (18). Mutations, however, appear to be very rare in
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human prostate cancers. PTEN heterozygous mice develop dysplasia and carcinoma of
several types, including prostatic epithelial dysplasias (19). MXI1 is another candidate
tumor suppressor at 10q25 (20). MXI1 is a MYC-binding protein, and MYC over-
expression is implicated in prostate cancer through amplification of 8q. Mutations of
MXI1 are apparently rare, however, MXI1 mutant mice have been reported to develop
prostatic hyperplasia and dysplasia (21).

As in many other tumor systems, alterations in molecules that regulate cell cycle and
apoptosis are likely to play a role in progression of prostate cancer. Loss of 17p occurs
in advanced stages of prostate cancer, and deletions include the ubiquitous tumor sup-
pressor gene TP53. Mutations of TP53 are found in several prostate cancer cell lines,
but occur infrequently in early stage disease (22). They appear to be more common in
advanced stages. Overexpression of BCL2 occurs in some prostate cancers and is
believed to reduce cell death. BCL2 expression seems to be a relatively late event in
prostate cancer and may be associated with progression to androgen-independent
growth and resistance to chemotherapy (23). Loss of activity of the CDK4 inhibitor,
p27, and deletion of the locus at 12p12-13.1 occurs in prostate cancer, but the CDKN1B
gene is rarely mutated. Instead, loss of activity occurs as a result of loss of expression,
aberrant phosphorylation, and altered degradation. In the prostate, several studies have
demonstrated that loss of p27 protein levels correlates with tumor grade and may pro-
vide a prognostic marker (24).

Molecular Aspects of the Androgen Signaling Pathway
and Androgen-Independent Prostate Carcinoma

The androgen signaling pathway plays a critical role in prostate cancer development
and progression (25). Ligand binding to androgen receptor results in conformational
changes, homodimerization, dissociation from heat-shock proteins, phosphorylation,
and subsequent interactions with specific androgen response elements in the promoter
of androgen-target genes. These effector genes are expected to regulate important cel-
lular processes. Transcriptional activity is dependent on ligand binding, release of
repressors, and recruitment of coactivators. These critical interactions and multisubunit
complexes are likely to be responsible for the diversity of androgen-regulated func-
tions and cell context specificity. It is also likely that other growth factor-mediated
signal transduction pathways influence androgen signaling.

Androgen ablation is a mainstay of therapy for high stage disease, but virtually all
prostate cancers treated this way eventually become resistant to therapy. The critical
molecular mechanisms by which prostate cancer cells become androgen-independent
are largely unknown, but several possibilities are considered likely. A variety of genetic
alterations are associated with androgen independence and include loss of hetero-
zygosity at multiple sites of chromosome 8, amplifications of the long arm 8q, gains in
Xp11-q13, and an increase in 7p and 5q (4). Overexpression or mutation of the andro-
gen receptor occurs in 20–30% of androgen-independent prostate tumors. Some mutant
androgen receptors continue to respond to androgens, but are also stimulated by other
androgen homologs (26). An alternative model for androgen independence suggests
that recruitment of nonsteroid receptor signal transduction pathways can activate the
androgen pathway in the setting of clinical androgen deprivation (27). The androgen
receptor can be activated in a ligand-independent manner by insulin-like growth factor
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(IGF)-1, epidermal growth factor (EGF), and keratinocyte growth factor (KGF), but
the mechanistic details are not clear. In addition, the overexpression of the human epi-
dermal growth factor receptor (HER)-2/neu receptor tyrosine kinase may be another
mechanism of androgen-independent growth. Blocking the programmed cell death nor-
mally induced by androgen ablation may be one of the mechanisms for cells to become
androgen-independent. Bcl-2 protein is undetectable in most androgen-dependent pros-
tate cancers, but is expressed at high levels in some hormone-independent cancers.
Expression of this gene inhibits the death rate of cancer cells. Further molecular studies
may help define the biological basis of hormone-resistant disease and assist in identify-
ing those patients likely to respond to sequential endocrine manipulations vs those who
should receive alternative therapy.

Prostate Cancer Models

Prostate cancer research has been hampered by difficulties in generating permanent
cell lines and xenografts for in vitro studies. Only a handful of lines are readily avail-
able (LNCaP, PC3, DU145, CWR22) and were isolated from metastatic tumors. There-
fore, many studies are based on a small repertoire of cell lines of uncertain relevance to
primary disease. An interesting spectrum of xenografts have been developed in recent
years and, despite some limitations, provide very useful tools for study. The develop-
ment of corresponding cell lines will further facilitate in vitro experimentation (28).
Several laboratories have undertaken the generation and use of genetic models of pros-
tate cancer. One of the more interesting transgenic models results from the use of a
prostate-specific promoter with a potent oncogene. The transgenic adenocarcinoma
mouse prostate (TRAMP) carries a prostate-specific probasin promoter expressing sim-
ian virus 40 (SV40) large T and small t antigens (29,30). These animals develop PIN
and prostate carcinomas within 12 wk, which progress to metastasis in 30 wk. Several
variants of this model have also been developed.

The NKX3A and PTEN knock-out mice as mentioned above are some of the few
mutant mice to express a prostatic neoplasia phenotype. The CDKN1B knock-out
mouse develops prostatic hyperplasia. Various crosses of these lines are being evalu-
ated in an effort to model multistep tumor progression. For example, a cross resulting
in PTEN heterozygous and CDKN1B homozygous loss contributes to progression of
the neoplastic phenotype (31). In addition, crosses between NKX3A and PTEN knock-
outs act synergistically in cancer progression (17).

GENE EXPRESSION ANALYSIS

Technical Aspects

Given the limitations in our present understanding of the basic biology of prostate
cancer, many investigators have turned to the use of high-throughput gene expression
studies to provide a more complete characterization of this disease. Most commonly,
these efforts have been designed to identify genes that participate in the process of
prostate cancer development, progression, and androgen independence, or to identify
genes that may serve as clinically useful markers for diagnosis or prognosis. These
studies have many inherent technical and analytical challenges, however initial efforts
are providing reason for optimism that these challenges can be met.
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The Impact of Tissue Heterogeneity on Gene Expression Analysis
Prostate cancers are heterogeneous and often multifocal. They infiltrate the gland,

are difficult to identify grossly, and are intimately admixed with non-neoplastic epithe-
lium and stroma (Fig. 1). Tumor cells are often associated with reactive stromal and
inflammatory tissues. Even the neoplastic cells are heterogeneous and include varying
patterns of in situ and invasive cancer. The histologic variability is so pervasive as to
have been incorporated into the most commonly used grading system (32). In addition,
tumors that are distinctly located in the prostate may represent independent foci of
neoplasia or intra-organ spread. Several studies have shown that topographically dis-
tinct lesions are often genetically and molecularly distinct (33,34). This molecular and
anatomic heterogeneity makes it difficult to obtain sufficient homogeneous material

Fig. 1. Manual microdissection of prostate cancer to enrich for tumor cells. Photomicro-
graphs depicting the complex histologic heterogeneity of prostate cancers and steps to manu-
ally dissect and enrich for tumor cells in samples for gene expression analysis. CaP designates
prostate cancer.
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for study. Most studies to date have used some form of tissue dissection to enrich for
cells of interest, however, even microdissection techniques that rely on morphologic
assessment may not be adequate to address all these issues.

The interpretation of observed gene expression obtained from tissue samples is,
therefore, dependent on understanding the complexity of the cellular content. A major
challenge is identification of the cell types within a sample that contribute to the
expression status of a specific gene. In heterogeneous samples, gene expression corre-
sponding to very small, but biologically significant, components of tumors may not be
evident using current methods. In addition, intersample comparisons can be limited by
their lack of homogeneity. Few reports have addressed these issues, but the magnitude
of the problem is illustrated in recent studies. Sequence analysis of cDNA libraries
constructed from either cell sorted non-neoplastic luminal or basal epithelial cells dem-
onstrated strong divergence in expressed sequences between these two prostate epithe-
lial subtypes, even with relatively small numbers of sequences (35). Sequences not
detected in prior expression analysis of bulk prostate tissue were readily apparent in
the purified individual cell types. This indicates that low to moderately abundant, but
specific, transcripts from individual cell types, which make up only a small proportion
of any sample, are still in the minority requiring very deep sequencing and sensitive
hybridization techniques for detection. These cell-specific differences in gene expres-
sion are graphically evident by comparison of profiles obtained with samples enriched
for either prostatic stroma, prostatic epithelium, or unselected bulk prostate (Fig. 2)
(36). It is readily apparent that the cellular composition of samples has a dramatic
impact on the expression profile and must be accounted for in the analysis of human
tumors.

Transcript Profiling Methods

Several methods have been used for high-throughput gene expression analysis in
prostate carcinoma. Some rely on sequence analysis of cloned transcripts (differential
display, subtractive hybridization, serial analysis of gene expression [SAGE], and
sequencing of expressed sequence tags [ESTs]), while others use microarrayed
sequence probes for quantitative hybridization studies. SAGE and ESTs require the
conversion of mRNA to cDNA that is cloned and sequenced. Sequences are catego-
rized and enumerated to provide readout of tag numbers per gene. These techniques
can be very quantitative and precise, but are dependent on the depth of sequencing,
accurate sequencing, and authentic mapping of sequence to gene. Low sequence tag
counts are not very reliable.

Microarray-based hybridization studies involve labeling of transcript representations
from cells and hybridization of the labeled target to individual sequence probes attached
to a solid support. The bound label is proportional to the quantity of specific transcripts
in the original RNA mixture. The probe arrays are miniaturized, such that thousands of
individual probes can be attached to a very small substrate, providing high-throughput
and experimental efficiency. This technique allows for the efficient analysis of virtu-
ally unlimited numbers of genes. The accuracy of measurements is dependent on speci-
ficity and sensitivity of individual probes. Only a relatively small number of probe sets
on most arrays currently in use have been evaluated for these parameters, and accuracy
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Fig. 2.
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for most is not known. However, within a controlled experiment, the profiles of gene
expression, as measured by any of these techniques, may be very informative.

Data Analysis

The analysis of expression data is of primary importance and is thoroughly described
in Chapter 6 in this text. A few critical issues are highlighted here. After the primary
data has been evaluated to remove background and artifact, expression values for each
gene can be determined. It should be kept in mind that most of these values have not
been validated and are simply a measure of the signal obtained in a single experiment.
Intra- and interexperiment reproducibility can often be very helpful in acceptance of
signal intensity as a reflection of the true transcript level. Most studies are designed to
identify genes that participate in a critical process or to classify samples into previ-
ously unrecognized biologically or clinically important subsets. The goal is to reduce
the expansive datasets and identify the critically important genes. This can be accom-
plished using statistical or metric thresholds to identify genes whose expression var-
ies significantly between samples of interest. A number of methods can then be used
to identify samples or genes with the desired properties. This includes unsupervised
algorithms, which search the data with few user-imposed restrictions in an effort to
recognize molecular substructure and identify previously unrecognized classes of
genes or samples, and supervised methods, which apply prior knowledge, such as
histology, phenotype, stage or outcome, to the analysis. However, because of the
large volume of data and relatively small number of samples, some associations
are likely due to chance. It is imperative that the significance of correlations be
established. The best approach is to test associations in independent sample sets,
however, because studies frequently have small numbers of samples, permutation
tests are often used as an alternative.

An important aspect of many techniques used in gene expression analysis is the
capability to produce a visual display of the results, so that investigators are able to
digest the large volume of data in an intuitive manner. It is often true that statistical
significance does not always reflect biological significance, and low level but critical
gene expression changes may often be lost with simply a mathematical approach.
Visualization of the data facilitates the incorporation of investigator knowledge
(and potentially bias) into interpretation of the data. Finally, the availability of the
dataset allows continued analysis with different or new approaches, and public access
to maximize use should be encouraged.

Fig. 2. (previous page) Differential gene expression in microdissected neoplastic and non-
neoplastic prostate. Illustrated is a diagrammatic representation of expression for a cluster of
genes that are differentially overexpressed in prostate carcinoma. An average linkage hierar-
chical clustering algorithm was used to group genes and samples based on similarity. Red rep-
resents overexpression, and green represents underexpression, relative to the scaled mean level
of expression. NLEPIPG4, RNA from microdissected non-neoplastic prostatic epithelium as
target; NLSTPG3, RNA from microdissected non-neoplastic prostatic stroma as target; NLPG1,
RNA from bulk non-neoplastic prostate; Avg CaP, mean value of gene expression for RNA
from 14 microdissected prostate carcinomas. The corresponding histologic section and design
of microdissection is shown.
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RESULTS OF GENE EXPRESSION ANALYSIS OF PROSTATE CANCER

The Prostate Transcriptome

The subset of genes expressed in normal and neoplastic prostate tissue has been
estimated based on theoretical and practical considerations. These studies are begin-
ning to define the prostate cancer transcriptome and a possible role for some genes in
critical processes. The Cancer Genome Anatomy Project (CGAP) of the National Can-
cer Institute was designed to identify genes responsible for cancer by sequencing
of cDNA clones representing RNA from normal, precancerous, and malignant cells
(http://cgap.nci.nih.gov/). Currently, there are 17,040 genes identified in the 139,041
ESTs from prostate libraries listed in CGAP. These resources have been combined
with independent data to identify 15,953 prostate-specific EST clusters in the prostate
expression database (http://www.pedb.org/) (37). This is believed to represent about
50–75% of the prostate transcriptome. An additional estimate, based on combining
publicly available SAGE data, predicted 37,000 genes in the prostate transcriptome
(38). These estimates can be supplemented with microarray-based studies of gene
expression. Using the comprehensive set of U95 oligonucleotide arrays (Affymetrix,
Santa Clara, CA, USA) with 63,175 probe sets for gene/EST clusters from the unigene
build 95, Latulippe et al. detected expression of genes corresponding to 5992 probe
sets (absolute call of present based on Microarray Suite 4.0 with default settings) in all
23 primary prostate carcinomas studied, 34,518 probe sets detected gene expression in
at least some cases, and 22,665 did not reliably detect expression (absolute call of
absent) in any of these samples (36). It is likely that these data represent all of the
abundant and moderately expressed genes in the prostate, although low abundance
genes, alternative forms, and those expressed only under special circumstances may
not be well represented. The identification of a complete prostate transcriptome will
define the lower limit of probes needed for prostate-specific cDNA arrays and provide
insights into tissue-specific molecular characteristics and tissue-specific regulation of
transcription.

Gene Expression Analysis of Neoplastic Transformation of the Prostate

A number of studies have focused on the identification of genes that are differen-
tially expressed in the process of neoplastic transformation of prostatic epithelium.
Differentially expressed genes are expected to represent molecular events that contrib-
ute to prostate cancer development and may serve as clinically useful markers for diag-
nosis. SAGE studies comparing 133,217 sequence tags representing 19,287 genes from
pools of four prostate carcinomas and adjacent non-neoplastic prostate, identified
156 differentially expressed genes at a p < 0.05 (88 up-regulated and 68 down-regu-
lated) (38). Eighty-eight were changed at least fivefold in frequency. Among the most
highly differentially expressed were PRP4, DVL1, IFITM1, and PIN1. Immunohis-
tochemistry was used to validate expression of selected genes and demonstrated that
some were derived from epithelial cells and others from stroma.

Several groups have compared expression differences between non-neoplastic pros-
tate tissue and prostate cancer based on cDNA arrays. Elek et al. used a 588 gene
commercial cDNA array and compared three prostate carcinoma samples to a single
normal (39). Semiquantitative autoradiography detected 19 differentially expressed



Prostate Cancer Profiling 183

genes (15 down-regulated and 4 up-regulated). One gene, GSTT1, was validated by
reverse transcription polymerase chain reaction (RT-PCR) and found to also show low
level of expression in some other tumor types. Using the same commercial array, Chaib
et al. compared nonneoplastic tissue and cancer from a single patient. Several methods
of analysis were evaluated (40). Under the most stringent conditions, 5 genes were
down-regulated and 10 were up-regulated. Relative changes in expression values were
confirmed by RT-PCR and Northern blot, however, the various techniques were not
quantitatively identical. There was little overlap in the genes identified as differentially
expressed from these two studies, possibly due to the small number of samples. Using
a 9984 gene cDNA array, Dhanasekaran et al. compared 24 benign prostate samples
and 36 prostate carcinomas using two different reference RNA samples produced from
non-neoplastic prostate tissue (41). A scatter plot of the 200 highest ranked differen-
tially expressed genes based on t-statistic and 200 highest ranked differentially
expressed genes based on magnitude of the difference was used to identify genes highly
ranked by both methods. Hepsin (HPN), PIM1, LIM, TIMP2, HEVIN, RIG, and THBS,
among others, met these criteria. Luo et al. used a 6500 gene array with a reference
composed of pooled RNA from two examples of benign prostatic hyperplasia (BPH)
and compared expression between 16 prostate cancers and 9 BPH (42). They used a
weighted gene analysis to identify 210 significantly differentially expressed genes of
the 3215 that were reliable measured (6.5%). Using these genes for classification by
multidimensional scaling, they were able to reliably separate prostate cancers from
BPH. HPN was the gene most highly ranked by this approach, and expression of this
gene was validated by RT-PCR.

Similar studies have been carried out using oligonucleotide arrays (Affymetrix).
Magee et al. studied 11 malignant and 4 benign samples on oligonucleotide arrays with
probe sets for 7068 human transcripts (43). They evaluated expression corresponding
to 4712 probe sets that were scored present in at least one sample and used stringent
criteria of at least threefold change in all 11 malignant samples compared to all 4 benign
samples to identify differentially expressed genes. Only HPN was shown to be
up-regulated, and no down-regulated genes were detected. Using relaxed criteria
(threefold difference in expression values in 9 of 11 tumors compared to all 4 benign
samples), they identified three additional genes: HTR2B and CDK10 were both
up-regulated, and PGM5 was down-regulated. Welsh et al. used oligonucleotide arrays
representing 8920 different genes to analyze 24 prostate cancers, 9 nonmalignant pros-
tate tissues, and 21 cell lines (44). Three thousand five hundred and thirty genes, which
varied most between individual samples, were used for cluster analysis. Cell lines had
distinct expression profiles from the tissue samples and, furthermore, malignant and
nonmalignant samples were distinct. Using a metric that incorporated rank of each
gene according to t-test, ratio, and absolute difference, they identified 20 highly ranked
genes with distinctly different average expression in non-neoplastic and malignant tis-
sues with nonoverlapping ranges. Among this group were GA733-2, TACSTD1, FASN,
MIC-1, and HPN. Luo et al. used two different oligonucleotide arrays (Affymetrix
Hu35k and U95A) to study 15 cancers and 15 non-neoplastic prostate samples (45).
They identified 84 genes that were differentially expressed at least twofold, with a t-test
p value <0.05 and a minimum expression level of 500 in the group with highest expres-
sion. They examined 25 cDNAs by semiquantitative RT-PCR and found that about
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80% had expression levels that were relatively the same as the chip result. They then
used the same filtering method to identify 12 genes that were differentially expressed
between tumors with capsular penetration and a group of normal and organ-confined
tumors. In situ hybridization confirmed tumor cell expression for some genes. U95A
oligonucleotide arrays with 12,600 probe sets were also used in experiments to deter-
mine differential gene expression in 52 prostate cancers compared to 50 nontumor
samples (46). Three hundred seventeen genes were up-regulated, and 139 were down-
regulated in tumor samples with an adjusted p value of <0.001. K-nearest neighbor
supervised machine learning was used to build predictors for classifying samples using
small sets of genes. A model using 16 genes was 86% accurate using an independent
data set. In a somewhat different approach, Stamey et al. compared nine high-grade
prostate cancers (Gleason grade 4 or 5) to eight samples of prostatic hyperplasia using
oligonucleotide arrays for 6800 genes (47). Differentially expressed genes that were
present in all cases and differentially expressed between the two groups with a p value
of <0.0005 by student’s t-test were selected. This resulted in 22 genes that were
up-regulated and 64 that were down-regulated. These genes included many different
functional categories. HPN, SLC14A1, CYP3A7, and prostate specific membrane anti-
gen (PSMA) were included in the list.

Although some genes have been repeatedly detected as differentially expressed dur-
ing prostate cancer development (e.g., HPN), it is interesting that the results of these
many studies are in only partial agreement. It is likely that the variety of methods,
samples, and experimental platforms contribute to the disparities.

Correlation of Gene Expression with Histologic Grade of Prostate Cancer

A critical issue in the care of prostate cancer patients is prognostically useful clinical
classification of early stage disease. At this time, few studies have been performed with
sufficient numbers of samples to establish strong clinical correlations, but some early
results are intriguing. Welsh used a subgroup of 788 tumor-specific genes in cluster
analysis and identified a tumor sample dichotomy, primarily resulting from differential
expression of a group of ribosomal genes (44). This division was statistically associ-
ated with Gleason’s score. Analysis of variance was used to identify 20 genes that were
differentially expressed between tumors subdivided into three classes of Gleason’s
score (5 or 6, 7, 8 or 9). Insulin-like growth factor binding protein (IGFBP)2 and
IGFBP5 were found to be highly expressed in high grade tumors. A similar finding
was made by Singh et al. using oligonucleotide microarrays (46). This group evaluated
a large number of clinical variables for association with gene expression profiles.
Although no expression correlates for age, serum PSA and local invasion were identi-
fied, there was a set of 29 genes that correlated with histologic grade (Gleason’s score).
The list did not include the two genes identified by Welsh et al. (44). This same group
developed a k-nearest neighbor approach to produce models using five genes to predict
recurrence following prostatectomy. Several genes that were most commonly used for
prediction were ITPR3, SIAT1, platelet-derived growth factor receptor-β (PDGFRβ),
and CHRA. Although these preliminary attempts require refinement with larger
datasets, their success does support the concept that gene expression profiles may pro-
vide useful outcome measures.
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Gene Analysis of Metastatic Progression of Prostate Carcinoma

Tumor metastasis is the most clinically significant event in prostate cancer patients.
Development of metastases requires that cells from primary tumors detach, invade stro-
mal tissue, and penetrate vessels by which they disseminate. They must then survive in
the circulation to reach a secondary site. To form clinically significant tumors, meta-
static cells must proliferate in the new microenvironment and recruit a blood supply.
Those tumor cells growing at metastatic sites are then continually selected for growth
advantage. This is a complex and dynamic process, which is expected to involve alter-
ations in many genes and transcriptional programs.

Samples of metastatic prostate cancer are not abundant, and only a few studies have
attempted to identify gene expression changes associated with this aggressive form of
the disease. Hierarchical clustering of cDNA array data was used to identify coordi-
nately expressed groups of genes that were specifically and differentially expressed in
metastatic vs primary prostate cancer (41). IGFBP5, DAN1, FAT, and RAB5A were
some of the genes down-regulated in metastasis, and MTA-1, MYBL2, and FLS353
were up-regulated. Magee et al. used oligonucleotide arrays and identified three genes
that were down-regulated in all three metastases compared to all eight primary tumors
(GNA15, PDXK, DGKA) (43). With relaxed criteria, they found an additional six down-
regulated and two up-regulated. LaTulippe et al. used oligonucleotide microarrays with
63,175 probe sets to analyze differential gene expression between 14 primary tumors
from patients without recurrence and 9 metastatic prostate cancers (36). An unsuper-
vised analysis revealed a strong tendency for primary and metastatic tumors to have
distinct expression profiles based on an average linkage hierarchical clustering algo-
rithm (Fig. 3). As expected, some of the gene expression differences, which distin-
guished primary and metastatic tumors, were contributed by the small amount of
contaminating non-neoplastic prostate tissue present in the primary tumor samples
(Fig. 3, bottom panel). Three hundred ninety-one of the 63,175 probe sets detected
tumor related differential gene expression of at least threefold with a student’s t-test
p value <0.001. These genes are expected to reflect the phenotype of these two cohorts
and provide insight into the biology of prostate cancer progression. In keeping with
this concept, 26 of the 100 most highly ranked characterized genes are believed to play
a role in some aspect of cell cycle regulation, DNA replication and repair, or mitosis,
including many genes that are known to be up-regulated in highly proliferative cells
such as RFC5, TOP2A, RFC4, and MAD2L1 (Table 1). This finding correlated with
the increased proliferation index of metastatic tumors. Fifteen of the 100 highly ranked
genes correspond to products potentially involved in signaling and signal transduction,
and nine others may contribute to cell adhesion, cell migration, or extracellular matrix.
These include hyaluronan-mediated motility receptor (HMMR), which encodes an
extracellular matrix binding protein believed to play a role in cell motility through the
Ras-ERK signaling pathway, and inositol polyphosphate 4-phosphatase type I
(INPP4A), the substrates of which are intermediates in pathways regulated through the
AKT proto-oncogene. A large proportion of the highly ranked differentially expressed
genes are believed to be involved with the regulation of gene expression and gene
product function. These findings suggest that the development and progression of pros-
tate cancer metastases are associated with many gene expression changes related to
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cell proliferation, interactions with the microenvironment, properties that might con-
tribute to cell motility, activated signal transduction pathways, and regulation of gene
product synthesis and function. Identification of genes, gene expression profiles, and
biological pathways, which contribute to metastasis, may be of significant benefit to
improved tumor classification and therapy.

Expression Analysis of the Androgen Response Pathway
and Androgen-Independent Prostate Cancer

The prostate is dependent on androgens for normal development and function, and
androgens play a role in prostate hyperplasia and neoplasia. The androgen response
program is driven by ligand interaction with androgen receptor. The androgen receptor
is a nuclear hormone transcription factor that modulates the expression of genes in
response to androgen. Androgen-regulated genes are involved in a wide variety of func-
tional roles including proliferation, differentiation, metabolism, and cell death. The
critical role of the androgen response pathway in prostate disease makes it an important
system for study in an effort to understand this complex network and identify specific
events that are amenable to therapeutic intervention. Despite the importance of the
androgen response pathway, relatively few downstream targets have been identified
and characterized. Androgen deprivation therapy is effective for prostate cancer, but
progression to androgen independence usually results in relapse within 2 yr. The molecu-
lar mechanisms underlying the clinically important transition from androgen depen-
dence to androgen independence are poorly understood.

Controlled study of the complex processes associated with androgen signaling and
androgen-independent progression in prostate cancer has proved difficult, because
few models exist that reproducibly mimic the clinical course of the disease in men.
LNCaP cells express a functional, although mutated, androgen receptor, proliferate
in response to androgens, and produce PSA and other androgen-responsive genes in
an androgen-dependent manner. A number of investigators have used this system for
addressing the androgen response program. Using subtractive methods, several
groups have identified potential androgen-responsive genes (48,49). A combination
of subtractive hybridization and reverse Northern analysis were used to identify genes
that were largely prostate-specific and androgen-responsive in LNCaP (50). These
genes included PSA, NKX3A, KLK4, and seminogelin. Xu et al. analyzed 83,000 SAGE
tags derived from androgen-stimulated and androgen-starved cells (51). They identi-
fied 136 genes that were induced and 215 genes that were repressed by androgen.
Waghray et al. analyzed 123,371 SAGE tags and identified 147 that were up-regulated

Fig. 3. (previous page) Cluster analysis of gene expression differences between primary and
metastatic prostate cancer. Representative gene expression clusters enriched for genes differ-
entially expressed between primary (green boxes) and metastatic (red boxes) prostate carcino-
mas. Clusters were selected from a hierarchical clustering dendrogram of gene expression data
from all 12,559 probe sets of U95A array (rows) and 32 samples of prostate carcinoma (col-
umns). Expression levels are pseudocolored red to indicate transcript levels above the median
for that gene across all samples and green below the median. Color saturation is proportional to
the magnitude of expression. A cluster of genes corresponding to high level expression in non-
neoplastic prostate is labeled.
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Table 1
100 Highest Ranked Differentially Expressed Genes
in Metastatic Prostate Cancer and Functional Classification

Cell cycle regulation, DNA replication and repair, and mitosis

Rank Exp met

    5 ↑ DEEPEST Deepest.
    7 ↑ KNTC1 Kinetochore-associated 1.
    8 ↑ FEN1 RAD2 (S. pombe) homolog,

flap structure-specific endonuclease 1.
    9 ↑ TK1 Thymidine kinase.
  11 ↑ TOP2α Topoisomerase (DNA) II α (170 kDa).
  12 ↑ CDKN3 Cyclin-dependent kinase inhibitor 3 (CDK2-associated

dual specificity phosphatase).
  16 ↑ RFC5 Human replication factor C, 36-kDa subunit.
  23 ↑ RFC4 Replication factor C (activator 1) 4 (37 kDa).
  28 ↑ MAD2L1 MAD2 (mitotic arrest deficient, yeast, homolog)-like 1.
  35 ↑ KNSL2 Kinesin-like 2.
  36 ↑ CDC2 Cell division cycle 2, cell division control protein 2

homolog (ec 2.7.1.) (p34 proteinkinase)
(cyclin-dependent kinase 1) (cdk1).

  42 ↑ MPHOSPH9 M-phase phosphoprotein 9.
  44 ↑ RNASEHI Ribonuclease HI, large subunit.
  50 ↑ CCNE2 Cyclin E2.
  54 ↑ MCM7 Minichromosome maintenance deficient

(S. cerevisiae) 7.
  56 ↑ BUB1β Budding uninhibited by benzimidazoles 1

(yeast homolog), β.
  57 ↑ SMC4L1 SMC4 (structural maintenance of chromosomes 4,

yeast)-like 1.
  58 ↑ STK15 Serine/threonine kinase 15.
  59 ↑ ZWINT ZW10 interactor.
  70 ↑ MGC1780 DDA3: p53-regulated DDA3.
  73 ↑ CCNB2 Cyclin B2.
  83 ↑ TTK TTK protein kinase.
  84 ↑ RPA3 Replication protein A3.
  95 ↑ CCNB1 Cyclin B1.
  96 ↑ CDC25B Cell division cycle 25B.

Signaling and signal transduction

  15 ↑ STK11 Serine–threonine kinase 11 (Peutz-Jeghers syndrome).
  17 ↑ JAG1 Jagged 1.
  21 ↓ DUSP1 Dual specificity phosphatase 1.
  26 ↓ KIAA0135 Similar to PIM-1 Proto-oncogene.
  34 ↑ EDN3 Endothelin 3.
  49 ↑ CSNK1γ2 Casein kinase 1, γ 2.
  51 ↑ INPP4A Inositol polyphosphate-4-phosphatase.
  64 ↑ TMPO Thymopoietin.
  67 ↑ ESRRB Estrogen-related receptor beta.
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Table 1 (continued)

Signaling and signal transduction

Rank Exp met

  76 ↓ GPR68 Ovarian cancer G protein-coupled receptor 1;
member of the G protein-coupled receptor family.

  77 ↓ LTBP1 Latent transforming growth factor β binding protein 1.
  78 ↓ IL8Rα Interleukin 8 receptor, α.
  79 ↑ CIT Citron (rho-interacting, serine/threonine kinase 21).
  89 ↓ MSMβ Microseminoprotein β.
  92 ↓ PPP3Cβ Protein phosphatase 3 (formerly 2B), catalytic subunit,

β isoform (calcineurin A β).

Transcriptional regulation, chromatin modification,
RNA processing and protein synthesis, and modification

    2 ↑ USP13 Ubiquitin specific protease 13 (isopeptidase T-3).
    6 ↑ SMARCD1 SWI/SNF related, matrix associated, actin dependent

regulator of chromatin, subfamily d, member 1.
  13 ↑ MYBL2 v-myb avian myeloblastosis viral oncogene

homolog-like 2.
  18 ↑ SF3A2 Splicing factor 3a, subunit 2, 66 kDa.
  20 ↑ HOXB5 HOX2, homeo box B5.
  22 ↓ ZFP36 Tristetraprolin.
  24 ↑ EZH2 Enhancer of zeste (Drosophila) homolog 2.
  25 ↓ SATB1 Special AT-rich sequence binding protein 1.
  32 ↓ FOS v-fos FBJ murine osteosarcoma viral oncogene

homolog.
  33 ↓ NR4A1 Nuclear receptor subfamily 4, group A.
  43 ↑ UBCH10 Ubiquitin carrier protein E2-C.
  45 ↑ PTTG1 Pituitary tumor-transforming 1, securin.
  48 ↑ CTRL Chymotrypsin-like.
  52 ↑ EP300 E1A binding protein p300.
  53 ↑ E2EPF Ubiquitin carrier protein.
  62 ↓ JUNB jun B proto-oncogene.
  68 ↑ FOXM1 Forkhead box M1, hepatocyte nuclear factor.
  72 ↑ PROP1 Prophet of Pit1, paired-like homeodomain

transcription factor.
  75 ↑ CNAP1 Chromosome condensation-related SMC-associated

protein 1.
  85 ↑ HOXC5 Homeo box C5.
  88 ↑ U5-100K prp28, U5 snRNP 100 kd protein.
  91 ↑ CGGBP1 CGG triplet repeat binding protein 1.
  94 ↓ CEBPD ccaat/enhancer binding protein delta (c/ebp delta)

(nuclear factor nf-il6-β).
  99 ↑ PLOD2 Procollagen-lysine, 2-oxoglutarate 5-dioxygenase.

Cell adhesion, migration, cytoskeleton, and extracellular matrix

    1 ↓ TAGLN Transgelin actin, α 2.
    3 ↓ ACTA2 α actin.

(continued)
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Table 1 (continued)

Cell adhesion, migration, cytoskeleton, and extracellular matrix

Rank Exp met

  30 ↓ FHL1 Four and a half LIM domains 1.
  46 ↓ ITGα8 Integrin, α 8.
  47 ↑ HMMR Hyaluronan-mediated motility receptor (RHAMM).
  61 ↓ TPM3 Tropomyosin 3 (nonmuscle).
  66 ↓ ITGα7 Integrin, α 7.
  80 ↑ THBS2 Thrombospondin 2.
  82 ↓ RARRES1 Retinoic acid receptor responder (tazarotene-induced) 1.
  97 ↓ CEACAM7 Carcinoembryonic antigen-related cell adhesion

molecule 7.

Metabolism, biosynthesis, and molecular transport

    4 ↓ ABCB1 P glycoprotein 1/multiple drug resistance 1.
  10 ↑ PGK1 Phosphoglycerate kinase 1.
  19 ↑ FTH1 Ferritin heavy chain 1; FTH1.
  27 ↑ NUP155 Nucleoporin 155 kDa.
  29 ↓ ABCA8 ATP-binding cassette, sub-family A (ABC1),

member 8.
  38 ↓ FXYD3 FXYD domain-containing ion transport regulator 3.
  41 ↑ SLC29A1 Solute carrier family 29 (nucleoside transporters),

member.
  60 ↑ FMO3 Flavin containing monooxygenase 3.
  74 ↑ PDK1 Pyruvate dehydrogenase kinase, isoenzyme 1.
  86 ↑ SCD Stearoyl-CoA desaturase (δ-9-desaturase).
  87 ↑ KPNα2 Karyopherin α 2 (RAG cohort 1, importin α 1.
  98 ↓ APOD Apolipoprotein D).
100 ↑ ABCC4 ATP-binding cassette, sub-family C (CFTR/MRP),

member 4.

Unclassified

  14 ↑ KIAA0101 None available.
  31 ↑ KIAA0906 None available.
  37 ↑ CGTHBA Conserved gene telomeric to α globin cluster.
  39 ↑ KIAA0186 None available.
  40 ↑ KIAA0543 None available.
  55 ↓ DKFZP434N043 None available.
  63 ↑ R32184 None available.
  65 ↑ DKFZP434N093 None available.
  69 ↑ KIAA0008 None available.
  71 ↑ DKFZP564C152 None available.
  81 ↑ MEST Mesoderm-specific transcript (mouse) homolog.
  90 ↑ DKFZP586L151 None available.
  93 ↓ EYA1 Eyes absent (Drosophila) homolog 1.

Rank, rank order of U95A probe sets based on t-statistic; exp met, mean expression value of metastatic
prostate cancers above (↑) or below (↓) mean expression value of primaries.
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and 204 that were repressed (38). Both groups analyzed cells 24 h after androgen expo-
sure, and many differentially expressed genes were identified in common. The differ-
entially expressed genes represented many different functional categories and include
both direct and indirect targets of the androgen receptor.

Nelson and coworkers used cDNA arrays composed of 1500 prostate-derived gene
probes to characterize the androgen response program in a time course experiment with
LNCaP cells (52). They identified 20 genes that were up-regulated and none that were
down-regulated. These included known (e.g., PSA, KLK2, NKX3A) and novel genes.
There were distinct temporal patterns of gene expression, suggesting that some were
direct and some indirect targets for the androgen receptor. Vaarala et al. used cDNA
arrays with probes for 7075 human genes to analyze LNCaP sublines, which had been
selected for expression of PSA as a surrogate marker of androgen-dependent–indepen-
dent growth (53). Some of the genes identified in this study were known to be andro-
gen-responsive (e.g., PSA, KLK2). Northern blot and in situ hybridization were used to
validate differential expression.

Using a different method to identify androgen-responsive genes, Wang et al. iso-
lated 38 genes that were differentially expressed in the rat ventral prostate at 14 and 48 h
following androgen replacement in castrated animals (54). The majority of these were
up-regulated following androgen replacement and were also prostate-specific. Six of
the 11 up-regulated genes that could be identified were known to be androgen-
regulated.

The CWR22 human xenograft is another androgen-responsive prostate cancer model
that has also been used to investigate the development of androgen-independent dis-
ease. This model exhibits androgen-dependent growth, expression of a mutated andro-
gen receptor, and expression of the androgen-responsive gene PSA. When deprived of
androgen, tumors undergo involution, but recur as rapidly growing androgen-indepen-
dent tumors in 3–12 mo. Bubendorf et al. used cDNA arrays with probes for
5184 prostate-derived genes to identify 37 that were increased by more than twofold
and 135 that were reduced more than twofold in at least three out of four hormone
refractory xenografts (55). This group went on to study the progression of CWR22
using cDNA arrays with 6605 probes (56). They profiled tumors before and during
androgen ablation and after recurrence of hormone refractory tumors. Fifty-nine genes
were repressed greater than threefold during androgen withdrawal, but 96.6% were
reexpressed in the recurrent tumors, providing further support for the hypothesis that
reactivation of androgen-responsive genes is involved in the growth of androgen-inde-
pendent tumors. They also identified 164 genes that were differentially expressed
between primary and recurrent tumors, including several that converge on the PI3K/
AKT/FRAP pathway. Amler et al. used cDNA arrays with 9704 probes to study gene
expression during androgen ablation and identified 122 genes with at least 2.5-fold
decrease in expression at some time point after androgen withdrawal and 38 genes that
were increased at least 2.5-fold in expression (57). Comparison of the androgen-inde-
pendent xenograft to the parental androgen-dependent CWR22 identified 13 genes that
were increased and 44 genes that were decreased. In addition, 28 genes that were
decreased after androgen withdrawal and in androgen-independent tumors were
reexpressed on exposure to androgen, suggesting that only a subset were androgen-
responsive genes. These time course experiments and relationship to androgen response
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suggested that there is only partial reactivation of the androgen response pathway in
androgen-independent tumors in the absence of exogenous ligand. Six genes (FKBP5,
THRA, S100P, SDC1, NCOR1, and APELIN) were found to be stably up-regulated in
androgen-independent tumors and were not androgen-responsive, suggesting that they
may serve as markers for androgen-independent disease.

This approach was extended to the analysis of gene expression changes in human
prostate cancers during androgen ablation therapy and the development of androgen-
independent disease (58). Gene expression analysis was carried out for 23 untreated
prostate cancers, 17 prostate cancers after 3 mo of androgen ablation therapy, and 3 pros-
tate cancers that were progressing after long-term hormonal therapy (androgen-inde-
pendent) using oligonucleotide arrays with 63,175 probe sets. Cluster analysis revealed
that untreated cancers have expression profiles distinct from tumors following therapy.
Interestingly, androgen-independent tumors tended to cluster with untreated cases (Fig. 4).
Genes that were strongly differentially expressed during hormonal therapy were iden-
tified by using an algorithm that combined filters and ranking based on the mean and
variance of expression levels for the two groups. A total of 659 of the 63,175 probe sets
detected tumor-related differential gene expression of at least threefold with a p value
<0.001. Two hundred ninety-five were up-regulated with androgen ablation therapy,
and 364 were down-regulated. The expression levels for the majority of these genes
also changed in the same direction in normal prostatic epithelium. Some of these genes
are known to be androgen responsive (PSA, KLK2, and KLK3, among others). Of inter-
est, about 97% of these genes did not demonstrate changes to the same extent in andro-
gen-independent tumors growing in an androgen-deprived environment. In addition,
the overall expression patterns for androgen-independent tumors more closely corre-
sponded to that of the untreated androgen-dependent cancers, suggesting a reactivation
of the androgen response pathway as predicted in the animal models. However, a unique
set of differentially expressed genes was detected in androgen-independent tumors.
For example, 145 of the 12,560 U95A probe sets detected tumor-related differential
gene expression between primary androgen-dependent and metastatic androgen-inde-
pendent tumor of at least threefold with a student’s t-test p value <0.001. Of these,
50 were also differentially expressed threefold between androgen-independent and
-dependent metastatic tumors. Twenty-five were up-regulated, and 25 were down-regu-
lated. Included among the up-regulated genes were the androgen receptor and several
involved in steroid biosynthesis. This further supports the concept that reactivation of
androgen signaling is a common feature in prostate cancers that have become resistant
to androgen ablation therapy and may occur through increased sensitivity and intracel-
lular synthesis of ligand.

CONCLUDING REMARKS

It is clear that the combination of the entire genome sequence, microdissection, and
comprehensive expression analysis will have a significant effect on research in cancer
biology and oncology. It is also clear that these techniques should be used with discre-
tion, common sense, and healthy skepticism to avoid over interpretation of the large
volumes of data, much of which has yet to be validated as reliable. Nonetheless, a
carefully controlled experimental design and rigorous data analysis could lead to new
discoveries in gene function relationships, which might not be evident with traditional
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Fig. 4. Cluster analysis of gene expression during androgen ablation therapy and the development of androgen-independent disease. Represen-
tative gene expression clusters enriched for genes differentially expressed between primary untreated (green boxes), androgen-ablation treated
(blue boxes), and metastatic androgen-independent (red boxes) prostate carcinomas. Clusters were selected from a hierarchical clustering dendro-
gram of gene expression data from all 12,559 probe sets of U95A array (rows) and 43 samples of prostate carcinoma (columns). Expression levels
are pseudocolored red to indicate transcript levels above the median for that gene across all samples and green below the median. Color saturation
is proportional to the magnitude of expression.
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focused experiments. It is worth noting that there is only limited agreement between
the studies described here with respect to expression of specific genes in association
with clinically relevant subsets of prostate cancer. There are many reasons for this
apparent lack of consensus, including the use of various analytical methods and criteria
to identify the most significant genes for a particular process, different sources and
methods of processing tissues and cells, variable methods of gene expression analysis,
technical platforms, tissues compared, and genes interrogated. There is also the ten-
dency in published results to discuss only the best characterized and most highly ranked
genes, making comparisons of more inclusive lists difficult. Ultimately, the standard-
ization of gene expression techniques and public availability of data will facilitate the
combined analysis of large numbers of tissues, such that clinical correlative studies can
be more efficiently and effectively performed. These novel technologies and approaches
provide many opportunities for cancer biologists and clinicians, however, they will be
most productively used in a cooperative manner that benefits from large numbers of
samples and unlimited methods of analysis.

NOTE ADDED IN PROOF

Two recent publications present expression analysis of the androgen response pro-
gram in LNCaP cells (59,60).
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INTRODUCTION

Lung cancer deaths exceed the combined mortality from breast, prostate, and
colorectal cancers (1). Every year more than 150,000 Americans die from this deadly
disease. Lung carcinoma classes include small cell lung carcinomas (SCLC) and non-
small cell lung carcinomas (NSCLC). The distinction of SCLC from NSCLC is impor-
tant as the clinical course and treatments for the two diseases are different. SCLC
patients initially respond well to chemotherapy, followed by regression of the tumor.
However, in most cases, the patient relapses, develops chemo-resistance, and eventu-
ally dies from systemic dissemination of cancer. In contrast, in early stage NSCLC
disease, treatment involves surgical removal of primary tumor (resection). However,
50% of those patients undergo relapse and eventually die from metastasis.

There exist a set of consensus criteria among pathologists for the SCLC vs NSCLC
distinction. However, the histopathological distinction in tumor classes is not always
clear. Occasionally, tumors are classified as adenosquamous carcinoma or combined
SCLC with NSCLC features (2). Such subjective assessments may become even more
difficult in poorly differentiated tumors (3). Thus, lung cancer classification can likely
be improved by taking into consideration a molecular classification.

As the current distinction of SCLC from NSCLC rests on clinicopathological fea-
tures, it may not reveal underlying alterations in genetic programs associated with the
malignant process. In contrast, a biological classification of lung carcinoma based on
large-scale transcriptional profiling, as well as other genomic and proteomic methods,
offers a biological basis for subclassifying tumors, tumor class discovery, and predict-
ing survival outcome. The recent development of targeted therapy against the Abl
tyrosine kinase for chronic myeloid leukemia also illustrates the power of such biologi-
cal knowledge from the standpoint of drug target discovery (4).

NSCLC accounts for 80% of lung cancer cases and is further subcategorized as
adenocarcinoma, squamous cell lung carcinoma, and large cell carcinoma (5). Adeno-
carcinomas are the most common and represent 35% of the lung cancer cases, followed
by squamous cell carcinomas, which account for 30% of the cases (2). Roughly 10% of
lung cancer cases are large cell lung carcinomas (LCLC), typically diagnosed by
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exclusion of the other three types of lung cancers (2). Neuroendocrine features, defined
by microscopic morphology and immunohistochemistry, have been regarded as hall-
marks of the high-grade SCLC that account for 18% of lung cancers, as well as inter-
mediate–low-grade pulmonary carcinoid tumors (5).

While the etiology of SCLC and squamous cell lung carcinomas, and most adeno-
carcinomas, are typically linked to tobacco smoking, the cause of some lung adenocar-
cinomas appears to be unclear (6,7). Adenocarcinomas arise peripherally in the smaller
airways, while SCLC and squamous cell tumors are centrally located in the larger air-
ways. The tumor suppressor genes affected in lung cancer typically include the pRb/
p16INK4a pathway and p53 (8,9). p53 mutations and loss of heterozygosity (LOH) have
been detected in greater than 50% of lung cancers (9) and are common genetic abnor-
malities in human cancers (10). Overall, the most common activating oncogene muta-
tions in lung adenocarcinomas are K-ras mutations (11).

The histopathological subclassification of lung adenocarcinoma is also challenging.
In one study, lung pathologists agreed on lung adenocarcinoma subclassification in
only 41% of cases (12). However, a favorable prognosis for bronchioloalveolar carci-
noma (BAC), a histological subclass of lung adenocarcinoma, argues for refining such
distinctions (13,14). Metastases of non-lung origin are common in the lung and can be
difficult to distinguish from primary lung adenocarcinomas (15,16). As the clinical
course of such a disease would differ from lung adenocarcinoma, confirmation of tumor
origin prior to treatment is also important.

The only effective prognostic indicator in lung cancer currently in clinical use is
surgical–pathological staging. Such staging is based on tumor size, nodal metastasis,
and distant metastasis (17). Although molecular markers such as p16INK4a, p53, or
K-ras status have been suggested as prognostic indicators (8), they are of limited use.
The simultaneous analysis of large numbers of independent clinical parameters may
offer a more powerful insight into surgical–pathological staging. The development of
microarray methods for large-scale analysis of gene expression (18–21) makes it pos-
sible to search systematically for molecular markers of cancer classification and out-
come prediction in a variety of tumor types (22–28). As we overcome technical hurdles
in microarray analysis and as the cost of microarray experiments continues to decrease,
use of expression analysis may become part of routine diagnostic practice.

In this chapter, we will focus on recent developments in lung cancer classification
based on large-scale gene expression analysis. For this, we will compare and discuss
gene expression analysis data obtained from over 250 human lung carcinomas, per-
formed by three independent groups, including our own research group (29–31).

LUNG TUMOR COLLECTION, PROCESSING, AND MODELS

Lung Tumor Specimen Source

Tumor collection is dictated to a large extent by clinical practice. For example, when
SCLC is diagnosed, the disease has generally spread to distant organs (metastasis), and
surgical resection is not performed. In such cases, the diagnostic biopsy or cytol-
ogy specimen may be too limited for research tumor procurement. However, in limited
stage (early stage) SCLC disease, when the tumor has not metastasized to distant
organs, surgery is performed, and therefore, samples can be obtained. In contrast,
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NSCLC is typically a slow growing tumor where surgical resection may benefit
patients, making tumor collection quite feasible. Nevertheless, when comparing
expression profiles of lung tumors one needs to be aware that differences observed
could be due to the evolution of the tumor and disease progression, which may be
altered following radiation or chemotherapy.

Classically, lung tumor specimens are either obtained as paraffin- or optimal cutting
temperature (OCT)-embedded sections following surgery or bronchial biopsies. Other
than primary tumors, there exist protocols that involve fine-needle biopsies from the
mediastinal or thoracic nodes. There exist several lung tumor-derived cell lines from
patients, which can also serve as a resource for examining the molecular profile of lung
tumors. Finally, distant lymph node biopsy, blood, serum, and sputum samples may
serve as additional sources of material that may prove to be valuable for developing
and determining diagnostic applications. Such specimens may also be valuable for
understanding the progression of lung tumors using gene expression analysis, immuno-
histochemistry, and DNA analysis.

Lung Tissue Handling

Integrity of lung tumor-derived RNA is a critical variable in mRNA-based expres-
sion profiling. Poor quality of RNA is generally observed when tumors are not frozen
immediately following resection, which leads to nuclease-based degradation of RNA.
Note that in Ramaswamy et al. (3), at least 98 tumor samples were rendered unusable,
as they did not meet RNA quality standards. This most likely reflects some tumors in
which the RNA was degraded. In general, snap-frozen tissue is ideal for RNA extrac-
tion. Although suitable for DNA-based methods, paraffin-embedded tissue is not use-
ful for mRNA-based expression profiling. In the current expression analysis studies
(29–31), snap-frozen tumor specimens were used.

Lung Tumor Heterogeneity

When profiling solid tumors, one question that arises is whether the profile gener-
ated is meaningful, as the tumor tissue consist also of lymphocytes, stroma, and other
normal cells. To circumvent this problem, several research groups profiled crude tumors
that are enriched in neoplastic tissue (3,29,32). Crude tumors may also include particu-
lar types of tumors, such as adenosquamous tumors or SCLC with NSCLC features (2),
that may give a mixed expression profile. Under these circumstances, laser capture
microdissection (LCM) may be a suitable approach that can be used for purification of
tumor cells from contaminating cells in the tumor. Although current techniques of LCM
and their application in expression profiling have not been extensively studied because
of the limited quantities of mRNA obtained, LCM holds considerable promise in dis-
secting the transcriptional signature of tumor-specific cells from surrounding stroma.
Both approaches of analyzing tumors have merits, and it may become necessary to use
both to address a given problem in tumor classification.

Lung Cancer Models

Lung cancer models that are representative of human cancers are valuable tools to
study tumor progression and discovery of therapeutic targets, provided they represent
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the tumor genotypically and not just phenotypically. While the significance of tumor
suppressors (p53, pRB, p16INK4a) and activated oncogenes, such as K-ras and c-myc,
involved in lung cancer is well known (8,9,11), the progression model and order of
inactivation or activation mechanisms involving tumor suppressors and oncogenes is
poorly recapitulated in current lung cancer models. However, some progress has been
made in this nascent field. For example, overexpression of activated H-ras using the
calcitonin–calcitonin gene-related peptide (CGRP) promoter induces pulmonary neu-
roendocrine (NE) cell hyperplasias and thyroid tumors (33). This was surprising, as
NE lung cancers such as SCLC typically do not have ras mutations. Recently, Linnoila
et al. developed a mouse model of lung NE tumors (34). In their model they demon-
strated that ASCL, when expressed from a lung epithelial cell-specific CC10 (Clara
cell) promoter created hyperplasia. When these mice were crossed to mice that
expressed T antigen (TAg) from the CC10 promoter, the double transgenic mice gave
rise to massive NE tumors that accelerated the onset of tumors generated by CC10/
TAg mice or CC10/ASCL mice alone. As TAg sequesters pRB and p53, which are
frequently dysfunctional in NSCLC and SCLC, this model recapitulates a NE lung
tumor that could be similar to its human counterpart.

The recent development of K-ras transgenic mice that give rise to lung adenocarci-
nomas (35–37) could serve as an important basis for lung cancer models that reflect
human lung cancers. The use of conditional expression together with viral infection
(35,38) may be particularly useful. In order to recapitulate the human disease and to
dissect lung tumor progression, one has to understand the set of genetic events that lead
to lung cancer. Crosses can be made with mutants in tumor suppressor genes that are
frequently mutated in lung cancer (e.g., p16, p53). Such mice may be useful as models
for chemotherapeutic trials and to identify other mutations that may contribute to lung
cancer pathogenesis.

Cell Culture

Cell lines in culture may acquire an altered genetic program due to artificial growing
conditions and selection. Thus, it may be argued whether they represent the original
tumor from which the cell line was derived. The use of tumor-derived cell lines in
expression profiling is an alternative when sufficient cell numbers and corresponding
mRNA is not readily obtainable from primary tumor material.

