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Notation

M, card M — number of elements of M if M is finite and
co if M is infinite

9(971, 91)	 — angle between subspaces
—7 	 — weak convergence of elements of a Hilbert space
codim 8	 — dimension of orthogonal complement of a linear

set E, or dimension of the space orthogonal to
all elements of family

	

•, • >	 — scalar product in auxiliary Hilbert space 91

	

' >>	 — norm in an auxiliary Hilbert space 91
8(o-)	 — Carleson constant
(A 2 )	 — Muckenhoupt condition
Ks 	— a subspace

11 2+ (9) e SH+(91) tf E +POI f 1 SH+(91))
Ka 	— a subspace IC with S = exp(ika)
1,?	 — Hilbert space of sequences with the norm

]1/2

IlCllr = [	 «)r
n=1

—Hilbert space of functions E cn cp,, with the
n=1

norm Ilf Ilwr — 11{41,
—Hilbert space Gk., , 0 kV,

—Hilbert space of series E c„p„ with the norm
n=1

(E ICnI 2Pn2 )
1/2

gyp„ 	 — eigenfunction of operator A
— eigenvalue of operator A or a point of

spectrum of exponential family
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Introduction

This book deals with the controllability problem in distributed parameter
systems (DPS). As the following chapters explain, one way to handle this
problem is to reduce it to the problem of moments and to study the
resulting exponential families Spar = {q„ C nt 1 (the "parabolic" case)

or 61„ frin e±07.`It (the "hyperbolic" case). Here, {AO is the
spectrum of a system, and vectors lb, belong to an auxiliary Hilbert space
91, dim 91 co, determined by the space of control actions.

Over the past twenty-five years, DPS control theory has been developing
rapidly, both because of its important technological applications and its
usefulness in resolving a variety of mathematical problems. Indeed, the
theory has been described at length in various monographs (Butkovskii
1965, 1975; Lions 1968, 1983, 1988a; Lurie 1975; Curtain and Pritchard
1978; Egorov A. I. 1978; Litvinov 1987; Lagnese and Lions 1989; Krabs
1992).'

The controllability question occupies a prominent place in DPS control
theory for a number of reasons. First, many practical problems in various
fields of engineering, physics, and chemistry are formulated as control-
lability problems, that is, as questions about how to describe reachability
sets. Second, it is essential to have some insight into controllability in
order to resolve DPS optimal control problems. Furthermore, control-
lability plays a vital role in the stabilization and identification of DPS.
Recent studies have demonstrated its profound connection to the classical
inverse problems of mathematical physics, for example (Belishev 1989;

The first version of this book was published in Russian in 1989 (Avdonin and Ivanov 1989b).
For the present edition, the book has been thoroughly revised and new results were added.

'Since the number of publications pertinent to the subject of this book is enormous, we are
unable to present an exhaustive list of references; an extensive bibliography may be found
in Fleming (1988).

1
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2 Introduction

Avdonin, Belishev, and Ivanov, 1991a). Note, too, that DPS controllability
studies have brought to light a host of interesting and complex questions
in several branches of mathematics, such as PDE theory, operator theory,
the theory of functions, and the theory of numbers.

The various techniques used to investigate DPS controllability can be
divided into three fundamental approaches. The first one is based on
theoretical operator methods (see, e.g., Fattorini 1966, 1967; Tsujioka
1970; Fuhrmann 1972; Weiss 1973; Triggiani 1978; Nefedov and Sholok-
hovich 1985; Sholokhovich 1987). These are rather general methods that
make it possible to treat a broad range of systems described by equations
in Hilbert and Banach spaces; however, they are not always effective in
addressing concrete problems.

The second approach employs a specific technique of the theory of
partial differential equations. This technique has been the subject of
considerable research and has such broad applications that we can
mention only a few of the works that have focused on it.

D. L. Russell (1971a, 1971b, 1972, 1973) and J. E. Lagnese (1983), for
example, apply the method of characteristics for hyperbolic equations and
the Holmgreen uniqueness theorem (see also Littman 1986).

J.-L. Lions (1986) suggested the Hilbert Uniqueness Method, which is
based on the duality between controllability and observability and on
a priori estimates of solutions of nonhomogeneous boundary value
problems. This method was developed by L. F. Ho (1986), P. Grisvard
(1987), E. Zuazua (1987), A. Haraux (1988), and I. Lasiecka and
R. Triggiani (1989). A number of searchers (Chen et al. 1987; Leugering
and Schmidt 1989; Schmidt 1992; Lagnese, Leugering, and Schmidt 1993)
have applied the method to networks of strings and beams.

Bardos, Lebeau, and Rauch (1988a, 1988b, 1992) have developed an
approach to the controllability problems for hyperbolic equations using
microlocal analysis and propagations of singularities. This approach made
it possible to solve the problem of exact controllability in cases where
controls act on a part of the boundary or on a subdomain. See also
Emanuilov (1990).

The third approach, which reduces the control problem to the problem
of moments relative to a family of exponentials, is known as the moment
method. It is a powerful tool of control theory in that it provides solutions
to many kinds of problems. N. N. Krasovskii (1968) applied the method
to the systems described by ordinary differential equations. It has also
been used in DPS control theory to investigate optimum time control
problems (Egorov Yu. V. 1963a, 1963b; Butkovskii 1965, 1975; Gal'chuk
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68; Korobov and Sklyar 1987) and to solve optimal problems with the
tic quality criterion (Plotnikov 1968; Egorov A. I. 1978; Vasil'ev,

shiniikharnetov, and Potanov 1989). In addition, this method has been
‘e'd in combination with the Pontryagin maximum principle to address
eioPtimal boundary control problem to parabolic vector equations

enkov and Plotnikov 1989), and to study some bilinear control
rOblems (Egorov A. I. and Shakirov 1983), as well as observation
roblems in parabolic-type equations (Mizel and Seidman 1969, 1972;

idinan 1976, 1977).
n:investigations of DPS controllability, the moment method has most
ed,been used for systems with one spatial variable and for a scalar

control function (see, e.g., Russell 1967, 1978; Fattorini and Russell 1971;
CovskiT 1975; Reid and Russell 1985). Work has also been done on

cOntr011ability problems associated with several control actions (Fattorini

968 .; Sakawa 1974).
The moment method has also been used to analyze controllability in

.systems permitting separation of spatial variables. Here, the method has.

ide it possible to reduce the controllability problem to a series of scalar
roblems (see Graham and Russell 1975; Fattorini 1975, 1979; Krabs,

ugering, and Seidman 1985). For the exponential family 6° arising in
the. transition from a control problem for a moment one, the role of

auxiliary space 91 is filled by the space to which the values of control

actions belong. In the case of a single control action dim 91 = 1, the usual
"scalar"-families of exponentials appear. If there is a finite number N of

ar,control actions, then dim 91 = N, and a family of vector exponentials

th ,
the .values in a finite dimensional space arises. A string vibration

nation with the control actions at both boundary points serves as an, .
example (where N = 2). If, for instance, a control acts on the boundary

of a multidimensional spatial domain f2, then it is natural to choose
as 91, whereupon dim 91 = co.

The solvability of the resulting problem of moments, and hence of the
primary control problem, depends on the properties of the corresponding
exponential family. The study of scalar exponential families (nonharmonic

ourier series) dates back to the 1930s (Paley and Wiener 1934) and since
en has become a well-known branch of the mathematical analysis. Thus,

questions concerning the completeness, minimality, and basis property of
suck families in space LAO, T) have been investigated in some depth

ngham 1934; Levinson 1940; Duffin and Eachus 1942; Duffin and
SChaffer 1952; Levin 1956, 1961; Kadets 1964; Redheffer 1968; Katsnelson
1971; Young 1980). In addition, B. S. Pavlov (1973, 1979) has suggested a
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geometric (in a Hilbert space sense) approach that has provided a basis
property criterion. (For a detailed exposition of this approach and its
relation to other problems connected with the theory of functions, see
Hrushchev, Nikol'skii, and Pavlov 1981.) We use Pavlov's geometrical
approach in this book to develop a theory of exponentials in a space of
vector functions. This work has also enabled us to shed new light on
scalar families and thus is proving to be useful in DPS control problems.

In fact, DPS control problems were the very reason that we decided to
investigate exponential families. Without the results that we have obtained
on vector exponential families, it would be very difficult to apply the
moment method to problems that cannot be treated in the terms of a
scalar exponential family or a series of stioh families of simple enough
structure. In other words, the extension of the moment method to a wider
class of DPS is one of the principal objectives of this book.

The book consists of seven chapters, each of which is divided into
numbered sections, which in turn contain enumerated assertions (remarks,
theorems, corollaries, and so on). When referring to a statement or a
formula within a chapter section, we omit the number of that chapter
section (e.g., we refer to Proposition 17(a) rather than Proposition
I.1.17(a)). When referring to a formula of another section, we add the
number of that section. Sections are divided into subsections. Although
this arrangement may seem unwieldy, it is difficult to treat this complex
subject in any other way.

Chapter I presents the basic information needed to understand projectors
in Hilbert spaces, families of elements, and families of subspaces, as well
as the problem of moments. Although we cannot claim to be presenting
original results (except, perhaps, for some assertions on the problem of
moments solvability) or to have made any methodological discoveries, we
have brought together for the first time all basic information concerning
this subject.

The discussion opens in Section I.1 with the geometry of Hilbert spaces.
For two subspaces 9:11 and 91 of a Hilbert space 5, we introduce the
concept of an angle 9(931, 91) between them,

4o(9X, 91) = arc cos sup 1(m, 01 
memne% IlmII 11n11

In terms of the angles, we elucidate the properties of operators Pm I gt
(orthoprojectors on 911 restricted to 91). In particular,

[P93z	 = 1 /sin 9(5 e 931, 91).
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Skew projector y r from the direct sum 931 + 91 to 9N parallel to 91

is studied further:

.9L91(m + n) = m	 Vm e 931, n e 91.

This projector is bounded if and only if c,9(9:2, 91) > 0. Such projectors
play a central role in the investigation of exponential families in L 2(0, T).

Next, we study families E. = {„} of element (and families of subspaces)
from the perspective of the "degree” of their linear independence. The
linear independence of any finite subfamilies of 2, is the weakest one. We
let it be denoted by E E (L). The next step is to introduce W-linear
independence (notation E, E (W)). This property, in somewhat simplified
terms, means that the weak convergence of series E c„,, to zero implies

that all coefficients c„ are zeros. A stronger property is minimality

(E. e (M)). It means that for any n, element does not lie in the closure
of linear span of the remaining elements. To put it another way: there
exists a family E' { called the biorthogonal family, such that

= 67

If, along with this,	 are jointly bounded, then the family is said to be
s-uniformly minimal (notation E e (UM)). For the almost normed families
Ma X 1), the (UM) property is equivalent to

49 (., V bm � 6 > 0.
m#n

A family for which the latter relation holds is said to be uniformly minimal.
The strongest property, which is the 2'-basis or Riesz basis property

in the closure of the linear span of the family, means that family E is an
image of an orthonormal one under the action of some isomorphism; we
write E e (LB) in this case.

Families of subspaces are classified by similar definitions. Thus the
hierarchy of the "independence"

(LB) =. (UM) (M) (W) (L)

is established.
In Section 1.2, we turn to the problem of moments. For a given family

E and some element c E e2, one has to find f e 5 such that {( f, „)} = c.
Operator

fE: fH 1(f fl)}	 (1)

is called the operator of the problem of moments. We focus our attention
on the "quality" of the solvability of the moment problem or, more
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precisely, on the image R, of operator A. The solvability of the problem
of moments is directly associated with "the degree of linear independence"
of family In particular,

E (LB)	 = 5, 	 R5 = 5 E, E (UM),

C10.7 = 5 	 e (W).

We also prove that R,. is closed if a Riesz basis can be found in E.
Chapter II examines the properties of family	 of vector exponentials

in L2 (0, T; 91),

87'	 {enInel, 	 en.= e Lir"' q„,	 Im An > 0,

in detail. Here, tin E 91, dim 91 < co, T < co. By the Paley-Wiener theorem,
the inverse Fourier transform turns L 2(0, oo) into Hardy space H_2„ which
consists of analytic functions in the upper half-plane C, whose traces are
squarely summable over the real axis. Here, the exponentials turn into
simple fractions x„(k) = (k — A,,) - belonging to In ._ for Im 2„ > 0. This
makes it possible to invoke the powerful theory of Hardy spaces in the
study of exponentials. Section II.1 explains these spaces and simple
fraction families. It should be pointed out that the reader will require
some knowledge of the basics of the Hardy space theory in order to
understand the theory developed in this book.

To begin with, one needs to be familiar with the concepts associated
with inner-outer factorization. Consider, for simplicity, the case of
functions bounded in C + . If such functions have a unit absolute value
almost everywhere on the real axis (and are analytic in C ± ), then they are
said to be inner functions. Among them, Blaschke products (BP), B(k),
are recognized,

B(k) = 	 en
k — An

2Im „ > 0,
„ Ez k — An

where r,, are the phase factors, IE„I 	 1, and numbers An - the zeros of the
BP - satisfy the Blaschke condition

Im „

ne z 1 + 12.

1

„1 2

Functions exp(ika), a > 0, are obviously inner functions as well; in
contrast to BP's, they have no zeros at all. Such functions are called entire
singular inner functions (they have the essentially singular point at
infinity). Functions bounded and analytic in C + possess factorization

< CO.	 (B)
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f fife in which fi is an inner function and .fe is an outer function of the

form

with h(t) = loglf(01. Outer functions have no zeros in C + . In contrast

to entire singular inner functions, they cannot decrease exponentially at

Im k + co.
Section II.1 introduces the concepts of inner and outer functions for

analytic operator functions with the values in finite-dimensional space 92,
along with the Blaschke—Potapov (BPP) product, which is the analog

of BP, and the entire singular inner operator function (ESF). Matrix
exponential exp(ikQ) with nonnegative matrix (operator) Q is an ESF.

Without going into detailed definitions here, suffice it to say that an
operator function belongs to the corresponding class if its determinant is

a function from a similar scalar class. For analytic operator functions F

bounded in C, there also exists factorization

F II0F: ,

where ri is a BPP, 0 is an ESF, and F e+ is an outer operator function.
Consider now the exposition of the known results on the properties of

families X of simple fractions x„(k), n E Z. It appears that for the

minimality of. (on 1-1..) the validity of Blaschke condition (B) is necessary

and sufficient.
The criterion of uniform minimality of X is the Carleson condition

inf fl
mEi n,n � m

2,, — 
> 0.	 ( C)

2„ — 2 e, 

This condition is well known in the theory of interpolation of bounded
analytic functions. Normalized families of simple fractions exhibit a
surprising equivalence between the uniform minimality and the ..2°-basis
property: that is, the Carleson condition proves to be the 2'-basis
criterion. In the strip 0 < c < Im k < C, condition (C) transforms into the

separability condition (inf„, � „IA„, — 2„1 > 0). Recall that these properties

of family X are equivalent to similar properties of an exponential family
in L2(0, co).

In Section 11.2, minimality and .29-basis criteria are given for family 6%,
of vector exponentials. For family Sce to be minimal in L 2 (0, co; 91), it is

necessary and sufficient that 2„ satisfy the Blaschke condition, so the finite

i f h(t) 
fe(k) = exp dt

ir	 k — t
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dimensional case has no specific character of its own, in comparison with
the scalar one.

The situation is more complicated when it comes to the .29-basis
property. If one takes two Carlesonian sets a, and cr,, then their
unification may be not Carlesonian (in contrast to the Blaschke con-
dition, the Carleson one is not "additive"). Consequently, scalar family

will not yet be an '-basis. At the same time, vector
exponential family

{eutP11}A..,1 V {ewt12}.I.6,2

evidently constitutes an 2'-basis if r1 i and 17 2 are linearly independent. It
is known that 21-basis family d'oo allows a splitting into dim 91 subfamilies,
each of which has a Carlesonian spectrum. This single condition is not
enough for the ..29-basis property of go,. To obtain the .29-basis criterion
it is necessary to demand in addition that every group of "close points"
A has vectors r1 z , which are "linear independent" uniformly in groups.
The exact formulation of the criterion is presented in Subsection 11.2.2.

A criterion for vector exponential family 6', to form a basis in space
L2(0, T; 91) is established in Section 11.3 in terms of the generating function
(GF).

The GF concept was formulated some time ago (Paley and Wiener
1934) and since then has been widely used (see, e.g., Levin 1956, 1961)
for the investigation of scalar exponential families {e 11^`} in L 2 (0, T). The
GF is constructed by its zeros A„ with the help of the following formula:

f (k) = e ikTI2 fo, 	fo p v. ri (1 — kI2,,),	 (2)

under the assumption that f, has the same exponential type T/2 both in
the upper and the lower half-planes. Later, we assume that the spectrum
a = {A„} lies in the strip 0 < c < 1m A„ < C; note that the shift 2„1-.- 1,, + i(5
does not change the minimality and 2'-basis properties of the family. By
employing the GF, B. S. Pavlov (1979) managed to obtain the basis
criterion: family {e il"`} constitutes a Riesz basis in L 2(0, T) if and only if

(i) {1„} is separable and
(ii) If(x)1 2 satisfies the so-called Muckenhoupt condition

sup —
1 	

If(x)I 2 dx —
1 

f If (x)1 - 2 dx < oo ,
1I1

where .% is the set of intervals of the real axis.
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Condition (i) is equivalent to the s-basis property of family {e'^`} in
L2(p, co). Condition (ii) leads to several equivalent statements. One of
them, which has just appeared in the Pavlov approach, requires the

Hilbert operator
u(t) dt

(Hu)(x) = 1 /Iv .
It 	 X - t

to be bounded in the space of functions squarely integrable on the line

with the weight I f(x)I 2 .
Extending this approach, we obtain the necessary and sufficient con-

dition that the vector exponential family forms a basis (see Section 11.3).

We find that GF f from (ii) may be defined as a function fulfilling
factorization conditions

f(k) = B(k)f: (k), 	 k e C + ,

f(k) = e,krf (k),	 k e C_ .

Here B is the BP constructed by {fi n } while fe are outer functions in C,
and C_, respectively. These are precisely the relations that provide the
grounds for the definition of the GF in the vector case. Entire operator
function F with a factorization

F 11F;F eikTF;	 (4)

is said to be a GF for family e'T {e"-.`n „} in L 2 (O, T; 91). Here, FQ are
outer operator functions in C ± , and II(k) is the BPP constructed by

and tin (i.e., the determinant of H is the BP with zeros t,, and

tin E Ker 11*().„)). Family eT is shown to form a Riesz basis in L2 (O, T; gt)
if and only if (i) family forms an 2-basis on the semiaxis, and (ii)
the Hilbert operator (3) is bounded in the space of vector functions
squarely summable on the line with the matrix weight F*(x)F(x).

Properties of scalar exponential families are examined in Section 11.4.
The known results concerning the minimality and basis property are
discussed first, and then some new findings presented. For example, it is
now thought that sine-type functions play a significant role in exponential
families. Entire function f of the exponential type is called a sine-type
function if its zeros lie in the strip urn kj < C and if both f and 1/f are
bounded on some line parallel to the real axis. The proximity of numbers
#1.„ to the zeros of some sine-type function is the known sufficient
condition for family {e".^`} to be a Riesz basis. The converse statement

(3)
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is also proved to be true, and this fact is used to demonstrate the following
result.

If family ST = {e"-^`} forms a Riesz basis in L2 (0, T), then for any
T' < T there exists a subfamily S' c ST constituting a Riesz basis in
L 2 (0, T'). We also elaborate an algorithm for the construction of such a
subfamily.

In the same section, we prove that statements similar to the one
formulated above are valid for families of a more general form:

{tr" m = 0, 1, . . , r„, n e Z.

In Section 11.5, we look at vector exponential families further. We show,
for example, that when family ST = {e'n'n„} is minimal in L2 (0, T; C"),
then scalar family {e iAnt} generally is not minimal in L2(0, NT), but
becomes minimal after N arbitrary elements are removed from it.

Another assertion we make there deals with the stability of the basis
property. If ST forms a Riesz basis in L2 (0, T; 91), then E > 0 may be found
such that any family e of the form {e"^tii,,} is also a Riesz basis in
L 2 (0, T; 92) as soon as

'An — nnl + — ILO < E.

Chapter II closes with a discussion of the conditions that provide the
weak convergence in L 2 (0, T) to zero of series E a„ e - "^` (the "parabolic"
case) or E a y, en"' (the "hyperbolic" case), which implies all the coefficients
to be zeros. In the parabolic case, it takes place under very weak
limitations on {it„}. However, to make this implication hold in the
hyperbolic case, stringent restrictions on {a„} have to be imposed. As
becomes clear later in the book, differences in the behavior of the
exponential family lead to a qualitative distinction in the controllability
of parabolic and hyperbolic systems.

Evolution equations of the first and second order in time

(t) + Ax(t) = f(t), (5)

3(t) + Ax(t) = f(t) (6)

are treated in Chapter III. Here, A is a self-adjoint, semibounded-from-
below operator in Hilbert space H; operator A cc .= A + al is positive
definite. We assume A to have a set of eigenvalues {).„}7 3_ 1 with corre-
sponding eigenfunctions cp y, forming an orthonormal basis in H.

We introduce a scale of Hilbert spaces Ws , s e R. For s > 0, 147, is the
domain of operator /C."; for s < 0, W, = W'_, is the space dual to
W-5 with respect to inner product in H, Wo H = H'.
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We use the Fourier method to construct generalized solutions to

equations (5) and (6), which are continuous functions in time with the
values in one of the spaces from the above scale. That is to say, we
demonstrate in Section III.1, that for f E L 2(0, T; ,) and initial

condition x(0) = x o e W., equation (5) has the unique solution of class

co, n; W,.). In Section 111.2, we arrive at a similar result for equation

(6): with f from the class under initial conditions x(0) = xo

X(0) x i e	 „ equation (6) has a unique solution x such that

x e	 T]; Wt.), z e C([0, 7]; Wr 0. It is convenient to write the latter

inclusions in the form (x, E C([0, T]; -1,K)r/5 r = Wr 0 Wr — 1• Note that

these results are sharp ones.
Next, we consider controls systems

5c(t) + Ax(t) = Bu(t),	 (7)

(t) + Ax(t) = Bu(t). 	 (8)

Here, control u belongs to space all := L2 (0, T; U), where U is a Hilbert

space, and B is a bounded operator from U to Wr _ 1 . With the help of
the Fourier method, control problems for systems (7) and (8) are reduced
to the problem of moments. Namely, reachability set R(T) of system (7)

in time T (for x(0) = 0) is shown to be isomorphic to the image of operator
(1) of the problem of moments for family

spar	
{0, + cor/2 e --Â n tB* 90 	 oil.

For system (8) with initial conditions x(0) = (0) = 0, reachability set

01(T),
(T)	 {(x(T), (T)) u c all},

is isomorphic to the image of the operator of the problem of moments
for family

r — 1 
(An + a) 2 e ± Ls/Anti cohyp = { J n = l•

(For the sake of brevity, we assume here that numbers An are separated

from zero.)
Section 111.3 then relates the questions of controllability for systems (7)

and (8) to the properties of family 6' in space qt. Previous studies have

focused mainly on two types of DPS controllability: the exact one, when
the reachability set includes some explicitly described space, and the
approximate one, when the reachability set is dense in the phase space of
the system. From a practical point of view, the distinction between the
possibility of getting exactly into some state and the possibility of finding
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the system in its c-vicinity of this state is not too significant. The behavior
of the control norm when c —+ 0 is important, however, as is the stability
of the controllability type under small perturbations of the system
parameters. We suggest a new classification of controllability types that
refines the common one by taking into account both of these points and
relates the "quality" of controllability directly to the properties of
exponential families.

Suppose that in system (7) H0 is a Hilbert space densely and continuously
embedded into W., which comprises all the eigenfunctions (p„ (in particular,
H, may coincide with W.). The conventional definition of the exact
controllability (we call this property E controllability relative to H0 in
time T) means that R(T) Ho . It is natural to extract the case of the
equality, R(T) = H0 , which we call B controllability (relative to H0 in
time T). In this case, the final state x(T) may be achieved with the help
of control u, whose norm is equivalent to that of x(T):

Ilx(T)60 X II

The approximate controllability (we called it W controllability in time T)
means that C1,,,R(T) = W, . It makes physical sense to distinguish the
situation when reachability set R(T) contains all (finite) linear combinations
of eigenfunctions co n . This type is called M controllability.

Similar definitions of controllability types are also introduced for a
system of the second order in time. For instance, system (8) is said to be
M controllable in time T if ✓ (T) contains all linear combinations of states
of the form (cp„, 0) and (0, cp,,).

Many studies dealing with the proof of the approximate controllability
for DPS of this or that kind, have demonstrated their M controllability.
D. L. Russell (1978: 699) has recognized this case and called it the eigen-
function controllability.

Next, concentrate on the spaces H0 of a more special type, such as W
for system (7) or spaces Yr: for system (8). From the isomorphicity of
reachability sets to the image of the moment problem operator, one is able
to relate controllability types to the properties (types of linear inde-
pendence) of vector exponential families.

Suppose that in system (7) H0 = W.. Then it follows that

(a) the system is B-controllable relative to H0 in time T if and only if gear
forms an .'-basis in qi;

(b) the system is M-controllable in time T if and only if i-par is minimal
in qi;
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(c) the system is W-controllable in time T if and only if Opar is W-linear

independent in V;
(d). the unification of sets R(T) in T > 0 is dense in W. if and only if

family 6.'4, is W-linearly independent in 6/40 .= L 2(0, co; U).

uite similar assertions are correct for system (8) when Op., is replaced

and W,. by -11/:.
Y
' The discussion then turns to an abstract version of the Hilbert

Uniqueness Method suggested by J.-L. Lions (1986) for systems (7)

.la'd (8).
-.Chapters IV and V are denoted to controllability in systems described

differential equations of parabolic and hyperbolic types. These problems
are discussed in the framework of Chapter III, in which A is, an elliptic
differential operator of the second order in a bounded domain LI c 111N . In

this case, spaces 147,. are related to the Sobolev spaces by the following

inclusions:
Ha(T) c w, c 1-F(S2),	 r E [0, ro],

where rc, depends on the smoothness of operator coefficients and the
bOundary T of domain C2.

Operator B has various forms, depending on the kinds of control
actions. We first discuss controls entering the right-hand side of the
differential equation (controls with a spatial support in domain C2). If, for
instance, a control is of the form u(x, t) and its x support lies in a

subdomahi ST, then B is the operator of multiplication by the characteristic

function of SY and U = Off). If the control is finite-dimensional, that
is, the right-hand side is E7= 1 bp (x)up (t) (functions by are specified), then

U = C'" and

= E ri p bp (•): Cm
p=

In particular, functions by may be generalized functions, for example,,
bp'(x) = O(x — xp ), xp e n. In the latter case, we speak about pointwise
control.. 	 .

Within the framework of the same scheme, we also consider boundary
controls that enter the boundary conditions of the corresponding initial

• boundary-value problem. So, for a boundary condition acting on a part
'a the boundary in the Dirichlet problem U = L2(F') and the value of

functional Bri, n e L2(F') on element 9 is given by the formula

<11q, 9> =	 ri(s)
09(s)

 ds
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(a derivative along the conormal stands under the integral). For classical
solutions of initial boundary-value problems, the formula is obtained by;
means of integration by parts. For the generalized solutions concerned,
just the specification of operator B allows one to actually assign a rigorous
meaning to the initial boundary-value problems in question. For controls
with both spatial and boundary support, one is able to distinguish the
case of finite-dimensional, particularly pointwise, control.

In Chapters IV and V the unified approach (see Chapter III), is used
to investigate a variety of control actions, and a number of new findings
are reported. In addition, further information is provided on the properties
of exponential families. Note that in some cases the clarification of the
relationship between DPS controllability and exponential families permits
us to use results on the controllability provided by other methods (not
associated with the moment approach) to establish new properties of
vector exponential families.

To mention some of the more interesting results concerning parabolic
system controllability (Chapter IV), consider a system controlled over a
piece F' of the boundary (F' is relatively open and nonempty). For
U = OF') a parabolic system happens to be W controllable in any time.
Moreover, the same fact takes place for a narrower class of controls:

u(x, t)1 .„ Er = f(x)g(t),

where f runs through LAP), while g — through LAO, T).
For any kind of finite dimensional controls for dim S2 > 1, the system

proves to be not M-controllable in any time. Lack of M controllability
implies a lack of E controllability relative to Sobolev space with any
exponent. Simultaneously, the W controllability is equivalent to the
so-called rank criterion; when the latter is broken, the exponential family
becomes linearly dependent.

Hyperbolic system controllability (Chapter V) has, on the one hand, a
great deal in common with the controllability of parabolic systems under
the same types of control actions. So, for any kind of finite-dimensional
controls, the system is not M-controllable. On the other hand, hyperbolic
systems are boundary controllable only for large enough T (it is associated
with the finite propagation velocity of perturbations). Furthermore, in
many cases when the corresponding parabolic system allows for only
M controllability, the hyperbolic system tends to be B-controllable
relative to certain phase space 11/,... According to our approach, the
distinctions are due to essentially differing features of exponential families
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with real (in the parabolic case) and imaginary (in the hyperbolic case)

exponents.
Chapter VI turns to boundary, initial, and pointwise control problems

of the vibrations of a homogeneous rectangular membrane. These problems
demonstrate clearly the advantages of the moment method. In particular,

in Section VI.1, we arrive at a sharp result pertaining to the smoothness

of solution to the wave equation in rectangle 12 = (0, a) x (0, b) with a
nonhomogeneous Neumann boundary condition of class LAO, T; OF))
and a zero initial condition. We prove that relation

(z, i) e C([0, 71; 1-1 314(C1)®

hblds for solution z of the problem.
The chapter also presents interesting negative results that prove the

lack of approximate controllability. In Section VI.1 we consider the case
of boundary condition u, (03,10v) = b(x)u(t), with a fixed function b. In
Section VI.2 we deal with the problems of initial and pointwise control.
We find any number of membrane points can be made to have arbitrary
trajectories, if the initial conditions are appropriate. This problem is dual

to the problem of pointwise control. We show that for any T > 0 and
any number of pointwise controls, reachability sets .R(T) are not dense
in the phase space of the system.

The following conjecture therefore seems reasonable. For a hyperbolic
equation in an arbitrary domain n c RN, N > 1, the system reachability
set under a finite-dimensional control of any kind is not dense in the phase
space of the system for any T > 0.

Chapter VII considers boundary control problems connected with
hyperbolic systems for vector functions with one spatial variable. With
the help of the moment method, we reduce the problems to the study of
vector exponential family with the values in a finite-dimensional space.
The theory developed in Chapter II is particularly relevant to this case,
and the reduction to the moment problem allows us to investigate system
controllability properties in a comprehensive fashion.

The kinds of problems found in this chapter can be illustrated first by
a network of connected homogeneous strings controlled at the nodes. We
prove the system to be B-controllable (in a large enough time) if the graph
representing the network is a tree. In the opposite case, the system may
be M-controllable if there is no cycle of strings with commensurable
optical lengths. If such a cycle can be found, however, the system is not
W-controllable.
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We also treat a control problem for a multichannel acoustic system

{Q(x) 82Y = 82Y , 0 < x < 1, 0 < t < T,
ate 	ax e

y(0, t) = u(t),	 u c L 2 (0, T; CI ),

y(I, t) = 0.

Here, Q is a positive definite matrix function. The system B controllability in
space L2 (0, 1; cN) e I-I - 1. (0, I; cN ) in time T � To, To := 2 .110 II Q(x)11 212 dx,
is proved. In this problem, as well as in other problems of this kind that
have a clear physical meaning, one manages to construct a generating
matrix function (4) for the family of vector exponentials, as expressed via
solutions of the corresponding Helmholtz equation, and then to describe
the properties of the vector exponential family that appears.
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Elements of Hilbert space theory

To understand the theory put forward in this book, it is necessary to be
familiar with the following concepts:

(a) Skew projectors and angles between subspaces.
(b) Families of elements of Hilbert spaces: W-linear independence, mini-

mality, and Riesz-basis property.
(c) Solvability of moment problem in Hilbert space.

Throughout this chapter, 5 denotes separable Hilbert space, and 9; 12
and 91 are subspaces of 5 (a subspace is any closed linear subset of 5).

For a linear span of the elements e 5 or subspaces E, we write
Lingil(Lin{Ei}). A closure of a linear span is denoted by

C15 Lin{}(C15 LinfEl),

or simply by V{ i}(V{E;}) if it is clear in which metrics the closure is
taken. If 902 and 92 are two subspaces of 5, then 9321 and 92 1 refer to
their orthogonal complements in

V{912, 92} = 9J2 V91.

The notation Pan is reserved for the orthoprojector on a subspace 932
in 5. In what follows we denote by AI R the restriction of (acting in
Hilbert spaces 5 operator A on set B c 5). Notice that we distinguish
operators [P931 1 91 : 92 1--+ 5] and [P9R 1 9.1: 931].

1. Families of vectors and families of subspaces
1.1. Orthoprojectors and angles between subspaces

Let 9112 and 92 be two subspaces of 5.

17
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Definition 1.1.1. A number 9 = '5 (911, 91), 9 e [0, i/2], is said to be an
angle between the subspaces 911 and 91 if

l(rn, cos 9 = sup
me9M, ne91 IIMII lln ll

If 931 is a one-dimensional subspace, we usually write 9(m, 91) instead
of 9(932, 91), with m E 931, m 0.

For two one-dimensional subspaces, the definition coincides with the
usual one for an angle between the straight lines. On the other hand, this
definition differs from that of an angle between planes in R 3 (in our sense,
the angle between two planes equals zero, since they contain a nonzero
common element).

It is evident that if 931 and 91 have nonzero common elements, the angle
between them is zero. However, it is possible that 9(931, 91) = 0 though
912 n 91= 101.

Example 1.1.2. Let In iEN be an orthonormal basis in .5,

:= V M - 11 ,je N
910:= Lin{0_ 1 + V?.;}, 	 91 = C191 0 ,

where e, > 0, j e N, and ei 	0. Then 931 n 91 = {0}, but 9(931, 91) = 0.
1 •-• co

Let us check whether 931 and 91 do not have nonzero common elements.
In fact, let a sequence {f„} ne IN be found, with the elements from 91 0 , which
converges to f E 931. If

fn = E C;n)(V2),, + EA),

then, obviously, sequence {c (1 ) } converges to some cj , that is,

f = E civ2);_, + E

Clearly, f E 972 if and only if all c; = 0, that is, when f = 0. On the other
hand,

KM-11 	 1 +
0 	 EA)12cos t 9(932, 91) cos 2 9(V23; _ 1 , 	 + Ei0i ) —

= (1 + c2)-1 ____+ 1 .
" 	 1— co

R I3j- 111 2 N?j-1 	 ej2j112
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Lemma 1.1.3. Let dim 931 < co and 9(932, 91) = 0. Then 9J1 and 91 have a
nonzero common element.

pROOF. Since the angle between the subspaces is zero, sequences

{rrij} EN c 931 and {ni } iEN c 91 of elements with unit norms may be found

such that
(m• 	 1.

J 	 •
J

Then II inf — nf	 0. Since the dimension of 931 is finite, one can choose

a subsequence Imir l converging to some m e 931. One has lint II = 1, and

the subsequence Inir l also tends to m. The lemma is proved.

In the next lemma, the angles between subspaces are related with the

orthogonal projectors on them.
__—

Lemma 1.1.4. The following formulas are valid:

(a) cos 49(971 , gl) = 11 Pml 9111 = II P931 1'9111 ,
(b) sin 9(9311 , 91) = I [Pox 91]

(c) sin 9(9:11, 91) =	 inf	 II m — nII.
mcm, limit =1; nE 9?

PROOF.

(a) Directly from the definition of an angle the relation follows

cos 9(931, 91) =	 sup
meErt,n€91,m � 0,nt0 	 XI Dill

= I(rn, 	—n)I 	 IIP9nn11 
sup	 sup   	 sup

ne91,n*0 meTZ,mt 0 IImII Ilnll	 ne911,n* 0 	 Ilnll

(b) [139N19-1]	 2 =	 inf	 114011 2 =	 inf	 ( 1 — IIP 1nII 2)
negt, 	 = 1 	 n€91, 	 = 1

= 1 — sup 11P9il in11 2 = 1 — 11P9n119 -211 2 .
11n11 =1

Now (a) implies (b).

(c) inf	 urn — nI1 2 	inf	 11Pglm + Pgl im — n11 2
me932, 	 = 1; ne91 	 m€972. Ilmil = 1; nEgt

inf	 11P9-t im11 2

= 1 —	 sup	 11P9Irn11 2 .
	me931,	 = 1

Formula (a) provides (c). The lemma is proved.

1 II 	 1 ,

1(m, Pwi n + P9jt 1n)1
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1.2. Skew projectors

An algebraic sum of two linear sets 	 and X is said to be their direct
sum .11 + ,A1 if	 n	 = {0} holds.

Definition 1.1.5. Operator = 9,V acting from the direct sum di +
according to the rule

(m+n)H49(m+n)=m,

is a skew projector on .1/ parallel to ,i11 .

Obviously, the definition is reasonable and 9 is a projector, that means,
= 9. It so happens that any projector has the form of 9 1j.

Lemma 1.1.6. Let 9 be a projector in $ (i.e., 9 2 = 9). Then .9 =	 ,
where = Im 9 , .A1 = Ker 9.

PROOF.

(i) Let us first establish that .11 n	 = {0}, that is, operator .9 Ijf
is defined properly.

If 1e .11 n N, then 1 = 9'w for some w E 9(9) and P1 = 0. Then,
/ = 9'w = .9 2 w = .9(9w) == 0.

(ii) Since 9 2 = 	 c 9(9).
(iii) Let us verify that

I 	 11.4r
-it+ i.e., .9	 .

Actually, for m e .11, n e	 we have

.9(m + n) = gm + g'n = 9m.

Further, 9(m — 9m) = 0, so that m — 9m e . It is clear that
m — 9m e Al'; hence, according to (i), m — 9m = 0, that is, 9(m + n) = m.

Let us now take some arbitrary I e (9) and m := .91 e .11. Then
9(1 — m) = 9l — 9 2 1 = 0 holds, which means n 1 — me.Al. In this
way, the opposite inclusion, it + .A1 9(9), is obtained which com-
pletes the lemma.

By means of the representation, we establish the form of an operator
adjoint to a projector. Recall that 972 and 91 are subspaces.
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Lemma 1.1.7. The operator 9a* = [49 ]* coincides with the operator

.= ggi1.11

PROOF. We have

9011 n 911 {m e 9)1 V 91 I m 1 9J1, m 91} = {0} .

Therefore operator a' is defined correctly.

(i) Let us check that
c

that is, for any 1 = m + n E g(9a) and arbitrary w = m 1 +

(ni e 9)1, n e 91, m1 e 9) -", n1 e 911 ) an equality

(.91, w) = (1, 'Ow)

holds.
Actually

(.9(m + n), w) = (m,	 + n 1) = (m, n') = (m + n,

(ii) To show that g* is a projector, let w E g(g)*), that is,

(911, w) = (1, g*w)	 Vi e ✓ (g).

Hence, for every 1 e g(.9), the equality is true:

(91(911), w) = (gl, g*w).

As .9 2 = g,
(91(911), w) = (1, Y*w).

Comparing the right-hand sides of the two latter equalities, one finds
that g*w e 2(91*) and g*(g*w) = g*w.

By the force of Lemma 6 for X = Im	 = Ker g* one has

=

If one demonstrates that di c 911 ,	 9:111, then the assertion of our
lemma will follow from (i). Let 1 E g(Y*). Since 0 = (gn, 1) = (n, 9a*1),
for n e 91 one finds Y*1191, so that dl = Im g* c 9t'. If 9a*1 = 0,

• then for m e 932 0 = (m, 9a*1) = (91m,1) = (m, 1) and .K = Ker g* is
orthogonal to 9R.

The lemma is proved.

We now establish a relationship between skew and orthogonal projectors.
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Lemma 1.1.8. Operators .9 = .9 and 	 := [1391 11 9] -1 P%1 exist simul-
taneously and are equal.

PROOF. 	 is defined correctly if and only if P91 11 933 is nondegenerate,
which is equivalent to the equality 971 n 91 = {0}, since for Pin = 0,
n E (91 1 )1 = 91. In turn, the equality is equivalent to the existence of the
skew projector .9.

We check an inclusion

(i.e., g(9) C g( 9) and ' -. 6 (g, ) = P1).
If I = m + n, m g31, n e 91, then Pgz i.1 = Polim and -91 = m = .91.
Let / .g(0). Since g([P91 , 11(1] = Im(P91 19x) = P911932, P9111 = Pgzim

for some m e 971. Therefore, Pgl i(/ — m) = 0 and, consequently, 1—m=ne91.
Thus, g( .g(g), which completes the proof.

Lemma 1.1.9. Assume that 971 n 91 = {0}. Then:

(a) operator AT is bounded if and only if 9(931,91) > 0 and in this case

11 ,9 &91 	= sin 49 (931 , 91);	 (1)

(b) linear set 912 4- 91 is closed if and only if 9(9J1, 91) > 0;

(c) 9(9J1, 91) = 9(9J11 , 911 )•

PROOF OF THE LEMMA.

(a)

III 1 11 - 1 =
Ilrn — n11 	= inf Ilm — nll 

	Ilgr (m — 011	 m.n Ilmll

From Lemma 4(c) one obtains assertion (a).
(b) If 931 -j- 91 is a subspace, operator gr is defined on a closed set. It

is not difficult to show that the operator is closed; thus it is bounded
according to the closed graph theorem. From (a) it follows that
9(971, 91) > 0.

Conversely, if angle 9(971, 91) > 0, then, by the force of (a), operator
glr is bounded. Therefore, the convergence of sequence {n +

E 931, nj a 91, implies the convergence of A 19/91 (mi + nj) = n . Since
932 is a subspace, then m1 converges to some element of 972. Then
sequence {nj} converges to an element of 91 as well; that is, 972 4- 91
is a closed set.

Assertion (c) follows from (a), Lemma 7, and the fact that the norms
of an operator and its adjoint coincide. The lemma is proved.
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In Chapter II, exponentials on an interval are considered projection
(restrictions) of exponentials on the positive semiaxis. The properties of
such an operation are studied in the next lemma, which applies to the
general situation. Notice that along with operator P9N 1 91 acting from 91
into .5 we consider operator [P I : 1-4 931] acting into 931. The operator
adjoint to the last one is expressed in a simpler form.

Lemma 1.1.10.
(a) Projection operator Pm contracted to 91 is an isomorphism onto its image

if and only if
go(9311, 91) > 0. 	 (2)

(b) A relation is true

	

[139x 1 91 : 91 1—■ 9J1]* = P9-1 1 9N : 9321—■ 91. 	 (3)

(c) Operator P991 1 91 : 91 	 931 acts as an isomorphism of subspaces 91 and 9JI

if and only if (2) holds and

(19(971, 91 1- ) > O. 	 (4)

PROOF. Part (a) of the lemma follows immediately from Lemma 4(b).
Assertion (b) is a direct consequence of an identity

(P n, m) (n, Pgt m),	 m e 901, n e 91.

With regard to (c), operator PER : 91 931 acts as an isomorphism of
subspaces 91 and 931 if and only if it is an isomorphism onto its image,
and the image coincides with 931. The image of this operator is dense
in 9:11 only in the case where the adjoint operator is invertible. From
(3) one finds that the invertibility of [P: 91 1—* 931]* is equal to
911 n 931 = {0}. Hence, operator Pte : 91 F-4 931 is isomorphic only when
(2) and 911 n 971 = {0} hold simultaneously. Under condition (2), sub-
space 91 1 V 931 coincides with 931 V 91 (otherwise a nonzero element of
9311 n 91 would be found). Therefore, from Lemma 9(c) it follows that
(2) and 911 n 931 = {0} are simultaneously correct if and only if both (2)
and (4) hold. The lemma is proved.

1.3. Families of Hilbert space vectors

Let E = {';} ;EN be an arbitrary family of elements (vectors) of Hilbert
space 5. In this section we define various types of "independence" for the
elements of E.
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Definition 1.1.11. Family E is W-linearly independent if there exists no
nonzero sequence {ai} e e 2 such that for any element f e 5 satisfying
Er= , 1(f, )IZ < co series EA, ai(f,) converges to zero. The property
of 8 to be W-linearly independent is denoted as E e (W).

We consider primarily the situation with Er-1 1(f 2 < co fOr any
f E 5. In this case, the W-linear independence means the uniqueness of
the weak sum E

	E la < 09, E 	 = 0 weakly in 5 	 {a. = 0 W}.
{=	 .i=1

In the literature (see Gokhberg and Krein 1965), one may find the
following concept of co-linear independence:

E lai i2 < co, E aA=
i=i 	 J=1

It is easily seen that the property of W-linear independence that has been
introduced is not weaker than co-linear independence. The example shows
that W-linear independence is, in fact, stronger.

Example 1.1.12. Assume that family El3 = ic.	 forms an orthonormal
basis in 5. Let us settle

:= a;	 j = 2, 3, ...

and demonstrate that the family E = Rd ." is co-linearly independent
but not W-linearly independent.

Suppose that series EA, cA converges to zero. Then multiplying it by
e

7
 one arrives at

(j + 1)co. 1 = jc; = const.

Hence, the partial sums of the series may be written as

R

E cA= ciEa + 	 - a) + • • + (a - SR-1)] = C1SR 	 (5)
j= 1

So, series ET cA converges to zero if and only if c 1 = c2 = • • • = 0, that
is, E is co-linearly independent.

Series ET ( .i/j) converges weakly to zero, since E ll= 1 ( ilj)= a. Thus
E (W).
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Dtfinition 1.1.13. Family E is minimal (notation E c (M)), if for any j

clement does not belong to the closure of all the remaining elements:

V	 (6)

E (M), there exists family E' R'd, which is said to be biorthogonal

to E, such that

= = {
1 i =	

(7)

The biorthogonal family is specified by formula (7) up to any elements

from the orthogonal complement to VE. Condition 4j e VE, extracts
biorthogonal elements with minimum norm.

According to Lemma 3, condition (6) is equivalent to the property of

angles (p( .i , EP), j = 1, 2, ... , to be positive. That is why in the subspace

V there exist bounded operators

II F.(i)g.;

and, as is easily verified,

!I'= 9 J J

j 	II	 II 2
and

= ,
It follows that

	 =	 KikIII; II
Hence for the biorthogonal family elements from Lemma 9(a) an equality
follows

Example 1.1.14. Let E = ftilr 0, 5 = L2(0,1). Then E e (W), but 'E (M).

The family of polynomials P„(t), n > 0, is dense in L2(0,1), and the sane

is true for polynomial family tR {P„(t)}, where R e N is fixed. Therefore,

the family {t R , Rt. + 1 .} is complete and t E Vi„ tj; that is, (M)
(details may be found in Sadovnichii 1979). Let us prove the inclusion

(8)

(9)

11;1111i = [sin (P(;, E (m )]	 1.)	 (10)
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e (W). Let fs be the characteristic function of segment [0, s]. Then

sj+ 1

and

E Kfs, ti)1 2 < 00.
= 0

Suppose that E (W). Then function F(s) = (fs ,Ejt o eiti) turns
identically into zero for some nontrivial sequence {ci} et'. By the force
of (11), F(s) takes the form

F(s) = E
= 0 j + 1

f(fs, ti )L2 ( 0,1 ) =	 t dt =
o	 j + 1 .

oo	 s j + 1

and therefore is analytical inside the unit disc. So ci = 0 for every j.

Definition 1.1.15. Family E is *-uniform minimal (notation 8 e (UM)), if
there exists a biorthogonal family with uniformly bounded norms of
the elements.

Recall that under a uniformly minimal family (without *), such a
minimal one is meant, for which the numbers gi ll gni are uniformly
bounded, or for which (p( .i , Eci) ) > c > 0. The above definition is more
convenient for our purposes. For almost normed families (i.e., under the
condition X 1), the definitions coincide.

Definition 1.1.16. Family E-"- is said to be an '-basis or a Riesz basis in
the closure of its linear span (notation E (LB)), if is an image of an
isomorphic mapping V of some orthonormal family.

is said to be a Riesz basis, if E E (LB) and E. is a complete family:

=

Operator V 1 is said to be an orthogonalizer of the family E. In what
follows, we always use the term "basis" to mean Riesz basis.

The introduced properties of the families are interrelated in such a way
that every property is implied by the next one:

(LB) (UM) (M) (W) (co-linear independence)

(linear independence).
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Proposition 1.1.17 (Bari theorem, Bari 1951; Gokhberg and Krein 1965;

ikol'skii 1980).

) If E. gi ly°_, a (LB), then the biorthogonal to E family E' = R117_,
such that	 c VE is also an 2-basis. In addition, E' is expressed

via the orthogonalizer	 of family 'E and the orthonormal basis
Eo	 r 1 ,	 =	 of the space V- '(VE) by the formula

(V')*V-1 .

(b) E a (LB) if and only if for any finite sequence {c i} an estimate holds

2
E IC .1 2 .

j=1

In this case, each element f e V'E has a series expansion

f=	 M.
j= 1

Example 1.1.18. Let E° = {Mr„, 0

=	 :=--	 + 1;) . Then

(a) E is a complete family.
(b) E E (UM).
(c) E tt (LB), but its biorthogonal family E' is an 2-basis.
(d) Projection of element a on any element of the (complete) family

parallel to the closure of the linear span of all the remaining elements
of the family equals zero.

Let us check these assertions.

(a) If f 1 VE and f = Er=, cA?, then by means of scalar multiplication
by j with j > 0, one finds c, + c; = 0. So c; —c0, je N, and for
co 0 0, {ci} ct ( 2 .

(b), (c) It is easy to see that E' = { y}7 1 . If one takes a sequence
{c/ } E e2v1, then the series ET cA diverges in 5 since

Ec; = E ci0 +(Eci)a
1	 1

and the Bari theorem (Proposition 17(b)) provides E, (LB).
From (9) it follows that the skew projector has the form

	

= (*,	 > 1 ,

which produces an equality gia = 0 for all j e N.

E J
1 = 1

be an orthonormal basis in 5 and
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We now introduce a subject convenient for the description of properties .

of elements belonging to some family E' = where X is a
subset of N.

Definition 1.1.19. A matrix with elements

ri; = 0 ; 	i,jeXc N

is called the Gram matrix of the family 'E' =

For a countable family E (i.e., for X = N) the Gram matrix is infinite,
whereas for a finite one (X = {1, 2, ... , N}) it has N 2 entries. A family
of elements is determined by the Gram matrix up to unitary equivalence.
The bilinear form of the Gram matrix reads

	(c, rd) = (Fe, d) = ( E cA, E dA) 	 (12)5
i=1 	 i=i 

00	 co

(for the case X = N). This form is defined over the elements c, d e e 2

such that the series E cA and E dA converge.

Theorem 1.1.20. The following assertions are valid.

(a) The square form of the Gram matrix is positive if and only if the family
E is co-linearly independent.

(b) The bilinear form of the Gram matrix generates a bounded and
boundedly invertible operator F if and only if E e (LB).

(c) If 21,7 e (LB), then the Gram matrix for family E' is the inverse matrix
to the Gram matrix for

(1-1 )i; =	 (13)

PROOF. Assertion (a) follows from the equality

2

(Fe, c)e 2 =	 J J

and the definition of co-linear independence.
Assertion (b) follows from (12) and the Bari theorem (Proposition

17(b)). For (c), set I' -1 1C; = , xj = {x;;}f= 1 , where {C}r 1 is the standard
basis in e 2 . Then

(r Ci)e2 =	 (i)e2 =



For family	 it means that
C 0

E aiii(f, = 0
j = 1

for any f such that

E	 .;)12 < 00.
j = 1

um 	 MIN MINI INN MIN 	 MIIII —

29I. Families of vectors and families of subspaces

On the other hand, (12) implies

(rxi, Ci)t2 =	 xi14,, biJ ,
n

and we obtain
= E X I, n •

Moreover,

g5, ;)t, = (E	 E x!,„) =	 xi),„ =	 xi)
n	 5

= I— 'CO = (i)ii =
The theorem is proved.

Relation (13) is valid for a minimal family E, if 	 belongs to the image
of operator F. However, it is possible for the family E, to be minimal while

the basis vectors C.; do not lie in the domain of the operator F -1 . As can
be seen from (13), it happens when

>	 = 00.

We now prove the lemma on the conservation of the W-linear
independence property for the families whose elements differ by scalar
factors.

Lemma 1.1.21. Suppose that the families E.7 =	 and LT = aim , are
related by the equalities = aA, where loci ! -< 1 and ai 0 0 for each j. If

e (W), then also E e (W).

PROOF. Assume {cif} e e 2 and Er= 1 cii(f,Z;)= 0 for any element f satis-
fying condition

E Icf,	 < 00.
i= 1

(14)
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Particularly (14) is true for all f such that E i j(f, 01 2 < co. Therefore,
using property E a (W), we obtain = 0 and, consequently, ai = 0 for
all j. The lemma is proved.

1.4. Families of subspaces of Hilbert space

Let	 j e N be subspaces of Hilbert space 5 and E = {EJ}%EN• Define
for the family E properties similar to those of families of elements.

Definition 1.1.22. Family E is minimal (notation E a (M)), if for any j
there exists a bounded skew projector gi on the subspace parallell to
7.3u) Vi � j -E i . Family E' of subspaces El .= YTE; is said to be biorthogonal
to E.

Family E is uniformly minimal (notation E a (UM)) if	 -< 1.
Family E is said to be a Riesz basis in the closure of its linear span (an

2-basis, notation E a (LB)), if there exists an isomorphism V such that
the family of subspaces { V'Ei} is orthogonal: V -1 ;1;1 i j.
Operator	 is called an orthogonalizer of the family E.

Family E is a basis, if E. a (LB) and E is complete: VE = 5.

Remark 1.1.23. Sometimes it is convenient to abandon the restriction that
the biorthogonal to E, family must lie in VE. Therefore, we call any family
of subspaces {El} such that

P -7f	 771 	 11 EU) \ kr, ,__,
• v

biorthogonal to E.

Definition 22 is consistent with the corresponding definitions for
families of elements in the sense that when choosing in every subspace EJ
an orthonormal basis Ri,„I ndifiEJ, one gets a family of elements { j ,„} j,„ with
the similar property.

We now give an analogy of the Bari theorem (Proposition 17) for a
family of subspaces.

Proposition 1.1.24 (Nikol'skii 1980: lecture VI, sec. 4). The following
conditions are equivalent:

(a) E a (LB),
(b) in the subspace VE the norms II 11 5 and [Er.._ 1 	• 11 21 112 are equivalent:

00

X E 	 m e
j=1
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> 0 may be found, such that for any partition of the family E. in two

subfamilies E r and	 (E 1 u EII = EI n	 = 0) we have

9(VEI, VE It) > E.

Note that its turn condition (c) is equivalent to the uniform boundedness

of all the projectors

and in such a case one easily finds that

=
J•

J:

,9)1/V E 1.
I

1.5. Invariance of family properties under mappings

Theorem 1.1.25. Let 11 be an isomorphism in 5 and E =	 be a family

of subspaces. Then E has any of the following properties: (a) minimality,
(b) uniform minimality, (c) an ..r-basis, and (d) a basis, if and only if a

family 11E = { LIEJ} has the same property.

PROOF. For properties (d) and (c) the results are obvious. Indeed, if V -1

is an orthogonalizer for the family E, then operator V = V - 1 U -1 is an

orthogonalizer for 11E, and vice versa.

To prove conservation of minimality and uniform minimality properties,
we need the following proposition.

Proposition 1.1.26 (Pavlov 1971). If 931 and 91 are subspaces in 5 and U is

an isomorphism of the spaces 5, then

sin (p(11911, 1191) _� 	 II II	 sin 9(931, 91).

PROOF. The formula is implied by inequalities         

Um

Ilumll
and Lemma 4(c). 

1

1111'11 
m

n > 111111'
1111 -1 II

	n
mli	 II m II   II um II              

Assertions (a) and (b) of our theorem now follow from the definitions
and Proposition 26.
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Remark 1.1.27. A similar statement is true not only for families o
subspaces, but also for families of elements. For the latter, it is not difficul
to demonstrate that the property of W-linear independence also survive
under an isomorphism.

1.6. Minimality of families of elements and their projections
Let E	 , be a family of elements in Hilbert space 5 and 971== \ /7.v —
Assume 91 is a subspace of 5 and P91 E. is a family of projections on 91 of
the elements from E. Let E' =	 be a family biorthogonal to E, and
71;1 =	 , be a family biorthogonal to PP E (we suppose that
families and Pte , are both minimal). Let us assume that biorthogonal
families E' and E lie in the subspace 931 and 91, respectively. In this
section, we present a number of results on the properties of P 9z 2,, which
are needed to study exponential families in the space L2 over an interval:
the exponentials over an interval will be considered projections of
exponentials over a semiaxis.

Lemma 1.1.28. Let a family of elements PEE be minimal (P92 E, is *-
uniformly minimal, PE E E (UM)). Then 8 is also minimal (E is *-uniformly
minimal, E c (UM)), and for the elements of biorthogonal families E' and
E.,791 a relation holds:

Part .t, =	 (15)

PROOF. The first assertion of the lemma follows immediately from formula
(15). For the latter we have

= 	 P9&) = 	 = (Pwg;1,1,
where 5 is Kronecker's delta. The lemma is proved.

Remark 1.1.29. If PgI E is a uniformly minimal family of subspaces or P9,E
is a uniformly minimal family of elements (without *), then the family
may not be a uniformly minimal one, as an example shows. Assume
{0} .71 0 to be an orthonormal basis in 5, and 91 to be a subspace of all
the elements orthogonal to a. Set ccia, + j > 0, where oci oo
when j —> co. Introduce a family E of one-dimensional subspaces spanned
over the elements 1 . Since P91 E is an orthogonal family of subspaces
spanned on 0 , P9 E (UM). But the angle between the subspaces Ei and
8  t tends to zero with j -4 oo. Such a difference in properties of the
families of elements (Lemma 28) and the families of subspaces is associated
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with the fact that our definition of *-uniform minimality depends on the

:normalization of the elements.

A biorthogonal family E' may be incomplete in 931 = V. (see Example
8). Let us give a criterion for a biorthogonal family to be complete in 931.
Tri order to do this, consider in Hilbert space 5 an operator V defined

n the span of an orthonormalized basis E ° = fmr=, and set E. =

VO.

Lemma 1.1.30. If a family a" is both complete and minimal, then the

biorthogonal family E ' =	 r= is complete in the space 5 if and only if

operator V allows a closure.

PROOF. The condition for E to be minimal implies	 e g( V*) and

0. Indeed, for x = c; ;° one has (Vx, = ci = (x, M. The

assertion of the lemma now follows from the fact that operator V* is

densely defined if and only if V allows a closure (Birman and Solomyak

980; chap. 3, sec. 3, th. 7).

Theorem 1.1.31. Suppose that families E and PT E are minimal, family PT E.

complete in 91, and family E' is complete in 931:

VE" = VE '931-	 (16)

The

(a) operator P9x 1 91 is invertible and has a dense image;

(b) if a family E is a unification of a finite number of 2'-basis subspaces,

= U7=	 E (LB), then the family biorthogonal to P91 E is complete

in the subspace 91.

PROOF.

(a) Operator P9119A: 9711--■ 91 adjoint to P9g,I 9,: 911-+ 931 has a dense image
since subspace 91, according to the condition, is a closure of the linear
span of the family P9,21 Therefore operator P9j,I 9, is invertible. From

(15) and condition (16) it follows that operator P93,1 1 91 has a dense

image
VP93A,i VE" = m.

(b) Denote {0} an orthonormal basis in the subspace 991 and, just as in

Lemma 30, set VO = Let us check that under the condition (b)

of the Theorem 31 operator V is bounded.
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Represent family j , j = 1, . . . , N, in the form

= {1;„}„ E -AP 	 ')V.I N •

Let V.I 1 be an orthogonalizer of the family Ej :

=	 n e -N.

Since Ei E (LB), V is an isomorphism of the spaces V{1 n° },, e ,,vi and
Hence operator V = II is bounded. The bounded..

ness of V implies the boundedness of the operator Paz V transferring
orthonormal basis Ryl into family P91 E.

Assertion (b) now follows from Lemma 30.

2. Abstract problem of moments

We now move to the investigation of the abstract problem of moments,
that is, the problem of moments in relation to an arbitrary family of
elements of Hilbert space. In this investigation we explain which properties
of the family influence the solvability of the problem of moments, and in
which way.

Let E =	 , be an arbitrary family of elements of separable Hilbert
space 5. We introduce the operator of the problem of moments : 5 e2
according to the rule

.fEf = {(f,

The domain Dom fr. of the operator 	 that is, the set {f e 5 I f e e2
we denote by D. and its image Im fr. by R te . We recall

c; = (f,	 N,

the moment equalities, and we refer to the problem of determination of
f by Af as the problem of moments.

One can easily see that operator 	 is closed. Indeed, if fn —■ 0 and
fr. f„ -.eee2 for n co, then / = 0, since any component (fn ,	 of the
element AL tends to zero.

If family FE, is not complete in 5, which means that the span closure
VZ.-: does not coincide with 5, then operator / has a nontrivial null-space
5 e VE Let / be a restriction of on VE: fg = AvE . Operator
ji) is nondegenerate and, evidently, the images of andd ,f2 coincide.
Therefore, in order to study the solvability of the problem of moments it



MI NOM MN NM MI MIN OM MI NMI

2. Abstract problem of moments	 35

sufficient to consider the invertible operator A. The operator (A.) ) -1

averse to the closed one is also known to be closed.

eorem 1.2.1. The following assertions are valid:

) Operator A is an isomorphism between vz: and ( 2 if and only if

E e (LB). In particular, E e (LB) RE = e2
e2	 E (UM).

E (M) (2 basis vectors belong to

(4) a RE e 2 E (W).
) Assume family E to be represented as a unification of two families E. 0

and E i such that Eo e (LB) and E I c VEo. Then the set R. is a (closed)

subspace of e 2 and codimension of is equal to the number of elements

of E 1 (the dimension of the space orthogonal to all the elements of

family E is called the codimension of E).

PROOF. Let 	 be the standard basis in e 2 .

a) A is an isomorphism, then family {(11) -1 Ci} jeN is a Riesz basis
in VS by definition. Let us show that the family is the biorthogonal
o E family:

{((i2) -1 Cf, i)b}ierkl — cfE(/ 2) -1 C; — /2(12) -1 (i —

So by the force of Proposition 1.17(a), 5 is a Riesz basis (in VE).
If 8 is an Y.-basis, then /2 is an isomorphism according to

Proposition 1.17(b).
(i3;) Since RE = e' 2, the elements 	 (fr?)- 	 exist and in such a case,

is demonstrated earlier, form a biorthogonal to the F., family. By the
closed graph theorem, operator (1-°) - 1 is bounded. Therefore,

sup II 	 II(i2)-111 sup 	 = 11(i2) -1 11 < co.

