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Notation
M, card M - number of elements of M if M is finite and
co if M is infinite
¥g (M, N) - angle between subspaces
— — weak convergence of elements of a Hilbert space
codim = - dimension of orthogonal complement of a linear

set & or dimension of the space orthogonal to
all elements of family =

<D — scalar product in auxiliary Hilbert space 9
X)) - norm in an auxiliary Hilbert space it
é(o) — Carleson constant
(4,) — Muckenhoupt condition
Ky — a subspace

HL(W) © SHA(W) = {f e HX(N) | f L SHZ(N)}
K, — a subspace K, with S = exp(ika)
2 — Hilbert space of sequences with the norm

o 1/2
llell, = [ 2 el + a)’}
n=1
W, — Hilbert space of functions Y, c,¢, with the
n=1

norm | fllw, = [{ca},
W, — Hilbert space W,,, @ W,
Wp,) — Hilbert space of series ), c,¢, with the norm

n=1

(X leal?p2)2
@ - eigenfunction of operator 4
Ay — eigenvalue of operator A or a point of

spectrum of exponential family
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- eigenfrequency of operator 4

— multiplicity of eigenvalue 4, of operator 4

— exponential family {e,}, with elements
= exp(i4,)11,, where 7, belongs to an auxiliary
Hilbert space

— exponential family {r,e,} 163, 170
— exponential family {p,e,} 163, 170
. mAi 1
— simple fraction x;(k) = oAl 41
n k—24
— family of vector simple fractions {x;#,},c, 47

— family biorthogonal to the family 2y
— family biorthogonal to the family P %2y

18
Operations
Cl, Cly —closure of a set in the norm of space H
LinE - linear span of family =
4+ — direct sum of linear sets
VE ~ closure of the linear span of family =
52
95 Sets
R — set of real numbers
48 R, — set of positive numbers
48 Q — set of rational numbers
Z ~ set of integers
147 K — set of nonzero integers
N — set of positive integers
C — set of complex numbers (complex plane)
c — Cartesian product of n complex planes
147 . C, (C.) - open upper (lower) half-plane, ie., set of complex
154 numbers with positive (negative) imaginary part
D — open unit disk in C with the center in origin
T — unit circle in C with the center in origin
Y(X,Y) - set of linear bounded operators acting from space X
163 into space Y
D(A4) — domain of operator A
Dy — domain of operator of the problem of moments

with respect to family = 34
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Ker A - null space of operator A
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P, — projectors onto subspace H%

Conditions on countable sets of the upper half-plane
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©) — Carleson condition
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Ze(LB) - family E forms a Riesz basis in closure of its
linear span
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Ze(M) - family E is minimal

Ze (W) - family E is W-linear independent

Types of controllability

B controllability
E controllability
UM controllability
M controllability
W controllability

26, 30

26, 30
25, 30
24

162, 169
162, 169
162, 169
162, 169
162, 169




Notation XV
Cancellations )
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Signs

Aw=Bor B =A —object Ais equal to object B by definition
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Introduction

This book deals with the controllability problem in distributed parameter
s','ystems'(DPS). As the following chapters explain, one way to handle this
problem is to reduce it to the problem of moments and to study the
resulting exponential families &,,, = {1, e *'}2 | (the “parabolic” case)
or &pyp = {1 etiV/ant}®  (the “hyperbolic” case). Here, {4,} is the
spectrum of a system, and vectors 1, belong to an auxiliary Hilbert space
N, dim N < oo, determined by the space of control actions.

Over the past twenty-five years, DPS control theory has been developing
rapidly, both because of its important technological applications and its
usefulness in resolving a variety of mathematical problems. Indeed, the

: ~ theory has been described at length in various monographs (Butkovskii

1965, 1975; Lions 1968, 1983, 1988a; Lurie 1975; Curtain and Pritchard
1978; Egorov A. 1. 1978; Litvinov 1987; Lagnese and Lions 1989; Krabs
1992).t

The controllability question occupies a prominent place in DPS control
theory for a number of reasons. First, many practical problems in various
fields of engineering, physics, and chemistry are formulated as control-
lability problems, that is, as questions about how to describe reachability
sets. Second, it is essential to have some insight into controllability in
order to resolve DPS optimal control problems. Furthermore, control-
lability plays a vital role in the stabilization and identification of DPS.
Recent studies have demonstrated its profound connection to the classical
inverse problems of mathematical physics, for example (Belishev 1989;

The first version of this book was published in Russian in 1989 (Avdonin and Ivanov 1989b).
For the present edition, the book has been thoroughly revised and new results were added.

1Since the number of publications pertinent to the subject of this book is enormous, we are
unable to present an exhaustive list of references; an extensive bibliography may be found
in Fleming (1988).




2 Introduction

Avdonin, Belishev, and Ivanov, 1991a). Note, too, that DPS controllability :
studies have brought to light a host of interesting and complex questions =
in several branches of mathematics, such as PDE theory, operator theory 3
the theory of functions, and the theory of numbers.

The various techniques used to investigate DPS controllability can b
divided into three fundamental approaches. The first one is based on
theoretical operator methods (see, e.g., Fattorini 1966, 1967; Tsujiok
1970; Fuhrmann 1972; Weiss 1973; Triggiani 1978; Nefedov and Sholok
hovich 1985; Sholokhovich 1987). These are rather general methods tha
make it possible to treat a broad range of systems described by equation
in Hilbert and Banach spaces; however, they are not always effective in
addressing concrete problems. =

The second approach employs a specific technique of the theory of §
partial differential equations. This technique has been the subject of ¥
considerable research and has such broad applications that we can .
mention only a few of the works that have focused on it.

D. L. Russell (1971a, 1971b, 1972, 1973) and J. E. Lagnese (1983), for -
example, apply the method of characteristics for hyperbolic equations and
the Holmgreen uniqueness theorem (see also Littman 1986). E

J.-L. Lions (1986) suggested the Hilbert Uniqueness Method, which is
based on the duality between controllability and observability and on :
a priori estimates of solutions of nonhomogeneous boundary value &
problems. This method was developed by L. F. Ho (1986), P. Grisvard
(1987), E. Zuazua (1987), A. Haraux (1988), and I. Lasiecka and b
R. Triggiani (1989). A number of searchers (Chen et al. 1987; Leugering ‘
and Schmidt 1989; Schmidt 1992; Lagnese, Leugering, and Schmidt 1993) §
have applied the method to networks of strings and beams. ]

Bardos, Lebeau, and Rauch (1988a, 1988b, 1992) have developed an } p
approach to the controllability problems for hyperbolic equations using §
microlocal analysis and propagations of singularities. This approach made }
it possible to solve the problem of exact controllability in cases where ]
controls act on a part of the boundary or on a subdomain. See also -
Emanuilov (1990). ;

