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Preface

Many times I would find myself wondering how people choose what to do in their professional
lives. After giving years of work to experimental virology, and some more to botany, microbial
genetics, and teaching biological sciences, I settled at a research career in computational biol-
ogy. And all this time, I was interested as much in biology as in the different ways in which peo-
ple think about their research. How do we decide which problem to study? Why do some
scientific questions sound interesting and important, and others do not? And why do different
people have different opinions on what is interesting and important?

I noticed that much of what turns out to be interesting and important—in science and else-
where—happens when two seemingly unrelated things suddenly reveal some sort of similarity.
The pleasure of such discovery, of course, is only comparable to the joy of finding a difference
between two things that were previously thought to be the same. Thus, I realized that I am
interested in similarities and differences, and in patterns and motifs. And if this is what you are
after, then computational biology is a good line of work.

As a “local bioinformatics specialist” at my institute, I spend a lot of time talking to the
“noncomputational” biologists. My colleagues often tell me that they are more interested in
ways to think about science than in actual applications and protocols. Remarks such as “I have
read about database search statistics, and I think I understand how this algorithm works—but
tell me how you decide which of these weak sequence similarities are more important than the
others!” are common. So, it seems that the myriads of bioinformatics texts that are published
these days need a reader’s companion, which talks about prejudices, preferences, and
priorities.

This is my attempt on such a companion. It is not intended as a comprehensive source on
genome comparisons or other issues of computational biology. I wrote mostly about things
that are of interest to me: For example, most of this book is concerned with the protein world,
and there is almost no discussion of nucleotide sequence analysis. There is also very little math-
ematics, statistics, or computer science in the book, even though the practice of bioinformat-
ics requires dealing with models, equations, and algorithms. Rather, this book is about
scientific ideas that I believe to be the most important in computational biology and in its most
accomplished branch, comparative genomics. I am also trying to show that the era of com-
pletely sequenced genomes is a truly novel age of biology, and that comparative genomics is the
science for this age.

This book would not be possible without collaboration, friendship, and, throughout the
years, many conversations with Eugene Koonin and Alexey Kondrashov. Luna Han, my edi-
tor, helped me to define where this book should be going and gently persuaded me to stay on
track, and the members of the Bioinformatics Center at the Stowers Institute for Medical
Research held the fort all the while.

Most important, my family put up with everything. I thank my wife Irina Sorokina—all the
good things in my life for so many years are because of you, my love—and my children
Alexandra, Nikolai, and Natalia.

ix
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1

The Beginning of
Computational Genomics

Historians of science may disagree about when computational evolutionary genomics
started in earnest. Some may associate the starting point with the work of geneticists Alfred
Sturtevant and Theodosius Dobrzhansky or statistician Robert Fisher. Others may say that
genomics is incomplete without the molecular-level analysis and mark the beginning of the era
with the following citation from Francis Crick (1958):

Biologists should realize that before long we shall have a subject which might be called “protein tax-
onomy”—the study of amino acids sequences of proteins of an organism and the comparison of them
between species. It can be argued that these sequences are the most delicate expression possible of the
phenotype of an organism and that vast amounts of evolutionary information may be hidden away
from them.

However, I believe that most people would agree that several papers published from 1962 to
1965 by Linus Pauling and Emile Zuckerkandl were extremely important. One article in
particular, “Molecules as Documents of Evolutionary History” (Zuckerkandl and Pauling,
1965), set the scene for most of the future work that is described in this book. The circum-
stances of its publication are also of some interest: Although written in 1963, it first appeared
in 1964 as a Russian translation in a monograph dedicated to Alexei Nikolaevich Oparin,
a true pioneer of experimental study of abiotic protein synthesis (Oparin, 1953) who, sadly, also
endorsed and helped enforce Lysenkoist pseudo-science during his service at the Soviet
Academy of Sciences from the 1940s to 1960s (Lewontin and Levins, 1976; Jukes, 1997).

The research first announced in that unlikely place (the original English language version of
Zuckerkandl and Pauling’s paper followed in 1965) sounds prophetic. If we outline the main
ideas of that work, the density of novel ideas in that 10-page article is staggering:

1. The authors use the root “semantics” 72 times when speaking of genes and gene
products. They called DNA, RNA, and proteins “semantides,” or sense-carrying units.
Unlike some of the modern uses of this word, which essentially equates semantics with
postmodern relativism (e.g., “let us discuss the substance and not argue about semantics”),
Pauling and Zuckerkandl took semantics seriously. So should we: By definition (and as
understood by their readers in the early 1960s), semantics is the study of the meaning of
sense-carrying units in a language or in other code. The meaning of words—and of genes—
is exactly what we want to know.

2. There are dissimilarities between even closely related sense-carrying molecules.
These dissimilarities are produced by genetic processes, such as nucleotide substitutions,



insertions, deletions, and rearrangements of large DNA fragments. Sense, or meaning, of
genes and their products may be extracted by comparing related molecules, detecting the dif-
ferences between them, and computing something about these differences.

3. Biopolymers contain information about evolution. It is threefold: (1) the time of
existence of the ancestral molecule,(2) what the sequence was, and(3) the line of descent from
the ancestor to each of the contemporary molecules.

4. Some sense-carrying units carry less sense than others. For example, simple biopolymers,
build by repetition of a few blocks (nucleotides or amino acids), may not be a good source of
information about complex evolutionary processes.

5. Changes in biopolymers may be of different types. Some of the changes are beneficial
and favored by selection, whereas others have no phenotype and are “cryptic polymorphisms.”
One reason why some genetic changes have no phenotype is the degeneracy of genetic code:
The same amino acid can be coded by different combinations of nucleotides. Another reason is
degeneracy of protein sequence with regard to the three-dimensional structure and, ultimately,
to the protein function: The same structure and function can be achieved by different combi-
nations of amino acids. Analysis of these different solutions to the same problem may result in
a better understanding of the relationships between genotype and phenotype.

6. Gene mutations and duplications of whole genes may put some genes into a “dormant”
state. It is plausible that dormant genes may be reactivated after they accumulate changes, and
this reactivation may be an important source of evolutionary novelty.

7. Sequences outside the protein-coding regions may have a regulatory function and may
evolve differently than in the coding regions. Other noncoding regions may have no function,
and mutations in these regions will be free of selection.

8. Chemical compounds may be synthesized by more than one biochemical pathway. Thus,
functional convergence at the molecular level is expected, both at the level of the pathways and
at the level of individual biochemical reactions.

Thus, the authors cast evolutionary molecular biology as information science and thought
that particular attention should be given to distinguishing signals from noise in the sense-
carrying units. Biologists, chemists, engineers, mathematicians, and computer scientists who
work on in genome analysis today are in fact implementing the research program that,
unbeknownst to some of them, was started by Zuckerkandl and Pauling.

This book is no exception. Nearly every chapter addresses an issue that can be traced back
to an idea set forth in Zuckerkandl and Pauling’s seminal paper. Chapters 2 and 3 discuss
practical approaches to sequence comparison (point 2 as outlined previously). Evolutionary
inferences from these comparisons (point 3) and the relationship between signal and noise in
sequence comparison (point 4) are discussed in nearly every chapter. The issues of functional
convergence (point 8) are of central importance in Chapters 6, 7, and 9. Cryptic polymorphism
(point 5) is discussed in Chapters 9 and 10 in connection with sequence–structure–function
degeneracy. Finally, “what the ancestors were” (point 3) is the central theme of Chapters
11–13. Even Chapter 14, which deals with genome-wide numerical data, draws inspiration
from approaches to comparative sequence analysis foreseen by Pauling and Zuckerkandl.

The techniques of biological sequence comparison were not discussed at any length in
“Molecules as Documents of Evolutionary History,” but the central goal of finding pairs of
similar sequence fragments was stated very clearly.

Sequence similarity lies at the heart of all biology, not just comparative genomics. The
following statement has even been called “the first fact of biological sequence analysis”by Dan
Gusfield (1997) at the University of California at Davis:

In biomolecular sequences high sequence similarity usually implies significant functional or struc-
tural similarity.

2 Foundations of Comparative Genomics



This “first fact”may qualify as one of the most fundamental facts of our understanding of life.
Most biologists, however, would not hesitate to add the following:

In biomolecular sequences, high sequence similarity also usually implies evolutionary relationship.

The two statements, though similar in form, are actually distinct, and in a quite fundamen-
tal way. The structure of a biological molecule, such as a protein, is something that can be
physically defined. If we have a pure sample of this protein, a quiet place for growing crystals,
and a synchrotron beamline, we can determine a structure of a protein molecule, at least in
principle. Technical details aside, the same equipment would generally do the job for all
proteins. Indeed, as I write this, the challenges of high-throughput protein structure
determination are being met by the structural genomics projects (Chandonia and Brenner,
2006). Function, however, is not a physical characteristic but, rather, a description of some
process, so function can be defined only in a biological context. At the bare minimum, function
of a protein involves interactions with other molecules, which have to be identified and
included in the description of function. Often, in order to define the biological function of a
sequence, we need to monitor the interactions of many components in a cellular extract, in the
whole cell, in a living organism, or in an ecosystem of which this organism is a part. As the
protein function is performed, its structure may change. Thus, when we casually say “structure
and function,” in fact we are talking about many different things already. And the fact that
sequence similarity can be used to make inferences about all those different properties of a
sense-carrying unit—from physical properties of the molecule to its relationships with its
environment—is not at all trivial. The “second fact” is also nontrivial: Unlike more or less
directly observable structural and functional properties, the common ancestor of two mole-
cules cannot be directly observed (with the exception of rare cases in which the ancestral DNA
or protein have survived in ancient proteins or in biopsies), and yet we do not hesitate to infer
such an ancestor from the sequence similarity.

Thus, on the basis of sequence similarity, we make conclusions about (1) similar structure,
(2) similar function, and (3) common ancestry. These inferences are at the heart of
computational biology; most biologists make them every day, and almost every theme in this
book is based on such inferences. But how do we make them in practice?

At first glance, the statements about structure and function seem to follow from sequence
similarity quite naturally. And without doubt, these statements are amenable to direct
experimental corroboration. But in fact, structural and functional inference is inseparable
from evolutionary inference. Indeed, when comparing sequences of two biopolymers, our
path from sequence similarity to the conclusion about structural or functional similarity is
never direct. Instead, we always infer common ancestry of these sequences first, and only from
there can we proceed to making structural and functional inferences. This logic is not obvious
when the similarity is very high, but if the two sequences are more distantly related to each
other (as is the case with most sequence comparisons today), this chain of thought becomes
explicit. Indeed, we measure similarity between sequences and immediately use statistics
to compare the observed similarity with what would be expected by chance (discussed in
Chapter 2). If the similarity is too high to occur by chance, this is usually sufficient for making
predictions about protein function (discussed in Chapters 5–8) and structure (see Chapter 9).
But the only reason why such reasoning works is because the only way for nonrandom
sequence similarity to occur is by descent from a common ancestor of the two sequences. This
is the homology inference (see Chapter 3). Thus, the inference of evolutionary relationship,
which seems to be the least observable of all, turns out to be a prerequisite of proposing other,
directly observable, relationships, such as similarity of structure and function.

