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Preface

Forensic science is, to some extent, a derived science. It is happy to borrow
technology and ideas from other sciences. There is, however, a “forensic
mindset” and ethos that is peculiar to our science. When DNA technology
was launched, the interpretation was attempted by forensic scientists such as
Ian Evett and John Buckleton. Eventually it became clear, or indeed we had
it rammed into our heads, that there was a great amount of classical popu-
lation genetic work that needed to be considered by forensic scientists. This
was brought to the world’s attention by David Balding, Peter Donnelly,
Richard Nichols, and Bruce Weir. Forensic science is very fortunate to have
these fine minds working on their problems, and we are personally deeply
indebted to Bruce Weir who has contributed so much to the field and
several, otherwise unpublished sections to this book in areas that we could
not solve ourselves.

Bruce Weir sought to bring a logical rigor to the interpretation of DNA
evidence and carried this out through elegant papers, lectures, and eventually
in his great textbook with Ian Evett. He has set the standard for forensic
thinking and testimony.

This book is written to be Evett and Weir compatible. We have kept the
nomenclature while including the developments in the intervening six years.
This book is written from the perspective of less mathematically attuned
caseworkers. We have also made some effort to review pertinent areas that
have arisen during court proceedings.

This text is heavily referenced, and in many cases these references are
“personal communications” or restricted material. This may be frustrating
for the reader who wants to obtain these texts, and we have previously been
criticized in reviews for doing this.

There are several reasons to reference a piece of work, whether it is pub-
lished or not. One is to direct the reader to further reading. However,
another is to give credit to the author of an idea. Therefore, in many cases
we have tried to attribute an idea to the originator. Where we have failed to
do this, we apologize and would welcome correction. We have also quoted
the original texts extensively. Often the original authors stated the matter
better than we possibly could, and it is often interesting to see how early
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some illuminating comments were made. We would have included many
more quotations from original publications if permissions had been more
forthcoming.

We have also attempted to tabulate the formulae needed for routine
forensic DNA casework. We have found many errors in the literature and
have sought to correct these. However, no one is error free and we would wel-
come any corrections to our own tables.

We have had sections of texts read to us in court many times. To any case-
worker who is read a section from this text, please direct the prosecutor or
defense counsel to this preface. No author is perfect, and writing a text does
not make one an authority. In many cases the caseworker has studied the case
in question to an extent that advice from some “quoted authority” is com-
pletely irrelevant.

Above all, our goal is to provide a link between the biological, forensic,
and interpretative (or statistical) domains of the DNA profiling field. It is a
challenge for caseworkers to keep apace of the ever-changing technological
and operational demands of their role and, additionally, to accurately assess
the strength of the evidence under these fluctuating circumstances. We hope
this book can act as a guide, or template, via which many of the complex
issues can be tackled.
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Biological Basis
for DNA Evidence

PETER GILL AND JOHN BUCKLETON

Contents

1.1 Historical and Biological Background
1.1.1 DNA Profiling Technology
1.1.1.1 Multilocus (Minisatellite) Testing
1.1.1.2  Single-Locus Probes
1.1.1.3 STR Analysis
1.1.1.3.1 Selection of STR loci for forensic
multiplexing
1.1.1.3.2  STR locus nomenclature
1.1.1.3.3 STR allele designation
1.1.1.3.4 STR allelic nomenclature
1.2 Understanding STR Profiles
1.2.1 Genetic Anomalies
1.2.1.1 Trisomy and Gene Duplication
1.2.1.2 Somatic Mutation
1.2.2 PCR Artifacts
1.2.2.1 Heterozygote Balance
1.2.2.2  Allelic Dropout
1.2.2.3 Stuttering
1.2.2.4 Nonspecific Artifacts
1.2.2.5 Pull-Up
1.2.2.6 Poor Operator Technique
1.2.2.7 Suppression of Amplification Efficiency,
Silent or Null Alleles
1.2.2.8 Promotion of Amplification Efficiency
1.3 Summary

This book deals in large part with the interpretation of DNA profiles, mixed or
unmixed, after they have been collected, stored, transferred, and finally analyzed
in the laboratory. The supposition throughout is that the earlier stages in the
chain that leads to evidence in court have been undertaken correctly. The
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inference at the final end of the chain is practically useless unless all these earlier
aspects have been undertaken with due attention to continuity and integrity.3%

This chapter gives a brief background to the biotechnology relevant to the
interpretation of short tandem repeat (STR) samples. For an extended dis-
cussion, see the excellent work by Rudin and Inman.®7867

1.1 Historical and Biological Background

Modern forensic DNA “history” begins with the first DNA case that was
processed by the then 34-year-old Professor Sir Alec Jeffreys from Leicester
University, U.K. This case involved the murders of two 15-year-old girls, Lynda
Mann and Dawn Ashworth.?!® Lynda had been raped and murdered in 1983 in
the ancient Leicestershire village of Narborough. Her 5 feet 2 inches, 112-
pound body was found on a frosty lawn by The Black Pad footpath, undressed
below the waist and bleeding from the nose. In 1986 the scene was Ten Pound
Lane not far away in the same village, but the story was similar. Dawn, like
Lynda, was found naked from the waist down. DNA analysis of semen present
on vaginal swabs from the two girls suggested that the same person had mur-
dered them. In 1987 a man who had confessed to the second murder was
arrested. He was subsequently charged with both murders. DNA profiling
exonerated him but left the rape murders unsolved. The police, however, were
convinced that the true perpetrator was a local man. Consequently, blood sam-
ples were requested from all males of a certain age group from three villages
within the area of the two murders. These samples were analyzed using a com-
bination of classical blood-typing techniques and multilocus probe DNA pro-
filing. Colin Pitchfork, a cake decorator with a history for flashing, had asked
various men to give his sample for him and finally convinced Ian Kelly, a work
colleague, to do so. Bar room talk by Kelly on the subterfuge eventually got to
police ears and led the police to Mr. Pitchfork, who confessed.”"

This pioneering case demonstrated the potential of DNA profil-
ing?#1434435850 and firmly pointed toward its future as the most important
forensic investigative tool to be developed in the 20th century.

DNA is the genetic code of most organisms. The DNA of humans
many other organisms such as cats, dogs,>*”%! sheep, cattle, tigers,
horses,*? plants (e.g., cannabis),?*#%641% and bacteria®**”% has been used in
forensic work. Human primers can also be used to amplify the DNA from
some other primates.* Much of the work discussed here will focus on the
analysis of modern human DNA. However, many of the principles apply to
all organisms and to ancient DNA.!¢

Most human DNA is present in the nucleus of the cell. It is packaged in
the 46 chromosomes of most cells. This DNA is termed nuclear DNA.
However, a small portion of the DNA complement of each cell is housed in

673 and

817
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the mitochondria. This mitochondrial DNA is inherited by a different
mechanism and is treated differently in the forensic context. A separate sec-
tion in a subsequent chapter is devoted to this topic.

Most human cells are diploid, meaning that they have two copies of each
chromosome. Exceptions include sex cells (sperm or ova), which are haploid
(having a single copy of each chromosome), and liver cells, which are poly-
ploid. Diploid cells contain 46 chromosomes in 23 pairs (the count was given
as 48 for over 40 years). The human chromosomes are numbered from 1 to 22,
starting with the largest numbered 1 and the second largest numbered 2. The
23rd pair comprises the X and Y chromosomes, which dictate the sex of the
individual. This pair may be referred to as “nonautosomal” or “gonosomal.”

Each chromosome possesses a centromere. This structure is involved in
organizing the DNA during cell division. It is always off center and hence
produces the short arm and long arm of the chromosome.

A normal female has two X chromosomes whereas a normal male has one
X and one Y chromosome. One of the female X chromosomes is deactivated
in each cell, becoming a structure known as a Barr body visible through the
microscope. Which X chromosome is deactivated may differ for each cell.”*
In mammals, possession of the Y chromosome determines that the organism
will be male. In fact, possession of even a small section of the short arm of
the Y chromosome will result in a male. Other orders of life, such as reptiles,
determine sex using other mechanisms. One chromosome of each of the 23
pairs has been inherited from the mother and one from the father.

From an examination of a single individual, it was historically not possible
to tell which chromosome came from which parent, with the exception that a
Y chromosome must have come from a male individual’s father and hence the
X of a male must have come from his mother. However, there are recent reports
utilizing paternally imprinted allele typing (PIA) that do suggest that this may
be possible for some loci. In mammals, some genes undergo parental imprint-
ing and either the maternal or paternal allele may be preferentially expressed in
the offspring. The reason for this is currently unknown. Imprinting appears to
be associated with differential methylation upstream from the allele. This dif-
ference gives the potential to determine the parental origin of some alleles in
the vicinity of any imprinted genes. Thirty-nine human genes have been iden-
tified as undergoing paternal imprinting®’? (Sykes gives 50).7%

When most individuals are DNA profiled, they show either one or two alle-
les at each locus. If they show one, we assume that they are homozygotic, mean-
ing they have received two copies of the same allele, one from each parent. If an
individual shows two alleles, he or she is usually assumed to be heterozygotic.
In such cases, the individual has inherited different alleles from each parent. An
exception is caused by null or silent alleles. Heterozygotic individuals bearing
one silent allele may easily be mistaken for homozygotes. Silent alleles most
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probably occur when an allele is actually present but the system is unable to
visualize it. Alternative methods may in fact be able to visualize the allele.
Hence the term “silent” allele is preferable to the use of the term “null.”

There are a few genetic exceptions that may lead to people having more than
two alleles. These include trisomy (three chromosomes), translocation of a gene
(a copy of the gene has been inserted somewhere else on the genome), and
somatic mutation (the individual has different genotypes in different cells).

It is thought that all humans, except identical twins, differ in their nuclear
DNA. Even identical twins may differ in minor ways. There is no formal
proof of this concept of underlying uniqueness, and it has little influence on
forensic work as all technologies examine only a very few points or loci on the
entire human genome. The areas of the human genome used for DNA STR
profiling are largely intronic. This means that they are noncoding DNA seg-
ments between areas of DNA that code for proteins. They were initially pre-
sumed to be functionless; however, evidence is accruing that noncoding DNA
may, indeed, have a function.*4653%5% A function for some noncoding DNA
regions may include regulating development in eukaryotes. Interestingly,
large areas of noncoding DNA, many of which are not implicated in regula-
tion, are strongly conserved between species. This may be strong evidence
that they too are, indeed, functional.

Introns are peculiar to eukaryotes and are thought to have developed late
in eukaryotic evolution. They have a propensity to contain polymorphic
regions, which means they have many differing forms. This is thought to be
because there is little or no selective pressure on some of these loci and hence
different forms may persist in populations, side by side.

In most of the ensuing chapters it is assumed that the genotype of people
does not change throughout their lives, and is the same in all their diploid cells.
In general, the genotype of an individual is set at the moment of gamete fusion.
Minor changes may occur during a lifetime as a result of somatic mutation, and
an adult individual is expected to show some level of mosaicity. It is possible that
some genetic changes may be encouraged by practices during a lifetime. For
example, allelic alteration has been reported in the cells of oral or colorectal can-
cer patients and betel quid-chewers.**>2%6%2 This may affect genotyping when a
reference DNA sample is taken from a different body tissue to the scene sample.

1.1.1 DNA Profiling Technology

DNA profiling has gone through three major stages of technological
advancement. Loosely speaking, these were the multilocus, single-locus, and
STR stages.® Protocols for extracting DNA, and constructing single-locus and

2 This list unfairly omits other PCR-based approaches such as the sequence polymorphisms
targeted at the HLA-DQa and Polymarker loci and the VNTR locus D1S80. Each of these
techniques has had a large impact on forensic science.
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Figure 1.1 STR profiles of two different individuals. The profiles would normally
have three colors — blue, green, and yellow — that help differentiate the loci.

STR profiles (see Figure 1.1) are described by Budowle et al.!*® These stages
will be discussed here briefly.

1.1.1.1 Multilocus (Minisatellite) Testing

The first method developed for the forensic examination of samples was
termed multilocus testing. Alec Jeffreys pioneered this approach — he dis-
covered tandemly repeated DNA sequences or “minisatellites” that were vari-
able between different individuals. Minisatellites were visualized by digesting
the DNA with restriction enzymes to cut it into fragments of differing lengths
that ranged between 1 and 20 kb in size. These fragments included relatively
long minisatellites and their flanking regions of DNA sequence. The frag-
ments were electrophoresed on a gel that separated them by size and then
visualized using multilocus probes that hybridized many minisatellite loci at
once. This made a pattern that looked a bit like a bar code. Jeffreys and
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co-workers claimed that the probes produced patterns that were specific to
an individual and coined the term DNA fingerprints.**® The term “DNA fin-
gerprinting” has been dropped in favor of the term “DNA profiling” because
the analogy with fingerprints was not considered to be helpful. The issue of
whether any particular DNA profile is unique to one individual is currently
receiving considerable attention. However, at this time most forensic scien-
tists prefer to stop short of such a claim.

There are various acronyms used to describe minisatellites, including
restriction fragment length polymorphism (RFLP), a generic term that refers
to any kind of DNA polymorphism that is based on length differences
between restriction sites.

Minisatellite analysis could take many weeks to complete. Because of the
relative slowness of methods employed during the early phase of DNA analy-
sis, its use was restricted to violent or other serious crimes. Interpretation of
these patterns was difficult due, in part, to the fact that it was not known how
many loci were being visualized, which pairs were allelic, or which pairs were
potentially linked. Also, large areas of the pattern could be a complete “black-
out” and band intensity was highly variable and difficult to quantify.*** A spot
of blood larger than a quarter was required for effective analysis. This meant
that the profile from the crime sample was often partial. The only publication
to attempt to handle the partial nature of some crime sample profiles was
that of Evett et al. 2® With hindsight, the assumption of independence for
band presence or absence seems dubious. Today the use of multilocus probes
in human forensic work is largely historic and is not discussed further in this
book. The interpretation issues, however, were never fully settled. For a
review of these and other issues surrounding RFLP analysis, see Donnelly.>*

1.1.1.2 Single-Locus Probes

The next step in the development of forensic DNA work utilized the same
RFLP technology; however, the probes used to visualize the product were
altered to target only one locus at a time. These systems were referred to as
single-locus probes (in the U.K. and New Zealand) and as variable number of
tandem repeats (VNTR) systems in the U.S. As expected, most individuals
showed one or two alleles at a locus. The use of the polymerase chain reac-
tion (PCR)>%® for such loci was reported,*® but not extensively implemented
into casework. In the early 1990s, statistical interpretation of VNTR profiles
was exclusively by use of the product rule.?”¢ The alleles were characterized by
a measurement of their molecular weight. Each allele was an integer multiple
of the repeat sequence plus the flanking DNA. However, the repeat length was
small relative to the total fragment length and hence alleles separated by only
one or a few repeat units could not be differentiated reliably using the agarose
gel-based technology of the time. Although the underlying distribution was
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discrete, the measurement of molecular weight was essentially continuous.
Most implementations of the product rule treated this measurement as dis-
crete, using floating bins (e.g., in the UK., New Zealand, and parts of the
U.S.°%) or fixed bins (e.g., in most of the U.S.),13>340:6% although elegant
methods were suggested that avoided this step.!10270:275:278:432,665.701 Aroument
at this time centered around the assumption of independence inherent in the
use of the product rule’®*and some unfortunate details associated with the
fixed-bin approach.?**

While VNTR loci are still in use in some laboratories, they have largely
been replaced by STR loci.

1.1.1.3 STR Analysis

In the mid-1990s, the technology changed to encompass the use of PCR of STR
loci.?*! The PCR reaction has been likened to a molecular photocopier. It
enables the exponential amplification of very small amounts of DNA. With the
methods previously discussed, typically 500 ng was required for a successful
test. With PCR, 1 ng or less could be analyzed. The STR loci selected had much
smaller alleles, typically between 100 and 400 bp. Resolution of small fragments
by polyacrylamide gel electrophoresis (PAGE) was much improved compared
with previous methods that analyzed fragments of several kb. Consequently,
the distance between STR alleles differing by one repeat was sufficient to allow
unambiguous assignment of genotypes. This was perceived as a considerable
advantage. Smaller alleles were also more suitable for the PCR reaction as it is
more efficient with low molecular weight DNA fragments.

PCR involves a number of replication “cycles.” Each cycle has the poten-
tial to double the amount of DNA, although actual amplification is slightly
less than a doubling. In many cases, standard casework using STRs is under-
taken at 28 cycles. At perfect amplification, this theoretically should amplify
the starting template by a factor of 268,435,456. However, perfect amplifica-
tion is not achieved.

Generally, PCR-based STR profiling is sensitive to approximately 250 pg;
however, a template concentration in the order of 0.5-1.0 ng is commonly
analyzed. To increase sensitivity to samples of DNA below this threshold, up
to 34 cycles may be employed. This gives a theoretical amplification factor of
17,179,869,184 and can allow the analysis of samples that have only trace
amounts of DNA present such as touched surfaces.

In fact, it is possible to amplify the DNA of a single cell.?** The analysis of
trace DNA evidence is described by the term “low copy number” (LCN) in
the U.K. The suggested guidelines for reporting LCN evidence are different to
“conventional” DNA profiling because of the increased uncertainty in the
origin of the DNA and the increase in artifactual issues. This concept is dealt
with separately in a subsequent chapter.
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The introduction of PCR-based STR analysis was the major innovation
that expanded the utility of DNA profiling. In summary:

The development of PCR improved the sensitivity of the analysis.
The time taken per analysis was reduced to less than 24 hours.

The cost effectiveness of the method was greatly improved due to a
reduction in the labor required.

The shorter STR loci allow the analysis of degraded DNA samples,
which are frequently encountered by forensic scientists. This was
because these short segments of DNA stood a higher chance of being
intact after degradation.

STR loci can be multiplexed together using several different STR
primer pairs to amplify several loci in one reaction. Multiplexing was
further facilitated by the development of dye-labeled primers that
could be analyzed on automated DNA sequencers.

The collection of data was automated, and the analysis of data was
partially automated.

1.1.1.3.1 Selection of STR loci for forensic multiplexing. STR loci
consist of repeated segments of two to eight bases. These are termed dimeric,
trimeric, and so on. Dimeric loci are not used for forensic applications
because excessive slippage during amplification (termed stuttering) results in
a large number of spurious bands that are difficult to interpret. Trimeric,
tetrameric, and pentameric loci are less prone to this problem.

Several factors are considered when choosing candidate STR loci:

A high level of variability within a locus is desired so that the locus has
a low match probability.

The length of alleles should be in the range 90-500 bp. Typically, the
higher the molecular weight of the alleles, the lower the precision of
their measurement. Smaller alleles are less affected by degradation and
are therefore less likely to drop out.

Loci may be selected based on chromosomal location to ensure that
closely linked loci are not chosen. See for the chromosomal
location of some common STR loci. As a quick guide to the nomen-
clature of the locus locations, those that begin with, say, D5 are on
chromosome 5.

Robustness and reproducibility of results are essential.

In order to ease interpretation, it is desirable that loci do not stutter
excessively.

Early multiplexes were based on a few simple STR loci. The four-locus
“quadruplex” was probably the first to be widely used for court reporting
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Table 1.1 Loci Used in Certain Multiplexes

PE Applied
Biosystems Promega
g
oy o
E 8 & 3
T s © Z
’E a% a% LS - 0 2
— o —
EEEE 55 8 3
2z _ L 222 E%5%F %%
Chromosomal 8 ; % % fé“u g g- g- % % % %
Locus Location O m & » < < < < & A A &
D16S539 16 * * * * * *
D7S820 7 * * % % * * *
D13S317 13 * x % % . .
D5S818 5q21-31 * * ok % * *
CSF1PO 5q33.3-34 * * * * * *
TPOX 2p13 * * * * * % *
THO1 11p15.5 ox * * * ok * * % * *
vWA 12p * % % * ok k% - * *
FGA 4q * ok * * * ok o * * *
D21S11 21 * % * * * * * * *
D8S1179 8 * % * * * * * * *
D18S51 18 * % % * * * * * *
D3S1358 3 * * * * * * * * * *
Amel XY * % * % * * % "
Penta D 21 *
Penta E 15 * *
D2S1338 2 * *
D195433 19 * *
ACTBP2SE33 6 *

Amended from Gill**® with kind permission from BioTechniques/Eaton Publishing.

purposes.®® The match probability was high by modern standards, in the
order of 107% hence, initially the evidence was often supported by SLP evi-
dence. In 1996, a six-locus STR system combined with the amelogenin sex
test’*! was introduced.””»”? This system, known as the “second-generation
multiplex” (SGM), superseded SLP analysis in the U.K. and New Zealand.
The SGM had more loci and included the complex STR loci HUMD21S11
and HUMFIBRA/FGA,>! which are highly polymorphic. The expected
match probability was decreased to approximately 1 in ~50 X 10°.

The introduction of SGM in 1995 narrowly preceded the launches of the
UK. (1995) and New Zealand (1996) national DNA databases.>*>%! More
than two million samples are now stored in the U.K. database and a similar
fraction of the population is in the New Zealand database. As databases
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become much larger, it is necessary to manage and minimize the possibility
of matches to innocent people (adventitious matches). This may be achieved
by increasing the discriminating power of the STR systems in use. Such addi-
tional discrimination may be utilized either in the database itself or in post-
hit confirmation.

To reduce the potential of adventitious matches, a new system known as
the AMPFISTR®SGM Plus™ (SGM™) was introduced in the U.K. in 1999,
which comprised ten STR loci and amelogenin.' This replaced the previous
SGM system. The estimated probability of a match between two unrelated
people was approximately 1071°-107"%. For a full DNA profile, it is U.K. prac-
tice to report a default match probability of less than 10~°. This figure is
believed to be conservative.’!! To ensure continuity of the DNA database so
that the new system can be used to match samples that had been collated in
previous years, all six loci of the older SGM system were retained in the new
SGM™ system. Multiplexes with more loci and more discriminating power
are becoming available (see Table 1.1).

Harmonization of STR loci used in forensic work has been achieved by col-
laboration at the international level. The European DNA profiling group
(EDNAP) carried out a series of successful studies to identify and to recommend
STR loci for the forensic community to use. This work began with an evaluation
of the simple STR loci HUMTHO01 and HUMVWEFA ! Subsequently, the group
evaluated the HUMD21S11 and HUMFIBRA/FGA loci.*>?

To date, a number of European countries have legislated to implement
national DNA databases that are based upon STR loci. In Europe, there has
been a drive to standardize loci across countries, in order to meet the chal-
lenge of cross-border crime. In particular, a European Community (EC)-
funded initiative led by the European Network of Forensic Science Institutes
(ENFSI) was responsible for coordinating collaborative exercises to validate
commercially available multiplexes for general use within the EC.>*

Based on the initial EDNAP exercises and on recommendations by ENSFI
and the Interpol working party, four systems were defined as the European
standard set of loci: HUMTHO01, HUMVWFA, HUMD?21S11, and HUMFI-
BRA/FGA. Recently, three further loci were added to this set: HUMD3S1358,
HUMD8S1179,and HUMD18S51. A similar process occurred in Canada®?%-804
and in the U.S.,*8 where standardization was based on 13 combined DNA
index system (CODIS) loci. The 13 CODIS designated loci and the eight (the
seven mentioned above plus amelogenin) ENSFI loci are marked in Table 1.1.
These loci are included in the commercial multiplex systems manufactured by
PE Applied Biosystems, Promega Corporation, and others.

There are currently seven loci that are in common use across both North
America and Europe. The chromosomal positions of these loci are also
shown. The short and long arms of a chromosome are designated as p and q,
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respectively. Note, for instance, that among the CODIS set there are two loci
on chromosome 5.

Bacher et al.’® report that these loci are separated by 25 centiMorgans
(cM). Penta D and HUMD21S11 are both on chromosome 21 and reported
to be separated by 50 cM.><

1.1.1.3.2  STR locus nomenclature. Several different classes of STR loci
have been defined. Urquhart et al.”** classified different loci according to the
complexity of their sequences. One of the most ubiquitous STR loci used is
HUMTHO01.52%%%7 This consists of a simple repeating sequence (TCAT);_,, with
a common nonconsensus allele (TCAT),CAT(TCAT),. Compound STR loci,
such as HUMVWFA31,*° consist of repeating sequences (ATCT),(GTCT), ,
(ATCT),_,, whereas complex repeats such as HUMD21S117%” are less uniform.
Detailed information may, again, be obtained from STRBase.!?#80

This nomenclature system has found widespread application. However, as
technologies advance, deficiencies in the system are being found and we may
see a revision in the future.®!®

These sequences are based on a tetrameric repeating sequence inter-
spersed with invariant di- and trinucleotides. Complex hypervariable
(AAAG), repeats such as human beta-actin related pseudogene
(ACTBP2)79%81° are much more difficult to accommodate to a nomenclature
based upon the number of tetrameric repeat sequences. This is because vari-
ant mono-, di-, tri-, and tetramers are scattered throughout the locus. These
latter STRs have found limited use in a few European countries.

1.1.1.3.3  STR allele designation. The greatest advantage of fluorescence
automated sequencer technology is the ability to detect several different

"Dr. Bentley Atchison directed us to a site http://www.gai.nci.nih.gov/CHLC that gives
recombination information.
°Map distance, recombination fraction, and Kosambi distance by CM Triggs. A genetic map
distance of 1 Morgan is that distance such that one crossover is expected to occur within it
per gamete per generation. Typically, data are expressed in centiMorgans (cM) and in
humans 1 ¢cM is assumed to equal approximately 1000 kb.

The simplest relationship between distance and recombination fraction is due to
Haldane.?% Consider two loci, A and B, and denote the genetic distance between them as x,
and their recombination fraction as R.

R =%><(1—e’2") (Haldane)

Expressing x as a power series in R, we find that x = R+2R?>+4R3+8R*+--- -

Kosambi took into account the fact that the strands of the DNA molecule are to some
extent rigid and hence that the occurrence of a crossover will inhibit the possibility of a
second nearby recombination event. He gives the relationship between the recombination
fraction, R, and the map distance by

1, l—e*

N . S— i
R=7 [ (Kosambi)

Expressing x as a power series in R, we find that x = R+4R3+--- -
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dye-labeled moieties. For example, current systems are able to detect five col-
ors. The determination of DNA fragment sizes is dependent upon the use of
two types of standard markers. In every sample that is electrophoresed, a series
of dye-labeled DNA fragments of known size are included. This internal size
standard may be composed of restricted bacteriophage labeled DNA (for
instance, the Applied Biosystems GS 500 product) or, alternatively, artificial
DNA concatamers (for instance, the Applied Biosystems HD 400 product).

The second kind of standard marker is the “allelic ladder” (Figure 1.2).
This is comprised of all the common alleles for each locus and is compared
with each lane on an electrophoretic run.’*® Allelic ladders should span the
entire range of the common alleles of a locus. However, it is not necessary
that every allele be represented in the ladder. Many rare alleles have been dis-
covered and some of these are outside the range of the ladder. If possible,
there should be no gap larger than four bases between the rungs of the lad-
der for tetrameric and dimeric STR loci. If the STR repeat is greater than four
bases, then the maximum gap should be the size of the repeat.

Blue

I
A LA
5 Tallic] [13]

[olft1] [14]
[13] [16] [19] {22]
Green

J o

11][13] [16] [12
[8] [10 14] [17

[i2] [15] [i8

Figure 1.2 Allelic ladders from the AMPFISTR®SGM Plus™ system (PE
Applied Biosystems, Foster City, CA).
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The allelic ranges of some loci may overlap. These loci are labeled with
different dyes, therefore allowing each locus to be identified. Loci that are
labeled with the same dye have to be separated sufficiently to minimize the
possibility of overlap of the allele ranges.

Allele sizes are measured relative to the internal size standard, often by
using the Elder and Southern local method.?*#**° The size of the unknown
alleles in the questioned sample is then compared with the size of the known
alleles of the allelic ladder. The units are typically base pairs (bp) or bases.

Provided that a questioned allele is within £0.5 bp of a corresponding lad-
der peak, allelic designation may be undertaken. In all electrophoretic systems,
it is usual for a small amount of aberrant migration to occur such that the
migration rate may be either slower or faster than expected. This is termed band
shift. Band shift tends to be in the same direction for two alleles in the same lane.
This can be measured to ensure consistency,>® acting as an additional quality
control check and also as a means to designate off-ladder or “rare” alleles.**

1.1.1.3.4 STR allelic nomenclature. The International Society of
Forensic Genetics (ISFG) DNA Commission*®*3>>** has recommended an
STR allelic nomenclature based upon the number of repeat sequences pres-
ent in an allele. If a partial repeat sequence is present, then the size of the par-
tial repeat is given in bases after a decimal pointd; for example, the common
allele HUMTHO1 9.3 consists of nine repeats and a partial repeat of three
bases. This method is suitable for typing simple STR loci.

Complex hypervariable repeats such as ACTBP2 (currently used in some
European criminal DNA databases, e.g., Germany) do possess a simple
repeating structure. The designation of complex STR repeats such as
ACTBP2, D11S554, and APOAI1 follows from the size of specific alleles. The
size is dependent upon the primers utilized, and hence different primers will
produce a differently named allele. The allelic size may also be dependent
upon the internal structure of the allele. Hence designations are prefixed with
the term “type-

The designation scheme to be used for a given locus is dependent upon
the characteristics of the locus itself. If possible, the designation should fol-
low the recommendations of the ISFG DNA Commission unless this
approach is precluded by allelic structure at this locus.

Linking the allelic ladder and the nomenclature of STR loci provides the key
to standardization. In principle, the platform used (capillary electrophoresis or
PAGE) is not particularly important. Direct comparisons can be made between
different instruments, provided that allelic sizing is consistent. In addition,

dTermed a decimal point by biochemists, but strictly it is just a dot. There is no hint of the
decimal system in what comes after the dot.
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comparisons can also be made between different multiplexes derived from dif-
ferent manufacturers using different primer sets. The allelic ladders act as con-
trol reference standard that enable laboratories using different hardware and
multiplexes to compare results.

1.2 Understanding STR Profiles

In this section we begin the process of interpreting electropherograms. It is
necessary to understand the effects of some genetic anomalies and the out-
puts of the PCR and electrophoresis systems to understand both simple
unmixed profiles and more crucially mixtures. Some anomalies and outputs
are introduced briefly here.

1.2.1 Genetic Anomalies

1.2.1.1 Trisomy and Gene Duplication

The first trisomy “discovered” was that associated with Down’s syndrome at
chromosome 21 reported by Lejeune in 1959.7#° Subsequently trisomies were
discovered at chromosomes 13 and 18, but always associated with severe dis-
orders. Trisomies appear more common in spontaneously aborted fetuses.
Chromosomal duplication of ChrX appears to be more common and to have
fewer effects, possibly due to the deactivation of all X chromosomes bar one.

Both chromosome and gene duplication affect all cells in an individual. In
practice, it is impossible to tell the difference between these two phenomena
without resorting to genetic analysis. If a deletion or insertion of a repeat unit
accompanies duplication, then three bands of similar size are generated (see
Figure 1.3).

If a gene is duplicated without additional mutation, then two bands are
visible in a 2:1 ratio. In the example in Figure 1.4, an XYY individual has two
copies of the Y chromosome. Note that the other loci are balanced and this
argues against the possibility that this sample is a mixture. In the multiplex
described by Sparkes et al.,’**’? trisomy or gene duplication was observed
rarely at each locus (see Table 1.2). Johnson et al.**> report three gene dupli-
cation events in a sample of 525 males. Crouse et al.**’ report 18 three-
banded patterns at HUMTPOX and one at HUMCSF1PO in over 10,000
samples. STRBase?#6% gives up-to-date counts of three-banded patterns at
some loci. Valuable reports continue to appear.!>#>’

1.2.1.2 Somatic Mutation
Somatic mutation occurs during embryological development or later in life.
A mutation occurs in one line of cells and hence cells with two different
genotypes coexist, leading to a three-banded profile (Figure 1.5) when
samples of these cells are typed.
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Figure 1.3 An example of a HUMD21S11 trisomy or translocation appears in
the lower pane. Note that the bands are equivalent in size. The allelic ladder is
in the upper pane. The nomenclature used to designate this sample follows the
method of Urquhart et al.”®> Reproduced with the kind permission of
BioTechniques/Eaton Publishing from Gill.3%
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Figure 1.4 An XYY individual (upper pane left) showing a Y peak twice the size
of the X peak. The remaining loci of the SGM multiplex are balanced. Reproduced
with the kind permission of BioTechniques/Eaton Publishing from Gill.3%

The peak areas will be dependent upon the relative proportion of the two
cell types in the sample and need not be equivalent. This is arguably the most
difficult condition to elucidate since it is possible that not all tissues will
demonstrate somatic mutation. The incidence of somatic mutation varies
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Table 1.2 Occurrence of Trisomy or Gene
Duplication at Some STR Loci in ~600,000 Profiles

Locus Count
Amelogenin 1191
HUMD?21S811 9
HUMD18S51 7
HUMD8S1179 24
HUMEFGA 12
HUMVWA

HUMTHO1 1

Peak : Scan 1993 Size 167.18 Height 106 Area 454 Category: VW
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Figure 1.5 Somatic mutation at the HUMVWFA31 locus, lower left pane. Note
that three peaks of different sizes are present. HUMFIBRA/FGA peaks are shown
on the right side. The upper pane shows HUMVWFA31 and HUMFIBRA/FGA
allelic ladders. Reproduced with the kind permission of BioTechniques/Eaton
Publishing from Gill.33°
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between loci: out of 120,000 samples, no somatic mutations were observed at
the HUMTHO1 locus, whereas the incidence is approximately 1 in 5000 at the
HUMD18S51 and HUMFIBRA/FGA loci. It is possible that some somatic
mutations will not be distinguishable from stutters. Hence, these figures are
probably underestimates since mutations are recorded only if they are
unambiguous.

1.2.2 PCR Artifacts

1.2.2.1 Heterozygote Balance

There have been at least three terms proposed to define the phenomenon of
heterozygote balance. These are heterozygote balance, heterozygote imbal-
ance, and preferential amplification. Preferential amplification is probably an
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inappropriate term for several reasons discussed later. Of the other two
terms, “heterozygote balance” has historic precedence whereas “heterozygote
imbalance” appears to more properly fit the phenomenon that we will
describe graphically and mathematically.

Heterozygote balance (Hb) describes the area or height difference
between the two peaks of a heterozygote (see Figure 1.6). An understanding
of this phenomenon is vital to determining whether the profile may be a mix-
ture or not.

There are several factors that may contribute to heterozygote balance. It is
likely that the starting templates are sampled unequally. The pre-amplifica-
tion sample is an aliquot from the post-extraction process and does not nec-
essarily contain equal numbers of the two alleles for heterozygotes. This effect
is likely to be more severe for samples with fewer templates per se.

There is also a natural variation in the PCR process. Accordingly, the two
alleles of a heterozygote may be amplified unequally.

The effects of sampling and amplification variability combine to create the
observed heterozygote balance. This heterozygote balance has been defined®*
previously in two differing ways: (i) as the ratio of the area of the smaller peak
to the larger peak Hb =@,/ @),,» and (ii) as the ratio of the area of the heavier

1 ng template
28 cycles

Peak area

LCN
template
34 cycles

Figure 1.6 Profile morphology at the HUMD8S1179 locus in a sample amplified
under normal (28 cycles/1 ng) and LCN (34 cycles/25 pg) conditions. Reprinted in
altered form from Whitaker et al.85 © 2001, with permission from Elsevier.
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molecular weight peak to the lighter molecular weight Hb =@,;, 1,/ @3- The
latter definition contains more information and will be preferred here.f With
this latter definition, a mean value of less than 1 for Hb suggests that the lighter
molecular weight allele is being preferentially amplified.

A heterozygote is defined as extremely unbalanced if one of the alleles is
greater in area than its counterpart by a specified amount. An approximate
guideline of 0.6 = Hb = 1.67 has been developed. Experimental observation
suggests that the majority of data fall within these limits, but some outliers are
observed. The intent of this guideline is to highlight to the reporting scientist
that the sample may need further biochemical investigation. The distribution
of Hb should be both asymmetric and conditioned on peak area and template
quality. For instance, we expect more imbalance for profiles with small peaks.
Imbalance may also be caused by rare genetic phenomena such as somatic
mutation.

If we wish to really explore the phenomenon of heterozygote imbalance,
we need to separate this effect from the effect of stuttering. This leads us to
the concept of “total product.” We consider the total PCR product from the
two alleles. This product will include the stutter and allelic peaks at least. So
we are, unfortunately, led to another definition:

(D4t 09 v
(D4t Os) Larwy

where ¢, is the area of the allelic peak and ¢ is the area of the stutter peak.

Experimentally it has been observed that there is a small trend for the
smaller molecular weight allele to amplify more efficiently; however, there is
considerable scatter about this trend (see Figure 1.7 after Veth3%%; we follow
Triggs and Patel’’®). As with most ratios, it is sensible to plot the logarithm of
the ratio. It is reasonable to force the fitted line through (0,0) since we expect
no preferential amplification for alleles that differ in no way.

This phenomenon is often referred to as “preferential amplification”;
however, the term is inappropriate as it implies a strong preference for the
low molecular weight allele to amplify more efficiently. In reality, when we
consider total PCR product, a small trend is noted with considerable scatter
about this trend. In addition the term implies that all imbalance is caused by
differences in amplification and hence ignores sampling effects at the tem-
plate level. We prefer the term heterozygote balance.

It is interesting to examine the variability about the fitted line (see Figure 1.8).

We could ask the question: Is the area normally distributed about the
fitted line? This is investigated by the normal density quantile plot in

Hb=

¢ It is very unfortunate that this also appears as its inverse in the literature,
Hb =¢; 3w | darw, Which complicates the situation further.
£You can calculate Hb =9, 4110/ Orarger fr0m Hb =@yppyy/ 0 1aryy, but not the reverse.
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Figure 1.7 Total PCR product versus the distance between alleles for
HUMD2S1338 in the SGM* system. The data have been developed from “simple
heterozygotes,” which we define as those separated by two or more repeat units
or otherwise arranged that the stutter peak does not fall on an allelic peak. For
such heterozygotes, we can calculate total PCR product more easily since the
stutter peak is not masked by an allelic peak. Note the small downward trend of
the line with considerable scatter above and below the line. This is a typical
result. Data sourced with kind permission from Veth.8%0

Figure 1.8 Distribution about the fitted line. The prediction from the fitted line
is set as 0 on the x-axis. The plot shows the distribution of In [(@,+ @¢)y /
(@4 dg)aw] about this fitted line. Data sourced with kind permission from
Veth.80
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Figure 1.9. If this line is perfectly straight, then those data fit exactly with a
normal distribution.

To our subjective eye this is acceptably normal, and hence we model the
natural log of total PCR product as normally distributed about the fitted line.
The variance is easily calculated and both the variance and the slope are tab-
ulated in Table 1.3 for the ten SGM™ loci investigated by Veth.3% The variance
about the fitted line for all ten loci appears, visually, to be adequately mod-
eled by a normal distribution (data not shown).
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-0.4 4 4 +¥

-0.6 T T T T T .
-3 -2 -1 0 1 2 3
Exp

Figure 1.9 Normal density quantile plot for HUMD2S1338. Data sourced with
kind permission from Veth.8%

Table 1.3 Modeling Parameters for Allelic Area

Locus Molecular Weight Heterozygote Balance
Slope of Fitted Line Standard Deviation
(Recall the Intercept is Zero) ~ About the Fitted Line
D19 106—-140 bp —-0.014 0.14
D3 114-142 bp -0.016 0.15
D8 128-172 bp —0.022 0.17
vWA 157-209 bp -0.017 0.18
THO1 165-204 bp —0.018 0.15
D21 187-243 bp —-0.017 0.18
FGA 215-353 bp —-0.017 0.19
D16 234-274 bp —-0.018 0.19
D18 265-345 bp —-0.010 0.18
D2 289-341 bp —-0.014 0.19

Data sourced with kind permission from Veth.8
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1.2.2.2 Allelic Dropout

Allele dropout is defined as the condition where an allele cannot be visual-
ized. It is not yet clear whether it is an extreme form of variable amplification.
It is most often observed when one allele of a heterozygote cannot be visual-
ized. The phenomenon needs to be understood as it can lead to the false
impression that the genotype is a homozygote. When allelic dropout is pos-
sible, for instance, when peak areas or heights are very low, it is wise to be
cautious and utilize a genotype designation that recognizes this. This is typi-
cally, but not always, conservative. For instance, an apparent 16,16 homo-
zygote with low peak height could be written as 16,F as in the U.K. This
designation stands for 16 “failed” and means that the genotype is assigned as
16 and any other allele. In many laboratories the height guideline where this
designation should be applied is 150rfu? because experimental observations
suggest that allele dropout does not occur above this level. We believe that
this differs between laboratories and endorse recommendations as to internal
validation of this and other parameters.

Findlay et al.?*>*7 have also studied allelic dropout and suggest that it is a
separate phenomenon to heterozygote balance, not simply an extreme form
of it. They note that heterozygote balance shows a distribution terminating at
nonextreme values for the fraction of product attributable to one allele.
When investigating this statement, we need to carefully consider the methods
available for assessing peak area or height and the various thresholds used. It
is certainly possible that small heights or areas are simply “not measured” but
are still present. Triggs and Patel (as above) went to some considerable effort
to investigate this.””8

1.2.2.3 Stuttering

Stuttering refers to the production of peaks at positions other than the
parental allelic position. The term is reserved for loss of complete repeat
units. For tetrameric loci, the loss of one unit is termed the N — 4 stutter and
the loss of two units is the N — 8 stutter. Stuttering is presumed to be due to
miscopying or slippage during the PCR process.

It is useful to define stutter ratio as S,=@g/ @, and stutter proportion as
S.=05/ (B:9y).

Larger alleles appear to stutter more. Specifically, strong supporting
evidence has been given by Klintschar and Wiegand*®” for the hypothesis
that the larger the number of homogeneous repeats, the larger the stutter
peak.

When investigated, many loci do not give a straight line fit of log stutter
ratio or logit stutter proportion to allele designation. Loci such as the

8Relative fluorescence units.

© 2005 by CRC Press



HUMD2S1338 locus (see Figure 1.10) have a compound repeat structure
(TGCC),, (TTCC),,. Veth has observed similar deviations from a straight line
at other SGM™ loci. If the Klintschar and Wiegand hypothesis is correct, this
may be the explanation for the kink in the graph for this locus and other loci
showing the same effect. However, the pattern is not immediately obvious and
warrants further investigation. Accordingly, it appears premature to offer a
simple model for stutter based solely on a linear regression to allele number.

Whitaker et al.¥* investigated the ratio of the N — 4 stutter peak area to
parental peak area. For 28-cycle PCR, the ratio was in the range between 0.05
and 0.10 with outliers ranging up to 0.15. This was true regardless of the peak
areas of the parent peaks. No example of a stutter proportion greater than
0.15 was observed. The effect of stuttering, and in fact all PCR artifacts, was
found to be greater in LCN work. A separate chapter is devoted to the inter-
pretation of LCN profiles.

Frégeau et al.>* report stutter ratios for casework samples using reduced
reaction volumes (25pl). Similar reaction volumes are in reasonably wide-
spread use. They report that stutter peaks in the blue and green STR systems
in Profiler Plus were all less than 0.16 of the parental peak. For the yellow STR
system, they were less than 0.12 of the parental peak. Johnson et al. > give
values for a Y-STR multiplex.

It is worthwhile at this point to return to the subject of preferential ampli-
fication. Combining the findings regarding heterozygote balance and stutter,

D2 stutter
—1.5+
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g ? : .oy
3 + + . +
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S 25+ . s :
o . b4 $
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Figure 1.10 Stutter ratio or proportion for HUMD2S1338. The x-axis is the
allele designation. The y-axis shows either In(Sg) or logit of stutter proportion,
which are equivalent. Logit refers to the function In [S, / {1 — S,)] and is a func-
tion often used by statisticians when plotting proportions. Data sourced with
kind permission from Veth.8%

© 2005 by CRC Press



we see that larger alleles do amplify to slightly less total product but that more
of the product is stutter. Hence, if we need to use the word “preferential” at
all, it would be better to term this “preferential stutter.”

1.2.2.4 Nonspecific Artifacts

Nonspecific artifacts are generated as a result of the priming of DNA frag-
ments during the PCR process, possibly from degraded human or bacterial
DNA. The band shift test described by Gill et al.’*** is particularly useful to
identify peaks as nonspecific since they usually migrate atypically in the gel.
This may be either because they have different sequences to STR alleles or
because they are a partial renaturation of PCR products.

1.2.2.5 Pull-Up

One problem commonly observed in STR profiles is “pull-up.” This typically
occurs when a minor peak in one color corresponds to a major allelic peak in
another color. Typically, a blue peak may “pull up” a green peak directly
below it. This is only problematic if the minor peak coincides with the posi-
tion of a potential allele. If such a possibility exists, options to consider
include amplification of the locus under consideration by itself (single-
plexing), re-PCR of the sample, or reapplication of the matrix or spectral
calibration.

1.2.2.6 Poor Operator Technique

Leakage of a sample from one lane to another, commonly referred to as “lane-
to-lane leakage,” is a problem that may be encountered when loading samples
into vertical acrylamide gels such as are used in the 377 Gene Sequencer. This
can be detected by loading samples in a staggered fashion, either odd or even
lanes first, with a short period of electrophoresis in between. Lane-to-lane
leakage can then be detected by viewing the sample profiles by scan number
in the Genescan analysis software (Applied Biosystems, Foster City, CA).

1.2.2.7 Suppression of Amplification Efficiency, Silent or
Null Alleles

Peak-area asymmetry outside the normal range or the creation of a silent or
null allele may occur because of a primer-binding site mutation. This has the
effect of altering annealing and melting temperatures, which changes the
amplification efficiency and decreases the resulting signal. If a substitution
mutation occurs at the 3' end of the primer, a mismatch will result and
amplification will fail completely, resulting in a silent allele. The closer the
substitution to the 5' end of the primer, the lesser the effect on amplification
efficiency.!®!18:378809 Butler and Reeder'’® and Whittle et al.*” report some

silent allele frequencies shown in[Table 1.4
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Table 1.4 Silent Allele Probabilities and Multibanded
Patterns from Butler and Reeder!®® (Top When Two) or
Whittle et al.85”

Silent Alleles Multibanded
Patterns %
CSF1PO 2/42,020
0/21,800
D5S818 3/74,922
0/21,604
D7S820 1/42,020 1/406
6/32,120
D13S317 52/62,344
0/21,394
D16S539 3/52,959 0/1165
2/21,498
D21S11 1/203
2/20,600
FIBRA(FGA) 2/1104
0/34,278
THO1 2/7983 0/2646
0/19,308
TPOX 11/43,704 13/42,020
0/21,884
VWA 7142,222 1/6581
12/36,466
F13B 0/21,964
D3S1358 4/22,084
F13A01 0/23,034
D8S1179 6/33,110
D10S1237 4/13,600
FESFPS 10/30,906
Penta E 0/8060
D18S51 2/36,546
D19S253 36/35,602

Chang et al.'7® report high occurrences of silent alleles at the amelogenin
locus in some populations that interfered with the efficiency of the test. They
found a rate of 3.6% in an Indian population and 0.9% in a Malay popula-
tion. Clayton et al.'®> identified a set of silent alleles at the HUMD18S51 locus
associated with individuals of middle-eastern descent. They confirmed the
nature of these alleles using alternative primers. At this locus, they found that
the presumed primer-binding site mutation was associated in 12 of 15
instances with an 18 allele. The remaining instances were one each of a 17, 19,
and 20 allele. This supports the suggestion that the ancestral primer-binding
site mutation was associated with an 18 allele and that the 17, 19, and 20
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alleles have subsequently arisen by mutation from this 18 allele. Other valu-
able reports continue to appear.'

1.2.2.8 Promotion of Amplification Efficiency

DNA sequence differences in flanking regions near the PCR primer-binding
site may improve amplification efficiency. In the SGM system,”?>7?* at the
HUMVWFA31 locus, a sequence polymorphism was found associated with
most HUMVWFA31 14 alleles, and to a much lesser extent with the
HUMVWFA31 15 allele. The polymorphism consisted of a substitution that
is three bases from the 5' end of the primer-binding site (in the amplification
region). This appears to enhance amplification and may result in a peak area
ratio greater than 2:1. This phenomenon has not been observed in the SGM™
system, presumably because the primers used are different.

1.3 Summary

The biological basis of contemporary forensic DNA profiling is linked to the
processes of cell and human reproduction. From the many variations that
subsequently exist on the human genome, STR’s have emerged as the most
suitable marker for current forensic identification. Standardising on this
polymorphism has led to further harmonization with regard to the specific
loci that are targeted and analysed in the international forensic community.
As with any complex molecular technique however, the interpretation of data
requires ongoing assessment and consideration.
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Additional reading:

This book is intended as a discussion of the interpretation of DNA evidence.
However, there is nothing inherently different about DNA evidence that sets
it qualitatively aside from all other forensic evidence or even all evi-
dence.'7:66> Hence, it is important that DNA evidence is considered as one
form of evidence and not as something completely separate. We come imme-
diately to the issue of setting evidence into a framework that is appropriate
for court. This has been the subject of entire books by more informed
authors,%? but it is by no means settled. The issue revolves around a basic
contrast: the tools best fitted to interpret evidence coherently are also those
that appear to be most problematic to explain to a jury or layperson. Does the

2T acknowledge many valuable discussions over the years with Drs Christopher Triggs and
Christophe Champod, which have contributed to material present in this chapter.
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system used by the scientist also have to be the one presented in court? This
is a question that is only just beginning to be asked, let alone answered. Parts
of this section follow Triggs and Buckleton”® reproduced with the kind per-
mission of Oxford University Press.

The interpretation of the DNA results has been a key area for debate in
the DNA field ever since the inception of this form of evidence.

The statistical interpretation of DNA typing results, specifically in
the context of population genetics, has been the least understood
and, by definition, the most hotly debated issue of many admissi-
bility hearings. The perceived incomprehensibility of the subject,
has led to a recalcitrance of the judicial system to accept DNA
typing.678’679

This statement by Rudin and Inman is not only true but is also very inter-
esting. DNA evidence is actually much simpler and more extensively studied
than most other evidence types. Many evidence types, such as toolmarks and
handwriting comparison, are so complex that at present they defy presenta-
tion in a numerical form. Numerical assessment is attempted in glass and fiber
evidence in New Zealand and the U.K,, but the issues in both these fields are
far more complex than in the DNA field. It is the very simplicity of DNA evi-
dence that allows it to be presented numerically at all. And yet, as Rudin and
Inman point out, there is still much debate about how to present this evidence.

It could be argued that the presentation of scientific evidence should bend
to conform to the courts’ requirements. Indeed a court can almost compel
this. There have been several rulings® on this subject by courts, which have
been used to argue for or against particular approaches to the presentation of
evidence. An instance of this could be the Doheney and Adams ruling.?!
More specifically the Doheney and Adams ruling has been, I believe erro-
neously, read as arguing against a Bayesian approach and for a frequentist
approach (discussed further later).© However, a fairer and more impartial
appraisal of the various methods offered for interpretation should proceed
from a starting point of discussing the underlying logic of interpretation.
Only as a second stage should it be considered how this logic may be pre-
sented in court or whether the court or jury have the tools to deal with this

type of evidence. There is little advantage to the situation “wrong but under-
stood.”658:660

b For reviews of some court cases in Australia, New Zealand, the UK. and the U.S., see
References 319, 329, 401, 649, 660, 661, 662, and 663.

¢ Robertson and Vignaux®? give a more eloquently worded argument in support of this
belief.
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To be effective in the courtroom, a statistician must be able to
think like a lawyer and present complex statistical concepts in
terms a judge can understand. Thus, we present the principles of
statistics and probability, not as a series of symbols, but in the
words of jurists.*

What is proposed in this chapter is to consider the underlying claims of
three alternative approaches to the presentation of evidence. These will be
termed the frequentist approach, the logical approach, and the full Bayesian
approach.*?® The first of these terms has been in common usage and may
be familiar.”® I have adopted a slightly different phrasing to that in com-
mon usage for the second and third approaches and this will require some
explanation. This will be attempted in the following sections. The intention
is to present the merits and shortcomings of each method in an impartial
way, which hopefully leads the reader to a position where they can make
an informed choice. Juries may misunderstand any of the methods
described, and care should be taken over the exact wording. In fact, it is clear
that care must be taken with all probabilistic work and presenta-
tion.35’101’287’472’473’474’475’476’477’493’503’554’664’764’766’769 One famous Statistician’s
evidence has been described as “like hearing evidence in Swahili, without the
advantage of an interpreter.”¢

Comparisons of the potential impact on juries of the different methods
have been published.??%*%5754755 [t is necessary to countenance a situation in
the future where the desirable methods for interpretation of, say, a mixture
by simulation are so complex that they cannot realistically be explained com-
pletely in court.