The third approach, which reduces the control problem to the problem
of moments relative to a family of exponentials, is known as the moment 3
method. It is a powerful tool of control theory in that it provides solutions 3
to many kinds of problems. N. N. Krasovskii (1968) applied the method
to the systems described by ordinary differential equations. It has also 3
been used in DPS control theory to investigate optimum time control 3
problems (Egorov Yu. V. 1963a, 1963b; Butkovskii 1965, 1975; Gal'chuk §
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68; Korobov and Sklyar 1987) and to solve optimal problems with the
ic-quality criterion (Plotnikov 1968; Egorov A. 1. 1978; Vasil'ev,
sﬁ“"“khametov and Potanov 1989). In addition, this method has been
combination with the Pontryagin maximum principle to address
he ptxmal boundary control problem to parabolic vector equations
kov-and Plotnikov 1989), and to study some bilinear control
blems ?(Egorov A. I and Shakirov 1983), as well as observation
blems in parabolic-type equations (Mizel and Seidman 1969, 1972;
idman 1976, 1977).
vésugatlons of DPS controllability, the moment method has most
en used for systems with one spatial variable and for a scalar
atr functlon (see, €., Russell 1967, 1978; Fattorini and Russell 1971;
tkovskn 1975; Reid and Russell 1985). Work has also been done on
lability problems associated with several control actions (Fattorini
akawa 1974).
moment method has also been used to analyze controllability in
. permitting separation of spatial variables. Here, the method has
' possible to reduce the controllability problem to a series of scalar
problems (see Graham and Russell 1975; Fattorini 1975, 1979; Krabs,
ing, and Seidman 1985). For the exponential family & arising in
ransition from a control problem for a moment one, the role of
iary space N is filled by the space to which the values of control
belong In the case of a single control action dim 9 = 1, the usual
ar” families of exponentials appear. If there is a finite number N of
trol actions then dim N = N and a family of vector exponentials

mllles in space L%*(0, T) have been investigated in some depth
ﬂ"gham 1934 Levmson 1940; Duffin and Eachus 1942 Duffin and
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geometric (in a Hilbert space sense) approach that has provided a basis . .
property criterion. (For a detailed exposition of this approach and its 3
relation to other problems connected with the theory of functions, see
Hrushchev, Nikol'skii, and Paviov 1981.) We use Pavlov’s geometrical :
approach in this book to develop a theory of exponentials in a space of 3
vector functions. This work has also enabled us to shed new light on
scalar families and thus is proving to be useful in DPS control problems.

In fact, DPS control problems were the very reason that we decided to
investigate exponential families. Without the results that we have obtained
on vector exponential families, it would be very difficult to apply the
moment method to problems that cannot be treated in the terms of a
scalar exponential family or a series of such families of simple enough
structure. In other words, the extension of the moment method to a wider
class of DPS is one of the principal objectives of this book.

The book consists of seven chapters, each of which is divided into
numbered sections, which in turn contain enumerated assertions (remarks,
theorems, corollaries, and so on). When referring to a statement or a
formula within a chapter section, we omit the number of that chapter
section (e.g., we refer to Proposition 17(a) rather than Proposition
L.1.17(a)). When referring to a formula of another section, we add the
number of that section. Sections are divided into subsections. Although
this arrangement may seem unwieldy, it is difficult to treat this complex
subject in any other way.

Chapter I presents the basic information needed to understand projectors
in Hilbert spaces, families of elements, and families of subspaces, as well
as the problem of moments. Although we cannot claim to be presenting
original results (except, perhaps, for some assertions on the problem of
moments solvability) or to have made any methodological discoveries, we
have brought together for the first time all basic information concerning
this subject.

The discussion opens in Section I.1 with the geometry of Hilbert spaces.
For two subspaces M and N of a Hilbert space $, we introduce the
concept of an angle (M, N) between them,

(M, N) = arccos  sup M
mem,nen [Im| [ln]

In terms of the angles, we elucidate the properties of operators Pylq
(orthoprojectors on M restricted to N). In particular,

IlPmle]™ "1l = 1/sin o(H © M, N).
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Skew projector 24} from the direct sum M + N to M parallel to N
is studied further: )
: ,@&m(m+n)=m Vmem’nem.

This projector is bounded if and only if (3R, N) > 0. Such projectors
. playa central role in the investigation of exponential families in L*(0, T').
7 Next, we study families £ = {£,} of element (and families of subspaces)

" from the perspective of the “degree” of their linear independence. The
linear independence of any finite subfamilies of E is the weakest one. We
" let it be denoted by Ee(L). The next step is to introduce W-linear
ndependence (notation E € (W)). This property, in somewhat simplified
erms, means that the weak convergence of series 3 c,¢, to zero implies
“that all coefficients c, are zeros. A stronger property is minimality

(5 € (M)). It means that for any n, element ¢, does not lie in the closure
of linear span of the remaining elements. To put it another way: there
exists a family E’ = {£,}, called the biorthogonal family, such that

(Gn» &0) = On-

' ff, along with this, ||, | are jointly bounded, then the family is said to be
' *_uniformly minimal (notation Z € (UM )). For the almost normed families
(lI€,1 8 1), the (UM) property is equivalent to

co(én, \V4 é‘m> >0>0.
m#n

_ A family for which the latter relation holds is said to be uniformly minimal.
. The strongest property, which is the #-basis or Riesz basis property

in the closure of the linear span of the family, means that family E is an

image of an orthonormal one under the action of some isomorphism; we

write Z € (LB) in this case.

Families of subspaces are classified by similar definitions. Thus the

hierarchy of the “independence” '

(LB) = (UM) = (M) = (W) = (L)

-is established. ‘- - —

" In Section 1.2, we turn to the problem of moments. For a given family

" E and some element c € £%, one has to find f € $ such that {(f, &)} =c.
Operator

Fu: [ {(L &)} M

is called the operator of the problem of moments. We focus our attention
on the “quality” of the solvability of the moment problem or, more
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precisely, on the image R; of operator #. The solvability of the problem |
of moments is directly associated with “the degree of linear independence” ¥
of family Z. In particular, i

Ee(LB)=>R:=9H, Rz=9=Ee(UM),
ClgRs = § < e (W).