(c) The assertion follows from equality (7), Section I.1

= O ip

(d) Let E (W); i.e., a nonzero vector a = {an } e (2 may be chosen such
that for any f E DE

(f,
N

 a,4,)	 O.
N coJ = 1
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Then a I RE : indeed, for every f e DE
N 	 N

(/ f, a) = lim > (jEf)y dy = urn E (f,
N.-. co j=1 	 N 	 j=1

N

= lirn (f, E aA)=o.
N--• co 	 j=1

These arguments may be easily inverted.
(e) Set = RopIr= e (LB) and E, = { ;, 1 }7 1 , w co. Denote MA,

the family biorthogonal to Eo, which belongs to VE0. Expand the
elements of family E, over the basis Eo ,

co

j=1
and denote by bi sequence {( m , :; )}„`"'=1 . Since { .;} is an .'-basis
simultaneously with 	 e e'2 *

For an arbitrary element f e DE , its image Ai' lies in 1 2 	where
e' = C 2 for w = co and e' = IC' for w = N < oo (the first component
corresponds to family Ec, and the second — to E r ). At the same time,
if f has the form f = E cA; then A ./ has the form of the ordered
pair {c, Bc} with c = {cj} E e2, while operator B: C 2 -+ 1' acts according
to the formula

Bc = {(c, by)e 2}7 1 .

From this it follows that set R.:, consists of all the ordered pairs
{c, Bc}, c E C 2 . That is why the closure of RE is equivalent to the fact
that B is closed. But operator B coincides with the operator of the
problem of moments for the family {bi }7 1 and, hence, is closed.

It remains only to prove formula codim RE = card E l . Let us
establish that every pair = (by, — Cy) is orthogonal to set R. And
in reality, the scalar product of the pair K j and any element (c, Bc) of
set RE is

(by, c)(2 — (Bc); = (by , c) — (c, b.) = 0.

Since the set of pairs {K;}7, is linearly independent, assertion 5, and
with it our theorem, are proved.

Example 1.2.2. For the operator of the problem of moments concerning
the family E involved in Example 1.18, DE = {f I f Thus, we have
an example of a non-2-basis family with an always solvable problem of
moments.
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Another example of this kind gives any orthogonal family with element

norms approaching infinity
An example of the nonminimal family for which the problem of

moments is solvable over a dense set, serves, by the force of assertions

(d) and (e) of the theorem, any nonminimal but W-linearly independent
amity, say, the one from example 1.14.

It is not difficult to see that for a minimal family E a formal solution

to the problem of moments fr. f = {at} reads f = E aA. In the following
theorem we ascertain when an informal meaning may be attached to this

series.

Theorem 1.2.3.

a) Suppose E e (M) and a = {a.;} EL'. Then inclusion a c R. is equivalent
to the following: there exists an element f e 5 such that

N
E	 g)

N -+ co
J = i

(f, g)	 (1)

for each (finite) linear combination g = E cAi of elements from 'E.

(b) If RE = e2, then series E aA"; converges for any a = {a;} e e2 to some

f e 5 and fEf = a.

PROOF. (a) Let a e RE , which means that there exists f e 5 such that

a = Af. Set g = E cA, were c is an arbitrary finite vector. Then for large

enough N,

(

E aA, g) = > (IA= E (f, Oesi = (f, E cA)=(f, g).
N 	 N 	 N 	 N

j =1 	 j = 1 	 j=1 	 j=1

Conversely, let relation (1) be valid for some f E 5 and any finite linear

combination g = E cAl . Taking element „ for g and observing that for

N � n (E7,... 1 aA; , „)b = an , one gets (f, „) = a„. Hence a E RE .
Assertion (b) of the theorem follows immediately from that proved in

Theorem 1(b) boundedness of operator (f2) -1 , since

N

(A) -1 {ai}7=1 — E aAi-
; = 1

The theorem is proved.

Remark 1.2.4. As the theorem shows, if series Er_ 1 aA; converges weakly,

its sum serves a solution f of the problem of moments fEf = {a.}.
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Theorem 3 allows us to produce some rough tests for a problem of
moments to be solvable based on the norm estimates of the elements of
a biorthogonal family. Let us bring in two statements of the kind.

Corollary 1.2.5. Let E E (M). Then the assertions are true:

(a) if a E e 2 and ET=11a;11111 < co, then a e
(b) if there exists a e e2 such that j la;1 2 11;11 2 = 00, then R. 	 e 2 .

PROOF.

(a) Series Er=, aA; converges in the norm and the more so, weakly. By
Theorem 3(a), a a RE.

(b) By the Orlichz lemma (Nikol'skii 1980: lecture VI), there may be
found for any N vectors far ) }.17_ 1 such that larl = 'ai l and

If 	 = e2, then operator (12) -1 is bounded. Therefore
2 	 N	 N= 11(A))- 1 { a (N)}112	 E lary = E Ia./ 2 _< 011 2 .j=1

The obtained contradiction just proves the second assertion.

E
=1
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II
amilies of vector-valued exponentials

1. Hardy spaces and operator functions

In this section we set forth the theory of vector and scalar Hardy spaces
without the proofs. We then describe the properties of both the inner
and outer operator functions and the shift operator. Other sources
should be consulted for the scalar theory of functions in Hardy spaces
(Privalov 1950; Hoffman 1962; Duren 1970; Koosis 1980; Nikol'skii 1980;
Garnett 1981) and for the theory of vector spaces and shift operators
(Helson 1964; Sz.-Nagy and Foias 1970; Nikol'skii 1980). Needless to say,
any pertinent details that have not yet found their way into the literature
are explained wherever necessary.

The symbols C and C_ denote, respectively, the upper and the lower
open half-plane. l is the unit disc: l = {z I 1z1 < 1}, and T = {z I jzj = 1}.
91 means an auxiliary Hilbert space, dim 91 .̂ co. In the space 91 we specify
an orthonormal basis {4}, p = 1, 2, ... , dim 91. The scalar product and
the norm in 91 are < • , • > and << >>, respectively.

1.1. Hardy spaces

1.1.1. Definitions and Hilbert structure

Definition 11.1.1. Hardy space H 2(91) of 91-valued functions is a Hilbert
space of analytical in D functions of the form,

F(z) = E F„z",
n=0

where Fn (Fourier coefficients) belong to 91. The scalar product in H 2 (91)
is given by

(F, G)H2(91 ) = E <F,,,
n=0
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It follows from the definition that
CO

0'0,2mo = E <<F„>> 2 < co
n=0

and that the family g pc'e 1, p = 1, 2, ... , dim 91; n = 0, 1, 2, ... forms an
orthonormal basis in H 2(91).

It is known that F(z) may be identified with its boundary values F(e l )
by means of the limits along a nontangential to the unit circle paths (those
limits exist almost everywhere by the Fatou theorem). The corresponding
scalar function <<F(e)>> is then squarely summable on the unit circle T.

Definition 11.1.2. Hardy space 11.(91) [1/(91)] of 91-valued functions in
[C_] is the set of functions f analytical in 	 [C_] and such that

sup J <<f (x + iy)>> 2 dx < CO,

where the sup is taken over all y > 0 for II.T_(91) and all y < 0 for 1-1(92)
Along with it,

II f likm= 	 <<f(x)>>2 dx.

In the scalar case (91 = C), we write Hf instead of 111(C). Note also
that for any e > 0

	If(x + iY)I	 •\/ 2/nY II f II I I (%),	 f E	 y 	 (1)
(see Nikol'skiI 1980: lecture XI, sec. 1, formula (4)).

As in the case of Hardy space in the unit disc, functions fe H_2,(91)
(f e H_2 (91)) are identified with their boundary values belonging to the
space OR; 91), and the scalar product in I/1(91) is determined by the
formula

	(f,	 = i < f(x), g(x)> dx.

It is evident that for f e	 (90, functions f (k) and f(— k) belong to
the space H_2_(91).

1.1.2. Relationship between H 2 (91) and fli.(91) spaces
Hardy spaces in 13 and 	 are related by a unitary mapping U:

H2(91) a f(x) 1-4
u 1 	 1  f(x — i.

) e H_2,(91).
.1Tr x-Ft 	 x-Ez
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ere, k 1—* (k — i)/(k + i) is a conformal mapping of C, on El), and a

faCtor 1/[‘fr(x + i)] corresponds to a transformation of Lebesgue measures
on the unit circle and the real axis.

1.1.3. Calculation of Cauchy integrals by means of residues

f E Hi(91) and A E C+ , the relations

f(k)
Jas (k — 1.)dk = 2rcif(),),

R (k —

f(k)
-	 dk = 0

hold.

1.1.4. Simple fractions

Simple scalar (x l and ) and vector (x ln and	 e 91) fractions play
an important role in what follows:

lIm A 1
xA (k)= 	 H_ e

k — A
e C+ ,	 = 1,

— IpI 2 1 1 	 e H2,	 E 11) ,	 = 1 .

These fractions are interrelated by a transformation U:

= cp xA ,
	1—i	 + il
	1 ,1 = 0)(2) = 

A + i	
c

p + i

Simple fractions constitute a complete family in Hardy space:

Vx ), =
AEC+

see also Subsection 1.3.10).

1.1.5. Paley—Wiener theorem and connections between simple
fractions and exponentials

Simple fractions are generated by exponentials by means of the Fourier
transform.

Let	 denote the inverse Fourier transform of functions f from
L 1(1 + ) n L2(R„), R+ := {x I x > 0}, by a formula

1
(.97i3.1‘)  	 f(t) e tktdt.

v 2n o
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According to the Paley-Wiener theorem (Paley and Wiener 1934),
mapping is extended to unitary mapping of LAIR 4.) onto g(%). By
the mapping, exponentials transform into simple fractions:

(—i /2 Im el] xA ;

1.1.6. Decomposition of L2(P) and the Riesz projector

If, as already mentioned, one identifies functions from Hi(91) with their
boundary values from OR, 91), then

L 2 (11, 91) = 11_2,(91)(i) H 2 (91).

Orthoprojectors PI from OR, 91) on Hi (91) are expressed via the Hilbert
operator le,

(f	
1	 u(t)

eu)(x):= p.v. 	 dt,
R x — t

according to the formula

P± = 14201 , 91) ± -
2

(2)

These projectors are called the Riesz projectors.
As an exercise, one can check this formula first for rational functions

from L2 (91) (representing them as a sum of two functions with poles in
C, and C_) and then for arbitrary functions from L 2 (R) approximated by
rational ones.

1.2. Inner and outer operator functions

1.2.1. Definition of inner functions

Definition 11.1.3. The analytical operator function S bounded in C. [C_]
is called an inner function in the upper [lower] half-plane if for almost
every k e S(k) is a unitary operator in 91. Functions of the form
§(z) = S(co - '(z)) = S[i(1 + z)/(1 — z)], where S is an inner function in
C+ , are inner functions in ED.

Note that if S is an inner operator function in C.„ then S(— k), S*(k)
are inner operator functions in C_. Inner operator functions satisfy a
relation

S* (IC) = S '(k),	
( )
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which is obtained with the help of analytical continuation from the real
axis into a complex plane.

1.2.2. Classification of scalar inner functions

Definition 11.1.4.

(a) An inner function of the form

k — A.

	

B(k) = n 	
	je 	 k —

is said to be a Blaschke product (BP) constructed by the zeros Ai e

j , e IN. Here, a e R, ti are phase factors with unit modulus and are such
:.that each cofactor ei(i —	 — 2j) in BP is positive at the point k = i.

(b) For a > 0 and a E R, function exp(ika + ia) is said to be an entire
singular inner function.

(c) Function Ssing of the form

expn3 (1 	 +  1  dp(t) + ial;
	_ k — t 1 + t2 	

a E R

is called a singular inner function, where dp is singular over the axis
measure such that r- dp(t) < 00.

_ 1 	 t2

< 00 .	 (B)
1=1 1 + 12) 1 2

Under the mapping of	 to H 2, the difference between singular and
entire singular functions can be seen in a (singular) measure with loads
in T \ i corresponds to a singular inner in D function, while a measure
with a single load at z i corresponds to an entire singular one.

1.2.3. Factorization of scalar inner functions
Any scalar inner function f in C., may be represented as a product of
three factors: BP B(k), entire singular function e t" (or unitary constant),
and singular inner function Ssing :

f(k) = B(k) e ik° Ssing(k).

Note that singular inner functions have no zeros in C, and that for the
convergence of the Blaschke product it is necessary and sufficient for zeros

to satisfy the Blaschke condition

Im /1;
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1.2.4. Classification of inner operator functions

Further, in Subsections 1.2.4-1.2.11, let be dim 91 < co.

Definition 11.1.5. Inner operator function S in C, is called a Blaschke
Potapov product (BPP), entire singular function (ESF), or singular inne
function if det S is a Blaschke product, entire singular inner function, 0
singular inner function, respectively.

We denote BPP by a and so on, and ESF by 0, 6, and so on
Following are some examples of entire singular inner functions. O f

these, the simplest meaningful function is 0(k) = exp(ikA), with A bein
a nonnegative operator in 91. Taking eigenvectors of A as a basis of 91
we get A = diag[ap], ap � 0, and then

0(k) = diag[exp(ikap)],

det 0(k) = exp(ik Tr A).

More complicated examples of ESF are finite products [j"= 1 exp(ikAp)
A � 0.

The general form of ESF may be described by the following proposition
(Potapov 1955).

Any ESF 0 is the value at t = 1 of the solution of equation

dt 
Y(t,
	 = 

ikA(t)Y(t, k),

with some nonnegative summable operator function A(t). The solution is
singled out by a condition Y(0, k) = V, where V is a constant unitary
operator. Along with it,

det 0(k) = c exp(ik I Tr A(t) dt),
o

Idl = 1.

1.2.5. Factorization of inner operator functions

Every inner operator function S may be factorized by a BPP, an ESF,
and a singular inner function, in any order.

It then follows that the zeros of an inner function (the zeros of det S)
satisfy the Blaschke condition.

Definition 11.1.6. Inner operator function S is a left divisor of inner
operator function S if function S .= [S]" IS is an inner one. In other words,
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may be represented in the form

S = SS.

So, for instance, if BPP II(k) has a zero at point A and Ker 	 = 912,
then II is divisible from the left by the (elementary) inner cofactor

k — A

k —	
+ (191 —

ere b A is the orthoprojector in 91 on 91 1 .

1.2.6. Scalar outer functions

"Definition 11.1.7. Scalar function fe is called an outer function in	 if it
•

can be represented in the form

fe(k) = exp[.1	
tk 

1
	+ 

1 t t2
 h(t)	 k e C+

R —

'Scalar function fe (k) is called an outer function in C_ if fe (—k) is an

outer function in C+ .
• Outer (in C+ ) functions have no zeros in C + and almost everywhere

on

logife(t)1 = h(t)•

For Im k > 0, function logife (k)1 is a Poisson integral of function h(t):

logife (x + iy)1== 1	 h(t)h(t)Im 	
1	

dt — 
J 

h(t)	 .Y 	 dt

II Ft 	 t - X - iy	 it R 	 (X - 0 2 + y2

This formula implies that

1 logIL(x + iy)I	 0.	 (4)
y

`,:,Note that function 1/fe is an outer one for any outer fe .
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1.2.7. Factorization of scalar functions

Let f be a scalar function analytical in C for which

logif(x)1
 dx < 00.

1.2.8. Outer operator functions

Definition 11.1.8.

(a) Operator function F is said to be strong if

<<F>> 2e L_ (01).
1+1k1

(b) Operator function F is said to be a strong H.2,— [11i.—] function

	

for any ?I e 91, F(k)n I (k + i) e	 [F (k)g I (k — i) e
(c) A strong Hi —	 (operator) function is said to be outer

C, [C_] if det F is an outer function in C+ [in C_].

It follows by definition that an additional condition (5), which is absent
in the scalar case, is imposed on outer operator functions. As in the case
of inner functions, functions outer in D are defined as images of the ones
outer in C under conformal mapping o.)(k). Strong H+ functions are
transformed by it in functions F satisfying the condition

P(z)ri € H 2(9l),	 V,/ e 91.

It is known (Nikol'skii 1980: lecture I, sec. 6) that a strong H+ functio
is an outer one if and only if

V {F(k)(k —	 1	 11 "= n(91).k+i k+i

For strong operator functions in D, this condition may be written in
more natural way:

V {P(z)z"77} = H 2 (9l).

9E92

JR 1 + x 2

Then f may be represented by a product of an outer function fe and inner
function

It means that the family of functions P(z)Pn (z), where Pn (z) is an 91-value
polynomial, is dense in H 2(91). We denote functions outer in C as F
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1.2.9. Factorization of strong functions

F be a strong H _2, function and det F # 0. Then F may be represented

as a product of an inner and an outer operator function taken in any order:

F = SP: =

S and g are inner and F: and F: are outer operator functions.) Here,

and F: are bounded in	 if and only if F is bounded.

1.2.10. Semisimple zeros

Definition 11.1.9. Let operator function F(k) be an analytical in the
vicinity of 2 e C and det F(A) = 0. We consider A to be a semisimple zero

of F(k) if for any vectors tio e Ker F(A), n o s 0, and ti e
^Lorr., •::

F'(A)g c, + F(2)11 0 0.

n other words, for any analytical vector function (p(k) such that cp(A) 0 0,

ector function F(k)9(k) does not have a second-order zero at A:

F(2)w(2) = 0 —dk [F(k)9(k)] Ik=a 0 0.

In a scalar situation, a semisimple zero is a simple one. In a finite-
dimensional case, A may be a semisimple but not a simple zero, as, for
instance, for a function

F(k) = (k — 2)6 + (191 — 6),

with 6 being an orthoprojector in 91, dim 691 > 1.

1.2.11. Existence of the Blaschke—Potapov product

Proposition 11.1.10 (Potapov 1955). Let a be a countable subset of C,
satisfying the Blaschke condition (Subsection 1.2.2), and let {91,}", be a
amily of subspaces in 91. Then BPP II(k) may be found such that the set

zeros of function det II(k) coincides with a, the zeros of 11 are semisimple,
and. Ker II*(2) = 91 A , 2 e a.

Later we characterize a family of subspaces of simple vector fractions
xx 91A } A .„, x,1 91A, c H.i.(91) under the condition a e (B) by Blaschke-
otapov product II and denote it as lip This operator function 11 is
led BPP, generated by the family {x191,1}",.
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If o• (B) (does not satisfy the Blaschke condition), then BPP does not
exist. However, we preserve the notation XII for families (x l 91A } A ., of
simple fractions in such a situation as well, and also for the case of infinite
dimensional space 91.

1.3. Nagy-Foias model operator

1.3.1. Subspaces Ks

Definition 11.1.11. Let S be an inner function in C. Let Ks be a subspace

H.i.(91) e SH.i_(91) = {f E in(91) I f 1 Sig(91)}.

Ps is the orthoprojector from M.(%) (or from L2(ffl; 91) on Ks. If
S(k) = exp(ika)/91 , we write K. and Pa instead of Ks and Ps , respectively,

For orthoprojector Ps a formula is valid

Ps = - SP,S*.	 (6)

(Orthoprojector P+ : L2(01; 91) 1-+ H 2,(91) is introduced in Subsection 1.1.6.)
Note that in the case S(k) = exp(ika) only functions that exponentially

decrease with Im k co enter subspace SH.(91).
It is not difficult to establish that

Ps = 
pm  1 - S(k)S - '(2)

For S = exp(ika), we get

'Im Al - exp(ia(k - ;1)) .Pa x ). =
it 	 k -

The Paley-Wiener theorem (Paley and Wiener 1934) implies that

.FL2 (0, a; 91) = Ka .

If 0 is an ESF, all the elements of subspace Ke are entire functions.
For 0 = exp(ika), it follows immediately out of (8) that any element
f e Ka is expressed via some function cp from LAO, a) by a formula

a

f = I exp(ikt)(p(t) dt.

IC 	 k - A	 •

(7)

(8)
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1.3.2. Definitions of model operators in D and C,

Definition 11.1.12. The operator of multiplication by z is called a shift
rator o in H 2 (91):

co	 co
112(91)9 f= E fit z.► E fne+

n=0 	 n=0

As is easily proved, the adjoint operator is

(S* f)(z) 
f(z) — f(0) 

z

efinition 11.1.13. Let S be an inner function in ID,

Pg. PK:0 Ks== H2(R) e gH2(91).

Operators PgeIKs and [PgSl in]* = S* IKI are called Nagy—Foias model
operators in ED (in H 2 (91)).
this

Generator As of semigroup Ps eul ic, and operator A's' (generator of
the adjoint semigroup) are called Nagy—Foias model operators in C, (in
H.1(50). Here, S is an inner function in C.

Note that the Kelly transform of operator As is the image of the model
operator PsSI K., under the mapping U of Hardy space H 2 (91) to Hi.(91)
(Subsection 1.1.2). Here, S(k) = S(z), z = w(k).

1.3.3. The spectrum and eigenfunctions of model operators in C,
The eigensubspaces of As and AS operators corresponding to the eigen-
values A and A are, respectively,

S(k) 91,
k —)

1	
k — A 

91x , 	 911 := Ker S*(A).	 (10)

dim 91 < co, the discrete spectrum of operator As coincides with the
set of zeros of function det S.

Le t dim 91 < co and an inner function S be a BPP, S = II; further, let
a be a set of zeros of det H, where the zeros are simple and n1 e Ker 11*(A),
gth>> = 1. Following formulas (9) and (10), let us find a family Xi /
xk lh E „ biorthogonal to the family of simple fractions XII .= {m A } AE „.

921:= Ker S(R), 	 (9)

ti



1 = (42,2, XAA)Hi- 01) = 
ccAtm  f <ll(k)e, 1z> dk

	it 	 (k — 2) 2

Im , 
276 res 

<II(k)e,
ir	 z 	 (k — .1) 2

As one easily checks,

d 
ri(dk	

k)1 k =

Hence,

1
	11-12 Im 	 -

P —

p -
=

p.a.p*2
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From (9) and (10) it follows that biorthogonal elements x z are of th
form

A
A (k) = a, 

II(k) 11
	3

k —

Now calculate coefficient ct A :

trt E Ker 	 <<e>> = 1.    

Im (— 	 = q A 	-dk
Thus

Im A qdldk) 11(k)1k= ?I A r i>

In the scalar situation, we can now calculate the norms of elements of the
biorthogonal system:

	Ilx'A Ilk = locAl2	
(k 

n(k)n(k)k)
— 2)(k — 2) dk

1
	= ICCAI2 	(k 2)(k —	 dk = laAl2 Im A •

(C12)

2"-1.3.4. The spectrum and eigenfunctions of model operators in 1)
Let :S." be an inner function in 13. Then the eigensubspaces of model
operators P	 and S*1 1,1 corresponding to # and ft are, respectively,

cct

91" := Ker g(p),	 (13)
§(z)

z — p

1	 91

1 — fiz
Ker :S."*(p). 	 (14)
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Remark 11.1.14. Associate (root) functions of operator e*I Ks are rational
unctions with multiple poles. (For the scalar case, root subspaces are

described in Nikol'skii 1980; lecture IV; for the vector one, Buslaeva 1974
and Ivanov 1987.) In transitting from Hardy space to the space L2 (0, oo; 91),
one obtains families of the form {P„(t) exp(b1„t)}, where Pn (t) is an

-valued polynomial. To make our exposition as clear as possible,
we omit the details of root subspaces.

1.3.5. Discrete spectrum subspaces of model operators in

Let dim 91 < oo and S be an inner function with factorization

S = HO' =

Further, let o-d (A s) be the discrete spectrum of operator A s , £d and .57,
be subspaces of the discrete spectrum of model operators As and —AS,

respectively. Then

S(k)
91 A = @KR-,

e a(A s ) k — 2

1
= V L,

A- — 2
91 — K

.a.a(A.) 

From these formulas and (9) and (10), it follows for S = II that the family

{4, 2 } biorthogonal to the family {x,1 91 A } of simple fractions is complete

in the subspace Kn and K,-,=xAq1...2= V41, A.

1.3.6. Invariant subspaces of a model operator in D

Proposition 11.1.15 (Nikol'skii 1980: lecture I, sec. 6). A subspace

G c H 2 (91) is invariant with respect to operator e* (i.e., *G c G) if and

only if G is of the form

G = 1-1 2 (91) e YH 2 (91 1 ),

s)94"" where 91 1 is a subspace of 91 and <99 is an analytical in ED operator function,

SP(z): 91 1 r. 91, which is an isometric operator for almost all z a T.

For orthoprojector PG: 11 2 (91)1—* G, a formula holds (Nikol'skii 1980:
lecture H, sec. 4) similar to formula (6) (see Subsection 1.3.1).

PG = I I H 2{91) — -9°154Y*-	 (15)

Here, /34. = Pn2,910 is the orthoprojector from the space L2 (T, 91 1 ) on

subspace H 2 (91 1 ), while „9' and .90* are multiplication operators by Y(•)

and Y*(•), respectively.
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For dim 91 < oo, isometric operator 99(z) is a unitary mapping if and
only if 971 1 = 91. In this case 6P is an inner function and subspace G has
the form Ks (the symbol Ks is used when S is an inner operator function
(Definition 11)). Therefore, in the scalar case, any e*-invariant subspace
different from H 2 and {0} has the form Ks .

We now present two assertions concerning S*-invariant subspaces.

Proposition 11.1.16 (Nikaskii 1980: lecture I, sec. 1).

(a) If G is an invariant subspace of operator S* and for some inner operator
function S there is the embedding G e Ks, then subspace G is of the
form Ks , where S is also an inner operator function.

(b) If Kg, c Kg2 , then inner operator function S i is a left divisor of inner
operator function S2.

1.3.7. Countable sets in the upper half-plane
Let a = {2..d ieN be a countable set in C+ . Then introduce a number of
classes of such sets. Their meaning for a family of eigensubspaces of the'
model operator will shortly become clear.

Definition 11.1.17. A set a is said to be separable if 	 ,„„.3 t f0ilil
7i ..,),..., 

r I__ 	 ---
A set a is called a Carlesonian one if

b(o-) inf
j fl;	 —
	  > 0.	 (C)

For such sets we use the notation a e (C). The value b(a) is called a
Carleson constant of set a.

If a is a finite unification of Carlesonian sets, we say that a satisfies the
Carleson—Newman condition (notation a E (CN)).

A set a is said to be rare (notation a e (R)) if

inf	 R(2,	 > 0,	 R(A.,
e a, .1. �

1.3.8. Indications for a set to be Carlesonian

The following relationship exists between the introduced properties of sets:

(C) a (R) & (CN).	 (16)

inf 12 — pi > O.
e

—
— p (R) 
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or us the case is significant when a lies in a strip parallel to the real axis

0< inf Im A < sup Im A, < co .
Aea 	 Aea

en the separability of a is equivalent to its rareness and to its

Carlesonianness:

o- (C) <t>	 (R)	 inf	 IA — /LI > O.
E cr,A*

xample 11.1.18. The sets a {2ri}rEz and a = {r + ib. ci are Carlesonian.

• 
In the following lemma we obtain an estimate of the Carleson constant

for sets that often arise in applications.

Lemma 11.1.19.

(a) Let R,}„ Ez be a separable increasing sequence of real numbers:

inf(A.+ — ).n ) > d > 0.

Then the set a .= {v}„ Ez , vn := A n + i/2, is a Carlesonian one and

log 	 C := I log(1 + 2) dy < co.1	 C	 1

6(a)	 d'	 o	 Y

(b) For the set a ° := {nd + i/2},, c1 and for d	 0

C
log  1 = (1 + o(1)).

6(a) d

PROOF. From the definition of Carleson constant we have

= sup log 1J
mcZ 	 m,nt.

An,— 'fl 1
=sup E log(1 +

1 
2 mom*.	 IA„, — An1 2I•mZAn,— A„ + i   

The separability condition for the set {.1,,} implies

— A.1	 In — mid,

and we deduce

co

p=1
log — sup — E log(1 + 	

1	 1	 1

ö(a)	 me z 2 ,,,,n � „	 (n — m) 2 c/ 2

1 
log(1 +

p2d2).
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For the set a° , the inequality turns into equality

log 6(
1 	E log 1 + 	,,o\

p=1 	 p2 2d

1

So we arrive at the relations

1	 `x)	 (	 1 	 1 	
(17)

	

log — E log 1 + 	  log	 .
b(a) p=i	 p2d2	 o(co)

Estimating sums by integral, we obtain

E log(1 +  21 2)	 fP log(1 + 	 1  dx
p= P d /	 p-1 	 p2d2

< 	 fP log(1 + 
x21d2

)dx = f° log(1 +  1 )
P= 1 p-1 	 X2d2

__•= 1 r .,0 (i+ 
d	 j	 d

and

1
P+1 log(1 +  1 	 dx

P1
E log(1 + 	 j

p2d2	 p=1 p	 p2d2

>	 "1 log(1 +  1  dx lc° log(1 +  1 )dx
P=1 p	 X2d2	 X2d2

-	 Y2
= -

(1
1 f c° log(1 + —)dv•	 (19),

Formulas (17), (18), and (19) complete the proof.

1.3.9. Separability of simple fraction families

Later we will need some estimates demonstrating that separability in Hi.
of a simple fraction family

inf	 — xp .2 > 0
A,pecr,A*11

is equivalent to the rareness of set a.

Lemma 11.1.20. For 2, p e C+ inequalities hold

2 
R(1,	 ^ 11x2 — x, ii 5 R(2, p).	 (20)
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PROOF. From Subsection 1.1.3,

(xi , xp ) = 	 xi(p) = 2i 
Om A ,./Im

— 2 	•

o, using the identity Re(i/z) = Im z/jz1 2 , one finds

2,11m Im gam + Im it)]
"xi — x, 11 2 = 2(1 — Re(x i , xp )) = 2[1

lit — Al 2

1
_ 	  [(Re A — Re ti) 2 + (Im + Im p)(\/Im —	 1)2]

lit — 2 1 2

(Im + Im it)(Im — Im p) 2 1 .
= 	 _

- 212 [(Re 
A Re /1) 2 + 	
 (✓IM I + .\/Im 11) 2

1 (Im + Im ,u)(Im — IM /2) 2
	  < 1,

2 	 (,/tm A +

(20) follows from the equality

1
_ 	 [(Re 2 — Re 11) 2 + (Im 2 — Im p) 21 = R 2 (2, y).

The lemma is proved.

1.3.10. Minimality and the Blaschke condition

Scalar family X, =L EU 	 x, = 1m (k — ;1)' ,

is minimal if and only if o- e (B) (satisfies the Blaschke condition, see (B),
Subsection 1.2.2). Along with it, V iE ,, xi = Kip where

II(k) =
k — A.

;EN k — Ai

If a (B), then ViE , xi =
In Section 2 we prove a criterion of minimality for a vector family with

dim gt < co:
Xn e (M) • •	 (B).

I - 21 2
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1.3.11. LP-basis property of simple scalar fraction families

As one sees from (12) (see Subsection 1.3.3), the Carleson condition is th
condition of *-uniform minimality (Definition 1.1.15) of a scalar family

{ .)CA}leo•

A remarkable fact is that *-uniform minimality of 	 is an equivalen
to .2-basis property (Nikol'skii and Pavlov 1970):

n E (LB) a ,i"n e(UM)r>vE(C).

In the vector situation, uniform minimality also implies an 2-basis
property for dim 91 < oo (see Section 2; also Treir 1986).

1.3.12. .29-basis property of simple fraction families and Carleson constant
If {x,}, E , e (LB), then, according to Theorem 1.2.1, the operator of the
problem of moments of family {x1 } ). E, is an isomorphism of spaces
Vt ea X1 and ( 2 : Elea l(f , x A )I 2 X IIf Ilk. Let us use the values for the
constants in these inequalities expressed in terms of the Carleson constant
6(0) (Nikol'skii 1980: lecture VII, sec. 2). For f E VIE ,7 x 2. , inequalities
are valid

	  Ilf 	 E l(f,x,)1 2	32(1 + 2 log I II f 1111232[1 + 2 log(1/6)]

62

	±
	 (21)

1.3.13. Carleson—Newman condition and simple fractions

Inequalities (21) imply that for a e (CN) an estimate holds

E 1(f, x1)1 2 	Ilf	 f e	 (22)
Aeo

It so happens that the converse assertion is also true; that is,

	a e (CN) <=> E Kf,x,.)1 2
	

f e
Aea

Later, we will need the following assertion.

Lemma 11.1.21. Let set a belong to a strip urn kl S const and be a_
unification of a finite number of separable sets. If vectors ri l e 9t
().e a, dim 92 < co) are also bounded in the norm, then for any function
f e L2 (0, T; 92) inequality holds

E l(f, 	 e ilt )1,2(O,T; 92)1 2 -̂ CTIlf 111.2 (0, T;91)•
Ae a
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gooF. 
Without sacrificing generality, one may assume that set a is situ-

ated in the strip 0 < c Im k C < oo. Indeed, mapping tp(t)H-+ e't tp(t)
v't

is'Etn isomorphism in L 2 (0, T; 91) that transforms function ri,t e into

function n, e i(l+wt, and therefore the shift of the spectrum a 1--* a + is in

may only change constant CT .

Now exponentials e lAr belong to space L2 (0, oo) and are almost normed

10111 INS

1
II L 2(0, co) = 	 X 1.

/2 Im 2

ence, setting f = 0 for t > T, we have  
2

E 1(f, nA eut )L2(0, r ; 9i01 2 	E
lea 	 lea

(f 	 e"- `

-\/2 Im 2iL20, co; 91  

let us move to the Fourier representation and verify an inequality

E KI,n,x,)Hil 2 	f E 11 -2J91)
lea

frOm which the statement of the lemma follows.

We use fp (k) to denote coordinate functions of vector function f(k) in

. the orthonormal basis g p° 1 of space 91. From the explicit expression for

a scalar product (see Subsection 1.1.3), we derive

	E Kf, rilx,1)4(9n1 2 	E i(U),	 x.t)H2,(c)12
Aso	 lea

47c E Im A.K.N.),t09,12 E <<f()>> 2
lea 	 lea

dim% 	 dim%

	= E E Ifp())i 2 = E E	 En 2.) -1 1(fp, x,)
p=1 1E6 	 p= 1 Aca

The conditions of the lemma imply that a e (CN). Applying estimate (22),

we then find
dim% dim%

	

E E	 E	 — 11111121+(%)•

	

p=1 lea 	 p=1

The lemma is proved.

1.3.14. The inequalities for exponential sums on an interval

Proposition 11.1.22 (Meyer 1985). Let T > 0, {w 1.,- n,neZ be a strictly in-

creasing sequence of real numbers, and {p„}„ ez be a nonnegative sequence
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such that p = pa and co _„ = —co„ for n e N. Then the inequality
2

E a,,p„ exp(iwn t)
ne7L

^ CT E
L2 (o.T)	 neZ

2

is valid with some constant CT < co if and only if

sup
neZ n ^ cor <n+1

2
< co

1.3.15. Property of functions from space K a

Lemma 11.1.23. Let 0 be an ESF, a > 0, and let the embeddi
0 -1 K, c W.(%) take place. Then 0 = const.

PROOF. A consequence of formula (7) is that functions

(k — '1) -1 [1 — exp(ia(k — ,1)]n

lie in space Ka for all e C+ , ri e 91. If vector n runs through a
orthonormal basis in 91, for the elements [0 -1 (k)] ci of matrix functio
0 -1 (k) we get inclusions

(1 — e ia(k— A)Co - 	 e _2,;	 i, j = 1, 2, ... , dim 91.
(k —

Together with the estimate (1), the inclusions provide

1

ikl
1[0 1 (k)] u]  +

	

1	
1,	 Im k > E > 0,

which in turn implies that function det 0 -1 (k), with Im k co, is not
growing faster than a polynomial.

Function det 0(k) is, by definition, an entire inner scalar function. That
is, for some fl > 0, an equality det 0(k) = c efl, Icl = 1, holds. From the
representation of ESF (see Subsection 1.2.4), one easily deduces that 0 is
a unitary constant (a constant unitary matrix) if and only if = 0.
Evidently, function exp(—ikfl) may not grow faster in C., than a
polynomial except when /3 = 0, which proves the lemma.

1.3.16. Isomorphisms transferring exponentials into exponentials

In the space L 2(0, co; 91), the following mapping is an isomorphism:

	f(t) 11 .1' e't f(t); 	a E 111, Ita e i 't liz = e" +")` q A . 	 (23)
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in the space ‘97 'K9 , particularly in L 2 (0, T; 91) for 0 = exp(ik T), there

also an isomorphism

	f(t)rt- e'i f (t),	 a e	 it„ e i 'tt th. = e iGt + icOt n„. 	 (24)

Mappings (23) and (24) shift the spectrum a of the family of exponentials

em Ecr and (along with Theorem 1.1.25 and Remark 1.1.27) can be
used to identify their basis, uniform minimality, minimality, and W-linear

independence properties.

1.4. Entire functions

We now present some information on entire scalar functions of the
exponential type. These functions are of interest because they play an
important role in the investigation of minimality and basis properties of
families of exponentials (see Section 3). Demonstrations of the given
assertions may be found in Boas (1954), Levin (1956), and Nikol'skii

(1969).

1.4.1. Entire functions of the exponential type

Entire function f is called an entire function of the exponential type if

there exist constants C and T such that If (k)1 < C eT i k i for all k c C. The

smallest of constants T is said to be the exponential type of the function.

1.4.2. Growth indicator and indicator diagram

2x-periodic function on gl defined by the equality

1
hf (co)= lim sup — loglf (r e hP)1

r - CO r

is called a growth indicator of exponential-type function f. The indicator

diagram of function f is a convex set Gi such that

h f(9) = sup Re(k e - "P ) .
keGf

Example 11.1.24. Let f = eialc 	 a, 13 > 0. Then

	h f (c) =	
/l sinsin ce,

—a sin ce,

cp E [0, n]

E[—it,

and G f = [—
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1.4.3. Functions of the Cartwright class
Entire function f of the exponential type is said to be a function of the
Cartwright class if

I max{logi f
	dx < co.

J R 	 1 + X2

In particular, function f of the exponential type satisfying condition

r
R 1+

I (x)I 2 dx < co
JJ

belongs to the Cartwright class.
The indicator diagram of a Cartwright-class function is an interval

[ia, i13], a fl, of the imaginary axis. Its length is called the width of the
indicator diagram.

1.4.4. Zeros of Cartwright-class functions

Proposition 11.1.25. Let f be a Cartwright-class function with the width T
of the indicator diagram, and let a be the set of zeros of f, where any zero
is simple and f(0) 0 0. Then

lim 
n ± (r) T
	 =

+co r 27r

n + (r):= card{A e cr Jill < r, Re A 0},

n_(r) .= card{A. e a HAI < r, Re 2 < ;

(b) a limit exists

fa(k) = p.v. fl (1 — k/I) = lim 	 fl 	 — kla);A ea 	 co lal<r•Aeo

(c) indicator diagram fo is [—iT/2, iT/2], and for some a and 13 we have

f (k) = fa(k) exp(ika + 13),	 a a IR;

(d) f has a factorization

f (k) = exp(— ika + )n ± (k) f ; (k) = exp(ika_)n -(k)f (k),

in which fe are outer functions in C± , respectively, ir± are Blaschke
products (in C ± ), a ± a R, and a + + a_ = T.

(a)

where
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1.4.5. Summability and growth of functions on the real axis

roposition 11.1.26 (Nikol'skii 1969). Let f be a Cartwright-class function

and e LP(R), p > 1. Then

f(k) k 	0.

1.4.6. Functions of the sine type

efinition 11.1.27. An entire function f of the exponential type is said to

be of the sine type (STF) if

) the zeros of f lie in a strip {k EC' I yi h, k = x + iy} for some h > 0;

(b) there is y o e ill such that If(x + iY0)1 1 holds for x e IR Note that

(a) and (b) imply If(x + 0, 1)1 X 1 for any y 1 , 1)1 11 > h.

Proposition 11.1.28 (Levin 1961). If f is a sine-type function, then its set
zeros is a finite unification of separable sets.

2. Vector exponential families on the semiaxis

In this section we consider a family of subspaces n = flA I AE „, where XI

are subspaces of simple vector fractions .fix = (k — '91 A ; 91 A are

subspaces of an auxiliary Hilbert space 91, 91, = (5,,91; and 8 A is an ortho-
projector in 91 (dimension of the auxiliary Hilbe. space 91 can be infinite).
For a finite dimensional case, we produce the necessary and sufficient
conditions of minimality (Blaschke condition) and of Y-basis property
for family .Tri . Recall from Subsection 1.1.5 that the Fourier transform
transfers the fraction family .irn into family {exp( — at)91,1 Aec, of vector
exponentials, which is more frequently met in the applications; this
explains the section title.

Although it is quite natural for the Blaschke condition to be required
if .Tri is to be minimal in a finite-dimensional case, the condition has
not yet been demonstrated in the literature.

The basis property of vector exponential families was first studied by
Nikol'skii and Pavlov (1970), who established that decomposition into
an asymptotically orthogonal series was a sufficient condition. It has
also been established that the spectrum of an 2'-basis family can
be decomposed in not more than dim 91 Carlesonian sets (Vasyunin 1976).
Treil' (1986) has proved that for a finite dimensional case, as well as for
the scalar one, uniform minimality of family Xn implies the basis property.
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We first prove simple facts concerning the relationship between the
properties of scalar and vector families of a general form (not necessaril y

of exponentials).
In the space 91 we choose an orthonormal basis {V,',} dp il.",91. Let 5 be

some Hilbert space (the space of scalar functions). Let 5(91) denote the
space of 91-valued functions F = E, fx, fp e 5, with scalar product

	dim%
	

dim 91

G)5(91) = E (fp , g P)5'
	 G
	 E 9pP, 9p

	P=1
	

P = 1

Space 5(91) is commonly said to be a tensor product of 	 an
91 : 5(91) = 5 0 91.

Lemma 11.2.1. Let {fi }7= 1 be a family of nonzero elements of 5
{9MT-1 be a family of nonzero subspaces in 91, with J1 and .K subsets of
N. Then

(Pboi)( V fm's`, V L 91) = 95( V fin, V fn),
m e .11	 ne.Ac	 m e...il	 ne ..Ar

95(91)( V ./. 91., V L 91) -�- 95( V fm, V fn),
mode 	 ne...ir 	 mod/	 ne.Ac

CCI (9t)( V Ligl. , V f, 91) � (Pb( V 91. , V 91n).
mode 	 ne.Af	 mede	 ne ✓4c

PROOF.

(a) From Lemma I.1.4(c) one derives, by expanding vectors ri; over an
orthonormal basis in 91, ri = Ep ny4o,

sine 95(94 V fm 91, V fn 911)

me.11	 ne ✓r

2

inf
e 91. 11.E 	 =1

E fon,— E
mod/ 	 nerr b(91)

2

= 	 inf
E;-- 	 =

inf
p = 1 IlEfmng,11 2 =qp.ngicC,47,'Ec

E 	 E fniif
it E.4,`

co
•= lnf 	 E qp

2 sin2 
(Pb( V fm, V f,,)ET,. 	 = 1 p = I	 mE.11	 ne.A'

= sin 2 (195 ( \/ fm, V .0.
me de	 ne.Ac
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n view of Lemma I.1.4(c), the value

sin' 95(1)( nyii 	nv Mtn)

may be written as an expression similar to (2), but with the additional

condition nn, e 9/„„ m E .11; E 91„, n e Al. Since the infimum is taken

over a smaller set, this, along with (a), proves (b).
Inequality (1) is demonstrated along the same lines as those in (b),

since subspaces 91; and elements fi enter (1) symmetrically. The lemma

is proved.

orollary 11.2.2.

) An almost normed family of scalar functions	 c 5 possesses any of

the following properties: minimality, uniform minimality, and the 2'-
basis property if and only if the family of subspaces {491} c 5(91) has

the same property.
(b) Let the family of subspaces {I/ 91} have some of the following properties:

minimality, uniform minimality, and the 2'-basis. Then the family of

subspaces {fi 91;}, where 92; are nonzero subspaces of 91, has the same

property.

' These statements are implied by the fact that each of the family's
properties may be expressed in terms of positiveness or uniform bounded-
ness away from zero of the angles between subspaces (see Chapter I,

Subsections 1.2, 1.3).
Let us introduce a family E = 	 of vector functions f c 5, ni e 91,

and a family of vectors E 	 {nj}r= ,; F and F denote Gram matrices

of families E and Egi , respectively. The following assertion allows one to
arrive at an estimate of the Gram matrix norm of family E by the norm

of F.

Lemma 11.2.3.

(Fe, c)1 2 .̂ 2 inf 11411W91 c, c, e 2
jE N

2(F9-t)> CI1 2 supIlf — fn(Is,,
j,n

C e ( 2 .

PROOF. Let us take an arbitrary element fjo . Then for any finite element
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c E e2 we have

(Fc, c)e2 =
co
E cifi ti;

2

=
oo 	 co

E cifoi+ E ci(4 - 40)n;
2

j= 1 b(91) 1 =1 	 j= 1 501 )

2

+2
bort)

The first term may be estimated as

CO

E cf(fi — 4074
j= 1

<2 E=1   

2

(3)    

40( E Cfli)
I=

2

b(01 ) 

2

E      
cc,
E cifioth

1

2

5(%) -= 
= 11.6011,           

= 11.6.111(r91c, )c, e2.

In order to estimate the second one in (3), choose an orthonormal basis
{l;n° }:°- 1 in space 5 and expand all the elements g; = 4-40 over it

fi _ 	 E glocv ) .
n= 1

Then inequalities are true

2 >>2
	= E	 E cinigin )

b(91) 	 12 = 1
	 1

0.
= >2 <r9,{cinigin)}, {Cif tiginq>

n= 1

	CO 	 co

>2 <<r9,>> >2 Icigr)1 2
n=1

= <0-51>> J=1

sup llf, —.fi llt<<rb>>11c02.

00

E cini(4—.60
j= 1

The lemma is proved.

2.1. Minimality

Here we prove that for dim 91 < co the Blaschke condition on the
spectrum a c C+ (see Subsection 1.2.2, condition (B)) is necessary for the
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nimality in L2 (0, co; 91) of the family of vector exponential subspaces

g texp(-1,10911},E,, 	 c C+ , 91 1 c 91.

Obviouslis cannot take place for dim 91 = co, since the minimalitY
d eveny, y, th

orthogonality of g 
may be gained only because of subspaces 91 A

Ihout any restrictions on the family spectrum.

eorem 11.2.4. If dim 91 < co, then g E (M) if and only f a a (B).

ii0OF. If a e (B), scalar family gsc = {exp(- i;11)}, E , is minimal, since

iSamily t(k - ;1.) -1 1,E„ related to gsc by the Fourier transform, is minimal

see 
Subsection 1.3.10). By Corollary 2, 6 E (M).

Let g (M). We pass to the family in 11 2 (91) related to family g by

the Fourier and U mappings (see Subsections 1.1.2-1.1.5):

•= tkImEce,	 — (1 — Az) -

= (0(4 	 et:— {(0(.)}1•

•Let 	 = ti".
'0,ed denote the family that is biorthogonal to	

and lies in

subspace G :-= Vff.

Subspace	
consists of eigenfunction of the operator S* (adjoint to

shift operator S) corresponding to eigenvalue (see Definition 1.12 and

Subsections 1.3.2-1.3.4). Indeed, for f (z) (1 - fiz) i n, n E 91, we have

(a*f (z)) = f (z)z 
f (0) = (1 —An = fif(z).

It follows that G is the discrete spectrum subspace of model operator 
e*1 G

and thus G 
is invariant under operator S*. Therefore, Proposition 1.15

provides us with a representation

G H 2 (91) e H 2 (91 1 )

Y(z): 91, -4 91 is an analytical in ID

for almost all z E T.
Section II.1 for orthoprojector PG

PG = /1 1/ 2 (9-0 - 943 .4. 99 * .

Here 15, is the orthoprojector from L 2 (T, 91 1 ) to H 2 (91 1) while ' and

.9'* are multiplication operators by 9'(•) and 9'*(.), respectively. Since )t,

is the eigenfunction of operator o- *1 G , element of biorthogonal system

in which 91 1 is a subspace in 91,
operator function, being isometric

We now exploit formula (15) in
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is the eigenfunction of adjoint operator PG SI G:

PG Z (Z) = 1.4.k;(Z) .

We now prove that

	re,	 Ker Y(µ),z — ,u

Y(z)
(4)

as for an inner operator function S (as for 92 1 = 91). With the obtained
representation for PG we get the relations

(z — 	 = 9(p,„	 (pm.= 13± 9.zn.

Now, expressing n from the first equality,

	

n = (z — p) -1Y94 	 (5)
and introducing it into the second one, we have

	= 13,Y*  z Ycop = 15,	 9p•z —	 z —

Actually, multiplication operators by scalar function z/(z — p) and
by operator function .99 commute, and for isometry Y(e) formula
9*(e i°)Y(e i8)= /191i holds.

Let us prove that the solution go,, of (6) is a constant vector. Vector
function ap,,(z)/(z — p) may be represented in the form

z	  (P,, (11) + 
z	 [9, (z) — MP)] Z9µ \11)

+ 1,(P)Z 	

z

	— p	 — p 	 z 

+ 	 (cu (z) — 91,( 1)). (7)z —

The second and third items in expression (7) lie in the space H 2 (91 1 ). The
first one is orthogonal to H 2 (91 1 ) in L2(T, 91), since it may be represented
in the form E n-_ 1 c,,z - ^, c„ e 92. Therefore (6) takes the form

9,(z) = Cop (I-L) + 	 z (9A (z) — Mit)),Z — ft

whence cpii (z)= goii (p). We proved the representation (4).
Since .)2/,' is analytical in 03, Y(p)re = 0. Evidently, ,99(z)ii" # 0, because

Y(z) for almost all z e T is an isometry of spaces 91 1 and 91. Therefore,
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there exists a minor of the order dim 91 1 of matrix function .99 (z) (in some

oasis) that is not an identical zero. This minor tends to zero in the points
btspectrum a. Because is a bounded matrix function, the minor is also
bounded in ED. Hence, the set of its zeros satisfies the Blaschke condition
subsections 1.2.7, 1.2.3, and 1.2.2). The theorem is proved.

Remark 11.2.5. From the theorem it follows that for a minimal family of
exponentials or simple fractions (in the case dim 91 < co) there exists a

BPP generated by family Ix 2 91„1,1E , (see Subsections 1.2.11 and 1.3.5),

and \h.ecr {OW =

2.2. The basis property

In a scalar case, the .-basis property of an exponential family or a simple
fraction family is equivalent to its uniform minimality and is expressed

via Carleson condition (C) on the family spectrum (Subsections 1.3.7,

1.3.11). From Corollary 2, one thus finds that the Carleson condition is
sufficient for a vector family of exponentials or corresponding simple
fractions to be an 2'-basis. In a vector case, however, the Carleson
condition is no longer necessary for an -B-basis property of a family.

Example 11.2.6. Let a l and a 2 be two close Carlesonian sets in the

sense that a1 L.) a 2 (C). For instance, one may set of {n + il,, EN ,

a2 = In + i + 1/n},,, N . Let 91 1 and 91 2 be orthogonal in 91 subspaces.

Then

{X.1911}Aeo-i {x2 912}AE,2 E (LB).

For dim 91 < co, it seems natural that the spectrum of an 18-basis family
cannot be too "thick." Indeed, the following facts take place.

Proposition 11.2.7 (Vasyunin 1976; Nikol'skii 1980: lecture VII, corollary

2). Let family 6 = {exp(i.1091 2 },te , form an.-basis in space L 2 (0, oo; 91),

dim 91 < oo. Then its spectrum a is a unification of not more than dim 91

Carlesonian sets.

Proposition 11.2.8 (Treir 1986). Let family {(5 2 }„ Ea of orthogonal projectors

b x in 91 be relatively compact (any infinite sequence contains a converging

subsequence), and let t have the form 6° = lexp(),06,911 2 „. Then family

g is an _99-basis if it is uniformly minimal.
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If dim 11 < oo, then family {6 1} is always relatively compact. So,
Proposition 8 extends the equivalence of the basis property and uniform
.minimality to a finite dimensional case. For dim 91 = oo one should not,
apparently, expect such an equivalence to be present. Consider the
following example.

	Example 11.2.9. Let dim 91 = co and set =	 + e? where {„°}„EN is
an orthonormal basis in 91. Then (see Example 1.1.18) family 

{„}„"- 2 is
a uniform minimal one but not an 2-basis one in 91.

Let us take a sequence of points A n that converge to a point 20 E
and consider a family of vector simple fractions {x 2* By the force
of Corollary 2, this family is uniformly minimal. In order to demonstrate
that it is not an ..r-basis, we take a sequence {c„} of positive numbers
belonging to e2 \el . Since simple fractions x,. converge in Hi. to function

and since vector series

. 	 .3
E c„„= E cn c + E Cn) ?

n= 2 	 n= 2 	 n= 2

diverges, it is not difficult to show that series 7
,....:— 2 Cn XA 	 also diverges

in space 11_2,(91). From the Bari theorem (Proposition 1.1.17) it then
follows that {x,.„} 0 (LB).

We will need a test for a family of simple fractions to be a basis. First
we give another definition.

Definition 11.2.10 (Nikol'skii 1980: lecture VII, sec. 3). Hyperbolic metric '
in C, is a function p(A, p) such that

tanhlp()., p) = R(., p) =

SO

1 + R(A, p)
p(A, p) = log 	

1 —	 p)

Let Dp (A, r) be "a circle" of radius r and center in this metrics.

Let o c C+ . Denote G„,(r), m = 1, 2, ... , connected components of set
G(r), with G(r) being a unification in A e r of the circles Dp (A,r). Write
A,n (r) for the set of points from o lying in G„,(r): A„,(r) = a n G„,(r) and

wor

A — p

— ft'
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L„,(r) for subspaces of simple fractions with spectra Am (r):

Lm(r) := V (k — 2) -1 .
AcA„,(r)

Proposition 11.2.11 (Vasyunin 1977; Nikol'skii 1980: lecture IX, sec. 5).

Let set a be a unification of N Carlesonian sets op Then

(a) for any r > 0, the family of subspaces {Lm (r)} forms an 2-basis;

(b) for r < ro  1/(2N) mini 	p(1, p), the dimension of Lm (r)

is not more than N (card Am(r) N).

The proof of assertion (a) is presented in Vasyunin (1977) and Nikol'skii

(1980) for only r = := r0 /16. However, it is true for smaller r as well.

For r > r* we have

Gm (r* )	 U 1),(2, r,p) c U Dp(A , r).
AeA„,(r.) 	 leA,,,(r*)

It is clear that the latter unification is connected and so for any m,

lies in some component Gn (r). Therefore, subspace L„(r) either coincides

with the subspace Lm (r*) or contains this subspace along with other

subspaces

L„(r)	 V L„,j (r* )•

Since the family of subspaces {L„,(r*)} constitutes an 2-basis, the same
is true for the family of subspaces {L„(r)}.

In other words, assertion (a) means the following. Under the conditions
a e (CN), a (C), the simple fraction family {x I } lec, is not an .2-basis in

However, joining simple fractions corresponding to "close" points of
the spectrum in groups, one finds the subspaces spanned over those groups
of fractions to form the 2-basis.

Proposition 11 enables one to obtain a criterion for a family of vector
exponentials to be an 2-basis, if a satisfies the Carleson-Newman
condition (CN). (The condition was formulated in Ivanov 1985.)

Theorem 11.2.12. If o - e (CN), then the family An = {(k — :1) -1 91 2 }, E „,

forms an 2-basis if and only if for some r > 0 an inequality holds

inf min 9 91 (91 1 ,	 V 	 I > 0.
m AeA,,,(r) 	 licA,,,(r), tt* A

(8)
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Roughly speaking, condition (8) means that in each group A m the family
of subspaces {91,} AGA,,, is an .0-basis in 9t, and this property is "uniform
in groups (i.e., with respect to m).

PROOF. According to Proposition 11, scalar subspace family

{ileA ,,,(r)
V 0C

is an .0-basis. The same is true for family {4} (Corollary 2a)

:= V (k;1) - 1 91,.
A EA„,(r)

Let 1„, be a projector in Hi (91) on ..9;„ parallel to V„,„, 	 The .0-basis
property of 2„', is equivalent, in views of Proposition 1.1.24(b), to the
estimates

14112 ki E 119m9112, 	 Wm =VAn.

Let us write gm , 2 for the projector in 	 on (k — 1) - 1 912 parallel to

V 	 (k it) - '91A.

It is evident that

Y.= E g).„)Ym
leA„,(r)

and that Ym , i M is the projector on (k — ;1) - 1 911, e Am (r), parallel to
A (k — rt) - 1 911,• That is why the .0-basis property of family .1, / is

equivalent (Proposition I.1.24(b)) to the estimates

E lig.,A9.911 2 , 	 9 6 VXn. 	 (10)

From a comparison of (10) and (9) it follows that the 0-basis property
of Xri is equivalent to the estimate uniform in m and cp.

11(p11 2 x E 	 (p 	 m e 	 (11)
AeA„,(r)

Since for r < ro sets Am (r) contain not more than N points, (11) i
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equivalent to the estimate

sup max 11.97n,11 < Go.	 (12)
m AE Am(r)

By Lemma I.1.9(a), condition (12) may be written in the form

a(r):= inf min 91.1 24(go x2 911 A ,	 > 0.	 (13)
m AeA rn (r)	 A.eA,,,(r),g#

So, we just proved the following lemma.

Lemma 11.2.13. For r < r0, condition (13) is equivalent to the 22-basis

property of family alp

Let condition (8) be valid. By Lemma 1(c),

(PHi.(97)( xAgIA. , 	V	 xA 91 .1)	 inf (Pgt(91A,	 v 	 921
AcAm(r),F* A	 m,1	 1€A,(0,14#1

Then Lemma 13 implies that family	 is an .-basis.
Suppose that condition (8) is not true for all r. Let us show that then

(LB). The idea of the demonstration is that for small r "almost"
linear dependence of subspace family I 1 vEA„,(r)
dependence of simple fraction subspaces {x v 91v} veA m (r)*

So, by the force of the suggestion, for each r, 0 < r < r0, and every e > 0,

a point A. e Am (r) may be found there along with vectors 	 e 911 ,

<00>	 1,	 e 91i2 , E Am (r), 0 A., such that

(K ?i, + 	 E 	 < e•
itE Am (r),11*

In each subspace 92v , v e Am (r), let us now choose an orthonormal
basis {r4(P ) }";= 1 , ri„ = dim 9I,. We denote Gram matrices of family

{x,11;f)}1;1:7",v.A.„(r)	 H Z (92) and family 1 71 P) } 1;,:rri",veA,n(r)	 bY F and
Tgt , respectively.

Expand vectors n, over this basis
n,

c (q v = E vP) (P), ,

p= 1

and consider vector c = Ic v(Pr---1 (as an element of ( 2). Since

E le(vP)1 2 =EE  ic?)1 2 = E <07v>> 2 ,
v, p	 v p

implies "almost" linear

(14)

we have ilell e2 > 1.
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Inequality (14), in terms of rgi, means

2
(r9-1C, = 	 +	 E 	 70) < c.

veA„,(r), v

Then Lemma 3 provides an estimate

(Fc, c) 	 2c + 211F91 1111c11 2 max 11x1—	 111e,	 (15)
A, ite A„,(r)

Let us now prove that for r < ro

111-91 11	 N, 	 (16)
and that

max 11x 1 — xo 11,1i ^ Nr. 	 (17)A, ii E A,(r)

We first check inequality (16), and for this we take an arbitrary vector
d = {dnf, : niv,ven.,.(r); then

(r9id, d) _ <<E,,„ df,PV,P)>>2 — <<EvEA_,(r) tiv>> 2 

II d11 2 	Ev,„ Id? ) 1 2 	EvEA„,(,) <07v>> 2 '
where

E 4'41?) •
P=1

An obvious inequality

N 2

E zp ^ N E opg
p=1 	 5 	 p=1

and relation (18) produce inequality (16).
To justify inequality (17), note that between two points v, pc e Am (r), a

path exists running through the centers of circles Dp (2,r) (Gm is a
connected set). There are not more than N circles; hence, p(it,v)< Nr7

Using as well the estimate from Lemma 1.22, we arrive at the inequality
(17).

The proved inequalities (16) and (17) produce

(Fc, c) 	 2(c + N 3r2 )1Ic11;2.
Since the numbers a and r may be infinitesimal, the last inequality is
incompatible with the 2-basis property of family Xri : if Xn a (LB), then
by Proposition I.1.20(b) operator F has a bounded inverse. This completes
the proof of the theorem.

( 8)

(19)
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In a finite dimensional situation, one can relax the requirements of
'Theorem 12 exploiting Proposition 7 to some extent.

Corollary 11.2.14. If dim 91 < cc, then XII E (LB) if and only if for some

fcondition (8) holds.

1' The exponential families arising in control problems for string net
(see Chapter VII) have asymptotically serial structure. In this case, the
convenient sufficient conditions of basis property may be given.

efinition 11.2.15. Family {(k — ).„) -1 6,1.911 4„, where	 are ortho-

projectorg in 91, is said to be a Carleson series C(6), if o - e (C) and

----+8 for some orthoprojector 6 in 91.
n-.00

Corollary 11.2.16. Let I”, be a unification of Carleson series C(8 )• and

family {8;91} of subspaces be an 2'-basis. Then .1",,e (LB).

In the following examples the spectrum lies in a strip parallel to the
real axis and the hyperbolic metric is equivalent to the Euclidean one.

Example 11.2.17. Set

Arn := {(k — 2n + i) -1 6 1 91}„ Ez u {(k — 2n + 1 + i) -1 5 2 91},,, z

u {(k — n — + i) -1 6 3 91}„ Ez ,	 0 < ly„j ^ y < 1/2.

Here, S i , 6 2 , and 6 3 are distinct one-dimensional projectors in C 2 , gn

is a unification of three Carleson series in C 2, and Corollary 16 is inappli-
cable. Nevertheless, the family spectrum is a unification of only two
Carlesonian sets am = + i}„ez and (7 (2) = + y„+11„, j . For r < 1/2 — y,
not more than two points fall in A„,(r), and not more than one from each
of the sets am and a (2). Therefore the angles in (8) take only one of three
values

cp(6 1 91, 6 291),	 cp(6 1 91, 6 391) and cp((5 2 91, 6 3 91)

and are bounded away from zero. Hence, 	 e (LB).
In Chapter VII, which focuses on the controllability of a system of

strings, a family also appears with a number of Carleson series greater
than the dimension of space.
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Example 11.2.18. Set

= {(k — n + innez u {(k n — y„ +

where 0 < ly„I y < 1/2 and

(1) =_ (sin )

cos an 	
tin —

(2) 	(sin(an + 13
	n 	

))

cos(an + 13)

The behavior of vector n;," is disordered, but for any n

(Pk.", ?/;,2) ) — /3

e E,	 70.

and	 E (LB).