It is important that the following discussion is read without fear of the
more mathematical approaches as this fear wrongly pressures some com-
mentators to advocate simpler approaches. It is probably fair for a jury to pre-
fer a method for the reason of mathematical simplicity, but it would be a
mistake for a scientist to do so. Would you like your aircraft designer to use
the best engineering models available or one that you can understand with-
out effort?

2.1 The Frequentist Approach

At the outset it is necessary to make clear that the use of the frequentist
approach in forensic science is related to, but not identical to the frequentist
approach in probability theory.>!®%? The frequentist approach in forensic
science has never been formalized and hence is quite hard to discuss. It
appears to have grown as a logical framework by a set of intuitive steps. There
are also a number of potential misconceptions regarding this approach,
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which require discussion and will be attempted. To begin, the approach will
be subdivided into two parts: the coincidence probability and the exclusion
probability. A discussion of “natural frequencies,” a concept introduced by
Gigerenzer, will follow.**

2.1.1 Coincidence Probabilities

For this discussion, it is necessary to attempt to formalize this approach suf-
ficiently. Use will be made of the following definition:

The coincidence approach proceeds to offer evidence against a proposition by
showing that the evidence is unlikely if this proposition is true. Hence it supports
the alternative proposition. The less likely the evidence under the proposition,
the more support given to the alternative.

This is called the coincidence probability approach because either the evi-
dence came from, say, the suspect or a “coincidence” has occurred.

There are many examples of evidence presented in this way:

e “Only 1% of glass would match the glass on the clothing by chance.”

e “It is very unlikely to get this paint sequence match by chance alone.”

e “Approximately 1 in a million unrelated males would match the DNA
at the scene by chance.”

We are led to believe that the event “match by chance” is unlikely and hence
the evidence supports the alternative. At this stage let us proceed by assum-
ing that if the evidence is unlikely under a particular hypothesis, then this
supports the alternative.

This is strongly akin to formal hypothesis testing procedures in statistical
theory. Formal hypothesis testing would proceed by setting up the hypothe-
sis usually called the null, H,. The probability of the evidence (or data) is cal-
culated if H,is true. If this probability is small (say less than 5 or 1%), then
the null is “rejected.” The evidence is taken to support the alternative hypoth-
eSiS, H1.305,579,612

To set up a DNA case in this framework, we could proceed as follows.
Formulate the hypothesis, H,: the DNA came from a male not related to the
suspect. We then calculate the probability of the evidence if this is true. We
write the evidence as E, and in this context it will be something like:

E: The DNA at the scene is type o
We assume that it is known that the suspect is also type o.. We calculate the
probability, Pr, of the evidence, E, if the null hypothesis H,, is true, Pr(EIH,).
The vertical line, or conditioning sign, stands for the word “if” or “given.”

Assuming that about 1 in a million unrelated males would have type o,
we assign Pr(EIH,) as 1 in a million. Since this is a very small chance, we
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assume that this evidence suggests that His not true and hence is support for
H,.In this context, we might define the alternative hypothesis as:

H,: The DNA came from the suspect.

Hence in this case, the evidence supports the hypothesis that the DNA
came from the suspect. Later we are going to need to be a lot more careful
about how we define hypotheses.

Hypothesis testing is a well-known and largely accepted statistical
approach. The similarity between the coincidence approach and hypothesis
testing is the former’s greatest claim to prominence.

2.1.2 Exclusion Probabilities

The exclusion probability approach calculates and reports the exclusion prob-
ability. This can be defined as the probability that a random person would be
excluded as the donor of this DNA, or the father of this child, or a contribu-
tor to this mixture. The details of these calculations will be discussed later.
Again, the formal logic has not been defined; hence, it will be attempted here.

The suspect is not excluded. There is a probability that a random person
would be excluded. From this it is inferred that it is unlikely that the suspect is a
random person. Hence this evidence supports the alternative proposition that
the suspect is the donor of the DNA. The higher the exclusion probability, the
more support given to the alternative.

Examples are again common. For instance, the three phrases given previ-
ously can be reworked into this framework:

® “99% of windows would be excluded as a source of this glass.”

e “It is very likely that a random paint sequence would be excluded as
matching this sample.”

e “Approximately 99.9999% of unrelated males would be excluded as
the source of this DNA.”

An advantage of the exclusion probability approach is that it can be eas-
ily extended beyond these examples to more difficult types of evidence such
as paternity and mixtures:

e “Approximately 99% of random men would be excluded as the father
of this child.”

e “Approximately 99% of random men would be excluded as a donor to
this mixture.”

It was stated previously that the use of the frequentist approach in foren-

sic science is related, but not identical, to the frequentist approach in proba-
bility theory. There are two common definitions of probability. These are
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called the frequentist and the subjectivist definitions. It is not necessary to
discuss these differences in any length here, as they have long been the cause
of deep discussion in both philosophy and the theory of probability. Briefly,
the frequentist approach treats probability as the expectation over a large
number of events. For instance, if we roll a dice many times we expect about
1/6 of these rolls to be a “6.” The subjectivist definition accepts that probabil-
ity is a measure of belief, and that this measure will be conditional both on
the information available and on the person making the assessment.”®
However, both the coincidence approach and the exclusion probability
approach can be based on either frequentist or subjectivist probabilities.
Proponents of the Bayesian or subjectivist school of probability criticize the
frequentist definition. However, it is unfair to transfer this criticism of a fre-
quentist probability to the frequentist approach to forensic evidence.

The coincidence and the exclusion probability approach do appear to be
simple and have an intuitive logic that may appeal to a jury. Thompson”®’
argued for their use in the O.]. Simpson trial apparently on the basis that they
were conservative and more easily understood while accepting the greater
power of likelihood ratios.

2.1.3 Natural Frequencies?

More recently, the argument has been taken up by Gigerenzer arguing that “to
be good it must be understood.” He argues persuasively for the use of “natural
frequencies.” To introduce this concept, it is easiest to follow an example from
Gigerenzer.>*

The expert witness testifies that there are about 10 million men
who could have been the perpetrator. Approximately 10 of these
men have a DNA profile that is identical with the trace recovered
from the crime scene. If a man has this profile it is practically cer-
tain that a DNA analysis shows a match. Among the men who do
not have this DNA profile, current DNA technology leads to a
reported match in only 100 cases out of 10 million.

Gigerenzer argues from his own research that this approach is more likely
to be understood. He quotes that the correct understanding was achieved by
1% of students and 10% of professionals when using conditional probabili-
ties. This rose to 40 and 70%, respectively, when “natural frequencies” were
used.

4 My thanks to Michael Strutt for directing me to this work.
¢ Gigerenzer is referring here to his estimate of error rates.
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Of course, Gigerenzer’s natural frequencies are nothing more than an
example of the defense attorney’s fallacy of Thompson and Schumann’®or the
recommendation of the Appeal Court regarding Doheney and Adams.?"618

I concede the seductive appeal of this approach. Let us accept at face value
Gigerenzer’s statement that they are more easily understood. I do, however,
feel that this approach hides a number of serious issues.

First consider the assumption that N men could have been the perpetrator.
Who is to make this decision? One would feel that the only people qualified
and with the responsibility of doing this are the judge and jury. They have
heard the non-DNA evidence and they can decide whether or not this defines
a pool of suspects. Moreover, are we to assign an equal prior to all these men?
Gigerenzer’s approach has a tendency toward assigning equal priors to each of
these men and to the suspect. This is a tenable assumption in some but not all
circumstances. Essentially we have a partition of the population of the world
into those “in” the pool of suspects and those “out” of it. Those “in” are
assigned a prior probability of 1/N. Those “out” are assigned a prior of 0.

What are we to do when the product of the match probability and the pool
of possible suspects is very small? Let us take the case given above but reduce the
match probability from 1 in a million to 1 in 10 million. This would lead to:

The expert witness testifies that there are about 10 million men who could
have been the perpetrator. Approximately 1 of these men has a DNA profile that
is identical with the trace recovered from the crime scene.

The witness will have to take great care that the jury understand this state-
ment. There is a risk that they may assume that the suspect is this one man.
What is needed is to explain that this is one man additional to the suspect and
even then it is an expectation. There may be one man additional to the sus-
pect, but there may also be 0, 2, 3, or more.

Let us take this case and reduce the match probability even further to 1 in
a billion. This would lead to:

The expert witness testifies that there are about 10 million men who could
have been the perpetrator. Approximately 0.01 of these men have a DNA profile
that is identical with the trace recovered from the crime scene.

This will take some care to explain to the jury. Now suppose that the sus-
pect has one brother in the set of 10 million men.

The expert witness testifies that there are about 10 million unrelated men
and one brother who could have been the perpetrator. Approximately 0.01 of the
unrelated men and 0.005 of the brother have a DNA profile that is identical with
the trace recovered from the crime scene.

Taking the example further:

The expert witness testifies that there are about 10 million unrelated men
and one brother who could have been the perpetrator. Approximately 0.002 of
the unrelated Caucasian men, 0.004 of the unrelated African Americans, 0.004
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of the unrelated Hispanics, and 0.005 of the brother have a DNA profile that is
identical with the trace recovered from the crime scene.

If we accept the suggestion that it is more understandable, then it may have
a use in those very simple cases where there is a definable pool of suspects,
relatedness is not important, the evidence is certain under the prosecution
hypothesis, and the product of the match probability times N is not small.

Outside this very restricted class of case, I would classify it in the “under-
stood but wrong”f category even when it is understood. I really do doubt the
usefulness of this approach. It is very difficult to see how to accommodate rel-
atives, interpret mixtures, and report paternity cases within this framework.
Gigerenzer has also subtly introduced the concept of 10 million replicate
cases all with the same probability of error. This may be an acceptable fiction
to lure the jury into a balanced view, but it would take a lot of thinking to rec-
oncile it with my own view of probability. Even if we accept Gigerenzer’s
statement that natural frequencies are more easily understood and we
decided to use this presentation method in court, it is important that foren-
sic scientists think more clearly and exactly about what a probability is, what
constitutes replication, and how probabilities may be assigned.

2.2 The Logical Approach

“We are all Bayesians in real day life.” Bruce Budowle.'"’

“Bayes’s theorem is a fundamental tool of inductive inference.” Finkelstein
and Levin.’®

Frustrations with the frequentist approach to forensic evidence have led
many people to search for alternatives.'*>?°® For many, these frustrations stem
from discussing multiple stains, multiple suspects, or from trying to combine
different evidence types.®*>%® The foremost alternative is the logical
approach (also called the Bayesian approach).2>7:#90:500:516:317:518 Thjg approach
has been implemented routinely in paternity cases since the 1930s.>° It is
however only in the later stages of the 20th century that it made inroads into
many other fields of forensic science. It now dominates forensic literature,
but not necessarily forensic practice, as the method of choice for interpreting
forensic evidence.®170:171,173,214,334,585,659,663 B43r47 gives an elegant review.

Let:

H, Dbe the hypothesis advanced by the prosecution,

H, be a particular hypothesis suitable for the defense,

E  represent the evidence, and

I represent all the background evidence relevant to the case.

fIt is not the only error in this section by Gigerenzer. Professor Weir did not report like-
lihood ratios in the O.J. Simpson case and most laboratories and all accredited ones do
undertake external QA trials.
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The laws of probability lead to

Pr(HPIE,I) Pr(EIHp,I) Pr(HPII)
Pr(H,JEI) — Pr(EH,I) X Pr(H,I) (2.1)

This theorem is known as Bayes’s theorem.>> A derivation appears in Box 2.1.
This theorem follows directly from the laws of probability. It can therefore be
accepted as a logical framework for interpreting evidence.

To understand the workings of this formula, it is necessary to understand
the workings of the conditioning sign. This is usually written as | and can be
read as “if” or “given.” This concept is little understood and is typically not
taught well. The reader unfamiliar with it would be advised to work through
the examples given in Evett and Weir.?” A brief discussion is given in Box 2.2.

Equation (2.1) is often given verbally as

posterior odds=likelihood ratioXprior odds (2.2)

The prior odds are the odds on the hypotheses H, before DNA evidence. The
posterior odds are these odds after DNA evidence. The likelihood ratio tells
us how to relate these two. This would seem to be a very worthwhile thing to

Box 2.1 A Derivation of Bayes’s Theorem
The third law of probability states:
Pr(a and blc)=Pr(a,blc)=Pr(alb,c)Pr(blc)=Pr(bla, c)Pr(alc)
Rewriting this using H, ” H, E and I
Pr(Hp,EII)=Pr(Hp|E,I)Pr(E|I)=Pr(E|Hp,I)Pr(Hp|I)
and
Pr(H,,EIT)=Pr(H,|E I)Pr(EIl)=Pr(EIH,,I)Pr(H,II)
Hence
Pr(Hp,EII) _ Pr(leE,I)Pr(EII) _ Pr(EIHp,I)Pr(HPII)
Pr(H,EI)  Pr(H,JEIPr(ED)  Pr(EIH,I)Pr(H,II)

Hence
Pr(HPIE,I)Pr(EII) Pr(EIHp,I)Pr(HPII)
Pr(H,IE,I)Pr(EII) - Pr(EIH ,I)Pr(H,I)

Cancelling Pr(EII)
Pr(H,ED) _ Pr(EIH,DPr(H,I)
Pr(H,EI)  Pr(EIH,I)Pr(H,I) (2.1)
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do, that is, to relate the odds before consideration of the evidence to those
after the evidence. It also tells us how to update our opinion in a logical man-
ner having heard the evidence.

The prior odds, Pr(HPII)/Pr(H 4I), represent the view on the prosecution
and defense hypothesis before DNA evidence is presented.® This view is
something that is formed in the minds of the judge and jury. The informa-
tion imparted to the jury is carefully restricted to those facts that are consid-
ered admissible and relevant. It is very unlikely that the prior odds are
numerically expressed in the mind of the judge and jury and there is no need

Box 2.2. Conditional Probability

Several definitions are available for conditional probability. One proceeds
from the third law of probability:

Pr(a,b)
Pr(alb)=T(b)

which can be interpreted quite well in set theory. For instance, evaluating
Pr(alb) involves enumerating the set of outcomes where event b is true
and seeing in what fraction of these events a is also true.

B&M
Example: In a certain office there are ten men. Three men have beards
(event B) and moustaches (event M). A further two have moustaches only.
Say we were interested in Pr(BIM) we find the set of men where M is true:
this has five members. Of these, three have beards. Hence Pr(BIM)=3/5.
If we were interested in Pr(MI|B) we find the set of men where B is true:

this is three men. Of these, all three have moustaches. Hence Pr(MI|B)=3/3
=1.h

§ My wording is wrongly implying an order to events such as the “hearing of DNA evi-
dence.” In fact, the evidence can be heard in any order. The mathematical treatment will
give the same result regardless of the order in which the evidence is considered.®®?

M In this simple example, we are making an assumption that each of the men is equally
likely to be observed. This assumption may not be true in more general examples, but the
principle behind the definition of the conditional probability remains valid.
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that they should be numerical.®*%%3 Strictly it is not the business of the sci-
entist to form a view on the “prior odds” and most scientists would strictly
avoid this (for a differing opinion, see Meester and Sjerps®* and the sub-
sequent discussion???). These odds are based on nonscientific evidence and it
is the duty of judge and jury to assess this.””*8%7

The use of this approach typically reports only the likelihood ratio. By
doing this the scientist reports the weight of the evidence without trans-
gressing on those areas reserved for the judge and jury. This is the reason why
the term “the logical approach™ has been used to describe this method. It has
also been described elsewhere as “the likelihood ratio” approach. The term
that is being avoided is “the Bayesian approach,” which is the term used in
most papers on this subject, including my own. This term is being avoided
because, strictly, presenting a ratio of likelihoods does not necessarily imply
the use of the Bayesian method. Most authors have intended the presentation
of the likelihood ratio alone without necessarily implying that a discussion of
Bayes’ theorem and prior odds would follow in court. The intent was to pres-
ent the scientific evidence in the context of a logical framework without nec-
essarily presenting that framework.

However, the advantage of the logical approach is that the likelihood ratio
can be put in a context of the entire case and in a consistent and logical
framework. This advantage is somewhat lost if judge, jury, and scientist are
reticent to use or even discuss Bayes’ theorem in full.

Thompson’®” warns:

Although likelihood ratios have appealing features, the academic
community has yet fully to analyse and discuss their usefulness for
characterising DNA evidence.

Pfannkuch et al.®'® describe their experiences teaching this material to
undergraduate students:

Bayes’ theorem was the killer. There was an exodus of those mathe-
matically unprepared and math-phobic students who were free to
leave the course, supplemented by panic and agonised discussions
with those who were trapped by their course requirements.

These professional scientists and teachers persisted and found good
methods for teaching even math-phobic students because of the “wealth of
socially important problems” that are best addressed by Bayes’ theorem.

11 first had this distinction explained to me by Dr Christophe Champod.
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Fenton and Neil?®® argue forcefully that Bayes’ theorem is the method of
choice for interpreting evidence, while giving the fair criticism that Bayesians
have failed in their duty of communication. They quote the fact that many
lawyers and other educated professionals misunderstand the subject.

Is there a lesson here? My own experience with practicing forensic scientists
is that they can achieve an in-depth understanding of complex mathematical
concepts and methods, especially when placed in a good learning environment
and supported by colleagues and management. In this regard, I would like to
commend the U.K. Forensic Science Service (FSS) practice of secluding scien-
tists during training (in England we used excellent hotels in Evesham and the
“Pudding club” somewhere south of Birmingham). The FSS also undertakes
basic probability training and is considering putting in place a numerical com-
petency in recruitment. This investment in people is repaid manyfold.

To gain familiarity with Equation (2.2), it is useful to consider a few
results. What would happen if the likelihood ratio was 12 In this case, the pos-
terior odds are unchanged by the evidence. Another way of putting this is
that the evidence is inconclusive.

What would happen if the likelihood ratio was greater than 1? In these
cases, the posterior odds would be greater than the prior odds. The evidence
would have increased our belief in H,, relative to H,;. Another way of putting
this is that the evidence supports H,. The higher the likelihood ratio, the
greater the support for H,,.

If the likelihood ratio is less than 1, the posterior odds would be smaller
than the prior odds. The evidence would have decreased our belief in H, rel-
ative to H,;. Another way of putting this is that the evidence supports H,. The
lower the likelihood ratio, the greater the support for H,.

It has been suggested that a nomogram may be useful to help explain the
use of this formulation. This follows from a well-known nomogram in clini-
cal medicine. Riancho and Zarrabeitia®? suggest the diagram that has been
modified and presented in Tables 2.1 and 2.2. These tables are used by choos-
ing a prior odds and drawing a line through the center of the LR value. The
posterior odds may then be read directly. For example, assume that the prior
odds are about 1 to 100,000 (against) and the likelihood ratio is 10,000,000
then we read the posterior odds as 100 to 1 (on).

The likelihood ratio (LR) is a numerical scale. One point can be hinged to
words without argument; an LR of 1 is inconclusive. Other words may be
attached to this scale to give a subjective verbal impression of the weight of evi-
dence.1294174:263.264 This association of words with numbers is subjective and nec-
essarily arbitrary. One such scale used extensively in the FSS is given in Table 2.3.

The question of development of the prosecution and defense hypotheses
was introduced above, but was not discussed in any depth. In fact, the defense
are under no obligation to offer any hypothesis at all. An early discussion of
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Table 2.1 Prosecutor’s Nomogram

Prior Likelihood Ratio Posterior
Probability Odds Odds Probability
100,000,000 to 1 99.999990%
0.001% 1 to 100,000 10,000,000 to 1 99.999989%
0.01% 1 to 10,000 10,000,000,000 1,000,000 to 1 99.9999%
1,000,000,000
0.1% 1 to 1000 100,000,000 100,000 to 1 99.999%
10,000,000
1% 1to 100 1,000,000 10,000 to 1 99.99%
100,000
9% 1to 10 10,000 1000 to 1 99.9%
1000
50% 1to1l 100 100to 1 99%
10
91% 10to 1 1 10to 1 91%
99% 100 to 1 1to1l 50%

The prior and posterior probabilities associated with these odds are given next to the odds.

Reproduced and amended from Riancho and Zarrabeitia®? with kind permission of the authors and
Springer-Verlag who retain ownership of the copyright.

this appears in Aitken.® This is the subject of a large-scale project in the FSS
called the Case Assessment Initiative.!"»194272 The subject warrants separate
treatment. Even though it has been introduced under the heading of “the log-
ical approach,” the development of propositions is actually universally
important to evidence interpretation by any method (see Box 2.3).

2.3 The Full Bayesian Approach

The analysis given under the title of “the logical approach” works well if there
are two clear hypotheses aligned with the prosecution and defense positions.
However, regularly it is difficult to simplify a real casework problem down to
two hypotheses.

To put this in context, consider a relatively simple STR case. We have a
stain at the scene of a crime. Call this stain ¢ and the genotype of this stain
G,, following the nomenclature of Evett and Weir.?*” A suspect comes to the
attention of the police. Call this person s and the genotype G.. The genotype
of the suspect and the crime stain are found to be the same. We will write this
as G=G..
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Table 2.2 Defendant’s Nomogram

Prior Likelihood Ratio Posterior
Probability Odds Odds Probability
0.1% 1 to 1000 100to 1 99%
1% 1to 100 10to 1 91%
9% 1to 10 10 1tol 50%

1
50% 1to1l 1/10 1to 10 9%
1/100
91% 10to 1 1/1000 1to 100 1%
1/10,000
99% 100 to 1 1/100,000 1 to 1000 0.1%
1/1,000,000
99.9% 1000 to 1 1/10,000,000 1 to 10,000 0.01%
1/100,000,000
99.99% 10,000 to 1 1/1,000,000,000 1 to 100,000 0.001%

1 to 1,000,000  0.0001%

Reproduced and amended from Riancho and Zarrabeitia®? with kind permission of the
authors and Springer-Verlag who retain ownership of the copyright.

Table 2.3 A Verbal Scale

LR Verbal Wording

1,000,000+ Extremely strong

100,000 Very strong

10,000 Strong Support for H,
1000 Moderately strong

100 Moderate

10 Limited

1 Inconclusive

0.1 Limited

0.01 Moderate

0.001 Moderately strong Support for H,
0.0001 Strong

0.00001 Very strong

0.000001 Extremely strong
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Box 2.3 Which Way Up?

When we introduced Bayes’s theorem, we wrote it as
Pr(H,EI)  Pr(EIH,I)Pr(H,II)
Pr(H,EI)  Pr(EIH,I)Pr(H,I)

(2.1)

Why did we write it this way up? What was wrong with
Pr(H,EI)  Pr(EIH,I)Pr(H,I)
Pr(H,|EI) B Pr(EIH, I)Pr(H, ) ¢

This approach would work just as well. High numbers would be support
for H,, typically the defense hypothesis. Is the reason we defined it with
Hp on top an indication of subconscious bias? Is this the reason Balding,
Donnelly, and Nichols*? wrote their LR’s up the other way? Were they try-
ing to help us see something?

Under the coincidence approach, this would be the match that is caused
by the suspect being the donor of the crime stain or by a coincidence. To
make the comparison with hypothesis testing, we would formulate

H,: The DNA came from a male not related to the suspect.
H,: The DNA came from the suspect.

We then calculate the probability of the evidence if this is true. Let us write
this as Pr(G.IG,, H,), which can be read as the probability of the genotype of
the crime stain if the crime stain came from a person unrelated to the suspect
(and the suspect’s genotype is G,). This is often written as f; and taken to be
the frequency of the crime genotype (or the suspect’s genotype since they are
the same). We assume that this frequency is small and hence there is evidence
against H, and for H,.

Under the “logical approach,” we simply rename these hypotheses:

H,: The DNA came from the suspect.
H,: The DNA came from a male not related to the suspect.

We then calculate the probability of the evidence under each of these
hypotheses. 6810137257267 Pr(G |G,, H,)=1 since the crime genotype will be
G, if it came from the suspect who is G,. Again we take Pr(G.|G,, H;)=f. Hence

1 1

R=5Gic,H)"f

(2.3)

) This term will stand for two concepts in this text. This is unavoidable if we are to align
with the published literature. In the context, it stands for the frequency of a profile.
However, in population genetics f is often used for the within-population inbreeding param-
eter. When used in this latter context, it is synonymous with Fig.
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which is (typically) very much larger than 1 and hence there is evidence
against H, and for H,,.
But note that the following two hypotheses are not exhaustive:

H,: The DNA came from the suspect.
H,;: The DNA came from a male not related to the suspect.

What about those people who are related to the suspect? Should they be con-
sidered? Genetic theory would suggest that these are the most important peo-
ple to consider, and should not be omitted from the analysis. What we need
is a number of hypotheses. These could be:

H,: The DNA came from the suspect.
H,: The DNA came from a male related to the suspect.
H,: The DNA came from a male not related to the suspect.

Now consider H,. What do we mean by “related”? Obviously there are
many different degrees of relatedness. Suppose that the suspect has one
father and one mother, several brothers, numerous cousins and second
cousins, etc. We may need a multiplicity of hypotheses. In fact, we could
envisage the situation where there is a specific hypothesis for every person
on earth:

H,: The DNA came from the suspect.
H,: The DNA came from person 2, the brother of the suspect.
H,: The DNA came from person 3, the father of the suspect.

H;: The DNA came from person i related in whatever way to the suspect.

H;: The DNA came from person j so distantly related that we consider the
person effectively unrelated to the suspect.

What we need is a formulation that can handle from three to many
hypotheses. Considering the enumeration given above, there would be about
6,000,000,000 hypotheses, one for each person on earth.

This is provided by the general form of Bayes’ theorem (derived in Box
2.4).373842 This states that

Pr(H,)
Pr(H,IG, G,) = . (2.4)

'L Pr(G.IG, H,)Pr(H,)

This equation is very instructive for our thinking but is unlikely to be directly
useful in court, at least in the current environment. This is because the terms
Pr(H,) relate to the prior probability that the ith person is the source of the
DNA. The introduction of such considerations by a forensic scientist is unlikely
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Box 2.4

A comprehensive equation has been proposed®” based on the general
formulation of Bayes’ rule. Following Evett and Weir:?*” for a population
of size N, we index the suspect as person 1 and the remaining members of
the population as 2, ..., N. We will call the hypothesis that person i is the
source of the DNA H,. Since the suspect is indexed person 1, the hypoth-
esis that the suspect is, in fact, the source of the DNA is H,. The remain-
ing hypotheses, H,, ..., Hy, are those hypotheses where the true offender
is some other person. Before we examine the evidence, each person has
some probability of being the offender Pr(H,)=m, Many factors may
affect this, one of these being geography. Those closest to the scene may
have higher prior probabilities while people in remote countries have very
low prior probabilities. Most of the people other than the suspect or sus-
pects will not have been investigated. Therefore, there may be little spe-
cific evidence to inform this prior other than general aspects such as sex,
age, etc. The suspect is genotyped and we will call the genotype G.. The
stain from the scene is typed and found to have the genetic profile G,
which matches the suspect. The remaining 2, ..., N members of the pop-
ulation have genotypes G,, ...,Gy. These 2, ..., N people have not been
genotyped. We require the probability Pr(H,IG, G,). This is given by
Bayes’s rule as

Pr(GG,H,)Pr(GH,)Pr(H,)

Pr(H|1G,G)=—
> i \Pr(GIG, H)Pr(G,H,)Pr(H,)

Assuming that Pr(G,H,)=Pr(G,|H,) for all i, we obtain
Pr(G,IG,,H,)Pr(H,)

Pr(H,G,G)= 5
> Pr(G,IG,H,)Pr(H,)

We assume that the probability that the scene stain will be type G,
given that the suspect is G, and he contributed the stain, is 1. Hence,

Pr(H,)
Pr(H,|G,G)=— : (2.4)
> Pr(G,IG, H)Pr(H,)
_ 1
~ Pr(GIG,H)Pr(H,)
e Pr(H,)
! (continued)
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Box 2.4 (continued)
_ 1
x  Pr(GIG,H)m,
T L AL

1

Writing ©; / T, = w,, we obtain
1

Pr(H,1G,G,)= .
1+> . ,Pr(G.IG,H)w,

which is the equation given on page 41 of Evett and Weir. Here w; can be
regarded as a weighting function that expresses how much more or less
probable the ith person is than the suspect to have left the crime stain
based on only the non-DNA evidence.

to be permitted in court.x However, such an approach may be possible if the
court supplies its view of the prior. For instance, the terms “forensically relevant
populations”®*! and “relevant subgroup”®! provide inadvertent references to
such a prior. The time may come when courts countenance this type of con-
sideration. We could envisage the situation where a court instructs the witness
to consider only the subgroup “Caucasian sexually active males in the
Manchester area,” which is, in effect, setting a prior of zero outside this group.
In the likely absence of courts providing such priors, it is suggested that this
unifying equation should be used to test various forensic approaches and to
instruct our thinking. However, there is so much benefit in the use of this equa-
tion that research into how it could be used in court would be very welcome.

2.4 A Possible Solution

There is a “halfway house” between the likelihood ratio approach and the
unifying equation that has neither been published previously nor tested, but
has some considerable merit. Using the same nomenclature as above, we
rewrite the likelihood ratio as

Pr(GIG,H,)
LR=— (2.5)
> i_,Pr(GIG,H,H,)Pr(H|H,)

where H,, ...,Hy is an exclusive and exhaustive partition of H, (following
Champod,'® we will call these subpropositions). The advantage of this

k Meester and Sjerps®® argue to the contrary.
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approach is that it only requires priors that partition the probability under
H,. There is no requirement for the relative priors on H, and H,. This may be
more acceptable to a court.

2.5 Comparison of the Different Approaches

The very brief summary of the alternative approaches given above does not
do full justice to any of them. It is possible, however, to compare them. In the
most simplistic overview, I would state that:

e The frequentist approach considers the probability of the evidence
under one hypothesis.

¢ The logical approach considers the probability of the evidence under
two competing hypotheses.

e The full Bayesian approach considers it under any number of
hypotheses.

If we turn first to a critique of the frequentist approach, the most damning
criticism is a lack of logical rigor. In the description given above, you will see
that I struggled to define the frequentist approach and its line of logic with
any accuracy. This is not because of laziness but rather that the definition and
line of logic has never been given explicitly, and indeed it may not be possi-
ble to do so.

Consider the probability that is calculated. We calculate Pr(EIH,) under
the frequentist view. If it is small, we support H,.

First note that because Pr(EIH,) is small, this does not mean that Pr(H,|E)
is small. This is called the fallacy of the transposed conditional.”®®

Second note that simply because Pr(EIH) is small does not mean that
Pr(EIH,) is large. What if it was also small? Robertson and Vignaux®> give a
thought-provoking example adapted here slightly: Consider a child abuse
case. Evidence is given that this child rocks and that only 3% of nonabused
children rock. It might be tempting to assume that this child is abused since
the evidence (R: rocking) is unlikely under the hypothesis (H,: This child is
nonabused). But we may be wrong to do so. Imagine that we now hear that
only 3% of abused children rock. This would crucially alter our view of the
evidence. We see that we cannot evaluate evidence by considering its proba-
bility under only one hypothesis. This has been given as a basic principle of
evidence interpretation by Evett and Weir ’and Evett et al.?%!

The logical flaws in the frequentist approach are what have driven many
people to seek alternatives. Fortunately for justice and unfortunately for the
advance of logic in forensic science, this flaw does not manifest itself in most
simple STR cases. This is because the evidence is often certain under the
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alternative H, In such cases, the frequentist approach reports f ' and the log-
ical approach LR = 1/f. Critics of the logical approach understandably ask
what all the fuss is about when all that is done in simple cases is calculate one
divided by the frequency. Other criticisms have been offered. Effectively, these
relate to reasonable criticisms of the difficulty of implementation and less
reasonable criticisms arising largely from a lack of understanding of the
underlying logic.®7-84 This brings us to a critique of the logical approach.

If we start with difficulty of implementation, one reasonable criticism of
the logical approach is the ponderous nature of a statement involving a like-
lihood ratio. Contrast A with B:

A: The frequency of this profile among unrelated males in the population
is less than 1 in a billion.

B: This evidence is more than a billion times more likely if the DNA came
from the suspect than if it came from an unrelated male.

Many people would prefer A over B, and in fact studies have demonstrated that
there are serious problems with understanding statements like B.”>7>> Some
respondents described B-type statements as “patently wrong.” This is not to
imply that there is no prospect of misunderstanding a frequentist statement
because there clearly is, but rather to suggest that the likelihood ratio wording
is more ponderous and will take more skill and explanation to present.

We next move on to the fact that the very advantage of the “logical
approach” is that the likelihood ratio can be placed in the context of a logical
framework. This logical framework requires application of Bayes’ rule and
hence some assessment of priors. However, the legal system of many countries
relies on the “common sense” of jurors and would hesitate to tell jurors how to
think.201618660 Forcing jurors to consider Bayes’s theorem would be unaccept-
able in most legal systems. It is likely that application of common sense will
lead to logical errors, and it has been shown that jurors do not handle proba-
bilistic evidence well. However, there is no reason to believe that these logical
errors would be removed by application of a partially understood logical sys-
tem, which is the most likely outcome of trying to introduce Bayes’ theorem
into court. If we recoil from introducing Bayes’ theorem in court, then the like-
lihood ratio approach forfeits one of its principal advantages although it cer-
tainly retains many others in assisting the thinking of the scientist.

This is not a fatal flaw as likelihood ratios have been presented in pater-
nity evidence since the mid-1900s. In this context, they are typically termed
paternity indices and are the method of choice in paternity work.

Inman and Rudin*® note that: “While we are convinced that these ideas are
both legitimate and useful, they have not been generally embraced by the prac-
tising community of criminalists, nor have they undergone the refinement that
only comes with use over time.” This is fair comment from a U.S. viewpoint.
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The considerations given above are real issues when applying the logical
approach. There are a few more objections that arise largely from a misun-
derstanding of the underlying logic. These would include criticisms of con-
ditioning on I and H, and the arbitrariness of the verbal scale. For an elegant
discussion, see Robertson and Vignaux.®>?

Forensic scientists are raised in a culture that demands that they should
avoid any bias that may arise from ideas seeded into their minds by the pros-
ecution (or anyone else). This has led to the interpretation that they should
consider the evidence in isolation from the background facts or the prosecu-
tion hypothesis. This idea is a misconception or misreading of the use of the
conditioning in the probability assessment. In essence all probabilities are
conditional, and the more relevant the information used in the conditioning,
the more relevant the resulting probability assignment. Failure to consider
relevant background information would be a disservice to the court. An
example given by Dr. Ian Evett considers the question: What is the probabil-
ity that Sarah is over 5 feet 8 inches? We could try to assign this probability,
but our view would change markedly if we were told that Sarah is a giraffe.
Ignoring the background information (Sarah is a giraffe) will lead to a much
poorer assignment of probability. This is certainly not intended to sanction
inappropriate information and conditioning.

The second argument is a verbal trick undertaken in the legal context.
Consider the numerator of the likelihood ratio. This is Pr(EIH,, I), which
can be read as: the probability of the evidence given that the prosecution
hypothesis is correct and given the background information. The (false
legal) argument would be that it is inconsistent with the presumption of
innocence to “assume that the prosecution hypothesis is true.” This again
is a misconception or a misreading of the conditioning. When calculating
the likelihood ratio we are not assuming that the prosecution hypothesis
is true, which indeed would be bias. What we are doing is weighing the
prosecution and defense hypotheses against each other by calculating the
probability of the evidence if these hypotheses were true. This is an
instance where the verbal rendering of Bayes’ rule can be misconstrued
(possibly deliberately) to give a false impression never intended in the log-
ical framework.

I have also heard the following erroneous argument: If H, and H, are
independent, then Pr(H, and H,) is less than Pr(H,) or Pr(H,).

This part of the statement is correct. It is actually correct whether or not
the events are independent. However, sometimes it is extended to “in a trial
in which the case for the prosecution involves many propositions that must
be jointly evaluated the probability of the conjunction of these hypotheses
will typically drop below .5, so it would seem that a probabilistically sophis-
ticated jury would never have cause to convict anyone.””>
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Of course this is an erroneous attack on probability theory per se, not
specifically Bayesian inference. But let us examine the argument. Suppose we
have events:

B: The suspect had intercourse with the victim.
C: The intercourse was not consensual.

Let us assume that there is some evidence, E. We seek the probability
of guilt, G, given the evidence, Pr(GIE). Usually a court would require both
B and C to be very probable to conclude G. It is logically certain that Pr(B
and CIE) is less than or equal to Pr(BIE) and it is also less than or equal to
Pr(CIE). However rather than being logically worrying, this is actually the
correct conclusion. If there is doubt about B or C or collectively doubt
about B and C, then G is not a safe conclusion, and I would be very con-
cerned about any inference system that did not follow these rules.
Robertson and Vignaux®>%©6266 argue eloquently that any method
of inference that does not comply with the laws of probability must be
suspect.

However, I am unsure whether this was the point that was being
advanced. Let us assume that the propositions are something like:

A: The blood on Mr. Simpson’s sock is from Nicole Brown.
B: The blood on the Bundy walk is from Mr. Simpson.

C: LAPD did not plant the blood on the sock.

D: LAPD did not plant the blood on the Bundy walk.

Suppose that guilt is established if A, B, C, and D are true. Indeed then
Pr(A, B, C, D) would be less than the probability of any of the individual
events. However, in my view guilt may also be established if A, B and C are
true but D is false (there are other combinations).

Let us assume that guilt is certain if one of the following combinations of
events held:

True False
A,B,C,D

A,B,C D
A,B,D C
AC B,D
B,D AC

Guilt may also be true under other combinations that are not listed, but
in such a case none of these events, A, B, C, or D, would be evidence for it.
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Let us conservatively assign the probability of guilt under these alternatives
as zero. Then

Pr(G)=Pr(A, B, C, D)+Pr(4, B, C, D)+Pr(A, B, C, D)
+Pr(A, B, C, D)+Pr(A, B, C, D)

The probabilistic argument can be extended rather easily to any number
of events or to include instances where guilt is not certain but probable given
certain events. In fact rather than being problematic, I find the laws of prob-
ability rather useful.

Regarding the arbitrariness of the verbal scale, this point must be con-
ceded except with reference to the point labeled inconclusive. However,
any verbal scale, Bayesian or otherwise, is arbitrary. The problem really
relates to aligning words that are fuzzy and have different meanings to dif-
ferent people to a numerical scale that possesses all the beauty that is asso-
ciated with numbers. This problem will be alleviated in those rare cases
where the logic and numbers are themselves presented and understood in
court.

This brings us to the full Bayesian approach. There is little doubt that this
approach is the most mathematically useful. Most importantly, it can accom-
modate any number of hypotheses, which allows us to phrase the problem in
more realistic ways. It is the underlying basis of Bayes’ nets, which will cer-
tainly play a prominent part in evidence interpretation in the future.
However, it is impossible to separate out the prior probabilities from this for-
mulation, and hence implementation would be possible only in those
unlikely cases where the court was prepared to provide its prior beliefs in a
numerical format. At this time, the approach must be considered as the best
and most useful tool for the scientist to use, but currently not presentable in
court. The unanswered question is whether the compromise approach given
above is an acceptable solution to the courts.

When weighing these approaches against each other, the reader should
also consider that the vast majority of the modern published literature on
evidence interpretation advocates the logical or full Bayesian approaches.
There is very little published literature advocating a frequentist approach,
possibly because the lack of formal rigor in this approach makes publication
difficult.

Throughout this book we will attempt to present the evidence in both a
frequentist and a likelihood ratio method where possible. There are some sit-
uations, such as missing persons’ casework, paternity, and mixtures, where
only the likelihood ratio approach is logically defensible.
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2.6 Evidence Interpretation in Court

2.6.1 The Fallacy of the Transposed Conditional

Initially I had not planned to write anything on the famous fallacies and
especially the fallacy of the transposed conditional also known as the prose-
cutor’s fallacy. What was left to say after so many publications on the sub-
ject?7,35,58,97,148,20l,239,261,267,288,291,334,399,506,618,637,638,654,655,658,659,660,661,686,769,841
However, I discovered in 2003 that there was still much uncertainty about the
subject and indeed that groups of people with important responsibilities in
the criminal justice system had never heard of the issue.

What can I add to a debate that is already well written about? I will again
explain it here for those readers for whom the fallacies are new. I will also add
a section that attempts to assess the mathematical consequences of this error
and gives some tips on how to avoid making a transposition. Many of these
tips come from my experiences working with colleagues at the Interpretation
Research Group of the FSS in the U.K.: Champod, McCrossan, Jackson, Pope,
Foreman, and most particularly Ian Evett. Few forensic caseworkers have
written on the subject, although most have faced it.

The fallacy of the transposed conditional is not peculiar to the logical
approach. It can occur with a frequentist approach as well. Opinion is divided as
to whether the fallacy is more or less likely when using the logical approach. In
essence, it comes from confusing the probability of the evidence given a specific
hypothesis with the probability of the hypothesis itself. In the terms given above,
this would be confusing Pr(EIH,) with Pr(H,), Pr(H,|E), or Pr(H, |E, I).

Following a publication by Evett,>® we introduce the subject by asking
“What is the probability of having four legs IF you are an elephant?” Let us
write this as Pr(4/E) and we assign it a high value, say, 0.999.

Next we consider “what is the probability of being an elephant IF you have
four legs?” Write this as Pr(El4) and note that it is a very different probabil-
ity and not likely to be equal to 0.999. This example seems very easy to under-
stand both verbally and in the symbolic language of probability. But the
fallacy seems to be quite tricky to avoid in court.

Imagine that we have testified in court along the lines of one of the state-
ments given below:

e The probability of obtaining this profile from an unrelated male
member of the New Zealand population is 1 in 3 billion.

e The frequency of this profile among members of the population of
New Zealand unrelated to Mr. Smith is 1 in 3 billion.

e This profile is 3 billion times more likely if it came from Mr. Smith
than if it came from an unrelated male member of the New Zealand
population.
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The first two are frequentist statements and the last is a statement of the
likelihood ratio. Let us work with the first. We are quite likely in court to face
a question along the lines: “In lay terms do you mean that the probability that
this blood came from someone else is 1 in 3 billion?”

This is the fallacy of the transposed conditional. It has led to appeals and
retrials. It appears to be very natural to make this transposition however
incorrect. Every newspaper report of a trial that I have read is transposed and
I suspect that many jurors and indeed judges make it.

How can a scientist who is testifying avoid this error? The answer involves
training and thinking on one’s feet. But I report here Stella’s Spotting Trick
(named after Stella McCrossan) and Ian’s Coping Trick (named after Ian
Evett).

Stella’s spotting trick: The key that Stella taught was to ask oneself whether
the statement given is a question about the evidence or hypothesis.
Probabilistic statements about the hypothesis will be transpositions. Those
about the evidence are likely to be correct. The moment that you notice the
statement does NOT contain an IF or a GIVEN you should be cautious.
Consider the sentence given above: “In lay terms do you mean that the prob-
ability that this blood came from someone else is 1 in a billion?” Is this a
statement about a proposition or the evidence? The proposition here is that
the blood came from someone else. And indeed the statement is a question
about the probability of the proposition. Hence it is a transposition.

Ian’s coping trick: The essence of this trick is to identify those statements
that you are confident are correct and those that you are confident are incor-
rect. This is best done by memory. There will be a few standard statements
that you know to be correct and a few transpositions that you know to be
incorrect. Memorize these. Then there is the huge range of statements in
between. These may be correct or incorrect. The prosecutor may have trans-
posed in his/her head and is trying to get you to say what he/she thinks is a
more simple statement. That is his/her fault not yours (if you are a forensic
scientist reading this). He/she should have read and studied more. In this cir-
cumstance I suggest you say something like:

I have been taught to be very careful with probabilistic statements.
Subtle misstatements have led to appeals in the past. I am unsure
whether your phrasing is correct or incorrect. However I can give
some statements that I know are correct.

These will include the numerical statement of type 1, 2, or 3 given above or
the verbal statements given in Table 2.3.

Of course, care by the scientist is no guarantee that the jury, judge, or
press will not make the transposition themselves. For instance, Bruce Weir
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had gone to great trouble with the wording in the report for his testimony in
the O.J. Simpson case. Weir was careful and correct in his verbal testimony as
well. As an example, he reported that there was a 1 in 1400 chance that the
profile on the Bronco center console would have this DNA profile IF it had
come from two people other than Mr. Simpson and Mr. Goldman. This was
transposed by Linda Deutsh of the Associated Press (June 26, 1995) to “a
chance of 1 in 1400 that any two people in the population could be respon-
sible for such a stain.” To quote Professor Weir: “It is incumbent on both the
prosecution and defense to explain the meaning of a conditional probability
of a DNA profile.”8

I found another transposition in an interesting place. Horgan*!> was warn-
ing about errors in the Simpson case and went on to commit the prosecutor’s
fallacy while explaining the error of the defender’s fallacy! “Given odds of 1 in
100,000 that a blood sample came from someone other than Simpson, a
lawyer could point out that Los Angeles contains 10 million people and there-
fore 100 other potential suspects. That argument is obviously specious...” All
the students in the 2003 (University of Auckland, New Zealand) Forensic
Science class spotted the error when given it as an assignment!

Mathematical consequences of transposition: The transposition is of no
consequence if the prior odds are in fact 1. This is because the answer arrived
at by transposition and the “correct” answers are the same in this circum-
stance. The issue only occurs if the prior odds differ from 1. If the odds are
greater than 1, then the transposition is conservative. Table 2.4 gives some
posterior probabilities for differing prior probabilities. The table shows, as is
known, that for a high likelihood ratio (a low match probability) the practi-
cal consequences are negligible. The practical consequences, if they occur at
all, are for lower likelihood ratios and where there is little “other” evidence
against the defendant or where there is evidence for the defendant.”>%%

2.6.2 Establishing the Propositions

The concept of a hierarchy of propositions was first introduced by Aitken®
and greatly developed by Cook et al.**> and Evett et al.?”? Propositions are clas-
sified into three levels: offense, activity, or source. The top of the hierarchy is
taken to be the offense level, where the issue is one of guilt or innocence. An
example of this could be “the suspect raped the victim.” It is often held that
this level of proposition is for the courts to consider and above the level at
which a forensic scientist would usually operate. The next level is taken to be
the activity level. An example would be “the suspect had intercourse with the
victim.” This differs from the offense level in that it talks about an activity
(intercourse) without making a comment about its intent (rape) that would
need to consider other matters such as consent. The lowest level is taken to be
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Table 2.4 Consequences of Transposing Assuming that DNA Evidence Gives a
Match with Match Probability 1 in a Billion and My Subjective View of This

Prior Odds Meaning Posterior Posterior My Subjective
Probability with  Probability without View
Transposition Transposition

4,000,000:1 The defendant is 0.999999999 0.996015936 No practical

against as likely as anyone consequence

else in New Zealand
to be the donor

4000:1 against The defendant is 0.999999999 0.999996000 No practical
more likely than a consequence
random person in
New Zealand to be
the donor

1:1 The suspect is vastly 0.999999999 0.999999999 No practical
more likely than a consequence
random person in
New Zealand to be
the donor

Any odds on  The suspect is vastly No practical
more likely than a consequence
random person in
New Zealand
to be the donor

the source level. At this level, we consider questions of the type “did this
semen come from the suspect?” Considerations at this level do not directly
relate to activity, in this example intercourse, which would involve issues such
as from whence the sample was taken, drainage, and contamination.

It has become necessary to add another level below the source level. This
has been termed sublevel 1. This has arisen because it is not always certain
from what body fluid the DNA may have come. For instance, when consider-
ing the source level proposition “the semen came from the suspect,” the sub-
level 1 proposition would be “the DNA came from the suspect.”

The further down the hierarchy the scientist operates, the more the
responsibility for interpreting the evidence is transferred to the court.

It would be reasonable to leave the interpretation of such matters to the
court if that were the best body to undertake this interpretation. However, if
the matter requires expert knowledge regarding such matters as transfer and
persistence, it would seem wise for the scientist to attempt interpretation at a
higher level in the hierarchy, or at least to warn and equip the court to make
such an attempt. The evidence must eventually be interpreted at the offense
level by the court. If the evidence cannot be put in the context of the offense,
then it is, in itself, irrelevant to the court.
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Let us assume that the scientist can make a decision as to which level in
the hierarchy the propositions should be formulated. The next step is to
attempt to formulate one hypothesis for the prosecution and one for the
defense. The defense are under no obligation to provide a hypothesis and,

in fact, the defendant may have given a “no comment” interview. McCrossan
et al. (in draft) ask:

Is it the role of the forensic scientist to formulate the defense proposi-
tion when “no comment” is given?

If the scientist does formulate a proposition on behalf of the defense,
how should the implications of this action be highlighted/exposed in
the statement?

One issue here is the consideration of the obvious alternative:

H,: The suspect had nothing to do with the ...(activity associated with
the crime)
tends to maximize the LR and hence has a tendency to maximize the appar-
ent weight of the evidence.

There is an issue as to whether the defense must choose only one propo-
sition or whether they can have many. In fact, it is worthwhile considering
what happens if the prosecution and defense hypotheses are not exhaustive.
Let us assume that there could be three hypotheses H,, H,, and H,. H, aligns
with the prosecution view of the case, H, is the hypothesis chosen for the
defense, and H, is any hypothesis that has been ignored in the analysis but is
also consistent with innocence.

Set hypothetically:
Hypothesis H; Pr(EIH))
H, 0.1
H, 0.000001
H, 1

Let us assume that we proceed with the “logical approach” and calculate

_ Pr(EIH,) 0.1
~ Pr(EIH,)  0.000001

=100,000

which would be described as very strong support for H,. Is this acceptable?
Well, the answer is that it is only acceptable if the prior probability for Hj is
vanishingly small and if the three hypotheses exhaust all possible explana-
tions. The approach of McCrossan et al. to hypothesis formation suggests
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that all propositions for which there is a reasonable prior probability should
be considered, either directly by the scientist or after the defense have made
the scientist aware of such a possibility. Under these circumstances, there
should be no risk of the likelihood ratio being misleading. The future may
entertain a more comprehensive solution based on the general form of Bayes’
theorem.

2.6.3 Errors in Analysis'

There have been justified complaints that most discussions, including our
own, start from the premise that the typing has been completed in an error-
free way.>7-201,:501,509,583,618,665,765,767 Qther than this brief section and a section in
Chapter 8 on low copy number analysis, we will also assume that the analy-
sis is error free.

However, there is clear evidence that errors do occur. For a brief review,
see Thompson et al.””® and the following correspondence.!”*2%%771 The rate of
such errors is probably low and quality assurance goes some way to reassur-
ing the court and public that the error rate is not high. But it must be admit-
ted that a good estimate of the rate is not available. Nor could one rate be
applied fairly to different cases, different laboratories, or even different oper-
ators. There have been calls for monitoring of this rate (reviewed again in
Thompson et al.; see also Chakraborty'®). The error rate would be a very
hard parameter to estimate and there are clear practical difficulties. This may
have forestalled any large-scale effort to estimate this rate. A more likely
explanation is the quite legitimate wish of forensic scientists that whenever
an error is found, they do not want to count it; rather, they want to eliminate
the possibility of its future reoccurrence. However, we endorse efforts to
investigate the error rate. One reason for this is that all forensic scientists we
know are honest, dedicated persons and any investigation such as this will be
used primarily to improve methods.

Despite these barriers, there are modern collaborative exercises that take
a very responsible approach to assessing the rate, the source of errors and that
make suggestions for their reduction. Parson et al.®”” give the outcome of a
very large mitochondrial DNA collaborative exercise. They report 16 errors.
Ten of these errors were clerical, two were sample “mix-ups,” one was
assigned as contamination, and the remainder were assigned as arising from
interpretational issues.

Errors can be of several types. Clearly, false exclusions and false inclusions
have differing consequences. The most serious errors would be sample swap-
ping or sample contamination. However, the most common “error” of which

IThis section on error is provided by Christopher Triggs and John Buckleton.
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we are aware is the assumption that a heterozygote is a homozygote because
an allele is undetected. It is difficult to see how there could be too serious a
consequence for this.

The presence of completely random contamination, from, say,
plasticware, in a normal corroborative case is unlikely to lead to a false iden-
tification implicating the suspect. This type of contamination may
be identified by the negative controls if the contamination is repeated.
The same contamination in a database search case, if missed by the controls,
could have far more serious consequences, for example implicating a worker
in a plastic factory who is on the database. The risks of contamination from
mortuary surfaces,*® from scene officers,®®* and the presence of third-party
DNA after simulated strangulation®! have been discussed.

If a scene sample is contaminated with suspect DNA, then the suspect is
at great risk. Forensic scientists are aware of these risks and treat them very
seriously, but complacency should be rigorously opposed.