We also prove that Ry is closed if a Riesz basis can be found in =. E
Chapter II examines the properties of family &r of vector exponentials
in L*(0, T; ),

gT = {en}nsZ’ e, = e_ii"t’f,,, Im 'J"n > O,

in detail. Here, 5, € M, dim N < o0, T < 0. By the Paley—Wiener theorem,
the inverse Fourier transform turns L2(0, oo) into Hardy space H2, which
consists of analytic functions in the upper half-plane C, whose traces are
squarely summable over the real axis. Here, the exponentials turn into
simple fractions x,(k) = (k — 4,) ! belonging to H2 for Im A, > 0. This
makes it possible to invoke the powerful theory of Hardy spaces in the
study of exponentials. Section II.1 explains these spaces and simple
fraction families. It should be pointed out that the reader will require
some knowledge of the basics of the Hardy space theory in order to
understand the theory developed in this book.

To begin with, one needs to be familiar with the concepts associated
with inner-outer factorization. Consider, for simplicity, the case of
functions bounded in C,. If such functions have a unit absolute value
almost everywhere on the real axis (and are analytic in C, ), then they are
said to be inner functions. Among them, Blaschke products (BP), B(k),
are recognized,

k— 24,
B(k) = HZ S Im4,> 0,
where ¢, are the phase factors, [¢,| = 1, and numbers A, — the zeros of the
BP - satisfy the Blaschke condition

Im 4,
2

neZ 1 + !'1;.'2 =@ (B)

Functions exp(ika), a >0, are obviously inner functions as well; in
contrast to BP’s, they have no zeros at all. Such functions are called entire
singular inner functions (they have the essentially singular point at
infinity). Functions bounded and analytic in C, possess factorization
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f= fif.in which £; is an inner function and f, is an outer function of the
- :

[fo(k) = exp(i { k@?dt>
rk—

with h(t) = log| f(®)|. Outer functions have no zeros in C,. In contrast
to entire singular inner functions, they cannot decrease exponentially at
Imk + 0.

Section IL.1 introduces the concepts of inner and outer functions for
analytic operator functions with the values in finite-dimensional space N,
along with the Blaschke-Potapov (BPP) product, which is the analog
of BP, and the entire singular inner operator function (ESF). Matrix
exponential exp(ikQ) with nonnegative matrix (operator) Q is an ESF.
“Without going into detailed definitions here, suffice it to say that an
operator function belongs to the corresponding class if its determinant is
a function from a similar scalar class. For analytic operator functions F
bounded in C, there also exists factorization

form

F =IOF},

where IT is a BPP, @ is an ESF, and F, is an outer operator function.
Consider now the exposition of the known results on the properties of
families & of simple fractions x,(k), ne€ Z. It appears that for the
minimality of ' (on H3) the validity of Blaschke condition (B) is necessary
and sufficient.
The criterion of uniform minimality of & is the Carleson condition

—A

n m

inf |]

meZ n,n¥m

> 0. (©)

n m

This condition is well known in the theory of interpolation of bounded
analytic functions. Normalized families of simple fractions exhibit a
surprising equivalence between the uniform minimality and the ZL-basis
property: that is, the Carleson condition proves to be the Z-basis
criterion. In the strip 0 < ¢ < Im k < C, condition (C) transforms into the
separability condition (inf,, 4|4, — 4. > 0). Recall that these properties
of family & are equivalent to similar properties of an exponential family
in L*(0, o).

In Section I1.2, minimality and .Z-basis criteria are given for family &,
of vector exponentials. For family &, to be minimal in L0, o0; M), it is
necessary and sufficient that 4, satisfy the Blaschke condition, so the finite
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‘ dimensional case has no specific character of its own, in comparison with &
| the scalar one. :
} The situation is more complicated when it comes to the #-basis
‘ property. If one takes two Carlesonian sets o, and o,, then their 7

unification may be not Carlesonian (in contrast to the Blaschke con- #

dition, the Carleson one is not “additive™). Consequently, scalar family
Nt {e*}2ee1 e, Will MOt yet be an #-basis. At the same time, vector
( exponential family

{eiltrll }leol v {eiltqz}leaz

evidently constitutes an #-basis if #, and 7, are linearly independent. It
is known that #-basis family &, allows a splitting into dim 9 subfamilies, i
each of which has a Carlesonian spectrum. This single condition is not .f.
enough for the #-basis property of &,. To obtain the #-basis criterion
it is necessary to demand in addition that every group of “close points” §
A4 has vectors #;, which are “linear independent” uniformly in groups. §
The exact formulation of the criterion is presented in Subsection 11.2.2. 4§

A criterion for vector exponential family & to form a basis in space
L*(0, T; M) is established in Section I1.3 in terms of the generating function
(GF). 2

The GF concept was formulated some time ago (Paley and Wiener
1934) and since then has been widely used (see, e.g., Levin 1956, 1961) "
for the investigation of scalar exponential families {¢***'} in L*(0, T'). The §
GF is constructed by its zeros 4, with the help of the following formula: ,

£09 =¥ f fo=py. [T (1 = kA, @ ¥

under the assumption that f; has the same exponential type 7/2 both in §
the upper and the lower half-planes. Later, we assume that the spectrum '
o = {4,} lies in the strip 0 < ¢ < Im 4, < C; note that the shift 4, > A+ i6
does not change the minimality and #-basis properties of the family. By
employing the GF, B. S. Pavlov (1979) managed to obtain the basis
criterion: family {e*~'} constitutes a Riesz basis in L3(0, T') if and only if |

i (i) {4.} is separable and
1 (ii) [f(x)|* satisfies the so-called Muckenhoupt condition

2d -2

where 4 is the set of intervals of the real axis.
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_Condition (i) is equivalent to the P-basis property of family {e**'} in
L2(0, 0)- Condition (ii) leads to several equivalent statements. One of -
- them, which has just appeared in the Pavlov approach, requires the

. Hilbert operator

(Hu)(x):%p.v. j “O 4 3)

RX—I

to be bounded in the space of functions squarely integrable on the line
with the weight | f(x)[%.
Extending this approach, we obtain the necessary and sufficient con-
| ition that the vector exponential family forms a basis (see Section IL3).
'We find that GF f from (ii) may be defined as a function fulfilling
__factorization conditions

fky=Bk)fS (k), keC,,
flk)y =e*Tf7(k), keC_.