Lung cancer cell lines are very useful for drug target screens. Although lung can-
cer-derived cell lines have been evaluated for treatment responses by expression
analysis (39,40), the number of cell lines studied is limited, and a full-scale analysis
of diverse lung tumor cell lines has not been performed to date to determine thera-
peutic targets. Such an analysis could begin with defining different classes of lung
tumor cell lines using primary tumor signatures while maintaining prediction accu-
racy (3,32). In addition to providing the foundation for classifying tumor cell lines,
such an attempt allows for analyzing distinct classes of lung cancer cell lines that can
be subsequently tested for response to different classes of chemical compounds
(drugs) using techniques described by Scherf et al. (39). This approach may be a vital
link in discovery of therapeutic targets using cell lines that are amenable to high-
throughput screens (HTS).
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RESULTS FROM EXPRESSION PROFILING STUDIES
OF LUNG CARCINOMAS REVEALS
DISTINCT ADENOCARCINOMA SUBCLASSES

Transciptome Analysis in Lung Tumors

Although the SCLC and NSCLC distinction is widely accepted in the context of
lung tumor classification, such a classification is based primarily on clinical and patho-
logical attributes of the disease rather than similarity or dissimilarity at the level of
biological circuitry. Thus, a basic purpose of transcriptional profiling of lung tumors
aims at understanding the molecular view of lung tumors that is relevant from a diag-
nostic or therapeutic perspective. In that lung tissue is complex and is composed of a
large number of cell types, it makes trancriptome analysis in lung tumors a daunting
task. Few precursor cell types may give rise to lung tumors, as opposed to the diverse
cell types that are known to make up the normal lung tissue. A particular cell type in
the lung, such as the airway epithelial cell type 2 (AEC2, type II pneumocyte) is the
dominant lung tissue cell type, while the pulmonary NE cell (PNEC) may represent
less than 1% of lung cells. Thus, comparing a particular lung tumor (that arises from a
particular lung cell type) to normal lung tissue may not be the ideal comparison, as it
may not be the preneoplastic cell. This could explain, for example, why normal airway
cell type-specific signatures are quite distinct from the signature of the A549 lung tumor
cell line when compared using serial analysis of gene expression (SAGE) (31). Simi-
larly, lung NE tumor signatures may not be readily compared to the normal lung signa-
tures, as the lung precursor cell for NE lung tumors are unknown or underrepresented.
However, such a problem does not invalidate the rationale to study NE lung tumors.
The NE tumor signature can be compared to other lung tumor types analyzed or to an
independent dataset. It is also possible to compare NE tumors to diverse anatomical
tumors and normal tissues studied by Ramaswamy et al. (3) and Su et al. (32). A detailed
understanding of genes involved in the transcriptional program of diverse lung tumors
is helpful for understanding biological interactions, signaling pathways, and under-
standing the tumor’s genetic program. Microarray analysis has already been shown to
be useful for revealing transcriptional state and protein interaction (41), autocrine or
paracrine signaling (42), and genetic network or pathway analysis (43) in model sys-
tems. These approaches may be readily applicable in genetic analysis of lung tumors.

Proof of Principle Study: Molecular Classification of Diverse Lung Tumors

It is of considerable interest to determine if a molecular classification recapitulates
the existing histopathological classification of lung tumors and reveals previously
undiscovered tumor classes. The existing classification of lung cancer as SCLC and
NSCLC, and the subclassification of NSCLC, provides us with a framework for evalu-
ating the significance of molecular classification of lung cancers (29–31).

For example, we have used the Affymetrix (Santa Clara, CA, USA) oligonucleotide
probe array method and applied hierarchical clustering (44) to classify a diverse group
of 203 lung tumors and normal lung specimens using the 3312 most variably expressed
transcripts (29). Similarly, Garber et al. used cDNA microarrays to classify 67 lung
tumors (30). In contrast, Nacht et al. used SAGE to initially classify and train 9 tumors–
cell lines and normal airway epithelial cells, which was followed by evaluation of
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marker genes on 43 tumors using quantitative polymerase chain reaction (PCR) and
oligonucleotide probe arrays (31). These studies used supervised and unsupervised
clustering approaches for tumor classification, which included hierarchical clustering
(44), probabilistic clustering (45), or multidimensional scaling (31). Despite differ-
ences in sample acquisition, analytical methods, and analysis platforms, the resulting
clusters from these studies have recapitulated the broadest existing distinctions between
established histologic classes of lung tumors in a consistent manner, thus demonstrat-
ing that molecular classification can confirm existing clinicohistopathological classifi-
cation. For example, in our 203 sample classification, pulmonary carcinoid tumors,
SCLC, squamous cell lung carcinomas, and adenocarcinomas form distinct clusters,
thus validating the experimental and analytic approach (Fig. 1). The genes that defined
the cluster (groups) were in general agreement between the three study groups, and
further details are described below.

Normal lung samples form a distinct group in our study (29) and that of Garber et al.
(30). However, it is also obvious that the normal lung specimen signature is more simi-
lar to adenocarcinomas. Although normal lung tissue is a good comparison to any class
of lung tumor tissue, as indicated earlier, one needs to carefully consider that normal
lung is composed of several cell types that contribute to the transcriptional fingerprint.
For example, we observed marker genes that characterize normal lung samples but not
lung tumors, including transformation growth factor β (TGFβ) receptor type II,
tetranectin, and ficolin 3, (Fig. 1A). This was not unexpected, as elevated TGFβ recep-
tor type II levels have been previously reported for normal bronchial and alveolar epi-
thelium compared to lung carcinomas (46) and could mean that either the tumors
observed have reduced expression or that the predominant TGFβ receptor type II
expressing cell type in normal lung is absent in the tumors studied.

In our studies, SCLC and carcinoid tumors both showed high level expression of
NE-specific genes (Fig. 1B), including known markers, such as insulinoma-associated
gene 1 (47), achaete-scute homolog 1 (48), gastrin-releasing peptide, and chromogranin
A. We also observed several previously undescribed markers for SCLC, such as thy-
mosin-β expressed in neuroblastoma and the cell cycle inhibitor p18INK4c (Fig. 1B).
Similarly, Garber et al. (30) also observed expression of thymosin-β, the gene encod-
ing 7B2, and glutaminyl cyclase in SCLC. In contrast, we observed expression of
glutaminyl cyclase mostly in NE adenocarcinomas (see C2 tumors, below) and a few
carcinoid tumors, while the expression of 7B2 was exclusively restricted to carcinoid
tumors. Such differences could arise since the expression analysis platforms are differ-
ent between the two studies. In addition, carcinoid tumors were not included in the
study conducted by Garber et al. (30), which could explain the differences in expres-
sion patterns observed. In general, carcinoid tumors, examined in our study (29),
appeared to be the most distinct form of lung tumors, which is consistent with previous
reports (49). Only a few markers were shared between SCLC and carcinoids, while a
distinct group of genes defined carcinoid tumors (29).

Squamous cell lung carcinomas, for which one diagnostic feature is keratinization
(2), formed a discrete expression cluster characterized by high levels of transcripts for
multiple keratin types (keratin 5, 13, 14, 15, to 17), S100 calcium binding protein A2
and the keratinocyte-specific protein stratifin (Fig. 1C) in all three studies (29–31). The
squamous tumors also showed overexpression of p63, a p53-related protein essential
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for the formation of squamous epithelia (50). Several adenocarcinomas that show high
expression of squamous-associated genes (Fig. 1C), also displayed histological evi-
dence of squamous features in our data (29) and is consistent with previous histological
findings (2). Finally, expression of proliferative markers, such as proliferating cell
nuclear antigen (PCNA), thymidylate synthase, minichromosome maintenance (MCM)2

Fig. 1. Hierarchical clustering defines subclasses of lung tumors. Two-dimensional hierar-
chical clustering of 203 lung tumors and normal lung samples was performed with 3312 genes.
The normalized expression index for each gene (rows) in each sample (columns) is indicated by a
color code. (A) Clusters of genes with high relative expression in normal lung (NL, pink
branch). (B) NE tumors: SCLC (gold branch) and pulmonary carcinoids (COID, light blue
branch). (C) Squamous cell lung carcinomas with keratin markers (SQ, light green branch).
(D) Proliferation-related markers. Black branches are adenocarcinomas, and a subset of adeno-
carcinomas suspected as colon metastases (CM, red branch) is indicated. Reprinted with per-
mission from Proc. Natl. Acad. Sci. USA 98, 13790–13795.
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and MCM6, was highest in SCLC, which is known to be the most rapidly dividing lung
tumor followed by squamous cell carcinomas (Fig. 1D). The overexpression of PCNA
and other proliferative markers, although not reported, were noted in the data of Garber
et al. (30). However, unlike the other major lung tumor classes shown in our studies, lung
adenocarcinomas were not defined by a unique set of marker genes in all three studies
(29–31). Even in global tumor classification studies, the lung adenocarcinomas have few
marker genes that accurately distinguish lung adenocarcinomas from other anatomically
distinct primary epithelial tumors, such as prostate cancers (3,32).

Identification of Adenocarcinomas Metastatic to the Lung

Transcriptional fingerprinting by microarray analysis of human lung tumors offers a
wealth of information quite rapidly that was previously difficult to obtain. A key issue
in lung tumor diagnosis is the discrimination of a primary lung tumor from a distant
metastasis to the lung as the clinical course or treatment of the disease may differ from
primary lung cancer. In our study (29), microarray analysis readily defined extra-pul-
monary metastasis with non-lung expression signatures among putative lung adenocar-
cinomas, suggesting that expression analysis may serve as a diagnostic tool to confirm
and identify metastases to the lung. However, the datasets of Nacht et al. (31) and
Garber et al. (30) did not have tumor samples that represented lung metastases from
extrapulmonary primaries.

Briefly, we identified one distinct hierarchical cluster of 12 samples that most likely
represent metastatic adenocarcinomas from the colon (29). These tumors show expres-
sion of galectin-4, CEACAM1, and liver-intestinal cadherin 17, as well as overexpres-
sion of c-myc, which is common in colon carcinoma (Figs. 1, CM, and 2A). Marker
gene selection for these 12 tumors included cdx1, cdx2, and cytokeratin 20 among
others, which were also observed by Giordano et al. to indicate colonic origin (51).
Ramaswamy et al. observed that cdx1 transcription factor was over expressed in
colorectal tumors (3). Cdx1 is a target of the Wnt-1/β-catenin pathway that is frequently
mutated in colorectal tumors. Of the 10 samples in the colon expression signature group
in our study, for which clinical history and/or histopathologic information was avail-
able, only seven samples had been previously diagnosed as metastases of colonic ori-
gin. Several other adenocarcinomas also showed non-lung signatures that correlated
with breast-associated markers (estrogen receptor and mammaglobin-1) and were
associated with a clinical history and histopathology consistent with breast metastasis
(29). Thus, clustering identified suspected metastases of extra-pulmonary origin, as
well as putative metastases that escaped previous diagnosis, suggesting a pivotal role
of gene expression analysis in the diagnosis of lung tumors.

Class Discovery Among Lung Adenocarcinomas

Finding novel tumor classes or redefining existing tumor classes using microarray
data is a challenge. Successful class discovery depends on clues unrelated to molecular
signature. For example, Golub et al. chose acute leukemias as a test case in which
variability in clinical outcome, subtle differences in nuclear morphology, enzyme-based
histochemical analyses (periodic acid-Schiff and myeloperoxidase staining), and anti-
bodies recognizing either lymphoid or myeloid cell surface molecules were existent,
and their clinical impact was well-understood. They were able to use molecular profile
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to rediscover the classification (25). However, in solid tumors such as lung cancers,
especially adenocarcinomas, such robust classification is nonexistent. Therefore, dis-
covery of new tumor classes can raise questions and needs to be validated by indepen-
dent datasets.

Also, strong signatures in diverse lung tumor classes may obscure the successful
subclassification of lung adenocarcinoma, a class of tumors that is believed to be rather
heterogeneous. Therefore, in our study (29), we also used hierarchical clustering to
subclassify a dataset restricted to lung adenocarcinomas (Fig. 2). To avoid spurious
variations contributing to the clustering process, we selected genes whose expression
levels were most highly reproducible in a randomly chosen set of duplicate adenocarci-

Fig. 2. Clustering defines adenocarcinoma subclasses. Comparison of classifications derived
by hierarchical clustering (dendrogram) and probabilistic clustering (colored matrix) algo-
rithms. The two-dimensional colored matrix is a visual representation of a corresponding
numerical matrix, whose entries record a normalized measure of association strength between
samples. Strong association approaches a value of 1 (red) and poor association is close to 0
(blue). CM, colon metastasis; NL, normal lung; C1 through C4 are adenocarcinoma clusters,
and I, II, and III additional groups with weaker association. Reprinted with permission from
Proc. Natl. Acad. Sci. USA 98, 13790–13795.
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noma samples, yet whose expression varied widely across the chosen sample set.
To reduce potential classification-bias due to choice of clustering method and to clarify
cluster boundaries, we also used a model-based probabilistic clustering method (45).
Out of 200 bootstrapped resampled iterations, we measured the frequency with which
two samples appeared in the same cluster as a reflection of the overall strength of
each pair-wise association. Thereafter, we displayed the strength of pair-wise associa-
tion according to the tree structure obtained from hierarchical clustering that define
clusters corresponding to normal lung, putative colon metastases, and four subclasses
of lung adenocarcinoma (C1 to C4) (see Fig. 2 in ref. 29). Several smaller and/or less
robust groups were also observed.

Comparison of our classification data (that was restricted to adenocarcinomas) when
compared to the data of Garber et al. (30) showed striking similarities for at least two of
their classes discovered based on signature genes. A fourth group discovered by Garber
et al. (30) corresponds primarily to LCLC, which was excluded from our study. Garber
et al. analyzed lung tumors by hierarchical clustering including all histological groups
of lung samples, including adenocarcinomas, SCLC, squamous carcinomas, LCLC,
etc. (30). When we performed a similar analysis, we observed clusters C2, C3, and C4
as coherent groupings within the hierarchical clustering of the larger set of tumors
using the 3312 gene set, while cluster C1 was split into different groups (29). Thus,
tumor selection is a variable that appears to affect a subset of cluster boundaries. Nev-
ertheless, the reproducibility of several adenocarcinoma subclasses across multiple
datasets and clustering methods supports the validity of the adenocarcinoma clusters
and their boundaries.

In order to identify marker genes that define each of the proposed clusters in such
studies, a supervised approach such as a K-nearest neighbor can be employed to extract
marker genes from the entire set of 12,600 transcript sequences (25). For each cluster,
selected genes can include those that are preferentially expressed in the cluster relative
to all other samples, using the signal-to-noise metric (25). The genes whose expression
correlates best with each class may serve as markers for class prediction in future stud-
ies. Similar statistical approaches were used by Garber et al. (30) and Nacht et al. (31)
for gene selection.

Molecular Signature of Lung Adenocarcinoma Subclasses

Hierarchical clustering approaches define samples that are defined by co-expressed
transcripts. As described above, we defined four distinct subclasses of primary lung
adenocarcinomas in our study (29) that were arbitrarily named C1 to C4. Similarly,
Garber et al. (30) observed three adenocarcinoma classes labeled AC1 to AC3.

Tumors in the C1 cluster expressed high levels of genes associated with cell division
and proliferation (Fig. 2B), which are also expressed in the squamous cell lung carci-
noma and SCLC samples described earlier (Fig. 1D). Relatively high level expression
of proliferation-associated genes was also seen in cluster C2. Although similar genes
were observed in dataset of Garber et al. (30), they were mostly elevated in SCLC and
squamous cancers. As our adenocarcinoma classification was restricted to adenocarci-
nomas (Fig. 3), the C1 cluster was evident. However, when we mapped the C1 cluster
members to a hierarchical clustering that involved all samples, the members of this
category were distributed in smaller groups with adenocarcinoma clusters and squa-
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mous clusters. As C1 tumors are poorly differentiated tumors, they are probably diffi-
cult to classify and may not express a set of well-differentiated molecular markers.

In our dataset (29), high expression of NE markers were observed in cluster C2 (Fig. 2C).
Several of these markers, such as dopa decarboxylase and achaete-scute homolog 1,

Fig. 3. Gene expression clusters and histologic differentiation within lung adenocarcinoma
subclasses. Genes expressed at high levels in specific subsets of adenocarcinomas. (A) Colon
metastases. (B) Proliferation-related gene expression (C1). (C) NE gene expression (C2).
(D) ODC and surfactant gene expression (C3) and C2. (E) Type II pneumocyte gene expres-
sion (C4), C3, and normal lung. (F) Histopathological degree of differentiation (red, poor;
yellow, moderate; green, well; white, not available or irrelevant). (G) Estimated nucleated
tumor content (white, not determined; grey, 30–40%; blue, 40–70%; black, >70%. Reprinted
with permission from Proc. Natl. Acad. Sci. USA 98, 13790–13795.
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were also expressed in SCLC and pulmonary carcinoids. The serine protease, kallikrein
11, was uniquely expressed in the NE C2 adenocarcinomas, but not in other NE lung
tumors. Only a single adenocarcinoma tumor that closely segregated with SCLC in the
dataset of Garber et al. (30) showed a molecular signature comparable to C2 tumors.

C3 tumors were defined by high level expression of two sets of genes in our dataset
(29). Expression of one gene cluster, including ornithine decarboxylase 1 (ODC1) and
glutathione S-transferase pi (Fig. 2D), was shared with the NE C2 cluster. Expression
of the second set of genes was shared with cluster C4 and with normal lung (Fig. 2E).
The C3 adenocarcinoma subclass is similar to AC2 tumor class observed by Garber et al.
(30). In both datasets, this class of tumors express ODC1, citron, DUSP4, and hepsin.

Highest expression of type II alveolar pneumocyte markers, such as thyroid tran-
scription factor 1 (TTF1) and surfactant protein B, C, and D genes, was seen in cluster
C4, followed by normal lung and C3 cluster (Fig. 3E). These markers and others, such
as cytochrome b5, cathepsin H, and epithelial mucin 1, are also expressed in AC1
tumor class of Garber et al. (30).

The expression of genes such as amphiregulin, epiregulin, and vascular endothelial
growth factor (VEGF)-C was seen in AC3 and was also observed in C0 tumors in our
study (29). The cluster representing LCLC analyzed by Garber et al. (30) shared a set
of genes with the AC3 type tumors, which included amphiregulin, epiregulin, VEGF-
C, plasminogen activator, and Dickkopf-1. In the dataset of Garber et al. (30) large cell
tumors showed down-regulation of several genes that included claudin 4 and 7, epithe-
lial-specific ETS factor, discoidin domain receptor, PAX-8, and CATX-8 compared to
other tumors. Based on these findings, Garber et al. (30) suggested that loss of PAX-8
expression and expression of Dickkopf-1 suggests a mesenchymal transitional state for
large cell cancers.

All three studies (29–31) observed expression of genes associated with detoxifica-
tion and antioxidant properties that were highly expressed in a set of adenocarcinomas
and mostly in squamous cell tumors. These genes include glutathione peroxidase, glu-
tathione S-transferase, carboxylesterase, and aldo-keto reductase. Their presence in
squamous cell lung cancers, which are usually centrally located in the lung and associ-
ated with tobacco smoking, may reflect a response by the bronchial epithelium to car-
cinogenic insults.

Relation Between Gene Expression Tumor Classes and Histological Analysis

We noticed in our study (29) that cluster C1 tumors primarily contained poorly dif-
ferentiated tumors, while C3 and C4 contained predominantly well-differentiated
tumors. This is consistent with Garber et al. (30), as tumors in cluster AC1 (correspond-
ing to our C4 tumors) and AC2 tumors (corresponding to C3 tumors) are well-differ-
entiated. Cluster C2 and the other adenocarcinomas were moderately differentiated
(Fig. 2F). Note that C2 type tumors in the dataset of Garber et al. (30) is probably
represented by the adenocarcinoma segregating with SCLC tumors. In our study, 10 of
the 14 C4 tumors had been identified as BACs by at least one out of three pathologists
who examined the tumors. The presence of type II pneumocyte markers, and the high
fraction of well-differentiated tumors diagnosed as BACs suggest that cluster C4 is
likely to be a gene expression counterpart of histologically-defined BAC.
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It is possible that correlation of gene expression with histopathology is a result of
differential tumor content. Although microscopic analysis in our dataset (29) indicated
that our samples varied in homogeneity (Fig. 2), contamination of normal lung cells
does not seem to have overwhelmed the expression signatures. The degree to which
tumors clustered with normal samples did not reflect the percentage of tumor cells in a
sample in most cases. Class C4 is most similar to normal lung in both hierarchical and
probabilistic clustering, yet these tumors all contain at least 50% estimated tumor nuclei
and, in the majority of the samples, over 80%. In contrast, classes C2 and CM con-
tained tumors with as few as 30% estimated tumor nuclei, but are sharply distinguish-
able from the normal lung.

Validation of Lung Tumor Expression Profiling Results

Validation of expression profiling results is needed at different levels. At one level,
it is necessary to know if the profiling data agrees with actual transcript levels in the
tissue studied. In the case of lung cancer classification data, Nacht et al. noted that
SAGE data were comparable to oligonucleotide probe array and quantitative PCR
results for several genes (31). As expression data are “noisy,” it may be necessary for
lung expression profiling data to be evaluated with quantitative PCR.

The use of other datasets to validate classifications based on one expression dataset
is also necessary to determine unifying concepts and arrive at a consensus hypothesis.
In our own experience, we have observed that experimental noise can be a dominant
feature in the data structure and should be properly evaluated by determining the
various levels of experimental errors. One way of evaluating and distinguishing
experimental noise from biological signal is to determine the performance or classi-
fying accuracy of biological replicates, as was determined in our dataset and that of
Garber et al. (29,30).

Validation of a classification scheme on an independent dataset may be performed
to determine the ability of predicting a biological tumor class. This process is neces-
sary and increases the significance of the observed or newly discovered tumor class.
However, the prediction and its relevance are even more difficult when misclas-
sification cannot be accurately evaluated. For example, since lung adenocarcinoma
tumor classification and biology have not been well defined, it is difficult to under-
stand the extent of misclassification. Once we are better able to understand the biologi-
cal networks in adenocarcinomas and/or their impact on clinical end points, we may be
closer to validating lung adenocarcinoma profiling results.

Novel Insights Related to Tumor Progression and Metastasis

Supervised analysis may delineate gene sets that correlate with metastatic potential.
In our dataset (29), C4 tumors did not metastasize, and this observation is consistent
with histopathological definition of BAC. Tumor profile analysis also indicated that
C3 tumors (AC2 in ref. 30) express markers shared with the C2 type tumors. Indeed,
the C3 tumors have a relatively better prognosis in the dataset of Garber et al. (30),
while the C2 tumors tend to have a worse prognosis in our dataset. Thus, it would be
interesting to compare the genes in these sets of tumors that correlate with metastasis
or survival.
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Garber et al. (30) also report results that address tumor progression. When compar-
ing two intrapulmonary metastatic tumors from a patient, the tumor expression profiles
fell into AC group 1 and AC group 3. When they performed comparative genome
hybridization (CGH) analysis, they were indeed independent samples derived from the
same primary tumor and may be viewed as tumor progression and or metastasis forma-
tion. This is intriguing, as Garber et al. (30) propose that large cell tumors and AC3
tumors may be transitional mesenchymal-like tumors. More examples will have to be
evaluated to confirm this statement. We have also noted that C4 and C0 tumors are
most similar to AC1 and AC3, share expression for a set of genes, and are more similar
to each other (Fig. 2). These correspond mostly to BACs or tumors with BAC-like
features, respectively.

Novel Insights from Tumor Profiling

A histological review can readily identify cases of lung adenocarcinomas, squamous
cell lung carcinomas, and SCLC. However, histopathological subdivision within a par-
ticular subtype and its clinical significance are not well understood. For example,
adenocarcinomas are histologically classified into the following four classes: acinar,
papillary, BAC, and solid adenocarcinoma with mucin formation (2). However, in the
case of acinar or papillary adenocarcinoma, the distinction is not well correlated with
biomarkers or with clinical outcome. To this end, our data and those of Garber et al.
(30) have a large set of adenocarcinomas and have identified several distinct subclasses
within the lung adenocarcinomas with distinct signatures that are likely to be more
reproducible than histological appearance of tumors. For example, the C2 adenocarci-
noma subclass, defined by NE gene expression, was associated with a less favorable
outcome in our dataset, and current histopathological criterion may not be able to iden-
tify this group unless specific immunohistochemical analysis are performed. While
adenocarcinomas with NE features have been described previously (52,53), unique
markers that precisely define this group have not been described.

Our current analysis uncovered putative NE markers, such as kallikrein 11, that may
discriminate the C2 tumors readily from all other lung tumors. The C2 marker kal-
likrein 11, which is related to the vasodepressor renal kallikrein, may be of clinical
interest, given the unexplained observation of orthostatic hypotension in some lung
cancer patients (54). Kallikrein 11 may be useful for diagnosis of NE lung adenocarci-
nomas in serum or sputum samples. In the future, such an approach may become
important for diagnosis and therapeutic decisions.

Expression analysis may be used for informed selection and design of rational thera-
pies. Highly expressed genes could become important therapeutic targets. Expression
analysis have shown overexpression of several receptor tyrosine kinases, such as
discoidin domain receptors, RET and VEGF-C in subclasses of lung cancer (29,30).
Small molecule inhibitors, blocking antibodies, vaccines, and antisense drugs designed
against such targets in combination with existing chemotherapy regimens could become
valuable for treating lung cancer (37). Several agents that target one or more members
of receptor tyrosine kinases are currently undergoing clinical investigation for lung
cancers. For example, ZD1839 (Iressa), an epidermal growth factor receptor (EGFR)
tyrosine kinase inhibitor, which blocks signal transduction pathways implicated in the
proliferation, survival, and growth of cancer cells, has recently entered phase III clini-
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cal trials for lung cancer (55). Alternatively, cells that harbor mutations in tumor sup-
pressors or have oncogenic mutations can also be targeted separately from normal cells.
A virus targeted to p53-defective cells is currently being evaluated for lung cancer and
squamous tumors as well as lung adenocarcinomas that have mutations in p53 (56).
Similarly, peptide antibody against mucin-1 (BIOMIRA, Edmonton, Alberta, Canada),
which is overexpressed in C3/C4 type tumors (29,31), might be used to target mucin-1
positive lung tumors.

NOVEL INSIGHTS FROM COMPARING TUMOR PROFILING
WITH CLINICAL RESPONSE: CORRELATION OF PATIENT OUTCOME
WITH PUTATIVE ADENOCARCINOMA CLASSES

Clustering can classify tumors into distinct groups. Garber et al. (30) identified clus-
ters based on the similarity of transcriptional profile (30). We also identified clusters
using a similar approach as well as on the basis of stable clusters identified by combin-
ing clustering methods and bootstrapping of tumor samples (29). With our dataset, we
asked whether lung cancer patient outcome correlated with the subclasses of lung
adenocarcinomas defined. However, such clusters may or may not correlate with clini-
cal end points. For example, in our dataset, there was no detectable difference in prog-
nosis between the primary lung adenocarcinomas and the metastases to the lung of
colonic origin. However, in our dataset (29), the NE C2 adenocarcinomas were associ-
ated with a less favorable survival outcome than all other adenocarcinomas (Figs. 3A
and 4B). The median survival for C2 tumors was 21 mo compared to 40.5 mo for all
non-C2 tumors (p = 0.00476). When only stage I tumors were considered, the median
survival for patients with C2 tumors was 20 mo compared to 47.8 mo for patients with
non-C2 tumors. In contrast, the median survival for patients with C4 tumors was
49.7 mo, while the median survival for patients with non-C4 tumors was 33.2 mo (p =
0.049). Garber et al. (30) also compared patient outcome to adenocarcinoma classes.
They observed that AC2 tumors (which were similar to C3 tumors) had the best sur-
vival (up to 50 mo), while the AC3 tumors (which were similar to C0 tumors) had the

Fig. 4. Survival analysis of NE C2 adenocarcinomas. Kaplan-Meier curves for C2 vs all
other adenocarcinomas. (A) All patients. n = 9 for C2, n = 117 for others. (B) Patients with
stage I tumors only. n = 4 for C2, n = 72 for others. Reprinted with permission from Proc. Natl.
Acad. Sci. USA 98, 13790–13795.
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worst prognosis. The AC1 tumors (similar to C4 tumors) had intermediate survival.
It is evident that, in either study, the correlation of survival with expression-based
classification has revealed distinct results. While the results are not contradictory, they
are not in perfect agreement. The classification methods in both studies are distinct and
may be a factor in the observed differences in clinical end points. It can also be argued
that, in either classification, adenocarcinomas are classified by molecular markers that
do not correlate or are relevant to clinical endpoints in both datasets (29,30). Therefore,
supervised approaches should be more effective in revealing the markers associated
with clinical end points, such as survival or recurrence of tumors. Further cross-valida-
tion studies will be necessary to determine the set of genetic and other patient informa-
tion that best describe clinical endpoints.

FUTURE

The preliminary data on lung cancer studies from three independent groups suggests
that classification by expression profiling may be indicative of prognosis. However,
prognosis may correlate with a small set of expressed genes independent of the larger
gene sets that define sample clusters. Determination of biological clusters or classes
based on hierarchical clustering shows the set of genes that are co-expressed providing
information on how a tumor’s biological network operates. This may reveal novel
autocrine or paracrine signaling pathways (42) significant in tumor proliferation and
metastasis.

Another issue is how should we compare different lung cancer datasets. Cross plat-
form or intra- and interplatform comparisons are currently not feasible. Even within
the same platform, we have observed that experimental noise can dampen biological
signals. For now, we have to evaluate datasets independently. Issues also include
platform-specific problems, such as cross-hybridization of target (mRNA). Eventually,
expression analysis will be integrated with other approaches that examine DNA ampli-
fications and losses in cancers (such as comparative genome hybridization or single
nucleotide polymorphisms), protein expression and protein interaction (proteomics),
and the consensus information from all such databases to paint a picture of tumor
classes and tumorigenesis.

SUMMARY

Comparison of our results (29) to independent studies performed with different set
of tumors and expression-profiling platforms (30,31), reveals a number of similarities.
Genes characteristic for previously defined tumor classes, such as SCLC and squa-
mous cell lung carcinoma, overlap heavily between analyses. Furthermore, two of the
adenocarcinoma classes we have identified, those with type II pneumocyte gene
expression (C4) and those with ODC/surfactant gene expression (C3), have counter-
parts in the data of Garber et al. (30). However, other findings are, so far, unique to
individual data sets. Differences between the studies indicate that the number of
samples in a single study alone is probably too small to allow for the generation of a
classification scheme that fully represents the complexity of lung cancer.

Cumulative evidence already suggests that gene expression patterns can predict the
clinical behavior and therapeutic response of cancers (39,40). Together, the generation
of gene expression-based classification of lung cancer and a subclassification of lung
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adenocarcinoma serves as the first step towards a new molecular taxonomy that should
provide new molecular targets for prognosis and rational therapy.
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Molecular Profiling of Bladder Cancer

Using High-Throughput DNA Microarrays

Marta Sánchez-Carbayo and Carlos Cordon-Cardo

INTRODUCTION

Understanding the biology of tumorigenesis and tumor progression of bladder can-
cer is essential for improving our capacity to diagnose and treat this group of diseases.
Unraveling the biological complexity underlying these processes is expected to pro-
vide novel tools of predictive nature and identify therapeutic targets. The further
characterization of the regulatory mechanisms and pathways controlling cellular
homeostasis that are altered in bladder tumors will be achieved, at least in part, by
global analyses of gene expression. Until recently, the ability to identify and analyze
gene expression patterns has been technically limited to relatively few genes per study.
This limitation is being overcome by the development of a number of methods that
allow for a more comprehensive analysis of these patterns. Some of the most powerful
methods include differential display (1), serial analysis of gene expression (SAGE)
(2), massively parallel signature sequencing (MPSS) (3), as well as protein composi-
tion-based approaches, such as protein microarrays (4) and combined two-dimensional
gel followed by mass spectral analysis (5).

Concurrent with the development of these techniques has been the tremendous
increase in the DNA sequence information available for a range of organisms through
genome sequencing efforts (6,7). An important component of the mouse and human
sequencing efforts has been the determination, by cDNA sequencing, of both full and
partial sequences for tens of thousands of genes. In addition to increasing the utility of
the techniques described above, this expansion of gene and genome information has
served as the basis for development of one of the most powerful new techniques avail-
able to provide both static and dynamic views of gene expression patterns in cells and
tissues, the so-called DNA microarrays (8,9).

DNA microarrays can be used to “interrogate” complex mixtures of a myriad of
nucleic acid sequences for both presence and abundance of known genes. Hybridiza-
tion-based analysis and the microarray format together constitute an extremely versa-
tile technology. There is an increasingly broad range of applications for microarrays,
including genotyping polymorphisms and mutations (10,11), determining the binding
sites of DNA-binding proteins (12), and identifying structural alterations using arrayed
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comparative genome hybridization (CGH) approaches (13). The most widespread use
of this technology to date has been the analysis of gene expression.

In this chapter, we describe the potential role of this technology in the context of
uroepithelial neoplasms, discuss some practical considerations for the use of DNA
microarray platforms, mainly when utilizing clinical material, and summarize applica-
tions of this technology to the study of bladder cancer.

CLINICAL AND MOLECULAR PATHOLOGIC FEATURES
OF BLADDER CANCER

Molecular epidemiology studies of bladder cancer have contributed to the modern
viewpoint of tumorigenesis mainly based on associations with environmental expo-
sures and DNA damaging agents. Bladder cancer was one of the first neoplastic dis-
eases to be found associated with an industrial chemical exposure (14). It has also been
related to genotypic characteristics of individual polymorphisms, such as the fast
acetylator phenotype (15). In addition, bladder cancer is one of the first tumors in which
early stage disease is treated with immunotherapy (16). The early diagnosis of bladder
cancer is increasing, particularly in superficial preinvasive stages due to simplified
procedures such as the use of flexible cystoscopy.

Pathologically, most bladder tumors are transitional cell carcinomas. There is, how-
ever, increasing recognition of the prognostic importance associated with the meta-
plastic variants displaying squamous and glandular differentiation as part of their clonal
evolution. Bladder tumors are pathologically stratified based on stage, grade, tumor
size, presence of concomitant carcinoma in situ, and multicentricity. The power of
these histopathological variables in defining the clinical subtypes of bladder cancer
and predicting the clinical outcome of individual patients has certain limitations. Within
each stage, it has been very difficult to clinically identify useful parameters that can
predict risk of disease recurrence or progression. It is for these reasons that many groups
of investigators have examined additional molecular characteristics of bladder cancer
that may be of predictive value. Phenotypic features associated with tumor aggressive-
ness include cell cycle and apoptosis regulators.

Bladder cancer, including some superficial lesions, has been reported to carry a sig-
nificant number of genetic alterations at the time of diagnosis (17). If genetic changes
occur randomly in tumor cells, then selective advantage must supply the drive for some
changes to become stabilized, such as critical activation of specific oncogenic events
or inactivation of certain tumor suppressor genes.

A substantial body of work has suggested that superficial papillary tumors (pTa)
differ from flat carcinoma in situ lesions (TIS) and muscle invasive tumors in their
molecular pathogenesis and pathways of progression. The number of genetic alter-
ations is substantially higher in the invasive lesions, but there also appears to be a
difference in the specific alterations present. Based on data from several groups, it
appears that there are at least two major molecular pathways of bladder tumor develop-
ment and evolution that can be followed (Fig. 1). The first, represented by papillary
superficial tumors, is associated with chromosome 9 losses, including inactivation of
cyclin-dependent kinase inhibitor 2A (CDKN2A) (p16) on 9p and still unknown genes
associated with telomeric 9q loci (18,19). The second pathway includes inactivation of
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p53 on chromosome 17 (17p11.3) and retinoblastoma (RB) on 13q14, seen in flat car-
cinoma in situ and pT1 tumors (20–22).

PRACTICAL CONSIDERATIONS IN THE USE
OF DNA MICROARRAYS FOR BLADDER CANCER ANALYSIS

Selection of the Type of Arrays
There is a variety of commercially available oligonucleotide, glass, or nylon cDNA

microarrays. Alternatively, some researchers have opted to manufacture their own spot-
ted cDNA microarrays. Issues of cost, setup time, personnel available, flexibility, and
product range will influence this decision. The oligonucleotide and spotted cDNA for-
mats each have unique advantages and disadvantages and thus offer investigators a
distinct choice (23–25).

Sample Preparation
Several types of samples are available to study bladder cancer by expression profil-

ing. Normal urothelia and tumor tissues can be obtained by transurethral resection,
cystectomy, or cystoprostatectomy. Due to the close monitoring of bladder cancer
patients, sequential biopsies obtained over time allow addressing critical issues related
to tumor progression and response to treatment. Optimal results are achieved by han-
dling tissue promptly and either extracting RNA immediately from fresh aliquots or
deep freezing in liquid nitrogen in either tubes or using cryomolds and embedding
medium. This latter format allows verification of histopathological characteristics,
since it represents a frozen tissue block. It also provides adequate samples for tissue
microdissection if required.

Bladder cancer offers an additional source of material for tumor profiling studies
based on direct access to exfoliated tumor cells through urine samples and bladder
washes. This approach has not been reported to date, but represents an alternative strat-
egy mainly by the amount and purity of tumor cells collected.

A critical issue in microarray technology is the quantity and quality of the RNA
from which the hybridization sample is prepared. This is particularly critical when the
RNA is isolated from clinical specimens. Potential solutions to the quantitative limita-
tion include probe labeling protocols that increase sensitivity through label signal
amplification using dendrimers (24), probe amplification protocols that reduce the
amount of RNA required through the use of highly efficient phage RNA polymerases
or polymerase chain reaction (PCR) amplification (25–27), and posthybridization
amplification methods in which the target–probe duplexes are detected enzymatically
(27). Currently, probe amplification is the most frequently used method to address
issues dealing with limiting starting material and to improve the detection of low abun-
dance gene transcripts. Although there are studies showing favorable data (27,28), care
must be taken when amplifying probe material, as this may introduce bias, such that
the hybridization probe does not accurately reflect the transcript representation in the
original RNA sample (28).

Problems of RNA quality usually are severe when working with archived samples, as
many fixing and embedding protocols utilize aldehyde-based products, which damage RNA
integrity (29,30). Nonetheless, there have been studies that indicate that the RNA quality
is not diminished, at least for certain tumors, following certain fixation protocols (31).
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Tumor heterogeneity is a critical issue in tumor expression profiling, in general, and
particularly in the case of bladder cancer. Tumor cells are surrounded by normal con-
nective tissue and inflammatory infiltrates. In addition to manual microdissection of
tissue sections from embedded frozen tumor blocks, laser capture microdissection
appears to be a technique capable of isolating relatively pure cancer cells populations
from clinical specimens (32,33). The degree of the effect of the laser beam on the
quality of the RNA obtained is still controversial, although there are reports showing
good results using different microdissecting platforms (31). Flow cytometry sorting is
also possible using bladder washes or disaggregated tissue preparations as previously
described (34). The establishment of suitable tissue banks that are well annotated and
procured following appropriated guidelines is a logical component of any translational
program (35).

EXPRESSION PROFILING AND THE STUDY OF BLADDER CANCER

Microarray-based gene expression profiling has found a number of important appli-
cations in the study of carcinogenesis and cancer biology. Broadly speaking, these
applications can be described as: gene and pathway discovery, functional classification
of genes, and tumor classification.

Gene and pathway discovery is mainly based on functional association of changes in
gene expression between different cell states or phenotypes. This approach, which is
associating a change in the expression of a gene with a change in physiological state, is
one of the simplest ways in which gene expression profiling can be used to suggest or
predict gene function. Another way in which expression profiling can be used in the
functional classification of genes is often referred to as “guilt by association.” This
method is based on the observation that genes with related expression patterns, genes
that presumably are co-regulated, are likely to be functionally related and involved in
the control of the same biological processes or physiological pathways. When genes
with similar expression profiles are grouped, a process referred to as clustering, novel
genes (usually expressed sequence tags [ESTs]) are often found mixed with genes of
known function. A tentative activity for the novel genes can be inferred by this group-
ing. Moreover, new functions can be ascribed to known genes when they are grouped
with genes that have a distinct functional classification. Similarly, previously unknown
functions can be ascribed to pathways when expression changes in the genes that are
part of the pathway correlate with changes in the physiological state of the cell.

Functional classification of genes is a traditional approach to assigning a functional
role to a gene when overexpressed and observing the effect(s) of its expression on
known pathways or processes. This approach has been especially useful in identifying
the downstream targets of transcription factors. The genes identified as either up- or
down-regulated in these experiments are likely to play important roles in the functional
pathways controlled by the gene under investigation.

In these experiments, it is often critical to be able to tightly control expression of the
gene under study. Another potential problem, particularly in experiments in which cells
are transiently transfected, can be in restricting the analysis to only those cells that
actually express the gene of interest. This can be avoided using expression constructs
in which the gene of interest is fused to a tag, such as a green fluorescent protein, that
can be used to select and enrich for cells expressing the gene.
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Tumor classification is one of the most exciting and potentially most powerful
applications of expression profiling with DNA microarrays. Major goals for improving
cancer treatment include the early and accurate diagnosis of tumor type and determin-
ing the extent of the disease. The traditional approach to tumor classification is based
on clinicopathological criteria. It is expected that the integration of gene expression
patterns, as determined by DNA microarrays, will provide a better means for classify-
ing tumors into biologically meaningful and clinically useful categories. In addition,
expression profiling of well-curated tumor specimens has the potential of identifying
target genes for novel diagnostic, prognostic, or therapeutic approaches. Although the
true clinical utility of expression profile-based tumor classification is controversial and
still unproven, early results are encouraging (36–41). A general outline of the process
of microarray expression profiling for classification of tumor specimens, including the
important step of target gene validation using several procedures, such as high-through-
put tissue microarrays, is illustrated in Fig. 2.

APPLICATION OF DNA MICROARRAYS
TO THE STUDY OF BLADDER CANCER

The main advantage of DNA arrays is that they allow the study of the multiple tran-
scriptional events that take place when normal urothelium is transformed into tumor
tissue in single experiments. Expression profiling using cell lines has been used to gain
an insight into the molecular events associated with the disease. An example of how
the technology can be applied to the discovery of gene functions and pathways in blad-
der cancer is provided by the following study. Tumor cell growth inhibition mediated
by genistein was induced in the susceptible bladder tumor line TCCSUP. Expression

Fig. 2. The general procedure of a tumor expression profiling experiment includes RNA
isolation from tumor biopsy and control samples, preparation of the hybridization probe,
hybridization with the DNA microarray, data acquisition and analysis, and verification of the
results using, for example, tissue microarrays. NB, Northern blotting; DB, dot blotting;
QT-PCR, quantitative PCR; IHC, immunohistochemistry; ISH, in situ hybridization; FISH,
fluorescent ISH.
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profiling was analyzed at various time points using cDNA chips containing 884 sequence-
verified known human genes. Transient induction of early growth response protein-1
(EGR-1) was found, relating this event to its proliferation and differentiation effects.
The study reported many groups of genes with distinct expression profiles, most of
them encoding proteins that regulate cell growth or the cell cycle (42).

The following study provides an example of the functional classification of genes
applied to bladder cancer, relating the expression patterns of p53-mediated apoptosis
in resistant tumor cell lines vs sensitive tumor cell lines. The ECV-304 bladder carci-
noma cell line was selected for resistance to p53 by repeated infections with a p53
recombinant adenovirus Ad5-cytomegalovirus (CMV)-p53. Its expression pattern us-
ing cDNA arrays containing 5730 genes was compared with p53-sensitive ECV-304
cells. A number of potential p53 transcription or related targets were identified playing
roles in cell cycle regulation, DNA repair, redox control, cell adhesion, apoptosis, and
differentiation. Proline oxidase, a mitochondrial enzyme involved in the proline–
pyrroline-5-carboxylate redox cycle, was up-regulated in sensitive, but not in resistant
cells. Further experiments with pyrroline-5-carboxylate (P5C), a proline-derived
metabolite generated by proline oxidase, inhibited the proliferation and survival of
resistant and sensitive cells, inducing apoptosis in both cell lines. These results showed
the implication of proline oxidase and the proline/P5C pathway in p53-induced growth
suppression and apoptosis (43).

Expression analysis has also been utilized to monitor in vitro the effect of therapies
under preclinical and clinical trials, such as DNA methylation inhibitors, of drugs
attempting to reactivate silenced genes in human cancers. High-density oligonucleotide
gene expression microarrays were used to examine the effects of 5-aza-2'-deoxycytidine
treatment on a human bladder tumor cell line (T24) as compared to human fibroblast
cells (LD419). Data obtained 8 d after recovery from this treatment showed that more
genes were induced in tumorigenic cells (61 genes induced) than nontumorigenic cells
(34 genes induced). Approximately 60% of induced genes did not have CpG islands
within their 5' regions, suggesting that some genes activated by this treatment may not
result from the direct inhibition of promoter methylation. It was also shown that a high
percentage of genes activated in both cell types belonged to the interferon (IFN) signal-
ing pathway, confirming previous reports from other tumor cell types (44).

EXPRESSION PROFILING FINDINGS
USING HUMAN BLADDER CANCER SPECIMENS

Gene expression patterns may vary sufficiently to complicate the task of sample
classification based upon expression profiles. A significant challenge lies in choosing
the best groups of genes with which to identify the biologically related tumor sub-
classes. Certain groups or “clusters” of genes vary consistently in tumor samples, and
these genes can frustrate attempts at subclassification (36,37). Tumor classifications
based upon these types of “dominant” gene clusters are unlikely to identify useful tumor
subclasses. Much care must be placed in the choice of genes used to subclassify tumors,
and the choices must be thoroughly and rigorously verified and validated, both statisti-
cally and clinically.

There have been few reports dealing with molecular classification of bladder cancer
expression profiling using DNA microarrays. The most extensive one has monitored
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the expression patterns of superficial and invasive tumor cell suspensions prepared
from 36 normal and 29 bladder tumor biopsies using oligonucleotide microarrays con-
taining 6500 genes. This study also analyzed pools of cells made from normal
urothelium as well as pools of tumors of different stages such as pTa grade I and II and
pT2 grade III and IV bladder cancer specimens (34). The pooling approach may smooth
out individual differences, but on the other hand, it can dilute strong intensities of
relevant genes that may differentiate specific groups with different prognosis. Single
cell suspensions were prepared from cooled biopsies immediately after surgery follow-
ing a procedure previously used for the preparation of bladder tumors for flow
cytometry (45). Single-cell suspensions can be inspected under the microscope to
ensure the presence of enriched urothelial cells, avoiding samples with peripheral blood
contamination. These pools can be produced with similar numbers of tumor cells from
each specimen. In addition, RNA-preserving guanidium thiocyanate, immediately dis-
rupts the cells and inactivates RNases.

Hierarchical clustering of gene expression levels grouped bladder cancer specimens
according to stage and grade. By organizing genes with similar expression patterns into
clusters, several functionally related genes were identified. The most significant were
obtained by examining log-fold change of expression and included genes involved in cell
cycle, cell growth, immunology, cell adhesion, transcription, and proteinase genes clus-
tering into separate groups. Superficial papillary tumors showed increased transcription
factor and ribosomal levels, as well as up-regulation of proteinase encoding genes. In the
invasive tumors, increased levels of cell cycle-related transcripts were observed, which
might reflect the increased level of growth factor and oncogene transcripts found. A loss
of cellular adhesion proteins was found in invasive tumors and may be related to tissue
invasion and metastasis. The invading tumor cells seem to challenge the immune system
as reflected by an increase in immunological proteins (34).

The use of a common reference sample is not possible with oligonucleotide
microarrays, as only a single sample can be tested per array. Instead, comparative scal-
ing and normalization tools are used to allow comparisons to be made among samples.
The study mentioned above represent an example of this technology for sample classi-
fication. In these cases, the mean expression level of a gene across all samples is calcu-
lated, the change for each sample relative to this mean is determined, and the size of the
changes across all the samples are then compared (38). In the classification studies
using spotted cDNA arrays described below, the choice of the common reference to
which the experimental samples will be compared is a very important issue. Among the
strategies that can be adopted, a pooled common reference sample from closely related
or multiple related cell types has frequently been used (36,37).

The expression profiling of nine bladder cancer cell lines, including T24, J82, 5637,
HT-1376, RT4, SCaBER, TCCSUP, UMUC-3, and HT1197, has been compared
against a pool containing equal RNA quantities of each of them using cDNA arrays
containing 8976 genes (46,47). Hierarchical clustering classified these tumor cells
according to the histopathological characteristics of the tumors they were derived.
The squamous carcinoma cell line SCaBER was distinguished from the other cell lines
obtained from transitional carcinomas. Moreover, cell lines from invasive lesions clus-
tered together and were segregated from cell lines obtained from a metastatic and a
papillary superficial tumor. We focused on identifying potential targets that differenti-
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ated squamous features within bladder cancer based on the genes that were differen-
tially expressed in SCaBER. Caveolin-1 and keratin 10 were differentially expressed
in SCaBER and certain invasive tumor cell lines when compared to RT4 cells, which
are derived from a papillary superficial bladder tumor. We further characterized the
expression patterns of keratin 10 and caveolin-1 as potential markers of squamous dif-
ferentiation in primary bladder tumors using tissue microarrays. Interestingly, the
expression of these genes in the tumors analyzed was significantly associated with
squamous differentiation, histopathological stage, and tumor grade. Moreover, when a
bootstrapping resampling technique was applied, the cells clustered based on their p53,
RB, and INK4A status. E-cadherin, zyxin, and moesin were identified as genes differ-
entially expressed in these clusters. Interestingly, the expression of these genes was
significantly associated with histopathological stage and tumor grade as well (46).
These results revealed that molecular profiling clustered bladder cancer based on
histopathogenesis and biological criteria.

In a preliminary study, the expression profiling of 15 bladder tumors has been ana-
lyzed against a pool of bladder cancer cell lines using cDNA microarrays containing
18,609 known genes and ESTs (47,48). The application of bootstraps and multidimen-
sional scaling methods into the hierarchical clustering allowed the classification of
superficial bladder tumors vs the invasive lesions. Using a high number of clones has
allowed to validate critical known targets involved in bladder cancer progression, such
as p21 or cyclin E (49), as well as to identify novel molecular targets which require
further analytical, in vitro, and clinical validation (47,48) (Fig. 3). The application of

Fig. 3. Superficial and invasive bladder tumors showed differential expression profiles using
cDNA microarrays containing 17,842 known genes and ESTs.
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tissue microarrays represents a high-throughput approach for validation of novel
potential markers for bladder cancer by immunohistochemistry or fluorescence in situ
hybridization in paraffin blocks (49–51). Frozen tissue microarrays may enable further
characterization of novel genes by in situ hybridization of ESTs and known genes for
which specific antibodies are not available.

Comparisons between expression profiles of tumor and normal tissue instead of
purified primary cancer cells will also provide insight into the biology of the malig-
nancy, as well as information concerning its cellular composition. It is also possible to
identify the contribution of the different cellular components of the sample, cancerous
and noncancerous, to the overall expression profile of a histologically complex tumor
by using laser microdissection (32,33). Furthermore, knowledge of the expression pat-
terns of untransformed cells from which the malignancy has potentially developed can
greatly assist in assigning a cellular origin to the tumor under study (36,37). An experi-
mental justification for this latter practice derives from the observation that the expres-
sion profiles of tumor cell lines often correlate with the profiles of their tissue of origin (39).

OTHER APPLICATIONS OF MICROARRAYS
IN BLADDER CANCER RESEARCH

In addition to expression profiling studies, specific oligonucleotide microarrays have
been applied to the study of DNA variation in clinical material. The short length of
oligonucleotide targets gives them the ability to discriminate between multiple probes
that differ in sequence at a single base. Because of this, oligonucleotide microarrays
have been developed to identify simple polymorphisms and allelic variations in DNA
(10). The primary applications of these types of microarrays have been in the
genotyping of single nucleotide polymorphisms (SNPs) and in the identification of
mutations in medically important genes (39).

Oligonucleotide microarrays have also been used to analyze gene mutations in tumor
samples for the presence of mutations in the TP53 tumor suppressor gene, which is a
valuable predictor for bladder cancer outcome (34). The traditional manual dideoxy
sequencing has been compared with the much faster microarray sequencing on a com-
mercially available chip and the concordance between methods was 92%. DNA samples
extracted from 140 human bladder tumors were subjected to a multiplex-PCR before
loading onto the p53 GeneChip (Affymetrix, Santa Clara, CA, USA). Each of the 1464
gene chip positions corresponded to an analyzed nucleotide in the p53 gene sequence.
If there is a heterozygous or homozygous mutation, the oligonucleotide probes will
hybridize differently from the wild-type sequence and reveal a signal that detects this
particular base change. It is possible to detect either a wild-type sequence or a mixture
of wild-type and mutant alleles. The system is almost free from interference by mix-
tures of templates from nonpathological and pathological tissue. Even 1% content of
target from the diseased tissue can be detected in the presence of 99% wild-type content.
This is in contrast to the capabilities of classical sequencing methodologies, which
usually require at least 30% tumor tissue for accurate detection of mutations. Although
conventional and microchip sequencing techniques were not in complete agreement,
the speed and ease of the microarray analysis provided an argument for their use in this
application on a larger scale. A drawback of use of microarrays in mutation screening
is the inherent inability of this technique to detect previously unidentified mutations
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not represented on the array, or frameshift mutations, namely insertions or deletions.
This is certainly an important limitation, because it has already been established that
such frameshift mutations represent 5–10% of all known p53 mutations (52). The p53
GeneChip fails to detect such mutations because it is not designed to do so, with the
exception of single-base deletions.