Other risks are run whenever subjective judgement is involved. This is
slowly diminishing in forensic DNA work with the advent of automation but
still remains in some areas. Risinger et al.**® and Saks et al.®® give a very well
argued examination of the risks of observer effects in forensic science.
Observer effects are errors in observation, recording, or decision making that
are affected by the state of mind of even the most honest and diligent
observer. Observers have been making this warning for some time:

When you employ the microscope, shake off all prejudice, nor har-
bour any favourite opinions; for, if you do, ’tis not unlikely fancy
will betray you into error, and make you see what you wish to see.*

A famous example is the count of human chromosomes. Early visualiza-
tion techniques were rudimentary and counting was very difficult. In 1912,
Hans von Winiwater reported 47 chromosomes in men and 48 in women
(the Y chromosome is very small). In 1923, Theophilus Painter confirmed the
count of 48 after months of indecision. This was despite his clearest views
only showing 46. Despite improvements in the preparation and dyeing of
chromosomes in the intervening 30 years, it was not until 1956 that Levan
gave the correct count of 46. Levan was a plant biologist and did not “know”
that humans had 48 chromosomes.”*

Men generally believe quite freely that which they want to be true.

Thompson et al. argue, correctly, that such effects are widely considered
in other fields of science, and protocols to deal with them are in place.64%685770
These include such well-known experimental methods as the double blind
testing mechanism in much medical research. Why not, then, in forensic sci-
ence? We recommend the Risinger et al. and Saks et al. discussion as neces-
sary reading for all forensic scientists and recommend that it be included in
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their basic training as well as the relevant sections on bias, overinterpretation,
and “how much should the analyst know” in Inman and Rudin**’ (for addi-
tional comments, see also USA Today?! and King*®*).

Other possibilities for error include deliberate or accidental tampering
from external persons. The FSS reported 156 security breaches in the year
ending June 2002, a 37% decrease on the previous year. The report outlined
two of these as examples. They involved theft of property such as computers
and credit cards rather then evidence tampering.”®

Without a good estimate of the error rate, we are left with speculation.
The error rate is clearly greater than zero. No forensic scientists would claim
that it is zero. This is obviously a legitimate avenue for defense examination,
and we would recommend that all prosecution witnesses should treat it as a
legitimate form of examination, and should not react in a hostile or defensive
manner.

We now come to the issue of combining the error rate and the match
probability. This has been suggested (see again Thompson et al.””® for a
review) but never, to our knowledge, applied. If we assume that both the
error rate and the match probability are known and constant, then the math-
ematics are trivial. Below we reproduce the common form in which this is
given, but either the full Bayesian approach (Equation (2.4)) or the compro-
mise approach (Equation (2.5)) could handle this easily by introducing a
subproposition of contamination. Taroni et al.”>” discuss the problem using
Bayes’ nets and demonstrate this point.

We have two profiles of interest: G, the true type of the profile recovered
at the crime scene; and G,, that of the suspect. We will assume that the pro-
file G, is always determined without error.

As usual, we have two hypotheses:

H,: The suspect is the donor of the DNA in the crime sample.
H ;: The suspect is not the donor of the DNA.

We further consider the event, 3, that the profile produced in the electro-
pherogram is not a true representation of the type of the DNA in the crime
sample; that is, an error in typing has occurred.

Its complementary event, 3, is that the profile produced in the electro-
pherogram is a true representation of the type of DNA in the crime sample.
We follow Thompson et al.””* and assume that 3 and 3 are not conditional on
Hp or H,. If we write the error rate as e, then we can take

Pr(3)=e and Pr(3)=(1—e¢)
Pr(EIIHp) =Pr(3IH,)=Pr(3)=e

and Pr(31H,)=Pr(3IH,)=Pr(I)=1—e
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We have the four probabilities:
Pr(GIG,3,H,) 1

PI‘(GC|G5,E|,HP) The probability of a false positive match

given that an error has occurred, k
Pr(G, GSE,H ) the match probability, f

Pr(GIG,3,H;)  The probability of a false positive match
given that an error has occurred, k
The likelihood ratio becomes

Pr(G,G,3,H,)Pr(3 H,)+Pr(G,G,3,H,)Pr(31H,)

LR= Pr(G|G,3,H,)Pr(JIH,)+Pr(G|G,,3,H,)Pr(I1 H,)

Thompson et al.,””% Weir,** and Buckleton and Triggs (this text) give
three different formulae for this likelihood ratio:

LR
) 1—(1—k)e
Buckleton and Triggs _—
f(1—e)+ke
1
Thompson et al. —_—
Frke(1—f)
1—ke

Weir _—
f(1—2ke)+ke

Thompson et al. explicitly make the approximation that, in their nota-
tion, Pr[RIM] = 1, a fuller treatment could take this probability as 1 — e + ke.
The formula for the Thompson et al. likelihood ratio would then agree with
the Buckleton and Triggs formula.

We see that the Thompson et al. LR will always exceed the Buckleton and
Triggs LR and for fixed values of the match probability, f, and error rate, e.
The value of the false positive rate k that maximizes this difference depends
on the relative magnitude of f and e. For those cases where the error rate e is
much greater than the match probability f, the difference is maximized for
values of k close to, but greater than 0. For example, if f= 10~ and e = 10™*
the maximum difference between the two values of the likelihood ratio is
0.00994% and occurs when the false positive rate k = 0.03152.

While accepting that Thompson et al. have made an explicit approxima-
tion, it is instructive to look at the value of the likelihood ratio under certain
limiting boundary conditions. We note the peculiar results for Thompson
et al. and Weir in the fifth column of Table 2.5 when there is an unrealistically
high error rate, e.
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Table 2.5 Comparison of Approaches to Incorporate Error Rate by Buckleton and
Triggs (BT), Thompson et al. (TTA), and Weir (W)

LR Profile  No error, Error False positive  False positive

common e—0 certain, probability probability,

f—1 e—1 k=0 k=1
1=0-Kke 1 X 1 .
f(1—e)+ke f f fll—e)+e
TTA — 1 L 1 1 1
f+ke(1—f) f fl1—k)+k f fl1—e)+e
1—ke X 1 1—k 1 l—e

f(1—2ke)+ke f fa—2k)+k  f f(1—2e)+e

To make any exploration of the likelihood ratio (1—(1—k)e)/(f(1—e)+ ke),
we need to postulate an error rate. If this is larger than the match probabil-
ity, then it will completely dominate the equation and hence LR = 1 / ke

This shows that the error rate and the match probability can be mathe-
matically combined. But should they be? The arguments for and against have
occurred in the literature (reviewed in Thompson et al. and indeed in court,
e.g., Regina v Galli*7). Those making the “for” argument would comment,
correctly, that the jury may not be able to weigh the respective contributions
of error rate and match probability. Those supporting the “against” argument
would argue that an error rate is not known and hence the equation is not
implementable. The error rate relates to many things. The arguments given
above are phrased largely in the context of a single reference sample and a
single stain sample. In many cases, there are multiple samples collected and
perhaps typed at differing times. All of this would affect the probability of an
error and that subset of errors that represent false inclusions. Lynch®?® makes
the interesting point that eyewitness evidence is known to be fallible. Juries
have been asked to evaluate this “eyewitness” risk on a case-by-case basis for
a long time and no explicit combination is made of the error rate with the
weight of evidence. Of course, eyewitness evidence is not presented numeri-
cally at all and this may be a fundamental difference.”*

Our view is that the possibility of error should be examined by the judge
and jury on a per case basis and is always a legitimate defense explanation for
the DNA result. The two possible hypotheses that are consistent with “inno-
cence” should be explored in court. This argument however does not answer
the complaint that the jury may be unable to weigh the two hypotheses con-
sistent with innocence (one numerical and the other not) and may give
undue weight to the match probability.
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Let us assume that we intend to develop a case-specific estimate of the
probability of an error as Thompson et al. suggest, following Thompson:”®®

. it makes little sense to present a single number derived from
proficiency tests as THE error rate in every case, ... I suggest that
it be evaluated case-by-case according to the adequacy of its sci-
entific foundation and its helpfulness to the jury.

Even assuming that this case-specific error rate is accurately estimated,
there still is an objection to the combination of the probability of an error and
that of a coincidental match. The likelihood ratio is uncertain in all cases
because it is based on estimates and models. It is normal to represent this type
of uncertainty as a probability distribution. If we add the possibility of error,
then this distribution has a point mass at 1 and a continuous distribution
around high values for the LR. In Figure 2.1 we give a hypothetical distribution
of this sort. The Thompson et al. equation suggests we report the LR signified
by the arrow. This value is in the void between the two modes, in a region where
there is no density, and may be viewed by many as a very poor summary of the
distribution. However, the large mode at the right of the figure, if reported
without mention of error, could also be viewed as an equally poor summary.

The innocent man who has been implicated by an error or indeed by a
coincidental match is at great risk of a false conviction and it is generally
accepted that a false conviction is the worst outcome that can occur in the
judicial system. The Thompson et al. formula, if applied, may very occasion-
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Figure 2.1 Hypothetical distribution for LR. The small mode at 1 represents the
LR if an error has occurred. The larger mode centered at about 1,000,000,000 rep-
resents the LR if no error has occurred. The Thompson et al. equation would sug-
gest that we report a value somewhere in the area signified by the arrow.
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ally help such a man. In effect, the formula reduces the likelihood ratio and
it may do so to the point where a jury will not convict on the DNA evidence
alone. The reality, in our view, is that most often the wrongly implicated man
will almost have to prove his innocence by establishing that an error HAS
happened (it is difficult to see how unless alternative uncontaminated sam-
ples are available) or to produce very strong alibi evidence. Unless the
wrongly accused man can produce considerable evidence in his favor, it is
possible or even likely that he will be convicted. However, there is very little
that statistics can do to help him. The reduction of the likelihood ratio affects
both the correctly accused and the wrongly accused equally. We suspect that
it is of some, but probably inadequate, help to the wrongly accused man and
a false benefit to the correctly accused. The answer lies, in our mind, in a
rational examination of errors and the constant search to eliminate them.
The forensic community would almost universally agree with this.

Findlay and Grix**® make the reasonable point that the very respect given to
DNA evidence by juries places an obligation on scientists to maintain the high-
est standards and to honestly explain the limitations of the science in court.

It is appropriate to end this section with an appeal for higher standards of
the already considerable impartiality in forensic laboratories. We recommend
that all forensic scientists read the account by the father of the victim of a mis-
carriage caused by wrongful fingerprint evidence®*! or the call for standards by
Forrest in his review of the Sally Clark case.’'® Most forensic scientists aspire
to a position of impartiality but unconscious effects must be constantly
opposed. In our view, language is one tool that can be utilized. The words “sus-
pect” and “offender” have specific meanings but are often used interchange-
ably. In our view, both should be avoided. Both have too many emotional
associations: Would you buy a “suspect” car? The preferable term is Mr. or Ms.
We also object to the placing of the “suspect’s” name in capitals as required by
the procedures in some laboratories such as our own. Why is it “Detective
Smith” but the suspect is termed “Mr. JONES?” All emotive terms or terms
with unnecessary implications should be avoided.

The matter is one of culture. Everyone in a laboratory needs to cooperate
in developing the culture of impartiality. People lose their life or liberty based
on our testimony and this is a considerable responsibility.

2.6.4 The Absence of Evidence

Special attention is given in this section to interpreting the “absence of evi-
dence.” This is largely because of a widespread misunderstanding of the subject
despite excellent writing on the matter (see, for instance, Inman and Rudin*?).
This misunderstanding has been fostered by the clever but false saying:

The absence of evidence is not evidence of absence.
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We assume a situation where some evidence has been searched for but not
found. Call this event E. Bayes, theorem quickly gives us a correct way to
interpret this evidence.

Pr(EIH,)
[R=———=——
Pr(EIH,)

The issue then is simply one of estimating whether the finding of no evi-
dence was more or less likely under H, than H,. Unless some very special cir-
cumstances pertain, then the finding of no evidence will be more probable
under H,, and hence the absence of evidence supports H,. Often, in real case-
work, this is only weak support for the hypothesis, H,,.

The special circumstances that could pertain would be those that made
no evidence very likely under H, but the finding of evidence likely under
H,. Situations involving such circumstances take a little bit of thinking to
suggest.

This (correct) mathematical argument is not accepted by many forensic
scientists and lawyers, but is universally accepted by interpretation special-
ists. The counter argument is that one can often think of an explanation for
the absence of evidence. For instance, let us imagine that a fight has
occurred where one person was stabbed and bled extensively. A suspect is
found and no blood is found on his clothing. How is this to be interpreted?
Many forensic scientists will observe that the suspect may have changed
clothes, washed his clothes, or contact may have been slight in the first place.
These observations are correct, but are more along the lines of explanations
of the (lack of) evidence. It is better to look at this problem from the point
of view of propositions. What was the probability that the suspect would
have blood on him if he were the offender? Let us imagine that we do not
know whether or not the suspect has changed or washed his clothes. Further,
let us imagine that we have some information about the fight, but that this
is inexact or unreliable. From this we must accept that it is uncertain
whether we expect to find blood on the clothing or not, even if the suspect
is, indeed, the offender. However, we must feel that this probability is not
zero. There must have been some probability that we would have found
blood on the clothing; why else were we searching for it? Only if this proba-
bility is essentially zero is the evidence inconclusive. Otherwise, if this prob-
ability is in any real way larger than zero, it will be larger than the probability
if the suspect is not the offender, and hence the evidence will support the
defense hypothesis.

Clearly this area is not well understood, nor is there widespread agree-
ment. Further discussion in the literature would be most welcome.
Research on transfer and persistence of evidence is also seen to be of great
importance.
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2.7 Summary

This chapter has reviewed options for a framework for interpretation.
Subsequent chapters will focus on details of DNA interpretation. It is, how-
ever, very important to understand this fundamental structure for interpre-
tation before proceeding to detailed analysis.

Additional reading: Inman and Rudin*’ give an elegant discussion of
many aspects of evidence interpretation. This book would serve very well as
part of all training courses in forensic science.

Robertson and Vignaux®!%% consider both the legal concerns regarding
this type of analysis, and more specifically the situation where the evidence
itself is both multiple and uncertain. This is a level of complexity above and
beyond anything considered in this chapter. They also introduce the useful
concept of Bayesian networks that are being extensively researched as a
method for forensic interpretation.
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3.1 Introduction

This chapter will discuss those population genetic models used for assign-
ing a profile or preferably a match probability. Three models — the prod-
uct rule, the subpopulation correction, and an admixture model — will be
discussed.

The interpretation of DNA evidence often requires the assignment of a
probability to the chance of observing a second copy of a particular geno-
type in a certain population. Implicit in this apparently simple statement,
there are many questions about what this probability should be, how it
should be assessed, and upon what other information, if any, should it be
conditioned.

In common usage, the word “frequency” is often substituted for “prob-
ability.” Hence a genotype probability will become a genotype frequency.
This is a slight loss in accuracy in the use of nomenclature, but it allows us
to slip into common usage. A frequency really should have a numerator
and a denominator, e.g. 3 in 25, where we have counted 3 particular out-
comes out of the 25 possible. Since most genotype probabilities are very
small, they are not estimated by direct counting. Hence, strictly, they are
not frequencies.

The frequentist approach to interpreting evidence will report this geno-

type frequency, f.
Under the logical approach for these hypotheses:

H,: The DNA came from the suspect, and
H,;: The DNA came from a male not related to the suspect,
the likelihood ratio

1 1

The standard response to our inability to directly assess these frequencies
has been to attempt to model them using a population genetic model.
However, certain cautions should be considered with the concept of a true
genotype probability. First among these cautions is to consider what would
represent a “fair and reasonable” assignment of probability. It would be
tempting to suggest that a fair and reasonable assignment would be one that
was near the true value. If we consider the values of probabilities that will be
generated by 13-locus CODIS or 10-locus SGM™ multiplexes, we realize that
they are very small. It would be very difficult, if not impossible, for us to
determine their true values. In fact, this would typically require the genetic
typing of the whole population of the world, and the values would change
constantly as individuals were born or died.
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Is there a requirement for the fair and reasonable probability assignment
to equal the true value? Interestingly, the answer is no. If we consider the pro-
file probabilities of 13-locus CODIS profiles (or 10-locus SGM™ profiles), it
is certain that most genotypes do not exist. There are more possible geno-
types (about 10%) at these 13 loci than there are people. Therefore, only about
1 profile in 10 can exist.®*? True profile frequencies will take the values

n
6,000,000,000

where n=0, 1, 2... and the population of the world at a given instant is taken
for illustration as 6 billion.

Most genotypes will thus have true frequencies of 0. These are of no inter-
est to us because they do not exist and will not occur in casework. It is the
remaining ones that are of interest. For those that do exist we know that the
suspect has this genotype, but we must remember that we are interested
in the probability of obtaining this genotype from someone other than the
suspect.

All our probability assignments will differ from the true frequencies. Even
if we move to the superior conditional probabilities, these will typically be
small numbers whereas the actual frequencies are 0, 1, 2, or more in 6 billion.
We distinguish between the actual frequency of a genotype and its probabil-
ity. The frequency of a genotype will be a probability only if we could conceive
of carrying out an experiment of randomly sampling, with replacement, indi-
viduals chosen from the population of the world at a given instant.

The assignment of a probability to a multilocus genotype is an unusual
activity. Few other fields of science require such a probability assignment.
The field of genetics is well established, but largely concerns itself with things
such as allele probabilities or genotype probabilities at one or a very few loci.
Therefore, the attempt by forensic scientists to assign probabilities to multi-
locus genotypes is a relatively novel experiment peculiar to forensic science.
It may be based on genetics and statistics, but it is a new extension of previ-
ous methods, broadly speaking attempting to go where no science has gone
before.

These probabilities cannot be directly measured by any mechanism that we
can envisage. lan Evett has discussed his view of whether these probabilities
can be considered estimates at all:

Probability is a personal statement of uncertainty. In the DNA
context, I take some numbers (that are estimates of things like
allele proportions and Fg;’s) and stick them into a formula. Out
comes a number and on the basis of that I assign... a probability.
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That is a personal, subjective probability, which incorporates a set
of beliefs with regard to the reliability/robustness of the underlying
model. So, whenever you talk about estimating a probability, I
would talk about assigning a probability.

Thus I would not say, as you do... that the probabilities are
“untestable estimates.” I would ask — “is it rational for me to
assign such a small match probability?”

We cannot directly compare our probability assignments to true values.
We may be able to test the process by which these probabilities are assigned,
but in casework we will be unable to test the final probability assignment.
This makes it most important that these inherently untestable probabilities
are assigned by the most robust methods.

In this chapter, the options currently in use to assign these genotype
probabilities are discussed. In addition, we consider a third option that has
been suggested by Bonnie Law. This model was designed to cope with the
phenomenon of admixture.

3.2 Product Rule

This is the simplest of the available population genetic models. It is deter-
ministic as opposed to stochastic.?!! This means that it assumes that the pop-
ulations are large enough that random effects can be ignored. It was the first
model implemented in forensic DNA analysis, having previously been used
for a number of years in blood group analysis. It is based on the
Hardy—Weinberg law and the concept of linkage equilibrium.?%>8% Both these
concepts have been extensively discussed. However, it is worthwhile making a
few comments that are specifically relevant to forensic science.

3.2.1 Hardy-Weinberg Law

This concept was first published in 1908,°>#2¢ although simplified versions
had been published previously.!*6!1878 This thinking developed naturally
following the rediscovery of Mendel’s work.>*® It concerns the relationship
between allele probabilities and genotype probabilities at one locus. In
essence, the Hardy—Weinberg law is a statement of independence between
alleles at one locus.

The Hardy—Weinberg law states that the single-locus genotype frequency
may be assigned as the product of, allele probabilities

2 —A
Pi — Piv Ail A12 (31)
2pipis ApFAp
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for alleles A;, A;, at locus 7. This will be familiar to most in the form

P> homozygotes
2pq heterozygotes

This law will be exactly true in all generations after the first if a number of
assumptions are met. It may also be true or approximately true under some cir-
cumstances if these assumptions are not met. The fact that the equilibrium
genotype frequencies are obtained after one generation of random mating
means that we do not need to enquire into the deep history of a population to
describe the genotype frequencies at one locus?!! if these requirements are met.
It also means that any perturbation from equilibrium is likely to be rectified
rapidly. This is not exactly true for populations with overlapping generations,
such as humans, where equilibrium is achieved asymptotically as the parental
population dies. A few other exceptions to the rule that equilibrium is
achieved in one generation are given in standard population genetic texts
such as Crow and Kimura.?!!

The assumptions that make the Hardy—Weinberg law true are that the
population is infinite, randomly mating, and there are no disturbing forces.
Inherent in this law is the assumption of independence between genotypes:
specifically, that the knowledge of the genotype of one member of a mating
pair gives no information about the genotype of the other. Consider what
would happen if the population was finite, as indeed all populations must be.
The knowledge of the genotype of one member of a mating pair slightly
reduces the probabilities for these alleles in the other member, since one or
two copies of these alleles have been “used up.” This effect is very minor
indeed unless the population is quite small or the locus extremely polymor-
phic. Most human populations may be numbered in tens of thousands or
more individuals.

The assumption of random mating assumes that the method of selection
of mates does not induce dependence between genotypes. This is often trans-
lated comically and falsely along the lines “I did not ask my spouse his/her
genotype before I proposed” When the assumption of random mating is
questioned, no one is suggesting that people who are genotype ab deliberately
go and seek partners who are type cd. What is suggested is that geography,
religion, or some other socioeconomic factors induce dependence. This will
be discussed later, but the most obvious potential factor is that the popula-
tion is, or more importantly has been in the past, divided into groups that
breed more within themselves than with other groups.

A consequence of the assumption of an infinite population and random
mating is that the allele proportions are expected to remain constant from
one generation to the next. If the population is infinite, randomly mating,
and the allele proportions do not change, then the Hardy—Weinberg law will
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hold in all generations after the first. This is true whether or not the
Hardy—Weinberg law holds in the first generation, the parental one. It there-
fore describes an equilibrium situation that is maintained indefinitely after
the first generation. Note that it does take one generation of random mating
to achieve this state. Such a stable state would describe an equilibrium situa-
tion and hence this state is often called Hardy—Weinberg equilibrium

There are, however, a number of factors that can change allele propor-
tions. These are referred to as disturbing forces. The term is derived from the
fact that they change genotype proportions from those postulated by HWE.
These factors include selection, migration, and mutation. There are compre-
hensive texts available describing the effect of these forces on both allele pro-
portions and on HWE, and they will not be discussed at length here. In this
chapter we will simply consider how close the Hardy—Weinberg assumptions
are to being fulfilled, and what the probable consequences of any failure of
these assumptions may be. Remember a model may be useful even though it
is not an exact description of the real world.

3.2.2 Linkage and Linkage Equilibrium

HWE describes a state of independence between alleles at one locus. Linkage
equilibrium describes a state of independence between alleles at different
loci.

The same set of assumptions that gives rise to HWE plus an additional
requirement that an infinite number of generations has elapsed also lead to
linkage equilibrium. This result was generalized to three loci by Geiringer,*!
and more generally to any number of loci by Bennett.>

However, recall that HWE is achieved in one generation of random mat-
ing. Linkage equilibrium is not achieved as quickly. Strictly the state of equi-
librium is approached asymptotically, but is not achieved until an infinite
number of generations have elapsed. However, the distance from equilibrium
is halved with every generation of random mating for unlinked loci or by a
factor of 1—r, where r is the recombination fraction, for linked loci. Popu-
lation subdivision slows this process.*?!

It is worthwhile discussing the difference between linkage equilibrium
and linkage, as there is an element of confusion about this subject among
forensic scientists. Linkage is a genetic phenomenon and describes the situa-
tion where one of Mendel’s laws breaks down. It was discovered in 1911 by
Morgan®>>3% working on Drosophila. The discovery was a by-product of his
team’s studies of inheritance that had largely led to the confirmation of the
chromosomal theory of inheritance. The first paper on gene mapping
appeared in 1913.74
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Specifically, the phenomenon of linkage describes when alleles are not
passed independently to the next generation. The physical reason for this
phenomenon had been identified by 1911 and related to the nonindependent
segregation of alleles that are sufficiently close on the same chromosome.>’

The state of linkage can be described by the recombination fraction or by the
distance between two loci. Typical data for distance may be expressed in
centiMorgans (cM) or in physical distance in bases. In humans, 1cM is
assumed to equal approximately 1000 kb.

The physical distance may be converted to a recombination fraction by
standard formulae.* Recombination fractions tend to be different for each
sex. Distances may be given separately or sex-averaged.

Linkage disequilibrium is a state describing the relationship between alleles
at different loci. It is worthwhile pointing out that linkage disequilibrium can
be caused by linkage or by other population genetic effects such as population
subdivision. This will be demonstrated later.

Therefore, it is incorrect to advance the following line of logic.

A: Theloci are on different chromosomes or well separated on the same
chromosome.
Which implies that
B: There is no linkage.
Which implies that
C: There is no linkage disequilibrium.

Modern genetic understanding would state that the progression from
statement A to statement B is logical and grounded on experimental obser-
vation. However, the progression from statement B to statement C is not
supportable without additional data.

Linkage disequilibrium has been noted for very closely linked loci. For
example, Gordon et al.’*® investigated 91 unrelated Afrikaners and observed
linkage disequilibrium between pairs of loci separated by 0.00, 0.00, 0.54, 2.16,
2.71,3.68,5.28,and 5.51 ctM on chromosomes 1, 2, 5,11, 20, and 21. Such link-
age disequilibria have been used to estimate the time since the last bottleneck
for various populations®??> and may give interesting anthropological informa-
tion. Deka et al.?” investigated linkage disequilibrium and identified Samoans
as an interesting study group plausibly because of a recent bottleneck. Szibor
et al.”> investigated linkage disequilibrium between alleles at loci on the X
chromosome for a sample of 210 males. The loci investigated contained three
linkage groups from a total of 16 loci. They observed disequilibrium only for
alleles at the loci DXS101 and DXS7424. This is an example of the well-known
phenomenon that linkage does not necessarily imply linkage disequilibrium.

2 See Chapter 1, footnote c.
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The CODIS loci HUMCSF1PO and HUMD5S818 are both located on
chromosome 5 and are reported to be separated by 25 cM.* This translates
to a recombination fraction (Haldane) of 0.39. This would be expected to
have no effect at the population level, but in restricted circumstances may
have a moderate effect in paternity testing or disaster victim identification.

The most likely causes of linkage disequilibrium for unlinked or loosely
linked loci are population genetic effects such as population subdivision or
admixture.'>**! These will be discussed in some detail later.

If the population is in linkage equilibrium, then a multilocus genotype
probability (P) may be assigned by the product of single-locus genotype
probabilities (P)):

p=IIp. (3.2)

3.2.3 Consideration of the Hardy—Weinberg and Linkage
Equilibrium Assumptions

There are five assumptions for the Hardy—Weinberg law to hold and one
additional assumption for linkage equilibrium to hold. In this section each of
these assumptions will be considered with regard to whether or not they are
true, and in particular to how far from true they may be.

3.2.3.1 Infinite Population

This assumption is clearly violated to greater or lesser extents, depending on
the size of the population. In addition, there is ample evidence for the existence
of population bottlenecks in the past. The effect on disturbing the equilib-
rium in the present is likely to be very limited for most realistic populations
unless a relatively recent bottleneck is suspected. Recall that one generation
of random mating is sufficient to restore HWE. Any effect is most likely to
occur for rare alleles.

Crow and Kimura?!!

give

Pr(A;A) = p?—p1 = p) f
Pr(A;A) = 2p;p(1 + f)

where N is the number of individuals and f =1/(2N — 1) We see that any depar-
ture from equilibrium is expected to be very small for most realistic values of N.

3.2.3.2 No Mutation

One of the assumptions for Hardy—Weinberg and linkage equilibrium is
that there is no mutation at the loci in question. With regard to the com-
monly used STR loci, this assumption is clearly violated. In fact, we believe
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that the STR loci are mutational “hot spots,” with mutation rates above
much of the coding DNA but probably less than the VNTR loci or mito-
chondrial DNA.

Various treatments have been offered that deal with change in allele fre-
quencies due to mutation or to the effects of mutation and selection.?®” If,
however, we accept that these loci are selectively neutral, then the most real-
istic situation that we need to consider is the situation of mutation and
genetic drift. The effect of mutation, of the type observed at STR loci, on a
divided population is that it tends to oppose the effect of drift. If drift is
tending to remove genetic variation from separated subpopulations, muta-
tion tends to reintroduce it. When a mutation occurs at an STR locus, it
tends to add or subtract a single repeat, with mutational losses or gains of
multiple repeats being much more rare (see Chapter 10 for a summary of
mutation references). This mode of mutation fits well with a theoretical
model, the stepwise mutation model, that was first proposed by Kimura and
Ohta.*2

If we consider two populations that have become separated or isolated,
then they begin to evolve separately and their respective allelic frequencies
tend to drift apart. This process will be associated with an increase in relat-
edness within the separated subpopulations and can be quantified by an
increase in the inbreeding coefficient 6. The effect of stepwise mutation to
alleles already present is to lower relatedness and hence 6.285671:672 This may
seem odd. The people are still related, but their alleles can no longer be iden-
tical by descent as they are no longer identical. The equilibrium situation that
may result is given by Evett and Weir.?®” Whether drift or mutation is the
dominant factor depends on the product Nu, where N is the population size
and u the mutation rate. If Nu <<1, the population will typically be moving
toward fixation for one allele, which means that genetic drift forces are dom-
inant. If Ny >>1, then mutation is the dominant force and multiple alleles
will be present.’””

This effect can be elegantly demonstrated using simulation software. Two
programs have been offered by forensic programmers — Gendrift (Steve
Knight and Richard Pinchin, FSS) or Popgen (James Curran, University of
Waikato®) — and there are others in the population genetics community.

It would be unwise, however, to assume that mutation is a completely
benign phenomenon from the perspective of decreasing associations between
individuals. The exact nature of the mutational process does have a serious
effect on the departures that may be observed and the validity of models to
correct for them. This is discussed briefly later.

b The latter program is available free from James Curran’s website: http://www.stats.
waikato.ac.nz/Staff/curran/Popgen95.zip.
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3.2.3.3 No Migration Into or Away from the Population

Allele probabilities will change if migration occurs into or away from the
population. Emigration from a moderately sized population has very little
effect since the subtraction of a few alleles from the gene pool alters the allele
probabilities very little. Immigration of alleles into the population from a dif-
ferent population can have a much more marked effect. Such gene migration is
often accompanied by physical migration of people, but this is not necessarily
a requirement.

To consider this issue, it is critical to consider the interaction of migration
and our definition of population. Most of our current definitions of popula-
tion have both an ethnic and a geographical basis. Consider the New Zealand
population. We currently subdivide this arbitrarily into Caucasian, Eastern
Polynesian (Maori and Cook Island Maori), Western Polynesians (Samoans
and Tongans), and Asians. The physical migration of a British person to New
Zealand would represent migration of alleles into the New Zealand Caucasian
gene pool. The intermarriage of Caucasians and Maori would represent
migration of Caucasian genes into the Eastern Polynesian gene pool without
necessarily involving any physical migration of people. The fact that this is
treated as a migration of genes INTO the Eastern Polynesian gene pool is
dependent on how we intend to (arbitrarily) define the ethnicity of the result-
ing progeny.

The effect of migration on equilibrium is dependent on the difference in
allele frequencies between the donor and recipient populations.?’” Hence the
physical migration of British people to New Zealand is likely to have a very
small effect on the equilibrium situation of New Zealand Caucasians since
the allele frequencies in the two populations are similar. However, the migra-
tion of Caucasian genes into the Eastern Polynesian gene pool is much more
likely to disturb the equilibrium since the populations have more differing
allele probabilities.

3.2.3.4 No Selection
It is difficult to find experimental data that bear directly on the issue of
whether or not there is selection at the STR loci used for forensic work. This
is clearly an area that warrants further scrutiny. The general field is very active
in human population genetics. At this stage, most of the argument in favor of
there being little or no selection at STR loci relates to the fact that these loci
are noncoding and hence do not produce any gene products. Theoretically
then, any mechanism for selection would have to operate by an indirect
route, say by hitchhiking on other advantageous or disadvantageous genes, or
by affecting DNA packing, replication, or repair.

The STR loci are intronic. Introns are thought to have “invaded eukary-
otic genes late in evolution, after the separation of transcription and transla-
tion.”?3%53% When first studied, these DNA sections were thought to be
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nonfunctional and were termed “junk DNA.” Mattick®** argues convincingly
for a role for at least some intronic products in gene expression and postulates
that they were a critical step in the development of multicellular organisms.

Makalowski®*? discusses the origin of the phrase “junk DNA” and reinforces
the modern conception that this DNA may have important functions. If this
theory is eventually accepted, as would seem inevitable, then the question
would arise as to whether there is a function for the specific intronic segments
used in forensic work.!#

The observation of greater microsatellite diversity among Africans**® is
consistent with the out of Africa event and a selectively neutral model.
However, greater diversity among Africans is certainly not proof of selective
neutrality.

Mitochondrial DNA shows a deviation from selective neutrality; however,
this is postulated to be the result of a selective sweep in modern humans out-
side Africa.

Selection is a proven phenomenon in some blood group systems such as
ABO and Rhesus.!** A mechanism has been proposed for the selective inter-
action between ABO and Haptoglobin.’®” However, these genes are clearly
coding and produce important gene products. Hence direct selective mecha-
nisms are expected.

Selection by association with disease loci is a mechanism that may possi-
bly affect STR loci. Such associations at other loci are known.*® The effect of
a selective sweep caused by the appearance of an allele favored by selection at
a nonforensic locus has not been considered in detail in the forensic litera-
ture. However, unless such a sweep is recent, this is unlikely to have much
effect on the modern state of equilibrium (although it may have had an effect
on modern allele probabilities).

Neuhauser®”” compares random drift and selection and notes that if Ns <<
1, where N is the population size and s is the selective advantage of one allele
over another, for a two-allele locus, then selection does not have much effect,
and the locus acts almost as if it were neutral.

A theoretical model for estimating mutation rates at di-, tri-, and tetranu-
cleotides from the distributions of their allele sizes was given by Chakraborty
et al.,'® who note the departure of the predictions of the model from directly
observed values. This led Chakraborty et al. to an interesting discussion of
whether there is any evidence of constraints in the number of DNA repeats
at a locus, which may be evidence for the existence of selection. They con-
clude that the shape of modern allele distributions is inconsistent with the
existence of constraints.

In summary, there are reasonable theoretical reasons to believe that these
loci are selectively neutral or nearly so. No direct evidence for strong selec-
tion at forensic loci has been reported, but how hard have we looked for it?
Equally, there is little direct experimental evidence for selective neutrality.
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3.2.3.5 Random Mating

Of the various assumptions given, this is the one that has deservedly attracted
the most attention. It is clear that we do not select our mates on the basis of their
DNA genotypes at the STR loci. Most of us do not even know our own geno-
type at these loci. We also believe that these genotypes have no physical mani-
festation, which is to say that they do not affect the phenotype of an individual.
Hence we should be unable to detect these genotypes by looking at a person.
This should preclude some inadvertent selection of genotypes. However, it
would be wrong to assume from this that random mating is a fair assumption.

Crow and Kimura?!! discuss the two main types of nonrandom mating:
inbreeding and assortative mating. Assortative mating is not discussed here.
There is considerable evidence that it does occur in humans. For instance, an
intelligent person is more likely to marry another intelligent person. Jared
Diamond?*! discusses this in some detail in his popular science book The Rise
and Fall of the Third Chimpanzee. In the STR context, I believe that the issue
of importance is inbreeding.

What is alleged is that the population is made up of subpopulations
whose members preferentially mate within their subpopulation, possibly for
religious, language, or other reasons, but more probably just because of geo-
graphical proximity (for an excellent review, see Excoffier?®®). This is termed
inbreeding. In the past, people traveled a lot less than they do now. The
notion of marrying the “girl or boy next door” is not universal nor is it totally
unknown. It is important to note that there is no suggestion that subpopula-
tions are completely isolated from each other. All that is required is any
departure from a completely random choice of mates. The more isolated the
subpopulations, the larger the effect, but partial isolation will also lead to
some subpopulation effects.

In lectures on DNA around the world, I have performed a trial with the
various classes. Unfortunately I have not kept the results, which would make
an interesting section. However, the general flavor of them can be reported.
What was asked was for people to give the “ethnicity” of their four grandpar-
ents. Table 3.1 gives the results for the area around my desk at the laboratory
at the FSS at Trident Court in Birmingham, U.K. Each cell represents one
individual’s self-declared ethnicity for their four grandparents.

This experiment would not meet minimum survey standards; however, let
us treat them as a demonstration rather than as evidence. First let us note that
this arrangement does not look random. Too many ethnicities occur together.
For instance, there are four Chinese entries and four Indian entries together.
Let us assume that we separated these two individuals out as being of a differ-
ent “race.” What we are left with still does not look like a random arrangement.
For instance, there are four Greek Cypriots and two Iraqis together. Let us
assume further that we take these out and put them into different categories.

510,511
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Table 3.1 Self-Declared Ethnicity of Some Staff at the FSS Laboratory, Trident
Court in 2002

Irish, Irish, Irish, Irish Swiss, Swiss, Swiss, Swiss
English, English, English Irish English, English, English English
English, English, English, English Chinese, Chinese, Chinese, Chinese
Welsh, English, English, Scottish English, English, English, English
Scottish, Scottish, English, English English, English, Irish, Scottish
English, English, English, English English, English, English, Scottish
Hungarian, Scottish, Scottish, English English, English, English, Scottish
English, English, English, English Greek Cypriot, Greek Cypriot,
Greek Cypriot, Greek Cypriot
English, English, English, English Irish, Irish, Iraqi, Iraqi
English, English, English, Scottish Indian, Indian, Indian, Indian

Still, what we are left with does not look random. There are too many Irish and
Swiss together. If we could peer deeper into the past, we might find that the
people reporting “English” have differing amounts of Celtic, Scandinavian, or
Saxon heritage.

This experiment has worked wherever I have tried it: in New Zealand,
Australia, the United States of America, and the United Kingdoms of Great
Britain and Northern Ireland. I, personally, do not believe that the modern
human population is the result of random mating. I do believe that we are
the result of an evolutionary process whereby our ancestors mated in groups
to a greater or lesser extent. This is breaking down in modern times, but the
process is far from complete.

This leads us to the classical consideration of the Wahlund principle.
Assume that a certain area is made up of two or more subgroups that breed
within each group but not to any large extent between the two groups.
Further assume that there are some allele probability differences between
these groups. Then even if the subpopulations themselves are in HWE, the
full population will not be. An example is given in Table 3.2.

First we note that the mixed population is not in HWE even though each
subpopulation is. Next we note the classical Wahlund effect in which all the
probabilities for homozygotes are increased above Hardy—Weinberg expecta-
tion. The total heterozygote probabilities are generally decreased, although
individual heterozygotes may be above or below expectation. Note that in this
example two of the heterozygotes are below expectation, whereas one is
above. The total for all the heterozygotes will always be down (which is really
the same as saying the total of the homozygotes is always up).?67-8%

The same subpopulation phenomenon will induce between locus depend-
ence, that is, it will induce linkage disequilibrium. This is more complex
but not harder to demonstrate. In Table 3.3 we give a numerical demonstration.

801
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Table 3.2 An Example of the Wahlund Effect

Allele a b c
Subpopulation 1 0.7 0.2 0.1
Subpopulation 2 0.2 0.1 0.7

Genotype Subpopulation 1 Subpopulation 2 1:1 Mix Hardy—Weinberg

expectation

aa 0.49 0.04 0.2650 0.2025
bb 0.04 0.01 0.0250 0.0225
cc 0.01 0.49 0.2500 0.1600
ab 0.28 0.04 0.1600 0.1350
ac 0.14 0.28 0.2100 0.3600
be 0.04 0.14 0.0900 0.1200

This table shows the “correct” genotype proportions and two incorrect calcula-
tions. The first incorrect calculation proceeds by combining the two subpopula-
tions and then using the population allele probabilities — this incorrectly
assumes Hardy—Weinberg and linkage equilibrium in the population. This is
the type of error (although greatly exaggerated) that would occur if we
assumed that a structured population was homogeneous. The second incor-
rect calculation (again carried out on the combined population) proceeds as
if we had performed some sort of testing and had abandoned the assumption
of HWE, but instead had used observed genotype proportions and then mul-
tiplied across loci. This approach is a better method to assign probabilities as
it corrects for Hardy—Weinberg disequilibrium; however, it fails to account for
linkage disequilibrium.

The third approach was adopted, incorrectly, by Buckleton and Weir in some
of their early recommendations, but is now abandoned. It appears later in this
chapter as the “Cellmark wrinkle” in the descriptions of the O.]. Simpson case.
It persists in recommendations by other authors but should be superseded.

Inspection of these numbers shows that the “correct” probabilities for two
loci cannot be determined if the population structure is ignored. Proceeding
from either the population allele probabilities or the population genotype
probabilities will give incorrect answers.

The demonstration that the multiplication of population genotype prob-
abilities gives an incorrect answer shows that linkage disequilibrium can be
induced by population substructure whether or not the loci are physically
linked. Loci that are on different chromosomes may, therefore, be in disequi-
librium?!4°7690591 and expressions have been derived to estimate the magni-
tude of the disequilibrium.?¢”83 In fact, almost any instance of disequilibrium
in the forensic literature involves loci that are on different chromosomes.
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Table 3.3 Two-Locus Genotype Probabilities for a Population Consisting of Two
Subpopulations in Equal Proportions

Allele Subpopulation 1 Subpopulation 2
Locus 1

a 0.7 0.2

b 0.2 0.1

c 0.1 0.7

Locus 2

d 0.5 0.2

e 0.2 0.4

f 0.3 0.4

dd ee ff de df ef
1:1 Mix Correct

aa 0.062 0.013 0.025 0.052 0.077 0.036
bb 0.005 0.002 0.003 0.005 0.007 0.004
cc 0.011 0.039 0.040 0.040 0.041 0.079
ab 0.036 0.009 0.016 0.031 0.045 0.023
ac 0.023 0.025 0.029 0.036 0.043 0.053
be 0.008 0.012 0.013 0.015 0.017 0.025

1:1 Mix from Alleles

aa 0.025 0.018 0.025 0.043 0.050 0.043
bb 0.003 0.002 0.003 0.005 0.006 0.005
cc 0.020 0.014 0.020 0.034 0.039 0.034
ab 0.017 0.012 0.017 0.028 0.033 0.028
ac 0.044 0.032 0.044 0.076 0.088 0.076
be 0.015 0.011 0.015 0.025 0.029 0.025

1:1 Mix from Genotypes

aa 0.038 0.027 0.033 0.048 0.061 0.058
bb 0.004 0.003 0.003 0.005 0.006 0.006
cc 0.036 0.025 0.031 0.045 0.058 0.055
ab 0.023 0.016 0.020 0.029 0.037 0.035
ac 0.030 0.021 0.026 0.038 0.048 0.046
be 0.013 0.009 0.011 0.016 0.021 0.020

Some of the most common causes of disequilibrium are population genetic
effects, such as the existence of subpopulations, and such disequilibria occur
for the same reasons as the Wahlund effect. #8448

This disequilibrium phenomenon is sufficiently understood that decay
rates for linkage disequilibrium for nonlinked loci have been calculated and
appear in standard texts.?¢7 (bp- 1277129421836 The dependency effects are not
expected to be large for loci with low mutation rates. There is a slight tendency

for the dependencies to rise with the number of loci. #3843
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We give examples later using the ESR data for Eastern Polynesians. Analysis
of these data suggests disequilibrium regardless of the chromosomal position
of the loci. In this particular case, the most likely explanation is not popula-
tion subdivision but the effects of admixture with Caucasians. The population
in the U.S. described as Hispanics may be showing the same admixture effects
or this may be the result of subpopulations, or both.© The Hispanic popula-
tion is often subdivided into South-Eastern and South-Western Hispanic.

Conversely, loci that are closely linked on the same chromosome may be
in equilibrium (or near it). In fact, there is no absolute relationship between the
position on a chromosome and the state of independence between loci.
However, as a generalization, Hudson**! notes “loosely linked loci are typically
observed to be near linkage equilibrium in natural populations.... In con-
trast...very tightly linked loci often show some signs of linkage disequilibrium.”

There is growing evidence of a block-like structure to linkage disequili-
brium. This implies that some regions of the genome are closely linked and
others are unlinked. This structure can, obviously, be produced by recombina-
tion hot spots, but interestingly can also be produced without such hot spots.?2

In summary, a lack of random mating, in particular the existence of sub-
populations with different allele probabilities, will cause Hardy—Weinberg
and linkage disequilibrium. The proportions of the different subpopulations
and the differences in their allele probabilities will affect the magnitude of
this disequilibrium. The larger the differences in the allele probabilities
between the differing subpopulations, the larger the resulting disequilibria.
Excoffier’® notes that population subdivision will also produce a larger
number of observed alleles, with an excess of rare alleles.

The first human populations that came under intense scrutiny by the
forensic community were the Caucasian populations of the U.K. and the U.S.
These populations comprise subpopulations arising from different areas of
the U.K. and Europe. Studies have suggested that there are only minor differ-
ences between these Caucasian subpopulations in Europe or the U.K. per se.
Although these differences are real,’!556¢ they are small and hence they give
rise to very small disequilibrium effects. The effect of these disequilibria is a
very mild bias in the product rule toward the assignment of a genotype prob-
ability that is too low.

3.2.3.6 An Infinite Number of Generations

Loci that are on different chromosomes or well separated on the same chro-
mosome will assort in a Mendelian manner. The linkage disequilibrium asso-
ciated with such loci is expected to halve with every generation,?®” and hence

¢ This possibility appears to have received recent acceptance from Budowle and
Chakraborty at least in the published literature, both previously strong supporters of the
use of the product rule.®°
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will approach equilibrium asymptotically, but never quite get there, if the dis-
turbing force is removed. Linked loci will also approach equilibrium but
more slowly, depending on the rate of recombination between the loci. An
example of very tightly linked loci that are near equilibrium is given by
Mourant, when he discusses the Rhesus blood group (a set of three linked
loci) in Australian Aborigines.>®

3.2.3.7 Summary
It was a pity that the first population extensively studied by the forensic com-
munity was the Caucasian population. This is because this population is
probably one of those nearest to Hardy—Weinberg and linkage equilibrium of
the large modern human populations. Hence it was the least likely to educate
us on departures from equilibrium and how to manage these. At that time we
did not understand the weakness of our independence tests, and this con-
tributed to our misunderstandings. We return to this subject in Chapter 5.
This section is closed with a quote from Wild and Seber: “What often hap-
pens is that, in the absence of knowledge of the appropriate conditional
probabilities, people assume independence. ... this can lead to answers that
are grossly too small or grossly too large — and we won’t know!” 86> The sit-
uation in DNA is probably not this bad, but the warning is real nonetheless.

3.2.4 How Big Is the Potential Departure If We Use the
Product Rule?

It has become accepted wisdom that the error induced by ignoring subpop-
ulation effects may be of the order of a factor of 10. This was based on the
comparison of the product rule estimator using various databases as the
source of the allele probability estimates. Budowle et al.'?”!8 and Hartmann
et al.*’® compared the product rule assessment calculated from different sub-
population databases and demonstrated that over 80% of assignments were
within a factor of 10 of each other. This approach compares an estimate with
an estimate. There has been considerable discussion about the bias inherent
in this analysis due to sampling effects,®! but we have difficulty deciding how
much can be read into the results of these discussions.

The conclusions arising from these studies require further validation. It is
not totally different to the situation where two students give the same answer
in a test. It would be unwise to assume that because they gave the same
answer they are both correct.

In addition, we must expect an effect from the number of loci and the
populations under consideration. The more the loci, the larger the potential
effect of population subdivision. Certain populations are expected to show
larger departures than others.
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Much later, Gill et al.*>> investigated the magnitude of this bias and
refined Budowle’s method. Using this modified approach, Gill et al. calcu-
lated the product rule assignment for a ten-locus genotype using allele prob-
abilities from the relevant subpopulation and this probability when
estimated from an averaged European database (see Table 3 of Gill et al.).
They found that the difference between these two estimates may be of the
order of two, three, or even four orders of magnitude. Further, they show that
almost any of the available adjustment methods, such as a subpopulation
correction or even the use of minimum allele probabilities, if applied sensi-
bly, will compensate in part or in full for this effect.

The comparison of an estimate with an estimate is interesting, and would
give us some confidence that the effect of changing the database is minor.
However, it does not show that either estimate is within a factor of 10 of the
true value. It is the latter question that is of forensic interest: How far is our
estimate from the true value? The suggestion that the difference between the
product rule estimate and a hypothetical true value is a factor of 10 must be
taken as a hypothesis with some empirical support. It cannot be taken as
proved as we cannot know the true value. Even the simulations by Curran
et al.4 described later in this chapter do not truly compare this estimate to a
true value. They simply compare the difference between the product rule
assignment and that which would occur under certain population genetic
events. It is a simple fact that we cannot measure the difference between the
product rule estimate and a true value. Nor can we measure this difference
for any other population genetic model. The simulations seek to bring evi-
dence to bear on this matter, but they are, in my opinion, a long way short of
scientific proof.

It is often assumed that cosmopolitan populations do not exhibit sub-
division. While this may be true, there are also instances where it may not. If
the population is old and well mixed, there should be very little, if any, pop-
ulation subdivision. However, a cosmopolitan population may be something
like that of London or New York, which consist of people with very different
genetic backgrounds who live in the same area. This is exactly the situation
where we expect subpopulation effects.

3.2.5 Populations Separating By Genetic Drift

If we accept that the loci that we consider in forensic applications are selec-
tively neutral, then we expect the main evolutionary force producing differ-
ences between separated populations to be the random drift of allele

4 This follows a set of concepts discussed between Mulligan J. and myself during R v
Karger.®® T am indebted to His Honour for sharing his insight in this matter, which is
often hard to convey in a court situation.
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probabilities. This is an extensively researched subject and is only covered
very superficially here.

Even if all other evolutionary forces were absent, the allele probabilities in
one generation would still differ slightly from the previous one. This differ-
ence is caused by the random transmission of alleles to the new generation.
For large populations, this effect is very small and takes a long time to be
observable. However, for smaller populations the effect may be quite rapid.

The difference between populations that are diverging by drift is often char-
acterized by a parameter 8 or F;, which may be treated as synonyms for the pur-
poses of this text. This parameter is often termed the between-person coancestry
coefficient. It is a very useful parameter for characterizing the subpopulation
effect; however, it is both difficult to visualize and to measure. For the purposes
of this section, it will be adequate to consider it as a measure of the genetic dis-
tance between subpopulations. The larger the distance between subpopulations,
the longer we assume that they have been separated and the higher 6 will be.

It turns out that @ may also be considered as a measure of the relatedness
between people in the subpopulation. If this subpopulation has been separate
from others for some time, then people in this subpopulation will be more
related to each other than they would be to a person taken from a different
subpopulation. To help give a feel for the size of 8 values, consider that first
cousins would have 8 = 0.0625.

A formula relating 0 to the time since separation is given in many stan-

dard texts:8%°
t
g=1-[1-—
2N

where t is the time since separation in generations and N is the effective size
of the population (strictly a monoecious population in which selfing is
allowed). Evett and Weir?®” discuss the avoidance of selfing and show that the
above model is a close approximation. Crow and Kimura?!! give
1 1 1

= +

N, 4N, 4N
for the effective size of the population (N,) when separate sexes of number N,
and N, are present. When the sexes are present in equal numbers, N,, = N, =
N/2 and hence N, = N. Crow and Kimura discuss the effect of differing num-
bers of progeny on N,.

If mutation of the infinite alleles type is added to the model, then the
opposing forces of drift and mutation may form an equilibrium state, given
in several texts:2¢7:836

1

Fe——
1+ 4Ny
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Figure 3.1 Simplified population model. Reproduced in amended form from
Curran et al.2!> © 2003, with permission from Elsevier.

where F is the equilibrium value of the between-person inbreeding coefficient
and p is the mutation rate.

3.3 Simulation Testing
3.3.1 Product Rule

Curran et al.?!> consider the question: How wrong could the product rule
estimator be if the population was subdivided into ten subpopulations and
the 0 value was approximately 0.03? A computer simulation that allowed the
liberty of using the true match probability referred to as the “Gold Standard”
examined this question. Populations with known amounts of substructure
were produced by dividing a population and allowing it to breed by random
mating only within the subpopulations for a suitable number of generations
to create the required amount of structure (see Figure 3.1). The ratio of the
product rule estimator to the true match probability was then compared.
This simulation demonstrated the subpopulation effect but it does not
include the effect of mutation. Nor can we truly claim that this is the true
match probability. It is certainly the probability if the populations satisfy cer-
tain genetic assumptions, but how accurately these assumptions apply to the
human condition is the real question.