Here B is the BP constructed by {4,} while fF are outer functions in C,
and C_, respectively. These are precisely the relations that provide the
' grounds for the definition of the GF in the vector case. Entire operator
function F with a factorization

F=TIF} = e*TF; )

s said to be a GF for family & = {e"*',} in L%(0, T; N). Here, F¥ are
. outer operator functions in C, and II(k) is the BPP constructed by
A, and 7, (e, the determinant of IT is the BP with zeros 4, and
n, € Ker IT*(4,)). Family &; is shown to form a Riesz basis in L*0, T, N)
if and only if (i) family &, forms an #-basis on the semiaxis, and (ii)
the Hilbert operator (3) is bounded in the space of vector functions
squarely summable on the line with the matrix weight F*(x)F(x).
-~ Properties of scalar exponential families are examined in Section I1.4.
" The known results concerning the minimality and basis property are
discussed first, and then some new findings presented. For example, it is
_now thought that sine-type functions play a significant role in exponential
L families. Entire function f of the exponential type is called a sine-type
- {function if its zeros lie in the strip. [Im k| < C and if both f and 1/f are
* bounded on some line parallel to the real axis. The proximity of numbers
A, to the zeros of some sine-type function is the known sufficient
condition for family {e***'} to be a Riesz basis. The converse statement
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is also proved to be true, and this fact is used to demonstrate the following
result.
If family & = {e"*'} forms a Riesz basis in L2(0, T), then for any &
T’ < T therc exists a subfamily &' < & constituting a Riesz basis in
L*0, T"). We also elaborate an algorithm for the construction of such a
subfamily. \
In the same secticn, we prove that statements similar to the one
formulated above are valid for families of a more general form: 5

{t™ e}, m=0,1,...,r,neZ.

In Section IL5, we look at vector exponential families further. We show, i ,
for example, that when family & = {e**~',} is minimal in L*©, T; C*), &
then scalar family {e"*'} generally is not minimal in L0, NT), but
becomes minimal after N arbitrary elements are removed from it. 2 ‘

Another assertion we make there deals with the stability of the basis
property. If & forms a Riesz basis in L*(0, T; RN), then £>0 may be found
such that any family & of the form {e*%,} is also a Riesz basis in
L*(0, T; M) as soon as :

[ = Aol + 11 — 7all <&

Chapter II closes with a discussion of the conditions that provide the 3
weak convergence in L*(0, T') to zero of series 3 a, e~ (the “parabolic” i
case) or 3 a, e'*"' (the “hyperbolic™ case), which implies all the coefficients §
to be zeros. In the parabolic case, it takes place under very weak " 
limitations on {x,}. However, to make this implication hold in the }
hyperbolic case, stringent restrictions on {a,} have to be imposed. As 3
becomes clear later in the book, differences in the behavior of the
exponential family lead to a qualitative distinction in the controllability 4
of parabolic and hyperbolic systems.

Evolution equations of the first and second order in time

x(t) + Ax() = f(1), ()

x(t) + Ax(t) = f(¢) 6
are treated in Chapter III. Here, A is a self-adjoint, semibounded-from-
below operator in Hilbert space H; operator A,:=A + ol is positive
definite. We assume A to have a set of eigenvalues {1,}2, with corre-
sponding eigenfunctions ¢, forming an orthonormal basis in H.

We introduce a scale of Hilbert spaces W,, s e R. For s >0, W, is the
domain of operator AJ?% for s <0, W,= W’ is the space dual to
W_ with respect to inner product in H, Wy = H = H".
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.. We use the Fourier method to construct generalized solutions to
“equations (5) and (6), which are continuous functions in time with the
‘yalues in one of the spaces from the above scale. That is to say, we
demonstrate in Section 111, that for feL*0,T; W,_,) and initial
~ condition x(0) = Xo € W,, equation (5) has the unique solution of class

([0, T3 Wo- In Section II1.2, we arrive at a similar result for equation
(6): with f from the class under initial conditions x(0) = x,€ W,
#0) =x1 € W,_,, equation (6) has a unique solution x such that
xeC([0, T]; W), x € C([0, T]; W,_,). It is convenient to write the latter
_inclusions in the form (x, %) € C([0, TY; #;), #; = W, ® W,_,. Note that
“these results are sharp ones.

+Next, we consider controls systems

#(¢) + Ax() = Bu(t), )
() + Ax() = Bu(?). ®)

Here, control u belongs to space % = L*(0, T; U), where U is a Hilbert
space, and B is a bounded operator from U to W,_,. With the help of
the Fourier method, control problems for systems (7) and (8) are reduced
to the problem of moments. Namely, reachability set R(T) of system (7)
in time T (for x(0) = 0) is shown to be isomorphic to the image of operator
(1) of the problem of moments for family

gpa, = {(A, + ) e ' B*¢p,} c U.

For system (8) with initial conditions x(0) = x(0) = 0, reachability set
A(T),
R(T) = {(x(T), X(T)) | ue},

is isomorphic to the image of the operator of the problem of moments
for family

~ r—1 .
Enyp = {(d + ) 2 eilm};’o:l-

(For the sake of brevity, we assume here that numbers 4, are separated
from zero.)

Section II1.3 then relates the questions of controllability for systems (7)
and (8) to the properties of family & in space %. Previous studies have
focused mainly on two types of DPS controllability: the exact one, when
the reachability set includes some explicitly described space, and the
approximate one, when the reachability set is dense in the phase space of
the system. From a practical point of view, the distinction between the
possibility of getting exactly into some state and the possibility of finding
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the system in its e-vicinity of this state is not too significant. The behavior
of the control norm when ¢ — 0 is important, however, as is the stabilityf
of the controllability type under small perturbations of the system"
parameters. We suggest a new classification of controllability types that &8
refines the common one by taking into account both of these points and
relates the “quality” of controllability directly to the properties of
exponential families. E

Suppose that in system (7) H,, is a Hilbert space densely and continuously
embedded into W, which comprises all the eigenfunctions ¢, (in particular,",
H, may coincide with W,). The conventional definition of the exact
controllability (we call this property E controllability relative to H, in
time 7T') means that R(T) o H,. It is natural to extract the case of the"
equality, R(T) = Ho, which we call B controllability (relative to H, in
time 7). In this case, the final state x(7') may be achieved with the help
of control u, whose norm is equivalent to that of x(T): 3

1(T ) bzp = Ntell -

The approximate controllability (we called it I controllability in time T') .
means that Cly, R(T) = W,. It makes physical sense to distinguish the
situation when reachability set R(T") contains all (finite) linear combinations ;
of eigenfunctions ¢,. This type is called M controllability. 3

Similar definitions of controllability types are also introduced for a §
system of the second order in time. For instance, system (8) is said to be §
M controllable in time 7'if (T) contains all linear combinations of states §
of the form (¢,, 0) and (0, ¢,). 1

Many studies dealing with the proof of the approximate controllability §
for DPS of this or that kind, have demonstrated their M controllability. ¥
D. L. Russell (1978: 699) has recognized this case and called it the eigen- 3
function controllability.

Next, concentrate on the spaces H, of a more special type, such as W, E
for system (7) or spaces #; for system (8). From the isomorphicity of
reachability sets to the image of the moment problem operator, one is able
to relate controllability types to the properties (types of linear inde-
pendence) of vector exponential families.