Recently, genome-wide screening using SNP arrays has been applied to DNA iso-
lated from microdissected superficially invasive T1 and muscle invasive T2–4 bladder
tumors. These oligonucleotide commercial microarrays contain 1494 biallelic poly-
morphic sequences and can detect loss or gain of at least one allele. The authors reported
that out of a genotype of 1204 loci, 343 were heterozygous in the bladder tumors under
study. Allelic imbalance was detected in known areas of imbalance on chromosomes 6,
8, 9, 11, and 17, and a new area of imbalance was detected on the p arm of chromosome
6. Microsatellite analysis of T2–4 tumors and Ta tumors showed that allelic imbalance
was more frequent in T2–4 tumors than in Ta or T1 tumors. However, when pairs of T1
and T2–4 tumors were analyzed from eight patients, 68% of imbalances detected in T1
tumors (146 imbalances) occurred in the subsequent T2–4 tumors (99 imbalances).
Moreover, the authors report that homozygous TP53 mutations were more often asso-
ciated with high allelic imbalance than with low allelic imbalance. In this study, SNP
arrays were shown to be feasible for high-throughput genome-wide scanning for allelic
imbalances in bladder cancer in a faster manner than comparable microsatellite-based
analyses. Not only did they confirm known areas of chromosomal losses (18–22), but
they also identified areas with common allelic imbalances that could harbor potential
new tumor suppressors in bladder cancer (53). Although these data are restricted to the
polymorphic areas contained in the arrays, in the future, it should be possible to fabri-
cate high-density SNP microarrays for other predefined chromosomal locations, which
could make noninformative areas informative. In addition, high-throughput CGH arrays
may be of interest to confirm the alterations found at the genomic level in a detailed
manner (13). The microarray is a convenient platform for assays involving bio-
molecules other than nucleic acids. Arrays of tissues, peptides, antibodies, proteins,
and even cells have been developed (4,49–51,54–57). This is further evidence of the
strength and versatility for high-throughput screening. These should provide means of
rapidly validating at the protein level, the genes identified by expression profiling using
DNA microarrays.

FINAL COMMENTS

The area of data analysis and management deserves special comment. Expression
profiling experiments can produce data sets that are, at least by the standards of cell
biology, extremely large. A variety of numerical analysis approaches and algorithms
have been used to cluster genes based upon their expression patterns. Various statisti-
cal approaches have likewise been used to perform the class predictions that identify
expression patterns that correlate with phenotypic characteristics, such as tumor type.
Still, there exists a significant need to develop additional bioinformatic methods to
extract all the information contained in these very rich, deep expression pattern data
sets and to integrate it with other forms of biological information (e.g., the information
contained in the published literature [58]). In addition, there is the hope that the raw
data from published microarray experiments will be made available to the scientific
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community with unrestricted access in a uniform format. An international effort is
underway to develop guidelines and consensus on data handling and annotation.

Despite the relative youth of the technology, microarray use has already had a broad
and significant impact on the study of cancer. As illustrated here, it has been possible to
assign potential functional roles to novel genes in both the signaling pathways control-
ling and the phenotypic changes associated with cancer development. Microarray stud-
ies will continue to correlate changes in the expression of specific genes and groups of
genes with cancer and cancer-related phenotypes. Following the biological validation
of these expression–phenotype correlations, the result will be a more complete list
of the genes controlling cancer development and progression. From this, a clearer
view should emerge of the principles and pathways controlling bladder cancer physiol-
ogy (59,60).

The early studies summarized here and elsewhere indicate that expression profiling
of a relatively small number of genes may provide a molecular means of defining
clinically important tumor subtypes not identified using standard methods. Moreover,
these subtypes may identify specific subgroups of patients that will benefit from dis-
tinct treatment regimes. Currently needed are carefully controlled large-scale expres-
sion profiling studies on large numbers of clinically well-annotated cases before the
final clinical utility of this technique can be accurately judged. It is clear that the results
of these studies will add to our understanding of the mechanisms of carcinogenesis and
may also improve our ability to diagnose and treat the disease. As interest in
microarrays and their use in the study of cancer continues to increase, so does the
likelihood that their use will have an important clinical application.

REFERENCES

1. Liang, P. and Pardee, A. B. (1992) Differential display of eukaryotic messenger RNA by
means of the polymerase chain reaction. Science 257, 967–971.

2. Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W. (1995) Science 270,
484–487.

3. Brenner, S., Williams, S. R., Vermaas, E. H., et al. (2000) In vitro cloning of complex
mixtures of DNA on microbeads: physical separation of differentially expressed cDNAs.
Proc. Natl. Acad. Sci. USA 97, 1665–1670.

4. Haab, B. B., Dunham, M. J., and Brown, P. O. (2001) Protein microarrays for highly par-
allel detection and quantitation of specific proteins and antibodies in complex solutions.
Genome Biol. 2, 1–4.

5. Pandey, A. and Mann, M. (2000) Proteomics to study genes and genomes. Nature 405,
837–846.

6. International Human Genome Sequencing Consortium. (2001) Nature 409, 860–921.
7. Venter, J. C. (2000) Remarks at the human genome announcement. Funct. Integr. Genomics

1, 154–155.
8. Duggan, D. J., Bittner, M., Chen, Y., Meltzer, P., and Trent, J. M. (1999) Expression pro-

filing using cDNA microarrays. Nat. Genet. 21, 10–14.
9. Lipshutz, R. J., Fodor, S. P., Gingeras, T. R., and Lockhart, D. J. (1999) Nat. Genet. 21,

20–24.
10. Hacia, J. G. and Collins, F. S. (1999) Mutational analysis using oligonucleotide micro-

arrays. J. Med. Genet. 36, 730–736.
11. Fan, J. B., Chen, X., Halushka, M. K., et al. (2000) Parallel genotyping of human SNPs

using generic high-density oligonucleotide tag arrays. Genome Res. 10, 853–860.



Bladder Cancer Profiling 231

12. Iyer, V. R., Horak, C. E., Scafe, C. S., Botstein, D., Snyder, M., and Brown, P. O. (2001)
Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature
409, 533–538.

13. Pinkel, D., Segraves, R., Sudar, D., et al. (1998) High resolution analysis of DNA copy
number variation using comparative genomic hybridization to microarrays. Nat. Genet.
20, 207–211.

14. Davies, J. M., Somerville, S. M., and Wallace, D. M. (1976) Occupational bladder tumour
cases identified during ten years’ interviewing of patients. Br. J. Urol. 48, 561–566.

15. Roberts, D. W., Benson, R. W., Groopman, J. D., et al. (1988) Immunochemical
quantitation of DNA adducts derived from the human bladder carcinogen 4-aminobiphenyl.
Cancer Res. 48, 6336–6342.

16. Mack, D. and Frick, J. (1995) Low-dose bacille Calmette-Guerin (BCG) therapy in super-
ficial high-risk bladder cancer: a phase II study with the BCG strain Connaught Canada.
Br. J. Urol. 75, 185–187.

17. Neiman, P. E. and Hartwell, L. H. (1991) Malignant instability. Workshop on genetic
instability and its role in carcinogenesis sponsored by the Programs in Molecular Medicine
of the Fred Hutchinson Cancer Research Center and the University of Washington, Seattle,
WA, USA, January 11–12, 1991. New Biol. 3, 347–351.

18. Yeager, T., Stadler, W., Belair, C., Puthenveettil, J., Olopade, O., and Reznikoff, C. (1995)
Increased p16 levels correlate with pRb alterations in human urothelial cells. Cancer Res.
55, 493–497.

19. Balazs, M., Carroll, P., Kerschmann, R., Sauter, G., and Waldman, F. M. (1997) Frequent
homozygous deletion of cyclin-dependent kinase inhibitor 2 (MTS1, p16) in superficial
bladder cancer detected by fluorescence in situ hybridization. Genes Chromosom. Cancer
19, 84–89.

20. Reuter, V. E. and Melamed, M. R. (1989) The lower urinary tract, in Diagnostic Surgical
Pathology, (Sternberg, S. S., ed.), Raven Press, New York, pp. 1355–1392.

21. Grossman, H. B., Liebert, M., Antelo, M., et al. (1998) p53 and RB expression predict
progression in T1 bladder cancer. Clin. Cancer Res. 4, 829–834.

22. Cote, R. J., Dunn, M. D., Chatterjee, S. J., et al. (1998) Elevated and absent pRb expression
is associated with bladder cancer progression and has cooperative effects with p53. Cancer
Res. 58, 1090–1094.

23. Chen, J. J., Wu, R., Yang, P. C., et al. (1998) Profiling expression patterns and isolating
differentially expressed genes by cDNA microarray system with colorimetry detection.
Genomics 51, 313–324.

24. Cheung, V. G., Morley, M., Aguilar, F., Massimi, A., Kucherlapati, R., and Childs, G.
(1999) Making and reading microarrays. Nat. Genet. 21, 15–19.

25. Granjeaud, S., Bertucci, F., and Jordan, B. R. (1999) Expression profiling: DNA arrays in
many guises. Bioessays 21, 781–790.

26. Stears, R. L., Getts, R. C., and Gullans, S. R. (2000) A novel, sensitive detection system for
high-density microarrays using dendrimer technology. Physiol. Genomics 3, 93–99.

27. Eberwine, J., Yeh, H., Miyashiro, K., et al. (1992) Analysis of gene expression in single
live neurons. Proc. Natl. Acad. Sci. USA 89, 3010–3014.

28. Zhao, N., Hashida, H., Takahashi, N., Misumi, Y., and Sakaki, Y. (1995) High-density
cDNA filter analysis: a novel approach for large-scale, quantitative analysis of gene
expression. Gene 156, 207–213.

29. Takahashi, N., Hashida, H., Zhao, N., Misumi, Y., and Sakaki, Y. (1995) High-density
cDNA filter analysis of the expression profiles of the genes preferentially expressed in
human brain. Gene 164, 219–227.

30. Wang, E., Miller, L. D., Ohnmacht, G. A., Liu, E. T., and Marincola, F. M. (2000) High-
fidelity mRNA amplification for gene profiling. Nat. Biotechnol. 18, 457–459.



232 Sánchez-Carbayo and Cordon-Cardo

31. Klimecki, W. T., Futscher, B. W., and Dalton, W. S. (1994) Effects of ethanol and
paraformaldehyde on RNA yield and quality. Bio Techniques 16, 1021–1023.

32. Cerroni, L., Arzberger, E., Ardigo, M., Putz, B., and Kerl, H. (2000) Monoclonality of
intraepidermal T lymphocytes in early mycosis fungoides detected by molecular analysis
after laser-beam-based microdissection. J. Invest. Dermatol. 114, 1154–1157.

33. Specht, K., Richter, T., Muller, U., Walch, A., Werner, M., and Hofler, H. (2001) Quanti-
tative gene expression analysis in microdissected archival formalin-fixed and paraffin-
embedded tumor tissue. Am. J. Pathol. 158, 419–429.

34. Thykjaer, T., Workman, C., Kruhoffer, M., et al. (2001) Identification of gene expres-
sion patterns in superficial and invasive human bladder cancer. Cancer Res. 61, 2492–
2499.

35. Cerroni, L., Minkus, G., Putz, B., Hofler, H., and Kerl, H. (1997) Laser beam microdissec-
tion in the diagnosis of cutaneous B-cell lymphoma. Br. J. Dermatol. 136, 743–746.

36. Perou, C. M., Sorlie, T., Eisen, M. B., et al. (2000) Molecular portraits of human breast
tumours. Nature 406, 747–752.

37. Alizadeh, A. A., Eisen, M. B., Davis, R. E., et al. (2000) Distinct types of diffuse large
B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511.

38. Welsh, J. B., Zarrinkar, P. P., Sapinoso, L. M., et al. (2001) Analysis of gene expression
profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular
markers of epithelial ovarian cancer. Proc. Natl. Acad. Sci. USA 98, 1176–1181.

39. Risch, N. J. (2000) Searching for genetic determinants in the new millennium. Nature 405,
847–856.

40. Ahrendt, S. A. and Sidransky, D. (1999) The potential of molecular screening. Surg. Oncol.
Clin. N. Am. 8, 641–656.

41. Golub, T. R., Slonim, D. K., Tamayo, P., et al. (1999) Molecular classification of can-
cer: class discovery and class prediction by gene expression monitoring. Science 286,
531–537.

42. Chen, C. C., Shieh, B., Jin, Y. T., et al. (2001) Microarray profiling of gene expression
patterns in bladder tumor cells treated with genistein. J. Biomed. Sci. 8, 214–222.

43. Maxwell, S. A. and Davies, G. E. (2000) Differential gene expression in p53-mediated
apoptosis-resistant vs. apoptosis-sensitive tumor cell lines. Proc. Natl. Acad. Sci. USA 97,
13,009–13,014.

44. Liang, G., Gonzales, F. A., Jones, P. A., Orntoft, T. F., and Thykjaer, T. (2002) Analysis of
gene induction in human fibroblasts and bladder cancer cells exposed to the methylation
inhibitor 5-aza-2'-deoxycytidine. Cancer Res. 62, 961–966.

45. Zarbo, R. J., Visscher, D. W., and Crissman, J. D. (1989) Two-color multiparametric
method for flow cytometric DNA analysis of carcinomas using staining for cytokeratin
and leukocyte-common antigen. Anal. Quant. Cytol. Histol. 11, 391–402.

46. Sánchez-Carbayo, M., Socci, N. D., Charytonowicz, E., et al. (2002) Molecular profiling
of bladder cancer using cDNA microarrays: defining histogenesis and biological pheno-
types. Cancer Res. 62, 6973–6980.

47. Sánchez-Carbayo, M., Capodieci, P., and Cordon-Cardo, C. (2003) Tumor suppressor role
of KiSS-1 in bladder cancer: loss of KiSS-1 expression is associated with bladder cancer
progression and clinical outcome. Am J. Pathol. 162, 609–618.

48. Sánchez-Carbayo, M., Socci, N. D., Lozano, J. J., Li, W., Belbin, T. J., Prystowsky, M. B.,
Ortiz, A. R., Childs, G., and Cordon-Cardo, C. Gene discovery in bladder cancer progres-
sion using cDNA microarrays, submitted.

49. Richter, J., Wagner, U., Kononen, J., et al. (2000) High-throughput tissue microarray analy-
sis of cyclin E gene amplification and overexpression in urinary bladder cancer. Am. J.
Pathol. 157, 787–794.

50. Kononen, J., Bubendorf, L., Kallioniemi, A., et al. (1998) Tissue microarrays for high-
throughput molecular profiling of tumor specimens. Nat. Med. 4, 844–847.



Bladder Cancer Profiling 233

51. Nocito, A., Bubendorf, L., Maria Tinner, E., et al. (2001) Microarrays of bladder cancer
tissue are highly representative of proliferation index and histological grade. J. Pathol.
194, 349–357.

52. Hollstein, M. (1999) New approaches to understanding p53 gene tumor mutation spectra.
Mutat. Res. 431, 199–209.

53. Primdahl, H., Wikman, F. P., von der Maase, H., Zhou, X. G., Wolf, H., and Orntoft, T. F.
(2002) Allelic imbalances in human bladder cancer: genome-wide detection with high-
density single-nucleotide polymorphism arrays. J. Natl. Cancer Inst. 94, 216–223.

54. Reineke, U., Volkmer-Engert, R., and Schneider-Mergener, J. (2001) Applications of pep-
tide arrays prepared by the SPOT-technology. Curr. Opin. Biotechnol. 12, 59–64.

55. MacBeath, G. and Schreiber, S. L. (2000) Printing proteins as microarrays for high-
throughput function determination. Science 289, 1760–1763.

56. Ziauddin, J. and Sabatini, D. M. (2001) Microarrays of cells expressing defined cDNAs.
Nature 411, 107–110.

57. Sánchez-Carbayo, M. (2003) Use of high-throughput DNA microarrays to identify bio-
markers for bladder cancer. Clin. Chem. 49, 23–31.

58. Jenssen, T. K., Laegreid, A., Komorowski, J., and Hovig, E. (2001) A literature network of
human genes for high-throughput analysis of gene expression. Nat. Genet. 28, 21–28.

59. Knowles, M. A. (2001) What we could do now: molecular pathology of bladder cancer.
Mol. Pathol. 54, 215–221.

60. Adam, B. L., Vlahou, A., Semmes, O. J., and Wright, G. L. Jr. (2001) Proteomic approaches
to biomarker discovery in prostate and bladder cancers. Proteomics 1, 1264–1270.





Renal Cancer Profiling 235

235

From: Expression Profiling of Human Tumors: Diagnostic and Research Applications
Edited by: Marc Ladanyi and William L. Gerald © Humana Press Inc., Totowa, NJ

13
Gene Expression Profiling of Renal Cell Carcinoma

and its Clinical Implications

Masayuki Takahashi and Bin Tean Teh

INTRODUCTION

Renal cell carcinoma (RCC) is the most common malignancy arising in the adult
kidney, representing 2% of all malignancies and 2% of cancer-related deaths. It is the
10th most common cancer in the U.S., where it causes more than 12,000 deaths per
year. Its incidence has been increasing, a phenomenon that cannot be accounted for by
the wider use of imaging procedures (1). RCC is more common in men than women,
especially in men over 55 yr of age. Risk factors include genetic predisposition (2),
hypertension, obesity (3), and occupational exposures (4). RCC may be as small as
1 cm in diameter when discovered (usually incidentally), or as bulky as several kilo-
grams. It most often manifests with pain, as a palpable mass, as hematuria, or as another
paraneoplastic syndrome.

HISTOLOGICAL SUBTYPE OF RCC AND GENETIC EVENTS

RCC may be well circumscribed, or it may invade the perirenal adipose tissue or the
renal vein. Some tumors are predominantly cystic, and cystic degeneration is common.
It is a clinicopathologically heterogeneous disease, subdivided into clear cell, granular,
chromophobe, spindle, papillary, and collecting-duct subtypes based on morphological
features (5). Originating in the proximal renal tubule, clear cell RCC (ccRCC) or con-
ventional RCC is the most common adult renal neoplasm (75–80% of all renal neo-
plasms). Other types of RCC, by descending frequency, are: papillary (10–15%),
chromophobe (4–6%), collecting duct (<1%), and those forms that are yet to be classi-
fied (<2%). Both sarcomatoid and cystic RCC are not considered independent entities.
Sarcomatoid RCC, characterized by prominent spindle cell features, is thought to rep-
resent the high-grade end of the cytologic spectrum in all of the subgroups.

With recent advances in molecular genetics, the subtypes of RCC have been associ-
ated with distinct genetic abnormalities. This association has led to a proposal for
molecular diagnosis (6). For example, most of the clear cell RCC exhibit a loss of
chromosome 3 and inactivating mutations of the von Hippel-Lindau (VHL) gene,
whereas papillary renal cell carcinomas (PRCC) are frequently associated with trisomy
of chromosomes 3q, 7, 12, 16, 17, and 20, and loss of the Y chromosome. Recently,
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it has been proposed that, even in the absence of prominent papillae, these aberrant
chromosomal features could support the diagnosis of PRCC. Conversely, kidney can-
cers that do not possess these genetic characteristics should not be designated as
PRCCs, even when papillary structures are prominent (7). Frequent loss of sex chro-
mosomes and of chromosomes 1 and 14 have been found in renal oncocytoma, a benign
entity composed of large eosinophilic cells in an acinar arrangement (8). The concept
of molecular diagnosis has been further advanced by the use of microarray gene
expression profiles, which basically expand the genomic information to include gene
expression or transcription profiles.

MANAGEMENT OF RCC

Surgical removal remains the mainstay therapy for patients with localized primary
tumors. In metastatic RCC, surgery has also been recommended for the primary tumor,
and surgery combined with postoperative adjunctive use of interferon-α offers longer
survival than interferon therapy alone (9). Metastatic RCC are resistant to chemo-
therapy (e.g., 5-fluorouracil [5-FU] [10], paclitaxel [11], vinblastine [12]), radiation,
and hormonal therapy (e.g., tamoxifen [13,14]). On the other hand, immunotherapy
with interferon-α or interleukin-2 (IL-2) has resulted in response rates of 10–20%, and
a few patients with metastatic RCC exhibit complete responses (15). Many combina-
tion therapies based on these agents have been attempted, but to date, no significant
survival benefits have been found. The combination therapy of IL-2 and interferon-α
has led to no better a response rate than that for IL-2 alone (16,17). However, several
studies with triple-drug combinations of interferon-α, IL-2, and 5-FU have shown
higher response rates (13,18). More recently, nonmyeloablative allogeneic stem-cell
transplantation, which employs donor T cells to combat host RCC tissues, has been
found effective in sustaining regression of metastatic disease (19). In addition to this
new promising immunotherapy, discovering and understanding the underlying genetic
alterations in RCC may give us novel information leading to the discovery of new
drugs. Individualized treatment based on the gene expression profiles of each tumor
may lead to improved response rates in the future.

PROGNOSTIC FACTORS OF RCC

Overall, approx 30% of patients with macroscopically complete resection of RCC
have a recurrence after radical nephrectomy (20,21), and patients with metastatic RCC
have a life expectancy of about 12 mo (15,22). It is, therefore, important to identify
prognostic factors that can predict patients’ outcomes and, thereby, influence decisions
regarding their treatment. To date, a number of prognostic factors have been proposed,
which are mainly divided into patient-related factors and tumor-related factors.
According to the College of American Pathologists Working Classification for Prog-
nostic Markers, prognostic factors that are currently used in patient management
include existence of symptoms, weight loss, performance status, erythrocyte sedimen-
tation rate (ESR), anemia, serum calcium and serum alkaline phosphatase (23). Surgi-
cal margins, the number and location of metastases, tumor, node, metastases (TNM)
staging, and histological grading are well-accepted tumor-related prognostic factors
(24–26) . Biomolecular factors, such as proliferation markers (e.g., Ki-67, proliferat-
ing cell nuclear antigen [PCNA]), apoptosis markers (e.g., p53, bcl-2, p21), growth
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factors, cell adhesion molecules, angiogenesis promoters, tumor suppressor genes,
oncogenes, and cytokines have also been examined, but none has been sufficiently
well-established to gain wide clinical use. Microarray analysis may help us to identify
new biomolecular markers, prognostic factors, and new pathways because of its com-
prehensive nature.

MICROARRAY ANALYSIS
AS COMPREHENSIVE GENE EXPRESSION PROFILING

The clinical challenges mentioned above point to a need to understand in a compre-
hensive fashion the underlying molecular mechanisms of kidney cancers. One recent
biomedical breakthrough is the use of high-throughput microarray technology, which
allows comprehensive gene expression profiling of tumors. These gene expression pro-
files can serve as the molecular signatures of particular tumors, and they may be used
to distinguish among histological subtypes and novel distinct subtypes that are corre-
lated with clinical outcome. This distinction may reflect the heterogeneity in transfor-
mation mechanisms, cell types, or aggressiveness among tumors. For example, approx
100 genes were identified as differentially expressed by serous as compared to muci-
nous ovarian cancers (27). Other studies have identified distinct gene sets that distin-
guish between acute myeloid leukemia and acute lymphoblastic leukemias (28),
between hereditary breast cancer with BRCA1 and BRCA2 mutations (29), and between
hepatitis-B and hepatitis-C positive hepatocellular carcinomas (30). Furthermore, sev-
eral studies have identified prognostic sets of genes in various cancer types that may
underlie the heterogeneity in tumor aggressiveness. These include diffuse large B cell
lymphomas (31), breast cancers (32), lung cancers (33), and central nervous system
embryonal tumors (34), some of which are reviewed elsewhere in this book. Impor-
tantly, the identification of such genes may lead to the discovery of a number of new
potential targets for cancer diagnosis and therapy.

RCC CDNA MICROARRAY STUDIES

The first paper that sought to examine gene expression profiles of RCC with cDNA
microarray technology was published in 1999 (35). In this report, RNA extracted from
a kidney cancer cell line (CRL-1933) and normal kidney tissue were radioactively
labeled and hybridized to a membrane containing 5184 cDNA spots. A total of
89 genes or expressed sequence tags (ESTs) were identified as differently expressed in
the RCC cell line compared to the normal kidney tissues. Thirty-eight sequences were
up-regulated, including 26 known genes and 12 ESTs, whereas 51 sequences were
down-regulated, including 25 known genes and 26 ESTs. Vimentin, a cytoplasmic
intermediate filament, was specifically selected for further immunohistochemical study
using a tissue array containing 532 RCC cases, because of previous reports regarding
its expression in each RCC subtype (36,37). Subsequently, vimentin expression was
found to be an independent prognostic factor for clear cell RCC. However, because the
study was based on only a single cancer cell line, certain gene expression changes may
have resulted from the culture conditions per se or through multiple culture passages,
which are all factors that could make it more difficult to choose a new molecular target
for further study.
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To date, several papers on gene expression profiling of primary RCC have been
published. One of them sought to find the molecular markers of different pathological
subtypes (38). In this paper, four ccRCC, one chromophobe RCC, and two oncocytomas
were subjected to microarray analysis containing 7075 genes. Poly(A)-rich RNA was
extracted from the RCC samples and matched normal kidney tissues and reverse-tran-
scribed with incorporation of Cy3 and Cy5 dyes. These reverse transcripts were com-
petitively hybridized to microarray spots, and the ratios of expression levels in tumor
to those in normal kidney were determined. Using at least a twofold alteration of tran-
script expression in at least two tumors as the criterion for significant differential
expression, a total of 189 genes were identified. Hierarchical average linkage analysis
(39) revealed two distinct classes of tumor expression patterns, which were for ccRCC
and chromophobe RCC/oncocytoma. Each histopathological group was clustered
together using all 4906 expressed genes, as well as the 189 differentially expressed genes.
This distinction was also confirmed by another analysis method called quality threshold
(QT) clustering algorithm (40). Chromophobe RCC and oncocytomas were found to
have similar gene expression profiles, although only two oncocytomas and one chro-
mophobe RCC were analyzed. Interestingly, among the common expression data of chro-
mophobe RCC and oncocytoma, distal nephron markers, such as parvalbumin (41) and
β-defensin-1 (42) were up-regulated. Parvalbumin expression was also confirmed by
immunohistochemistry, indicating its potential usefulness as a new marker for differen-
tial diagnosis of RCC. This study also found that chromophobe RCC and oncocytoma
exhibited up-regulation of genes related to mitochondrial biology and oxidative phos-
phorylation, including the mitochondrial adenine nucleotide translocator, proton-trans-
porting ATP synthase subunits, carbonic anhydrase isoenzymes, and cytochrome c
oxidase subunits. We have obtained the gene expression data for a chromophobe RCC
that is related to Birt-Hogg-Dube syndrome (43) and found that these mitochondria-
related genes as well as parvalbumin were also up-regulated (unpublished). Obviously,
additional microarray studies involving larger series of tumors are warranted to elucidate
and confirm the most reliable molecular markers for each RCC subtype.

DIFFERENTIALLY EXPRESSED GENES IN CLEAR CELL RCC
It is critical to obtain a large number of samples for comprehensive gene expression

profiling. Recently, two papers on gene expression profiling were published, each
evaluating about 30 ccRCC cases (44,45). The backbone of these studies lies in the
identification of differentially expressed genes, i.e., genes that are either up- or down-
regulated in the tumors when compared with matched normal renal tissues. Some of
the differentially expressed genes play a normal physiological role in normal kidney,
and their functions may be impaired by the replacement of normal cells by cancerous
tissue. When the altered genes in our data set were compared with those reported in
other RCC microarray papers (38,44), around 80% of the altered genes showed similar
expression patterns. Mislabeling and contamination of cDNA clones and various extent
of RNA degradation may account for some discrepancies between studies. Moreover,
the differences in the reported genes may result from a different selection of probes
spotted on microarray slides or from different selection criteria for altered genes. Some
up-regulated genes in the tumors may point to the involvement of oncogenes or
enhancers of cancer formation and progression. It may be possible to develop inhibi-
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tors or down-regulators of these genes as potential therapeutic agents. Some of the
down-regulated genes, on the other hand, may be tumor suppressors that could be
potential therapeutic targets if their function could be restored or enhanced.

Up-Regulated Genes in Clear Cell RCC

The list of up-regulated genes for clear cell RCC is shown in Table 1. Interestingly,
some of the genes that have the highest differential expression ratio in the tumors have
no known or little-known association with ccRCC. For example, ceruloplasmin, a pro-

Table 1
Commonly Up-Regulated Genes in ccRCC

  GenBank® Average %
accession no. Gene name fold of RCC

H86554 Ceruloplasmin. 16.9 96.2
R00332 ESTs, highly similar to growth factor-responsive protein. 14.1 96.4
T72235 Nicotinamide N-methyltransferase. 13.5 96.6
W72051 Fatty acid binding protein 7, brain. 13.2 87.5
W70343 Lysyl oxidase. 11.2 95.8
W30988 ESTs, highly similar to angiopoietin-related protein. 11.1 100
H99075 ESTs. 10.7 95.7
W93163 Tumor necrosis factor, α-induced protein 6. 10.5 100
T54298 ESTs, highly similar to angiopoietin-related protein. 8.1 100
AA598601 Insulin-like growth factor binding protein 3. 7.6 96.6
AA678335 Phosphodiesterase I/nucleotide pyrophosphatase 3. 7.6 84.0
AA164819 ESTs. 7.1 96.3
AA485896 ESTs. 6.8 96.4
N26171 ESTs. 6.2 87.5
AA487787 Von Willebrand factor. 6.2 100
AA450189 Enolase 2, (γ, neuronal). 6.0 96.4
R62612 Fibronectin 1. 5.6 93.1
H20872 Fc fragment of IgG, low affinity IIIa, receptor for (CD16). 5.5 85.7
W72293 ESTs. 5.5 93.1
AA055835 Caveolin 1, caveolae protein 22 kDa. 5.4 92.9
AA873159 Apolipoprotein C-1. 5.3 88.9
AA017544 Regulator of G-protein signaling 1. 5.2 85.7
R19956 Vascular endothelial growth factor. 5.1 96.4
H99816 Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2. 5.1 96.4
R49597 ESTs. 4.6 95.8
AA405000 Homo sapiens ribonuclease 6 precursor. 4.5 96.2
H58873 Solute carrier family 2, member 1. 4.5 93.1
T62491 Chemokine, receptor 4. 4.4 89.7
AA443899 CD36 antigen-like 1. 4.2 89.3
AI004331 Human MHC class II HLA-DQ-β. 4.2 85.7
AA488892 ESTs, weakly similar to Gag-Pol polyprotein. 4.0 85.7

Thirty-one genes or ESTs that are at least threefold up-regulated in at least 75% of RCC (n = 29).
Average fold reflects average ratios of all analyzable spots. Percentage of RCC is the fraction of tumors
that have at least twofold up-regulation.

Ig, immunoglobulin; MHC, major histocompatibility factor; HLA, human leukocyte antigen.
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tein involved in iron and copper homeostasis, has the highest increase in expression in
the ccRCC. Its serum level increases markedly in anemia of iron deficiency, hemor-
rhage, renal failure, sickle cell disease, pregnancy, and inflammation. To date, only
one study has reported its secretion by RCC (46), and another study described its eleva-
tion in the serum of RCC patients (47). Another copper-related protein, lysyl oxidase,
was also up-regulated in ccRCC. It is an extracellular enzyme involved in the connec-
tive tissue maturation pathway. It is highly expressed in invasive breast cancer
cell lines (48), but it has heretofore not been studied in RCC. Caveolin-1 is an
integral protein of caveolae, which is involved in signal transduction and lipid
transport. Its overexpression has been reported to be a relatively common feature of
breast cancer and advanced prostate cancer (49), but it has not previously been asso-
ciated with RCC.

Additional microarray studies with more RCC samples and further protein studies
will be needed to validate the involvement of these and other genes. In addition, in
order to understand their roles in tumorigenesis of RCC, functional studies together
with in vitro and in vivo studies are needed.

Down-Regulated Genes in RCC

The list of down-regulated genes for ccRCC is shown in Table 2. Some of the many
down-regulated genes may be involved in the tumorigenesis of ccRCC. Those that are
highly down-regulated are kininogen, fatty acid binding protein 1, phenylalanine
hydroxylase, epidermal growth factor (EGF), plasminogen, and aldolase B. Most strik-
ingly, kininogen was found to be more than 27-fold down-regulated in the tumors.
Kininogen, a molecule involved in the activation of the cellular contact system, has
recently been shown to be an inhibitor of angiogenesis (50). Its down-regulation may
concur with up-regulation of vascular endothelial growth factor (VEGF), resulting in
hypervascularization, which is a characteristic of ccRCC. We also found the metallo-
thionein (MT) family to be coordinately down-regulated. MT is known to modulate the
release of gaseous mediators, such as hydroxyl radical or nitric oxide, apoptosis, and
the binding and exchange of heavy metals such as zinc, cadmium or copper. Differen-
tial expression of this family of genes has been reported in many cancers (51), and
several subtypes (MT-1A, MT-1G, and MT-1H) were reported to be down-regulated in
RCC (52,53). Our study supports these reports and additionally found MT-1L and
MT-1E to be down-regulated. Aldolase B, one of the three aldolase glycolytic enzyme
catalyzing the reversible conversion of fructose-1, 6-bisphosphate to glyceraldehyde
3-phosphate and dihydroxyacetone phosphate, is another gene that is down-regulated
in RCC. It has been found in abundance in normal renal cortex compared with RCC,
suggesting that it plays a physiological role in normal kidney (54). The relatively lower
expression in the cancer, as confirmed by our study, may be due to displacement of
normal tissue. One of the heparan sulfate proteoglycans, glypican 3, also stood out in
our analysis, but has never been associated with kidney cancer. Its down-regulation has
been reported in mesotheliomas, ovarian cancer, and breast cancer (55). Glypican 3-
deficient mice have been shown to exhibit several clinical features, including develop-
mental overgrowth and dysplastic kidneys (56).
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Table 2
Commonly Down-Regulated Genes in ccRCC

  GenBank Average %
accession no. Gene name fold of RCC

R89067 Kininogen. 27.2 100
T53220 Fatty acid binding protein 1, liver. 22.8 95.8
AA682293 Phenylalanine hydroxylase. 20.4 96.0
AA705692 ESTs. 18.0 100
AA954947 Epidermal growth factor (β-urogastone). 15.0 100
H72098 Aldolase B, fructose-biphosphate. 13.6 100
AA411988 EST. 13.3 100
T73187 Plasminogen. 12.0 100
T51617 Solute carrier family 22, member 3. 11.8 96.4
AA777384 ESTs. 11.0 96.2
H53340 Metallothionein 1G. 10.0 100
AA844930 Glycoprotein 2 (zymogen granule membrane). 9.6 100
AA101792 Phosphatidylinositol glycan, class F. 9.4 96.6
AA858026 Protein C inhibitor (plasminogen activator inhibitor III). 9.4 100
H18950 ESTs, highly similar to hepatocyte nuclear factor 4 γ. 9.2 100
AA405769 Phosphoenolpyruvate carboxykinase 1 (soluble). 8.9 96.6
AA040387 X-prolyl aminopeptidase 2, membrane-bound. 8.8 96.4
H77766 Metallothionein 1H. 8.4 96.6
W16424 ESTs. 8.4 92.6
H88329 Calbindin 1 (28 kDa). 8.1 100
N62179 Methylmalonate-semialdehyde dehydrogenase. 7.9 100
AA775872 Glypican 3. 7.9 100
AA457718 Homo sapiens mRNA; cDNA DKEZp564B076. 7.8 95.7
R24266 Growth factor receptor-bound protein. 7.1 80.8
R54778 Collagen, type XVI, α 1. 7.1 100
AA702640 Dopa decarboxylase. 7.0 96.3
N55459 RNA helicase-related protein. 6.9 96.6
AA664180 Glutathione peroxidase 3. 6.6 92.9
AA227594 Mal, T cell differentiation protein. 6.3 100
H68509 UDP glycosyltransferase 2 family, polypeptide B10. 6.1 95.5
AA676466 Argininosuccinate sythetase. 6.1 96.4
H96140 Acyl-coenzyme A dehydrogenase, short–branched chain. 6.0 96.0
H11346 Aldehyde dehydrogenase 4. 6.0 92.9
AA862999 Calcium-sensing receptor. 6.0 100
AA497001 ESTs, weakly similar to BcDNA.GH02901. 6.0 96.3
AA449780 EST. 5.9 88.9
AA704995 Putative glycine-N-acyltransferase. 5.6 92.9
T94781 Potassium inwardly-rectifying channel, subfamily J. 5.6 92.9
N89673 ESTs. 5.6 92.6
H37880 ESTs, moderately similar to ALU SUBFAMILY SP. 5.6 96.3
AA663884 Synaptosomal-associated protein, 25 kDa. 5.5 95.7
R25818 Aldehyde dehydrogenase 9. 5.5 100
AA700604 Sorbitol dehydrogenase. 5.4 92.6
W95082 Hydroxysteroid (11-β) dehydrogenase 2. 5.4 96.6

(continued)
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Table 2 (continued)

  GenBank Average %
accession no. Gene name fold of RCC

AA677655 Klotho. 5.4 92.3
N80129 Metallothionein 1L. 5.3 86.2
AA402915 Aminoacylase 1. 5.3 96.3
AA863424 Dipeptidase 1 (renal). 5.2 93.1
H72722 ESTs, highly similar to METALLOTHEIONEIN-1B. 5.2 86.2
N78083 Hydroxysteroid dehydrogenase. 5.1 96.4
R06601 ESTs, moderately similar to METALLOTHIONEIN-II. 5.1 82.8
AA131240 ESTs. 5.0 92.0
AA485965 Succinate-CoA ligase, GDP-forming, α-subunit. 4.9 92.9
AA196287 ESTs, weakly similar to alternative spliced product 4.9 96.6

using exon 13A.
R61229 Glycine amidinotrasferase 4.8 82.8

(L-arginine: glycine amidinotrasferase).
AA872383 Metallothionein 1E (functional). 4.8 82.8
N23898 G protein-coupled receptor kinase 2 (Drosophila)-like. 4.8 92.9
AA699427 Fructose-biphosphatase 1. 4.7 93.1
T68892 Secreted frizzled-related protein 1. 4.7 96.2
AA873355 ATPase, Na+/K+ transporting, α-1 polypeptide. 4.7 100
AI000188 UDP glycosyltransferase 2 family, polypeptide B7. 4.6 85.7
AA459197 Sodium channel, nonvoltage-gated 1 α. 4.6 89.7
T65482 L-3-hydroxyacyl-coenzyme A dehydrogenase, 4.4 96.2

short chain.
AA457374 DKFZP586B0319. 4.3 91.7
R33037 ESTs. 4.3 92.0
AA437099 ESTs. 4.3 85.2
W01011 SA (rat hypertension-associated) homolog. 4.2 89.7
AA863449 Oviductal glycoprotein 1, 120 kDa. 4.0 92.9
N53031 UDP glycosyltransferase 2 family, polypeptide B4. 4.0 86.2
AA458884 S100 calcium-binding protein A2. 4.0 92.9
AA608575 Propionyl coenzyme A carboxylase, α polypeptide. 3.8 89.7
H18608 Solute carrier family 22 (organic anion transporter), 3.6 89.3

member 8.

Seventy-two genes or ESTs that are at least threefold down-regulated in at least 75% of RCC (n = 29).
Average fold reflect average ratios of all analyzable spots. Percentage of RCC is the fraction of tumors that
have at least twofold down-regulation.

The Classification of Altered Genes
in Human RCC Specimens by Gene Ontology

Boer et al. (44) in particular sought to understand gene expression profiling of RCC
by putting expression data into the categories of biological pathways and cellular com-
ponents, a concept proposed by the Gene Ontology Consortium (57). According to the
results of their categorization of biological pathways, a large number of up-regulated
genes in RCC belonged to the cell adhesion category, e.g., fibronectin 1 and laminin-
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α4. They also found that the genes of several signal transduction pathways, such as
guanosine-5'-triphosphate (GTP)-binding protein and kinases, had a tendency toward
up-regulation. Other biological categories that encompassed a large proportion of up-
regulated genes were nucleotide and nucleic acid metabolism, protein metabolism and
modification, cell shape and cell size, and immune response. We also examined our
data using three different criteria: at least a twofold alteration in gene expression by
60% or more of the tumors, at least a threefold alteration in 60% or more of the tumors,
or at least a twofold alteration in 80% or more of the tumors. Results from applying
these different criteria showed a similar trend. We found that the genes of immune
response and cell adhesion were up-regulated in a large percentage of tumors, findings
consistent with the data of Boer et al. The up-regulation of the immune response-related
genes, such as several types of major histocompatibility complex, monokine induced
by γ-interferon, interferon-induced protein 17, interferon-γ-inducible protein 16, CD32,
and CD53, might indicate why some RCC respond to immunotherapy, although some
of them could simply reflect the inflammatory and immune reactions taking place in
the tumor environment. In contrast with the study by Boer et al., we could not find any
clear differences between the number of up- and down-regulated genes in the follow-
ing categories: nucleotide and nucleic acid metabolism, protein metabolism and modi-
fication, cell shape and cell size.

With regard to down-regulated genes, Boer et al. described that the genes of trans-
port, ion homeostasis, and electron transport were mostly down-regulated. Our data
showed that, besides transport, the genes of carbohydrate metabolism (especially glu-
coneogenesis), lipid metabolism, energy pathways, biosynthesis, isoprenoid catabo-
lism, amino acid and derivative metabolism, cytoplasm organization, and biogenesis
were mostly down-regulated. It seems that many metabolic pathways of normal kidney
cells would be disrupted in RCC cells. The presence of many down-regulated genes of
lipid metabolism, such as fatty acid coenzyme A ligase, aldehyde dehydrogenase, acyl-
coenzyme A dehydrogenase, may explain why ccRCC have abundant cytoplasm,
which contains cholesterol, cholesterol ester, phospholipids, and glycogen. Some dis-
crepancies between our data and Boels’ data may be due to several factors. First, they
used rather different criteria to select altered genes, such as a different ratio-voting
criterion of at least a 3.5-fold alteration in at least 30% of the tumors. They also applied
an adapted sign test that could provide higher sensitivity and better control over the
rate of false positives. Another source of discrepancy between our data sets may be the
differences in cDNA spots on the microarray slides. Finally, some discrepancies could
be related to the source of ontology data, since we used the Celera database as well as
that provided by The Gene Ontology Consortium. We further note that most gene
ontology information is assigned computationally, but not reviewed or confirmed by
further experiments. It remains a challenge to assign a RCC-specific category of genes
with altered expression by using computationally assigned ontology categorization,
and more sophisticated software is needed to more clearly categorize these data. It is
also essential to compare the RCC ontology data with that of other cancers to identify
RCC-specific pathways.

We also examined genes according to the categorization of molecular function.
The genes encoding defense–immunity proteins were mostly up-regulated, similar to
the results of biological process categorization. Structural proteins, such as several
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kinds of ribosomal protein, laminin, keratin 4, fibronectin 1, collagen type IV, chon-
droitin sulfate proteoglycan 2, and caveolin were up-regulated. In the category of gly-
cosaminoglycan binding proteins, the encoding genes showed a tendency toward
up-regulation. The up-regulated genes categorized as enzymes were kinases, such as
serum-inducible kinase, and phosphorylase kinase-α2, and phosphatases, such as pro-
tein tyrosine phosphatase, autotaxin and phosphatase and tensin homolog. On the other
hand, the genes encoding heavy metal binding were mostly down-regulated. Among
them, several subtypes of metallothionein (MT-1L, MT-1H, MT-1G, MT-1E) and
membrane metallo-endopeptidase are related to zinc binding. Phenylalanine hydroxy-
lase and stearol-CoA desaturase are related to iron binding. In addition, genes involved
in electron transfer, steroid binding, carbohydrate metabolism, lipid metabolism, and
amino acid and derivative metabolism were mostly down-regulated. Again, while
the altered expression of genes in those molecular function categories would seem to
be due to decreased normal metabolism, some of the down-regulated genes could be
related to RCC tumorigenesis or invasiveness.

IDENTIFICATION OF THE GENE SET SPECIFIC
TO PARTICULAR CLINICAL SUBSETS OF RCC

In our study, the availability of 29 ccRCC frozen tissue specimens with up to 12 yr
of follow-up information allowed us to identify expression signatures of ccRCC that
have different clinical outcomes, as well as to assess their clinical implications. First,
we used hierarchical clustering (39) to look at the variation in gene expression among
the tumors. The clustering algorithm grouped both genes and tumors based on similari-
ties among their expression patterns. The 3184 genes were selected for clustering based
on the total gene expression profiling. The selected genes were those analyzable in at
least 75% of the tumors and with expression ratios that varied at least twofold in at
least two experiments. Overall, there was a great variation in gene expression among
the tumors. The tumors clustered into two main groups (Fig. 1), which were correlated
with cause-specific survival at 5 yr, with only two tumors that did not cluster by that
parameter. We used the program Cluster Identification Tool (CIT) (58) to identify and
rank subclusters of genes that distinguish between the two defined sample groups.
Briefly, the expression ratios of tumor to matched normal kidney of all the genes within
each subcluster or node of a dendrogram were averaged for each patient, and the aver-
ages were placed into two groups based on user-defined criteria. The mean (µ) and
standard deviation (σ) for the averaged expression ratios of all patients in each
group are calculated. A discrimination score (DS) for each subcluster was calculated

Fig. 1. (opposite page) Clustering of 29 ccRCC with the selected 3148 genes. Rows repre-
sent individual cDNAs and columns represent individual RCC mRNA samples. The color of
each square represents the median-polished normalized ratio of gene expression in a tumor
relative to patient-matched normal kidney tissue. Red indicates gene expression above the
median; green, below the median; black, equal to the median; and gray, inadequate or missing
data. The color saturation indicates the degree of divergence from the median. Red patient’s
number indicates cancer death within 5 yr after surgery, blue indicates alive, and black indi-
cates short follow-up. This dendrogram shows the structure of similarity in relationships
between the gene expression profiles.
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as DS = |µ1 – µ2| / (σ1 + σ2), where the subscripts referred to the sample group. A large
DS indicated that the genes in that cluster exhibited great variation between the two
groups, but low variation within each group (28). A DS of 1.0 would approximate a
significantly discriminating cluster (α = 0.05). By using the CIT, we sought to identify
particular subsets of genes that most strongly defined two distinct groups of patients by
patient outcome or other clinicopathological findings. Since tumor staging is often used
to determine the prognosis of ccRCC (24), we tested whether stage grouping has any
specific gene expression pattern, and whether the gene expression pattern could possi-
bly be valuable as a predictor of cancer progression. However, no gene clusters signifi-

Fig. 2. Clustering of the 51 genes of cluster 1281 using nonmedian centered values. In this
case, the color of each square corresponds to actual normalized gene expression level relative
to normal kidney tissue, using the same scale as in Fig. 1. (A) Genes mostly up-regulated in
tumors with the good outcome. (B) Genes mostly down-regulated in tumors with the poor
outcome.
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cantly distinguished between stage I and II and stage III and IV tumors (data not
shown).

When we applied the CIT to a tumor grouping based on cause-specific survival at
5 yr, multiple clusters with a high DS were found. Among them, one cluster and its
parent cluster had the highest DS (1.70). The tumors were reclustered based on these
gene sets with highest DS. Clustering based on the genes of this cluster grouped the
tumors by outcome, except for patient 30. This patient showed an expression pattern
similar to that of the poor outcome group, but had no evidence of disease after 5 yr.
The dendrogram for this cluster showed a strict segregation of patients by outcome
with a high correlation score (0.839).

Then a permutation t-test was used to calculate the ability of individual genes to
distinguish between two groups (29). Patients were randomly permuted into two groups
10,000 times, and for each gene, a t-statistic was calculated. The distribution of t-statis-
tics defined a 99.9% significance threshold (α = 0.001). If a gene’s t-statistic for the
user-defined patient grouping passed the 99.9% significance threshold, the gene was
considered to significantly distinguish the two groups. The 94% of genes from the best
cluster significantly (α < 0.001) differentiated two groups based on survival at 5 yr.

The tumors were reclustered based on the genes of the best node using nonmedian
centered expression values, so that the colors represented the actual gene expression
level of the tumor relative to normal, but the grouping by cause-specific survival
remains distinct. This cluster is comprised of genes up-regulated in the tumors with a
good clinical outcome and genes down-regulated in tumors with a poor clinical out-
come (Fig. 2). The diversity in the gene expression profiles largely defined two patient
groups that were distinguishable by cause-specific survival at 5 yr. These findings may
reflect the existence of distinct subclasses of clear cell RCC that differ in clinical
behavior. We showed that while no statistically significant clusters of genes correlated
with random groupings of tumors or with staging of tumors, multiple clusters consist-
ing of dozens of genes with high statistical significance correlated with cause-specific
survival at 5 yr. This result showed that only certain groupings of patients have distin-
guishing gene expression signatures, likely only the groupings that have an underlying
biological basis. Therefore, the two groups of ccRCC identified by gene expression
profiling may represent two classes of ccRCC, an aggressive and a nonaggressive class,
that have distinct molecular bases for distinct mechanisms of progression.

CLINICAL SIMULATION TEST WITH THE PROGNOSTIC SET OF GENES

To verify that this prognostic set of genes is robust, we simulated its likely clinical
use for each tumor sample. A “test” tumor was removed from the group, a new set of
predictive genes was generated from the remaining 28 tumors using CIT, and the test
tumor was clustered with the other samples using the predictive gene set. The test
tumor was classified as high risk or low risk depending on whether it clustered with the
poor outcome or good outcome tumors, respectively. This process was repeated for
each tumor. The prognostic classification of each tumor was considered “correct” if it
corresponded to the actual outcome. The predictive gene set was slightly different at
each simulation, but on average 95% of the genes were conserved.

Table 3 presents the results of the simulation. Prognostic classification by gene
expression profiling was a better predictor than staging in five patients (patients 35, 9,



248 Takahashi and Teh

29, 54, and 55). Patient 29, who had a grade 3 tumor invading into the renal vein at
operation (high risk by staging), had a low risk gene expression profile and now has
been alive for 7.5 yr. Patient 55, who had a stage II, grade 2 tumor (low risk by stag-
ing), had a high risk gene expression profile and died of ccRCC at 4.6 yr after the
operation. Patient 54, classified as low risk by gene expression profiling, had bone

Table 3
Patient Clinical Data and Corresponding Prognosis Classifications

Prognosis group

Follow-up Gene
Patient no. Grade Stage Outcome (mo) Outcome Staging expression

46 G1 S1 NED   62.6 L L L
42 G1 S1 NED   77.3 L L L
41 G1 S1 NED   80.3 L L L
30 G2 S3 NED   87.1 L H* H*
  7 G1 S1 NED   92.1 L L L
26 G1 S1 NED   96.0 L L L
24 G1 S1 NED   97.3 L L L
15 G1 S1 OCD 100.4 L L L
32 G1 S2 OCD 110.4 L L L
  1 G1 S1 NED 111.6 L L L
21 G1 S1 NED 114.6 L L L
20 G1 S1 NED 115.8 L L L
35 G1 S3 NED 120.5 L H* L
  9 G1 S3 NED 120.9 L H* L
  3 G1 S1 NED 137.2 L L L
29 G3 S3 AWC   89.4 L H* L
54 G1 S4 AWC 105.6 L H* L
13 G3 S4 Death     3.2 H H H
48 G2 S4 Death     4.9 H H H
11 G3 S3 Death   18.8 H H H
60 G3 S4 Death   20.8 H H H
31 G3 S3 Death   22.6 H H H
53 G3 S4 Death   26.2 H H H
  5 G2 S4 Death   31.7 H H H
12 G2 S4 Death   33.8 H H H
55 G2 S2 Death   55.8 H L* H
58 G3 S4 Death   24.0 H H H
56 G3 S4 AWC   27.8 U H L
59 G2 S3 NED   41.1 U H H

Patient clinical data and corresponding prognostic classifications. Grade and stage information (col-
umns 2 and 3) corresponds to the primary tumor. Outcomes (column 4) are: no evidence of disease (NED),
alive with cancer (AWC), other cause of death (OCD), and cancer death. Follow-up (column 5) is the
duration between nephrectomy and latest outcome assessment. Outcome group (column 6) is the risk group
based on actual patient outcome that was used for predictive gene set generation (L, low risk; H, high risk;
U, unknown). Pathology prognosis group (column 7) is based on staging (L, stage I/II; H, stage III/IV).
Gene expression prognosis group (column 8) is based on a gene expression prognosis test based on the
selected genes. An asterisk (*) indicates a deviation in outcome from the predicted risk group.
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metastases at initial diagnosis, but is still alive with stable bone metastases after 8.8 yr.
One patient was misgrouped by both staging and gene expression profiling (patient
30), who presented with stage III tumor and had a high risk gene expression profile, but
7 yr later, has no evidence of disease.

PROGNOSTIC SET OF GENES IN RCC

Figure 2 shows the gene set that is considered the best for discriminating between
patients with good clinical outcome and poor outcome based on subclusters generated
by hierarchical clustering, instead of gene by gene. Some of the individual genes that
were not selected may still have prognostic value. However, in our selected set of genes,
many of them provide insights into the biology of the two groups of ccRCC. For example,
sprouty, the mammalian homolog of the Drosophila melanogaster angiogenesis
inhibitor, was up-regulated exclusively in the good outcome group, suggesting that
failure to properly inhibit angiogenesis may contribute to the aggressive form of
ccRCC. The regulator of G-protein signaling 5 was exclusively up-regulated in the
good outcome tumors and may be important for the proper control of cancer progres-
sion. Transforming growth factor-β receptor II (TGFβRII) and its downstream effec-
tor, tissue inhibitor of metalloproteinase 3 (TIMP-3), were exclusively down-regulated
in the poor outcome group. Loss of the TGFβII signaling pathway previously has been
shown to be important for the development of aggressive cancers (59), and loss of
TIMP-3 expression by promoter methylation has been shown to increase tumorigenic-
ity due to unregulated matrix metalloproteinases (MMPs) (60). A recent study demon-
strated the inhibition of invasion in melanoma cell lines by overexpressing TIMP-3 by
adenovirus-mediated gene delivery (61). Again, the identification of this pathway,
which is down-regulated in aggressive ccRCC, presents numerous potential targets for
intervention. Progress in this direction may supplement the still low response rate to
current adjuvant therapies, such as interferon-α and IL-2.

SURVIVAL ANALYSES BASED ON THE EXPRESSION PROFILE
OF THE PROGNOSTIC SET OF GENES

We used Kaplan-Meier survival analysis (Fig. 3) to further compare the significance
of the prognostic classifications determined by stage, grade, and gene expression pro-
file and tested by the log-rank test. Three patients were excluded from the statistic
analyses because they had <5 yr of clinical follow-up. Classification by grade (p <
0.0001) was better than that by stage (p = 0.0036). Just as significant as grade, gene
expression profiling is also more accurate in predicting clinical outcome than staging
alone. Correlation of histological grade or stage with the gene expression profile
was analyzed as the Spearman correlation coefficient by the exact test with the SAS/
STAT analysis package (version 8.0; SAS Institute, Cary, NC, USA). It turned out that
histological grade and gene expression classification were highly correlated (correla-
tion coefficient = 0.7703; p < 0.0001), indicating that grading is the phenotype result-
ing from gene expression profiling. Surprisingly, within the high risk group defined by
staging (stage III and IV), gene expression profiling significantly distinguished two
groups of patients with different outcomes. Multivariate analysis of these parameters
was also attempted, but was prohibited by the sample size of our cohort and strong
correlation of grading and gene expression profiling. A larger cohort of patients would
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allow multivariate analysis. This analysis may lead to the development of more accu-
rate prognostic methods for ccRCC patients.