The Curran et al. results are reproduced in Figure 3.2. Data points above
the line given by ratio = 1 indicate that the assignment is conservative with
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Figure 3.2 Ratio of the naive product rule profile frequency to the true profile
frequency for a population with true inbreeding coefficient 8 = 0.03. The median
and quartile trend lines are fitted. 64.7% of samples have values less than 1.
Reproduced in amended form from Curran et al.2!> © 2003, with permission from
Elsevier.

respect to the true value. Data points below this line indicate that the estimate
is nonconservative. The product rule assignment is seen to be nonconserva-
tive for 64.7% of the 50,000 simulated profiles (given the above conditions).
The first thing that we note is that this number is greater than 50%. In other
words, the product rule estimator has a mild bias in favor of the prosecution
if the population is subdivided. This effect is most pronounced when the pro-
file is common. The simulation is for ten loci. The effect would be greater for
more loci and less for fewer loci.

In 14.7% of simulated profiles, the estimate was less than one tenth of the
true value. By this we are saying that in 14.7% of cases the product rule esti-
mator is incorrect and favors the prosecution by more than a factor of 10.
Indeed, a number of estimates differ by more than a factor of 100. This effect
is not a result of sampling error because the simulation has been set up to
remove all effects of sampling error. Sampling error would add additional
uncertainty to these estimates and would spread the results up and down on
the graph. We emphasize that usually the subpopulation effect is mild and we
do not wish to overemphasize it. The result could be viewed as not substan-
tially different from the conclusion of Budowle et al.: that 80% of estimates
were within a factor of 10 of each other.!?*!127:128
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Figure 3.3 Ratio of the naive product rule profile frequency to the Gold
Standard Profile Frequency for a population with true inbreeding coefficient
6 = 0.01. The median and quartile trend lines are fitted. 51.8% of samples have
values less than 1. Reproduced in amended form from Curran et al.2!> © 2003,
with permission from Elsevier.

The choice of 3% as a value for 6 is somewhat arbitrary and would be
excessive for Caucasian populations in the U.S. However, it may be more
appropriate for Hispanic populations and may, indeed, be an underestimate
for Amerinds. The subpopulation effect would be smaller for smaller 6.

In Figure 3.3, we reproduce the equivalent graph with the subpopulations
bred to 8= 0.01. In this case, 51.8% of samples returned values less than 1, com-
pared with 64.7% for 6 = 0.03. The bias is seen to be very small in this instance.
(Do not be deceived by the mean trendline being above 1 at the left. This is
expected and is more than compensated for by it being slightly below 1 at the
right hand end.) Only a few values lie outside a factor of 10 of the true answer.

It can be seen from these experiments that the product rule estimator has
a very small bias in favor of the prosecution in most cases where the popula-
tion is subdivided. The magnitude of this bias is not large, and it is important
not to overemphasize it. However, it is real and is not the result of sampling
uncertainty. It will be larger for strongly subdivided populations and smaller
for less subdivided populations. The effect may be more than a factor of 10.
This finding adds an important verification relative to a true match proba-
bility.c It does put into perspective comments such as “implementation of the
product rule is a reasonable best estimate,”3*>#8659 which must be qualified

¢ Of course this is not a “true match probability” either, but it is the true match probability
under THIS model.

© 2005 by CRC Press



with our current understanding that the product rule is unlikely to be an
unbiased estimator.

The Curran et al. simulations do not include a specific consideration of
mutation. Consideration of an infinite allele mutational process has suggested
that this may have a significant effect on the estimation process:

The product rule probability always underestimates the two-locus
match probability. For highly mutable minisatellite loci, these
probabilities can differ by an order of magnitude or more... the

degree of underestimation worsens for more loci.*®

This statement is for an infinite allele mutation model and may not be appro-
priate for a stepwise mutation model. However, it does suggest that further
research is warranted if the product rule is to be used.

3.3.2 NRC II Recommendation 4.1

NRC II recommendation 4.1 offered a correction for Hardy—Weinberg dis-
equilibrium caused by the Wahlund effect. It was suggested that a correction
upward in frequency be applied to correct for the expected upward bias pro-
duced by population subdivision, and further that this correction should be
applied only to homozygotes. No correction was recommended for heterozy-
gotes since, on average, these should have a downward bias (recall that indi-
vidual heterozygotes may be displaced from expectation in either direction).
This comment is generally true for the event of population subdivision, but
would be untrue for populations undergoing admixture. In admixing popu-
lations, the number of heterozygotes is likely to be elevated.
The recommendation suggests that

p.= {Pﬁ ol —py)E Ay =4y (3.3)
20pPi» Ay # Ay

where F is the within-person inbreeding coefficient and not the between-person

inbreeding coefficient, 6, as written in NRC II.

This recommendation is a logical way of correcting for Hardy—Weinberg
disequilibrium, but makes no attempt to correct for linkage disequilibrium.
It will suffer from the same approximations that are revealed in Table 3.2 for
the 1:1 mix from genotypes. Hence it will still have a very mild tendency to
underestimate multilocus genotype probabilities.

Curran et al. tested recommendation 4.1 by comparing this assignment
with the “Gold Standard Profile Frequency” for a population with a true
inbreeding coefficient 8 = 0.03 created by simulation. This is reproduced in
Figure 3.4. In this simulation, 54.4% of values are less than 1 (reduced from
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Figure 3.4 Ratio of the Recommendation 4.1 profile frequency (6 = 0.03) to the
Gold Standard Profile Frequency for a population with true inbreeding coefficient
6 = 0.03. The median and quartile trend lines are fitted. 54.4% of samples have
values less than 1. Reproduced in amended form from Curran et al.2!> © 2003,
with permission from Elsevier.

64.7% for no correction). We see that this estimator still has a small prosecution
bias and some undesirable variance properties.

3.3.3 The Subpopulation Formulae

If it is difficult to calculate the genotype probability in the population due to
the effects of population subdivision, can we calculate it in the subpopulation
of the suspect? We note that the subpopulation of the suspect may not be
known, may not be easily defined, and almost certainly has not been sampled.

A potential solution has been offered by Balding and Nichols and has
found widespread acceptance both in the forensic and the legal communities.
The formulae?»*6:41:267:585 caculate the conditional probability of a second
profile matching the stain from the subpopulation of the suspect given the
profile of the suspect.

These formulae follow from a formal logic given initially by Balding and
Nichols and appearing as Equations (4.10) in NRC II and (4.20) in Evett and
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Weir, but they date back to the work of Sewall Wright®”® in the 1940s. A rea-
sonably gentle derivation appears in Balding and Nichols.”

[36+(1—0)p;][26+(1—6)p; ]

(1+6)(1+26) » A=A
P, =
2[6+(1—0)p, 1 [6+(1—0)p;,]
(1+0)(1+26) > AnF Ay
p=IIp, (3.4)

Let us call the profile found at the scene of a crime profile C with geno-
type G.. We will write the probability that the offender has this profile as
Pr(G,). Such a probability is called a profile probability, as the probability is
not conditioned on any other information. Recommendation 4.1 is an
attempt to calculate this probability.

However, let us consider whether the probability of a second copy of a cer-
tain genotype is raised slightly if one other person is known to have this geno-
type. There are many reasons why this may be true. But initially we will merely
assume that it is true. If we had no knowledge as to whether or not this geno-
type had ever been found previously in an individual, then, indeed, we would
be required to resort to a profile probability and Recommendation 4.1 may be
an appropriate method. The “true” value of most of these profile probabili-
ties would be 0 as discussed in Chapter 2.

However, we invariably have the information that at least one copy of the
profile exists. We have seen it in the suspect. In other words, we are not talking
about the vast majority of profiles that do not exist, we are talking about one
of the few that do, indeed, exist in the real world.?*? Let us call the genotype
of the suspect G, and we note that G, and G, are the same. In other words,
the suspect could be the source of the stain at the scene. We are interested,
however, in calculating the probability that a second person has this profile
given that the suspect has it. This is written as Pr(G,|G,) and is called a match
probability. It will be the same as the profile probability Pr(G,) only if the
knowledge that one person has the profile has no impact on our assessment
that a second person has the profile. This is the assumption of independence
discussed at the start of this chapter.

For the various population genetic reasons given above, we expect the
assumption of independence to nearly hold, but to be violated in a minor way,
in real populations. The main reason for this is population subdivision and
relatedness. The fact that one person has the profile slightly increases the prob-
ability that his/her relatives or other members of his/her subpopulation have
the profile. We are therefore led to the consideration of match probabilities.

© 2005 by CRC Press



It has been assumed that application of these formulae requires an
assumption of independence between loci.?®* 3! This follows from the way
that the single locus probability assignments are assembled into a multilocus
probability assignment. Indeed these are multiplied and this gives the
impression of an assumption of independence.

However, this is not true and was explicitly stated in Balding and Nichols’
original paper:*

Further, we have restricted attention to the suspect’s sub-population
and hence concerns about the Wahlund effect and correlations
among loci can be ignored. Therefore the whole profile match
probability is, to a close approximation, the product of the single-
locus probabilities.

For those who prefer to investigate this statement in an algebraic way, some
formative thoughts are given in Box 3.1. The subpopulation formulae of
Balding and Nichols were designed to give an estimate of the match proba-
bility in the same subpopulation as the suspect. Most implementations of this
approach apply this correction (in an overly conservative manner) to the
whole racial group to which the suspect belongs rather than simply applying
it to the subpopulation of the suspect. This is an understandable response to
the difficulties in defining the subpopulation of the suspect, which most
often is unknown, and not definable even if known. Equally the proportion
of this subpopulation in the population is likely to be unknown. However, the
approach of applying the correction to the whole “race” usually results in the
correction becoming an “overcorrection” and hence gives rise to considerable
conservativeness (or even performs in an overly conservative mannerf) in the
probability assignments.

Over the years I have received a lot of adverse criticism to the use of this
correction regarding the difficulties in defining the subpopulation of the sus-
pect. The difficulties can be demonstrated by taking almost any person and
considering the question: “To what subpopulation does he belong?” Consider
a Caucasian resident of New Zealand, born in London to New Zealand par-
ents. He has Irish, Scottish, Norwegian, and English ancestors. It is almost
impossible to define a subpopulation for him. This would be true of most
people. This is termed a “population-centered approach” and it can be
depicted graphically (see Figure 3.5). In this arbitrary graphic are placed cir-
cles depicting the Irish, Scottish, and English subpopulations. These all over-
lap in differing ways. Where should we now place Norwegian? Nor have we

f Clearly the term “overly conservative” used here has no objective definition. Rather it is
a subjective term used to imply a very strong bias in favor of the defendant.
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Box 3.1 Linkage Equilibrium and Conditional
Probabilities (J.S. Buckleton and C.M. Triggs)

Consider two loci (locus 1 and 2). The crime stain has genotype G’ at locus
i. The suspect matches and hence has genotype G' at this locus. We note
that G! =G! for each of the loci, 7, examined. We require Pr(G} GG} G?).
Using the third law of probability,

Pr(G} G2IGL G) = Pr(GlGYIG), G?) Pr(G2IGS G?)
Balding and Nichols’ equation (Equation (3.4)) approximates this as
= Pr(GIG!) Pr(GIIG?)

This is not an assumption of independence between G! and G2.
One condition that will make this true is if

Pr(GlIG3

IG5 G, G?) = Pr(G!IG!) and Pr(GAGL G?) = Pr(GHIGY)

Looking at the first equality, we note that this does not imply independence
between G!and G?unconditionally but rather implies that G! is independent
of G? and G’ in the presence of G.. In other words, G*and G’ provide no fur-
ther information about G' given G'. The truth of this assumption depends
on our belief in the population genetic model.

The second equality requires that G’ is independent of G! in the pres-
ence of G2. The Balding and Nichols’ equations are not a simple assump-
tion of independence between loci.

The model upon which Balding and Nichols’ equations (Equations
(3.4)) are based assumes Hardy—Weinberg and linkage equilibrium at the
subpopulation level (as well as some other assumptions). This is an explicit
assumption of disequilibrium both within a locus and between loci at the
population level. It is therefore seen that Balding and Nichols’ formulae
correct for that component of linkage disequilibrium that is caused by
population subdivision.

really been specific enough. Should we have said “Graham” rather than
Scottish? Hence the argument goes: subpopulations are indefinable.
However, the problem is illusionary. This can be shown by a similar
graphic. Consider the same population but from a suspect-centered
approach. The suspect has a number of close relatives: siblings, parents, and
children. He also has more distant relatives: uncles, cousins. Further out he
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Figure 3.5 Diagrams depicting the population centered and suspected centered
views of defining a subpopulation.

has second cousins and so forth. Beyond this there are a number of people to
whom he is related more remotely. He may not know these people and there
is probably no collective name for them. These are his subpopulation.”$

Curran et al. use this same simulation approach to test how the “correc-
tion” advocated by Balding and Nichols* would perform.

Figures 3.6 and 3.7 reproduce the ratio of the “Balding and Nichols’ 8 cor-
rected probability” to the true match probability for populations with true
inbreeding parameters & = 0.01 and 6 = 0.03, respectively. In this experi-
ment, Curran et al. have used the correct 0 value created by the simulation
when they applied Balding and Nichols’ formula and have applied it to the
whole population. In other words, there is no inherent conservativeness in
the 6 value per se, but there is a conservancy in that the correction is applied
to the whole population rather than the subpopulation of the suspect alone.
We can see that “8 corrected probability” has a strong bias in favor of the
defendant, as expected. Few values lie below the ratio = 1 line and most are
strongly conservative especially at the “rare” end on the graph.

This approach should remove any tendency of the product rule or
Recommendation 4.1 to underestimate the genotype probability from popu-
lation subdivision, but could potentially leave unaccounted subdivision of
the subpopulation, possibly called sub-subpopulation division. The above
simulations suggest that there is a substantial bias in the subpopulation for-
mulae toward the direction of overestimation of the genotype probability.
Since it is likely that sub-subpopulation effects will be markedly less than

8 Subpopulations do not end, they fade out. We could envisage persons who are progres-
sively more and more remotely related to the suspect. This could be approximated, if nec-
essary, by bands of persons with differing 6 values or better by the use of the general
formulation whereby each pair of persons has a 6 appropriate for their relationship. For this
diagram, we take an arbitrary boundary to the subpopulation. The further out we push the
boundary, the more people who are included in the subpopulation but the smaller the aver-
age value of 6.
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Figure 3.6 Ratio of the Balding and Nichols’ profile frequency (6 = 0.01) to the
Gold Standard Profile Frequency for a population with true inbreeding coefficient
0 = 0.01. 0.5% of samples have values less than 1. The median and quartile trend
lines are fitted. Reproduced in amended form from Curran et al.2!> © 2003, with

permission from Elsevier.
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Figure 3.7 Ratio of the Balding and Nichols’ profile frequency (6 = 0.03) to the
Gold Standard Profile Frequency for a population with true inbreeding coefficient
6 = 0.03. 0.8% of samples have a ratio of less than 1. The median and quartile
trend lines are fitted. Reproduced in amended form from Curran et al.2!> © 2003,
with permission from Elsevier.
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subpopulation effects, it seems very unlikely that there will be any remaining
bias toward underestimation.

Most laboratories actually exceed this level of conservativeness in that
they tend to use a conservative value for 6. For example, the U.K. Forensic
Science Service use a value of 0.02, whereas 0.005 could probably be justified
for the Caucasian population of the U.K. Curran et al., using the simulation
approach, also tested this. Figures 3.8 and 3.9 give the results from these sim-
ulations where the true population inbreeding coefficient 8 = 0.005, but 0.01
or 0.02 was used in the Balding and Nichols’ correction.

This added level of conservativeness, that is, using a conservative value of
0, simply introduces increased conservativeness in the performance of the
Balding and Nichols’ estimator.

A criticism of this approach points out that this conditional probability is
the probability assignment for a certain genotype in the same subpopulation
as the defendant, not in the population as a whole.!?'?? This is indeed correct.
It is sometimes suggested that these formulae are, therefore, only applicable if
it is known that the true offender, if not the suspect, must be from the same
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Figure 3.8 Ratio of the Balding and Nichols’ profile frequency (6 = 0.01) to the
Gold Standard Profile Frequency for a population with true inbreeding coefficient
0 = 0.005. The median and quartile trend lines are fitted. 0% of samples have val-
ues less than 1. Reproduced in amended form from Curran et al.?'* © 2003, with
permission from Elsevier.
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Figure 3.9 Ratio of the Balding profile frequency (8 = 0.02) to the Gold
Standard Profile Frequency for a population with true inbreeding coefficient 6 =
0.005. The median and quartile trend lines are fitted. 0% of values are less than
1. Reproduced in amended form from Curran et al.2!> © 2003, with permission
from Elsevier.

subpopulation as the suspect. This argument can be easily examined by sim-
ple mathematical exploration. But before we do that we ask: can the product
rule be used only if it is known that all possible offenders are not from the
same subpopulation as the suspect or are not related to the suspect? This is
the logical corollary of the argument of Budowle et al.'?!?° If we pursue this
line, we will eliminate all possible estimators.

We will assume arbitrarily that each person is as likely as any other to be
the true offender if the suspect is innocent. This assumption is very unlikely
to be realistic in practice for many reasons, not the least of which is that those
people close to the crime scene have a higher chance of being the offender,
and persons in remote locations have a lesser chance. Assume further, for
example, a population of which 10% are in the same subpopulation as the
suspect.

To demonstrate these effects, we generated simulated allele proportions
randomly between 0.02 and 0.20 (Table 3.4) and examined the relative con-
tribution to the estimated match probability. In this simulation, 11 loci were
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Table 3.4 Simulation of Allele Proportions Randomly between 0.02 and 0.20,
and Relative Contribution to the Estimated Match Probabilty

Locus Pr(Allele 1) Pr(Allele 2) Product Rule Subpopulation Ratio
1 0.15 0.19 0.0564 0.0724 1.3

2 0.03 0.05 0.0027 0.0085 3.1

3 0.08 0.16 0.0254 0.0384 1.5
4 0.06 0.15 0.0184 0.0305 1.7

5 0.16 0.08 0.0267 0.0398 1.5

6 0.20 0.04 0.0159 0.0297 1.9

7 0.12 0.11 0.0256 0.0380 1.5

8 0.03 0.07 0.0040 0.0110 2.8

9 0.15 0.03 0.0101 0.0212 2.1
10 0.19 0.03 0.0097 0.0227 2.3
11 0.08 0.10 0.0173 0.0281 1.6
12 0.09 0.0082 0.0240 2.9
13 0.18 0.0310 0.0551 1.8
Assigned probability 1.32E—24 6.31E—21 4780
Weighted probability assignment 6.33E—22

set as heterozygotes and two as homozygotes. The product rule and the sub-
population corrected probability assignments were calculated. For the sub-
population correction, we used 8 = 0.03. If we assume that the product rule
relates to the 90% of the population who are not members of the subpopu-
lation, and the subpopulation correction relates to the 10% who are mem-
bers of this subpopulation, we arrive at a weighted probability assignment
given.

We see that the weighted probability assignment is different to both the
product rule and the subpopulation corrected estimate. But it is almost
totally dominated by the contribution of the 10% of the population who are
in the same subpopulation as the suspect. The contribution from the prod-
uct rule is almost irrelevant. In fact, a reasonable approximation could be
obtained by simply multiplying the subpopulation probability estimate by its
fraction in the population, completely ignoring the product rule contribu-
tion. However, if the correction is applied to the whole population rather
than simply the subpopulation, as is customary, this is likely to result in an
“overcorrection,” as previously discussed and demonstrated by simulation.
Hopefully this simple example can settle the discussion on the subject of
product rule or subpopulation correction. We have a choice: Do we want to
be slightly under or more substantially over with our estimate?"

h Bear in mind that we do not know the true answer. Hence the words “over” and “under”
are relative to the “gold standard” which, in itself, is the result of a model.
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3.4 Discussion of the Product Rule and the
Subpopulation Model

If we are able to show by population genetic studies that the effects of popu-
lation subdivision are so minor that we are prepared to ignore them, then it
is permissible to use the product rule as a first-order approximation provided
that it is understood that it is probably slightly biased in favor of the prose-
cution. A useful review of various approaches is made by Gill et al.?>

The belief on which the use of the product rule is based can arise only
from well-constructed population genetic examinations®® that assess the
population genetic subdivision at the genetic level. This is vital rather than
assessment at the geographical level, which may be peripheral, especially in
countries settled largely by recent colonization. This is because geographic
samples in, say, the U.S., taken from Caucasians from different states or cities,
are unlikely to express the underlying genetic diversity. Suppose that we took
two samples each of, say, 33% Scottish, 33% English, and 33% Italian. The
allele frequencies demonstrated by these two samples will probably be very
similar. However, if we compare comparable samples drawn separately from
the Scottish, English, and Italian populations, we will find small but real dif-
ferences between them.

A common and reasonable response is that the difference between the
product rule estimate and a fair and reasonable assignment of the evidential
value is not forensically significant.’?”!*® This is probably true in many
instances; however, there is divergent evidence. For instance, in the identifi-
cation of war victims from the 1991-1995 war in Croatia, Birus et al.®® found
an unexpectedly high number of false matches between skeletal remains and
the relatives of missing persons. They attribute this to substructure in Croatia
and warn:

Although genetically and statistically sound and widely accepted,
calculations that we perform today produce numbers that might
not be fully applicable in all situations. One of the factors not
included in these calculations (the product rule) is the effect of
local inbreeding.

It remains important to understand that the commonly applied approach of
independence testing in no way measures the extent of departure from equi-
librium, and cannot be used to estimate the difference between the product
rule assignment and a fair and reasonable assignment.?3%:30% 504 511, 584, 665
Therefore, the statement that the potential error is not forensically signif-
icant, if true at all, cannot be based on independence testing. Again it can
only be investigated at all, and certainly not proved, by a population genetic
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model or perhaps by experiments of the type pioneered by Tippett®® in the
case of less vanishingly small probabilities.

It may be interesting to note the expected behavior of these two
approaches, if indeed the requirement of independence is not fulfilled. If we
pick a genotype at random, irrespective of whether it is known to exist or not,
then recommendation 4.1 is likely to provide a fair and reasonable probabil-
ity assignment (note that although it is fair and reasonable, it is not neces-
sarily the true value). However, if we now add the additional information that
one person, the suspect, has this profile, then we have two options.

First, we could ignore this additional information and still proceed with
Recommendation 4.1. This is no longer an unbiased approach. In fact, using
Recommendation 4.1 the probability assignment is likely to have a small bias
in favor of the prosecution because the knowledge that we have ignored
increases the probability that a second copy of this genotype exists. The extent
of this bias is dependent on how large or small are the dependence effects.

Second, we could follow the logical Bayesian approach, which does, in
fact, lead to consideration of the conditional probabilities such as Pr(G.G))
discussed above. These have a remarkable robustness to deviations both from
Hardy—Weinberg and linkage equilibrium and as such, we believe, represent a
more fair and reasonable probability assignment. However, we accept that, as
implemented, they appear to represent an overcorrection. For a discussion on
implementation in the U.K., see Foreman et al.>"* (unfortunately not generally
available).

This difference between the two approaches is as fundamental as the dif-
ference between unconditional probabilities and conditional ones.?”-84 An
approach based on mathematical logic leads us to the conditional probabili-
ties. In fact, it would appear that some former major proponents of the valid-
ity of the product rule have now modified their position in the face of
increasing data.60’120’121’134’154’743

There is no possibility of experimentally verifying probability assign-
ments this small. They represent, in multilocus cases, extrapolation way
beyond anything that can be experimentally examined.

It must be accepted that, like the product rule, the subpopulation formu-
lae rely on a population genetic model, albeit one that is more robust and
concedes doubt correctly to the defendant. Whereas it is possible to say that
the product rule is mildly biased towards the prosecution, it is not possible to
state whether or not the subpopulation formulae are also biased. It is at least
theoretically possible that they are conservative, and the experimental evi-
dence given here suggests that this is so.

A discussion of the ethics of this debate is given by Beyleveld,®* who also
discusses some of the pressures that have been brought to bear on independ-
ent bodies, when considering these issues.
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3.4.1 Effect of Mutation

The effect of mutation on the assessment of multilocus genotype probabili-
ties has recently been considered. Laurie and Weir*® warn of the conse-
quences of mutation of the infinite allele type on the estimation process. This
model may be a reasonable model for minisatellites, although a consensus
has not yet been developed.

Laurie and Weir suggest that the assumption of independence understates
the two-locus match probabilities for such loci. The effect increases with
increasing mutation rate. For loci with high mutation rates, the two-locus
probabilities may differ substantially from the product of single-locus prob-
abilities. They show that these dependency effects accumulate across loci:
“These results indicate a potential concern with using the product rule to
compute genotypic match probabilities for highly mutable loci.”#®

In loci with high mutation rates, alleles stand an increased chance of
being recent and rare. “Hence, if two individuals share alleles at one locus,
they are more likely to be related through recent pedigree, and hence more
likely to share alleles at a second locus.”*%

This conclusion may hold for the infinite alleles model. This model is
unlikely to be applicable to STRs and the effect of mutation on between-locus
dependencies at these loci has yet to be settled.

If we restrict ourselves to the question — Do the Balding and Nichols’
formulae give an adequate assignment of the match probability in the sub-
population of the suspect? — we again must accept the impossibility of
experimentally testing such multilocus estimates.

We are left with examining the validity of the assumptions of the model
and simulation results. This matter is elegantly considered by Graham
et al.,>”* who point out that the assumptions of the Balding and Nichols’
model include a steady-state population and a mutation model in which the
allelic state after mutation is independent of the state prior to mutation. Both
of these assumptions are untenable. Graham et al.*” investigate the conse-
quences of a generalized stepwise model and conclude: “[the Balding and
Nichols] theory can still overstate the evidence against a suspect with a com-
mon minisatellite genotype. However, Dirichlet-based estimators [the
Balding and Nichols” formulae] were less biased than the product rule esti-
mator, which ignores coancestry.”

Laurie and Weir finish with the conclusion:

The method of adjusting single-locus match probabilities for pop-
ulation structure [the Balding and Nichols’ equations] when mul-
tiplied across loci has been shown empirically to accommodate
the dependencies we have found for multiple loci.
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3.4.2 Admixture

Previously we have described a population genetic model designed to cope
with population subdivision. This may describe the evolutionary event where
one population continually splits into two or more populations that subse-
quently evolve separately. Human history is more complex than this and no
pretence was ever made by the authors of these approaches that they were
exact descriptions of the evolution of actual human populations.

What happens when the rate of gene flow into a population becomes very
large?

This may describe the modern evolutionary events in many populations.
Populations such as the New Zealand Maori were once much more isolated
than they are now. However, they were never completely isolated as the
Polynesians were great navigators and there is considerable evidence of
extensive trading networks across large distances in the Pacific. With the
large-scale settlement of Aotearoa (New Zealand) by Pakeha (Caucasians),
gene flow of Caucasian genes into the Maori population was initiated and
seems to have been sudden and considerable. The modern New Zealand
Maori population is thought to contain no full-blood Maori.*’!

This is a different evolutionary event to the small-scale migration treated
in modifications of the subpopulation model. It warrants separate treatment
with a different population genetic model. We will refer to this model as the
“admixture model”

Admixture in the Americas is common, with individuals having ancestors
who may be Caucasians, Native Americans, Asians, or Africans.®®® It has been
estimated that 15-25% of the African-American gene pool is derived from
the Caucasian population.®%

Chakraborty and Kidd'®! suggested that estimation of profile frequencies
using average allele frequencies and the product rule may be recommended as
the number of individuals in the population with mixed ancestry increased.
This is partially because random mating in the admixed population restores the
within-locus disequilibrium in the population and the between-locus disequi-
librium is halved after each generation.'®® However, this thinking applies more
to a future equilibrium situation and not to the transitional state that most
admixing human populations demonstrate. In the transitional state, there is
pronounced correlation between loci, whether the admixed population is
defined to exclude pure blood individuals or not. This can be demonstrated by
extreme examples such as Table 3.5. Note that in the crossed offspring, every
individual is genotype abcd and hence this population is in Hardy—Weinberg
and linkage disequilibrium. Real examples will show much milder effects.

Law*! describes an alternative and preferable model for this situation. This
model is based on the concept that alleles are independent within and between
loci conditional on the pedigree (essentially an assumption of Mendelian
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Table 3.5 Hypothetical Admixture Between Two Populations

Allele probabilities Pop 1 Pop 2
Locus 1
Allele a 1 0
Allele b 0 1
Locus 2
Allele ¢ 1 0
Allele d 0 1
Genotype probabilities aa ab bb
Pop 1 X Pop 1
cc 1 0 0
cd 0 0 0
dd 0 0 0
Pop 1 X Pop 2
cc 0 0 0
cd 0 1 0
dd 0 0 0
Pop 2 X Pop 2
cc 0 0 0
cd 0 0 0
dd 0 0 1

segregation). The model allowed for differing mating patterns, number of
parental populations, and genetic distance between populations. Comparisons
were made with the product rule estimate using average allele frequencies.

Law concludes that “as the genetic distance and the number of parental
populations increases, the difference between the match probability calcu-
lated using (the Law admixture model and) the product rule increases. The
maximum difference can be larger than (a) factor of more than 10,000 for a
six loci genotype.”

The Law model can also be compared with the estimate that would be
produced if the substructure model of Balding and Nichols were used for a
population undergoing admixture. This analysis suggests that a conservative
estimate of 6 could be used in Balding and Nichols’ equation along with the
allele frequencies from the whole admixed population. Since we are using a
model where the inbreeding coefficient 6 does not have its usual interpreta-
tion, it is better to rename it as the “equivalent inbreeding parameter g” and
to understand that we are simply seeking that value for g which gives us
approximately equal estimates when compared with the admixture model.

Law concludes that:

...there are genotypes which require an equivalent inbreeding
coefficient that is greater than the genetic distance between the
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parental populations especially when there are three or more
parental populations. However, the spread of the estimated equiv-
alent inbreeding coefficients is reasonably large as different geno-
types may be affected by admixture to differing degrees depending
on the difference in allele frequencies. Using the maximum esti-
mated equivalent inbreeding coefficients is likely to overestimate
the match probability since such an extreme estimate is most
likely (to be) due to rare alleles in one of the parental populations.
The 95th percentile of the equivalent inbreeding coefficient may
provide a more appropriate value of g.

This analysis suggests that the use of a value for g that is the same as the
genetic distance between the parental populations may be an adequate com-
pensation for admixture effects (see Table 3.6). If a more accurate estimation
is required, the Law algorithm is preferred.

3.4.3 Allelic Dropout

Occasionally the situation occurs when one allele can be reliably scored but
it is ambiguous whether or not there is a second allele. This situation is
handled using the “F” designation in the U.K. and the “N” designation in New
Zealand. Using the product rule the, say, 16, F genotype is assigned a
frequency 2p,, (strictly this should be p (2 — p,c)'*). This approximation
has been referred to extensively as the “2p rule.” Using the subpopulation

Table 3.6 Median, Upper Quartile, 90th, 95th Percentiles, and the
Maximum for q

Number of Admixture Genetic 50% 75% 90% 95% max
Parental Proportions  Distance
Populations
2 0.03 0.01 0.02 0.02 0.02 0.04
Equal 0.05 0.01 0.02 0.02 0.03 0.06
0.10 0.03 0.04 0.05 0.06 0.10
0.03 0.01 0.01 0.02 0.02 0.05
Unequal 0.05 0.01 0.02 0.03 0.03 0.06
0.10 0.04 0.05 0.07 0.08 0.13
3 0.03 0.02 0.02 0.03 0.03 0.05
Equal 0.05 0.03 0.04 0.05 0.05 0.08
0.10 0.08 0.10 0.12 0.14 0.23
0.03 0.01 0.02 0.02 0.03 0.05
Unequal 0.05 0.02 0.03 0.04 0.05 0.08
0.10 0.05 0.07 0.09 0.10 0.14

Reproduced with the kind permission of Dr. Law.
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Table 3.7 Conditional Probabilities for the “6” Designation Assuming Two
Different Conditioning Situations

Genotype Suspect “2p Equivalent” “pie(2 — pg) Equivalent”
of stain
160 16,16 20 +(1-0)p,, 30 +(1-6)p
+ — 2 J— 16
22010~ Oy 1(1+ 99)1716 10 ( 1426 )
that is always less than the 2p equivalent
20+(1 — 0)pye 0+(1-0)py, (2_ 260 +(1—0)p6
1+6 1+6 1+26
16, x that is always less than the 2p equivalent

correction, the probability assignment depends on the genotype of the sus-
pect and any other conditioning genotypes. To demonstrate this, we condi-
tion only on the suspect’s genotype below, and the extension to conditioning
on additional genotypes follows by the same method (see Table 3.7).
However this approach does not adequately model drop out. It is preferable
to use the models discussed in Chapter 8.

3.4.4 Arbitrary Limits

Foreman and Evett®!! have suggested that “case specific match probabilities
should not be calculated as a matter of principle.” Instead they suggest the use
of “general figures.” Below we give the calculated figures for the most com-
mon profiles for an SGM™ 10-locus match and the suggested reported value:

1 in 8300 for siblings which they suggest reporting as 1 in 10,000.

1 in 1.3 million for parent/child reported as 1 in a million.

1 in 27 million for half siblings or uncle/nephew reported as 1 in 10
million.

1 in 190 million for first cousins reported as 1 in 100 million.

1 in 2.4 billion for members of the same subpopulation reported as 1 in
a billion.

1 in 5 billion for unrelated persons also reported as 1 in a billion.

This is an extension of an older Metropolitan Police Forensic Science
Laboratory policy of truncating match probabilities at 1 in 10 million.?2
This approach is or has been accepted practice in the FSS and at Forensic
Alliance in the U.K. Foreman and Evett motivate their approach by stating that
“the independence assumptions are sufficiently reliable to infer probabilities
that are of the order of 1 in tens of millions” but that SGM * case specific match
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probabilities would “invoke independence assumptions to a scale of robustness
which we could not begin to investigate by statistical experiment. ...

I admit the pragmatism and intuitive appeal of this approach; however, it
really is a long way away from my own philosophy. My objections would
range from the practical to the philosophical and will be mentioned briefly
here.

e The relative reliance upon independence assumptions and Mendel’s
laws differs markedly between the calculations for siblings to the use
of the product rule. For siblings, most of the procedure leading to a
probability assignment is based on the assumption that alleles assort
in a Mendelian fashion and only to a very small extent on independ-
ence assumptions within a population. Hence these calculations are
much less affected by uncertainties about independence.

e If we can support probability assignments of 1 in tens of millions
using Tippett testing (see Chapter 5) but not lower, how are we to sup-
port assignments of 1 in a billion?

e The probability assignments that are advocated in this chapter are
really based on belief in a model. They are not based on independence
testing or Tippett tests at all.

e A limit of 1 in a billion is not likely to induce further refinements of
the model, or simulate further sampling and study.

e What would we do if we added more loci?

In general, I would vastly prefer to assign a probability, whatever it may be,
without a limit but to accept and make explicit that very low probabilities
cannot be verified experimentally.

3.4.5 Same Source?

The reasonable question has arisen: when can a DNA profile match be consid-
ered proof that two DNA samples have come from the same source? The FBI
announced a policy on this in November 1997.41° The term “same source” is
used in this discussion to describe this situation as it best approximates the
underlying forensic question. Other terms such as “uniqueness,” “source
attribution,” and “individualization” have been used elsewhere. This has led
to considerable discussion of the use of these terms, which has also produced
useful philosophical debates about their meaning. I cannot do justice to these
arguments and simply direct the reader to the well-written work by
Champod and Evett'”® on the equivalent subject in the area of fingerprints
(see also the response by McKasson>** and the more balanced commentary by
Crispino®* or the excellent writing of Inman and Rudin**).
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The question of whether we can ever base a conclusion of common source
on a probabilistic argument has also been examined, most notably by
Stoney,”**7% Champod,'®® and Evett et al.?®° In the DNA context we can see
that, using the current population genetic models, the more loci we add, the
smaller are the match probabilities produced by our model. There are three
important points with regard to this. First, that the estimated match proba-
bility derived from the model can approach zero but never actually equal
zero. Second, that estimates of very small match probabilities arising from
models cannot be directly tested. They are as reliable or unreliable as the
models themselves. Third, we recognize that we are considering an extreme
extrapolation using these models. We are not operating near the center of
their prediction range where they are more testable and tested. The models
have been extensively tested in this central range and there is some consider-
able reason to believe that they are robust there, but they are still models and
the probabilities produced by them are still untestable.!

To conclude the same source from a probabilistic model, someone has to
decide that the probability estimate produced by that model at this extreme
end of extrapolation is sufficiently reliable that it can be trusted and the
probability is sufficiently small that it can be ignored. Stoney’* terms this the
“leap of faith.”

Inman and Rudin*® describe this situation, “at some subjective point,
most qualified authorities would agree that, for practical applications, the
likelihood ... is so small that it can be ignored.” In the text following this
quote, they very clearly set out the subjective nature of this decision.

There has been considerable argument about whether a scientist should
do this or leave the matter to the court. Certainly in England and Wales, the
court direction appears to be that the scientist should not be the person who
decides whether the probability is small enough to ignore.?!

Inman and Rudin**’ agree:

It is the purview of the fact finder to draw inferences from cir-
cumstantial evidence, and, of course, potentially individualizing
physical evidence is circumstantial evidence. However, there are
pieces of information that only science can legitimately provide to
the fact finder, such as population frequencies, transfer and per-
sistence data, and limitations of the evidence and the test.

It is unclear whether the scientists should even be the persons who decide on
the reliability of the model. It is regrettable to me that, as we add more loci,

we extrapolate the model further and further, but little new experimental

I To quote Ian Evett: “is it rational for me to assign such a small match probability?”
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data into the reliability of the model at this extreme are being produced.
Robertson and Vignaux®® complained about a similar lack of fundamental
research in the area of fingerprints:

In these cases it seems that the expert is giving evidence of iden-
tity when, and only when, in his judgement the probability of get-
ting the evidence assuming the alternate hypothesis is so small
that it does not matter what the numerator or even the prior odds
are. At what point this is reached seems to be a matter of judge-
ment and experience and there most writers on expert evidence
are content to let the matter rest. This may have had the unfortu-
nate effect of removing the incentive to carry out the basic
research to build appropriate models. Intellectually, this is unsat-
isfactory and further work is required to understand the processes
involved in making these decisions. In the meantime the proposal
that all forms of scientific evidence be given in the form of a like-
lihood ratio is a counsel of perfection.

Returning to DNA profiling, Budowle et al.'?* make the reasonable distinction
between the judgement in one particular case and the judgement in all poten-
tial cases. We could imagine a criterion that was considered reasonable in an
individual case and Budowle et al. suggest “99% confidence.”’ They go on to
suggest that this may correspond with the term a “reasonable degree of scien-
tific certainty.” This term has been selected because of its legal implications.

From the medical model has come the phrase “to a reasonable sci-
entific certainty.” Both the judicial system and some experts have
latched onto this phrase as a convenient way to render an opinion
as fact. As convenient as it might be, it is a non sequitur. As we
have repeatedly discussed throughout this book, the notion of sci-
entific certainty does not exist. In our opinion, scientific experts
should refrain from resorting to that phraseology in expressing
their opinions.*?’

Budowle et al’s method stems from a suggestion by NRC II who discussed the
use of the formula p, =1 — (1 — a)"N, where p, is the match probability, N is
the size of the suspect population, and 1 — « is the confidence interval. They
give an example using a 99% confidence interval (1 — &) = 0.99 implying o =
0.01 and N = 260,000,000, the approximate population of the U.S. This suggests

i This term needs thought. There is a distinction between the use of the words confidence
and probability.
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a match probability of p, = 3.9 X 107" It is suggested that the estimated p, be
decreased by a factor of 10 to provide additional conservativeness. Weir®% cor-
rectly points out the flaws in this approach which unreasonably assumes inde-
pendence of trials.

Also included in the original publication is a brief mention of relatedness.
In particular, they recommend typing of relatives. The typing approach to
dealing with relatedness is admirable, but is applied only rarely in the U.S.,
the UK. or New Zealand. In the absence of typing, they suggest that the
match probability for brothers be calculated or that calculations should be
performed (when required) for three classes of people: unrelated, subpopu-
lation members, and relatives. They do not give a specific formulation of how
to amalgamate the contribution from relatives and unrelated people, direct-
ing the reader, correctly, to Balding.**

This division of the population into unrelated, subpopulation, and related
persons is akin to the coarse division undertaken by Balding. The unifying
formula suggests that it is the weighted sum of all three contributions that
should be considered and not simply one or the other of these probabilities.

The unifying formula will assign a posterior probability to the hypothesis
that the suspect is the donor of the stain material. This appears to be the
probability that is desired in “source attribution.” However, the unifying for-
mula will require an assignment of prior probabilities and this cannot be
avoided. This may appear as a fatal flaw and indeed it is worrying. It is cen-
tral to the concerns about the concept of “source attribution” and “a reason-
able degree of scientific certainty.” We see therefore that any approach to
assigning a posterior probability involves a prior. This is, of course, not an
original insight and was reported as long ago as 1983%7 in forensic science
and much earlier in other sciences.

There is an interesting interplay between the prior for the suspect and the
probability that someone else possesses this profile. Balding and Donnelly*’
explained this:

Finally, we remark that the magnitude of the size biasing effect...
is related to the prior distribution. Intuitively, the effect occurs
because, under the hypothesis of innocence, two distinct 7-bear-
ers have been observed. Such an observation stochastically
increases the number of 7-bearers, thus decreasing the strength of
the evidence against the suspect and decreasing the probability of
guilt. Decreasing the prior probability of guilt increases the chance
that the suspect and criminal are distinct, hence increasing the

k This is the term used to describe the people carrying the matching profiles: in this case,
the defendant and the true perpetrator.
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effect of size biasing. (David Balding and Peter Donnelly quoted
with the kind permission of CRC Press)

This effect can easily be illustrated. Suppose that we have a certain profile at a
crime scene and that this matches a suspect. But the suspect, for whatever rea-
son, cannot have been the donor (his prior is 0). Then the probability that
someone else possesses this profile goes from whatever value it was before to 1.

Consider a crime scene DNA profile which is thought to be so rare
that an expert might be prepared to assert that it is unique.
Suppose that, for reasons unrelated to the crime, it is subsequently
noticed that the crime scene profile matches that of the
Archbishop of Canterbury. On further investigation, it is found to
be a matter of public record that the Archbishop was taking tea
with the Queen of England at the time of the offense in another
part of the country. (You may consider your preferred religious
leader, beverage, and head of state in place of those named here.)
A reasonable expert would, in light of these facts, revise downwards
any previous assessment of the probability that the crime scene
profile was unique. However, this is just an extreme case of the
more general phenomenon that any evidence in favour of a defen-
dant’s claim that he is not the source of the crime stain is evidence
against the uniqueness of his DNA profile.** (David Balding,
quoted with the kind permission of Science and Justice)

The supposition that the Budowle et al. approach is necessarily conservative
is of concern. An appeal is often made at this point to the increase in the fre-
quency assignment by a factor of 10 and the relatively large value chosen for
N (260 million). The factor of 10 was intended to compensate for potential
sampling error or subpopulation effects or both. Examination of the unify-
ing formula suggests that it may be inadequate especially when many loci are
considered. It is also likely to be inadequate to compensate for both subpop-
ulation effects and sampling error, and certainly cannot compensate for the
effect of uneliminated brothers.

Budowle et al. make it clear that this approach is designed for a case-by-
case application. If we misapply this method to the question of “are such pro-
files unique in the U.S.,” we will soon be embarrassed. There are 3.38 X 10'°
pairs of people in the U.S. If we use the estimated match probability sug-
gested for the 99% confidence interval p, = 3.9 X 107! and assume that the
factor of 10 recommended as additional conservativeness was included, then
P, = 3.9 X 1072 If this match probability is exactly correct (recall that it is only
an estimate), then there will be an expectation of about 132,000 matching pairs
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Table 3.8 Size of Databases That Give the Expectation of One Match

6 = 0.00 6 =10.03
U.S. African-Americans 43,000,000 11,000,000
U.S. Caucasians 34,000,000 9,300,000
U.S. South-Western Hispanics 21,000,000 5,900,000

of unrelated people in the U.S. In fact, a database of about 716,000 profiles all
with a match probability of p, = 3.9 X 1072 would have an expectation of
about 1 match. In reality, full CODIS profiles produce match probability esti-
mates less than this. Bruce Weir®** estimates that we would expect a full
CODIS match among unrelated people if the databases were of the size
shown in Table 3.8.

Despite the careful words in the paper of Budowle et al., my suspicion is
that it will be read as providing a declaration of uniqueness among all people
and hence such an adventitious match will cause public embarrassment.
Certainly the view is developing among the public that DNA profiles are
unique.

The situation is probably slightly worse when we consider relatives. The
expected number of matches when relatives are included in the population or
database will be larger. It is likely that there are a number of pairs of persons
matching at the 13 CODIS loci in the whole U.S. population of 260 million.
Many of these matching sets will be brothers. The chance that two of these
are involved in the same crime is small, but the matches will eventually be
revealed as the sizes of databases increase and will embarrass forensic science
if we have declared such profiles unique.

Findlay and Grix*” have studied juries and report a strong preexisting
prejudice that is pro-DNA. It is likely that many jury members wrongly
believe that all DNA findings represent certain identification. It would be
worrying to foster this belief.

My feeling is that we would be unwise to conclude the same source
because it is not our place to do so. If we do so, I would prefer the standard
to be much higher than previously suggested AND I would like us to make
transparent that we have subjectively decided to round a probability ESTIMATE
off to zero. On balance I cannot see much positive coming from a policy of
declaring a common source.

3.4.6 Animal and Plant DNA

We are starting to see the use of animal DNA in criminal proceedings (for an
excellent review, see Halverson*®) when, say, blood from a shot dog may have
been transferred to an offender. Animal and plant DNA is extensively used in
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wildlife and conservation science to investigate illegal hunting and other risks
to protected species. The population genetic arguments given above apply to
all species, except that in many cases subpopulation effects and inbreeding
are more severe outside humans.>?

3.5 A Complex Case Example — DNA Evidence and
Orenthal James Simpson!

In June 1994, O.J. Simpson was 47 years old. He was one of the most
respected sportsmen in the U.S. and he had just been charged with the dou-
ble murder of his estranged wife Nicole Brown Simpson and her friend
Ronald Goldman. This precipitated a trial with media coverage unprece-
dented in U.S. history. DNA evidence was about to be center stage.

In his early sporting career, O.]. had been the star running back for the
University of Southern California, winning the Heisman Trophy in 1968. His
professional career was with the Buffalo Bills until his retirement in 1979.
That same year his first marriage to Marguerite Whitley, his teenage sweet-
heart, ended. The couple had three children, a son Jason, daughter Arnelle,
and a second daughter, Aaren, who accidentally drowned at the age of two.

O.J. had met Nicole Brown in 1977. She was aged 18, he 30 at the time.
Nicole had been born in Frankfurt, Germany to a German mother and a U.S.
military serviceman father.

0.J. was inducted into the football hall of fame in 1985, his first year of
eligibility.*”® He had married Nicole the same year and the couple later had
two children: Sydney born in 1986, and Justin in 1988. However by 1992,
Nicole had left O.]. after what was presented at the trial as a history of abuse
and violence. In 1993 police were summoned to Nicole’s residence after the
now estranged O.]. had kicked in the door, screamed obscenities, and had
beaten her Mercedes-Benz car with a baseball bat. Official records listed 62
separate incidents of physical and mental abuse by Simpson toward his wife.
One of these incidents occurred in 1985 and involved Detective Mark
Furhman, who was to feature prominently later in the investigation and trial.
Furhman later recalled that this incident was “indelibly pressed” into his
memory.”"’

At 10:20 PM on Sunday, June 12, 1994, there was the sound of a dog bark-
ing at 875 South Bundy Drive in the Brentwood district of LA. Shortly before
midnight, Akita, Nicole’s dog, paws splashed with blood, had led neighbors
to the scene of the murders. Nicole, aged 35, was face down with her throat
slashed almost through. To her right lay the body of a male later identified as
Ronald Goldman, aged 25, a waiter at the fashionable Mezzaluna restaurant.

I This section was written by John Buckleton and Christopher Triggs.
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Nicole and Ronald had known each other for six months, but there was no
suggestion of a romance between them. On the night of the murders, he had
been delivering Nicole’s mother’s reading glasses, which had been left in the
restaurant. Next to the bodies were keys, a blue knit cap, a beeper, a blood-
spattered white envelope, and, nearer to Nicole’s body, a bloodstained left-
hand leather glove. Bloody shoeprints and spots led from the bodies toward
the back of the property.

This book deals largely with the interpretation of DNA after it has been
analyzed in the laboratory. It neglects the huge and vitally important fields of
evidence collection, recording, and handling. This section seeks in a small
way to redress this imbalance. There have been understandable complaints
that we forensic scientists have not learnt the lessons necessary from this and
other similar cases.

The autopsy was performed on June 14 by Dr. Irwin Golden. It showed
injuries to both of Nicole’s hands, which suggests that she had defended her-
self. From the cut to the throat, the pathologist concluded that the attacker
was right handed.

Mr. Goldman had been clubbed from behind and stabbed 19 (or 28%%)
times.

White towels had been used by the detectives to soak up blood**® to allow
easier approach to the bodies. This is an unwise practice.™

Detective Mark Furhman was the 17th officer to sign in at the scene.
After initial inspections, instructions had been issued that O.J. should
be told personally of the tragedy. Furhman had volunteered. He knew
Mr. Simpson’s house was two miles from Nicole’s from the previous visit.
At the trial, the defense claimed that Mr. Simpson was “targeted” by the
police. However, it would be normal for an ex-husband to be a suspect
early in an investigation and this would not be an issue as long as an open
mind was maintained. Detective Vannatter, the head of the team of detec-
tives at the scene, has subsequently insisted that O.]. was not being treated
as a suspect at this time. However, events suggest that he was. For instance,
the Goldmans were not informed personally of their son’s death although
O.J. had been. Forensic staff were initially called to O.J’s Rockingham
house. But a valid complaint would relate to the sending of any person-
nel from one crime scene to another potential scene. The issue of cross con-
tamination would immediately arise and should have been stringently
guarded against. If the same staff must go to both scenes then strict precau-
tions must be taken, such as overalls (clean or disposable), overshoes, and
fresh gloves.

m We use the italics here to signify personal commentary as opposed to the historical
narrative.
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Two cars containing detectives went to O.].s residence at the junction of
Rockingham Avenue and Ashford Street. Outside, parked badly, was
Mr. Simpson’s 1994 white Ford Bronco. Detective Furhman pointed out to a
fellow officer what appeared to be blood inside the Bronco near the driver’s
door handle. This supposedly represented reasonable cause and so Detective
Furhman climbed over the wall and unlocked the gate. If this evidence repre-
sented probable cause, then this was now a crime scene and different personnel
should have been summoned. Dr. Henry Lee, a criminalist employed by the
defense, presented arguments that Furhman must have opened the vehicle**®
since the blood was not visible with the door closed.

There had been no response from the front door. At the back of the house
were three guest bungalows. Brian “Kato” Kaelin, a friend of Nicole’s, was
staying in one. Arnelle Simpson, O.]’s daughter, in another. She let the offi-
cers into the main house. No one was present. O.]. Simpson had taken the
11:45 flight to Chicago to attend a convention of the Hertz Rental Company
scheduled for the next day. He appeared in advertisements for this company
and his presence at this conference had been expected. The flight had been
booked well in advance.

Mr. Kaelin was then interviewed. He and O.]. had been together for dinner
at a McDonalds in Santa Monica and had returned to the house at 9:40 PM.
At 10:45 Kaelin had heard three banging noises from the rear of the building
near an air-conditioning unit. He went outside to inspect the source of these
noises and had seen a limousine parked outside the gate. This was the vehi-
cle previously ordered by Simpson to take him to LA airport to catch the pre-
booked flight to Chicago. A few minutes later O.]. had appeared and Kaelin
had helped Allan Park, the chauffeur, to load some bags into the vehicle. O.].
had insisted on holding onto a small black bag.

Allan Park later testified that he had been instructed to arrive at Rockingham
no later than 10:45. He had arrived early and first called on the buzzer at 10:40.
He received no answer. At 10:50 he spotted a tall, well-built, black man who had
hurried up to the house from the Rockingham gate. He had tried the buzzer
again and had spoken with Simpson who came down 10 minutes later carry-
ing a bag. Park testified that Simpson was sweating and that he requested that
the air-conditioning in the limousine be turned on. Park also testified that it
was a cool night.

Furhman returned to the house with the news that he had found a blood-
stained right glove in a dark narrow walkway between the bungalows.*® He
had already started the search of this secondary scene. There were blood spots
leading out of the west gate into Rockingham. Other red marks were present
inside the Bronco on the driver’s door and the console near the passenger’s
side. Another trail of blood spots led up to the front door of the house (see
Figure 3.10).
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Figure 3.10 The layout of part of Mr. Simpson’s Rockingham residence.
Reproduced with kind permission from Professor Douglas Linder, University of
Missouri Kansas City School of Law.