Suppose that in system (7) H, = W,. Then it follows that

(a) the system is B-controllable relative to H, in time T if and only if gpa, ‘
forms an #-basis in %;
(b) the system is M-controllable in time T if and only if gp,, is minimal {
in %; '
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c) the system is W-controllable in time T"if and only if & Epar 18 W-linear
ndependent in %;

d) the unification of sets R(T) in T > 0 is dense in W, if and only 1f

amily e “’é”pa, is W-linearly independent in %, := L*(0, oo; U).

Quite similar assertions are correct for system (8) when é’pa, is replaced
Ve and W by #;.

®)-
Chapters IV and V are denoted to controllability in systems described

*lifferential equations of parabolic and hyperbolic types. These problems
are discussed in the framework of Chapter 1III, in which 4 is.an elliptic
fferentlal operator of the second order in a bounded domain Q « RM. In
‘this case, spaces W, are related to the Sobolev spaces by the following
inclusions:
@ cW,cH(Q), rel0r],

where To depends on the smoothness of operator coefficients and the
oundary I' of domain Q.

Operator B has various forms, depending on the kinds of control
actions. We first discuss controls entering the right-hand side of the
differential equation (controls with a spatial support in domain Q). If, for
stance, a control is of the form u(x,t) and its x support lies in a
subdomam Q', then B is the operator of multiplication by the characteristic
functlon of Q' and U = L*(Q"). If the control is finite-dimensional, that
is, the right-hand side is 3.7~ ; b,(x)u,(¢) (functions b, are specified), then
U= C™ and

Bn = Z npbp,(1): C™ = Wy

partlcular functions b, may be generalized functions, for example,
b,(x) = 8(x — x,), x, € Q. In the latter case, we speak about pointwise
ntrol.

Within the framework of the same scheme, we also consider boundary
cont Is that enter the boundary conditions of the corresponding initial
bo ndary-value problem. So, for a boundary condition acting on a part
the boundary in the Dirichlet problem U = L*(I") and the value of
functional Bn, n € LX) on element ¢ is given by the formula

<0(S)

{Bn, @) = J n(s)
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(a derivative along the conormal stands under the integral). For classical §
solutions of initial boundary-value problems, the formula is obtained by :
means of integration by parts. For the generalized solutions concerned, 1
just the specification of operator B allows one to actually assign a rigorous
meaning to the initial boundary-value problems in question. For controls
with both spatial and boundary support, one is able to distinguish the
case of finite-dimensional, particularly pointwise, control. ,k

In Chapters IV and V the unified approach (see Chapter III), is used 3
to investigate a variety of control actions, and a number of new findings 4
are reported. In addition, further information is provided on the properties
of exponential families. Note that in some cases the clarification of th
relationship between DPS controllability and exponential families permit ‘
us to use results on the controllability provided by other methods (not
associated with the moment approach) to establish new properties of 3
vector exponential families. :

To mention some of the more interesting results concerning parabolic &
system controllability (Chapter IV), consider a system controlled over a &
piece I of the boundary (I is relatively open and nonempty). For
U = L*(I") a parabolic system happens to be W controllable in any time.
Moreover, the same fact takes place for a narrower class of controls:

u(x> t)lxe[" = f(X)g(t),

where f runs through L*(I'), while g - through L2(0, T').

For any kind of finite dimensional controls for dim Q > 1, the system }
proves to be not M-controllable in any time. Lack of M controllability }
implies a lack of E controllability relative to Sobolev space with any i
exponent. Simultaneously, the W controllability is equivalent to the §
so-called rank criterion; when the latter is broken, the exponential family §
becomes linearly dependent.

Hyperbolic system controllability (Chapter V) has, on the one hand, a f :
great deal in common with the controllability of parabolic systems under #8
the same types of control actions. So, for any kind of finite-dimensional
controls, the system is not M-controllable. On the other hand, hyperbolic $
systems are boundary controllable only for large enough T (it is associated 3
with the finite propagation velocity of perturbations). Furthermore, in 9
many cases when the corresponding parabolic system allows for only 7_'
M controllability, the hyperbolic system tends to be B-controllable
relative to certain phase space #,. According to our approach, the }
distinctions are due to essentially differing features of exponential families
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with real (in the parabolic case) and imaginary (in the hyperbolic case)
; cxponents
_Chapter VI turns to boundary, initial, and pointwise control problems
(;f the vibrations of a homogeneous rectangular membrane. These problems
- demonstrate clearly the advantages of the moment method. In particular,
in Section VL1, we arrive at a sharp result pertaining to the smoothness
;of solution to the wave equation in rectangle Q = (0, a) x (0, b) with a
nonhomogeneous Neumann boundary condition of class L*(0, T; L*(T"))
and a zero initial condition. We prove that relation

(z ) € C([0, T]; H¥*(Q) @ H™''*(Q))

hélds for solution z of the problem.

The chapter also presents interesting negative results that prove the
. lack of approximate controllability. In Section VI.1 we consider the case
'uof boundary condition u, (dy/dv) = b(x)u(t), with a fixed function b. In
‘Section VI.2 we deal with the problems of initial and pointwise control.
‘We find any number of membrane points can be made to have arbitrary
trajectories, if the initial conditions are appropriate. This problem is dual
to the problem of pointwise control. We show that for any 7> 0 and
any number of pointwise controls, reachability sets %(T) are not dense
in the phase space of the system.

The following conjecture therefore seems reasonable. For a hyperbolic
equation in an arbitrary domain Q < RN, N > 1, the system reachability
set under a finite-dimensional control of any kind is not dense in the phase
space of the system for any T > 0.

Chapter VII considers boundary control problems connected with
hyperbolic systems for vector functions with one spatial variable. With
the help of the moment method, we reduce the problems to the study of
vector exponential family with the values in a finite-dimensional space.
The theory developed in Chapter II is particularly relevant to this case,
and the reduction to the moment problem allows us to investigate system
antrollability properties in a comprehensive fashion.

~The kinds of problems found in this chapter can be illustrated first by

a network of connected homogeneous strings controlled at the nodes. We
prove the system to be B-controllable (in a large enough time) if the graph
representing the network is a tree. In the opposite case, the system may
be M-controllable if there is no cycle of strings with commensurable
optical lengths. If such a cycle can be found, however, the system is not
W-controllable.
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We also treat a control problem for a multichannel acoustic system

d*y %y

—=—", 0<x<1,0<t<T,
o) ot ox?
y(0,0) = u(t),  ueL*0,T;C"),
y{,t) =0.