Consider the alignment of three sequences, A′, A′′, and A′′′ (here and elsewhere in this
book, I use capital letters in regular font to indicate genes and italicized capitals to indicate
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species in which these genes are found). Suppose that three sequences come from three
different species, one from each, and only the function of A′ has been studied. Suppose that A′
and A′′ are almost identical, and the third sequence, A′′′, is less similar but still quite close to A′
and A′′. Do we use the same information to infer common ancestry and common function of
all these sequences? It seems that we do not really need every amino acid residue that is
conserved between A′ and A′′ to determine that they share a common ancestor; for example,
we may not care about the sites conserved exclusively between A′ and A′′ because we do not
need these residues in order to recognize similarity between A′ and more distantly related A′′′,
as well as between A′′ and A′′′. On the other hand, when we are making the inference, “closely
related A′ and A′′ are more likely to have the same function, but a more distant A′′′ may have
different function,” we, in effect, are using the information about the sites conserved
exclusively between A′ and A′′ but not between each of them and A′′′. Thus, evolutionary,
structural, and functional information is intertwined in sequence in subtle ways.

The reverse of the “first fact of sequence analysis” is not true: Functionally similar proteins
do not have to have similar sequences, and proteins with similar structures also may have
dissimilar sequences (this is discussed in much more detail in Chapters 6 and 9). Neither is the
reverse of the “second fact” true: There may be an evolutionary connection between two
sequences, but, if these sequences have diverged too far, the sequence similarity between them
may not be discernible from the random-level similarity (this is discussed in more detail in
Chapter 2). Note that in the case of the “reverse-second” fact, we are dealing with a
relationship that still exists, even if the sequence similarity has already blended with the noise.
The “reverse-first” fact, however, is more dramatic. Functionally similar proteins may have
had lost sequence similarity, but, on the other hand, they may have never shared sequence sim-
ilarity but converged to the same function from completely different, evolutionarily unrelated
sequences. This principle applies to structures as well: Similarity of structures in the absence of
sequence similarity may represent either extreme divergence of initially similar sequences or
convergence of sequences that were not similar in the first place (discussed in Chapters 6, 9,
and 10). Distinguishing between divergence and convergence at the molecular level is one of
the most important problems of computational biology.

All these considerations are different facets of the most important postulate of Pauling and
Zuckerkandl: Biopolymers contain information about their evolution, structure, and
function, and these three types of signals may interact in different ways, sometimes enhancing
and in other cases interfering with each other. In a sense, whole biology for the past few decades
has been dominated by the quest for ways to extract and analyze signals contained in
molecular sequences. Genomics is a continuation of these efforts for our times, when complete
genetic makeups of many species are known. At the same time, genomics offers even more.
Many times in this book, I will return to the argument that with complete genome sequences,
we can answer many questions that we could not answer, or even could not think of asking,
before. This is the new era in biology—the era of complete genomes.

Sequences of genes, genomes, and proteins are not the only kinds of data that are of interest
to genomics. New technologies allow us to collect information about the occurrence and
spatial organization of genes and regulatory sequences; the concentration of different
molecules in cells, organs, and biological samples (measurement of mRNA levels, collected
with the help of gene expression arrays, is the most famous, but by no means unique, example
of this class of data); cellular morphology and physiological responses; and so on. This infor-
mation often takes the form of rows and columns of numbers. It may seem that Zuckerkandl
and Pauling did not have much to say about these data, which were not in the form of sense-
carrying units anyway. But in Chapter 14, I argue that the analysis of these genomewide
measurements also owes a lot to our experience in sequence comparison.

4 Foundations of Comparative Genomics
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Finding Sequence
Similarities

As discussed in Chapter 1, Pauling and Zuckerkandl in their seminal work outlined the
research program of studying the complicated ways in which structural, functional, and evo-
lutionary information is convoluted within a molecular sequence. It was clear to them that the
comparison of sequences is a clue to uncovering all these types of information. Paraphrasing
the famous quote from Theodosius Dobzhansky (1973), almost nothing in computational
biology makes any sense except in light of sequence comparison.

Before the deciphering of genetic code and the advent of DNA cloning, the most common
order of business in protein science was to isolate a protein, study its biological properties, and
only then, motivated by its biological importance, attempt to sequence this protein using
rather inefficient methods of direct peptide sequencing. The accumulation of novel protein
sequences in those times was slow and deliberate. Even when methods of DNA cloning and
sequencing came about in the late 1970s, they were applied mostly to one protein at a time, also
guided by biological interest in the gene or its product or, in many cases, by the ease with which
a gene could be isolated. Thus, proteins and mRNAs that were abundant or homogeneous,
such as cytochrome C homologs, immunoglobulins, or virus capsid proteins, were studied at
the sequence level much earlier than other families of proteins. And the biological, biochemi-
cal, and other properties of proteins usually were quite well studied by the time the sequence
was determined.

But what about evolutionary relationships—how can we infer the common ancestry of the
“sense-carrying units” without knowing their sequences? In fact, we can do it just fine in
many cases. For example, the favorite subjects of comparative evolutionary biochemistry for
most of the 20th century were globins, the main protein constituents of vertebrate red blood
cells. Years of work in the lab have shown similarity of many physicochemical and biological
properties of globins. At the same time, the anatomical, histological, and biochemical simi-
larity of most components of vertebrate blood and circulatory systems was demonstrated.
Altogether, this was the overwhelming evidence of common origin of globin genes and their
protein products. In this context, sequencing of globins could be perceived more as a confir-
mation of the phylogenetic hypothesis than a way of proposing their common origin in the
first place. Here again, Pauling and Zukerkandl were ahead of their time when they empha-
sized that sequences of biopolymers are the real foundation for comparing all of their other
properties, and that phylogenetic hypotheses may be put forward on the basis of sequence
analysis alone, before inferring other shared properties of genes and proteins. This is a
dramatic shift in the way we look at genetic information.



Pauling and Zuckerkandl did not discuss at any length how exactly we should compare
sequences and how to measure the strength of signals that this comparison may provide. This
was an algorithmic problem in the area of pattern matching, and solving it required the help of
mathematicians, computational scientists, and statisticians.

Sequence comparison, particularly the crucial role played in it by one class of algorithms,
namely dynamic programming, is discussed in almost every book on computational biology
and bioinformatics. David Sankoff was one of the most important figures in the field, and
reviewed the early work in a short, vivid paper (Sankoff, 2000). Other reviews can be found in
Mount (2004), which is also one of the most detailed introductions to the mechanics of data-
base search and sequence alignments, and in Jones and Pevzner (2004). Succinct primers on
dynamic programming and other basic elements of sequence analysis (e.g., substitution
matrices and hidden Markov models) can be found in notes by Sean Eddy (2004a–2004d), a
thorough review of combinatorial and algorithmic aspects of sequence analysis is provided in
Gusfield (1997), and the best introduction to the probabilistic aspects of the same is the book
by Durbin et al. (1998). Finally, the redoubtable family of BLAST programs has been thor-
oughly covered in a corpus of work by Steven Altschul (Karlin and Altschul, 1990; Altschul,
1991; Altschul and Gish, 1996; Schaffer et al., 2001; Altschul et al., 1990, 2001, 2005). Newer
programs suitable for the era of complete genome sequencing, assembly, and multigenome
alignment are discussed in Miller (2001), Kent and Haussler (2001), Schwartz et al. (2003),
Blanchette et al. (2004), and Ovcharenko et al. (2005).

My goal in this chapter is not to repeat what is written in these excellent books and articles.
Rather, I present five challenges of biological sequence analysis that receive relatively little
attention but can make a major difference in sequence analysis, and I try to show how some of
the well-known sequence comparison approaches address these challenges. In dealing with
these concerns, I mostly talk about protein molecules, which, of course, are sequences of
amino acid characters drawn, in the first approximation, from the 20-letter alphabet. I only
briefly mention comparison of nucleotide sequences, which consist of four nucleotide charac-
ters, and other types of comparisons, such as comparison of gene orders in different genomes,
when the alphabet may include hundreds or thousands of characters.

Challenge 1. The methods of sequence alignment are often classified into “local” or “global”
methods, or, more accurately, into methods that produce local or global alignments. (In
a global alignment, each character is forced to be aligned with something, and in a local
alignment some characters are not considered. Many special cases of alignment can be
given more rigorous definition; Gusfield, 1997.) In one sense, this distinction is important
because statistics of local alignments is well-defined, which is not the case for global align-
ments (Altschul, 2006). In a different sense, this distinction is a red herring because the goal
of comparative sequence analysis is really not “to construct an alignment.” Rather, the
objective is to find evolutionary, functional, and structural signals in biological sense-car-
rying units—the signals that, as discussed in Chapter 1, are revealed by sequence similarity.
Thus, algorithms may be set up to produce either local or global alignment, whereas in fact
the most important question is whether the similarity between sequences is global or local.

Challenge 2. Each method of sequence alignment tries to find an extremum of some value,
such as the minimal number of operations required to convert one sequence into another or
the maximal matching score (which is most commonly sought and which will mostly con-
cern us in this chapter). This solves an optimization problem but may not do much to solve
a biological problem (i.e., to find signals in sense-carrying units). Biological knowledge
enters into the picture by way of the scoring function, which is the way of measuring simi-
larities/differences between sequences. For example, if we thought that 4 amino acid
residues represented by vowels of the Latin alphabet (A, E, I, and Y) are less important in
proteins than the other 16 residues, and decided to only consider matches between the latter

6 Foundations of Comparative Genomics



16, any alignment algorithm would work with such a scoring system without complain—
even though the idea is absurd on its face. All improvements in sensitivity of sequence analy-
sis are in fact the improvements in measuring similarity between sequences—from less
sensitive to more sensitive substitution matrices and then to probabilistic models of multi-
ple sequence alignments. The theory of similarity/distance between sense-carrying units,
however, is in its infancy, notwithstanding some important insights (see Altschul, 1991;
Zharkikh, 1994).

Challenge 3. Sequence alignment algorithms, even when provided with good scoring schemes,
will align any strings of allowed symbols and produce the highest scoring match between
any two sequences, whether they contain biological signals or not. But these algorithms will
not tell whether this highest match is “high enough” to indicate the presence of a signal we
are looking for. To pick out matches that represent biologically important signals, one needs
a statistical theory that evaluates alignments and compares them to some kind of a stan-
dard. Such theory is available in an exact form for ungapped alignments (Karlin and
Altschul, 1990; Altschul, 2006) and in an approximate, yet apparently quite accurate, form
for alignments with gaps (Mott, 2000). But even with this theory in hand, and with good
scoring schemes, there are many alignments that remain in the “twilight zone”of borderline
statistical significance and cannot be directly used to infer the presence of a biological sig-
nal. The problem of how to validate (or reject) the alignments in the twilight zone is still not
fully solved.