Detective Vannatter had instructed Furhman to drive to Bundy to check
whether the glove at Rockingham matched the one beside the bodies.
Furhman did this and then returned to Rockingham. Later the defense would
raise the suggestion of the deliberate planting of evidence. These two episodes
certainly create the potential for cross contamination and as such these actions
were inviting criticism.

At this time the detectives had called O.]. at his hotel in Chicago. They
reported that his reaction to the news was puzzling, in that he did not ask for
details of the deaths. Highly subjective comments like this are of debatable value.
They are unlikely to be admissible in court, nor should they be admissible.

At 07:10 on June 13, Dennis Fung, an LAPD criminalist, and his assistant
Andrea Mazzola, a trainee, arrived at Rockingham. Of subsequent interest in the
trial was that they were called to the secondary scene first and not the primary
scene at Bundy. Not every laboratory has the resources to send different teams to
different scenes. Many forensic scientists have examined multiple scenes from the
same case.” However, a policy of different personnel for different scenes is clearly
advisable especially if one is the crime scene and the other a suspect’s domicile.

At the murder scene a blanket from elsewhere at the scene had been
thrown over Nicole’s body, presumably by detectives, to protect her from
photographers. The motivation was to allow Nicole dignity in death, but the

» John Buckleton admits that on more than one occasion he has examined multiple scenes
of the same case.
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evidential implications had not been well thought through. Many scene of
crime investigators now carry sterile plastic coverings for purposes such as this.

Later that day O.J. returned from Chicago. He was detained and led to
Bundy in handculffs. This was recognized as improper treatment, and he was
released. Detective Vannatter, while unlocking the handcuffs, noted that the
middle finger of Simpson’s left hand was bandaged. Simpson — reported by
detectives as confused — stated that he had cut himself in LA while retriev-
ing his cellphone from his Bronco vehicle. He had reopened the wound in
Chicago on a broken glass in the sink. When his hotel room at O’Hare Plaza
Hotel was checked, a broken glass was present in the bathroom sink.

At this time, a blood sample had been taken from O.]. and passed to
Vannatter and then to Fung at Rockingham. It has been questioned why the
reference sample was taken to the scene and not directly to the laboratory. Fung
and Mazzola had by now bagged and tagged a pair of navy blue bloodstained
socks found in the master bedroom at Rockingham.

The 90-minute chase of O.]’s Ford Bronco on the 17th of June was viewed
by an estimated 95 million people. The vehicle was televised driving slowly
down LA freeway 405 followed by numerous police vehicles. Al Cowlings,
0.J’s friend and former teammate, was at the wheel. Simpson had a .357
Magnum pressed to his own head in the back seat. In a bag were $US8000,
his passport, a fake moustache, and beard. Earlier that day he had failed to
appear for arraignment on charges of double murder. Eventually the vehicle
had driven sedately back to Rockingham. The following day Mr. Simpson was
charged with double murder.

3.5.1 The Evidence

Hairs had been found on Mr. Goldman’s shirt and inside the knit cap. These
were described in evidence as consistent with having come from O.]. Hairs
on the glove found at Rockingham (the Rockingham glove) were consistent
with having come from Nicole and Ronald.

Fibers in the Ford Bronco matched fibers on the Rockingham glove and
the Bundy knit cap. Blue/black cotton fibers on Ronald’s shirt matched the
socks that had been found in O.Js bedroom. Cashmere fibers from the knit
hat matched the glove lining. One glove with this type of lining was at the
scene anyway, so the finding of the fibers was not per se a connection between
Bundy and Rockingham.

The dark brown leather, cashmere-lined, size extra-large gloves had been
manufactured by Aris Gloves. This style of glove had only been sold by
Bloomingdale’s in New York City. Between 1989 and 1992, 240 pairs had been
sold, two of these, on December 20, 1990, to Nicole. Photographs were pro-
duced of Mr. Simpson wearing gloves of this type in 1993 and 1994. Richard
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Rubin, the vice president and general manager of Aris Gloves, testified that
he had measured Mr. Simpson’s hands as size extra-large.

The police had surmised that the single set of shoeprints at Bundy
implied a single killer. The shoeprints showed a waffle-type pattern and were
later identified as Italian-made Bruno Magli shoes selling for US$160. They
had been sold in 40 stores across the U.S. and 300 pairs of size 12 shoes had
been sold in total. Simpson wore size 12 shoes, but our literature search has
been unable to ascertain if the prints at the scene were definitely identified as
size 12. Simpson later denied ever owning a pair of Magli shoes. However, a pho-
tograph was eventually produced of him wearing this type of shoe at a stadium
in New York in September 1993.

Henry Lee visited the Bundy scene 13 days after the murder. He found
extra shoeprints on a piece of paper, an envelope, and in photographs of
Goldman’s blood-soaked jeans. This undermined the prosecution’s single-
killer premise. William Bodziak demonstrated, using photographs taken on
the 13th of June, that the extra shoeprints were not there on the day after the
murder. Presumably they had occurred after the scene was released. Lee’s ver-
sion of these events does not appear in his book (but he did present photo-
graphs of the shoeprints and marks). He has offered to provide his view by
correspondence, but it was not available at the time of writing. Without having
heard his response, it would be unwise to draw a conclusion.

The DNA profiles of 45 bloodstains were typed and subsequently pre-
sented in court. In many cases, these stains were divided and analyzed by two
or three separate laboratories. Only the most superficial summary of the
results of the typing is presented here. The most important results are con-
sidered below.

DNA on the Rockingham glove was consistent with being a mixture of
DNA from Mr. Simpson and the two victims. In total, 11 subsamples from
this glove were typed. The most extensively typed subsample, item 9:G3,
taken from the inside back of the ring finger is discussed in detail. This sub-
sample was typed at eight RFLP and two PCR loci and was found to match
Ronald Goldman. Other subsamples on this glove were found to match O.].
Given the subsequent “planting” defense, the presence of blood matching O.].
on the glove is of interest.

Samples of blood, items 47-50 and 52, had been taken from what became
known as the Bundy walk. These matched O.]. The samples were taken by
Fung and Mazzola on the 13th before O.Js blood had been sampled. The first
PCR result became available on the 14th. Tampering, if it occurred, had to
occur in this window. The five control samples for this batch of items had
been unaffected by contamination. Item 52 was the most fully typed, por-
tions of the analysis having been done at one or more of the Los Angeles
Police Department laboratory, California Department of Justice, and
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Cellmark. Eventually this item was typed at a total of five RFLP and seven
PCR loci. The match probability for the PCR loci was estimated as 1 in
240,000 and 1 in 170 million for the VNTR loci. To many this was the
strongest evidence.

The defense argued that the items had been incorrectly stored in plastic
bags in a hot truck. The parent DNA had completely degraded and the result
matching O.]. had come from contamination in the laboratory, allegedly
from Mr. Yamauchi’s gloves as he had prepared the samples. The defense fur-
ther argued that the control samples could not be relied on in such a labora-
tory. A defense explanation of the RFLP results was required, but never given.
The RFLP technique requires much more DNA to obtain a result, typically
from a stain about the size of a quarter; hence, to explain O.]’s profile being
present, it is necessary to posit gross contamination. Spot 49 (but not 52) in
the sequence of five spots had also been tested by conventional serological
methods. These would also require the grossest of contamination to register
a false result. The match probability for these serological tests was approxi-
mately 1 in 200.

The blood on the Rockingham socks was consistent with having come
from Nicole. This blood was typed at 14 RFLP and 7 PCR loci. The RFLP
match produced a match probability°® estimate of 1 in 4.4 billion for the
Cellmark RFLP set and 1 in 4X10'° for the California DOJ set. The PCR
result was 1 in 45,000. The two RFLP numbers cannot be simply multi-
plied as they share two loci but, as Weir points out, numbers are barely
necessary.

The defense presented considerable evidence to support their “planting”
suggestion. The blood on the socks had not been noticed by Fung when he
collected them on June 13, by the defense when they examined them on June
22nd, nor by an LAPD criminalist doing an evidence inventory on June 29.
The defense presented evidence that EDTA, a substance used as a preserva-
tive for the blood sample tubes drawn from people, was present in the sam-
ple of blood recovered from the sock, suggesting that it may have come from
Nicole’s reference sample. The FBI disputed this finding.

Stains were collected from the rear gate at Bundy on July 3rd and
matched O.J. Fung had presumably overlooked these. These were typed by
the LAPD using RFLP producing a 1 in 57 billion match probability and by
the California DOJ using PCR producing a 1 in 520 match probability. Due
to the late collection of this sample, it came under attack as potentially
planted. The question of whether these stains contained EDTA and why they
were in better condition than the samples taken much earlier was hotly
debated.

° Quoting the most common result calculated from the five databases used.
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Stains were collected from the Bronco on June 14 and later on August 26,
over two months after the murders. These stains were consistent with having
come from O.]. Simpson, Nicole, or mixtures of blood from O.]. and Nicole,
from O.]J. and Ronald, or from all three. Various defense arguments weakened
much of the probitive value of these findings. Had the stain recovered from
the partial shoeprint on the carpet in the Bronco which matched Nicole been
transferred by Furhman who had travelled to Rockingham from the Bundy
scene? The controls had failed for item 31, which was consistent with having
come from O.]. and Ronald. According to the defense, the stains collected on
August 26 had been planted and this supposition was bolstered by the fact
that a theft had occurred from the vehicle while it was in police custody, rein-
forcing the view that it was not securely stored.

Match probability statistics were produced for each of these bloodstains
and many others.?3>%38 One of the authors, John Buckleton, was working with
Bruce Weir at this time.

My part in the saga involved the statistics and the statistics them-
selves were barely central. Weir and I had advised Cellmark on their
data and processes and they presented the statistics we recom-
mended. Weir had presented evidence himself. I was his assistant
and my part was repeating his calculations, in the U.S. initially and
later in the U.K,, after I relocated due to contract obligations. I am
the colleague he refers to later, along with Richard Pinchin, Steve
Knight, and Ian Evett. I reproach myself for not being in LA and
being of more use in the checking.

At this time, match probabilities were still calculated using the product rule
except for the “Cellmark wrinkle.” This was used at one locus that had failed
independence testing. At this locus, the observed genotype probabilities were
used. A 99% confidence interval for the match probability was estimated by
bootstrapping. All the match probabilities were very small.

Should we just say that it was O.Js blood at Bundy or Nicole’s
blood on the sock? Weir and I debated it. In the end we didn’t.
This moral high ground led to a complex report. I still find it hard,
today, to amalgamate the information from all the different items
and different laboratories. At the time we were unsure whether or
not we should multiply the results for different loci from different
laboratories where the databases and protocols were different and
where independence testing of the various loci between the differ-

ent laboratories had not been done. We were expecting a severe
Challenge 242,415,457,583,767

© 2005 by CRC Press



I would do things differently now. I routinely use the subpopulation
correction and appropriate values for 8.1 would still apply sampling
error estimation but use the Bayesian posterior rather than the
bootstrap. I have no qualms about multiplying results from differ-
ent laboratories where independence testing had not been done.
This latter is largely because I have abandoned any faith that inde-
pendence testing informs at all about the population genetic model.

3.5.2 The Trial

The trial lasted 133 days, produced 50,000 pages of transcript, called 126 wit-
nesses, and produced 857 pieces of evidence. The defense team, eventually
dubbed the “dream team,” included Robert Shapiro, Barry Scheck, Johnny
Cochran, Peter Neufeld, and William Thompson. Appearing for the prosecu-
tion were Marcia Clark, Christopher Darden, Rockne Harmon, and George
“Woody” Clark.

The defense hired a jury consultant who found that black, middle-aged
women were Mr. Simpson’s strongest supporters. Of the 200 African-
Americans polled, 44% stated that they had been treated unfairly by the
LAPD at least once.” The jury included eight blacks, most of them middle-
aged women.

Forensic scientists should not allow themselves a view on guilt or inno-
cence. But some of the evidence looked strong. The defense soon under-
mined much of that.

Detective Furhman was questioned about racism:

Bailey: “You say under oath that you have not addressed any black person
as a nigger or spoken about black people as niggers in the past 10 years,
Detective Furhman?”

Furhman: “That’s what I'm saying.”

Later, on September the 5th, a 10-year-old set of tapes made by a North
Carolina writer researching racism in the LAPD was played. Furhman could
be heard using the word “nigger.” Worse, the tapes were littered with gloating
admissions that he and other officers had often planted evidence on suspects
to secure convictions. There were 42 instances of “nigger” and 18 instances
admitting participation in police misconduct in order to incarcerate crimi-
nals, including planting evidence. Furhman bragged about stopping interra-
cial couples for no reason, he spoke of his desire to put black people in a pile
and burn them, and that he was against having women in the police force
because they would not engage in cover-ups.”” On September 6, Furhman
invoked his 5th Amendment rights.
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U.S.A. Today and Gannett News Service had previously published a sur-
vey from legal and media databases itemizing 85 instances since 1974 of pros-
ecutors knowingly or unknowingly using tainted evidence.>

Furhman was not the only detective to come under scrutiny. Detective
Vannatter’s statement that O.]. was not a suspect on the night of the 12th or
the morning of the 13th stretches credibility. He also stated that he had
entered Simpson’s home without a warrant because of the risk that there was
another victim. Vannatter had access to the blood sample from O.]. taken on
the 13th that had been handed to him. He had carried it around rather than
logging it as police procedures required.>”” The suggestion that O.]s blood was
planted was strengthened by the “missing” 1.5 ml. Thano Peratis had testified
that he had drawn 7.9-8.1 ml. In all, 1 ml was used for DNA testing and the
toxicology department measured the remainder on receipt in their section as
5.5 ml. Peratis, by this time too ill to come to court, altered his testimony in a
video. This process denied the defense the right of cross examination.

Mr. Fung’s testimony lasted three weeks. He had 11 years of forensic expe-
rience and had examined 500 scenes. He was questioned about the blanket
used to cover Nicole (there was never a suggestion that he had personally
placed it over Nicole). Could hairs from the blanket have transferred onto
Nicole? He was shown a crime scene photo with his hand ungloved when it
should have been gloved. He was questioned about taking only representative
samples from the Bronco and the incorrect placing of blood samples into
plastic bags where they could deteriorate.

Mazzola, Fung’s trainee assistant, was cross examined by Neufeld. She had
collected most of the blood samples without supervision. Videotape showed
her resting a hand on a dirty footpath, wiping tweezers with a dirty hand, and
dropping several blood swabs.

Evidence was produced that the blood on the socks had occurred by
“compression transfer,” implying that the blood had not got there while O.].’s
foot was inside the sock. There was also the disputed finding of EDTA in the
blood from the sock.

Finally, Darden asked Simpson to put on the gloves. To guard against con-
tamination and hazard to Simpson, he donned latex gloves, and then the
leather glove. Simpson stated: “They’re too tight.”

The RFLP technology was not seriously questioned by the defense.

Mullis, the Nobel Prize winning inventor of PCR, stated that he felt the
technology was not ready for forensic application. Listing his interests as drug
taking, womanizing, and surfing, he was eventually not called by the defense
but other witnesses more than adequately spoke of the contamination risks.

Alan Dershowitz, who advised the defense, stated on TV that the probabil-
ity of a known wife beater actually killing his wife was very small (1/10,000).
This statement is somewhat misleading as pointed out by Good.***%! Let
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B: the event that a man beats his wife.
M: the wife was murdered.

The statistic quoted on TV was close to Pr(M | B) = 0.0001.

But the actual evidence is that Mr. Simpson beat his wife AND his wife was
murdered. We are interested in the probability that Mr. Simpson is the mur-
derer GIVEN that Nicole was murdered AND Mr. Simpson had beaten her. Let
the event that Mr. Simpson is the murderer be G. We require Pr(G | M, B),
which is quite different to Pr(M | B). Hibbert*® and Good***! give this as
approximately 0.33 revised later to approximately 0.9.

Professor Weir had either advised others or produced much of the statis-
tics himself. In the end, working in his hotel room he produced three and
four person calculations for the mixtures in the Bronco.

The “hard times” referred to in the title of this column apply to
what happened next. The time for my scheduled testimony was
moved forward two weeks, and I was called to Los Angeles before
completing my mixture calculations. I was able to extend my
computer program there to handle three unknown contributors
instead of the two that had ever been considered before, but was
unable to fax my results to colleagues in England for checking
because the hotel’s computer would not recognize a change in
area codes in the United Kingdom. On the afternoon of Thursday
June 22, Judge Ito ordered me to perform additional calculations
for four unknown contributors before I could testify the follow-
ing morning! Another late night session with my lap-top com-
puter in a hotel room, and no opportunity for careful checking.
In my written report to both prosecution and defense it was obvi-
ous that I had left out a term in the calculations — a term that I
had correctly included in the calculations I did in my office dur-
ing normal waking hours. Reviewers of a scientific paper would
have noted such an inconsistency and simply called for a correc-
tion, but opposing lawyers in a trial are free to use such errors
to discredit an expert. Never mind that the errors concerned only
a very small number of the calculations, and did not alter the
overwhelming evidentiary strength of the matching DNA profiles
in all those bloodstains which came from only one person.
Subsequently I have developed the algebraic treatment that cir-
cumvents the need for those hurried computer calculations....
I do not believe that statisticians should agree to perform detailed
analyses in hotel rooms, especially if they are going to be on
national TV the next day. (Weir®’ reprinted with permission
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from Stats. © 1996 by the American Statistical Association. All
rights reserved)

Neufeld cross examining Weir: “The numbers on the board are biased against
Mr. Simpson, isn’t that correct?”

Weir: “As it turns out, it looks that way.”

The number in question was for a mixed stain on the Bronco steering wheel
(item 29). The relevant number went from 1 in 3900 to 1 in 1600. Weir had
sighted the error himself, made the correction himself, and put the matter
before the court. The complexity of four person calculations was substantial.

I could not repeat the calculations by hand and Steve Knight and
Richard Pinchin had to write software to enumerate the large
number of possibilities. It took us a long time to repeat Weir’s cal-
culation and the relevant exchanges in court were over before we
had done this. In the context of the trial the observation that we
were fallible counted more than the number itself. To me, of
course, this is not news but it does emphasise the value of inde-
pendent checking. [John Buckleton]

The profiles from item 29, the Bronco steering wheel and the three reference
samples, are given in Table 3.9. The 1.3 allele was not observed in item 29;
hence, putatively, Ronald was excluded. This implied the presence of an
unknown DNA source. However, the spot from the 4 allele was weak and the
issue of whether the 1.3 allele had “dropped out” arose. If we accept that the
4 allele is not from Ronald Goldman, then this is the only allele out of 400
from 45 stains not included in one of the principals’ profiles.
The press statements were not flattering:
LA Times®’®

Dry as sand and just as digestible. (Peter Arenella, UCLA law pro-
fessor)

Table 3.9 Profiles Considered from Item 29

Locus Item 29 oS NB RG
DQa 1.1,1.2,4 1.1,1.2 1.1,1.1 1.3,4
LDLR AB AB AB AB
GYPA AB BB AB AA
HBGG ABC BC AB AA
D7S8 AB AB AB BB
Gc ABC BC AC AA

Reproduced from Weir® with the kind permission of Nature and Professor Weir.
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More mind-numbing statistics of all sizes with little real meaning
to the case, even assuming jurors had any clue about their signifi-
cance. (Myrna Raeder, Professor of Law, Southwestern University)

In the end, the matter was settled largely on other considerations. The prose-
cution summation included emotive sections such as

... it is because he hit her in the past. And because he slapped her
and threw her out of the house and kicked her and punched her and
grabbed her around the neck ... and it’s because he used a baseball
bat to break the windshield of her Mercedes back in 1985. And it’s
because he kicked her door down in 1993 ... It’s because of a letter
he wrote her ... June the 6th, talking about the IRS. It’s because he
stalked her ... and the fuse is burning. ... the fuse is getting shorter,
the fuse is getting shorter, and there is about to be an explosion, he
is about to lose control, and he is about to lose control like he did
on those earlier occasions. And sure he didn’t kill her on those ear-
lier occasions in October ‘93 or in 1989. But that was then and back
then the fuse was a lot longer. But now the fuse is way short and it
is awfully short ... . how do we evaluate this, when a man takes a
baseball bat to his wife’s car and beats the “F” out of it? If nothing
else, it sends a message to her. It instills fear, wouldn’t you agree? And
would you agree it suggests to her that this can happen to you, that
maybe you'll be next? That fuse is burning. It’s burning in 1985 ...
the fuse is lit. It’s burning, but it’s a slow burn. (Darden, closing
argument, reprinted with kind permission from Cotterill®?)

Perhaps the best metaphor from the defense alluded to the glove in particular
and the evidence in general: “If it doesn’t fit, you must acquit.”'” Mr. Simpson
was acquitted on October 3, 1995.8%°

Thagard” has studied possible lines of reasoning by which the jury may
have reached this verdict. He mentions the inference from Nicole’s history of
cocaine use that drug dealers may have been involved.

Bayesian inference in the hands of Thagard”® and JavaBayes gives a pos-
terior of 0.72 that Mr. Simpson was guilty and 0.29 to the alternative that
drug dealers were the killers. It also assigns a posterior of 0.99 to the propo-
sition that the LAPD framed Mr. Simpson. 0.72 is well below our subjective
level for “beyond reasonable doubt,” and in our opinion is entirely consistent
with acquittal. Three of the jurors, Cooley, Bess, and Rubin-Jackson,
described their conclusions as based on reasonable doubt. “I'm sorry, O.].
would have had to go if the prosecution had presented the case differently,
without a doubt. As a black woman it would have hurt me. But as a human
being, I would have to do what I had to do.” (Juror Carrie Bess)”’
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Relatedness

JOHN BUCKLETON AND CHRISTOPHER TRIGGS
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4.2.2 The Method of Weir
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4.4 The Unifying Formula
4.4.1 Full-Siblings
4.4.2 Match Probabilities for Half-Siblings
4.4.3 Numerical Effect of Linkage for Full-Siblings and
Half-Siblings

4.1 Introduction

In this chapter we discuss the evaluation of the joint and conditional
probabilities of obtaining various genotypes for two people who are
related, and the effect of this relatedness on the interpretation process.
Formulae are given for some common relationships. Most of this work has
appeared elsewhere, for instance, in Evett and Weir.?¢” Elegant algorithms have
been published®#8762 that perform these and far more complex analyses. Such
probabilities have many uses outside the specific forensic context.

In our forensic work we will often need to consider relatedness. This can
occur because of a specific defense such as “my brother committed the
crime,”?® but is becoming increasingly relevant even in the absence of such a
specific defense. There are several probabilities that we may be interested in
regarding relatives. These would include answers to such questions as:

e What is the probability that a brother would “match?”
e Given that these two individuals match, “What is the probability that
they are brothers?”

The same methods can be used to evaluate the probabilities associated
with these two questions, although they are applied slightly differently. There
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are at least three methods of which we are aware. All give the same result. The
approach published by Evett*® is cumbersome and is not widely used. We
will discuss here the remaining two methods, both of which utilize the con-
cept of identity by descent (IBD) initially introduced in 1940 by Cotterman'®®
and extended by Malecot,”* Li and Sacks,*'? and Jacquard.!88-302 384431872 Ty o
alleles are said to be IBD if they are the same BECAUSE they are copies of the
same ancestral allele.

Consider two people X and Y (termed a “dyadic” relationship).”®! We can
label the alleles at a specific locus for person X as (ab) and person Y as (cd).
This does not imply that person X has genotype ab, but rather that we have
labeled his two alleles a and b. In such a case, the labels “a,” “b,” “c,” and “d”
are referred to as placeholders. The actual allele in place a is denoted by an
italicized label. See Box 4.1.

Box 4.1 Buckleton’s Buckets

This term was coined by Bruce Weir. The distinction between the actual
allele and the label of the allele, or placeholder, is one that, in our experi-
ence, many readers, students, and teachers find difficult to either under-
stand or communicate. However, it is vitally important to clearly
understand the distinction. We may illustrate the concept of placeholders
using the following figure. A useful visual metaphor for the label or place-
holder is that of a bucket.

Allele ¢ Allele d

Bucket a Bucket b

This person has two buckets; a and b; they contain the alleles ¢ and d.
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4.2 Conditional Probabilities

These are the probabilities that an untyped relative will have a certain
genotype, G,, given that a typed relative has genotype G,. Such probabilities
can be used to answer most questions of forensic interest, such as “what is the
probability that a brother of the matching suspect would also match?” Such
conditional probabilities may be developed in two ways, either directly or via
the joint probability and the definition of a conditional probability,

Pr(G,, G,)

Pr(G,IG,) = Pr(G,)

Either method has its merits and drawbacks. Both the method of Balding and
Nichols** and that due to Weir*®” can be used to evaluate the conditional
probabilities.

4.2.1 The Method of Balding and Nichols

Any two people possess four alleles at a specific locus. If we consider one of
these people, then they may have 0, 1, or 2 alleles IBD with the other person.?
Following Balding and Nichols, we consider the events:

Z,: 0 alleles are identical by descent, with probability Pr(Z)).
Z,: 1 allele is identical by descent, with probability Pr(Z,).
Z,: 2 alleles are identical by descent with probability Pr(Z,).

Consider the relationship between a parent and their child (Figure 4.1).
The child has two alleles, which we have labeled a and b (completely
arbitrarily). By the principle of Mendelian inheritance, we can see that we
expect one of these alleles to be IBD with one of the alleles from the parent.

Parent cd

Child ab

Figure 4.1 A pedigree for a parent and child.

2 Of course the relationship is reflexive. Balding and Nichols also make the assumption
that the two alleles within an individual are not IBD. Thus, their method can only be
applied to dyadic relationships and hence cannot handle those situations where one or more
of the founders are inbred.
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Thus, we can see that for a parent/child relationship Pr(Z,) =1 and
Pr(Z,) =Pr(Z,) = 0.

Consider now a pair of siblings (Figure 4.2). Each sibling will receive an
allele from his or her father. With probability 3, these will be copies of the
same allele, and thus IBD. Thus with probability 3, they will not be IBD.
Similarly, the probability that the two copies of the maternal allele will be IBD
will also be 3. Therefore, both will be IBD with probability Pr(Z,) = 4. There
are two ways in which a pair of siblings can have one pair of IBD alleles. They
may share only the maternal or only the paternal allele and hence Pr(Z,) = 3.
Similarly, it follows that the probability that they have 0 IBD alleles,
Pr(Z,) = 4. Similar arguments lead to Table 4.1, which gives the values of
Pr(Z,), Pr(Z,), and Pr(Z,) for some of the forensically important relation-
ships between two individuals.

To demonstrate the use of this table, we calculate the conditional proba-
bility that a person has genotype aa given that his sibling has genotype ab. We
will write this as Pr[aa | ab, siblings]. We will omit the conditioning on “sib-
lings” for simplicity, except where the omission may cause ambiguity.

Using the law of total probability,’ this can be written as

Pr[aalab] = Praalab, Z,|Pr(Z,) + Pr[aalab, Z,|Pr(Z,) + Pr[aalab, Z,|Pr(Z,)

If the two siblings share two pairs of IBD alleles, then they must have the
same genotype. Since you cannot obtain the aa genotype from an ab geno-
type with two alleles IBD, then Pr[aalab, Z,] = 0.

If the two siblings share one pair of IBD alleles, then with probability
3Pr(Z,) the a allele in the conditioning genotype is IBD, and we need the
other bucket to be filled with the a allele by chance. Hence we assign

Parent Parent
Child Child
ab cd

Figure 4.2 A pedigree for siblings.

b We assume that the IBD state and the genotype of the conditioning individual are inde-
pendent, Pr[Z;1ab] = Pr[Z}].
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Table 4.1 Probabilities that Two Individuals with a
Given Relationship Share 0, 1, or 2 Pairs of IBD Alleles

Relationship Pr(Z,) Pr(Z,) Pr(Z,)
Parent/Child 0 1 0
Full-siblings L L 1
4 2 4
- 1 1
Half-siblings = - 0
2 2
. 1 1
Grandparent/grandchild B B 0
1 1
Uncle/nephew = = 0
2 2
First cousins 3 L 0
4 4

Prlaalab, Z,]=p,. With probability 1Pr(Z,), the b allele in the conditioning
genotype is IBD, but here we have Pr[aalab, Z,]=0 since you cannot obtain
the aa genotype if the b allele is IBD.

If the two siblings share zero pairs of IBD alleles, then Pr[aalab, Z,] =p?
since both buckets in the individual whose genotype is in front of the condi-
tioning bar are unconstrained, that is, not determined by any IBD state, and
each bucket must be filled with separate copies of the allele a.

This calculation can be set down in a general stepwise process. Table 4.2
illustrates the general algorithm to evaluate Pr[G,|G,], which can easily be
implemented in a spreadsheet by following six steps. First lay out a table with
four rows, one for each of the cases of two or zero pairs of IBD
alleles and two for the case of one pair of IBD alleles. In a column write Pr(Z,),
1Pr(Z,), +Pr(Z)), Pr(Z,) with the corresponding values for the “relationship”
from Table 4.1. In the next column write the probabilities of observing geno-
type G, given genotype G, and the corresponding IBD state. For this column
the probability in the Z, row will have either a 0 or a 1 in it depending on
whether or not the persons before and after the conditioning bar have the same
genotype. When the genotype G, behind the conditioning bar is a heterozygote,
we use two rows for the Z, event to account for each allele in G, being the allele
involved in the IBD pair. When G, is homozygous, these two rows will contain
the same value. The Z, row describes the event when the two genotypes have
no IBD alleles. Initially we use the “product rule” to evaluate Pr[G,|G,, Z;]. In
the final column of the table, form the product of the previous two columns.
Sum the final column to give the required probability.

Application of this method leads to the formulae given in Table 4.3. The
multilocus probability estimate is calculated by multiplying the single-locus
probabilities.
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Table 4.2 Calculation of Pr [aa | ab] for Siblings

Pairs of IBD Pr[Z}] Pr[Z}] Pr(ablaa, Z,) Product
Alleles Siblings
1
2 Pr(Z,) = 0 0
4
1 iprz) », Pa
4 4
Ipr(z) L 0 0
2 1 4
0 Pr(Z)  ~ 2 P
0 4 pu 4
P11+ p,)
Sum e v
4

Table 4.3 Conditional Probabilities for the Genotype of an Untyped Person G,
Given the Genotype G, of a Typed Relative

Genotype  Genotype for Postulated Relationship
of Typed  the Untyped Full-Siblings Cousins Half-Siblings,
Person, G, Relative, G, Uncle/Nephew,
Grandparent/
Grandchild
2
- . (1+p, P1+3p)  p(1+p)
4 4 2
4 4 2
ab P+ p,) (1 +6p,) (1 +2p,)
2 4 2
Py p c 3 Py Pc
be
5 b p b p c
b a Po(1 + py) Pi(1 + 6p,) Pa(1 + 2p,)
4 8 4
ab L+ 1p,+1p,+2p,p, Pot Py T 120,00 Put Py T 4PuDy
4 8 4
ac pL1+2p,) p{1 +12p,) Pl +4p,)
4 8 4
pe 3p: pe
cc — —— -
4 2 2
pcpd 3p£pd
cd
2 P pfpd
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Table 4.4 Conditional Calculation for Pt[aalab] for Brothers Including the

Subpopulation Correction

Pairs of IBD  Pr[Z] Pr(Z}] Pr(ablaa, Z;) Product
Alleles Siblings
2 Z, 1 0 0
| L : 6+ (1-6)p,) 6+ (1-0)p,)
24 1 1+6 41+ 0)
A 1 0 0
(6+(1—06)p,) (6+(1-06)p,)
(260 + (1 — 6)p,) 26+ (1 — 6)p,)
0 Zy i XTFoar20 X aIF eI T 20
6+ (1-6)p,)
sum e
20+ (1 - 0)p,)
X <1 T 120 )

To drop the assumption of independence in the calculation of Pr[G,|G,, Z/],
we can introduce the conditional probability?® at step 3. The example above,
evaluating Pr[G, =aalG, =ab] for a pair of siblings and involving the sub-
population correction, is given in Table 4.4.

This method of calculation leads to the formulae given in Table 4.5.€

4.2.2 The Method of Weir

A more precise nomenclature was given by Weir.67#3 It was based on four
allele descent measures. This requires a labeling of the alleles in each person.
We name the alleles in person 1 as ab, and in person 2 as cd (Table 4.6), where
a, b, ¢, and d are placeholders (buckets). These allele designations must be
tied to the pedigree to give the values given by Weir. Consider, for example,
the case of half-siblings (Figure 4.3). In this figure we assign allele a as com-
ing from person G, allele b as coming from person H, ¢ from H, and d from
I as indicated. If we assume that H is the father and G and I are mothers, then
we are labeling b and c as paternal alleles, and a and d as maternal alleles. This
labeling of the alleles is arbitrary and troubles many people. However,
any other arrangement can be used and produces the same result. We need
to consider 15 possible IBD states for the four alleles. For example, the
term dabcd represents the probability that all the alleles a, b, ¢, and d are IBD.

¢ We thank Lindsey Foreman for checking these formulae.
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Table 4.5 Conditional Probabilities for Some Relatives Including the Subpopulation
Correction

Genotype  Genotype Siblings
of Typed  for the
person, Untyped

G, Sibling, G,
1 220+ (1-6)p,) 20+ (1 — 60)p,)(36+ (1 — O)p,)
aa aa Z(l + T+0 + 1+ 6)(1+20) )
(1—6)p,(6+ (11— 6)p,)
bb i1+ 6)(1 +20)
(1—-0)p, 20+ (1 — 9)p,
ab 2(1+9)<+ 1+ 20) )
b (1—6)pyp,
¢ 2(1 + 0)(1 + 20)
0+ (1—0)p, 20+ (1 - 0)p,)
ab aa ) <1+ 1 +20) )
1 20+ (1—-0)(p,+py) 206+ —-0)p)O+ (1 —06)p,)
ab Z(H are — * 1+ 6)(1+20) : )
(1 - 0)p, 1+ 2(0+ (1 —6)p,)
ac 41+ 0) ( 1+ 20) )
(6+ (1 — 0)p)(1 — 0)p.
c 41+ 6)(1 + 20)
o (1—-0’p.py

2(1+ 0)(1 +20)

Genotype  Genotype Half Siblings, Uncle/Nephew,
of Typed  for the Grandparent/Grandchild
person, G, Untyped

Sibling, G,
20+ (1 — 0)p, 36+ (1 — 0)p,
aa aa 21+ 0) <1+ 1+20 )
bb (1—06)p,(6+ (1—0)p,)
2(1+ 6)(1 +20)
ab

- 9>ph<1 4 2120+ (1 — 9)pa)>
2(1+ 6) (1 +20)
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(1 — e)zpbpc

be I+ 6)(1 + 26)
0+ (1—06)p, 40+ 2(1 — 0)p,
ab aa 41+ 0) ( 1+ 20) )
1 40+ (1—0)p)O6+(1— 6
ab ] (29 F(1— 0)(p,4py) + B (1)14)-“)2(9) ( )pb))
(1 - 0)p, 46+ (1—6)p,)
ac 41+ 0) (H (1+20) >
(6+ (0 —6)p)1 — O)p,
c« 2(1 + 0)(1 + 20)
(1-6)p.p
cd TF o)1+ 20)
Genotype  Genotype Cousins
of Typed  for the
person, G, Untyped
Sibling, G,
20+ (1—0)p,/ 330+ (1—6)p,)
aa aa 41+ 0) ( 1+ 20) )
b 3((1 — O)p,(6+ (1 — G)Pb)>
4 1+ 6)(1+20)
b (1-06)p, 4 6(26 + (1 — 6)p,)
a 4(1 + 0) ( 1+ 20) )
b 3(1 — e)zpbpc
¢ 2001 + 6)(1 + 26)
6+ (1—6)p,/ 626+ (1—06)p,)
ab aa 8011 0) ( a+20) )
ab

1 120+ (1 — 0)p )0+ (1— 0
m(20 +(1—0)p,+p,)+ ( ( (1){7:)2(9) ( Py) )

(Continued)
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Table 4.5 (Continued)

(1—6)p, 12(6+ (1 — 0)p,)
ac 8(1 + 0) (1 + 1+ 20) )

g((9+ (1— 0)p)(1 — e)pf)>
AT 0T e +20

31— 0)p.py
21+ 0)(1 +26)

Table 4.6 Four Allele Descent Measures Following Weir

Alleles IBD If the alleles Probabilities

Are Not Mentioned Term Full-Siblings Cousins Half-Siblings
They Are Not IBD

None 0 — 1 3 e
a=b dab

c=d dcd

a=c dac  —— i

a=d dad

b=c dbc 1 I —
b=d Sbd i

a=b=c dabc

a=b=d dabd

a=c=d dacd

a=b, c=d dab, cd

a=c, b=d dac,bd —— 1

a=d, b=c dad, bc

a=b=c=d dabcd

The sign = is often used to signify that two alleles are identical by descent, IBD. Hence a=b means that

the alleles with labels a and b are IBD. Consider the relationship of a parent and a child (Figure 4.1).
We have labelled the alleles in the parent ¢ and d and those in the child a and b. The laws of
Mendelian inheritance state that one of the alleles labeled a or b must be a copy of one of the alle-
les labeled c or d. The actual allele that is a copy of the parental allele is IBD.

a=b implies that alleles a and b are IBD but not IBD with alleles ¢ or d, nor
is ¢ IBD with d.

The same procedure for developing the conditional probability directly
as given under Balding and Nichols’ method also applies here, except that part
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G H
a \ /\
X (ab) Y

/
cd)

of the ambiguity regarding Z, is resolved using the Weir approach. Table 4.7
reproduces the calculation for Pr(aalaa) for full-siblings. The method is anal-
ogous to the approach given by Balding and Nichols, but is more versatile.
Even using the Weir nomenclature, there is a wrinkle that one needs to be
aware of when only one pair of alleles is IBD. This occurs if we try to write
down the conditional probability directly, but does not occur if we proceed
via joint probabilities (see later) and only when the conditioning profile is
heterozygotic. This wrinkle can be demonstrated using an example involving
cousins. Consider the probability Pr(aclab) for cousins (Table 4.8).
Following Weir, 267841844 we describe the process. It is necessary to consider
the cell marked with “?”. For this cell, we know that the alleles marked by the
b and d placeholders are IBD. But this does not inform us whether the “a”
allele is the one involved in this IBD state. If the “b” allele is involved, then we

cannot obtain an “ac” genotype. The “a” allele is the one involved 3 of the
time. This results in a value of

Pr(c | ab, unrelated) (1 — 0)p.
7 = 2(1+6)

(

Figure 4.3 A pedigree for half-siblings (X and Y).

for the “?” cell. By multiplying across the rows and adding downward, Pr(ac | ab)
for cousins is
3 Pr(ac! ab, unrelated) 1 Pr(cl ab, unrelated)

Pr(ac| ab, cousins) = + =X
4 4 2

3X2(1—0)p, [6+(1—6)p,] . (1 - 0)p,
4(1+6)(1 + 20 8(1+0)

_ (-op, i 12(0+(1-6)p,) )
- 8(1+0) (1+26)

We do not pursue this approach in depth here as it is much more extensively
and better described in Evett and Weir.?*” The use of such descent measures
permits us to consider much more complex pedigrees than merely dyadic
relationships. However, it leads to the same results as the Balding and
Nichols’ method for the simple pedigrees considered here.
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Table 4.7 Calculation of Pr(aalaa, siblings) Following the Weir Methodology

Alleles IBD Term Probabilities

Full-Siblings

None 50 i Pr(aalaa, unrelated)d

a=c dac i Pr(alaa, unrelated)

b=d dbd i Pr(alaa, unrelated)

a=c, b=d dac, bd i 1

S““é(’fthe 10, 220+ (1=0p)  (20+(1-0)p)30+(1+6)p)
products z|! 1+0 1+ 6)1+20) )

Table 4.8 Calculation of Pr(aclab, cousins) for Cousins Following Weir

Methodology
Alleles IBD Term Probabilities
Cousins
None 50 % Pr (aclab, unrelated)®
b=d dbd 3 ’
4

Sum of the products

Example 4.1. Suppose that we have typed a suspect at, say, six loci.
Suppose we were interested in the question: “What is the probability that a
brother of the suspects would also match. The calculation is laid out in Table
4.9.

Therefore, we expect that the probability that a brother of the suspect
would have this profile is 0.0198 if we estimate using the product rule and
0.0204 if we incorporate a subpopulation correction into the brother’s
formula (6 = 0.01).

dUnrelated is shorthand for “unrelated members of the same subpopulation.”
¢ This is Pr(aclab) for unrelated members of the same subpopulation. This is written as

20— O)p. [0+ (1 — O)p,]
(1+ 6)(1 +20)
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Table 4.9 An Example of the Use of the Brother’s Formulae

Locus  Suspect’s Formula for a Matching Formula for a Matching
Profile Brother Assuming Brother Using the 0
Independence of Correction 6 > 0
Alleles 8 =0
L+p,tpgt2p,p 1 20+ (1 — 0)(py + py)
LDLR A,B 1 4(1 + )
200+ (1 — 0)p )0+ (1 —0)py)
+ (1+6)(1 +20)
(1 + py)? 1/, 2020+ 01— 0py
GYPA B,B % 7 1+ 1+0
200+ (1 — 0)ppr)(36 + (1 — O)py)
+ (1T +6)(1+26)
1+ py+ pet 2ppc 1 20+ (1 — 6)(pg + po)
HBGG B,C 2 4(1 + a+0)
+2(9+ (1= 0)pp)(6+ (1 —6)pe)
(1+6)1+20)
L+ pa+pct 2p4pc 1 20+ (1 = 0)(pa + po)
D788 A,C 4 2 (1 + a+e
20+ (1= 0)p )6+ (1 — 0)po)
+ (1+6)(1+20)
1+ pp+ pet 2ppc 1 20+ (1= 0)(ps + po)
GC B,C 4 7 (1 + )
20+ (1 — 0)pp)(6+ (1 — B)p)
+ (1+6)(1+26)
1+ + + 2 1 20+ (1—6 +
DQo. 11,12 Pr1 PZZ Pr1P1a Z(l n ( a +)(£)1A1 Pi2)
20+ (1 —0)p, )6+ (1 —8)p,)
* (1+6)1+26)
Locus Profile Allele Probabilities Numerical value for a brother
using Cellmark Diagnostic’s
African American allele
probabilities
6 =10.00 0=10.01
LDLR A, B 0.296 0.704 0.604 0.604
GYPA B,B 0.531 0.586 0.594
HBGG B,C 0.260 0.332 0.441 0.444

(Continued)
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Table 4.9 (Continued)

Locus Mr. Simpson’s Formula for a Matching Formula for a Matching
Profile Brother Assuming Brother Using the 0

Independence of Correction 6 > 0
Alleles =10

D788 A, C 0.679 0.321 0.609 0.609

GC B,C 0.673 0.214 0.544 0.545

DQa 1.1, 1.2 0.163 0.276 0.382 0.386

Product 0.0198 0.0204

4.3 Joint Probabilities

In this section we consider the probability that a pair of persons would have
genotypes G, and G,. These joint probabilities are useful for answering ques-
tions of the type: “We have a match on the database between two males; what
is the support for the suggestion that they are brothers?” Consider that we
have two hypotheses such as:

B: These two males are brothers.
U: These two males are unrelated.

Then we can approach the problem by calculating the likelihood ratio

Pr (G,,G, IB)

IR =
Pr(G,,G,|U)

which leads us to the set of joint probabilities under the related and the unre-
lated conditions. Li et al.”'* describe a similarity index approach, which is not
discussed here since a likelihood ratio approach is almost universally preferred.

Tables of joint probabilities have been produced?”#% that typically
give the joint probability for “unordered” pairs. Examples are given below
(Table 4.10). These generally agree with equivalent formulae given in Evett
and Weir,?’ except for the entry for the joint probability of two brothers with
genotypes aa, bc where we differ by a factor of 2.

Table 4.10 refers to pairs regardless of order. Hence the genotype pairs aa,
ab and ab, aa are equivalent. However, care must be taken when progressing
to multilocus genotypes, and it is our opinion that working with ordered
pairs is safer.

If we think of G, and G, as an unordered pair of multilocus genotypes, we
note that

Pr(G, G,) = le_IPr(G{, Q)
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Table 4.10 Joint Probabilities of Observing Genotypes G,, G, Under Specified
Relationships Between Individuals Without Regard to Order and Utilizing the
Product Rule

G, G, Pr[G), G,lfull-siblings] Pr[G,, G,lhalf-siblings]  Pr[G,, G,lunrelated]
@ aa i1+ p SR +p) Pa

aa ab  pip,(1+p,) papy(1+2p,) apipy

w W R riri 22207

aa  bc  pip,p. 203 py P 4papy P

ab ab %p{,pb (14 po+ Py + 29, p) %papb(pu + byt 4papy) 4P

abac  p,pyp.(1+2p,) papyp(1 + 4p,) 8p2 Py Pe

ab-cd  2p,pyp.Pa 4p,PyPcPa 8PPy PcPa

where Pr(G/, G) is the probability of the ordered pair of genotypes. If the for-
mulae for the unordered pairs at each locus are used such as given on p. 206 of
Weir3® or on p. 116 of Evett and Weir,>*” there are likely to be too many factors
of 2. This typically does not affect any LR calculated from these terms as the
same excess of 2’s appears in the numerator and denominator. Table 4.11 gives
the probability of ordered pairs of genotypes evaluated using the product rule.

Example 4.2. In this example, we also consider a pair of male profiles where
we are interested in the two propositions:

B: These two males are brothers.
U: These two males are unrelated.

Loucs G, G, Pr(G!, G4IB) at Locus / Pr(G!, G,1U) at Locus
Using the Ordered Sets Using the Ordered Sets

1 aa aa ACRS Hi (14+ P’ pi

) cd cd PPl +Pc+2Pd + 2p.pa) ap2p?

3 ef eg w 4ppip,

4 hh hi M 203, p;

If we proceed to calculate the joint probability given that they are
(ordered) brothers, then it is given by the product of terms in the column
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Table 4.11 Genotypes G, and G, in Order

G, G, Pr(G,, G,Ibrothers) Cousins
2 2 3
wa aa pa(1tp,) p(1+3p,)
4 4
bb @ 3p%p;
4 4
ab pap(1+p,) pap(116p,)
2 4
PaPuPe 3Pz i
be > 5
2 2
ab aa PaPs(14p,) Papy(146p,)
2 4
ab paPy(1+p,+p,+2p,p;) PaboPatpy + 12p,p;)
2 4
ac papbpa(1+2pa) pupbpc(1+12pa)
2 4
P,P,P? 3papib?
cc 5 5
cd PaPyPcPa 3paPyPcPa
G, G, Pr(G,, G,lsiblings) Unrelated
3
aa aa PatP) 1; P) i
242
bb A pipi
2
ab %h(zlipa) 2p3py
be Papyb. 20, P
ab aa Pbe%*ZPa) 202p,
+p,+4
b Paly(Pa 129;, Pals) i g
paphpc(1+4pa) 5
ac - 4paPy Pe
c Paby 7 2p,p, P
cd 2p,PyPcPa 4p, Py P Pa
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Pr(G',G,IB). Equally the joint probability given that they are unrelated
(ordered) is given by the product of terms in the column Pr(G}, G,IU). If the
unordered pairs from Evett and Weir are used, it is likely that both terms (in
this example) will be too large by a factor of 2.

The correct likelihood ratio is obtained using the formulae for unordered
pairs of genotypes because both the numerator and denominator will be
incorrect by the same factor. Rather than use “joint probabilities,” the same
problem can be solved by noting

Pr(G,,G,IB) Pr(GG, B)  Pr(G,lG,, B)

Pr(G,,G,IU) Pr(G,IU) Pr(G,IU)

and utilizing the conditional probabilities.

4.4 The Uniftying Formula

The models that were discussed in Chapter 3 (the product rule and the
subpopulation model) are attempts to calculate a match probability within
large groups of unrelated or loosely related people. Neither of these models
takes direct account of close relatives. As we add more and more loci, the
effect of close relatives becomes increasingly important. It becomes necessary
to amalgamate the estimates given by the population genetic models with
those for close relatives.?>%>01:50%:665

This can be examined by examining the probability Pr(H,|G,, G,), the der-
ivation of which was given in Box 2.4.

1
N
1+ Z_ZPr(GC|G5, H)w,

Pr(H,IG,,G,) = (2.4) (repeated)

Here w; can be regarded as a weighting function that expresses how much
more or less probable the ith person is than the suspect to have left the crime
stain based on the non-DNA evidence only. Equation (2.4) is very instructive
for our thinking, but it is unlikely to be directly useful in court. This is
because the terms w;, relate to the ratio of the prior probability that the ith
person is the source of the DNA to the prior probability that the suspect is
the source of the DNA. As discussed in Chapter 2, the introduction of such
considerations into court testimony presented by a forensic scientist is
unlikely to be permitted. However, such an approach may be possible if the
court supplies their view of the prior.

In the likely absence of such priors, we suggest that this unifying equation
should be used to test various forensic approaches and to instruct our think-
ing. We start by considering every person in the population to have the same
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prior. This means that, before examining the DNA evidence, every person is
equally likely to be the source of the DNA. As discussed previously, this
assumption is very unlikely to be true, but is likely to be neutral or conserva-
tive except in some cases, which will be discussed later. This assumption gives

1
N
1+ Z,_zPr(GCIGS, H)

Pr(H,|G,,G,) = (4.1)

It can be seen that the posterior probability that the suspect is the source of
the DNA Pr(H,IG,, G,.) will be close to 1 whenever

N
ZPr(GchS, H)
i=2

is small. We propose to examine this latter term.

The people P,, ..., Py are the other people in the population who are not
the suspect. Following Balding,* let us assume a coarse division of the pop-
ulation such that one of these is a brother of the suspect, 6 are cousins,
10 million are members of the subpopulation, and the remaining 240 million
are unrelated persons.f

Table 4.12 gives a spreadsheet layout to examine the behavior of the term

N
Zl Pr(GIG,, H,)
iz
for 6 = 0.03. In this table we have simulated typical allele probabilities and
calculated the probability assignment for different degrees of relatedness. The
central portion of the table is removed for formatting reasons.

It can be seen that in this example the contribution of the single brother
is by far the largest, and therefore largely determines the weight of the evi-
dence against the suspect. This is true for almost any configuration of allele
probabilities. In almost all cases, the contribution from unrelated people and
cousins is very minimal.

This formula is based largely on concepts regarding Mendelian inheritance,
and to a lesser extent on population genetic considerations. It is therefore not
reliant to any serious extent on the database. We therefore see that a coherent
approach to interpreting DNA evidence is based largely on our understanding
of formal mathematics and genetics, particularly when possible brothers are
included in the interpretive framework.

fThe customary assumption, for instance stated on p. 41 of Evett and Weir, that each per-
son has the same prior is unnecessary if we treat the population as being coarsely divided
into groups of people to whom we assign the same match probability. In this case, we only
need to assume that the average prior for each group is equal, not the specific prior for each
individual.
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Table 4.12 Examining the Contribution of the Term to the Posterior Probability for Different Degrees of Relatedness

Locus Pr(Allele 1) Pr(Allele 2) Product Rule Subpopulation  Cousin Brother

1 0.07 0.18 0.026 0.038 0.051 0.320

2 0.20 0.12 0.045 0.057 0.073 0.339

12 0.03 0.001 0.009 0.008 0.265

13 0.09 0.009 0.025 0.030 0.300

Probability 4.69E—24 1.95E—20 3.85E—19 2.67E—07

assignment N
Number of 240,000,000 10,000,000 6 1 > Pr(G.G, H)
persons i=2
Product of the 1.12E—15 1.95E—13 231E—18  267E—07  2.67E—07
number of persons

and the probability

Contribution to

the term

ﬁ Pr(G.I1G, H)) 0.0000004% 0.0000729% 0.0000000%  99.9999267%

=2
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If in the example above, the single brother of the suspect is eliminated by, say,
genetic typing, then the subpopulation contribution assumes the position of the
major contributor and the product rule contribution is again largely irrelevant.
This is shown in Table 4.13. Again a set of simulated allele probabilities is used
and the middle portion of the table is removed for formatting reasons.

Cases where this approach is used are likely to be nonconservative: The
examination of the unifying formula given above assumed that every person
in the population had the same prior probability of being the offender. It was
earlier stated that this assumption is neutral or conservative, except in a few
circumstances. These circumstances largely occur when a sibling or siblings
have a high prior or when the suspect himself has a low prior.

Examination using this formula directs our attention strongly in the
interpretation of multilocus DNA evidence toward a noneliminated sibling
whether or not there is any particular reason to suspect a sibling. If the
suspect has no sibling or if his siblings are eliminated, then attention is
focused on other members of the subpopulation whether or not there is any
special reason to suspect these persons.