Here, Q is a positive definite matrix function. The system B controllability in ‘
space L*(0,5; CYY@® H™'(0,; CV) in time T > Tp, Ty =2 {§, | Q(x)][*/? dx,
is proved. In this problem, as well as in other problems of this kind that §
have a clear physical meaning, one manages to construct a generating 3§
matrix function (4) for the family of vector exponentials, as expressed via '
solutions of the corresponding Helmholtz equation, and then to describe
the properties of the vector exponential family that appears.




I
Elements of Hilbert space theory

To uﬁderstand the theory put forward in this book, it is necessary to be
" familiar with the following concepts:

(a) Skew projectors and angles between subspaces.

~ (b) Families of elements of Hilbert spaces: W-linear independence, mini-
mality, and Riesz-basis property.

(c) Solvability of moment problem in Hilbert space.

_ Throughout this chapter, $ denotes separable Hilbert space, and M
“and 9 are subspaces of § (a subspace is any closed linear subset of ).
‘ “FOr a linear span of the elements ;e $ or subspaces E;, we write
Lin{¢}(Lin{ZE;}). A closure of a linear span is denoted by

Clg Lin{}(Clg Lin{E;}),

~or simply by \/{&}(\/{€;}) if it is clear in which metrics the closure is
taken. If M and N are two subspaces of §H, then M* and Nt refer to
their orthogonal complements in

VA{M, N} =M \/RN.

The notation Py is reserved for the orthoprojector on a subspace MM
in $. In what follows we denote by Al the restriction of (acting in
Hilbert spaces $ operator A on set B = $). Notice that we distinguish
operators [ Pop|g: N H] and [Pyy|g: It - M].

1. Families of vectors and families of subspaces
1.1. Orthoprojectors and angles between subspaces
Let M and N be two subspaces of H.

17
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Definition I.1.1. A number ¢ = @z (M, N), ¢ € [0, n/2], is said to be an
angle between the subspaces M and N if

|(m, n)]

memm, nest | m|| [nl|”

cos ¢ =

If 3 is a one-dimensional subspace, we usually write ¢(m, N) instead
of (I, N), with me M, m # 0.

For two one-dimensional subspaces, the definition coincides with the -
usual one for an angle between the straight lines. On the other hand, this
definition differs from that of an angle between planes in R? (in our sense,
the angle between two planes equals zero, since they contain a nonzero
common element). .

It is evident that if 9 and N have nonzero common elements, the angle
between them is zero. However, it is possible that o(I, N) = 0 though
MmN = {0}.

Example 1.1.2. Let {{}; . be an orthonormal basis in $,

N:=\/ {£3,_,}, N%:= Lin{&3;_, + ¢}, N = CIN°,

jeN
where ¢, > 0, je N, and Clrne 0. Then MM N N = {0}, but (M, N) =0

Let us check whether M and M do not have nonzero common elements |
In fact, let a sequence {f,},.n be found, with the elements from N°, which
converges to f € M. If

Jo=2 -1 + £E9)),
j
then, obviously, sequence {c{"} converges to some ¢, that is,
0 0
f= Z CjéZj—l + Z chjézj-
J J

Clearly, f € M if and only if all ¢; = 0, that is, when f = 0. On the other
hand, o
€951, égj-l + ejégj)lz

cos? (M, R) > cos? p(&3; -y, 3 + ;8% = i
T R P ISy + e

= (1 +£j2)_1-_) 1.
J
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Lemma 1.1.3. Let dim 3 < o0 and @(M, N) = 0. Then M and N have a
nonzero common element.

proF. Since the angle between the subspaces is zero, sequences
{m}jen < 9 and {n;};.n < N of elements with unit norms may be found
€

uch that
(m;, ny) P 1.

Then |lm; — n;|l — 0. Since the dimension of M is finite, one can choose
a subsequence {m; } converging to some m € IN. One has |m| = 1, and
the subsequence {n; } also tends to m. The lemma is proved.

In tﬁe next lemma, the angles between subspaces are related with the
Offhogonal projectors on them. o

Bee . P 1
jmma 1.1.4. The following formulas are valid: } . -
(@) cos (R, N) = [Pyl ll = | P Pall, e
~(b) sin @, ) = [[Prle] ™17 L

(c) sin (I, N) = inf |m — nj.
o omeMImll=1;neT ‘
PROOF.
(a) Directly from the definition of an angle the relation follows
- [(m, Ppn + Pyan)|

cos (M, N) = sup
meDM,neN,m#0,n+0 “m” “n”
m, Ppn Pyn
Cwp sup B (Rl
neN,n#0 meWM, m#0 ”m” ”n” neN,n¥0 ”n”

®) I[Pele]™ 172 = inf [Ppni®>= iof (1 — |[Pyun]®)

neM, lin|[=1 neM, |inf| =1

=1— sup [Pgunl®=1— ||Pg:lal?®
[fnll =1
Now (a) implies (b).

© inf flm — n||? inf | Pem + Pyum — nf?
meIN, ||m|| =1;neN meM, ||m|l =1;neN

It

= il | Ppum|?
medM, ||mlj =1

1—  sup  [Pyml?
meMM, |imll =1

I

Formula (a) provides (c). The lemma is proved.
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1.2, Skew projectors

An algebraic sum of two linear sets # and A" is said to be their direct
sum A + A if M A A = {0} holds.

Definition 1.1.5. Operator Z = 91',,” acting from the direct sum # 4+ A"
according to the rule

(m+ n)—>Pm+n)=m, meM,ne N,

is a skew projector on # parallel to A"

Obviously, the definition is reasonable and £ is a projector, that means,
= 2. It so happens that any projector has the form of 9’1'1/-

Lemma 1.1.6. Let P be a projector in § (i.e., P> = P). Then P = 9”” 3
where M =Im P, & = Ker 2. '

PROOF.

(i) Let us first establish that . n 4" = {0}, that is, operator #/*
is defined properly.
If le #/ n N, then | = Pw for some we () and Pl = 0. Then, ¥
| = Pw =P =P(Pw) =P =0. 1
(ii) Since #* = P, M < D(P).
(1ii) Let us verify that

Plusy=2%, e, 2>2
Actually, for me A, ne A&, we have
P(m + n)y=Pm+ Pn=Pm.

Further, #(m — #m) =0, so that m—PmeA. It is clear that ,
m — Pm € M; hence, according to (i), m — Pm = 0, that is, P(m + n) = ;
Let us now take some arbitrary le 2(?) and m:=Ple 4. Then 3
P(—m)=2Pl— P =0 holds, which means n:=I—me A" In this .:i_
way, the opposite inclusion, 4 + A" > P(P), is obtained which com- §
pletes the lemma. -

By means of the representation, we establish the form of an operator !
adjoint to a projector. Recall that MM and N are subspaces.
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.mma 1.1.7. The operator P* = [?&m]* coincides with the operator

P =PI

ﬁi{oo?. We have
P AN ={meM\/N|mLMmlLRN}={0}.