Challenge 4. Related to challenges 2 and 3 is the problem of nontransitivity of sequence simi-
larity scores. The simplest way to state nontransitivity is for the case of three sequences:
If sequences A and B can be matched (aligned) with a high score, and sequences B and C can
also be matched with a high score, this does not tell us anything about the score between
A and C. That score can also be high according to our statistical theory or it can be low—so
low as to be indistinguishable from the noise. In the context of the database searches, most
matches indistinguishable from the noise are not reported to the investigator, so we may not
know about similarity between A and C unless we first know about similarity between A and
B. Of course, we can increase sensitivity of sequence comparison, for example, by replacing
a single-sequence query by a probabilistic model of a protein family to which this sequence
belongs or by aligning two family models instead of two representative sequences. This will
pull some of the twilight zone similarities into the high-similarity zone (i.e., some
“sequences C” will become directly linked to A), but other sequences and sequence
families may remain low scoring with regard to some query A yet pass the significance
threshold with a query B that itself is high scoring with regard to A. This nontransitivity
problem is not fully solved in any method of sequence comparison.

Challenge 5. Any textbook on bioinformatics will discuss differences between pairwise align-
ments and multiple alignments. It is important to know what these differences are: For
example, some of the theory that is worked out in considerable detail for the case of two
sequences cannot be easily generalized to multiple alignments, and some alignment meth-
ods that have acceptable speed of execution on two sequences are computationally prohibi-
tive when many sequences are involved. But there is another distinction, which is sometimes
overlooked; this distinction is between different types of pairwise alignments. Indeed, we
may use methods of pairwise alignment as a tool for discovering similarity that was not
known before, but we also can apply alignment methods to study similarity between
sequences that are already known to be related. The first type of pairwise alignment, in prin-
ciple, does not have to be biologically optimal: Arguably, it has to score just high enough to
stand out from the background. At the same time, this “type I” alignment has to be arrived
at with high efficiency, because discovery of sequence similarity is typically done in 
the context of database searches, in which a query sequence is matched to all, or at
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least many, database sequences. The “type II”alignment, on the contrary, has to be accurate,
but the program that produces it does not have to be ultrafast. Thus, database search pro-
grams, which produce type I pairwise alignments, may sacrifice some accuracy for speed.
The relationship between type I and type II alignments, however, is not well understood;
perhaps the only thing that can be said with confidence is that, as a rule, type II alignments
include larger number of aligned characters than do type I alignments. It is unknown
whether there is any other systemic bias between two types of pairwise alignments.

One of the first practical approaches to pairwise sequence comparison, which already wres-
tled with most of these challenges, was the work of Adrian Gibbs and George McIntyre of
CSIRO in Canberra, Australia. They developed what they simply called a “diagram,”or a two-
dimensional representation of similarities between two sequences (Gibbs and McIntyre, 1970).
The sequences of two proteins were written down along the two adjacent sides of a rectangle,
and similarities between them were recorded inside the rectangle (Fig. 2.1). The description of
the method boils down to a sentence at the beginning of the article: “Within the body of the
diagram every match is recorded; a dot is put wherever a row and column with the same amino
acid (recorded at the edge of diagram) intersect.”

Several properties of a diagram are obvious. If the same string of amino acids is found in
both sequences, this is seen as a cluster of dots along a diagonal. If a sequence is compared to
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Figure 2.1. (A) “Diagram”of pairwise comparison of cytochromes from different species, from vertebrates to bac-
teria. Reprinted from Gibbs and McEntyre (1970) by permission of Blackwell Publishing. (B) Newer
use of diagram showing rearrangement of chromosomes in mammalian evolution; here, dots represent
shared genes in two genomes instead of identical amino acids in two proteins. Reprinted from Murphy
et al. (2004) by permission of Elsevier.



itself, the longest (main) diagonal is marked. If a string of amino acids is found more than once
within the same protein sequence, segments in other diagonals will also be marked, either sym-
metrically with regard to the main diagonal in the case of self-comparison or asymmetrically
if two different proteins are compared. If two sequences differ from one another by only a few
substitutions, the main diagonal will still be seen, although it will break at the substitution
sites. If there are insertions and deletions, the highlighted diagonals move away from the main
diagonal, and with more changes, the highlighted diagonals become shorter.

When two sequences are not too similar, the diagonals may be more difficult to detect by eye,
as in the case of the rightmost panel in Fig. 2.1. How can we automatically improve recognition
of these diagonal fragments? Gibbs and McIntyre suggested two measures for doing so. “Run
index” computed the distribution of the lengths of all unbroken runs in the diagram, and
“diagonal index” computed the distribution of the number of matches in each diagonal (how
exactly this was done is not very important at the moment). The two measures are different:
The first prefers relatively long matching segments, and the second seeks groups of matches,
perhaps even short ones, that belong to the same diagonal. The signal revealed by these two
measures is also different: For example, the “diagonal index”suggested that the cytochrome of
screwworm (dipteran insect) was most similar to the fish relative, whereas the “run index”
indicated that the cytochromes from screwworm and silkworm (lepidopteran insect) were the
closest to each other.

Gibbs and McIntyre also proposed a statistics of the observed “runs”of amino acids. They
jumbled amino acid letters so that a real sequence could be compared not only to another real
sequence but also to its randomized version. For each two sequences, one could now compute
a number that quantified the similarity between them, and it was also possible to compute the
same number for the comparison of one real sequence and the jumbled other sequence
(“similarity expected by chance for the proteins with the same amino acid composition”). One
can also produce several jumbled versions of one sequence, compare the other sequence with
each of them, compute similarity for each of the comparisons, and calculate the average of
these similarities or some other statistical measure. This will be “background,” “random,” or
“chance”similarity, compared to the “real”similarity between two real sequences.

Several decades later, some of these statistics may sound a bit naive (and, indeed, “run
index”and “diagonal index”are not commonly used in sequence comparisons anymore). But
today, the same as four decades ago, we are concerned with selecting a good measure for
assessing similarity between proteins. Note that Gibbs and McIntyre’s work mentioned
several measures of different nature. In particular, they employed, first, similarity between two
real sequences, measured in at least two different ways (run index and diagonal index, which
are both derived measures; there were also more direct measures, such as percentage of
identical residues, which were quite self-evident even then, and perhaps for that reason not
discussed at all); second, similarity between the real and randomized sequences, which, again,
can be measured in several ways; and third, the difference between the first and the second
measures, which can be expressed, for example, as ratio, or in other ways. Thus, one can come
up with many different numbers, and, perhaps, all of them are of interest.

The beginnings of theory of sequence similarity, in fact, predate Gibbs and McIntyre’s
article. Work done in the 1960s by Walter Fitch, then of the University of Wisconsin and
currently at the University of California at Irvine (Fitch, 1966a,b, 1967, 1969, 1970a,b),
and by Margaret O. Dayhoff ’s group at the University of Maryland, and later at
Georgetown University (Dayhoff et al., 1965; Dayhoff and Eck, 1968), is especially
notable, although some of Fitch’s work received criticism from Gibbs and McIntyre for
reasons that are no longer obvious, at least to me. In fact, it took researchers another 20
years to develop more sophisticated mathematical foundations of sequence matching. But
the rectangular diagram, which was introduced by Gibbs and McIntyre in 1970, stayed
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around. An example (Fig. 2.1B) shows that it continues to enjoy popularity in modern
genomics (Murphy et al., 2004).

Also in 1970, the rectangular diagram of similarity between two biomolecular sequences
was put to a different use. Whereas Gibbs and McIntyre were interested in visualizing every
kind of similarity between a pair of sequences, Saul Needleman and Christian Wunsch of
Northwestern University and VA Research Hospital in Chicago decided to search for what
they called “the maximum match”—a correspondence between two sequences in which the
maximal number of amino acids in each sequence are aligned to each other, achieving a large,
possibly a maximum, score (Needleman and Wunsch, 1970). In order to find such a match,
they used an approach that is known in computer science as dynamic programming (which is
an algorithmic idea, not programming as in “writing a computer program,”and for this reason
perhaps should be called something else, for example, “dynamic planning,”as in Harel, 1992).
Dynamic programming/planning is useful for finding approximate similarities between any
strings of symbols—a problem that occurs in many areas of science and technology. Indeed, it
appears that the idea of dynamic planning has been proposed independently several times,
with perhaps the earliest formal description coming from Richard Bellman of the RAND
Corporation (Bellman, 1952; he notes that similar ideas were published in the late 1940s by
future Nobel Laureate in Economics Kenneth J. Arrow, then also of the RAND Corporation,
and later of Stanford and Harvard, and by statistician Abraham Wald of the University of
Chicago). Bellman’s work is rather abstract, and he has given only toy examples of possible
uses. One of the earliest practical applications of the approach is by Taras Vintsyuk of
Ukrainian Academy of Sciences (Vintsyuk, 1968), who worked at the time, as he does now, in
the area of speech recognition. The main idea of the algorithm is quite simple and is encoun-
tered even in middle-school math.

The problem shown in Fig. 2.2 is from a seventh-grade honors algebra curriculum. We have
to travel from the top left corner (Origin) of a grid, say, of 7 × 8 dimension, to the bottom right
corner (Destination) along the gridlines, moving either right or down, but never left or up. How
many distinct paths are there? To find the answer, consider the Destination node. Obviously,
that node can be reached either from the node immediately to its left or from the node immedi-
ately above. If there are a distinct paths to the former and b distinct paths to the Destination,
then the number of distinct paths to the Destination is a + b. Clearly, the number of paths to any
node in the grid is the sum of such two numbers, each of which represents the sum of paths—
one to the node on top and the other to the node on the left. We also see that all nodes on the left
and the top sides of the large rectangle have just one path leading to them. This is all we need to
know in order to count the number of paths to each node in the graph. This is a familiar con-
struct in mathematics—nothing more than a Pascal triangle in disguise.
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Figure 2.2. Perhaps the simplest application of dynamic planning: counting paths on a rectangular grid.



Suppose now that some of the paths are blocked. It is easy to see how numbers at some of the
nodes will become smaller, maybe even zero if a node is obstructed from all sides and becomes
unreachable, and how the final number of paths leading to the Destination node will change
(Fig. 2.2). Suppose that we are at the Destination node and want to get back to the Origin,
using only allowed paths, and to choose such a path that we end up with maximal possible sum
of numbers that we passed on the way. To do that, we proceed backwards, at each node
selecting the largest number among the two allowed.

This concludes the description of three stages of the dynamic planning process for this task.
First, we produce the set of initial conditions—in this case, the size of the grid, the instructions
to count the number of paths, and the positions of blocked paths. Second, we set the
recursion—that is, the rule determining which number is assigned to each node; in this case,
this number is produced by addition of two numbers at the left and on top. Finally, we define
the traceback rule.