V. Effect of Linkage: We consider here the effect of linkage on the joint and
conditional probabilities for relatives. No extended derivation is given here, as
for the purposes of this chapter all that is required are the results. The deriva-
tion is to appear in a future paper.!” We report only the matching pairs: that is,
sibs or half-sibs matching at both loci. The mismatching pairs may be neces-
sary in some applications and can be developed by the method that is to appear.

4.4.1 Full-Siblings

Consider two siblings who are both PQ at locus 1 and UV at another linked
locus, 2. Let the allele probabilities for allele P be p, Q be g, U be u, and V be
v. Let the recombination fraction be R. Then the joint probability is

qu—“v 2+ (p + @)(u + v) + 8 pquv][R2 + (1 — R)?]2
+ 4[4pq + (p + q)(u + v) + 4uv]R*(1 — R)?

+4[(p + q) Quv + 1)+(2pq + 1)(u + v)]R(1 —R) [R* + (1 — R)?]

The conditional probability that the second sibling is PQ at one locus and UV
at another linked locus GIVEN that the first sibling is this genotype is

% 2+ (p + Q) +v) + 8 pquv][R? + (1 — R
+ 4[4pg + (p + q)(u + v) + 4uv]R*(1 — R)?
+ 4[(p + q)Quv + 1) + (2pq + 1)(u + v)]JR(1 —=R)[R* + (1 — R)?]
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Table 4.13 Contribution to the Term If Brother/Sibling Is Eliminated

Locus Pr(Allele 1) Pr(Allele 2) Product Rule Subpopulation Cousin Brother
1 0.16 0.17 0.054 0.066 0.082 0.346
2 0.03 0.08 0.004 0.011 0.017 0.279
12 0.07 0.005 0.019 0.022 0.288
13 0.06 0.004 0.016 0.017 0.281
Probability 1.17E—25 7.87E—22 4.64E—20
assignment
Number of 240,000,000 10,000,000 6 § Pr(G.| G, H)
persons i=2
Product of the 2.80E—17 7.87E—15 2.78E—19 5.51E—13
number of persons
and the probability
Contribution to 0.354% 99.643% 0.004%

the term ﬁ’ Pr(G,| G, H))

i=2
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Consider two siblings who are both PP at locus 1 and UU at locus 2. The
joint probability is

Pl
4

and the conditional probability is

[(pu + 1)(R* + (1 = R)*) + 2(p + u)R(1 — R)]?

%[(pu + 1)(R? + (1 — R)?) + 2(p + w)R(1 — R))’

Consider two siblings who are both PP at locus 1 and UV at locus 2. The
joint probability is

puv

7 [1+p(u+v)+2p2uv][R?+ (1 — R)?]?

+ 4[p(u + v) + p* + 2uv]R*(1 — R)?
+2[2p(1 + 2uv) + (1 + p*)(u + v)]R(1 — R)[R2 + (1 — R)?]

and the conditional probability is

T+ PGt v+ 2[R+ (1= R
+ 4[p (u + v)+ p* + 2uv] R*(1 — R)?
+2[2p(1 + 2uv) + (1 + p) (1 + VIR(1 — B[R + (1 — R)?]

Consider two siblings that are both PQ at locus 1 and UU at locus 2. The
joint probability is

P (11 + (p + qu + 2[R + (1 = RPP
+4l2pq + (p + @Qu + W?]R(1 — R)?
+202(1 + 2pq)u + (p + q)(1 + u})]R(1 — R)[R> + (1 — R)?]

and the conditional probability is

T [0+ 0+ @+ 2pql (R + (1 = Ry
+4[2pq + (p + @)u + 'JRY(1 — R)?

+2[2(1 + 2pq)u + (p + @)(1 + u?)]R(1 — R)[R? + (1 — R)?]
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4.4.2 Match Probabilities for Half-Siblings
Consider two half-siblings who are both PQ at locus 1 and UV at locus 2. The
joint probability is

PLZ 1 ((p + @) + v) + 16pqun) (R + (1 = R?)

+8 [pq(u+v) + (p + @uv) R(1 — R)]
and the conditional probability is
é((p + q)(u +v) + 16pquv) (R + (1 = R)?)
+ (pq(u +v) + (p + q@uv) R(1 — R)

Consider two half-siblings who are both PP at locus 1 and UU at locus 2.
The joint probability is

p3u3

= (1 +pu)(R>+ (1 —R)?*) +2(p+u)R(l —R)]
and the conditional probability is

PLI+ puy (R + (1= R +2(p + w) R (1 = R)]

Consider two half-siblings that are both PP at locus 1 and UV at locus 2.
The joint probability is

3
% flu+v+ 4puw][R + (1 — R + 2 [p (u+v) + 4wR (1 — R)}
and the conditional probability is

%{[u + v+ dpuv][R2+ (1 — R + 2 [p (u+ v) + 4w]R (1 — R)}

Consider two half-siblings who are both PQ at locus 1 and both UU at
locus 2. The joint probability is

3
PAZ {lp + q + 4pqul[R + (1 = R + 2 [(p + @ + 4pgIR (1 — R}
and the conditional probability is

o+ g+ 4pqul[R + (1= R + 2 [(p + q)u + 4pqIR (1 = R)}
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4.4.3 Numerical Effect of Linkage for Full-Siblings and
Half-Siblings

Two of the 13 CODIS loci, HUMCSF1PO and HUMD5S818, are located on
chromosome 5. Bacher et al.*® report that these loci are separated by 25
centiMorgans (cM). This equates to a recombination fraction of R =0.197.
The loci Penta D and HUMD?21S11 are both on chromosome 21 and
reported to be separated by 50 cM, which equated to a recombination frac-
tion of R = 0.316 (see also Table 1.1). Both of these loci are contained in the
16-locus Promega PowerPlex 16 multiplex DNA profiling system.

Tables 4.14 and 4.15 give an overview of the magnitude of the numerical
effect of this degree of linkage on allele probabilities for full- and half-sib-
lings. The tabulated values are the ratios of the value accounting for linkage
divided by the value if the loci were unlinked. Hence, in Table 4.14 for
instance, if the recombination fraction R = 0.197 and the allele probabilities
are all 0.10, then the probability that a full-sibling of a PQ heterozygote at
locus 1 and a UV heterozygote at locus 2 will also be a PQ heterozygote at
locus 1 and a UV heterozygote is 1.54 times larger when we account for link-
age. The effect appears modest to us. It may become more serious when mul-
tiple sets of linked markers are used, as may be the case when technology
moves to single nucleotide polymorphisms (SNPs).
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Table 4.14 Numerical Effect of Linkage for Full-Siblings

Allele
probabilities

0.00 0.05 0.10 0.15 0.197 0.20 0.25 0.30 0.316 0.35 0.40 0.45 0.50
Both PQ Heterozygotes at Locus 1 and UV Heterozygotes at Locus 2
0.05 3.29 2.75 231 1.96 1.69 1.67 1.45 1.28 1.23 1.15 1.07 1.02 1.00
0.10 2.74 2.34 2.01 1.74 1.54 1.52 1.35 1.22 1.18 1.12 1.05 1.01 1.00
0.15 2.32 2.02 1.77 1.57 1.41 1.40 1.27 1.17 1.14 1.09 1.04 1.01 1.00
0.20 1.98 1.76 1.58 1.43 1.31 1.31 1.21 1.13 1.11 1.07 1.03 1.01 1.00
0.25 1.73 1.57 1.43 1.32 1.23 1.23 1.15 1.10 1.08 1.05 1.02 1.01 1.00
0.30 1.53 1.41 1.32 1.23 1.17 1.17 1.11 1.07 1.06 1.04 1.02 1.00 1.00
0.35 1.38 1.30 1.23 1.17 1.12 1.12 1.08 1.05 1.04 1.03 1.01 1.00 1.00
Both PP Homozygotes at Locus 1 and UV Heterozygotes at Locus 2
0.05 3.30 2.76 2.32 1.96 1.69 1.67 1.45 1.28 1.23 1.15 1.07 1.02 1.00
0.10 2.76 2.36 2.03 1.75 1.54 1.53 1.36 1.22 1.19 1.12 1.05 1.01 1.00
0.15 2.35 2.05 1.80 1.59 1.43 1.42 1.28 1.18 1.15 1.10 1.04 1.01 1.00
0.20 2.03 1.81 1.61 1.46 1.33 1.32 1.22 1.14 1.12 1.08 1.03 1.01 1.00
0.25 1.78 1.61 1.47 1.35 1.26 1.25 1.17 1.11 1.09 1.06 1.03 1.01 1.00
0.30 1.59 1.46 1.36 1.27 1.20 1.19 1.13 1.08 1.07 1.05 1.02 1.00 1.00
0.35 1.44 1.35 1.27 1.20 1.15 1.14 1.10 1.06 1.05 1.03 1.02 1.00 1.00
Both PP Homozygotes at Locus 1 and UU Homozygotes at Locus 2
0.05 3.31 2.77 2.32 1.96 1.69 1.68 1.45 1.28 1.23 1.15 1.07 1.02 1.00
0.10 2.79 2.38 2.04 1.76 1.55 1.54 1.36 1.23 1.19 1.12 1.05 1.01 1.00
0.15 2.39 2.08 1.82 1.61 1.44 1.43 1.29 1.18 1.15 1.10 1.04 1.01 1.00
0.20 2.09 1.85 1.65 1.48 1.35 1.35 1.23 1.15 1.12 1.08 1.04 1.01 1.00
0.25 1.85 1.67 1.51 1.38 1.28 1.28 1.19 1.12 1.10 1.07 1.03 1.01 1.00
0.30 1.66 1.52 1.41 1.30 1.22 1.22 1.15 1.09 1.08 1.05 1.02 1.01 1.00
0.35 1.52 1.41 1.32 1.24 1.18 1.17 1.12 1.08 1.06 1.04 1.02 1.00 1.00
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Table 4.15 Numerical Effect of Linkage for Half-Siblings

Allele
probabilities

0.00 0.05 0.10 0.15 0.197 0.20 0.25 0.30 0.316 0.35 0.40 0.45 0.50
Both PQ Heterozygotes at Locus 1 and UV Heterozygotes at Locus 2
0.05 1.67 1.54 1.43 1.33 1.25 1.24 1.17 1.11 1.09 1.06 1.03 1.01 1.00
0.10 1.44 1.36 1.28 1.22 1.16 1.16 1.11 1.07 1.06 1.04 1.02 1.00 1.00
0.15 1.29 1.23 1.19 1.14 1.11 1.10 1.07 1.05 1.04 1.03 1.01 1.00 1.00
0.20 1.18 1.15 1.12 1.09 1.07 1.07 1.05 1.03 1.02 1.02 1.01 1.00 1.00
0.25 1.11 1.09 1.07 1.05 1.04 1.04 1.03 1.02 1.02 1.01 1.00 1.00 1.00
0.30 1.06 1.05 1.04 1.03 1.02 1.02 1.02 1.01 1.01 1.01 1.00 1.00 1.00
0.35 1.03 1.03 1.02 1.02 1.01 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00
Both PP Homozygotes at Locus 1 and UV Heterozygotes at Locus 2
0.05 1.74 1.60 1.47 1.36 1.27 1.27 1.19 1.12 1.10 1.07 1.03 1.01 1.00
0.10 1.55 1.44 1.35 1.27 1.20 1.20 1.14 1.09 1.07 1.05 1.02 1.01 1.00
0.15 1.40 1.32 1.25 1.20 1.15 1.14 1.10 1.06 1.05 1.04 1.02 1.00 1.00
0.20 1.29 1.23 1.18 1.14 1.10 1.10 1.07 1.05 1.04 1.03 1.01 1.00 1.00
0.25 1.20 1.16 1.13 1.10 1.07 1.07 1.05 1.03 1.03 1.02 1.01 1.00 1.00
0.30 1.13 1.11 1.09 1.07 1.05 1.05 1.03 1.02 1.02 1.01 1.01 1.00 1.00
0.35 1.08 1.07 1.05 1.04 1.03 1.03 1.02 1.01 1.01 1.01 1.00 1.00 1.00
Both PP Homozygotes at Locus 1 and UU Homozygotes at Locus 2
0.05 1.82 1.66 1.52 1.40 1.30 1.29 1.20 1.13 1.11 1.07 1.03 1.01 1.00
0.10 1.67 1.54 1.43 1.33 1.25 1.24 1.17 1.11 1.09 1.06 1.03 1.01 1.00
0.15 1.55 1.44 1.35 1.27 1.20 1.20 1.14 1.09 1.07 1.05 1.02 1.01 1.00
0.20 1.44 1.36 1.28 1.22 1.16 1.16 1.11 1.07 1.06 1.04 1.02 1.00 1.00
0.25 1.36 1.29 1.23 1.18 1.13 1.13 1.09 1.06 1.05 1.03 1.01 1.00 1.00
0.30 1.29 1.23 1.19 1.14 1.11 1.10 1.07 1.05 1.04 1.03 1.01 1.00 1.00
0.35 1.23 1.19 1.15 1.11 1.09 1.08 1.06 1.04 1.03 1.02 1.01 1.00 1.00
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5.1 Introduction

This chapter is concerned with the issue of validating population databases for
forensic work. The issue of independence testing is discussed. It is worthwhile
considering here a quote from Weir’?® reproduced with permission:
“Arguments have arisen that could have been avoided if the deliberate pace
with which scientific investigation proceeds had been applied to the forensic
uses of DNA evidence.” The situation has improved since 1992, but there is an
unfortunate reluctance in some areas to adopt continuous improvement due
to entrenched views, fear of complexity, and fear of retrospective review of
past cases.

Open publication of data and analysis, and the open debate on the con-
clusions that may be drawn from these data, represent a sound scientific
approach to alleviating this type of problem. In 1995 Strom”*” complained of

the refusal by the FBI laboratory of outside inspection and data
verification is troubling, especially when I have been called upon
to testify in support of its findings. Regardless of the reasons for
this policy, I believe that the FBI laboratory should be held to the
same standards and requirements as other laboratories.
(Reproduced with the kind permission of Nature and Dr. Strom)
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This situation appears to have been remedied in part by the placement of
the FBI data into the public domain,'*® which is an admirable policy that
should be widely implemented. That is: Let’s have the arguments out of
court — not in it. This involves openness by the government agencies respon-
sible for the majority of forensic work. In fact, it involves actively supporting
independent or defense reanalysis whether this support is reciprocated or not.

5.2 Which Is the Relevant Population?

As discussed in Chapter 3, profile or match probabilities are estimated with
reference to a population. This raises the question of “what is a population”
or “which population?”?65:472:501,502,503,505,508,510.665,847 Tyyo options briefly dis-
cussed here are the race to which the suspect belongs, and the “general pop-
ulation.” A brief discussion is provided here as on balance the use of the
“unifying formula” discussed in Chapter 3 is preferred, which does not
require the definition of a relevant population. Nonetheless, there has been
much debate on the appropriateness of one or the other of the two options
outlined above. Consider the question: Why are we doing a calculation?
Typically, the answer would be to assess the evidence if the suspect is not the
contributor, or under the Bayesian framework to assess the evidence under
H,.'" It is clear then that the race of the suspect does not define the relevant
population. This is defined more by the circumstances of the crime or other
evidence such as eyewitness evidence.!!1:265508.784806 The circumstances or evi-
dence may point to one ethnic group wholly or partially, or the location of
the crime may suggest which set of persons had opportunity.”’*# Using the
race of the suspect is typically conservative; however, it is not necessarily a
reasonable representation of the relevant population. Hence it is more appro-
priate to attempt to model a population defined by the crime. This is typi-
cally multiracial. In a later section we discuss how to combine estimates from
separate races into one appropriate for a multiracial population.

5.3 Population Databases

Population databases are distinct from intelligence databases. They are used to
estimate the rarity of a profile in a population in order to give an indication
to a court of the strength of the DNA evidence.

Consider the highly stylized diagram of the human population given in
Figure 5.1. This figure is not intended to imply that there is some objective
definition of the term “race.” This term has come to be viewed as increasingly
arbitrary as our understanding of human population genetics and evolution
has improved. Rather it simply implies that there is some structure to the
human population. This is more properly viewed as a continuum, but most
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Figure 5.1 A highly simplified and stylized diagram of the structure of the
human population.

models treat it as a hierarchy of partitions. For reasons that were discussed in
Chapter 3, the estimation process will have a small error if we ignore the struc-
ture in the human population. This and other issues relating to the validation
of population databases are discussed in this chapter.

5.3.1 Validating Population Databases

It is general practice for a laboratory to validate the population database it
intends to use before proceeding to court with estimates of evidential weight.
This is a desirable feature, as is publication or deposition of the details in the
public domain. Typically there may be a challenge to the use of a database in
the first few court cases undertaken by a particular laboratory. The challenges
may include issues about the size of the database, the method of selection of
the samples, and dependence effects. During my time working with Bruce
Weir, we “validated” a number of U.S. databases. I have also validated data-
bases in New Zealand, Australia, and the U.K. One would have thought that
having performed quite a few validations I would have a good idea of what
was required; however, the more I look at the subject, the more I ask “What
is the process of validating a database?” There appears to be no published
advice on this. This question was thrown into a particular light by a case in
South Australia: R v Karger before the Honourable Justice Mulligan.®* The
effect of this case and questions from His Honour have led me to believe that
it is not the database that should be validated but rather a system of inter-
pretation. There is an inherent interplay between what is expected of a data-
base and the mode by which the testimony will be developed. The concept of
“fitness for purpose” is closely akin to this process. The key questions are:
What are you going to do with the database? Is it fit for this purpose? In this
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regard, noted authors such as Brinkmann®! write: “For their application in
forensic casework, extensive studies have to be carried out. This would
include population studies ... A minimum of 200 unrelated individuals
and/or 500 meioses have to be investigated for each STR system to study allele
frequencies, the Mendelian inheritance, and whether significant numbers of
mutations exist.”

The number 200 has become the de facto standard for the size of the data-
base. This size certainly suffices for estimation of allele probabilities espe-
cially if sampling error is considered. Smaller samples may also suffice, again
especially if sampling error is considered. This is discussed further in Chapter
6. However, a sample of 200 profiles will not inform us much with regard to
“population studies” if our plan is to investigate deviations from
Hardy—Weinberg and linkage equilibrium by hypothesis testing. Other pop-
ulation genetic studies, such as comparisons with other populations, appear
to be more informative in this regard.

5.3.2 Sampling Races or Populations?

Let us begin with the question: Should we survey general populations, say the
population of the State of Victoria, Australia, or should we divide this popula-
tion according to some partition, which for the purposes of this section we will
call race? Both approaches are currently used. It is normal practice in the U.S.,
U.K., and New Zealand to divide according to race. However, Australia, until
recently, took mixed race samples of the “general” population. Consider, again,
the highly simplified model of the human population given in Figure 5.1.
There has already been considerable argument on the question “How many
races are there?” or even “What is a race?” Many studies suggest that there is lit-
tle evidence of a clear subdivision of humans into races but rather that varia-
tion is essentially continuous.®’® From the genetic point of view, “race” is
simply an arbitrary partition of the total human diversity.

However, these somewhat arbitrary partitions of the human population do
correspond in some way to our view of recent human evolution. The more we
clump groups together (i.e., the higher we go in this hierarchy), the higher the
resulting dependence effects within and between loci. The examples illustrating
the Wahlund effect (Tables 3.2 and 3.3) showed that the effects were larger the
more the allele frequencies differed between the groups. If we mix “races” to
create a “general” population, we create larger dependence effects. Conversely,
the more we subdivide the population into genetic groups, the lower the
remaining dependence effects should be, since the remaining subdivisions of
these groups should be more similar to each other.80>80

A common compromise implemented in many laboratories is to subdivide
the population as far as races but not further. It is possible to recombine these
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estimates into a general population estimate if required and the preferred
option is stratification (see Box 5.1).114784
5.3.3 Source of Samples

There has been considerable discussion in the courts along the lines that
the samples used in forensic work are not collected by random sampling

Box 5.1 Stratification

Consider an area with races R, R, ..., Ry resident. We consider the prior
probability that a person from each race is the donor of the stain. As a first
approximation, we take these priors to be simply the fraction of the pop-
ulation that these races represent. Suppose these are in the proportions
Pr(R,), Pr(R,) ... Pr(Ry) in the population that we consider relevant.
Suppose that the probability of the evidence (E) depends on which race is
the donor; we could write Pr(EIR,), Pr(EIR,)... Pr(EIRy)

Then if these partitions are exclusive and exhaustive,

N
Pr(E) = > Pr(EIR)Pr(R)
i=1
which suggests a fairly easy way to combine different estimates. However,
use of the general form of Bayes’s theorem is superior (see Chapters 2 and
4; under the full Bayesian approach to interpretation).

The National Research Council’s (NRC) second report in 1996,
stated that the subgroup to which the suspect belongs is irrelevant. The
logic followed the line that we desire to estimate the probability of the evi-
dence if the suspect is innocent and that instead a random individual
committed the crime. This is substantially correct, but overlooks the issue
that the presence of some members of the subpopulation among the
group of potential offenders may have a significant impact on the total
weight of the evidence (see Chapter 4).

To answer the question of the magnitude of the diversity between sub-
populations, fairly extensive studies have been carried out estimating the
genetic differences between different groups of people. These are reviewed
later in this chapter. In general, these studies support the notion that dif-
ferences between subpopulations are small.

Variation between subpopulations can be accommodated by the use of
a correction factor (Fgp or )% discussed in Chapter 3. Since differences
between subpopulations are typically minor, inferences for a subpopula-
tion for which a database is not available can be accommodated by using a
general database so long as the 0 correction is incorporated.
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methods.”®> The accusation stems from standard statistical theory.
Statisticians differentiate between experimental and observational data.
Experimental data arise when they are obtained using some sort of deliber-
ate sampling. In contrast, observational data arise when the data have been
collected for some other purpose. Experimental data are taken to be superior
to observational data in that they have much less chance of being affected by
various types of bias in the sampling.

Most forensic samples are convenience samples. This means that they have
come to the laboratory by some “convenient” way, such as from blood donors,
staff, or offender databases. As such they do not comprise random samples. An
incorrect response is to say that they were not selected on the basis of their
genotypes and hence no bias is expected. Indeed they are not selected on the
basis of their genotypes, but the accusation is that the bias is inadvertent.

I argue that this is not a major issue. However, to set the scene let me pos-
tulate some extreme examples. Imagine that we use as our sample the staff of
the Informatics Department of North Carolina State University. This con-
sists, on this day, of two New Zealanders, a Canadian, three Chinese, and a
few U.S. nationals. The U.S. nationals come from many states, but none come
from North Carolina. If this sample were to be used to model the North
Carolina population, it would be very unrepresentative. This is not because
we have deliberately made an unrepresentative sample by knowing the geno-
types of the candidates, but rather that our sampling strategy has an in-built
bias (in this case, to people who have relocated).

Real situations are likely to show a much less pronounced bias. We could
imagine that blood donors and staff overrepresent some groups and under-
represent others. It is harder to argue that offender databases are unrepresen-
tative as they certainly seem close to a representative sample of “alternate
offenders.”!!! To summarize the statistical argument: Only random sampling
can guarantee a representative sample.

To turn now to the counter argument, it is wise to admit that we cannot
guarantee that our samples are representative. This is for two reasons: (i) we
do not undertake random sampling, and (ii) we do not always know what
group we are trying to represent.

Consider crimes in one of the states of the United States. In some cases we
may want to represent small rural populations, and in others large cosmo-
politan populations. In other cases, there may be evidence from, say, eyewit-
nesses that direct us toward a particular group. The very act of defining a
population of alternate offenders is very difficult (and unnecessary and
unhelpful if we use the unifying formula of Balding).?¢>>%

Consider then our surveying requirements if we wished to meet the strictest
statistical standards. First we must define our population of offenders, next we
need to randomly sample from these, and last we need to do this for every crime.
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If we concede that we cannot guarantee databases that are truly random
samples, where does this lead us? Many defense analysts would argue that it
leaves us nowhere and that all future arguments are built on an insecure
foundation. However there really is quite a body of population genetic evi-
dence that suggests that, although we might have slightly unrepresentative
samples, the effect is likely to be minor. Fung’* provides important experi-
mental support for this. There is also a theory, the subpopulation theory,
available to attempt to accommodate this unrepresentativeness.

How bad could our sample be? Let us imagine that we intend to sample
race x in a specific locality. We take samples by self-declaration of that race at,
say, a blood donation clinic. We could imagine the following biases:

A bias caused by the self-declaration process. This will be dealt with separately.

A bias caused because one subpopulation overdonates and others under-
donate.

Systematic typing bias. This will also be dealt with separately.

We are left, in this section, with the task of assessing the possible effect of
the bias caused by one subpopulation overdonating and others underdonating.
The pertinent questions are:

How much do subpopulations differ?

How much could one subpopulation overdonate?

Do we intend to make any compensation for nonrepresentativeness in our
testimony?

So we come to the first task when validating a database. How much bias
could the sampling process have induced, and will we compensate for it?

5.3.4 Self-Declaration

Most laboratories obtain samples for their DNA database from volunteers or
from offender databases. These are typically separated into races by self-
declaration. Self-declaration is taken to be the process by which people nom-
inate their own race. More occasionally, other methods are used such as
“surname.” The issue has been raised often in court as to whether the self-
declaration (or surname) process introduces any unacceptable bias.?*
There are many instances of possible self-declaration bias. Wild and Seber
note: “In recent U.S. censuses there has been a big upsurge in the census counts
of American Indians that could not be explained by birth and death statistics.”
From my own experience I can confirm that there are, at least, errors in the
self-declaration process. In the New Zealand subpopulation databases, we have
historically investigated all “matches” (incidents of duplicate STR profiles). Most

865
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often this has occurred because the same person has been sampled twice. There
have also been instances of identical twins on the database. It is not uncommon
for the declaration to be different for the different occasions an individual is sam-
pled or for each member of the pair of twins. This is typically a difference of
detail, such as a claim of 4+ Maori on one occasion and 4+ Maori at another.

Does this render the process useless? The evidence suggests not. For
New Zealand, the Maori and Samoan data were further divided into subsets
of varying levels of ethnicity, representing the dilution of the selected ethnic
subpopulation largely by Caucasians. For example, New Zealand Maori sam-
ples were distributed into six subsets: full-blood, 21 L1 and &. Similarly,
Samoan samples from the database were distributed into four subgroups:
full-blood, %, 3, and 1. An estimate has been made of the pairwise genetic dis-
tance between the self-declared ethnicity for the New Zealand STR data. This
was possible through a self-declaration process based on ancestral informa-
tion over four generations.?!*

The results of the genetic distance estimates (Tables 5.1 and 5.2) show that
the genetic distance, 6, from the Caucasian population increases as the level
of self-declared Maori or Samoan ethnicity increases. This matrix of genetic
distances was also represented using principal coordinates (Figure 5.2) and
the same pattern can be seen. This provides significant support for the effec-
tiveness of self-declaration as a means of segregating reference samples by
ethnicity. There is no claim that it is error free, yet it cannot be totally ran-
dom or we would not get this logical pattern.

The points corresponding to small reported fractions of Maori and Samoan
ancestry are closer to each other than they are to the point representing
the Caucasian population. Walsh et al.®* suggested that this is because the
admixture is complex, and a person reporting a small fraction of, say, Samoan
ancestry may also have some Maori as well as Caucasian ancestors.

Rosenberg et al.*”! typed 377 autosomal microsatellite loci in 1056 individ-
uals from 52 populations. Without using any prior information, they identified

Table 5.1 Distance for New Zealand Maori from the Caucasian

Population

Self-Declared Ethnicity Level Distance from Caucasian
Full Maori 0.037

2 Maori 0.030

3 Maori 0.023

% Maori 0.014

§ Maori 0.010

< & Maori 0.003

Following Walsh et al.#>81* © 2003 ASTM International. Reprinted with permission.
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Table 5.2 Distance for Samoans from the Caucasian Population

Self-Declared Ethnicity Level Distance from Caucasian
Full Samoan 0.038
2 Samoan 0.021
2 Samoan 0.014
= 4 Samoan 0.001

Following Walsh et al.#'28!* © 2003 ASTM International. Reprinted with permission.

six main genetic clusters, five of which corresponded to major geographical
regions, and subclusters that often corresponded to individual populations.
There was a general agreement of this “genetically determined” origin with self-
reported ancestry. This is, again, important confirmation of the usefulness of
self-reported ancestry (subsequent discussions®*>¢7? relate to mathematical
treatments of the data and do not affect this conclusion).

5.3.5 Systematic Mistyping or Systematic Nontyping

These are two potential sources of bias in any population survey. The first is
far more dangerous than the second, although both may be important.
Systematic mistyping describes the situation where one or more geno-
types are systematically mistyped as a different genotype. An instance could
be that some heterozygotes are systematically mistyped as homozygotes
because of allelic dropout or severe heterozygote imbalance. The result will

0.010 | *Maori
0.005 1 +0.75M
) +0.5M++0.125 M
§ 025M 40 0625 M
) 0.0 -
]
iant
2 058" *t0258 Caucasian
S -0.005 -
3 +0.75 S
Q
on
-0.010 4
+Samoan
-0.015 : | | |
~0.01 00 0.01 0.02

First coordinate
Figure 5.2 Principal coordinate representation of the interpopulation genetic

distances following Walsh et al.812814 © 2003 ASTM International. Reprinted
with permission.
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be the appearance of slightly too many homozygotes that may be detected
during the statistical analysis. Experience suggests that this does occur and
some anomalies that have been highlighted during statistical analysis are a
consequence of this effect. Another possible mistyping is to designate a com-
mon homozygote or heterozygote as a nearby rare option because of band
shift.**> For instance, analysis of the New Zealand subpopulation data
detected one instance of a 10,10 genotype at the THO1 locus for Caucasians
that, when reexamined, was found to be the common 9.3,9.3. This datum was
noticed because 10,10 should be rare. Mistyping between common genotypes
is unlikely to be detected during statistical analysis.

Hence the validation of the database by statistical analysis may lead to the
detection of some mistyping. It is unwise, however, to assume that all
instances of mistyping would be found, as it is likely that statistical analysis
will fail to detect all but the most obvious. The integrity of the remaining
samples does not rely on statistical testing but on the quality standards of the
laboratory doing the typing.

Statistical examination cannot, in any meaningful way, guarantee the cor-
rectness of the data. That relies principally on the quality standards of the
laboratory.

Systematic nontyping refers to a situation where certain alleles or geno-
types are less likely to “type” or “be called.” This is realistic if, say, the larger
alleles are harder to amplify. Another possibility is that low peak area
homozygotes are classed as, say, “11,2.” By this, the operator means that the
genotype has the 11 allele, but is uncertain whether or not another allele may
be present. This type of data is often present in files that I receive. It is diffi-
cult to process and as such it is often omitted. Thus some homozygotes could
systematically be removed from the data.

This effect is akin to a “nonresponse” bias in classical sampling terminol-
ogy. It could lower the apparent frequency of those alleles or genotypes that
are hard to type and hence raise the relative frequency of the others. The
check for this is to see how many genotypes are classified as “missing,” for
example, “11,2.” Obviously if there is little or no “missing data,” then there can
be no bias from systematic nontyping.

What should be done if there is a substantial amount of missing data? Let
us say that at a locus there is of the order of 10% of the data missing due to
nontyping. This opens the possibility of systematic nontyping bias, but it
does not prove that such a bias exists. If the nontyping is random, that is, if
it is evenly spread among all the alleles, then this will have no effect. The only
clues as to whether the nontyping has affected one allele predominantly
would be a comparison with a closely related population.

Many laboratories, understandably, perform their statistical survey at the
implementation phase of new technology. This is the time that they are most
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prone to mistyping and nontyping. This leads us to another possible task
when validating databases: check for the possibility of nontyping bias.

5.3.6 Size of Database

How large should a database be to be valid? This must be the most prevalent
question asked of the statistician either by laboratories or in court. It is an
entirely reasonable question because in statistical sampling size does matter.
However, it is surprisingly difficult to answer in a logical way. Once again, the
answer comes down to “fitness for purpose.” The two key factors in this
assessment of fitness are:

Whether or not the database is meant to inform on choice of population
genetic model.
Whether or not the testimony will include sampling error estimates.

Most published attempts at validation of databases suggest that they, in
some way, inform the choice of population genetic model, in particular that
they somehow validate the product rule. If we intend to validate the use of
the product rule on the basis of this database rather than base the validation
on all the literature on the subject, then the database has to be enormous. In
essence, to set the size of the database to “validate” the product rule, we need
some “acceptance” criteria for the product rule. In particular, we need to
answer the question “How wrong are we prepared to be?” Do not assume
from this statement that we will be able to produce the “correct” answer
from our pocket, but that we do need to think about tolerable limits for
“error.” To date, this question, “How wrong are we prepared to be?,” has
never been answered. In fact, it may actually never have been asked in this
way. We could further discuss whether this is a decision for a scientist or a
court.

Let us assume that we intend to tackle the question “How wrong are we
prepared to be?” Do we want these limits to be phrased as a ratio, for instance
“this estimate could be high or low by a factor of 10?” The scientist (or court)
may be more tolerant of an estimate that is likely to err in favor of the defen-
dant than one that may err in favor of the prosecution. This may result in
them being inclined to give limits for “acceptance” that are asymmetric. Do we
become more tolerant of “error” as the estimates get smaller? For instance, do
we need a higher level of accuracy for estimates in the area of 1 in a million,
but after 1 in a billion can we tolerate more uncertainty? This suggests some
sort of sliding scale that may be definable on a logarithmic scale. For instance,
do we want the log of the estimate to be within a factor of, say, = 17%?
Embedded in the argument above is a concept of defining “wrong.” The
obvious answer is to use the concept of a true answer that we unfortunately

© 2005 by CRC Press



do not know. This approach to defining an acceptance criterion is set up
to fail.

What would suit us best would be if we could define something like “T will
use the product rule if I can be reasonably certain that 6 is less than 1%.” This
would allow us to perform power studies and determine how large a database
would need to be so that we can be 90% sure of finding dependence if 6= 0.01.
Weirt#? gives an estimate for the chi-square test, which suggests that a database
of size 105,000 should be sufficiently large to detect a value of f* of 0.01.

Clearly most databases are not of this size, and hence they could not val-
idate the population genetic model under this criterion. It is argued below
that no database per se can realistically validate the population genetic model.
Any validation must rely on population genetic studies. Examination of one
database of the order of hundreds or a few thousand samples cannot validate
the product rule, nor can it validate any other population genetic model. If
advice is to be given on the choice of population genetic model, it should be
based on an understanding of the population genetics of the populations in
question.

If we are not going to validate the population genetic model, then all we are
going to use the database for is to determine allele probabilities. As long as we
make a consideration of sampling error, then almost any size database will do.

If a sampling error correction is used, then there are almost no restric-
tions on how large or small a database needs to be.

What if no consideration of sampling error is to be made? Then we are
back to the question “How wrong are we prepared to be?” Fortunately this
time, we have a body of statistical theory that allows us to estimate the
expected sampling error for a given database size. So if we are informed as to
how wrong the analyst is prepared to be, we can give them an approximate
estimate of how large the database needs to be. This is necessarily approximate
as it depends on the number of loci and the separate allele probabilities for
each particular genotype. A sample of size 200 has become the de facto stan-
dard, but this is more by common acceptance rather than by forceful scientific
argument that this is the correct number.

If no consideration of sampling error is to be made for each case, then it
is wise to assess the probable uncertainty arising from sampling during
validation.

5.4 Validating the Population Genetic Model

As a simple instance, suppose that a laboratory intends to go into court using
the product rule. Are they obliged to “prove independence?”

2 f is the within-population inbreeding parameter and is not synonymous with 6.
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Let us assume that the act of validating a database also includes the neces-
sity to validate the population genetic model that is to be used in court. The
proof of the validity of the product rule can proceed from population genetic
considerations completely independently of the existence of a genetic database.
It is at least theoretically feasible that the laboratory could study mating pat-
terns with their population and the other requirements for Hardy—Weinberg
and linkage equilibrium, and conclude that the product rule was a valid
approximation without ever typing a DNA sample. However, the assumptions
for Hardy—Weinberg and linkage equilibrium are never exactly fulfilled in real
human populations, and hence it will not be possible to conclude exact corre-
spondence to the product rule from a purely population genetic argument. In
fact, the reality of population genetics would lead us to doubt the validity of
exact adherence to Hardy—Weinberg and linkage equilibrium in the first place.

Can the existence of a database save us from this dilemma by its examina-
tion by independence testing? The answer is no. We now turn to a discussion
of independence testing.

5.4.1 Independence Testing

There are a number of tests that may be undertaken to investigate departures
from genetic equilibrium.®® The recommended test for STR data is Fisher’s
exact test and it is used in most situations. This and a number of other
options are discussed. This section follows Law*’! extensively.

5.4.1.1 The Exact Test

Genotype counts are expected to follow a multinomial distribution and hence
depend on the unknown true allele frequencies. To avoid the requirement for
the unknown allele frequencies, the exact test for the hypothesis of allelic inde-
pendence is conditioned on the observed allelic counts.’”” The exact test has
been reported to have better power when compared to alternative testing
strategies.’31842

Following Law et al.,**?

we write:

P: the conditional probability of the genotype counts,

n,: the genotype counts,

n;: the allelic counts, and

H= ; %ng: the total number of heterozygotic loci in the sample

Then
ni2d  Ilny!

¢ et T (2n)!

p (5.1)

The exact test compares P, calculated from the observed sample with the val-
ues in all genotype arrays with the same allele counts as the observed sample.
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The p-value of the test is the proportion of arrays with a probability no more
than that for the observed sample.

It is typically impossible to enumerate all possible genotype arrays, as
there are too many of them. An approach attributed to Felsenstein (in Guo
and Thompson,*”” who proposed a Markov chain approach) is to take a sam-
ple of all possible genotype arrays. The alleles at each locus are permuted sep-
arately to form new multilocus genotypes. The proportion of permuted data
sets that give rise to a smaller P value than the original data is noted and
serves as the empirical p-value of the test.

When a permutation approach is used, a portion of the statistic is invari-
ant and can be omitted.

Hence, instead of calculating

nl2H Hjnlj!

Hgng! I (2n)!
as in Equation (5.1), the simpler quantity
2H

!
Hgng.

can be used. This is no longer the conditional probability of the genotype
counts, but it is proportional to that probability.

Zaykin et al.® showed that the power of the exact test increases when
more loci are used in the testing procedure. However, Law et al.**> show that
this is only true for certain population genetic events such as substructure
but not for, say, admixture.

5.4.1.2 Total Heterozygosity Test

Total heterozygosity may be used as a test for some types of disequilibrium.
It should be noted however that this is not a test for independence per se as
there are types of dependency that do not affect total heterozygosity. Under
allelic independence, the total heterozygosity is

H=L-> >pi (5.2)
T

This allows reduction of the genotype array to two categories: heterozygous
and homozygous genotypes.
This gives the total heterozygosity test statistic:

_(H- H¢)? N (H—- H°)* nL(H— H)?
He¢ nL — H*  HYnL — H°

XZ

(5.3)

where nL is the total count (where # is the sample size and L is the number
of loci).
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The statistic X* has a chi-square distribution with one degree of free-
dom under the hypothesis of within-locus allelic independence. This is a
two-sided test and rejects the hypothesis of allelic independence for both
large and small values of H in the data. However, the true allele frequen-
cies in the population are generally unknown and need to be estimated
from the data when H® is calculated. Consequently, X* will no longer have
a chi-square distribution under the null hypothesis due to the use of esti-
mated allele frequencies, and hence there is expected to be a loss of power
for the test.

Alternatively, permutation methods may be used instead of the chi-square
test to estimate the distribution of the test statistic, H, under the null. The
empirical p-value of the test is calculated from the proportion of permuted
genotype arrays with fewer (H™ test) or more (H" test) heterozygous geno-
types than the original data.

5.4.1.3 Variance of Heterozygosity Test

Brown and Feldman® and Chakraborty"’ suggested that the variance of the
number of heterozygous loci for each genotype in the sample could be used
as a test for between-locus associations. They give the variance of the het-
erozygosity test statistic as

2 M
n—1 nn—1)

1%

where H,.. is the number of heterozygous loci in genotype G,. The test statis-
tic V'is the variance of the number of heterozygous loci for each genotype in
the population.

5.4.2 Performance of the Tests

Law*! and Law et al.*”? used simulation to examine the properties of the tests
(see Tables 5.3 and 5.4).

5.4.2.1 Population Substructure
Zaykin et al.,*¥° Law,*! and Law et al.**> showed that as the number of loci
increases, for a substructured population the empirical power for both the
exact and the total heterozygosity test increases.

As noted above, when a permutation test is used, a portion of the exact
test statistic is invariant and can be omitted. The simpler quantity

2H

1
Hgng.
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may be used instead. When the data become sufficiently sparse such that all
n,are 0 or 1 in the data or any permutation, then the product

i
I;Ing! =1

and this term also becomes invariant. We are left with a statistic based almost
solely on total observed heterozygosity.

Accordingly, the power of the exact test and the H™ test when more than
one locus is used in the test becomes very similar. The empirical power of

Table 5.3 Power of P,, H-, and V to Detect Departure from Equilibrium due to
Drift and Drift Followed by One Generation of Admixture

6 Loci Substructure Admixture
P. H- 1% P. H- 1%
0.00 0.05 (0.01)  0.05 (0.01) 0.06 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01)

1
2 0.06(0.01) 0.05(0.01) 0.05(0.01) 0.05(0.01) 0.03(0.01) 0.04 (0.01)
3 0.06(0.01) 0.06(0.01) 0.04(0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01)
4 0.04(0.01) 0.04(0.01) 0.05(0.01) 0.04(0.01) 0.04(0.01) 0.06 (0.01)

10 0.05(0.01) 0.05(0.01) 0.05(0.01) 0.07 (0.01) 0.07 (0.01) 0.04 (0.01)

0.0l 1 0.7(0.01) 0.10(0.01) 0.06(0.01) 0.05(0.01) 0.03(0.01) 0.04 (0.01)
2 0.14(0.02) 0.14(0.02) 0.07(0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01)

3 0.19(0.02) 0.19(0.02) 0.06(0.01) 0.04 (0.01) 0.04 (0.01) 0.06 (0.01)

4 0.20(0.02) 0.20(0.02) 0.08(0.01) 0.04(0.01) 0.04(0.01) 0.05(0.01)

10 0.31(0.02) 0.30 (0.02) 0.08 (0.01) 0.04 (0.01) 0.04 (0.01) 0.06 (0.01)

0.03 1 0.12(0.01) 0.26(0.02) 0.11(0.01) 0.05(0.01) 0.04 (0.01) 0.05 (0.01)
2 0.42(0.02) 0.42(0.02) 0.13(0.01) 0.06(0.01) 0.04 (0.01) 0.06 (0.01)

3 0.55(0.02) 0.55(0.02) 0.14 (0.02) 0.03 (0.01) 0.03 (0.01) 0.05 (0.01)

4 0.67(0.02) 0.67(0.02) 0.14(0.02) 0.05(0.01) 0.05(0.01) 0.05 (0.01)

10 0.94(0.01) 0.94(0.01) 0.15(0.02) 0.05(0.01) 0.05(0.01) 0.06 (0.01)

0.05 1 0.30(0.02) 0.58(0.02) 0.16(0.02) 0.05(0.01) 0.05(0.01) 0.04 (0.01)
2 0.80(0.02) 0.80(0.02) 0.20(0.02) 0.06 (0.01) 0.05(0.01) 0.06 (0.01)

3 091(0.01) 0.92(0.01) 022(0.02) 0.04(0.01) 0.04(0.01) 0.07 (0.01)

4 096(0.01) 0.96(0.01) 0.24(0.02) 0.04 (0.01) 0.04 (0.01) 0.06 (0.01)

10 1.00 (0.00)  1.00 (0.00) 0.28 (0.02) 0.05(0.01) 0.05 (0.01)  0.08 (0.01)

0.10 0.77 (0.02)  0.89 (0.01) 0.38 (0.02) 0.04 (0.01) 0.02 (0.01) 0.05 (0.01)

1

2 1.00(0.00) 0.99 (0.00) 0.41 (0.02) 0.09 (0.01) 0.04 (0.01) 0.07 (0.01)

3 1.00 (0.00) 1.00 (0.00) 0.44 (0.02) 0.04 (0.01) 0.04 (0.01) 0.08 (0.01)

4 1.00(0.00) 1.00(0.00) 0.49 (0.02) 0.05(0.01) 0.05(0.01) 0.09 (0.01)
10 1.00 (0.00) 1.00 (0.00) 0.56 (0.02) 0.06 (0.01) 0.06 (0.01) 0.29 (0.02)

Samples of size 200 were used with 1, 2, 3, 4, and 10 loci, each with 10 alleles per locus (reproduced with
the kind permission of Law*’!).
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Table 5.4 Power of P, H-, and V to Detect Departure from Equilibrium due to
Drift and Drift Followed by one Generation of Admixture

6 Loci Substructure Admixture
P, H 1% P, H v
0.00 0.04 (0.01)  0.03(0.01) 0.06 (0.01) 0.06 (0.01) 0.04 (0.01) 0.05 (0.01)

1
2 0.05(0.01) 0.04(0.01) 0.06(0.01) 0.07(0.01) 0.04 (0.01) 0.06 (0.01)
3 0.03(0.01) 0.03(0.01) 0.06(0.01) 0.05(0.01) 0.04(0.01) 0.05(0.01)
4 0.04(0.01) 0.05(0.01) 0.05(0.01) 0.04(0.01) 0.04(0.01) 0.06 (0.01)
10 0.04(0.01) 0.04(0.01) 0.06 (0.01) 0.04 (0.01) 0.04 (0.01) 0.05 (0.01)

0.0l 1 0.9(0.01) 0.16(0.02) 0.06(0.01) 0.05(0.01) 0.04(0.01) 0.04 (0.01)
2 0.28(0.02) 0.29(0.02) 0.07(0.01) 0.06(0.01) 0.03(0.01) 0.04 (0.01)

3 032(0.02) 0.33(0.02) 0.09(0.01) 0.04(0.01) 0.03(0.01) 0.06 (0.01)

4 035(0.02) 0.35(0.02) 0.11(0.01) 0.05(0.01) 0.05(0.01) 0.05 (0.01)

10 0.55(0.02) 0.55(0.02) 0.13(0.02) 0.06 (0.01) 0.06 (0.01) 0.06 (0.01)

0.03 1 0.25(0.02) 0.45(0.02) 0.18(0.02) 0.05(0.01) 0.04(0.01) 0.04 (0.01)
2 0.69(0.02) 0.77(0.02) 0.23(0.02) 0.08 (0.01) 0.03(0.01) 0.04 (0.01)

3 0.88(0.01) 0.90(0.01) 0.27(0.02) 0.05(0.01) 0.05(0.01) 0.05 (0.01)

4 097(0.01) 097 (0.01) 0.30(0.02) 0.07(0.01) 0.06 (0.01) 0.07 (0.01)

10 1.00(0.00)  1.00 (0.00) 0.32 (0.02) 0.07 (0.01) 0.07 (0.01)  0.08 (0.01)

0.05 1 0.49(0.02) 0.77(0.02) 0.35(0.02) 0.05(0.01) 0.03(0.01) 0.04 (0.01)
2 0.99(0.00) 0.98(0.01) 0.41(0.02) 0.10(0.01) 0.05(0.01) 0.06 (0.01)

3 1.00(0.00) 1.00(0.00) 0.43(0.02) 0.04 (0.01) 0.04 (0.01) 0.07 (0.01)

4 1.00 (0.00) 1.00 (0.00) 0.49 (0.02) 0.05(0.01) 0.05(0.01) 0.07 (0.01)

10 1.00 (0.00)  1.00 (0.00) 0.56 (0.02) 0.04 (0.01) 0.04 (0.01) 0.10 (0.01)

0.10 0.98 (0.01)  1.00 (0.00) 0.68 (0.02) 0.06 (0.01) 0.07 (0.01) 0.05 (0.01)

1
2 1.00(0.00) 1.00 (0.00) 0.75(0.02) 0.35(0.02) 0.05(0.01) 0.06 (0.01)
3 1.00 (0.00)  1.00 (0.00) 0.80 (0.02) 0.09 (0.01) 0.07 (0.01)  0.09 (0.01)
4 1.00 (0.00) 1.00 (0.00) 0.85(0.02) 0.07 (0.01) 0.07 (0.01) 0.14 (0.02)

10 1.00 (0.00)  1.00 (0.00) 0.87 (0.02) 0.05(0.01) 0.05 (0.01)  0.58 (0.02)

Samples of size 500 were used with 1, 2, 3, 4, and 10 loci, each with 10 alleles per locus (reproduced with
the kind permission of Law*’!).

these two tests becomes identical when the “sparseness” condition (all n, are
0 or 1) is met. At this point, the exact test is no longer a test for independence,

but simply a test for excess homozygosity.

5.4.2.2 Randomly Mating Admixed Populations

Recall that one generation of random mating restores Hardy—Weinberg equi-
librium. Therefore, an admixed population that has undergone one genera-
tion of random mating should exhibit within-locus equilibrium. However,
linkage disequilibrium will still be present in the admixed population,
although it is expected to halve for unlinked loci with every generation of
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random mating. Law**! and Law et al.*? investigated the ability of the vari-
ous tests to detect such disequilibrium.

The empirical power of the exact test, the variance of the heterozygosity
test, and the total heterozygosity test (obviously) was low for most admixture
situations studied.

5.4.3 Misuse of Independence Testing

It is possible to misinterpret the results of independence testing, and it is wise
to consider a few warnings before proceeding.!03104113:266781 Most of these
warnings represent standard statistical thinking and are well known though
often overlooked in the forensic literature.

The Hardy—Weinberg “Law” is not a physical law, like Newton’s Law
of gravitation, which might be supposed to hold with absolute pre-
cision. It is only an approximation to reality, describing with fair
accuracy the behaviour of real populations; but one which cannot
be expected to hold completely exactly, even if only because of
chance fluctuations in the sample numbers. There is therefore little
point in testing whether a population obeys the formula, since we
are reasonably sure that it does not. It would be much more sensi-
ble to ask what upper and lower bounds to the deviation from
Hardy—Weinberg are reasonably consistent with the observations.
In many cases the lower bound will be zero, i.e. the observations
would be consistent with no deviation, which we can interpret as
meaning that the deviation is too small to be detected statistically in
a sample of the size actually available.” (Reproduced from Smith”"
with the kind permission of the Annals of Human Genetics)

There have been considerable moves in the medical sciences to “tidy up their
act” with respect to statistical testing, and this would be welcome in forensic
science. This section often follows the principles expressed by Sterne’?” or
Nickerson.*®! For differing views or debate, see Chow!”® and the subsequent
discussion.

The concept of independence testing was first introduced by Fisher. He
appears to have viewed the p-value as an indicator of discrepancy between
the data and the null hypothesis.

If P is between 0.1 and 0.9 there is certainly no reason to suspect
the hypothesis tested. If it is below 0.02 it is strongly indicated that
the hypothesis fails to account for the whole of the facts. We shall
not often be astray if we draw a conventional line at 0.05.%%

bT am grateful to Dr. Karen Ayres for bringing this material to my attention.
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However, it does seem that Fisher did not intend 5% (or 1%) to be the divi-
sion line between “significant” and “not-significant” in the strict way that it
has become. This latter approach was developed by Neyman and Pearson,”’
and led to the decision thresholds that are in common use today.

No test based upon a theory of probability can by itself provide any
evidence of the truth or falsehood of a hypothesis. ... Without hop-
ing to know whether each separate hypothesis is true or false, we may
search for rules ... [to ensure] that ... we shall not often be wrong.

This quote should send warnings to the large number of forensic authors
who perform independence testing for the exact purpose of determining
whether Hardy—Weinberg or linkage equilibria are the case. However, papers
continue to appear commenting on the correctness or otherwise of the
hypothesis after significance testing.*

Fisher never agreed with the stance of treating hypothesis testing as a
decision rule in the absence of considerations of all the other information:

The attempts that have been made to explain the cogency of tests
of significance in scientific research, by reference to supposed fre-
quencies of possible statements, based on them, being right or
wrong, thus seems to miss the essential nature of such tests. A man
who “rejects” a hypothesis provisionally, as a matter of habitual
practice, when the significance is 1% or higher, will certainly be
mistaken in not more than 1% of such decisions. However the cal-
culation is absurdly academic, for in fact no scientific worker has
a fixed level of significance at which from year to year, in all cir-
cumstances, he rejects hypotheses; he rather gives his mind to
each particular case in the light of his evidence and his ideas.**

The Neyman—Pearson approach to hypothesis testing has in prac-
tice been simplified into acceptance or rejection of the null hypoth-
esis without consideration of the alternative hypothesis or the
power of the study ... our teaching of statistical inference should
continue to move away from decisions based on statistical signifi-
cance and towards interpretation of results based on both the
statistical analysis ... and wider considerations...a common and
serious mistake ... is to misinterpret a large p-value as meaning “the
null hypothesis is true.” This is a particular problem with small
samples. Because a small sample provides very little information.
(Sterne.””” © 2002 John Wiley & Sons Limited. Reproduced with
permission)
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With these pertinent and salutary comments, let us turn to a more detailed
commentary of some pitfalls associated with independence testing in forensic
DNA work.