3. Families of vector exponentials on an interval

In this section we consider families of projections of simple vector fractions

Pe 	 {Pe(k — ;1) - ' 91 .tIAE,

for dim 91 < co. Here, O is an ESF (an entire singular inner operator
function in C+ ) a c C, is the family spectrum satisfying the Blaschke
condition (B), and 91 A are subspaces of 91, dim 91 A =: nA . We provide a
simple fraction family with subscript II corresponding to BPP II generated
by the family: a is the set of semisimple zeros of H and Ker I1*(2) = 91

Family Xn is a Fourier image of exponential family 6° = {e '91 A} c
LAO, co; 91), and for 0 = exp(ikT) family Pe is a Fourier image of family

= tXT e w 9IA I AE , c L2(0, T, 91) (characteristic function n, of interval
(0, T) is usually omitted). Everywhere in this section, dim 91 = N < co
and orthonormal basis Mil_ , is specified in 91. At times it may seem
more convenient to pass from the family of subspaces en to the family of
elements choosing an orthonormal basis {n( ) }, j = 1, . . . , nA , in 911 for
each 2. The family of normalized elements {x,,,Ai%, A, where

x A (k) = 	  1	  H_

	

k —
	 E C+, IkailH 2+ = 1,

is denoted by .1",, along with the family of subspaces.

3.1. Geometrical indications of minimal and basis properties

Lemma 11.3.1. For any ESF 0 and each BPP II, there may be found an
ESF O and BPP lI such that

1-16 =	 = s (1)
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Ks =Kn © HK®= K® OOKn 	 (2)

KrI V K, = K,	 (3)

00F. Let a number a be large enough for function

0 1 (k) = exp(ika)0'(k)

be bounded in C, (and thus to be an ESF). Define functions 02 (an

.ESF) and n (a BPP) from the factorization problem

O,II = fie2
	 (4)

and set 0 := OZ ' exp(ika).
Functions and 11 satisfy an equation

IIO =

and to check (1) it remains to show that O is an ESF. One may see from

the construction that 0 is an entire function unitary-valued on the real
axis. It is an ESF if it is bounded in C ± . From (4) we obtain

0;- =

which implies
O =

This relation may be written as

O = I-IOU/clef II,	 (5)

where ft is the matrix function composed by cofactors of matrix H. Since

det II = (det is a BPP. Take an arbitrary element cm ; of matrix

fIefi, which is evidently bounded in C. As 0 is an entire function, (p i.;

has to contain an inner factor det H:

(pi; = fi; det II

and fii is an analytical and is bounded in the C, function. From formula

(5) it follows that fi; is an element of the matrix 0.
To verify equalities (2), we exploit the following: if 5, is a subspace of

Hilbert space 5 and 5 2 is a subspace of 5 1 , then

5 e = E5 e5i] ,o [bleu. (6)
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Using this, we find that

Ks = H.i.(91) e lle5H.i. (91) = [I-n(91) e 111-1.i.(91)]

	e 	 (i) e öin(91)].

Similarly, replacing II by Co and fl by 45, we get

KS = 	 e efun (9) = [H+() e eln(9.0]

0[1-n e

and formulas (2) are proved.
Let us demonstrate that (3), (2) imply Kn V Ke c Ks. Since any

subspace of the form Kk is invariant under action of the operator e*, then,
according to Proposition 1.16, subspace Kr/ V Ke has the form Ksi , where
S, is an inner operator function dividing S from the left:

S = S 1 S2

(S2 is an inner operator function in C + .) Since subspaces Kn and Ke lie
in Ks , = K11 V Ke , the same assertion implies that II and CI are divisors
of S:

S1 = IIS1T = OSe ,

where Sr, and Se are inner functions.
Now formulas (1), (7), and (8) produce the equalities

sns2 =
	

Se S2 =

Let us show that the equalities are correct only if S = const (i.e., the
greatest common divisor of BPP II and ESF (75 is trivial). Consider the
determinant of the first equality in (9). Taking into account that the"
determinant of an ESF is by definition of the form c exp(ikfl), 13 > 0,
lel = 1, we have

det Sn det S2 = c exp(ikfi). 	 (10)

Similarly, taking the determinant of the second equality in (9), we get

	

det Se det S2 b,	 (11)

with b being a Blaschke product. From (10) it follows that a scalar
function det S has no zeros, while (11) implies that it has no singular
cofactor as well. Therefore, det S = const and hence S = const. The lemma
is proved.
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a 11.3.2. For an ESF O and a BPP II, the relations

K0 n KA- = 01/_2(91)

cp(Ke , KA) = go(OH _2 (91), IIITi_(91)),

Ke n KR = Ctin(91) 	 (91),

cp(K4- , IC H ) = cp(OHi_(%),	 (91))

e true with subspaces KA- and K,4- being orthogonal complements in

subspace KrI V K0 to Kr, and K0 , respectively.

PROOF. For any inner operator function Ks. in C+ , an equality holds:

SoH 2_ 	 = Ks. e H 2 (92). 	 (12)

Indeed, the operator of multiplication by S o is unitary in L 2 (R; 91) and
that is why

SoL2(R; 91) = L 2 (R; 91).

Representing the space L 2 (R; 91) as a sum of Hardy spaces for the upper
and lower half-planes, we obtain

So 	(91) 0 SoH2(91)	 (91) e 11_2 (91). 	 (13)

If one now subtracts subspace Sofli.(91) from both sides of the equality,
one arrives at (12), which implies the useful relation

Ks. = SoH 2_ (91) e H2 (91) .

It is then easy to check that the right-hand side coincides with
SoH_2 (91) n	 (91). So we have

	Ks. = SoH 2_(91) e H_2 (91) = SoH2(91) n 1/3 .,(91). 	 (14)

Using (12) for So = 0, we represent subspace 01-Ii. (92) in the form

01-1 2_(91) = Ke e	 (15)

Let S be an inner operator function whose existence is stated in
Lemma 1. Then

nW_(91) = EnH.2, (9) e Sla(9 )] e sHi.(9l)
= nui.2, (91) e 	 (91)] e a (%),
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and formula (2) provides

= Kn 0 SH (91).
( 1§)

From (15) and (16) it follows that subspaces KA and K e differ fro
1-11-n(91) and OH_2 (91) by pairwise orthogonal summands. The addition
of such summands does not change both the intersection of subspaces
and the angle between them.

In a similar way, from formulas

HH 2_(%) = Kn O H _2 (91),	 ®H+(91) = K4- S - (9)

one derives the second pair of the desired equalities and thus completes
the proof of the lemma.

To return to the family Pe gii , we denote its elements by

.4, A := Pe (k — ;1) - 1 91 A

and reserve notations X,' = {1. ,,'} andXE,' n = {.1";"} for the subspace
families biorthogonal to Xr, and Peen , respectively (if they exist). W
always assume X,' c Kr, but do not demand the inclusion .T 0' VP@ ri

Theorem 11.3.3. Let O be an ESF and H be a BPP.

(a) Family 139 .9rn is then complete in the space K9 if and only if

Ke n K -= {0}.

(b) If family PEA, is minimal,

	

(-) ICH = {0}.	 (18

(c) If family P9 .1n is minimal, complete in K0 , and o- e (CN), then th
biorthogonal family is complete in Ke .

(d) The family Pe E1 is an .29-basis if and only if Xr, is an 2'-basis a

	

cp(Kel- , Kn ) > 0.	 (P

(e) The family P9 .K, is a basis in K9 if and only if family X, is an Y-basis
and (19) and

(p(Ke, KA) > 0
hold.

PROOF.

(a) Let family Pea-, be complete; that is, VP01,11 = K9 . Then the imag
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of operator Pe :	 K,E, is dense in Ke and hence the adjoint
operator, which equals Pri l Ke by formula (3) in Section I.1, is
invertible, That is, there are no elements in Ke orthogonal to Kn .

Conversely, if (17) holds, operator PH I,e is invertible. Therefore,

Po Kr, = Ke. Since Kr, = Vgn, assertion (a) is true.
Preserving the notations of the families, let us turn now to the

amilies of elements {x,e} and {Po xlel, 2 E a, j = 1, 2, ... ,
from the subspace ones. We note that this family of almost normed
elements and the family Pe gi-, of subspaces form an £-basis (a basis)

simultaneously.
For family 11 biorthogonal to the family of simple fractions, a
relation is valid

\MI = \Aril = Kn

(see Subsection 1.3.5). That is why the conditions of Theorem 1.1.31
are fulfilled. Assertion (a) of this theorem states that operator Pri l m ,

:= VP° Tr, has a dense image in Kn . The same goes for the operator
pn i Ke D Prd 93,. Therefore adjoint operator Pe i „ r, is invertible, which
is just what formula (18) expressed. Assertion (b) is verified.

(c) If a E (CN), then, by definition, a is a unification of a finite number

of Carlesonian sets:

c = U c) ,

J= 1

e (C), j = 1,	 , M.

By Subsection 1.3.11, family {x,},„ c ,, forms an 2'-basis. Drawing on
Corollary 11.2.2, we conclude that {x,,91,1 },1„, a (LB), j = 1, . . . , M.

Assertion (c) follows from Theorem 1.1.31(b).
(d) If family 130 .1n is an .r-basis, it is almost normed and uniformly

minimal in Ke . Consequently, it is also *-uniformly minimal so that
Lemma 1.1.28 becomes applicable to it. By the force of this lemma,
the family of elements Tr, is *-uniformly minimal and, since it is
normed, Tr, is uniformly minimal. According to Proposition 2.8,
uniform minimality of the simple fraction family {x,17 (2 ) } is equivalent
to its 2'-basis property.

From the Bari theorem (Proposition 1.1.17) for x = 	 c!,-nx,07(2-i),
one has

NIP+ (91) ^ V tcV)1 2 .
	 (21)

2.J

By the condition, family Pe .,„ is an Y-basis. The same theorem
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gives
2

= II PDX II LT (91)
HT (91)

Comparing estimates (21) and (22), we find that

Pe x 	 (9.) x 	 1114 (g1) -

This means that operator Pe I Ku is an isomorphism on its image. The ]

Lemma I.1.10(a) implies (19).
Conversely, let In e (LB) and inequality (19) be true. Then by the

same lemma, P0 1 „„ is an ismorphism on its image. Hence, Pe lil e (LB)
(e) Family Pe .; is a basis in Ke if and only if Pe .irn e (LB) and

VPe = K,. In accordance with what has been proved, this is
equivalent to the following: .irr, E (LB), Pe t Kr, is an isomorphism on
its image, and Cl Po Kri = Ke . These properties of operator P,I K,, are
equivalent to the fact that the operator is an isomorphism between
subspaces Kn and Ke . From Lemma I.1.10(c) we now obtain assertion
(e). The theorem is proved.

For a family E of general type (not necessarily exponential), a family
E' biorthogonal to it may be incomplete in VE (Example 1.1.18). Assertion
(c) of the theorem attests that for a family of vector exponentials under.

the condition a e (CN) the completeness of the biorthogonal family takes'
place. This is proved at the abstract level and with the use of only the
completeness of the family biorthogonal to an exponential family on 'a
semiaxis. For a scalar case, completeness of the biorthogonal family has
been proved (Young 1980) without any condition on the family spectrum
by the methods of the theory of functions of the complex variable.

3.2. Minimal vector families and the generating function
We now introduce one of the main subjects of the exponential families
theory: the generating function containing all the information abou
family Polii ; in particular, the zeros of its determinant coincide with the
spectrum a of the family.

Definition 11.3.4. Let 0 be an ESF and II be a BPP generated by a famil
of subspaces .1"n = {x 1 92A } (so that a is the set of zeros of det H. The zeros
are semisimple and Ker H*(A) = % A ).

Entire strong operator-function F is said to be a generating functio

E cy)Pex,76i)
Z. j
	

A, j
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GF) of family Pe l'n = {.14, 1 1 AG„ = Pex A 91 1 , if it has a factorization

	F = FIF:" = OFQ	 (23)

which Fe± are outer operator-functions in C ± .

From the definition of a GF it follows that Ker F*(A) = 91 A . Set
Ker F(A); obviously, dim 91 A = dim gl A =: n A .

Let us impose two restrictions on functions O and IT:

1), For some p > 0, ESF O is divisible by function e lk,' (i.e., function
Op (k) = exp(— ikp)0(k) is an inner one in C + ). This condition is
equivalent to the fact that Op is bounded in

<<e -il`P O(k)>> 	1,	 k E C+ . 	 (24)

(2) The spectrum, say a, of family X, satisfies a condition

	

inf Im > O.	 (25)
.1.ecr

(For an exponential family 6° (related to Pe .Tri by the Fourier transform),
the first limitation means that 6° is considered in subspace 9 --• 'Ke
containing the space L2(0, p; 91). In fact, in view of the formula (6) and

is, factorization O = exp(ikp)O p , we have

Ke = Kp ® e tkPIC,

and	 = L2(0, p; 91). The second restriction actually means only the
boundedness from below of Im A, A e a, since it may always be fulfilled
with the help of a shift a H a + is (see Subsection 1.3.6).

When the theory of exponentials is used in control problems, condition
(1) implies that a control effect is acting at least during a fixed period of
time p at any point where it is "applied."

Theorem 11.3.5. Let F be a GF for family 13,X,T . Then Pe 9n E (M) and
!"the family of subspaces re,„ {.1"0 , A}.ZE , biorthogonal to Pe .n has the

orm

re , 2 = (k — ).) - 1 F(k)912 . 	 (26)

We first prove an auxiliary assertion.



<F(2) 71 A, ?I> + <F(17)e,?1> 2	 v,
—v	 v —

<F 1(v)e, A = v,

(31
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Lemma 11.3.6. Let a family of subspaces M}, e ,,	 c K0 , satisfy con.
ditions

Pea-g,	 11 0 A,	 (27)

PXe.." = 9, Al	 (28)

where PR-®,l  the orthoprojector on subspace Xe A. Then {P9 Ari } E (M) and
{A} is a biorthogonal family.

PROOF OF THE LEMMA. Let us turn from the subspace family to the family
of elements {x,L}, 2 e o-, j = 1, 2, ... , n l , xg ),, := Pe xA riV ), where vector
family {re is orthonormalized in TA for any A. Equality (28) reveals
that for any j there exists a solution y to the equation

Px.3.J9`.(ii) = 42/114,A11 2 •
Then for 2 0 1.2 condition (27) implies

(yY ), xt.!,i)e (go = 0, 	 0 kt. 	 (29)

For 2 = y as a consequence of the choice of family {/4-9, one finds that

	(g1.72, 4,) .1) = (41).%, 43.,) .1.)/114.1 II 2 = 6 ! • 	 (30)

From (29) and (30) it follows that the family of elements {AP}AL' n1 is
biorthogonal to {40. The lemma is proved.

PROOF OF THE THEOREM. Factorization of a GF F gives rise to the fact
that F is a strong H_2, function while 0 -1F is a strong H.2._ function. So,
by (23), (26), and Definition 11.1.8, we have

.re , A c	 A fP(91).

Identity (15) shows that subspace .2"; 3,, A lies in K9 . We now check
conditions (27) and (28) for family 1. „ A. Taking arbitrary vectors le E 91 1,,
and pi E 91 and calculating the integral with the help of residues, for v e C+ .

we get

((k — 2) -1 F(k)7e, Fe(k — 17) - 111) (91) = ((k	 1 F(k)e, (k 17Y 171)H+ (91)

<F(k), le> 
f

dk = 2ni
(k — 2)(k — v)R 

<F(v)e,71>
A	 v,

= 2ni{ v —

<F' (2)t1 2, 71>, 2 =



27rit

A,

<F(11)tr,r1A >,
(32)
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(we have exploited the equality F(A)nA = 0 here and F'(A):=(d/dk)F(Ol k =A).

If one sets v= yea and takes vector n e 91m , then from (31) and the

equality F*(p)q, = 0 one derives

(F(k)► a pe

k — 	 k —

Thus, condition (27) for family {.1"6,,,} is verified. Let us check condition

(28). Subspaces X'0. , and °.,l e , are of the same dimension, since dim 92 A =

dim gt„. Therefore, it suffices to show that the projector on the subspace

0 , is invertible over .1" 9' A . Let us assume the opposite, namely,

that a nonzero vector re E 92'' may be found such that

F(k)ti A

Then (32) implies

F'(A)re E 911- := 92 e 91 A .	 (33)

Since 91± = [Ker F*(A)] ± = F(A)91, relation (33) may be written as

F(A)ti l = F(A)ti for some n E 9t This equality contradicts the fact that

the zeros of function F are semisimple (because the zeros of H are

semisimple and the Fe± zeros are absent). Hence, the conditions of

Lemma 6 are satisfied, and family I.T 8' A I is biorthogonal to Pe Xll . The

theorem is proved.

Remark 11.3.7. The proof of Theorem 5 does not use all the information
about a GF. It is not difficult to find out that family PEA, tends to be
Minimal if an entire matrix-function F may be found such that

(a) functions I" and 0 - '1' are strong Hi functions, respectively, and

(b) function F has semisimple zeros in the points of the spectrum a, and
Ker P*().) = 91 A, e a.

In such a case, a biorthogonal family is described by formula (26), in
which F has to be replaced by F. In particular, F may have zeros outside

the.spectrum a, and the factorization of F in C. may contain an ESF.

Let us give an expression for the biorthogonal family of elements via
the GF.

Corollary 11.3.8. Let F be a GF of the family {Pe x,n,}, E ,, <01,>> = 1.

k — A
1 .1',3 A — PeXATIA•
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Then biorthogonal family {4 2 } is given by

1	 F(k)
x® ,, = 	

Im <F'(A)e, i > k —

where n A e Ker FG1), (Ort >> = 1.

Relation (34) follows from the equality (32).

Theorem 11.3.9. Suppose Po d, e (M). Then

(a) entire operator function F, F 0, may be found such that functions
II -1 F and O'F are strong Hi. function and H 2_ function, respectively.
Along with it there exists a nonzero minor of F vanishing in the points
of the spectrum;

(b) if family Pe lii is complete in subspace Ke and o- e (CN), then a GF
of the family exists.

The idea of the proof for a scalar situation is in the following. One
takes an arbitrary element xo' .0 of a biorthogonal to Pe Xn family, sets
f (k):= (k — u)xe, m (k), and checks that this function satisfies the require-
ments of the theorem.

In a vector situation, in order to construct an operator function one
needs several vector functions of the form (k — 2 .;)' x/e , Al (k). So, we start
the proof with the choice of those functions.

Denote a family of subspaces biorthogonal to Pe li, as 1'0' = {1.0' , A}",
and choose in every subspace ® A an orthonormal basis {xVA },."L 1 . We
write M(k) for the dimension in 91 of the linear span of all the vectors

e o-, r = 1,	 , nA . Set M = max" e \c, M(k) and suppose that this
maximum is attained on the vector family,

{4ril(k0)},I= 1 .

In what follows we assume that all the points 2 .; are different and omit
superscript (ri). The general case can be studied similarly.

Define operator function F by its value at a point k on the vectors
e 91 in the following way:

F(k)ii = E (k — A.j)<n, 1>x4, A.,(k).	 (35)
i=1

(family {0} is an orthonormal basis in 91).
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Since at k 0 vectors x',,,,i (k o) are linearly independent, F 	 0. All the
elements of the space K,, particularly xa . z,

 are entire vector functions
(Subsection 1.3.1). Therefore F is also an entire function.

Let us demonstrate that F is a strong H. function while O'F is a
strong IL.2 one. We first verify F to be a strong function. From the
definition of F one derives

<<F(k)>> < 	 + Ji <<x j(k)>> 	 <<x,',,,,,(k)>>.
1 + lki 	 J=1 1 + ikl

Elements xe of space Ke lie in OR, 91). Hence, F is a strong function.
Let us take some vector r/ E 91, then vector function

F(k) 	 m k — 2.
11 — E 	  07, P>x (k)k + i 	 ).1 k + i 	 e. A./

belongs to the subspace H+(92), because elements 	 belong to it while
factor (k — A; )/(k + i) is analytic and bounded in the upper half-plane.
Therefore, F is a strong In function.

From formula (15) we conclude that functions 0 - 1 .x,'„, k, lie in the space
H 2_(91). So, as in the case of the upper half-plane, for any n E 91 vector
function

O'F(k)	 M k — A.
	 01, 	 >0 	2.,(k)k — i 	 k — i

lies in H 2 (91). Thus, O -1 F is a strong H 2 function.
Let us establish that

Ker F*(A)D 92z . 	 (36)

As is easily seen from the definition of F, operator F*(k) is defined by the
formula

F*(011 = E (k — Ad<ti,
J=1

Take vector q„, e 91, and let it e a. Then the biorthogonality of the families
PEgn and X,' ,n , implies

j= 1

(37)

INN IN

6,2 = (Pe x,q,, )4,,,)= 2 i
1m 1
	  01.z, x■E0,,( 2)›. (38)

Let 2 not coincide with any of the numbers	 j = 1, 2, ... , N. Then by
the force of (38) for e 91,, all the scalar products in (37) tend to zero.
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If 2 does coincide with some Ai , then the jth summand is nullified due to
the factor (k — A; ), while the other summands are vanishing again by the
force of (38). Thus, function II -1 F has no poles in C., and is a strong
11.1. function, since F is such a function.

To prove assertion (a) of the theorem, it remains only to check that
for 2 e 0", rank F(2) < M. Assume that at some point A e o- rank F(1) = M.
From the definition of F it follows immediately that 2 differs from the
points A k, , A,. Let us choose vector ?La E 91k , which is not orthogonal
to )4) , A(2). Vector family {.4.,,i(2)}M , is then orthogonal to 7 2 by the
relation (38).

Since

dim Lin{.40„(2)}jl 1 = rank F(2) = M,

dim Lin({x'e , ai(2)}i'l 1 u x'0 , 2 (2)) = M + 1.

The last equality contradicts the definition of number M, which proves
assertion (a).

(b) Let us show that for the complete family Pe .TH under Carleson
Newman condition (o- e (CN)), the family of subspaces {4, a (lco)}.„
complete in 91, that is, that M = N. Indeed, if M < N, vector rh o may be
found orthogonal to all the vectors x,'3 , 1 (k0), which are the elemen%
of subspace g.,2% A (k0). Therefore (see (38)), vector function Peoxk go is
orthogonal to the biorthogonal family .11, n . On the other hand, this
vector function is not an identical zero in view of condition (24) imposed
on 0. We have just found a discrepancy with the completeness of family

, n , following from Theorem I1.3.3(c).
So M = N and the constructed matrix function F is not degenerate at

ko . Since II -1F is a strong	 function, it has a factorization

II'F =	 (39)

(IL, is a BPP, 0., is an ESF). In the lower half-plane, function 0 -
has a factorization

0-1F= H: 1 0 -_-1 F;

(IL is a BPP, 0_ is an ESF). Formulas (39) and (40) take into account
the fact that F is an entire operator function and hence has no nonentir
singular factor.

For the desired factorization of F, it remains only to establish the
absence of the "extra” zeros of F - the absence of II ± cofactors - and the
triviality of the "extra" singular cofactors 0 ± , that is, the equalitie
0 ± = const.

(40)
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Let us demonstrate that an extra zero of F enables one to present a

nonzero element g orthogonal to the complete family PoI'll in Ko . We

first check that det F does not tend to zero outside of a. Let v e C \ a and

e 91. Suppose F(v)ii = 0. Set g(k) = F(k)ti/(k — v). This vector function
is an entire one and by the force of assertion (a) lies in the subspace

In(91) n OH_2 (91) equal to Ko (formula (14)). Equalities (31) imply that

g IAA/ . Since family Pe 2n is complete in K9 , g = 0, that is, rl = 0.

Therefore, F has no zeros outside the spectrum a.
In a scalar situation, it would now be sufficient to demonstrate that

unction f (a scalar analog of operator function F) has no multiple zeros.

3ut if 2 is such a multiple zero, then evidently f (A) = f'(2) = 0 and
ormula (32) would show function g(k) = f(k)/(k — A) (lying in Ko ) to be

orthogonal to the complete family
In a vector situation, the construction of such an element g is more

complicated. Let us specify a point 2 e a and first verify the equality

Ker F*(A) = 91 A .	 (41)

Suppose that it is not valid. That is, by the force of (36),

dim Ker F*(2) > dim 91,.	 (42)

Let subspace Ker F(2) be denoted by 91 A. Then assumption (42) may be

written as

dim 91 A > dim 91 A ,

since

dim Ker F(2) = dim Ker F*(2).

Consider a subspace

VA .= F(k)917(k — A),

which lies in Ko and VA 1 Po .i; for /..t � A. Since

dim VA = dim 91 2 > dim 91 1 = dim PolA ,

a nonzero element g may be found in VA orthogonal to P9 T2 and, hence
the complete family Po Tn . The contradiction proves equality (41) to be

correct.
0•Iow, to verify the triviality of the factors 	 and n_ in factorizations
(39) and (40), one has only to show that the zeros of F are semisimple.
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Let 2 not be a semisimple zero of function F. Then, by definition, vectors
rif E 91A, rl i � 0, and n E 91 may be found such that

F'(2)/i + F(1)n = 0.	 (43)

Let us seek an element g of the form

g(k) =  tfr(k)  ,	 0(k) = F(k)[rit + (k — 1)(1 + tea
(k — 2) 2

which is orthogonal to family Po Kn . Here, vector e E ge is "a free
parameter." From relation (43) it follows that has a second-order zero
at the point 2, and hence g E K® , since, as it was shown, F is an H2,
function, and 0 -1F is an H. one. Let u 0 2, e o. Function <0(k), 710
for n„e 9110 tends to zero at k = it. Therefore

( g, pc, 	= f <OK '0 dk
k —	 (91) j R (k — 2) 2 (k — 1.1)

= 27ri( res <0(k), ri„>  + res <0(k), ti,> 	_ 0
k=2 (k — 2)2 (k — it)	 (k — 2) 2 (k — J.())

We only have to show that under some choice of vector re, function g(k)
is orthogonal to subspace P0 .51'1. . Take an arbitrary element Po (k — ).) -1 111
of PO x . Then

(g(k), P
ok
	) — 2ni res (k — 2) -3h(k) = 27tih" (A) ,

 —

where h(k).= 011(k), 2 >. For g to be orthogonal to PoXii , h"(A) = 0 is
required for any n, e 92,. Since

h"(A) = <F"(2)rit + 2F'(2)[  +

re has to be chosen from the condition

+ 2F'(2)re 191,1 ,	 ij .= F"(2)nt + 2F'(2)n

so that it is enough to solve the equation

P9LF (A)ri A = — Alf	 (44)

Lemma 11.3.10. Operator P9LF'(2) maps 91' on 91 A .

If we consider the lemma to be provisionally proved, we see that there
is a solution re E 91,1 for equation (44), and thus a nonzero element g E Ko
is found that is orthogonal to Pe.irn.
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pRooF OF LEMMA 10. According to (41) the dimensions of the subspaces
and 92A coincide. Therefore the operator P9LF(2)1 912 is an isomorphism

if it is nondegenerate. Let

P91,F'(2)116' = 0,	 pm' e 91 A .	 (45)

et
g = F(k)qt/(k —

Then, by (32) and (45), g 1 Pe X„, from which r/6' = 0. The lemma is

'proved.
We have demonstrated that in the factorizations (39) and (40), BPP

factors H ± are absent. Let us show that ESF 0 + is a unitary constant.
Define ESF O and BPP H from the factorization condition

no, = CUL	 (46)

The biorthogonal to the Po .Yri family of subspaces, in view of Remark 7,
is described by the formula

1"0 , A = (k — 2) -1 F(k)91 A .

Identity (46) then implies .1"0 ,,1 e (5,H.i._(91) and, hence,

VX'e, A c 6 4- 1a(91).

Since family Pe g", is complete in K, and a e (CN), by Theorem 3(c)
we obtain

Ko c

From the condition on O (see formula (24)), we conclude that
Kp c (5,11i.(91) and thus 057, 1 K, c 1-a(91). Lemma 1.23 shows that

= const. Then ESF 0, is constant as well.
ESF 0_ is proved to be a constant in a similar manner. Indeed,

factorization (40) (accounting for the absence of 1 -1_) implies the inclusion

0 -1 .9" o , A c 0: 1 W.(91).

Family {1-10 , 1 } is complete in Ko . Therefore, family {0 Ire ,,} is
complete in the space 0'1(0 equal to W_(91) ee - lw(91) by the force
of (14). (This subspace is an analog to subspace Ko for the lower
half-plane.) So we get an embedding

0: 1 1a(91) 1/(91) e 0 -1 1-P.(91).

Function 0 -1 is inner in C_ and is divisible by exp(— ikp). Hence

H 2 (9- ) e0-1H2 (9rt) H2 (91) e e - ikp Hz(%).
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If one applies to the embedding

H 2 (91) 0 [H 2 (91) e e - ikp H 2 (go]

Lemma 1.23 formulated for the lower half-plane, one gets the triviality of
ESF	 . Thus the theorem is proved completely.

Remark 11.3.11. If family Pail is not complete in subspace Ko , then there'
may be no GF at all. As an example, let us take in L 2(0, 2n) family e of
"harmonics" e' e int with positive numbers, n E

The family Po X of simple fraction projections corresponding to family
t is of the form {P2„(k — n + 0 -1 }„ Erv . If one takes a family of such'
fractions for all integer n e Z, it will have a GF f (k) = e" `k sin n(k —
However, for family P2,Xri there is no GF. Actually, in the opposite case
a Cartwright-class function would be found with the set of zeros {n + i}„ EN .
But this is impossible: the zeros of a Cartwright-class function are
"equally" divided between the right and left half-planes.

3.3. Hilbert operator and exponential families on an interval

Let W(x) be a nonnegative matrix function, x e IR. Further, let a denote
a space of vector functions squarely integrable over IR:

	Lw = {f Ilf Ilh„:=	 < f(x), W(x)f(x)> dx < 04.
J

In this section, we relate the basis property of a family of exponentials (a
family of simple fractions Po .Tri ) with the boundedness of the Hilbert
operator Ye (see Subsection 1.1.5) in the space 1,4, with W = F*F, where
F is a GF of the family.

Introduce the sets g ± lying in Hi(91), respectively. 3+ is a linear span
(not a closure) of elements

k— i) 1" 1
?le 91,m= 0,1,....	 (47)

k +	 k+i

Similarly,

g_ =	 Lin	
(k +	 1

qe92,rn=0,1,... 	 — i) k — i

3

Elements (47) of family g, are the images of the elements zmq E H2(91)
under the mapping of Hardy space in 03 on Hardy space in C + (up to a
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constant factor). Hence, CI g+ 	Iii_(91) and, similarly, Cl g_ = H 2 (91).
From the definition, it follows that if f E g+ + g_, then it satisfies the

estimate
If(k)1 	 cf (1 +10 -1 ,	 k e 11.	 (48)

Let F be a GF of family Peen (thus, we assume Po .Tri to be minimal; see
Theorem 5) and F be a multiplication by F operator. Since F is a strong
function, operator F does not lead out the functions satisfying (48) of

i,2(R, 91). Therefore operator

:=FP F'

is properly defined on a (linear) set F(° + + g_), where P_ is the ortho-
projector from OR, 91) on IP_(%).

Lemma 11.3.12. Operator 9 is continuously extendable up to the skew

projector	 e rHIV

if and only if family Pe X„ is complete in the subspace Ko .

PROOF. Take an arbitrary element g from the domain of g: g = Fu + + Fu_,

u, e g+ , u_ e g_. Then

,fig FP_(u + + u_)= Fu_.

Therefore

YlFg , =o, 	 9IF _ = I.

The first of the relations implies operator 	 to be continuously
extended by zero on the set Cl Fg + . From the second one, it follows that
operator .96_ is continued by the identity operator to the set CI Fg_.
Let us show that 9 can be continued to the set Cl Fg + + Cl Fg_ if
and only if

Cl Fg+ n Cl Fg_ = {0}.	 (49)

In fact, if (49) is not true, sequences un+ e g+ , u, e D_ may be found such
that

un+ -+ u,	 u,	 u	 O.

Then gun+ = 0, gu„- =	 u and the continuation of .9 is not possible.
If (49) is true, continuation of 9/ is obviously possible.
Let us now show that

Cl Fg+ =	 Cl Fg_ = OH? (9i). 	 (50)
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We use factorization of the GF F. In the upper half-plane F = IIF
Multiplication by H is a unitary operator; that is why

Cl 	 = II Cl F:g+ .

By an outer function property (Subsection 1.2.8), Cl F: g+ =H+(fil), and
the first of equalities (50) is justified. In C_, operator function F has "a,
factorization of the form F = OF; . Therefore, as in the arguments above,
we prove the second equality from (50).

So, we have proved that the condition

(91) n	 = {0}

is equivalent to the property of operator .9 to be extendable up to a skew
projector g) = Y llfill i-(91) defined over a sete111(at)

11H.i.(91) + 01/1(91). 	 (52)

To complete the proof of the lemma, one only has to note that (51) is
equivalent to the completeness of family Peen by the force of Theorem
3(a) and Lemma 2.

Lemma 11.3.13.
(a) Operator	 is continuously extendable to the whole space L 2 (11, 91) if

and only if

9(01i1(91), 1.11-1( 11))

(b) Inequality (53) implies inequality

9(OH.2,(91), 1-11-1(91))

>

>

0.

0.

(53)

(54)

PROOF. First, we demonstrate that

Cl (HH.i.(91) + 01-1 (91)) = 91). (55)

Here we exploit the minimality of family AA, induced by the existence
of the GF (Theorem 5). Assume (55) to be invalid. Then a nonzero element
may be found in the intersection of orthogonal (in OR, 91)) complements -
to the subspaces M+(%) and OH 2_(91). By formulas (13), those orthogonal
complements are equal to HI-1_2 (91) and 01/.2,(91), respectively. But
Theorem 3(b) and Lemma 2 pronounce the intersection of these subspaces
to be trivial. So, formula (55) is proved.

(51).
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Let (53) be true. Then by Lemma I.1.9(b)

(91) + OH? (91) = C1(11W_ (91) + 01-1(91)),

and by (55)

11W_ (91) + OH...(91) = OR, 91).

Under condition (53), relation (51) is obviously true, and according
to Lemma 12, operator .9 is extendable up to a skew projector
yll'unm ) defined over the whole space L 2(1, 91). On the other hand,

eff (51)
if g, is extendable in such a manner, then, as it was established in
Lemma 12, the continuation is the skew projector 9H ll491(91) ) and by
Lemma I.1.9(a) the angle between (91) and W11(90 is positive.
Under condition (53) and taking into account (55), we can use Lemma
I.1.9(c) and obtain

	

cp((OH_2 (91)) ± ,	 (91))1 ) > 0.

In view of (13), we complete the proof of the lemma.

We now prove one of the main results of our book. Recall that GF of
family Pe .Tri is determined by functions O and H. It is the same for the
family of subspaces and for the family of elements.

Theorem 11.3.14. Let F be a GF of family Pe . n . Then

(a) Operator Pe i,n is an isomorphism of spaces Kr, and Ke if and only if
the Hilbert operator is bounded in the space L. F .

(b) The family Po li, of elements forms a basis in the space K e if and only
if family Yr, forms a basis in Kr, and the Hilbert operator is bounded
in the space Ll•F•

PROOF.

(a) By Lemma I.1.10(b), operator Pe 	is an isomorphism of the
subspaces Ke and Kr/ if and only if

cp(K4,	 > 0,	 9(Ke , Kh) > 0.	 (56)

By Lemma 2, these inequalities are equivalent to (53) and (54). Thus,
by Lemma 13(b), inequality (53) is a necessary and sufficient condition
for operator Pe l Kn to be isomorphic. But (53) is equivalent to the
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boundedness of the skew projector	 By Lemma 12,	 coincides
with operator 9 on a dense set. Let us use the expression for the Riesz
projector P_ via the Hilbert operator Ye, that is, formula (2) in Section
ILL In this way, we find that .9 is bounded (i.e., Pe i K. is isomorphiC)
if and only if operator F.rer 1 is bounded in L 2(l, 91).

Let us now demonstrate the latter operator to be isometric (unitary
equivalent) to the Hilbert operator in the weight space L.F. To do
this, we introduce an isometry

F -1 L2

by the rule (F -1 u)(x) = F -1 (x)u(x). The fact is that indeed a
isometry follows from the identity

11F - l u	 <F'u,(F*F)F'u> dx =	 (u, u> dx = 1114112201.91).

Operator F./6'F' is then isometric to operator F '(F.YeiF -1 )F
in a* F. Assertion (a) is proved.

(b) If operator A' is bounded in LI,F , projector Pe I Kn is an isomorphism
in view of (a). Then family P8 .C1 , which is the image of family Xn , is
a basis in Ke if X, is a basis in Kn .

Conversely, if a family of elements Pe ln forms a basis in Ke , then
by Theorem 3(e) n c (LB), and (56) holds. The latter inequality is
equivalent to the boundedness of ye in Li.*F •

The theorem is proved.

Remark 11.3.15. Let a condition of the semisimplicity of zeros not be
imposed on a BPP H. In order for family Pe ln to form a basis, it is
necessary to consider multiple fractions (or function t' exp(— at)ri for the
exponential family). Nevertheless, if there is a function F with a factor-
ization of the form (23), then it is true that assertion (a) of Theorem 14
remains as before. Indeed, in the proof we do not consider zeros of F to
be semisimple.

3.4. Indications for Hilbert operator to be bounded
Definition 11.3.16. The Hilbert transform of function v e L°°(l) is function

1 .v. 	(  1 
JR X - t 

+ 
1 t2
	)v(t) dt.
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	Note that if v e	 n L 2 , then V" differs from Ye'v only by a constant. The

Fterm t/(1 + ( 2) is added inside the parentheses for convergence; if the

to note that the Schwarz formula

V(k) = —
1 (	 1 t )

v(t) dt
R t — k 1 +ni

For a scalar case, two criteria are known for the Hilbert operator to

be bounded in space L„,2 with the weight w.

Proposition 11.3.17 (Helson and Szego 1960: Hunt, Muckenhoupt, and
Weeden 1973; Nikol'skii 1980; Garnett 1981: chap. VI, th. 1.2). The

following conditions are equivalent:

.(a) the Hilbert operator is bounded in the space L,2„, w(x) > 0,

(b) Helson-Szego condition: functions v, u e L"(R),	 L- < n/2, may be

found such that w = exp(u + ,r5),

(c) Muckenhoupt condition:

	sup( 
11 1	

w(x)dx- 
111

1
	w(x)
I  1  dx)	 < co, (A2)1

where sup is taken over all the intervals 1 = (a, /3) c R.

Muckenhoupt condition (A 2) is given in Hunt, Muckenhoupt, and

Weeden (1973) for operator Yf to be bounded in L„2 for p = 2.

Let us provide some elementary information about condition (A 2 ).

Lemma 11.3.18. Let ft , f2 G (A2). Then

(a) f1 + f2 e (A2) ,

(b) f(x):= max{fi(x), /2(x)} e (A2).

PROOF.

(a) By the definition of the Muckenhoupt condition there exists constant

c such that for any interval / = (a, /3)

1

	

fi (x) dx	 c111 2 [	 (x) dx] ,	 j = 1, 2.

tegral converges without it, the term produces a constant. It is useful

restores analytic function V in C+ by the trace of its real part v on

R: V(x) v(x) + L.-4x) under the condition Im V(i) = 0.

J1
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Hence,

III
1	 r

f2) d	 III
(fi + f

2 	
1 dx

<c 
f	 1	 1

jr(fi	 1 dx
J./	 dx

+

(A	

± 1.2) -

	+ f2)_	
xf2- 1 dxf

SI	 (fi + f2 ) -1 dx± c .f.! + c 	 2c
$1 fil dx 	 dx

since
1	 1

= 1, 2.j
f1 + f2

(b) Note that

-1(11(x) + f2(x)) f(x) f i(x) + f2(x) •

Assertion (b) now follows from (a) and the definition of Muckenhoupt
condition (A 2 ).

The lemma is proved.

Proposition 11.3.19 (Garnett 1981). Let w e (A 2). Then

	w(x)
	dx < c	J R 1 + x2 	4).

Example 11.3.20. Let us check that function Ixr satisfies (A 2) if and only
if	 < 1.

Let 'at < 1. Because function w(x) = 1x1 8 is even, we may confine
ourselves to intervals of two kinds: 0 < a < b and a < 0 < b with b > at
For an interval of the first kind we have

and
f w dx X — c/a-El aa+ 1(c a+ 1 1),

a

c b/a,

dxXb'+' — -a a+1 = a-a-Fi(c-«+1 — 1).

Therefore

1

	

d	 dxX(ca+1	
1)(c-cc-4-1

	

Iw
	

(c — 1)2	
—'91(c).
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t is not difficult to show function (p i to be bounded on the semiaxis [1, co).
On the intervals (—lal, b),	 'al, of the second kind we have for

b/I a l

w dx	 dx X 	1 	(ba+1	 + 1 ) (b - a +1 + kir a + 1 )

112	 (b + la1) 2

(ea' + 1)(c-a+1 + 1)

(c + 1)2	
= (PAO.

Function (p2 is bounded on [1, co).
If tat	 1, then

IR 1 + x 2

Therefore, the condition of Proposition 19, necessary for (A 2), is not
satisfied.

In a vector situation a necessary and sufficient condition for the Hilbert
operator to be bounded in the space with matrix weight W(x) > 0 is not
known. Let us prove several results in this direction.

Theorem 11.3.21.

(1) Hilbert operator ie is bounded in a if and only if it is bounded in
4) -i.

(2) If .Ye is bounded in a then
(a) for any vector n c 92, n � 0,

<W(')q, 11> 6 (A2)	 (57)

(b) <<W(')>> E (A2).
(3) If

W(k) X <<W(k)>>	 k e 68 , 	 (58)

then any of the conditions 2(a) and 2(b) are sufficient for operator .°
to be bounded in a.

PROOF. Operator ' in L i24, is unitary equivalent to operator W1 / 2 Ye W-1 / 2

in L2 (see the proof of Theorem 14). The adjoint to the latter operator is
— w-1/2.)rw1l2. (The Hilbert operator is antiselfadjoint, Ye* =
as is seen from the formula for the Riesz projector P± .) And operator

w1/2 is unitary equivalent to operator Ye in L4 ) - t.

dx =
w(x)

co.
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(2a) For any n 	 <00 = 1, subspace

:= {u E Lw I u(k) = f (k)q, f (k) is a scalar function}

of vectors spanned on q, is invariant under the action of ye, and
sAIL. is isometric to the "scalar" Hilbert operator in L„,2 with weight

w = <W•) 11, 11>. From the boundedness of Ye in a and the
criterion for the scalar Hilbert operator to be bounded, condition
(57) follows.

(2b) As has been proved, for any vector 0 of an orthonormal basis in
91, function < W( • )0, 0> satisfies the Muckenhoupt condition.
From Lemma 18(b) we then have

vv.(*) := max < W( •) 1, 0> E (AD. 	 (59)
1

Let us check that

	

wmax (k) 	 W(k)>> Nwmax (k). 	 (60)

The left inequality is obvious. To prove the right one we denote g(k)
the normed eigenvector of (matrix) operator W(k), corresponding to
its largest eigenvalue << W(k)>>. Then, expanding basis vectors 0 of
91 over the basis of W(k) eigenvectors, we arrive at

	<W(k) ,	 <<W(k)>>1<0 , g(k)>1 2

Since

1 = <<g(k)>> = 	 l<0 , g(k)>1 2 ,
1=1

max l<0, g(k)>I 2 	.

Inequalities (61) and (62) imply the right one in (60). Now, (59)
provides us with 2(b).

(3) Under condition (58), the metrics in spaces a and L,'<w>>j are
equivalent. If the Muckenhoupt condition is fulfilled by function

W>>, then Hilbert operator is bounded in 4w>>/ . Hence, it is
bounded also in L,„2 (function wmax is determinate in (59)). From
inequalities (60) it follows that functions w max and (< W>> both
satisfy the Muckenhoupt condition or both do not. Since from
condition 2(a) and Lemma 18 it follows that wmax e (A 2), the theorem
is proved.

(61)

(62)
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Corollary 11.3.22. Let a GF of family Po l' satisfy inequalities

<<F(k)>> -< 1, 	 <<F(k)-1>> }- 1, k e R.	 (63)

Then Pe I K r, is an isomorphism.

	  Indeed, under condition (63), F*(k)F(k) X 1 9-1 , and one should only

apply Theorem 21.

4. Minimality and the basis property of scalar exponential
families in L2(0, T)

The tests showing an exponential family to be minimal or to form a basis

are formulated in a simpler and more convenient way for scalar appli-
cations as compared with the vector situation. Questions surrounding the
theory of scalar exponential families are discussed in the literature (Paley

and Wiener 1934; Levin 1956; Hrushchev, Nikol'skii, and Pavlov 1981;
Schwartz 1959; Young 1980). In this section, we consider several results
that are significant for what follows. We demonstrate only a few of them
since they are fairly well known.

Throughout the section, except in a few stipulated cases, we consider

family ST = le"-`1„ Ez in the space L 2(0, T). The family spectrum - that

is, the set {.1.„} - is denoted by a. We assume that

sup urn 2„I < co ; 	 a.; n m
..7

Re A.„ < Re 2„ +1 .

4.1. Minimality

Without sacrificing generality, one may consider (see Subsection 1.3.15)
that a e C.

Theorem 11.4.1. Family ST is minimal in L2 (0, T) if and only if an entire
function f of the exponential type may be found with the indicator diagram
of width not greater than T, which tends to zero on a and satisfies the
condition

If(x)1
2

, dx < co .
1 + x`J

This assertion can be found in the literature (Paley and Wiener 1934)
or can be proved easily enough in a manner similar to that of Theorem 3.5
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(see also Remark 3.7 and Theorem 3.9(a)). For the demonstration
introduce simple fraction family

= {Pr(k	 -A) -1 }2.c,
with PT being the orthoprojector in H.2_ on KT :=	 e 	 Fain
ST is related to 1T by an isomorphism. In fact, the mapping g(t) 1-4
turns ST into family {e -w } xe ,, which is transformed into XT by the inve
Fourier transform (constant factor 1/,/2n is omitted).

Let family ST be minimal in L 2(0, T). Then family XT is minimal in
Take an arbitrary element x'a (k) of the family biorthogonal to XT 0
easily sees that function f(k) = (k — 2)x"k (k) satisfies the conditions
the theorem.

Conversely, let f satisfy the conditions. Then it belongs to the Cartwri
class (see Subsection 1.4.3) and allows factorization (Proposition 1.25

f = e - ika 7.c+ fe+ = e ika - f-

The assumptions made provide a + +	 .̂  T and n + (A) = 0 for	 Q. S
fo lk) = f(k) e ik"+ and let ra denote the multiplicity of the root of fo lk)
k = 2. Let us check the family

2nifg.2 ) (2) (k — 41 ,,

r!	 fo(k)

E

to be biorthogonal to eTT (compare with Theorems 3.5 and 3.9). For it e
p 2, we have

fo(k) 	 1 	—	 res 	fo(k) 
Vk —	 k — P 	 k = p (k — 2)'.(k — it) 

= 0.

At the same time,

Vk — Ar' k
.io(k) 	 — 2ni res	 — 2ni  ° 

	k = (k — ar +1 	r!
fo(k) 	 firo(2)

The theorem is proved.
The following assertion contains a test for a family eT to be nonminimal.

Set
n(r) card { E a 121 < r} .

Corollary 11.4.2. If

lim sup 
n(r) 

>
T

,
r

then family ST is not minimal in L2(0, T).
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PROOF. Let ST be minimal and f be the function described in Theorem

1. Let us write a for the set of zeros of f and ii(r) ,= card {A e a I IA} < r}.

Proposition 1.25 implies

But along with it S a, and therefore n(r) > n(r), which contradicts (1).

4.2. The basis property of family {e"-•f}

The problem of how to describe the Riesz bases of exponentials has a
long history. The first such effort seems to have been made by R. Paley

id N. Wiener (1934), who proved that {e".^(} is a Riesz basis in L 2 (0, 2n)

if suPnez kin — ni < 7r -2 . R. J. Duffin and J. J. Eachus (1942) dun-
onstrated the same statement to be valid for d < 7C- 1 log 2. The problem

was solved in these terms by M. I. Kadets (1964), who proved the result

for d < 1/4. The examples in Ingham (1934) and Levinson (1940) show

that Kadet's result cannot be improved.
All the investigations just mentioned rest on the fact that {e j2^`} is close

to the orthonormal basis fe intl. An alternative approach to the description

of Riesz bases of exponentials in L 2(0, T) was developed by B. Ya. Levin

(1961). Entire function F of the exponential type, whose set of zeros

coincides with o- and the indicator diagram is a segment [—iT, 0] of the

imaginary axis, plays an important role in this approach. If F is a

Cartwright-class function, it allows an explicit representation of the form

(see Subsection 1.4.4)

F(z) = e izTI2 p.v. 	 (1 —
nel

(In the case where one of the numbers 2„ equals zero, the corresponding

factor 1 — z/.1.,, is replaced by z.)
If o- e C+ and the condition

r oo IF (x)12,x , 00
_031+ x 2

holds, F_ is a generating function (GF) for a simple fraction family

{PT(k — 2.) -1 }„ Ez in space KT in the sense of Definition 3.4.
The foregoing provides the grounds to call an entire function of the

exponential type with simple zeros {.l„} and with indicator diagram

[— IT, 0] a generating function of family {e"^`} in L 2(0, T). This definition

is broader than the one introduced in Section 3 since it does not assume

(2)

lim n(r)/r < —
T .

r-. 	 rc
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ST to be minimal. That is, it does not assume condition (2) to be valid,.
A broader definition of a generating function is more convenient in this
section, and we conserve notation GF for it.

B. Ya. Levin (1961) and V. D. Golovin (1964) were the first to formulate
a generating function for the basis property of exponential families.

Proposition 11.4.3. Let a GF of family ST be a sine-type function (STF, see
Subsection 1.4.6), and let the set a be separable. That is, inf„ � „,R, — Ani l > 0 .

Then ST is a Riesz basis in L2(0, T).

From a contemporary point of view, this result is just a simple
combination of Theorem 3.14(b) and Corollary 3.22. Note that the
separability of a is necessary for ST to be uniformly minimal.

V. E. Katsnelson (1971) generalized Kadet's theorem for the case o
zeros of an STF.

Proposition 11.4.4. Let a GF of family ST be an STF, and I'S 1.n, ne
bounded sequence of complex numbers such that

iRe On!	 d inf 1Re(2„, — A„)1,	 d < 1/4, n e Z.
n � rn

If set {A,, + (5„} is separable, then family {ei(a- -"")i} is a Riesz basis
in L2(0, T).

This theorem was strengthened by Avdonin (1974a, 1974b), who
replaced condition (3) on sequence {(5,,} by an analog valid "in the mean.'
To formulate the result, we need the following definition.

Definition 11.4.5. Let a = {An}nez, suPncz	 Anl < co, and {ai }iez c fl be
a growing sequence such that sup siEz i. <	 ci. Decomposition

a = U
jei

.= {A.„ I oci	Re An < j+1 },

is said to be a A-decomposition of set a.

Proposition 11.4.6 (Avdonin 1974a). Replace condition (3) of Proposition 4
by the requirement

E Re (5„
n: A„ecri

dip	 d < 1/4, j e Z,
(  

to some A-decomposition of set a. Then Proposition 4 remains valid.
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,One can easily check that conditions (4) are equivalent to the inequality

lim sup sup 
Ax(r)
	  < 1/4,	 Ax (r) .=	 E 	 Re 6,,.

r.• +co zeal 2r	 x—r<Re A.,,<x+r

Avdonin (1974a) also presented the following generalization of the
vin—Golovin theorem.

Proposition 11.4.7. Assume that

set {fi n } is separable and urn I < h < oo, n E Z;
generating function F of family ST satisfies a condition

IF(x + iY0)1 X Ixla,	 x e .q?

with some a E ( — 1/2, 1/2) and some yo, Iy o l > h. Then

basis in L 2 (0, T).

is a Riesz

Avdonin (1974a) demonstrated a similar statement for functions of

more general form than kr; he also showed that IF(x + iy0)1 may be

strongly oscillating.
Propositions 3, 4, 6, and 7 are proved by means of the theory of

functions of complex variables and by some infinite product estimates.
A criterion for the Riesz basis property of family ST was obtained by

B. S. Pavlov (1979) with the help of a "geometric" approach: for

Im 1„ > c > 0 exponential family te".1„ Ez forms a basis in L 2(0, T)

if and only if it is an 2'-basis in L 2 (0, co) and the projector from

VL2(0..) {elAl on L2 (0, T) is an isomorphism. This approach for vector
families is explained in Section 3. Accounting for an isomorphism
f(t) H f(t) e' of the space LAO, T) (see Subsection 1.3.16), the necessary
and sufficient conditions by which a family of exponentials constitutes a
basis may be formulated as follows.

Theorem 11.4.8 (Pavlov 1979). Family {e"^`} nez forms a Riesz basis in

L2 (0, T) if and only if

(a) set {AO is separable and urn _< h < oo , n E Z;
(b) for some yo , lyo l> h, function w(x),

w(x) 	 IF(x + iYo)I 2 , F(z) := p.v. fl (1 - zR„),
..z
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satisfies Muckenhoupt condition (A 2) or the Helson—Szego conditio
(see Proposition 11.3.17) while the width of function F indicator diagr
equals T.

The following relation is useful in studying the basis property (see, e,
Avdonin 1974a)

I F(x + 0'01 X IF(x + i.Y )1, X E R,  

for any y l such that infnEz I'm An — y > 0. Therefore condition (b)
Theorem 8 implies IF(x + iy i )I 2 e (A2). In applying this relation, it. is
convenient to assume that Im An > c > 0 and to establish the inclusion

IF(x)I 2 E (A2 ).

Propositions 3 and 7 now become simple consequences of the fact tha
function w(x) obeying the estimates

w(x)H kr,	 x e R, e (-1,1)

satisfies condition (A 2) (see Example 3.20).
Some other known indications for a basis property of ST can be derive

from Theorem 8 (Hrushchev, Nikol'skii, and Pavlov 1981), and a criterion
for it can be obtained in terms of the function k(x),

{—cardp, I x Re ).„ < 0},	 x < 0.

cardp,„ I 0 Re A„ xl, 	 x > 0,Nn (x)

In particular, if te".1 is a Riesz basis in L 2(0, T), then function
Nn (x) — (T/2it)x belongs to the BMO class. Recall that the BMO

class consists of locally summable functions f on the real axis for which

su p
in

1

W
I f (x) —	 dx < oo ,

i i
1

f1 .= —
1

III
f (x) dx .

1

Here / is the set of all intervals of R.

Corollary 11.4.9. If family {e i '^`} forms a Riesz basis in L2(0, T), then11,.

sup 1,1.„ 4. 1, — A„2 I < co.	 (5)
nel

Indeed, if (5) is not valid, then for any m e N an interval 4, of the length
m may be found on which function Na (x) is constant. Then one easily .
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m111/(x) —	 dx = --
T m

In I. 27r 4

d, hence, ti/ BMO.

Remark 11.4.10. With the help of Pavlov's approach, a necessary and
iufficient condition was obtained (Hrushchev, Nikol'skii, and Pavlov

1981) for family

/1„jei'^`}„e z

' with semibounded spectrum (infnez Im > — co or sup„ ez Im /1„ < co)

is a Riesz basis in L 2 (0, T). The constraint for the spectrum to be semi-
bounded was removed by Minkin (1991).

Let us prove the stability of both minimal and basis properties of
exponential families under the perturbation of a finite set of their elements.

Lemma 11.4.11. Let .Ar be an arbitrary finite set of integers,

n tAnIneZ\rir = 0) 	 PA 0 Pm, n 0 m.

Then the replacement of {).„},, Edv- by {,u„}„ Ex. violates neither the minimal

nor basis property of family ST .

PROOF. Without a loss of generality, we are able to consider that

inf Im > 0,	 inf Im > O.
n€7 	 ne.N"

Let ST be a Riesz basis in L 2 (0, T) and F(z) be its GF. By Theorem 8,

IF(x)1 2 E (A2). Function

P(z).= F(z) E Z
-

ne .Ar Z —

is a generating function for family

:= {e iAnt }nEzvAr 	 {e iPin.x. •

It is easy to see that

n x
-µ„ 	 1, 	 x

ne X X — /1.„

That is why IF(x)1 2 e (A 2), and, hence, family 4 is a Riesz basis.

ecks that
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The same arguments prove the implication

e (M) iT 6 (M).

One only has to refer to the function introduced in Theorem 1 instead o
the GF F.

Theorem 8 and Corollary 9 enable one to prove that the proximity of
the set {.1.„} to the zeros of an STF is not only sufficient but also necessary
for family ST to form a basis.

Proposition 11.4.12 (Avdonin and JoO 1988). Family {e"-`}„ Ez forms a
Riesz basis in L 2 (0, T) if and only if

(a) set {2„} is separable and supnez lim 2„1 < oo;
(b) there exists an STF with an indicator diagram of width T and a set o

zeros {tin } such that for some d e (0, 1/4)

d Re(An _ i — 2„) Re(x, —	 d Re().„.„ 1 — 2„),	 n E Z.

The latter inequalities may be replaced by the equivalent ones:

Re(µ„ _ 1 — /2„) Re(.1.„ —	 Re(µn, - /In ), d a (0, 1/4).

Proposition 12 leads directly to an assertion about the stability of the
basis of exponentials under small variations of its spectrum.

Proposition 11.4.13. If family {e j"^`}„ Ez constitutes a Riesz basis in L2(0, T),
then there exists e > 0 such that for any sequence {2„}„ ez satisfying
12„ — 12„1< e, family {e i l^t}nez is also a Riesz basis in L2(0, T).

In Section 5 (Theorem 5.5) a similar statement is proved for a family
of vector exponentials.

Remark 11.4.14. Since a perturbation of a finite number of exponentials
does not violate the basis property (Lemma 11), conditions 12„ — /1„1 < e
have to hold only for large

The following simple consequence of Proposition 12 concerns the basis
property conservation under the variation of Im 2„.

Corollary 11.4.15. Let family {e l '^`} nez form a Riesz basis in L2(0, T) a
let {SO be a bounded sequence of real numbers. If set {.1.„ + ib„} is separable
then family (exp(i(2,, + ib,,)t)}„ Ez is a Riesz basis in L 2(0, T).
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The geometric approach turned out to be useful for studying not only

exponential families but also other function families. Bases from repro-
.. ducing kernels were considered by Hrushchev, Nikol'skii, and Pavlov

(1981) and bases from Mittag—Leffier functions by Gubreev (1987) and
Hrushchev (1987).

4.3. Basis subfamilies of te"-`1

The following result is useful for describing properties of reachability sets

for the systems of hyperbolic type, but it is of interest for other reasons

as well.

Theorem 11.4.16. If family fe"-`1„ Ez forms a Riesz basis in L 2 (0, T), then
for any T' e (0, T) there exists a subfamily S' constituting a Riesz
basis in L2 (0, T').

Avdonin (1977b: p. 98) discusses this statement for the case An =
TI(27c)n + o(1), as does Ivanov (1983c). Avdonin, Horvath, and Joe) (1989,
see also Theorem 25 below) prove the existence of a basis for the uniform
density of the distribution of subfamily and Avdonin (1991) proves
Theorem 16 in the given formulation. All these authors exploit the
conditions for er as a basis stated in Proposition 6.

To prove Theorem 16, we start by clarifying uniformity in the distri-
bution of STF zeros.

Theorem 11.4.17. Let F be an STF with the indicator diagram of the width
T and the set of zeros {).„} nEz . Set

	N(x, r) cardR, I x Re 2„ < x + r},	 x	 r > O.

Then
N(x, r) 	 T

r 	 27z

uniformly relative to x e R.

(6)

PROOF. Let us consider the types of F in the upper and lower half-planes
to be T/2. This may always be achieved by multiplying by e iYz, where
y e [— T/2, T/2]. Let h:= suPneillin 2.1, H > h. In the half-plane Im z > H,
choose a single-valued continuous branch of arg F(z). Levin and Ostrovskii
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(1979: lemma 3) have shown that

arg F(r + iH) — arg F(iH) = —nN(0, r) + 0(1).

The same arguments lead to the equality

arg F(x + r + iH) — arg F(x + iH) = —7rN(x, r) + 0(1).	 (7)
Here, 0(1) denotes a bounded function on r and x. Set

t(z) = cF(x + iH) e iTzl2 ,

with the constant c e C chosen in such a way that OW > 0. From formula
(7) we get

arg t(x + r) — arg (I)(x) = —nN(x, r) + rT/2 +	 .

On the other hand, since function log t(z) is bounded in C and
Im = 0, functions arg D(x) and log 4:0(x) are related by (see Hrushchev,
Nikaskil, and Pavlov 1981: p. 234)

arg t(x) = ep" (x) := — p.v.	 [ 1  +  t _11)(0 dt,
xt l+t`

1

9(x) := log1(1)(x)1,

we assume that arg (I)(i) = 0. Therefore, to prove the theorem it is enough
to show that

1	 coco [	 1  ]
9(t) dt 	 0— p.v.

x + r — t x—t

uniformly in x e Fl.
Since F is an STF, function cp(x) is bounded over the real axis. From

Levin and Ostrovskii (1979: lemma 3) it follows also that its derivath%e
cp'(x) is bounded on R. Therefore (see, for instance, Avdonin and JoO
1988: p. 8),

r — t x—t 

1 1)(0 dt = 0(1),

where

B(x,r)={teRlIx+r—tj<	 u{te11111x—ti< 1).

The fact that

..1__. 0
R\B(x,r) Ix — ti Ix + r — tl r —• °°

19(t)i dt

p.v.
1 1

te B(x,r)[x + 
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:qiniformly in x ell follows immediately from the boundedness of (p.
Theorem 17 is proved.

Theorem 11.4.18. Let { ).„,1„ Ez be a sequence of complex numbers such that

sup IIm	 < co,	 jai. IA. —	 > 0
neZ	 n*m

and let corresponding function N(x, r) satisfy condition (6) uniformly in
xe R. Then for any T' a (0, T), family le ia '`I nEz contains a subfamily S'
that forms a Riesz basis in L 2(0, T').