Let us now write numbers inside the squares and not at the nodes as before. This is very sim-
ilar to the setting in Needleman and Wunsch’s paper. To quote, “In the simplest method,
MATij [i.e., the value in the ith row and jth column of the matrix] is assigned the value, one if Aj
is the same kind of amino acid as Bi; if they are different amino acids, MATij is assigned the
value, zero.”This is the initialization (Fig. 2.3).Recursion in this case is as follows: For each cell
ij, instead of its two neighboring cells,we examine the fragments of the (i−1)th row and a ( j−1)th
column, find the largest number in any of these cells, and add it to the number in the cell ij.
Traceback is also self-evident (Fig. 2.3).

Now that the way to obtain the answer is known, let us see what the question was.
Needleman and Wunsh were interested in a “maximum match”—the alignment of two
sequences that has the highest score. Of course, the value of this score depends on the scoring
scheme, but the method of obtaining the maximum match should work the same way for every
such scheme. The Needleman–Wunsch approach to approximate matching is able to interrupt
one or both sequences, if such interruptions improve the number of matched amino acids.
A space between two characters in one sequence, to which one or more characters in another
sequence are aligned, is called a “gap.”

Gerhard Braunitzer at Max Planck Institute for Biochemistry was one of the first to attract
attention to gaps in sequence alignment and may have even coined the name (Braunitzer,
1965). Researchers have been uneasy about “gapping” the sequences in order to improve the
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 A B C N J R O C L C R P M

A 8 7 6 6 5 4 4 3 3 2 1 0 0

J 7 7 6 6 6 4 4 3 3 2 1 0 0

C 6 6  7 6 5 4 4 4 3 3 1 0 0

J 6 6 6 5 6 4 4 3 3 2 1 0 0

N 5 5 5 6 5 4 4 3 3 2 1 0 0

R 4 4 4 4 4 5 4 3 3 2 2 0 0

C 3 3 4 3 3 3 3 4 3 3 1 0 0

K 3 3 3 3 3 3 3 3 3 2 1 0 0

C 2 2 3 2 2 2 2 3 2 3 1 0 0

R 2 1 1 1 1 2 1 1 1 1 2 0 0

B 1 2 1 1 1 1 1 1 1 1 1 0 0

P 0 0 0 0 0 0 0 0 0 0 0 1 0

Figure 2.3. Dynamic planning approach and recursion proposed by Needleman and Wunsch (1970). The use of
letters J and O as amino acid symbols is now obsolete. Reprinted from J. Mol. Biol., 34(3), Needleman,
S. B., and Wunsch, C. D., A general method applicable to the search for similarities in the amino acid
sequence of two proteins, pp. 443–453, Copyright 1970, with permission from Elsevier.



alignment: Somehow, the procedure of gap introduction seemed arbitrary. It is true that in
the course of alignment gaps are deliberately introduced by a human being (or by a program
written by a human being). But it is also important to remember that the processes of DNA
replication, recombination, and repair involve occasional insertions and deletions of
nucleotides, and some sequences may have added or deleted nucleotides because of that (the
reminder emphasized by Doolittle, 1986). Thus, there is a perfectly natural justification for
making gaps in the alignments: When introduced at the points of insertions/deletions, gaps
record actual events, and therefore they indicate evolutionary and other signals—exactly
what we want to study. So it is not true that all gaps in alignments are undesirable; however, it
is true that there should be a well-defined procedure to account for them. And if the very pur-
pose of introducing a gap is to improve the quality of the sequence match, it is essential to
associate the alignment with a numerical value, so that different alignments can be compared
and the effect of gaps on alignment score can be studied. For example, it may be important to
compare the alignments before and after introduction of a gap. A related issue, which has to
do with the efficiency of computation, is that some gaps do not seem to be worth experiment-
ing with, such as gaps in highly similar regions that align straightforwardly. Therefore, it
would be beneficial to limit the number of gaps that are actually examined. These questions
were not addressed in Needleman and Wunsch’s work and, in a sense, have not been rigor-
ously addressed ever since.

As with many influential papers, Needleman and Wunsch’s is widely cited but occasionally
misinterpreted. It is often referred to as “Needleman–Wunsch algorithm,” whereas Gusfield
(1997) and Sankoff (2000) point out that the actual algorithmic implementation proposed by
Needleman and Wunsch was not the fastest one: It ran in the cubic time, whereas the quadratic
time implementations were already known. Moreover, sometimes it is stated that Needleman
and Wunsch gave the solution for the highest scoring alignment with gaps; in fact, even though
their approach allows one to introduce some gaps, and not to waste time examining gaps that
are far from the alignment path, the proof that the match is indeed maximal was not given.

Another ambiguity is to call Needleman–Wunsch a “global alignment algorithm.” In fact,
nothing prevents us from using the same algorithm for finding similarities that are local with
regard to at least one sequence, for example, by controlling the number and/or length of gaps.
Also, of course, the real question is not whether the algorithm we are using is local or global
but, rather, whether the similarity between sequences is along their whole length or confined to
a shorter segment. If the similarity is local, such as when two protein sequences share one
conserved domain but also have other, dissimilar domains, then there is no gain in using a
global algorithm. On the other hand, there may be no harm in it either, if the program is able
to correctly align the most similar portions of two proteins.

Most important, neither the Needleman–Wunsch approach nor any other algorithm can
answer a biological question, namely whether the similarity that we observe contains any
biologically important signals. The key phrase from Needleman and Wunsch’s paper sets the
scene for the future developments:

The sophistication of the comparison is increased if, instead of zero or one, each cell value is made
a function of the composition of the proteins, the genetic code triplets representing the amino acids,
the neighboring cells in the array, or any theory concerned with the significance of pair of the amino
acids.

Later in this chapter, we return to the “theories concerned with the significance of amino acid
pairs.”

In 1981, Temple Smith, then of Northern Michigan University and currently of Boston
University, and Michael Waterman, then of Los Alamos National Laboratory and currently
of the University of Southern California, found a way to detect a local match between two
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proteins that is “the best,” meaning that, under a given scoring scheme, this match cannot be
improved by either adding or trimming the aligned pairs of characters. Before discussing their
work, however, let’s ask ourselves, why would one think that such highest scoring match might
be local? Indeed, in the Needleman–Wunsch approach, it was usually profitable to include
more amino acids into the alignment because the score could only get higher. How might it be
possible that the longest alignment is not guaranteed to be the best?

The answer consists of two parts. First, Needleman and Wunsch did not prove that their
approach generates the highest scoring alignment (although such proof could be derived from
the work of Bellman and other earlier work on dynamic programming, with which most
biologists were not familiar at the time). Second, from 1970 to 1981, the approaches to
similarity scoring changed, as the negative numbers entered the picture.

It seems natural that biologically significant sequence alignment should have a (high)
positive score associated with it. In the examples shown by Needleman and Wunsch, all
matches were positive and mismatches were equal to zero, and addition of some such numbers
was the only permitted operation. Mismatches, insertions, and deletions were neither
rewarded nor penalized, so the score of any alignment of two sequences could only have a
positive value. Later, however, scientists decided that it is not good to be so relaxed about gaps.
One argument was that most pairs of sequences could be somehow aligned if gaps were
allowed, and, therefore, arbitrary gaps might help to “legitimize”a similarity between any two
sequences, even if they are unrelated and should not be aligned.

To show that arbitrary gapping is a real concern, let us consider an example from 1991—two
decades later than Needleman–Wunsch’s work and a decade later than that of
Smith–Waterman. Connexins are proteins that are found in animal gap junctions (no connec-
tion to gaps in sequences), a specialized type of tight connections between membranes of
adjoining animal cells. Plants also have specialized connections between cells, called plasmod-
esmata, and although they are now known to be morphologically different from animal gap
junctions, the cell–cell contacts in plants and animals share some physiological properties
(Robards et al., 1990). Thus, it would be extremely interesting to know whether the two types
of connections are made up of similar protein components. Meiners et al. (1991) used anti-
bodies raised against animal connexin-32 to screen the expression library of the model plant
Arabidopsis thaliana and found a gene, promptly named CX32, whose product cross-reacted
with the anti-connexin antibodies. The same gene product was detected in cell walls by
immunohistochemistry, and the authors concluded that they were looking at plant connexin.
The purported relationship between connexin-32 and its plant “counterpart” can be seen in
Fig. 3 in their paper. Is that alignment good additional evidence that we are looking at plant
connexin? Do we see a structural, functional, or evolutionary signal in that alignment?

One view on the role of sequence comparison is that most alignments are at best the
auxiliary evidence, except for the cases of extremely high similarity between the aligned
sequences. If, however, the similarity is moderate, the alignment does not matter much one way
or the other; let us focus on wet-lab experiments, from which the final judgment will come.
In the case of the search for plant connexin, serological properties and cellular localization of
the proteins appeared to be compatible with its purported role, and one could argue that what
is really needed is further physiological and biochemical evidence of its role in cell contacts, not
further examination of the alignment.

There are problems with such a view, of course. First, in any inquiry, one should not only
consider the observations favoring a theory but also examine all the evidence against the
theory. Second, this concerns all kinds of evidence, including both biochemical
experimentation and computer-aided sequence analysis. Eugene Koonin and myself
reanalyzed sequence relationships between connexin and CX32 by standard (although at the
time relatively novel) BLAST search of the complete protein sequence database at the
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National Center for Biotechnology Information. Connexin sequences matched with high
scores only of other animal connexins, but CX32 did not show up in these searches at all.
Instead, CX32 turned out to be similar to the eukaryotic protein kinase family (Mushegian
and Koonin, 1993). The supporting alignment is shown in Fig. 2.4. Note that this alignment
is produced by inserting gaps in the positions different from those in the original alignment,
and there are regions of similarity in which gaps are rare. Most important, the residues that are
conserved in protein kinases and CX32 are the same as the most conserved residues within the
kinase family proper; that is, they indicate that some functional properties conferred by these
residues in biochemically characterized protein kinases are most likely also preserved in CX32.
This cannot be said about the residues “conserved” between CX32 and connexins. Thus, the
indication that CX32 is not connexin is much stronger than the opposite hypothesis, even
though the former is provided by computational analysis and the latter derives from the wet-lab
experiment.