FUTURE CDNA MICROARRAY EXPRESSION STUDIES IN RCC

To date, promising new data have been accumulating and molecular signatures of
RCC have been uncovered. However, there are still many issues to be resolved in
understanding the molecular signature of each cell type of RCC and to realize the
potential clinical benefits. For instance, it is important to define the specific gene set
for each cell type of RCC with a large number of samples to better understand tumori-
genesis of each cell type of RCC, and to differentiate accurately RCC cases that are
difficult to diagnose histopathologically. Second, the prognostic gene set that we have
identified warrants further study with a large number of new RCC cases. More infor-
mation can be obtained by using microarrays containing larger numbers of genes and
improved analytic methods. From these analyses, a better and more specific gene set to
differentiate the different outcome groups or metastasis-related gene sets may be dis-
covered. Moreover, it may be interesting to examine and compare the gene expression
profiles of RCC cases that have complete or partial response to immunotherapy and
those that are immunotherapy-resistant. This may lead to the discovery of new drugs
that could prove effective in immunotherapy-resistant RCC.

Microarray-related technology will continue to develop and evolve. Its cost
will likely decrease, and hence, more research groups will undertake such studies.
As mentioned above, there is generally a tremendous need for more powerful and

Fig. 3. Cause-specific survival curves based on staging (A), histological grading (B), gene
expression profiling in all patients (C), and that in patients with stage III/IV (D) by Kaplan-
Meier method.
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sophisticated analytical methods to analyze this vast amount of data, hopefully in a
way that will tease out important information that benefits both basic science and the
clinical management of RCC.

POST-GENE EXPRESSION PROFILING STUDIES

High-throughput screening technologies have identified an enormous number of
potential molecular targets that are related to cancer. However, the studies are solely
based on gene expression, which may or may not reflect certain critical genetic alter-
ations. For example, the VHL tumor suppressor gene is found inactivated in approx
70% of ccRCC. However, its differential expression in the tumors does not stand out
and, therefore, did not appear on the list of down-regulated genes. It is well known that,
besides VHL, a number of tumor suppressor genes (e.g., MENIN and WT1) do not have
the expected low expression in tumors, for reasons still not well understood.

Therefore, the very obvious challenge is to prioritize and select the targets that could
be essential to tumorigenesis or tumor aggressiveness. This will first require a more
complete understanding of the functions of these genes and how they interact with
other genes in contributing to cancer formation and progression. Actually, a majority
of genes identified in RCC studies remain either completely unknown or very poorly
understood with regard to their functions. While we expect that more microarray
studies will be done to complement and validate the present studies, more functional
studies are essential. Perhaps these studies can be designed and executed in unconven-
tional ways. For example, rather than based on single genes, these studies could be
more pathway-based, i.e., all components related to a pathway could be studied at the
same time.

The potential targets identified require validation in in vitro and in animal model
systems that mimic critical aspects of disease progression and response to therapy.
To date, there is only one RCC model, that of the Eker rat, which develops ccRCC. It is
caused by a tuberous sclerosis type 1 (TSC1) mutation that is rarely involved in human
RCC samples (62). With the identification of potential targets through microarray stud-
ies, it may be feasible to create new target-specific animal models that caricaturize the
pathophysiology of human RCC.
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Expression Profiling of Pancreatic Ductal Adenocarcinoma

Christine A. Iacobuzio-Donahue and Ralph H. Hruban

INTRODUCTION

Pancreatic cancer is a uniquely challenging cancer. First, it is a deadly cancer. Pan-
creatic cancer is the fourth leading cause of cancer death in men and in women, and,
despite advances in the treatment of other types of cancer, pancreatic cancer continues
to have one of the highest mortality rates of any malignancy. Each year in the U.S.
approx 29,000 patients are diagnosed with pancreatic cancer, and approx 29,000 will
die of their disease (1). The poor prognosis for patients with pancreatic cancer is, in
large part, due to the fact that almost all patients are diagnosed at an advanced stage of
disease, as no known tumor markers exist that could be used to screen for pancreatic
cancer at an earlier, potentially curative stage. This is a particular problem for those
patients with a strong familial history of pancreatic cancer, who may have up to a
57-fold greater risk of developing pancreatic cancer in their lifetime (2,3). Second,
even when a mass caused by a pancreatic cancer is identified, it can be very difficult to
establish a definitive diagnosis. Deadly infiltrating adenocarcinomas of the pancreas
can be so well differentiated that it can be difficult, and even at times impossible, to
distinguish cancer from reactive changes histologically. Third, even when the diagno-
sis can be firmly established, pancreatic cancer simply does not respond to current
chemotherapeutic or radiation therapies. Perhaps more than any other tumor type, a
better understanding of the gene expression of pancreatic cancer is urgently needed.

CURRENT STATE OF MOLECULAR BIOLOGY OF PANCREATIC CANCER

A brief review of the current understanding of the genetic alterations associated with
pancreatic cancer will help set the stage for a more detailed discussion of gene expres-
sion in pancreatic cancer. The last decade has seen a dramatic increase in our under-
standing of the molecular biology of pancreatic cancer, with pancreatic cancer now
considered one of the better characterized neoplasms at the genetic level. Recent
advances include the identification of the precursor lesions of invasive pancreatic car-
cinoma, known as pancreatic intraepithelial neoplasias (PanINs) (4–6). Just as there is
a progression in the colorectum from normal epithelium, to adenoma, to infiltrating
carcinoma, so too is there a genetic progression in the pancreas from normal duct epi-
thelium, to PanINs, to invasive duct adenocarcinoma (7). This progression has been
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shown to be associated with the accumulation of multiple genetic alterations, including
activating point mutations in the K-ras gene, telomere shortening, and inactivation of
the p16, p53, DPC4, and BRCA2 tumor suppressor genes (4,5,8–11). Other mecha-
nisms also contribute to carcinogenesis of the pancreas, such as overexpression of
growth factors and their receptors, changes in activity of signal transduction pathways
(12–14), and alteration of low frequency mutational targets (15). Recently, the interest-
ing possibility that islet cells undergo transformation and progression to pancreatic
adenocarcinomas has been hypothesized (16), while others have suggested that the cell
type that undergoes transformation in the pancreas is a stem cell (17).

While significant advances in our understanding of pancreatic cancer genetics have
been made, it is clear that if we are to impact on patient outcome, much remains to be
learned regarding the fundamental changes in gene expression that occur in adenocar-
cinoma of the pancreas. Whereas many of the advances in the understanding of the
genetics of pancreatic cancer have centered on those events that occur in the develop-
ment and early genetic progression of pancreatic adenocarcinoma, other aspects of pan-
creatic cancer, such as tumor invasion, metastasis, or chemotherapeutic resistance, are
much less well understood. Studies using global gene expression methodologies pro-
vide a unique opportunity to better understand this lethal tumor and to have a signifi-
cant impact on patient care.

GENERAL ASPECTS OF THE PANCREAS TRANSCRIPTOME

Before we discuss recent developments in global analyses of gene expression in
pancreatic cancer, it would be worthwhile to review what is known about gene expres-
sion in pancreatic cancer at the present time. A number of genes expressed in pancre-
atic ductal adenocarcinomas have been identified over the past 20 yr using a variety of
techniques. These genes are summarized in Table 1.

Normal pancreatic duct epithelial cells express the cytokeratins 7, 8, 18, and 19 (18).
Occasional expression of cytokeratin 4 may also be noted. Infiltrating ductal adenocar-
cinomas express the same set of cytokeratins as the normal duct epithelium (cyto-
keratins 7, 8,18, and 19). More than 50% of ductal adenocarcinomas also express
cytokeratin 4, and ductal adenocarcinomas are usually negative for cytokeratin 20,
which is a cytokeratin commonly expressed in other lower gastrointestinal tract neo-
plasms. Normal acinar cells, on the other hand, express cytokeratins 8 and 18 only, and
islet cells express cytokeratins 8, 18, and occasionally also 19. Acinar cell carcinomas
and islet cell neoplasms express similar cytokeratins to their normal cell counterparts.
Thus, the patterns of cytokeratin expression can be helpful in distinguishing nonductal-
type pancreatic neoplasms (i.e., acinar and islet cell neoplasms) and other gastrointes-
tinal neoplasms (i.e., colorectal neoplasms) from ductal adenocarcinoma.

Ductal adenocarcinomas generally do not express vimentin nor do they usually
express the endocrine markers synaptophysin and chromogranin, which are two pro-
teins commonly expressed by islet cells and islet cell neoplasms. Ductal adenocarcino-
mas also generally do not express the pancreatic enzymes trypsin, chymotrypsin, and
lipase, all of which are highly expressed genes of acinar cells and acinar cell neo-
plasms. Thus, the presence of these genes in gene expression data of pancreatic cancers
likely represents trapped islets or atrophic acini within the infiltrating mass and not the
up-regulation of expression by the neoplastic cells themselves.
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Duct adenocarcinomas typically also express a variety of cell surface glycoproteins
(19,20). For example, duct adenocarcinomas are known to express several sulfated
(acidic) mucins, such as MUC1, MUC3, MUC4, and MUC5/6 (19,21). The cell surface
molecule carcinoembryonic antigen (CEA) is also expressed in nearly all duct adeno-
carcinomas, although the amount of expression seen tends to be greatest in well-differ-
entiated tumors and least in poorly differentiated tumors. In contrast, CEA is typically
not expressed in the normal pancreas and in chronic pancreatitis (20). The cell surface
antigen CA19-9 is also expressed in the vast majority of ductal adenocarcinomas. How-
ever, it also is expressed in normal duct epithelium, particularly in samples of chronic
pancreatitis (20). Therefore, although serum levels of CA19-9 are often elevated in
patients with pancreatic cancer, these elevations are not specific for cancer, and CA19-9
cannot be used as a population-based screening test (22). Other markers with similar
expression profiles to MUC1, CEA, and CA19-9 in duct adenocarcinomas are DuPan2,
Span1, and TAG72 (18). While these patterns of known gene expression in pancreatic
cancer provide insight into the biology of pancreatic cancer, none of these genes has
proven to be useful for screening tests nor have they proven to be useful therapeutic
targets. A more complete knowledge of the gene expression patterns in pancreatic duc-
tal adenocarcinomas is, therefore, needed.

Table 1
Immunohistologic Markers of Pancreatic Normal and Neoplastic Tissues

Normal Normal Normal Duct Acinar Islet
Marker duct epithelium acini islets adenoCa Ca neoplasm

Cytoskeletal proteins
CK4 ± – – ± – –
CK7 + – – + – –
CK8 + + + + + +
CK18 + + + + + +
CK19 + – ± + – ±
CK20 – – – ± – ±
Vimentin – – ± – – ±

Endocrine markers
Synaptophysin – – + – – +
Chromogranin – – + – ± +
Trypsin – + – – + –
Chymotrypsin – + – – ± –
Lipase – + – – + –

Cell surface molecules
MUC1 + ± – + ND –
MUC3 ± – – + ND –
MUC4 – – – + ND –
MUC5/6 – ND – + ND –
CEA – – – + ± –
CA19–9 ± ND – + ND –

Data from refs. 18–21 and (www.immunoquery.com).
+, positive in ≥50% of cases; ±, positive in <50% of cases; –, negative.
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THE CHALLENGE OF STUDYING SPECIMENS FROM THE PANCREAS

While it has frequently been assumed that global expression profiling would be
impossible in pancreatic tissues because of the high levels of RNases and other enzymes
in the pancreas and the low neoplastic cellularity of most pancreatic cancers, in fact,
these hurdles can be overcome. Two sample types have proven quite useful for gene
expression profiling in the pancreas. These include cultured cell lines (normal and
malignant) and surgically resected pathologic tissue specimens, both of which have
inherent advantages and disadvantages for gene expression studies.

Pancreatic cell lines are very useful because they are pure populations of epithelial
cells. One can, therefore, obtain an undiluted view of gene expression patterns.
Recently, short-term cultures of non-neoplastic pancreatic ductal cells have also
become available, allowing one to easily identify groups of genes differentially
expressed by the cancer cell lines as compared to normal duct epithelial cells. Addi-
tionally, neoplastic cell lines are particularly useful for evaluating the response of the
neoplastic cells to various treatment strategies, delineating signaling cascades or cellu-
lar functions that may be altered by various experimental conditions. While these cell
lines are clearly useful, one must also appreciate their limitations. Cell lines are grown
in artificial conditions that can result in the dysregulation of gene expression, particu-
larly the down-regulation of gene expression related to the normal interactions of epi-
thelial cells with their surrounding extracellular matrix components (23,24). While this
feature of cell lines may not affect some directed gene expression studies, it is nonethe-
less important to be aware of this limitation in interpretation of gene expression data
based solely on the analysis of cell lines.

Surgically resected tissue specimens, because they represent the neoplasm in its
“native” state, are also essential for gene expression studies. However, two concerns
exist regarding the use of surgically resected pancreatic tissue samples, i.e., the pre-
dominance of non-neoplastic stromal cells within the tumor tissue specimens and the
extent of mRNA degradation in pancreatic tissues. Typically, resected pancreatic can-
cers are composed of a minor population of infiltrating neoplastic epithelial cells sur-
rounded by a predominance of dense fibrous (or desmoplastic) non-neoplastic stroma.
This stroma contains proliferating fibroblasts, small endothelial-lined vessels, inflam-
matory cells, and trapped residual atrophic parenchymal components of the organ
invaded (Fig. 1A) (24,25). A consistently low ratio of the infiltrating neoplastic epithe-

Fig. 1. (opposite page) (A) Infiltrating pancreatic duct adenocarcinoma (×160). In this typi-
cal example of an infiltrating pancreatic duct adenocarcinoma, the non-neoplastic host stromal
response (desmoplasia) accounts for the majority of the cellularity of the mass and is composed
of proliferating fibroblasts, small vessels, and inflammatory cells. The neoplastic epithelium
forms both glandular structures and individual cells that infiltrate this stromal reaction.
(B) Normal pancreas (×160). Normal pancreatic tissue is composed predominantly of acinar
cells and islets (upper left), with a minority of the cellularity accounted for by the duct epithe-
lial cells (lower right) from which most pancreatic cancers are believed to arise.

Fig. 2. (opposite page) Immunohistochemical labeling for mesothelin (A) and PSCA (B).
Note the intense labeling of the infiltrating cancer (panel A, right, and panel B, top) and the
absence of labeling of the normal pancreatic ducts (panel A, left, and panel B, bottom). Adapted
with permission from Argani et al. (61,62).
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lial cells to this abundant non-neoplastic desmoplastic response is rather unique to duct
adenocarcinomas of the pancreas, in contrast to infiltrating carcinomas arising in other
organ or tissue types (26). Microdissection or other methods of purification of the epi-
thelial component may be used to overcome this perceived obstacle, however, we have
found that tissue samples in their native state can, nonetheless, be quite informative in
gene expression studies. For example, we have obtained considerable information about
the nature of gene expression related to tumor–stromal interactions by use of these
stromal-rich tissue samples (24,25). Furthermore, we have found that robust patterns
of neoplastic epithelial gene expression can be detected in tissue samples of pancreatic
cancer, despite the predominance of the stromal cell component.

Another common perception regarding the use of pancreatic tissues is that they con-
tain a large amount of endogenous RNases, which can potentially interfere in the
extraction of mRNA for gene expression studies. RNases are a major secretory product
of normal pancreatic acinar cells. However, there is commonly a significant loss of
acinar cells within infiltrating pancreatic cancers due to atrophy or destruction of the
gland by the neoplasm, thus facilitating the study of mRNA expression patterns within
these cancer tissues. We have found that with careful technique, adequate amounts of
mRNA can be extracted from quickly frozen surgically resected samples.

Normal pancreatic tissues contain a great predominance of acini and islet cells (Fig. 1B).
It is, therefore, also important to recognize that ductal cells comprise only a small
proportion of bulk normal pancreas. Microdissection of the duct epithelium provide
one method to enrich the normal samples, whereas the use of non-neoplastic duct epi-
thelial cells in culture is another alternative that we have used in several studies (25,27).
For example, extensive gene expression data on two normal ductal epithelial cell lines
is available in the on-line serial analysis of gene expression (SAGE) database
(www.ncbi.nlm.nih.gov/SAGE).

While each of these sample types alone can provide limited information on the gene
expression patterns in pancreatic cancer, the analysis of these different sample types
together can provide a comprehensive view of the gene expression patterns in pancre-
atic cancer and can account for both in vivo and in vitro expression-specific patterns.
Samples of normal pancreas can aid in identifying the contributions of trapped residual
acinar and islet cells to the gene expression profiles detected in resected primary tumor
tissues, whereas pancreas cancer cell lines, when studied together with resected pan-
creatic cancer tissues, can be used to identify those genes specifically expressed by the
neoplastic epithelium. Likewise, genes found to be expressed solely within resected
pancreas cancer tissues likely highlight those genes whose expression relates to the
non-neoplastic stromal elements, but can also highlight those genes expressed by the
neoplastic epithelium due to tumor–stromal interactions (24).

GLOBAL ANALYSES OF GENE EXPRESSION

Four new technologies have revolutionized our ability to study gene expression in
pancreatic cancer. These include SAGE, cDNA microarrays, oligonucleotide arrays,
and proteomics. Typically, the most differentially expressed genes (i.e., those with the
most robust expression patterns) may be commonly identified by each of these meth-
ods, whereas those genes specifically identified by only one of these methods may
reflect the sensitivity of that particular system.
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SAGE

SAGE is a recently developed technique that allows one to obtain a quantitative and
comprehensive profile of gene expression. In SAGE, cellular mRNA transcripts are
converted to cDNA and then cleaved at specific sites by restriction enzymes into small
fragments of 10–14 bases, which are known as tags (28). These tags are linked together,
amplified, and then sequenced. The abundance of each tag provides a quantitative mea-
sure of the number of transcripts from which the tag was derived in the total mRNA
sample, therefore allowing expression levels for a particular tag to be compared
between different samples. The ability to quantitate gene expression is a major advan-
tage of SAGE, as compared to other gene expression methodologies.

Normal pancreas and pancreatic cancers were among the first tissues to be studied
by SAGE (29). These studies have identified a number of genes differentially expressed
by pancreatic cancer, and they have revealed much about the biology of this tumor
type. Ryu et al. (27) studied six pancreatic cancer cell lines, two short-term cultures of
normal pancreatic duct cells and two surgically resected tissue samples of invasive
duct adenocarcinoma by SAGE, and identified 86 genes that were differentially
expressed by the cancers (see Table 2). Forty-nine of these genes were overexpressed
by the cancers as compared to normal cells, while 37 were underexpressed by the
cancers. The 49 overexpressed genes included secretory (e.g., HE4), cell-surface
(e.g., mesothelin), transmembrane (e.g., CEACAM6), and tight junction protein coding
genes (e.g., claudin 4), possibly corresponding to altered cellular attachments and cell
surface architecture, and resulting in aberrant cell–cell interactions that are characteris-
tic of cancer cells. A number of genes related to calcium homeostasis were also identi-
fied and included genes such as S100A4, S100A10, Trop-2, and ALG-2 (30).

SAGE analyses have also provided insight into the process of tissue invasion in
pancreatic cancers. Using principal component analysis (PCA) of SAGE data derived
from pancreatic cancer cell lines and primary pancreatic cancer tissues, Ryu et al. (25)
identified a large cluster of “invasion-specific” genes of infiltrating pancreatic cancer.
These 74 known genes and 16 expressed sequence tags (ESTs) were expressed in sur-
gically resected pancreatic cancer tissue samples, but were not seen in normal tissues
nor were they seen in cultured pancreatic cancer cell lines. The genes identified within
this “invasion-specific” cluster included collagens type 1α1, 1α2, connective tissue
growth factor (CTGF), and hevin, reflecting the cellular components of the host stro-
mal response in tissue specimens, whereas cell lines would not be expected to express
these genes. This invasion-specific cluster was, therefore, thought to be specific to the
desmoplastic response. Also of note is that significant numbers of the expressed genes
that were invasion-specific for pancreatic cancer samples were also invasion-specific
in other tumor types. For example, in this study, insulin-like growth factor binding
protein 5 (IGFBP5) was found to be elevated in both resected pancreatic and breast
cancers (see Table 3).

Because the spatial localization of gene expression was not determined initially for
these invasion-specific tags, their cellular origin within the primary tumor remained
unclear (neoplastic epithelium, vasculature, or stroma), as well as their role in the inva-
sive process. Therefore, in a related study (24), we used in situ hybridization to evalu-
ate 12 of these invasion-specific genes in two samples of resected pancreatic cancer
tissue. These genes were selected to represent different cellular functions, such as
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growth factors (CTGF), signal transduction (β-catenin), cellular adhesion (β-catenin,
intercellular adhesion molecule-1 [ICAM-1]), extracellular matrix remodeling (matrix
metalloproteinase [MMP]-2, -11, and -14), markers of specific cell types (hevin,
endothelium and thrombospondin-1, extracellular matrix), as well as genes whose role
in neoplasia is unknown (apolipoproteins C-1 and D, α-2 macroglobulin, and α-2 mac-
roglobulin receptor).

Detectable expression of all 12 genes were observed in both neoplasms, thus con-
firming their expression in pancreatic cancer tissues. However, for each gene, detect-

Table 2
Representative Differentially Expressed Genes Identified
by SAGE in Pancreatic Cancers as Compared to Normal Ductal Epithelium

Tag Gene/ESTs Function

Up-regulated in cancer

GACATCAAGT Keratin 19 Cytoskeletal and microfibrillar.
ATGTGTAACG S100A4 (Mst1) Calcium-binding protein.
ATCGTGGCGG Claudin 4 Tight junction barrier function.
GCCTACCCGA Trop-2 Tumor-associated calcium signal transducer.
CAAACCATCC Keratin 18 Cytoskeletal and microfibrillar.
CCTGCTTGTC HE4 Secreted protease inhibitor.
GCCCAGCATT PSCA GPI-anchored glycoprotein/prostate-specific.
GGAACTGTGA Tetraspan 1 Possible interconnecting cell surface

molecules.
AAGGATAAAA CEACAM6 CEA-related cell adhesion molecule.
CCCCCTGCAG Mesothelin GPI-anchored/cell adhesion/mesothelioma

and ovarian cancer antigen.
CTCGCGCTGG Claudin 3 Tight junction barrier function.
AGCAGATCAG S100A10 Calcium-binding protein.
TGCCTTACTT ALG-2 Ca2+-binding protein required

for T cell receptor-, Fas-,
and glucocorticoid-induced cell death.

Down-regulated in cancer

GGTTATTTTG PAI, type I Serine (or cysteine) proteinase inhibitor.
CAAACTGGTC Stanniocalcin 1 Stimulates renal phosphate reabsorption.
CTAACGCAGC AP-1 (proto-oncogene Transcription factor.

c-Jun)
GAGAAGGGCA Matrilin 1 Major component of extracellular matrix.

Sphingosine kinase 1 Kinase.
ATCCGGACCC GADD34 Apoptosis-associated /growth arrest

and DNA damage-induced.
GAAAGTGGCT A novel transmembrane Have two follistatin modules

protein and an epidermal growth factor (EGF)
domain.

Data from ref. 27.
GPI, glycosylphosphatidylinositol.
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able expression was found to localize to one or more of four distinct compartments of
the invasive tumors, i.e., the neoplastic epithelium, the angioendothelium, the
juxtatumoral stroma (those stromal cells immediately adjacent to the invasive neoplas-
tic epithelium), or the panstromal compartment (all stromal tissue within the host
response). Eight of these 12 genes localized to one architectural compartment. For
example, CTGF, ICAM-1, β-catenin, and MMP-14 all localized to the neoplastic epi-
thelium, while hevin localized to endothelial cells of small capillaries or venules.
Apolipoprotein C-1, apolipoprotein D, and MMP-11 expression localized to the
juxtatumoral stroma, whereas the neoplastic epithelium and endothelium were nega-
tive for these genes. Four genes were localized to two or more regions of the infiltrat-
ing carcinomas and showed more complex patterns of expression. For example, α-2
macroglobulin localized to endothelial cells and juxtatumoral stroma, while expression
of α-2 macroglobulin receptor and thrombospondin-1 both showed expression within
the neoplastic epithelium and the panstromal compartments. MMP-2 expression local-
ized to the panstromal and angioendothelium of the tumors.

The identification of these distinct compartments helped to identify a highly orga-
nized, structured, and coordinated process of tumor invasion in the pancreas and high-
lighted aspects of pancreatic cancer biology previously unrecognized. First, the data
indicate that although these compartments of gene expression are distinct, potential
lines of communication between different compartments may exist. To provide one

Table 3
The Pancreatic Cancer Invasion Cluster

SAGE tag Gene Cellular functiona

tttgcacctt Connective tissue growth factor EM,A
gacctatctc Palladin
tgcacttcaa Hevin A
tcttgattta α2 Macroglobulin
ccctacctg Apolipoprotein D
gatagcacag IFGBP5
gtttatggat Matrix G1a protein A
caggagaccc MMP-11/preg-spec β1GP9 EM,A
aagatcaaga Actin α1 or α2 or α1
gggaggggtg MMP-14/HMG1 and Y EM
cggggtggcc Cartilage matrix protein EM
gatgaggaga Collagen 1α2 EM,A
atgtgaagag Osteonectin (secreted) EM,A
gaccagcaga Collagen 1α1 EM
ggaaatgtca MMP-2 EM,A
aggtcttcaa Thrombospondin 1/EST A
taagtagcaa Integral membrane protein 2B
tggccccagg Apolipoprotein C-1
aaatagatcc β-Catenin

Data from refs. 24 and 25.
aHMG, high mobility group. EM, extracellular matrix; A, angiogenesis.
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example, we found α-2 macroglobulin to be expressed by the juxtatumoral stroma,
while the receptor for this gene product, α-2 macroglobulin receptor, is expressed by
the neoplastic epithelium. Thus, the host stromal response and the juxtatumoral stroma,
in particular, may play an active role in the invasive process. Second, our data indicate
that important differences in gene expression between in vivo and in vitro systems
exist. The finding of invasion-specific genes identified by SAGE that are highly
expressed in the neoplastic epithelium of infiltrating pancreatic cancers (CTGF, ICAM-1,
β-catenin, and MMP-14), but not in passaged cell lines derived from pancreatic cancer,
supports this possibility. Third, and perhaps most interesting, we found that regional
differences in the host stromal response to infiltrating pancreatic cancer exist. Our iden-
tification of the juxtatumoral stroma and its associated specific gene expression as com-
pared to the remaining host stromal response offers new possibilities for the study of
the desmoplastic response.

cDNA Microarrays
Alternative methods of gene expression analyses, such as cDNA microarrays, have

also shed light on the nature of pancreatic cancer. Unlike SAGE, cDNA microarray
analyses involve the competitive hybridization of cDNAs derived from experimental
and control samples to cDNA microarray chips, thus permitting the identification of
relationships of global gene expression patterns among different sample types.

In collaboration with Patrick O. Brown Ph.D. at Stanford, we have used cDNA
microarray to analyze samples of infiltrating pancreatic duct adenocarcinoma, pancre-
atic cancer cell lines, and normal pancreatic tissues (31). We identified several clusters
that could be related to the biological or histological features of the samples. The larg-
est cluster identified contained cDNAs whose expression was increased in both pan-
creatic cancer cell lines and in primary pancreatic tumors as compared to normal
pancreatic tissues. Genes included in this large pancreas cancer-specific cluster spanned
a variety of classes of gene function and were characterized by those involved in cell
membrane junctions (claudins 3, 4, and 7) (32), cell–matrix interactions (integrin-α 3
and -α 6) (33), cytoskeletal assembly (keratins 7, 17, and 19) (34), cell cycle regulation
(p21, cyclin D) (35), transcription factors (T cell factor [TCF]7) (36), calcium homeo-
stasis (S100A10 and S100A11) (37), and proteolytic processing (urokinase plasmino-
gen activator and MMP-24) (12,38). A partial list of the genes identified using cDNA
microarrays is given in Table 4.

Several smaller yet informative clusters of genes were also found and were associ-
ated with cellular proliferation and invasion-specific gene expression related to both
stromal cells and neoplastic epithelium. The proliferation cluster included chromo-
some remodeling genes (e.g., structural maintenance chromosome [SMC]4-like 1), cell
cycle regulating genes (e.g., cyclin A2), and genes associated with cytoskeletal remod-
eling (e.g., myosin heavy polypeptide 1), whereas the invasion-specific cluster included
genes such as collagen 1α1, fusin, and IGFBP7.

Oligonucleotide Arrays
Oligonucleotide arrays provide yet another method to study global gene expression

patterns. With this method, cDNAs are hybridized in a noncompetitive manner to oli-
gonucleotide arrays, with the intensity of signal reflecting in a linear fashion the amount
of mRNA expression present in the original sample.
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In collaboration with Grace L. Shen-Ong, Ph.D., and GeneLogic, Inc. (Gaithersburg,
MD, USA), we have used oligonucleotide arrays to identify genes differentially
expressed in pancreatic cancer, using cDNAs prepared from normal pancreas, normal
gastrointestinal mucosa, resected pancreas cancer tissues, and pancreas cancer cell
lines. GeneChips® (Affymetrix) were utilized, and the genes that were overexpressed
in the pancreatic adenocarcinoma tumor tissues or cell lines were compared to all nor-
mal tissues and were identified (39). One hundred eighty fragments were found to be
expressed at least 5-fold greater in pancreatic cancer samples as compared to normal
tissues, 12 of which were expressed greater than 10-fold. The level of significance for
each gene fragment ranged from less than p = 0.00001 to p = 0.01 (modified Welch t-test).

Characterization of the 180 fragments identified revealed that 56 fragments corre-
sponded to ESTs, and 124 fragments corresponded to known genes. Among these
124 fragments, 10 genes were represented by two or more fragments, resulting in
107 known genes identified as expressed at least 5-fold or greater in pancreatic cancers
as compared to normal. Ten genes were identified as having high levels of expression

Table 4
Representative cDNAs Identified as Overexpressed in Pancreatic Cancer
by Microarray Analysis in Pancreatic Cancer Cell Lines, Normal Pancreas,
and Resected Pancreatic Cancer Tissues

Known gene name Cellular function

Pancreas cancer-specific cluster
Claudin 3 Cell junction component
Claudin 4 Cell junction component
Integrin-α3 Cell adhesion
Cytokeratin 7 Cytoskeleton
Cytokeratin 17 Cytoskeleton
Cytokeratin 19 Cytoskeleton
p21 Cell cycle regulation
Cyclin D Cell cycle regulation
TCF7 Transcription factor
S100A10 Calcium homeostasis
S100A11 Calcium homeostasis
UPA Proteolytic processing
MMP-24 Extracellular matrix processing

Pancreas cancer tissue-specific cluster (desmoplasia)
Collagen 1α1 Extracellular matrix component
Fusin Lymphocyte cytokine
IGFBP7 Cell growth regulation
Galectin 4 Cell adhesion
Bone marrow stromal cell antigen 2 Cell growth regulation

Pancreas cancer cell line-specific cluster (proliferation)
SMC4-like 1 Chromosome remodeling
Cyclin A2 Cell cycle regulation
Myosin heavy polypeptide 1 Cytoskeletal remodeling

Data from ref. 31.
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in the SAGE analyses of normal pancreatic duct epithelium. These genes were
excluded, leaving 97 remaining differentially expressed genes.

Of the 97 genes analyzed, 28 genes were previously reported to be associated with
pancreatic cancer, whereas 69 genes were not. Of these 69 genes not identified in this
PubMed search as having been reported in pancreatic cancer, 21 have been reported
before in association with tumor types other than pancreatic cancer, while 48 genes
have not been reported in association with any neoplasm. These 97 candidate tumor
markers of pancreatic cancer represented a variety of cellular functions (a partial list is
provided in Table 5). Genes identified included those involved in cell membrane junc-
tions (claudin 1, connexin 26) (40,41), signal transduction (ras GTPase-activating pro-
tein-like) (42,43), calcium homeostasis (Trop-2, S100 calcium-binding protein P) (44),
cytoskeletal assembly (fascin, keratin 7, rabkinesin6, and pleckstrin) (45–48), cell
surface adhesion and recognition (integrin β-like 1) (49), DNA transcription (topo-
isomerase II-α, transcription factor brain-muscle-Arnt-like-protein [BMAL]2, and
acute myelogenous leukemia [AML]1) (50–52), DNA repair (ataxia telangiectasia
group D-complementing [ATDC]) (53), or extracellular matrix remodeling and func-
tion (collagens 1α1, 1α2, and X1α1, heat-shock protein 47, MMP-14, and MMP-7)
(24,54,55). The cellular localization of the corresponding gene products was also
determined using the on-line database On-line Mendelian Inheritance in Man (OMIM)
available through the National Center for Biotechnology Information (NCBI) Web site
(http://www.ncbi.nlm.nih.gov/entrez/query). Genes were found to encode membrane-
bound proteins (prostate stem cell antigen, OB-cadherin), cytoplasmic proteins (fascin,
ATDC), nuclear proteins (topoisomerase II-α, paraneoplastic antigen MA1), as well as
extracellular proteins, such as those involved in extracellular matrix homeostasis (heat-
shock protein 47, thrombospondin 2) or secreted protein products (osteopontin). Each
of these genes identified represents a potential tumor marker for the development of
pancreas cancer screening tests and novel chemotherapeutic modalities.

Protein Chips

Proteomic methods have provided an alternative approach to the study of pancreatic
cancer and the identification of novel biomarkers. In this method, small amounts of
protein are directly applied to biochips coated with specific chemical matrices (hydro-
phobic, cationic, anionic, normal phase, etc.) and analyzed by mass spectrometry to
obtain a protein “fingerprint” of the sample.

Using ProteinChip® (Ciphergen) SELDI technology, Rosty, Goggins, and cowork-
ers screened for differentially expressed proteins in pancreatic juice samples from
patients both with and without pancreatic duct adenocarcinoma (56). A 16.5-kDa pro-
tein peak was identified in 10 out of 15 (67%) of the patients with pancreatic adeno-
carcinoma, but in only 1 out of 7 (17%) of the patients with other pancreatic diseases.
This protein was identified as hepatocarcinoma–intestine–pancreas/pancreatitis-asso-
ciated–protein-1 (HIP/PAP-1), which is a protein released from pancreatic acini during
acute pancreatitis and overexpressed in hepatocellular carcinoma. The quantification
of HIP/PAP-1 amounts in pancreatic juice and serum samples by enzyme linked
immunosorbent assay (ELISA) confirmed the significantly elevated amounts of this
protein in the samples from patients with pancreatic adenocarcinoma. Furthermore,
patients with pancreatic juice HIP/PAP-1 levels greater or equal to 20 µg/mL were
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Representative Highly Expressed Genes Identified
by Oligonucleotide Arrays in Pancreatic Cancer Cell Lines and Tissues

SAGE
Fold  normal Reported Cellular

Known gene name change tagsa in pancreas   Ref. locationb

Ataxia-telangiectasia 5.21 0,0 No C
group D-associated protein

Cadherin 11, type 2, OB-cadherin 5.93 0,0 No M
(osteoblast)

Claudin 1 5.61 0,0 No M
Collagen, type I, α-2 8.84 4,2 Yes (25,27) EM
Collagen, type XI, α-1 6.88 0,0 Yes (25,27) EM
Cyclin-dependent kinase inhibitor 2A 5.87 0,0 Yes C

(p16)
Drebin 1 5.24 0,1 No
Gap junction protein, β 2, 26 kDa 7.32 0,0 Yes (63) M

(connexin 26)
Integrin, β-like 1 7.49 0,0 No M

(with EGF-like repeat domains)
Interleukin 8 6.53 0,0 Yes C
Lipocalin 2 (oncogene 24p3) 8.86 5,3 No
Keratin 7 10.77 2,4 Yes (46) C
Matrix metalloproteinase 14 7.27 0,0 Yes (24) M

(membrane-inserted)
Matrix metalloproteinase 7 8.79 0,0 Yes (25) S

(matrilysin, uterine)
Paraneoplastic antigen MA1 5.49 0,1 No N
Pleckstrin homology-like domain, 14.66 5,2 No

family A, member 1
Prostate stem cell antigen 5.34 0,0 Yes (61) M
RAB6 interacting, kinesin-like 5.09 0,0 No C

(rabkinesin6)
ras GTPase activating protein-like 7.01 4,4
Runt-related transcription factor 1 5.92 0,4 No N

(aml1 oncogene)
S100 calcium-binding protein P 8.73 0,0 No N
Secreted phosphoprotein 1 (osteopontin) 7.98 0,0 No S
Heat shock protein 47 6.41 1,4 No
Singed (Drosophila)-like 13.31 1,1 No C

(sea urchin fascin homolog like)
Thrombospondin 2 9.92 0,0 No EM
Topoisomerase (DNA) II α (170 kDa) 5.28 1,0/2,0 No N
Transcription factor BMAL2 7.03 0,0 No N
Transmembrane, 9.54 1,2 No

prostate androgen induced RNA
Trop-2 9.29 0,0 Yes (27) M

Data from ref. 39.
aTotal tags present in normal duct epithelial cell SAGE libraries HX and H126, available through the

SAGEmap database (www.ncbi.nlm.nih.gov/SAGE).
bC, cytoplasmic; M, cell membrane; EM, extracellular matrix; N, nuclear; S, secreted.
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21.9 times more likely to have pancreatic adenocarcinoma than patients with levels
less than 20 µg/ml. Immunohistochemical labeling of paraffin-embedded samples of
pancreatic duct adenocarcinoma confirmed the strong expression of HIP/PAP-1 in aci-
nar cells immediately adjacent to the cancers, with only rare expression in the neoplas-
tic epithelium, indicating the main source of this protein is acini undergoing atrophy or
destruction. Based on this early screen identifying HIP/PAP-1, Dr. M. Goggins and
collaborators are actively using this technology to screen for additional markers.

Summary

Our initial attempts to study pancreatic cancer using these global expression meth-
odologies have revealed a wealth of information. Interestingly, these various method-
ologies have revealed similar findings regarding the genes or cellular processes most
highly up-regulated in pancreatic cancers, i.e., calcium homeostasis (S100A10, Trop-2),
cell–cell interactions (claudins 3,4), cell–matrix interactions (integrin-α3, integrin-β-
like 1), extracellular matrix remodeling (MMP-7, MMP-14, collagens 1α1 and 1α2),
as well as genes such as prostate stem cell antigen (PSCA), which has been identified
both by SAGE and oligonucleotide arrays, but whose role in pancreatic cancer is
unknown. These findings not only provide novel insight into the biology of pancreatic
cancer, but serve to generate new hypotheses for the study of pancreatic cancer.

VALIDATION OF GENE EXPRESSION

While global gene expression analyses can reveal much about the biological pro-
cesses of pancreatic cancer, each of the candidate genes identified should be validated
to confirm that gene expression differences are real. Perhaps the most commonly used
methods for validation are those which confirm mRNA expression, such as reverse
transcription polymerase chain reaction (RT-PCR) and in situ hybridization, or those
which confirm protein expression, i.e., immunohistochemistry and Western blotting.

RT-PCR not only provides confirmation of gene expression, but also allows a
semiquantitative determination of gene expression in samples. This method is perhaps
best for confirming gene expression in cell lines or microdissected samples in which
the cell of origin is known. Alternatively, in situ hybridization can be used to both
confirm mRNA expression and also localize mRNA expression in tissues, which is an
issue of particular relevance in stromal-rich pancreatic cancers. In situ hybridization
can be performed on fresh frozen or paraffin-embedded tissues, which is an advantage
for validating mRNA expression in archival tissue specimens. Furthermore, in our
experience, formalin-fixed paraffin-embedded pancreatic cancers have adequate
amounts of mRNA for the reliable detection of gene expression (24).

Validation of gene expression by immunohistochemical labeling is yet another
option with several advantages. Immunohistochemical detection of protein expression
can be used to determine the cell type of origin of expression, similar to in situ hybrid-
ization. However, unlike in situ hybridization, immunohistochemistry can also provide
information on the cellular localization of the protein product (e.g., the cell membrane,
nucleus, or cytoplasm), as well as demonstrate translation of the gene product studied.
One disadvantage, however, is that the ability to perform immunohistochemistry is
often limited by the availability of suitable primary antibodies specific for the protein
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of interest, unlike in situ hybridization, in which specific probes can be easily gener-
ated to any transcript of interest.

APPLICATIONS

These initial gene expression studies of pancreatic cancer provide a host of new and
exciting genes with potential as novel diagnostic aids, tumor markers, or targets for
therapeutic development.

The identification of genes significantly overexpressed in infiltrating pancreatic duc-
tal carcinomas has immediate diagnostic potential. Overexpression of novel tumor
markers of pancreatic cancer can be used to differentiate infiltrating pancreatic duct
adenocarcinoma from chronic pancreatitis, particularly in small tissue samples or cyto-
logic material (57). For example, immunohistochemical labeling of a small biopsy for
a panel of genes specifically up-regulated in invasive cancer could be used to establish
the diagnosis of cancer.

Novel markers of pancreatic cancer also have the potential for the development of
new screening tests for pancreatic cancer. For example, several of the genes we have
identified have been found to be membranous or secreted proteins, suggesting that they
may be shed into the blood or pancreatic secretions. If so, these proteins may also serve
as screening markers, not only for identification of primary pancreatic cancers at an
earlier stage, but also for the identification of recurrent disease at an earlier phase when
it may be more responsive to adjuvant therapies. In addition, whereas the use of any
one marker individually may have a limited sensitivity or specificity in detecting pan-
creatic cancer, the development of a panel of markers may significantly increase the
specificity of detecting clinically inapparent pancreatic cancers without decreasing the
sensitivity. For example, tissue inhibitor of metalloproteinase 1 (TIMP-1) was identi-
fied by SAGE as overexpressed in pancreatic cancer (29). Serum TIMP-1 levels, when
combined with other markers of pancreatic cancer, provided a reasonably sensitive and
specific screening test for pancreatic cancer. The development of tagged antibodies to
one or more of these genes may also be useful in the diagnostic radiologic imaging of
small primary pancreatic cancers or metastases before they become clinically apparent.

Novel markers of pancreatic cancer may also have important therapeutic applica-
tions. For example, Jaffee et al. (58) have recently shown that cell-mediated immuno-
therapy can be both safe and effective in patients with pancreatic cancer. The
identification of genes highly overexpressed in pancreatic cancer may, therefore, rep-
resent potential targets for the development of cell-mediated vaccines. Similarly, genes
identified that encode for cell surface proteins hold promise for the development of
antibody-based immunotherapy against pancreatic carcinoma (59,60). Finally, in some
cases, small molecules that specifically block the function of the identified protein
could be developed.

The value of these new markers can be demonstrated with a few specific examples.
Comparisons of SAGE libraries derived from pancreatic duct adenocarcinomas to
SAGE libraries derived from non-neoplastic tissues have identified the SAGE tags for
both mesothelin and PSCA as highly expressed in SAGE libraries derived from pan-
creatic carcinomas (61,62). The tag for mesothelin was present in seven of eight pan-
creatic cancer cell line SAGE libraries, but not in SAGE libraries derived from normal
duct epithelial cells. Interestingly, 60 of 60 duct adenocarcinomas were strongly



272 Iacobuzio-Donahue and Hruban

immunoreactive for the mesothelin protein (Fig. 2A), and many of these carcinomas
had a membranous pattern of staining, suggesting a potential target for immune-based
therapies. PSCA was also identified using this approach. PSCA is a recently discov-
ered gene initially thought to be restricted in expression to prostate basal cells and
prostate cancers. PSCA mRNA expression was confirmed in 14 of 19 pancreatic cancer
cell lines by RT-PCR, and protein overexpression was confirmed immunohisto-
chemically in 36 of 60 archival paraffin-embedded primary pancreatic adenocarcino-
mas (Fig. 2B) (61). Importantly, the intense labeling of infiltrating pancreatic cancers
with these markers could be used to easily distinguish infiltrating neoplastic cells from
benign ducts and immune therapies targeting both of these antigens are under develop-
ment (62).

SUMMARY

The development of global gene expression methodologies have resulted in a virtual
explosion of information in the study of human cancers. The use of these various tech-
niques in the study of pancreatic cancer exemplifies this phenomenon. Compared to
only 5 yr ago, we are now aware of hundreds of genes with potential importance in the
biology of pancreatic cancer.

While the gene expression studies we have discussed represent encouraging “first
steps” on the road to the cure of pancreatic cancer, much more remains to be learned
about this tumor. Potential areas for future study include, but are not limited to, the
gene expression patterns associated with invasion and metastasis of pancreatic cancer,
the genes expressed in incipient pancreatic cancers and their associated genetic alter-
ations, and the identification and development of biologic markers for early detection
or therapy. These and other aspects of pancreatic cancer remain areas of enormous
potential for research opportunities that can greatly impact on the survival of patients
with this highly lethal tumor.
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Gene Expression in Ovarian Carcinoma

Garret M. Hampton

INTRODUCTION

Cancer of the ovary accounts for the highest tumor-related mortality among women
diagnosed with gynecological malignancy. Of the 23,400 new cases of ovarian cancer
estimated by the American Cancer Society (ACS) in 2001, roughly 60% will die from
their disease. The remarkably high mortality rate is due, in large part, to the late stage
at which patients with ovarian cancer are diagnosed, prompting sizable efforts to iden-
tify diagnostic molecules for early stage detection. A growing body of literature is
emerging on gene transcription in normal and malignant ovarian tissues, revealing
genes whose aberrant transcription may contribute to the neoplastic phenotype, as well
as pinpointing novel entry points for therapeutic intervention and identifying secreted
molecules that could be detected by diagnostic assays. This chapter will focus on recent
results obtained by expression profiling in ovarian cancers, with an emphasis on the
genes identified, the emergence of molecular signatures of the disease, as well as the
discovery of molecular distinctions between ovarian cancers of varying histology and
grade.

OVARIAN CANCER:
EPIDEMIOLOGY, PATHOLOGY, AND GENETIC ALTERATIONS

Of the 625,000 new cases of cancer anticipated by the ACS to afflict females in the
U.S. in 2001, approx 80,300 will involve the female genitalia with 51,100 arising in the
uterus, including the uterine cervix, 23,400 arising in the ovary, 3600 and 2100 arising
in the vulva, vagina, and other genitalia, respectively (1). Cancer-related mortality
resulting from tumors of the female genitalia is most pronounced for ovarian cancer,
estimated by the ACS to account for 13,400 deaths in females of all ages, and account-
ing for the single largest number of cancer-related deaths in females between the ages
of 60–79 yr (approx 7100 deaths per annum) (1). Based on a relatively steady inci-
dence rate of ovarian cancer over the past 10 yr (1), these figures suggest that roughly
60% of patients with ovarian cancer will die from their disease. In contrast, the mortal-
ity from uterine cancers, which are the most commonly diagnosed genital cancers, is
considerably lower at 22% (1). The high ratio of death–incidence for patients with
ovarian carcinomas is largely due to late stage diagnosis, at a time when the disease has
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typically spread beyond the ovary. The 5-yr survival rate for patients with stage 1 dis-
ease, which is confined to the ovary, is >90%, whereas the 5-yr survival rate for patients
diagnosed with stage III or IV disease is 15–20%. Late stage diagnosis of ovarian car-
cinomas can be attributed to the fact that the disease is relatively “asymptomatic” in its
early stages, and that the symptoms of late stage disease, such as abdominal discom-
fort, weight loss, diarrhea or constipation, vaginal bleeding, and shortness of breath,
are nonspecific complaints.

Although there are a number of suspected risk factors for ovarian carcinoma, such as
the number of ovulations a woman experiences during her lifetime (which may allow
the accumulation of genetic alterations though cycles of epithelial rupture and repair at
sites of ovulation), the most established risk factor is a family history of ovarian can-
cer. It is estimated that as many as 5–10% of ovarian carcinomas are associated with an
inherited predisposition to the disease (2,3). There are two key familial syndromes in
which inherited mutations play a causative role: hereditary nonpolyposis colon carci-
noma (HNPCC) or Lynch type II syndrome, which results from mutations in DNA
mismatch repair genes, and hereditary breast–ovarian cancer, which is linked to muta-
tions in the BRCA1 gene and, to a lesser extent, BRCA2 and other unidentified loci.
In families with an established risk of breast cancer (mostly BRCA-related), there is an
almost 50% increased risk of developing ovarian cancer.

The majority of ovarian cancers are epithelial in origin, arising from the surface
epithelial lining of the ovary (ovarian surface epithelium [OSE]), or from the lining of
cortical inclusion cysts, which are formed by invagination of the OSE into the super-
ficial ovarian cortex. Histologically, ovarian carcinomas can be subdivided into sev-
eral categories: serous papillary adenocarcinomas, which represent a majority of
carcinomas arising in the ovary (approx 80%), and mucinous, endometrioid, clear-cell,
and transitional cell carcinomas, which constitute the remaining cases. Borderline
serous tumors (termed tumors of low malignant potential [LMP]) encompass a special
category of tumors, in that available molecular evidence (see below) suggests that they
represent a separate entity. These tumors are typically noninvasive and have very little
potential for aggressive biological behavior.

Since most cases of ovarian carcinoma are diagnosed when the disease has spread
from the ovary, our knowledge of how these cancers arise and progress is limited to
circumstantial histological observations, such as the co-existence of dysplasia or ova-
rian intraepithelial neoplasia (OIN) adjacent to invasive carcinoma, as well as evidence
derived from the study of OSE and carcinoma-derived cells in culture (4). Thus, unlike
other gynecologic neoplasms, such as those that arise in the cervix, there is no clear
delineation of the genetic events that accompany the emergence of precursor lesions,
and progression to frank malignancy and metastatic spread (5).

Genetic analyses of ovarian cancers have, therefore, largely been confined to rela-
tively late-stage disease (reviewed in refs. 4–6, and references therein). Invasive serous
adenocarcinomas are characterized by frequent mutation of p53, and consistent losses
of chromosomes 1, 6q, 11, 13q, 17p, and 17q, possibly pinpointing the existence of
tumor suppressor loci whose loss may contribute to tumor progression. In contrast, the
profile of genetic alterations in mucinous tumors is typified by mutation of k-ras, which
is a rare event in serous tumors. The genetic alterations that characterize serous LMP
lesions appear to be more typical of an invasive mucinous histology, with a low fre-
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quency of p53 mutations, a high rate of k-ras mutations, and frequent replication-error
(RER+) mutations, detectable as microsatellite instability. It is noteworthy that muta-
tions of the p53 or K-ras genes in LMP tumors are typically different from those
detected in subsequent carcinomas isolated from the same patient (7). Thus, LMP
tumors are unlikely to be the precursor of invasive serous adenocarcinomas.

TISSUES PROCUREMENT AND PROCESSING

The OSE, from which ovarian carcinomas arise, represents a minute fraction of cells
in the ovary (for e.g., see Fig. 2 in ref. 4). This contrasts with carcinomas that arise in
other organs, such as the prostate, where normal epithelial cells constitute a greater
fraction of the tissue. The small amount of OSE poses special challenges for compar-
ing the transcription of genes in the “normal” state, where there is a limited amount of
RNA available, vs transcription in carcinomas, where cancerous epithelial cells tends
to be more plentiful, particularly in late stage disease. Many studies have not taken
these features of ovarian biology into account and have simply used whole ovarian
tissue as a “normal” control to compare transcriptional profiles in ovarian carcinomas.
Clearly, the results of these studies must be interpreted cautiously. A more biologically
relevant approach has been to isolate OSE “brushings” from the surface of freshly
procured ovaries. Samples are literally brushed, or lightly scraped, and the cells depos-
ited in cell culture media prior to RNA preparation (8). The epithelial character of these
cell isolates can be verified by cytokeratin staining (8), and sufficient RNA can be
generated by this method by pooling individual isolates. A third approach has been to
extend the proliferative capacity of the OSE by placing freshly procured ovaries in
epithelial cell-selective media and expanding the OSE cells in short-term cultures (9).
A review of the procedures for OSE isolation and the properties of these cells in culture
are presented in ref. (4). Ovarian carcinoma cells can also be isolated in a similar man-
ner (9) and then directly compared to normal short-term cultures.

Our own laboratory has taken a more crude strategy, scraping the surface of fresh-
frozen normal ovaries, thereby enriching, to some extent, for OSE cells. We have also
enriched for stromal cells in some of the same specimens and then directly compared
the gene expression profiles of these samples to determine if this approach is tenable.
We have identified several clusters of expressed genes (see Fig. 1 in ref. 10) whose
identities collectively suggest that we can distinguish tissue samples with enriched cel-
lular populations (10). However, the use of gene annotation alone as a tool to decipher
cell-specific transcription is not an exact science, and the reliability of this approach is
only based on a few reports (see ref. 11).

Ideally, techniques such as laser capture microdissection (LCM) should enable the
selective procurement of OSE cells, as well as enriched populations of carcinoma cells
(see section on technical aspects in Chapter 1 of this text). Although these techniques
have not yet been applied to the analysis of gene expression in ovarian carcinoma,
there is emerging evidence from the examination of other cancers (12–14), that the
integration of LCM with RNA amplification and microarray hybridization may prove
reliable in profiling the expression of genes from relatively pure cellular populations,
while maintaining the relative representation of individual transcripts in a complex
RNA population.
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These issues also pertain to other analytical techniques, such as serial analysis of
gene expression (SAGE), which typically requires sizable amounts of starting RNA.
However, recent studies have shown that the SAGE method can be adapted to smaller
amounts of RNA, requiring as few as 100,000 cells, or 500–5000 times less than the
typical starting material of conventional SAGE protocols (15). Indeed, these modifica-
tions have recently been applied to SAGE analysis of a single cell-derived colony of
mesenchymal stem cells (16), suggesting that these methods may make feasible the
analysis of relatively pure OSE cell populations.