PROOF. We construct family 6" as a perturbation of the orthogonal in

L2(0, T) basis fe j(2 g/r)m t l,,, ez . Let / = [0c, (3) be an arbitrary interval of
" the real axis. Set

Mi ={meZ
'

	—2Tc mei},	 N, = fneZIReil„e/I,

m 4, = mintm I m e 114/ 1,	 n * = min{n I n e Nr },

m* = maxtm I m	 n* = max{n I n e Ni },

and construct mapping Q * : M1 1-4 1 as follows:

Q* (m*) = n* ,	 Q * (m* + 1) = n* + 1,	 Q * (m* + 2) = n* + 2, ....

Sequence {b„,'} is specified for m a M1 by the equalities

27z
=m 	 o.(m) — T' m-

Similarly, we define the mapping Q*: M1 r--∎

Q*(m*)= n*,	 Q*(m* — 1) = n* — 1,	 Q*(m* — 2) =	 — 2, ...;

and the sequence {6;0

2n
(5'	

2
,„ =	 — m,

T'
ma M1.

According to the condition of the theorem, the density of set {Re A,,}
is more than the density of {27rm/T}. Therefore, if interval I is large
enough, it can be proved that the inequalities are valid

-c ^ E Re Sim 0,	 0	 > Re c5;',, c.	 (8)
meMt
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Mappings Q. and Q* can be constructed for any interval. Sin,
condition (6) is uniform in x E GI, inequalities (8) are valid for intery
that are long enough, and constant c depends only on the length.

Accurate calculations show that for the validity of (8) it is sufficient
the length R of 1 satisfies the inequality

R> 
 2T

• ri.
T — T'

Here, r, is found from the conditions

—
1 

N(x, r) —
r	 2n

< O• T T'

2n

for r > r, > 2n/T, x e R, for some S e (0, 1).
Let us now take any interval I, of length lR, I e N. Using mappings

and Q* on subintervals of length R and taking into account (8), we can
construct mapping Q: M11 1—■ 7L such that corresponding sequence {.5„,}

2n
61" = Aom) —

T'
	mEM11

satisfies the condition

E Re Sm 	c (10)
me nit,	 IR

Let us take Ito be large so as to provide c/IR < 1/4. Since inequality (10)
holds for any interval of the form UR, (j + 1)1R), j e Z, by the force of
Proposition 6 family texp(i,),2( ,, ) 01„, ez constitutes a Riesz basis in L 2 (0, T').
The theorem is proved.

Remark 11.4.19. The proof of Theorem 18 shows that its conditions may
be sharpened in the following way. If condition (9) holds for all sufficiently
large r, then there exists a subfamily of forming a Riesz basis in
L2(0, T').

Theorem 16 is a direct consequence of Proposition 12 and Theorems
17 and 18.

4.4. Algorithm of a basis subfamily extraction

In the optimal control problems for DPS (see Avdonin, Ivanov, and
Ishmukhametov 1991), it is useful to have a simple algorithm for the
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extraction of a basis exponential subfamily. In contrast to the more

general situation described in Theorems 16 and 18, sequence {A„} in such
es has a known asymptotic behavior. To illustrate this, let us consider

exponential family eT = {e ±i2„t },, EN with a separable sequence {A„}

tisfying an asymptotic relation

An = 4 o(1), 	 = —
27r 

(n — 1/2).

,Let T' E (0, T). It is necessary to construct an algorithm of extraction of

t; basis in the L 2(0, T') subfamily.
We try to construct such a basis as a small perturbation in the mean

in the sense of Proposition 6) of the orthogonal in L 2(0, T') basis

{e±`"`} ME■. ,

2rc
(rn — 1/2).

We define sequence {n m } in the following manner. For each m E N we find
an integer rim from the conditions

(i) — l2ml = min lAnci — P
nEN

(ii) for the set of such m to which each of the two points of set {A,?}„, z

closest to pm correspond, the signs of differences 4, — pm are inter-
changing.

Note that condition (ii) becomes necessary when the numbers T and
T' are commensurable; that is, T/T'

Theorem 11.4.20. If sequence {n rn } is constructed by the algorithm (i), (ii),
then family g' forms a Riesz basis in L 2 (0, T').

PROOF. By Proposition 13 and Remark 14, it suffices to show that family
= {ei2^-`} is a Riesz basis in L 2(0, T'). It is convenient to perform the

change of variable ti—■ (21t/T)t and move on to the case

T 2n, 	 2,? = n — 1/2,	 pm = a(m — 1/2), a > 1.

Setµm —
Consider first the situation when a is rational; that is, a = p/q; p, q E N.

In accordance with Definition 5, let us construct A-partitioning of set
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cr 	 { ± kt„,}„, e by setting aj = 2jp, j e Z. So,

= U Qj ,	 aj = {Pm I m = 2qj + 1, 2qj + 2, . . . , 2q( j + 1)},
ieZ

Since both sets aj and A .;',

Ay = {A,?, I n 2pj + 1, 2pj + 2, ... , 2p(j + 1)}

are symmetric in relation to point (2j + 1)p, we have

E 	 = 0,	 j e Z.
17t:

Therefore, by Proposition 6, family ro is a Riesz basis in L 2 (0, T').
Now let a be an irrational number. In this case, one .5„, is able to write

bm = — [PA —

where [p.m] is an integer part of number	 (if a is rational, such a
representation takes place for noninteger	 Let us establish that the
value

1 p+1	 1	 1
S 1:= E 	 - [Ai) - -

2 
= —

1 
E

P	
,„—p+1

tends to zero with 1 —■ co uniformly in p. Then Theorem 20 will follow
from Proposition 6. In other words, roughly speaking, one has to prove
that the fraction parts of sequence {a(m — 1/2)} are 1/2 in the mean. Polya
and SzegO (1964: v. 1, part 2, chap. 4, secs. 2, 3) proved the following close
result: if for sequence {x, n }„, E xm E (0, 1), a relation

1
— E e2xiixr" 	 0
1 m=1 	 co

holds for any integer j, j 0, then

1- E x,„ --+ 1/2.	 (11)
1 m=1	 I — c°

For x„ = p.„ — [it,,] it is not difficult to check the equalities

p+ 1
e 2icijx,,‘

rre=p+1

^ di , 	 j 0. 

Using this, we can prove the assertion about uniform convergence of Spi

to zero in the same way as (11). The theorem is proved.
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4.5. Riesz bases of elements of the form ts

hen the moment method is applied to the investigation of DPS
escribed by non-self-adjoint operators, families of functions appear (see

Avdonin 1977b, 1980):

4 = fe iAnt , t en"`,	 , t in" — 1 e'^`}nel	 (12)

in space L 2(0, T), as well as their vector analogs in L 2 (0, T; (En.
properties of such families may be studied by the scheme from Section 3,
by means of a GF with zeros of points A n of multiplicity m„. Because it
sometimes requires rather cumbersome constructions to account for
multiple zeros in a vector situation, we focus here on some results on
the basis properties of scalar families of the form (12) and omit the
proofs.

Definition 11.4.21. Generating function of family^T (if it exists) is an entire
function of the exponential type with the indicator diagram [— iT, 0] and
the set of zeros {1„} of corresponding multiplicity m n .

Theorem 11.4.22. Family 4 forms a Riesz basis in L 2 (0, T) if and only if

(a) sup IIm	 < co, sup m„ < co, inf 12,, — A t > 0,
nEZ 	 nEZ 	 n � j

(b) for some yo e R, 13,0 1 > h, function w(x)	 IF(x + iyo )1 2 satisfies con-
dition (A2 ).

Here F is a GF of family 4.

The theorem is proved according to the scheme of Section 3. Sedletskii
(1982) shows the conditions to be sufficient for to form a basis. Their
necessity may be demonstrated by noting that the family 4 is almost
normed if and only if

sup IIm	 < co,
nEZ

sup m„ < 00.
nEZ

The corresponding generalization of Propositions 6 and 12 reads as
follows.

Theorem 11.4.23. Family 6°T forms a Riesz basis of L 2(0, T) if and only if
set R,}„ Ei is separable and an STF exists with the set of zeros {PA}nez of
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multiplicity m„ such that

Here,

sup 1 6.1 < co,
neZ

lira sup sup lAx(r)I <
icEZ 2r

an = Arn — Ax (r)=	 E 	 m„ Re :5„.
x—r<Reg n <x+r

This theorem may be made more precise. Namely, points tin may be
chosen in a way that for some d e (0, 1/4)

d Re().„- — A.) Re01 . —	 d Re(A•.+ — A.),	 n e Z.

Avdonin, Horvath, and JoO (1989) have proved the sufficiency part of the
theorem. To demonstrate the necessity, one ought to modify somewhat
the proof of Proposition 12.

Theorems 23 and 17 imply the following corollary.

Corollary 11.4 .24 . If family 4 forms a Riesz basis in L2(0, T), then for
any E > 0, r(e) > 0 may be found such that for all r > r(e) and all x E 11 an
inequality holds:

E 	 Mn) --27c
r x ^ Re An <x+r

< E.	 (13)

From this the following analogs of Theorem 16 are obtained along the
lines of the arguments of Theorem 18. For the specific case when sequence
{A„} satisfies condition (13), these results are proved in Avdonin, Horvath,
and JoO (1989).

Theorem 11.4.25. Let family form a Riesz basis in L 2 (0, T). Then for
any 7- a (0, T) there exists a subfamily 0 1 c e, constituting a Riesz basis
in L2(0, T'). Moreover, family ei may be of the form

te iAnt, t	 , t'n" -2 e l2"`Inel(r)'

where Z(T') is a subset of Z.

4.6. Complementation of a basis on subinterval up to a basis on interval

Theorem 11.4.26. Let family e = {e"-^`}„ Ez form a Riesz basis in L 2(0, T).

Then for any T1 > T a family go = {ei°^`}„ ez may be found such that family
eo is , a Riesz basis in L 2 (0, T1).
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_e pitooF. Without sacrificing generality, one may consider the set a = {a.„}

io lie in the strip 0 < c z < C. Since 6" is a basis, then by Theorem
3.9(3) one may find GF f of family

f(z) = b(z)f z = e' f e (z),

where b is the BP constructed for set a. By the force of Theorem 3.14(b)
and Proposition 3.17, function I f(x)I 2 satisfies condition (A 2).

Set
rz

p„ = - + tot,
T1 - Tfi _ 	

27(
a > C,

and consider family so 	{ei"1}„ Ez . In space L 2 (0, T, - T) this family
evidently has GF fo :

fo(z) =	 sin[43(z - ia)] = b o(z)feri:0 (z) = e 2KiPz f

which obeys the estimate 1.fo(x)I X 1, x E
Let us consider family Si = u So . In space L 2(0, T) the latter family

possesses GF f,:

fi= ffo = bbofe+ fe+,o = 
iezTife-

From the behavior of functions f and f„ on the real axis we conclude
that I (x)I2 e (A 2).

Since is a basis, set a is separable. Then set a u {p,,},, Ez is separable
by its construction. Therefore, by Proposition 8 (or Theorem 3.14(b),
family is a Riesz basis in L 2 (0, T).

Seip (1995) investigated the more general complementation problem of
an 2'-basis from exponentials to a basis.

4.7. On the families of exponentials with the imaginary spectrum

Let us present several facts regarding the properties of exponential families
of the form

ST = { . 21.in e -11^`}„ EN 	L 2(0, T),

0 <	 < 11 2 < • •	 --■ 00 	 (14)
Since

IT 	 1 	
	lie -P"' lif,2(0,T) = 	 0 e 2,4„( 	 =dt	 (1 - e -2"°`),
	_ 	 - 	 _

2p.„

family ST is almost normed.
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Lemma 11.4.27. If er E (UM), then

•	 lin +1 	lim inf	 > 1.
n- +co	 fin

PROOF. Let the lower limit in (15) equal 1; that is, a relation

lini+t 1

will be valid for sequence {ni}. Set vi = pni , i7j =
check that

One can easily

1— c(vi±'7i)T
cos (pL 2 (0 , T)(e – "J r, e - "i t ) = 	

v.; +	 .11 — vi T 	—

In view of (14) and (16), the right-hand side of the equality tends to unity
when j -+ co. Therefore

(p(e- Anit,e '1^J* it) 0.

Hence, er 0 (UM), which completes the proof.

Proposition 11.4.28 (Schwartz 1959). If a,. e (M), then the orthoprojector,

from L2(0, co) on L2(0, T) is an isomorphism of spaces

C1L 2 (0 , 0, ) Lin{e -144 }neN
and

C1L 2 (0 , 7) Lin{e -"tIne

Corollary 11.4.29. The norms of elements en' of the biorthogonal to 8, family

satisfy the estimates

II en II L 2 (0 .T) 	 C T en II L 2 (0, co) = Cr fl
nt*n

Nnt + 
— 

in which {e;,} is a family biorthogonal to go, = 112pin e - "II in space

L2 (0, co).

The estimates follow directly from Proposition 28 and formula (11) in
Section Hi.

In a special, but significant case of power asymptotics of p n one is able
to give explicit estimates for the norms of a family biorthogonal to 6'0,.
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Proposition 11.4.30 (Fattorini and Russell 1971). Let

tin M(n + fi)a,	 a> 1, /3 e	 M > O.

00	 t 1/a
L20,09) = exp(co + o(n)),	 c c,:= 2 p.v. fo t2 	1 dt.

 —

For more general assumptions on tptn I, Fattorini and Russell (1974),
Avdonin (1977a, 1977b), and Hansen (1991) obtained estimates of

Ile;II L2co. 00 r

5. Additional information about vector exponential theory

5.1. Relationship of minimality of vector and scalar exponential
families on an interval

Theorem 11.5.1. Let the family of subspaces S = te lAn t l.EN, gt.
dim 91 = N, E E+, be minimal in space L 2 (0, T; 91) and all the numbers

{an}neN be different. Then scalar family {e" -^r}„'„__ N+1 is minimal in L 2 (0, NT).

PROOF. By Lemma 1.1.28, family 6' is minimal in space L 2 (0, oo; 91).
According to Theorem 2.4, its spectrum satisfies the Blaschke condition.

,Let H denote a BPP generated by family {(k —	 191n 1riN and apply
Theorem 3.9(a) to family PTXn. Let F be a matrix function constructed
in this theorem while F is its identically nondegenerate M x M submatrix
whose determinant turns into zero at the spectrum points. The latter calls
for the following factorization

=fis + F:

where S ± are inner, Fe± are outer functions, and II is a BPP whose
spectrum coincides with set

Functions S ± , in their turn, may also be presented in a factorized form

St = n,o, 	 (2)

with n, being BPP, 0 ± being ESF (since F is an entire function, it has
no other singular cofactors).

Let us now pass to scalar functions, and to do this, introduce notations

b ± :=det H ± ,	 fe± := det Fe± ,	 b:= det

= e ikT s: 1F;	 (1)
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and numbers a I determined by

det 0 ± = exp(ika ±).

(We include a unimodular constant to the other factors.) From formulas
(1) and (2) giving F factorization, we derive a factorization of scalar
function det F:

det F = bb	 e+ ikMT b= 1 e -	 fe-

For function

f (det i')b _ exp(— ika + ),

we get out of (3)

f = bb_b + fe+ = e ika fe'	 S:-= MT — a_ — a + < MT < NT.

It is evident that f is an exponential-type function and the width of its
indicator diagram is not greater than NT, and that f equals zero at the
points of the spectrum. We now demonstrate f to have only power growth
on R, and, by dividing it by a polynomial with zeros A i , /1 2, , Am , we
arrive at the function legible for the minimality criterion (Theorem 4.1).

Lemma 11.5.2. For R > M + 1 functionif(k)1 2/(1 + k 2)' is summable over
the real axis.

PROOF OF THE LEMMA. Since P is a strong function according to Theorem
3.9, for any matrix element fi; of matrix F, function Ifii 1 2/(1 + k2) is
summable on R; fi; is an entire function of exponential type, and if it has
no zeros, then log fi; is also an entire function increasing no faster than
Ikl. So has to be of the form exp(iak + fi), a e R. In this case fu is
bounded on R. If ft.; is a zero of fu , then the entire function f;/(k — Au)
of the exponential type is squarely integrable; and it is bounded on R
(Proposition 1.26). In any case,

ifij (k)I-G 1 + ikl,	 k e

Therefore, Idet P(k)I -< (1 + k 2)m / 2 and function f differ from det F by a
factor whose absolute value equals unity almost everywhere on R. The
lemma is proved.

PROOF OF THE THEOREM. Introduce function f :=	 (k — 2) with a
factorization

f=b7:= e ika fe

MI NM 	 111011 	 INS IIIIIII
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in which -6 is a BP and f e are outer functions. It is clear that S > 0
because for 0, f must be a polynomial. According to Lemma 2,
function 111/(1 + lk1) is squarely integrable on R. Theorem 4.1 then implies
minimality in L 2(0, (5) of the exponential family fe j" ( 1, where {µ„}i are
the zeros of I. Now, family t 1 is obviously minimal in L 2 (0, NT),
s ince RA„) 0 for n > N. This completes the proof of the theorem.

Example 11.5.3. Generally, minimality in L 2 (0, NT) of the whole family
of scalar exponentials {e". ^`}„ e NI does not follow from the minimality of
the vector family (of elements) = eun t }„ € C L2 (0, T; (EN), r7„ E C”.
To get a minimal family, one has to discard several exponentials. By
Theorem 1, it is enough to throw out N exponentials, but this amount
may be excessive.

Let us consider family 6' 	 u g2 of vector exponentials of the form

where

{en - 4) ( 0
u)1

kn neZ , :=	 1(11-3" ) `(7)}.E7

62„ = sign(n)/3, 2 n + 1 = 0,

5o = 1/6; 32„ = 0,	 n 0,

32n+ 1 = s ign(2n + 1)/3.

Each of scalar families

glc 	 fe" — j" ) t(0)}nez, 	 fe"-3-)`(?)Inez

is a basis ih L 2 (0, 2n) space. Actually, let us take A-decompositions for
the spectra of families 6'sic and gle by setting oci = 2j + 1/2, j e Z (see
Definition 4.5). Then, as one can easily see, the points with the numbers
n = 2j 1 and n = 2j enter the same group o-j , while the sums of Re 6,,
and Re (5„ are not greater than one-third by its absolute value. The steps

of the decomposition equal 2, and therefore Proposition 4.6 is applicable,
which guarantees Cc and 1f to be bases. The basis property of these
families implies that vector family 4 is a basis: subfamilies S I and S2 are
bases in orthogonal subspaces of L 2 (0, T; C 2) spanned over the functions
of the form

f (O(o),	 f(t)(?), 	f e L2 (0, T),

respectively.
Consider scalar family Pc := 	 u ry. If element e - ` 3°` is thrown out
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of it, the remaining family takes the form

fe i(n/2+3,,)(1
IneZI

Stn = 0, 	 3 2n + 1 = sign(2n + 1)/6.

The latter forms a basis in L 2(0, 47c), since the unperturbed harmonics
family is a basis, and the points with numbers n = 2j and n = 2j — 1 fall
in the same group under A-decomposition by points ocj = j — 1/2. And
the conditions of Proposition 4.6 are now fulfilled: representing the sum
of shifts as

1/6 =15 2J - 11 = dip

we have
d = 1/6 < 1/4,	 = 1.

Hence, 6' is a nonminimal family in L 2 (0, 4n): element e - `3°' may be
expanded in a converging series of other elements of [CSC.

5.2. Perturbation of basis families

We noted (Theorem 4.13) that for the scalar family any point 	 of the
basis family spectrum may be "s-shake" without any loss of the basis
property. We now demonstrate the basis property stability for family eT

of vector exponentials, er = 1e	riErk1 C L2(0, T; 91), e„:=	 E 91, under

a perturbation of both the spectrum points ).„ and vectors Yin . The assertion
concerning the stability when 1„ are perturbed was obtained in collabor-
ation with I. Joel and used by Avdonin, Ivanov, and Jo6 (1990). First, we
need the following definition.

Definition 11.5.4. Let family	 = gn I nEN form an .9-basis in Hilbert
space 5. The best values of constants c and C in the inequalities

1/2

C{ E
neN

'12E c„„ <C E Icn1 2

neN 	 5 	 lneN

are said to be basis constants of family F. and denoted by q(E) and Q(E,),

respectively (for {c,,} E e 2 the inequalities are valid with some c, C in view

of the Bari theorem).

One easily verifies the expressions of the basis constants via orthogonal-
izer 17. of family 'E (see Definition 1.1.16):

q(E) = 11 17-1 11 -1 ,	 Q(E) = 	 II.
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Theorem 11.5.5. Let family gT form an -basis (Riesz basis) in LAO, T; 91),
dint 91 = N < co, and let vectors ti n be almost normed. Then e > 0 may be
found such that any family

	4 = {en} tIENI c L2 (0, T; 91),	 en = rin e i L t ,

also forms an $f-basis (respectively, Riesz basis) in LAO, T; 91) as soon as

	n  — ii„>> < e and IA„ —	 < E, n e

We give the proof for ?i n and An perturbations separately:

R91 : tin en"' 1-4 „ e L1 ^`,	 R" : Fi n 	ei:1"`

One shows that operators R 91 and R6 transforming the elements of the
unperturbed family into corresponding elements of the perturbed one
are close to the identity operator for small E and are therefore iso-
morphisms. Under such a separate treatment of perturbations, one should
pay additional attention to the uniform estimate of basis constants.

We first consider the perturbation of vectors. Without sacrificing
generality, one can assume that Im An > c > 0, n e N. Let en, denote
a family of exponentials e„ = ti n e 1 '^` over a semiaxis (in the space
L2(0, oo; 91)). According to Theorem 3.3(d), family 409 forms an .'-basis.

On the linear span of family &, define operator R9 :

R91n,e„ = en .= fin e"-^f e L 2 (0, co; 91).

Set ygt := sup,,<<q„ —

Lemma 11.5.6. For a small enough y5t , operator R910° may be continuously
extended to the whole subspace Vdlo , so that an inequality holds:

	

11 11T, — 1 4° 11	 91

for some K > 0 independent on yN .

PROOF OF THE LEMMA. As noted in Proposition 2.7, the spectrum a of the
.-basis family en, is a unification of not more than N = dim 91 of
Carlesonian sets

a = U a'
1

Gri = {A„},, E.A.; e (C); j = 1, 2, ... , M, M < N .



N
11(1 — RT,)f 1112(0, co:91) — E

P = 1
N

=
p=1

E cnoin — fln, 4) >enc
neN
M

E E cn<nn — flne 4°>e:c
j = 1 ne.,41

2

L 2 (0 oo)

2

. (4)
L2(O. co)
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The 2'-basis property of 'T together with the fact that the set {q„} i s

almost normed implies that a lies in the strip 0 < c Im z C. That is
why each of the scalar families g = {e n"}ne.,1,;, en" := e il^` forms an

families and 6V, respectively. Let us take an arbitrary finite sequence
.-basis in L 2(0, co). We write q,Q and qi , Q; for the basis constants of

c {c,,} and for f :=Ene N c„e„" estimate the value 11(.1 — lec,)f II by means
of the expansion of vectors tin — fin over the elements of an orthonormal
basis {41 of space 91:

Exploiting an elementary inequality (19) of Section 11.2 with

z; 	E cnoin— ?1,,,
neM

from (4) and the basis constants definition, we derive
N . M 	 2

11(1 — 	 E E E Cnob,—
p=1 j=1 ne.41

N M
-̂  ME EWE ICn<nn 	 4)>I2

p = 1 j= 1 	 ne.Afi

M max Q .? E E
j	 p=1 neZ

_̂ N max QT E ic„12<<nn — fin >>2
j 	 neN

N max Q •2 ygt 	 2E icni _̂ (N max i2 3.q'	 f 11 2 •

neN
2 

The lemma is proved.

Let us return to the family gr. From Theorem 3.3(d) and Lemma
I.1.10(a) we conclude that operator

P: Velco a f 1—* PL(0 , T2 ; TO f

is an isomorphism on its image. It is easy to see that operator

R9T1 := PREP-1
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turns family eT into family^T = {Fin ei"'"`}nerkl E L 2(0, T; 91). From Lemma 6
it follows that

R97-111 	 KY 91 ,	R:-=kIIPII IIP 1 11 	 (5)

Let us choose a small enough y 91 to make Ry 9.1 less than unity. Then
inequality (5) provides operator R 9,1 with the property of being an
isomorphism on its image, and, for a basis family er , , the image coincides
with the whole space L2(0, T; 91). Family ST is thus an s-basis (or a basis
for basis er ). Let us estimate constants 4 and Q for family ?T . If 77-7- stands
for the orthogonalizer of family eT , then the orthogonalizer for 4 is
.KART.) - . Estimating 11411 and 11(R 9T1 ) - 1 11 with the help of inequality
(5), we arrive at

11RTIl ^ 1 + RYgi,	 11(RT) -1 	 1 /( 1 — RY91)•

From here
4 > q/(1	 Ry91 ),	 Q/(1 — ky 5t )•

That completes the case of vector th, perturbation, and we can now deal
with the case of ).„ perturbation. On the linear span of 4, we define
operator IV77. by a formula

R;é„ = =

Succeeding the scheme of the previous case of R 91,0 operator, we take a
finite sequence {c„} and estimate 11(/,'?„_ — R;.) f 11 for (5„ := — + A n and
f := E cn en 

E c„ e iAnt(1 — e`6"` )
nE N 

2

L 2 (0, co; 92)

k     Ex cn tin ev- 	 (i6n )k t
n= 1 	 k=1 k      
ao tk -E 	 E cn en (ib,i )k

k= 1 k! n=1         

TkE
k=1 k!

CO

E cn (ian )ken

n=1

Setting

Tk	 112
Q E 	 E ic.6:1 2

k= 1 	 neN

Yo suPnEN 1 2n — ;1:„ I and again using the definition of the basis
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constants, we write

(Ty )1'	 1/2

RTV 	
k

I1L 2 (0, co; 91) ^ 	 E 	 [ E ic.1 21
=1 	 IC! 	 nerd

= :0(eTY-- 0( E )cnI 2
nerd

- (e 1.7" — 1 )4 -1 11f11.
This inequality allows us to conclude that for a small enough value of .

y„, operator lq is an isomorphism on its image that, for a basis family,
IT, coincides with LAO, T; 91). The theorem is proved.

Remark 11.5.7. The assertion of Theorem 5 about the basis property
stability under vector perturbations is of a rather abstract nature. For
instance, let family R„If_ I be a finite unification of 2-basis (basis)
families in Hilbert space 5 and for vector family {n,},r= 1 , nn e 91, dim 91 < co,
let family {n„ „}„c°= 1 form an 2-basis (basis) in the space of vector
functions ,(91). Then e > 0 may be found such that any family 0„5„1,,`°_ 1
also forms an 2-basis (basis) as soon as <<n„ — Fin >> < e, n e N.

So, Theorem 5 remains to be true for dim 91 = co, under the extra
condition a. e (CN), because the finite dimension of 91 is not involved
in the proof of stability under the spectrum perturbation.

Remark 11.5.8. In a scalar situation, the substitution of an element of the
family {x,,,}1°„ 1 by some other element (outside the family) cannot lead
to the loss of the basis property (see Lemma 4.11). This is not so in the
vector case. If family Pe lii = {PexAi rii }it i forms a basis in Ko , then a
perturbed family

Peen = {Pox,A1 t.) {Po x2Jrar= 2

may be both not complete and not minimal (even when y {A,i ) 13). The
minimality (completeness) of a perturbed family is equivalent to

PexpnA Et V PexMl.i-
i>1

This relation, in turn, is equivalent to the fact that element Po xp n,, is not
orthogonal to the subspace

Ke e V Pexop
p.1

)1/2
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which is one-dimensional and spanned on the element xe A i of family .re,,
biorthogonal to Pexn . Basis family /134 .1-n possesses a GF, so that

expressing element xe ,
z , through F (see Lemma 3.5), we arrive at the

following criterion of the perturbed family minimality:

(Pe x,	 k
(k) 	

K2+ (91 ) � 0,
Fry i

Ai

	where n i e Ker F(2 1 ), ;7, 	 0. Since

k
	F(k)ii i)e (91) = 

271i<ib„ F(y)t71> 	
1

—	 —

one can contest the validity of (6) by means of only a rotation of vector
lb, (operator F(y) is nondegenerate in 91).

In practice, it is often the case that the investigated family of vector
exponentials is asymptotically close to the basis in L 2(0, T; 91) unperturbed
family (see, for instance, Sections 2 and 3 of Chapter VII). From Remark 8,
we know that in such a case the perturbed family may be both incomplete
and nonminimal in L 2(0, T; 91). However, the perturbed family happens
to be complete in L 2(0, T — s; 91) and forms an s-basis in L 2(0, T + e; 91)
for any E > 0. These facts are demonstrated in a more convenient way in
Fourier-representation, when simple fractions, rather than exponentials,
are studied.

Suppose now that ESF 0 satisfies condition ,24) of Section 11.3 and
that numbers 2„ lie in the strip parallel to the real axis:

0 < inf Im	 sup Im 2 , < .	 (7)
nCN 	 nEN

Let us take e > 0 and set Co ± e (k) for functions e' 0(k). For e < p
(p is taken from relation (24) in Section 11.3), 0, is an ESF.

Theorem 11.5.9. Let family Pea' = {Pe x,,n ib,}:1 1 ,71„ E 91, dim 91 < co, forms
a basis in Ke , while family Pea" = {Pe xL77,,},71., is linearly independent and
asymptotically close to Pe.T in the following sense

	lAn — ;Int	 °, 	 n 	 n>> 	 0 .n co 	 n co
	 (8)

Then

(a) for any a > 0 family, Peg constitutes an 2-basis in Ke ; what is more,
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when complemented by any finite family

P0 ,T° = {Pe x„nY}j I, with titj }:7,. 1 n Cl„br,. 1 = 0,

it forms an .'-basis.
(b) For e < p, family Pe _' is complete in Ke _; what is more, under the

removal of any finite set of its elements, the completeness survives.

PROOF. Introduce family
Pe.i.m .= PO 4, J Pek in ,

:= fx).)1.M-1, 	 {x1„71. 1:°=m+1,
consisting of M first elements of the unperturbed family and elements
numbered M + 1, M + 2, ... of the perturbed one. Condition (8) and
Theorem 5 reveal that for a large enough M family, Pe i' is a basis in
Ke . Later in the proof, we consider this to be true. Basis family Pefm
possesses, by Theorem 3.9(b), a generating function, which we denote by
Fm (k). In order to prove assertion (a), let us complement the family by
an infinite family preserving the basis property K e, (for a scalar case, the
construction is implemented in Subsection 4.4).

Set
fc(k):= e""12 sin{e(k — ai)/21,

where a > sup Im An . Function f, is obvious to satisfy the estimate

	

I f(k)1 X 1,	 k e R,

and has a factorization
= f!,b = e ikE f e_,

with fei being outer functions, and b being a BP with zeros

a(b)	 {2nnie + ai}„ Ez .

Therefore, function FE , f,Fm is a GF for family

	P ee 'm :=Pe H M V 113,1c , 	 1,:= txAn=i,Aea(b)
	j = 1,	 N, is an orthonormal 	 basis in 91). Using Theorem 3.5, we

conclude that family 139,.IT is minimal. Elements of a biorthogonal family,
corresponding to PeA, are given by a formula (see formula (26) in
Section 11.3),

Fe(k)= a 	
k — 1

(az j are constants).

E o-(b), j = 1, . . . , N , 	 (9)
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We now turn directly to the proof of assertion (a). Consider a family

	Pe rt u P% .Y ° , 	 X° = {X iii 711} 11=1 ,

which is a unification of .-basis family Pes i' m and a finite family

pe (41 u .T °), where family X,„,, has the form {x /. 17,,}„m_ 1 . Since family
pe i'm is an ..?-basis and family PE,(Xm L.) ./.°) is the finite one, then either
the whole family Pe 1'M u u 1.°) forms an .99-basis and assertion
(a) is proved, or the angle between subspaces VP,-„,i'm and VP,9,( m L.) X °)
is equal to zero. In the latter case, we again use the finiteness of family

u X°). Applying Lemma 1.1.3, we conclude that there exists

element
	g V 136,:i" 14 r-) V Pe. (i'm u	 g 0.

Since Pe,i'm a (LB), this means that element g being a linear combination
of elements of P,9 (X,, L.) ./"°),

R 	 M 	 x
g = E c„13€0,?/(k — fi,,) + E 5„PeJ7„/(k — 2„),

1	 1

can be decomposed in convergent series in elements of the family

g = E e„PeA,/(k — An ).
M +

Multiplying these equalities by elements (9) orthogonal to Pej'm , we
obtain

R 	 M

c„< 11,?, Fe(lin)	 — 2) +	 Fc()l.)0>/(2,, —	 = 0, (10)

	

A a o-(b),	 j = 1,	 , N .

Introducing rational vector function
R 	 M

	gf(k).= )] h„/(1.1„ 	 k) + 	 h./(An 	k),
n=1	 n=1

	h n'= Cn F:( -in) rin° 	h. '="--

we find from (10) that 4e(2) = 0 for 1a c(b). A rational function has
an infinite number of roots and thus is identical to zero; hence, h,, = 0,
n= 1, , R, and = 0, n = 1, , M. If also c„ 0, then q,, e Ker
This means that element coincides with some of the elements of
family Pe,Xm, which is impossible by the assumption of the theorem. So
c„ = 0. By analogy, 5„ = 0, n = 1, , M, and we have g = 0. Assertion
(a) is justified.



INN MINI MN Mil MIMI INN Mill OM NM

128	 11. Families of vector-valued exponentials

With regard to (b), let us demonstrate family 	 to be compiet
in K9 _. Supposing the opposite, we take a nonzero function g E K,
orthogonal to VP8 _,i'm. Now, g 1 PePi. Indeed, for any h e Pear
we have

(g, h) = (P,9 _,g, h) = (g, _h) = 0

since Po _,h e
Recall that family Po .tm = Poem v Pe i'm forms a basis in Ko , and

that FM is a GF of this family. The biorthogonal to family Po i' is of the
form (see Lemma 3.5)

Fm (k)gnim u Fm (k)

k — 1' 1 	— ;In n J n=M+1 '

where n" E Ker Fm (A„), e Ker	 Since g _L Pe i M, g belongs to the
linear span of the first M elements of the biorthogonal family. Therefore,

g =	 Fm (k)11"/(k — An ) = Fm 	(11)
n=1

where we set
M

= E WV( — An).
n=1

By the force of (11) and factorization FM = OF,- , we have

saFe j e K0 _,.

Since (see formula (14) in Section 11.3)

0* e' Ke _.= TP_ (91) e e. e' W(91),

(12) implies an inclusion
elks F; e H? (R'1).	 (13)

But we can show that the latter is impossible for g 0. We rely here on
the fact that outer operator functions and rational function a. cannot fall
exponentially with Im k —co while e ike grows exponentially in C_.

Lemma 11.5.10. Let F; be an outer in C_ operator function. Then for any
x E R and (5 > 0, there exist q > 0 and constant Cs such that for y > q an
estimate holds

<<{F; (x — iy)} -1 >> Cx ear

PROOF OF THE LEMMA. Element ij of matrix {Fe (x — iy)} -1 is a ratio of
the algebraic complement 90 of ij entry to scalar outer function det F.
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Since an outer operator function is, by definition, a strong one, function

F;(0),j/(k — i) lies in H. Hence, for Im k < -K < 0, this function is
bounded (see formula (1) in Section El), so that an inequality

Const(1 +

is valid. For algebraic complements from here, we conclude that

kp ii (k)1 	 Const(1 +

To complete the proof of the lemma it remains to look at restriction (4)
in Section II.1 on the growth of the scalar outer function 1/det F.; .

PROOF OF THE THEOREM. For large Iki there is an obvious estimate

<<g(k)>> r Ikl m •

So for large y, one has

<<e" -l* F e- (x — iy)Xx — iy)>>

e"(<<{f (x — iY)} -1 >>) -1 <<g(x — iY)>>

>- e Yt(x 2 + Y 2 ) - mi2 (<<{F; (x — iY)} 1 )>) -- •

If we now use Lemma 10 with 6 < E, we end up with the unbounded

function e' F e- g for large Im k. On the other hand, from (13) and relation
(1) in Section I.1 it follows that the same function is bounded for
Im k < — K. This contradiction proves assertion (b). The theorem is
proved completely.

5.3. Exponential bases in Sobolev spaces

Any family of scalar exponentials that forms a basis in L 2 (0, T) is

incomplete in Sobolev space Hs(0, T), s e IN. This assertion follows
from Proposition 12 given below. We now illustrate it by the following
example.

Example 11.5.11. A family of harmonics {exp(int)}„ Ez joined by element
sinh(t) forms a complete orthogonal family in H 1 ( — 7C, 70. The fact that
this family is orthogonal is checked directly; let us demonstrate that the
orthogonal complement to the family of harmonics is one-dimensional.
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Let g be orthogonal in	 (-7r, 7r) to e l' for each n e Z. Then

0 = f rz

ing'(t)	 dt + J 	 g(t)	 dt

fx 	 ir
=
	

+ n2 e`"` g(t)gk ) dt + ing(t) e int11,, +	 ei" g(
II

= in( -1)"[g(x) — g( — x)] +	 (1 + n 2)g(t)	 dt.

Writing g„ for the Fourier coefficients of g in space L 2, we find

0 = in(-1)"[g(n) — g(-7)] + g„(1 + n 2),	 n e Z,

so that g„ = c(-1)nn/(1 + n 2). Thus, the family deficiency is one-
dimensional. Hence, by adding function sinh(t) to it, one makes it both
orthogonal and complete in I1 1( it).

We now formulate D. L. Russell's result about exponential bases in
H 5(0, T). For the basis properties in Sobolev spaces with noninteger.
exponents, we refer to Narukawa and Suzuki (1986).

Proposition 11.5.12 (Russell 1982). Let family {e"-t} xe , form a Riesz basis
in L 2(0, T) and points Pi, 112, , its be different and not lying in o. Then
family

few/(1 + l 2 l s )1A.,7 u {e im };=1
forms a basis in H 5(0, T) space.

We need a generalization of this statement for the subspaces formed
by groups of exponentials.
reason for the differences in particle size of the drug -polymer
Theorem 11.5.13. Let .5° be a family of subspaces

50 {5,2}:3=1, where 5.2= V e
ll-" t,

m=1

and let 5 0 be an s-dimensional family

s
50.=V etiqt with {pf}1., n {2..}f2117.=1 = 0-

If 5° forms a Riesz basis in L2(0, T), then family {bolo u 50 is a Riesz
basis in IP(0, T).

r NO. r r r r MI MI MN •
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00F. The proof consists of three steps:

The family 6° forms a Riesz basis in the closure of its span in Hs(0, T)

(say, ..T-basis). It is Lemma 14.
) The subspace 50 has no nonnull elements in common with subspace

six Clus(0,T) Lin 5° (Lemma 15).
in) The family 5° u 5 0 forms a Riesz basis in the Sobolev space

Hs(0, T).

We introduce the operator A

Af = fl(d— — iit)f
dt

with D(A) = Hs(0, T) and the operator 61 Aj oH . where

011 5 .= {f e H 3(0, T )1 f (0) = f ' (0) = • • • = f -1)(0) = 0}.

Notice that Ker A = 50 and Ker Jai = {0}.

.Lemma 11.5.14. The family 5 ° forms an 2i-basis in Hs(0, T).

PROOF OF LEMMA 14. In Hs(0, T) there exists the equivalent norm

Ilf	 Ilf 1122 + IlAf1122,	 f e Hs(0, T).

Let f be a finite sum of elements h„, h. e 6„, n e NI. We have

E h„
2

Hs

E hn

2

L2
E Ah„

2

	

X E 	 + E 	 E
L 2 	 n         

Indeed, the operator A takes subspace 6„ to itself, and family 5 ° is a
Riesz basis in L 2 (0, T). Thus the assertion of Lemma 14 follows from the
Bari theorem (Proposition 1.1.17(b)).

Lemma 11.5.15.

50 n C1H . Lin 5° = {0}. 	 (14)

PROOF OF LEMMA 15. Let h0 e 50 and h0 e Clip, Lin 5°. By virtue of
Lemma 14,

ho = E hn ,	 h„ e 5n , 	 (15)

where the series converges in Hs(0, T). Acting on both sides of (15) by

11111111 	OM	 .111 ROM 	 MIS
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the operator A, we obtain

0= Aho = E Ah„

in L2 . From the fact Ahn a $„ and basis property, we have Ah„ = O. The
for any n a J , h„ = 0, since p o 	 t).„,„}7„,.,,. Lemma 2 is proved.

Lemma 11.5.16. The family {s1 -1 .5„}T forms an 2'-basis in Hs(0, T).

PROOF OF LEMMA 16. It is sufficient to prove that operator d is an
isomorphism 0H 3 and L2. The boundedness of follows from the
expression

f (t) = f chi e"i"'" ) f dt2 e
iA2(ti — f2) 	 To

0 	 0	

• • • 	 dts e ig. ( t. - i - to g(t3 )

j'

0	

+1121ti

0
dt2 e 4-0 2+A3 )t2... 0 	dts e -41 .4. g(t)

t	 ti
= e ii"`	 dt, e i(- gl

(16)
for the solution f of the problem

.3:41 f = g L 2(0, T).

Lemma 16 is proved.

Lemma 11.5.17. The family of subspaces

50 u {.91-15.1T

forms a Riesz basis in H 5(0, T).

The fact that

5 0 n Clip Lin {si '$3°} = {0}

may be proved completely analogously to (14). The lemma now follows
from the equality

dim[Hs e °Fp] = s = dim $30
and Lemma 16.

We can now finish the proof of Theorem 13. The subspace .91 -1 5„ is
situated in 5  + 5„, which is easily obtained from (16) for g(t) =
So the subspace family 5 0 L 5° is complete in H 5 in view of Lemma 17.
Theorem 13 follows from Lemmas 14 and 15.

ti 	 ts- I
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Remark 11.5.18. Russell (1982) has also shown that a basis from expo-

Deatials in LAO, T) has an excess in H'(0, T) equal to s. Note that
proposition 12 is specific for exponential functions. For instance, a
olynomial family, which forms a basis in the 00, T), is complete in Hs

for any integer s > 0, but the basis property is lost there.

Remark 11.5.19. Proposition 12, as well as Theorem 13, does not allow

a direct generalization for vector exponential families. The situation here
is similar to the replacement of exponentials in LAO, T; 91). For scalars,
it is possible to substitute any exponential for any other one (Lemma

4.11) conserving the basis property; one only needs to check on the linear
independence of the family. At the same time, with vectors there exist, for

any 12, exceptional directions n(1 ,
) such that the replacement of 17,1, e"1 by

n(p) e i"` leads to the loss of both minimality and basis properties (see

Remark 8).

5.4. Relationship between minimality of exponential families of
parabolic and hyperbolic types

Let K denote the set Z\{O}, let numbers con , n E K, be real, and let
con —con . In addition, let /1„ := con, n E rki. Consider two exponential

families

'hyp = {nn ek°"t }nEK , 'par = t'i
"
n nE

tin = n_„, n n e 91, dim 91 < co.

The first family we call the hyperbolic type, the second one the parabolic
type. The names derive from the fact that the Fourier method for
hyperbolic and parabolic problems gives rise to the ehyp and Spar families,
respectively (see Chapter III).

We prove here minimality of family Spar under the condition of
minimality of ehyp. The space 91 may be infinite dimensional.

The proof consists of an extension to an abstract situation of D. L.
Russell's (1973) proof of a similar assertion valid for particular exponential
families arising in the boundary control problem.

Theorem 11.5.20. Let family Shyp = {e„} net( be minimal in space L 2(0, T; 91),

and let Ayp :-= {e„}„ ci< be a biorthogonal family. Then family spar is minimal
in L2(0, T; 91) for any t > 0 and the norms of elements "e„ of the biorthogonal
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to gpar family satisfy an estimate

II e'nll L 2 (0, s; 91) ^ C0)11 e;IIIL2 (0,s; 91) e fl/11" I )

where C(r) and /3 are positive constants.

PROOF. Introduce for m e N entire operator functions

T

d„,(z):=	 e -izt e.(t)dt,	 z E C,
0

and set 5„,(z):= Gm (z) + d„,(—z) (d,,, is the doubled even part of
The estimate is obvious:

<<&(z)>> ^ "tam elzIT,	 an, := 114, II r}(o,T; 91 )• 	 (17)

Let us check the equality

01., G.(0 n)> = 6 ,71 ,	 m, n E N.	 (18)

Indeed, from the definition of Om we have

j‘ T01n, dm(Wn)> = 	 <n„, e -- "I` e.> dt = (en, e;,,)1,2(0,v ; 91) = am01n,
o

<n,,, dm( --(0„)>	 <n„, 	 e',„> dt	 (e_„, e„,)L 2 (0 , T. ; 91) = 0.
0

By adding these equalities, we get (18).
We have to relate the minimality of two exponential families with

spectra {con } and {i4}. It is therefore natural to pass from functions of
variable z to functions of z 2 :

(1)„,(z 2 )	 Gm(z), 	m N.

Since ön, is an even function, it may be represented in the form of a series
in even powers of z, and (D m are entire functions.

Introduce functions Q„,(z):= Om ( — iz). Then Qm (iz 2) = (1).(z 2) = Gm (z)
and Q.(k) = ön,(,/k/i). (Q„, does not depend on the choice of the square
root branch.)

Let us rewrite relations (17) and (18) for functions Q„,:

<<Q„,(k)>>	 exp(T\AkDoc„„	 (19)

01., 'MAO> = 57,	 (20)
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Functions Q. generally may be increasing on 11. To make the inverse
Fourier transform possible, we multiply Q„, by function E(z), decreasing
on the real axis whose existence and properties are described by the
•following statement.

Proposition 11.5.21 (Fattorini and Russell 1971). For every T > 0 there
may be found a function E(z) of the exponential type such that its zeros
are real and differ from zero; E is real on the real axis and

(i) 1E(s)exp(,/rsi T)I	 c,(r)/(1 +	 s e T1,
(ii)1E(—is)j ^ c 2 (r) exp(rs), s 0,

(iii) 1	 lE(is)1 � c 3 (r) exp( iqfs), s > 0, /3 > 0, c 3 (r) > 0.

Let us take arbitrary T > 0 and, using E(z) (corresponding to this value
of t), set

G„,(z).= E(z)Q„,(z),

e;, (t) 1 	f e 1" G.(s) ds,	 m e N . 	 (21)
27tE(i),„,)

Let us first verify vector functions em to be properly defined. From
inequality (19) and the first property of function E, we derive for s a 11
the estimate

<<Gm(Z)>> = IE(s)I<<Q.(s)>> 	 a„,1E(s)lexp(isT)

a„,c (OM + la (22)

Therefore, Gm (s) a L2(R, 92), and the inverse Fourier transform is correct.

Lemma 11.5.22. Functions "e„,' have the properties

(a) supp	 [0, 'a

(b) L.2(o,r;91)	 c(t)cc,,, exp(ai,1„,).

PROOF OF THE LEMMA. Estimates (19) of the norm growth of operator
functions Q. testify that G. are functions of the exponential type zero.
Then from estimates (i)—(iii) of Proposition 21 it follows that for any e,
0 < E < T,

ei" G.,(z) belongs to Hi_ and

e t(- ' + '>z Gm (z) belongs to H 2 ,
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and thus e izc Gm (z) E K. Now the Paley-Wiener theorem implies tha
supp e'm c [ — e, i — e]. Since s is arbitrarily small, the first statement 0
our lemma is valid.

Formulas (21), (22), and the third property of E function provide
estimates

dem' 4 2 (0, s; 91)

IIE 	
IlL2(R, 	ITei(x)ct„,

.\/27.clE(iilm )1	 jr 1E - 1 (i4)1

T ci(r)am 
exp(fl

c 3(r)

The lemma is proved.

Let us now check whether {F„,} is a biorthogonal in space L2 (0, t; 91)
to family spar . Expressing Gm via 4 and using Lemma 22(a), we get

Gm (s) = E(am )	 e;„(t) 	 dt = E(i2„,) J 4 (0 	 dt.
0

So for elements "en of family par we find

(em en)L 2 (0,s; 92) = 	 (e„, (t), e -2"` „> dt =	 2'(t) dtm	 n
0 	 0

= (Gm(i/113 tin) = <Gm(a.), tin>E(i2)

From (20) we conclude that

(4, en) = 6:1 ;

that is, family {JO is biorthogonal to {em ). The estimate for the elements
of this family is obtained in Lemma 22. The theorem is proved.

Remark 11.5.23. A small modification of the proof enables one to obtain
the same result when several of the numbers co n are imaginary.

6. W-linear independence of exponential families

In this section we examine the conditions providing the uniqueness of a
weak sum of series E an en t in L2(0, T) or L2(0, co). We also prove the
"excessiveness" of a particular exponential family arising in the problem
of boundary control of rectangle membrane vibrations.

2m).
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6.1. Dirichlet series

ormal series of the form En°1- 1 an e'^` considered in C are called

irichlet series, and for their theory we may refer, for instance, to Leont'ev
(1976). We treat them for positive and prove the uniqueness of the

eak series sum. In view of their applications to the DPS control problem,
it is sufficient to consider ,%, growing faster than log n with n.

Proposition 11.6.1 (Leont'ev 1976). Let 0 <	 <)t 2 < • • and

lim An /log n = co.	 (1)
n co

If series f(z) = LT= 1 an 	'''"z converges for z	 t o E R, then it converges

absolutely and uniformly in the half-plane Re z > t o + e for any E > 0,

where it represents an analytical function. In this half-plane, function f(z)

is bounded and decreases exponentially when Re z + co:

if (z)1	 e - "e z 	 6 > O.	 (2)

PROOF. Convergence of the series at to implies that its general term is

bounded:

I anl	 44' < C.

Let us take e > 0 and let Re z > t o + E. Then

co e_A„„ e —A„(Rez — to) < C	 e 
Ian C A" z 1 = E lani

n = 1	 n=1	 n = 1

From (1) it is seen that for large enough n, an > 2 log n. So

E la„	 C E e -21°g n C E 1/n 2 < co,
n = N	 n N	 n = N

and the series of analytical functions converges uniformly. Hence, it

represents an analytical function.
Let us establish exponential decay of f. Represent f in the form

CO

f(z) = 	 2 'z E an e (A " — li)z •

n = 1

The Dirichlet series in this formula evidently satisfies the conditions of
the proposition. As proved, its sum is bounded for Re z > t o + E. There-

f is exponentially decreasing: estimate (2) is valid for 0 < b _<
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Corollary 11.6.2. Let sequence {A n } obey the condition of Proposition 1
be an arbitrary positive number, and series Ea). 1 an e -2^` converge to zero o
interval (to , to + c). Then all the coefficients a n equal zero.

PROOF. From Proposition 1, Dirichlet series f (t) En°°= a„ e —Ant 
is analyti-

cally continued to the half-plane Re z > to . Hence, f (z) 0 for Re z > t
Suppose that not all the coefficients an are zeros, and let a; be a nonzero

coefficient with the smallest number. Write f in the form

f(t) = a; e - kit (1 + E an l a; e - 	 2.i ) `).
n = j + 1

CO

Dirichlet series

E an /a; e - 	 2 -1) `
n=j+ I

satisfies conditions of Lemma 1 and, consequently, exponentially decreases
with t	 co. Therefore, equality f(t) 0, t > to, is impossible for a; # 0

6.2. Parabolic family on an interval

Theorem 11.6.3. Let 0 < Al < 12 < • • • and condition (1) be valid. If series
f(t) = En°1 1 a„ e -2.` converges weakly to zero in L 2 (0, T), T > 0, then all
the coefficients a n are zeros.

PROOF. If partial sums of Dirichlet series E nc°= an e -2^` weakly converge
to zero in L2(0, T), then they are bounded in the norm. Hence, the norm
of any term of the series is bounded uniformly with respect to n. Since
for A > Ao > 0

(1 —
e -1`11.1.2(o, T) 	

21
	 X,1

-1 ,

then

lanl/r2,,-< 1, n (3)

Let us demonstrate that in such a case Dirichlet series converges
absolutely for t > 0 and uniformly for t to > 0. From estimate (3) we
have

E lani e -A^t	 E
n=1	 n=

„ e
 In: = E ,/,1„ exp( — An t) e 4(12 .

Function A e' is bounded for t > to > 0 and A > 0. So this inequality
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E lan l e'^`	 E e
n=1 	 n=1

If t > to > 0, then for n N(to) estimates ,1„t/2 > 2 log n follow from

,condition (1). Then
00 	 CO 	 CO

E lani e - A n t 	E e- 12 og n = E 1/n2 <
n=1	 n = 1	 n=1

Uniformly convergence of the Dirichlet series implies convergence in

L2 (to, T). But then the weak limit of partial sums of the series equals
the limit in the norm, and the Dirichlet series turns to zero for t E [t o, T].
The assertion of the theorem follows from the uniqueness of the Dirichlet
series with real .1.„ (Corollary 2).

6.3. Hyperbolic family on the semiaxis

Theorem 11.6.4. Let sequence fw n,ne7, K =1\{0}, be strictly increasing

and 1(0.1>- Inl a, a > 0. Then for any R > 0 and any E > 0, condition

Ianl InI R and weak convergence to zero in L 2 (0, co) of partial sums

of series

E a,,ei(wn±i')`
neK

imply that all coefficients a„ equal zero.

PROOF. Let vn denote numbers con + ie, and with the help of the inverse
Fourier transform, turn from exponentials to simple fractions in the Hardy
space H.

Weak convergence of the exponential series to zero turns into the
equality

E an f(vn ) = 0,
neK

	which holds for any function f from	 Suppose cl; 0 0. Consider a
family of sample functions

fN (k)=-- (2ie)N /(k —	 j is fixed, N = 1, 2, ... ,

so that fN (vi) = 1 and for n j

	

fN(v.) --- 
[(con — w;) + 21e] N 	2ie

— [1 + 	 —
—N

•
(2 ie)N
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It is clear that fN (v„) —•-4 0 and that an estimate follows from
N oo

condition on co„

IfN(v.)1-<n-
aN.

Since a„ are of not more than power growth, for large enough N, sere
E an fN (vn ) converges to zero uniformly in N. All the terms of the serie
except the jth one, tend to zero with n -4 co; therefore aj = 0. The theorem
is proved.

6.4. Hyperbolic family on an interval

Theorem 11.6.5. Let {co„} ncK be a strictly monotonic sequence, sgn con

sgn(n), and

	wn 	lim	 — + oo
log Ini

Then for any T > 0 and e > 0 condition, {an } c 1 1 and weak convergence
to zero in space L 2(0, T) of partial sums of

E an -1 °^ 16 e iV
neZ

imply that all a n are zeros.

PROOF. Introduce function

	F(z)= E an 	etwnz
ne IK

For IIm zl < c, exponentials	 ei"^z are bounded by unity in the
absolute value and therefore the series converges uniformly; that is, it
represents an analytical in the strip jIm zj < c function. From weak
convergence to zero in L2(0, T) one obtains then that F(z)..-=._ 0 for
lim zI < e. Consider functions

F+(z)=-- > 	 e'"z,	 (4)
n=1

F_(z) = — E an e - l'nle e'"z
	

(5)

The first of them is analytical in the half-plane Im z > —e, and the second
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one in the half-plane Im z < e. Since

0 = F(z) = F+ (z) — F_(z),

they coincide on their common domain. Hence, F, and F_ are analytically

e' r.x tended to the whole plane and coincide everywhere, F+ (z) = F_(z).
l3v Proposition 1, function F, is bounded at Im z > —6 and

F+ (z) 	 • 0.
z

imilarly, F_(z) is bounded at Im z < e. According to the Liouville

theorem, Ft (z) = 0. Set z = i(x — 6) in (4). Then

E an exp(	 = 0.
n=1

Using Corollary 2, we find that an = 0, n > 0. Analogously, an = 0 for
n < 0. The theorem is proved.

6.5. w-linear independence in L2(0, T)

Theorem 11.6.6. Let family e" = {e tAt}" A possess a subfamily So = letAILEA°
being a Riesz basis in L 2 (0, T), with set A\ A o containing not less than s + 1
points, s �_ 0. Then there exists a nonzero sequence {a,}, cA such that series

EleA a, exp(i2t) converges to zero in L 2(0, T) and EA c A ja,121Al2, < co.

PROOF. Choose subset A, of set A in a way that contains A, and s extra
points. Then by Proposition 5.12 family

s
 etiAEA,

is a Riesz basis in Hs(0, T) (for A = 0 we take unity instead of '1' in the
denominator).

Expand function e iA°`, Ao e A \ A l , over this basis:

e iAc't = E b 	AS.
AEA,

then L E A, lbAl 2 < CO. Setting a,:= b,/,1s for .1 e A 1 , a,.:= — 1, and a,:= 0
for other cases, we obtain the assertion of the theorem.

Remark 11.6.7. From the theorem, the larger the "excess" of family g, the
"smaller" the coefficients a, that may be taken in the series E a, exp(W)
converging to zero. But by Theorem 5, they cannot be exponentially small;
otherwise the W-linear independent family will appear.
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Remark 11.6.8. When studying the controllability of distributed parame
systems, one may face families in which, along with the exponentials
term {t} is present (see Section 111.2). It is not difficult to show
Theorems 3 and 5 concerning the uniqueness of a weak sum on an inte
remain true with the addition to the series of term ao t.

6.6. Excessiveness of the exponential family arising in the problem
of controlling rectangular membrane oscillation

Let us apply Theorem 5.13 about a subspace basis in HS to'th
investigation of a particular family. Set

A„,„ sgn(n),/ce 2 m2 /320n. —I 	 1/2) 2 ;	 a, /3 > 0, m e N, n e 1.

Theorem 11.6.9. For any R > 0, T > 0, there exists sequence Ic.„1. EN, ..
such that

(a) series E„,,„ c„,„ exp(iAmn t) converges to zero in LAO, T),

E.,n 	 < co,
(c) for some m0 and m �_mo , c,,,„ = 0.

Here is the plan of the proof. Family {,1.,„„} is naturally decomposed
series, namely, sequences mn n	 (with fixed m). Consider M series
corresponding to m = 1, 2, ... , M. At n + co the series points cluste
around Rill — 1/2). The sequence of exponentials corresponding to any
of the series forms a basis in L 2(0, To), To := 27E113. However, the exponential
sequence of even two series is not uniformly minimal in L 2(0, T) for every
T. Therefore, one has to examine linear spans of groups of exponentials
It so happens that they constitute a basis in V(0, MT). By taking a
qualified (see (7) below) nearness of the spectrum points inside the groups
into account, it becomes possible to proceed from the series in exponential
groups to the series of individual exponentials. Using the infinite excess of
{),„} and Theorem 6, one is then able to obtain assertions of the theorem.

Let us assume there are no coinciding values among {A„,} (it takes place
when a 2//32 0; the theorem is trivial in the opposite case). Specify R, T
and choose integer M such that T < MTo . Evidently, it is enough to check
the assertion of the theorem for T = MTo . Further, consider, instead of
{Anus }, points shifted to the upper half-plane by the value i/2: v„,„ := ,1„,„ + i/2.
If the theorem is proved for {v„,,,}, it is also valid for {A,,,,,} because

E Cm. e iv„,„, = e —t/2 	 c„,„ e il-"`

and the series converge in L 2(0, T) simultaneously.
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t an, n e K, denote the set {v„,,,}„,"= „, and let (T o denote the set {/..ti }} = ,,
here vivf +1,i are the "first" s points of the series with number M + 1.
t 6 := Unez Un and suppose s to be large enough; for instance, s > R + 2M.

5,, — vvEG,„ exp(ivt), n E Z. Write 5,, for the Carlesontroduce subspaces
tistant of set o-„.

ma 11.6.10.

Family of subspaces {S.5„}„ EK forms a Riesz basis in the closure of its
linear span in L 2 (0, oo).
Orthoprojector Pr from CIL 2 (0 ,,o) Lin{„}„ K on L 2 (0, T) is an isomor-
phism.
c > 0 may be found such that for any n e K an estimate

holds for all v E

We first prove the theorem and then demoristrate the lemma.
From (a) and (b), it follows that {„}„ Ek is a Riesz basis in L 2 (0, T).

Then by Theorem 5.13, family {5,,}„ Ez is a Riesz basis in lis(0, T). Expand
element exp(iv o t), vo :=	 not entering {5a}nE on this basis:

e ivot = E h„, 	 h„ = E by eivtE 5„•
neZ	 year/

Series Enez lin converges in space Hs(0, T) and, according to a Riesz basis
property, we have an estimate

d\'11

Clt) n

So assertion (b) of the lemma implies

nel

2
< c.

L 2 (0, T)

09> E
.ci

E b y (iv)s e i"
VEan

E bv (iv)s e i v`
VE a„

2

>- E
L 2(0,T)	 neZ

2

1, 2 (0, a) )

If we apply estimate (21) of Section II.1 to each of the inner sums, with
the assertion (c) of the lemma we arrive at

co > E 	  E Ibvi 2 1 ,1 2s >._ E E lb , 1 2 1ws-3m
„E, 32(1 + 2 log 1/ vea„	 nel vea,,

_ E E Ibvl z lvl zR
nEZ vea,,
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Thus, series e iv°` — 	 hn is shown to satisfy the conditions
theorem.

Let us now check the statements of the lemma.

(a) Denote S; := {v;„ } „EK;j=1 	 m-• Numbers yin lie on the straight
Im k = 1/2 and are separable for a given j. Therefore, each set
is Carlesonian. Since at n co, we have diam 0 and th
1.5n I nc K e (LB) by Proposition 2.11.

(b) To prove the basis property for family {6„}„ EK in L2 (0, T
we construct a GF of the family (more precisely, GF of famil

{Pr(k	 Af).

Following Fattorini (1979), set

Fm (z):= cos .,/n 2z2 / )3 2 — kt.

This function is of the exponential type, and its indicator diagram is easily
seen to coincide with segment [— iT0 /2, iT0/2].

For = p.m := m2 n 2 a2 , n2 3p the zeros of function Fmm (z — i/2) are points
vm„. From estimates

IFF,(z)1 X cos(-7CZ
fi

 + 0(1/Z)) X 1,	 for Tm z = —1/2,

it follows that on the real axis Fmm (x — i/2) and F;,,,l (x — i/2) are bound
Now introduce function

M
F(z) , =__ e izmT0/2 n Fiinjz — i/2).

ti
•

of

m= 1

From the foregoing it is clear that FM is a GF for family

{P (k — -1-rrtn)}mAl=1,neK•

Formula (6) and Corollary 3.22 thus imply assertion (b).