This example also shows that frivolous gaps can get us in trouble. But this does not mean that
gaps should be disallowed or avoided altogether. Insertions and deletions in DNA really
happen, and they may be of structural, functional, and evolutionary significance. There is
nothing wrong with considering them. The quantitative theory of gaps, however, turned out to
be a difficult problem (Storey and Siegmund, 2001; Zachariah et al., 2005). We cannot express
it shorter and better than did S. Altschul, the creator of the BLAST suite of programs, in his
on-line tutorial (Altschul, 2006):

Appropriate gap scores have been selected over the years by trial and error ... and most alignment pro-
grams will have a default set of gap scores to go with a default set of substitution scores. If the user
wishes to employ a different set of substitution scores, there is no guarantee that the same gap scores
will remain appropriate. No clear theoretical guidance can be given, but “affine gap scores” ..., with a
large penalty for opening a gap and a much smaller one for extending it, have generally proved among
the most effective.
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     *      * * * * *          * *
CX32 Arabido   3 KDLQSGVQEVN 4 gHRNLVKLLGYCREDKALLLVYEFIPKEVLRVMFLRLTKRE 
APK1 Arabido 113 QGHQEWLAEVN 5 SHRHLVKLIGYCLEDEHRLLVYEFMPRGSLENHLFRSSETR 
RE1PRK Arabido 570 DNEKEFKNEVK 5 HHKNLVRLIGFCNEGQSQMIVYEFLPQGTLANFLFRECSEQ 
RE2PRK Arabido 554 QGTDEFMNEVR 5 QHINLVRLLGCCVDKGEKMLIYEYLENLSLDSHLFDDSRCR 
PRK Arabido 113 QGHREWLAEIN 5 DHPNLVKLIGYCLEEEHRLLVYEFMTRGSLENHLFRNAQPQ 
DFPS Drosoph 578 EQKRKFLQEGR 5 DHPNIVKLIGICVQKQPIMIVMELVLGGSLLTYLRKLESKN 
FGR4A Rat     359 KDLADLISEME 6 RHKNIINLLGVCTQEGPLYVIVEYAAKGNLREFLRALESRK 

αC(III) β4(IV) β5 αD

             * **     ** *                  *                *    *
CX32 Arabido  26 CIYRDLQVFHILLDLSYGAVLSRVS 28 LLLEYIA-GHLYVKSVAFAFGVVLLEI
APK1 Arabido  28 VIYRDFKTSNILLDSEYNAKLSDFG 23 AAPEYLATGHLTTKSDVYSFGVVLLEL
RE1PRK Arabido  25 IIHCDIKPQNILLDEYYTPRISDFG 22 VAPEWFRNSPITSKVDVYSYGVMLLEI
RE2PRK Arabido  28 IIHRDLKASNVLLDKNMTPKISDFG 23 MSPEYAMDGIFSMKSDVFSFGVLLLEI
PRK Arabido  28 VIYRDFKASNILLDSNYNAKLSDFG 23 AAPEYLATGHLSVKSDVYSFGVVLLEL
DFPS Drosoph  23 CIHRDLAARNCLVDLEHSVKISDFG 21 TAPEALNFGKYTSLCDVWSYGILMWEI
FGR4A Rat      38 CIHRDLAARNVLVTEDDVMKIADFG 23 MAPEALFDRVYTHQSDVWSFGILLWEI

β6   VI β7 αE

Figure 2.4. The alleged plant connexin is in fact a member of the protein kinase family. Multiple alignment of CX32
with selected protein kinase sequences. Residues shared by CX32 and other sequences (one exception in
kinases allowed in the bottom of the figure) are indicated by asterisks. Alignment to kinases is supported
by BLAST statistics,by the conservation of known or predicted secondary structure elements,and by con-
servation of residues directly involved in catalysis (indicated by shading). The CX32 sequence appeared to
have several of these residues mutated, but more recent resequencing has indicated that most of them are
in fact conserved in other kinases (see SWISSPROT entry P27450). Modified from Mushegian and
Koonin (1993) by permission from the American Society of Plant Biology.



Thus, as a practical solution, it was decided in the late 1970s that gaps should not be scored
as zero-value matches but had better be penalized. Gap penalties, therefore, will result in
negative values for some cells in the dynamic planning matrix simply because it is possible that
a small, slowly increasing score will be offset by a larger gap penalty. The other source of neg-
ative numbers in the dynamic programming table came from newer scoring functions, also
developed in the 1970s, in which not only gaps but also certain substitutions could be penalized
(e.g., between two amino acids that were extremely dissimilar from the chemical point of view
or extremely unlikely to mutate in nature; see later).

Returning to the very short and very influential paper by Smith and Waterman (1981), we
can say that the essence of their approach is in resetting the negative values in the matrix to
zero. For each cell, the Smith–Waterman algorithm examines the values corresponding to the
three directions of possible extension of the match. If at least one value is positive, the highest
value is selected, and if all three are negative, zero is used instead. Several features of the result-
ing matrix are of note. First, the traceback is straightforward: Starting from the largest number
in the table, select the largest among the numbers in three neighboring cells until these numbers
run off to zero. There will be no higher scoring match in the table. Second, the procedure works
with any scoring scheme—that is, with any set of values for matches, mismatches, and gaps
(although the highest scoring path may change if these values change). Third, the ends of the
highest scoring match can be used to define the zones where the next best similarity can be
looked for, and there are ways to connect several local similarity runs into a longer (maybe even
global) alignment.

The Smith–Waterman algorithm guarantees maximally scoring (“best”) alignment.
However, as for any other approach to sequence alignment, in itself it is not sufficient to judge
about relatedness of two sequences. For that purpose, we need a statistical theory.

Consider a query sequence and one database sequence. A pair of equal-length, ungapped seg-
ments, one from each of these two sequences, such that its score cannot be improved by either
extension or trimming, is called high-scoring segment pair, or HSP. There may be several such
pairs in two sequences that are being compared, often with different scores. The following is a
critical question: For any such HSP, how likely are we to observe it by chance alone? If we are not
likely to see an HSP with a score that high purely by chance, then perhaps this HSP represents
something biologically interesting (e.g., structural, functional, or evolutionary signal).

What is “chance”in this context? To quote Stephen Altschul (2006) again, as far as sequence
analysis is concerned, “ ‘chance’ can mean the comparison of (i) real but nonhomologous
sequences; (ii) real sequences that are shuffled to preserve compositional properties; or
(iii) sequences that are generated randomly based upon DNA or protein sequence model.”

We can now use any of these models to estimate the number of HSPs with positive score at
least S which are expected to occur by chance. Relevant statistic is called the extreme value sta-
tistic, and it is given by the following expression: Kmne−λS, where n and m are lengths of two
sequences that are compared, K is the parameter adjusting for the search space size, and λ is the
scaling parameter for the scoring system. The only other requirement is that the scoring system
is such that a score for a random HSP is negative so that two long sequences do not reach a high
score simply because they are long.

This statistic is precise only for local alignments that do not have gaps. For gapped align-
ments, parameters K and λ must be estimated empirically by simulation or a large-scale
comparison of unrelated sequences. Besides this statistical theory, the BLAST suite of
programs includes many heuristics that are used to achieve the desired speed when searching
ever-increasing sequence databases. Those are discussed in much detail in Altschul et al. (1990,
1997) and Schaffer et al. (2001), and the interested reader is encouraged to read these
momentous papers. It is important to remember that all enhancements described in those
works are useful only as long as the alignment is based on a good scoring scheme. How to select
such a scheme is an extremely important problem.
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There are 20 × 20 = 400 possible alignments between amino acid pairs, so it is quite reason-
able to expect that any scoring system may take the form of a 20 × 20 table. The question, of
course, is how to determine the value in each of the cells in the table. All approaches to scoring
amino acid substitutions can be divided into two classes. One class of schemes is of a deductive
sort. It relies on some general principles of genetics, on knowledge of DNA mutation mecha-
nisms, or on principles of amino acid biochemistry. The other class can be called inductive; it
derives scores from the statistical analysis of amino acid substitutions that are found in nature.
(Nucleotide alphabets are smaller, and there are 4 × 4 = 16 possible interconversions between
nucleotides; many aspects of scoring systems for nucleotides will be easily understood based
on richer models for amino acids).

One example of an early “theory concerning the pairs of amino acids” of the deductive
type is mentioned by Zuckerkandl and Pauling in “Molecules as Documents of Evolutionary
History” (1965). In that model, substitutions are scored using the “mutations required”
parameter. Any codon can be converted into any other codon by one, two, or three mutations.
Thus, every pair of amino acids can be associated with a value (score) from 0 to 3, and align-
ment of two proteins can be seen as a sum of scores for each pair of amino acids. If there is
more than one way to convert one amino acid to another, involving different numbers of
changes, they can be averaged, giving fractional numbers in the same interval. One also has to
derive a way to score amino acids aligned with themselves if the codons in two sequences are
not the same.

There are several concerns regarding this model. First, in this scoring system, we are meas-
uring distance between amino acids and proteins, rather than similarity, so that the numbers
are smaller as the sequences become closer. This does not provide any natural scale for long
and short sequences: A pair of identical amino acids has the same score (of zero) as the pair of
identical aligned proteins. On the other hand, if a match is associated with a positive number,
then the similarity score of a protein with itself will be on the order of hundreds (an average
bacterial protein consists of 200–300 amino acids, and an average eukaryotic protein is
longer), and we could at least easily distinguish this score from the similarity score of two short
peptides. A more serious concern has to do with the assumptions that the “mutation required”
approach makes about evolution. If all mutations were independent and equally likely, three
mutations in one codon would be indeed less probable than just one. But this is relevant only if
the rate of mutation is the limiting factor in protein evolution, which is only true in the absence
of selection. Indeed, matrices based on the properties of genetic code are rarely used nowadays
(although evolution of genetic code remains an exciting area of computational biology; see
Trifonov, 2000, 2004; Knight et al., 2001; Vetsigian et al., 2006).

The other major line of deduction is based on the knowledge of amino acid chemistry.
Throughout the years, many properties of amino acids have been determined, including
bulkiness, polarity, hydrophobicity, electronegativity, molecular volume, hydropathy index,
accessible surface area, and chemical classification of the side chains such as aliphatic,
aromatic, or carboxylic. Many classifications can be produced on the basis of these properties
or their combinations, and the distance between amino acids can be derived from these
classifications.

Several problems have to be addressed here. First, it is desirable that the substitution scores
have numeric values, but it is not clear how to quantify different types of physical or chemical
similarity. Suppose that aspartic and glutamic acids (D and E), both having carboxylic groups
in their side chains, are easily interchangeable. Lysine and arginine (K and R), both with the
amino groups in their side chains, may likewise be interchangeable. Surely, the change D-to-K,
which fundamentally alters the polarity and size of the side chain, should receive a different
score than the conservative D-to-E change. But should the former score be slightly or signifi-
cantly lower than the latter? Should it perhaps be negative? Should the “conservative”D-to-E
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change be scored differently from the “also conservative”K-to-R change? How to compare the
“nonconservative” D-to-K replacement to the similarly nonconservative E-to-R replace-
ment? What should be done with each of the reverse replacements—are all scores symmetric?