Therefore operator 2 is defined correctly.

(l)k Let us check that
; P = P+,

that is, for any I=m-+ne2(P) and arbitrary w= m* + nt
, Gn eM neN, mt e M, nt € N*) an equality

(21, w) = (I, Pw)

holds.
Actually

- (P(m + n), w) = (m,m* + n*) = (m,n') = (m + n, Pw).
(u) To show that 2* is a projector, let w e 2(£*), that is,
| (@Lw) = (, P*w)  Vie X(P).
Hence, for every [ € 9(2), the equality is true:
(P(2), w) = (PI, P*w).

L As PP =2,
(P(2D), w) = (I, P*w).

Comparing the right-hand sides of the two latter equalities, one finds
" that 2*w € (P*) and P*(P*w) = P*w.
"By the force of Lemma 6 for /4 = Im #*, & = Ker #* one has

P =2

" If one demonstrates that # < NL, & < M, then the assertion of our
. lemma will follow from (i). Let [ € 2(2*). Since 0 = (@n, ) = (n, 2*),
»for ne N one finds #*I L N, so that & =Im P* c NL. If *[ =0,
~‘then for me M 0 = (m, P*I) = (Pm, ) = (m, 1) and A" = Ker 2* is
* orthogonal to M.
- The lemma is proved.

" We now establish a relationship between skew and orthogonal projectors.
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Lemma 1.1.8. Operators &P = ?g”mm and P = [Pprlgn] ™' Py exist simu
taneously and are equal.

PROOF. 2 is defined correctly if and only if Py.|q is nondegenerate, '
which is equivalent to the equality I n N = {0}, since for Ppin =0, -
ne (MH* = N. In turn, the equality is equivalent to the existence of the
skew projector 2.

We check an inclusion

PcP

(ie, NP) < AP) and Py, = P).

Ifl=m+n,mew?,nem,theanLl=Pwmand@l=m=.@l. ,

Let | < 2(P). Since ([ Pyl ") = Im(Pys|qn) = Pou M, Pyl = Pum
for some m e 3. Therefore, Py (! — m) = 0 and, consequently, | —m =neMN.
Thus, 2(P) = 9(P), which completes the proof. '

Lemma 1.1.9. Assume that I ~ N = {0}. Then:
(a) operator Py is bounded if and only if @M, N) > 0 and in this case -
|20l = sin @(I, N); (1) ;

(b) linear set M + N is closed if and only if (IR, N) > 0;
(©) (M, N) = p(IM*, N*).

PROOF OF THE LEMMA.

(a)

R
meDL,neN “yﬁm (m - n)“ m,n “m"

From Lemma 4(c) one obtains assertion (a).

(b) If M 4 N is a subspace, operator PN is defined on a closed set. I
is not difficult to show that the operator is closed; thus it is bounded
according to the closed graph theorem. From (a) it follows that ;
(M, N) > 0.

Conversely, if angle @ (O, N) > 0, then, by the force of (a), operato
P4 is bounded. Therefore, the convergence of sequence {m; + n,},
m; e M, n;e N, implies the convergence of .f}‘gl,l,;‘“(m}. + n;) = m;. Sinc
IR is a subspace, then m; converges to some element of 9. Then
sequence {n;} converges to an element of 9 as well; that is, M 4 N 4
is a closed set. 3

Assertion (c) follows from (a), Lemma 7, and the fact that the norms 4
of an operator and its adjoint coincide. The lemma is proved. :
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In Chapter II, exponentials on an interval are considered projection
éstrictions) of exponentials on the positive semiaxis. The properties of
-such an operation are studied in the next lemma, which applies to the
general situation. Notice that along with operator Pyl|q acting from N
into § we consider operator [ Pyylg: Jt+— ] acting into M. The operator
_a djoint to the last one is expressed in a simpler form.

Lemma 1.1.10.
rojection operator Py contracted to N is an isomorphism onto its image
(a) Proj p m
if and only if
(M, N) > 0. )

(b) A relation is true
[Pglg: B> MI* = Pyl M- N 3)

“(c) Operator Pyl gt = M acts as an isomorphism of subspaces N and M
if and only if (2) holds and

(M, NH) > 0. “

PROOF. Part (a) of the lemma follows immediately from Lemma 4(b).
Assertion (b) is a direct consequence of an identity

(Pppn, m) = (n, Pym), meM, neN.

With regard to (c), operator Pp: R— IM acts as an isomorphism of
subspaces 9t and M if and only if it is an isomorphism onto its image,
“and the image coincides with M. The image of this operator is dense
in M only in the case where the adjoint operator is invertible. From
(3) one finds that the invertibility of [Py: R+ IMI* is equal to
Nt A M = {0}. Hence, operator Pp: N> M is isomorphic only when
(2) and N+ A M = {0} hold simultaneously. Under condition (2), sub-
space N*\/ M coincides with M\/ T (otherwise a nonzero element of
M A N would be found). Therefore, from Lemma 9(c) it follows that
(2) and N+ ~ M = {0} are simultaneously correct if and only if both (2)
and (4) hold. The lemma is proved.

1.3. Families of Hilbert space vectors

Let E = {&;} ;. be an arbitrary family of elements (vectors) ¢&; of Hilbert
space H. In this section we define various types of “independence” for the
elements of =.
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Definition 1.1.11. Family E is W-linearly independent if there exists no
nonzero sequence {a;} € £% such that for any element f € $ satisfying
YRS, €I < oo series T2, q)(f, &) converges to zero. The property
of E to be W-linearly independent is denoted as Z e (W).

We consider primarily the situation with 32, |(f, &)|* < co for any
f€9. In this case, the W-linear independence means the uniqueness of
the weak sum 3 a;¢;:

2o}
{ Y lag? < oo,
ji=1

In the literature (see Gokhberg and Krein 1965), one may find the
following concept of w-linear independence:

a;¢; = 0 weakly in 55} = {a; = 0Vj}.
=1

J

{‘Zl laj* < oo, '21 a;¢; = 0} = {a; = 0 Vj}.
i= i=

It is easily seen that the property of W-linear independence that has been
introduced is not weaker than w-linear independence. The example shows
that W-linear independence is, in fact, stronger.

Example I.1.12. Assume that family Z° = {£7},_, forms an orthonormal
basis in 9. Let us settle

Lo=8% G - &) J=23,..

and demonstrate that the family Z = {{;},.n is w-linearly independent
but not W-linearly independent.