(c) From the explicit form of A,„,„ for r m we derive the
estimate:

A2

l Amn 	 A.rni
'mn Ant

This, by means of the identity

	cx2on2	 r2)

	

ilrfm 	 Arn

1>- —
In I

.

following

(7)

Z1 — z2 2 	IRe z 1 — Re Z21 2
for Im z 1 = Im z 2 = 1/2,

1 + IRe — Re z212'21. - 2-2
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2 1

eriCe

Vmn — Vrn

n 2 '
m	 r.

Vmn — Vrn

m=m
inf Vmn — Vrn In I ' 1 _� In '

r=1 	 M m=1,m*r Vmn — Vrn

or points	 v„,„	 of one	 group	 o-„,	 the	 estimates	 I v„,„I Ink	 neZ,
,1,...,M is evident. Therefore, assertion (c) of the lemma is

proved, and the proof of Theorem 9 is also completed.
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Fourier method in operator equations

and controllability types

1. Evolution equations of the first order in time

1.1. Let V and H be Hilbert spaces, V being dense and continuously
embedded in H. Identify H with the space dual to it and let V' denote
the space dual to V. Then H may be identified with some dense subspace
in V' in such a way that the embedding H c V' is continuous (Lions and
Magenes 1968: chap. 1). Let a[9, i/i] be a continuous symmetric bilinear
form on V,

.1

1.

tP] = 49, tG] + a(9, t//)H,

Suppose that for some y > 0 an estimate

;UP,	 Y P lly

a > 0.

(1)

holds. Then a self-adjoint semibounded from below operator A uniquely
corresponds to the form a (see, for example, Birman and Solomyak 1980:
chap. 10)

22(A) c V, 	 (4, 	 = a[9, &P]; 	(A), c e V.

In turn, the form ac, corresponds to self-adjoint positive definite operator
A cc = A + al �_ vl, v > 0, = 0(A). The norm generated by form ;
is equivalent by the force of (1) to the norm of space V. Therefore (Birman
and Solomyak 1980: chap. 10),

g (A 112) = V,

(A." 2 (P, Al l2tP) = ;[rP, 0];	 (p, e V.	 (2)

1'A



dt + Ax(t) = f(t),
dx(t)

MS MIMI IMO IIIIIII SIM MI Mei Ole MID

1. Evolution equations of the first order in time 	 147

e assume that operator A has a set of eigenvalues 	 n E N, and eigen-

unctions {con } that form an orthonormal basis in space H. This assumption

valid in the following chapters, where the theory developed in Chapters
III is applied to control problems for equations of mathematical physics.
One can associate the following spaces used constantly below with

Aerators A and k: spaces e ,.2, r E ER, of sequences c {c„}, n E N, with

he norm

ilc11,=[ E Ic„1 2 (A.„+c)ri 	 ,
n=1

and corresponding to them spaces W.,

Wr=ffIf=	 cn9„, IlfIlwr— 11{c.}11,< co}

(the latter are understood as the completion of finite sums of this type in
the norm II '11w,). Spaces e r2 and Wr become Hilbert spaces after the
standard scalar products are introduced.

For r > 0, spaces Wr coincide, by the spectral theorem, with the domains
of powers of operator k, namely, Wr = g(A,C12). It is evident that W, = H.
We have just identified this space with the dual one. We shall write Wr
for the space dual to W. and reserve the notation <f, (p>,, for the value
of functional f E W'r on element cp E Wr . It is easy to verify that W'r =
Note also that (2) implies W. = V.

Later in the chapter, we shall work with operators in the entire scale
of spaces W,.. We use the same letter A (no ambiguity will appear) to
denote a bounded operator acting from Wr +2 to Wr according to the
rule: A(En"L 1 cn tp„) = c,, 9„ . A similar extension is considered for
operator A c, as well:

A„( E c„9„) =
n=1

Obviously,	 f II ?yr = Ilf
1.2. Consider a differential equation

0 < t < oo,	 (3)

with the initial condition

x(0) = x 0 .	 (4)

co 	 1/2

n=1

(.1n + a)c,,9„•
n=1
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First of all, we have to state how one should understand the solutio
to the problem (1), (2), as well as to the other initial and initial bounda
value problems treated below. To do this, let us introduce spaces
L 2(0, T; W,) of measurable functions g: (0, W, such that

T
110 — 2 (0 , T; 	 : 	 1161(011W, dt < co ,

and also spaces C(0, T; W,.) of continuous functions on [0, T] with
the values in W.. Let g(0, T) be a space of basic functions, that is, of
infinitely differentiable and finite scalar functions on (0, T). For a function
g e L2 (0, T; Wr) we define its generalized derivative as an element of
2'(g(0, T); HO as follows.

Function g e L2 (0, T; Wr ) may be represented in the form
oc,

g(t)	 E gn (t)9„,	 g„e L2(0, T),	 E 	 + cx)r < co.
n= 1 	 n = 1

Set
dg	 dg„9,	 dg (0) =	 dg„ (to 9„
dt	 dt	 dt	 dt

where ti e .g(0, T), dg„/dt is the generalized derivative of g„. Since

dg„ (to = dtk)gn i	 = f
T gn(t)c(t)dt,

dt dt ) 0
then

dg„
(0)

2
2 2

dt- gn II L 2 (0, T) II H L2 (0, T)•

From this one easily sees that dg/dt is actually a continuous linear
mapping from g(0, T) to W, and that it satisfies the equality

dg (to_

dt	 dt )

We shall be interested in a continuous (with respect to t) solution of
equation (3) in which the values belong to one of the spaces TV,.

Let f E L2(0, T; X() E W,. Function x from the space C(0, T; W,.)
is said to be a solution of equation (3) with initial condition (4) if the
sum (dx/dt) + Ax belongs to the space L2(0, T; W,_,), (3) is valid as the
equality of the elements of this last space, and condition (4) is understood
as the equality of the elements of space W.
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Theorem 111.1.1. Let f a L 2 (0, T; PK— 1), x 0 a Wr . Then there exists a

unique solution of problem (3), (4), and mapping ff, x0 }	 x of space
12(0, T;	 1 ) x W. to C(0, T; Wr ) is continuous.

ROOF. Let us represent functions f and x, as

f(t) = E L(t)(p., 	 x0 = E Xr? (Pn ,

n=1 	 n=1

GO

II II -2(o, r ) (A. + c)r 	 < co, 	 E 141 2 (An 	 c) r 	 cc,
n=1
	 n=1

while we write the sought-for function x in the form

00
	x(t) = E x„(t) 9„. 	 (5)

n=1

Inserting these expansions into (3), (4) and equaling the coefficients at 9 n ,

we get
Ycn(t) + An x„(t)	 f„(t),	 x„(0)	 n E N. 	 (6)

From this,

x„(t) = x °, C A"' + 	 e - 2 " ( ` - ' ) fn	dt,er) di 	 n a N.1 	 (7)
o

Let us check that the function x constructed by these coefficients is really
the desired solution to the problem (3), (4). From (7) we derive

lx„(t)I	 141 e -1"` + II e - A"" - ' ) 1100, 0 II fn
and then using the estimate (1 — e - 2^')/A„ 	 + ot)' we obtain

lx„ (t)1 2
	

14,1 2 + 11./.111,20 ,,A + a) -1 , 	 n E N, t E [0, T].

Multiplying the latter relation by 0, + a)r and summing up over n,
we obtain

II xo II	 + IIf II b ( 0 	 ,), 	 t E [0, T]. 1 	 (9)

Thus we have demonstrated that for all t E [0, T], function x constructed
by formula (5) with coefficients (7) obeys inclusion x(t) E W,. Moreover,
series (5) converges in this space uniformly in t, t E [0, T]. It follows from
estimates (8), (9) and the Weierstrass theorem. Therefore, function x is
continuous in t in the norm of

Equality (3), as equality of elements of L 2(0, T; Wr _ I ), and equality (4)
in W, follow directly from (6).

(8)
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To prove uniqueness, let us note that if x is the solution of problem
(3), (4), it is represented by definition in the form (5). Then equality(3
understood as such of the elements of L 2(0, T; W,._,), together with (4
leads to (7).

Estimate (9) implies

11X111(0,T; Wr) 	 IIX 0 arr. ± Ilf .}(0,T; 	 - i) •
Theorem 1 is proved.

Note that the theorem is precise in the following sense. If A., —> co, then
for any p > r, one is able to find f e L2 (0, T;	 ,) such that x(T) wp.

This may be easily obtained by setting f„(t)	 e- A (T - t) in (7) With

appropriate yr,.
Later, we will also need a solution of problem (3), (4) in space X,(0, T

r E IR, where
dg

Xr (0,	 {g I g e L 2 (0, T;	 - e L 2(0, 7'; Wr - 1)}
dt

HUH X r (0, T) 	 118'11 2
L2 (0, T; Wr + 1) +

dg

dt

2

L2 (0 , T; Wr- 1)  

It is known (Lions and Magenes 1968: chap. 1) that when any function
from the space X,(0, T) is changed, if needed, on some set of the zero
measure, it is a continuous function on [0, T] with the values in W. This
fact may be written in the form of an inclusion

X,(0, T)c C(0, T; 14).

Theorem 111.1.2. Under the conditions of Theorem 1, the solution to the

problem (3), (4) constructed there belongs to -space X,(0, T), and the
mapping {f, x0}1-4 x of space L2 (0, T; Wr _ i ) x IV, to X,(0, T) is con-

tinuous.

PROOF. Let us show that the solution constructed in Theorem 1 belongs
to space X,.(0, T). Suppose first that functions x„ are real. Multiply
equality (6) by x„(t)(A„ + oc)r and integrate the result in t from 0 to T. Then

aniXn(T)1 2 — IX n (0)1 2] + /1„(A„ + cc)r	 lx„(01 2 dt

= I. T (2. + GO(r - 1)/2f.(0(An + CC)(r + 1)/2x „(t) dt.
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Adding a(,In + ay po- lx„(t)1 2 dt to both sides of the equality and using
Cauchy inequality with e > 0, we have

An + anlx.(T)1 2 — ix„(0)1 2] + GI. + ar 1 11x,. II i_2(0, T)

a(A„ + °) r lix„1112(o,T) + 	 (/ln1 Ilf.11
ZE
	.._z(0,T)

, 	 +in 	 it— (/1„, 	 T),2
n c

Performing the summation of these inequalities in n and transferring the

terms containing x„(T) and x„(0) to the right-hand side, we obtain

x L 2 (0, T; Wr + i) II f 111,2 ( O T W - i) + XII C2 (0, T; W-)•

In the complex case of the derivation of estimate (11), one should multiply
(6) by x n (t)()„ + (x)r, then multiply the conjugate to (6) equalities by
xn (t)(2„ + a)r, and put together the resulting expressions. The other
calculations remain unperturbed.

Now, using Theorem 1 from estimates (10), (11), we conclude that
X E L2(0, T; Wr+ i ). Equalities (6) then imply dx/dt E L 2 (0, T; ,). Finally,
we arrive at the estimate

t(o, T) 	 11 X011 124' 	 f Ili,2 ( 0, T; Wr-i)•
	 (12)

Theorem 2 is proved.

Remark 111.1.3. Theorems 1 and 2 may be extracted from the theory of
nonhomogeneous boundary-value problems developed in Lions and
Magenes (1968: chap. 3). In our case (under the assumptions about
operator A), there is no need to apply the general theory, because it is
rather easier to present a direct proof by means of the Fourier method.
Equalities (7) and estimates (10) and (11) produced during the demon-
stration will be exploited later in the study of control problems. This
remark also pertains to Theorem 2.1 proved in the next section.
1.3. Let U be a Hilbert space, ou = L2 (0, T; U), and B be a linear bounded
operator acting from U to E4/,._ r E R. Consider a control system

dx(t)

	

+ Ax(t) = Bu(t),	 0 < t < T, u Ell , 	 (13)

with the initial condition

x(0) = x o ,	 x0 E Wr .	 (14)

(11)

dt



(15)
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I  From Theorem 1 it follows that for a given control u e ail, there exists
a unique function x( , u, x0) E C(0, T; TV,.) satisfying relations (13), (14) .

This enables one to define correctly a reachability set R(T, x0) of sYstem
(13) in time T from the state xo as the set of the final points of phas e
trajectories under all possible controls:

R(T, xo) = {x(T, u, .X0) E W. u e41,

Relations (7) and (9) imply operators

S(T) e Y(Wr , W.) and K(T)	 W,)

to exist such that

x(T, u, x0) = x(T, 0, x 0) + x(T, u, 0) = S(T)xo + K(T)u,

namely,
CO

S(T )x o) x o = E (xn° e	 ) „
n=1

K(T) =	 ln(r (Bu(t))„ dtico n .
ii	 n=1[1.0
94.

Here, functions (Bu(t))„, n e N, are the "coordinates" of the element
Bu(t) e

Bu(t) = E (BU(t))„9n .	 (18)
n=1

We are interested mainly in the set R(T) := R(T, 0) which is the image
of operator K(T). Set R(T, xo) is obtained out of R(T) by a shift S(T)x0 .

As already mentioned, spaces Wr and W„ (r e ll1) are dual, and the
elements of one may be treated as the functionals on elements of the other.
We have decided to denote the value of functional f E W on element

E W, as <f, '>*. If

CO	 co

	f = E cn cp„,	 tfr = E bn9n, then <f, 	 = E cn bn .
n=1	 n=1	 n=1

Using operator B e Y(U, W;-.1), let us define operator B* e	 U)
by an equality

	<Bv,	 = (v, B*Ou ,	 v E U, ,li e	 „	 (19)

in which (• , • )u denotes the scalar product in space U. Now, functions
(Bu(t))„ (see (18)) may be represented as

(Bu(t))n = <Bu(t), cp„> = (u(t), B*9 n )u .	 (20)

(16)

co

(17)
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CO

x„(T, u, 0) = <x(T, u, 0), 9 „> ,,,	 x(T, u, 0) =-- E x „(T, u, 0) 9„.
n=1

Since IIX(T, U, 0)11w, = II{ Xn( T, 14, 0111r, reachability set R(T) c W,. is iso-

metric to the set R(T) of sequences Ix n (T, u, 0)} scanned in space C; while

control u is running through the whole space V.
Formulas (17) and (20) yield

j.

T

	

Xn (T, u, 0) =	 (u(t), e'n (T - `) B* 9 „), ,	 n E N.	 (21)
o

The right-hand sides of relations (21) may be rewritten in the form of

	

scalar products in space	 L2(0, T; U):

x,,(T, u, 0) = (u, e- (T -I) 	 9n)au, 	 n E N.	 (22)

Let us introduce a family of functions 6°

= {e„}, n E N,	 e„(t) =	 1"`	 (23)

Sometimes, for brevity, we call family 4' and the other families of this kind
vector exponential families, on the grounds that each function e n consists
of two cofactors, one of them being a scalar exponential function
from the space L2(0, T), while the other is a vector from the space U. Note
that space U connected with specific control problems may be either finite
dimensional or infinite dimensional. In this and the following chapters we
establish the relationship between the "quality" of the system's control-
lability and the properties of the corresponding vector exponential family.
Furthermore, we study these properties and present our conclusions
regarding the controllability of systems described by parabolic and
hyperbolic equations under various kinds of control (distributed, bound-
ary, and pointwise).

By changing a variable t' = T — t in formula (21) (or in (22)) we now
complete the reduction of the problem of reachability set description for
system (13) to the problem of moments with respect to family S. We can
state the result of our arguments in the form of a theorem.

Theorem 111.1.4. Reachability set R(T) c W. of system (13) is isometric to
set R(T) c e2 where R(T) coincides with the set of sequences c = {c,,},
n e N, for which the problem of moments

c„	 (u, e„)v ,	 n E N ,	 (24)

has the solution u E e.
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When solving the problem of moments, it is convenient to transfer from
space e', to space ( 2 . Let {x„} e C, . Set 5-c,, =	 + ar2, = enR + ari

R(T) = {{20 e ( 2 {x„} e k(T)}.

Corollary 111.1.5. Set R(T) c e2 coincides with the set of sequences {
for which the problem of moments

= (u, en )q,,	 ne FJ, 	 (25)

is solvable in space ill.

2. Evolution equations of the second order in time

2.1. Let operator A be defined as in Section 1. Consider a differential
equation

+ Ay(t) = f(t), 	 0 < t < T,
dt 2

with initial conditions

y(0) = Y0,	 3)(0) = Y1
	 (2)

Expression d 2y/dt 2 is meant in the sense of the distributions (generalized
functions) with the values in the scale of spaces W,..

We can define the solution of the problem (1), (2) in the same way as
for problem (3), (4) of Section HU. Let f e L2 (0, T;	 yo e W- 	 r+19

y1 e W,.. Function y is said to be a solution to equation (1) with initial
conditions (2) if

(i) y e C(0, T; W,. +1), y E C(0, T; W.);
(ii) the sum 9 + Ay belongs to L 2(0, T; W.) and (1) is valid as an equality

of elements of this space; and
(iii) conditions (2) are understood as the equalities of the elements of

spaces Wr+ 1 and W, respectively.

Theorem 111.2.1. Let f e L2 (0, T; W,.), {y o,)Yi, GI6+1, 0̂7,41:=Wr+1@Wr.
Then problem (1), (2) has a unique solution, and the mapping

ff, Yo,	 {Y,

of space L 2 (0, T; W,.) x 11;4i to space C(0, T; "07,:+1) is continuous.

d2y(t)
( 1 )



+ f L 
sin

(T)	
An (t — r) di

o /in

for An > 0,	 ( 7)
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rgooF. As in the proof of Theorem 1.1, we use the Fourier method here.

Let

{f(t) = E fn(t) 1P(19 nr
n=1

Yo = E YnCI(19n ,

n=1

Y1 = E Yrl9n1
n=1

E fnil n(A. 	 (x) r
n=1

00  

E ly0 1 2 (An +(x)r+1 < co
n=1

E lyni i
2

(An 	 c) r	 co.
n=1 

(3)

Ve search for function y in the form

	AO= > YnW (19 n•
	 (4)

n=1

Substituting these expansions to (1), (2), we obtain

9 n(t) 	 AnYn(() = L(t), 	 (5)

Y„(0) =	 MO) =	 n E N •	 (6)

The solutions of equations (5) with initial conditions (6) are

sin 2„ t
y„(t) = y,? cos ,r2„ t + y 1 	

\/37„

Yr,(t) = y,? cosh \/-1„ t +

+ it Ler) sinh	 (t —
	di for 2, < 0,

J 0 	 An
	 (7 ')

y„(t) = + Ynt +	 MT* — dt for A n = O.	 ( 7 ")
0

From here

sinh	 An t

(8)

s ,(t) = — y	 t +	 cos	 t

+ f fni (r) cos A n (t — t) dr for 2„ > 0,
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y„ (t) = 	 — y° sinh,/-1„ t + cosh .\/— A.„ t

+ J f„ (T) cosh \/--- (t — or) ch for A. < 0,

Mt) = Yn + I ' MT) dr
0

for An = 0.

Treating functions cos At and sin .1;1 t/,/ functions of complex
argument and setting

sin .\/;1. t
— t for = 0,

one is able to combine formulas (7), (7'), (7") into one formula (7), and
(8), (8'), (8") into one formula (8). These understandings are also used
below.

Let us show that the function constructed by formulas (4), (7), and (8)
is the desired solution to the problem (1), (2). At first, on the basis of
equality

co
ily(t)114,„, = E iy.(t)1 2(2„+ a)r+1 ,

n=1

we check that y(t) E W,.+ 1 for all t E [0, T]. Using the estimate

sin .1,i, t 2
+ -< 1

for A e (—a, co), t e [0, T], we find from (7) that

I Y.(01 2R, +	 -< Y?1 2 (2n +	 1 +	 + cc)r

+ Ilf„V,2(0,T) (1n

Summing up these inequalities over n, we get

Y(t)ii .W,,, -< 	 + T; WO)

Moreover, equalities (8) provide

9.(t)1 2 (1. + oc)t 	IY,?1 2 (1„ + oc)r lAn + IY,1,1 2 (2n + oc)r

t e [0, T]. (10)

n er' , t e[0, T].

+	 ( +	 n E r , t e [0, T]. (11.)
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ince 2„ + a v > 0, 1,1.„1 -<	 + a. Therefore, function

CO

s)(t)— E 9.(t)con
n=1

(pn (t) is determined by (8)) satisfies the estimate

15)(t)lik	 IlYilqv,+ II .f 11(3'_2 (0, T; Wr )

for all t E [0, T].
The other steps of the proof are similar to those carried out in Theorem

1.1. In particular, estimates (11), (12) imply

	

{Y, 5}111N, T; 16 +1 )"‹ 11Y011►2Vr+1 	11Y111;24,,	 Ilf 11i2 ( 0, T;

Theorem 1 is proved.

Note that the theorem is precise in the same sense as Theorem 1.1: if
-+ co then for any p > r + 1 it is possible to find f e L 2 (0, T; W,.) such

that inclusion y(T) e Wp is invalid.
It will be necessary to use Theorem 1 - as well as Theorems 1.1 and

1.2 concerning the solutions with values in the entire scale of spaces

147; - in our studies of control problems for systems of parabolic and
hyperbolic types. Depending on the kind of control and the dimension of
the domain, we apply these theorems with varying values of r E R.
2.2. Let U be a Hilbert space, = LAO, T; U), B be a linear bounded

operator from U to W,. Consider a control system

d 2y(t)
	+ Ay(t) Bu(t),	 0 < t < T, u e , 	 (14)

dt2

with initial conditions

Y(0) = Yo,	 .1)(0) = Yi,	 {Yo, Yi} E
	

(15)

Theorem 1 allows us to define the reachability set .44T, yo, y,) of system

(14) properly:

gf(T, yo, Y1) = {{y(T), 1)(T)} 6117;4-1 I UE V).

Each element of set 9(T, yo , h.) may be uniquely represented in the form

An= E Yn(T)49.,
n=1

CO

Y(T) = E S,„(T)9.,
..1

= 11{3, „ (T)} 11, + 1,

II .P( T ) II w,. = II { S,„ ( ) } 11,

157

(12)

(13)
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Therefore, set g(T, yo , y 1 ) is isometric to set 4(T, {y,?},	 e
consisting of pairs of sequences ({y„(T), {57„(T)}) corresponding
{Y(T), 3)(T)) E ge(T, Yo,

By analogy with (15), Section III.1, we introduce operators Y(T) a
X.(T) such that

(Y(T)) = <99(T)( Y°) ± X-(T)u.
YI

Here,

.9'(T) E Y( 1̂17,:+1, Yt;+1),	 S-(T)G -r( 	 11/;+1).

The explicit form of these operators is easily presented by analogy witli
(16), (17) of Section III.1, starting from formulas (7), (8).

As in Section 1, we are interested first in the set .91(T) = R(T, 0, 0)
which is the image of operator .X -(T), and in the isometric to it, set

(T).= 4(T, 0, 0).

We use B e	 Ii/r) to define operator B* e .99(W_ „ U) with the help
of the relation

<By, 0 * = (v, B * IP)u, v e U, e W_,..

Formulas (7), (8) yield the elements of set (T) to be determined by
control u e °li according to (compare with (21) of Section III.1)

ha') = 
T 

(U(t), sin (T — t)
 B n) dt	 (16)

MT) = J (u(t), cos 11„(T — t) B*9„)u dt.	 (17)
0

Let us introduce in space qi families of functions g„" ) } and {(, 2) }, n e N,

w)(t) = sin	 t B*9n,

(;,2)(t) = cos	 .1.„ tB*(p,,.	 (19)

By changing variable t' = T — t in the integrals in (16), (17), we reduce
the problem of description of the system (14) reachability set .9?(T) to the
problem of moments relative to the family of functions t(;, 1) } u {WI. The
obtained results may be formulated as the following theorem.

AT)
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Theorem 111.2.2. Reachability set .W(T), .R(T)	 of system (14) is

isometric to set (T) c 42, e t;, where l(T) coincides with the set of
airs of sequences ({a n }, tbn 1) for which the problem of moments

an = (u, (1) )v ,	 b n = (u, C (n2) ),7,, n	 ,	 (20)

has the solution u c 0/1.

For further investigations, it is convenient to represent moment relations
(20) in a somewhat modified form. For this, we set K := Z\{0} and
introduce space er2 of sequences {c k }, k E K, with the norm

11{ck}11,.=( E Icki 2 (Alk, + c)r
ke K

We write

K= inf 112,,1 2„ 00},
neN

{{k e I 	 =	 if K>0,
Ko =

{k E K I I2Ik < 1} if K = 0.

In the applications to control problems for differential equations of
mathematical physics considered in this book, 2„ + co and hence K > 0.
In the case K = 0 (0 is the spectrum condensation point) in the definition
of set K 0 , one may consider inequality 12 1k1 1 < p, instead of < 1, with
any positive number p.

Set

)1/2

con	
—I V 

A n ' 2„ < 0,

	

2„ > 0	
CU_„ _—CD„, nE hi.

Associate with the pair of sequences ({a n }, {b„}) sequence
to formulas

{ck} according

(Ck = — ico k a ki + b iki

c iki = a iki , c_i k l = /NI
for k E K\K 0

for k E K 0 	•
(21)

One verifies directly that mapping ({an }, {b„}) 1--> 	 given by formulas
(21) is an isomorphism of spaces 1,,2, 1 0	 and er2 .

Instead of the families g,,(1) } and {(„(2) }, let us consider in space all family
=	 k E K:

ek (t) = e t"'” B*(p lki ,i	 k E K \ K o ,

e lki = CjI i ) , e _ iki = Cli) , k a K o .
(22)
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Multiplying the first of the equalities (20) for n n K \ K o by +icon and
adding the result to the second ones, we obtain moment equalities

ck = (u, ek )v ,	 k K.	 (23)

Thus from Theorem 2 and the subsequent arguments we can draw the
following conclusion.

Theorem 111.2.3. Reachability set M(T) c 71/2r+ I of system (14) is iso-
morphic to the set of sequences {c k } in space er2 for which the problem o
moments (23) has the solution u E V.

By multiplying both parts of equalities (23) by (A iki + ar 2, as in the
case (24), (25) of Section MA we can move to the problem of moments
for sequences from the space e2:= eg.

In comparison with Theorem 1, the peculiar properties of family 6' may
sometimes provide an additional regularity for the solution to problem
(14), (15). (This fact is often exploited in Chapters V and VII.)

Lemma 111.2.4. Again, let B e 2)(U, Wr) and for some p > r let an estimate
be valid

E Ku, ek)L2(o.t: tie	 + otY	 u),
k. K

(24)

t e [0,	 u e = L2(0, T; U).

If {y0 , y 1 } E 17; 4_ 1 , then the solution of problem (14), (15) satisfies the
inclusion {y, a C(0, T; Vp+ I ) and

II {Y, Si} T; 16,11) 	 II {YO , Y1}11 .2*-p, 1 + 	 (25)

PROOF. By analogy with formula (21), set

tzk (t) = — iwk Yiki + YIkI (0,

ziki = (0, z --ud(t) = .fiki(t),

k e K\K0

k 11(0

{4) = —icok4 1 + yjki, k e 11( \ K o
,0	 ,0 ,0	 ‘,1

Ylkl , `— lkl	 Ylkl, k E K o .

Formulas (7), (8), (16), and (17) produce

lzk(t)I 2 	4( 2 +	 ek)L2(0.t; u)I 2 ,	 k E K, ut(r):= u(t —
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Therefore,

11{Y(t) , .Y(t)}11-K,.1	 Ei zk (t)12(2,,, + ay +1	 E 141 2 ( „1 ,,,, +a) ,,+i
kcb( k

+ E Ku`, ek)L2(0,, u)1 2 (A l k i + ,x)°+ 1
k IFS

-<11{Yo,	 +

The continuity of {y(t), y(t)} in t in the norm of space p+ 1 is established
on the grounds of estimate (24), as in the case of the continuity of x(t) in

eorem 1.1.

The analogous statement holds for problem (13), (14) of Section HU

as well.

3. Controllability types and their relationship with exponential families

3.1. We now return to the question of the controllability of the system

dx(t) 
Ax(t) = Bu(t),	 0 < t < T,

dt
(1)

	U E = L2 (0, T; U),	 B Y(U, Wr-1),

with initial condition x(0) = 0.
Our aim is to analyze reachability set R(T), which we determine to be

the image of operator K(T) (see (15), Section III.1). As shown in Section
MA, operator K(T) c Y('l, Wr ) is of the form

CO

	K(T)u = x(T)	 E c„(T)(,9,„	 (2)
n = I

where

c„(T) = (uT, en )q,

en (t) =	 B*(p„,	 u T(t) = u(T — t).

Let H, be a Hilbert space densely and continuously embedded into W„
which contains all the eigenfunctions cp„; in particular, H 0 may coincide

with W, . Space H0 figures in the definition of controllability types for
system (1) presented below.
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Definition 111.3.1. System (1) is said to be

(a) B-controllable relative to H0 in time T, if R(T) = H0 ;
(b) E-controllable relative to H0 in time T, if R(T) Ho ;
(c) UM-controllable relative to H0 in time T, if for any n E N there may

be found a control u„ E 0/1 such that K(T)u„ = 9„ and II u„ II	 II con g a
n e N;

(d) M-controllable in time T, if for any n E N there may be found a control
u„ E Gll such that K(T)u„ 49„; and

(e) W-controllable in time T, if Cl w  R(T) = W,..

Until now, two types of controllability have been most often considered
in the literature. These types are usually called ejcact ant_approxiinA
controllability. In our terms, they correspond to E and W controllability,
respectively. The suggested definitions sharpen the existing classification.
With respect to exact controllability, we recognize "the best" case when
we have a complete description of reachability set R(T) in the form of its
coincidence with the space H0. This is B controllability. For approximate
controllability, it is physically meaningful to separate three cases:

(1) when for any n a N it is possible to transfer the system in time T from
the zero state to the state cp„ with the help of a control, whose norm
is estimated uniformly in n by the "energy" norm of go„, and this is
the UM controllability;

(2) when for any n E N it is possible to transfer the system in time T from
the zero state to the state cp„, but without the guaranteed upper bound
of the control norms (M controllability);

(3) when in time T it is still possible, up to the error of an arbitrarily
small norm, to reach any state in W,., but we cannot guarantee that
all the states cp„ are reachable from the zero state ( W controllability).

In the last case, the set R(T), although it is dense in W,., does not contain
the linear span of the eigenfunctions of operator A. In our view, this case
has to be considered a nonphysical one. For instance, under finite
dimensional control of the process of heat propagation in a rectangle
domain, W controllability takes place depending on whether the aspect
ratio of a rectangle is a rational number.

Note also that the standard separation of controllability in the exact
and the approximate case is somewhat conventional. For example, if
a system has the UM-controllability property relative to some space
H0, one easily constructs space H, relative to which the system is
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E-controllable (see Theorem 5 below). Moreover, if a system is
W-controllable, it is B-controllable relative to some space Ho (Theorem 6).

However, one is far from being able to describe this space in standard
terms at all times.

Further, we demonstrate (Theorem 3) that our classification of control-
lability types is closely related to the properties of vector families considered
in Chapter I, which influence the solvability of the moment problem. This
circumstance clarifies the notations used in the definitions. In the remaining
chapters, we present many examples of parabolic and hyperbolic systems
"with various types of controllability.

Remark 111.3.2. It is possible to consider controllability in relation to a

space Ho nondensely embedded into ThisThis makes sense, for instance,

when R(T) is a proper subspace of W. An example of this is the
reachability set for string with the boundary control at small T (Avdonin
and Ivanov 1983) (for details see Chapters V and VII; see also Remark
VII.3.6).
3.2. Let us establish a relation between the introduced controllability
types and the properties of vector exponential families ='{e -Ant B*9„}
in space 0/1 = L2(0, T; U). In doing this, we restrict ourselves to the space

1/0 of a more specific kind.
Let p = fp„I nt 1 , p„ > 0. Let W(p„) denote a closure of finite sums

E cn co n in the norm (E Ic„I 2p
n
2) 1/2. Take H, in the form W(p n ). To make

inclusion Ho c W,. hold, let us require relation

p„ (A„ + ay, n E N ,

to be valid. Note that with the help of new notations space W; may be
written as W(r„), r„.=	 + a) i 2 .

Along with the family = {e„}, let us introduce families = {r„ e n } and
cfio = {lin en } differing from the first one by normalization, and consider
isometric operators

( 2 	pyr ,

U0 : ( 2 f-- Ho,

if(tanIr=i)= E
„=1 r„

uo(lanhti)— E 	 (Pn•
n = 1 P n

Formula (2) implies immediately that operator K(T) may be represented
via the problem of moments operators „fir and leo (for the definition of



NM	 ION	 ONN OM MI

164	 III. Fourier method and controllability types

the problem of moments operator, see Section 1.2):

K(T) = of-eV

K(T)1v-1 0 =- ttofeoViv-

where V is an isomorphism of space all: (Vf)(t) = f(T — t).

Theorem 111.3.3. Let Ho W(p„). The following assertions are then true.

(a) System (1) is B-controllable relative to Ho in time T if and only if
go a (LB) in space all = 	 T; U).

(b) If system (1) is E-controllable relative to Ho in time T, then to E (UM
in V.

(c) System (1) is UM-controllable relative to Ho in time T, if and only , if.
go e (UM) in V.

(d) System (1) is M-controllable in time T if and only if a (M) in qi
(e) System (1) is W-controllable in time T if and only if e E (W) in all

PROOF. The assertions of the theorem follow from Theorem 1.2.1 and
representations (3), (4).

(a) B controllability is equivalent, since a and V are isometric, to the fact
that operator afeo is defined on the whole all and its image coincides
with 1 2. By the closed graph theorem, operator fejvfo is then an
isomorphism between Wo and j2, which is equivalent (by Theorem
I.2.1(a)) to the basis property of go. The arguments are invertible.

(b) E controllability in relation to Ho is equivalent to the equality
Rso = C2, which, by Theorem I.2.1(b), yields go E (UM).

(c) UM controllability relative to Ho means that for any n E N there exists
u„ E all satisfying relations Ku„ = 9„, -< II (Pa Ho' Let 1„1 denote
the standard basis in Got. Using representation (4) and equality
tio- 1 9n = pnCn, we obtain en.linr- n-1 , = =n , vrt:= Vu„. Therefore, family
{vn p„- 1 },T= 1 is biorthogonal to 4. Since

I n 	 = 4 nilv and 119n Ha. = P., then v„p„-1 11 -<1

and hence go E (UM). These arguments are invertible.
The proof of assertion (d) is contained in the proof of assertion (c).

(e) Making use of representation (3), we find W controllability to be
equivalent to CI = e 2, which, by Theorem I.2.1(d), is, in turn,
equivalent to the inclusion e E (W).
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emark 111.3.4. From the proof, it is clear that B controllability of the
ystem relative to 11, implies the equivalence of the norms of the control

d the state x(T):

[K(T)u = x(T), u r E Ve]

,(Note that the control orthogonal to all the elements of family S transfers

the system from the zero state to the zero one.)
On the other hand, if estimate 1k4 Il e X Ilx(T)11 H. takes place, operator

Aso is an isomorphism on its image. That is, R(T) is a subspace of 1/0 .
Together with W controllability, this provides B controllability relative

=to Ho.

Let us present a result concerning controllability in relation to different

spaces 1/0 of the form W(p,,).

Theorem 111.3.5.

(a) Let {p„} and PO be positive sequences such that E;°_,_ p n2N- < co.
If system (1) is UM-controllable in time T relative to Kig.), then it is
E-controllable in time T relative to W(I3 n ).

(b) Let 6° E (M) in 1; the norms of the elements of the biorthogonal to t
family 0 = {On } and sequence {p„} are such that sup„ EN 	pn-1 = co.
Then system (1) is not E-controllable in time T relative to W(p n ).

(a) Let us show that R(T) D W(p„). From the proof of Theorem 3(c), it
follows that the norms of the elements of the biorthogonal to 6' family
0 satisfy the estimate II 0.16 p n . Elements of family 0,biorthogonal
to g = {rn en }, are of the form 0„ = r,T 1 0„, and hence Ii0„14, pn r,T 1 .

Let x = E,c,°,_. 1 x„9,, e Woo. That is, E° 1 ix„i 2A,2 < co. Let us prove
that x E R(T). In view of (3), it is equivalent to the fact that the
sequence {x,,r,,} belongs to the image of operator Aso . By Corollary
I.2.5(a), for the latter inclusion to be correct it is sufficient for series

En°°=1 lx„rn1 11 6.16 to be convergent. This is true, since

CO 	 CO 	 CO 	 CO

E ixarni 0.6	 E knironr,-,-1 = E knit). = E knoonk,;'
n =1 	 n=1 	 n=1 	 n =1

co 	 1/2( co1/2
1, 12 AZ) 	 E 	09.

Pn
n=1 	 n=1

Ilx(T)11H0 .
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(b) Since sup„EN11 0„11eP,,-1 = co, vector a e (2 may be found such .tha
E',T. 1 I a„I 2 II on P,;- 1 = co. In other words, ET 1 lan1 2 110.° 11 ,1 co, wiier
{8,?},T_ I is the family biorthogonal to go . Then, by Corollary I.2.5tb
Re. 0 (2, and consequently R(T) W(p,,). The theorem is prove

The following theorem implements for system (1) the Hilbert Uniquen
Method (HUM) suggested by J.-L. Lions (1986).

Theorem 111.3.6. If system (1) is W-controllable in time T, then it
B-controllable in time T relative to a dense space Ho in W,.,
constructed in the proof

PROOF. Consider, along with control system (1), the observation system
dual to it:

d9(t)
dt + A*9(t) = 0,	 0 < t < T,

	

9(T) = E W„;	 v(t) = B* 94).

(We are treating A and A* as bounded operators in the scale of spaces
W. Since A E 22(Wr4. 1 , W,._,), then A* e ..29(W„ 4. 1 , W,_ i ).)

By Theorem 1.2, co c L 2(0, T;	 ,), (d9/dt) E L2(0, T; W, _ 1 ); there-
fore, A*9 e L 2(0, T; W_,-1).

Since B* G	 U), then v E GII = LAO, T; U) and 11v11q1
Introduce space 11 as the closure of W_, in the norm 11116 := Let

us check this equality to actually define the norm, namely, that v =
implies l = 0.

From (1), (5) we have

0= 
T (d

dt
— + Ax — Bu, 9) — Kx d9

	d
+ 	 A*9)* dt

x 

-= —	 <Bu, 9>* dt + <x(T), 9(T)>,
0

and so

<x(T), >* = (u, v)v .	 (6)

If v, = 0, then the left side of (6) equals zero for all u e all. Since system
(1) is W-controllable, the set of all x(T) is dense in W., and therefore

= 0. (Dual system (5) is observable.) Hence, space 11 is defined properly
and 11 w_r.

(
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.let us write 1/0 for the space dual to R. In view of this, Ho is densely
bedded into W. Let us demonstrate system (1) to be B -controllable in

e T relative to Ho.
rom (6), we have

Kx(T), O * 1 -̂114 ,11110 ,11 =

hen, x(T) e Ho for any u E 011, i.e. R(T) c Ho . Let us show that inverse
inclusion is also valid.

We connect system (1) with system (5) in the following way: put in (1),

v(t). Then x(T) depends on Define operator A: H i W. according

6 the rule	 x(T). It is bounded by Theorem 1.1 and 1.2. From (6),

4ei,five have

<x(T),	 = v)v =

Hence,

	

</V, >,K 	11?4•

Therefore, the Lax—Milgram theorem (Lax and Milgram 1954) makes
operator A an isomorphism of space H on 	 = Ho .

Equation A = x 1 has the solution e H for any x 1 e Ho . The function

v B*9 constructed by this (q being the solution to problem (5))

belongs to space V. One easily sees that function u(t) = u(t) transfers

system (1) from zero at t = 0 to x 1 at t = T. Therefore, R(T) D Ho. The

theorem is proved.

In Theorem 6, we neither assume nor state that space 1/ 0 has the form

W(p„); it is usually difficult to describe. Some positive examples are
presented in the following chapters.

Let us proceed now to describe set UT > o R(T).
Consider, along with the family 1 = {e - A ^` 13* 9„}, family 4, =

4(0 = e -(1^ ." ) ` B*cp„. Since An + a > 0,	 L2(0, co; U) = 01/09 . Now

turn to set fi co of sequences {c,,}, n e 1J, determined by the equalities

	c„ = (u, e; ,̀)4,00 , 	 u e

In the proof of Theorem 1.1, we checked that {x„(T)} e e r2 . In exactly the

same way, one is able to show that k, c 	 Set

00

R co = E c r, 9 „ G
n= 1

{c,,} E fcf.
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Theorem 111.3.7. Reachability sets of system (1) satisfy the relations

U R(T) c
T> 0

ClW U R(T) D
T> 0

PROOF. Inclusions (7), (8) are equivalent to the following relations in
spaces of sequences

U ,k(T ) c R te ,
T > 0

ci4 U R(T)
T> 0

Since

(u, ,L2(0, 7'; U) = (u e - eca ) 	 T; U) ,

then for any finite T an equality takes place

R(T) = k„(T):= { {c,,} 	 I c,, = (u, 441.

Since (u, )L2(o,T ; U) = (UT, 44,, where

UT(t) =
u(t), 	 t < T,

0,	 t > T,

then R(T) c R. for any T, and hence inclusion (9) is valid.
To demonstrate inclusion (10), let us take an arbitrary element {c„} E

It corresponds with the element u E V., which is the solution to the
problem of moments

C,, = (4, 4)1, 0, =: /Z ) u, 	 faV : 011.1-+

Operator /)r ) is defined on the whole space V. and, as shown in
Section 1.2, is closed. So it is bounded, and therefore

OD

E (An + (x)r I(u — UT, e:)110,1 2 	L2(T, co ; u).
n=1

This implies that sequence c„T .= (u T ,e,14 is converging to {c„} in 	 a
T co. By equality (11), {cnT} E R(T), which just proves inclusion (10)

Corollary 111.3.8. Theorem 7 provides Clw Ur > R(T) =	 Now,
on the grounds of Theorem I.2.1(d), we conclude that C 1wUT>() R(T) = Wr
is equivalent to inclusion SI E ( W) in space 61‘..
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.3. Up to now, the arguments of Section 3 were related to the control

ss̀tetii (1). We now show that all the definitions and constructions, with

()illy slight modifications, may be transferred to the system described by
the second order in a time equation.

Let u e olt = L2(0, T; U), B e	 Wr). Consider system

2
	+ Ay(t) = Bu(t),	 0 < t < T,	 (12)y

t 2

with initial conditions

y(0) = 0,	 5/(0) = O.

Let us study the reachability set .R(T) of system (12), which is the

	

image of operator Jr(T). Operator .Y((T), .7f(T) e Y(01.	 1	r+lrl 	 r+1 =

Wr+i e wr , is defined in Section 2.
Let .moo be a space densely embedded into '#/;. +1 and containing all the

functions of the form {9„, 0} and{0, 9„}, n e N. The analog of Definition 1
establishing the hierarchy of controllability types for system (12) is as

follows.

Definition 111.3.9. System (12) is said to be

(a) B-controllable relative to dro in time T, if g(T) = drip;

(b) E-controllable relative to leo in time T, if gl(T) dro ;

(c) UM-controllable relative to ./C0 in time T, if for any n E N there may
be found controls tin° and	 E all such that

	.Y((T)u,(,) = {9„, 0},	 dr(T)u,l, = {0, q,,}, 	(13)

	0 } II,ieo ,	 9.111y60;

(d) M-controllable in time T, if for any n e N one is able to find controls
14,3" E all for which equalities (13) hold;

(e) W-controllable in time T, if C116 . L ✓7(T) =

To reveal the association between the introduced controllability types
and the properties of exponentials defined by formulas (22), Section 111.2,
we confine ourselves to the space Yeo of the form YV(p„),

p„ rn := (A„ +"fr(P.):-=	 + a) 112Pn) 0 PRP.),

In these notations, 	 = 1r(rn ).
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	Let us define isomorphism L: 42+1	 r2 r2C. by formulas (21), Seca
111.2. The inverse mapping is specified by the formulas

{ bn =
c„ + 

c_„ ,	 naNn (K \ K 0),
_

a„ = c ” — c2icon ",
2

an = c„,	 b„ = c _„, neN n K o .

We define isomorphisms Lt: C 2 1---, -ii/r. + i and Uo : ? 2 1-, V(p„) (analogs
of the operators introduced for system (1)) as

f°
x.- ,) an

	it: fc,IkEK H+ I,	 9n,
n=i rn

tto: t	
a „	 ,

cklkeKI—' L — 9	
„

n, Lc° b (P.},
	n=1 p„ 	 n=1 Pn

where coefficients a„ and b„, n E N, are determined via ck , k E K, by
formulas (14).

Together with family S = {e k }, k E K, introduced in (22), Section
we now consider families g = {r iki ek } and go = {p i , ' ek }, which differ from
it by the normalization.

From the previous constructions and Section 111.2, it follows that
operator (T) may be represented in a form identical with (3), (4):

Ar(T)=110 ,h,- V,	 or(T)1,,_1,0 =

On the basis of this representation, one is able to obtain the analogs
of assertions 3.3-3.6. We would like to emphasize two points in particlar.

Theorem 111.3.10. Let Yeo = ir(p„). The following assertions are then true.

(a) System (12) is B-controllable relative to X:, in time T if and only f
go a (LB) in space = L2 (0, T; U).

(b) If system (12) is E-controllable relative to Ye'e, in time T, then go a (UM)
in all.

(c) System (12) is UM-controllable relative to .moo in time T if and only 'f
43 (U M) in 61 .

(d) System (12) is M-controllable in time T if and only if so E (M) in 611
(e) System (12) is W-controllable in time T if and only if cr E (W) in all

Theorem 111.3.11. If system (12) is W-controllable in time T, then it is
B-controllable in the same time relative to the dense space YC0 in Yrr-4-1

whose construction is shown below.

bn (pn,

n=1 rn

110/So VIV - I2eo•
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The proof of Theorem 3.11 follows the lines of the proof of Theorem

6. The system dual to (12) is

d2(P(t) A*tp(t) =	 tP(T) = tP0 E 	 (7') = 1Pi E W—r-
dt2

v B*11/,	 B* e 2(W_ r ,U).

Space .Se° is defined as the closure of 1//:, = W_,, 	 W r _, in the norm

tP1111.,t— 11 , 11e, while space 1/0 is the dual one to dit . It is verified
that this definition is correct, since system (12) is W-controllable in time

T, Space leo is then densely embedded into irr ± 1 , since

(Yr-r)
,
 (Kr 0 W-r-i) l =	 (W-r)l = Wr+i W =

The remaining details are similar to those in Theorem 6.

To describe set U„ 0 R(T), we take arbitrary 8 > ,Fc and consider,

along with the family d' = {e k }, k e K, introduced by formulas (22), Section

111.2, family 43 = {4}, 4(0 = e -6` ek (t). Since + a > 0, S6 c

L2(0, co; U). Let g o, be a set of sequences {ck } determined by

equalities
ck (u,	 k e K, u E

We write R oo for the set of pairs of functions of the form

{. co

Z a„ 9„, E 12.9„},
„=1 „=1

with coefficients a,, and bn expressed via {c k } E 4 03 by formulas (14).
The following theorem is proved in the same way as Theorem 3.7.

Theorem 111.3.12. Inclusions are true:

U .4(T)
T>0

U R(T) R. ,
T>0

U 4(T) D 40o;
T>0

U R(T)D
T>0

An analog of Corollary 8 takes place.

Corollary 111.3.13. Theorems 12 and I.2.1(d), imply the equivalence of
Cl, 	 UT>0 R(T) 71/,-. +1 and inclusion 6°6 E (W) in space
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To conclude this chapter, we would like to present one statement ab o
the relationship between the controllability of systems of the first and

• second orders in time.

Theorem 111.3.14. If system (12) is M-controllable in time T, then sy
(1) with the same operators A and B is M-controllable in any time

This assertion immediately proves to be correct in view of Theo
11.5.14, Theorem 3(d), and Theorem 10(d).
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IV
Controllability of parabolic-type systems

Let S2 be a bounded domain in 11 N with the boundary F. We assume F
to be regular enough to provide the existence of all the subjects considered
below. In some cases, the requirements for the smoothness of F will be
made more precise. Set Q 	 x (0, T), E = F x (0, T), T > 0. Let

ao ,	 E L'(C2), (i, j = 1, . , N), a ii = a,,, and for some K > 0 let an

estimate

E a,; (x)	 _� x E	 (0.1)

be valid almost everywhere in Q for each {} N 1e 5-8N.
Recall the notations from Section III.1 and take space P(I) as !I

and HUS2) as V. Then V' is 1-1 - '(0) (Lions 1968). For yo, tfr c in(S2),
we set

a[co, tlf]	 E	 ai,(x) — — dx +	 ao (x)90 dx.	 (0.2)
Op 4 /

,,;=, o 	ax i ax;

It is not difficult to see that the introduced bilinear form a[9, ill] satisfies
the conditions of Section III.1; one may choose any number larger than

ao L.(0) for a. We write A for the operator generated by form a[9,

Its eigenfunctions cp„, n e NI, are the solutions to the homogeneous
Dirichlet boundary-value problem for an elliptic equation

Ago,,	 AnC 0 in 0, 4 Ir=O.

In what follows we may suppose that cp,, are real. From this point on, we

use the same symbol A both for the operator and for the differential

173
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expression
N	 a	 a(,9

Acp = — E — a••(x) 	  + ao(x)9ax;

corresponding to it.
We need the additional restrictions on F and coefficients au and a

make the eigenfunctions of operator A sufficiently smooth and
eigenvalue estimates

(03

large enough n to ensure the validity of some of the results in this an
the next chapter. Conditions guaranteeing these properties may be foun
in Agmon (1965), Birman and Solomyak (1977), and Mikhailov (1979)
Without special indications, we consider them true wherever necessary-

In Theorems 1.2 and 2.1, one also needs to demand coefficients au, -a
and boundary F to be of class C'. This makes firm the result on the
uniqueness of solutions of elliptic equations used there (Landis 1956
Harmander 1976). The additional smoothness of coefficients is also
required to demonstrate those assertions in Theorems 1.3, 1.7, 2.6, an
2.7 associated with the case N 1, in which the asymptotics of An are
exploited.

In this chapter, we present the application of the approach developed
in Chapter III concerning the controllability of systems described b
parabolic equations. Section 1 treats the cases of control with spatia
support in the domain Q, both infinite dimensional and finite dimensional
including pointwise. In Section 2 we investigate boundary control with
spatial support on the boundary F or on a part of it. For this we use the
results of Chapter II about the properties of exponential families and a
number of specific properties of equations of the parabolic type.

To explain determination, we cite the example of the Dirichlet problem
and what is reflected in taking V as space Ho()). The Neumann problem
is treated similarly; one should only take V for 1-1 1 (0). The controllability
for some other types of boundary conditions may be accomplished in the
same way. The results of the studies for all the types of boundary-value
problems are expressed similarly in terms of the EY,. spaces introduced in
Section III.1.

For various kinds of boundary conditions, spaces W, correspond
differently to the Sobolev spaces Hr(Q) and their subspaces Hat2).
However, several common relations that also take place are described
briefly.

An X n2 /N
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Let H(1;142)c V c H'(Q), A be a self-adjoint operator in L2 (S2) generated
y form (0.2) specified on V and A c( = A + al, 2(A! 12) = V. As in
ection 111.1, let W,., r E IR, denote a scale of Hilbert spaces associated with

Aerator A„, W = g(,4,72 ) for r > 0.
Depending on the smoothness of boundary F and coefficients a ii , ao a

umber P is defined such that for all r E [0, f] the embeddings

1-1,S(Q) c W, c Fi r(f2) 	 (0.4)

hold. For instance, for V = WI = 111) (12) we have

W2 = '(A) = H 2 (S-2) n 1/W2),

W4 = (A 2) = {f e H4(f) I f E In(Q), Af eHUS2)} .

or all the functions f c W,., f =	 cncp,„ relations

T1 2
Ilf II	 Ilf II wr	[ E lc,,1 2 (An+ a) r (0.5)

are correct. From this formula one should exclude the case of half-integer

r for which the norms of Hr(Q) and Wr are related in a more complicated
manner (see, e.g., Lions and Magenes 1968: chap. 1).

For positive even r (0.4), (0.5) follow from formula (0.1) and the
sufficient smoothness of the boundary and coefficients (see, for instance,
Berezanskii 1965). For an arbitrary positive r they are proved by means
of the interpolation (Lions and Magenes 1968: chap. 1). Proceeding with
the dual spaces, it is possible to show that (0.5) holds also for r E [ — P, 0],
r 0 a half-integer.

1. Control with spatial support in the domain

1.1. Infinite dimensional control

Let H = On), V = H,(S2), V = H'(f�), and U = H = L2(S2), and let
B be an identity operator in H. State y(•, t) of the system is determined
as a solution of the problem

{ay

at + Ay =

y1E = o,

with the initial condition

u E = L 2 (0, T; U) = L 2 (Q),

y(x, 0) = 0	 in CI	 (2)

in Q,
(1)
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The solution to problem (1), (2), as well as to other initial bounda
value problems in this and the next chapter is understood withinAh e
framework of the scheme described in Chapter III.

From Theorem III.1.1 (for the case r = 1) it follows that for every u e
there exists a unique solution y c C(0, T; H452)) of problem (1),:t2
(we used equality W1 = V; see Section HU).

For system (1), we have

<BY, con >. =	 n)L2(a),	 v E U = L 2 (11).

Therefore, family	 {en}„c°.- 1 	all introduced in Section III.1 by formul
(23) in our case is of the form e„(x, t) = e - Ant Qn (x).

Theorem IV.1.1. System (1) is B-controllable relative to space HUQ)'`in
any time T > 0.

PROOF. By Theorem III.3.3(a), the assertion of the theorem being proved
now is equivalent to condition 	 {Nen} e (LB), where P,, =	 + cc) 1 !2

In view of the orthogonality of {yo n } in L2(S2), families g and	 are
orthogonal in V. It remains to check whether S'o is almost normed. Indeed

II Neal = (1„ +
e - 21,,t dt = {(An +	 1(1 — e 21a 	 � 0

T
o	 a T,	 = 0

Hence, °Nen Vow X 1, n e N. The theorem is proved.

Consider now the case when the control acts not on the whole domain
SI but only on part of it. Let n' be an arbitrary nonempty subdomain of

U = Off), all = L 2(0, T; U).

Theorem IV.1.2. For U = L2(S2'), system (1) is W-controllable relative to
space 1/,;(0) in any time T > 0.

PROOF. Operator B in this case is determined by

<By,	 = (v, 9),2 (f� . ) ,	 u E L2(ff), Q e LAS)).

Therefore, family d' is written as in the previous example but with the
other space all, and family c' is not orthogonal in it. Family' (defined in
Section 111.3) coincides in form with eo : e = {p„ con (x)}. By Theorem
III.3.3(e), the required assertion is equivalent to the inclusion g e (W) in
space L2(0, T; LAST)) for any T > 0.
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t us recall that we write 2„ for the eigenvalues of operator A taking
to account their multiplicity, so that different elements of sequence R,}
ay coincide in their numerical value. Along with this, we later use

another notation for the spectrum of A as well. Let p„, n E N, be different
eigenvalues of this operator. The multiplicity of eigenvalue y„ is denoted
by 1cn and corresponding eigenfunctions by conj,	 =	 • • • , Kn•

.6  Let us rewrite family S' in the form fe nil, è„; (t, x) = r,, e - "" cp„i (x),
+ c)" 2 . Suppose that for some sequence {co} e e2

E E cnien; R __o in L2(0, T; L 2 (51'))•
n=1 j= 1

hen for any function f c L 2 (S2') and every g c L 2(0, T),

CO 	 Kr,

E E Cnjrn(Tnj) f )L2(111 (C IL° , 01, 2 (0, T) = 0 .

n=1 j= 1

	e - "^ t r E 	 (co n 0n	 Cnj., nj,	 L2(fr) 
Ro000

n=1	 j=1
in L2(0, T).

By Theorem 11.6.3 and estimates (0.3) it follows that

E C„j((Pnj)	 = 0
i =

Because f is arbitrary, we find

tfr n = E cniconi = 0
j=1

for allneN.

in L 2 (12'), n E N.

Together with conditions On = µ„t/i„ in Q, 	 = 0, this implies On = 0,
in n, n e N (see Landis 1956; HOrmander 1976). Since functions Tn.; are
orthogonal in L 2(C2), the latter is possible if only {c„ j} = 0.

We have demonstrated that g c (W) in L 2(0, T; Off)) for any T > 0
and thus proved Theorem 2.

As can be seen from the proof, the theorem is also valid for a class of
so-called bilinear controls u(x, t) = f(x)g(t); f E L2()'), g c L2(0, T), f
and g being controls, that is narrower than L 2 (0, T; L24)).
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1.2. Finite dimensional control

In contrast with the preceding subsection, let

U = Cm,	 Bu(t)	 X bp up (t),	 by e LAO), up e L2(0, T).
P= 1

The system state is determined as the solution to the problem

{ 
ay
--a-t- + Ay = Bu	 in Q,

yl, = 0,	 u e olt = L2(0, T; Cm),

with initial condition (2).
In this case, <Bu(t), 9„>, = (u(t), ri n )c.,„ where rin is a vector from

Cm with the components 13„, fir,. (bp , ao,- n )L2(S1)• Therefore, family e' has
the form

	

{tin exp( — An t)},	 n e N.

Accounting for the multiplicity of the eigenvalues (as in Theorem 2), we
write family a' as

{/7„, exp(	 j = 1,	 ,	 n c N, gni c Cm,

Theorem I V.1.3. The following statements are correct.

(a) If sequence {Ku } is unbounded, then system (3) is not W-controllable for
every finite T.

(b) If sup lc K < co, then for any T > 0, system (3) is W-controllable
if and only if m > K and for all n e N

rank [(bp , cio '  KM„ = Kn•

(c) For N > 1, system (3) is not M-controllable for every T.
(d) For N = 1, conditions (4) (which in this case, by the force of equalities

K,, = 1, take the form	 0, n e N) constitute a necessary and
sufficient condition of system (3) M controllability for any T.

PROOF. (a), (b). By Theorem III.3.3(e), the W controllability of system (3)
is equivalent to the property 67'e ( W). The linear independence of family

serves as a necessary condition for the latter and is equivalent to linear
independence in Cm for any n e N, of vectors g„; , j = 1, . . . , Kn , corre-
sponding to a single exponential exp(— pu t). If for some n K„ > m, then
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these vectors are linearly dependent, and system (3) is not W-controllable

for every T.

If K„ < m, then linear independence of vectors 	 j = 1, . . . , K„ is
equivalent to relations (4). Thus, conditions (4) are necessary for system
(3) to be W-controllable. Let us prove they are sufficient. For this we
show conditions (4) to provide inclusion g E (W). Suppose that for some
sequence fa„1 1 E (2 series E„, ; ann; converges weakly to zero in space

L2(0,	

ye

0, T; Cm),	 e,,i (t):= (an + a) 112 ri n; e - "^`.

Introduce vectors

a„,	 a„ (An + a) 1/211n1

and denote the components of vector an by 4, p = 1, . . . , m. Then series
En e - "` converges weakly to zero in L2(0, T) for all p = 1, . . . , m.
Therefore, by Theorem 11.6.3, an = 0 for all p = 1, . , m; n E

Under conditions (4) it follows that an; = 0 for all i = 1, . . . , Kn ; n c N.
Assertions (a) and (b) of the theorem are proved.
(c) Let N > 1 and system (3) be M-controllable in time T. Then by

Theorem III.3.3(d), family g is minimal in L2(0, T; Cm). Since mapping
f(t) F-* e - a t f(t) is an isomorphism of space 0/t, family 4, :=	 C ('''' ) `}
is also minimal in V. As .1..„ + a > 0 for all n, 	 c L 2 (0, co, Cm) and
is minimal in this space. Theorem 11.2.4 then implies set YR, + a)}
to satisfy Blaschke condition (B) (see Subsection 11.2.2.2). Therefore
E n (An + a) -1 < oo, which is impossible for N > 1 owing to estimates
(0.3).

(d) It is clear that conditions ri„ � 0, n E NI, are necessary for system (3)
M controllability. Let us show that they are also sufficient. By the
force of Theorem III.3.3(d) it is enough to demonstrate that for ti n 0,
n E N, family is minimal in space L 2(0, T; Cm) for any T > 0. Since
for N = 1, 2„ X n 2 , then E n (/2„ + a) - < oo and hence set {i(2,, + a)}
satisfies the Blaschke condition. Therefore by Theorem 11.2.4, family
gc, is minimal in space L 2 (0, oo, Cm) and then, by Proposition 11.4.28,
family gt , and with it S, is minimal in L2 (0, T; Cm). The theorem is
proved.

Remark IV.1.4. Results close to assertions (a) and (b) of the theorem are
put forth by Sakawa (1974).

Remark IV.1.5. For the case m = 1, assertion (d) of the theorem has been
obtained (Fattorini and Russell 1971).
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Remark 1 V.1.6. If conditions (4) are not fulfilled, then assertions (a), (b)
of Theorem 3 may be complemented by the statement

C1L2(l2) U R( T )	 L2(S2).
T>0

To prove it, let us suppose that for some n E NI we have E .7z 1 ai rinj

The function f = E7•2_ 1 own; is orthogonal to R(T) for all T. Indeed, let
g E R(T), then it may be represented as (see formula (22) of Section

g = E Cnj9nj ,

	 cni = (u, ?Li e "^ (T - ` ) )qt .
n,j

Therefore,

(g, f )L 2 (0) = E cnj ai = u, E ay,„; e - lin(T- t ) 	= 0.
j= 1 	 j=1

1.3. Pointwise control

Let the system state now be determined as the solution to the initial
boundary-value problem

+ Ay(x, t) = E up (t)S(x — xp) in Q,
p=1

y1 E = 0; xp eS2, u , eL2 (0, T), p = 1, . , m;

y(x, 0) = 0 in Q.

First of all, we clarify which space can be used to define this solution
properly. To make use of the results of Section III.1, we represent the
right-hand side of the first of the equations (6) in the form Bu(t),
u(t) e U = Cm and find out for which q operator B: U nig is bounded.

Operator B is specified by the equality

<Bu(t), 9› * = E Up (09(Xp ).
	 (8)

p= 1

Therefore,

I< Bu(t),(19 >* 1-< 11 u(t)1 1 c- 11 9 11co. 	 (9)

Let domain S2 satisfy conditions providing the validity of the embedding
theorem (Nikol'skil. 1969): for s > N/2 we have HAM c C(S2) and

i1911c(ri) -< II rP Hu .(n)-
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Then (9) and (0.5) imply that B E Y(U, WO for q < — N/2. From Theorem

III.1. 1 we now conclude that for any function u e = L 2 (0, T; Cm) there
exists a unique solution of problem (6), (7) such that y E C(0, T; kfir ) for

< —N/2 + 1.
Thus the control problem (6) may be treated within the framework of

the general scheme formulated in Chapter III. To study its controllability,
we exploit the results of Chapter II. In view of (8), family S has in
this case the form feni l, e,,;(t)=- ti,,j e - P^', where n c N, are different
eigenvalues of operator A, similar to the preceding subsection, while

are vectors from Cm with the components 9„ ; (x,),ni, j = 1, • • • ,
1,	 , rn. Family 6' (see Section 111.3) is of the form {r„e„i },
(s„ + cc)r, r < — N/2 + 1.