A further problem is that it may be difficult, if not impossible, to partition all amino acids
into groups of similar residues without overlaps. This is because a residue has more than one
property and may share different properties with different subsets of amino acids. Consider,
for example, serine S. It is customary to group it together with threonine T, based on the
hydroxyl groups in both side chains. But how do we know that hydroxyl is the most important
feature, which explains each occurrence of serine in every protein? Serine also has a small side
chain, and in some cases it is this small size, allowing for the greater flexibility of the protein
main chain, that matters most; in that respect, serines in certain positions are most similar to
glycine G and alanine A. Furthermore, the hydroxyl group of serine often plays a functional
role in the active centers of hydrolytic enzymes, where it may participate in nucleophilic attack
on a chemical bond that needs to be cleaved. A similar role is often played by another
nucleophile, aspartic acid D. Threonine serves as a nucleophile only infrequently, in a limited
set of specialized hydrolases. Should we group S and D together, to the exclusion of T? On the
other hand, a hydrocarbon moiety of the side chain in threonine is longer than in serine, and
this is the likely reason why threonine is often found within the beta strands, where it is inter-
spersed with leucine L, isoleucine I, and valine V. Serine is infrequent in these positions: Does
that mean that a group of L, I, V, and T should be created, to the exclusion of S? Perhaps these
relationships can be better represented as a Venn’s diagram than as a set of non-overlapping
groups (Fig. 2.5), but the first problem remains—how to convert these diagrams (or, indeed,
any other type of representation) into a 20 × 20 matrix of numerical values useful for similarity
scoring?
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Figure 2.5. Unique, shared, and overlapping properties of amino acids. From www.russell.embl-heidelberg.
de/aas/aas.html by permission of Rob Russell.



The solution to the scoring matrix problem has come from protein and gene sequencing.
Few publications in the history of computational biology are more important than the “Atlas
of Protein Structure and Function” series published by M. O. Dayhoff and co-workers in the
1960s and 1970s (Dayhoff et al., 1965; Dayhoff and Eck, 1968). Many fundamental concepts
and data presentations that we now take for granted originated from this work, including the
very notion of protein families, the idea that the 20 × 20 matrix should be derived from the
observation of frequencies of naturally occurring amino acid substitutions, and the derivation
of the evolutionary model from the substitution data.

Dayhoff’s atlas included sets of closely related proteins from different species, such as
insulins from various mammals or cytochromes c from different mammals, other vertebrates,
and even bacteria. The common origin of proteins in each group was not controversial, and
construction of alignments was quite straightforward. These alignments were used to study
amino acid substitutions and their evolutionary role. The central idea was “accepted point
mutation,” where “accepted” meant approved by natural selection (Barker and Dayhoff,
1982).

Mutations in DNA may produce different sorts of amino acid changes, but when we look at
protein families, we only see those substitutions that have already been chosen by selection. In
the Atlas, this was stated as “two distinct processes: the first is the occurrence of the mutation
in the gene and the second is its acceptance by natural selection as an improvement” (Barker
and Dayhoff, 1982). The latter assumption—that is, “acceptance means improvement”—is
actually difficult to test. We usually do not know that the selected substitution is an improve-
ment, and in fact, neutral theory of molecular evolution holds that in most cases it is not even
true—the majority of observed nucleotide and amino acids substitutions are thought to be
neither useful nor particularly harmful (Kimura, 1983). Fortunately, however, development of
substitution scores does not require this assumption of improvement, and it was not used in
any significant way in Dayhoff’s work.

The idea of Dayhoff and co-workers was to redefine the problem of finding the substi-
tution scores. Instead of asking about the cost of each type of substitution (and having to
deal with two directions of change for each amino acid pair), they asked how frequently
each pair of amino acids is aligned in families of closely related proteins. They also may
have been the first to write such “alignment score” sij for each pair of amino acids i and j in
the log-odds form:

i
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ij
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The numerator qij is called “target frequency,”and it is the probability with which we expect
amino acids i and j to be aligned in the types of alignments we are looking for. The denomina-
tor is the product of two “background frequencies,” which are simply the probabilities pi and
pj with which amino acids i and j occur in the sequences that we are analyzing.

Two results obtained by Samuel Karlin of Stanford University (who, with Amir Dembo,
also worked out the extreme value statistics described previously) and by Stephen Altschul
(Karlin and Altschul, 1990; Altschul, 1991, 2006) are relevant here. One states that every scor-
ing system that produces negative scores for randomly matching segments is based on log-
odds, if perhaps implicitly. The other is that the target frequencies that distinguish signal from
noise in the optimal way are the frequencies derived from those very same sequences that are
being compared. The proofs of both propositions are technically involved, but the conclusion
is rewarding: Once you have the matching pair of sequences, you know how to devise a scoring
scheme that will best distinguish this match from the background. The problem, of course, is
how to devise a scoring function that would be good enough to find HSPs in the first place. This
is where PAM and BLOSUM matrices come into the picture.
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Margaret Dayhoff and colleagues were the first to explicitly estimate target and background
frequencies suitable for sequence comparison in a broad range of situations. They derived
their frequencies and scoring functions from the collection of alignments of many closely
related proteins. Their PAM (“point accepted mutation”; sometimes also referred to as
“percentage accepted mutation”) model of protein evolution measures distance between
sequences in “PAMs,”where 1 PAM corresponds to an average change in 1% of all amino acid
positions. After 100 PAMs of evolution, not every residue is changed exactly once; in fact,
some (and perhaps many) amino acids will remain the same, and others will have changed
more than once, sometimes even returning to their initial state. Thus, at the distance of 100
PAMs or even more, many pairs of proteins will still be sufficiently similar to produce HSPs.

Using this model, the target frequencies and the substitution matrices may be calculated for
any evolutionary distance. Alignments that were available to Dayhoff et al. included sequences
that were much more closely related to each other than 100 PAM (often, on the order of
approximately 1 PAM). Such closely related sequences are not very difficult to align with any
substitution matrix. However, on the basis of the PAM1 matrix, any larger PAM distances can
be obtained by multiplying the matrix by itself, several times if needed (Dayhoff et al., 1965;
Dayhoff and Eck, 1968).

The point of all this is that target frequencies and substitution matrices derived from the
PAM model for a given distance may be optimal for finding and scoring similarities that are
within the same PAM range. Moreover, one does not have to obtain distantly related sequences
to deduce the optimal matrix for finding distantly related similarities; extrapolation may be
sufficient, assuming, of course, that closely related and distantly related proteins evolve in a
substantially similar fashion.

These premises have been debated in the literature, and many modifications of the PAM
matrices have been proposed: More sequences were included, different models of evolution
were considered, and alternative techniques for extrapolation and transformation were
employed (Kawashima and Kanehisa, 2000). However, the real improvement in performance
was achieved only with the introduction of the BLOSUM matrices.

Stephen and Jorja Henikoff of the Fred Hutchinson Cancer Research Center in Seattle and
Howard Hughes Medical Institute developed BLOSUM matrices as an extension of their
studies of the aligned families of related proteins (Henikoff and Henikoff, 1992, 1993). There
were several crucial differences from the PAM approach. First, after 20 years of gene sequenc-
ing and database searches, there were many more protein families than were available to the
PAM project. Each of the families included more proteins, and there was much larger varia-
tion in the degree of protein identity within each family. More important, the BLOSUM proj-
ect focused on selected fragments of multiple alignments, called blocks; these are not
arbitrarily chosen fragments, nor are they leftovers of longer alignments. Blocks contain
important information about proteins that PAM matrices were not able to reflect. Specifically,
blocks tend to correspond to the regions that preserved in protein evolution, presumably
because they contain most of the structural and functional signal within the molecule. Initial
collection of blocks (the BLOCKS database) from which the BLOSUM matrices were con-
structed was based on the PROSITE patterns (Bairoch, 1992). In fact, patterns are not
required to build blocks: One can extract the regions of high similarity directly from the align-
ments using the similarity scores or percentage of identity to define these regions. The main
reason for using the PROSITE patterns in the first place was the benefit of known biological
relevance: If a block is built on a PROSITE pattern, this means that the conserved region has been
critically assessed by a human expert, and it usually has a specific, known molecular function.

PAM and BLOSUM matrices are often compared to each other in the literature. Some of
the differences are obvious: For example, it is not in doubt that the BLOSUM project used a
much larger data set than did the PAM project, or that the evolutionary assumptions used to
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build PAM matrices were explicitly stated along the way, whereas in the BLOSUM project they
were not. However, many other notions are more problematic. For example, it is sometimes
said that because the PAM matrices are based on a sound evolutionary model of amino acid
changes in proteins, they should be preferentially used if we want to ask evolutionary
questions; that because of the way they are designed, PAM matrices are better suited to detect
close relationships, whereas BLOSUM matrices are better in detecting more distant relation-
ships; or that PAM is designed to track the ancestral proteins, whereas BLOSUM is set up to
detect conserved domains (Mount, 2004).

In my opinion, each of these statements is confusing in its own way. First, an explicit evolu-
tionary model is not necessarily a correct or optimal evolutionary model (although it is true, of
course, that when the model is clearly described, it is easier to examine its assumptions and to
see how realistic they may be). Second, I do not know what “more successful in detecting close
relationships” might mean: Any similarity-scoring approach is initially tested on already dis-
covered, closer relationships, and only in the case of success will it be tried on more distant rela-
tionships. It is also unclear in what sense would the BLOSUM matrices underperform on the
sequences that are closely related (there is not much evidence that, for example, alignment of
closely related sequences is less accurate with BLOSUM matrices than with PAM matrices).
Finally, BLOSUM and PAM are collections of matrices, and it is important to specify which
matrices from each series are compared. Many would agree, however, that BLOSUM matrices
capture more information about distant protein similarities than do PAM matrices because
BLOSUM matrices are based on the actual observation of these similarities.

We now come to the Fourth Challenge of sequence comparison. Finding related sequences
is not the same as ensuring a complete and correct definition of a gene/protein family. Methods
of sequence comparison can (and should) be tested so that when they are applied to database
search, they maximize the detection rate of the known members of a family, and they maxi-
mize the fraction of these known sequences that are validated by statistical approaches.
Moreover, a general-purpose program for database search should work well on a large number
of different families. But there is a deep biological problem: Although closely related
sequences tend to be close in structure and function, the opposite is not true—distantly related
sequences are not necessarily different in structure or function. This asymmetry was discussed
in Chapter 1 in the context of the first and second facts of biological sequence analysis, but the
current statement is stronger because it applies to the sequences that are known to be related.
Evolution does not impose a requirement on the related sequences to exceed certain threshold
of similarity (or percentage of identity, score, or statistical significance). Furthermore, the
picture is not the same in different protein families—some accumulate more changes in the
course of evolution, whereas others accumulate less. This results in a complex interplay of
sequence, structure, and function conservation and in nontransitivity of database searches.
A quite typical example is shown in Fig. 2.6. A database of enzymes involved in carbohydrate
metabolism is maintained by the glycobiology unit at AFMB-CNRS in Marseille, France
(http://afmb.cnrs-mrs.fr/CAZY/index.html), and the glycosyltransferase (GT) section of the
database is one of the largest, containing several thousand sequences and currently organized
into 83 families on the basis of high sequence similarity to one or more founding members with
experimentally demonstrated GT activity. A natural classification of GTs is nonetheless still
unavailable. We have shown (Liu and Mushegian, 2003) that at least 20 CAZy families appear
to belong to the large superfamily of GTs, called GT-A. The structure of the similarity net-
work within the superfamily is complex. There are several well-conserved, fully linked protein
families, with the average similarity score of s = 240 and probability of random match in the
context of the NR search ranging from 10−15 to 10−60. At the same time, there are groups not
directly linked at all. The CAZy family GT-2, which includes bacterial spore coat polysaccha-
ride biosynthesis protein SpsA with known structure, is connected to the largest number of
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other CAZy families. On the other hand, if one starts with a poorly connected sequence, it
would be difficult to find other members of the same superfamily.