DIFFERENTIAL GENE EXPRESSION
IN OVARIAN CARCINOMAS AND CELL LINES

Differential expression of genes in ovarian carcinomas of varying histology, grade
and stage form the basis of several reports published over the past 3 yr (8–10,17–22).
Table 1 lists the key reports dealing with tissue samples and cell cultures, as well as
some of the features of the studies, such as the method(s) used, the numbers of genes
interrogated, and the types of tumors or cells analyzed. Table 2 lists a series of 21 up-regu-
lated and 3 down-regulated genes that have been independently discovered by different
profiling studies of ovarian carcinomas or validated in the same study by independent
methods (e.g., reverse transcription polymerase chain reaction [RT-PCR], Northern
blot analysis, or immunohistochemistry [IHC]). The genes listed in Table 2 represent
only a small fraction of the hundreds of genes that have been reported as differentially
expressed in ovarian cancer. As such, it is important to remember that these genes do
not encompass the diversity of transcriptional differences between normal and cancer-
ous tissue1. However, the fact that they have been identified, in some cases repeatedly,
suggests that they represent true biological differences between the normal OSE and
ovarian carcinomas, particularly in those cases where a corresponding difference in
protein expression has been shown by IHC.

Several of the genes identified in these studies are reported as differentially
expressed in many other carcinomas, such as CD9, GA733-2, and Muc-1. In contrast,
others, such as mesothelin and pax8, appear to have a more restricted profile. From a
biomedical perspective, it is notable that many of the gene products are predicted to
encode cell surface proteins (e.g., GA733-2, mesothelin, muc-1) or are secreted from
expressing cells (e.g., HE4, matrix metalloproteinase [MMP]-7). Not surprisingly,
therefore, a number of these gene products are the subjects of translational diagnostic
and therapeutic research. For example, mesothelin is being pursued as an ovarian

1There are several reasons why the list of genes is small. First, the criteria used to identify the most
“significantly” differentially expressed genes are typically different from study to study. Second, most
studies, with a few exceptions, use carcinomas of varying histology in the same normal versus tumor
comparisons. Thus, it is difficult, and somewhat misleading, to directly compare studies in which one
report may have focused solely on serous adenocarcinomas, while another may have used a combination of
serous, endometrioid and clear cell carcinomas. Third, for the reasons outlined in the section entitled Tis-
sue Procurement and Processing, the choice or source of normal tissue likely has a profound impact on the
ability to identify differential gene expression. Lastly, different expression platforms have inherently dif-
ferent abilities to monitor transcripts in cells. SAGE is arguably the most comprehensive method, in that
one can interrogate a majority of expressed transcripts. In contrast, microarrays are limited by the numbers
and diversity of genes printed or imprinted on them.
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Table 1
Studies of Differential Expression

In ovarian carcinoma tissues

Genes/elements Normal tissue/
Study (reference) Gene expression platform queried Cancer tissue histology cell sample baseline

Wang et al. (18) cDNA microarray (nylon filter) 5766 Serous, mucinous, clear cell, Commerical ovarian RNA
endometrioid. (nonenriched).

Schummer et al. (17) cDNA microarray (nylon filter) 21,500 Mostly serous adenocarcinomas. OSE cells, normal ovarian tissue
(mostly stroma);
fetal ovary pool;
other normal tissues.

Ono et al. (19) cDNA microarray (glass) 9121 Serous, mucinous. Adjacent normal tissues
from the same patients
(nonenriched).

Hough et al. (20) SAGE Serous adenocarcinomas. OSE cells (HOSE-4; IOSE29).
Welsh et al. (10) Oligonucleotide array (glass) 6800 Serous adenocarcinomas Normal ovary,

(variable grade, macro OSE enrichment.
mostly stage III).

Shridhar et al. (8) cDNA microarray (nylon filter) 25,000 Serous, clear cell, enodmetrioid OSE brushings.
(high grade, variable stage).

In tumor and normal ovarian-derived cell cultures

Genes/elements
Study (reference) Gene expression platform queried Cancer cells Normal cells

Wong et al. (21) cDNA microarray (glass) 2400 In-house developed cell lines; OSE short-term culture.
SK-OV-3.

Ismail et al. (9) Subtractive hybridization/ 255 In-house cancer cell culture. OSE short-term culture.
cDNA microarray
(nylon filter)

Tonin et al. (22) Oligonucleotide array (glass) 6416 In-house developed cell lines. OSE short-term culture.



282
H

am
pton

282

Table 2
Differentially Expressed Genes in Ovarian Cancers Identified by Microarray and SAGE

Up-regulated genes

Microarray/
Up-regulated genes Fold change Citation SAGE validation PCR validation Northern validation IHC validation

CD9   4.34 (18) (10)
Mesothelin   6.84 (18) (20) (18,49) (18)
HE4   7.26 (18) (8,10,19,20) (8,10,17) (17)
Keratin 8   8.37 (18) (8,10)
Matrilysin/MMP-7   8.58 (18)  (8)   (8)
GA733-2/EpCAM 13.87 (18) (10,21,49) (49) (20)
SLC7A5/E16  4.4a (17) (21) (17)
Mucin1  5.5a (17) (8,10,49) (17)
14.3.3 Sigma 3.4–5.4a (17) (17)
Breast epithelial antigen BA46  4.1a (17) (17)
B-actin  4.4a (17) (17)
Progesterone binding protein  5.9a (17) (17)
Ryudocan  4.2a (17) (17)
Keratin 18 NR (19) (10)
Lutheran blood group antigen/B-CAM   17 (20) (10) (10)
Kunitz serine protease type 2   34 (20) (10)
Ceruloplasmin/ferroxidase   79 (20)  (8) (49)
Claudin 4 109 (20)  (8) (49) (20)
ApoJ   39 (20) (49) (20)
CD24 NR (10) (21) (10)
Uncoupling protein 2 NR (10)  (8)
pax8 NR (10)  (8)
Keratin 7 NR (10)  (8)
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Down-regulated genes

Microarray/
Down-regulated genes Fold change Citation SAGE validation PCR validation

Nexin 0.23 (18) (8)
Amphiregulin >10  (8) (8)
Integral membrane protein A2 >10  (8) (8)

Twenty-six genes from six independent studies are tabulated for which initial observations of differential expression on microarrays or by SAGE have been
verified by additional array/SAGE studies, or by other independent methods (RT-PCR, Northern, or IHC). Genes are listed in chronological order of their
discovery, from 1999 through 2001. The study in which the genes were first identified is cited first; confirmatory array or SAGE studies are cited secondarily. The
identification of genes for which other studies confirm their differential expression is based largely the nomenclature of the gene annotation, rather than a rigorous
analysis of the accession numbers published along with the gene annotation (not provided in some cases). Thus, some genes for which confirmatory data may have
been published are not included because of disparate nomenclature. Additionally, genes for which no functional annotation was available at the time of publication
are omitted for clarity. The interested reader is therefore encouraged to examine the original papers in detail. Genes were identified from Table 2 in (18); Table 2
in (17); Fig. 2 in (19); Table 3 in (20); Fig. 2 in (10); and Table 4 in (8).

aFold change is calculated as the average of the individual fold changes reported for cases in which ratios were >2.5.
NR, not reported.
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carcinoma target using high affinity endotoxin A-conjugated single-chain Fv antibod-
ies (23), as well as toxin-conjugated mouse anti-mesothelin monoclonal immunoglo-
bulin (Ig)G antibodies (24). Enzyme-linked immunosorbent assay (ELISA) analysis of
MMP-7 (matrilysin) shows that it is more highly elevated in the cyst fluid of patients
with serous adenocarcinomas (seven out of eight cases) vs the cyst fluid of serous
adenomas (four out of fourteen) (25), suggesting its potential utility for the detection of
invasive disease. Broad-spectrum inhibitors of MMPs, including MMP-7, have also
recently been described. One such small molecule, Bristol-Myers Squibb (BMS)-
275291, inhibits the protease activity of MMP-1, -2, -7, -9, and -14 at low nM levels
and has been shown to inhibit lung metastases, as well as tumor angiogenesis in vivo
(26). Since it is speculated that increased MMP-7 expression reflects increasing inva-
siveness of ovarian carcinomas (27), inhibition of MMP-7 protease activity may have
some clinical benefit.

A number of investigators have used short- or long-term ovarian carcinoma-derived
cell lines as the starting point for large-scale differential expression studies (9,21,22)
(Table 1). Typically, transcript profiles of these cells are compared to short-term cul-
tures of OSE cells, some of which have been immortalized by transfection with simian
virus 40 (SV40) T antigen (see ref. 4). Wong et al. (21) have identified genes such as
GA733-2 and CD24 as highly up-regulated in long-term cultures of ovarian carcinoma-
derived cells compared to short-term OSE cultures (Table 2). Tonin and coworkers
have also reported elevation of these same genes, as well as HE4, MUC-1, and keratins
8 and 18 in cells derived from tumors with aggressive courses (22). Differential
expression of these genes is highly concordant with several studies on primary tumors
(10,17,18). However, as with interstudy comparisons of tumor tissue, there is consider-
able diversity among the genes identified by cell–cell comparisons, and a rigorous com-
parison is not currently feasible.

The results of these cell studies and their relationship to those obtained in carcino-
mas highlight a broadly interesting question: To what extent do tumor-derived cell
lines reflect their ostensible tumor of origin? Figure 1 depicts the expression levels of
50 genes that we find to be most highly elevated (by average fold change) in a series of
serous papillary adenocarcinomas when compared to “normal” ovarian tissue and for
which we have also examined their expression in a series of commonly used ovarian
carcinoma-derived cell lines and one OSE line, IOSE-80, which was stably transfected
with SV40 T antigen (a gift from Dr. Nelly Auersperg).

This simple analysis illustrates several facets of the use of cell lines as models of the
carcinomas from which they are derived. Most remarkably, a majority (47 out of 50) of
the genes we find to be overexpressed in ovarian carcinomas compared to normal tis-
sue are also overexpressed in at least one of the ovarian carcinoma-derived cell lines
when compared to IOSE-80 cells. The exceptions are insulin-like growth factor 2 (IGF-2),
which is reported as overexpressed in a fraction of serous adenocarcinomas through
loss of imprinting (LOI) (28), properdin, which is reported as overexpressed by inde-
pendent cDNA microarray analysis (19), and kallikrein 11 (hK11), whose protein prod-
uct is elevated and secreted into the serum of patients with ovarian cancer (29). Second,
although the overexpression of these 47 genes is considerably less uniform in cell lines
than in primary tumors, each of the genes can nonetheless be found overexpressed in at
least one line. For genes that have been reported by several studies, such as GA733-2,
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expression appears to be more uniform across multiple cell lines. While there is no
clear “best” representative cell line, the use of a sufficiently large number of cell lines
is likely to capture a majority of important genes. These data suggest that at least one

Fig. 1. Differentially expressed genes in ovarian carcinomas and cell lines. Genes differentially
expressed between normal ovarian tissue (Normal tissue) and tumor tissue (Malignant serous adenocarci-
nomas) were selected based on the magnitude of the fold differences in hybridization intensities between
the average of each tissue type. Shown are the 50 genes with the highest fold change. The levels of expres-
sion of these 50 genes are depicted in a series of nine cell lines. IOSE-80 represents normal OSE cells
(a gift from Dr. N. Auersperg, BC, Canada); carcinoma-derived cell lines were obtained from ATCC
(Manassas, VA, USA) or from Dr. J. Reed (Burnham Institute, CA, USA). The relative levels of gene
expression (depicted in each row) across all samples (columns) in were median-centered and normalized
by ‘Cluster’ and output in ‘Treeview’ (50). Red, increased gene expression; blue, decreased expression;
black, median level of gene expression. The color intensity is proportional to the hybridization intensity of
a gene from its median level across all samples.
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cell-based model may be available for following up the biological consequences of
gene-specific down-regulation (e.g., by RNA interference, antibody therapeutics, or
small molecules).

In contrast to the tumor data, we also find comparable levels in IOSE-80 and ovarian
carcinoma-derived cells for a small number of genes, such as keratin 7, 18, ubiquitin-
conjugating enzyme E2M, and CDC20. The latter two cell cycle-related genes are likely
up-regulated as a consequence of rapid growth of these cells in culture, whereas the
uniform expression of keratins suggests that our normal samples are not sufficiently
enriched for epithelial cells.

Validation of Differential Gene Expression
by RT-PCR, IHC, and Gene Transfer

Identification of differentially expressed genes by microarray hybridization or SAGE
is, in essence, “descriptive genomics”, since the output is merely a series of observa-
tions. While validation of these observations by independent RNA-based analyses
(e.g., RT-PCR) is certainly important, these confirmatory experiments do not reveal
whether the transcribed gene is translated or, indeed, whether elevated levels of an
encoded protein are functional in the context of tumorigenesis or progression. Thus,
for any one gene identified by microarray or SAGE techniques for which the known
biology may be interesting in the context of the disease, there are many experimental
steps required to validate its involvement in the disease process.

Few studies to date have corroborated increases in gene expression with that of the
encoded protein in ovarian cancers. Exceptions to this include GA733-2 (EpCAM),
ApoJ (clusterin), and claudin 4 (20) (Table 2), for which increases in the encoded pro-
teins observed by IHC on tissue sections reflect increases at the RNA level. Since IHC
can detect protein expression at the single cell level, this method is perhaps the best
way to validate lower levels or absence of expression in the small numbers of OSE
cells of the ovary.

Thus far, functional validation of differential gene expression is lacking for almost
all microarray-based studies, including those specifically focused on ovarian carci-
noma. Few examples exist where a candidate gene of interest has been introduced into
the appropriate precursor cells to mimic up-regulated expression or antagonized in fully
malignant cells to mimic decreased expression. In melanoma, the introduction of RhoC
into cells with limited metastatic potential increased their ability to metastasize,
whereas dominant-negative RhoC constructs inhibited metastasis (30). These observa-
tions reflect the increased expression of RhoC seen on oligonucleotide microarrays
following selection of metastatic variants from precursor melanoma cells with limited
metastatic potential (30). Recently Lee et al. (31) have identified thymosin β-10 as
down-regulated in four out of five ovarian carcinomas profiled on nylon arrays
imprinted with a selection of 588 genes (Atlas Array 1; Clontech Laboratories, Palo
Alto, CA, USA). Introduction of thymosin β-10 into ovarian cancer cell lines SKOV-3
and PA-1 via adenoviral infection led to markedly decreased cell growth rates, as well
as a high rate of cell death in these cell lines. Such studies serve to validate the
potential of microarrays, as they clearly link a descriptive genomic observation with a
functional role for a gene in tumor development.
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MOLECULAR CLASSIFICATION,
CLASS DISCOVERY, AND CORRELATES OF DISEASE HISTOLOGY

Using Molecular Classification
to Identify Genes Preferentially Elevated in Ovarian Carcinomas

We, and others, have begun to evaluate whether gene expression technologies can
facilitate the identification of genes whose transcription typifies tumors of distinct ana-
tomic sites (32–34). The primary motivation for these efforts is the objective identifi-
cation of a tumor’s anatomic site of origin, which in combination with classical
histopathology, may lead to robust tumor diagnosis (35,36). Although histological
examination of a solid tumor, in concert with clinical information, typically leads to a
correct diagnosis in the vast majority of cases, there remains a subset of tumors
(including some metastases of undetermined primary origin [37]) for which a correct
diagnosis may be difficult. Thus, molecular methods might provide an independent
and objective tool to determine the anatomic or tumor origin of these cases.

An ancillary goal of these molecular studies is the identification of genes whose
transcription is elevated in a particular type of cancer vs many other cancer types.
These genes are likely to expose aspects of tumor type-specific biology, which, to date,
have been unattainable. Figure 2 depicts a small series of genes that we recently iden-
tified as highly predictive of 11 different classes of human tumors, 10 of which arise at
distinct anatomic sites (33). Collectively, we found that this set of genes was capable of
correctly “predicting” the anatomic origin of approx 85% of 75 “blinded” tumors with
high confidence. This blinded set of tumors was representative of many of the carcino-
mas used to build the prediction algorithm, as well as a small selection of 12 metastatic
lesions (for which we correctly predicted the tumor origin in 9 out of 12 cases) (33).
Thus, we consider these classifier genes “characteristic” of the tumor. In a similar study,
Ramaswamy et al. (34) identified genes whose transcription typified (and were predic-
tive of) 14 different tumor classes, many of which overlap with our own tumor collec-
tion. A substantial number of the classifier genes identified in both studies are
concordant, as well as overlapping with some of those identified by Giordano and col-
leagues (32), who reported classifier genes characteristic of ovarian, lung, and colon
carcinomas. The results of these studies indicate that different computational methods
can uncover the same fundamental sets of tumor type-specific genes. Some of the dif-
ferences between studies are likely attributable to the use of different oligonucleotide
microarrays, as well as the fact that the studies documented by Su et al. (33) and
Ramaswamy et al. (34) attempted to find tumor type-specific genes in the context of
more than 10 tumor classes, whereas the study by Giordano and colleagues focused on
3 tumor classes (32). In the context of a limited number of tumor classes, the identifica-
tion of the estrogen receptor (ER) as predictive of ovarian carcinomas, for example, is
reasonable (see Table 1 in ref. 32); however, such a gene is not likely to be predictive
of ovarian cancer in the context of tumor classes that include ER-positive carcinomas
of the breast (33,34).

We have asked to what extent “classifier” genes, which were found to be character-
istic of ovarian tumors, reflect features of the carcinomas or the ovarian tissue from
which the tumors arose. A simple comparison of normal and tumor ovarian tissues
revealed that 18 out of 28 genes (which were individually at least 92% predictive of
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ovarian carcinoma by cross-validation) were highly elevated in the carcinomas, includ-
ing genes such as mesothelin, that have been previously identified by more traditional
methods as well as by microarray analyses (Fig. 3). Expression of the other 10 genes
was essentially identical in normal and cancerous tissue samples, implying that they
form part of a characteristic transcriptional program of that tissue.

Fig. 2. Molecular signatures of carcinomas from diverse anatomic sites. To identify tumor class-spe-
cific classifiers, we sought genes whose expression was uniformly high among carcinomas of a specific
anatomic site, and uniformly low among carcinomas of all other anatomic sites or histologies (i.e., one-
vs-all; depicted in panel A). This was achieved using the Wilcoxon rank sum test, which tests the null
hypothesis that gene expression in one tumor class is no different from gene expression in any other tumor
class. The genes in each class that had significant p scores represent those that dispute the null hypothesis
and define those that are most different among tumor classes. One hundred of the Wilcoxon-selected genes
from each tumor class, depicted in panel B, were subjected to a prediction accuracy test, in which each of
the genes was tested for its ability to discriminate one tumor class from all other tumor classes, using a
support vector machine (SVM)-learning algorithm. Leave-out-one cross validation (LOOCV) was used to
blind ourselves sequentially to each of the 100 tumor samples, and the SVM was trained on the remaining
samples and then used to predict the class of the blinded sample depicted in panel C. The accuracy of the
tumor class-specific classifiers is shown to the right of the panel in C (see ref. 33 for detailed methods).
Pr, prostate; Bl, bladder; Br, breast; Co, colorectal; Ga, gastroesophageal; Ki, kidney; Li, liver; Ov, ovary;
Pa, pancreas; LA, lung adenocarcinomas; LS, lung squamous cell carcinoma. Levels of gene expression
are presented as described in Figure 1. Red, increased gene expression; blue, decreased expression; black,
median level of gene expression. The color intensity is proportional to the hybridization intensity of a gene
from its median level across all samples. The list of classifier genes identified by the SVM/LOOCV method
are available from our Web site at (www.gnf.org/cancer/epican). Reprinted with kind permission from
Cancer Research.
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An immediate clinical utility of the information gathered from these analyses is the
derivation of antibodies against some of the proteins encoded by the classifier genes
for use in tumor diagnosis. To test this idea, we chose several genes whose protein
products are detectable by commercial antibodies and performed IHC on medium den-
sity tissue microarrays containing most of the carcinomas profiled in the original study.
An example of one of these IHC experiments for the Wilm’s tumor gene product (WT-1)
protein is shown in Fig. 3. IHC revealed positive nuclear staining in 18 of 20 ovarian
carcinomas, with no visible nuclear staining in any of the other carcinomas, consistent
with the expression results obtained by microarray hybridization. Therefore, in the con-
text of the 11 tumor classes that were investigated, WT-1 was found to be highly pre-
dictive of ovarian carcinomas. A long-term goal arising from these studies is the
derivation of antibodies against secreted proteins encoded by genes such as mamma-
globin-2 (MGB-2) (Fig. 3), which may have potential utility as serum diagnostics.
Proof-of-concept that this approach may be successful comes from the observation that
the protein product of kallikrein 6 (hK6), which we also identified as elevated in ova-
rian carcinoma (Fig. 3), is detected at elevated levels in the serum of a significant
fraction of patients with ovarian carcinoma (38).

Molecular Class Discovery

The molecular classification methods discussed above were designed to identify
genes that typify cancers of a specific anatomic origin and, therefore, transcend differ-

Fig. 3. Genes and proteins predictive for serous papillary adenocarcinomas of the ovary. Expression
levels of highly predictive classifier genes in normal and malignant samples of the ovary are depicted in
panel A. Green bars represent differentially expressed genes where the mean level of expression in tumor
samples >3 times the mean level of expression in normal tissues and where p < 0.01 by an unpaired t-test.
Gene expression was normalized and output in Treeview as described in the legends to Figs. 1 and 2. (Panel
B) Visualization of a tissue microarray containing 36 normal epithelial tissues and 229 carcinomas repre-
sentative of the 10 anatomic sites of the tumors profiled in the study stained with hematoxylin and eosin.
Tissue microarrays were stained with an antibody specific to the WT protein. Panel C depicts the normal
serous lining of the ovary positive for WT. Panel D illustrates three serous papillary carcinomas of the
ovary that were positive for WT, whereas other tumors, such as breast, lung, and kidney carcinomas were
uniformly negative for WT (immunoperoxidase technique) as shown in panel E. Insets show magnified
view of nuclei. Reprinted with kind permission from Cancer Research.



290 Hampton

ences in stage, grade, and other phenotypic features of a particular type of cancer.
While this approach has provided possible new ways in which to augment traditional
histopathology for primary diagnosis, the larger problems in cancer, specifically,
response to therapy, disease-free interval, recurrence, and overall survival, are likely
rooted in the molecular heterogeneity of specific types of cancers, highlighting the
potential benefits of molecular stratification. Recent evidence suggests that expression
profiling can identify molecular subgroups of cancers, which, on occasion, correlate
with diverse biological behaviors. Class discovery methods, which range from
visual identification of consistent subgroups by hierarchical clustering, to more thor-
ough statistical analysis, have led to the molecular classification of leukemias (39)
and lymphomas (40), melanomas (41), breast carcinomas (42), and lung adenocarcino-
mas (43,44).

Few studies have evaluated the existence of molecular subgroups among histologi-
cal types of ovarian carcinomas. My own laboratory’s work in this area has focused on
serous papillary adenocarcinomas, and our preliminary study of these carcinomas iden-
tified a potential molecular distinction between noninvasive LMP and low-grade inva-
sive carcinomas vs invasive carcinomas of higher grade (10). This distinction appears
to be predominantly based on increased expression of ribosomal genes in LMP/low-
grade carcinomas, as well as increased expression of multiple cell cycle genes in mostly
high-grade tumors. We have since expanded this study by profiling a larger number of
carcinomas. Using a variety of computational approaches, we are led to the same gen-
eral conclusion that noninvasive borderline and invasive low-grade carcinomas are
molecularly very similar and easily distinguished from moderate and high-grade carci-
nomas (to be described in detail elsewhere).

Molecular Correlates of Tumor Histology

There is now clear evidence that tumors of different histology from specific ana-
tomic sites may often be discerned by their molecular profiles. For example, in lung
cancer, clustering algorithms readily enable the distinction between squamous, large
cell, small cell, and adenocarcinoma (43,44). Ono et al. (19) have assessed the molecu-
lar profiles of ovarian carcinomas with mucinous or serous papillary histologies using
cDNA arrays comprised of 9121 distinct human genes. Using the Mann-Whitney test,
the authors reported significant differential expression of 115 genes between histologi-
cal subtypes. The identity of the genes do not readily pin-point a major underlying
biological theme related to the distinction between the histological subtypes, and it is
somewhat surprising that genes known to be differentially expressed, such as the mucin,
MUC-2 (45), were not identified by this analysis. However, additional studies with
these genes and their encoded proteins may reveal biologically relevant insights.
The molecular distinction between serous tumors of varying grade has also recently
been addressed by analysis of gene expression. Using the Atlas Human Cancer Array™,
Tapper et al. have specifically compared the expression of 588 genes in well differen-
tiated and poorly differentiated carcinomas (46). Of note, they reported increased
expression of several extracellular matrix proteins, including COL3A1, fibronectin,
and biglycan, in poorly differentiated carcinomas, which is an observation that we have
consistently made in our own tumor collection (unpublished data). Other interesting
genes identified as up-regulated in poorly differentiated carcinomas include proliferat-
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ing cell nuclear antigen (PCNA) and epidermal growth factor receptor (EGFR), consis-
tent with increased cell cycle activity and growth factor receptor signaling.

TRANSLATIONAL RESEARCH:
NEW MARKERS FOR OVARIAN CANCER DIAGNOSIS

Although we, and others, have identified many highly expressed genes encoding
secreted proteins in ovarian carcinomas, we collectively lack the evidence at this time
that these proteins are detectable in the serum of patients with ovarian cancer. Mok and
coworkers have recently described one of the first examples of this type of translational
diagnostic research, in which their observation of an overexpressed gene in ovarian
carcinoma has led to the identification of the encoded protein in the serum of ovarian
cancer patients (47). The authors previously described the overexpression of prostasin,
a secreted protease originally identified in human seminal fluid, in ovarian carcinoma-
derived cell-lines compared to those obtained from normal ovarian epithelium. IHC
showed that the prostasin protein is expressed in ovarian tissues, albeit at significantly
higher levels in the cytoplasm of ovarian carcinoma cells. Consistent with this observa-
tion, the authors demonstrated by ELISA that the prostasin protein is detectable at
elevated levels in patients with ovarian carcinoma (mean level of 13.7 µg/mL) com-
pared to control subjects (7.5 µg/mL). The correlation between serum levels of prostasin
and CA125 in a subset of patients was low, suggesting that measurement of a combina-
tion of both proteins might provide additional information than either alone. Whereas
the sensitivity of CA125 and prostasin was approx 65 and 51%, respectively, the com-
bination of both molecules had an overall sensitivity of detection of 92%. Additional
studies are needed to establish the diagnostic potential of prostasin, since a significant
fraction of the screened cases (>50%) were stage III carcinomas. It will also be impor-
tant to see how prostasin is correlated to other histological parameters, as well as its
potential usefulness in following patients postoperatively. Nonetheless, the translation
of a descriptive genomic observation to a potentially useful biomedical application,
such as the diagnosis of a proportion of patients with ovarian carcinomas, demonstrates
the potential of these gene expression platforms in providing candidate reagents for
major unmet biomedical needs. A number of the genes identified by expression profil-
ing, which encode secreted proteins, such as HE4 (8,17,18,20,48), KLK6 (33), and MGB-2
(33), hold some promise for the emergence of a new class of molecular markers that
may, in combination, identify a majority of females with ovarian carcinomas.

CONCLUSIONS

Although significant progress has been made in using large-scale gene expression
platforms to decipher the genes involved in ovarian malignancies, a substantial amount
of effort is needed to delineate the molecular distinctions between ovarian carcinomas
of varying histology, grade, and stage, as well as the underlying molecular distinctions
that correlate with a tumor’s clinical behavior and response to chemotherapeutics.
Molecular class discovery methods are continually improving; incorporating “reliabil-
ity” measures to judge the likelihood that a gene’s expression is correlated with the
biological features in question. One assumes that the application of these methods to
ovarian carcinomas may eventually help to stratify patients according to their tumor’s
molecular profile, leading to better management of the patient.
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Because a majority of ovarian cancers are diagnosed at late stage, relatively little is
known about how these tumors arise. Reliable methods that allow expression profiles
to be generated from small amounts of RNA are beginning to emerge, which, in combi-
nation with microdissection of putative precursor lesions, either alone or adjoining
frankly malignant tumors, will allow an assessment of the changes in gene expression
that accompany the transition from a premalignant state to an invasive carcinoma.

Functional characterization of the genes presented in Table 2, and others yet to be
discovered by genome-wide analyses, are required to understand how they contribute
to the neoplastic phenotype. Central to these experiments are the appropriate model
systems in which such studies can be carried out. The isolation of parental “normal”
OSE cells and their cancerous counterparts in vitro are now well established, providing
an excellent resource by which to assess the functional effects of gene transfer or tran-
scriptional antagonism. Likewise, many of the common and widely available ovarian
carcinoma-derived cell lines can be established as xenografts in athymic or severe com-
bined immunodeficient (SCID) mice, facilitating interrogation of gene action in vivo.
As illustrated in Fig. 1, we are beginning to accumulate the information required to
make rational decisions regarding the choice of carcinoma cell line to perform these
experiments, ensuring that the resultant observations are as relevant as possible.

ACKNOWLEDGMENTS

I would like to thank my many colleagues at GNF for their support and encourage-
ment, and Drs. Quinn Deveraux and Henry Frierson, Jr. for critically reading the
manuscript.

REFERENCES

1. Greenlee, R. T., Hill-Harmon, M. B., Murray, T., and Thun, M. (2001) Cancer Statistics,
2001. CA Cancer J. Clin. 51, 15–36.

2. Boyd, J. (1998) Molecular genetics of hereditary ovarian cancer. Oncology 12, 399–406.
3. Lynch, H. T., Casey, M. J., Lynch, J., White, T. E., and Godwin, A. K. (1998) Genetics and

ovarian carcinoma. Semin. Oncol. 25, 265–280.
4. Auersperg, N., Wong, A. S. T., Choi, K.-C., Kang, S. K., and Leung, P. C. (2001) Ovarian

surface epithelium: biology, endocrinology and pathology. Endocr. Rev. 22, 255–288.
5. Shelling, A. N. and Foulkes, W. (2001) Molecular genetics of ovarian cancer.

Mol. Biotechnol. 19, 13–27.
6. Feeley, K.M. and Wells, M. (2001) Precursor lesions of ovarian epithelial malignancy.

Histopathology 38, 87–95.
7. Ortiz, B. H., Ailawadi, M., Colitti, C., et al. (2001) Second primary or recurrence? Com-

parative patterns of p53 and K-ras mutations suggest that serous borderline ovarian tumors
and subsequent serous carcinomas are unrelated tumors. Cancer Res. 61, 7264–7267.

8. Shridhar, V., Lee, J., Pandita, A., et al. (2001) Genetic analysis of early-versus late-stage
ovarian tumors. Cancer Res. 61, 5895–5904.

9. Ismail, R. S., Baldwin, R. L., Fang, J., et al. (2000) Differential gene expression between
normal and tumor-derived ovarian epithelial cells. Cancer Res. 60, 6744–6749.

10. Welsh, J. B., Zarrinkar, P. P., Sapinoso, L. M., et al. (2001) Analysis of gene expression
profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular
markers of epithelial ovarian cancer. Proc. Natl. Acad. Sci. USA 98, 1176–1181.

11. Ross, D. T., Scherf, U., Eisen, M. B., et al. (2000) Systematic variation in gene expression
patterns in human cancer cell lines. Nat. Genet. 24, 227–235.



Ovarian Cancer Profiling 293

12. Ohyama, H., Zhang, X., Kohno, Y., et al. (2000) Laser capture microdissection-generated
target sample for high-density oligonucleotide array hybridization. BioTechniques 29, 530–536.

13. Alevizos, I. M., Zhang, M., Ohyama, X., et al. (2001) Oral cancer in vivo gene expression
profiling assisted by laser capture microdissection and microarray analysis. Oncogene 20,
6196–6204.

14. Kitahara, O., Furukawa, Y., Tanaka, T., et al. (2001) Alterations of gene expression during
colorectal carcinogenesis revealed by cDNA microarrays after laser-capture microdissec-
tion of tumor tissues and normal epithelia. Cancer Res. 61, 3544–3549.

15. Datson, N. A., van der Perk-de Jong, J., van den Berg, M. P., de Kloet, E. R., and
Vreugdenhil, E. (1999) MicroSAGE: a modified procedure for serial analysis of gene
expression in limited amounts of tissue. Nucleic Acids Res. 27, 1300–1307.

16. Tremain, N., Korkko, J., Ibberson, D., Kopen, G. C., DiGirolamo, C., and Phinney, D. G.
(2001) MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of
undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages.
Stem Cells 19, 408–418.

17. Schummer, M., Ng, W. V., Bumgarner, R. E., et al. (1999) Comparative hybridization of
an array of 21,500 ovarian cDNAs for the discovery of genes overexpressed in ovarian
carcinomas. Gene 238, 375–385.

18. Wang, K., Gan, L., Jeffery, E., et al. (1999) Monitoring gene expression profile changes in
ovarian carcinomas using cDNA microarray. Gene 229, 101–108.

19. Ono, K., Tanaka, T., Tsunoda, T., et al. (2000) Identification by cDNA microarray of genes
involved in ovarian carcinogenesis. Cancer Res. 60, 5007–5011.

20. Hough, C. D., Sherman-Baust, C. A., Pizer, E. S., et al. (2000) Large-scale serial analysis
of gene expression reveals genes differentially expressed in ovarian cancer. Cancer Res.
60, 6281–6287.

21. Wong, K.-K., Cheng, R. S., and Mok, S. (2001) Identification of differentially expressed
genes from ovarian cancer cells by MICROMAX cDNA microarray system. BioTechniques
30, 670–675.

22. Tonin, P. N., Hudson, T. J., Rodier, F., et al. (2001) Microarray analysis of gene expres-
sion mirrors the biology of an ovarian cancer model. Oncogene 20, 6617–6626.

23. Chowdhury, P., Viner, J. L., Beers, R., and Pastan, I. (1998) Isolation of a high-affinity
stable-chain Fv specific fir mesothelin from DNA-immunized mice by phage display and
construction of a recombinant immunotoxin with anti-tumor activity. Proc. Natl. Acad.
Sci. USA 95, 669–674.

24. Hassan, R., Viner, J. L., Wang, Q. C., Margulies, I., Kreitman, R. J., and Pastan, I. (2000)
Anti-tumor activity of K1-LysPE38QQR, an immunotoxin targeting mesothelin, a cell-
surface antigen overexpressed in ovarian cancer and malignant mesothelioma. J. Immuno-
ther. 23, 473–479.

25. Furuya, M., Ishikura, H., Ogawa, Y., et al. (2000) Analyses of matrix metalloproteinases
and their inhibitors in cyst fluid of serous ovarian tumors. Pathobiology 68, 239–244.

26. Naglich, J. G., Jure-Kunkel, M., Gupta, E., et al. (2001) Inhibition of angiogenesis and
metastasis in two murine models by the matrix metalloproteinase inhibitor, BMS-275291.
Cancer Res. 61, 8480–8485.

27. Tanimoto, H., Underwood, L. J., Shigemasa, K., et al. (1999) The matrix metalloprotease
pump-1 (MMP-7, matrilysin): a candidate marker/target for ovarian cancer detection and
treatment. Tumour Biol. 20, 88–98.

28. Chen, C. L., Ip, S. M., Cheng, D., Wong, L. C., and Ngan, H. Y. (2000) Loss of imprinting
of the IGF-II and H19 genes in epithelial ovarian cancer. Clin. Cancer Res. 6, 474–479.

29. Diamandis, E. P., Okui, A., Mitsui, S., et al. (2002) Human kallikrein 11: a new biomarker
of prostate and ovarian carcinoma. Cancer Res. 62, 295–300.

30. Clark, E. A., Golub, T. R., Lander, E. S., and Hynes, R. O. (2000) Genomic analysis of
metastasis reveals an essential role for RhoC. Nature 406, 532–535.



294 Hampton

31. Lee, S. H., Zhang, W., Choi, J. J., et al. (2001) Overexpression of the thymosin beta-10
gene in human ovarian cancer cells disrupts F-actin stress fiber and leads to apoptosis.
Oncogene 20, 6700–6706.

32. Giordano, T. J., Shedden, K. A., Schwartz, D. R., et al. (2001) Organ-specific molecular
classification of primary lung, colon, and ovarian adenocarcinomas using gene expression
profiles. Am. J. Pathol. 159, 1231–1238.

33. Su, A. I., Welsh, J. B., Sapinoso, L. M., et al. (2001) Molecular classification of human
carcinomas by use of gene expression signatures. Cancer Res. 61, 7388–7393.

34. Ramaswamy, S., Tamayo, P., Rifkin, R., et al. (2001) Multiclass cancer diagnosis using
tumor gene expression signatures. Proc. Natl. Acad. Sci. USA 98, 15,149–15,154.

35. Gerald, W. L. (2000) A practical approach to the differential diagnosis of small round cell
tumors of infancy using recent scientific and technical advances. Int. J. Surg. Pathol. 8,
87–97.

36. Ladanyi, M., Chan, W., Triche, T. J., and Gerald, W. L. (2001) Expression profiling of
human tumors: the end of surgical pathology? J. Mol. Diagn. 3, 92–97.

37. Hillen, H. F. (2000) Unknown primary tumors. Postgrad. Med. J. 76, 690–693.
38. Diamandis, E. P., Yousef, G. M., Soosaipillai, A. R., and Bunting, P. (2000) Human kal-

likrein 6 (zyme/protease M/neurosin): a new serum biomarker of ovarian carcinoma. Clin.
Biochem. 33, 579–583.

39. Golub, T. R., Slonim, D. K., Tamayo, P., et al. (1999) Molecular classification of cancer:
class discovery and class prediction by gene expression monitoring. Science 286, 531–537.

40. Alizadeh, A. A., Eisen, M. B., Davis, R. E., et al. (2000) Distinct types of diffuse large
B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511.

41. Bittner, M., Meltzer, P., Chen, Y., et al. (2000) Molecular classification of cutaneous
malignant melanoma by gene expression profiling. Nature 406, 536–540.

42. Sorlie, T., Perou, C. M., Tibshirani, R., et al. (2001) Gene expression patterns of breast
carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci.
USA 98, 10,869–10,874.

43. Bhattacharjee, A., Richards, W. G., Staunton, J., et al. (2001) Classification of human lung
carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses.
Proc. Natl. Acad. Sci. USA 98, 13,790–13,795.

44. Garber, M. E., Troyanskaya, O. G., Schluens, K., et al. (2001) Diversity of gene expression
in adenocarcinoma of the lung. Proc. Natl. Acad. Sci. USA 98, 13,784–13,789.

45. Hanski, C., Hofmeier, M., Schmitt-Graff, A., et al. (1997) Overexpression or ectopic
expression of MUC2 is the common property of mucinous carcinomas of the colon, pan-
creas, breast, and ovary. J. Pathol. 182, 385–391.

46. Tapper, J., Kettunen, E., El-Rifai, W., Seppala, M., Andersson, L. C., and Knuutila, S.
(2001) Changes in gene expression during progression of ovarian carcinoma. Cancer
Genet. Cytogenet. 128, 1–6.

47. Mok, S. C., Chao, J., Skates, S., et al. (2001) Prostasin, a potential serum marker for ova-
rian cancer: identification through microarray technology. J. Natl. Cancer Inst. 93, 1458–
1464.

48. Welsh, J. B., Sapinoso, L. M., Su, A. I., et al. (2001) Analysis of gene expression identifies
candidate markers and pharmacological targets in prostate cancer. Cancer Res. 61, 5974–
5979.

49. Hough, C. D., Cho, K. R., Zonderman, A. B., Schwartz, D. R., and Morin, P. J. (2001)
Coordinately up-regulated genes in ovarian cancer. Cancer Res. 61, 3869–3876.

50. Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998) Cluster analysis and
display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14,863–
14,868.



Pediatric Cancer Profiling 295

295

From: Expression Profiling of Human Tumors: Diagnostic and Research Applications
Edited by: Marc Ladanyi and William L. Gerald © Humana Press Inc., Totowa, NJ

16
Classification of Pediatric Tumors

Using DNA Microarrays

Javed Khan and Marc Ladanyi

INTRODUCTION

Expression profiling is of particular interest in pediatric tumors for both clinical and
scientific reasons. Clinically, pediatric tumors are often histologically primitive, lead-
ing to difficulties in diagnosis, and tumors of similar morphology may have markedly
different behavior and treatment responses. Despite the improving trend in survival
among pediatric patients with cancer over the last 25 yr (1), several fundamental prob-
lems remain in the management of pediatric cancers. First, the choice of chemothera-
peutic agents for treatment of cancer is primarily empirical in nature, based on their
efficacy in clinical trials and not on targeting specific genes, proteins, or pathways
known to be active in that cancer. Second, the majority of these drugs target all divid-
ing cells, including those in normal bone marrow and mucosa, which often leads to
severe dose-limiting toxicity. Third, other idiopathic sometimes fatal toxicities, such
as cardiomyopathy, may occur as maximal tolerated doses are reached. Fourth, there is
currently no cure for the 35% of patients with the most aggressive disease, including
those with metastatic disease and those with poor prognostic molecular markers, such
as gene amplification (e.g., MYCN in neuroblastoma). Finally, despite very careful
clinical and pathological prognostic stratifications, 30% of patients with apparently
“low-risk” cancers will die from their cancer, while a similar percentage in the “high
risk” groups will survive. Therefore, there is a need for more accurate markers of prog-
nosis and treatment response to be delineated. For these reasons, there has been an
increasing emphasis on using global genomic approaches to determine the biological
and molecular features of high risk cancers, correlating these with diagnosis and prog-
nosis, and identifying new targets for therapy (Fig. 1).

Biologically, most pediatric tumors are considered developmental or embryonal
tumors, and their analysis may, therefore, be of scientific interest with respect to nor-
mal development, differentiation, and apoptosis. Because the key genetic lesions in
many pediatric tumors result in chimeric and/or amplified transcription factors
(e.g., EWS-FLI1, PAX7-FKHR, MYCN), the gene expression profiles in these tumors
are likely to reveal some of the direct effects of these aberrant oncogenic proteins,
thereby providing important clues to their essential mechanisms and pathways.
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Fig. 1.
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Relatively few reviews of expression profiling studies of pediatric cancers are avail-
able (2). Here, we summarize the data obtained so far on neuroblastomas (NB), rhab-
domyosarcomas (RMS), Ewing’s sarcomas (EWS), Burkitt’s lymphomas (BL), brain
tumors, acute leukemias, and Wilms tumor (WT).

NEUROBLASTOMAS AND SMALL ROUND BLUE CELL SARCOMAS

Cancers that belong to the category of small round blue cell tumors (SRBCT) of
childhood include NB, RMS, EWS, and BL, and are classical examples of cancers that
may pose diagnosis difficulties in clinical practice. Their name comes from their uni-
form appearance on routine histologic examination, which can make them difficult to
distinguish from one another. Accurate diagnosis of the SRBCTs is essential, as the
treatment options, response to therapy, and prognosis varies widely depending on the
diagnosis. Several diagnostic techniques are utilized to diagnose them, including cyto-
genetics, interphase fluorescence in situ hybridization, reverse transcription polymerase
chain reaction (RT-PCR), and immunohistochemistry.

We recently used expression profiling to approach the diagnostic problem of undif-
ferentiated SRBCTs (3). A machine learning artificial intelligence system (artificial
neural network [ANN]) was trained using microarray data from 63 training samples
(23 EWS, 20 RMS, 12 NB, and 8 BL) hybridized to 6567 gene cDNA microarrays. To
determine which genes were most important for the classification, the calibrated ANNs
were analyzed, and the genes were ranked according to how sensitive the output was
with respect each gene’s expression level. A set of 96 genes was capable of discrimi-
nating between these 4 tumor types, the ANN correctly classified 25 additional test
samples. We also identified additional lineage-associated genes in specific tumor types,
i.e., muscle-specific genes in RMS and neural-specific genes in EWS. For instance, we
found FGFR4, a gene that is expressed during myogenesis and prevents terminal dif-
ferentiation in myocytes (4,5), to be highly expressed only in RMS, but not in normal
muscle. Additionally, as a receptor protein kinase, it represents a possible new target
for therapy. The relatively strong differential expression of FGFR4 in RMS was con-
firmed by immunostaining of tissue microarrays (Fig. 2A). Likewise, the prominent
expression of some neural lineage proteins previously not studied in EWS, such as
EphrinB1 and NPYY1 (6), was also detected by the cDNA microarray analysis and
later demonstrated using appropriate antibodies on tissue microarrays of EWS cases

Fig. 1. (previous page) Potential roles of DNA microarrays in pediatric cancers. With the
current expansion in the number of available clones or sequences for both gene expression
(cDNA and oligonucleotides) and allelic imbalance profiling (using bacterial artificial chromo-
somes [BACs]), it is possible to perform array-based comprehensive genomic studies on pedi-
atric cancers. The goal of this type of research is to identify expression or genomic imbalance
(amplification or deletion) signatures that correlate with molecular markers, diagnosis and prog-
nosis. There has also been an explosion in tools available to perform supervised clustering
using standard statistics and machine learning algorithms. The primary aims of these studies
are to guide therapy by diagnostic and risk of relapse predictions, as well as to decipher the
biological processes involved in the oncogenic process. It should also be possible to use these
techniques to identify specific novel targets for therapy, from which rational molecularly tar-
geted drugs can be designed and eventually evaluated in patients in the context of clinical trials.
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(Fig. 2B). EphrinB1 is a membrane-bound ligand for the EphB1 and EphB2 receptor
tyrosine kinases, and this signaling is known to play a key role in neural development.
NPYY1 is a receptor for neuropeptide Y in the central and peripheral nervous systems
and in the gut.

In a study restricted to cell lines, Wai et al. used oligonucleotide arrays (Affymetrix,
Santa Clara, CA, USA) representing 1700 cancer-associated genes to study the expres-

Fig. 2. Validation of cDNA microarray data by immunostaining of pediatric cancer tissue
microarrays. (A) Strong cytoplasmic immunostaining for FGFR4 in a case of RMS, obtained
with a polyclonal antibody to the C terminal (Santa Cruz Biotechnology, Santa Cruz, CA, USA).
On a tissue microarray, all 26 RMS (17 alveolar, 9 embryonal) showed moderate to strong
cytoplasmic immunostaining. Stromal elements were generally negative or only weakly posi-
tive. (B) Diffuse membranous positivity for NPYY1, a receptor for neuropeptide Y, in EWS
using a commercial antibody (DiaSorin, Stillwater, MN, USA). Focal to diffuse membranous
positivity was seen in most cases on a tissue microarray of EWS cases.
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sion profiles of six EWS cell lines and four NB cell lines (7). While most of the
NB-associated and EWS-associated genes differed in the two studies, there were
notable exceptions, such as high MYC and cyclin D1 (CCND1) in EWS. This is not
unexpected, because the EWS-FLI1 protein of EWS may directly or indirectly regulate
both MYC and CCND1 transcription (8). The study by Wai et al. was also notable in
combining expression profiling with comparative genomic hybridization to show that
some of the variability in gene expression between samples may be directly related to
gains of genetic material (7). This phenomenon was also highlighted in a study from
the Spieker and Versteeg group, which used expression profiling data that were cross-
referenced with chromosomal map position data and compared to other neuroblastoma
cell lines to identify MEIS1 as an amplified and overexpressed gene within a known
amplicon derived from chromosome band 2p15 in neuroblastoma cell line IMR32 (9).
They also found that MEIS1 is overexpressed in about 25% of neuroblastomas, in the
absence of MEIS1 amplification.

Monitoring the temporal and global changes in gene expression using DNA
microarray profiling methods has also been effective in identifying targets of transcrip-
tion factors. An example is the investigation of the molecular effects of tumor-specific
chromosome translocations that encode chimeric transcription factors. These chimeric
transcription factors are thought to exert their oncogenic effects through the dys-
regulation of gene expression, and DNA microarrays provide an opportunity to observe
the broad effects of oncogenic transcription factors on gene expression and potentially
elucidate their role in oncogenesis. For instance, PAX3-FKHR chimeric oncogene,
which is found in the skeletal muscle cancer, alveolar rhabdomyosarcoma (ARMS),
and results from a t(2;13). This translocation is found in the majority of ARMS, and
leads to the fusion of the DNA-binding domain of PAX3, which is a gene involved in
muscle differentiation, with the trans-activation domain of FKHR. The PAX3-FKHR
gene product retains the DNA binding specificity of PAX3 and potentially acts by
increasing expression of genes containing PAX3 binding sites. Investigators, utilizing
murine cDNA microarrays, have found that PAX3-FKHR triggers a myogenic differ-
entiation pathway producing a population of rhabdomyoblasts, which may eventually
lead to the development of fully malignant muscle cancer upon accumulation of other
genetic aberrations (10). Some of these genes were also expressed in human ARMS
cell lines.

An example of the application of expression profiling by serial analysis of gene
expression (SAGE) (see Chapter 4) to transcriptional targets in pediatric cancer has
been the identification of MYCN targets in neuroblastomas. As discussed above,
MYCN is a transcription factor that is frequently amplified in neuroblastomas, where it
is associated with poor prognosis and is used to stratify treatment. Upon analysis of
42,000 mRNA transcript tags in generated SAGE libraries of MYCN-transfected and
control neuroblastoma cells, van Limpt et al. (11) found 114 up-regulated genes. The
majority of these genes have a role in ribosome assembly and activity, and Northern
blot analysis confirmed up-regulation of all tested transcripts. Their data suggested that
MYC family genes function as major regulators of the protein synthesis machinery and
provide a valuable resource for data mining and comparisons. Other studies with simi-
lar experimental designs are summarized in Table 1.
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Finally, bulk sequencing of cDNA libraries from cancers and normal tissues is
another source of expression profiles. The National Cancer Institute (NCI) of the
National Institutes of Health (NIH) has initiated the Cancer Genome Anatomy Project
(CGAP), which catalogues the gene expression profiles based on sequencing of cDNA
libraries derived from normal, precancer, and cancer cells (http://cgap.nci.nih.gov/).
Their Web site includes tools to compare expression profiles between different cDNA
libraries. An example in pediatric cancer has been the generation and sequencing of
libraries derived from EWS by CGAP (http://cgap.nci.nih.gov/Tissues/LibInfo?
ORG=Hs&LID=31).

BRAIN TUMORS

A key clinical question is whether one can predict the prognosis of patients based on
the expression profile of their cancer at presentation. The central hypotheses being
tested here are: (i) the genetic information that confers prognosis for a given cancer is
already present in the cancer at presentation; and (ii) this information can be used to
more accurately predict the prognosis. The algorithms used to prove these hypothesis
are essentially the same. In a recent study relevant to these issues, Pomeroy et al. (12)
performed expression analysis on a series of embryonal tumors of the central nervous
system. They studied 99 tumor samples, including 60 medulloblastomas, 8 supratento-
rial primitive neuroectodermal tumors (PNETs), 5 atypical teratoid/rhabdoid tumors
(AT/RTs), and 10 malignant gliomas, on Affymetrix microarrays representing
6817 genes (12). A classification system based on DNA microarray gene expression
data demonstrated that medulloblastomas are molecularly distinct from other brain
tumors, including PNETs, AT/RTs, and malignant gliomas. The relationship of
medulloblastomas to cerebellar granule cells and the central role of activation of the
SHH pathway in this tumor type were confirmed. Thus, cerebellum-specific genes,
such as ZIC1 and NSCL1, and SHH downstream targets, such as PTCH, GLI, and
MYCN, were part of the expression profile of medulloblastomas. Another interesting
finding was that brain AT/RTs were more similar to their renal counterparts than to

Table 1
Potential Direct or Indirect Targets of Oncogenic Transcription Factors
in Pediatric Cancers Detected by Expression Profiling-Based Experiments

Putative target genes
Transcription factor Cell line transfected induced Refs.

PAX3-FKHR NIH 3T3 mouse fibroblast MyoD, Slug, Myl4 (10)
Myogenin, Six1.

PAX3 DAOY human medulloblastoma MYOD, STX. (19)
WT1 U2OS human osteosarcoma Amphiregulin. (20)
EWS-WT1 U2OS human osteosarcoma Interleukin (IL)-2/15Rβ. (21)
MYCN SHEP-2 human neuroblastoma nm23-H1, nm23-H2, (22,23)

multiple ribosomal
proteins, multiple genes
involved in protein
synthesis and turnover.
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other brain tumors. The investigators also showed that the clinical outcome of children
with medulloblastomas can be predicted on the basis of the tumor gene expression
profiles, independent of stage and other prognostic markers such as TRKC expres-
sion (although the latter was part of the favorable expression profile).

It is interesting to compare the results of two prior smaller studies to those of the
above study (13). Michiels and colleagues examined genes differentially expressed in
medulloblastoma and fetal brain using the SAGE technique. Medulloblastoma dis-
played significantly higher expression of ZIC1 and OTX2, both normally expressed in
the cerebellar germinal layers. These data are consistent with the more recent data of
Pomeroy et al. (12). In contrast, in terms of prognostically significant expression pro-
files, there was less overlap between the latter data (12) and those from an earlier study
by MacDonald et al., who used expression profiles of 23 primary medulloblastomas to
identify genes whose expression differed significantly between those clinically desig-
nated as metastatic and those that did not metastasize (14). They found platelet-derived
growth factor receptor α (PDGFRα) and members of the downstream RAS/mitogen-
activated protein kinase (MAPK) signal transduction pathway to be overexpressed in
the subset of primary medulloblastomas that later metastasized. Perhaps surprisingly,
these genes were not among the 50 genes most highly associated with unfavorable
outcome in the larger study of Pomeroy et al. (12). This inconsistency may stem from
different study groups or subtly different end points (metastatic potential vs treatment
failure) or may be due to idiosyncrasies of individual data sets, highlighting the need
for prospective trials on larger numbers of patients.