Theorem IV.1.7. For system (6) all the assertions of Theorem 3 are valid
With the replacement of equalities (4) by

rank [9nj.(xp )]P= 1 	(10)

The proof of this theorem repeats exactly that of Theorem 3 and is
based on Theorems 111.3.3, 11.2.4, and 11.6.3

Remark IV.1.8. For system (6) the statement of Remark 6 remains
correct, with conditions (4) replaced by (10). The proof runs smoothly
without any modifications.

2. Boundary control

2.1. Infinite dimensional control

Let F, be a nonempty, relatively open subset of boundary F, F0 := F \ Fi .
Set E„ = F0 x (0, T), E, = F 1 x (0, T) and consider a system

y

a

{0
—+Ay=0 in Q,

YIEa = Y1E, = u;

t

u	 = L 2(0, T; U) = L2(0, T; L 2(r1 )) = L 2 (E1)•

As earlier, we take the zero initial condition

y(x, 0) = 0	 in O.

(1)

(2)
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Initial boundary-value problem (1), (2) falls into the scheme of Chap
III if one specifies operator B as

(Bu(t), cp>, -= — 	 u(s, 
t)09(s) 

ds.
r,	 Ov

Here,

aco(s) 	N a,;(s) 39(s) cos(n(s), xj),= E
av 	 ,,J=1 	 ax,

T;14
141
t.

where n(s) is the outward normal vector to boundary F at the point s
Such a definition of the solution to problem (1), (2) has a simple

justification. If the problem has a classical solution, then integrating by
parts one can easily show that it satisfies an integral identity

(

--
Of 

+ Af)y dx dt =u 
f 

ds dt
at	 av

for any smooth function f(x, t) such that f(•, T) = 0, f 1,, = 0. For a
generalized solution this identity gives operator B of the form (3).

Let us find out the value of q for which B e WO. Since, by the
condition, u( • , t) a L2 (1-1 ), and, by the trace theorem (Lions and Magenes
1968: chap. I) Ocp/av e L2(F) for cp a Hqn), p > 3/2, then one concludes
from (3) that B e 2'(U, WO for q < —3/2. Theorem III.1.1 implies the
existence, for any function u e V, of the unique solution to (1), (2) such
that y e C(0, T; W.) for r < — 1/2.

According to the general scheme presented in Chapter III, the study of
system (1) controllability reduces to the investigation of properties of a
vector exponential family. Formulas (3) and (23) of Section HU yield
family 4' = {en } c 0/./ of the form

en(s,t) = 
acp,,(s) 

e -4`, n E N
av

(For convenience, we omit the sign — as not affecting the properties of
family 6 that we are interested in.) Family g (see Section 111.3) has the
form {r„ e n } with rn = (1„ + a) 112 , r < — 1/2.

Theorem IV.2.1. System (1) is W-controllable in any time T > 0.

PROOF. By (e) of Theorem 111.3.3, the assertion to verify is equivalent to
the inclusion e E (W) in space L2(0, T; L2 (1-1 )) for any T > 0. Accounting
for the multiplicity of eigenvalues An (as we did in Section 1), we represent

( )

(5)
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atnily r as

ferd}, e„; (s,	 (un	 cx)r/2 89nj(S)

Ov
j-= 1, . . , tc,„ n c

Suppose for some sequence {c„,} G e2
R K.

E 	 cni en; 	0	 in L 2(0, T; L 2 (F1 ))•
n=1 J=1

Then for any function f E L 2 (F1 ) and any g E L 2 (0, T)

co 	 K 	
/ 	 o 	 •E E c„; (,,,n+ c)r,2  (NJ , f) 	 (,— 1,t

g/L2(0, T) = 0.
n=1 j= 1 	 aV 	 L2(r1)

In other words,

R	 K"

E e - "" t (iin + ar 2 E cni 	 , f(aVni

n=1 	 j=1 	 aV 	 L2(1-1) 	
R • oo

0	 in L 2 (0, T).

By Theorem 11.6.3 we find from here that for all n e N

Kn cnic9ni , f
= o.

j=1 	 av	 L2(n)

Therefore, since f is arbitrary,

(P	a nj 	V C„ .,	 = 0 	 in L 2 (1-1 ), n E N.	 (6)
.i=1	 Ov

It is known that conditions

A9 = 29 	 in n, = 0,   

imply 9 = 0 in O. This result had been obtained by Landis (1956) for the
case when coefficients au , ao of operator A and boundary F belong to the
class C 2 and was generalized later (HOrmander 1976) for class C'. Hence,
from (6) it follows that

Kn

E Cnj(pnj -= 0
j=1

in S2,nE N.

This, in view of the orthogonality of 9,,j in L2p, provides cni = 0 for all
j and n. Thus, we have demonstrated that 6' E (W) in L 2 (0, T; L2 (F1)).
The theorem is proved.
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Remark I V.2.2. It is seen from the proof that the theorem holds even
a class of bilinear controls narrower than alt:

u(s, t) = f(s)g(t), 	 f E L 2(1-1), g e L 2(0, T).

Remark I V.2.3. W controllability of system (1) is equivalent to
following uniqueness theorem: conditions

( )

= o.
E 1

{

--°z + Az = 0
at

zl z 	0,
az
av

in Q

= 0, 	 Zit 	 e q (SI), 	 q > 1/2,
Ei

imply z = 0 in Q.
This equivalence is demonstrated with the help of integration by parts

(see Lions 1968: chap. 3). Indeed, together with (1), (2) consider an initial
boundary-value problem

at 
+ Ac = 0 	 in Q,

1£ = 0,	 --, T E I// , tfr E	 (n),	 q > 1 /2 .

The following chain of equalities holds (all the further integrals are
understood in the sense of action of functionals <•, >,„ and Theorems
III.1.1 and 111.1.2 are exploited):

	

0= 1 1'19 + Ay dx dt = 	 ---- + ,‘I y dx dt
Q at 	 42 	 at

y
a
 ds dt + 	 y(x, T)L1/(x) dx.
v

So

	

u(s, t)
a(s, t) 

ds dt = 	 y(x, T)tli(x) dx.
av,

Let In y(x, T)0(x) dx = 0 for all u e L2 (E 1 ). Then (8) provides

a
av

If uniqueness theorem (7) is correct, then = 0 in Q. Hence, cli = t=T = 0,
and system (1) is W-controllable.
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Now, let function z satisfy the conditions stated in (7). Then, instead

of (8), we have

y(x, T)z(x, T) dx = 0	 for all u e L2 (E 1 ).

If system (1) is W-controllable, this gives z( • , T) 0 and, consequently
0 in Q.

Thus, our approach to the study of controllability allows us to obtain
uniqueness theorem (7) as well. Theorems of such a kind have been proved
by Mizohata (1958).

Remark IV.2.4. For the case when boundary F and coefficients 'g ip a,
belong to the class C', the statement of Theorem 1 may be found in
Schmidt and Weck (1978).

Remark I V.2.5. If set F1 is large enough, one is able to prove a "stronger"
controllability for system (1). In Chapter V, B controllability is inde-
pendently proved for a hyperbolic system differing from (1) by the
replacement of Dylat by 0 2y10t 2 . The result is valid if set F 1 and coefficients
of operator A satisfy the conditions of Theorem V.2.6. The other form of
conditions that provide this result was obtained by Bardos, Lebeau, and
Rauch (1992) and formulated after Corollary V.2.7. In both cases, it
follows from Theorem 111.3.14 that system (1) is M-controllable in any
time T > 0.

Remark IV.2.6. The result of Remark 5 can be formulated in another
interesting form. Let us consider system (1) with nonzero initial condition

y(x, 0) = yo in a, y c LAS2).

System (1) is said to be null-controllable in time T if for any yo E On)
there exists control u e all = LAO, T; LAF,)) such that y(x, T) = 0. A
review of some results on null controllability can be found in Russell
(1978), who also shows that the problem can be reduced to the problem
of moments

where
c„ e " T = (u, n N,

{c„} e L 2 , 	 en(s, t) — 
a9.(s) _e ^, ,	 e = {e,,} c all.

Dv
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The problem of moments has the formal solution

u = E cn e .' On ,

n=1

where {On } is the family biorthogonal to e. If the conditions discussed
in Remark 5 are satisfied and the corresponding hyperbolic system is
B-controllable (or E-controllable relative to some *f;), then it follows from
Theorems 111.3.10 and 11.5.14 that the series converges in and so system
(1) is null controllable. Note that null controllability for the heat equation
y, = Ay with control acting on a subdomain c 0 or on a part of
the boundary F, c F has been proved by Lebeau and Robbiano (1994)

For some special cases results dual to null controllability (i.e., obsery
ability and prediction results) were obtained by Mizel and Seidman (1969
1972); and by Seidman (1976, 1977).

2.2. Finite dimensional control

Consider a system described by the initial boundary-value problem

—
ay 

+ Ay = 0 in Q,
Ot

y(s,	 = E up(ogp(s);
p=1

y(x, 0) = 0 	 in a 	 (10)

Here, up e L2 (0, T), gp E L2(F), p = 1,	 , m.
System (9), (10) is a particular case of system (1), (2) with F1 = F,

U = Cm. Therefore, the statement of Subsection 2.1 concerning the
existence of a unique solution y e C(0, T; 14/), r < 1/2, remains to be
correct for problem (9), (10). Formula (3) for this case provides

<Bu(t),	 = — E up(t)	 gp (s) a9n(s) ds (n(t), 11.)cm ,
p=i	 av

(11)

where g„ are vectors from Cm with the components — f3f,

( )

p =

So vector families e and on whose properties system (8) controllability
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depends, are

e = trio e -21, 	 = {(2  + ar 2ti„ 4 '1 ,

or, with the account for the eigenvalue multiplicity (see Theorem 1.2),

e(^lnj e - 141,	 = {(y„ + ct)r 1217„; e - ""`1,	 j = 1, . . . , IC n , n E	 .

Theorem I V.2.7. All the assertions of Theorem 1.3 and Remark 1.6 are
valid for system (.';') providing that conditions (4) of Section IV.1 are
replaced by

a(P
	1p=1

rank[(gp, ni 	= Kn.

av L2(r) = 	 Pc„

The proof of this theorem is similar to the proof of Theorem 1.3 and
Remark 1.6.

Remark I V.2.8. It is possible to repeat word by word Remarks 1.4 and
1.5 regarding Theorem 7.

2.3. Pointwise control

Let a system be described by the initial boundary-value problem

+ Ay = 0
at	

in Q,

m
(13)

y(s, t)1, =	 up(t)6(s — s p );
p = 1

up e L2 (0, T),	 sp E F,	 p = 1, . ,m,	 y(x, 0)	 in 0, (14)

which is understood within the framework of the scheme of Chapter III.
For this, we set (compare with (8) of Section IV.1 and (3))

<Bu(t),(P>.= —	 up(t) a9(sP ) 	u = Cm.	 (15)
p 	 av

As in Subsection 1.3, one has to find out for which q the inclusion
B E 22(U, WO holds. From (15) it follows that

09

av

(12)

I<Bu(t), (P >.I ^ I I u(t)I I cm -̂  II u(t)II c.11911c iab.
C(r)
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Just as in Subsection 1.3, we make use of the embedding theorem
(Nikol'skii 1969) to estimate the right-hand side of this inequality by

11 14011 Cm 119 II HVIP
	 1 > 1 + N/2.

Therefore, B e Y(U, WO for q < —1 — N/2. Hence, by Theorem III.1.1,
for any function u e all = L2 (0, T; Cm) there exists a unique solution of
problem (13), (14) such that y e C(0, T; Wr) for any r < —N/2.

Formula (15) implies also the reduction of the study of system (13)
controllability to the investigation of the properties of families

= { , ,,j CAntl,	 -65 = {(pn + a) 112 77„;

r< —N/2,	 j = 1,	 , K„,	 n E N,

where q„; are vectors from Cm with the components

Ocpni(sp)
,	 p = 1, . . . , m.

av

Theorem IV.2.9. All the statements of Theorem 1.3 and Remark 1.6, remain
true for system (13), providing that conditions (4) of Section IV.1 are
replaced by

• s	 p=1a
rank[  9" ( P ) = Kn .aV 	 j=1 ..... Kra

(16)

The proof is similar to that of Theorem 1.3 and Remark 1.6.

Remark 1 V.2.10. As mentioned at the beginning of this chapter, along
with the Dirichlet problem, one is able to treat the Neumann problem or
the third boundary-value problem (different types of boundary conditions
on the different parts of the boundary are also admissible). The control-
lability study for these problems proceeds just as it does for the Dirichlet
problem, and the analogs of the statements proved in this chapter are
valid. In the case of Neumann boundary control, the form of family g
changes: factor 9„(s) instead of 09„(s)/av becomes involved.

Remark I V.2.11. For the case of a one-dimensional domain C2 (N = 1),
operator (—A) is prescribed by the differential expression

—

a
ax 

( 
a(x) —

ay

ax
) — ao(x)y (17)
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(and homogeneous Dirichlet boundary conditions). It is also possible to
consider an operator defined by the differential expression

2y
a(x) — — a o(x)y,

ax 2

which proves to be self-adjoint in space 4 a (C2). For such an operator,
the assertions of this and the next chapter about the controllability of
corresponding systems for N = 1 remain true; one should only substitute
scalar products of L 2 (f2) for scalar products with the weight 1/a.

In the same way, we can replace the "models" of systems

a2yat + Ay and — + Ay
at 	 at2

by
2Oy 	 ay

	p(x)— + Ay and p(x) 	 + Ay
at 	 at2

with p E c(n) and p(x) > 0 in CI in all the problems considered in Chapters
IV and V.

Remark I V.2.12. Controllability problems for systems described by
parabolic-type equations with time delays were investigated in Avdonin
and Gorshkova (1986, 1987, 1992), whereas optimal control problems for
such system were investigated in Wang (1975).
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V
Controllability of hyperbolic-type systems

In this chapter we study the controllability of systems described by partial
differential equations of the hyperbolic type under various control actions.
The basic notations, such as n, F, Q, A, co, and 2„ bear the same meaning
as in Chapter IV. We are mainly concerned with the homogeneous and
nonhomogeneous Dirichlet problem: problems with other boundary
conditions may be treated similarly.

1. Control with spatial support in the domain

I.I. Infinite dimensional control

Consider a system determined by the initial boundary-value problem

0 2),

ate + Ay = u

yl E = 0,	 u e o/i = L2 (Q),

with zero initial conditions

y(x, 0) = yt (x, 0) = 0	 in S2.	 (2)

Solutions to problem (1), (2), and to other problems of this chapter are
understood as in Section 111.2. Initial boundary-value problem (1), (2)
becomes immersed in the scheme from Section 111.2 if set H = L2 (S2),
V = HRS2), U = L2 (S2), B being an identity operator in H. As it follows
from Theorem 111.2.1, for any u e problem (1), (2) has a unique solution
such that

{y, .17,} e C(0, T;	 'j = M(I)	 C) LAS2).

in Q,
(1)

190
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Corresponding to the system (1) family of exponentials

= {e,} c 0/1 = L2(0, T; L 2 (S))),	 keK=Z\ {0} ,

has the form (see Section 111.2 and Subsection IV.1.1)

ek (x, t) = cp iki (x) e"kt, (C°1 = 	 — k = WO •

The fact is taken into account here that the point zero may be, by the
well-known property of elliptic operators, only an isolated eigenvalue of
operator A. Throughout this chapter we assume that all the eigenvalues

of operator A differ from zero. If /iv = 0 for some j E N, then terms cp iii (x)

and upui (x) are present in family e (see formulas (18), (19), (22) of Section
111.2). As mentioned in Section 11.5 (Remark 11.5.8), the investigation of
the properties of such families may be accomplished within the framework
of the described scheme, and the assumption made does not influence
the degree of generality of conclusions about the controllability of the
considered systems.

Theorem V.1.1. System (1) is B-controllable relative to space ^11/i in any

time T > 0.

PROOF. By Theorem 111.3.10, the assertion we are proving is equivalent

to inclusion e e (LB) in space L2 (0, T; L2 (C2)) for any T > 0. Since family
19„1, n e N, constitutes an orthonormal basis in space LAO), the elements

of family e corresponding to different values of Iki are orthogonal. For
any function f e L 2(Q), representation

Go
f (x, t)	 E fn (t) n (x),

n=1

00

II f Ilboo = E L II
n=1

takes place. Therefore inclusion e e (LB) is equivalent to the statement:

for any functions f„ of the form

f„(t) = e"` + o „ e -h°"`

uniform in n e N estimate II fn1122 ( 0, r) X 1;1 2 + (a_„1 2 holds. This, in turn,
is equivalent to the inequality

,;)1.2(o,r)1sup 	 +	 < 1,	 „± (t)	 e "nt .

MEN II n II L 2 (0, T)II 	 II L 2 (0, T)

We denote the expression under the sign sup by d„. Since functions

and	 are linearly independent for any n then d„ < 1. It is easy to

(3)
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calculate that

d = 
sin con T. 

for A.„ > 0.
co„T

	By the force of (0.3), Chapter IV, ),„	 oo and we obtain inequality (3).
Theorem I is proved.

Now let Q' be an arbitrary nonempty subdomain of domain f2, and
control u(x, t) differ from zero only for x E f2'.

Theorem V.1.2. If U = L2(s2'), then reachability sets R(T) of system (1)
satisfy equality

U .R(T) =	 (4)
T > 0

Moreover, this equality is valid for a class of bilinear controls u(x, t)
f(x)g(t); f a L2(s2'), g a L2(0, T) (f and g being controls), that is narrower
than L2(0, T; L2 (12)).

PROOF. For the proof of the theorem, we need notations u n) K„, and 9,,j
for spectral characteristics of operator A (namely, the eigenvalues, their
multiplicities, and eigenfunctions), introduced in Section IV.1 and regularly
exploited in Chapter IV. Set v„2 = an , v_„= —v„, and represent family g
corresponding to system (1) for U = L2(12') in the form

	{el,;} c V = L2(0, T; Off)),	 ek;(x, t) = 9 1 ,0(x) e ive,

j = 1 , • • • , Kik!,
	 k a K.

Let us also introduce family go c V. = L2 (0, co; L2(C2')) (see Theorem

111.3.12) consisting of the elements 9 1 ,0(x) e l(vic" )`, 6 > ,Tx (a is defined
in the beginning of Chapter IV). By Corollary 111.3.13, (4) is equivalent
to inclusion 45 E ( W) in space 02/.. Further, we follow the line of arguments
from the proof of Theorem IV.1.2. Suppose that for some squarely
summable sequence {cki}, any function f E V(S2') and any g E L2 (0, oo)
the equality

i(Vk it3)tE E ck;(9 1 ku , f)01-1 , ,k.	 ,un}(0,.0)= 0
keK j=1

(5)

holds. Agmon (1965) has shown that tc„ increases no faster than some
positive power of /1.„. Taking estimate X n 2 IN into account, for some
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R > 0 we obtain

E ck;(91ku, f)L2 ( f2' )
j.= 1

(here f is fixed). Therefore, equality (5) and Theorem 11.6.4 imply

K,k,

E ck; (91kip f)11,2 ( f2' ) = 0
j=1

for all k e K. As in the proof of Theorem IV.1.2, from this we derive
{ckj} = 0. That is why Si e (W) in 6240 .

The proof of the assertion concerning bilinear controls can easily be
obtained in the same way as the proof of Theorem 111.3.7. Theorem 2 is

proved.

Specific properties of the hyperbolic equations were almost not used in
the proofs of Theorems 1 and 2. Let us briefly describe some results of
other approaches that use these properties.

Sharp sufficient conditions of the B controllability of system (1) with
control on S2' have been obtained (Bardos, Lebeau, and Rauch 1988a,
1988b). Roughly speaking, the system is B-controllable in time T (in space

VI ) if every ray crosses Q' x (0, T). If there is a ray that does not cross

x [0, T], then the system is not B-controllable in time T.
It is easy to see that the system may not be B-controllable in any time.

For example, that is the case if A = — A, S2 is the unit disk, and K2' is a
subdomain such that K2' c

As for approximate controllability, the system turns out to be W-
controllable for any subdomain C2' in time T > 2T*. Here T* is the time

of filling of the domain SI by the waves from C2':

T* = inf T supp y(•, T) =
ue L2 (0, T; L 2(fr))

Q.

This result can be proved with the help of Russell's result (Russell 1978)
about connections between approximate controllability and a uniqueness
theorem for the hyperbolic equations. In the case of analytic boundary
and coefficients, it is the well known Holmgreen—John theorem. For the
nonanalytic case, it has been recently proved by D. Tataru (1993).

The problem of M controllability for control acting on a subdomain
remains open.

IkIR
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Hypothesis. If system (1) with control on 12' is W-controllable in time T,
then it is M-controllable in the same time.

1.2. Finite dimensional control

Let

U Cm,	 Bu(t) = E bp up (t),	 by e L2(12),	 up E L2(0, T),
p=1

	p =	 ,m.

The system under consideration is described by the boundary-value
problem

azy
0t2 + Ay = Bu	 in Q,	

(6)

YIE = 0,	 u e =-- L 2(0, T; Cm),

with zero initial conditions (2). For initial boundary-value problem (6),
(2) the assertion of the previous Subsection about the existence of a unique
solution

y, yi } e C(0, T;11/i)

is, of course, true.
We write the family g corresponding to system (6) either as {up, ' e'kt },

k e K, or in the form

=1, • • • ,	 k E [K,

where vectors ri„, ?Lif e Cm are the same as in Subsection IV.1.2; the
components of tin are (b p , „)L 2 (11) , p = 1, . . . , m.

Theorem V.1.3. The following statements are correct.

(a) For N > 1 and every T > 0 system (6) is not M-controllable.
(b) For N = 1 system (6) is not M-controllable if

dx

	

T < To lm,	 To := 2
a(x)

[function a(x) is defined in Section IV.2, formula (17)). If T To /m,
then for any r > 3/2 one is able to choose functions b p , p = 1, ,m,
in such a way that system (6) becomes B-controllable relative to space
Yl/r. (for the definitions see Section III.3)].



NMI IMO INN WO IIIIIII MIS MIN OW MR

1. Control with spatial support in the domain 	 195

(c) If conditions

	rank [(b p , W nj,1, 2 (fl)] 11: 11 	  = x„,	 n E
	

(7)

are not satisfied - in particular, if sequence {K„} is not bounded - then
system (6) is not W-controllable for any T. Moreover,

CI U .R(T) =
T>0

(d) If equalities (7) are valid, then

Cl	 U ge(T) =
	

( 8 )
T>0

(e) If equalities (7) are valid and vectors ti n obey the estimate,

11 11,,I1c-	 exp(
— Eil w.1), 	 n E

with some e > 0, then system (6) is W-controllable in any time T > 0.

PROOF.

(a) Suppose system (6) to be M-controllable for some T > 0. Then, by
Theorem 111.3.10, family e is minimal in space L 2(0, T; Cm). Therefore,
family 1 = 	 ei(wk±')`1, 6 > \AC, is minimal in the same space as
well. Consequently, family go is also minimal in space L 2 (0, co; Cm).
Then, by Theorem 11.2.4, set {co, + satisfies the Blaschke condition
(see the definition in Subsection 11.1.2.2) E (0,;-2 < co, which contra-
dicts for N > 1 the estimate A„X n 2 IN .

(b) Let N = 1, T < To /m, and system (6) be M-controllable in time T.
Then, in view of Theorem 111.3.10, 6* e (M) in space L 2 (0, T; Cm). For
N = 1 all the eigenvalues of operator A are simple, so by Theorem
11.5.1, family E.= {e iwk 1 },	 > m/2, is minimal in L 2 (0, mT).

On the other hand, eigenfrequencies co, are known (Naimark 1969:
chap. 2, n. 4.9) to satisfy the relation

cok = 	 + 0 ( 1 ).
2irk

	T o
	 (9) .

Therefore, by Corollary 11.4.2 family E cannot be minimal in L 2 (0, mT)
for mT < To.
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Theorem 11.4.16 provides us an even stronger statement: name
family E can be represented as a unification E0 u E 1 , in which E 0

a Riesz basis in L2 (0, mT), card E 1 co.
Now, let T > To /m. Take functions by in the form

b p(x) = 	
1

t =o  (Im +
	  t49 m+ p(x);	 P = 1 ,	 m,

where y is an arbitrary number more than 1/2. Vectors nYti n then ru
cycle after cycle over a standard basis { 1,} in Cm. Family 6" falls int
m orthogonal series:

= U gp , 	ep	
+ pt} 	 (1

P=1	 (1rn	 p)Y

The minimality of 6° in L 2 (0, T; Cm) is equivalent to the minimality
each of the families Ep = {e''-+ Pr} iEl< in L2(0, T).

By the force of equality (9), family Ep is asymptotically close t
family

exp[i —21t 	+ p)t)
To

The latter becomes an orthogonal basis in L 2 (0, To /m) after bein
complemented by function

exp(i
. 
—
2n 

pt
To

corresponding to 1 = 0. Then by Lemma 11.4.1 1 and Proposition
11.4.13, E p becomes a Riesz basis in L 2(0, To /m) after any function o

	

the form e im ,	 {oh„, + p } jEK is added to it. Hence, by Theorem 11.4.26
Ep e (LB) in L2(0, T). Therefore, with the account for representation
(10) family e is minimal in space L 2(0, T; Cm). Moreover, from (10
it follows that family {11c1 7 ek}icel<5 ek E ', constitutes an .-basis in
L2 (0, T; Cm). So, according to Theorem 111.3.10, system (6) is B-
controllable in time T relative to space 1V(p„) for p„ = nv. One easily
checks that in the notations of Section 111.2 this space is exactly 16,
where r = y + 1.

(c) If conditions (7) are not satisfied, family ' is linearly dependent in
L2(0, T; Cm) for any T > 0 (see the proof of assertions (a) and (b) of
Theorem IV.1.3). Just as when proving Remark IV.1.6, one constructs
element f c orthogonal to R(T) for all T > 0.

leK
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In view of Corollary 111.3.13, (8) is equivalent to inclusion 4, c (W) in
space L2 (0, CO; C m ), where e6 11 e i(v"" )`1, 6 > jc--(. The demon-
stration of this inclusion (just as in the proof of assertions (a) and (b)
of Theorem IV.1.3) reduces to the verification of conditions (7) (which
are necessary and sufficient for linear independence of the family) and
the implication

ockp e i(v,+ ib)t

k= — n

Klk

Cekp 	 E aki(bp,91kI)L2(n);
j= 1

0	 in L 2 (0, co) 	 ta kp l = 0. 	 (11)

	p = 1, ... ,m; j	 1, ...	 k E

taki l is an arbitrary squarely summable sequence. As in the proof of
Theorem 2, one verifies that lakp l -<jkI R for some R > 0. Therefore,
Theorem 11.6.4 actually yields implication (11).

(e) Let us check the formulated conditions for vectors ri n to provide
inclusion e' e (W) in L 2(0, T; Cm) for any T > 0. In the same manner
as in proofs of assertion on (d) and Theorem IV.3.1(a), (b), the proof
of this inclusion reduces to the direct application of Theorem 11.6.5.

Theorem 3 is proved completely.

Note that assertion (e) was obtained earlier by means of some other
method (Triggiani 1978; see also Tsujioka 1970, with a close result). Our
proof stresses the role of the ( W) property of a vector exponential family
in the study of DPS controllability.

8t 2

{ a z),

with zero initial conditions (2). As in the previous Subsection, here
U = = L 2(0, T; Cm). Let us first elucidate the space in which initial
boundary-value problem (12), (2) is correct. In Subsection IV.1.3 we
demonstrated the right-hand side of the first equation (12) to be represented

1.3. Pointwise control

Consider now a system described by the boundary-value problem

	+ Ay = E ti p (t)5(x — x p )	 in Q,

yl z = 0;	 xp eS2,	 up e L2(0, T),

p = 1 (12)
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in the form Bu(t), B E 2(U, WO, with q < —N/2 and

<Bu(t), cp>,, = E up (t) 9(xp ),	 E W_ q .	 (13)
p=1

Therefore, Theorem 111.2.1 implies that there exists a unique solution to
problem (12), (2) such that for r < —N/2

{y, yt } a C(0, T; 1//'r+1)5 	 "C:+1 	 W+1

We now demonstrate that, making use of the specific form of operator
B, this result may be essentially sharpened. Note that the theorem stated
below is proved by Y. Meyer (1985) for the case N = 3, and we follow
the scheme invented by him.

Theorem V.1.4. There exists a unique solution to initial boundary-value
(12), (2) such that {y, y,} a C(0, T; -fro - N)12). This result cannot be improved
in class C(0, T;

The proof exploits the transposition method and the Fourier method.
Let T' > 0, set Q' = S2 x (0, T'), E' F x (0, T'). Let w(x, t) denote a
solution of initial boundary-value problem

2a,
+ Aug = 0	 in Q'

Ot2 	(14)

4°1E' = 0,	 evIt=T' = WO , 	41}11t=T' = 46 1.

ma so ago am Erni no am as mil
1. Control with spatial support in the domain

By means of the Fourier method we obtain

a,(x0, t) =	 an cos 
con

 (T' — t) + bn 
sin con (T' — t)1

Con(xo)
n=1	 (14

Using Euler's formulas series (17) may be written as

co
w(xo , t) = E Ea:	 + c() (1 —N" 	+	 (A„ + cx) (1- "1)14 e - k)nt]cp,,x 0 )n =1

• and, by virtue of (16), inequality

E (1«:1 2 + Icc,N 2)< co
n =1

is valid. Now from Meyer's theorem (Proposition 11.1.22) we conclude
that the assertion of the lemma is equivalent to estimate

sup	 E 	 19.(x01 2 (2,, + cx)(l —N)/2 < CO.
1EN 1 ^ 0).<1+1

Thus we have to show that for some positive constant C'

E	 19.(x0)1 2	 cr-i.	 (18)
is.„<1+1

Introduce a spectral function of operator A (see, e.g., H8rmander 1968):

Lemma V.1.5. Let aio e 147(N-1)/23 (-1) 1 a Way— 3)/2/ xc,E n. Then

a)(x o, •)	 T')

and estimate

II60(x0, •)111,2(0,r)	 ■1 — 1)/2 + II 4°111(/V — 3)/21

holds.

PROOF. Let us expand terminal data ‘0 0 , eo l in series

too(x) = E an9n(x),	 z1(x) = E bn9n(X),
n=1 	 n=1

where

IanI 2(
\\2n

 + «)(N— 1 )/ 2 = I1 4°011 2(N — 1)/2 <
n=1

to
E Ibni 2(2.+0)(N -3 )/ 2 = ikoill(N-3)/2 < co.

n=1

e(x, x', 2) = E 9,(x)9,(X').
2„<

Inequality (18) is rewritten as

(15) .1
e(x0, x0, (I + 1 ) 2) — e(xo , x0 , / 2) ^ ciN - 1 	 (19)

It is known (Agmon 1965; Hörmander 1968; Birman and Solomyak
1977) that

e(x, x, 2) = wiz + (A( - 1)12), (20)

with constant K depending on the coefficients of operator A, domain 0,
and being independent of x E Q. This immediately implies inequality (19)
and thus proves the lemma.

(16) All
Returning to the proof of Theorem 4, let us apply the Fourier method

to problem (12), (2). As is easily seen from (16), (17), Section 111.2, and
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(13), for T' e [0, T] we have

T) = E yn(T")9„(x), 	 Mx, T') = E 5/.(r)Con(x), (21
	n=1	 n = 1

	m 	 T'

	yn(r) = E 	 (P.(x,)14,(t) 
sin (14(T' - t) 

dt,
j•

(22
n= 1 0 	 con

	rn 	 T'

	

S Jr) = E 	 co n ocoup(t) cos con (T' - t) dt.
P = 1 0

Relations (17), (21-23) together with the definition of spaces IV, lead to
equality

(23

By Lemma 5, functions w(xp , •) belong to L 2(0, T') and thus the
right-hand side of equality (24) is a linear continuous functional relation
to cu() E W(N— 1)/21 cut e W01_3 )/2. Hence, inclusions y( • , T') E W(3 _ 1,012,

t(* T') E W(1 —N)/2 are established. Estimate (15) also implies inequality

II {Y(', n, Yt ( T)}11(23- N)y2 -̂ 	 Cm)

with u(t) = {up (t)}7,`,_. 1 .
Pair {y(• , T'), yt (• , T')} is easily checked in a standard way using (24),

to be continuous with respect to T' in the 3 _ N)/2 metrics. Similar
arguments were given in detail in the proof of Theorem III.1.1.

Let us proceed with the study of system (12) controllability. Denote .
j = 1,	 , K„, n E N, vectors from cm with the components 9„; (xp),'

p 1, 	 , m. Formula (13) provides corresponding family e = {eki} c 6P/
for system (12) to have the form ekj (t) = q iku e`°", j = 1, . . . , K iki , k e K,
while family 6° (see Section 111.3 for the definition) is

rn =(lin+ oc) s,

(compare with Subsection IV.1.3).

1 - N
s - 	

4

Theorem V.1.6. For N > 1 the following statements hold.

(a) For any T > 0 system (12) is not M-controllable.
(b) If conditions

rank [9„; (xp )] 11:1 	 x = K„,	 n e	 (25)
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are not valid, then for system (12)

yk3 - N)/2 U MT) � 117i3 -N)12.
T> 0

(c) If conditions (25) are fulfilled, then

Cl-K3-N) U MT) = "11/(3 - N)I2 •
T>0

PROOF. The proof of (a), (b), and (c) is similar to that of the
corresponding assertions (a), (c), and (d) of Theorem 3.

Let us deal in more detail with the case N = 1, S2 = (0, 1).
Suppose first that m = 1, that is, that there is only one scalar control

action u applied at the point x, E CI So, let the system be described by
boundary-value problem

y(0, t) = y(1, t) = 0,	 u E L2(0, T),

a 2y a (

at2  ,Tx a(x) —ax) — ao(x)y + u(t)6(x — x 0),	
(26)

with zero initial conditions (2);

dx
To • 2

,/a(x)

Theorem V.1.7. The following statements are correct

(a) For T < To system (26) is not M-controllable.

(b) If cp„(xo) = 0 for at least one value of n E N, then system (26) is not
W-controllable for any T and, more to the point, Cl UT > o R(T) •

(c) If 9„(x 0) 0 0 for all n E N, then for T To system (26) is M-

controllable.
(d) System (26) is not UM-controllable relative to 11/i for any T > 0.

(e) For system (26) .02(T) = .91(To) for T To .

PROOF. If cp„(x0) = 0 for at least one value of n, then family

= {cp iki (x0) e'kt1,k6K

is, evidently, linearly dependent. In such a case it is not difficult to
construct explicitly an element orthogonal to P1(T) for all T (see Theorem
1.3(c) and Remark IV.1.6). This proves assertion (b).
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If 49„(x o) 0 0 for all n e N, then the minimality of family S is equivalent
to the minimality of family E = {e iwk`}. By virtue of asymptotics (9) and
Corollary 11.4.2, family E is not minimal in L2(0, T) for T < To . By the
force of Proposition 11.4.13, family E u {e' } (co 0 cok , k e K) is a basis
in L 2 (0, To). Therefore, E is an 2-basis in L 2(0, T) for T To and g is
minimal in this space.

Family S' = {4} biorthogonal to g has the form eat) = [9„(xo)] -10 (t)
where {0,} is the family biorthogonal to E. That is why

114110 (0,T ) X I (Pik' (X0)1 1 .

By the force of the asymptotics (Naimark 1969: chap. 2, sec. 4.10),

x

9.(x)	
2
	  4 , 1 sin 2"

	ds	 own)
(27)

/To a(x)	 To o ✓a(s)

sequence {1 CO n (X0)1 - 1 }„E101 is not bounded. To prove this, we apply for

p —2 ix°  ds=
To o .N/a(s)

the following assertion (Cassels 1957: sec. I.1): for any e > 0 there may
be found m, n c N, sucn that 1#n - ml < e. So family 6 is not *-uniformly
minimal in L2(0, T) for any T. Assertions (a), (c), and (d) follow now from
Theorem 111.3.10.

Consider moment problem operator / : u 1-* {qk } keK acting from space
L 2(0, T) to ? 2 according to the formula

T

qk =	 u(t) e kuk (r-i) dt,	 k e K, T > To .
0

Since, as already mentioned, family {e iwki} is an 2-basis in L 2(0, T) for
T �_ To , by Theorem I.2.1(a), operator / maps L 2(0, T) onto the whole
(2. Set 4(T) of coefficients {cat)} (defined in Section 111.2) isomorphic
to set .W(T), has the form ck (T) = tp iki (xo)qk . This just proves assertion (e).

Remarl. V.1.8. From the theory of Sturm-Liouville problems, each func-
tion cp„ is known to have a finite number of zeros on the interval (0,1).
Therefore, conditions 9„(x 0) 0 0, n E N, may be violated for only a
countable set of points x o c (0, 1).

We can complement assertions of Theorem 7 using the following results
of the metric theory of Diophantine approximations.
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Proposition V.1.9 (Cassels 1957: sec. VII.1).

(a) The inequalitylfln — mI < (n log n) -1 has infinitely many integer solutions
(m, n) for almost all fl.

(b) The inequality fin — mI < (n log 2 n) -1 has only a finite number of
integer solutions (m, n) for almost all 13.

Theorem V.1.10. For almost all x, E (0, 1), system (26) is not UM-
controllable relative to -117; for any r < 2 and T > 0.

PROOF. The theorem can be proved in the same way as assertion (d) of
Theorem 7 using asymptotics (27), Theorem 111.3.10 and Proposition 9(a).

For the case of equations with constant coefficients, when we know the
explicit form of 9(x), some positive results concerning exact controll-
ability of system (26) can be obtained. We give two examples in this
direction.

Example V.1.11. For almost all x0 E (0, 1) and any r > 2 system,

{

a2Y = a2 Y + u(08(x — x o ),
at2	 axe

y(0, t) = y(1, t) = 0,	 u E L 2 (0, T),

is E-controllable relative to space Ir,.. in time T > To ,= 21.

PROOF. By the force of Theorem 111.2.3, the assertion is equivalent to the
fact that the problem of moments

Ck	 (u, ek )L 2 (0 , T) ,	 k E III , 	 (28)

has the solution u E LAO, T) for almost all x, 2 2r- 2

	

if Eke ErS	 Wik	 < CX) •
Here,

ek c = {cp iki (x0 ) e	
2irk

K 	 c0k To

2 2nn
Con(x)	 ,	 sin 	 x.

TO 	To

From Proposition 9(b) it follows that for almost all x0 19 1 , 1 (x0 )1 -1 	cojid

for any s > 1. As mentioned in the proof of Theorem 7, family {e'kt}, EK is
an 2'-basis in L2(0, T) for T > To . Therefore, the family {0,} biorthogonal
to it is also an .29-basis in L 2(0, T). Problem of moments (28) has the
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formal solution u(t) =
converges in L2(0, T),

E ickI 219k(x0)i
keg<

EkeK Ck[91kI(X0)]
since

—2 _< 	 I,
L., IL- kI 2 ql 2s

10k(t). For s < r — 1 this seri

E 141 2 1 041 2r-2 < 00.
keK 	 keg<

Notice that the example was studied in fact in Butkovskii (1976).

Example V.1.12. The system

{ 0 2	 0 2y

8t 2y 8x2 
+ u(t)3(x — 1/2),

y(0, t) = y x (1, t) = 0,	 u E L2 (0, T),

is B-controllable in space 1//i in time T > To •= 21.

PROOF. In this case

2n(k — 1/2)
cok 	

To

2 27r(n — 1/2)
9,7 (x) = 	 sin 	 x

N/To	 To    

and so frp iki (//2)I = .i2/To . Therefore, family {cpiki(x0)e iwk `}kEK forms
...?-basis in L 2(0, T) for T > To that proves our assertion.

Let us now dwell on the case of several control actions. Let a syste
be described by boundary-value problem

0 2y a 	 Dy\

8t2 =	 Yz(x) -07c) a°(x)Y
E up (t)(5(x — x p ),

p= 1 (2
y(0, t) = y(1, t) = 0;	 xp e (0, 1),	 up e L 2(0, T).

Family 6' = {ek } c L2(0, T; Cm) corresponding to system (29) is of t
form ek (t) = q k e'kt, k e K, where fik is the vector from Cm with -4
components yo lki (xp), p = 1, , m.

Theorem V.1.13.

(a) For T < To /m system (29) is not M-controllable.
(b) System (29) is not UM-controllable relative to space 	 for any E;
(c) Assertions (b), (c), and (e) of Theorem 7 are true for system (29)'

well with the replacement of scalars (p. (x 0) by the vectors tin.
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The proof of assertion (a) is similar to the proof of (b) of Theorem 3.
The proof of (b) is based on the following theorem (Cassels 1957: sec. 1.5):
for any positive c, cc 1 , 	 , (x„, there may be found natural numbers n,
q l , . 	 q„„ such that lapn — qp i < e. From asymptotics (27) it follows that
infk IlekII = 0. Taking into account formula (10) of Section I.1 we conclude
that family e is not *-uniformly minimal in L 2(0, T; Cm) for any T. The
roof of assertion (c) is just like that of Theorem 7.

2. Boundary control

2.1. Infinite dimensional control

s in Section 2 of Chapter IV, let the boundary of set CI be represented
as a unification of two sets: r F, u 1-1 , with F1 being a nonempty,
relatively open set, F0 F . Set E, = F0 x (0, T), E l = F1 x (0, T)
and consider system

{ (3 2y

ate + 
Ay ---- 0	 in Q 	 x (0, T ),

(11

YIE. = 0, 	 YIE, = u ;

u E all = L 2(E 1 ) = L 2(0, T; U), 	 U = L 2 (1-1 ).

As before, we choose zero initial conditions:

	

y(x, 0) = y,(x, 0) = 0	 in ft 	 (2)

An integral identity corresponding to problem (1), (2) reads

la
2f

y(
at2 

+ Af) dx dt = — u 
av
—af ds dt

E.

for any f e H 2 (Q) such that f(•, T) = fr (• , T) = 0, f I E = 0. This provides
rlts with the grounds to treat problem (1), (2) in accordance with the
scheme from Section 111.2, defining operator B by the relation

<Bv, cp>,, 	 — 	 v(s)
a9(s) 

ds, 	 v L 2 (F1 ).	 (3)
Ei	 ev

It is known (Lasiecka, Lions, and Triggiani 1986) that the solution of
(1), (2) satisfies {y, y,} e C(0, T; 11;3), = L2(0) e H 1 41). From formula
(3) and Section 111.2 we conclude that exponential family e {4} c
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corresponding to system (1) has the form

(s) •ek (s, t) = 	iki e`) t, 	 k e K.
Ov

Family 65 (see Section 111.3) prescribed by family S and space Iffo (in the
notations of Section 111.2) has the form	 = -41 = {(A iki + a) -1/2'

(number a is determined in the beginning of Chapter IV). As in Section
IV.2, for convenience we have changed the sign (see formula (3)) of
the members of the families and 0, which certainly does not affect any
of their properties that are pertinent to the controllability study.

For the analysis of these properties the following statement is required.

Lemma V.2.I. For any function f E L2(F) an estimate is valid

f(s)
O9n(s) 

ds
r 	 Ov

(2„ + 	 f II L2(r); 

the constant in this inequality is independent of both f and n e N.

PROOF. Consider the boundary-value problem for an elliptic equation

(A + c<I)z ,----- 0	 in 52, zi r = f.

A unique solution to this problem z e LAO) is known to exist (Lions 1968.
chap. II) and 114 L 2 (n) -< II f II L2 (r ) •

Accounting for the equality 49,2 1, = 0, we have

ag9. 	0	 (A + ocI)ap„ dx = — J r z 	 ds + 	 z(A + al)co n dx.
av

So that

„9 ds = 	 + a) 
o

ap„dx.fr f 0
Ov 

Therefore,

J f dsr av -̂	 +	 L2(0)119.11L2(0)	 (2„ +	 f II L2 (r ) . 

Remark V.2.2. For the third boundary-value problem, a similar estimate
was obtained in Plotnikov (1968).
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Making use of the notations introduced in Theorem 1.2, we rewrite

amilies e and as

e — f acoiku(s)

	

	},	 ={., 091ku(s) ,iv,,}
av	

av

1/2 .

1= 1, . . 	 k Efly, 	 rk = (12 1k1 	cc) —

Theorem V.2.3. For system (1) an equality takes place

Cl U g?(T) = 16.
T>0

Moreover, this equality is valid for a class of bilinear controls u(x, t) =

f(x)g(t); f E L 2(F1 ), g E L2 (0, T) (f and g being controls), that is narrower

than L2 (E1).

PROOF. In view of Remark 111.3.13, the demonstrating equality is equivalent

to inclusion to E (W) in space L 2 (0, co; U) where

0,5 = {rk 	
av	

5 	 >e
io,+ia)t

Suppose that for some sequence {c,,} e2

R 	 Kiki

k=1 .i...1Cki 	
aV 	 R - . co

rk a `Plkli e i( vk +i6)t 	 , in L 2(0, oo; U).

Then for any function f a L 2(F1 ) and any g a L 2(0, co)

E ckirk (a 9 I ki
j , f

) 	 (4)
Kik,

(evk -1- '6) % 9)L20, co = 0.
keg< j=1 	 aV 	 L2(ri)

Moreover, we would like to use Theorem 11.6.4 as applied to family

1(vk''3)1. When proving Theorem 1.2, we have noted that the growth of

K iki is not faster than some power of Iki. Since I2„I X n" it can be shown

that

Ivki -< Ile	 for some Q > 0
	

(5)

recall that numbers vk are different). By Lemma 1,

(

091ku f
av L (n)

+ «)11fIlL2 (ri)• 
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Taking (5) into account, we arrive at

	

cur,C9lkli , f) 	 IkIR
j = 1	

av
	L2 WO

for some R > 0.
Thus we have checked that the conditions of Theorem 11.6.4 hold. By

the theorem, from equality (4) we obtain

j = 1 	 av1..2(ro

1( 1 ,4

kj-= 0,(°91kii
	

k e

As function f e L2 (F i ) is arbitrary, this implies

j =1 
Ckj ovlid = 0	 in L2 (F1 )

for all k e K. As already demonstrated in the proof of Theorem IV.2.1
the latter equality provides coefficients ck; that turn to zero for all k and j
Hence, -4 e (W) in L 2 (0, a); L2(F1 )).

The assertion about bilinear controls follows from the proof if we take
into account the arguments used in Theorem 111.3.7. Theorem 3 is proved.

As in the case of control on a subdomain the stronger result on
approximate controllability takes place. The system (1) is W-controllable
in time T > 2T*, where T* is the time of filling of the domain n by the
waves from F1 :

T* = inf{T I U supp y(-, T) = ^2}.
ue L2 (0, T; L 2 (1-1))

This result can be obtained by Russell's (1978) approach using the
uniqueness theorem proved in Tataru (1993) (cf. with the case of control
on subdomain S2' in Subsection 1.1).

M controllability in the case of control acting on a part of the boundary
in general is still an open problem.

Hypothesis. If system (1) is W-controllable in time T, then it is M .

controllable in the same time.

The hypothesis is supported by the following examples for the wave
equation y„ = Ay.
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(a) C2 is a rectangle, 1) = (0, a) x (0, b), F1 = (0, a) x {0}. Here, T* = b.
Fattorini (1979) proved that the system is M-controllable in time 2b.

(b) S2 is annular,

= {(x 1 , x 2 ) 1 r2 < xi + 4 < 1}, 	 r = {(x 1 , x 2) 1 x? + xz = 1}.

Here, T* = 1 — r. Avdonin, Belishev, and Ivanov (1991b) have shown
that the system is M-controllable in time 2T*. Note that the system
is B-controllable in time 2.11 — r 2 (Bardos, Lebeau, and Rauch
1992).

If set I-1 is large enough, a considerably stronger controllability of
system (1) takes place. For the case when operator A is (—A), several
interesting results have been obtained by D. L. Russell (see the survey in
Russell 1978 and the references therein). Our exposition is based on the
results obtained by the Hilbert Uniqueness Method suggested by J.-L.
Lions (1986, 1988a, 1988b).

The system dual to (1) (see Theorem 111.3.11) is

at 
+= 0 	 in Q,

C IE = 0 , 	 (6)
i(x, 0) = 0 0(x), 	 ti/t (x, 0) 	 1//,(x),

e HUS1),	 c1 E LAO).

For an observation v, one takes 00/avi,.

Proposition V.2.4 (Lions 1983: chap. 2). There exists a positive constant
C1 depending on the coefficients of operator A and domain S2 such that the
solution to problem (6) satisfies inequality

2

	

-̂ C1(11 1P0 11(11) + 1101111 2(n)).
	 (7)

1.,2 (E)

Ho (1986) has shown that the converse inequality is correct under some
assumptions as well. Let the coefficients of operator A satisfy conditions
(in addition to those formulated at the beginning of Chapter IV)

•
aci `i E 	 (S1)	 for all i, j, k = 1, . . . , N.
Oxk

ati/

ay
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Set

fl = vrai sup E
xef2 	 (1,j,k =1

R = sup Ix — x0J,	 r, = tx e F I (x — xo , n(x)) R, > 0),
xef2

where n(x) is the outward normal vector to F at the point x, and x o Is
some arbitrary point of space R N .

Proposition V.2.5 (Ho 1986). Let 13 < 2KIR (number K was introduced at
the beginning of Chapter IV). Then positive constants 1' and C2 depending
on A and S2 may be found such that for all T > 1" the solution to problem
(6) obeys inequality

2

aV L2(E+)
	 + 11g/11122A),

	 (8)

E + 	x (0, T),

So under condition /3 < 2K/R (note that it is obviously true for equations
with constant coefficients) the relation

2

X 1100 01 ,(0) + tfri 	 (9)
L2(2: +)

E 110(t1) ® L2 (^)))

is valid.

Theorem V.2.6. If coefficients of operator A and domain C2 are such that _
condition fl <2KIR holds; and F1 F+ , then system (1) is B-controllable
in time T relative to space *, = L 2 (S2) @ H -1 (S2) for any T >

PROOF. Applying to the given case the assertion and the plan of the proof ,
of Theorem 111.3.11 and using relation (8), we conclude that system (1) 
is E-controllable relative to lico for T 1'; that is, PA(T) 16. Since, as
already noted, .P(T) c Vo for any T > 0, the theorem is proved.

Corollary V.2.7. Family 6 = {"e k }, k e K,

ek(s, t) = (1 k1	 c0-
1/2 Nikl(S) 

av

constitutes an £°-basis in L 2 (0, T; L, 2 (1-1 )) for T > 1, F1 D F+ . This state-
ment follows from the previous theorem and Theorem 111.3.10.

Otlf

av
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The most complete results on exact boundary controllability have been
obtained by Bardos, Lebeau, and Rauch (1992) with the help of microlocal
analysis. Roughly speaking, system (1) is B-controllable in time T (in space
yro) if every ray crosses F1 x (0, T). If there is a ray that does not cross

x [0, T], then the system is not B-controllable in time T.

2.2. Finite dimensional control

Consider now a system described by boundary-value problem

a zy

at e

y(s, t)i, = E p (t)g p (S),
p=1

with zero initial conditions (2). Here, u p c L 2(0, T), p = 1, 	 , m, are the
control functions while functions gp E L 2 (F) are specified.

Since we are dealing with a particular case of nonhomogeneity of the
form yI E = u e L 2(E), the solution to problem (10), (2) as well as the
solution of problem (1), (2) satisfies inclusion {y, E C(0, T; *co ).

For system (10), U = Cm, = L2 (0, T; Cm). Formula (3) yields (com-
pare with Subsections 1.2 and IV.2.2) the corresponding family S' = tek l,
k e K, of the form ek (t) = q k e lw" where 11k is the vector from Cm with
the components

(a(p l k i 

P) L 2 (1)av p 1, . . . , m.

Having accounted for the multiplicity of the eigenvalues (see Subsections
IV.1.2, V.1.1, and V.1.2), we rewrite family g as {4 ;}, j = 1, , , k e K,
eki (t) = rik; e i vk t with the vector ?h.; from Cm, whose components are

(Nikii )

av V(r)

Theorem V.2.8. Let N > 1. Then

(a) for any T > 0, system (10) is not M-controllable;
(b) if conditions

m

	

rank [(gp, 
amn)1p=

'	 = Kn , 	 r%1E ,	 (10
	a v 	 = 

1

1  

+ Ay -= 0	 in Q,

(10)



NM • MI OM MN •	 • INN

212	 V. Controllability of hyperbolic-type systems

are not satisfied — in particular, if sequence {K„} is unbounded — then
system (10) is not W-controllable for any T. Moreover,

Cl. U ✓f(T) 016;
T > 0

(c) if equalities (11) are valid, then

Cl#6 U ( 1')
T > 0

The proof of this theorem follows the corresponding statements of
Theorem 1.3.

Now consider the case N = 1 in more detail. Domain f2 here is a
segment (0, 1) while its boundary, F, consists of two points x = 0 and
x = I. That is why we have two essentially different versions for system
(10): either the control is applied at one of the end points or at both
of them. Let us start with the first one. Thus, we have a system
described by initial boundary-value problem

{ a 2ya ( 	 ay
—= a(x)—) —
ate ax 	 ax ao(x)y	 in Q,

Ylx=0 = 0,	 yl x =, = u L2(0, T),	 y(x, 0) = y (x , 0) = 0.

As in Section 1, let
dx

To = 2
o (.,./a(x)

Theorem V.2.9. The following assertions are true.

(a) For T To, system (12) is B-controllable relative to space
*co = L2(0,1) .11— '(0, 1).

(b) For T < To, system (12) is not W-controllable. Reachability set gf(T)
is a subspace of infinite codimension in 16.

PROOF. In this particular case, formula (3) looks like

<By, tp>,, = —v(1)
09(1)

ax
and family e corresponding to system (12) is of the form

ei.,,,}
ax
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Family e'0 corresponding to family 6' and space' (for the definition see
Section 111.3) is

{ 	 }(21k1 + C)- 1/2 
a(p,k,(1)

 e 

i.kt

.

Numbers a(PRI(1)10x, k E K, differ from zero, and, by the force of the
known asymptotics (Naimark 1969: chap. II, secs. 4.5, 4.10),

(11 1k1 + C)-" 
a(Piki(i)

ax k E K	 (13)

As we noted while proving Theorem 1.5, family {e.'" constitutes an
2'-basis in space L 2(0, T) for T To . Formula (13) implies that family

possesses the same property. Assertion (a) now follows from Theorem
111.3.10.

For T < To , Theorem 11.4.16 allows us to choose a subfamily {e' k `} kEK.

from family fe"crI kEK in such a way that it forms a Riesz basis in L 2 (0, T),
and set OK \ K'l is infinite.

Assertion (b) now becomes a direct consequence of Theorem I.2.2(e)
and Theorem 111.3.10.

Remark V.2.10. Assertion (a) of Theorem 9 was proved, in fact, by Russell
(1967). Systems of a more general type — described by a non-self-adjoint
or nonregular boundary-value problem (in particular, systems with
infinite optical length) — were studied by Avdonin (1975, 1980, 1982).

Suppose now that the control actions are applied to both boundary
points; that is, the boundary conditions for system (12) are

y(0, t) = u i (t),	 y(1, t) = u 2(t);	 u,,, e L 2(0, T).

For such a system, the analog of Theorem V.2.9 is valid with the
replacement of T0 by T0 /2,

dx
T0/2 = 	

This statement is demonstrated in Section 4 of Chapter VII (there the
equation of string vibrations is considered, but this alteration does not
influence the essence of the problem).
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2.3. Pointwise control

Let N > 1 and the system be described by the initial boundary problem

{ 3 2y
Ot2 + Ay = 0	 in Q,

m

y(s,	 = E u (t)5(s — sr ),

with zero initial conditions (2).
As established in Subsection IV.2.3, such a nonhomogeneous boundary

condition is immersed in the scheme of Section 111.2 with operator
B Wq) for q < —1 — N/2.

Therefore, by Theorem 111.2.1 for any function u E = L 2(0, T; Cm),
there exists a unique solution of problem (14), (2) such that {y, y t } E
C(0, T; -K) for any r < —N/2.

Theorem V.2.11. The following assertions are valid.

(a) For any T > 0, system (14) is not M-controllable.
(b) If conditions

rank R9,,; (sp )]y: 11 	Kn,	 n	 (15)

do not hold, then for system (14)

Cl U R(T)	 r < — N/2.
T>0

(c) If conditions (15) are satisfied, then

Cl U .W(T)	 r < —N/2.
T>0

The proof of these statements follows that of the corresponding state-
ments of Theorem 1.3.

Remark V.2.12. As shown in the previous and the present chapters,
parabolic- and hyperbolic-type equations with various kinds of finite
dimensional control are not M-controllable if dim SZ > 1. The reason
is that corresponding vector exponential families are not minimal in
L 2 (0, T; Cm) for any m E J and T > 0, since the sets {b1„} and Icon + i}
do not satisfy the Blaschke condition. By the force of Theorems 111.3.3

214	 V. Controllability of hyperbolic-type systems

(14)

p=1
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and 111.3.10, the lack of M controllability implies a lack of E controllability
relative to Sobolev space with any exponent. These results seem to have
first been obtained by Avdonin and Ivanov (1989b).

Triggiani (1991) proved that the wave equation with finite dimensional
Dirichlet boundary control is not exactly controllable in L 2 (0) CD 11 - 1 (e).

Remark V.2.13. In Chapter VI we prove stronger results concerning the
lack of approximate controllability for the wave equation in a rectangle
with finite dimensional control. We expect these results to be valid for
hyperbolic equations of the general type.

Remark V.2.14. Regarding the results of this chapter, an analog of
Remark IV.2.8 proves to be correct: instead of the Dirichlet problem, one
is able to study controllability in systems with other boundary conditions
by the same approach.
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Control of rectangular membrane vibration

In this chapter we examine the controllability of a system describing
rectangular membrane oscillations under boundary and pointwise controls
of some type. With the aid of the explicit form of the eigenfunctions and
eigenvalues of the Laplace operator, we can now complement and sharpen
several results of Chapter V for this particular system, namely, those
pertaining to initial boundary-value problems. We also demonstrate that
for some kinds of finite dimensional control the system proves to be not
W-controllable in any finite time.

Section 1 is based on the work of Avdonin and Ivanov (1988, 1989b),
Section 2 on a detailed exposition by Avdonin, Ivanov, and Jo6 (1990).

1. Boundary control

1.1. Regularity of the solution

Let

a, b E il:R +;	 C1 = (0, a) x (0, b);	 r = af2;	 I-1 = (0, a) x {0};

I', = I- \ fi ;	 Ei = ri x (0, T);	 j = 0, 1 ;

and v be the outward normal vector to r. Consider a system described
by the boundary value problem

a 2z a2z	 a2z
+ in Q,at 2 ax2	 ay2

{ 	

az
(1)

= 0,
av El

= u E L2(E 1 ),

216
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with zero initial conditions

z z, = 0	 for t = O.	 (2)

A generalized solution to initial boundary-value problem (1), (2) of class

L2(Q) is understood in the sense of an integral identity

z(w„ — Aw) dx dt = 	 uw ds dt
	

(3)
E i

valid for any function w E H 2 (Q) such that

wlEo = 0,
	 Ow

ay

The existence and uniqueness of such a solution is proved easily by the
transposition method (Lions and Magenes 1968). We now demonstrate
that the solution to (1), (2) is essentially more regular.

According to the scheme of Chapter III, system (1) may be represented

in the form
z„ + Az = Bu. 	 (4)

Here, A is the ( — A) operator in space L2(Q) with the domain

g (A) = fy9 e H 2 (CI) = 0, 
a991,0 	 av =  

Its eigenvalues and eigenfunctions are conveniently enumerated by means
of two indices m, n E N. It is easy to check that they are

2 	 ir 	 2

.1„,„ --= 
a

In) + 	 (n — 1/2)) ,

n
Comn(x, = 

2
	 sin mx cos —n (n — 1/2)y.
ab a

As in the previous chapters, we let W., r E Fk, denote the space of
functions f on S2 such that

f(x, y) = E 	 II f II 	 E Ic„,n1 2 2.. < CO .
rn, n

One is able to show that the relations

=0,	 w = w, = 0 for t = T.
Ei

Han) c W c Hr(c),	 II f II wr II f Hr(S1) , 	(f E wr) 	 (5)
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hold for all r > 0 (see (0.4) and (0.5) of Chapter IV). In the latter relation
expressing the equivalence of norms, one should exclude half-integer r.

	Set U =	 all = L 2(0, T; U). By the force of equality (3), operator
B in formula (4) is given by

<By, cp>,, = J v(s)9(s) ds	 (6)
r,

(compare with (V.2.3)). From the embedding theorem, it follows that

1191r1 lli. 2(ro"‹ 11911w, 	 for cp c W r < 1/2.

Therefore, by Theorem 111.2.1, the solution to initial boundary-value
problem (1), (2) satisfies inclusion {z, z,} e C(0, T; 11/;1 ) for any q < 1/2
with * = Wq Q "117. _,. So, by (5), z a C(0, T; H 9(C1)).

This regularity result is valid for arbitrary domains n c RN and elliptic
operators A (under certain assumptions regarding the regularity of the
operator coefficients and the domain boundary).

In the case N = 1, it is possible to show (Avdonin and Ivanov 1984)
that

{z, zt} a C(0, T;11 1 (0) ED L2 (0)).

If SI is a ball in R N, A = —A, then

{z, z,} E C(0, T; H 213(0) II -113(0))

(Graham and Russell 1975). For our case, the following theorem is valid.

Theorem VI.1.1. For any u E L2 (E 1 ) there exists a unique solution to
problem (1), (2) such that

{z, z,} a C(0, T; H 314 (S2) e H 14(C2)).

	PROOF. Set u)„,k = (sgn 	 m E N, kaK = Z\{0}. Formula (6)
implies

family g = {emk } = {B*9miki e ic'mk t }

to be of the form

2 sin 71 0k' e""

	

emk(x, =	 =
Jab a

We will establish, for all u E all, t E [0, T], the validity of the estimate

E i(u, emk)L2(0,t ; u)I 2 Itümk I 1 / 2 -‹ II U 11 Z 2 (0, t; U)• 	 (7)
m,k
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The assertion of the theorem will follow then from Lemma 111.2.4 and
• relations (5). Note that since H'(1 -2) = Liao) for 0 < r < 1/2 (Lions and
Magenes 1968: chap. I), then Wr = Hr(Q) for —1/2 < r < 1/2.