5.4.3.1 Weakness of the Tests

It is important to note that while Fisher’s exact test is the method of choice for
investigating departures from independence in this situation, it has limited
power unless databases are very large.®1#%842 There is now widespread ac-
ceptance that the power of independence testing to find realistic disequilib-
rium is very restricted,'?! although this knowledge has existed for some time.
“At least since 1970 there have been many studies suggesting that reasonable
levels of departure from HWE are practically impossible to detect (with high
power) with data from a single population, unless the sample sizes are
prohibitively large.”!?! In Table 5.5, we reproduce some power estimates. This
table may be interpreted as follows. If the disequilibrium in the population
was characterized by an inbreeding coefficient of size 8 = 0.03 (say), and a
sample of size 200 was drawn from this population, then we would expect a
significant (<<0.05) p-value only 10.7% of the time. In other words, most of
the time we would not find disequilibrium of this size with samples of size
200. Sample sizes in much forensic work are of the order of 200, although data
sets range from as many as a few thousand to as few as 80.!%* There is nothing
inherently wrong with these smaller surveys unless they are overinterpreted.
The most obvious overinterpretation is to suggest that they can validate a
population genetic model.

It is not likely that Hardy—Weinberg disequilibrium, at the level
thought to exist in human populations, will be detected with sam-
ples of 1000 or less. Weir®+

If the power to find disequilibrium is weak, how can such tests ever be used
to infer that disequilibrium is not there? The answer is that they cannot. In
fact, independence testing of relatively small data sets does very little to
inform us whether or not independence exists in the DNA context.

Table 5.5 Power Estimates for the Exact Test

0 Sample Size

80 200
0.00 4.8% 4.9%
0.01 5.8% 5.6%
0.03 8.1% 10.7%

Following Buckleton et al.!'* © 2003 ASTM. Reprinted with permission.
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Therefore, it is logical that the validation of the product rule cannot proceed
from independence testing of a database. Why then has an independence
testing industry developed? (I would have to include myself in this industry.)

The most prevalent type of misinterpretation is to assume that this testing
somehow proves independence. Statements such as “provide little evidence of
departures from HWE,” or that “based on these observations, the data do not
support any significant departure from independence between pairs of loci in
any sample population” are strictly correct but deeply misleading. It is often
claimed after independence testing that “the application of the product rule is
valid for estimating the rarity of a multiple loci profile for these tests.” Formal
testing procedures, when applied to databases of at most a few hundred indi-
viduals, do not have sufficient power to show that the underlying population
is not in Hardy—Weinberg equilibrium, or is substructured, or is admixed.
This fundamental misconception is well known but still prevalent. See, for
instance, Nickerson®®! (p. 260). The reader may be led to ask “How big should
the samples be in order to validate the product rule?” The answer is very large
indeed, of the order of many thousands, if you plan to proceed by independ-
ence testing. However, there is a way to investigate these models that relies less
on huge samples but more on population genetics. This will be discussed later.

I conclude this section with a quote from Bruce Weir,*® which may lighten
this dour narrative and contextualize it against the realities of the adversarial
legal system. “My own involvement in the U.S. courts ended after a case in
Colorado when the defense objected that my use of Fisher’s exact test for inde-
pendence was hearsay and that the prosecution needed to call Mr. Fisher to the
stand. It was clear that the public defender was not at all interested in inde-
pendence testing and had no idea that [Sir] Ronald Fisher had died in 1962.
He was simply interrupting my testimony. I was wasting my time.”

5.4.3.2 Assuming That Independence Testing Measures
Departure from Independence

It is important to note that independence testing does not measure departure
from independence. Again, this is a well-known misconception.*®! For instance,
a large p-value (close to 1) in the exact test is not proof of independence, nor
does it prove that the population must be close to independence. Furthermore,
in a large data set we expect to find small departures from Hardy—Weinberg
equilibrium. However, the abundance of data means that these effects may be
detected (even though they are small) and hence exact tests will assign signifi-
cant p-values. Small data sets will give p-values anywhere in the range [0...1]
almost independently of the amount of departure. It is a fundamental and ele-
mentary statistical error to equate the p-value with the extent of departure. The
only conclusion that we can make from independence testing of a few hundred
individuals is that gross departures of an extent not expected in reality should
have been found. This is a barely useful statement.
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5.4.3.3 Extrapolation from Single-Locus Tests

Another potential trap is discussed here. Consider the 13 CODIS loci.
Assume that independence testing on, say, 200 individuals has “passed” most
or all loci for the Hardy—Weinberg test, and has also passed most or all of the
78 pairs of loci. It is tempting to assume that all loci are in Hardy—Weinberg
equilibrium and that all 13 loci are collectively in linkage equilibrium.
Indeed, NRC II did suggest this line of logic. However, this approach contains
an array of extrapolations that cannot be substantiated. Consider the follow-
ing exaggerated anecdote to demonstrate the point.

Once a young man decided to work out if the world was flat. On a very
calm day, he went to sea and took his one meter ruler. He placed the ruler on
the sea and observed that it was level. Then he rowed a meter further on and
did the same again. In fact, he did a series of level one meter sections until he
was back where he started and declared that the world was flat.

This inference is much the same as assuming that we can accept that
Hardy—Weinberg and linkage equilibrium exist from investigations at single
locus and at pairs of loci. To infer therefore that the model is robust across 13
loci is an extreme extrapolation and does not appear to be justified by simu-
lation experiments. There are many population genetics effects that would
give only small indications of departure at one or a pair of loci, but that
would accrue to a moderate effect across many loci. In fact, most realistic
population genetic effects display this property.

5.4.3.4 Assuming That Other Weak Tests Support
This Weak Test

Given the knowledge that independence tests are weak, it would be correct to
turn to other sources of data to decide which population genetic model is
most suitable. Can we somehow combine many different tests to conclude
that, although each has low power, collectively they support the concept of
independence? This is a more reasonable approach, but we should tread care-
fully. Note that the sum of the conclusions is not necessarily the conclusion
of the sum. It could be suggested that there is ample evidence that human
populations are in equilibrium, and indeed there are a large number of pub-
lications in this area, most of which can show that human populations are
close to equilibrium; however, occasionally these studies give indications of
departure. However, while it is true that human populations are close to equi-
librium taken in total, the population genetic evidence suggests that they can-
not be exactly in equilibrium. There is no study ever published that proves
that a human population is in exact equilibrium.

However, as an exercise we can still examine the suggestion. Below is a
histogram of the p-values, whether Hardy—Weinberg or linkage, from all the
Caucasian STR databases that happened to be on my laptop (most of my
files are archived and are not included). These included databases from the
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U.K., New Zealand, and Australia, of varying sizes from 200 to several thou-
sand. If independence is true, they should distribute themselves evenly
between 0 and 1, that is, they should have a uniform distribution, U[0,1].
Figure 5.3 gives the results. The reader should decide whether they are uni-
formly distributed between 0 and 1 or whether there is a slight aggregation
toward low p-values. Remember this trial was attempted among Caucasians,
which is one of the races closest to equilibrium. Evidence for much more
marked disequilibrium exists in other data sets for different races that we
have studied.

5.4.3.5 Post Hoc Rationalization

One practice that is particularly dangerous, but prevalent, is the practice of
post hoc rationalization when testing data sets. There are a number of post
hoc data treatments that can occur. The process is often to perform inde-
pendence testing and then find which data are causing the departures.
Scrutiny of such data may reveal a legitimate reason to remove them, such as
a typographical error or a reason to doubt the ethnicity of the sample.

It is disappointing for the person examining the data to find that most of
the departure in an analysis is due to one datum. However, this is quite often
the case. In most cases, highlighting this datum leads to some reason to doubt
its correctness and it is often either corrected or removed. However, what
chance is there really of finding disequilibrium if every time we find it we also
find some reason to remove the data causing it? All we are left with are those
instances where disequilibrium is broadly based on a large number of geno-
types. My colleagues and I have personal experience of quite a few of these as
well, although mainly in non-Caucasian populations.
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Figure 5.3 Histogram of assorted p-values from some independence tests on
Caucasians.
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5.4.3.6 Multitesting

Another problem arises from the multitesting nature of the problem. If we
examine, say, 13 loci, there will be 13 Hardy—Weinberg tests and 3 [N(N — 1)]=
78 tests between pairs of loci. A significance test at the 5% level would be
expected to give a few significant results even if the null hypothesis were true.
Weirt*? discusses what should be done, or what should not be done, when a test
does cause rejection. “To ignore single rejections on that (the multitesting) basis
calls into question the logic of performing the test in the first place.” Weir points
out the shortcomings of the Bonferroni correction, which requires each of x
tests to meet a 0.05/x significance level in order to declare rejection, describing
it as “unduly conservative.” Note that the word “conservative” in this sense does
not have the desirable properties that it has in much of the rest of DNA work.

An elegant way to deal with multiple tests like this is described by Zaykin
et al.,*®" who follow Fisher. This involves forming the sum of —2 In (p) across,
say, x independent tests.© This is expected to have a chi-square distribution
with 2x degrees of freedom and is known as the truncated product method.
An example is given in Box 5.2.

Another useful way is treat the multiple comparison problems by exami-
nation using a p—p plot (Figure 5.4 and Box 5.3). In this examination the
p-values are expected to be uniformly distributed between 0 and 1 if the null
hypothesis (independence between alleles) is true, and therefore should lie
along the diagonal. The envelopes of values that would be expected to enclose
99% of the points in the null case are superimposed.

Figure 5.4 provides clear evidence for an excess of low p-values for the
Eastern and Western Polynesian populations.®¢ There is a possible indication
of deviation from linkage equilibrium in the Caucasian population.! Due to
the smaller size of the Asian data set,2 we would not expect to find disequi-
libria whether or not they were present.’12814

5.4.3.7 Effect of Silent Alleles

Significance tests appear useful to detect genetic phenomena that lead to excess
homozygosity, especially primer—dimer mutations. If there is a mutation at the
3’ flanking region of the primer binding site, then PCR can be completely
inhibited. The result is that the genotype will appear to be a homozygote. An
excellent example is given by Budowle et al.,'** who observe that binding

¢ The tests in a DNA database analysis are not all independent. For example, if we have
tested the pairs HUMD3S1358-HUMD8S1179 and HUMD3S1358-HUMDA5S818, then we
have some information about the pair HUMDS8S1179-HUMD5S818. However, the
approach is useful nonetheless.

4 N=4222 SGM and 1815 SGM* profiles and N=828 SGM and 477 SGM* profiles, respec-
tively.

¢ p <0.001 on omnibus tests using the truncated product method.88!

fp=0.01, N=2309 SGM and 1001 SGM* profiles.

8 N=59 SGM and 114 SGM* profiles.
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Box 5.2 An Example Using the Truncated Product
Method for Hardy-Weinberg Tests on Nine Loci

This approach could also be used on the 36 (or any number) linkage equi-
librium tests for nine loci (not shown). It is set up in EXCEL but any
equivalent package should suffice.

=-2%In(p)
Locus p-value
D3 0.115915 4.3
D8 0.613721 1.0
D5 0.566165 1.1

VWA 0521490 1.3
D21 0.760857 0.5
D13 0.589834 1.1 —oloci
FGA  0.973626 0.1 l
b7 0.188993 3.3 _chidist(15.0,18)
D18  0.312897 2.3

Sum 150 066

b

This is the p-value for the null
that all nine loci are in
Hardy—Weinberg equilibrium

This approach assumes that the tests are independent, which they are
not. It is a useful approach nonetheless.

site-induced allelic dropout was present at HUMDS8S1179 in Chamorros
(n=1568) and Filipinos (n=574). Thirteen individuals typed with the
PowerPlex 16 kit were heterozygotes, whereas only single alleles were observed
with the Profiler Plus kit. The observation of a deviation from Hardy—Weinberg
proportions at this locus in these two populations suggested that further inves-
tigation was merited, and indeed led to the discovery of the silent alleles.

Such silent alleles would be expected at low frequency at all loci. This will
increase counts of homozygotes, albeit mildly.

5.4.3.8 Misuse of Genetics
In Chapter 3 we discussed the assumptions that underlie the Hardy—Weinberg
law and the state of linkage equilibrium. Often validation of the use of the
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Figure 5.4 p-p plots investigating deviations from Hardy-Weinberg and linkage

for each of the four major subpopulations in New Zealand.”80.812

product rule contains an amalgam of statistical and genetic logic. In principle,
this approach is perfectly reasonable but the practice is often wayward. For
instance, it would be wrong to point out that some genetic conditions leading

to equilibrium are present but not to point out that others are not.

Nine Loci (Again it is set up in EXCEL)

=rank(C1,C1:C36,1)

This table continues for the 36 values... .

Box 5.3 Hypothetical Example Showing the Creation of a
p-p Plot for the 36 Linkage Equilibrium Tests for
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Plot column C on the y-axis and column E on the x-axis. It helps to
add the line of slope 1. A deviation from equilibrium is shown by a devi-
ation from the diagonal line.

14
0.9
0.8
0.7
0.6
0.5
0.4

0.3

Column C Observed p-values

0.24

0.1

0/
00 01 02 03 04 05 06 07 08 08 10
Column E Expected p-values

More sophisticated packages can place the 95% or 99% confidence
interval on the p—p line.

It is misleading to suggest that validation of the product rule has much, if
anything, to do with allelic segregation. In particular, it would be wrong to sug-
gest that linkage implies linkage disequilibrium and that a lack of linkage implies
linkage equilibrium. The most likely causes of linkage disequilibrium are not
genetic linkage but population genetic effects such as population substructure.

The linkage state of two loci will suggest the rate at which equilibrium will
be established after a disturbing event if all the disturbing forces are removed.
For example, allelic associations decay by a factor of 1—R each generation, where
R is the recombination fraction. For unlinked loci R = 3, and hence any allelic
associations halve every generation but only in the absence of any disturbing
forces. Where disturbing forces such as selection or continuing population sub-
division and admixture continue, they will maintain the disequilibrium even for
unlinked loci. In this context, Thompson’® terms them “maintaining forces.”

5.5 Estimating 0

A logical approach informs us that the validity of the product rule does not
follow from independence testing of a database but from belief in a popula-
tion genetic model. Independence testing is virtually irrelevant to the inter-
pretation of DNA evidence because it does not realistically inform us about
the validity of any model that we may apply. Our belief in the validity of
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predictions by the product rule or any other model is based largely on our
belief as to the correctness of the model.

These beliefs can only arise from well-constructed population genetic
examinations®® that assess the population subdivision at the genetic level.

One logical way to examine the validity of the population genetic model
is to estimate the parameter often called 6, or F¢;. This approach is markedly
superior to testing hypotheses about independence (which is equivalent to
stating that 6 = 0).

In cosmopolitan Caucasian populations in the U.K., a 8 value near 0.005
may be appropriate. At this level, the estimates from the subpopulation for-
mulae and the product rule start to converge. Therefore, the practical differ-
ence between the two approaches becomes minor. However, an important
application difference still remains. The product rule is still based on
assumptions of independence and its use is likely to lead the court into irrel-
evant discussion of independence testing. The subpopulation formulae, even
when used with a very low 6, should not lead a court to discussions of inde-
pendence testing but rather to discussions of the population genetics of the
population in question. This latter topic is likely to be far more productive for
understanding and the course of justice. Again, my argument relies on an
appeal to sounder logic rather than any large-scale practical significance,
although Birus et al.®* warned of significant effects that they had noticed
while examining war victims in Croatia.

The parameter 6 has been defined in a number of ways, but the most
intuitively pleasing is the definition based on identity by descent. Under this
definition, 6 is taken to be the probability that two alleles in different people
in the same subpopulation are identical by descent. It therefore describes the
increase in relatedness in the subpopulation relative to the population.
Another intuitively pleasing way to view 0 is as a measure of the genetic
distance between two subpopulations that are diverging by drift.

The logic of this approach would be to estimate 6 between the subpopu-
lations making up the population in question’'>**? and to decide if it is “near
enough” to zero to be ignored, or preferably to make an appropriate correc-
tion. “Given that human populations do have nonzero values of 6, there is
some appeal to making probability statements about 0 lying in a certain
range rather than simply failing to reject the false hypothesis that it is zero.”%+

As previously stated, 6 is a difficult parameter to estimate.?* There are
issues relating to both the selection of samples and to the method of estimation
of the parameter. Three methods that have been employed in foren-
sic work are summarized here (Table 5.6). The method of Weir and
Cockerham®® gives a point estimate, whereas the two Bayesian methods, that
of Balding and Nichols* and Foreman et al.,’'? give a probability distribution
for the parameter, 6. Many other methods exist.® For a review see Excoffier,?
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Table 5.6 A Summary of Three Approaches to Estimating 6

Method of Estimation Sample Requirements

Weir and Cockerham?®*® The Weir and Cockerham method requires two or more sam-
ples from the subpopulations making up the population. The
representativeness of the final estimate will depend on how well
the samples represent the subpopulation diversity in this popu-
lation. Methods are available which proceed from either geno-
type data or summary allele probabilities. Testing of this
approach by simulation verifies that it accurately estimates 6 if
the samples are correctly drawn from subpopulations.

Balding and Nichols* The Balding and Nichols approach requires data from only one
subpopulation and a “reference” population. The reference pop-
ulation should reflect the population-wide “average.” This
approach is very scientifically appealing. It produces output that
allows the selection of a range of “supported” values for 6.
Practically this estimation procedure has been found to be very
sensitive to the choice of reference population and due care
must be taken with this aspect.

Foreman et al.’!? This method requires only one population and seeks to estimate
a parameter by investigating partitions in the data. Trials®* sug-
gest that it works adequately if the number of partitions is
known. Doubts have been raised that the parameter that it seeks
to estimate is indeed the genetic parameter 6.

who points out that “Even though the analysis of microsatellite data has exactly
the same form as that of other data types, estimators based on such data have
a much larger associated variance...” due largely to the single-step mutation
processes thought to occur at these loci. The consequence of this is that large
samples do not necessarily produce consistent estimates and a very large num-
ber of independent loci are needed to obtain meaningful estimates.

The issue of sample selection is also absolutely crucial. The comparison of
geographically based samples from, say, different cities in the U.S. is unlikely to
reveal the underlying genetic diversity that is to be measured. Societies in the
“new world,” especially in countries settled largely by recent colonization, are
likely to be mixes of immigrant populations.!” Suppose that we took two sam-
ples of, say, 33% Scottish, 33% English, and 33% Italian. These two samples will
probably be very similar. Whereas if we compared separate Scottish, English,
and Italian samples, we will find small, but real, differences. The result will be
underestimates of 6. Even in the comparison of geographical samples in the
“old world,” it is preferable to get ethnically defined samples.

Comparison of different ethnic groups from Europe, Asia, or Africa is more
likely to reveal the underlying genetic diversity now embedded and partially
diluted in the U.S., Australia, and other countries populated by immigration.
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Figure 5.5 Stylized description of a set of populations. Adapted from Weir®®
with the kind permission of Kluwer Academic Publishers.

Weirt? gives an illuminating description of a highly idealized human
population using a tree diagram such as Figure 5.5. This diagram depicts a
population diverging by drift with a series of bifurcations. The value of 6
obtained is influenced strongly by the selection of populations.

For instance, a comparison of population 1 and population 5 is likely to
attempt to estimate 6,. A comparison of population 1 and population 4 is
likely to attempt to estimate 6;. Imagine that our sampling procedure pro-
duces a mixed sample from populations 1-4 and compares this with a mixed
sample from populations 5-7. This is likely to attempt to estimate a
parameter probably closest to 6,.

Weir further points out that the use of, say, 6, in the calculation of the
conditional probabilities requires the allele probabilities from the ancestral
population that formed populations 1 and 4. These probabilities are not
available for many reasons, but not the least of which is that this population
no longer exists. The allele probabilities for this ancestral population may, or
may not, be adequately approximated by the average of populations 1-4, but
it would be difficult to know how good or poor this approximation may be.

It should also be remembered that when we are considering 13 locus
CODIS profiles, we are dealing with a polynomial in 6 containing terms in up
to the 26th power. The average of terms in such high powers is dominated by
the contribution from a few large values. It may be appropriate to take a value
for this parameter, 6, at the high end of the plausible distribution.*
Therefore, when examining the estimates given later in this chapter, it may be
wise to err on the high side.

5.5.1 Historic and Modern Consanguineous Marriage

A summary of historic consanguinity does not have any direct implication
for modern 6 values; however, it may imply that there was a high level of
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inbreeding in historic human populations. The question of whether or not
this has been erased in modern times is unanswered. However, the prevalence
of consanguinity in ancient times and its considerable persistence into mod-
ern times is worthy of discussion in the context of forensic DNA interpreta-
tion. This is because the mating patterns of humans in the past are likely to
impact on modern 6 values. In particular, we do not need to consider simply
consanguineous marriage, which is a relatively extreme form of inbreeding,
but we also need to consider any restriction of the mating choice. The most
obvious noncultural restriction is geographical availability.

It is worth noting that there are several cultural forces driving consan-
guinity. These include maintenance of family property and bride wealth. In
societies where inheritance is divided among progeny, there is a considerable
incentive to consanguineous marriage. In addition, the economic burden of
bride wealth is an important driver of consanguinity. Under these circum-
stances, consanguineous marriage is economically the most feasible option
where culturally permissible.

Bittles and Neel”! present a review specifically with the intent of assess-
ing the load of lethal recessives in the population and their impact on
modern consanguineous marriages. “As the great religions emerged
(Buddhism, Confucianism, Islam, Hinduism, Judaism, Christianity) only
one — Christianity — had specific proscriptions against nonincestuous
consanguineous marriage, and even those were not enunciated until
the Council of Trent in the mid-sixteenth century.””! These authors con-
clude that the relatively low modern load of lethal recessives is strong evi-
dence for ancient inbreeding.

Much of the subsequent discussion follows Bittles.”” ““Western’ opinion
tends to be that whether or not consanguineous marriage was present in the past
it has largely disappeared in modern society. This is untrue and it is worthwhile
reviewing the evidence for both the relatively recent prohibition of consanguin-
ity and the persistence of it into our generation.” Prohibition on second- and
third-cousin marriages was formally rescinded by the Roman Catholic Church
in 1917. Specific dispensation remains a prerequisite for Roman Catholic mar-
riages between first cousins, who wish to have their marriage recognized by the
church.”® First-cousin marriages are criminal offenses in eight of the 50 United
States and are subject to Civil sanction in a further 31 under statutes introduced
from the mid-19th century onward.”® Exceptions have been incorporated for
specific communities. For instance, uncle-niece marriage is permissible for Jews
in Rhode Island. It may be of interest to the reader to note that Charles Darwin
was married to his cousin Emma Wedgewood.

In North America and Western Europe, the rates of first-cousin marriage
are about 0.6%,'%%% with Japan at about 3.9%.%?%7% Bittles et al.”* give esti-
mates in the range of 20-50% for marriages between second cousins or closer
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in the Muslim countries of North Africa, Central and West Asia, and in most
parts of South Asia. The preferred type of marriage in Muslim society is for
a male to marry his father’s brother’s daughter. Uncle—niece marriage is pro-
hibited by the Koran. In the primarily Hindu states of southern India,
20—45% of marriages are consanguineous, with uncle-niece and mother’s
brother’s daughter being especially popular.

Information from modern China is not available. However, before the
Second World War, first-cousin marriage of the type mother’s brother’s
daughter was the accepted custom among the Han, who make up approxi-
mately 90% of the population.

Bittles concludes that consanguinity is not an unusual or rare phenome-
non, but rather was and is the preferred or prescribed form of marriage in
much of the world. The expected reduction in consanguineous marriage in
the latter half of the 20th century does not appear to be happening univer-
sally. Bittles also points out that many immigrant groups maintain these cul-
tural norms when they move to Europe or North America and the inbreeding
may even be enhanced by the reduction of choice in smaller communities.

5.5.2 Summary of Published Estimates of 6

This section summarizes some published estimates of 6. The absolutely cru-
cial nature of selecting samples so as to expose the underlying genetics can be
clearly seen from this comparison.

Fg; values, reflecting the contribution of differences among sub-
populations to the total divergence, strongly depend on how these
subpopulations are defined within the total population.®3¢

Comparison of different estimates is complicated by a number of factors. One of
these is that the two Bayesian approaches produce distributions rather than point
estimates. These distributions need to be summarized in some way and various
papers have opted for different methods of summarization. In most cases, the
modal value of the posterior distribution is quoted; however, these distributions
are typically skewed, and a value from the right-hand tail may be more appro-
priate. The mode may be a very poor summary of the full distribution.

Balding and Nichols*! discuss whether or not we should expect 6to be the
same at all loci. It is indeed possible that each locus has a different evolu-
tionary history and hence a different 6. One obvious factor that may affect
certain loci more than others is mutation rate. High mutation rates are
expected to lower 6. However, we expect 6 to be similar across loci within
broad classes, such as STR and VNTR loci, and determined more by the
history of the populations compared.
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The largest compilation discussed below is that of Cavalli-Sforza et al.'>?
published in 1994. They survey a very large number of well-defined popula-
tions. Due to the publication date, none of the data are based on STR loci and
many of them are based on conventional blood group polymorphisms; how-
ever, it is understood that an update is in preparation. Some at least of these
conventional loci are known to be affected by selection. The purpose of the
compilation was not to furnish forensic 6 estimates but, rather, to study
human history. Accordingly, the 6 estimates are given between pairs of pop-
ulations and often built into trees. The forensic problem requires a different
distance: that between one population and some form of average represented
by the database to be used. However, the compilation does represent a very
comprehensive collection of genetic distances between well-defined popula-
tions. It is not clear how much inference about STR 6 values can be taken
from this study; however, in broad terms it must represent the most extensive
current compilation. The data are so comprehensive that it is not possible to
summarize them in any but the briefest way here.

5.5.2.1 Caucasian

In their compilation, Cavalli-Sforza et al.'>* prefer to work with the geo-
graphical term European rather than the term Caucasian. They study 88
genes (all non-STR) and identify four major outlier populations: Lapps,
Sardinians, Basques, and Icelanders. If this is borne in mind and the 6 tree
and table (Figure 5.5.1 and Table 5.5.1 of Cavalli-Sfoza et al.!®?) are exam-
ined, a reasonable estimate can be made. This would suggest that the major
subpopulation components of the population in consideration, say U.S.
Caucasians, should be determined and a value selected from this graphic that
captures most or all of the expected variation. Subjectively, a value of 0.02
would appear to capture most of the variation present in Europe, and the
majority would still be “captured” by a value of 0.01, which is the value
recommended in NRC I1.%%

Foreman et al.’'* apply Balding and Nichols’ Bayesian method to various
geographical subgroups of the U.K., such as Glasgow, Neath, and London,
utilizing the six autosomal STR loci of the SGM system. This seems a rea-
sonable approach to attempting to get at the source of genetic variability in
the U.K., and could only be bettered by extensive pedigree examination on
each donor to try to obtain people who had a long family history in one
region. They report the posterior modes for 6 that vary between 0.0001 and
0.0036. The highest value occurs for the comparison of Merthyr with the FSS
Caucasian database as reference.

Balding and Nichols*! give distributions using their Bayesian method for
Finnish, Italian, Norwegian, Spanish, and Turkish samples using a general
Caucasian reference database, for five VNTR loci. They do not appear to
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summarize their distributions themselves, but from the graphs the modes
appear to range from about 0.004 to about 0.020. This study effectively rebuts
the assertions'? that there is no difference between subpopulations, and sup-
ports the position of Sawyer et al.®! and Krane et al.*’® This point was con-
ceded by Budowle™ (p. 434). The same approach was applied by Balding
et al.* to four autosomal STR loci (the FSS Quadruplex set) using a mixed
British Caucasian database as reference against the population samples of
Caucasians from Derbyshire, Dundee, Northern Ireland, and Strathclyde.
Modal values (read from the graphs) are of the order of 0.001-0.004. For the
set of populations of Greeks, Greek Cypriots, and Italians, the modal values
are approximately 0.004, 0.021, and 0.002, respectively. Another set of esti-
mates for two Greek populations, Sarakatani and Vlachi, is given by Balding
and Nichols*' and also in Overall.”® Posterior modes lie between 0.005 and
0.010 as reported by Balding and Nichols and close to 0.010 as reported by
Overall. Overall also gives estimates for Helston (Cornwall), Welshpool
(Wales), and Ullapool (Scotland) from people with known ancestry in the
area. Posterior modes were 0.000, 0.002, and 0.018, respectively. Overall*®®
gives an additional estimate for Tuam (Eire) of 0.005.

Gill and Evett®>* give estimates ranging from —0.0004 to 0.0029 for the set
U.K.(FSS), UK.(MPESL), U.K.(Derbyshire), U.S.(Foster City), U.S.(Army),
and Sweden for the six autosomal STR loci of the SGM set.

In Poland®’ estimates ranging between 0.0003 and 0.0044 for various
Polish populations, and 0.004 for south Poland®”° have been reported. A
value of 0.003 was given for the Byelorussian minority of northeastern
Poland.®*?

Weir®3? gives estimates for three geographically defined Caucasian data-
bases from Florida, Texas, and California for six VNTR loci. The estimates
found using the method of Weir and Cockerham vary from —0.001 to
0.004. However, this study is unlikely to have segregated the groups into
genetically defined subpopulations and hence must be seen as a lower
bound.

Budowle!'!” gives results using the method of Weir and Cockerham for
Caucasians drawn from the FBI data, Roche, Alabama, Switzerland, Israel,
and French Basques using the six loci of the Polymarker and DQa set. The
first three samples are presumably all U.S. Caucasians. The values reported
are 0.0034 for the full set of five subpopulations and 0.0015 if the French
Basques are omitted. Later Budowle et al.'?° gave data for 13 STR loci for nine
U.S. Caucasian populations as —0.0005 and for 11 European populations as
0.0028. The first set will suffer from the sample selection issues discussed.
Budowle et al.'? give a value of 0.001 for Omani and Dubai Arabs for nine
STR loci. NRC II°* gives an estimate of 0.0015 for D2S44 for the Canadian,
Swiss, French, and Spanish groups. Sun et al.”** give a value of 0.0022 for G
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for the Caucasian set; German, Spanish, United Arab Emirates, and
Brazilian.”

Greenhalgh and Buffery*’! take a substantially different approach, in which
they directly investigate the initial Balding and Nichols*® hypothesis.
Specifically, it has been suggested that the population of suspects may include
an overrepresentation of the subpopulation to which the defendant himself
belongs. They report two large investigations, one targeting Afro-Caribbeans
and the other Caucasians, in each of which over 200 “suspects” were included.
The distribution of the VNTR types from these two investigations was com-
pared to that of the general population and very little difference could be seen.
Unfortunately their work does not result in an estimate of 6, but it does sug-
gest that any effect, if present, is small, and that pools of suspects may not be
greatly different from their associated racial group in general. With hindsight
we now understand that an overrepresentation of the defendant’s subpopula-
tion in the pool of suspects is not a prerequisite for there to be a subpopula-
tion effect. The subpopulation effect can occur if there are any members of the
defendant’s subpopulation in the pool of suspects. However, this was a valu-
able and insightful investigation of one aspect of the initial hypothesis.

Other evidence for the survival of ancient population diversity comes
from anthropological investigations. An example is Y chromosome data from
samples taken in a transect across Britain. This study suggests the survival of
Celtic populations in the north of Wales and populations with a larger
Anglo-Saxon' component across England.322

5.5.2.2 Black African, Caribbean

Again, great care must be taken with the use of these broad racial terms. For
instance, it is thought that the current population of Africa is affected “by the
relatively ancient presence of Caucasoids in the northern strip along the
Mediterranean, and additions from West Asia.’!'>? Cavalli-Sforza et al.!>?
study 49 populations for an average of 48 genes (no STR loci). The division

b G¢ris expected to be numerically similar to the preferred Fgy.

i Following Morris,**! we note that Anglo-Saxon is actually a relatively modern term. Post
Roman British called themselves Cives in Latin, meaning fellow countrymen, Combrogi in
ancient British, Cymry in modern Welsh, and Cumber in modern English. The English
knew the ancient British by both ancient names, but added a third, calling them foreigners,
Wealh or Wylisc in Old English, and Welsh in modern English. The newcomers from
Germany were from many different nations, but in Britain they adopted a collective name:
Engle or Englisc, which Latin writers wrote as Angli. The word Angle is a modern translit-
eration of the ordinary Latin word for English. Saxon was the term applied to all of the
immigrants and not simply the West, East, South, and middle Saxons. Eighth-century writ-
ers coined the term Angli Saxones meaning English Saxons to distinguish those of Britain
from those of Germany. It was not until the 20th century that the unhappy hybrid Anglo-
Saxon prevailed. Morris®®! gives further detail on the origin of the terms Irish, Scot, English,
and Welsh.
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of sub-Saharan Africa into Northern and Eastern populations is clearly
demonstrated. It is becoming accepted that human genetic diversity is high-
est among Africans, and this is again demonstrated in the study. It is inter-
esting to consider the mix of African populations that are now represented in,
say, African-American or Afro-Caribbean populations. There has been an
amount of historical study of the slave trade that could inform this, or per-
haps mitochondrial typing of modern African-Americans may lead to an
answer. Again bearing this in mind, the 6 tree and subsequent tables (Figure
3.5.1 and Table 5.5.1 of Cavalli-Sforza et al.'?) may be examined and a rea-
sonable estimate can be made. Table 3.9.1 of Cavalli-Sforza et al. gives some
distances for “West Africans.” These values suggest that a 6 value of 0.01 as
recommended by NRC II°®* would not cover the full genetic diversity from
West Africa. The pivotal question would then be what level of mixing has
occurred in the U.S. itself?

Zietkiewicz et al.*®® gives a value of 0.072 for Africans. However, the
removal of M’Buti pygmies, a known deep division, lowered this to 0.027.

Foreman and Lambert®'? again apply Balding and Nichols’ Bayesian method
to various groups such as Cardiff Africans and West Midlands Caribbean against
the FSS Afro-Caribbean database as reference, for the six autosomal STR mark-
ers of the SGM system. It is difficult to see how this sampling could have been
improved; however, it can be argued that it may have missed the underlying
diversity in Afro-Caribbeans if these groups are now regional conglomerates of
genetically diverse groups that had existed separately in Africa. This has to be left
as a theoretical objection at this stage until we understand the history of immi-
gration of Afro-Caribbeans into the U.K. in more depth. As a counterpoise to
this potential objection, Foreman and Lambert include a South African ethnic
group in which the modal values for 0 vary between 0.0029 and 0.0082. The
highest value occurs for the comparison of the South African samples.

Gill and Evett®* give estimates ranging from —0.0004 to 0.0009 for the set
U.K.(FSS), UK.(MPFSL), and U.S.(Army) for the six autosomal STR loci of
the SGM set.

Weirt?? also gives estimates using the method of Weir and Cockerham for
three geographically defined Black databases from Florida, Texas, and
California for six VNTR loci. The values vary from —0.002 to 0.001. Again,
this study is unlikely to have segregated the groups into genetically defined
subpopulations and hence must be seen as a lower bound.

Budowle!'” gave results using the method of Weir and Cockerham for
three African-American groups. The value reported is 0.0023 for the six loci
of the Polymarker and DQa set. Later, Budowle!? also gave a value of 0.0006
for 11 African-American samples analyzed at 13 STR loci. It is difficult to see
a better way of sampling African Americans in the U.S.; however, it is unlikely
that this approach would reveal the full genetic diversity present in Africa or
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even in those areas of Africa from which the modern U.S. African-American
population was drawn. Sun et al.”#* give a value of 0.0018 for G for the
African populations; Sudanese, Nigerian, Benin, and South Carolina Black.

5.5.2.3 Asian (Indo-Pakistani)

Cavalli-Sforza et al.!>? present a specific section on the Indian subconti-
nent, giving information on, for instance, 28 populations studied at an
average of 47 genes (although again none are STR loci). This study does
suggest that 0 values of the order of 0.02 or 0.03 could easily be supported
for this population.

Foreman and Lambert®® again apply Balding and Nichols’ Bayesian
method to various groups defined by religion, locality, and ethnicity from
within the U.K., but including Doabi and Miripuri data. This must be seen as
an admirable way to find any underlying genetic diversity. Again they utilize
the six autosomal STR markers of the SGM system. Modal values for 6 vary
between 0.0001 and 0.0063. The highest value occurs for the comparison of
the Midlands with the Hindu/Sikh data as a reference. The Foreman and
Lambert study may include the data given by Overall®” for Jullunduri and
Mirpuri, giving a maximum likelihood estimate of 6 of 0.005 and 0.007,
respectively. This conclusion contrasts strongly with the result reported by
Zhivotovsky et al.,%¥* who examine three co-resident Pakistani populations
who favor consanguineous marriage. Using the method of Weir and
Cockerham, they obtain a mean value for 0 of 0.13 for ten autosomal dinu-
cleotide markers. Requests for the data and pedigrees of the individuals are
unanswered at the time of writing.

Gill and Evett®™* give estimates ranging from 0.0002 to 0.0023 for the set
U.K.(FSS), Hindu, Sikh, and Bangladesh for the six autosomal STR loci of the
SGM set.

5.5.2.4 Hispanic and Latin American
Weir®?? also gives estimates using the method of Weir and Cockerham for two
geographically defined Hispanic databases from Florida and Texas for six
VNTR loci. The values vary from 0.002 to 0.009. Budowle!'” gives results
using the method of Weir and Cockerham for two regionally defined
Hispanic populations: South Eastern and South Western. The value reported
is 0.0142 for the six loci of the Polymarker and DQa set. Cerda-Flores
et al.'>® give Gy values of 0.031 for D1S80 and 0.067 for DQa for three
Mestizo populations. Budowle!?° gives 0.0021 for eight Hispanic populations
for the 13 CODIS STR loci.

Our understanding of the composition of the Hispanic populations in the
U.S. suggests that these studies stand a higher chance of having segregated the
groups into genetically defined subpopulations than the same studies on
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Caucasians and Blacks. Budowle!? gives a value of 0.0053 for five population

groups in Latin America for 15 STR loci.

5.5.2.5 Amerinds

Kidd et al.**® investigate three Amerind groups and discuss the phenomenon
of drift among Amerinds. A 6 estimate is not given in this paper, but allele
frequencies are reported which would enable such an estimate to be calcu-
lated. This paper has been much debated in court because of the possible
presence of a seven-locus match between two of the Karitaina and a six-locus
match between a Mayan and a Suri.

Cavalli-Sforza et al.'>* again present a specific section on Amerinds. Their
study does suggest high levels of genetic diversity between Amerind tribes.
Values of 6 of the order of 0.05-0.12 could easily be supported for this
population, depending on which Amerind groups may be involved.

Budowle et al.!** report a value of 0.0309 for three Alaskan populations.
Separating on linguistic grounds gives a figure of 0.0167 for the two remain-
ing Alaskan groups. This leaves Athabaskans who were compared with
Apaches and Navajos on the basis of a similarity in their language. This
yielded a figure of 0.018 for 6. Later Budowle!® gave a value of 0.0282 for
seven Native American samples.

Mesa et al.>*® give a value of 0.068 for G, for five Native American popu-
lations from Columbia for nine autosomal STR markers. Their evidence sug-
gests that all these populations have undergone admixture with Caucasians.

Sun et al.”* give a value of 0.0407 for G, for Native Americans, but appear
to still conclude that “the entire set of nine loci are mutually independent in
all populations.” Discussion with the authors appears to suggest that this state-
ment was unintended, but rather that the authors feel that the loci are accept-
ably close to equilibrium. This amended statement was, correctly, not based
on independence testing.

5.5.2.6 East Asian

Budowle!!” gives results using the method of Weir and Cockerham for two sam-
ples: Japanese and Chinese. The value reported is 0.0024 for the six loci of the
Polymarker and DQa set. Wei et al.®% give a value of 0.0039 for four Taiwanese
populations. Sun et al.”# give a value of 0.0048 for Gj;. for “Asian” and 0.027 for
“Oceanic.” Budowle!*® gives 0.0090 for nine STR for Chamorros and Filipinos.

5.5.3 Dealing with Diverse Populations

What should we do if a part of our population includes individuals from a race
that we have not sampled extensively or if the suspect belongs to a race we have
not sampled? NRC II°* Recommendation 4.3 addresses this issue. “If the person
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who contributed the evidence sample is from a group or tribe for which no ade-
quate database exists, data from several other groups or tribes thought to be
closely related to it should be used. The profile frequency should be calculated
as described in Recommendation 4.1 for each group or tribe” Of course, the
population to be modeled is not necessarily dictated by the group or tribe of the
defendant, but that aside this is a sensible approach to the problem. However, it
should be accepted that, on average, a person’s genotype tends to be more com-
mon in their own group than others. Hence we should expect a person’s geno-
type estimate to be more common on average in their own group than even in
several closely related groups. This effect is likely to be very minor. However, an
effective mechanism for making estimates of groups that have not been sampled
is provided by Balding and Nichols™* equations with a suitable value of 6. Using
this approach, we would sample the closely related groups and then use Balding
and Nichols’ formulae with an appropriate estimate of 6. This approach is a
preferable refinement of Recommendation 4.3.

5.6 Tippett Testing

A method for investigating the magnitude and consequence of random
matches has been championed by Dr. Evett and is colloquially called “Tippett
testing.” Examples of Tippett plots appear on pp. 213-215 of Evett and Weir?®’
and large-scale Tippett-type experiments are reported by Weir.#** The tests
originate from an experiment by Tippett et al.”’* on paint. Dr. Evett has applied
the same technique to data from both glass and DNA. In the DNA context, we
imagine that we have a database of N profiles. First we perform the “within”
experiment. We compare each person in the database with himself. There will
be N such comparisons. Obviously, each person matches himself, and we then
calculate a likelihood ratio, or any other statistic assessing the strength of the
match. In the STR DNA context, this section of the experiment is relatively
straightforward. However, in other evidence types such as single-locus probes,
paint, or glass, it is much more demanding and revealing. This shows the range
of likelihood ratios expected when the suspect is in fact the true offender.
Next we compare each person in the database with every other person.
This is called the “between” experiment, and will give us the distribution of the
likelihood ratio if the suspect is not the true offender. We will have the results
from N(N—1)/2 possible comparisons. For demonstration, consider the com-
parison of 1401 Caucasian FSS Quadruplex genotypes undertaken by Evett
et al.?”® For this set there are 980,700 pairwise comparisons. (Note also that not
all these comparisons are independent, although the consequences of this are
probably negligible.) In almost all of these comparisons, the profiles will be
different. In such cases the likelihood ratio is zero. On 118 occasions there was
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a four-locus match, and for such occasions a likelihood ratio was calculated.
This is as close to a direct measurement of the average match probability as we
are going to get. We can say that in 118/980,700=1 in 8311 comparisons we
will obtain a match between different people for this multiplex. If the database
was constructed from unrelated Caucasians, then we have the estimate that 1
in 8311 unrelated pairs of Caucasians will match at these four loci.

Several things need to be noted about the general Tippett approach. First
it makes very few assumptions and hence does not rely to any large extent on
models. It is therefore our best approach to directly measuring average match
probabilities. However, match probabilities are usually quoted for the profile
in question in court. This approach yields an average match probability
across all N profiles that exist in the database.

The next thing that may be done with these data is to shuffle the alleles in
the database. This effectively imposes Hardy—Weinberg and linkage equilib-
rium on the data by breaking any possible association between alleles,
whether or not it was there originally. We can then perform the between
experiment over and over again and obtain the distribution of the number
and magnitude of matches expected if independence was true. What we typ-
ically note is that this distribution contains the number of matches that we
observed in the unshuffled data. Does this test the assumption of independ-
ence? Are we entitled to say something like: The number of matches observed
is consistent with the assumption of independence?

It turns out that this would be a misleading conclusion. Making databases
with known amounts of disequilibrium, possibly by simulation, and per-
forming the experiment can show this. Often enough the databases with
deliberately made disequilibrium also pass this test, that is: The number of
observed matches and their relative magnitude is also consistent with the
assumption of dependence. Hence the Tippett-type tests cannot really dis-
tinguish between databases that are in equilibrium and those that are not
(there is no current method to do this on databases of realistic size), and con-
sequently they cannot measure the extent of departure. What they do show is
that the presence of relatively large amounts of disequilibrium has very little
effect on the number and magnitude of matches.

To demonstrate this method, Curran and Buckleton (unpublished
results) considered an example given by Foreman et al.’’®> They investigated
the performance of this concept under two genetic models. One population
is in Hardy—Weinberg and linkage equilibrium, and the second is a substruc-
tured population characterized by an inbreeding coefficient @ = 0.03 created
by simulation. Databases were simulated many times from these populations
and the number of matches counted. The method of this simulation is given
in Appendix 5.1.
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Figure 5.6 Number of pairwise matches per database generated by the Tippett
test.

Figure 5.6 shows the distribution of the number of matches under each
model. It is immediately apparent that the inclusion of a relatively large
amount of disequilibrium has very little effect on the number of matches in
each simulation. A direct consequence of this is that the number of matches
is a very poor tool to use to distinguish between the independence model
(6 = 0.00) and the model with a value of 8 = 0.03. This had been previously
shown algebraically by Weir.3?

Next Curran and Buckleton calculated a likelihood ratio for each match
to produce the typical “Tippett” graph, shown in Figure 5.7. First we note that
the 90% confidence intervals have substantial overlap for the two models
tested. It is again apparent that the inclusion of a relatively large amount of
disequilibrium has very little effect on the number and magnitude of matches
in each simulation.

The conclusion is that the Tippett test is the best way currently available
to directly measure average match probabilities. It also demonstrates that the

Figure 5.7 Comparison of 5th and 95th percentile LR curves with =0 and
6=0.03.
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practical consequences of disequilibrium, if it exists, are not large and offers
a way to measure these effects. However, it is a very poor tool for finding dis-
equilibrium or measuring it if present, and is hence a poor tool for validating
population genetic models.

5.7 Descriptive Statistics for Databases

Most laboratories that are validating their databases publish the data. This is
a very desirable activity. This policy is supported by the editors of many jour-
nals who have developed sections such as “For the record.” In these sections,
short announcements of population data may be published.

These publications typically give a summary of the allele probabilities.
This is useful for other scientists who may wish to use these data or to com-
pare them to their own or other populations.

Many publications also include some summary statistics used to describe
the data. This move has been facilitated by the provision of software such as
Powerstats.”® The purpose of this section is to give the mathematical defi-
nitions of some of these statistics and to make recommendations for their
use.

When describing descriptive statistics, it is vital to draw a careful distinc-
tion between the value of population parameter and the estimate of that
parameter calculated from the sample actually observed.

5.7.1 Heterozygosity

This term is applied to a measure of the fraction of heterozygotes®¢ in the
population. Let us term the population heterozygosity at locus ! in popula-
tion g, hj. To avoid the proliferation of superscripts and subscripts, we will
use h as shorthand, but it must be recalled that this is at a certain locus and
in a certain population.

The simplest estimate of this parameter is the fraction in the sample, //,
where the ~ is used to signify the sample value. Again we will occasionally
shorten this to 4. This is assessed by taking the count of heterozygotes in the
database at this locus, 7, and dividing by the total samples, N;:

hi = % (heterozygosity at locus [ in population q)
!

The observed sample propqrtion, hd, is expected to be an unbiased estimator
of the true parameter, hf; eh] = h{ with variance
hl(1—Hh{)

n

Var fz? =

if the sampling of individuals is independent.
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Weir®* gives the average over m loci as the simple arithmetic average:

N _ “on
Rl= — z hi= i z Wl (average heterozygosity across m loci in
I=1 I=1""1 lati )
population g

This overall average will rarely be required in forensic work as it is custom-
ary to report locus specific heterozygosities. Weir states that this remains an
unbiased estimator, but that the variance requires cognizance to be taken of
the covariance between the estimates at each locus.

5.7.2 Homozygosity

Homozygosity, H, can be similarly defined as the fraction of homozygotes in
the sample:

.y

where p, is the count of homozygotes in population g at locus . We see
directly that

H =1-

=
—~

5.7.3 Gene Diversity (Often Termed Hex)

Heterozygosity is estimated as the fraction of heterozygote genotypes at a locus
in a sample. An alternative strategy would be to proceed from allele frequen-
cies. Let p/! be the frequency of the uth allele at locus / in a sample from popu-
lation g of size n individuals. For simplicity, we drop the subscript for locus and
the superscript for populations. The maximum likelihood estimator for gene
diversity is given by

b=1-3 f
where the summation is over all alleles at this locus. Weir notes that
1+f
=(1-—\p

Hence there is a small downward bias, (21 —1)/2#, for non-inbred populations
(f=0) and a slightly larger one for inbred populations. He also gives expres-
sions for the variance and covariance of D,. This suggests the use of

D= n_1< Em)
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to compensate for this bias,'**”> where n is the number of individuals
sampled.

Gene diversity is expected to be similar to, but not exactly the same as,
heterozygosity. The difference will be larger for samples that differ from
Hardy—Weinberg proportions markedly. Gene diversity should have smaller
sampling variance than heterozygosity.

Nei®” also suggests that the quantity 1 — D that he terms gene identity
may be useful.

5.7.4 Match Probability

The probability of a match at locus I, PM,, was first described from genotype
data. Fisher®** gave

-3¢

where GI is the sample frequency of the ith genotype at locus . Jones*’
suggests setting

Z_l il — UN, zi Gz

PM, = ;
1 - 1/N,

i=1
where the first part of this equation is for a sample of size N, at locus I. An
alternative does exist which would proceed from allele probabilities.

Zp +2> P3P,

1]

- (Zp;) 300,
! i#j
:(1 >2 sz ~2

1l
i#j

Across k loci, Jones gives

k
pM =1-11pPMm.
j=1

5.7.5 Power of Discrimination

The power of discrimination is often given as

k k
1-PM=1 —(1 —HIPM]) =H1PM
1= 1=
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5.7.6 Polymorphism Information Content

Botstein et al.”” give

n n—1 n
PIC=1=) p:=> > 2p!p’
i=1

i=1 j=i+1
where 7 is the number of alleles and p; is the allele probability of the ith allele.

5.7.7 Probability of Excluding Paternity
Ohno et al.>* give the probability of excluding paternity:

n n—1 n
Q,=> p.(1=p)* (I—p+pH+ > > p.L, (P, T P)(1 =P, P)
i=1 i=1 j=i+1

where 7 is the number of alleles and p; is the allele probability of the ith allele.

5.7.8 Average Paternity Index

Brenner and Morris®* give

o 1
C1-A

for fathers and nonexcluded nonfathers, where PI is the average paternity
index and A is the mean exclusion probability. They further give approxima-
tions A ~ h* or more accurately A ~ h* (1 — 2hH?) (see Nijenhuis®*?). The pos-

terior probability of paternity, W, would be
W= 1
S 2-A

(referenced in Brenner and Morris to Morris J.W., pp. 267-276 of the same
volume).”® As usual, prior odds of 1:1 are assumed.

5.7.9 Haplotype Diversity

k
n
H n_1< zzlp’)

»575,697

where H is the “haplotype diversity.

5.7.10 Summary

The purpose of a descriptive statistic is to give an overall impression of the
usefulness of a locus for forensic, paternity, or other purposes. Most of the
measures differ very little in their utility. Since the allele frequencies have
a value in themselves, we assume that they will be presented in such
publications. Many of the statistics may be derived directly from these
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allele probabilities. The presentation of multiple summary statistics seems
excessive.

The most informative statistics are the two simple measures: heterozygos-
ity and gene diversity. The first cannot be checked against the data, the sec-
ond can. It would be better for the forensic community to agree on one of
these as the summary statistic of choice.

The p-value from the exact test for Hardy—Weinberg proportions is
also valuable and should be presented without comment as to whether or
not the value is significant. The p-values from linkage equilibrium tests are
also valuable. They would not fit onto the type of table currently pub-
lished, but could be deposited as supplementary data or placed in a sepa-
rate table.