Our ability to find weak but biologically important sequence similarities improves all the
time. In effect, all these improvements have to do with increasingly sophisticated probabilistic
models of sequence similarity—from regular expressions to profiles, position-specific scoring
matrices, and to hidden Markov models. The succession of these methods is reviewed in
Durbin et al. (1998), Stormo (2000), Eddy (2004d) and Soding (2005) as well as in almost every
textbook on bioinformatics. The improved performance is associated with better sensitivity of
each successive method toward distant sequence similarities. And the main thing these
methods attempt to do is to overcome the nontransitive property of sequence similarities:
When A matches B, and B matches C, but A does not match C, it is hoped that a probabilistic
model obtained by alignment of A and B will match C as well as, perhaps, other homologs.
(Two examples of observations made in this manner are shown in Fig. 2.7). It remains to be
seen, however, whether a general solution of this problem exists. The crucial problem here,
perhaps, is to understand the properties of the “special nodes”and to find ways of identifying
them in the course of database searches.

I conclude this chapter with two additional remarks. First, most methods of sequence com-
parison assume that amino acids or nucleotides in each position of the alignment change
independently from one another. No one really believes this to be true. Many lines of evidence,
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Figure 2.6. Nontransitivity of sequence comparison. Reproduced from Liu and Mushegian (2003) by permission
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A

>gi|6324424|ref|NP_014493.1| Subunit of the SAGA transcriptional 
regulatory complex, involved in maintaining the integrity of the complex; 
Spt20p [Saccharomyces cerevisiae] 

 Score = 79.7 bits (195), Expect = 1e-12,
 Method: Composition-based stats.
 Identities = 21/162 (12%), Positives = 40/162 (24%), Gaps = 66/162 (40%)

Query:439 LLLQCIDREMLPEFLMDLLVAETVSLSDGEGTRVYAKPSVFYAGCVIAQIRDFRQTFAT- 497
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Sbjct:181 EFLEYVARGRIPDAIMEVLRDCNIQ---------------FYEGNLILQVYDHTNTVDVT 225

Query:498 --------------------------STNI----------------------CDMKHILL 509
                                                                +   LL 
Sbjct:226 PKENKPNLNSSSSPSNNNSTQDNSKIQQPSEPNSGVANTGANTANKKASFKRPRVYRTLL 285

Query:510 RPTNATLFAEVQQMGSQ--LPAEDKLALESQLVLATAEPLCL 549 
          +P + T + ++                 ES+++  T   L L 
Sbjct:286 KPNDLTTYYDMMSYADNARFSDSIYQQFESEILTLTKRNLSL 327 
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>1yz4_A DUSP15, dual specificity phosphatase-like 15; 2.40A {Homo sapiens}
Probab=90.35 E-value=0.01 Score=43.37 Aligned_columns=76 Identities=17% 

Q ss_pred        HHHHHHHHHHHHHHHHCCCCCCCCCEEEEECCHHHHHHHHHHHHHHHHCCCCCC 
Q ss_conf        998758888999997167667888479971782678999999999985599987 
Q Rit1       416 LRSTFPRIHGEIQSLFTNRDEKIKPMLICCNTGTDMSIGVILSILCTKYTEEWM 
Q Consensus  416 LR~~Lp~i~~fi~~~l~~~~~~~~~ilV~CesGkDlSvgvaLaIlC~~fd~e~~ 
                 +...|+.++.||....    +.+++++|+|..|.+-|+.++.+-|+..++
T Consensus   66 ~~~~~~~~~~~i~~~~----~~g~~VlVHC~~G~sRS~~vv~aYLm~~~~---- 
T 1yz4_A      66 IKKHFKECINFIHCCR----LNGGNCLVHSFAGISRSTTIVTAYVMTVTG---- 
T ss_dssp        GGGGHHHHHHHHHHHH----HTTCCEEEEETTSSSHHHHHHHHHHHHHHC---- 
T ss_pred        HHHHHHHHHHHHHHHH----HCCCEEEEECCCCCCCHHHHHHHHHHHHCC---- 
T ss_conf        4899999999999875----138707887001126049999999999839---- 

Q ss_pred        CCCCCCCCCHHHHHHHHHHHHHHHCCCCCCCCHHHHHHHHHH 
Q ss_conf        466778888899999999999872277578872678988875 
Q Rit1           LTSELPDISKLIVRKHLTKLISHLKGRNVNPSRATLNSVNSF  511 (513) 
Q Consensus      ~~~~~~~itK~~IR~rL~~I~~~~~~~~vNPSRatLqsVNsF  511 (513) 
                           ....+-+.+|-+.-|  .+||+++.+++.-.| 
T Consensus      ----------~s~~~Ai~~vr~~Rp--~i~pn~~f~~QL~~~  141 (160) 
T 1yz4_A         ----------LGWRDVLEAIKATRP--IANPNPGFRQQLEEF  141 (160) 
T ss_dssp        ----------CCHHHHHHHHHHTCT--TCCCCHHHHHHHHHH 
T ss_pred        ----------CCHHHHHHHHHHHCC--CCCCCHHHHHHHHHH 
T ss_conf        ----------999999999997188--367898689999999 

Figure 2.7. The power of probabilistic models of protein sequences. (A) Significant sequence similarity between
uncharacterized protein CG17689 from Drosophila melanogaster (query line) and better studied yeast
protein Spt20 (subject line). Low percentage of identity and long gaps hide this similarity—it is not
observed by either single-pass BLAST or Smith–Waterman comparison of CG17689 to the databases.
The match is validated by low E value (obtained at iteration 4 with inclusion threshold 0.002 in itera-
tions 1–3, raised to 0.015 at iteration 4); by reverse PSI-BLAST, in which Spt20 is used as a query and
retrieves CG17869; and by the fact that CG17689 is found in the fruit fly chromatin remodeling com-
plex, which has functional similarities with the yeast SAGA complex and shares with it many other pro-
tein components (Weake and Workman, personal communication). (B) The Rit1 2′-O-ribosyl
phosphate transferase family contains a C-terminal domain related to dual-specificity (protein and
lipid) phosphatases. Rit1, the enzyme specific to plants and fungi, modifies the initiator methionine
tRNA at position 64 to distinguish it from elongator methionine tRNA. This similarity, not reported
before and discovered using the profile-to-profile comparison (Soding, 2005), suggests that the C-ter-
minal region of Rit1 may be involved in binding phosphoribosyl pyrophosphate or transferring ribo-
syl phosphate onto tRNA.
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such as theoretical and experimental studies of mutational robustness (Martinez et al., 1996;
Wagner, 2005), indicate that some positions in proteins and nucleic acids are more likely to
change than others, and that changes in some positions are likely to constrain and “canalize”
further acceptable changes. But in most cases, this covariation is extremely difficult to model.
Naive proposals, such as considering a dipeptide substitution matrix (400 × 400), have not
been any more effective than models with independent substitutions. Thus, radical new
approaches might be needed. In what is possibly the only example of such an approach,
matching and alignment of RNA molecules that exhibit constrained variation (i.e., many
mutations are tolerated, as long as complementary bases co-vary to preserve pairing) is greatly
improved using the stochastic context-free grammar formalism (Grate et al., 1994; Rivas and
Eddy, 2001; Dowell and Eddy, 2004).

Second, the approaches that were first developed for biological sequences, with their 
4-letter or 20-letter alphabets, can be extended to other types of symbolic strings that are found
in genomes. For example, versions of dynamic programming have been used to compare the
order of genes in genomes (Wolf et al., 2001a) and the order of transcription factor binding
sites in the promoters of coregulated genes (Hallikas et al., 2006). In both cases, the alphabets
contain several hundred to several thousand symbols (respectively, different genes and distinct
types of binding sites). As with sequence alignment, the choice of scoring function appears to
be crucial for finding biological signals in these types of strings.



3

Homology: Can We Get 
It Right?

Thus far, I have discussed sequence similarity without using the word “homology.” This
cannot last much longer. All organisms on Earth are thought to descend from the common
ancestor (discussed further in Chapter 13), and when two organisms have a common trait, this
is often because the trait has been inherited by both species from an ancestor—either the
distant ancestor of all organisms or, more likely, a more recent ancestor of the two organisms.
Walter Fitch (1970b, 2000) defined homology as “the relationship of two characters that have
descended, usually with divergence, from a common ancestral character.” The term is in fact
more than 150 years old, believed to be first proposed by Sir Richard Owen, the renowned
British anatomist and paleontologist of the 19th century, to describe morphological traits
derived from ancestral traits. Homology has separate meanings in other areas of science, such
as cytogenetics, organic chemistry, and algebra, with which we will not concern ourselves here.

Characters can be “genic” in the Pauling–Zuckerkandl sense (see Chapter 1)—that is, rep-
resent genes or sense-carrying units derived from genes. Characters can also be structural,
functional, behavioral, or anything else. Characters have states. Consider the example of the
Walker-type NTPases and kinases (Leipe et al., 2003; see also mentions of this famous protein
family in Chapters 4 and 6). In the most conserved sequence region within this family, some-
times called the Walker A box, we usually see a tripeptide GKS or GKT. The last amino acid
in this tripeptide is a character, whereas S and T are the states of this character. Fitch (2000)
asserts that “homology is in the character, not in its state,”and therefore, technically speaking,
“S and T occupy the homologous position” is more rigorous than “S and T are homologous
characters.” I think that both usages are acceptable because there is no confusion. We will
discuss real terminological confusion soon.

Notice that characters exist on many levels. A string of nucleotide characters forms a gene,
which is also a character. Indeed, in Chapters 5–8,we will discuss whole-genome comparisons,
in which genes in the genome are matched, sometimes by arranging them in strings much like
polynucleotides or polypeptides, and treat gene absences similarly to insertions and deletions
of bases or codons in genes (see also Fig. 2.1B).

Furthermore, genes and their products form biological pathways. Pathways in the existing
organisms have descended with divergence from ancestral pathways, which existed in the
ancestral organisms. Thus, a pathway as a whole may be viewed as a character too. An
anatomical organ and a physiological system of organs are produced by many pathways
interacting with each other in dividing and differentiating cells. Each organ or system can be
treated as a character in itself (again, descent with divergence). Thus, characters are found
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everywhere in a biological system, from a single nucleotide to a very complex trait. But what
counts as a character at one level may be only implicit at another level. For example, we can
estimate the evolutionary distance between humans and turnips by finding and counting all
genes that we and turnips inherit from our common ancestor; on the other hand, we can
estimate human–turnip distance by comparing nucleotides/amino acids at homologous
positions in one or more of those homologous genes. In the latter cases, nucleotides or amino
acids will be counted as characters, but in the former case, they will only be used to establish the
relationships between genes and after that they will not be examined any longer.