To continue the proof, we need the following assertion.

Lemma VI.1 .2. For any f E L 2 (0, T), t E [0, T], relation

E 1(f, e""")c ( 0, 0 1 2 -‹ N71 f 11,2(o.,)
kE K

holds.

PROOF OF THE LEMMA. Let us fix m E NJ and decompose sequence

{(0„,k1kEIK V {C0m0} to M:=entier (lin) subsequences kr 0, nEZ1 gni = Wm,j+nM ,

j = 1, . . . , M. Elementary calculations give inequality

71

3 Ja2 a4/b2

For a countable set a c C + and any function g E L2 (0, oo) an estimate
	 2 	1

(g, e i"')L2 (0, ) .\/2 Im	 < 32 + 64 log 	 1191220, co
6(a)

is valid (in Subsection 11.1.3.12, the formula was cited for the case of simple
fractions instead of exponentials). Let us apply it to a = {pnj + i/2}„ ER

and use Lemma 11.1.19. Continuing function f by the zero value from
(0, t) to (t, cc), we arrive at

2
l(f, e

i("+ I/ 2)-r
)1, 2 (0,01

2
	C(a, 011 r L 2 (0, t)

neZ

and so

.
II f II b(0.0E icf, ei"^t)L 2 (0 , 0 1 2 	C(a, b)eT

nel

for f E L 2 (0, T), t E [0, T]. Summing up these inequalities over j = 1, . , M,
we obtain the assertion of the lemma.

We are now able to complete the proof of Theorem 1. Let {u„,(T)}„ N

be Fourier coefficients in the expansion of function u(x, t) over family

{ 2/a sin(n/a)mx}. Then

tea

(u, enik)L 2(0,t; U) = .\/21b(u„„ e	 (8)
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1 2 p (exp(i 
7E
- mt), exp(ko mk t))
a	 L2(o, T)

2. (10)   

Set
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Using an obvious inequality Icomic,I 1 / 2 m -1 / 2 and applying Lemma 3 to
functions u m , we find

2	
Kum, e'w—T)L20,,,,i 2 komk1 -112 	E in -112 Eon*, ek° '"")L20,01 2

u k 	 m, k

	m- 1 / 2
in
„,.1/2 	 2

11 um II L2(0,1) = 11 14 1122 (0a; U)*

Thus, in accounting for equalities (6), we have demonstrated relation (7)
and with it Theorem 1.

Let us now show that the assertion of Theorem 1 cannot be improved
in the scale of Sobolev spaces. Namely, for any p > -1/4 there exists
control u E (it such that relation

tz(' , T), z,(• , T)} HP ± 1 (1) ED HP(S2)
	

(9)

holds for the solution to problem (1), (2) corresponding to this control.
We take the control in the form

u(x, = E y„, sin -11 mx exp(i -11 m(T - t)),
m= 1 	 a	 a

CO

E Iv.1 2 < 00.
m=1

Then using formulas (16) and (17) of Section 111.2 we have

II(z( • , T), 	 E komkI 2Pikx, T - t), emk(x, t))1,2(O, T)I 2
m, k

(exp (i 
a
- mt), exp(iwmk t))

T)

A simple calculation shows that

it
K mk CO mk — — m.

a

cmk = T e -IK,„kr/2 sin(Kna T/2)

K„,,, T/2

Since for k > 0

	

= -n

am

[j 1 + (a(k - 1/2))2 	< it m 1 (a(k - 1/2)y na(k- 1/2) 2

	bm )	 _I a 2	 bm 	 2b2m
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KnaT < if

	k — 1/2 < 	
/ a T/2

Now from an elementary inequality

sin x 2
	 > ,	 x (0, 1,

X 	 1l 	 2

we derive

ICmkI2 > 
( .2T

for 1 < k < 	 \fin + 1/2.	 (11)
aTI2

To verify relation (9) it is sufficient to demonstrate that

(z(• , T), z i (• , T)) Wp ,	 —1/4 < p < O.

For such p and k -< m we have

	

Iconal 2P >- m2P 	(m, k	 (12)

Now (10)—(12) implies

T), zr(• , T)11 2 >- E iymi 2 m 2P E ic.k1 2 >- E IY.1 2 m 2 P✓ n.
m = 1 	 k(m) 	 m = 1

For p > —1/4, sequence {y m } e e' 2 may be chosen in such a way that

co
E iymi 2m2p+ 1 / 2 = 00

m = 1

and hence, (z(• , T), z,(• , T)) Wp .
Results close to Theorem 1 and other results concerning the regularity

of solutions of nonhomogeneous boundary-value problems can be found
in Lasiecka and Triggiani (1981, 1989a), and Lasiecka, Lions, and
Triggiani (1986).

1.2. Lack of controllability

Let us now proceed with the question of system (1) controllability. From
the results of Fattorini (1979), M controllability of system (1) follows
for T > 2b. We confine ourselves to the case in which control u is
u(x, t) = b(x)v(t),b e L2 (0, a) being a specified function, v e L 2(0, T) being

a control. Thus U = C, all = L2(0, T), and corresponding family 6° (cf.

CO 	 CO
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Section 11.2) is of the form {/3„, e l("-ki} with

=  2	 b(x) sin - mx dx.
o 	 a

Theorem VI.1.3. For 011 = 00, T) and any function b E L 2 (0, a), system
(1) is not W-controllable in any finite time T; that is,

• "W-- 3/4 , 	16/4 '=" W314 0 W-114.

Remark VI.1.4. In Section V.2, set UT P1(T) was shown to be dense in
-Irv, if and only if the "rank criterion" (V.2.11) is fulfilled. If the eigenvalue
multiplicity is unbounded, the criterion is broken and Theorem 3 follows
directly from Theorem V.2.8. This is particularly the case for a square
membrane. If the ratio a 2/b 2 for a rectangular membrane is irrational, the
spectrum multiplicity equals unity and the rank criterion may be valid.
In this case assertion (b) of Theorem 3 is not implied by the results of
Chapter V.

This remark also applies to Theorem 7 and Theorems 2.1, 2.2, which
are proved below.

PROOF OF THEOREM 3. Take arbitrary T > 0. By Theorem 111.3.10, the
assertion we are proving is equivalent to condition g ( W) in space
L2(0, T). Family e' {enik } corresponding to family and space Iff3/, is

emk(t) = fimlwmkr 
1/4enik (0•

If at least one of the coefficients I3„, equals zero, then family / is linearly
dependent. Let fl n, 0 0 for all m E N. By Theorem 11.6.9 there exist m, E N
and sequence {Cmk } such that

(a) Ec„,k e'"'" 0	 in L 2 (0, T);
m,k

(b) E ic„,k i20,nk < co ;

m, k

(c) Cmk = 0 for m � Mo.

Set amk = crnkkonal lm fin, 1 . The above assertions (b), (c) imply

E lamki 2 < 00.
m,k

Assertion (a) provides us with

E nti, emk = E Cmk la)mk1 /4 
0.- 1
P PmfrOnal 	 e- 114 i"-k t	a 	 = 0•

	

m, k 	 m, k
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So, family g is co-linearly dependent (see Subsection 1.1.2) and the more
so g (W). Theorem 3 is proved.

1.3. Estimate of the Carleson constant

A closely related problem of some interest in_ itself is to find an estimate
of the Carleson constant (see Definition 11.1.17) b m of set {co„„ + i/2 }kEK
depending on m. Knowledge of 6,n allows us to estimate the norms of
elements of the family biorthogonal to {e l(ü)-k + `12) `} in space L 2(0, co) (see
for formula (121 Section ILI).

Notice that the following lemma allows us to prove Lemma 2 without
•the use of Lemma 11.1.19.

1 Lemma VI.1.5. The Carleson constant of set {Wmk + i/2} kEK allows us to
estimate

log 	 m E N.

mooF. To simplify the writing, let us assume that

comk = (sgn k) ,/m 2 + k 2 .

For the case

con, (sgn k) 411 2 + (b (I
Oki 112)) 2

a 

the proof needs only a few obvious alterations. We write the Carleson
constant Sm of set {v„,,} = {conin + i/2}, neZ\{0} as 

(5 m = inf
n Ic*n 

V„,k — Vma  

vm, — 

Hence,   

log	 = sup E log
n k*n

v,nk 
— vmn

2

Vmk — Vmr,     

= sup E log[! + ((sgn k),/m 2 + k 2 — (sgn n),/m 2 + n 2 ) -2].
n Ic*n

Specifically, let us consider n > 0 and estimate the sum

S„ = > log[1 + ((sgn k),/m 2 + k 2 — (sgn n).,/m 2 + n 2 ) -2 ]
Ic � n
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(it is evident that S_,, = S„). We can then represent Sn in the form

S„ =	 +	 +
\k=-.	 k=1 	 k=n+ 1/

x log[1 + ((sgn k),/m 2 + k2 — (sgn n) .1m 2 + n2)- 2]

and estimate each sum in the right-hand side separately, denoting them
by S„" ) , S;,2), and S2 ), respectively.

(1) The first sum can be estimated by a constant independing on m.

= E log[1 + (\/m2 + n2 + .\/m2 + k2) --2]
k=

<	 log + —
1

) < oo;
k=1 	 k2

(2) To estimate the second sum

n - I
= E log[1 + (N/m 2 + n 2 — N./m 2 + k2)- 2]

k=1

consider first the case n < m. Represent S„(2) as

n- 1

E log[1 + (N/m2 + n2 ‘,/n22 + (n — p2) - 2] .
p=1

By means of elementary manipulations, one is able to check that
inequalities

2
N/In2 + n2 Nbn2 + (n _ p)2 >

- 	

2ii/t1

are correct. Indeed

1 < p < n < m,

Jmz +	n2 N/m2 + (n _ p)2. _ 	 2np — p 2

	/ rn2 + n2 + \bn2 (n _ p) 2

p(2n — p)
>

n2

2m2 + N/2m2 2\/2m
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Therefore

nEl logo. (N/m2 + n2 — /n12 (n — 13)2)-2]

P =

n — 1 	 8m2)8m2)< E log (1 + 	  < L log (1 + 8m2) <	 log(1 + 	  dxp 1 	p4	 p = 1 	p4	 1 	 x4

= .\F-n I	 log(1 + —
8
) dt 	 f log

( 
1 +8

4
) dt

t4 	

co 

for some c 1 e (0, oo).
Now let n > m. With the help of elementary calculations, one again

checks that inequalities

N/rn2 +	n2 Nfin 2 (n p)2 >  p 
2 2

hold. So

1 < p < n — 1, n > m,

n-1 	 co

X log 1 +
(	 8

E log[1 + (.\1/4n2 + n2 N/Tn2 (n 13)2)-2 s-	 < co. —

P=1 	 p=1	 p

Thus we have proved sup,, , 0 S,(, 2)

(3) For n < m sum, represent S,;' ) as

+ E )logl + (N/1112. k2 N/in2 4_ n 2)-2] .
 —

k=n+1 	 k=m+1

Moreover,

m

	E log[1 + (\/m2 k2	 /rn2 + n2)-2] —

k=n+ 1

m — n

E log[1 + (dm2 (n +	 — /rn2 + n2)-2] c2 jrn
p 1

for some c 2 > 0. The latter inequality is justified in the same way as when
estimating sum S„(2) on the grounds of inequalities

N/m 2 + (n + p) 2 .1m 2 ± n 2 �  P 2 ,

2.12m
1 < p < m — n, n < m,
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valid. Now consider the sum

log[1 + (N/m2 + k2 — /m 2 + n 2 ) -2]
k=m+ 1

=	 log[1 + (✓m 2 + (m + p) 2 — /m2 + n2)-2].

P= 1

It is estimated by a constant (independent of m and n) since, as can
be easily checked,

	

.1m 2 + (m + p) 2 — N/m 2 + n 2 > 	 p > 1, n < m.
2.\/ 2

It remains only to estimate sum S,; 3) for n > m:

log[1 + (✓m 2 + k 2 — /m2 + n2 ) -2]
k=n+1

=	 log[1 + (dm2 + + p) 2 — v/m2 + n2)-2] < C3
p=1

for some c 3 > 0. The latter inequality follows from

N/ m 2 + (n + p) 2 — m 2 + n 2 _� p 

2 2
p > 1, n > m.

1.4. Pointwise boundary control

Consider now the case of the pointwise boundary control of rectangular
membrane vibrations:

v e L2 (0,

ztt = Zxx + z„

Oz
zl Eo = 0, av
T),	 x o e (0,

in Q,

= v(t)(5(x — x0),
Et

a),	 zit=o = ztlt=o = O.

(13)

(14)

Theorem VI.1.6. Initial boundary-value problem (13), (14) has a unique
solution z e C(0, T; W112 ) for which z, e C(0, T; W_ 1/2).

Theorem VI.1.7. For V = L 2 (0, T) and any xo e (0, a), system (11) is not
W-controllable in any finite time T. That is,

� Yr1/2 , 	"1"1/2 = W1/2	 W-112.
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The proof of Theorem 6 is arranged according to the scheme of the
proof of Theorem V.1.4. One introduces the initial boundary-value
problem dual to (13), (14),

	{ezi„(p, t) = 4,o(p, t),	 p = (x, y) e SI,	 t c (0, T'),

au) 	 (15)
w1,0 = 0,	 — = 0,

av E,

Wit= T' = 	 6 W1/2, 	 ee}tit=T' = 6°1 E W-112.

Moreover, with the help of the Fourier method, representations for z and
a) are obtained in the form of a series in 9„,„. We also have

T '

<z(', T'), 0 1 >,, + <z,(', T"), wo> * = f v-(t)a}(p o, t) dt

with po = (x0 , 0). Let us verify inequality

- )ilb(0,T)	 C(T")[11W0III?Vi„ + 11 ( Z) 1IIL /2] ,

which is valid if and only if (see the proof of Theorem V.1.4)

sup
	

E	 cp.2 .(po)coz,' < 00
leN 1 ^ to,,,„<1+1

Since numbers

2 7C
(Pmn(P0) = 	 sin mx o

Jab a

are bounded, it suffices to show that

sup co,. < 00•
lerk4

The latter inequality is easily established by the explicit expression for co„„,:

2 	 11/2rt 2

a)„,„	 m) + — (n — D2
	a 	 b2

The remaining stages are completed as in the proof of Theorem V.1.4.
The proof of Theorem 7 repeats that of Theorem 3 except that it

replaces I3,„ by

2 7r
	sin — mx o .Jab a
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Remark VI.1.8. By the same method, one can prove the lack of appro
mate controllability for more powerful kinds of control than illustrat
in Theorems 3 and 7. Avdonin and Ivanov (1995) investigated the wa
equation in N-dimensional parallelepiped with the boundary contr
equal to zero everywhere except for an edge of dimension N — 2.
another case, the boundary control was supposed to be acting on a fa
of dimension N — 1 and depending on N — 1 independent variable
(including t). It was proved that in both cases the system is no
W-controllable for any T > 0.

Model problems of this kind allow us to put forward the followin
hypothesis concerning controllability of hyperbolic equations of th
second order.

Hypothesis. If a control acts on an m-dimensional part of the boundar
and/or on an m-dimensional part of domain C2 and m < N — 1, or if (mor
general formulation) a control function depends on less than N independent
variables including t, then the system is not approximately controllable
in any finite time.

2. Initial and pointwise control

In this section we consider vibrations of a rectangular membrane with
homogeneous Dirichlet boundary conditions. We demonstrate that, roughly
speaking, for any finite number of membrane points one is able to
obtain arbitrary trajectories by choosing the appropriate initial conditions.

In a sense the problem is dual to the pointwise control problem. The
reachability set of the system under the action of any finite number of
pointwise controls is proved to be not dense in the phase space.

2.1. Principal results

Let S2 = (0, a) x (0, b) and A be operator (—A) with the domain
(A) = 11 2(0) n H40). Let co' denote the eigenvalues of operator A,

2 	 2

m 	in) +	 n) ;
m, n e N,

and co„,„ the corresponding eigenfunctions normalized in L 2 (C2)

	

2 nm	 nn

	

49.(P) = 	 sin —	 x sin y,	 p = (x, y).

	

a	 a

As before, we introduce spaces W, = D(A'12), r > 0; W_, =

✓ab
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Let p i , ... , p, be arbitrary (distinct) points of S2, p, = (x,, y,), T be any
positive number, Q = D x (0, T), and E = OS2 x (0, T). Consider the
initial boundary-value problem

{

v,, -= A: 	 in Q,vi 

vl i=0 = vo ,	 vilt--ro = vi.

Use (I)(t, v0 , v 1 ) to denote vector function

(v(p,, t), . . . , v(p,, t)),

Theorem VI.2.1. Let r be a nonnegative integer. Then

(a) for any vector-function F E RAO, T; C") there exists initial state
(vo , v 1 ) e lf; such that (Kt, v0 , v 1 )	 F(t), t E [0, T];

(6) the dimension of the set of initial states (v 0 , v 1 ) E -117.,. for which
(1)(t, v 0 , v 1 ) = 0, t e [0, T], is infinite.

Let us write z(p, t) for the solution of initial boundary-value problem

{N

zj E = 0,

	z„(p, t) --- Az(p, t) + E b(p — p,)u,(t)	 in Q,

zj t ,„, = z t j t=0 = 0. 

k=1

If uk E L2(0, T), k = 1, . . . , N, then inclusion (z, 	 e C(0, T; 1V, 12) holds.
This assertion follows immediately from Theorem V.1.4 for N = 2. Note
that in our case it is possible to avoid the use of asymptotic properties
of the spectral function by exploiting instead the explicit form of 9„,„ as
was done while proving Theorem 1.6.

Theorem VI.2.2. The reachability set R(T),

R(T):= {(z(, T), z t (• , T)) I uk E L 2 (0, T), k = 1, . . . , N},

is not dense in #/2 and codim R(T) = co.

2.2. Initial controllability

We prove here Theorem 1 concerning initial controllability of system (1).
Let initial data v0 , v 1 belong to W, and W,._ 1 ,

 respectively. Then expansions

(1)

-

(2)

vo = E am.comn, vl = E b„m cp„,„ (3)
m,n	 nu,n
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take place, and

m,. 
lam.1 2 0.422,7, < co,
	

m, n 

b. 2 0)2,(nr — 1) < co. 	 (4)

The following formula is obtained by means of the Fourier method:

v(p, t) =- E„,	[amn cos 0)„,„t +
b„,,,	

com„t19„,„(p).
m, n 	 a mn

Introduce vector functions

c,„„(t) = n„,„ cos co„m t, 	 Smn(t) = n m„ sin w„,„t,
where

	

ilmn	 (a,;.:((Pmn(Pi), • • • , (Pmn(PN)) E

and let .97 denote family {cm„, s„,„}, m, n e N. Then

(Kt, u0, u1) = E [a mn (1)-- miinC mn (t)	 b„,„w„,7„ 1 S mn (t)] .
	

(5)
m, n

Lemma VI.2.3. If there exists subset .11 c N x N such that family
= {c„,„,	 c .97 constitutes a Riesz basis in H'(0, T; C N ), then

assertion (a) of Theorem 1 holds.

PROOF. If .97,, is a Riesz basis, then function F in Hr(0, T; CT ) may be
expanded in a series

F(t) = E El nc.(t) + J mnsmn(t)],
(rn, n)e .11

[(f m,,) 2
(fm)n \21 < 00.

(m, n)

Choose coefficients in expansions (3) in the following way:

amn = bmn = 0,	 (m, n) .11,	 (8)

amn = fm n(nm:b bmn 	 rnnqrin r	(m, e jef • 	 (9)

Inequality (7) implies inequalities (4), and inclusions v o E W, ll 1 E W,

are true. By comparing (5) and (6), we complete the proof of Lemma 3.

(6)

(7)

To construct basis ,F,,„ it is convenient to consider, instead of 	 family
' of vector exponentials:

g =  ±femn}m,nerkl, em±„(t) = n m„
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Lemma VI.2.4. Family	 = Ic.„, s,n„1 ( „,„)e.ii , .11 c N x N, constitutes a

Riesz basis in Ilr(0, T; C") if and only if family S, {e m±n} (m, n)e .1( is a
Riesz basis in H'(0, T; CN) .

PROOF. Let so be a Riesz basis in Hr(0, T; C"). Define operator It over

the linear span of 4 by formulas

c„,„,	 s„,„,	 (n, n) c .11.

If operator U can be extended to an isomorphism of the whole H'(0, T; CN ),

then family .97„ = 114 is also a Riesz basis in H"(0, T; C").
Let {a, L} be a finite sequence of complex numbers and

g — 	 (a,„„e,-;,„ + 	 ner;m)•
(m,n)e.le

Since 4 is a Riesz basis, then

	T; C") 	 E 	 (ia,L1 2 + I am-n12). 	 (10)
(m,n)e..,K

With the help of the Euler formula, function Ug may be expanded over

the basis e*

= E (am„c„,„ + a,;,„s„,„) =	 (a:ne:„ +
(m,n)E 	 (m, n) E

Moreover,

ia:n1 2 +Iamnl 2 1(1c1:.1 2 + lamn1 2 )•

Again, using the Riesz basis property of 4, we have

Pig
	

c" 	 E (lam.1 2 +
	

(12)

From relations (10)—(12) we conclude that

iitt9 ?-/ C") 	 II g IlL 2(0 , T; C")•

Therefore, operator U may be extended to an isomorphism in Hr(0, T; CN ).

The converse statement — if 97, is a Riesz basis in H'(0, T; R"), then

4 is a Riesz basis in H'(0, T; CN ) — is proved in a similar way.

Theorem VI.2.5. For any nonnegative integer r and any T > 0 there exists

family Sr c S, which forms a Riesz basis in H'(0, T; C N ), and set '\i, is

infinite.
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The proof of this theorem is given below in Subsection 2.4.
Statement (a) of Theorem 1 follows from Lemmas 3, 4 and Theorem 5.

To prove statement (b), we introduce notation .97,. for family

=	 „)c,i‘ ,	 .= {(m, n) I e e 4}.

By virtue of Lemma 3, family .9; forms a Riesz basis in Hr(0, T;
It is evident that the set of elements of .97 that do not belong to <97; is
also infinite.

Let cki be an arbitrary element of .9-A.9";.. It may be represented by
series

ciao) = E [amn c..(t) + flmnsmn(t)].
	 (13)

(m, n)e

By analogy with (8), (9), we choose coefficients an,„, bm„ in expansions (3)
in the following way:

a. = b. = 0,	 (m, n) X v (k, 1),

a mn — nut° ;it'	bmn = &JUL- r l
	 (m, n) e

aki — —1,	 bki 	O.

Then formulas (13), (5) imply (l)(t, v o , v 1 ) = 0, t E [0, T]. The initial data
(vo , v 1 ) constructed in this manner for distinct elements from .57 Vi7,. are
linearly independent. Theorem 1 is proved.

2.3. Lack of pointwise controllability

In order to prove Theorem 2 consider initial boundary-value problem

po„(p,t) = Aa,(p, t),	 p e S2 , 	 t e (0, T),

CIE = 0, 	ildt= T = 4V03	 tI t = T = 401,
	 (14)

coinciding with (1) where variable t is changed to T — t. Hence, on the
grounds of assertion (b) of Theorem 1, linear set

	

{(&)o, 400 E "VI I co(Pj, = 0, = 1,	 N; t [0, T]l

has an infinite dimension. At the same time, an equality takes place (see
formula (24) of Section V.1 with T' = T)

	

N	 T

	

<z(', T), ev i >. + <z,(• , T),Oo) * = E 	 14; (0,(pi , t) dt.
11:o

This completes the proof of Theorem 2.
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2.4. Construction of basis subfamily

Let us start the proof of Theorem 5 with the verification of completeness

in CN for the family of vectors {n,,,,,}, which is obviously a necessary
condition for a basis subfamily 4. to exist.

Lemma VI.2.6. Vector family 67,mn, m2N,n= 1 is complete in C N .

PROOF. Suppose vector y ={y,},":= 1 may be found to be orthogonal to all
the vectors q„,„; m, n < 2N:

N 	 7C 	 7C
E y, sin — mx, sin — ny, = 0;	 m, n = 1, ... , 2N.	 (15)

k=1 	 a	 b

Introduce notations

7r
Xk = — Xk, 	 Yk = -- Yk>

a	
(-1 )7k= y, sin Xk sin jik .

Function sin qx/sin x is a polynomial of the degree q — 1 in cos x.

Therefore, a relation may be derived by induction from (15)

E ;, cosn - 1 54 COSm— 5,k = 0; 	 m, n = 1, . . . , 2N	 (16)
k=1

(one first checks this equality for m = 1, n = 1, . . . , N; then for m = 2,

n = 1, . . . , N, and so on).
Let P(, 4) be an arbitrary polynomial of a degree not larger than

2N — 1 in each variable. From (16) it follows that

N

E yk P(cos Xk , COS Sit) = 0.
k = 1

Making use of this relation for

N

P(,	 = 1I [( — cos )Z . k ) 2 +	 — cos 5'. k ) 2 ] ,
k= 2

we obtain y 1 = 0 and hence y = 0. Equalities

Y2 = Y3 = • " = YN = 0

are obtained in a similar way. Lemma 6 is proved.

Let us choose in family nmn	 subfamily fiii17_ 1 , which forms a

basis in CN.



j = 1, . , N; m R, R + 1, .

j = 1, . , N; m = R, R + 1, ....

(17)

(18)

(19)

(20)
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1	 Lemma VI.2.7. For any e > 0 and T> > 0 family 6' contains subfamily l', -:- . 	 Take some integer m and define m, c N from the conditions
which can be represented as

„,,:
, 	 2a— 	 m < m o < — m + Q„ 	 (21)g. = s i u 602 u . . . u 4,N 	

■ 	 2a
, 	

e" = frdn e±i'mit},,T=R, 	
,.

T 	 T
and the equalities hold 	 :-., 	 Illmo2k — m' 5.c' klil < El 	 k = 1, . . . , N. 	 (22)

<014; q>>N <

27C
pm; —  M < E,

To prove the lemma we use the following form of the Kronecker
theorem.

Proposition VI.2.8. Let 	 , CN be real numbers such that
for any integer n 1 , .. , nN equality

+ • • +	 N 0	 (mod 2n)
implies

flf1 + • • • + nN CN ==_ 0	 (mod 2n).

Then for any e > 0 there exists a number Q E = 	 ,	 > 0
(independent of 	 41) such that on any segment of the length Ilan
integer n o may be found for which

— 	 8, . . 	 — 	 <8,

dist(x,2n1).

The principal difference between this statement and the one presented
in Cassels (1957: sec. 111.5) is that there the number n o satisfies estimate
inoi < QE . Passing from C.; to (.; — n j , n n 7, we arrive at Proposition 8.

PROOF OF LEMMA 7. Specify E > 0, j (1 < j < N) and define m', n' according
to the conditions

= 	 1 m', n' < 2N.
Sets

k .1. , • • • 	 {m5z1, • • • , mjzN}

satisfy the conditions of Proposition 8. The same also goes for sets

{i)i, • •• ,.PN}, 	 nTN}

Let 42, = max{ 02c(i1, • • • , 5‘0, '1(y1, • • • , .PN)).

Proposition 8 applied to sets (19) show that such m, really exists.
Introduce function

27r
g(t) =

T
m — (am

) 2 	(7t
—mo 	+ —

b
) 2

and define integer q = q(m, n) in such a way that g(q) = min,, EN g(n).
Further, let us find n o e N satisfying conditions

q no q + Q„ 	 (23)

IIInoYk—nykIII<6, 	 k= 1, . . , N . 	 (24)

Its existence follows from Proposition 8 applied to sets (20).
Let us describe the procedure for all j. Thus, there is a pair of numbers

m0 , no E N that can be assigned to each j E , N} and every m c N.

Let us check vector functions

time 	 := tim,0 e ± iwrne't

to satisfy conditions (17), (18) for large enough m. Inequalities (22),
(24) imply inequalities (17) (for all m), where c should be replaced by

48,I(Nlab).
To prove inequalities (18), we note that

2n ,	 2 	 )2 	27t
Iltmj = (a m

) + n o — — m

n 22 	 (n \ 2 	 7211 '\ 2

"1°) 	 n°) 	 rn)

n 	 2 	 )2

\A 	

27r

T—
a

mo) + (T) no + m

T
2	 a	

2 	 27r ) 2
trio)2 	

(

b
(25 )(— no) — —

nm 

Let q 1 (m) be a positive root of function g(c). Using (21), one can easily

demonstrate that q t (m) = 0(114 It is evident that lc? i (m) — q(m, m0 )1 < 1.
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Therefore, (23) implies no = q 1 (m) + C(1). Substituting this into (25),
we find

	

Ca moy	 no)2 (27i inY 69( j
t)

	) 	 ) 	 T )

= 
2nm

Ig(q 1) + 004 = 0( 1/1–m-).

Hence, inequalities (18) are valid for large enough m. Lemma 7 is proved.

Note that for small enough c, all the elements of the constructed family
are different, as it follows from inequalities (17), (18).
Consider now family

= ori e i(2.mmtily

in space L 2(0, T; CN). This family constitutes a Riesz basis, since it
transfers to an orthogonal almost normed basis

( L . -1(21rmIT)tiN
e 	J j= 1,mel

under a mapping in C N, which transforms basis {qi}7_ 1 to some orthogonal
basis {h.,}7= 1 .

Let e > 0 be so small that any family being an e perturbation of family
(in the sense of Theorem 11.5.5) conserves the basis property. Using

Lemma 7, we construct family g for such e. Then, in accordance with the
mentioned theorem, family

j i(2/rmaitIN= r e	 j=1,1ml<R

forms a Riesz basis in L2(0, T; CN ). We state this result in the form of
a lemma.

Lemma VI .2.9. For any T > 0 there exists family ft of the form (26)
constituting a Riesz basis in L2 (0, T; CN ).

We are now able to prove Theorem 5 for r = 0 if it is known that family
g is complete in this case in L 2(0, T; CN ). Indeed, we are able to
complement family up to a basis go in the following way. Let us take
an element e e 0V 1. Since g is an Y-basis, family v {e} is also an
£9-basis. Continuing this process and taking into account Lemma 9, we
obtain, in a finite number of steps, basis family el,.

2n
— m
T 

T

2nm   

(26)
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Let us check that S is complete. Lemma 9 and theorem 11.5.9(b) imply
that d , is complete in L 2 (0, T1 ; CN ) for any T1 < T. Moreover, it is true
for family e. Since T is arbitrary, family 6' is complete in L 2 on any
interval of 51 + .

Thus we have proved Theorem 5 for the case r 0. The proof of the
theorem in the general case runs along similar lines, but because the
constructions are cumbersome, they are not given here.

Remark VI.2.10. Lebeau (1992) has shown that the lack of approximate
controllability for the wave equation with pointwise control takes place
for arbitrary domain S2 (dim n > 2) with analytic boundary under certain
geometrical conditions.

Remark VI.2.11. Questions similar to those discussed in this section have
been studied by Haraux and Komornik (1985) and Komornik (1989a).
In addition, similar problems Haraux and Jaffard (1991) and Haraux
and Komornik (1991) investigated in the realm of plate vibrations.
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VII
Boundary control of string systems

In this chapter we consider boundary control in systems described by
hyperbolic equations for vector functions of one spatial variable. The
study of controllability reduces to the investigations of families of vector
exponentials r e'^` with con being eigenfrequencies of the system and rin

being the traces of eigenfunction derivatives at the boundary points where
control is applied. Section 1 shows how the explicit form of con and tin can
be used to study controllability in a system of homogeneous strings. In
the following sections, the "strings" are nonhomogenedus, so that only
the asymptotics of con and lb, are known, which is not always accurate
enough to separate the exponentials (Riekstyn'sh 1991). In the vector case,
as pointed out in Remark 11.5.8, the basis property (and then minimality)
cannot be assessed on the basis of the asymptotics alone. In fact, there is
practically only one way to examine vector exponential families, that is,
by constructing and studying the generating (matrix) function GF.
Remarkably, the problems under consideration have some physical
foundation and naturally give rise to the GF, since it is expressed in the
fundamental solution to ordinary differential equations of the Helmholtz
type. Since such solutions are known to act as functions of the spectral
parameter, and the eigenfunctions of the elliptic operator of the system
forms an orthogonal basis, one is able to arrive at a conclusion about the
2-basis property of the corresponding exponential family.

1. System of connected homogeneous strings controlled at the ends

Let us consider a connected network of homogeneous strings to which
control actions are applied in the nodal points. Such a network may be
drawn as a graph (for convenience, we assume that it is an oriented one),
whose edges correspond to strings and vertices — to the nodes of the

238
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network. The strings are enumerated by index s, s 	 1, 2, ... , M, and the
nodes by index p, p = 1, 2, ... , N. During the initial period, the system
remains in some excited state. We are interested in the possibility of
quieting all the string vibrations in some finite time T, independent of the
initial data, by means of the controls up (0, up E L 2 (0, T), p = 1, 2, ... , N.
It is convenient to consider control actions as components of vector
function u of the space V := L20; T; Cr') .

Oscillations of the sth string starting at the node p(s) and ending at
the node p'(s) are described by the equation

PS
Ot2 	Ox2

OyAx, t) ays2 (x, t)	
ps > 0, 0 < x < 1„ 0 < t < T, 	 (1)

where p s is the constant density and Is is the length of the string. The
boundary conditions read

Ys( 3, t) = up(s)(t), 	 Ys( 1, t) = up , (,) (t),	 (2)

while the initial ones are

ys (x, 0) = —
a
Ot y

s (x, 0) = O.	 (3)

S. Rolewicz (1970) has studied the control problem associated with this

system under the assumption that the optical lengths Ls = IS ps of all
the strings are commensurable (ratios LaLs, are rational numbers). His
solution depends on the presence of cycles in the graph representing the
network. If there are no cycles — that is, if the graph is a tree — the system
is controllable. When two or more cycles are involved, the system is
uncontrollable. Rolewicz (1970) did not clarify the question of system
controllability when exactly one cycle is present, however. His statement
about controllability in this case can be proved incorrect by a simple
counterexample of the cyclic network of two (or any number) of identical
strings (see below). In this section we give the solution to the problems
of B and M controllability of a string system without the restriction that
their optical lengths are commensurable.

Let us treat system (1), (2) within the framework of the general scheme
of Chapter III. To do this we introduce spaces L p2.(0, s), s = 1, 2, ... , M,
of functions squarely integrable over interval (0, /s ) with the norm

[ .r	 iii2
Ps19., (4 2 dx
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and set

H := 	 1s).

!,:-.-- :31-, ie.lr,,, 	 alle MO OW ONO 11/1 11111 VIM Ille'
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...',.'	 •	 ',1,-, ..1
.f

,;;'...,.' 	 .. , Lt In order to write problem (1)-(3) in the form (12) in Section III.3, we
:,. only need to define operator B. Equality (4) makes it clear that operator

1,-	 4 B may be defined by the formula

1

P

We also introduce the space V c H

V,= C) HUO, Is )

and bilinear form

M j•
a[9, = E 	 9:(x)C(x)dx; 	 9, e V.

s = 1 cz

The form generates operator A (see Chapter III, Section 1):

(A9, 	 = a[9, ; 	 9 e (A), 9 e V.

{ 1 d 2 }M
= {9s}sm 1—=1	 —

Ps dx2 95

with the domain g(A) = {9,1 Cps e H 2(0, Is ) cl 	 1,), s = { 1, 2, ... , M}.
The spectrum of operator A falls into M series IArs,1 rEN,5=1,2 	 M.
Orthonormal eigenfunctions (Dr , s corresponding to the eigenvalue A have
the form

4)r,s = (0, 0, • • • , fir , s, 0, • • • 0))

where in the sth place the eigenfunction of a single string

9s,s(x) 	 N/2/(9, 1s)sin(wr,sx), 	 I).r,s = nr/Ls

is standing.

Let us write initial boundary-value problem (1)-(3) as an integral
identity. Let fs E C 2([0, IA x [0, T]), s = 1, 2, ... , M, and

f5( - , T) = 
Or
fs (• , T) = 0.

Multiply each equation in (1) by f3 . Then, integrating by parts and taking
(2), (3) into account, we find

M rf ( 82 _
YS Ps -a? — 	 dx dt

ates=1 0 0

M i'T 	 a
= E	 [u„,,,(0 — /so, – up,,s,(0 — fsos, tddt. (4)

s= o	 ax	 ax

M

<By, (a>. = E (v„,,,00) – vp,, s,c(10)•s=1
Here, v e CN, cp e W2 = D(A), and operator B acts from CN to the space
yv 2 , (For the definition of spaces W see Section 1 of Chapter III.) Note
that the space W1 coincides with (:) //4 HUO, la ). The space H is topologically
equivalent to C)If L 2 (0, 1s). Therefore space W_, dual to W1 with respect
to the scalar product in H is also topologically equivalent to the space

C)14 I,). Later in the discussion, we do not recognize the latter
from the space W_,.

To construct a family of exponentials, we must now find vector

B*4:1)„ e C". For any element v e C N, we have

<BY, (D„>,, = vp(s)Cs(o) — vp , (s ) (Yrs(ls)•

This linear (in v) form may be written as

<By, 01)„>,,, = w„<vz lrIrs>c , ,

where vector q r., has only two nonzero coordinates: the p(s)th coordinate

equals ds , the p'(s)th one equals (-1)r ±i ds , ds z= .,/2/(p s ls ).
We now have everything we need to construct exponential family eT

(family g in the notations of Chapter III; see formula (22) in Section 111.2):

67* = flWrslersIrek,s ,---- 1,2 	 M

ers = qrs eXP(iWrst) , 	Wrs = Sgri(r).JAIrls	 irCr/Ls ,

n ,'= nrs , 	 r > 0.

We let a (s ) denote the spectrum of the sth string, o -(s ) := {nr/Ls } rEK .
The explicit form of the set of frequencies implies that two strings have

an equal frequency if and only if their optical lengths are commensurable
(i.e., their ratio is a rational number). Accordingly, we split the set of all
the strings into R classes Si , j = 1, 2, ... , R, of strings with pairwise
commensurable optical lengths. We write ai for the family spectrum
corresponding to the strings of the jth class,

Gri = tnilLsIscSj,rek 	 U (74)seSj
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(By "spectrum," we mean here the set of points on the plane not
accounting for the multiplicity.)

Lemma V/I././. Solution y = (3'1,
unique and

, hi) to problem (1)–(3) exists, is

{ a
y, at 	E C(0, T, 'Y6),

= Wo	 [ 0	 Is)] [e H 1 (0, 01o 	
s=1	 s=i

PROOF OF THE LEMMA. System (1), (2) is understood as equation (12) in
Section 111.3 and, since B e ..99(CN , W_ 2), by Theorem 11.2.1 solution y
exists, is unique, and

{ a
y, — 	 e C(0, T, 	 1 ),at

Let us show that in fact the smoothness of the solution is one unit greater.
Indeed, spectrum a of the family is a unification of separable sets aj .
Therefore, Lemma 11.1.21 implies an estimate

E l(f, e rS )L 2 (0, t; CN)I 2 	CT II f 111,20,, CN),
	 t < T.

r, s

What we want to prove now follows from Lemma 111.2.4.
Relation (5) provides

M(T)c 	 (6)

Note that similar statements about the smoothness of solutions are
valid for all string systems considered in this chapter.

Having established relation (6), we can study the controllability of
system (1), (2). Family ST, corresponding to phase space *co, is obtained
from family eT by multiplying by IIWrs. —

4 = {ers}reK,s= 1, 2 	 m.

This corresponds to the transition from family 6' to i', which in the
abstract form is performed in Section 111.3. For the space Jeo of the
abstract form we choose space *, so that in this case families go and 6'
coincide (this coincidence takes place for all the problems treated in this
chapter). Properties of family gT c L2(0, T, C"') determine the control-
lability type of system (1), (2). Families of exponentials on the semiaxis

1K 1 = W 1 e fv- 2 •

1 and has the form
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are easier to study than those on a segment (there is no parameter T).
That is why we reduce the study of family ST to the investigation of an
exponential family over the semiaxis. Since the spectrum of family is

real, e„ L2 (0, co; CN ). To consider exponentials on the semiaxis, we
proceed - without changing the notations of family and sets a, u (s )

-with the exponential family obtained from ST by the shift of the spectrum

in CN :

e rs 1—* qrs yrs = co„ +	 r e K, s = 1, 2, ... , M.

This transition corresponds to the mapping f (t) H f (t) e t being an
isomorphism of space L 2 (0, T; CN) and hence does not change the
properties of family .4 governing the type of controllability (Theorem

1.1.25).

Lemma VII.1.2. For some To orthoprojector To from space L2 (0, co) to

L2 (0, To) restricted to \ /v sesc, se :- {exp(01)}, E ,, (a :=U,.,,{v r „}) is an

isomorphism on its image.

PROOF OF THE LEMMA. GF of an exponential family corresponding to the
spectrum of one single string (shifted by i to the upper half-plane) is of

the form f,(k) sin(L s (k - i)) exp(ikLJ (this is the STF). Consider a
function f fs. Together with f -1 , it is bounded on E and allows
a factorization

f = bf = e2tkrofe—

where b is the Blaschke product turning to zero at the spectrum points,
To 2L 1 + • • • + 2LM . Then the projector from 1(,, to Km is an iso-
morphism (Theorem 11.3.14). Let b denote the Blaschke product having
simple zeros at a (b(k) possess multiple zeros as soon as optical lengths
of at least one pair of strings are commensurable). Then, obviously,
operator PT0 I K E is an isomorphism on its image. Passing from the family of
simple fractions to the family of exponentials, we obtain the assertion of
the lemma.

Theorem VII.1.3.

(a) If system (1), (2) is E-controllable relative to vo in some time T, then
it is B-controllable relative to 1.6 in T,.

(b) system (1), (2) is M-controllable in time To if and only if family 4 is

linearly independent;
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(c) family	 is linearly independent if and only if any system of strings
formed by any connected component of any class is B-controllable
relative to *co in time To .

Note that the linear independence of an exponential family does not
depend on interval (0, T).

PROOF OF THE THEOREM.

(a) Inclusion (6) implies that under the condition M(T) 1. (i.e., under
E controllability), equality gl(T) = -16 holds (B controllability).

(b) Recall that M controllability of system (1), (2) in time To is equivalent
to the fact that family gm is minimal.

For 2 E a, introduce family At of vectors ti„ such that irrILs + i
Then family 40 may be represented as

PTO — {4o, 2} Aecr 	 40,A = e"l{r/}n....ity

From Lemma 2 and the fact that a e (CN), it follows that scalar family
{exp(i2t)} ie , is minimal in space L 2(0, T0). By the force of Corollary
II.2.2(a), the family of subspaces fe w C"} 20 „ is then minimal in
L2 (0, To; C's'). According to Corollary II.2.2(b), the family of subspaces

fe w 9121 Aeo ,

	
912 — V I/

is also minimal. Now, two situations are possible: either for any 2 the
family dt,,. is linearly independent, and then family 40 is minimal, or
for some 2 0, family Ato proves to be linearly dependent, in which case
family gT0 , 20 and hence gm are also linearly dependent.

(c) From the considerations mentioned above it follows that family ir
is linearly independent if and only if each of the vector families dia
is linearly independent. It is evident that any lfx contains vectors
corresponding to the same class. On the other hand, vectors corre-
sponding to different connected components are orthogonal. If some
family Ato is linearly dependent, then such is the case for some
subfamily 3/A. c Ato corresponding to one connected component. In
this case a subfamily of exponentials corresponding to the same
component is linearly dependent, too. It is quite clear that the
corresponding subsystem of strings is not B-controllable.

Suppose that At is linearly independent for any 2. Let am denote
the spectrum of the qth connected component of the jth class. Since
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ci is a separable set lying on the line Im k = 1, o-; is Carlesonian. It is

even more so for o-m . Then family S , q of subspaces {exp(i2091„)

constitutes an'-basis in L 2(0, co; C"). Since	 is linearly independent
for all 2 e aj q , in 91, there exist skew projectors	 on every vector

G	 parallel to all the other ones. The whole set n.rs, reK, s= 1, 2 M

is finite. Therefore the norms of g", are uniformly bounded. Together
with the basis property of 4, this implies the basis property of not
only the family of subspaces, but the family of elements: family
{exp(i).0 q„ 2 = nr1 + i c cr."} forms an .-basis in L 2(0, co; C").
Lemma 2 and Corollary 11.2.2 imply that the family forms an .-basis
in L2(0, To ; C"). The theorem is proved.

Now we are able to deal directly with the controllability of the string
network. We examine three cases: the number of strings is less than, equal
to, and larger than the number of nodes.

(1) The number of strings is less than the number of nodes M < N.

In this case, the solution to the problem of system controllability can
be seen more clearly in the primary formulation. The following arguments
have already been presented (Rolewicz 1970). Note that they are valid for
nonhomogeneous strings as well.

The system graph is a tree. Let us call the strings starting from its root
the first-order strings; those branching from the first-order strings are
second-order ones, and so on. The nodes between the strings of the q and

q + 1 order are called nodes of the order q. We consider the root of the

tree to be the node of the order zero.
The string of length 1 and optical length L is B controllable in

L2(0, 1) (1) H '(0, 1) in time 2L by control u e L 2(0, 2L) applied at some
string end. The result may be established exactly in the same way as the
controllability of system (12) of Section V.2 (see also Russell 1967).

In view of the invertibility of the hyperbolic-type equations, B control-

lability is equivalent to the fact that an arbitrary initial state may be
transformed into zero by an admissible control. We prove that the system
of a system of strings may be quieted down exactly in this sense.

Let the system stay at some initial state { y s°, We perform the

following procedure to quiet the strings. First, set the controls equal to
zero in all the nodes except the first-order ones and quiet down all the
first-order strings. Second, using only the controls at the second-order
nodes, we quiet all the second-order strings without exciting the first-order
ones. Since the graph is a tree, we will quiet the entire system during a finite
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number of steps. Thus, E controllability is proved, which implies B
controllability (Theorem 3(a)). Let us write this result accurately.

Theorem VII.1.4. If the number of strings is less than the number of nodes,
then system (1), (2) is B-controllable in "fro in some time period T.

(2) The numbers of strings and nodes are equal, M = N.

In this case, the system graph consists of one cycle (extracted uniquely)
and perhaps of one or more trees with roots on the cycle.

Theorem VII.1.5. If the number of strings is equal to the number of nodes,
then system (1), (2) is not E-controllable in space 1K, in any time.

PROOF. Clearly, the system is not controllable if its subsystem forming the
cycle is not controllable.

Consider the cyclic string system. We first assume that the optical
lengths of all the strings are commensurable; that is, they have the form
Ls = ns it, where n s a N and the highest common divisor of {n s} equals
unity. Let us prove linear dependence of family ST (for any T > 0).

The answer to the question about linear independence of vectors n r., is
given by the following lemma.

Lemma VII.1.6. Family 11 11,,},(2_ 1 for Q < N is linearly independent while
for

det{16}1:=1 = C[1 —	 C:= E d,.
s=1

The proof is produced by elementary methods.
Consider the set of exponentials of family 	 of the form e, for rs = 2ns ,

s = 1, 2, ... , N. These exponentials read as ti,„ exp(iat) for

a = nrs /(yns ) + i = 2n/it + i.

By Lemma 6, vectors In 1k,rs, sN= 1 are linearly dependent; hence, so is family
ST. Consequently, the cyclic system with commensurable optical lengths
is not E-controllable nor even W-controllable.

Now let us deal with the general cycle and define for the jth class,
j = 1, 2, ... , R, the number it and integers ns , s a Si , in such a way that
Ls = ns iii while the highest common divisor of {n s }scsi equals unity for
any j.
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Suppose that the cyclic system is E-controllable. Then, by Theorem 3(a),
it is B-controllable (in space d in time To). Hence 40 E (LB) and, more
so, gra E (UM). Then by Lemma 1.1.28, family = {e„} c L 2 (0, oo; C")
is also *-uniformly minimal. The latter is almost normed and so is
uniformly minimal (see Definition I.1.15). Therefore, by Proposition 11.2.8,
ge (LB). Using the basis property criterion (Theorem 11.2.12 and
Corollary 11.2.14), we now show that family cannot be an .-basis.

Let us split the system spectrum into sets A m (r) of its close points (see
the definitions in Subsection 11.2.2). Later, we consider r small enough to
provide the absence in a group A m (r) of two different points belonging
to the same class (this is possible because the spectrum of strings of a
given class is separable). The group of exponentials ri , s exp(iv,t) such
that y rs , E A m (r) corresponds to the set A,(r).

Lemma VII.1.7. For any r > 0 there may be found set Am (r) such that the
group of N exponentials with even rs corresponds to it.

In view of Lemma 6, any N vectors	 with even rs are linearly
dependent. The assertion of Theorem 5 follows immediately from Lemma
7 and Theorem 11.2.12.

PROOF OF LEMMA 7. Let us cite one result (a consequence of the Dirichlet
theorem) on the mutual approximation of homogeneous forms by integers.

Proposition VII.1.8 (Cassels 1957: sec. 1.5). For any real )6 1 , )62, • •	 iR
and any c > 0, there exists integer n such that

min An — mi <	 = 1, 2, ... , R.
mE7L

PROOF. Set f3i .= /..5/27r and take some e > O. Then, by Proposition 8,
integers n and gi , j = 1, 2, ... , R, may be found such that 1p; n/2n — < e.
Therefore the inequalities hold

—	 < cc,	 c := max {27r/iti }.
j=1,2 	 R

Now set rs := 2ns gi , s E Si , j = 1, 2, ... , R. Group A„,(r) formed by spectrum
points nrs /Ls + i, s = 1, 2, ... , N satisfies Lemma 7 for c < r/c. Lemma 7,
and with it Theorem 5, is proved.

Let us demonstrate the lack of W controllability for a circle of two
identical strings. Let the strings be at rest at t = O. Then for any controls
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1, f2 e L2(0, T) acting at the ends, the state of each string at t = T is
the same:

3'1(' T) = .Y2(' T),	 T) = .0(*, T).

Thus the reachability set is

{( {g ' hh}}) g e L 2(0,1), h e 11 - 1 (0,1)}.

The orthogonal complement of 9(T) is

{g, h}
g E L2 (0, 1), h E H'(0,

— 1g, 14)

(3) The number of strings is greater than the number of nodes, M > N.

Theorem VII.1.9. If M > N, then system (1), (2) is not E-controllable in
space '16 in any time.

PROOF. For any r > 0 group, /WO may be found such that M elements
rlras exp(iv,,,t) of family e correspond to it (this statement, in fact, is
contained in the proof of Lemma 7). The .22-basis property criterion then
provides &0 (t (LB) and, hence, 6°T. (LB) for any T, since the set of vectors
ri rs corresponding to Am (r) is linearly dependent (the number of vectors
is larger than the space dimension). Therefore the system is not B-
controllable. In view of Theorem 3(a) the system is also not E-controllable.
The theorem is proved.

With the help of Theorem 3(b), (c), the question of M controllability
of the systems can be reduced to B controllability of any connected
component of any class. It follows from Theorems 4, 5, and 9 that system
(1), (2) is M-controllable in some time To if and only if the graph of any
connected component of any class is a tree.

2. System of strings connected elastically at one point
A number of recent studies have dealt with controllability problems in
multilinked flexible systems (see, e.g., Chen et al. 1987; Leugering and
Schmidt 1989; Schmidt 1992; Lagnese, Leugering, and Schmidt 1993)).
The main tool used in these studies is the Hilbert Uniqueness Method.
In this section we use the example of strings linked at one point to show
that the method of moments can be efficiently applied to such systems.
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Consider a system described by the following initial boundary problem:

a'y (x, t) 0 2y,(x, t)
Ps(x) at e 	ax2	

o > 0, 0 < x < l s , 0 < t < T. 	 (1)

ys (0, t) = us (t),	 us E L 2 (0, T), 	 (2)

Yi(li, ') = Y2( 12, • ) = • • • = YN( 1N, • ),	 (3)

a	 a	 a
ax	 a

yi(ii, •)+ — y2(12, •) +...  + 
ax
—.1, 1,, (IN ' •)= 0, 	 (4)

ys (x, 0) = 
a
at 

ys (x, 0) = 0,	 s = 1, 2, ... , N. 	 (5)

It is assumed that ps E C 2 [0, la], p s > O. Functions u s , s = 1, 2, ... , N, are
the control actions; we consider them to be components of vector
functions of L2 (0, T; CN ).

Conditions (3), (4) at the linking point are implied by the requirement
that the system's energy be conserved. In Section 4, one particular string
is treated as a system of two strings joined at one point, and we prove
that (3) can be used as a continuity condition at the linking point for
solution y(x, t) to the string equation. Condition (4) may be considered
the requirement for function (a/ax)y(x, t) to be continuous at the linking
point.

Let us embed the classically formulated problem (1)—(5) in the scheme
of Chapter III and thus attach a strict meaning to it. Let L p2 JO, is ) denote
spaces of functions squarely summable on the segment [0, ls] with the
weight ps (x) and, as in Section 1, set

H := 0 L,.(0, Is ).

Introduce space V

V = {v = (v i , v 2, . , vN ) I vs E H 1 (0, 4), 1),(0) = 0, S = 1, 2, ... , N,

v1( 1 1) = v 2 (12 ) = • • =

and specify a bilinear form on V

N
a[cp, tk] = E	 coao,/,;(x) dx; 	 cP, e V.

s 	 o

Integrating this by parts for cps E H 2 (0, 4) and taking boundary conditions
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for cp, Iff into account, we have

a [Q, IP] =
s= 1

f (- -1- (Pax))
0 	 Ps

5(x) dx + ( si= 1 49;( 10) 1 0( 1.5), (6)

where g1 0 (15) is the common value of functions O s at points ls .

According to Section HU, bilinear form has to be represented as
a[9, (Acp, ; that is, it has to be a continuous functional in H for
a given cp from the domain of operator A. From equality (6) we then
conclude that

	

491(12) + (9 202) + • • • + 49n(in) = O. 	 (7)

Therefore operator A acts according to the rule

{9s(x)},1

1 	1	  d2
,_4 	(Ps(x)

p s (x)dx2
	

s=1

and its domain consists of sets {9 5 }s 1 of functions such that cp s a H 2 (0, Is ),

9 s (0) = 0, and condition (7) and p i (12) = p 2 (12) = (PN (1N) hold at the
linking point. For the eigenvalues and the eigenfunctions of A normed in
H, we write ;t and 1,,, n a N, respectively. It is easy to see that An 0 0 for
all n. From the scheme of Chapter III, operator B here acts from the space
C" to the space W_ 2 by the rule

M

<Be,	 =	 vs (0)C(0), 	 cp a W2 D(A)•	 (8)
s=1

(The relation of operator B with problem (1)—(5) is clarified in the
same manner as in Section 1; for the definition of spaces Wr see Section
MI)

Lemma VII.2.1. Solution y	 tys I sN,__, to the problem (1)—(5) exists, is

unique, and

{Y

a y} C(0, 7V
'Yt	 a

	 T, 
°)

N

"Vo = Wo W_ = I EB[ 0 H 0, 01.
s = 1

We prove this lemma after proving Theorem 6. For the time being,
note its apparent consequence: .91(T) c 16.
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Let us introduce the optical lengths Ls of the strings:

	i s 	

:=	 Ps(x) dx

and the notation To for 2 max{Ls }.

Theorem VII.2.2. System (1)-(4) is B-controllable in space '•117,1, in time To .

The plan for studying system (1)-(4) controllability is as follows. First,
we exploit the standard methods (Naimark 1969). With operator A we
relate an entire matrix function G whose zeros coincide with the set

{0} v { ik,}. Then, after some manipulation of function G, we produce
a GF of an exponential family close to one arising from the problem of
moments. With the help of the GF, we demonstrate the .-basis property
of the family in space L 2 (0, To ; C") and thereby prove system (1)-(4)
controllability as well.

To construct the GF, let us introduce functions cp s (x, k), s = 1, 2, ... , N,
as solutions to the Cauchy problem

(pax, k) + k 2ps (x)(p s (x, k) = 0,	 (9)

(MO, k)	 0,	 (p's (0, k) = k.
Set

Ilts (k):= (ps (ls , k),	 Mk):= Ic - 1 9',(1„ k),	 s = 1, 2, ... , N.

Since functions (ps (x, k) are entire in k and 95 (x, k)1 k= 0 = 0, tli s and ( s are
also entire functions. Moreover, equality cp s ( - x, k) = cp s (x, k) implies

tGs( — k) =	 = Mk). 	 (to)

We need some information on the asymptotics of solutions cp s .

Proposition VII.2.3 (Fedoryuk 1983: chap. 2, sec. 3). Uniform in x E [0, Is ]
asymptotics at 11(1 	 co, k e C, is valid:

cp s (x, k)	 [ps (x)/ p s (0)] - 114 sin(kqs (x)) + C9(k - exp(q s (x)11m ki)),

(pax, k) = [p s (x)p,(0)] - 114 k cos(kqs (x)) + (9(exp(q s (x)(Im lc())

with g s (x):=f o JPsO

Let us look for the eigenfunctions O n of operator A in the form

(D.(x) = {9s(x, con)(s)It"--
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where co„ := /1 > 0, while n„(s ) are complex numbers. Conventionally, we

write such a set of functions 9, defined for every s on the appropriate

segment [0, ls] as a vector function

diag[9,(x, 04)] n,,, 	 th, = {q;,․) },N=,	 (11)

From the definition of functions cp s , it follows that O n satisfy the required

differential equations. Substituting O n into the boundary conditions, we

arrive at the equations

tiii(con)q„ 1) 	ti/2(wn)TIV ) = 0 ,

ilil(Wn)qn1) 	3(a)n)112)	 °,

tki(con)q11) — tGN(0).)nr = 0 ,

Ci(0).)r1;,1) + (2(04)/1(23 +...  + Cr/(w4) 11 (N) = 0.

It is natural now to introduce an entire matrix function

tPi.(k) — OA) 0 • 0

t/J 1 (k) 0 —1/f3(k) • 0

G(k) = i (k) 0 • N(k)

C 1 (k) 	 C2(k) 	 t3(k) 	 • 	 CN (k) /

Lemma VII.2.4.

(a) Any eigenfunction of operator A is of the form (11) with „ e Ker G(con ).

(b) Conversely, any function of the form diag[9,(x, k)]ti with ri E Ker G(ko)

and 77 0 0, ko 0 0, is an eigenfunction of operator A corresponding to
the eigenvalue

PROOF OF THE LEMMA.

(a) Let 9„,(x) denote the components of eigenfunction (1)„(x). Obviously,

Q ns (x) satisfies equation (9) for k con and condition 9„,(0) = 0. So

9,,,(x) differs from 9,(x, con ) by a constant factor 9,,',(0)/con . Setting

lln = co; 1{9;:s(0)} E C",

we write On in the form (11). Boundary conditions for 9,,, at the linking

point imply equality G(co„)n n = 0.
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(b) For any complex number lc, and any ri = {q ( s ) },̂1_,, vector function

D(x, ko):= diag[T s (x, ko)] = tco s (x, ko )ri (s ) rs'=,

satisfies the equation

— (1)" = ko diag[p s ] D

and boundary condition (1)(0, k o ) = O. If, along with this, G(ko)n = 0,
then the components of vector function t(x, k) also meet conditions
(3), (4). If k o 0 0 and pi 0 0, (1) is an eigenfunction of operator A
corresponding to eigenvalue kj. The lemma is proved.

Let us elucidate conditions on vectors n„ pending the requirement that
the family of eigenfunctions {(1)„} should be orthonormal in H. Let it be
an eigenfrequency of system (1)—(4) (i.e., /.1 2 is an eigenvalue of operator
A), let multiplicity of it be equal to x, and 04 ,, 00 , , (1),, x be corre-
sponding eigenfunctions, O m; = diag[9,(x, /2)]Ibij , go.; e Ker G(p). If we set

cos2 (x, p)p s dx,

we have
N

	(CP PP' (Pmq)H = 	 d„,n (! ) n-(s ) — (59
PP	 --q	 P •

s=1

By Proposition 3, numbers dm, are bounded and uJunded away from zero
uniformly in s and p:

	0 < c	 Id,„1 � C.	 (13)

Now if D denotes the operator generated by bilinear form

N
di,sq (s)(s)

s=1

on the subspace 91":= Ker G(p), then, in view of (12), operator .11)
transforms the set {)1"j } j = 1 to an orthonormal basis in fr"),J}j=, of subspace
91".

From (13) we conclude that family frOf., 1 is a basis in subspace 91"
uniformly in it:

	X 	 X 	 X

c
 E icii2 	 L cp,* 

2

 C E Ici i 2 .	 (14)

	

j=	 i=1	 j=1

(12)
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That is, the basis constants (Definition 11.5.4) are bounded and bounded
away from zero uniformly in p.

On the basis of this study of the structure of eigenfunctions O n , let
us introduce, in keeping with Section 111.3 and (8), the exponential
family

= {en} nEK c L2(0, T; CN ),

e„ = q„ exp(kon t),	 fln = Ico„ 1 101,, I (0) .

Here, we have set co_ n = — con for n E N. As in Section 1, factor ko n-1 1
shows that we are investigating the set of reachability .02(T) in space Iro .
As a space Yeo , we also take the space 16. From Theorem 111.3.10 we find
that B controllability of system (1)—(4) in space lico follows from the
Y-basis property of family ST (in L2(0, T; CN )). It is more convenient for
us to deal with a somewhat modified family built by the zeros of matrix
function G(k) := G(k — i). Let us write o- for the set of zeros of det G(k)
(it is obvious that o- = {co„ + {i}, since det G(0) = 0). For any p e
choose in 91" Ker G(p) orthonormal basis	 := dim 91", and
set

:= { e ita	 2 xN c L2(0, T; CN ).

Lemma VII.2.5. If 'T E (LB), then eT E (LB).

PROOF. Family -4 differs from the family IT by

(i) the shift of the spectrum to the upper half-plane,
(ii) the presence of additional elements corresponding to the point k = 0,

(iii) the different choice of vectors in subspaces Ker G(co„) Ker G(o)„ + i).

Two former differences obviously cannot damage the implication we
are proving. As for (iii), we have already compared the expansions over
various bases in subspace Ker G(con ) = Ker O(co„ + i) (see (12)—(14)).
The lemma is proved.

Next we examine the controllability of system (1)—(5) in the following
way. As already mentioned, B controllability of the system is implied by
the force of the results from Chapter III, by the Y-basis property of
exponential family .4. As we have just proved, the 2'-basis property of
gr is in turn provided by the .2'-basis property of family S T constructed by
zeros of the G function. The proof of the latter (in space L 2(0, T; CN))
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falls naturally into two parts:

(1) the investigation of the Y-basis property of family do, in L2 (O, co; CI')

and
(2) the proof of the projection from Vi'„ o to L2 (O, co; C") to be isomorphic.