Appendix 5.1 (by James Curran and John Buckleton)

A “population” of 10,000 individuals was generated under independence
assumptions using allele frequencies for New Zealand Caucasians (N = 936)
from four forensic loci: HUMvWA31A, HUMTHO01, HUMDS8S1179, and
HUMFIBRAFGA. The population was then divided into ten homogeneous
subpopulations of equal size (Ng=1000). To achieve a desired level of
inbreeding or coancestry 6, the subpopulations were allowed to randomly
breed (with no migration or mutation) for a fixed number of generations, ,
dependent on the subpopulation size and 6, where

__In(1-9)
In(1—1/2N))

When 6=0.03, t= 61 generations are required. To simulate the act of con-
structing a forensic database (many times) 10,000 random samples of size
1400 were taken (without replacement) from the population comprising the
recombined subpopulations. Each member of the database was then com-
pared to every other member of the database. If the two members had iden-
tical profiles, then the likelihood ratio (LR) was calculated for the matching
profile; otherwise the LR was set to zero. The LR was calculated according to
the Balding and Nichols formulae given in NRC II (Equation (3.4)):

(1+6)(1+20)
[20+(1—0)y][360+(1—0)y]

for homozygotes (A; A,)

LR =
(1+6)(1+26)
2[6+(1-60)y1[0+(1—0)y]

for heterozygotes(A; A))
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The allele frequencies were estimated according to the approximate Dirichlet
multinomial (size bias correction) product moments, where

x;+4
—t—— for homozygous profiles
2N, + 4 ygous p
ne x;+2
m for heterozygous profiles

and x; is the count of the ith allele in the database. These simulations were
carried out with 6= {0.00, 0.03} for the breeding and 6= 0.03 for calcula-
tion. This represents calculation of the LR under the independence model
using a value of 8 known to be conservative (since 6 = 0.00 in the independ-
ence simulation and 0.03 is used in the LR calculation). Further we perform
the calculation of LR under the substructure model (where 6= 0.03 in the
simulation and 0.03 is used in the LR calculation). In both cases, following
Foreman et al.?!>3!> the size bias correction is applied.

The exclusion power of the four loci selected for the experiment (under
assumptions of Hardy—Weinberg equilibrium and linkage equilibrium) is
99.9988%; therefore, in 979, 300 (= '°C,) comparisons, we expect to find
about 11-12 matches (compared with 118 for Foreman et al., the difference
arising from the different loci used in our simulation) between two loci.
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6.1 Introduction

It is usual to attach a numerical weight to a match between DNA obtained
from a crime sample and DNA taken from a sample given by a suspect. In
Chapter 2, we discussed the possibilities of using a frequency, an exclusion
probability, or a likelihood ratio for this purpose. None of these methods
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returns an exact answer but, rather, each produces an estimate. The fact that
an estimate is given and not an exact answer leads to the following question:
“Should this numerical estimate be a ‘best” estimate or should some consid-
eration be given to the uncertainty in this estimate?” This is a matter where
opinions in the forensic community differ.

Part of the uncertainty in the estimate is often referred to as sampling
error. The word “error” does not refer to an analytical error but rather the
variation that would occur if a different sample of individuals were taken to
create the population database. Nor does the word “sampling” have anything
to do with the physical act of taking a DNA sample, but rather the selection
process whereby someone’s DNA profile ends up in the database used for sta-
tistical calculations. This selection process induces sampling error in the
resulting estimate regardless of the population genetic model used to con-
struct it or the size of the reference database.

The argument for the assessment of sampling error is best made with an
example. Take a situation involving a single suspect and a single stain from a
scene. The questioned item (the stain from the scene) and the known sample
(from the suspect) are sent to the laboratory. After DNA testing, on the basis
of whatever typing system is in use, it is decided that there is a match between
the suspect and the scene. It remains for us to assess the statistical weight of
the evidence. Based on a database of genotypes and a population genetic
model, the estimate for the frequency of this genotype® is one in a billion
(107?). This is obviously compelling evidence. Now let us add, unrealistically,
an additional fact: we are somewhat uncertain about this estimate. In fact,
rather than being exactly one in a billion it may be anything from one in ten
(107!) to one in a billion billion (107!8). We believe that most people would
now regard the original estimate of one in a billion somewhat differently.

Brenner?’ offers the following allegory for our consideration:

Suppose you plan to drive to some point in the desert and must
carry enough fuel for the round trip. Your best estimate is that ten
gallons will be enough, but you know that this estimate carries some
uncertainty, and there is, let us say, a 1% chance that you really will
need 15 gallons. So 15 gallons is the “98% (or may be 99%) upper
confidence estimate,” and you may well judge it prudent to carry
this amount of gas, rather than the “point estimate” of 10 gallons.
(Reproduced with the kind permission of Dr. Brenner)

In our DNA example, the uncertainty about the statistical evidence varies
from moderate (107!) to extremely strong (10~ !8). Sampling error has been
investigated by a number of authors,3>16217:253:267:384585 and in reality the

2 In fact, this is an estimate of the probability that someone who is unrelated to the suspect
has this same genotype, which happens to be numerically identical to the frequency of the
genotype in the population when substructure is not an issue.
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variability in a DNA estimate is not as large as this (at least for a database of
moderate size = 200 individuals). One may ask whether it is sufficient to rely
on these published results. While we believe that the results generalize to any
DNA database, we encourage forensic scientists to think about what should
be accepted practice in their own laboratories and institutions, and consider
the following questions.

Should sampling error be assessed in every case?

Should it be done once for a sample of profiles from a database and
published?

Should it be never done at all?

We attempt to address these questions here.

Not all commentators believe that an assessment of sampling error is
necessary. Brenner®” makes explicit his doubts of the usefulness of assessing
sampling uncertainty with the following challenge:

Will someone tell me, please, what rational difference it ever can
make to know the confidence limits in addition to knowing the
best point estimate? Specifically, can you give premises under
which, for a fixed point estimate, the decision to convict or not to
convict would depend on the size of the confidence interval?
(Reproduced with the kind permission of Charles Brenner)

There is a lot of substance to Brenner’s challenge. However, these comments may
not have taken full account of the cross-examination process, in which any
uncertainty or doubt should be, and often is, explored at length. An analyst who
has prepared for such a cross examination will definitely present better evidence
to the court than one who chooses to answer “would it make any difference?”
Furthermore, and perhaps more importantly, it is accepted in adversarial sys-
tems that all reasonable uncertainty should be conceded to the defendant.

Commenting on statistical evidence in general, rather than DNA in
particular, Good*®* stated: “The court expects us to provide both an average
based on our sample and some measure of the accuracy of our average.”

Almost any measurement in science has an associated measure of uncer-
tainty. Well-prepared lawyers correctly investigate this avenue of questioning.
In our experience, this is most commonly done by asking a question along
the lines: “Is your database of 180 individuals big enough?”

Is there any reason why DNA evidence should be exempt from this line of
questioning? The position advocating a consideration of sampling uncertainty
is also taken by many authors.’»!2315816:217.267.585 Ty most cases, even with the
inclusion of an estimate of sampling uncertainty, the final answer is not vastly
different to the point or “best” estimate. However, we would argue that the
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analyst is undoubtedly more prepared for ensuing courtroom presentation, and
is also being more “scientifically honest” in doing so.’ The admission that there
is sampling error in our estimates is not a flaw but merely a statement of fact.

Please do not construe from this discussion that we are suggesting that
sampling uncertainty is the only source of uncertainty. There are at least two
sources: sampling uncertainty and our uncertainty about the appropriateness
of the population genetic model. We feel that both warrant consideration. In
fact, sampling uncertainty may be the lesser; but we cannot really tell. Some
authorities advocate considering one or another of these items, “asserting” that
the correction introduced is sufficient to cover both sources of uncertainty. We
would see it as reasonable to consider both by using separate appropriate meth-
ods. We conclude this chapter with an extended discussion of this point; how-
ever, no uniform consensus exists in the scientific literature.

6.2 Bounds and a-Level

We assume that the sampling uncertainty will be described simply by its con-
fidence bounds. Weir at al.**® and Curran et al.?!” discuss one- and two-sided
intervals and o-levels in the DNA context. This is a simple extension of clas-
sical theory. A two-sided, say 95%, confidence interval would allow the fol-
lowing type of statement to be made: 95% of intervals constructed in this way
will contain the true frequency. The one-sided equivalent is: In 95% of inter-
vals constructed in this way, the true frequency will be higher than this value.

The practical differences between a one-sided and two-sided interval are
that the upper limit changes slightly and that the one-sided confidence limit
has an upper bound rather than both a lower and an upper bound. The
philosophical differences are larger. The two-sided bound attempts to bracket
the “true value” above and below. The one-sided bound attempts to give a
value above the “true value” for frequencies or below it for likelihood ratios.
The argument for a two-sided interval is that it is more scientific and bal-
anced to bound above and below. The one-sided advocates, who include us,
argue that there is one fewer number to give in court. The court may be more
interested in the weakest that the evidence could reasonably be, and the one-
sided limit corresponds more with this.

It is not acceptable to substitute the word probability for confidence in
statements regarding confidence intervals. ... A report issued by the NRC>**
that contains (p. 76) ‘the traditional 95% confidence limit, whose use implies
the true value has only a 5% chance of exceeding the upper bound’ must lose
credibility with statisticians.”®?° The report in question wrongly confuses a
confidence interval with a probability interval. Strictly speaking, any particular

b We do not assert that a scientist who does not choose to do this is dishonest.
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confidence interval either contains the true value or it does not, but 95% of
intervals should contain the true value. We cannot say that “It is 95% probable
that this confidence interval contains the true value.” The difference appears
academic but could easily lead to difficulty in court.

The Bayesian posterior method, given by Curran et al.,?!” would allow the
following statement: It is 95% probable that the true frequency is not more
than 1 in 1.1 billion. This latter statement seems easier to understand but can
only be made using Bayesian methods.

6.3 Methods for Assessing Sampling Uncertainty

We briefly review the suggested methods below to allow comparison of their
accuracy and the relative ease of their implementation and use. For the more
widely used mathematical methods, we include a discussion of their derivations.

6.3.1 Method: NRCI

Requirements: Pen and paper.®

Applicability: Cases where a suspect matches a simple unmixed stain from
the scene.

Comment: “There is no need to discuss further the first NRC suggestion of
replacing p;; by its binomial-based confidence limit p; + 1.96 V’ﬁij (1 —py)/2n,
as that is clearly invalid. Confidence limits for products are not obtained as
products of confidence limits.”®*® See also Weir.’!

Implementation: This approach has no statistical credibility and its imple-
mentation is not discussed here.

6.3.2 Method: Factor of 10

Requirements: Pen and paper.”®

Applicability: This method applies to cases where a suspect matches a sim-
ple unmixed stain from the scene. This method was not developed for mix-
tures, relatives, paternity or missing person cases, and its performance in
these instances is unknown.

Comment: “Similarly, the second NRC suggestion of constructing the
interval (2/10,10P) has limited theoretical validity. There must at least be an
effect of sample size.”%48

“The ‘Factor of 10" approach has little to recommend it from a theoretical
standpoint, and we must prefer the other methods which have a more firm
statistical backing. As mentioned previously there must be an effect of sam-
ple size and number of loci. . . . However, our own simulation may be viewed
as further empirical support for the ‘Factor of 10’ approach. In general the
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‘Factor of 10" approach performed in a broadly similar way to the other
methods or was excessively conservative.”!”

Implementation: Suppose that the match probability is estimated as, say, 1
in a billion. This approach would suggest that the bounds for uncertainty

(sampling and population model) are 1 in 100 million to 1 in 10 billion.

6.3.3 Method: Asymptotic Normality of the Logarithm
Extended by NRC II to Allow for Population Structure

Requirements: May be easily applied by an EXCEL™ spreadsheet. Laszlo
Szabo of the Tasmanian Forensic Science Laboratory has developed one that
is in extensive use throughout Australia.!6>5%

Applicability: This method may be applied to cases where a suspect
matches a simple unmixed stain from the scene. “We cannot as yet see how to
extend this method generally for other formulations such as mixtures or
paternity cases, although the methodology should be applicable.”84®

Comment: Curran et al.?'” scored the performance of this method as ade-
quate in most situations except for small database sizes, reporting that “for
single-contributor stains, such as those considered here, it does appear that
these normal methods are completely suitable.” However, this method does
not easily extend to mixed stains, nor does it generalize to other situations.
This shortcoming limits its overall usefulness.

Implementation: An excellent explanation is given in NRC IL.>%P-122 Here we
present a spreadsheet layout to apply this approach with the subpopulation cor-
rection, 6 (Figure 6.1). If the product rule is desired, the more simple formulae
in NRC II may be used or this spreadsheet may be utilized with 6 set to zero.

Theoretical basis (following Weir**®): Methods based on asymptotic nor-
mality have the advantage of leading to relatively simple analytical expressions.
Let P be the match probability and Pthe estimate. The procedure assumes that
ln(ls) is normally distributed, so that a 99% confidence interval for P is IS/C, C15,

where In(C) = 2.57 VVar[In(P)]. The task is to compute the variance of In(P).
Assuming independence between loci, this is approximated by

Var[ln(f’)] = Var {Z ln(Pi)] ~ Z Var(f)i)/f’i2
As 0 is generally assigned a numerical value (NRC IL,>% P-122) such as 0.03 in
this context, rather than being estimated from sample data, it will be assumed

to be constant.
For a homozygous profile at locus i

A\ 2
Var(lsi) = (%) Var(p,,)
i
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Observed genotype 1 12
. p 0.2005 | 0.0932
Heterozygote allele frequencies 0.2082
N total alleles in database at this locus 818 826
Theta called F hereafter 0.03 :
Confidence interval (95, 99, 99.9) 99% Recommended 95%:
called X 3
1 or 2 tailed (enter 1 or 2) called Y 2 Recommended 1 tail
Zvalue 2.576 < ABS(NORMSINV

((1-X)/Y)

Genotype frequency (heterozygote, Balding !

AF+(=FP(F+(1=Flg) |

formula) = G Fyivar) | 0.0512
Genotype frequency (homozygote, Balding |

formula) @F+(—F)P)EF+(1-F)p) _: 0.0663

(1+F)(142F)
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Figure 6.1 Spreadsheet layout to implement the asymptotic normality of the
logarithm method.

and for a heterozygous profile

A

: PN oP; \?
Var(P) = (g) Var(p;) + (Q'?l) Var(p,)
il i2

oP. \[ op,
+ 2| = — | Cov(p,,, P,
(aPﬂ)(aPiz) Piv Pz
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When 6 =0, these expressions become

7171, A=A,
. n;pi
Var[In(P)] =
putPin—4PaPi A. #A.
21,1 P ’ e

as given previously by Chakraborty et al.'®> and NRC I1,% P- 146, Use was made
of the binomial variances and covariances of allele proportions:

_ pi(1=p;)
Var(p.) = Lit- P
ar(pl]) o
o Dii Piy
Cov(pij, pij,) = _—én]

i

in the derivation of Var[ln(ﬁ’,-)].

6.3.4 Method: Bootstrap

Requirements: This method requires a purpose written programme.?8 A
very adaptable one that can handle any forensic situation has been developed
by Curran.?"”

Applicability: Simple stains, mixtures, paternity cases, missing persons, all
forensic casework.

Comment: Curran et al.?'” scored the performance of this method as ade-
quate in most situations except for small database sizes. As they explained,
“...the relatively poor performance of normal-based limits or bootstrap
limits for small sample sizes [small databases] is a consequence of specific
alleles not appearing in these samples. The problem disappears when 0 is
assigned a non-zero value.”

Implementation: Consider a database of individuals indexed 1... N. We
wish to assess, say, the genotype probability across 13 loci. The steps are as
follows: Assess the multilocus genotype using whichever formula is pre-
ferred. This could be the product rule, a theta correction, the brother’s for-
mula, a paternity calculation, or whatever. Select an individual at random
between 1 and N and put a copy of this genotype into the “new database,”
but do not remove this individual from the original database (i.e., we sam-
ple genotypes — or individuals — from the database with replacement).
Repeat these processes N times. We now have a new database of N individ-
uals. Some of the initial individuals may be represented twice or thrice, some
once, or some not at all. Recalculate the allele frequencies using our new
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database. Recalculate the formula of interest using these allele frequencies.
Repeat this approximately 1000 times. Sort the 1000 results of the formula
into ascending order. The 25th and 976th results represent the bounds of the
95% two-sided confidence interval. The 951st represents the 95% one-sided
confidence interval.

6.3.5 Balding’s Size Bias Correction Corrected in Evett and Weir

Requirements: Pen and paper.>>2¢7

Applicability: This method was developed for simple unmixed stains:
“there appears to be no simple general extension to mixed stains and
paternities.”?!’

Comment: Curran et al.?!” score the performance of this method as poor
if the intent is to assess sampling error. “An unfortunate consequence of
Balding’s discussion of ‘conservative Bayesian estimates’ is that some foren-
sic agencies have taken to presenting only point estimates based on sample
allele proportions calculated by adding crime and suspect profiles to a data-
base. These modified point estimates do not address sampling error. As
sample size increases they are more likely to provide intervals (bounded
above by these values) that do not contain the true values. It would be mis-
leading to regard them as acting like confidence limits... we are disap-
pointed in the lack of scientific rigor both in its derivation and application.
However for small databases or rare profiles it is probably acceptable as a
coarse correction for sampling error. For larger databases and common
profiles it performs more as a mean estimate.”®® The performance of this
method may be adequate when applied to very small databases and rare
profiles. It is difficult to predict this method’s performance in any given
case.

The theoretical support for this method is given under the headings
“Support Intervals” and “Uniform Allele Prior Distribution.” Also present is
a discussion of the possible use of nonuniform priors.

Implementation: Suppose that we have a database of size 2N alleles. To cal-
culate the probability of observing an aa homozygote, take the count, x, of
the a allele in the database and use

[ xt4 ?

Fu=\28+3
To calculate the probability of observing an ab heterozygous profile, count
the number of a and b alleles in the database, x, and x;, and use

1522 Xa+2 xb+2
ab 2N+ 4 /\2N + 4
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6.3.5.1 Theoretical Support (following Weir et al.8*3)

6.3.5.1.1 Supportintervals. Suppose that the population probability of
allele j at locus i is p;;, and a sample from the population contains x;; copies
of that allele. For locus i, the likelihood function for the alleles in the
profile is

i (1=p;y)2m—, A=Ay
Liipgh) = P pF(1=py—pp)2" 2, A Ay

where the sample has n; individuals scored at locus i. The likelihood has a
maximum value of

X1 _ 2n;—x;
(xn)’(z”i xn) Y A=A,
b 1 1

B 2n, 2n,
L({P’]})Oc xi1 X e — e \2MT X X
(ﬂ (& (Z”i Xy % Ayt Ay,
2n;) \2n; 2n; S

Balding®® considered support intervals obtained by constraining the multin-
omial proportions to give a fixed profile probability P, introducing a
Lagrange multiplier A to maximize the expression

Slin L({PH] + A In(P) — InP,|

1

The constrained solutions are

(x;,+2A)? _
(2n,+214)%’ An=Ap
Py = (6.1)
2(x; ) (x,+A) A %A
(2n,+2A)? a %Ay

which correspond to the addition of A copies of the profile to the sample. The
ratio of the constrained to the unconstrained maximum likelihoods is

(1424, )1 _
(1+24/2n,)° Ay = Ay
RA) = (1+ A/x;)) % (1 + A/x,y) i A 4
(1+21/2n,)%" il 2
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which differs from equation 15 of Balding® in detail. Over the whole profile,
the likelihood ratio is

r(3) = L1r2)

A 99% profile likelihood interval is found by choosing those two values of
A such that In R(A) = —(1/2) %400 = 3.317.

The example does not support Balding’s claim that the A value for the
upper support limit should be two, corresponding to the addition of the
crime stain profile and the suspect’s profile to the sample. Without this
appealing way to choose A, there seems little numerical advantage to the use
of profile likelihood support intervals over conventional confidence intervals.
The bounds of A will depend on the number of loci in the profile, the popu-
lation probabilities of the profile alleles, and the size of the sample, as well as
on the probability ordinate used to construct the interval. Adding the crime
stain profile and the suspect’s profile to the sample before constructing allele
sample frequencies neither accounts for the sampling variation induced by
finite samples, nor corrects for the presence of population substructure.

6.3.5.1.2 Uniform allele prior distribution. Balding> also considered a
Bayesian approach by assuming a Dirichlet prior distribution for allele proba-
bilities. The probability density for values pj in a particular population was
taken to be

75( 11) ( Ll) " 1(1 P;l) T Ay=A4A,
”(Pﬁ,sz) ( :1) " I(Pzz> v 1(1—P;1—Plz) L ANEA,
The quantities Y7 and ¥ are the Dirichlet parameters for the allelic classes
“not 1” and “not 1 or 2” at locus i. Combined with multinomial sampling of
alleles from the population, the posterlor profile probability (i.e., the expec-

tation over populations of (pﬂ) for A; A, profiles and of 2p;, p;, for A, A,
profiles) is

Ty, +ys +2n)T(y,+x,,12)

A=A
C(y,+7y: +2n,,+2) T(y,+x;) it
E(P,)=
ZF(%I + 9, + %12+ 2n) T(y, + x, + 1) F(%Z + x,+ 1) A%A
Ly, + Vot Yot 20+ 2) T(y, + x,) T(y, + x,) . =
(6.2)

Balding then simplified this to allow for uniform priors: y; = y7 = 1 for
homozygotes and ¥, = ¥, = ¥ = 1 for heterozygotes. Then the expected
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profile posterior probabilities are

(x;; +2)(x;; + 1)

(2n; + 3)(2n; +2)
E(P()i) _ n n (6.3)

2(x; + D(x, +1) , AnF Ay

(n, + 49)2n, + 3) S

which again differ slightly from the expressions given by Balding. An advan-
tage of the Dirichlet distribution is that all moments have simple expressions,
so that with a uniform prior the expectations of (£;)' and (2P: P)’ give

(x;; + 4)(x;; + 3)(x;; + 2)(x;; + 1) A=A
(2n, + 5)(2n, + 4)(2n, + 3)(2n, + 2) i
4(x;; + 2)(x;, + D)(x;; + 2)(x;, + 1)

(2n, + 6)(2n, + 5)(2n, + 4)(2n, + 3)

i2

E(Pgi):

A #F Ay

(which also differ slightly from the expressions given by Balding). The
ratio of these two expectations can be regarded as the probability of the
profile occurring twice given that it has occurred once (i.e., the match

probability):
(x;; + 4)(x;; + 3) _
! ! ,  Ag=A,
E(P,,) (2n, + 5)(2n, + 4) e 6.0
E(P,) = o+ L+ 4
0 2(x;; + 2)(x;, +2) A A,

(2n, + 6)(2n, + 5)

This is almost the expression that would result for the simple product rule if
the profile in question was added twice to the database.

Balding suggested this method as a way to incorporate sampling effects
into estimated match probabilities, in the sense that the sample database was
allowed to modify the assumed uniform prior for allele probabilities. Weir
et al.3*® believe, however, that these estimates are posterior means for match
probabilities when the prior means for the probabilities are one third for
homozygotes and one sixth for heterozygotes, as can be seen by setting x;, =
x, = n; = 0 in Equations (6.3).

6.3.5.1.3 Nonuniform allele prior distribution. As Balding remarks, it
is illogical to assign uniform priors for allele probabilities that differ with
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the number of alleles (1 or 2) that occur in the evidentiary profile. There is
population-genetic logic in the nonuniform Dirichlet that invokes the
parameter 6 via

(1-0)p;
as discussed by Balding and Nichols*! and Evett and Weir.?” The posterior
match probabilities are then

(3 +x;) 0+ (1 = Opyl[(2+x,)0+ (1~ 0)p;]

E(P,;) [1+ (1+2n)0][1 + (2 +2n,)6] i =4

2

E(F; 2[(1 + x;))0+ (1 — 0)p;,1[(1 + x,)0 + (1 — 0)p;,]

Ail:#AiZ
[14 (1 +2n)6][1 + (2 + 2n,)6]

There is a problem in knowing what values to use for the unknown allele
probabilities p;. Simply using sample proportions from current populations
appears to ignore the variation that the Dirichlet distribution is designed to
incorporate, although the problem is lessened when the x; values are large.
Balding does not comment on the fact that the sample of size n; individuals
in Equations (6.5) is from the specific subpopulation relevant to the crime. It
is not a sample that would furnish an estimate of the population-wide fre-
quencies p;, further explaining why there is no simple interpretation of these
results in terms of adding copies of the matching profile to the database.

Note that as the sample size n; increases, Equations (6.5) reduce to

P A=A,
= (6.6)
2PiPir Ay #F Ay

E(P,;)
E(P,,)

which are just the product rule expressions for the relevant subpopulation.
The product rule expressions are also obtained when 6 = 0 because there is
then no distinction between subpopulations and the whole population.
When there are no data from the relevant subpopulation, x;, = x,= n,= 0,
and Equations (6.6) are recovered.

If only the two samples from the crime stain and the suspect are available
from the relevant subpopulation, #,=2 and x;, = 4 for homozygous profiles
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A, A; or x;; =x;, =2 for heterozygous profiles A, A,,:

(70 + (1= 0)p;,][66 + (1= O)p]
E(Py;) [1+ 56][1 + 66] i = A

b 6.7
E(F;;) 2(30 + (1 = 0)p,,][360 + (1 — O)py] An;&Aiz( )

[1 +50][1 + 60]

6.3.6 Method: Posterior Density*

Requirements: This method requires a purpose written program. A very
adaptable one that can handle any forensic situation has been developed by
Curran.?!?

Applicability: All forensic casework.

Comment: Curran et al.”'” scored the performance of this method as ade-
quate in most situations.

Implementation: This is the most mathematically intimidating of the var-
ious approaches, but in concept it is the most familiar and most intuitive. It
helps to start by thinking about the problem without the hindrance of the
mathematics.

One way “into” the problem is to think about a situation where we have
no alleles of type a in our database, but have just done a case where the sus-
pect and crime stain have this allele. Our allele probability estimate from our
database is zero (please ignore minimum allele probabilities at this point).
But we have just seen one copy of allele a (in the suspect). So we certainly no
longer believe that the frequency is zero.

Next we ask ourselves why we are calculating a frequency at all. It is to
assess the chance of this evidence if the suspect did not leave the stain. Hence
the whole calculation of a frequency is based on the assumption that the sus-
pect did not leave the stain. Now if the suspect did not leave the stain, some-
one else did. Hence we have two, not one, observations of allele a. Thinking
of this type led Scranage and Pinchin” to add the “suspect and offender” to
the database when they wrote the groundbreaking program DNASYS.

This is what the Bayesian approach does. It starts from a position, observes
the database and the suspect and the offender. This results in an estimate and
the variability in that estimate. We feel that the court would also respond well
to an explanation that we had “updated” our view of allele probabilities based
on the suspect and offender profiles. A program is required to implement this
approach but one is available.

¢ We attribute this method to the suggestion of Dr. Ian Painter. It is an extension of the
method of Professor David Balding.

© 2005 by CRC Press



6.3.6.1 Explanation of the Bayesian Highest Posterior

Density
This approach is not explained in simple terms elsewhere in the literature. We
attempt this here.

6.3.6.1.1 Bayes theorem and Bayesian estimation. In forensic applica-
tions the odds form of Bayes’s Theorem is used to show how the likelihood
ratio can be combined with the prior odds on guilt to give us the posterior
odds on guilt. In Bayesian estimation, we are interested in the value of an
unknown population parameter such as an allele probability. To estimate this
parameter, we combine our prior probability about the possible values for
this parameter with the data that have been observed to get the posterior
probability on the possible values the parameter may take.
Bayes’s theorem tells us how to do this. We write

Pr(datald) Pr(A)
| Pr(datalA) Pr(4) dA

Pr(Aldata) =

or

Pr(Aldata) « Pr(datal1)Pr(A) (6.8)

where A represents the parameter(s) of interest. In forensic casework, A is
likely to be an allele probability. In words, Equation (6.8) states: “the proba-
bility of the parameter given the data is proportional to the probability of the
data given the parameter times the probability of the parameter.” The first
equation shows the “scaling” factor that we need to calculate the probability.

We start with some belief about a parameter. Possibly we have no knowl-
edge at all. This can be modeled by various functions. For instance, “no
knowledge at all” is often modeled by a function that assigns all values
between 0 and 1 the same probability. An experiment is performed to collect
some information about the parameter. In our case, this is the database and
the suspect and offender profiles. Then the prior belief and the data are com-
bined to give an updated idea about the parameter. The equation can be bro-
ken down into the posterior, Pr(Aldata), the likelihood, Pr(datalA), and the
prior, Pr(A). The likelihood is usually straightforward to compute and is sug-
gested by the problem. Choice of the prior can be very problematic.

6.3.6.1.2 Prior probabilities. Assume that we wish to assess the frequency
(probability) of various alleles at a locus. Furthermore, let us assume that this
particular locus has only alleles A and B. Since people can only have A or B
alleles, then Pr(A) + Pr(B) = 1 or Pr(B) = 1— Pr(A). Therefore, it suffices to
estimate the probability of allele A, denoted by x,.
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A sample of people is taken and typed. Our maximum likelihood estimate
for the probability of the A allele is

# of A’s

:7%:
a=7 2N

WA »

where N is the number of individuals in our database. The hat “*” is used to
indicate that this is an estimate. Imagine that in a sample of, say, ten people,
there were seven type A alleles; then our estimate is 7/20 = 0.35. However,
before this sample was taken what did we know about 7,2 Regardless of what
we assume, we need a way of representing our knowledge. We do this by
saying how probable we think certain values of 7, are. For example, we might
say that there is a 10% chance that 7, is less than 0.2 (Pr(z, <0.2) = 0.1) and
a 10% chance that 7, is greater than 0.9 (Pr(x, > 0.9) = 0.1), and an 80%
chance that 7, is between 0.2 and 0.9 (Pr(0.2 <, < 0.9) = 0.8). Together
these probabilities add up to one, and what we have described is called a
cumulative density function (CDF). They describe the area under a curve
called a probability density function. The key fact is that the area, and not the
height of the curve, measures probability.

The proportion may have been estimated as 0.53 using a database in
Scotland so it might be similar in Ireland. Or, we may choose to say that we
know nothing — all values of 7, are equally likely. We can choose prior
densities that have these probabilities. Typically these are chosen (to sim-
plify the mathematics) from a family of probability density functions with
well-known properties. In the case of a single proportion, this family of
curves is called the Beta family. The shape of distributions in the Beta fam-
ily is defined by two parameters, a and b. Any choice of a and b that differs
from 1 gives substantial shape to the curve. This of course will affect the
posterior distribution, so some people would say that if a and b are not 1,
then we have chosen an informative prior. If we set a and b to 1, we have an
uninformative prior and are assuming that all values of m, are equally
likely.

A convenient property of the Beta distribution is that if our prior is
Beta(1, 1), and we observe x A alleles in a sample of 2N, then the posterior
distribution is Beta(x + 1, 2N — x + 1).

6.3.6.1.3 Posterior probabilities. Using the posterior distribution, we
can answer questions such as: “If we specify a probability p, what are the
points I and u such that Pr(l < z, < u) = p?” For example, if p = 0.95, then
what are / and u? These may turn out to be 0.18 and 0.57. Therefore, we can
say that the probability that 7, is between 0.18 and 0.57 is 0.95, or that we
are 95% sure that 7, lies between 0.18 and 0.57. This is very much like a
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confidence interval, but we would not be able to make such a statement
with a confidence interval. You would have to say you are 95% confident
that 7, lies between 0.18 and 0.57. The word confident here translates into
“on average, 95% of intervals generated in the same way, would contain the
true value 7,.”

6.3.6.1.4 Highest posterior density intervals. The interval described
above is the highest posterior density interval or region. It is an interval for
which the posterior density is the highest. This means that the values in the
interval are the most likely in the whole range of possible values. What
remains is to explain how we use this approach to assess sampling error in a
likelihood ratio calculation.

First, we need to extend the theory from a two-allele locus to a k-allele
locus. The Beta distribution has a natural multivariate analog called the
Dirichlet distribution. The Dirichlet distribution allows us to model a whole
set of proportions, which add up to one instead of just a single proportion.
More specifically, if we need to model the probabilities for k alleles, which we
denote 7, for i = 1,..., k, then we can do this by using a Dirichlet distribu-
tion such that (Fap TapeoTa )~ Dirichlet (a;, ., ..., 0¢;). Note that the
subscripts on the 7,’s only go up to k—1. This is because

k—1
n, =1—->nrm

You should also note that if k is 2, then this is actually just a Beta distribution,
that is, &, ~ Dirichlet (ot;, &,) = Beta (¢, o). The Dirichlet distribution
works in the same way as the Beta distribution, in that an uninformative
Dirichlet prior (where all the o’s are 1), and a count of x; alleles of type A; in
a sample of 2N gives the posterior density

k—1
Dirichlet (xl +1L,x,+ 1 ., 2N = D> x + 1)
i=1

Consider that we may have a likelihood ratio that contains a large number, say
20 or 26, of unknown allele probabilities. We do, however, know something
about the allele probabilities from the database, and we can combine these
with our prior beliefs about the probabilities to get the posterior densities of
the allele probabilities. We can then generate a random sample from each of
these densities and insert the values into our likelihood ratio calculation. If we
do this many times, we will begin to build up a distribution of likelihood
ratios. This is very much like the bootstrap, but with the added advantages
that (a) it is very fast and (b) it lends itself to a much more natural way of
explaining the resulting interval.
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6.4 Minimum Allele Probabilities

The concept of a minimum allele probability replaces zero or very small
allele probabilities derived by counting from some database with some
minimum probability. This avoids the genotype probability estimate being
zero and stems largely from the concern that these small allele probabili-
ties are very poorly estimated. Minimum allele probabilities are unnecessary
when either the Bayesian support interval (Balding’s size bias correction) or
the highest posterior density interval are used as these methods can
“handle” a zero estimate. Consider Balding’s size bias estimator for a
homozygote,

s [ xt+ 4\
P““_<2N+4>

This returns a nonzero value for ﬁaa even when the count in the database, x,
is zero.

When a nonzero value is assigned to 6, the genotype estimate will be
nonzero even when the count of the allele or alleles is zero in the database.
However the bootstrap, the factor of 10, and the assumption of asymptotic nor-
mality of the logarithm will not correctly estimate sampling variation in these
circumstances. The typical solution has been to apply a minimum allele proba-
bility.

Budowle et al.'* discuss two options for the 1— o upper confidence
interval: (i) Following Chakraborty,'>®

P = 1 — [1 = (1 — a)VVe]t/2n

where p, .. is the minimum allele probability, ¢ is the number of common alle-
les, and 7 is the number of individuals in the database. (ii) Following Weir,??
poin = 1 — 02", Chakraborty’s approach typically gives a higher minimum allele
probability and behaves in an unusual manner. We wonder if it has any merit.

6.5 Discussion of Appropriateness of Sampling Uncertainty
Estimates — Buckleton

To conclude, I review some published opinions as to the appropriateness
of various sampling uncertainty corrections. No uniform consensus exists
and there are some quite polarized views. My own opinion is directly
ascribed.

It is worthwhile to begin this discussion by considering the potential
sources of uncertainty in determining a match probability. The larger ones
relate to errors in laboratory work or in assigning genotypes. We begin the
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mathematical consideration by assuming that these functions have been
correctly carried out. However, it must always be remembered that everything
from here onwards is conditional on the profiles being correctly assigned.

Probably the next largest source of uncertainty would be the existence of
a monozygotic twin or other close relatives in the population of potential
suspects. This is becoming more important as more loci are added. The addi-
tion of further loci focuses attention away from unrelated persons and onto
close relatives and members of the same subpopulation. This was discussed
in Chapter 4.

Next we come to uncertainties in the appropriateness of the population
genetic model, sampling uncertainty, and minimum allele probabilities.
These last two are manifestations of the same thing. We are aware of opinion
that supports the use of:

minimum allele probabilities and the product rule;

minimum allele probabilities, the product rule, and sampling uncertainty
assessment;

minimum allele probabilities, a conservative 0 correction, and Balding’s
size bias correction;

a conservative 6 correction and sampling uncertainty assessment.

A key question is: Are we seeking the best estimate or a conservative one
with known properties? The best estimate (that is defined here as the one
with least total bias either way) may be the product rule and Balding’s size
bias correction. I have formed this opinion from simulation studies. This is
the only way that has been developed since we do not know the true answer.
This approach would be highly appropriate in civil cases where the least
biased answer is required.

A problem in criminal cases when giving only the “best estimate” is that it
immediately leads to legitimate debate in court about the uncertainty inher-
ent in that estimate. If the analyst is unprepared for this debate, then he/she
may be in for a rough time and may appear unscientific and underprepared.
In order to be prepared, he/she must assess both types of uncertainty: that
arising from the population genetic model and that arising from sampling
uncertainty (the latter includes minimum allele probabilities).

The next fact that needs consideration is that robust methodology exists
that can handle both sampling uncertainty and minimum allele probabilities.
These methods have been summarized in this chapter. The behavior of these
methods is known, and there is a large body of support for their use.

The two intermediate approaches of which we are aware are laboratories
using a conservative value for 6 and a mean estimator for allele probabilities.
This appears to be a hybrid of mixed philosophies. Why be excessively
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conservative in one regard but aim for the mean in another? The stated rea-
son is that the conservative 6 is “enough.” But how could one know unless
one could measure the conservativeness induced by both the large 6 value
and the sampling uncertainty? We can measure the sampling uncertainty, but
we cannot as yet be completely confident of the conservativeness induced by
a large 6. The laboratories undertaking this approach do not even measure
the sampling uncertainty; hence, in our opinion they assert, perhaps cor-
rectly, that the conservative 6 is sufficient.

The reciprocal approach is to use the product rule and minimum allele
probabilities either with or without a sampling uncertainty assessment but
no O correction. These laboratories assert the reciprocal, that their correction
is “enough.”

The most scientifically sound approach, in my opinion, is to measure
both forms of uncertainty using the best available tools and report the sum
of the uncertainty. This approach can be easily implemented by biologists
who are not mathematical specialists. This has been evidenced numerous
times by skilled caseworkers. These biologically trained caseworkers have
often commented to me on the professional pride that they take in attempt-
ing to give the best scientific evidence possible at this time. Even then it is
important to make apparent that the resulting figure is the outcome of an
estimation process that cannot be fully calibrated against a “true answer.”
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7.4.2.5 Unknown Number of Contributors
and Ethnicity

7.1 Introduction

The analysis of forensic stains will inevitably lead to mixtures of DNA from
different individuals resulting from the mixing of body fluids and secretions.
The recognition, resolution, and statistical evaluation of such mixtures are
therefore integral and vital parts of forensic casework. The subject is rela-
tively complex and requires experience and judgement. It is often treated as a
separate competency by forensic organizations such as ESR and the FSS.
Often scientists move to mixture interpretation after experience with simple
stains. It is desirable that a formal training and testing program is associated
with this transition.

The typing of mixed samples may be undertaken using autosomal DNA
or with Y chromosome or mitochondrial analysis. Each has advantages.'*® A
number of methods have been developed to facilitate the evaluation of evi-
dence from mixed profiles. These differ according to whether or not they
employ a Bayesian or a frequentist approach, and whether or not they utilize
quantitative aspects of the data (peak heights or areas) as well as qualitative
aspects (which alleles are present) (see Figure 7.1).

In order to facilitate a discussion of these methods, it is necessary to
digress slightly and introduce various notations, nomenclature, and naming
conventions peculiar to the analysis of mixed stains. First, it is important to
realize that a mixture can contain DNA from any number of contributors,
N. Experience has indicated that most mixtures encountered in forensic
casework appear to consist of DNA from just two individuals. However,

Mixed DNA profile

Frequentist approaches  Bayesian approaches

RN

Method 1: Qualitative data Quantitative and
Exclusion probability / qualitative data
Method 2:
Qualitative approach
Method 3: Method 4:
Binary model Continuous model

Figure 7.1 Methods used in the interpretation of mixtures.
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mixtures with N>2 are encountered. These are referred to as “higher-order”
mixtures.

Second, one of the most important terms in mixture analysis (at least where
the quantitative aspects of the data are being considered) is the mixing pro-
portion (M,, see Table 7.5). For a two-person mixture, this can take any value
between 0 and 1. Practitioners often prefer to use the mixture ratio as this is
intuitively easier to estimate from a visual inspection of the profile. In this text
we will use mixture proportions as the mathematics flows more easily.

Where the mixing proportion is such that in the judgement of the scientist
the unambiguous profile of one of the contributors is discernibly larger than
the others, then practitioners generally refer to this as the major component
of the profile. The remaining component(s) are referred to as minor compo-
nent(s). In artificially created two-person mixtures, a good estimate of the
mixing proportion is known in advance. In forensic stains however, it is not,
and the scientist must attempt to deduce this from the extant data. Necessarily,
this will be conditional on which particular genotypes are being considered.

Third, when peak area data are being considered, the symbol ¢ is used to
denote this area. Findlay and Grix*** give a warning of the potential in court
to use an unassigned minor peak to foster doubt in the mind of a jury by pos-
tulating that the unknown minor represents the true assailant. This seems a
timely warning to us and suggests that full mixture analysis may be war-
ranted more often than we had previously considered.

Mixture evaluation can proceed via a process of calculating a likelihood
ratio or by calculating a probability of exclusion. Most of the rest of this chap-
ter will be devoted to calculating likelihood ratios that are accepted as being
more powerful. However, we will briefly introduce the frequentist method of
calculating the probability of exclusion. We largely follow Budowle.'"’

7.2 The Frequentist Approach
7.2.1 Method 1 — Exclusion Probabilities

In the mixture context, the exclusion probability is defined as “the probability
that a random person would be excluded as a contributor to the observed DNA
mixture.” When considered as a frequency, it may be used to answer the ques-
tion: “How often would a random person be excluded?” This is the reason that
it is often referred to as the Random Man Not Excluded (RMNE) approach.

If the mixture has alleles A, ... A, then the exclusion probability at locus
I (PE)) is

1= (S o)
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if Hardy—Weinberg equilibrium is assumed. By writing

p(A) =p

s

i=1

we can obtain PE,=1—p”.
If Hardy—Weinberg equilibrium is not assumed, Budowle gives

PE,=1- (Z p(A,-))2 -0 p(A,»)<1 ~ Z_lp(Ai)>

We can write this as PE;= 1— p> — 0p(1—p). This expression follows from
the use of

p(A;A) =p7+ 6p, (1 —p)
P(AiAj) = 2(1 - e)sz]

The proof appears in Box 7.1 and was due to Professor Bruce Weir.
The use of the equivalent of NRC IT Recommendation 4.1 leads to

PE=1-p>—6> p/(1—p)
i=1

which differs slightly from the expression based on Recommendation 4.2.

Box 7.1 Provided by Professor Bruce Weir

Consider a mixture that has alleles A, ... , A, present. We require
the exclusion probability at locus I (PE;). We start by considering the
sum of all homozygotes and heterozygotes that are entirely within the
mixture:

sum of the homsz (p2+9p (1 = p;))+ sum of the hetsZ(l—Q)p,p]

i#j

= Z (p2+ 6p; (1= p)) + > (1-6) p; p,

i#j
=3 2+2p1p]+z 0p,(1—p)—> 0p;p,
1= i#j i#j
Snfrosn-of3 e sn)
= i#j

I
s

2 n n 2
Pi) +92 pi _9<lei)

i=1
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Next we write

p=> p

=1
so the sum above becomes

=p*+6p—6p
=p+t0p(1—p)

Since the exclusion probability PE = 1— the sum of the homs + the sum
of the hets,

PE=1-p*=6p(1l—p)

as given by Budowle.
However, applying the rationale of NRC II Recommendation 4.1 gives
the result as follows® (also provided by Professor Weir):

sum of the homs Z (pi2 + 0 p, (1—p;)) + sum of the hets ZPin
i=1 iFj

=§Xﬁ+9&U—n»+22&=ﬁ+9;au—n)

i=1 i#j

Hence

PE=1-p'=6> pi(1—p)
=1

The PE across multiple loci is calculated as
pE=1-11a - pr)

The advantages of the exclusion probability approach are often cited as
simplicity and the fact that the number of contributors need not be
assumed. In Box 7.2 we give a well-worded argument for the use of this
approach that was provided by Laszlo Szabo of the Tasmanian Forensic
Science Laboratory.

NRC II comments on a similar exclusion approach (also advocated by
NRC) by saying that the “... calculation is hard to justify, because it does not
make use of some of the information available, namely, the genotype of the
suspect.”

2 No factor of 2 is required since the summation is over i # j rather than i < j.
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Box 7.2 Arguments for the Use of the RMNE approach by
Laszlo Szabo (Tasmania Forensic Science
Laboratory)

As the defendant has a right to silence, we will usually never know what
the defense hypothesis is, and to impose one on the court from a myriad
of LR options may be unwarranted (it might be the wrong one).

Given that both RMNE and the likelihood ratio are valid approaches to
the mixtures problem, the defendant may well prefer RMNE, as it is gener-
ally much more conservative than the likelihood ratio for the same data. The
difficulty here occurs when a forensic laboratory quotes the most compelling
likelihood ratio for a complex mixture (say around several billion), but does
not report less impressive numbers (say around a million) for other likeli-
hood ratio scenarios (even though these calculations may appear in the case
file), and the RMNE calculation comes in at 1 in 20,000 for the same data.

The RMNE approach allows the evidential value of a crime scene pro-
file to be estimated without reference to a suspect’s DNA profile. This is
important in cases without a suspect, where the investigator can be given
some indication as to the potential usefulness of the DNA evidence from
the crime scene.

Similarly, RMNE finds application in the Tasmanian DNA database,
where all profiles (including partial and mixed crime scene profiles) have
a calculation associated with them, so that we can see at a glance the
strength of any DNA hits. So if we put a suspect on the DNA database and
obtain a number of hits to complex crime scene mixtures, we can see
immediately if these are “good matches” or not. We also have a policy of
not putting a mixture on the DNA database unless the RMNE calculation
is at least as good as 1 in 50. These approaches require RMNE, which is
independent of knowledge of the suspect’s profile.

Intuitively, RMNE is easier to explain to a jury and express in reports
than the likelihood ratio, and is probably closer to what the court wants —
e.g., the suspect matches the mixture, but what if this is the wrong
person — then what is the probability that someone else in the population
would also match the mixture (i.e., not be excluded as a contributor).

Weirt?® suggests, correctly, that exclusion probabilities “often rob the
items of any probative value.”

Brenner®! gives a brilliant explanation of the shortcomings of the proba-
bility of exclusion. We follow him here. The evidence has two parts: (1) blood
types of the suspect and (2) blood types of the mixed stain. Together, this
information would let us infer that: (3) the suspect is not excluded.
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Brenner points out that (3) can be deduced from (1) and (2). But (1) can-
not be deduced from (2) and (3), or from (1) and (3). Hence the use of (1)
and (3), or (2) and (3) is a loss of information. The likelihood ratio is a sum-
mary of the information in (1) and (2), whereas an exclusion probability is a
summary of the evidence in (2) and (3). He concludes:

In ... a mixed stain case the exclusion probability usually discards
a lot of information compared to the correct, likelihood ratio,
approach. But still the exclusion probability may be acceptable
sometimes.

There are occasional debates in court and among scientists about the
merits of the RMNE approach versus the alternatives about to be described.
Each method is in use in some jurisdictions. Generally, worldwide the move
is away from RMNE toward likelihood ratios. It may be worthwhile briefly
summarizing the pros and cons of RMNE before we move on. There are two
pros: (1) It makes one fewer assumption in that it does not require an
assumption of the number of contributors to a mixture. This is a fairly weak
advantage since the assumption of the number of contributors is firmly
grounded when a highly discriminatory multiplex is used. (2) It is easier to
explain in court.

The cons are: (1) It wastes the information contained in the genotype of the
suspect and hence makes weaker use of the available information. Hence it
often robs the evidence of its true probative power. (2) The likelihood ratio
approaches are developed within a consistent logical framework.

7.3 Bayesian Approaches

7.3.1 Models Employing Qualitative Approaches

Before the advent of automated fluorescent techniques (which provide
quantitative data such as peak height and area), mixtures were interpreted
without taking account of quantitative aspects of the data. The development
of this qualitative style of interpretation commenced during the single-locus
probe (SLP) era.””” It is the method supported by NRC II who said the
“...correct approach (the likelihood ratio approach), we believe, was
described by Evett et al.”

This approach has also received judicial sanction in the U.S. When
Professor Weir presented the evidence regarding the mixed stains in
the Bronco automobile during the trial of O.J. Simpson, he advocated
the use of likelihood ratios. The defense preferred to argue for exclusion
probabilities as suggested by NRC I. Judge Ito commented, “I find that
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the analysis offered by Dr Weir is the more accurate and closest to what
the evidence truly represents” (transcript page 33, 345), quoted in
Weir, 835,838

The likelihood ratio approach has been implemented in various guises
ranging from use of the simple product rule to inclusion of sampling error
and subpopulation corrections through to a refined treatment that accounts
for all of these factors. In any manifestation it is superior to a probability of
exclusion.

As with any Bayesian application, a key step is the formulation of the
hypotheses. In fact, this is often the most difficult step, and relies on an
understanding of the pertinent questions that are before the court and on
what background information may be agreed on.

One of the most important factors that may be decided from the
circumstances of the case or by agreement between prosecution and defense
is whether any persons may be assumed to be present in the mixture.

To put this into context, consider a case in which fingernail clippings
have been taken from a woman who has been assaulted and claims to have
scratched her attacker. Suppose that a mixed DNA profile is obtained,
which appears to consist of DNA from two individuals and can be fully
explained by the presence of DNA from both the woman and her suspected
attacker. The expectations from this type of sample and the circumstances
of the case suggest that DNA from the complainant is likely to be present
irrespective of whether there is any DNA from her attacker. Furthermore,
the assumption seems wholly justified as there is prima facie evidence, from
the mixed profile itself, of a contribution of DNA from the donor herself.
Therefore, it may not be in contention that the profile of the complainant
is present. Under these circumstances, it seems reasonable to form the fol-
lowing two hypotheses:

H,: The nail clippings contain the DNA of the complainant and the
suspect.

H,: The nail clippings contain the DNA of the complainant and an
unknown unrelated person.

The presence of DNA from the complainant under both hypotheses effectively
allows the scientist to “condition” on the presence of her DNA. In practical
terms, this allows much or all of the profile of the other contributor to be
deduced straightforwardly. Those alleles that are not attributable to the
complainant must be from the other contributor.

At this point it will be noted that the resolution of the mixture has assumed
that there were exactly two contributors. This assumption is unnecessary and
the formulation can be generalized to any number of contributors under H, or
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H, with an associated significant increase in complexity. However, it simplifies
the manual analysis appreciably if one can make this assumption. Under many
circumstances this type of assumption can be strongly justified. If each locus in
a highly discriminating multiplex has only 1-4 alleles, it seems very likely that
there are only two contributors.” One could state that there is no evidence to
indicate a contribution of DNA from a third individual and, given the context
of the case, there is no need to invoke the presence of DNA from a third indi-
vidual to explain the observed result. The argument regarding this assumption
is in fact no different from that involving an apparently single source stain.
Strictly, that profile may be a mixture of DNA from two individuals, but the sci-
entist assumes, justifiably, that it emanates from a single individual.

If we call the evidence of the alleles in the stain E and the genotypes of the
complainant and the suspect G, and G, respectively,© we require

Pr(E|G, G,, H,)
Pr(EIG, G, H,)

If we assume that E is independent of G, under H, (this is in effect the
assumption of Hardy—Weinberg and linkage equilibrium), then
Pr(EIG, G, H,)
Pr(EIG,, H,)

We will now work through a series of examples based on common casework
scenarios.

Example 7.1. Consider the situation where the fingernail clipping in the
case described above has been typed at a locus and found to contain the alle-
les A, A, A;, and A,. The complainant is type A, A, and the suspect is type
A A,

First consider the situation under H,. This hypothesis states that the mix-
ture is made from the suspect (type A;, A,) and the complainant (type A,,
A,); hence, we expect the swab always to be type A;, A,, A5, A,. Therefore, bar-
ring laboratory error, Pr(E| G, G, Hp) = 1.

b Strictly, this statement is a transposition. A more correct statement would be that we can
infer that most of the posterior density lies on those propositions that have two contributors.
¢ General usage is to use the terms “victim” and “suspect” here, hence G, and G..
However, the word “victim” has implications that may be unwarranted. For example, the
defense may be that the sex was consensual or indeed the matter may be a “false com-
plaint” altogether, in which case it would be interesting to argue who the victim is. We will
attempt to use the word “complainant” in the text. However, we have persisted with G, in
the equations to avoid the potential confusion with G, which we have already used for
crime stain and to keep aligned with previous publications.
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Now consider the situation under H,. This hypothesis states that the mix-
ture is made from the complainant (type A}, A,) and a random person. This
random person must be type A;, A,, which happens with probability 2p,p,
(using the product rule, and writing the probability of allele A, as p;). Hence
Pr(E|G,, H;) = 2p,p, and so

1
2psp,

IR =

A more general consideration of the Bayesian approach to two-person
mixtures shows that most propositions encountered in casework fall into one
of three families of propositions:

(i) H,: The mixture contains the DNA of the complainant and the suspect.

H : The mixture contains the DNA of the complainant and an unknown
unrelated person.