Suppose that series "2, ¢;; converges to zero. Then multiplying it by
?, one arrives at

(j + Dcjyy = jcj = const.

Hence, the partial sums of the series may be written as

R
Y G=all + & -+ + R~ Q-DI=c2 (9
j=1
So, series 3 ¢;¢; converges to zero if and only if ¢; = ¢, =--- = 0, that
is, = is w-linearly independent.
Series 3.7 (&;/j) converges weakly to zero, since ¥%_, (§;/7) = £3. Thus
E¢ (W)
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Deﬁnition [.1.13. Family Z is minimal (notation Z e (M)), if for any j
oJement ¢ does not belong to the closure of all the remaining elements:

b gt \ &=89. ©)

i itj
o
?/ﬂf"‘ € (M), there exists family & = {£}, which is said to be biorthogonal

‘to E, such that

1 i=j

0 i#j. @)

@¢n=¥={

¢ biorthogonal family is specified by formula (7) up to any elements
“from the orthogonal complement to \/E. Condition ¢j e \/E extracts
“ biorthogonal elements with minimum norm.

According to Lemma 3, condition (6) is equivalent to the property of
angles (&, E9),j=1,2,..., to be positive. That is why in the subspace
‘\/E there exist bounded operators

_ plEn
9} - gé]

.+ and, as is easily verified,

PrE;
! = 8
1 14 &2 ®
- -and
Z = (). ©)

It follows that

1Z&1
P
17 = g

Hence for the biorthogonal family elements from Lemma 9(a) an equality
follows

= &G

IE 1IN = [sin @(&;, EMI ™" = L] (10)
Example L1.14. Let E = {t/}2,, 9 = L*0,1). Then E € (W), but E ¢ (M).

The family of polynomials P,(t), n > 0, is dense in L?*(0,1), and the same
is true for polynomial family tR{P,(t)}, where R € N is fixed. Therefore,
the family {¢®, ¢®***,...} is complete and te\/jz t; that is, E¢ (M)
(details may be found in Sadovnichil 1979). Let us prove the inclusion




+ the elements.

N

* the closure of its linear span (notation E € (LB)), if E is an image of an

év::
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Ee(W). Let f; be the characteristic function of segment [0, s]. Then

. s ) sj+1
(fos 20,1y = J tdt = - .
0 ]+ 1

(11)

and

3 It <o

Suppose that Z¢ (W). Then function F(s) = (f& 2520 ¢;’) turns
identically into zero for some nontrivial sequence {c;} € 2. By the force
of (11), F(s) takes the form '

Sj+1

F(s) = C;
©) j;O i+l

and therefore is analytical inside the unit disc. So ¢; = 0 for every j.

Definition 1.1.15. Family E is *-uniform minimal (notation E e (UM)), if -
there exists a biorthogonal family =’ with uniformly bounded norms of :

Recall that under a uniformly minimal family (without *), such a
minimal one is meant, for which the numbers I&1-11& 1 are uniformly
bounded, or for which ¢(¢;, 29) > ¢ > 0. The above definition is more
convenient for our purposes. For almost normed families (i.e., under the
condition |[§;|| X 1), the definitions coincide.

Definition 1.1.16. Family E is said to be an #-basis or a Riesz basis in

isomorphic mapping V of some orthonormal family.
E is said to be a Riesz basis, if 2 e (LB) and E is a complete family: /3B

Operator ¥~ ! is said to be an orthogonalizer of the family &. In what
follows, we always use the term “basis” to mean Riesz basis.
The introduced properties of the families are interrelated in such a way
that every property is implied by the next one: '

(LB) = (UM) = (M) = (W) = (o-linear independence) \

= (linear independence). /
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Proposition 1.1.17 (Bari theorem, Bari 1951; Gokhberg and Krein 1965;

Nikol'skii 1980).

a)kIf B = {5J}J 1 € (LB), then the biorthogonal to E family &' = {&}3%,

such that &' < \/E is also an Z-basis. In addition, E' is expressed

via the orthogonahzer V of family & and the orthonormal basis
= (&), & = > of the space V"'(\/E) by the formula

5, (V_l)*V_Ié

b) Z e (LB) if and only if for any ﬁmte sequence {c;} an estimate holds

Q0
H Y lgl*
j=1

s

It

j=1

el — . .
na this case, each element f € \/:. has a series expansion

f=§U#m

-Example I.1. 18 Let E° = {60}1 o be an orthonormal basis in Sj and
E= {é;}j 19 60 + 50 Then

a) Eisa complete family.

(b) E€(UM).

¢) E ¢ (LB), but its biorthogonal family £’ is an .Z-basis.

*(d) Projection of element ¢§ on any element ¢&; of the (complete) family
parallel to the closure of the linear span of all the remaining elements
.of the family equals zero.

:"Let us check these assertions.

(a) If fL\/Eand f = X%, ¢;¢?, then by means of scalar multiplication
i by & with j >0, one finds ¢o + ¢;=0. So ¢; = —¢o, j€N, and for
£, Co # 0, {Cj}¢/2

- (b), (c) It is easy to see that &' = {£7}2 . If one takes a sequence
{c_,} € £2\¢', then the series 3.7 ¢;¢; diverges in $ since

N

N
2q@=2q¥+(29ﬁ8
1 1 1

. ahd the Bari theorem (Proposition 17(b)) provides E ¢ (LB).
rom (9) it follows that the skew projector has the form

Z=(,8), j>1,
which produces an equality ¢ = 0 for all je N.
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We now introduce a subject convenient for the description of properties.
of elements ¢; belonging to some family = = {¢};. ,, where A is a |
subset of N. ~

Definition 1.1.19. A matrix with elements
L= (& &) LjeA <N

is called the Gram matrix of the family Z = {{;};_ .

For a countable family Z (i.e., for #” = N) the Gram matrix is infinite,
whereas for a finite one (4" = {1,2,..., N}) it has N? entries. A family :
of elements is determined by the Gram matrix up to unitary equivalence. :
The bilinear form of the Gram matrix reads

w0

(¢, Td) = (Tc,d) = < Y&, Y djéj) (12)
i=1 i=1 $ :
(for the case A" = N). This form is defined over the elements ¢,d e £?
such that the series ¥’ ¢;¢; and 3’ d;¢; converge.

Theorem 1.1.20. The following assertions are valid.

(a) The square form of the Gram matrix is positive if and only if the family
E is w-linearly independent.

(b) The bilinear form of the Gram matrix generates a bounded and
boundedly invertible operator I if and only if = € (LB).

(¢) If E € (LB), then the Gram matrix for family ' is the inverse ma