We first study the second problem, and to do this we construct a GF
of family g, on the basis of the further factorization of matrix function

G. Then, using the spectral meaning of the co n and vectors ti n (see (11)), we

prove that go, forms an ..T-basis.
In the following theorem the inverse means the inverse matrix function:

k)O(k) I for any k.

Theorem VII.2.6.

(a) Function a- is bounded on 02 together with its inverse.

(b) There may be found an entire inner function 0, in C. such that function

F 0,G can be factorized in the form

F = F:11 F e- 0,	 (15)

where FQ are outer functions in C ± , respectively, II is a BPP, and ESF

O satisfies the estimate

<<exp(ik TOO - (k)>> -< 1,	 k e	 .	 (16)

Let us discuss assertion (b) of the theorem. Function G, as one may

see from the asymptotics of cp s (x, k), increases exponentially in both upper

and lower half-planes. It so happens that the growth of G in C, can be

removed by means of the ESF factor eo so accurately as to produce the

operator function F bounded in C,, which has no exponentially decreasing
factor in the upper half-plane (the inverse matrix function is bounded).
In the lower half-plane, F is represented by a product of an outer

function F e- and ESF 0. Out of function F we then make a GF of family

{(k — 1,0-i timi }im
: (1, 2 	 Xn and in this context estimate (16) will

mean that the Fourier transform of space IC contains L 2 (O, T,; CN ).

Denote matrix exp(ik diag[L 5]) by 0 1 .

Lemma VII.2.7.

(a) For Im k > 1, operator-function G(k)0 1 (k) is bounded along with its

inverse.
(b) For Im k < 1, operator-function G(k)0,- '(k) and its inverse are bounded.
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Sublemma VII.2.8. Let matrix J be of the form

	

I a, 	 0	 0

	a 1 	0	 0

	J= a 1 	0	 (17)

	\ b,	 b2 	 b3 	 bN

Then
N	 N	 N

det J 	 E bs fJ a; a,a 2 - • • aN E bslas .
s=1 	 f � s 	 s=1

The proof of this statement is carried out by means of the standard
methods.

PROOF OF LEMMA 7. (a) Operator G(k)0 1 (k) may be written in the form
(17) with

as(k) = tfr 	 eu", 	 bs(k) = Cs (k)

Proposition 3 implies

as (k)= l3s e ikL` sin(kLs ) + o(1),

bs (k) = Ys eikL. cos(kLs ) + o(1), 	 k G C-E; l3s, Ys > 0

and this ensures that G(k)0 1 (k) will be bounded in C + . Using Sublemma
8, we arrive at the formula

N 	 N

det[G(k)0 1 (k)] = > bs(k) fl af(k)
s=1

= n(N
	13s e ikL` sin(kLs)) E 	 cotan(kLs ) + o(1).	 (18)

3=1	 s=1

Let us show that

Idet[G(k)0 1 (k)]1 >- 1,	 Im k > 1. 	 (19)

Since the zeros of det G(k) lie on the real axis, for Im k> 1, estimate (19)
follows from the similar estimate of the main term in (18):  

Ysn s eikL• sin(kLs) E —cotan(kLs )
3=1	 5=1 fis

> 1, 	 Im k 1. 	 (20)   
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Each of the factors e iki-sin(kLs) satisfies the equality

sin(kLs)1	 1.11 —	
> z( 1 — e 21')

(for Im k 1).

Sublemma VII.2.9. For Im z > 6 > 0, we have

	I'm cotan(z)I	 c(6) > 0.

PROOF OF THE SUBLEMMA. For Im z + co, we have cotan(z)
Therefore, taking into account that cotan(z) is a periodic function, it is
enough to establish that Im cotan(z) 0 for z R. Let

cotan(z)	 i(e iz + e -iz)/(e iz — e -iz) 	 p c R.

Since exp(2iz) = (p + i)/(p — i), lexp(2iz)I = 1 and therefore z c R. The
sublemma is proved.

Applying Sublemma 9 to the sum over s in (20), we obtain

Im E Ys
— cotan(kLs)

s -1 I3s
E  c(Ls )> 0

s=1138

for Im k > 1. Hence, estimate (20), and therefore (19), is valid. The latter
and the boundedness of function GO, in C, imply assertion (a) of the
lemma.

To check assertion (b), let us exploit the implication

G(—k) = —diag[1, 1, , 1, —1]G(k)

of equality (10). Since OT 1 ( —k) = e 1 (k), function G(k)0i- i (k) is obviously
bounded for Im k < —1 if G® 1 is bounded for Im k > 1, as guaranteed
by assertion (a). The lemma is proved.

PROOF OF THEOREM 6. Assertion (a) of the theorem follows directly
from assertion (6b) of the lemma, since the explicit form of function
Ct i (k) exp{ik diag[LJI reveals that it is bounded together with its
inverse for Im k = —1.

We start to prove assertion (b) by obtaining a factorization of func-
tion G in C. Proposition 3 gives that functions exp(ikT0 /2)0,(k) and
exp(ik To /2)(s (k) are bounded in C. Therefore function exp(ikT0 /2)G(k)
is bounded in C, and may be factorized as

e ikT012 	 0 je+ n 	 (21)
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with 02 being an ESF, and I being an outer operator function bounded
in C, according to Subsection 11.1.2.9. Set

	0 0 s= e ikT0/2 %1(k) 	 (22)

and verify that function 0, is bounded in C.,. (then it is an ESF). This
function is bounded on the real axis since it is unitary-valued on it. By
Lemma 7(a), function G -1 (k) is bounded for Im k > 2. Formula (21)
provides 0 0 = F:1-1O -1 , so 0 0 is also bounded for Im k > 2. All that
remains is to check that it is bounded in the strip 0 < Im k < 2. Let us
take advantage of the fact that multiplication of 0, by eika with large
enough a leads to an ESF and therefore <<0 0 eu.c>> < 1. Hence, 0, is
bounded in the strip.

We just proved the factorization of O in C+ .
To prove the required factorization in C_, we need some statement

about the change of the factorization order.

Lemma VII.2.10. Let g ";- be an outer operator function in C_, let .97 e- and
[.°7-e-] - 1 be bounded in C_, and let 0 be an ESF. Then outer operator
function fre- in C_ and ESF 15 may be found such that

	aFe- = fre-e
	

(23)

PROOF OF THE LEMMA. Function exp(— ika)0(k) is bounded in C_ and so
for some a > 0 factorization

e -	 =	 4:); 	(24)

is possible (0 3 is an ESF). By setting O(k) = exp(ika)CV (k), one may
see that functionse and O satisfy equation (23). Let us demonstrate
that 64' is bounded in C_. From (23) we derive the equality

[0] - i = Cie J -

10-1 e

Function [.97;1' is bounded in C_ by the condition of the lemma, while
.re - by relation (24) and the condition. That is why function ö -1 is
bounded in C. If we now apply formula (3) of Section Ill, we end up
with the boundedness of function 0 in C. The lemma is proved.

By Lemma 7(b), function a(k)0i-1 (k) is bounded in C_ along with its
inverse. Therefore it is an outer function Pe- ; that is, F = 00F,- O i . With
the help of Lemma 10, one is able to change the order of the first two
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cofactors:

@or; = FE-04	 (25)

and to get F = Fe- 0,0,. Thus factorization (15) is established for
0 = 0401.

It only remains to check the validity of estimate (16). Since function
Oi '(k) exp(ik To /2) is bounded in C ± , it suffices to prove the estimate

<<04-1 (k) eikT0/2>> 	 k E E+. 	(26)

Function 0 4 appears following the change in the order of factorization
in (25). Therefore 04 1 = [Fel lo cT 1 •-•—.r Outer functions [PQ ] -1 and
Fe- are bounded in C_, so that instead of (26), we can verify that function
00- 1(k) e ik To/2 is bounded. By the force of (22), this function equals ESF
0 2 (k). Theorem 6 is proved completely.

Now it is possible to demonstrate Lemma 1. Function det G(k) is an
STF by Theorem 6. Then (see Proposition 11.1.28) set {wn }„E OS of its zeros
is a finite unification of separable sets. The assertion of Lemma 1 now
follows from Lemma 11.1.21 and Lemma 111.2.4.

In contrast to a GF, function F has inner functions II and 0 as
right cofactors. To use the results from Section 11.3, let us proceed with
the so-called associated (adjoint) functions, which we will mark by the
sign : I(k) = k). Function (Lois an outer function (a BPP or an ESF)
if and only if the associated function Ck is an outer function (a BPP or an
ESF, respectively), since these properties are governed by the properties
of scalar function det t.

Lemma VII.2.11. A factorization

= fiFe+ = Ofe-

holds with functions F and E -1 uniformly bounded on R and

11* (10 71„ = 0 ,	 <<e- 1 (k) e ikm >> -‹ 1 ,	 k E C,	 (27)

(remember, lin = con + i).

PROOF OF THE LEMMA. Functions F and F 1 are uniformly bounded on
R, since it is true for functions F and F"' in the light of Theorem 6(a).
Let us check relations (27). Since — = fi_„, fI*(y„) = II( ft„)
By definition, —pin = q_„, so Ker	 = Ker 11(//,7 ).

Function exp(ik To)0 -1 (k) is bounded in C. +. by Theorem 6(b). Since
the norm of an operator equals that of the adjoint one, associated function
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exp(ikT0)6 -1 (k) is bounded in the upper half-plane as well. The lemma
is proved.

Corollary VII.2.12. Orthogonal projector from V 40 to L 2(0, To ; C I') is an
isomorphism on its image.

PROOF. Using the fact that the nullsubspace of self-adjoint operator A
contains only eigenfunctions, it is possible to show that zeros of G(k) and,
hence, zeros of f1(k), are semisimple. In view of Remark 11.3.15, we do
not need this fact and do not prove it. Now Lemma 11 and Corollary
11.3.22 imply that operator Pol io is an isomorphism of Kn and K4- . Space
Kt,- contains simple fractions (k — gn. Space K4 is contained in
space K2-0 by Lemma 12. Therefore the restriction of operator PT0 on
V{oc — Vin) -1n„} is an isomorphism on its image. By the transition from
simple fractions to exponentials, we obtain the assertion of our corollary.

Thus, we have just finished the first stage of the study of the basis
property of family iT . Lemma 5 and Corollary 12 yield an implication

E (LB)	 e (LB).

To check the .0-basis property for family i'03 , we use the following idea.
If	 tt (LB), then, roughly speaking, there are some exponentials with
close frequencies co n + i and close vectors n,,. But then, eigenfunctions
are also close, which contradicts their orthogonality in space W0 .

To implement this program, we need some estimates of solutions to
systems of linear equations. Since we are also interested in their application
in the next section, we present them with more generality than is required
by the problem under consideration.

Lemma VII.2.13. Let d(x) be positive definite and continuously differenti-
able on the segment [0, a] matrix function, and let g(x,k) be a solution to
the Cauchy problem:

"(x, k) = — si(x)g (x, k),	 (0, k) = 0,	 g ' (0, k) = kI . (28)

Then function g(x,k) is uniformly bounded in k e R:

<<g (x, k))> -< 1,	 X E [0, a], k e

and uniformly continuous in k e R: for any e > 0, constant C may be found
such that an inequality holds

<<g(x, k) — (N(x, k)>> < Clk — 	 x E [0, a], k E R, k e O .
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PROOF OF THE LEMMA. Let us move from the second-order system (28) to
the first-order system

2" (x, k) = k.1(x)2'(x, k), 	 g(0, k) 12N ,	 (29)

( 0 N

0) .

Here, IN and I2N are unit operators in (E N and C 2 N, respectively.
One should check whether the matrix function ff(x, k) is bounded and

uniformly continuous, since g(x,k) is the upper right N x N block of

matrix '.
Set

bk := k — k , 	 b2'(x, k, rc):= %(x, k) — .2'(x, k).

Then

	(62(x, k, rc))' k.R(x)(5 2(x, k, rc) + 8k.R(x)2(x, k),	 82' (0, k) = 0

and from here

82'(x, k, lc) = J x (x, k)2° - V, k)[blc.2(02(, fc)] d .	 (30)

Matrix function 2'(x, k).2° - V, k) is the solution to equation (29), which

turns to I2N at the point x To estimate this function, let us make a

substitution,

1 	 — I

Then we have an equation

= [ik (N/
o
d

in which all the N x N blocks of the matrix	 equal NAci -1 (d/dx).,/s1.

Proposition VII.2.14 (Hartman 1964: chap. IV, lemma 4.2). A solution to

the vector equation

x'(x) = .4(x)x(x),	 x(c) = xo

is estimated by the largest, K.,(x), and the smallest, K _(x), eigenualues of

0

./91)

	(31)
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the Hermitian part (4(x) + 4*(x))/2 of .R, as follows: for x >

<< (x)>> <<xo >> exp(1 K+(s) ds),

MIA

<<4x)>> <<xo >> exp	 x K _(S) dS),

	 (32)

and for x <

(<z(x)>> << ,zo>> exp(	 K+(s)—	 ,(s) dS),

<<41C)>> <<zo>> exp( —	 K—(s) dS).

Now we can exploit Proposition 14 to estimate .21. Apply estimate (32)
to equation (31). If we observe that the Hermitian part of the matrix of
the equation does not depend on k, we obtain matrix function ..11 to be
bounded uniformly in k e R. Hence, matrix function Y(x, k).2° k) is
also uniformly bounded, and the assertion of the lemma follows from (30).

Let us now state the main result on the controllability of the system of
connected strings.

Let us prolong the proof of Theorem 2. As already mentioned, B
controllability of system (1)—(4) is equivalent to the ..9('-basis property of
family iTo , which in turn follows from the £-basis property of family i'co .

Suppose that 61'03 st (LB). From the .99-basis property criterion on the
semiaxis (Theorem 11.2.12), it follows that for any e > 0 there may be
found set S2, of points vf , j e .Ar c N, with the total number of points not
greater than N + 1 such that

(i) hyperbolic distance between any two points of Sk is not larger than
e, and

(ii) vector family {n}ies, is almost linearly dependent in a sense that

min 49cN(1., V 11) ^ C•

Since points v; lie on the line Im k = 1, in (i), instead of the hyperbolic
metrics, one may take the Euclidean one. Moreover, (ii) implies that Gram
matrix F,. is "almost degenerate." So (i) and (ii) can be replaced by

(i') Icon, — con l <s, m, n e X, and

ne.At 	 me.Ac,m* n
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(ii') for some c =	 Icni2 = 1, the inequality
2

(r_N-C,	 :=	 E c n t „ 	 e
	

(33)
ne ✓V

is valid.

Let F, denote the Gram matrix for family {1:12, ,,}„ EA, of eigenvectors of

operator A. Applying Lemma 11.2.3 to this family and using representation

(11), we arrive at the inequality

<F,c,	 .̂  2	 max	 II Cos (x, con,)1
2	 < F7c,

s,n,s ^ N,ne,A'

+ 2<<Fdy>>.*-	 max	 0).)	 (Ps(x, wn)ill,(0,/s). (34)
s ^ N,m,ne.At

Using Lemma 13 (for a scalar situation) with functions co s (x, k), which

satisfy equation (9), we derive an inequality

II (Ps (x, w.) — (Ps (x,	 )	 (0, I.)	 Ce,	 m,	 1, 2, ... , N. (35)

Then (33)—(35) lead to the conclusion that Gram matrix F, of a subfamily

{(1),,} nex of family {zIcs„}„, N is "almost degenerate”: for some vector

C = { Cn}ne ,V 1 EnE✓ I Cni 2 	1)

<F,c,	 Cie.	 (36)

On the other hand, owing to the orthogonality of eigenfunctions, we have

2

<F,c,	 = E cnon

ne.Ar
= E ic„1 2 —1.

ne.A""

Constant C, in (36) does not depend on e, so we have a contradiction

and so the theorem is proved.

Remark VII.2.15. If we change variable: x H x/L s for each of the strings,

we obtain a problem for x e [0, 1] (for any s). Condition (3), (4) turns into

Yi( 1 , •) = Y2( 1 , •) = • • • = YN( 1 , •),

—aax y
1 (1, .) + 12 I —y 2 (1, .) + • • • + IN 1 

ax 
yN (1, • ) = 0.	 (37)

ax 

In the obtained system, energy does not conserve, since the boundary
condition (37) is not self-adjoint. This is connected with the fact that
the operator of the change of variable is an isomorphism but is not an
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isometry. The differential operator that arises is similar to the self-adjoint
one; its eigenfunctions form a Riesz basis. The approach in Chapter III
is also applicable in this case.

Remark VII.2.16. Formal application of the microlocal approach devel-
oped by Bardos, Lebeau, and Rauch (1992) for multidimensional hyper-
bolic equations to the string system (1)—(4) corroborates our result on B
controllability in the time To. We suppose that the result can be refined
as follows. There are sets A s c l such that E mes As = 2 E Ls and the
system is B-controllable with supp u 5 c A. This corresponds to the fact
that the indicator diagram width of det G(k) is equal to 2 E Ls . N. Burq
gave some arguments corroborating this hypothesis (private communi-
cation).

3. Control of multichannel acoustic system

3.1. Consider the following system of equations for vector function y(x, t):

.91 
	Ot2 t) 

a2y(

8x2 

t)
(x) 	 = 	 0 < x < /, 0 < t < T.	 (1)

y(0, t) = u(t),	 u e L2(0, T; C ),	 y(1, t) = 0,	 (2)

y(x, 0) = —
Ot 

y(x, 0) = O.	 (3)

Here, .521(x) is a C 2-diagonable positive-definite matrix function. That is,

.si(x) = U(x) diag[p„ (x)] U - 2 (x),	 (4)

with U e C2[0,I]; p„e C 2 [0,1], n 1, 2, ... , N, and p„(x) > 0, for x [0,1],
U being a unitary-valued matrix function.

Let us state without proof conditions which are sufficient for a smooth
diagonalization. In particular, if d(x) is analytical, it is C'-diagonable
(Kato 1966: chap. 2).

Proposition VII.3.1 (Ivanov 1989). Let

(a) sal E C P [0, 1],
(b) the eigenvalues p„(x) of matrix si(x) belong to CP[0, 1],
(c) the multiplicity of any zero of any function R ;

Ri := E (p,(x)— pi(x)),	 1 = 1, 2, ... , N,
i,i*;

is not greater than r, r < p.
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Then matrix .sal(x) is C 4-diagonable for q = p — r; that is, formula (4)

holds with U e C 9 [0,1].

Let us also demand that the following condition be valid: if at x = x o

eigenvalues p i (x) and pi (x) coincide (the so-called turning point), then in
some neighborhood of the x o representation,

p i (x) — pj (x) = (x — xo)" 9(x)	 (5)

is true, with K = Kii(X0) e N being the multiplicity of zero of the function

p i (x) — p j(x); (x) 9,j (x, x o) is continuously differentiable about x o ,

and yo u (x0) � 0.
System (1), (2) describes N wave channels interconnected by means of

the transmission coefficients siii(x). At the boundary point x 0, a
control, u, is specified while a zero regime is prescribed at x = 1. If matrix
function U is constant, then, after the change of variables y(x, t) = Uv(x, t),

the system splits into N noncoupled channels

0 2 v(x, t)	 a 2 v(x, t)
diag[p n (x)]  at2 =  ax2 	0 < x < 1, 0 < t < T.	 (6)

To solve a control problem for system (1), (2), we construct a GF of
an exponential family, just as in Section 2, and we study its behavior in
C and demonstrate B controllability of the system for the time To

To := 2	 <<.sai(x)>> 1 / 2 dx = 2	 max {,/p„ 	 dx.
o n=1,2 	 N

If we consider system (1), (2) according to the plan of Chapter III, we set

H := L.1,(x)(0, 1; C N ),	 ilv II i =	 <d(x) v(x), v(x)> dx,

V .= H (1)(0, 1; CN ).

Determine on space V x V a bilinear form

a[9,	 <43'(x), tlf'(x)> dx,

which generates (see Chapter III, Section 1) operator A

(A9,0), = a[9,0];	 q  e 2 (A), E V

(A 9)(x) = — (x) - 1 d 2 9(x)
dx



ail MN--MN an MIN IMO MO MI ■
266	 VII. Boundary control of string systems

with the domain H 2 (0, 1; C N ) n HRO, I; CN). We denote the eigenvalues
and the normed eigenfunctions of this operator by A„ and On , n E N.
Operator B has the form

<By, 9>	 <v(0), Cp'(0)>,	 9 c W2D(A),

(see Section 2 and Subsection 111.2.2).
As in Sections 1, 2, the solution of system (1), (2), (3) satisfies the relation

{

y, a
t 

y} e C(0, T; IVO),	 (7)

	

"WO Wo W	 I I H -1 (0, 1; C").

This fact will be verified after the construction of the STF with zeros

{±-/1.}.
3.2. Consider matrix equation

	

— Y"(x, k) = k 2 (x)Y(x, k)	 (8)
with conditions

	

Y(0, k)= 0,	 Y'(0, k)= kI.	 (9)

Set G(k) := Y(1, k), which is obviously an entire function of parameter k
of the exponential type (see Proposition 2.14). In the scalar case, G(k)
coincides with function 9„(x, k) (see formula (9) of Section 2) for
p„ (x) = si(x). It is clear that G(—k) = —G(k) and G(0) = 0. One easily
sees G(k) = kGo(k), where Go(0) is a nondegenerate matrix, so k = 0 is a
semisimple zero. The following serves as an analog of Lemma 2.5.

Lemma VII.3.2.

(a) Any eigenfunction of operator A is of the form

(1).= 17(x,,g) 11„

with rin E Ker G(1.10.
(b) Conversely, any function of the form Y(x, ko)ri is the eigenfunction of

operator A corresponding to eigenvalue ko if I E Ker G(10,11 0 0, and
ko 0 0.

If p is an eigenfrequency of system (1), (2) of multiplicity K CO is an
eigenvalue of operator A), and (1),, 1 , cbt, 2 ,	 , I  are corresponding eigen-
functions, then vectors qµ„,	 ,	 in the representation

(I)" = Y(x, 1-1)71A.
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satisfy following orthogonality conditions

f <,szi(x)(1),,„,	 dx = 6,T.	 (10)
o

Let us introduce a vector exponential family

= te n } nEK C L 2 (0, T; C"), 	 en(t) = rin exp(ito n t),

rin =	 (0),	 co„ := sgn(n)✓2 1 „ 1 •

In light of the results of Chapter III, the properties of this family
determine the controllability type of system (1), (2) in space -w-o .

We also introduce family ST constructed by zeros of function
O(k). G(k — i):

4 :_ t e ipt 	 tc, 	 L 2 (0, 1; CN).

Here, a = {w„ + i) u {t} is the set of zeros of G(k), 	 are the orthonormal
basis in Ker G(11), and	 is multiplicity of zero

We write / for the family of simple fractions obtained out of exponential
family lei/it pi)2  L2(0, cc; C" ) by the Sr- transform (see Sub-
section 11.1.1.5).

We need results concerning the asymptotics of G(k) for real k and the
behavior of G(k) for Im k 	 co.

Theorem VII.3.3.

(a) For 1k1 	 oo a uniform in Im k, IIm 	 const, asymptotics

G(k) U(I) diag[a„ sin(k J .N/pn (s) ds)] U'(0) + o(1) 	 (11)
o

is valid where a n are some constants and a n 0 0, n = 1, 2,	 , N.
(b) There may be found an ESF O and an entire matrix-function X(k)

nondegenerate in C such that
(i) matrix functions X(k) and X -1 (k) are bounded on the real axis,
(ii) matrix function F. XG can be factorized in the form

F = F;FII = F;0,	 (12)

where Fe± are outer functions in C ± , respectively, H is a BPP
constructed by zeros of O, and

(iii) ESF ® satisfies the estimate

<(e'm 	 (k)>> -< 1,	 k e C + .	 (13)
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The proof of Theorem 3 is found below, since it requires the detailed
study of the equation (8) solution for Iki 	 co.

If one considers this theorem to be valid, the further investigation of B
controllability almost completely repeats the one performed in Section 2
for a system of strings connected at a single point. For instance, relation
(7) (and hence the embedding g (T ) c 1V0) is implied by the fact that set
{con } is a unification of a finite number of separable sets, since {co n } u {0}
is the set of zeros of an STF det G.

Moreover, the implication

If 4 E (LB), then jT e (LB)

is demonstrated with the help of the same arguments as in Lemma 2.5
with the exploitation of the orthogonality condition (10) and the asymp-
totics (11).

Theorem VI I.3.4. System (1), (2) is B-controllable in space 11/ . in time To .

Remark VII.3.5. If U(x) is a constant matrix, then system (1), (2) is
B-controllable in the time T1

T1 = 2 max  .✓p„(x) dx To .
n 	 0

Indeed, the change y(x, t) = Uv(x, t) yields the system (6), that is, the
system of N disconnected strings with the largest optical length T1 /2. Since
the single nth string of optical length .L.„ is controllable in time 2L„ (see
Russell 1967, or Chapter V, Section 2), system (1), (2) is B-controllable
in time T1 . In addition, we can demand that the nth component of
control v(x, t)l x " = U'u(t) be zero at

1 	
t > T(" ),	 T(").= 2	 p„(x) dx .̂  T1 .

Remark VII.3.6. Avdonin, Belishev, and Ivanov (1991a) studied an inverse
problem for the equation for vector function yf(x, t)

8 21(x, t)	 yi(x, t)
	  + Q(x)yi(x, t), 	 0 < x < co, 0 < t < T,

ate	 ax2

yf (x, 0) = y{(x, 0) = 0,	 yf (0, = f (t).
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By the inverse problem data, namely, the response operator (Dirichlet to
Neumann map)

f	 t), 	 t e [0, 2T],

one should have to find potential Q(x) for x E [0, T]. The way to solve
the problem (see Belishev 1989; Avdonin, Belishev, and Ivanov 1991a,
1991b) is to use the so-called controllability on a filled domain: the
property

{yf (x, t) I f e L 2 (0, T; C N )} = L 2 (0, T; C N ).

(By means of the source f(t) of class L 2 , we can obtain in time T any
profile of the wave of class L2 on the part of the axis where the wave has
already arrived.) To solve this we proved that a system with Dirichlet
boundary condition at x = T

a 2y(x, t) 	a2y(x, t)
at e	axe

Q(x)y(x, t), 	 0 < x < T, 0 < t < T,

Y(x, Olt <o = 0 ,	 Y(x, 01,0 u e L 2 (0, T; C N ), 	 y(x, t)I x _ T = 0,

is B-controllable in space L 2(0, T; CN ) (0, T; CN ) in time 2T. From
this it is not difficult to extract controllability on a filled domain.
3.3. We now enter upon the proof of Theorem 3. At this point, we study
in detail the behavior of solutions to equation (8). We are interested in
two questions:

(1) the asymptotics of the solution with k tending to infinity in the strip

gm kI _̂ const (this is required to verify that G(k) and G'(k) are

bounded on the line Im k = const 0); and
(2) the exponential growth of the solution at lIm kI co, which is needed

to extract singular factors in G.

Remark VI 1.3 .7 . Ivanov and Pavlov (1978) and Ivanov (1978, 1983a,
1983b) investigated the vector Regge problem (the problem of resonance
scattering) for the equation

si(x)u„(x, t) = u„,;(x, t), x E (0, a)),

with .szi(x) I for x > I. In the study of the completeness and the basis
property of the family of the so-called resonance state, the vector
exponential family constructed by zeros of Jost function M(k) plays the

principal role (M(k) is the value at x = 0 of the solution of equation (8)
obeying conditions Y(1, k) I, Y'(1, k) — ikl). The tools designed to
investigate equation (8) in those studies may be applied to G(k) as well.
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Our treatment of solutions to equation (8) is as follows.
We first transform (8) into the first-order system with the diagonal

principal part (in k) of the form

The next step consists of "splitting apart" the equation. That is, it is
reduced to two equations of lower dimension whose principal parts are

±ik diag[N/p,,	 , N/pN]•

The splitting is accomplished by choosing a special linear transform of
the unknown function (depending on k).

The first step in the transformation of (8) is to replace it by an equation
of the first order in the standard way:

0 I

	

Z' =	 si 0 )Z,	 (14)

where Z(x, k) is a matrix-valued function of dimension 2N. A solution Z
of this equation is related to linearly independent solutions Y, and Y2 of
(8) by the obvious equality

(Z11 Z12) 	 Yi	 Y2Z =

	

Z21 Z22 	 k-	 k-1 1'2

In particular, solution Y(x, k) of (8), (9) coincides with the block Z12 of
the solution of (14) satisfying initial condition Z(0, k)I (1= -2N s-2N the unit
matrix of 2N dimension).

Lemma 8 is proved by direct substitution.
Many studies have dealt with the analysis of the asymptotics at k	 co

of solutions .g(x, k) to the equation

= kg(x,k),	 .1(x, y) = M(x) + e(k -1 )

(see, e.g., Wasov 1965, 1985). Such analyses run into serious difficulties
when R(x) has multiple eigenvalues. In our situation, the system matrix
possesses a characteristic structure; namely, its principal term is a diagonal
matrix with real entries, and the entries naturally fall into two isolated

groups, tip7,1 and { —./,72„}. Inside a group, coincidences of entries may
occur. These peculiarities enable us to reveal a substitution

Z1 (x, k) = W(x, k)Z 2 (x, k),	 x E [0, 1],	 Im k > const,

such that the matrix of the equation for Z2 becomes block diagonal. We;..
speak about the splitting of the system just in this sense. Note that in our
case we manage to perform this splitting not locally, but on the whole
segment [0, 1] at once.

The standard procedure for finding W leads to the solution of a
nonlinear equation with a principal (in k) linear part and a quadratic
nonlinearity. We shall seek W in the form

W(x k) =	
I	 V, (x, k))

)	
(18)

V_ (x, k)	 I 

proceeding with the requirement that equation (16) for function Z2 should
become

	(ikR(x) +	 k)	 0
Z'2 =	 )Z2.	 (19)

	

0	 — ikR(x) + _(x, k)

Substitution of Z 1 	WZ2 into (16) together with (19) yields four matrix
equations

where

Zi 	
g2	 0 \

=[ik
(0 —4 +

:= diagEN 	/P2, • • • ,

:= —111 -1 N/91 -1 (\tsi)'U

+ 1-(log ,R)' + U' U',

:= —

g±(x, k)	 .97-(x) + (x)17± (x, k),	 (20)

r± (x, k) = ±ik[V,(x, k)R(x) + .W(x)V± (x, k)] +
}. (21)

+ [V± (x, k)g;(x) + (x)V± (x, k)] — V± (x, k)g(x)V± (x, k)

The matter thus reduces to the investigation of equations (21). For the

(17) 
entries v„„ of V± , the equations take the form of a system

(v,„„)' = ± ik(^Pm + fp,,)v„,„ — g„,„(v ± ),	 1 _̂  m, n N, (22)
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where v± are vector-functions	 „ g„,„(v) is a polynomial of the
second degree in variables {v„,„} with the coefficients independent of k.
Equation (22) can be written as a system for vector functions {v„,±,,}

(v )'(x, k) = ± ikR(x)v±(x, k) + D(x) + Q(x)v ± (x, k) + F(x, k ) (23)

in which R = diag[*Jp,„ + .,,A„] and the components of quadratic vector
function F(x, v) are

<F„(x)v(x, k), v(x, k)>,

with matrix-valued functions F„(x).

Lemma VII.3.9. There exist matrix solutions V.,.(x, k) and V_(x, k) of
equation (21), which are entire functions of k for any given x, for which the
conditions

k) = 0,
(24)

V_(1, k) = 0,

are valid, and for Im k > const and x e [0, I] we have

<<V+(x, k)>> -< 1/(1 + Ikl),	 << V (x, k)>> -< 1/(1 + Ikl).	 (25)

We confine ourselves to the solution V+ (x, k). The study of V_ may be
carried out in similar fashion. The local existence and analyticity of V+
follow from well-known theorems (Hartman 1964; Kamke 1959). Let us
prove global existence of V+ and check the estimates (25).

In what follows we repeatedly use the formula connecting a funda-
mental solution of a homogeneous matrix equation and a solution of an
inhomogeneous one. If

Wo(x) = 4(x)&0 (x),	 det &c,(0) � 0,	 (26)

g'(x) = .4(x)&(x) + 99(x),	 &(0) = qq1 ,	 (27)

then

(x) = + I X go(x)gcT (s)Y(s) ds . (28)

The formula will be used to obtain an integral equation for solving a
homogeneous equation with parameter k, if we are to extract the principal
part of the solution.
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Sublemma VII .3.10. For the solution of the problem

w' = (ikR(x) + Q(x))w + D(x), 	 wl o = 0,	 (29)

the estimate
<<w(x, k)>> -< 1/(1 + Ikl)

is valid.

PROOF OF THE SUBLEMMA. Let us consider an auxiliary problem

(ikR(x) + diag[Q„„(x)])wo, 	 wo 1 0 0,

having the explicit solution

wax, k) = exp( j• diag[ikr.„ + Q„„] ds). 	 (30)

Using (26)-(28) we obtain the integral equation

w(x, k) = 	 wo (x, k)w ()T 1 (s, k)(Q — diag[Q„.])(D(s) + w(s, k)) ds

= w°(x, k) + (Kw)(x, k),

where K is the integral operator

(Kf)(x, k) = J x K(x, s, k)f(s) ds,

K(x, s, k):= wo(x, k)wo- '(s, k)(Q(s) — diag[Q„.(s)])•

We arrive at a Volterra integral equation with an operator acting in
space of continuous matrix-functions, which is bounded uniformly in k,
Im k > const. To prove the sublemma we check that Iv o is "small"

<<wo(x, k)>> -< 1/(1 + lk1)	 (31)

(uniformly in x e [0,1] and k, Im k > const).
From (30) it follows that ij-entry of w o is presented as a phase integral

x

K ? (x k) 	 9(s) 	 ds'	 •

with phase

i (x, s) 	 r<<(t) dt = 	 p i (t) dt.s 

Since p i is positive, the phase has no stationary points and therefore (31)
is valid. The sublemma is proved.
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Let us return to equation (23). From a comparison of problems (23),
(24), and

u' = (ikR(x) + Q(x))u,	 uio = I,	 (32)

we obtain an integral equation for v,

v (x, k) = (Qv + )(x, k)

(see (26)-(28)) with (nonlinear) operator Q acting in space of continuous
vector functions:

(Qv + )(x, k) := x u(x, k)u - 1 (s, k)D(s, k) ds

+ 
J

x u(x, k)u'(s, k)F(s, v + ) ds. (33)

Here, v is a vector function in C(0, 1; fie2 ).
We now prove two estimates:

<<(cv)(x, k)>>	 C	 + C211 14 2 , (34)

<((2v 1 )(x,	 — (nv 2)(x, k)>> S CA1)1 — v 211(11v +	 v 21I) • (35)

Here, v(x), v 1 (x), and v2 (x) belong to 0R N2, << >> is the norm in II1N2, and
11.11 is the norm in C(0, I; RN2).

Indeed, the first summand in (33) satisfies equation (29) and therefore
coincides with w. So it has already been estimated in Sublemma 10 as
0(1k -1 1). To estimate the second summand, we notice that matrix-valued
function u(x, k)u - i (s, k) is the solution to (32) on the segment [s, 1] with
the condition u(x, k)u - (s, k) = I. So taking into account Proposition
2.14, we see that the estimate (34) follows from boundedness of F

<<F(x, v)>> <<v>> 2

uniformly in x, k.
Estimate (35) is the direct consequence of the definition of quadratic

vector function F, since

	<riv i , v 1 > - <rv 2 , v2> = <riv,, v 1 - v2> 	 <ri(lli 	 v2), v2>.

Suppose that functions v 1 and v2 are such that

<<v1,2(x)>>	 Calk-11
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and we choose C4 , proceeding with the requirement that

<<(flv,)(x, k) — (Qv2)(x, k)>> 	P(Ilv — v211),	 0 < p < 1,

(<(nv 1,2)(x, k)>>	 Calk -
Using estimates (34), (35), it is easy to conclude that such a constant C4

exists if jkl is large enough.
So, constriction of operator SI (acting in C(0, /; (1/" 2)) on the set

{v I <<v(x)>> C4 1k -1 11 is a contraction. Therefore the solution of (22)
(and consequently the solution of (21)) exists on the set and satisfies the
requirements of the lemma. The proof of Lemma 9 is completed.

We now turn to the fundamental solutions of equations (14) and (19).
The solutions are related by

( I	 —I VU OV I	 17,(k)z2

	sad/ 0 U)1/_(x, k)	 I	 )

(see (15) and (18)).
It is also evident that the solution of (19) can be sought in the form

`1' + (x, k)	 0
Z2(x, k) =

0	 (x, k))'

where ‘I' ± are solution of

T't (x, k) = (±ila(x) + g ± (x, k))T ± (x, k)}

`P t (0, k) = I
(36)

This makes solution Z of (14) with Z(0, k) = I2N take the form

Z =

Z(x, k) =
( I	 —I V U(x) 0

sl(x)	 si(x)A 0	 U (x))

x 	I	 V+(x, k)(t1" + (x, k)	 0

k)	 I	 0	 (x, k))

[( — I )(U(0) 0 I V,(0, k))1 - 1
AO) AO)) 0 U(0)) 1%.(0, k) I )

Corollary VI 1.3.11. Solution Y(x, k) of (8) with Y(0, k) = 0, Y'(0, k) ikIN,
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is expressed in terms of V± , T ± by the formula

Y(x, k) = U(x) 
[(I — V_(x, k)'P + (x, k) + 	 k) — 1)`Y-(x, k)

2i

x (I — V_(0, k))].4f (0)U (0),

and for Im k < const solution Y(x, k) has asymptotics

xY(x, k) U(
2i ) ['P+(x, k) — 	 k)]R-1(0)(U'(0) + 0(1k1')).

(37)

PROOF. By multiplying matrices and carrying out elementary transfor-
mations, we obtain (37). The asymptotic expression is provided by Lemma
9. The corollary is proved.

Note that for N = 1, systems (36) have explicit solutions

(x, k) = exp[ ± ik ✓p(s) ds + f ± (s, k) dd.

Solution '11 , (T4 is of the exponential growth in C_ (C + ) and decreases
exponentially in C + (C_), respectively. This fact remains valid for the
vector case as well.

Now we study the asymptotics of solutions 'P t in a strip parallel to
the real axis.

Lemma VII.3.12. For 1Im kl < const, functions II' ± (x, k) have the asymp-
totics

'P t (x k) = 111°± (x, k) + 0(lk -1)
	

(38)
and

Y'°± (x, k) diag[.4,/ p„(x)/ p „(0) d„(x) exp( ± ik 	 ii,",()g)] +
o

(39)

where

d„(x):= exp(—_ r x (,- 1() u ,())„„ d,)
2 0

and 1/a is the maximal order of turning points of matrix functions .rat,

1	 ( 
xo ; j= 1,2 	

	max	 Kii (x0)) ,
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(and ic ii (x0 ) is the exponent in (5) - the order of turning point x o or the
multiplicity of zero xo of function p i (x) - pi (x)).

PROOF OF LEMMA 12. To investigate solutions `l' (x, k) we construct an
integral equation starting from equations

(11q (x, k))' = (±ik diag[1,(x)] + diag[g„, (x, k)])T1 (x, k),

V± (0, k) = N,

11n	 ±)rin •

Using (26)-(28) and the explicit formula

k) = exp diag(ik J .,AT)„(s) ds + J .gn„(s, k) ds) 	 (40)

we arrive at

T ± (x, k) = 	 (x, k) + x TI (x, 	 k)]-

x Eg±(s, k) - diag[„, (s, k)]] ds = 	 k)

+	 exp[diag(ik f fio() + 	 k) dO]
o

x [g±(s, k) - diag[,,„ (s, k)]]`11 ± (s, k) ds,

or, in the operator form,

`11 ± =	 + ir±T ± . 	 (42)

Here 1-± is the matrix integral operator acting in space of continuous
matrix functions

(.2IC ± T)(x, k) = J x exp[diag(i1c0„(x, s))].%' (x, s)P(s) ds,

where

(x, s) := exp [diag(	 k) cg)][g (s, k) - diag[„, (s, k)]],

and phase tfr n (x, s) has the form

n (x, s) = J s

(41)
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It follows from (42) that the "error" tY ± — PI satisfies

'F t —	 =	 } 'Ft + .YC ± (t11 ± — ‘11° ).	 (43)

Since Im k is bounded, operators Yi-± prove to be uniformly bounded.
Now, using an estimate for Volterra equation (43), we find

—	 CIIY±V±11,

where constant C does not depend on x and k.
We now write out ij entry of matrix Ytc ± klq. It is enough to take a

nondiagonal entry, since (.Y( ± V±' )il = 0 (see (40) and (41)).

	( ± V± )(x, k) =	 4 (s, k)	
( J o
	 k) d +	 k) ck)

	x exp(ik J ,/p;() + ik	 ck) ds

	=,	 5,1(s, k) e ikfil (x's ) ds.i
x o

The phase of this integral is

fii (x, s) =	 pj() d +	 .

Let us show that

	(.Xt ± 'F )±),; = 0(jk - s1)	 (44)

uniformly in x, x E [0, 1]. The decrease of (dr ± t1q) i; depends on multi-
plicity of zeros of

a
fi .(x, s) = .1

Os	
6(s) — p i (s).      

The multiplicity of a zero x o of the function .\/pi (s) — .\./p i (s) is equal to
the multiplicity of the zero of the function pi (s) — p i (s) and does not exceed
a. By the Watson lemma (see, e.g., Fedoryuk 1977: p. 31) we obtain (44)
and, in view of (43), also (38).

Let us check the equality (39). Equations (17) and (20) and Lemma 9
imply

4 (x, k) =	 + 0(Ikl -1) = -Wog 19;(x))' — 1(U -1 (x)U'(x));; + (9(I kl -1 ).
Together with (40) they give us (39). Lemma 12 is proved.
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By taking (39) into account, we obtain the following corollary from
Lemmas 12 and 10.

Corollary VII.3.13. For gm kl < const an asymptotic expression is valid

Y(x, k) = U(x) diag[(p n (x)p„(0)) 1 /4 exp(--1 T x

	

2	
(U - '()UV)),,„ c/0]

x diag[sin(k J x fp „(0) d 1 U 1 (0) + (9(11(1) • 	 (45)

Remark VII.3.14. Formula (45) may be obtained from equation (16) by
the same method as the asymptotics of ‘1' ± (x, k). Thus, no splitting is
needed to investigate the behavior in the strip IIrn kl < const.

Remark VII.3.15. Kucherenko (1974) has presented a particular case of
the fact that under rather general assumptions the main asymptotic term
of the equation

g' = ik.I(x)g

at IkI	 co, k E [FR, ./*(x) = ./(x) is independent of the change in multi-
plicites of the eigenvalues of matrix R. Ivanov and Pavlov (1978) proved
this for the general situation, and it has since been reestablished at least
twice (Rosenblum 1979; Gingold and Heieh 1985).

Having studied the asymptotics (formula (45)) and representations of
solution Y(x, k) of equation (8) (formulas (37) and (36) and the estimates
(25)) we are finally able to prove Theorem 3.

3.4. Proof of Theorem 3.

(a) The asymptotics (11) of G follows directly from (45). Note also that
this asymptotics, as well as the absence of zeros of det (k) on [FR,
implies that G(k) and O--1 (k) are bounded for real k.

(b) Let us write (37) for x = 1 in the form

G(k) = L	 + (1, k)R .,(k) + L	 _(I, k)R _(k).	 (46)

Here L ± and R ± are entire matrix functions bounded at Im k > const
such that for lki —> co, Im k const, there exist the limits

L ± (k)	 R (k)	 R°± ,	 (47)
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and constant matrices Lt and RI entering these relations are nondegen-
erate.

Let us first prove the assertion about the separation of a singular factor
in the solution ‘P_(1, k).

Lemma VII.3.16. There exists an ESF 0, such that operator function

	

:= 4.(k)T _(I, k) is an outer function in 	 and

	<<c) 1(k) e ikT0/2>> ^ 1, 	 k e	 (48)

PROOF. T: 1 (1, k) is the value at x = 0 of the solution to equation (36)

	

with the unit data at x = I. Indeed, function	 k) :=	 k) is
the solution of (36) obeying conditions (I, k) = I and 'NO, k) = (I, k).
Solution ‘11(x, k) is bounded in C, by Proposition 2.14, and so T: 1 (1, k)
is bounded in C. Liouville's formula for solution provides

	

det 1P: 1 (1, k) = exp(ik I. Tr .1f(s) ds	 Tr g_ (s, k) ds). (49)
o 	 Jo

Since §_(s, k) is bounded in C + , a BPP is absent in the factorization of
the bounded matrix function 'P: 1 (1, k):

`P- 1 \l, k) = Fe+ (k)0 4.(k),

and Fe+ is bounded in C. Moreover, (49) implies that Pet Fe+ (k)I is
bounded away from zero in C, and hence Pe+ := [F + ] is a bounded
outer operator function.

From Proposition 2.14, the estimate in C + for the equation (36) also
follows:

<'P: 1 (l, k)>> exp(Im k J max	 (s) ds) = exp(Im kT0 /2).
o

Then,

<<0 1 (k) e'T°/2>> =	 km/ 2 <0.1 1 [Fel — 1>>
<OP= 1 (1, k)<<Fe+ >>- e -imkron>> .< 1 .

The lemma is proved.

Our next step is to find an ESF 0 1 such that 0 1 G is an operator
function bounded in C, without a singular factor (it is more convenient
for us to work with G; a transition to G will be accomplished later).
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We look for 0, starting from the condition

e + L: 1 =	 (50)

where	 is a matrix function bounded in C+ without a singular factor.

If L_ has no zeros at 1m k > 0, then 0, and L are determined from the
problem of the reverse-order factorization (see Subsection 11.1.2.9) and
we have

= 0 + L_.	 (51)

Notice that Idet L_1 = Idet L_1, and hence function I_ as well as L_, is
bounded in C, along with its inverse.

Now let L_ have zeros. In view of (47), their number is finite, and one
is able, by multiplying (50) by an appropriately chosen scalar rational
function, to arrive again at the problem of the factorization of bounded
analytical functions.

The function 0, determined by (50) satisfies the same inequality (48)
as function C),. Indeed, from (51) and (48) we have

<<01--1 (k) e ikTo/2>> = <<L, 04_1 e ikro 2 I:- t )>

<<L1 1 (1, k)>><<L - >x<0 + 1 e ik7-0/2>> 	 1;

that is,
<00 - 1/k) e ikToi2>> .̂  1 , 	k	 .	 (52)

Let us now demonstrate that matrix function T(k) := 0,(k)G(k) is
bounded in C+ and has no singular factor there. Indeed, by (51) and
Lemma 16,

	

= 0,L + T + R + + L I Fe+ R_. 	 (53)

The first summand here exponentially decreases at Im k -4 co according

to Proposition 2.14:

«'P + (1, k)>> exp( — e Im k), 	 e := J i min I); (s) ds .

As already noted, the matrix functions L: 1 , [Fel' are bounded for large

enough k. Therefore, from relation (52) we have

det Y(k) = det[L, R det[/ + [L 1 Fe+ R 	 1 0(e —e Im k)]

= det[L,Pe+ R_](1 + 0(e - e lin k ))

and we conclude that T has no singular factor in C + .
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We now examine 0 1 ( — k)G(k) in the lower half-plane, where we exploit
relation G(k) = —G(—k). Then from (46) we have

0 I (— k)G(k) = — ,( — k)G(— k) = — — k). 	 (54)

The above arguments about Y show that 0 1 ( — k)G(k) is bounded in C_
and does not contain any singular factor there.

Now we move from G(k) to 5(k) = G(k — i). Set X(k) _= 0 1 (k — i) and
check that F(k) := X(k)5(k) satisfies factorization condition (12) and
estimate (13). First, we prove the lemma, which is needed for the
factorization of X.

Lemma VII.3.17. Let O be an ESF in C. Then for any z0 e C function
00(k):= 6(k — z0) is an operator function bounded in C+ such that 0 0 and
00- 1 are bounded on R. Furthermore, if (5 0-1 exp(ika) is bounded in C + ,
then 00-1 exp(ika) is also bounded in C.

PROOF. Like any ESF, function (5(k) is the value at x = 1 of the solution
to the problem (see Subsection 11.1.2.4)

"(x, k) ik.R(x)g(x, k),	 k) = I,

with a summable Hermitian matrix function .R(x). Then (3 0(k) coincides
with the value at x = 1 of the solution to the problem

'3"(x, k) = [ika(x) — iz 0.1(x)]g(x, k),	 g(0, k) = I.

Proposition 2.14 implies the boundedness of 00 in C+ ; that is, 00 may
be factorized in the form 00 = Pe+ a From the Liouville formula it follows
that Idet Pe+ I is separated from zero and therefore [F+ ] -1 is a bounded
outer operator function in C. By means of similar arguments concerning
ESF 00- 1 exp(ika), we find that 0 0-1 exp(ika) is bounded and complete
the proof of Lemma 17.

From the lemma it follows that both X(k) and X(k)' are bounded on
P; that is, assertion (i) of Theorem 3(b) is proved.

Let us now use F(k) = Y(k — i). By virtue of Lemma 17, F is bounded
in the half-plane Im k > 1. In the strip 0 < Im k < 1, the boundedness of
F is provided by the asymptotics of G(k), and Lemma 17 applied to Co,.
Since det[G(k)0 1 (k)] does not contain a singular factor in C+ , the same
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goes for det[0 1 (k — i)G(k — i)]. Thus we have

F(k) = Fe± (k)11(k)

and the factorization of F in C+ is delivered.

	

Let us study the factorization of F in C_. Set 0 0 (k) = 0 1 (k)0	 — k).
Now we proved that

(<0(-)- 1 (k) e ikT°>> -< 1 . 	 k E C+. 	 (55)
Indeed,

<<® 1 (k) e ikT° >) 	 <<0 1(k) e ikT012>x<0 1 (_ k) e ikT0/2>>

The first cofactor is bounded by (52). For the second one, we have, from
unitary property and analyticity of 0 1 , the relation

0 1( — k)=( 01 ( — 0) *

(see formula (3) in Section II.1). Since the norm of matrix is equal to the
norm of its conjugate, estimate (55) is true.

Function 0 0-1 (k — i)F(k) is equal to

00- 1 (k — 1)0 1 (k — i)G(k — i)= 6 1 ( — k + i)0,-1 (k — i)0,(k — i)G(k — )

0 1 ( — k + i)G(k — i)

and, according to what is proved (see (54)), is an outer operator function
Fe- in C_. Referring to 0, Lemma 17, we end up with the factorization

® 0 (k — i) = 0(k)P,- (k),

where O is an ESF such, by (52), that

O-1 (k) e ikTo>> 	 1, k e C+

Now, F	 Fe- and Theorem 3 is proved completely.

4. Controllability of a nonhomogeneous string controlled at the ends

We consider an initial boundary-value problem describing vibrations of
a string:

p(x) 
0 2y(x, t) 

= ax2

a 2y(x, t)

'	
0 < x < 1, 0<t<T.	 (1)at2 

y(0, = u 1 (t) E L2 (0, T), 	 t) = u 2 (t) e L2 (0, T), 	 (2)

y(x, 0) = 
at 

y(x, 0) -=- O.	 (3)
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Here, u 1 , u 2 are the controls, and we assume p to be a positive function
of the class C 2 [0, 1]. This problem of control has been formulated by
D. L. Russell. In this section we study reachability set R(T) of system
(1), (2).

To bring the system into the scope of the scheme in Chapter III, we set

H:= L,.(0, 1), 	 V:= H40,1),

aPp, 	 s= 	 (x)il/ (x) dx; 	 e V.

Operator A, corresponding to bilinear form aPp, in is

1 d 2

	

(A9)(x)s= 	
p(x) dx 2 40(x)

with the domain D(A) = H 2 (0,1) n HU°, I). We write 2„ and 9„, n e N,
for the eigenvalues of A and its normed in 42(0, eigenfunctions,
respectively.

Let us consider controls u 1 and u2 to be components of a vector
function belonging to the space UT = L2 (0, T; C 2) and introduce operator
B: C 2 W_ 2 by means of the formula

<By, ifr> = 	 (0) — y2 tI1(1), 	 e W2 = D(A) 	 (4)

(compare it with operator B from Section 1).
The eigenvalues 2„ are separable, as is well known from the asymptotics

presented below. Therefore, by the force of Lemmas 11.1.21 and 111.2.4,
the solution y(x, t) of the problem (1)—(3) enjoys the property

{
Y, — y} e C(0, T, Wo), 	 (5)a t

= Wo W_„ = 42(0, 0 ED H'(0,

Theorem VI 1.4.1. System (1), (2) is B-controllable in time

	

To = 	 p(x) dx
0

in space *co .

Avdonin and Ivanov (1983) examined a similar problem in a system
with the Neumann boundary control

( — 	
ax

ax  y(0, t) = u1(t), — y(1, t) = u2(0).
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Their approach was based on the asymptotics of the exponential family,
and it allowed them to obtain controllability in time T > T,. For T = T,,
the system with the Neumann control is not controllable since the
corresponding family of exponentials is excessive in L 2(0, T; C 2) (for a
homogeneous string, this fact is established immediately). In the situation
we are analyzing now, the controllability of system (1), (2) for T = To

takes place, but to prove it, the knowledge of the asymptotics of ).„ and
cp„ is no longer sufficient. We obtain the controllability of system (1), (2)
by representing the string as two elastically connected strings, which
enables us to use the results of Section 2 regarding the controllability of
N strings connected at one point.

PROOF OF THEOREM 1. Take the point x, E (0, 1) separating the parts [0, x o ]
and [x 0, 1] of the string with the same optical length T0 /2.

We introduce a unitary mapping

	Q: L,;(0, 1) y 	 (Yi, Y2) E Lp2 ,(0, xo)	 L,2,,(0, — x0),
where

p1(x) = p(x),	 y i (x) = y(x),	 x a (0, x 0),

	

p 2(x) = p(1 — x),	 y 2(x) = y(1 — x),	 x e (0,1— x0 ).

The image ((p i , (p 2) of differentiable function cp under the action of
Q satisfies conditions 9 / (x0) = cp 2 (1 — xo) and (p',(x o) +	 xo) = 0
following from continuity and differentiability c	 at x o . In a sense, one
can view conditions (3) and (4) in Section ViI.2 as the smoothness
conditions.

We proceed following the scheme of Chapter III, that is, in terms of
spaces H, V, bilinear form a[•, •] and operator B. We use the subscript
I to mark these and other items for the system (1), (2); the subscript II
stands for the values involved in relations (1)—(4) of Section VII.2 for
N = 2. The equalities

Q1-11[ =	 42171 = V r,	 aiPp,	 = arIEQ(P, On 	 Co, tfr E V.t (6 )

follow directly from the definitions. Relation (6) implies that operators
A1 and A 11 generated by the forms al and all , respectively, are unitary
equivalent: Al = Q*A JI Q. In particular, eigenfunctions co n , / and 9.,11 of
these operators are also related by the Q mapping: 1.0r n11 = QPnr. Hence
the spaces W / and W,.11 generated by operators A i and A ll are related
similarly:

(7)Wr,11 = QWr,1.
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Here, Q means an operator from W., / into W
, II acting as

12(Ec„9„,/)= E enCon,11.

For r = 0, this definition coincides with the primary one. Finally, operators
B1 and B11 acting from C 2 to W_ 2,1 or W_2 , 11, respectively, are related
in the following way:

<Bp), cp> 4, = <Big, 129>*,	 v e C 2 , 	 go a W2 , 1 = D(A / )•

The equality is the immediate implication of the definitions.
The previous consideration makes it clear that if one writes systems

(1), (2), and (1)—(4) as system (12) in Section 111.3 their trajectories starting
from zero are interrelated by y11 (• t) = Qy,(• , t). Therefore, for the
reachability sets of the systems we have

RII(T) = QRAT)	 and so RI(T) =

In view of Theorem 2.14, the reachability set R11 (T) coincides with the
phase space o./I• Using (7), we establish the assertion of our theorem.

The controllability of system (1), (2) is proved without investigating the
exponential family arising in this problem (such an investigation was
carried out in Section 2). We now examine this family in order to answer
two questions:

(i) What is the set of controls transferring the system in time T To

from the zero state to itself?
(ii) What is the form of the reachability set B(T) for T < To?

In what immediately follows, the subscript Tin the notations of various
families indicates the space VT = L2(0, T; C") in which the families are
considered. So, denotes the family of exponentials corresponding to
the control problem for the system (1), (2) in space Iro :

= fenInek

con = sgn(n),/.1. 1 „ 1 ,

e„ = ti n exp(iwn t),

= 	 1- 1( 9 1.1(°)).
\ - (pii(1)

We are writing out the known asymptotic expressions for frequencies co n

and vectors ti n (Fedoryuk 1983: chap. 2, sec. 10), which are not difficult
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to derive from Proposition 2.3 as well:

con = 2nn/To + t9(1/n),

712n = ti (i) 	°WO)	 2„ + 1 = (2) + (9 ( 1 /n),

(1) —	 (2)	 (

where
2p

1
/4 (0)	 2p1l4(l)

a.= 	 fi := 	 -

	

,/To 	,/To

Let us now introduce the exponential family corresponding to the main
term of asymptotics (8) and (9). It is convenient to denote this family by
some other letter, namely,

ET	 gn}neK , 	bn = 17,?exp(2int/T0),

?an 	 '= ( 1 ), 	 1' C (2) := ( 1 ).
1 	 —1

We first study the properties of family E T .

Theorem

(a) Family ET, u { o}, (1(t)
(1)

, forms a Riesz basis in %To'

(b) For T < To , there exists a subfamily a". (79 ) c Er that forms a Riesz basis
in VT, and family :E T \F...: (,9 ) is an infinite one.

PROOF. According to the decomposition of family ET into two series

	

EV ) = g2nInE	 ET) = g 2n + lIn el,

the space a14 may also be considered split into two subspaces LT) @ Pp,
with pp consisting of the elements of the form f(t)Cu ), j = 1, 2, and
f e L2(0, T). Actually, we have two scalar problems for families

EVo),„ := {exp(i4nt/T0)},, EK and 2:12,„:= {exp[i(4n + 2)t/To]}nE1

in L2(0, T) instead of a vector one. The first family complemented by
1(0 ,— 1 constitutes an orthogonal basis in L 2(0, T0 ), and the second one
is also an orthogonal basis in L 2 (0, T0). The families are almost normed
and therefore both ET ) u {Co} and Efr20) form Riesz bases in LT), j = 1, 2,
respectively. Thus, assertion (a) is proved.
(b) Apply Theorem 11.4.1 8 to scalar families 2.--,; (71,), u 1(t) and EC2?„.

— al

287

(8)

(9)
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According to this theorem, there exists a subset .A 1(1) of even integers and
a subset .41(2) of odd integers such that families {„}„ e ,,-(J) constitute Riesz
bases in space L (1 ), j = 1, 2, respectively. In addition, the sets 2l \Aim
and (21 + 1) VA1(2) are both infinite. We may assume 0 ct .N .(1), which
means that the additional element C o does not belong to the basis family
{ „}„,,,v-0). Indeed, in the scalar case one can replace, without loss of the
basis property, the "exponential” 1(t) exp(0- t) by any other one from
{ „}„,t ,,v0). Now all the requirements of assertion (b) are fulfilled. The
theorem is proved.

Recall that the dimension of the space orthogonal to all the elements
of family E is called the codimension of

Theorem VII.4.3.

(a) For T To , family 40 is an 2-basis in aliTO of a unit codimension for
T = To and of an infinite codimension for T > To .

(b) For T < To, there exists a subfamily 61 c eT such that 0? constitutes
a Riesz basis in (fir and family -4\11 is infinite.

PROOF.

(a) For T To the 2-basis property follows from B controllability of
system (1)—(3) (see Theorems 1 and 111.3.10).

Let Z be an operator acting in C 2 and mapping the basis {rim, ri (2) }
of space C 2 into the basis {C (1) , C (2) }. Families ET and ZOT are
asymptotically close in the sense of Theorem 11.5.9:

—
n i27rn/ To -----* 0,	 <<n,, t°>>---+ 0.

Int 	 co 	 Inl 	 CO

Let T To . By Theorem 11.5.5, family { „} 1 „ 1 ,m u {Zen } ini „ At forms
a Riesz basis for large enough M, inasmuch as R o l u E To forms a
basis. Therefore, we are able to conclude that

codim{Zen } in! m = 2M + 1.

Since operator f(•)1-4 Zf(•) is evidently an isomorphism of 0/4.,
we have

codim{e.} 1. 1 ,,,f = codim{Zen } 1 „" = 2M + 1.

	

Family Oro is an 2-basis; hence elements e±1, e ± 2 ,	 , e ± m do not

MOT
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belong to Vfen l ini , m . Therefore

codim	 = codim V{e„} i „ i 	— 2M = 1.

The fact that the codimension of 	 is infinite for T > To follows

from Theorem II.5.9(a).
(b) Let ET ) = { „}„ E.A, be a basis subfamily whose existence is guaranteed

by Theorem 2(b). Along with it, the set KVAI is infinite. Family
{Ze n }„ EA, is asymptotically close to 8" ) , and so, by Theorem 11.5.5,

family {,,} 1 „ 1 .,, u {Zen } 1 ,71 ,, constitutes a Riesz basis for large

enough M. Thus family {Zen }„",; ,,, i> , is an ...r-basis of a finite

codimension. According to Theorem 11.5.9(b), family Zgro is com-

plete in 674, and we can supplement family {Zen }„„,,,-, 1 ,0. A, with

Zen „Ze„,,...,ZeN, to complete it while preserving the .2'-basis

property. Then

{en} nE.Acdni > M u fen, };=,

forms a Riesz basis in QIT. The theorem is proved.

Now we are able to answer the questions about system (1), (2) posed

earlier.

Theorem VII.4.4.

(a) For T > To, there exist nonzero controls transferring system (1), (2)
from the zero state into itself. The set of such controls for T = T o

constitutes a one-dimensional subspace (in °11 m), and for T > To its

dimension is infinite.
(b) For T < To , the reachability set is a proper subspace of '11/,', with an

infinite codimension.

PROOF.

(a) Control u transfers the system from the zero state to the zero one if
and only if u T u(T — t) is orthogonal to ST (see moment equalities
(23) in Section 111.2). By Theorem 3, the dimension of the space
orthogonal to is 1 for T = To and turns into infinity for T > T,.

Assertion (b) follows immediately from Theorems V11.4.3(b), 111.2.3,

and I.2.1(e).
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