ACUTE LEUKEMIAS

Several clinicopathological and biological prognostic markers have also been iden-
tified allowing stratification of therapy depending on the grade of the cancers and pres-
ence or absence of specific markers. For example, patients with acute lymphoblastic
leukemia (ALL) who are between 10–21 yr of age or who are between 1–9 yr of age
with a white blood cell (WBC) count of ≥50,000/µL are been determined to be at high
risk of relapse and are stratified to receive more intense chemotherapy. Also, patients
with ALL, which have the t(9:22), are at very high risk, are not given standard therapy,
and are instead given a bone marrow transplant in first remission if a donor is available.
The Downing group performed a large-scale demonstration of the diagnostic power of
expression profiling in pediatric ALLs (15). Pediatric ALL is an appealing forum for
the initial clinical implementation of expression profiling, because the role of morphol-
ogy is already limited, and the complexity and expense of the usual ancillary testing
(flow immunophenotyping, cytogenetics, molecular diagnostics) weakens the same
arguments regarding clinical expression profiling. In what is one of the largest expres-
sion profiling studies to date, they used Affymetrix microarrays, representing about
12,600 genes, to analyze the pattern of genes expressed in 360 pediatric ALLs. Expres-
sion profiling accurately separated cases of each of the prognostically important ALL
subtypes, including 43 T cell ALL, those conventionally defined by known genetic
changes such as the specific gene fusions, E2A-PBX1 (27 cases), BCR-ABL (15 cases),
and TEL-AML1 (79 cases), the mixed-lineage leukemia gene (MLL) rearrangement
(20 cases), and 64 cases with hyperdiploidy (>50 chromosomes). These distinctive
expression profiles contained many genes whose expression was not previously known
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to be restricted to particular genetic subtypes of ALL. These genes can now be evalu-
ated as surrogate markers for these subgroups (e.g., MERTK in E2A-PBX1-positive
ALL, HOXA9 and MEIS1 in MLL rearranged cases). Among the non-T cell ALLs, they
observed that specific expression profiles more strongly reflected the specific gene
fusions rather than the particular B cell differentiation stage. Moreover, they also iden-
tified a novel type of ALL, accounting for about 4% of their ALL study group, based
on its unique expression profile (15).

In a study focused on 59 pediatric T cell ALLs, Ferrando and colleagues made some-
what different observations. They found that several different genes (HOX11, TAL1,
LYL1, LMO1, LMO2) classically activated by specific chromosomal translocations
involving the T cell receptor genes are often aberrantly expressed in the apparent
absence of chromosomal abnormalities. This phenomenon was not evident among the
non-T cell ALLs studied by the Downing group (15). Also, in contrast to the latter
study, they found that subset-specific expression profiles clearly reflected T cell differ-
entiation stage. Furthermore, they identified a novel T cell ALL subset characterized
by HOX11L2 expression and poor treatment response.

Finally, an earlier study by Armstrong et al. focused on acute leukemias with chro-
mosomal translocations involving the MLL gene (16). These are seen both in infants
and postchemotherapy, but their study contained primarily samples derived from the
former. By comparing gene expression profiles in 17 MLL-rearranged acute leukemias
(of which 15 were in infants or children), 20 B cell lineage ALL, and 20 acute myeloid
leukemias, using Affymetrix arrays representing 12,600 genes, they confirmed that
MLL leukemias constitute a distinct disease, derived from an early hematopoietic
progenitor expressing multilineage markers. MLL leukemias were also noted to
overexpress certain HOX and HOX-related genes (HOXA9, HOXA5, MEIS1), an obser-
vation subsequently reproduced by the Downing group (15). Together, these various
studies suggest that pediatric acute leukemias will be a particularly fruitful and inter-
esting area of expression profiling studies.

WILMS TUMOR

The first systematic expression profiling study of WT has recently been published.
Li et al. (17) used Affymetrix oligonucleotide microarrays representing approx 12,000
genes to study six nonanaplastic nonsyndromic WTs and six midgestation fetal kidney
specimens, as well as heterologous normal and neoplastic tissues (eight samples of
BL). They thus identified 357 genes differentially expressed between WTs and fetal
kidneys, of which a subset of 27 genes constituted, relative to heterologous tissues, a
“WT signature” set. The latter included several genes encoding transcription factors, of
which at least four (PAX2, EYA1, HBF2, HOXA11) play key roles in cell survival and
proliferation in early metanephric development. Li et al. (17) also related their human
microarray data to existing rat microarray data derived from a study of the developing
rat kidney (18). This comparison showed that WTs overexpress genes corresponding to
the earliest stage of metanephric development and underexpress genes corresponding
to subsequent stages. They concluded that the blastematous elements in WTs represent
a differentiation arrest at the earliest committed stage in mesenchymal–epithelial
transition.
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Transcriptomes of Soft Tissue Tumors

Pathologic and Clinical Implications

Sabine C. Linn, Rob B. West, and Matt van de Rijn

INTRODUCTION

Soft tissue tumors (STTs) are rare tumors for which over 100 different diagnostic
entities have been defined (1). For clinical purposes, STTs can be divided into three
categories: benign, intermediate, and malignant (2). The incidence of the malignant
category is approx 7800 cases annually in the U.S. Slightly over 50% of these new
patients will ultimately die of their disease (3). When diagnosed correctly at an early
stage, soft tissue sarcomas are curable by surgery, often in combination with adjuvant
chemotherapy and/or radiotherapy.

The development of useful classifications has been a challenge to pathologists and
clinicians due to the rarity of STTs, combined with the large variability in clinical
presentation, location, histopathological diagnosis, and outcome. In general, two clas-
sifications are used in parallel: a pathologic classification mainly based on phenotypic
characteristics of the tumor cells, and a clinical classification largely based on clinical
tumor aggressiveness (2). The advent of DNA microarray technology will allow iden-
tification of previously unrecognized subsets of tumors within existing tumor catego-
ries and the discovery of new diagnostic and prognostic markers. This may significantly
improve existing classifications. In addition, this new technique may facilitate the dis-
covery of potential targets for specific therapies, like imatinib mesylate (STI571),
which targets the tyrosine kinase receptor KIT (4) in gastrointestinal stromal tumors
(GISTs) (5). Validation of potential diagnostic and prognostic markers will be made
possible with tissue microarray technology (6) using immunohistochemistry (IHC) on
large numbers of paraffin-embedded samples of STTs. In this chapter, we will point
out some of the issues regarding existing classifications and discuss the novel applica-
tions of gene expression profiling and tissue microarrays in the study and understand-
ing of STTs.

Pathologic Classification

The histologic classification presented in the latest version of Enzinger and Weiss’
Soft Tissue Tumors recognizes 140 types of soft tissue tumors (1). Table 1 lists the
major categories in the pathologic classification of STTs. The aim of the pathologic
classification is to categorize STTs according to their differentiation characteristics.
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The initial characterization of an STT usually starts with the search for specific cellular
features, such as filaments arranged as cross striations (skeletal muscle tumors), cyto-
plasmic lipid vacuoles (lipomatous tumors), or extracellular matrix material (e.g., car-
tilage, bone) (2). Immunohistochemical analysis of paraffin-embedded tumors is of
additional value in the distinction of various STTs from each other. Table 2 shows
some of the most commonly used markers.

The diagnosis of an STT is often surrounded by uncertainty due to the lack of expe-
rience of most general pathologists with these neoplasms. In a large study conducted in
the UK, 22% of a group of 449 tumors originally diagnosed as sarcomas were revised
into a nonsarcoma category (7). Most misdiagnoses came from carcinomas diagnosed
as sarcomas. Furthermore, of the remaining sarcomas, 39% were reclassified into a
different histologic subtype. The subtypes with the poorest level of agreement were
leiomyosarcoma, malignant fibrous histiocytoma, liposarcoma, fibrosarcoma, and rhab-
domyosarcoma. However, this study was carried out before the availability of IHC.
Nevertheless, a recent study presented similar findings (25% major discrepancies on a
total of 266 cases) and concluded that these misdiagnoses were more likely due to
unfamiliarity with these lesions than with the increasing use of needle biopsy or
the failure to perform IHC (8). Clearly, one reason for this high discrepancy rate is
the rarity of sarcomas, with only one to two new cases per year per pathologist, if these
lesions are distributed equally amongst pathologists, which in practice is not the case
(9). Another important reason is the intrinsic difficulty in recognizing the subtle differ-
ences in the histology of STTs (Fig. 1). Lastly, the dearth of specific diagnostic mark-
ers limits the usefulness of IHC in distinguishing these neoplasms (Table 2). It should
be noted, for example, that several of these markers react with more than one tumor
type. Actin reactivity can be seen in both leiomyosarcoma and rhabdomyosarcoma.
S100 staining is found in benign and malignant nerve sheath tumors, but also in clear
cell sarcoma; outside the field of STTs, S100 also reacts with melanoma and a variety
of carcinomas. CD34, initially described on hematopoietic stem cells was rapidly found
to react with vascular neoplasms. However, in subsequent studies, it was also seen to

Table 1
Histological Classifications of STTs

Major categories in the classification of STTsa

  1. Fibrous and myofibroblastic tumors.
  2. Fibrohistiocytic tumors.
  3. Lipomatous tumors.
  4. Smooth muscle tumors.
  5. Skeletal muscle tumors.
  6. Vascular tumors.
  7. Perivascular tumors.
  8. Synovial tumors.
  9. Neural tumors.
10. Osseous and cartilaginous tumors.
11. Miscellaneous tumors.

aAdapted from Kempson et al. (2).
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react with solitary fibrous tumors (SFTs), gastrointestinal stromal tumors, and a vari-
ety of other neoplasms (10–12). The issue is further complicated by the fact that, in
many tumor types, only a subset of lesions may react for certain markers. For example,
only 50% of malignant peripheral nerve sheath tumors react for S100. It is clear that
the field of soft tissue tumor pathology would be greatly helped by the identification of
additional tumor markers.

A variety of translocations have been identified in STTs (Table 3) (13). The translo-
cations shown in Table 3 appear specific for a particular STT diagnosis. In addition,
they occur in the majority of these lesions and, hence, are valid diagnostic markers.
For example, many studies have reported that t(X:18) is not only a sensitive but also a
specific marker for synovial sarcoma (14–19). Several techniques exist for the detec-
tion of translocations, most of which require (or work better on) fresh frozen material.

Clinical information may also help to assess the likelihood of a given STT diagno-
sis. The evaluation of risk factors, such as prior radiation therapy or a positive family
history, can be of use. For instance, are there any indications of a germline mutation in
a tumor suppressor gene, such as Li-Fraumeni syndrome (TP53) (20,21), Gardner’s
syndrome (adenomatous polyposis coli [APC]) (22), or neurofibromatosis type I (NF-1)
(23,24)? Furthermore, it is valuable to know the results of imaging studies, to exclude
the possibility of a neoplasm arising from an organ invading surrounding soft tissue
(2). Information on age is important; the prevalence of MFH and liposarcoma peaks in
the seventh decade, while for instance, fibrosarcoma peaks in the fourth decade (3).
Likewise, the anatomic site is informative; liposarcoma, malignant fibrous hystio-
cytoma (MFH), and synovial sarcoma are, for instance, the most common lower

Table 2
Frequently Used Monoclonal Antibodies in the Diagnosis of STTa

Monoclonal antibodies Tumor Percent reactivity

Smooth muscle actinb Leiomyosarcoma   90%
Muscle actin Leiomyosarcoma   90%
Desmin Leiomyosarcoma   75%
Muscle actin Rhabdomyosarcoma   90%
Desmin Rhabdomyosarcoma   95%
Myoglobin Rhabdomyosarcoma   30%
Cytokeratinb Biphasic synovial sarcoma   95–100%
Epithelial membrane antigenb Biphasic synovial sarcoma   95%
Cytokeratin Monophasic synovial sarcoma   50%
Epithelial membrane antigen Monophasic synovial sarcoma   50%
Cytokeratin Epithelioid sarcoma >95%
Epithelial membrane antigen Epithelioid sarcoma >95%
S100b Malignant peripheral nerve sheath tumor   50%
S100 Clear cell sarcoma   80%
CD99b Ewing’s sarcoma/PNET >95%
CD34b Angiosarcoma   80%
CD31 Angiosarcoma   90%

aAdapted from Kempson et al. (2).
bThese antibodies are not specific and will react with a wide variety of other lesions.
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Fig. 1. Representative histology of specimens used for this study, including: leiomyosar-
coma, MFH, fibromatosis–desmoid tumor, DFSP, synovial sarcoma, GIST, and SFT.
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extremity sarcomas, while leiomyosarcomas prevail at visceral sites (3). Other useful
clinical information includes the size of the tumor and its depth (dermal, subcutaneous,
or deep). Knowledge of all these clinical variables and marker studies is undoubtedly
of great help, but with the possible exception of the translocation studies mentioned
above, they in themselves are not pathognomonic in individual cases, and uncertainty
about the diagnosis often remains.

Clinical Disease Categories

The clinician is less interested in the detailed phenotypic characteristics of a STT,
but rather wants to know the expected biological behavior of a given lesion, which
directs the choice of therapy and provides prognostic information. The World Health
Organization (WHO) classification is not very helpful in this regard, as it only groups
STTs in the clinically benign, intermediate, or malignant category. Kempson et al.
have designed a more sophisticated “managerial classification,” which further divides
these three categories into seven groups, providing more information on the likelihood
of a local recurrence after excision, whether a recurrence can become destructive, and
the chances of a given lesion to metastasize or to be disseminated at the outset (2).

Prognostic Variables and Grading of Soft Tissue Sarcomas
The prognosis of extremity sarcomas is generally better than for other sarcomas,

while retroperitoneal and mediastinal locations confer a worse prognosis (2,3). This might

Table 3
Major Chromosomal Translocations in Sarcomas

Tumor Translocation Fusion product

Alveolar rhabdomyosarcoma t(2;13)(q35;q14) PAX3-FKHR
t(1;13)(p36;q14) PAX7-FKHR

Alveolar soft part sarcoma t(X;17)(p11;q25) ASPL-TFE3
Clear cell sarcoma t(12;22)(q13;q12) EWS-ATF1
Dermatofibrosarcoma protuberans t(17;22)(q22;q13) COL1A1-PDGFB
Desmoplastic small round cell tumor t(11;22)(p13;q12) EWS-WT1
Ewing’s sarcoma/peripheral primitive t(11;22)(q24;q12) EWS-FLI1

neuroectodermal tumor t(21;22)(q22;q12) EWS-ERG
t(7;22)(p22;q12) EWS-ETV1 (rare)
t(17;22)(q12;q12) EWS-E1AF (rare)
t(2;22)(q33;q12) EWS-FEV (rare)

Infantile fibrosarcoma t(12;15)(p13;q25) ETV6-NTRK3
Inflammatory myofibroblastic tumor t(1;2)(q22;p23) TPM3-ALK

t(2;19)(p23;p13) TPM4-ALK
Extraskeletal Myxoid chondrosarcoma t(9;22)(q22;q12) EWS-CHN

t(9;17)(q22;q11) TAF2N-CHN (rare)
Myxoid liposarcoma t(12;16)(q13;p11) TLS-CHOP

t(12;22)(q13;q12) EWS-CHOP (rare)
Synovial sarcoma t(X;18)(p11;q11) SYT-SSX1

SYT-SSX2
SYT-SSX4 (rare)
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at least partly be due to the general earlier detection of extremity sarcomas and conse-
quently smaller tumor size at the time of diagnosis (25). Besides the anatomical loca-
tion, tumor depth, size, histologic grade, and the presence of nodal or distant metastases
are all recognized as prognostic variables. The current version of the American Joint
Committee on Cancer (AJCC) staging system for sarcomas is based on these param-
eters (26). It has also been shown that a microscopically positive surgical margin in
soft tissue sarcomas of the extremity is an independent adverse prognostic factor for
local relapse (25).

The histologic grading of adult sarcomas is a controversial issue (27). The purpose of
grading is to predict the likelihood of a given sarcoma to recur or metastasize, based on
morphologic criteria such as cellularity, pleomorphism, extent of tumor cell necrosis,
mitotic activity, and degree of differentiation (2). Most pathologists agree that necrosis
and mitotic rate are the most important determinants of aggressive tumor behavior. Grad-
ing is problematic because the histologic subtypes of sarcoma must be taken into account;
e.g., several sarcomas (epithelioid sarcoma, synovial sarcoma) can have a poor prognosis
despite a bland cytology and a low mitotic rate. Furthermore, there is no consensus on
which of the several existing grading systems is most informative (25,28).

Many molecular aberrations have been detected in sarcomas, though few have been
identified as a prognostic marker (29,30). Mutations in TP53, overexpression of p53,
and high Ki-67 proliferation index are associated with poor prognosis (31). However,
in series including multiple STT histologies, both markers have been associated with
tumor grade (31) and, as such, have little independent prognostic value. Within syn-
ovial sarcoma, the SYT-SSX2 fusion transcript has been associated with a longer dis-
ease-free and overall survival than the SYT-SSX1 fusion transcript (32–34). In MFH,
the presence of additional chromosomal material on 19p conferred a worse prognosis
(35). However, it is clear that additional prognosticators would greatly help manage-
ment of these lesions.

Treatment Options

The mainstay in the treatment of STTs is surgery. Adjuvant external radiation therapy
or brachytherapy is an option for local control in selected patients, depending mainly on the
size, grade, localization, and surgical margins of the tumor (36). Adjuvant chemotherapy
is still a matter of debate (37), although preoperative radiation and/or chemotherapy
are sometimes used for large high-grade extremity sarcomas that would otherwise require
amputation (38–40). The most active classical drugs in soft tissue sarcomas are
anthracyclines, ifosfamide, and dacarbazine, with modest overall response rates between
20–30% in advanced disease (3,41). Hyperthermia may enhance the effects of chemo-
therapy (42,43), but currently remains investigational in the U.S. What all these treatments
have in common is that their mechanisms of action are relatively nonspecific. The recent
advances in the development of more targeted therapies, such as imatinib mesylate for
GIST (44,45), have raised high hopes for the future (46), with the anticipation that genome-
wide analysis of STT may identify additional targets for tumor-specific therapies.

Synopsis

The field of STT pathology is plagued, perhaps more than any other group of tumors,
by diagnostic uncertainty. In addition, there is insufficient knowledge regarding the
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prognostication of tumors within each diagnostic group. A variety of grading schemes
exists, but for the wide diversity of STTs, no one grading system has been accepted or
even shown to be appropriate for all lesions. The differential diagnostic and prognostic
issues have lately become even more relevant, as it was demonstrated that certain sar-
comas respond very well to tumor-specific therapies (44,45). What is needed in the
field of STT pathology, therefore, is: (i) better diagnostic markers; (ii) better prognos-
tic markers; and (iii) identification of specific targets for therapy. The expectation is
that genome-wide screening of large numbers of STTs will not only lead to a more
refined tumor classification, but will also address these three practical issues.

TISSUE PROCESSING FOR DNA MICROARRAY STUDIES

Specimen Types

For the initial diagnosis of STT, three options exist to obtain tissue: incisional biopsy,
core-needle biopsy, and fine-needle biopsy (cytology). The core-needle biopsy proce-
dure is rapidly gaining acceptance as the first approach to obtaining diagnostic mate-
rial. However, the limited amount of tissue usually precludes grading in the case of a
malignancy. Complete excision with a small rim of normal tissue is a good alternative
for small superficial STTs (<5 cm). Large STTs frequently are diagnosed by incisional
biopsy. Because tissue architecture is such an important diagnostic parameter, cytol-
ogy has so far had only limited application in the diagnosis of STTs (3,47,48).

Tissue Handling, Processing, and Availability

Most STTs are of significant size, and incisional biopsies usually yield sufficient
quantities of tumor material, which allows one to cut frozen sections, send part of the
specimen for cytogenetic analysis, and process the remainder for paraffin sections.
Once enough material is present for these studies, paraffin-embedding of the remain-
ing frozen material used for frozen sections usually does not contribute significantly to
diagnosis. If one stores remaining frozen material at –80°C, there will usually be
enough tissue for DNA microarray analysis. We use spotted cDNA microarrays, which
require 2 µg of mRNA for each experiment, an amount that can be isolated from
approx 200 mg of fresh frozen tissue. For core biopsy material, where less tissue is
available, linear amplification of mRNA prior to array analysis is an option (49,50).

Due to the rarity of STT, tissue availability is a major problem for gene expression
experiments, but this can be overcome by multicenter collaborative studies. For our
investigations, we have initiated a collaborative effort that uses STT samples from the
Stanford University Medical Center, the University of British Columbia, in Vancouver
(Torsten O. Nielsen, MD, PhD), the University of Seattle (Brian P. Rubin, MD, PhD),
and the Cleveland Clinic Foundation (John R. Goldblum, MD).

Tissue Heterogeneity

Few studies have yet addressed the problem of tissue heterogeneity in other organ
systems, mainly due to technical issues involving amplification procedures on
microdissected tissue (50) or sorting material based on cell surface markers (51). Most
STTs are quite homogeneous in their histologic features, yet it would be of interest to
examine different areas from tumors for heterogeneity. Some examples where this
would be of genuine interest and where the areas of different morphology would be
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relatively easy to dissect are: (i) areas of dedifferentiation in liposarcomas (52);
(ii) round cell areas in myxoid liposarcoma (53); and (iii) areas of fibrosarcomatous
transformation in dermatofibrosarcoma protuberans (DFSP) (54,55).

Studies in Experimental Model Systems

The ultimate goal of studying tumor biology of STTs is to identify those molecular
events that drive malignant transformation. Gene expression studies on cell lines that
have been transfected with DNA containing a specific translocation could be of value
(e.g., synovial sarcoma, DFSP, Ewing sarcoma–peripheral primitive neuroectodermal
tumor [PNET]) (see also Table 3), especially when compared to expression studies on
native tumors. A problem with this approach is that for many STTs, the cell of origin,
which may influence the genes affected by the translocation, is not known (56,57).
Culturing human STTs could circumvent this drawback, but their altered in vitro phe-
notype, as a result of cell culture (58), may complicate the interpretation of the gene
expression patterns resulting from the translocation. It has already been shown in sev-
eral studies that gene expression patterns of cell lines differ from the native human
tumors from which the cell lines have been derived (59–61).

Xenograft studies have been instrumental in the study of new promising drugs in
STTs, such as pharmacological studies of imatinib mesylate for DFSP in mice (62,63).
An interesting study was recently published that used a xenograft model in combina-
tion with microarray analysis to screen for genes involved in melanoma metastasis
(64). To date, no xenograft studies in STTs have been published exploiting the power
of microarray analysis.

Some transgenic or knock-out mouse models develop sarcoma-like tumors and may
provide tools for the study of human STTs (65–72). However, lack of knowledge con-
cerning the cell of origin for most STTs complicates the development of STT-specific
transgenic or conditional knock-out mouse models.

RESULTS OF GENE EXPRESSION PROFILING OF STTS

General and Specific Aspects of the Transcriptome

The genome-wide expression pattern (transcriptome) of different STTs will lead to
the identification of novel markers that may be used to determine the cell of origin for
these neoplasms. In this manner, a novel subclassification of connective tissue cells
will emerge. Thus, the study of STTs may lead to the identification of functional differ-
ences between histologically similar cells, similar to that in the lymphoma field, where
molecular analysis of different lymphomas led to the identification of functionally dis-
tinct subsets of lymphocytes. The molecular characterization of normal connective tis-
sues could have applications beyond the field of STTs and could lead, for example, to
increased insight into the pathogenesis of a variety of non-neoplastic connective tissue
disorders.

Examples of STT for which the cell of origin is unknown are many, but include
synovial sarcoma, DFSP, SFT, and the controversial MFH. The latter is subject of an
ongoing debate concerning this tumor as a separate entity from other sarcomas, such
as poorly differentiated leiomyosarcomas and liposarcomas (73).
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Many histologic subtypes within STTs have characteristic genetic aberrations, such
as translocations, which are thought to be instrumental in the transformed phenotype
(Table 3). Most events downstream of chromosomal translocations remain unknown,
but it is intriguing to suppose that genes affected by these translocations may be found
in clusters that contain genes specifically over- or underexpressed in these tumors. The
deregulation of particular pathways could give clues to the identification of potential
novel therapeutic targets.

For some STT categories, such as SFT, leiomyosarcoma, and desmoid fibromatosis,
little is known about the underlying genetic events. A careful examination of their
characteristic gene clusters, possibly in combination with array-based comparative
genomic hybridization data, might lead to novel insights regarding their pathogenesis.

Proof of Principle Studies and Novel Insights
To date, few studies have been published on gene microarray analyses of STTs.

A major contribution came from the group of Khan, Meltzer, and coworkers that tested
the application of artificial neural networks in the classification of small round blue
cell tumors of childhood by using gene expression profiles (59). A significant number
of potential new markers for this diagnostically challenging group of lesions was iden-
tified that warrant further study. The same group recently published their findings of a
remarkable homogeneous gene expression profile in a collection of mainly large GISTs
with an aggressive clinical behavior and proven mutations in the KIT gene (74).
A considerable overlap was found between their GIST-specific gene cluster and our
microarray results for GISTs (75).

Stanford Studies of Spindle Cell and Pleomorphic STTs
In our laboratory, we have recently performed a proof of principle study on a variety

of STTs (http://genome-www.stanford.edu/sarcoma/) (75). This study combined 41
different STT in a single cluster analysis. In Fig. 2 another collection of 41 STTs is
shown, which partially overlaps with our initial work. In contrast to our first study,
where a mixture of gene arrays containing 22,000 and arrays containing 42,000 cDNA
elements were used, the current samples were all run on microarrays consisting of
42,000 cDNA elements. After a procedure that selected well-measured and informa-
tive cDNA spots, 7080 genes were chosen to partition the tumors into discrete groups
using hierarchical clustering (76). The tumor categories of fibromatosis, DFSP, syn-
ovial sarcoma, GIST, and SFT all clustered tightly on individual branches, indicating
the ability of cDNA microarray analysis to separate histologically different entities.
In contrast, a subset of the leiomyosarcomas grouped together on an ill-defined branch
with the MFHs. This is an interesting observation, especially in the context of the
ongoing debate surrounding the diagnostic entity of MFH (73). The branching pattern
indicates that the transcriptomes of these leiomyosarcomas and MFHs are quite simi-
lar. It remains possible however, that only a small group of genes distinguishes these
entities and that this expression profile is overwhelmed by genes that are shared, such
as proliferation genes (Figs. 2B1,C1 and 3), host cell genes, and inflammatory response
genes (Fig. 2B3,C3) analogous to the initial branching pattern found for diffuse large
B cell lymphomas (61). Inclusion of larger numbers of MFHs, leiomyosarcomas, and
also liposarcomas, in combination with the use of selective gene lists for clustering,
may resolve this issue.
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Fig. 2.
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For one tumor (STT523), a leiomyosarcoma of the thigh, a pulmonary metastasis
was available. The two samples appeared on closely related branches of the dendro-
gram. For another tumor (GIST), originally occurring in the ileum of a 27-yr-old man,
his second (STT94) and fifth (STT1823) peritoneal recurrence were available. These
two specimens, obtained with a time interval of 3 yr, showed the highest degree of
similarity of all tumors of the cluster. The tight clustering of primary tumors and their
lymph node metastases has been reported previously for lung carcinoma (77) and breast
carcinoma (60).

GENE EXPRESSION PROFILE OF GISTS

The GISTs were widely separated from the two categories of leiomyosarcoma and
were characterized by a highly expressed gene cluster that contained KIT (Fig. 2A).
This confirms the hypothesis that, unlike leiomyosarcomas, GISTs originate from the
interstitial cell of Cajal, or at least from cells differentiating towards an interstitial cell
of Cajal-phenotype (78). These cells have been associated with pacemaker activity in
the bowel wall, and KIT expression is essential for the normal development of their
intestinal pacemaker network (79). The known prevalence of activating KIT mutations
in GISTs (80,81) and the central position of KIT in the GIST-specific gene cluster add

Fig. 2. (previous page) Gene expression matrix of 41 STT specimens and 7080 genes
obtained with average-linkage hierarchical clustering (76). Arrays comprising 42,000 cDNA
elements were used. Experiments were performed as described elsewhere (60) (http://genome-
www.stanford.edu/molecularportraits/). Genes were selected based on the following criteria:
uninterpretable spots were manually flagged and excluded. Of the remaining spots only those
were included with a ratio of signal over background of at least 1.6 in either Cy3 or Cy5
channels; those that had at least 80% well measured data points across the 46 arrays and a
fluorescence ratio at least threefold greater than the geometric mean ratio in the specimens
examined in at least two arrays. A row in the matrix represents the relative level of expression
for a gene, centered at the geometric mean of its expression level across the 41 samples. Gene
expression levels are displayed in red, relative high expression; black, mean expression; green,
relative low expression; or grey, no well-measured information. The red or green color inten-
sity represents the magnitude of the deviation from the mean. Each column represents the rela-
tive expression levels of all the selected genes for a single neoplasm. The tumor dendrogram
(A) is displayed above and describes the degree of relatedness between tumor samples, with
short branches denoting a high degree of similarity. Leio/LEIO, leiomyosarcoma; MFH, malig-
nant fibrous histiocytoma; DFSP, dermatofibrosarcoma protuberans; syn sarc, Synovial sar-
coma; GIST, gastrointestinal stromal tumor; SFT, solitary fibrous tumor; Met, metastasis; Rec,
recurrence. (B) Gene expression matrix with numbers on the right indicating distinct gene
expression clusters. 1. Proliferation gene cluster. 2. Muscle gene cluster of calponin-positive
leiomyosarcomas. 3. Immunoglobulin gene cluster. 4. Fibromatosis-specific gene cluster.
5. DFSP-specific gene cluster. 6. SFT-specific gene cluster. 7. The commonly used immuno-
histochemical marker CD34. 8. GIST-specific gene cluster. 9. Synovial sarcoma-specific gene
cluster. (C) Examples of genes present in the clusters detailed in panel B. A white line between
two genes means that the genes were not located adjacent to each other in the gene cluster.
1. CDC, cell division cycle. 2. CNN1, calponin 1, basic smooth muscle. 3. IGHG3, immuno-
globulin heavy constant γ-3; IGKC, immunoglobin-κ constant. 4. COL6A1, collagen, type VI,
α-1; COL6A2, collagen, type VI, α-2. 5. PDGFB, platelet-derived growth factor-β polypeptide.
6. ENC1, ectodermal-neural cortex-1. 7. CD34, CD34 antigen. 8. KIT, c-kit/CD117. 9. SSX1,
synovial sarcoma, X breakpoint-1.
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Fig. 3.
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further support to the concept that aberrant c-kit activity is instrumental in the transfor-
mation of these tumors (74,75,81) (Fig. 2B8,C8). The GISTs also have decreased cell
cycle activity, as indicated by relative underexpression of proliferation genes (Fig. 3).
These findings support the thought that GISTs are tumors of low complexity, presum-
ably initially driven by a single mutation in KIT, while acquiring additional genetic
aberrations during tumor progression (82). The impressive responses to the tyrosine
kinase inhibitor imatinib mesylate are in agreement with this view (44).

GENE EXPRESSION PROFILE OF LEIOMYOSARCOMAS

A subset of three leiomyosarcomas are clustered on a separate branch (Fig. 2). These
cases were characterized by relative overexpression of a set of muscle-related genes,
such as calponin (Fig. 2B2,C2). The other five leiomyosarcomas, which clustered with
four MFHs on another branch, mostly lacked expression of these muscle-related genes.
Thus, our findings discerned two subgroups of leiomyosarcoma that were both distinct
from GIST (75). Larger series of leiomyosarcomas are needed to correlate these results
with histological and clinical features.

GENE EXPRESSION PROFILES OF STTS WITH KNOWN TRANSLOCATIONS

We studied the transcriptomes of two spindle cell STTs with known translocations:
DFSP and synovial sarcoma. In both subtypes of STTs, we found relatively high
expression of at least one of the translocation partners (Fig. 2B5,C5,B9,C9).

Most, if not all, DFSPs are characterized by specific chromosomal rearrangements,
such as supernumerary ring chromosomes that contain sequences from chromosome
17 and 22 or the t(17;22)(q22;q13) translocation (83). These rearrangements result in
the expression of a COL1A1-PDGFB fusion protein that is cleaved within the endo-
plasmic reticulum into a functional PDGF-BB molecule (83,84). In vitro studies with
NIH3T3 mouse fibroblasts transfected with the fusion gene have shown that the
production of the PDGF-BB ligand leads to autocrine PDGF receptor stimulation (84).
As the breakpoint for PDGFB always lies within intron 1 (84), the sequences for
PDGFB used on our arrays cannot distinguish between the native or fusion transcript.
Nevertheless, we found a very interesting distinct gene expression pattern for DFSPs,
which was centered on PDGFB (Linn et al., manuscript in preparation), supporting a
central role for the PDGF pathway in the pathogenesis of DFSP (84). Preclinical studies

Fig. 3. (previous page) Comparison of mitotic index, determined by microscopic evaluation
of 10 high power fields (hpf) on paraffin-embedded sections, with the proliferation gene cluster
of 26 tumor specimens run on arrays containing 22,000 cDNA elements. For explanation of
gene selection procedure, data analysis, rows, columns, coloration, and dendrogram, see Fig. 2.
MPNST, malignant peripheral nerve sheath tumor; LIPO/MYX, myxoid liposarcoma; SCHW,
schwannoma; LIPO, liposarcoma. For other tumor abbreviations, see Fig. 2. CHAF1B, chro-
matin assembly factor 1, subunit B; KNSL5, kinesin-like 5. BUB1B, budding uninhibited by
benzimidazoles 1, β; TOP2A, topoisomerase II α; CDC2, cell division cycle 2, G1 to S and
G2 to M; PLK, polo-like kinase; CDC20, cell division cycle 20, Saccharomyces
cerevisiae, homolog; CENPF, centromere protein F; CDC45L, CDC45 cell division cycle 45,
S. cerevisiae, homolog-like; ZWINT, ZW10 interactor; CDC7L1, CDC7 cell division cycle 7,
S. cerevisiae, homolog-like 1; MCM6, minichromosome maintenance deficient 6; E2F1, E2F
transcription factor 1; TOP2A, topoisomerase DNA II α 170 kDa; CCNA2, cyclin A2; ORC1L,
origin recognition complex, subunit 1 (yeast homolog)-like.
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have demonstrated a growth inhibitory effect of the tyrosine kinase inhibitor imatinib
mesylate in primary cultures derived from human DFSPs (62), suggesting that this
drug may be of use in patients with inoperable DFSP. Indeed, a pilot study with imatinib
mesylate in a patient with unresectable metastatic DFSP showed very promising
results (84a).

The chromosomal translocation t(X;18)(p11.2;q11.2), which results in a fusion tran-
script between the synovial sarcoma translocation gene SYT on 18p11.2 and either one
of the highly homologous synovial sarcoma X-breakpoint genes SSX1 or SSX2 on Xp11
(85,86), has been found in over 90% of synovial sarcomas (13). In our series, we found
relative high expression of SSX. The SSX sequence present on the array contains the 3'
end of the gene and, thus, cannot discriminate between native SSX and the SYT-SSX
fusion transcript. However, it is likely that we measured the SYT-SSX transcript.

GENE EXPRESSION PROFILES OF FIBROMATOSES AND SFTS

Fibromatoses–desmoid tumors are locally infiltrative and proliferative processes
with a propensity to recur, but they do not metastasize, and malignant transformations
are rare (87). Most desmoid tumors have a deletion and/or inactivation of the APC gene
(88). In addition, trisomy 8 and/or 20 has been found in some desmoid tumors (89,90).
Histologically, these neoplastic spindle cells are surrounded by a collagenous matrix
(87). Indeed, we found various collagen genes, such as COL6A1 and COL6A2, rela-
tively highly expressed in these tumors (Fig. 2B4,C4). In addition, a large number of
other genes, many of which generate components of the extracellular matrix, were
found in this cluster.

SFT is a fibrous and myofibroblastic proliferation in which the constituent cells, at
least focally, are virtually always separated by strip-like bands of collagen. The tumor
cells are almost always CD34 positive (Fig. 2B7,C7) (10). Several cytogenetic abnor-
malities have been described in SFT, yet no consistent pattern has emerged from these
studies (91,92). In a search for markers potentially more specific than CD34 in SFT,
we identified the ectodermal neural-cortex 1 (ENC1) gene, among others (Fig. 2B6,C6)
(West et al., manuscript in preparation). ENC1, originally identified as a p53-induced
gene (PIG10) (93), has been implicated in the differentiation of neural and fat cells
(94,95). Recently, it has also been reported to be a downstream target of the β-catenin/
T cell factor complex and to be up-regulated in colorectal cancer (96). Future studies
will tell whether antibodies directed against ENC1 protein can discriminate between
SFTs and other tumors.

CLUSTERING PATTERNS OF A PRIMARY AND ITS METASTASIS

Especially in the case of carcinomas, it has been argued that the clustering pattern of
the primary tumors was not so much driven by the gene expression profiles of the
tumor cells as by the presence of normal tissue. Although this argument holds less for
STTs, it is a strong counterargument that a lung metastasis of a leiomyosarcoma
(STT523) clustered together with its extremity primary on the same terminal branch
when using the earlier arrays (22,000 cDNA spots) (Fig. 3). The same pair clustered
less tightly when using the newer arrays (42,000 cDNA spots), but this was probably
due to the marginal quality of the metastasis array experiment (Fig. 2A; STT607—note
the amount of noninformative spots for this case). This observation, together with simi-
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lar findings in other tumor types (60,77), suggest that only few genes are necessary for
tumor progression and may support the cancer stem cell theory (97).

Clustering of Controversial Cases
For these studies we used “classical” cases with a noncontroversial diagnosis. When

initial classification of well-defined STT based on their transcriptome has been com-
pleted, it will be of interest to include cases with an ambiguous diagnosis. We expect
that at least a subset of diagnostically difficult lesions would “find” their diagnosis in a
branching pattern determined by the expression of a thousand genes or more rather
than by the analysis of histology and a handful of IHC markers. A proof of principle
study testing this concept has recently been reported for carcinomas (98).

Correlation of Proliferation Gene Cluster with Mitotic Index

Most of the scientific literature today is based on the assumption that there exists a
tight correlation between genotype and phenotype. Figure 3 is an example of this cor-
relation that exists between the expression levels of genes involved in proliferation and
the proliferation phenotype of a tumor as expressed by its “mitotic index.” It should be
kept in mind that STTs generally have a much lower proliferation rate than carcinomas.

Gene Expression Results of STTs When Compared with Other Malignancies

When comparing gene expression profiles of STTs, it is important to remember that
the differences in expression levels are relative to each other. In other words, gene
expression levels that appear significantly different when comparing different histo-
logical subtypes of STTs may vanish when profiles of STTs are clustered with other
malignancies, like carcinomas or lymphomas (Fig. 4A,B). Obviously, when searching
for new diagnostic markers, the desired discriminative value of the marker should be
known in advance, and comparisons with other tissues and/or malignancies made
accordingly. These precautions at least reduce the chance of raising an antibody against
a gene product that ultimately appears to react with numerous tissues. For example, in
Fig. 4a, the markers GAS2-related on chromosome 22 (GAR22) and argininosuccinate
lyase (ASL) appear quite specific for SFT. However, when analyzed in the context of
lymphomas, normal bladder, and a variety of carcinomas, many STT appear to have at
least moderate levels of mRNA for these genes (Fig. 4b). Obviously, it depends on the
relative sensitivity of immunohistochemical analysis, the quality of the antibody used,
and other factors, whether this moderate level of expression would result in a positive
staining reaction or whether only the highly expressing SFT would stain. Other reasons
for discrepancies between differences observed at the RNA expression level that can-
not be reproduced at the protein level include posttranslational modifications of the
protein and slow protein turnover.

Validation of cDNA Microarray Results

Our microarray results described above have shown good correlations with known
immunohistochemical markers, cytogenetic markers, and histological features of STTs.
A further validation of identified markers with cDNA microarrays is expected to come
from tissue microarray (TMA) studies. An extensive overview of this technique is given
in Chapter 5 of this volume. Briefly, a TMA is a collection of 300–1000 different
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formalin-fixed paraffin-embedded tissue cores of 0.6–1.0 mm diameter, obtained from
various donor blocks, and arranged in a recipient paraffin block (6). Around 200 sec-
tions of 4–8 µm can be generated from this new paraffin block.

TMAs allow for the rapid examination of hundreds of specimens with new markers
(99,100). The advantages are obvious: (i) each stain is done on several hundred
samples in a single experiment, hence, instead of dealing with hundreds of different
glass slides, one only manages a handful; (ii) it is inexpensive; (iii) there is less
interexperimental variation; and (iv) one uses a limited amount of tissue per case, so
more tissue will be left for other experiments (6). Although one tissue core stands for
approx 0.3% of the currently considered representative amount of material, data
obtained with two cores are 95% concordant with data generated by conventional
methods (101).

FUTURE PROSPECTS

In future studies, we hope to increase the number of cases analyzed by gene
microarrays. We expect that this will lead not only to a better classification of
STTs, but also will identify new subcategories within specific STT types. Correla-
tions with outcome data may identify potential prognostic markers. These prog-
nostic markers will be tested on TMAs; e.g., we have constructed a 312-core TMA
containing 72 primary rhabdomyosarcoma cases and identified a new prognostic
marker, besides confirming the prognostic value of Ki-67 and CD44 (Linn et al.,
manuscript in preparation). New potential diagnostic markers will be tested on a
TMA with duplicate cores for 400 cases of STT (West et al., manuscript in prepara-
tion). We hope that our efforts, together with contributions from many other research
groups in the field, will ultimately lead to better treatment options and improved
survival for patients with STTs.
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Fig. 4. (previous page) Example of relative aspect of gene expression measurements using
cDNA microarrays. For explanation of gene selection procedure, data analysis, rows, col-
umns, coloration, and dendrogram, see Fig. 2. Before hierarchical clustering, we center each
gene at the geometric mean of its expression level across all samples used for that particular
clustering analysis. Obviously, the geometric mean of the expression level of each gene will
change when, in addition to STTs, other specimens, in this case normal bladders, lympho-
mas, and several carcinomas are included in the analysis (a vs b). (a) Relative gene expres-
sion levels for the genes GAR22 and ASL appear high for SFT and underexpressed or average
(green or black) for most other STT. GAR22, GAS2-related on chromosome 22; ASL,
argininosuccinate lyase. (b) Relative gene expression levels for the genes GAR22 and ASL
are now average to high in most STT and underexpressed or low in the various non-STTs.
Ca, carcinoma.
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NOTE ADDED IN PROOF

Tow additional cDNA microarray studies of synovial sarcoma have recently ap-
peared in which the profile of gene expression in this sarcoma was compared to that of
several other spindle cell sarcomas (102,103).
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Gene Expression Profiling

in Lymphoid Malignancies

Wing C. Chan and Louis M. Staudt

INTRODUCTION

An ideal tumor classification system should be accurate, reproducible, easy to use,
and above all, biologically meaningful and clinically relevant. The traditional approach
has relied heavily on the morphologic features of the tumor with modifications based
on correlative clinicopathologic studies. The older lymphoma classification systems
discussed in the Working Formulation (1) are based on this principle but despite this
simple approach, they have made significant contributions to the diagnosis and treat-
ment of lymphoma. In the past two decades, there has been emarkable advances in our
understanding of the immune system, the process of oncogenesis, and in how some key
genes and genetic pathways influence the behavior of tumor cells. The more recent
classification systems (2,3) attempt to incorporate our current knowledge from mul-
tiple disciplines to divide lymphomas into distinct clinicopathologic entities. However,
there is clearly marked biologic heterogeneity within each of these entities, as illustrated
by the significant survival differences of individuals within each type of lymphoma, when
cases are segregated according to the International Prognostic Index (IPI) (4) (Fig. 1).

The biologic characteristics of a tumor are determined by the set of genetic lesions
in its genome (5). These genetic lesions introduce a gene expression signature unique
to the tumor cells that is distinct from their normal counterpart. The tumor gene expres-
sion signature is, therefore, a reflection of the genetic lesions present, and it can also
serve as a predictor of the biologic behavior of the tumor. We may hypothesize that
by studying the gene expression profile of a large series of lymphomas, it is possible to
identify patterns that correlate with unique biologic and clinical behaviors. These dis-
tinctive profiles will also help us elucidate the molecular mechanisms that determine
various tumor characteristics and the differences in treatment response and survival.
We may ultimately be able to derive a classification system based on the molecular
abnormalities present in individual tumors. This will allow optimal treatment decisions
and accurate prognostication. The improved understanding of the molecular mecha-
nisms that define the behavior of a tumor will be expected to provide new molecular
targets for the development of novel therapeutic interventions.
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STUDY DESIGN AND OTHER TECHNICAL CONSIDERATIONS

There are a number of important practical considerations in gene expression profil-
ing studies. These studies are frequently retrospective, and utilize tissues obtained from
a number of institutions. The tissues are, therefore, unlikely to be processed in an
entirely uniform fashion, with the expected introduction of some artifactual variability.
Aside from the variables due to tissue processing, there is also the marked intrinsic
heterogeneity in gene expression among tumors. The above considerations, together
with the large number of parameters measured, make it essential to study a large num-
ber of cases in order to draw meaningful conclusions.

For solid tumors, RNA is often extracted from whole tissues, and the profile will
include contributions from stromal elements and infiltrating immune cells. This will
add to the complexity of data analysis, but at the same time, will also provide some

Fig. 1. Survival curves of patients with DLBCL. Panel A shows the overall (OAS) and
failure-free survival (FFS) of the entire group of patients. A significant difference in survival
can be seen in these patients when they are segregated according to the IPI (panels B for OAS
and C for FFS) with the low clinical risk (low IPI) patients having much better survival than
intermediate or high risk patients (middle and lower curves respectively). Reproduced with
permission from ref. 4.
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important information on the host response, which is not obtained if purified tumor
cells are used. The ambiguities introduced by whole tissue analysis can be mitigated to
some extent by prior knowledge of the gene expression profiles of the different reac-
tive cellular elements frequently present in malignant tumors.

Data analysis (including structure detection in the data set, model fitting, class pre-
diction, and class discovery), is a major challenge in gene expression profiling studies
(6,7). It is essential to have the corresponding clinical data and, preferably, cytogenetic
and molecular genetic data to help analyze the results obtained. A thorough pathologic
examination of all the samples, with appropriate immunophenotypic analysis, is
extremely important to ensure that the diagnosis is correct and the samples are adequate.
Unique pathologic and immunologic features should be recorded in a format that can
be used for future computational analysis. It is also useful to have profiles of different
subpopulations of normal B cells for comparison with the profiles from the tumor popu-
lations. In addition, a large number of cell lines have been derived from a variety of
lymphomas, with different cytogenetic and genetic abnormalities (8). Gene expression
profiles can be obtained from these cell lines, and they can serve as useful reagents to
assist in the interpretation of data and the discovery of unique gene expression profiles
in association with different tumor characteristics and genetic abnormalities.

Validation of the experimental data, analysis, and conclusions is an extremely
important aspect of gene expression profiling studies. Validation of the expression of
selected genes, which appear to be clinically and biologically significant from initial
analysis, can be achieved by a number of methods. At the mRNA expression level,
quantitative reverse transcription polymerase chain reaction (PCR) (9–12) can be
applied to an aliquot of the RNA sample used for microarray experiments. To confirm
expression in tumor cells, RNA extracted from microdissected frozen sections of tumor
blocks from the same cases can be assayed. Alternatively, in situ hybridization (13,14)
may be performed for tissue localization and a semiquantitative assessment of the
expression level. As mRNA expression cannot be equated to protein expression level,
it is of interest and informative to investigate the expression of the corresponding pro-
tein. If a suitable antibody is available, an immunohistochemical assay (15,16) on cor-
responding tissue sections of the tumor studied can be performed. Other techniques,
such as western blot or assays for activities of specific enzymes, may be employed
(17). However, to determine tissue localization by the latter techniques will require
some form of cell isolation procedure, and the amount of purified samples that can be
obtained vs the sensitivity of the technique becomes an important consideration.

The validity of data analysis can be assessed by computational–statistical methods
(18) and by examining the conclusions drawn using independent clinical and biologic
parameters. For example, presumptive new tumor classes can be examined for distinct
morphologic characteristics, clinical behavior, cytogenetic associations, and biological
features. Some examples of this type of biologic validation of gene expression profil-
ing studies will be described in later sections. Valid scientific observations should be
reproducible, which means that the study of another series of cases should provide
similar results, not only in the same laboratory, but also in different laboratories using
the same or different platforms of analysis. To compare experimental data from across
laboratories demands that primary data be accessible and readily translatable–standard-
ized. The experimental methods and the analytical approach should be presented in
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sufficient details for independent analysis by other laboratories. Since gene expression
profiling is still a new approach in studying cancer biology, open exchange of informa-
tion and techniques among laboratories is important for validating this approach and
advancing the field (16,19).

MICROARRAY ANALYSIS
OF B CELL LYMPHOPROLIFERATIVE DISORDERS

Gene Expression Profiling Studies on Diffuse Large B Cell Lymphoma

Since a gene expression profile is limited by the genes on the microarray, it is impor-
tant to include as many relevant genes as possible. The Lymphochip, utilized by
Alizedah and coworkers (20), is a cDNA microarray specifically designed for the study
of lymphoproliferative disorders, since it includes many genes from a normalized ger-
minal center B cell cDNA library and cDNA libraries from a number of different lym-
phoid malignancies. The Lymphochip also contains a curated set of genes known to be
important in lymphocyte biology and oncogenesis. About one-quarter of the genes that
are present are duplicated on the Lymphochip to provide quality control for the unifor-
mity of the spots across the array and the hybridization process. The reference standard
mRNA (19) consists of a mixture of mRNA from nine different lymphoma cell lines
and is used in all experiments. The expression level of each mRNA species in the
tumor sample is expressed as a ratio to the corresponding mRNA in the reference stan-
dard, thus allowing gene expression in different tumor samples to be compared with
each other.

The initial study using the Lymphochip included 42 tumor biopsies of diffuse large
B cell lymphoma (DLBCL), 9 samples of follicular lymphoma (FL), 11 samples of
chronic lymphocytic leukemia (CLL), as well as representative normal or activated T
and B lymphocytes, and reactive lymphoid tissue (19).

Unsupervised hierarchical clustering (21) divided the lymphoproliferative disorders
into three main clusters corresponding largely to DLBCL, FL, and CLL. It should be
noted that DLBCL differed in several ways from FL and CLL, which may influence the
clustering results. The DLBCL mRNA was extracted from frozen tissue samples con-
taining stromal elements and infiltrating T cells and macrophages, whereas most of the
FL and all CLL samples were purified CD19 positive cells. A gene expression signa-
ture of cellular proliferation was highly expressed in DLBCL, since there was a high
proliferative fraction in these tumors in contrast to FL and CLL. The differential and
coordinate expression of large sets of genes, such as the proliferation signature and the
lymph node stromal gene signature, can contribute significantly to the way tumors are
segregated by hierarchical clustering or other pattern recognition algorithms. Predomi-
nant gene expression signatures may obscure more subtle similarities or differences
among cases, either within the same tumor type or between tumor groups. Care must be
taken to consider the competing effects of different gene expression signatures  on the
clustering of tumors by gene expression profiling.

To examine whether the DLBCL can be further divided into subgroups, the cases were
examined for expression of genes defining the germinal center (GC) B cell signature. Two
subgroups were apparent with one subgroup expressing genes in the normal GC-B
cell signature, whereas the other subgroup express these genes at low levels (Fig. 2).
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Fig. 2. DLBCL can be divided into two subgroups by gene expression profiling: The GCB
group (orange dendrogram) with gene expression profile resembling normal GC-B cells, and
the AB group with a profile resembling peripheral blood B cells activated by mitogenic stimuli.
Reproduced with permission from ref. 19.
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In contrast, many of the genes that are induced during mitogenic activation of periph-
eral blood (PB) B cells were selectively expressed in this latter group of DLBCL. There-
fore, DLBCL seems to be divisible into at least two major subgroups: one with a gene
expression profile similar to normal GC cells, termed GC-B cell-like (GCB) DLBCL,
and the other with an expression profile similar to activated PB-B cells, termed acti-
vated-B cell-like (ABC) DLBCL.

Evidence in Support of the Existence of Two Subgroups of DLBCL

The overall survival of these two subgroups of DLBCL was compared, and the GCB
subgroup was found to have significantly better survival. This survival advantage was
seen even when patients with low IPI were analyzed separately (Fig. 3). Two biologi-
cally different entities do not necessarily have to have different clinical survival rates,
but when significant survival differences are observed, it lends credence to the
distinction.

Fig. 3. Patients in the GCB group have significantly better survival than those in the ABC
Group (A). This survival difference is observed even with the subset of patients in the low
clinical risk category. Reproduced with permission from ref. 19.
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One of the cardinal features of GC-B cells is the occurrence of ongoing somatic
hypermutations in their rearranged immunoglobulin heavy chain variable region (VH)
genes. If GCB DLBCLs have an active GC-B cell gene expression program, it is
expected that they would have ongoing somatic mutation of their rearranged VH genes.
This hypothesis was explored by Lossos and coworkers (22), who examined seven
cases of the GCB DLBCL and seven cases of ABC DLBCL. All seven GCB DLBCLs
had ongoing VH gene hypermutation, whereas only two out of seven ABC DLBCLs
showed this characteristic (Fig. 4). The two ABC DLBCL cases with VH gene muta-
tions had a lower frequency of ongoing mutation than observed in GCB DLBCLs.

The t(14;18) (q32;q21) involving the bcl-2 gene is a hallmark of FL and is believed
to be the initiating event in its pathogenesis (23,24). This translocation is also present
in about 20% of de novo DLBCL (25,26). It is possible that bcl-2 translocation may
also serve as an initiating event in this group of DLBCL, and if this is true, this group of
tumors may also originate from GC-B cells and may retain the GCB expression profile

Fig. 4. DLBCLs in the GCB group have ongoing somatic hypermutation of their VH genes.
All seven cases in the GCB group show ongoing somatic hypermutation whereas, only two out
of seven in the AB group do. Reproduced with permission from ref. 22.
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as a fully developed DLBCL. Thirty-five cases of DLBCL with known gene expres-
sion profiles were examined for t(14;18) by fluorescence in situ hybridization (FISH)
(15). Seven cases were found to have the translocation, and all seven had the GCB
profile (Fig. 5). It is interesting that six out of seven of the cases clustered tightly with
normal GC-B cells and a t(14;18)+ cell line (SU-DHL-6), indicating closely related
gene expression profiles. The exclusive presence of t(14;18) in GCB DLBCLs strongly
supports the view that the different DLBCL gene expression subgroups are patho-
genetically distinct diseases.

Another pathogenetic distinction between the DLBCL subgroups involves the
nuclear factor (NF)-κB signaling pathway. NF-κB refers to a family of transcription
factors that participate in a variety of immune and inflammatory responses, and they
have potent anti-apoptotic effects. NF-κB is present in a latent form in the cytoplasm of
many cells as a complex with an inhibitory protein, IkBα. A variety of cell surface
receptors can activate a kinase complex termed IkBα kinase (IKK) that phosphorylates
IkB, leading to its ubiquitination and degradation in the proteosome. When IkBα is
degraded, NF-κB can travel to the nucleus and transcriptionally activate a set of target
genes that carry out its biological functions. ABC DLBCLs were noted to express sev-
eral of these NF-κB target genes highly, and this was not a feature of GCB DLBCLs
(27). Cell line models of ABC DLBCL also expressed these target genes and had con-
stitutively nuclear NF-κB secondary to constitutive activity of IKK. Importantly, inter-
ference with the NF-κB pathway in ABC DLBCL cell lines induced cell death, whereas
NF-κB inhibition had no effect on GCB DLBCL cell lines. These results highlight the
pathogenetic differences between ABC and GCB DLBCLs and validate the NF-κB
pathway as a new molecular target for therapeutic intervention in the subgroup of
DLBCL, which is relatively refractory to current anthracycline-based combination
chemotherapy.

Fig. 5. Bcl-2 translocation detected only in the GCB group. Bcl-2 translocation to the IgH
locus was examined by FISH on interphase nuclei (35 out of 42 cases were studied). Cases with
(–) are negative for the translocation, while cases with (+) are positive, and all positive cases
are within the GCB group. Six of the seven positive cases cluster tightly together and with
normal GC-B cells as well as a cell line with bcl-2 translocation (SUDHL-6), indicating a
closely related gene expression profile. Reproduced with permission from ref. 15.
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Validation by Studying a New Larger Series of DLBCL Cases

A large consortium of collaborating institutions, termed the Lymphoma–Leukemia
Molecular Profiling Project (LLMPP) has just completed a new study of 274 cases of
DLBCL and confirmed the existence of the GCB and ABC DLBCL subgroups (28)
(Fig. 6). Clinically, a significantly different overall survival was again observed
between these two groups. A third subgroup (Type 3), which did not highly express
genes characteristic of either GCB or ABC DLBCL, was also delineated, and this sub-
group had an overall survival rate similar to that of ABC DLBCL.

A survey of these LLMPP cases with PCR for the t(14;18) showed that all positive
cases were confined to GCB DLBCL, confirming the previous FISH analysis on a
smaller number of cases (15). Another interesting observation was that c-rel gene
overexpression and genomic amplification was found exclusively in the GCB DLBCL
subgroup (28) (Fig. 6B). This finding again shows the association of an independent
biologic variable, the amplification of c-rel, with a distinct subgroup of DLBCL defined
by gene expression profiling.

Identification of Prognostic Markers
While there is good evidence supporting the notion that the DLBCL gene expression

subgroups represent pathogenetically and clinically distinct diseases, there remains
substantial heterogeneity in clinical outcome within each subgroup (19). Additional

Fig. 6. Gene expression profiling of 274 cases of DLBCL confirms the presence of a GCB
subgroup (orange dendrogram) and an AB subgroup (blue dendrogram). A smaller subgroup,
type 3 (purple dendrogram) is also identified and characterized by the low expression of genes
generally overexpressed in the GCB and ABC groups. Panel B shows the overexpression of c-rel
mainly in cases of the GCB group, and c-rel gene amplification was detected in 18 cases with
all of them in the GC-B group also. A group of ESTs are coordinately expressed with c-rel and
correspond to a group of genes close to the c-rel locus. Reproduced with permission from ref. 28.
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genes, which have significant influence on tumor biology and patient survival and are
not accounted for by the DLBCL subgroup distinction, must, therefore, exist. It is,
therefore, an essential next step to identify individual genes or gene expression signa-
tures that can segregate functionally and clinically distinct groups within the already
defined DLBCL subgroups. Response to treatment and survival can be used to guide
this discovery process, looking for genes with expression patterns that correlate with
favorable or poor survival. This type of “supervised” analysis has been conducted on
the LLMPP DLBCL cases, and several recurrent biological themes were observed
among the genes that predicted clinical outcome (28). As expected from previous work,
genes in the GC-B cell signature were associated with good prognosis, and this entire
signature could be represented by three genes after data reduction. On the other hand,
the overexpression of many of the genes in the proliferation signature was associated
with poor prognosis, and this signature could also be represented by three genes. Fur-
thermore, many other genes that are predictive of favorable outcome could be classi-
fied into two gene expression signatures involving the host immune response, the major
histocompatibility complex (MHC) class II and reactive lymph node signatures. Only
one other gene (bmp-6) outside of these four signatures can significantly improve the
predictor when added to the model. These genes could be combined into a multivariate
gene expression outcome predictor that could be useful clinically in the management
of DLBCL patients (28) (Table 1).

Shipp and colleagues (16), performed an analysis on 58 cases of DLBCL using an
oligonucleotide microarray containing 6817 genes. They used the gene expression data
and the available clinical data to develop an outcome predictor through a supervised
learning approach. After analysis with multiple cross-validation loops, they decided on a
13-gene predictor of clinical outcome. Three of the genes in the predictors were present
on the Lymphochip microarray, and the ability of these genes to predict outcome was
assessed using the published data set of Alizadeh et al. (19). The expression of these
genes correlated with outcome in this previous series of patients (neuron-derived
orphan receptor [NOR] 1, p = 0.05; phosphodiesterase [PDE]4B, p = 0.07; and protein
kinase C [PKC]-β2 isoform, p = 0.04), demonstrating the reproducibility of gene
expression profiling in identifying clinical prognostic markers. Interestingly, two of
these genes that predicted poor outcome, PKC-β2 and PDE4B, are highly expressed in
ABC DLBCL relative to GCB DLBCL (19), and thus, their predictive power may
reflect the different clinical outcomes of these two DLBCL subgroups.

The known functions of some of the genes in these predictors suggest the molecular
mechanisms that are responsible for their influence on patient survival. Some of these
genes are involved in the regulation of cellular proliferation, or the determination of
B cell responses and cell fate on receptor signaling, and hence, may determine tumor
cell growth, survival, and the susceptibility to apoptosis after the administration of
chemotherapy. Other genes may be an indicator of the immune interaction between the
host and the tumor (16,28). The mechanisms of action of the some of the remaining
genes are not obvious. Further studies should aim at precisely defining or confirming
the mechanisms by which each of the molecular markers influences survival to gain a
better understanding on how to modify these processes to improve the treatment and
survival of patients.
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Table 1
Predictors for Survival in DLBCL

Representative genes
Signature in outcome predictor Outcome prediction

GC-B cell BCL-6 Good
CCAT-1/Centerin
GCAT2/HGAL

MHC class II DP-α Good
DQ-α
DR-α
DR-β

Lymph node α-Actinin Good
Collagen type III α 1
Connective tissue growth factor
Fibronectin
KIAA0233
Plasminogen activator, urokinase

Proliferation c-myc Bad
E21G3
Nucleophosmin/nucleoplasmin 3

Other BMP6 Bad

STUDIES ON CHRONIC LYMPHOCYTIC LEUKEMIA
Though CLL is the most prevalent leukemia, very little is known about the molecu-

lar pathogenesis of this disorder. Recent examination of immunoglobulin (Ig) genes in
CLL cells revealed two forms of the disease, one with somatic mutations of Ig genes
(Ig-mutated CLL) and one with Ig genes that are germ line in sequence (Ig-nonmutated
CLL). Ig-nonmutated CLL patients have a more aggressive clinical course, whereas
Ig-mutated CLL patients often require late or no treatment (29,30). These observations
suggested that CLL might encompass two different diseases.

This possibility was tested by gene expression profiling experiments, which revealed
that all CLL cases shared expression of a common set of CLL “signature” genes, which
distinguished CLL from other normal and malignant cells (31,32). Notable among these
signature genes are the high expression of Wnt-3 and Ror-1, which may participate in
cellular proliferation. The overexpression of EPAC and CDC25 may activate the Raf/
ERK pathway, while up-regulation of bcl-2 and down-regulation of a number of
proapoptotic genes may contribute to the apoptosis-resistant phenotype. This observa-
tion suggests that Ig-unmutated and Ig-mutated CLL share a common oncogenic
mechanism and/or have a common cell of origin. However, a directed search revealed
a relatively small set of genes (<160 genes) that distinguished the two forms of CLL
(31). A selected subset of these genes could be combined to create a predictor of the
CLL subtype distinction that correctly assigned 25 of 27 (31). The most differentially
expressed gene between the CLL subtypes was ZAP70, and this single gene alone or in
combination with one or two additional genes could be used as the basis of a simple
diagnostic test for this clinically important distinction between Ig-nonmutated and
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Ig-mutated CLL (31). A 23-gene classifier has also been proposed by Klein and col-
leagues (32), and using this classifier, they were able to correctly predict 12 of 14 cases
regarding their mutational status.

GENE DISCOVERY
Many of the elements on the Lymphochip microarray represent genes with unknown

function. These genes were identified as expressed sequence tags (ESTs) during high-
throughput sequencing of lymphoid cDNA libraries. When the expression pattern of a
gene of unknown function correlates closely with the expression profile of genes of
known function, it is reasonable to hypothesize that the novel gene may share func-
tional properties with the known genes. In this way, gene expression profiling may
provide insight into the function of some of these novel genes.

A number of genes are differentially expressed between GCB and ABC DLBCLs
with high statistical significance (Table 2). Many of the differentially expressed genes
that are highly expressed in GCB DLBCL are novel genes from the GC-B cell library
and may well be important in the physiology of normal GC-B cells. For example, one
of these novel genes corresponds to a recently cloned gene, termed centerin, from a
differential display experiment (33). Centerin is a member of the SERPIN gene family
located on chromosome 14q32. Several novel genes are expressed in very similar pat-
terns to centerin and may be serving similar or related functions in GC-B cells. It will
be very interesting to characterize this group of genes further, as they may provide
insights into GC differentiation and function, and into the biology of lymphomas that
arise from GC-B cells.

Gene discovery can also be guided by genetic data on the assumption that certain
genetic abnormalities may be associated with a unique and identifiable gene expres-
sion profile. Hence, a correlation between a genetic abnormality and a gene expression
profile may reveal the functional consequence of the genetic lesion, and conversely,
in some instances, the unique profile may help to identify the candidate gene involved
in the abnormal genetic locus. Cytogenetic data are, therefore, a very important source
of information. Cytogenetic data may be enriched by one of the multicolor karyotyping
techniques such as M-FISH or spectral karyotyping (SKY) (34). Unfortunately, gener-
ally only a relatively minor fraction of cases has the requisite materials for these studies.
Comparative genomic hybridization (CGH) is a useful method to obtain amplification
and deletion data over the entire genome (34,35). Since this technique does not require
tumor metaphase preparation, it can be performed on all cases with adequately repre-
sented tumor tissue and sufficiently preserved DNA. Newer CGH techniques use cDNA
(36) or bacterial artificial chromosomes (BAC) (37,38) microarrays as indicators of
hybridization instead of a normal metaphase spread. The new platforms afford much
higher resolution and promise to enrich our knowledge of genomic changes in tumors
that can be correlated with tumor gene expression profiles. There are specific genetic
abnormalities that are known to have a significant influence on patient survival. The
status of these genes may be assessed by appropriate assays, preferably in a high-
throughput format. Examples include: loss of heterozygosity (LOH). Mutation of p53;
LOH methylation of p16 and p15 and c-myc translocation. This additional information
may be added to correlative studies aimed at further elucidating the functional changes
associated with the genetic abnormalities and at predicting clinical outcome.
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HOST INTERACTION WITH LYMPHOMA

Some of the gene expression signatures that predict clinical outcome, and some of
the clinical parameters in the IPI suggest an important interplay between the host and
the tumor. Tumor invasion requires the breakdown of the surrounding tissue and the
generation of new tissue stroma and blood vessels. Matrix metalloproteinases (MMP)
have been implicated in tumor invasion and metastasis (39,40–42). In DLBCL, MMP-2,
MMP-9, and tissue inhibitor of metalloproteinase (TIMP)-3 are generally expressed at
a high level, whereas MMP-11, MMP-12, and TIMP-2 are present at a low level. The
expression of fibronectin and osteonectin are highly correlated with the expression
MMP-2 and MMP-9, suggestive that these MMPs are likely to be important in tissue
remodeling in DLBCL. Immunohistochemical studies demonstrated that MMP-2 was
present in macrophages and vascular endothelial cells, but not DLBCL cells, suggest-
ing that macrophages recruited to the tumor are the source of MMP-2 and they may
play an important role in tissue remodeling. The cellular origin of the TIMPs and MMPs
and their interactions and roles in tumor invasion and metastasis of DLBCL merits
further investigations.

A T cell infiltrate is always present in DLBCL, but the extent of infiltration is very
variable and is correlated with the CD3 delta mRNA level. The expression of certain
groups of genes tend to be correlated with the levels of CD3-δ transcript. Genes that
are overexpressed in T cell-rich cases include many cytokines, cytokine receptors,
MHC class II molecules, adhesion molecules, and molecules associated with T and NK
cell activation. These results are suggestive of the presence of an activated T cell popu-
lation in the DLBCL. This activated population is quantitatively and likely qualita-

Table 2
Examples of Differentially Expressed Genes in Subtypes of DLBCL

Up-regulated in GCB subtype

Unknown UG Hs. 169565; Clone=825217
Unknown UG Hs. 120716; Clone=1334260
Unknown UG Hs. 224323; Clone=1338448
Unknown UG Hs. 136345; Clone=746300
JAW1; Clone=815539
A-myb; Clone=1367994
Unknown UG Hs. 208410; Clone=135036
Unknown UG Hs. 49614; Clone=814622

Up-regulated in ABC subtype

Unknown UG Hs. 169081; Clone=1355435
Deoxycytidylate deaminase; Clone1302032
T-cell protein-tyropsine phosphatase; Clone=665903
Potassium voltage-gated channel; Clone=1337856
Zinc finger protein 42 MZF-1; Clone=490387
T-cell protein-tyrosine phosphatase; Clone=740402
Cyclin D2; Clone=1357360
MCL1; Clone=711870
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tively variable in different cases. How the T cell response alters the biology of the
tumor and survival of the patient and what determines the quantity and quality of this
T cell infiltrate are interesting topics for future studies.

PERSPECTIVES

Gene expression profiling studies of malignant diseases were started only a few
years ago, but the results obtained in this short period of time have clearly demon-
strated the potentials of this approach to identify clinically relevant subgroups of
lymphoproliferative disorders. The molecular mechanisms responsible for these differ-
ences are beginning to be unraveled, and it is highly likely that some of the genes and/
or genetic pathways involved will be suitable targets for future therapeutic interven-
tion. Currently, the options for treating malignant lymphomas have expanded beyond
the application of multi-agent chemotherapy, and have included monoclonal antibod-
ies, antisense nucleic acids, and antagonists to several molecular targets. The options
are still quite limited, but hopefully, this situation will begin to improve as additional
important molecular targets are identified by gene expression profiling and other novel
approaches. Studies on DLBCL have shown that a relatively small panel of genes can
serve as a useful predictor of survival. It is a good possibility that this will be true for
other types of lymphomas, and a diagnostic panel containing all the relevant molecular
markers will be defined in the near future. This panel may become available in a
microarray or other formats. Every tumor can be profiled at the time of the diagnostic
biopsy for prognostication and treatment decisions. As the molecular mechanisms that
determine the biology of the tumor and clinical survival of the patients are defined,
novel molecular targets for therapeutic intervention will be identified. Comprehensive
molecular diagnostics of lymphoma and individualized therapy based on molecular
lesions may become the standard of care with marked improvement in survival and
reduction in treatment-associated toxicity and complications.
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Gene Expression Profiling of Brain Tumors

Meena K. Tanwar and Eric C. Holland

INTRODUCTION

Microarray analysis is a practical and efficient method for gene expression profiling
of human tumors. However, it can become complicated depending on the characteris-
tics of the tumor system under study. In the case of brain tumors, the two major issues
that must be taken into consideration are: the functional, regional, and cellular hetero-
geneity of the normal brain, and the diversity of intracranial neoplasms. These tumors
differ in their histology, epidemiology, genetic alterations, cells of origin, and prog-
noses. Through large-scale analyses, such as microarrays, it is possible to gain a better
understanding of brain tumor biology and to address important clinical issues.

Development and Normal Brain

The normal adult brain is composed of a heterogeneous population of cells that arise
from multipotent stem cells. The developing mammalian embryo consists of three main
layers of cells: the endoderm, the ectoderm, and the mesoderm. The ectoderm is the
outermost layer and gives rise to all major tissues of the central nervous system (CNS)
and peripheral nervous system. The neural plate, which is the dorsal region of the ecto-
derm, folds to form the neural tube and the neural epithelial cells that line the wall of
the neural tube. Multipotent neuronal stem cells from this region give rise to neurons
and glia, including oligodendrocytes and astrocytes (1–3). The differentiation of neu-
ronal and glial cells into mature CNS cell types is regulated by signaling from growth
factors and other environmental influences. For example, glial progenitor cells can
differentiate into type 1 astrocytes, type 2 astrocytes, or oligodendrocytes in the pres-
ence or absence of growth factors such as platelet-derived growth factor (PDGF), basic
fibroblast growth factor (bFGF), or ciliary neuronotrophic factor (CNTF).

Within the brain, the appearance, function, and presumably gene expression pat-
terns of neurons, astrocytes, and oligodendrocytes are also topologically complex.
For example, neurons are found primarily in the gray matter, oligodendrocytes in the
white matter, and astrocytes in both. Neurons are highly variable in appearance and
function and can be regionally clustered in cortical layers or as nuclei, which are func-
tional units of adjacent neurons. Taken as a whole, the normal brain is composed of a
vastly heterogeneous population of cells, organized regionally. Similarly, microarray
analyses may reflect these topological differences, depending on what part of the brain
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the samples are obtained from. This is an important consideration when interpreting
the gene expression patterns of different regions of normal brain.

Brain Tumors

Brain tumors account for approximately 2% of cancer-related deaths overall and
20% of malignancies under the age of 15 (4). In the U.S., there are approx 17,000
newly diagnosed primary brain tumors per year and approx 11,500 deaths (5). Accord-
ing to the World Health Organization (WHO), there are six major categories and up to
130 subcategories of CNS tumors (6). The major divisions of CNS tumors are: neu-
roepithelial tumors, tumors of the meninges, lymphomas and hematopoietic tumors,
germ cell tumors, tumors of the sellar region, and metastatic tumors. Primary CNS
tumors are those that originate in or adjacent to the brain parenchyma, whereas second-
ary tumors are metastases that originate from a distant site, but reestablish and grow in
the CNS.

Primary Intraparenchymal Tumors

Primary brain tumors are those that arise either within (intra) or adjacent (extra) to
the brain parenchyma, which consists of neurons and their supporting cells. The most
common primary intraparenchymal brain tumors are gliomas and medulloblastomas,
which account for approx 65% of primary CNS tumors and 20% of pediatric CNS
tumors, respectively (6,7). Gliomas are classified as neuroepithelial tumors and are
thought to arise from a common glial-precursor cell population. Gliomas are subdi-
vided into astrocytomas, oligodendrogliomas, and ependymomas. Astrocytomas are
the largest subgroup of gliomas and are classified into four grades according to the
WHO. Grade I tumors are pilocytic astrocytomas. They occur most often in children
and young adults and are histologically distinct from diffuse astrocytomas of grades
II–IV, in that they are well circumscribed tumors with little infiltration into surround-
ing brain and limited malignant potential (8). Grade II diffuse low-grade astrocytomas
tend to infiltrate surrounding normal brain tissue, have an increased number and size of
astrocytes, rare mitoses, and no nuclear atypia, microvascular proliferation, or necro-
sis. The median age of occurrence of grade II gliomas is 35 yr old, and survival after
diagnosis is about 7 yr, however the strongest prognostic factor is age. These low-
grade gliomas (LGGs) have some tendency for progression to grade III or IV gliomas
after 4 to 5 yr.

Grade III gliomas, also referred to as anaplastic astrocytomas (AA) occur, in large
part, as a result of tumor progression from low-grade astrocytoma. Histologically, AAs
typically have increased cellularity, nuclear atypia, mitotic activity, and no microvas-
cular proliferation or necrosis. The average age of onset is 41 yr, and they commonly
progress to grade IV glioblastoma multiforme (GBM) within 2 yr of diagnosis.

GBMs are the highest grade of astrocytic tumors and have the worst prognosis. They
account for approx 50% of gliomas and fall into two categories. Primary GBMs refer to
tumors that arise de novo, with no previous clinical history of glioma and are more
common in older adults (median age of 55 yr). Secondary GBMs are the result of tumor
progression from a preexisting lower grade lesion, and the median age of occurrence is
45 yr old. These two classes of GBMs can also be distinguished on the basis of chro-
mosomal alterations, such as EGFR amplification in primary GBMs and mutations in
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TP53 in secondary GBMs. Histologically, both types of tumor are diffuse with hetero-
geneous, anaplastic, and poorly differentiated cells, high mitotic indices, and promi-
nent neovascularization and/or necrosis (Fig. 1). More often than not, the blood brain
barrier is disrupted due to aberrant blood vessel generation. This type of vascular
abnormality, which is not a characteristic of normal brain and lower grade astrocyto-
mas, results in leakage of intravascular molecules into the tumor mass and allows for
detection of high-grade gliomas by intravenous contrast enhancement on magnetic reso-
nance imaging (MRI) scans. Frequently, there are areas of enhancing tumor surrounded
by nonenhancing regions consisting of tumor cells invading adjacent normal brain (Fig. 2).
Patients diagnosed with GBM have very poor prognoses, with a median survival time
of about 50 wk even after surgical resection, radiation, and chemotherapy.

Oligodendrogliomas are another subset of gliomas, which account for approx 5% of
all intracranial neoplasms and 14% of gliomas (9–11). They differ from astrocytic
tumors in that the tumor cells have small rounded nuclei and clear scant cytoplasm, and
they resemble oligodendrocyte morphology. These tumors frequently have deletions
on chromosomes 1p and 19q, however the tumor suppressor genes on these chromo-
some arms are unknown (12). Anaplastic oligodendrogliomas display features of
malignancy, such as high mitotic activity, microvascular proliferation, and necrosis.
Reports on patient prognosis have varied considerably from 3–10 yr for grade II tumors
(13–15) and <1 yr to 4 yr for grade III anaplastic oligodendrogliomas (13,15). Com-
bined yet distinct astrocytic and oligodendrocyte cell morphology is observed in
oligoastrocytomas or anaplastic oligoastrocytomas. Genetically, alterations character-

Fig. 1. Histological section of a GBM, demonstrating tumor heterogeneity. This section
illustrates areas of dense tumor (green arrow), tumors cells invading adjacent normal brain (red
arrow), areas of vascular proliferation (yellow arrow), and areas of necrosis (blue arrow).
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istic of both tumor types are seen, but are detected uniformly across the tumor cell
populations, indicating clonal expansion from a common precursor cell (16). Survival
for patients with oligoastrocytomas has been reported as 3–6.3 yr (17–19) and <1 yr to
3 yr for anaplastic oligoastrocytomas (19,20).

Ependymomas are the smallest subgroup of gliomas and are more common in chil-
dren and adolescents than in adults. They consist of neoplastic ependymal cells and are
presumed to originate from the lining of the ventricle walls. These tumors are well
demarcated, have low cellularity and mitoses, and have perivascular pseudorosettes
and ependymal rosettes. Ependymomas do not exhibit the genetic mutations, deletions,
and amplifications seen in astrocytomas and oligodendrogliomas. Allelic loss of DNA
sequences on chromosome 17p has been found in 9 of 18 pediatric ependymomas.
By chromosomal location, this appears to correspond to TP53, but a candidate tumor
suppressor gene has not yet been identified (21). Unlike astrocytic tumors, children
with ependymal tumors have worse prognoses than adults (22).

The most common intraparenchymal tumors and the leading cause of cancer-related
deaths in the pediatric age group are the medulloblastomas. These tumors appear to
arise from the external granule cell layer (EGL) during cerebellar development.
The molecular abnormalities in these tumors indicate that a blockade in differentiation
of EGL cells may contribute to the formation of these lesions (23). Although many of
these tumors can be successfully treated with combinations of surgery, radiation, and
chemotherapy, many children with medulloblastomas are not cured, and those that are
cured experience significant side effects from treatment. Clearly, improvement in cur-
rent treatment strategies is needed.

Fig. 2. MRI scans illustrating heterogeneity within CNS tumors. (A) T1-weighted scan dem-
onstrating a contrast enhancing mass in the right frontal region (closed arrow). Within the
enhancing portion of the tumor there are regions that do not enhance correlating with necrosis.
Surrounding the enhancing mass, a region of nonenhancing tumor and edema is seen, corre-
sponding to tumor cells invading into the adjacent brain tissue (open arrow). (B) T2-weighted
scan highlighting the invading tumor and edema (open arrow). (C) Postresection T1-weighted
scan with contrast, illustrating the removal of the enhancing mass (closed arrow). The sur-
rounding edema and invading tumor cells are still present (open arrow) and will eventually give
rise to tumor recurrence.
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Metastatic Intraparenchymal Tumors

Metastatic brain tumors from systemic cancers are the most common intracranial
neoplasm, with a slightly higher incidence than gliomas. Due to their high prevalence,
lung cancer and breast cancer are the most common metastatic brain tumors (24). Other
tumors that have a high incidence of metastasis to the brain, but are less common,
include melanoma, renal cell carcinoma, choriocarcinoma, and colorectal cancer, how-
ever rare metastases from other tumor types are also seen. Unlike diffuse gliomas,
brain metastases are spheroid and well demarcated from the normal brain parenchyma.
Furthermore, they are often surrounded by an extensive zone of edema, due to the
disruption of the blood brain barrier caused by neovascularization, and large tumors
also exhibit a central zone of necrosis. Disruption of the blood brain barrier allows the
detection of metastatic tumors through contrast enhancement on MRIs. In most cases,
the histological characteristics of metastatic lesions in the brain are similar to those of
the primary tumor of origin. Metastases are seen more frequently in older patients, and
important prognostic factors include age, location and number of metastases, and pro-
gression and status of the primary lesion. In the case of a single metastatic legion,
surgery is often an option depending on the tumor location. However, when multiple
metastases are present, surgery is frequently not possible. The median survival time for
metastatic brain cancer patients is highly variable. On average, survival of patients
with single metastases treated with stereotactic radiosurgery and whole-brain radiation
therapy (WBRT) is 10 mo (25–30), 4 mo in the case of multiple metastases treated with
WBRT (31), and 1 to 2 mo with no treatment (32,33).

Extraparenchymal Tumors

While the majority of intracranial neoplasms arise within the brain parenchyma,
there are a number of tumors that develop outside of this region. The most common of
the extraparenchymal tumors are the meningiomas. These tumors comprise approx 20%
of brain tumors (34), are primarily benign, and arise from the cap cells of the
acrachnoid. Other examples of extraparenchymal tumors include acoustic neuromas,
craniopharyngiomas, and pituitary adenomas and carcinomas. Pituitary adenomas
account for 10% of all intracranial neoplasms. They are functionally classified accord-
ing to secretion of growth hormone (GH), prolactin (PRL), adrenocorticotrophic hor-
mone (ACTH), or thyroid stimulating hormone (TSH). These tumors do not arise in the
brain parenchyma and are not invasive; therefore, histologically they consist primarily
of tumor cells and blood vessels. Although most of these tumors are benign in charac-
ter, malignant forms (pituitary carcinoma) that grow rapidly, spread, and recur, do exist.
The molecular basis for the aggressive behavior of these tumors has yet to be identified
(35). In general, all extraparenchymal tumor specimens, unlike diffuse gliomas, con-
sist of solid tumor cells without contamination of normal brain.

MATERIALS AND METHODS
Tissue Collection and Processing

Obtaining high quality brain tumor tissue requires the surgeon to properly resect and
preserve the tissue for research purposes. Frequently, brain tumors are resected using a
suction method in which most of the tumor is removed in small pieces, through a
vacuum. However, in order to collect sufficient tumor specimen for experimental analy-
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sis, it is preferable to excise the tumor en bloc, resecting around the tumor mass to
maximize the amount of tumor tissue collected. The macroscopic appearance of brain
tumors, especially of high-grade gliomas, is variable. The surgeon can visually distin-
guish highly cellular, diffusely infiltrating, and necrotic regions. These regions will
clearly have different expression profiles. Therefore, close and productive communi-
cations between the surgeon and molecular biologist is critical if useful data are to be
derived from these experiments.

In most cases, the tissue specimen must be preserved by flash freezing in liquid
nitrogen and subsequent storage at –80°C or in a liquid nitrogen chamber. This requires
that the liquid nitrogen be available in the operating room, allowing for immediate
tissue preservation and minimal RNA degradation. Once the tissue is collected, it can
be ground to powder form in the presence of liquid nitrogen or dry ice, using a sterile
mortar and pestle or mechanical homogenizer. Subsequent RNA, DNA, or protein
extraction can then be performed.

Control Tissue

Normal brain controls are even more difficult to obtain than brain tumor tissue
because of the obvious ethical problem in removing normal brain tissue from patients.
This problem has forced many groups to take the alternate route of using surgically
removed, and otherwise discarded, nontumorigenic tissue. Although these tissue speci-
mens are not cancerous, they should not be considered completely normal either. Fre-
quently, tissue is used from brain trauma or epileptic patients. Many groups have
published microarray results using these types of tissue as their normal controls (36–39).
Another source of “normal” brain tissue that has been used is from postmortem speci-
mens (36), and it has been shown that good quality mRNA can be obtained even from
postmortem brain specimens (40).

One alternative to these methods is the use of normal tissue removed during resec-
tion of metastatic lesions. As discussed above, metastatic brain tumors are generally
spheroid, noninvasive, and easily distinguishable from surrounding normal brain. Dur-
ing resection of deep metastatic lesions, it is frequently necessary to remove overlying
normal cortex, which can be collected, preserved, and used as normal brain controls.
However, gene expression analysis of any proposed control brain tissue, including the
above mentioned examples, compared to actual normal brain has not been done. Such
comparisons will be necessary in order to determine the validity of the control samples.

A further consideration in obtaining normal brain tissue controls for microarray
analysis is the heterogeneous mixture of component cells. Each region of the brain is
composed of many cell types. This could influence the results of a microarray
experiment, depending on what region of normal brain was used in the analysis. It may
be necessary to collect tumor samples and normal brain tissue from corresponding
brain regions for more accurate expression analysis.

Tumor Heterogeneity

A major problem area in microarray analyses of various tumors is that the expres-
sion profiles often reflect changes seen in a mixed population of tumor and nontumor
cells, including stromal cells, endothelial cells, and inflammatory cells. The substan-
tial regional heterogeneity seen within tumor samples (Fig. 1) raises concern as to
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whether gene expression changes are due to actual effects of tumor progression or to
the varied contents of the sample. Furthermore, even among adjacent tumor cells,
there is substantial heterogeneity of structure and cell morphology, such as
pseudopalisading around regions of necrosis and giant tumor cells adjacent to clus-
ters of small cells.

One approach to addressing intratumoral heterogeneity is the use of laser capture
microdissection (LCM). This technique allows the selection of the exact cells or cell
type desired for microarray analysis. For example, in the case of gliomas with a hetero-
geneous population of normal cells and tumor cells in a given specimen, it is possible
to selectively sort cancer cells and similarly, normal cells for gene expression analysis,
by using immunohistochemical markers (41). Furthermore, cells adjacent to necrotic
areas could be compared to cells infiltrating normal brain near the tumor periphery,
using LCM technology on a given tumor specimen.

RESULTS

Validation of Expression Profiles

Once the results from gene expression profiling experiments are obtained, it is criti-
cal that the data be verified, in order to draw sound conclusions. Standard verification
techniques include Northern blot or real-time reverse transcription polymerase chain
reaction (RT-PCR) to validate transcript levels. Most array experiments have
shown that independent methods of verification correlate well with the array data
(36–39,42–44).

Not all increases in mRNA expression yield a corresponding increase in protein
expression. Transcript levels seen in tumor samples do not always translate to increased
protein expression because of issues such as transcript stability and translation effi-
ciency. Western blot analysis is a quantitative way of verifying protein expression,
while immunohistochemistry is required for identifying the cell-specific expression of
a particular protein. Because of the heterogeneity of tumor samples, it is important to
determine whether the tumor cells are expressing the gene of interest, or if it is actually
expressed by intermittent normal, inflammatory, stromal, or endothelial cells. Many
groups have verified subsets of array genes to be overexpressed at the protein level as
well (36,37,39,43,45,46).

Clinical and Pathologic Issues and Microarray Utility

With proper experimental design, many important clinical and pathologic issues can
be addressed and potentially resolved through microarray analysis studies. One clini-
cal issue of concern is detection of gliomas. Microarray analysis can be used to eluci-
date genes, encoding secreted proteins, which could prove to be accurate diagnostic
markers for glioma presence and grade. Gliomas are only detected and diagnosed when
patients present with symptoms such as seizures, headache, dizziness, or altered men-
tal status. Often, in the case of low-grade diffuse glioma, the tumor may be present for
years prior to detection. If left undetected, these low-grade tumors are allowed to con-
tinue proliferating and can progress to grade III glioma or GBM. Glioma detection and
diagnosis often occur after the tumor has progressed to a more malignant phenotype,
and at these later stages of tumor progression, patient prognosis is much worse.
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Another issue in treatment of gliomas is the variability in patient survival and
response to therapy. Using microarray analysis, it may be possible to identify a group
of genes with expression patterns that correlate with prognosis. This group of genes
may indicate the aggressiveness of the tumor, whether the tumor will respond better to
a particular type of treatment, or if the tumor is likely to recur.

Microarray analysis could also be utilized in identifying new molecular targets for
drug therapy. By discovering novel genes overexpressed in gliomas, it is possible to
further understand the molecular changes involved in gliomagenesis. These changes
could reveal new pathways involved in tumorigenesis, which may prove to be better
and/or more potent targets for drug therapy.

Microarray analysis of metastatic brain tumors and their primary tumors of origin
may elucidate important gene expression changes involved in the process of metasta-
sis. This type of technology could help identify collections of genes that dictate the
brain as the site of metastasis instead of other tissues. Furthermore, as with the glio-
mas, gene targets can be identified for more effective drug development and therapy.

Yet another utility of gene expression profiling may be in aiding pathologic diagno-
sis and classification of CNS tumors. Currently, diagnosis of CNS tumors is made by
histologic analysis, however significant discrepancies commonly occur between
pathologists in their diagnoses of given tumors. Furthermore, survival of patients with
defined subgroups of gliomas defined by histologic criteria alone is significantly over-
lapping. The added information provided by gene expression profiling analysis could
greatly improve the number of accurate brain tumor diagnoses.

Analysis of the Literature

Since microarrays were first demonstrated to be highly effective tools for gene
expression profiling, many array experiments have been performed to reveal novel
gene expression changes specific to various types and grades of brain tumors (36–
39,42–48). In these analyses of glioma gene expression, using either oligonucleotide
(38,39,48) or cDNA arrays (36,44–46,48), genes such as epidermal growth factor
receptor (EGFR), CDK4, MDM-2, CD44, vimentin, fibronectin, insulin-like growth
factor binding protein (IGFBP-2), IGFBP-5, and secreted protein acidic and rich in
cysteine precursor (SPARC), that have been shown to be overexpressed in gliomas or
glioblastoma cell lines, were similarly found to be differentially expressed on the arrays.
Furthermore, similar expression patterns, such as increased or decreased expression of
novel genes not previously associated with gliomas, were identified as differentially
expressed on both of the oligonucleotide and cDNA arrays. For example, chitinase-3-
like-1 (CHI3L1) and macrophage migration inhibitory factor (MIF) were found to be
differentially expressed on arrays of GBM vs normal brain (38,46). Additionally,
tyrosine protein kinase (TYR03), glutamate receptor (AMPA-2) and apolipoprotein D
were found to be down-regulated in GBMs as compared to controls (36,38,39).

Although many gene expression profiling analyses have been performed, very few
studies have actually demonstrated that these molecular changes can be utilized to fur-
ther characterize brain tumor type, grade, prognosis, treatment response, recurrence, or
the propensity for metastasis to the brain. One study showed that overexpression of
Laminin-8 in GBMs was an indication of shorter time to tumor recurrence (4.3 mo),
whereas overexpression of Laminin-9 by GBMs had a mean recurrence time of 9.7 mo
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Fig. 3. Comparison of differential mRNA levels encoding YKL-40 with transcripts encoding proteins involved in degradation of the
extracellular matrix. YKL-40 mRNA is significantly overexpressed compared to all endoproteases on the array. Order of genes graphed
beginning from the back: YKL-40, matrix metalloproteinase-16 (MMP-16), MMP-14, MMP-12, MMP-11, MMP-7, MMP-2, tissue inhibitor of
metalloproteinase 1 (TIMP-1), TIMP-3, urokinase receptor plasminogen activator, tissue plasminogen activator, plasminogen activator
inhibitor-II (PAI-II), PAI-I, plasminogen.
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(37,42). Another study showed that CHI3L1 (also referred to as YKL-40) was
overexpressed in GBMs, but not in AAs or LGGs at the mRNA level, and compared to
genes encoding other extracellular matrix-related proteins, YKL-40 was significantly
elevated (Fig. 3). YKL-40 was found to encode a secreted glycoprotein, which could be
detected in the serum of glioma patients. This protein was found to be significantly
elevated in serum of patients with GBM compared to normal controls or patients with
lower grade gliomas, as well as in patients with lower grade tumors compared to nor-
mal controls (46).

In one microarray study, it was shown that based on an eight-gene clustering model,
medulloblastoma patients were categorized as “survivors” or “poor outcomes.” Eighty
percent of patients in the “survivor” group lived at least 5 yr, whereas 83% of patients
in the “poor outcomes” group lived less than 5 yr (47). In this study, the medulloblas-
toma patients with “poor outcomes” tended to show elevated expression of genes lead-
ing to multidrug resistance, ribosome biogenesis, and cell proliferation, while
medulloblastomas with good outcomes showed elevation in genes involved in cerebel-
lar development. The identification of general functional differences between tumor
populations, such as this, is only possible by the simultaneous analysis of large number
of genes by technologies such as microarray analysis.

Technical Limitations
RNA to Protein

Microarray analysis is a large-scale and productive technique that allows for the
detection of gene expression changes at the transcript level. However, one major draw-
back to this approach is that it largely ignores the consequences of differential stability
and turnover of mRNA transcripts. As a result, microarray data are not necessarily
predictive of processes downstream of transcription. Increased RNA levels do not
always lead to increased protein production, and similarly, lack of differential RNA
expression implies, but ultimately is not indicative of, lack of differential protein trans-
lation. This is increasingly important with the realization that activated signaling path-
ways in high-grade gliomas regulate the translational efficiencies of existing mRNAs.

FUTURE DIRECTIONS

To date, the majority of gene expression studies on CNS tumors have been done on
the more prevalent and better characterized tumors such as gliomas and medulloblasto-
mas. However, major advances from microarray technology may come instead, from
their use on rare tumors, for which sample availability is limited. Therefore, in study-
ing these tumors, we need to derive as much information from each specimen as pos-
sible. In that sense, the information output from microarray-based studies in CNS
tumors is just beginning.
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INTRODUCTION

A variety of neoplasms arise in bone. Many of these, such as osteogenic sarcoma,
are relatively unique to bone, while others, such as hemangiomas and lymphomas, are
more ubiquitous in their origins. This chapter will focus on the malignant tumors whose
primary site of origin is bone and, in particular, those tumors whose cell of origin is
mesenchymal rather than hematopoietic. The most common mesenchymal tumors of
bone are osteosarcomas, chondrosarcomas, and Ewing’s sarcomas. As Ewing’s sarco-
mas are discussed in more detail in Chapter 16, they will be addressed here in a com-
parative fashion with osteosarcoma and other common sarcomas of childhood.

BACKGROUND

Osteosarcomas

These account for approx 20% of all primary tumors of bone, with the majority
arising in the second decade, the period of maximal skeletal growth (1). While most of
these neoplasms arise sporadically, familial cases have been reported, and there is an
increased incidence of osteogenic sarcoma in patients with Li-Fraumeni, Bloom, or
Rothmund-Thomson Syndromes, and in patients diagnosed with retinoblastoma (2–
11). There is also an increased incidence of osteosarcoma in patients who have under-
gone radiation therapy (possibly potentiated by chemotherapy) (12,13) and patients
with a variety of otherwise benign conditions and/or lesions including Paget’s disease,
osteochondromas, enchondromas, fibrous dysplasia, Mazabraud’s disease, bone
infarcts, metallic implants, and chronic osteomyelitis. Although the osteogenic sarco-
mas arising in these patients are indistinguishable from the sporadic cases, they occa-
sionally carry a worse prognosis.

Corresponding to the peak age of incidence, most osteosarcomas arise within the
regions of bone where most growth occurs, i.e., the metaphyseal region of the distal
femur, proximal tibia, and proximal humerus. Although there is both radiographic and
histologic heterogeneity, the diagnosis of conventional osteosarcoma is usually rela-
tively straightforward—they typically arise within the medullary cavity of the bone
and have a destructive growth pattern, with ill-defined borders and a lytic and/or scle-
rotic radiographic appearance.
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Microscopically, production of osteoid matrix by cytologically malignant stromal
cells is the diagnostic hallmark of osteosarcoma. Other than the presence of osteoid,
which varies from minimal to abundant, the histologic appearance of intramedullary
osteosarcomas is amazingly diverse. A wide variety of different types have been
described, including osteoblastic, chondroblastic, fibroblastic, malignant fibrous his-
tiocytoma-like, osteoblastoma-like, giant-cell-rich, small-cell, epithelioid, and telang-
iectatic (14). The small-cell osteosarcoma (15), while uncommon, is one of the
osteosarcoma variants that may present an interesting diagnostic dilemma, as some
have a histologic appearance similar to the Ewing’s family of tumors and this diagnosis
may be entertained in the differential, particularly when dealing with small biopsies
with inconspicuous osteoid formation (15–17). Different grading systems have been
applied to conventional osteosarcomas; however, there is no significant correlation
with clinical outcome, and all are considered to be high grade tumors (18). The poorer
prognosis historically associated with telangiectatic osteosarcomas has seemingly been
ameliorated with the advent of combined-modality treatment (19,20). In addition to the
conventional osteosarcomas, there is a select group of rare, but distinctive tumors that
are characterized by a more indolent clinical course. These include the well-differenti-
ated intramedullary osteosarcoma (which may require appropriate radiographic and
clinical correlations to establish the diagnosis), the fibroblastic parosteal osteosarcoma,
and the cartilage-rich periosteal osteosarcoma (21–25). The first two of these tumors
behave in a low-grade fashion, while the latter is considered to be of low to intermedi-
ate grade malignancy.

Following a diagnostic biopsy, the therapy of most cases of osteogenic sarcoma
involves the administration of adjuvant chemotherapy followed by definitive surgery.
When resected, the tumor is extensively sampled and examined microscopically to
assess the responsiveness of the tumor to therapy, as determined by the extent of tumor
necrosis. More aggressive postoperative therapy may be administered to patients with
tumors classified as “nonresponders,” although the efficacy of this approach has not
been well-documented. Although it is generally accepted that the degree of necrosis
correlates with prognosis, there is debate surrounding the amount of tumor necrosis
required for a lesion to be considered a “responder”—this cut-off is probably around
98%, meaning that less than 2% viable tumor cells remain in the resected specimen
(26–30). Some of the controversy surrounding this issue has related to differences in
the intensity and timing of presurgical chemotherapy. Regardless, it is obvious that it
would be most valuable to identify responsive and nonresponsive tumors prior to the
administration of therapy (rather than after), such that trials of novel or more aggres-
sive therapies could be undertaken while the micrometastasis burden is lowest. A spe-
cific example of this approach currently under investigation in the use of the
monoclonal antibody, herceptin, in patients whose tumors express the Her2/neu gene
(31). However, debate surrounds both the incidence of gene expression, the association
of its native expression or amplification with prognosis, and the most accurate method
of detection (32–35).

Chondrosarcomas

These are the second most common primary malignant tumor of bone (36). In con-
trast to osteosarcomas, however, the incidence of these neoplasms gradually increases
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with age, as the majority occur in patients over 50 yr (37–40). Conditions or lesions
predisposing to the development of chondrosarcoma include some of those associated
with a higher incidence of osteogenic sarcoma, such as Paget’s disease, radiation
therapy, and osteochondromas. In addition, patients with Ollier’s disease and
Maffucci’s syndrome, along with solitary enchondromas are at increased risk for the
development of a secondary chondrosarcoma (41–49).

Most patients with chondrosarcoma present with pain of months to years duration
and the bones most commonly involved are the ilium, proximal/mid femur and
humerus. The tumors, particularly those arising de novo, are intramedullary and radio-
graphically appear as a radiolucent lesion with variable numbers of punctate opacities.

The diagnosis of chondrosarcoma, similar to osteosarcoma, covers a clinically and
histologically heterogeneous group of tumors. However, >90% of chondrosarcomas
are characterized by the uniform and isolated formation of chondroid matrix by malig-
nant cells and are referred to as conventional chondrosarcomas. Although abundant
neoplastic cartilage formation may be seen in an osteogenic sarcoma, the opposite is
not true. The formation of neoplastic osteoid generally rules out a diagnosis of chond-
rosarcoma. The microscopic appearance of conventional chondrosarcomas is relatively
consistent and, unlike osteosarcomas, grading based upon standard histologic criteria,
such as invasiveness, degree of cellularity, nuclear pleomorphism, and mitoses, corre-
lates well with clinical behavior (18,50–53). Ninety percent of these tumors are low to
intermediate in grade (grade I–II), with limited metastatic potential, and follow an
indolent clinical course. Some of the low-grade lesions may be histologically indistin-
guishable from their benign enchondroma counterparts and other features, such as
location, skeletal maturity, radiographic appearance, and a presenting symptom of pain
are used to establish a diagnosis. The remaining 10% of conventional chondrosarco-
mas are high-grade (grade III) and carry a metastatic potential similar to osteogenic
sarcomas. The “nonconventional” types of chondrosarcoma, which are clear cell, dedi-
fferentiated, and mesenchymal, are each characterized by distinct clinical and morpho-
logic features, and have metastatic potentials similar to, or greater than, the high-grade
conventional chondrosarcoma.

The primary therapy for chondrosarcoma is complete surgical removal. In cases
where this cannot be achieved, there is a role for radiation therapy, and adjuvant che-
motherapy may be considered in cases of the high-grade lesions (54,55).

CLINICAL AND PATHOLOGIC ISSUES

The preceding discussion highlights a wide spectrum of different issues that may
potentially be addressed by analysis of gene expression patterns of bone tumors—
issues related to both diagnosis and underlying pathobiology that affect prognosis and
therapeutic responsiveness. In general, these can be considered in three broad catego-
ries: (i) diagnostic gene expression profiles; (ii) prognostic gene expression profiles;
and (iii) gene targets for potential therapeutic development and intervention.

The diagnosis of some cases of occasional osteosarcoma or chondrosarcoma is a
challenge. Can gene expression patterns be used to confirm, or rule out, a diagnosis of
osteosarcoma (i.e., small-cell osteosarcoma vs Ewing’s family tumor) or chondrosar-
coma (i.e., well-differentiated chondrosarcoma vs enchondroma) in these atypical
cases? Are different gene expression patterns associated with different histologic
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appearances, particularly among osteosarcomas? Once a diagnosis of osteosarcoma or
chondrosarcoma is established, can gene expression patterns identify those tumors that
are biologically aggressive or indolent and, thus, be used to subclassify them accord-
ingly? In addition, can gene expression patterns be correlated with therapeutic respon-
siveness and thereby used to confirm or identify new mechanisms of drug resistance
and sensitivity? Moreover, can uniquely overexpressed genes be identified that may
serve as potential targets for either directed or innovative therapies?

Finally, once a diagnosis is established, risk assigned, and therapeutic markers
assessed, can gene expression patterns provide insight into mechanisms of tumorigen-
esis?—thereby further expanding our understanding of and enhancing our ability to
successfully treat these malignant neoplasms. For example, can expression patterns
associated with differing grades of chondrosarcoma be used to identify specific genes,
such as p53 (56), involved in tumor progression? Can expression patterns associated
with primary and metastatic tumors be used to identify genes integral to the evolution
or acquisition of metastatic potential? Are there unique gene expression patterns asso-
ciated with tumors arising in patients that have predisposing syndromes or conditions,
despite phenotypic homogeneity?

And, in addition to the more generic questions raised above, how do expression
array data correlate with specific studies and corresponding hypotheses that have been
individually reported over time? For example, what is the incidence and/or prognostic
effect of Her2/neu, CDK4, p53, or pRB overexpression in osteosarcomas? How do
expression levels of these specific and other genes correlate with the expression level
of additional genes in both related and unrelated cellular pathways? That is, what is the
evidence for networking among genes that determine a biologic or clinical behavior?

These issues are now being addressed in depth with the recent advent of technology
that, for the first time, allows global gene expression profiling and the identification of
any expressed gene, as well as its association with parameters of interest such as class,
biologic aggressiveness, and therapeutic responsiveness. Much of the following text
will discuss comparative data from historical single or small gene group analyses with
comparable data derived from gene expression microarrays. In particular, the correla-
tion, or lack thereof, between these methods and even from one microarray study to
another will be considered in detail.

CLINICAL APPLICATIONS OF MICROARRAY TECHNOLOGY

Technical details of cDNA and oligonucleotide gene expression microarrays are dis-
cussed in detail elsewhere in this book. It suffices to note that the most important issues
when handling clinical material are not the underlying technology (e.g., spotted vs
in situ synthesized oligonucleotides), but quality assurance and data normalization (57).
The single most common mistake we encounter is the widespread belief that a single
microarray generates useful data. This is not the case (58). Rather, comparison of a
new, presumably “unknown” sample with an archive of similar and dissimilar samples
is imperative, and reveals subtle differences relevant to class distinction (e.g., diagno-
sis) as well as prognosis and likely therapeutic responsiveness (59,60). Failure to real-
ize this, coupled with superficial understanding of the need for rigorous statistical
analysis of data after global normalization and rejection of flawed chips and datasets,
has led to widespread skepticism. Many doubt the relevance of microarray data to actual
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gene expression values, let alone actual expressed protein levels or their activation
state. Despite this, properly processed datasets subjected to proper statistical analysis
can yield highly relevant information sufficient to diagnose and prognosticate, as well
as identify associated genes (57,61,62).

In our studies, we have found commercially prepared in situ synthesized oligonucle-
otide microarrays of 12,000–40,000 sequences (e.g., GeneChips™, Affymetrix, Santa
Clara, CA, USA) to be of particular value, as they are of generally uniform quality,
report comparable expression values from sample to sample, are highly reproducible
(e.g., cc > 0.93), and allow comparison of data over time, between laboratories, and
between institutions. This has proved to be of critical importance, as “homemade”
arrays are considerably less amenable to interlaboratory comparison, and specific gene
expression values are often a function of the probe or probe sets chosen by the labora-
tory that synthesizes the arrays, rendering comparisons less facile. For these reasons,
we have undertaken our studies with commercially produced arrays, processed in a
College of American Pathologists-Clinical Laboratory Improvement Amendment
(CAP/CLIA) certified laboratory, with the future intent of using this information for
potential patient management (e.g., diagnosis and assessment of therapeutic respon-
siveness related to specific patterns of gene expression).

BIOINFORMATICS

Microarrays generate enormous amounts of data. We have dealt with this challenge
in several ways, including the purchase and use of commercially available software
(such as GeneSpring (Silicon Genetics) and Affymetrix Microarray Suite), as well as
shareware available from the Web, such as Cluster and TreeView, developed by
Michael Eisen. In the past 2 yr, however, we have developed our own proprietary soft-
ware, Genetrix™, which combines several useful features in a single package: rigorous
data quality assessment and correction–normalization, followed by a suite of analytic
tools that allow virtually unlimited data and gene subsets to be analyzed by all common
methods, in context with clinical covariate data. The latter point is relevant here, as we
have been unable to find software that allows for clinically applicable analysis of
microarray data. Genetrix was developed specifically to do so. However, a detailed
description is beyond the scope of this article. All the analyses found in this chapter
were performed using Genetrix.

TISSUE PROCESSING

As with all organ systems and tumor types, the nature of the tissue samples obtained
ranges from biopsy to extensive resection, from relatively pure tumor to a mixture of
tumor and normal tissue elements, and from hypo- to densely cellular. Generically, all
samples are snap-frozen as quickly as possible, usually in isopentane immersed in liq-
uid nitrogen. Most samples are frozen in optimal cutting temperature (OCT) compound
so that an hematoxylin and eosin (H&E)-stained frozen section slide can be prepared
on all samples, and so that either macro- or microdissection can be performed if desired.
Rarely, primarily in those cases in which the sample is known to be pure tumor, but
associated with abundant osteoid formation, such that it is difficult to obtain high-
quality frozen sections, tissue is directly snap-frozen in liquid nitrogen and processed.
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In addition to the presence of osteoid, there are two additional issues involved in the
processing of some bone tumor specimens: cellular heterogeneity, and the production
of abundant extracellular matrix material rich in collagens, proteoglycans, and/or min-
erals. With regards to the latter issue, it has been shown that high quality RNA can be
easily isolated from samples such as normal cartilage, suggesting that even hypo-
cellular, matrix-rich tumors are amenable to expression analysis (63). Cellular hetero-
geneity is by no means unique to bone tumors. It is the hallmark of most clinical
material; other bone lesions such as Langerhans cell histiocytosis and nonossifying
fibromas that classically contain a mixed population of both neoplastic and non-neo-

Fig. 1. RNA-PCR amplification of cancerous gene expression. (A) RNA-PCR utilizes
poly(dT)24- and oligo(dC)-promoter primers in first- and second-strand cDNA synthesis,
respectively. Subsequent promoter-driven transcription amplifies mRNAs up to 250-fold per
cycle (adapted from ref. 65). mRNA populations from (B) breast cancer cells and (C) Ewing’s
sarcoma cells are generated with high-fidelity (CC approx 0.97) by RNA-PCR (x-axes) when
compared to nonamplified tumor–tissue mRNA (y-axes) and especially when compared to
(D) a comparison of nonamplified (y-axis) vs antisense (aRNA or Eberwine) amplification
(x-axis). Examples provided courtesy of Dr. Cheng Ming Chuong, Pathology Dept., Keck
School of Medicine, USC.
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plastic cells are specific examples. Obtaining meaningful gene expression profiles on
these tumors involves isolation of the specific cell population of interest by either cell
sorting or microdissection, both of which are technologies that require additional labor
and yield decreased amounts of RNA. Fortunately, methods are becoming available
that reliably and linearly amplify scant populations of mRNA, such that even single-
cell gene expression profiles may become feasible (though likely undesirable, given
likely fluctuations in patterns of gene expression associated with cell cycle and other
cellular perturbations that are likely “averaged” in whole tissue extracts) (64–66).
An example of such a profile, obtained from fewer than 100 Ewing’s tumor cells, as
well as breast cancer cells, is illustrated in Fig. 1. Note that the amplification procedure
generates mRNA populations (x-axis) virtually indistinguishable from nonamplified
mRNA extracted directly from tissue (y-axis), with a correlation coefficient of approx
0.97. This matches the reproducibility found between arrays using separate aliquots of
the same mRNA without amplification in our experience. This method, when com-
bined with laser capture microscopy (LCM) promises to make virtually any clinical
sample, even cytology specimens, amenable to gene expression profiling.

Limitations of Clinical Samples

While the optimal gene expression studies are performed on human tissue samples,
there are inherent limitations, including restricted quantities and types of samples, RNA
degradation associated with tumor necrosis and delays in handling, and cellular hetero-
geneity (66). Therefore, alternative sources of tumor and model systems, such as cell
culture, xenografts and animal models, are frequently used to perform investigative
studies, especially confirmatory studies of genes first identified by exploratory profil-
ing of clinical samples. By definition, these samples cannot be controlled or repeated,
nor can they generally be subjected to experimental manipulations designed to provoke
or suppress a cellular response of interest (e.g., apoptosis, necrosis, etc.). Some of these
surrogate sources have been used to study gene expression patterns in both osteosar-
coma and chondrosarcoma. While results obtained from these types of studies need to
be validated on larger numbers of human tissue samples prior to extrapolation in the
clinic, interesting and promising data have already been generated, as discussed below.

RESULTS

Model Systems

Investigators have used cDNA microarrays to identify a consistent group of genes
that are both up- and down-regulated when cell lines derived for osteosarcomas are
compared to normal human osteoblasts (67). The results were confirmed using reverse
transcription polymerase chain reaction (RT-PCR) on both osteosarcoma cell lines and
human tissue samples. The most significantly up-regulated genes included heat-shock
protein and polyadenaylate-binding protein-like 1, while fibronectin 1 and thrombo-
spondin 1 were among the group of genes that were down-regulated.

Others have performed preferential amplification–acquisition of coding sequences
on multiple samples to identify coding sequences differentially expressed between
human osteosarcoma cell lines and an osteoblast cell line (68). In this study, differen-
tial expression of a subset of genes including a group of cyclins (D and E) and cyclin-
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dependent kinases, transcription factors, E2F4 and E2F5, that interact with the retino-
blastoma (RB) protein, and chondrocyte-derived ezrin-like protein was documented.
Uniform down-regulation of mitogen-activated protein kinase 5 in the cell lines led to
the postulate that this gene may function as a tumor suppressor in osteosarcoma. Results
were confirmed with RT-PCR.

Based upon studies performed on a murine model of metastatic osteosarcoma,
investigators have used cDNA microarrays to identify genes potentially involved in the
variable metastatic potential of individual osteosarcomas (69). One of the genes
up-regulated in tumors with a greater propensity to metastasize was ezrin, a protein
that plays a role in motility, invasion, and cellular adherence. Its potential relevance
was confirmed by confirmatory Northern analysis and immunostaining, along with its
documented expression in human osteosarcoma cell lines. However, as will be dis-
cussed later in “Metastasis Associated Genes”, these results correlate only loosely with
our studies of human osteosarcoma metastases.

Human Tumor Studies

While meaningful and invaluable information can be derived from both cell line
and animal model studies, ultimate validation on human tumor samples is required
(70). Published studies describing microarray analysis of gene expression patterns
on human bone tumor samples are limited. Using oligonucleotide arrays (U95A;
Affymetrix), we have analyzed the gene expression patterns of a group of 43 osteosa-
rcomas to address and illustrate some of the issues highlighted in previous sections.
We have combined these data with similar U95A data from 63 other bone and soft
tissue sarcomas (e.g., small cell osteosarcoma, Ewing’s sarcoma, embryonal and
alveolar rhabdomyosarcoma, and some complex phenotype sarcomas). The raw
expression data from our 106 samples were imported into Genetrix, and the software
performed a global normalization, which modeled the gene-probe intensities across all
the samples simultaneously.  Based upon estimates of standard error, identification of
outliers, and adjustments for scanner saturation, we identified 18 samples for which the
hybridization data were deemed unsuitable for further analysis.  Our remaining cohort
of 88 samples consisted of 32 osteosarcomas and 56 cases of other tumor types. The
results allow a striking demonstration of the power of this technology to molecularly
classify tumors, reliably identify genes associated with outcome, and potentially iden-
tify networks of genes responsible for clinical behaviors such as development of
metastases and drug resistance. Candidate target genes for future therapeutic drug
development are also readily identified.

MOLECULAR CLASSIFICATION
OF BONE AND SOFT TISSUE SARCOMAS

Figure 2 demonstrates a molecular classification of osteosarcoma in context with
multiple other bone and soft tissue sarcomas, using a three-dimensional, three-axis
principal component analysis (PCA). This method is well described in the literature
(71–75). In essence, the multidimensionality of these complex datasets (e.g., approx
12,000 genes by 88 samples) is reduced to a visualizable two- or three-dimensional
representation by first defining the axis through this space that maximally separates
either samples or genes. This process is then repeated at right angles to the first, and
(if a three-dimensional representation) yet again. The result maps each sample (or gene)
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Fig. 2. Three-dimensional PCA plots. The raw expression data was normalized and used to
generate PCA plots for 88 tumors based upon (A) all 12,600 genes on U95A GeneChips, and
(B) a subset of only 30 genes identified to be statistically preferentially associated with
osteosarcomas. Note that classification of known discrete tumor groups, especially between the
two common bone sarcomas, Ewing’s and osteosarcoma, is not uniformly possible (A). In
contrast, when using the defined subset of osteosarcoma-associated genes, osteosarcomas are
readily distinguished from all other tumors. This illustrates that subsets of genes can be more
powerful classifiers than global gene transcript profiling.

into this quasi-three-dimensional space, wherein each sample or group can be identified
in spatial relationship to the other. Figure 2A illustrates the result when all 88 cases are
analyzed using all 12,600 genes on the Affymetrix U95A GeneChip. Note that, although
the osteosarcomas (green dots) are reasonably separate from the other tumors, there is,
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Genes Associated with Osteosarcoma

Ranka Gene

  1 Distal-less homeobox 5.
  2 Matrix metalloproteinase 13 (collagenase 3).
  3 Gap junction protein, α 1, 43 kDa (connexin 43).
  4 Ribosome binding protein 1 homolog 180 kDa (dog).
  5 Chondroitin sulfate proteoglycan 4 (melanoma-associated).
  6 T-complex-associated-testis-expressed 1-like.
  7 KIAA0869 protein.
  8 Procollagen-lysine, 2-oxoglutarate 5-dioxygenase (lysine hydroxylase) 2.
  9 S100 calcium binding protein A10 (annexin II ligand, calpactin I,

light polypeptide [p11]).
10 Ectonucleotide pyrophosphatase/phosphodiesterase 2 (autotaxin).
11 75 kDa Infertility-related sperm protein.
12 Matrix metalloproteinase 9 (gelatinase B, 92 kDa gelatinase,

92 kDa type IV collagenase).
13 Acid phosphatase 5, tartrate resistant.
14 Old astrocyte specifically induced substance.
15 Twist homolog (acrocephalosyndactyly 3; Saethre-Chotzen syndrome) (Drosophila).
16 Tropomyosin 1 (α).
17 Sialyltransferase 7D.
18 ATPase, H+ transporting, lysosomal membrane sector associated protein M8-9.
19 S100 calcium binding protein A4.
20 Cartilage linking protein 1.
21 Vitamin D (1,25- dihydroxyvitamin D3) receptor.
22 PTPRF interacting protein, binding protein 2 (liprin β 2).
23 Cathepsin K (pycnodysostosis).
24 SEC24 related gene family, member D (S. cerevisiae).
25 Moesin.
26 Metallothionein 1E (functional).
27 Integrin-binding sialoprotein (bone sialoprotein, bone sialoprotein II).
28 Procollagen C-endopeptidase enhancer.
29 Transforming growth factor, β-induced, 68 kDa.
30 Procollagen-proline, 2-oxoglutarate 4-dioxygenase, α polypeptide II.
31 Short stature homeobox 2.
32 Tyrosylprotein sulfotransferase 1.
33 Tumor necrosis factor (ligand) superfamily, member 11.
34 Serine (or cysteine) proteinase inhibitor, clade H (HSP 47), member 2.
35 Calumenin.
36 KIAA1199 protein.
37 DKFZp586E2023.
38 Chromosome 21 open reading frame 80.
39 DKFZP564F0522 protein.
40 Ras homolog gene family, member C.
41 Inhibitor of DNA binding 1, dominant negative helix-loop-helix protein.
42 Cathepsin Z.
43 Tissue inhibitor of metalloproteinase 2.
44 E74-like factor 4 (ets domain transcription factor).
45 Nucleobindin 2.
46 Myosin VI.
47 Peptidylprolyl isomerase C (cyclophilin C).
48 Tyrosylprotein sulfotransferase 2.
49 Procollagen-proline, 2-oxoglutarate 4-dioxygenase, beta polypeptide.
50 Interleukin 10 receptor, β.

aGenes are ranked by statistical significance and magnitude of association with osteosarcoma (see text
for details).
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nonetheless, some degree of co-mingling, such that a clean separation of osteosarcoma
from other tumors is not evident; Ewing’s sarcomas, in particular, are closely inter-
mingled with osteosarcomas. In contrast, when the tumors are analyzed using a reduced
gene subset of only 30 genes identified as being statistically preferentially associated
with osteosarcomas as opposed to other sarcomas, based on multiple t-tests, the
osteosarcomas are clearly clustered distinct from any other childhood sarcoma (Fig. 2B).
This phenomenon has been reported by several other authors, who have chosen their
subset genes by many different methods (75–77).

As might be expected, osteosarcomas can be segregated from other sarcomas of
childhood and adolescence by their gene expression pattern. Some genes preferentially
up-regulated in osteosarcomas compared to other tumor groups (Table 1) include
numerous obvious bone-associated genes. Seven collagen-associated genes (four
procollagen genes, two cartilage genes, and bone sialoprotein) speak to the osteogenic
phenotype. Four extracellular matrix-associated genes (matrix metalloproteinases 9
and 13, cathepsin K, TIMP2) are evidence of the potent extracellular matrix degrading
capability of osteosarcoma. Noteworthy is cathepsin K, an osteoclastic protease with
potent collagenolytic activity. Although it theoretically may also play a role in the
metastatic process, it is interesting to note that its expression has been linked to that of
the metalloproteinases 9 and 13 (noted in the same group) in the process of fracture
healing (78), a process not unlike the growth of osteosarcoma and sometimes histologi-
cally confused with it.  Many other genes are less conspicuously associated with bone:
a PTPRF interacting protein (liprin β 2) a signaling protein tyrosine phosphatase which
has been associated with axonal guidance and breast development but not previously
associated with bone; TGF-β2, which though widely expressed in tissues has been
especially associated with developing bone and cartilage; and cathepsin Z and E74-like
factor 4 (an ETS domain transcription factor) with no obvious association with
osteosarcoma as opposed to other sarcomas.  Interestingly, S100 proteins A4 and A10
are members of a family of calcium-binding proteins involved in signal transduction
reported to induce invasiveness of primary tumors and promote metastasis.

SMALL CELL OSTEOSARCOMA

Although there were not enough osteosarcomas in our dataset to comment on dif-
ferential gene expression patterns associated with specific histologic subtypes, it is
nonetheless interesting to note that two cases of small cell osteosarcomas not only
definitively cluster within the overall group of osteosarcomas, but also tend to clus-
ter together when using either PCA analysis as described above, or conventional
two-axis (e.g., sample by gene) hierarchical clustering (Fig. 3). Note that in the latter
case, two samples from the same patient cluster immediately adjacent to one another
(left arrow), and close to a second case (right arrow), well within the family of
osteosarcomas (purple dots) depicted here, and quite separate from all other tumors,
including Ewing’s tumors, which cluster as a group immediately adjacent to the
osteosarcomas. The two small cell osteosarcoma cases do not seem to share overlap-
ping gene expression patterns with the Ewing’s family of tumors, which is an obser-
vation supported by lack of a documentable EWS/FLI-1 transcript in at least one of
the two tumors. Thus, the gene expression profile results would support the concept
that these tumors, often confused histologically with Ewing’s sarcoma of bone, are,
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Fig. 3. Hierarchical clustering of expression microarray data. In this cluster diagram, col-
umns represent tumor samples, whereas rows indicate individual genes. Based solely on their
gene–expression profiles, cluster analysis divided the tumors into three major groups with
osteosarcomas (blue) being grouped on the left, neuroblastomas (black) and Ewing’s sarcomas

370
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in reality, bona fide members of the osteosarcoma family of bone tumors and are not
related to Ewing’s tumors. A larger series of cases will be needed to confirm this
impression.

PROGNOSIS-ASSOCIATED GENES

A second major goal of gene expression profiling is to determine outcome from
primary biopsy material as a potential guide to choice of therapy and overall patient
management. Thus, realization at the time of diagnosis that a given therapy will likely
prove to be inadequate or ineffective would dictate alternate therapy, at a time
(e.g., prior to development of therapeutic resistance) when the effect of these agents
might not be limited by overall drug resistance. There is increasing evidence that this
is possible (60,76,80–88). Thus, it is of some potential importance to identify those
genes that might connote differential outcome, specifically those genes that, alone or
(more likely) as a group, appear to be strongly associated with clinical outcome. To do
this, of course, one must have access to appropriate clinical material, specifically
tumors with linked clinical data on survival status and other variables of potential
interest. In the case of osteosarcomas, clinical cooperative group cases offer a particu-
larly compelling opportunity, as all patients are treated on relatively few therapeutic
protocols, and are thus readily comparable. In addition, institutional cases (from one or
more institutions) offer another possibility that is generally not possible with clinical
trials: access to both primary and metastatic tumor material, often from the same patient.
In our studies, we have collected multiple metastases from some patients, and numer-
ous single (pulmonary) metastases from many patients. As a result, we can begin to
assess those genes most associated with the two most important predictors of outcome:
metastases and death.

We looked first at primary tumor material from patients with a known outcome.
Figure 4 is a typical survival curve generated by comparing two groups of patients.
In this case, expression of 12,600 genes was analyzed in 26 tumors in which outcome
was known and documented. Multiple t-tests were performed to identify those genes most
associated with favorable or unfavorable prognosis (e.g., alive or dead). The 10 genes most
strongly associated with either outcome on the basis of this statistical analysis are listed
in Table 2 in rank order from most to least significantly associated. Note that the top
two genes associated with death are important membrane receptor genes. The first, a
Patched (PTCH)-related gene, TRC8, whose product, like PTCH, control Sonic Hedge-
hog (SHH) signaling through SMO (Smoothed) to GLI, an important transcription fac-
tor controlling the expression of several genes. ABC3, the second, encodes member of
the ATP-binding cassette family of membrane transporters important in modulating
drug resistance (e.g., multiple drug resistance protein [MRP]). Interestingly, these two
genes are also statistically strongly associated with poor outcome along with Tomosyn,
or “friend of syntaxin,” which is a gene important in neurotransmission in the brain. Its

(Figure 3 caption continued) (magenta) in the middle, and alveolar (green) and embryonal
rhabdomyosarcomas (red) on the right. Relative gene expression is indicated by color and
ranges from very high (intense red) to very low (intense green). The arrows indicate three small
cell osteosarcoma cases, which are grouped relatively close to one another within the osteo-
sarcoma cluster and whose expression profiles are quite dissimilar to the Ewing’s sarcomas.
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Fig. 4. Probability of survival. The expression of TRC8, ABC3, and tomosyn was examined in
osteosarcoma patients with known outcome (n = 26 primary tumors). High expression of these three
genes is strongly associated with a poor prognosis with death likely occurring in <3 yr. (Cox regres-
sion: Chi-square = 16.29; p = 0.00005. Comparison statistics: Chi-square = 17.48; p = 0.00003.)

Table 2
Ten Best and Ten Worst Prognostic Genes

High expression associated with death

Ranka Gene

  1 Patched related protein translocated in renal cancer.
  2 ATP-binding cassette, subfamily C (CFTR/MRP), member 3.
  3 Tomosyn.
  4 Histone deacetylase 5.
  5 Survival motor neuron pseudogene.
  6 Protein tyrosine phosphatase, receptor type, R.
  7 Peripherin.
  8 Nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 4.
  9 Dedicator of cyto-kinesis 3.
10 Timeless homolog (Drosophila).

High expression associated with survival (and low expression with death)

Rankb Gene

  1 I factor (complement).
  2 Guanine nucleotide binding protein (G protein), α-inhibiting activity polypeptide 2.
  3 Lysosomal-associated multispanning membrane protein-5.
  4 Zinc finger protein-like 1.
  5 Proteoglycan 1, secretory granule.
  6 Major histocompatibility complex, class I, E.
  7 Protein tyrosine phosphatase, receptor type, C.
  8 Zx53d03.r1.
  9 Wingless-type MMTV integration site family, member 5A.
10 Hemopoietic cell kinase.

aGenes are ranked by statistical significance and magnitude of association with patient death.
bGenes are ranked by statistical significance and magnitude of association with patient survival.
MMTV, mouse mammary tumor virus (see text for deatils).
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relevance here is not clear, but the association is strong. Accordingly, the survival
analysis illustrated in Fig. 4 was performed using just these three genes. As is evi-
dent, all the high expressers of these three genes were dead within 3 yr, which is a
strong indication that these genes are associated with an adverse outcome. The more
interesting issue, of course, is why? One must suspect that both unregulated cell signal-
ing through PTCH and drug resistance through cystic fibrosis transmembrane conduc-
tance regulation (CFTR)/MRP are relevant here. The role of tomosyn is completely
obscure at this point. In fact, in the absence of biologic validation, the role of this gene
in outcome must remain speculative at best. Nonetheless, these three genes, when
expressed at high levels, reliably predict death in a cohort where prediction of this
outcome is otherwise not possible. These genes, or others like them, may yet prove
useful as prognostic indicators, even at the time of diagnosis.

METASTASIS-ASSOCIATED GENES

Metastasis is a complicated process, and it is perhaps naïve to expect to identify
metastasis-specific genes in a comparison of metastatic and nonmetastatic osteosarco-
mas (89). However, such a comparison might shed light on the relative expression of
known metastasis-associated genes or metastasis-suppressive genes in clinically
derived human osteosarcomas. Diverse factors such as tumor type vs metastatic type
(the “seed” and “soil” question) are simplified in this case: osteosarcoma patients ulti-
mately die, or not, depending on whether they develop pulmonary metastases. Those
who do not are unlikely to die. Those who do have a greater than 80% risk of dying.
Clinically, the problem of pulmonary metastases is central to any hoped for improve-
ment in outcome in this disease. It is, thus, of more than academic interest to explore
whether there is a genetic pattern to development of pulmonary metastases in osteosa-
rcoma patients. Fortunately, the cohort of patients reviewed here includes 32 osteosar-
coma patients of known stage (e.g., metastatic [6] or not [26]), which permits at least a
cursory study of metastasis-associated genes.

We first considered genes reported previously in the literature on osteosarcoma.
Although few papers specifically consider human osteosarcoma and its metastases,
consideration of mouse models might offer some insight. Khanna et al. (69) used a
mouse orthotopic model to identify 53 genes out of 3166 present on their arrays that
were associated with pulmonary metastasis. We have compared their results with our
own and find a relatively poor association. Specifically, the 27 identifiable of 31 genes
noted to be up-regulated in pulmonary metastases could be compared to the equivalent
genes present on U95A arrays. Of these 27 genes, 23 were represented by 58 probe sets
(due to either replicate clones present on the arrays, or inclusion of gene subsets not
further characterized by Khanna et al.). These are listed in Table 3. As is seen in Fig. 5A,
there was little association between metastatic status and overexpression in our series.
This is even more striking when both the magnitude and significance of association
between these 23 genes (represented by 58 probe sets) are compared to their expression
in metastatic (upper right quadrant) vs primary tumors (lower left quadrant) (Fig. 5B).
Interestingly, 27 of the probe sets are relatively overexpressed in the metastases, but
32 are more associated with the primary tumors! Clearly, there is little to suggest a
compelling pattern of expression in metastases, at least for these 27 genes in these
6 metastases, among 32 human osteosarcomas.
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Table 3
Analysis of Metastasis-Associated Genesa

Up-regulated in metastasesb

Rankc Gene

  1 Proprotein convertase subtilisin/kexin type 5.
  2 V-myb myeloblastosis viral oncogene homolog (avian).
  3 Proteolipid protein 2 (colonic epithelium-enriched).
  4 CCAAT/enhancer binding protein (C/EBP), α.
  5 Integrin, α V (vitronectin receptor, α polypeptide, antigen CD51).
  6 Crystallin, α A.
  7 Tubulin, β, 5.
  8 Proprotein convertase subtilisin/kexin type 2.
  9 V-myb myeloblastosis viral oncogene homolog (avian).
10 Protein kinase, interferon-inducible double-stranded RNA dependent.
11 Crystallin, α A.
12 Hepatocyte nuclear factor 3, α.
13 V-myb myeloblastosis viral oncogene homolog (avian).
14 Integrin, β 2 antigen CD18 (p95).
15 V-myb myeloblastosis viral oncogene homolog (avian).
16 Cyclin D1 (PRAD1: parathyroid adenomatosis 1).
17 Connective tissue growth factor.
18 V-myb myeloblastosis viral oncogene homolog (avian).
19 Nuclear factor (erythroid-derived 2)-like 1.
20 Proteolipid protein1 (Pelizaeus-Merzbacher disease, spastic paraplegia 2, uncomplicated).
21 E2F transcription factor 5, p130-binding.
22 Lectin, galactoside-binding, soluble, 3 (galectin 3).
23 Crystallin, α A.
24 Nuclear factor (erythroid-derived 2), 45 kDa.
25 Integrin, β 4.
26 A disintegrin and metalloproteinase domain 8.

Down-regulated in metastasesb

Rankd Gene

  1 Tubulin, β.
  2 Tubulin, β polypeptide.
  3 Nuclear factor (erythroid-derived 2)-like 2.
  4 Tubulin, β.
  5 Integrin, α V (vitronectin receptor, α polypeptide, antigen CD51).
  6 Clusterin.
  7 V-myb myeloblastosis viral oncogene homolog (avian).
  8 Tubulin, β 2.
  9 Tubulin, β, 4.
10 Nuclear factor (erythroid-derived 2)-like 3.
11 Integrin, α V (vitronectin receptor, α polypeptide, antigen CD51).
12 Protein kinase, interferon-inducible dsRNA-dependent activator.
13 Tubulin, β, 2.
14 Cyclin D1 (PRAD1: parathyroid adenomatosis 1).
15 Proprotein convertase subtilisin/kexin type 1.
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It is important to note that the relative fold changes reported on spotted arrays, as
employed by Khanna et al. (69), cannot be compared to the expression levels reported
on Affymetrix arrays. However, it is relevant to note that all of these genes were
overexpressed in metastases compared to primary tumors in that series. There is very
little evidence of a uniform pattern of overexpression in this series. Note, for example,
that connective tissue growth factor, reported to be more than threefold overexpressed
in metastases, is virtually equally expressed in metastatic and primary tumors, albeit at
the highest level of any of the genes analyzed here. Tubulin-β subunit shows an even
more confounding pattern, with overexpression in primary tumors of tubulin-β2, but
underexpression of tubulin-β5 in these same tumors. These data cannot be compared to
Khanna et al.’s data (69), as only the tubulin β-chain was analyzed in that study, further
highlighting the difficulty of comparing data across array platforms (with differing
probe sets) and across species (e.g., mouse to human).

We then considered the genes that were over- and underexpressed in our cases.
As seen in Table 4, column A, overexpressed genes are listed in rank order based on a
statistical model that computes multiple t-tests for each gene in each sample. On this
basis, virtually none of the genes found by Khanna et al. (69) are found among the top
100 genes in our dataset. Likewise, Table 4, column B presents similarly derived data
for the top 100 underexpressed genes in metastases, again in rank order from most to
least significant. Perhaps the most striking feature of this list is the lack of genes obvi-
ously associated with metastases (89). Notable in their absence are genes encoding

Table 3 (continued)

Down-regulated in metastasesb

Rankd Gene

16 Villin 2 (ezrin).
17 Cyclin D1 (PRAD1: parathyroid adenomatosis 1).
18 Metallothionein 2A.
19 Asparagine synthetase.
20 Tubulin, β, 5.
21 Hepatocyte nuclear factor 3, β.
22 Tubulin, β polypeptide.
23 Integrin, β 4.
24 Hepatocyte nuclear factor 3, β.
25 E2F transcription factor 5, p130-binding.
26 E2F transcription factor 5, p130-binding.
27 Caudal type homeo box transcription factor 2.
28 V-myb myeloblastosis viral oncogene homolog (avian).
29 V-myb myeloblastosis viral oncogene homolog (avian).
30 Tubulin, β polypeptide 4, member Q.
31 Caudal type homeo box transcription factor 2.
32 Tubulin, β polypeptide.

aAs identified by Khanna et al. (69).
bAs observed in our 32 institutional osteosarcoma cases (26 primaries and 6 metastases).
cGenes are ranked by statistical significance and magnitude of association with metastases.
dGenes are ranked by statistical significance and magnitude of association with primary tumors (see text

for details).
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Fig. 5. Scatter plots of metastasis-associated genes as identified by Khanna et al. (69). Twenty-seven out of 31 genes reported to be up-regulated
in metastases are represented by 58 probe sets on U95A GeneChips. (A) A log-expression scatter plot did not reveal any correlation with metastasis
in our 32 osteosarcomas (26 primary tumors and 6 metastases). (B) Plotting their significance and magnitude of association with metastasis actually
grouped 32 probe sets with primary tumors and only 26 with metastases. Thus, there was little association of these murine osteosarcoma metastasis-
associated genes with these human osteosarcoma metastases.



Expression Profiling of Bone Tumors 377

377

Table 4
Metastasis-Associated Genesa

Metastasis overexpressed genes

Rankb Gene

1 Immunoglobulin λ-like polypeptide 2.
2 G antigen 3.
3 G antigen 4.
4 Troponin I, cardiac.
5 T-box 1.
6 G antigen 5.
7 High-mobility group (nonhistone chromosomal) protein isoform I-C.
8 Tumor necrosis factor receptor superfamily, member 5.
9 Wk24e08.x1.

10 Zinc finger protein 220.
11 Defensin, β 1.
12 Carbonic anhydrase IX.
13 G antigen 7.
14 G antigen 2.
15 DNA from chr. 19-cosmid f24590 containing CAPNS and POL2RI, genomic sequence.
16 CD5 antigen (p56-62).
17 G antigen 3.
18 Casein, β.
19 Ribosomal protein S11.
20 Slug homolog, zinc finger protein (chicken).
21 Chemokine (C-C motif) receptor 4.
22 Complement component 3a receptor 1.
23 (λ) DNA for immunoglobin light chain.
24 Hypothetical protein MGC4293.
25 Ligase III, DNA, ATP-dependent.
26 GDNF family receptor α 2.
27 Trinucleotide repeat containing 4.
28 G antigen 6.
29 Ubiquitin-conjugating enzyme E2L 3.
30 Gap junction protein, β 1, 32 kDa (connexin 32, CMT neuropathy, X-linked).
31 Excision repair cross-complementing rodent repair deficiency, complementation gr. 4.
32 MHC class II transactivator.
33 E2F transcription factor 2.
34 Envoplakin.
35 Mitogen-activated protein kinase 8 interacting protein 1.
36 U3 snoRNP-associated 55-kDa protein.
37 39a1.
38 ZFM1 protein alternatively spliced product.
39 Phosphatidylinositol glycan, class A (paroxysmal nocturnal hemoglobinuria).
40 Clone IMAGE-35527 unknown protein.
41 Protein phosphatase 3 (formerly 2B), catalytic subunit, γ isoform (calcineurin A γ).
42 Guanylate cyclase activator 1A (retina).
43 Macrophage stimulating, pseudogene 9.
44 Protein phosphatase 3 (formerly 2B), catalytic subunit, β isoform (calcineurin A β).

(continued)
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Metastasis overexpressed genes

Rankb Gene

45 Double homeobox, 1.
46 Topoisomerase (DNA) III β.
47 Kell blood group.
48 Phosphatidylinositol glycan, class H.
49 Potassium inwardly-rectifying channel, subfamily J, member 12.
50 Hairy and enhancer of split (Drosophila) homolog 2.
51 Burkitt lymphoma receptor 1, GTP-binding protein.
52 Transglutaminase 3 (E polypeptide, protein-glutamine-γ-glutamyltransferase).
53 Receptor tyrosine kinase-like orphan receptor 1.
54 Collagen, type I, α 1.
55 BTB (POZ) domain containing 2.
56 Histamine receptor H1.
57 U2 small nuclear ribonucleoprotein auxiliary factor (65 kDa).
58 SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, c1.
59 Tumor necrosis factor (ligand) superfamily, member 6.
60 Exchanger (human, liver, mRNA, 2665 nt).
61 Netrin 2-like (chicken).
62 CDC-like kinase 3.
63 Putative methyltransferase.
64 RAGE binding protein (P12).
65 Clone 23826.
66 HIV-1 rev binding protein 2.
67 Paired box gene 8.
68 Calcium channel, voltage-dependent, L type, α 1D subunit.
69 Ribosomal protein L3-like.
70 Natriuretic peptide precursor A.
71 Kinase.
72 DKFZp566C093.
73 Purine-rich element binding protein A.
74 G protein-coupled receptor 18.
75 Matrix Gla protein.
76 Zinc finger protein 169.
77 Adducin 2 (β).
78 Serine (or cysteine) proteinase inhibitor, clade D (heparin cofactor), member 1.
79 Kynurenine 3-monooxygenase (kynurenine 3-hydroxylase).
80 Potassium voltage-gated channel, KQT-like subfamily, member 1.
81 Yc92c11.s1.
82 Deoxyribonuclease I-like 2.
83 Hypothetical gene DKFZp570I0164.
84 Calcitonin gene-related peptide-receptor component protein.
85 Peripheral benzodiazepine receptor-associated protein 1.
86 Breast cancer suppressor element Ishmael Upper CP1.
87 Myotubular myopathy 1.
88 Regulator of G-protein signaling 14.
89 KIAA0763 gene product.
90 32f11.
91 Poly(A) binding protein, cytoplasmic 1.
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Table 4 (continued)

Metastasis overexpressed genes

Rankb Gene

92 Fibroblast growth factor 13.
93 KIAA0514 gene product.
94 Hypothetical protein FLJ22624.
95 Putative GR6 protein.
96 Mannosidase, α, class 2A, member 1.
97 Keratin, hair, acidic, 3A.
98 Epithelial V-like antigen 1.
99 Fibroblast growth factor 8 (androgen-induced).

100 Interleukin 9 receptor.

Metastasis underexpressed genes

Rankc Gene

1 KIAA0310 gene product.
2 Ring finger protein 3.
3 Thymosin, β, identified in neuroblastoma cells.
4 TNF-α-inducible cellular protein containing leucine zipper domains.
5 KIAA0451 gene product.
6 Macrophage erythroblast attacher.
7 Neural precursor cell expressed, developmentally down-regulated 4.
8 KIAA1750 protein.
9 Apoptosis inhibitor 5.

10 CGI-150 protein.
11 Sema domain, Ig domain, TM domain, short cytoplasmic domain, semaphorin 4F.
12 Adaptor-related protein complex 2, mu 1 subunit.
13 PFTAIRE protein kinase 1.
14 Isocitrate dehydrogenase 3 (NAD+) β.
15 Proteasome (prosome, macropain) 26S subunit, non-ATPase, 1.
16 ATP synthase, H+ transporting, mitochondrial F0 complex, subunit e.
17 Translin-associated factor X.
18 KIAA0308 protein.
19 Casein kinase 1, γ 2.
20 Hypothetical protein TCBAP0758.
21 Smoothelin.
22 ATP-binding cassette, subfamily C (CFTR/MRP), member 5.
23 TNF α-inducible cellular protein containing leucine zipper domains.
24 Small nuclear ribonucleoprotein 70 kDa polypeptide (RNP antigen).
25 Rho-specific guanine nucleotide exchange factor p114.
26 RYK receptor-like tyrosine kinase.
27 Proteasome (prosome, macropain) 26S subunit, non-ATPase, 8.
28 ATPase, Class VI, type 11B.
29 Hypothetical protein FLJ11021 similar to splicing factor, arginine/serine-rich 4.
30 KIAA0728 protein.
31 Desmuslin.
32 ATP synthase, H+ transporting, mitochondrial F0 complex, subunit e.

(continued)
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Metastasis underexpressed genes

Rankc Gene

33 Ligase I, DNA, ATP-dependent.
34 Protein phosphatase 2 (formerly 2A), catalytic subunit, β isoform.
35 Translocase of outer mitochondrial membrane 70 homolog A (yeast).
36 Ubiquitously transcribed tetratricopeptide repeat gene, Y chromosome.
37 API5-like 1.
38 Protein-L-isoaspartate (D-aspartate) O-methyltransferase.
39 KIAA0537 gene product.
40 Mitogen inducible 2.
41 Proteasome (prosome, macropain) subunit, β type, 1.
42 ADP-ribosylation factor-like 3.
43 Nucleobindin 2.
44 CAAX box 1.
45 Hypothetical protein FLJ21007.
46 Ubiquitin carboxyl-terminal esterase L1 (ubiquitin thiolesterase).
47 Adenosine kinase.
48 Multiple inositol polyphosphate histidine phosphatase, 1.
49 ADP-ribosylation factor 4-like.
50 DKFZp564A026.
51 Hypothetical protein FLJ11191.
52 ADP-ribosyltransferase (NAD+; poly [ADP-ribose] polymerase).
53 Zinc finger protein 133 (clone pHZ-13).
54 Transglutaminase 1.
55 Integrin, β 5.
56 Tuberous sclerosis 1.
57 Damage-specific DNA binding protein 2 (48 kDa).
58 Mitogen-activated protein kinase kinase kinase 4.
59 KIAA0431 protein.
60 Pre-B-cell leukemia transcription factor 3.
61 Bone γ-carboxyglutamate (gla) protein (osteocalcin).
62 Trophinin.
63 Integrin, β 5.
64 DKFZp564L0822.
65 E74-like factor 2 (ets domain transcription factor).
66 High-mobility group (nonhistone chromosomal) protein 17-like 1.
67 Succinate-CoA ligase, ADP-forming, β subunit.
68 Excision repair cross-complementing repair deficiency, complementation group 1.
69 Carbonic anhydrase II.
70 Vacuolar protein sorting 45A (yeast).
71 M-phase phosphoprotein 9.
72 Golgi phosphoprotein 1.
73 Beclin 1 (coiled-coil, myosin-like BCL2 interacting protein).
74 DJ1033B10.12 (collagen, type XI, α 2 [COL11A2]).
75 Tubulin-specific chaperone E.
76 Homeo box D3.
77 CGI-60 protein.
78 COX17 homolog, cytochrome c oxidase assembly protein (yeast).
79 Hypothetical protein FLJ10618.



Expression Profiling of Bone Tumors 381

Table 4 (continued)

Metastasis underexpressed genes

Rankc Gene

80 Tubulin, β.
81 Defender against cell death 1.
82 Myotubularin-related protein 1.
83 Hypothetical protein FLJ11193.
84 Cyclin-dependent kinase inhibitor 2D (p19, inhibits CDK4).
85 Protein kinase (cAMP-dependent, catalytic) inhibitor γ.
86 Zinc finger protein 288.
87 Transforming growth factor β-stimulated protein TSC-22.
88 Polymerase (RNA) II (DNA directed) polypeptide I (14.5 kDa).
89 Suppressor of S. cerevisiae gcr2.
90 NADH dehydrogenase (ubiquinone) Fe-S protein 4 (18 kDa).
91 Nicotinamide nucleotide transhydrogenase.
92 Excision repair cross-complementing repair deficiency, complementation group 1.
93 Sorting nexin 4.
94 Leptin receptor overlapping transcript-like 1.
95 Cisplatin resistance-associated overexpressed protein.
96 Thyroid hormone receptor interactor 7.
97 Similar to KIAA0010 gene product (H. sapiens).
98 Heat-shock transcription factor 2.
99 Protein tyrosine phosphatase, receptor type, M.

100 Zinc finger protein 195.
aAs identified in our 32 institutional osteosarcoma cases (26 primaries and 6 metastases).
bGenes are ranked by statistical significance and magnitude of association with metastases.
cGenes are ranked by statistical significance and magnitude of association with primary tumors (see text

for details).

extracellular matrix remodeling proteins like matrix metalloproteases, tissue inhibitors
thereof, TGF-β, insulin-like growth factor (IGF)1, TGF-α, epidermal growth factor
receptor (EGFR)/HER2, CXCR4 or CCR7, or even generic evidence of activation of
the RAS/mitogen-activated protein kinase (MAPK) cell signaling pathway, or evidence
of vascular proliferation (vascular endothelial growth factor [VEGF], etc.). However,
expression of many of these genes in osteosarcomas, as opposed to metastases only, is
evident from the literature. What is lacking at this point is any real understanding of the
functional significance of these genes. Most studies have documented one or more
members and hypothesized a specific role; in reality, these genes function within net-
works of interactive genes. The nature of these functional interactions is not intuitively
obvious from simple inspection of gene lists, a point which is increasingly evident to
those performing any form of gene expression profiling. There is, consequently, a real
need for interpretative software that will help to dynamically link these gene networks.

We did note one very striking aspect of our metastatic tumors when compared to
nonmetastatic tumors. When metastatic tumors were contrasted with nonmetastatic
tumors, it became immediately evident that there is a group of genes that are relatively
overexpressed in metastatic tumors (Fig. 6). Of interest, this group includes six genes
in the G antigen (GAGE) family, in particular GAGE-2, -3, -4, -5, -6, and -7, which lie
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within a tight cluster in close proximity to one another (see labels, Fig. 6). Surprisingly,
no other genes lie within this cluster. This observation provoked a more detailed con-
sideration of these findings. Due to significant sequence homology between GAGE
family members (90), it seems likely that there may be significant cross-hybridization
between members that might artifactually cause this cluster, and that separation of
expression levels for individual GAGE genes could be difficult. However, plotting of
averaged GAGE expression levels on a line graph for individual metastatic and primary
tumors (Fig. 7A) summarizes and confirms that several GAGE family genes (e.g., 2–7)
are expressed at high levels in most metastases, but not in the majority of primary
tumors. GAGE-1, despite marked sequence homology with GAGE-2, showed no varia-
tion between tumors (data not shown), indicating that the individual probe sets do

Fig. 6. Scatter plot of 12,600 genes for 32 osteosarcomas. For each gene, the log expression
across 26 primary osteosarcomas was averaged and compared to the average log expression in
6 pulmonary metastases. Seven probe sets representing six members of the G-antigen (GAGE)
family, including GAGE-2, -3, -4, -5, -6, and -7, are highly expressed in the metastatic lesions.



Expression Profiling of Bone Tumors 383

Fig. 7. Line graphs of GAGE expression in sarcomas. The average log expression of six
members of the G-antigen (GAGE) family, in particular GAGE-2, -3, -4, -5, -6, and -7, are
shown for individual primary and metastatic tumors. (A) GAGE expression is dramatically
increased in five of six metastatic osteosarcomas (Mets), vs 25 of 26 primary lesions, and is
barely detectable in a normal muscle sample (m). (B) GAGE family genes are not differentially
expressed between primary and metastatic rhabdomyosarcomas, even though detectable levels
are present across the tumor system.
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distinguish individual GAGE family genes, despite a single base difference in the cod-
ing region in question. Note that for comparison, normal muscle expresses this same
group of antigens at barely detectable levels (e.g., log approx 1.2), consistent with
published data (90,91). Notably, this is also comparable to the expression level for
these same genes in primary osteosarcomas and markedly less than virtually all
metastases (note error bars). Interestingly, this pattern of elevated expression in
metastases is true of osteosarcoma but not rhabdomyosarcoma. Figure 7B shows no
significant difference in expression levels between metastatic and primary rhabdomyo-
sarcoma, despite the readily detectable levels of GAGE expression overall in this tumor
system, as previously reported (92).

The GAGE genes are part of a GAGE-like superfamily of cancer–testis genes,
including, but not limited to, MAGE, BAGE, PAGE, SSX, ESO, and XAGE. Peptides
derived from these proteins bind to membrane-bound class I major histocompatibility
complex (MHC) molecules and are thus recognizable by cytotoxic T cells. The GAGE
genes have been localized to chromosome X, band p11.2-11.3, and their expression is
largely restricted to tumors and gametogenic tissue. Of interest, expression of GAGE
and/or GAGE-like family genes have been reported in a variety of human cancers,
including mesothelioma, Ewing’s sarcoma, melanoma, lymphoma, and neuroblastoma
(92,93). Their presence has been used to document the presence of minimal residual
disease, and they have been put forth as potential targets for antigen-based immuno-
therapy (93). In addition, it has been shown that DNA hypomethylating agents can
up-regulate the expression level of some of these antigens and may, therefore, be
entertained as ancillary agents when devising these innovative strategies (94). The real
interest in the preferential expression of these genes is that they may represent ideal
immunotherapy targets, as cytolytic T cells (CTLs) have been documented in tumors
expressing GAGE or other testis-related antigens. Thus, the striking expression of
GAGE genes seen in the metastases studied here suggests an immunotherapy approach
to osteosarcoma metastases might be useful. This is potentially of great clinical inter-
est, given the paucity of therapeutic options for patients with pulmonary metastases,
the most common cause of death in this disease.

VALIDATION STUDIES

The intricacies of microarray technologies, combined with the tremendous spectrum
and inherent complexity of the data, provide ample opportunity to arrive at misleading
conclusions. While methodologic and technical modifications have improved data qual-
ity, validation of final results remains a requisite part of any study. The primary meth-
ods used to validate gene expression studies are immunohistochemistry (IHC) and
real-time quantitative RT-PCR (Q-RT-PCR), with the two technologies providing
unique, but overlapping and complementary information. Q-RT-PCR assesses the level
of transcript expression at the RNA level (similar to oligonucleotide and cDNA
expression arrays), while IHC assesses the level of expression at the protein level. IHC,
in contrast to Q-RT-PCR, provides information regarding the cellular localization of
this expressed protein within a given tumor sample and often allows important distinc-
tions not possible by extractive methods such as Q-RT-PCR, notably tumor cell vs
stromal cell contributions to overall gene expression profiles. In situ hybridization on
tissue sections can localize mRNA, similarly to IHC, but is less often employed due to
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its perceived greater complexity and the relative instability of mRNA as opposed to
protein in tissue sections. Q-RT-PCR is the most common validation method employed
and can be performed by a limited number of different methods, all yielding relatively
comparable and reliable results if understood and handled appropriately (95).

Two of the expression studies performed on model systems described earlier used
Q-RT-PCR as a confirmatory assay, while the third used a combination of Northern
analysis and immunohistochemical staining. While only limited studies have been per-
formed to date on the genes identified in our studies, we have observed a consistent
pattern (albeit semiquantitative at best) of gene expression when array-generated val-
ues are compared with Q-RT-PCR using SYBR®-green. In the case of the GAGE fam-
ily genes preferentially identified in metastatic osteosarcomas as described above, two
sets of consensus primers were used that amplified GAGE-3, -4, -5, -6, and -7 and
GAGE-1, -2, and -8 collectively. GAGE expression threshold levels were normalized to
an average of β-actin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
threshold values. For the array data, a mean value for the two groups corresponding to
the real-time PCR sets was derived by simple averaging of the normalized values
reported by the arrays. Although actual quantitation was not possible, there was a close
correlation between the ratios of GAGE expression to GAPDH/β-actin values in each
data set, such that the rank order (e.g., high to low) between the four tumors was reca-
pitulated by both the array and real-time PCR data.

CONCLUSION

The studies reported here largely confirm an emerging consensus among those study-
ing patterns of gene expression in cancer and other diseases. First, molecular classifi-
cation of disease appears to be the simplest and most reliable use of this technology.
Tumors, in particular, are readily classified in many useful ways that relate to histo-
genesis, behavior, and even prognosis, often using fewer than 100 genes chosen from
12,000–40,000. Thus, the promise of a new ontology of cancer based on molecular
genetic characteristics is already within reach and is widely pursued across most forms
of human cancer. Numerous reports have appeared and will continue to appear docu-
menting the potential utility of gene expression profiles in cancer diagnosis (77,96).

The use of this technology to predict outcomes, even from pretreatment biopsies, is
potentially of great value in developing an effective treatment strategy. Clearly, if a
given expression profile dictates that response, or lack thereof, to a given chemothera-
peutic regimen, is pre-ordained, there is little to recommend a therapeutic approach
that is doomed to failure (if nonresponsive) or excessively toxic (if responsive). There
is already good evidence that this, too, is possible. Several authors have documented
their ability to identify high and low risk patient cohorts, and these preliminary obser-
vations may dictate alternative therapeutic approaches as they are confirmed on larger
prospective patient cohorts. Confirmation of this application of the technology will
require several years and close cooperation with, for example, large cancer clinical
cooperative group trials. Here, too, there is a burgeoning sense of optimism that this
use of the technology is both feasible and may soon be within grasp (97,98).

There is also good evidence to date that expression profiling will both identify
potential therapeutic gene targets and document their response to newly developed
small molecule therapies. The nearly universal awareness of the marked efficacy of
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Gleevec (Imantinib) in chronic myelogenous leukemia and gastrointestinal stromal
tumors (GIST) is but a prelude to a potential onslaught of new agents that target spe-
cific genes. Many such agents are in early stage clinical trials as this is written, and
many more are under development. It is not unreasonable to imagine a time when thera-
pies will be chosen on the basis of suitable expression of target genes. This is already
becoming evident, for example, with GISTs, where only those patients with activating
mutations of exon 11 in the c-KIT receptor have been found to respond to Gleevec
therapy. Thus, screening of newly diagnosed patients for such mutations will likely
determine their eligibility in the future. This paradigm will only expand in scope as
more agents and more gene targets are identified (99,100).

By far the greatest frustration associated with gene expression profiling is an
increasing appreciation that simple tallies of genes in a given cohort often means little
and may not even be reproducible, for instance, between laboratories and across tech-
nology platforms, as discussed earlier in this chapter. There is a considerable risk that
the optimism attendant to the early success of classification and outcome prediction
applications of gene expression profiling will be replaced by excessive pessimism in
the face of seemingly unfathomable biologic complexity revealed by this same tech-
nology. In reality, this technology is still in its infancy, and appropriate tools to unravel
this complexity have yet to emerge. There is little doubt that increasingly sophisticated
bioinformatic tools, capable of mining vast datasets and ferreting out valid gene–gene
interactions, will emerge. Even more exciting is the prospect that these same methods
will ultimately discern reproducible patterns of gene function within gene networks
that ultimately dictate cellular behavior and response to stimuli, such as host immune
defense, response to chemotherapy, radiation sensitivity, and even ability to metasta-
size. Clearly, multiple sources of information will be required, likely leading to the
integration of information from multiple technologies, including gene expression, gene
activation (e.g., phosphorylation and related events), protein expression and interaction,
and genomic polymorphisms that dictate gene function. This, of course, will exponen-
tially increase the sophistication required of analytic tools to interpret these data, yet
that is precisely the promise of this approach. If successful, gene expression profiling
will be an integral part of a whole-genome analysis applied to many biological prob-
lems and disease settings that promises to truly unravel the biologic underpinnings of
diseases like cancer. Gene expression profiling is a good beginning, but not an end in
and of itself. The combination of technology, analytic methods, and most importantly,
biomedical researchers and physicians receptive to this fundamentally different
approach to biology will ultimately determine the success of this effort. Hopefully, the
examples cited above will encourage others to explore this approach for their own
purposes.
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development and progression role, 173,

174, 176, 177
expression analysis, 187, 191

animal models, 177
BCL2, 176
complementary DNA microarrays, 182, 183
data analysis, 181
epidemiology, 173, 175
GeneChip, 183, 184
heterogeneity of tissue, 178, 179
histogenesis, 174
histologic grade correlations, 184
loss of heterozygosity, 175
MDX11, 176
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normal gene expression, 182
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prospects, 192, 194
PTEN mutations, 175, 176
serial analysis of gene expression, 57, 179, 182
transcript profiling methods, 179, 181

ProteinChip,
pancreatic cancer profiling, 268, 270
principles, 268

PTEN, prostate cancer mutations, 175, 176

R

RCC, see Renal cell carcinoma
Renal cell carcinoma (RCC),

cDNA microarray analysis,
applications, 237
cell lines, 237
clear cell tumors,

aggressive versus nonaggressive class
clustering, 244, 246, 247

downregulated genes, 240–242
gene ontology classification, 242–244
overview, 238, 239
upregulated genes, 239, 240

comparison of histological subtypes, 238
prospects, 250, 251

epidemiology, 235
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management, 236
molecular pathogenesis, 235, 236
post-gene expression profiling studies, 251
prognostic factors, 236, 237
prognostic set of genes,

clinical simulation test, 247–249
gene types, 249
survival analysis, 249, 250

Reverse transcription-polymerase chain reaction
(RT-PCR), validation of gene expression,
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Rhabdomyosarcoma profiling, see also Soft
tissue tumor,

clinical applications, 295–297
serial analysis of gene expression, 55
transcription factor target identification,

299, 300
upregulated genes, 297–299
validation, 297–299

RT-PCR, see Reverse transcription-polymerase
chain reaction

S

SAGE, see Serial analysis of gene expression
Sarcomas, see Soft tissue tumor

Self-organizing map (SOM), microarray data
analysis, 40, 78

Serial analysis of gene expression (SAGE),
advantages, 47, 48
data analysis, 51
disadvantages, 50
human genome mining and annotation, 53
pathway dissection in cancer, 57, 58
principles, 48–50, 263
resources, 51, 53
technical advances, 53
tumor expression profiling, see specific tumors

Soft tissue tumor, see also Rhabdomyosarcoma
profiling,

animal models and cell lines, 312
chromosomal translocations, 307, 309, 313
clinical classification, 305
complementary DNA microarray analysis,

clustering patterns,
controversial cases, 319
metastasis, 318, 319
mitotic index correlation, 319
primary tumors, 318

dermatofibrosarcoma protuberans, 317, 318
desmoid tumors, 318
gastrointestinal stromal tumors, 313,

315, 317
leiomyosarcoma, 313, 315, 317
malignant fibrous hystiocytoma, 313
prospects, 321
solitary fibrous tumors, 318
specimens,

availability, 311
biopsy types, 311
heterogeneity of tissue, 311, 312
processing, 311

synovial sarcoma, 317, 318
therapeutic target discovery, 305, 312
validation with tissue microarrays, 319, 321

diagnosis, 306, 307, 309
grading, 310, 311
histologic classification, 305, 306, 312, 313
monoclonal antibodies, 306, 307
prognostic variables, 309–311
treatment, 310

Solitary fibrous tumors, see Soft tissue tumor
SOM, see Self-organizing map
Supervised learning, see Microarray data

analysis
Synovial sarcoma, see Soft tissue tumor

T

TGFβRII, renal cell carcinoma expression and
prognosis, 249
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Tissue arrays,
breast cancer profiling validation, 138
construction of tissue microarrays,

block construction, 62, 63, 65, 66
instrumentation, 65, 66
overview, 62, 64
punch diameter, 66
sectioning, 66
starting materials, 63

data analysis, 71
detection techniques, 61
development, 62
frozen arrays, 68, 69
prospects, 71, 72
soft tissue tumor complementary DNA

microarray validation, 319, 321
types and applications, 67, 68
validation studies, 69, 71

TP53, see p53

Tumor bank,
challenges,

biohazards, 115
informed consent and confidentiality,

115, 116
more research with less tissue, 114, 115

design, see Biopathology Centers

U

Unsupervised learning, see Microarray data
analysis

V

Virtual private network (VPN), tumor banking,
112

VPN, see Virtual private network

W

Wilms tumor profiling,
clinical applications, 295–297
GeneChip, 302
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