Two characters either share a common ancestor or they do not. This all-or-nothingness is a
fundamental fact about homology, compared by some authors to pregnancy or death (Petsko,
2001). However, misuse of this term is common. Expressions such as “strong homology” or
“two sequences are 75% homologous” persist in the literature, despite powerful arguments
against them (Fitch, 1970a,b; Reeck et al., 1987).

Why is this so? Why does the urge to talk about “75% homology” between two sequences
appear to be irresistible? Could people be onto something important here? Is there some aspect
of homology that asks to be measured?

The most common explanation of this confusion is in my opinion correct. The problem
derives from a mix-up of what is measured and what is inferred. The degree of similarity
between sequences can be measured: For example, two aligned sequences can be 75% identical.
Homology, however, is a statement about the evolutionary history of the characters. That
history, with a few exceptions, has not been observed. To make a statement that two characters
have descended from the same ancestral character, we analyze the results of our
measurements. So, on the one hand, there is the act of computing a number and, on the other
hand, the act of using this number to infer a singular event in the past. Thus, the most common
misuse of “homology”is to say that “two sequences are 75 % homologous,”when the intended
meaning is that they are 75% identical or similar and that this observed value is high enough to
seriously consider a hypothesis of the common origin of the two sequences. This logic is in
most cases straightforward and not controversial. But the measure and the inference from it
are not one and the same, and there is no point in convoluting them.

Exceptions to this understanding have been claimed. First, consider the “recombination
problem”(Fitch, 2000). A gene may be a recombinational fusion of two unrelated genes. Each
of the “parent” genes shares a common ancestor with only a part of the recombinant gene.
Fitch stated,

If the domain that is homologous to the low-density lipoprotein receptor constitutes 20% of enteroki-
nase, then enterokinase is only 20% homologous to that lipoprotein receptor, irrespective of its percent
identity. If, at the same time, this common domain were half of the lipoprotein receptor, the receptor
would be 50% homologous to the enterokinase. The homologies are not the same in both directions if
the proteins are of unequal length!

This example, however, shows only that a portion of enterokinase is homologous to a por-
tion of lipoprotein receptor, and both proteins also have additional regions that are not homol-
ogous to each other. The homologous region accounts for some percentage of enterokinase
length, as well as for some percentage of lipoprotein receptor length, and the nonhomologous
regions account for the rest. Homology itself is the inference that helps to explain the evolu-
tionary roots of the observed similarity, but the relative sizes of the aligned fragments have no
role in the hypothesis of their common ancestry; for example, if the homologous region
accounted for 60% of enterokinase length and for the 34% of lipoprotein receptor length, the
arguments in favor of homology of this domain would not change.

A more interesting proposition is that “percentage of homology”should be a legitimate way
to express the extent of our belief that the sequences are homologous (Robson, 2001); “more
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homologous” in this case would be the same as “more likely to be homologous.” Robson also
mentions that, perhaps, “more homologous” should signify “share a more recent common
ancestor.”These are two separate ideas, each of which deserves some consideration, but in my
opinion both of them should be dismissed. Regardless of what we may think about the role of
individual belief in scientific inquiry, imagine some process that goes as follows: (1) Assign the
probability for the two characters to share a common ancestor; (2) measure the similarity
between characters; (3) use the result of this measurement as a new observation; and (4) update
the probability that the characters are homologous, given this observation of similarity. If cor-
rectly executed, this approach places the inference of homology in the Bayesian framework.
The crucial question here is how to assign the prior probability for the two characters to share
a common ancestor.

Most people will agree that the best way to assign prior probabilities is to use a model of the
process that generates these probabilities. Suppose that such a model is available. In fact, we
are lucky here—evolution of nucleotide and amino acid sequences is relatively well under-
stood from the statistical point of view. (Also note that some hard-core Bayesian statisticians
would not see the assignment of priors as a problem at all, even when the process model is
unavailable; see Sober, 1991; Felsenstein, 2003; and Eddy, 2004c). But the issue of scale will
still remain. That is, when a scientist says “I am 75% confident that two sequences are homol-
ogous,” she is saying something different than “two sequences are 75% identical.” The
numbers in these statements are not equivalent; any biologist that has examined homologous
and nonhomologous sequences will state that if two (long enough) sequences have 75%
identity, their chance of being homologous is close to 100%. On the other hand, two proteins
can have extremely low sequence similarity, barely distinguishable from the random level, and
yet homology between them, in certain cases, can be inferred with confidence (Kinch and
Grishin, 2002). Thus, there remains a clear difference between the measured numeric value
and the inference made on its basis. However, there is no use in mingling the two in “percent-
age of homology.”

How about “more homology”as a synonym for “more recent common ancestry”? The time
passed from the common ancestor of two characters is itself an inference; some issues related
to making such inferences are discussed in Chapters 12 and 13. But determining when the
ancestor existed is distinct from determining that such an ancestor did exist in the first place.
Here again, I do not know what we would gain by lumping these two assertions together.

Terminological difficulties that involve homology do not stop there. We sometimes read that
“two proteins are structurally homologous.”If homology is understood as just discussed (i.e.,
in its true sense), this is the same as stating that “two proteins are structurally derived from the
common ancestor.” But similarity of three-dimensional shapes of two proteins does not
always indicate their common origin, and sensitive and specific discrimination of structure
divergence and convergence is still an open problem (see Chapters 9 and 10). If two proteins
have similar structures, and additionally there is a statistically significant similarity between
their sequences, this joint observation is usually a sound argument for homology. But in such
a case, one really infers homology from sequence, not from structure.

Of course, biological characters may evolve toward the same structure or function in the
absence of the common ancestor. This is called structural or functional convergence, or, in
genome comparisons, “nonorthologous gene displacement” (Koonin et al., 1996).
Convergence may involve either homologous characters, which had diverged in the past but
then became more similar again, or nonhomologous characters. Nonhomologous
characters can also converge, in which case they become more similar but do not become
homologous at all.

Two aspects of homology should be emphasized. First, as already discussed at length, there
is no constraint on degree of similarity between the orthologs: They may be very similar or
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quite dissimilar, depending on the time of divergence and rate of evolution. Second, there is no
requirement of functional similarity. Homology is the statement about evolutionary events
(i.e., the existence of a common ancestor and descent from it), not about function.

There is plenty of confusion about this. Even a popular, if not already standard,
introductory textbook, Bioinformatics by David Mount (2004), is not much help. For example,
page 5 provides the following definition: “Homologous describes genes that have arisen from
a common ancestor gene, as evidenced by their having similar sequences.” Again, on page 68,
the author states, “Homologous sequences refers to two or more sequences that can be quite
readily aligned such that they must have originated from a common ancestor sequence in
earlier evolutionary time.” Page 285 states, “Homologous genes: Genes whose sequences are
so similar that they almost certainly arose from a common ancestor gene.” Although Mount
correctly identifies homology as an evolutionary statement, and is not willing to use “degrees
of homology,”he seems to insist that sequences are homologous only if we can infer their com-
mon ancestor from high sequence similarity or from a “quite ready”alignment. If, on the con-
trary, two sequences are not similar enough, or not easy to align, Mount denies homology to
them. Thus, whether intended or not, homology becomes a statement about our ability to infer
common ancestor, not about its existence. I do not think this makes sense, and throughout this
book, we will understand homology as the descent from common ancestor, as elaborated by
Fitch and others, and not only such descent that can be proved by high sequence similarity.

The notion of homology is quite simple and is important for understanding evolution, so its
correct usage is well worth fighting for. However,, there is a need to differentiate between
different kinds of homology and different subsets of homologs. This calls for even more
specialized terminology, and this is how orthologs and paralogs (Fitch, 1970b, 2000) enter the
vocabulary.

The descent from a common ancestor, which produces homologs, is a complex process.
First, there is speciation—where there was one species, there become two or more (here and
throughout this book, we will consider only the cases in which a lineage is split in two; although
real evolutionary histories may also contain multifurcations, those can always be converted
into series of bifurcations, for example, by inclusion of branches with zero length). The
homologous characters (genes and their products) that are produced by speciation are called
orthologs. Recalling Latin, in which orthos means “straight” or “exact,” orthology means
“straight homology.” Of course, orthologs remain orthologs regardless of the number of the
speciation events; we can properly compare orthologs not only from recently diverged species
but also from different kingdoms of life or any other taxa. Second, there is gene duplication,
which can occur within a lineage, in the absence of any speciation. Homologous genes that are
produced in this manner are called paralogs (i.e., “lateral”or “parallel homologs”). As the first
approximation, that is all there is to it—there are just two subsets of homology.

One additional, special type of gene relationship, called xenology, describes two orthologs
such that one or both have been horizontally transferred [xenology was discussed by Fitch
(2000), but this definition is from Jensen (2001)]. Two homologs are either orthologs, in which
case they may or may not be xenologs, or they are paralogs. In both cases, as with homologs in
general, neither the extent of sequence similarity nor the commonality of biological function
matter: Orthologs, as well as paralogs, may be similar or dissimilar in sequence, and they may
have either closely related or different functions.

The relationships between different classes of homologs are shown in Fig. 3.1. It becomes
immediately obvious that despite simple definitions of orthologs and paralogs, the interplay
of orthologous and paralogous relationships between homologous genes in different genomes
is a complex affair. The main issue here is that separation of lineages and duplication of genes
in evolution may not occur at the same time. Nevertheless, orthology and paralogy can be
consistently recognized, as we will now discuss.
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Let us first sort orthologs from paralogs when the true evolutionary histories of species and
genes are known (Fig. 3.1). A straightforward approach in this case is to detect all speciation
points as well as all intralineage gene duplication points. A pair of genes produced by the
speciation event are each others’ orthologs, and a pair of genes produced by the duplication
event are each others’ paralogs.

Care needs to be taken, however, when more complex combinations of events are
considered. There are two things to keep in mind. First, it is not required that every gene has
exactly one ortholog in another lineage. Second, paralogs of a gene are not always in the same
lineage as this gene—they can be in a different lineage, too. With this in mind, let us start by
examining all gene relationships at time T1. There are three homologous genes at that point:
one gene AA in species A, and two genes, A1B and A2B, in species B. Their ancestral gene in the
last common ancestor (species LCA) is ALCA, and there has been one speciation (Sp1) and one
duplication (Dp1) in the history of species A and B. Genes A1B and A2B are paralogs of each
other. Each has one and the same orthologous gene, AA, in lineage A.

How should we describe the relationship between AA and A1B? In order to answer, we have
to reverse the arrow of time and move toward the root of the genes’ and species’ tree until we
encounter the event that joins AA and A1B. If this event is duplication, then genes are all
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Figure 3.1. Distinguishing between orthologs and paralogs when the complete evolutionary history of species and
genes is known. A phylogenetic tree of species is shown by gray outline, and gene phylogeny is shown by
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paralogs, and if it is speciation, they are orthologs. The event of interest turns out to be
speciation Sp1, so AA and A1B are orthologs, and AA and A2B are also orthologs. A1B and A2B
are also called co-orthologs of AA (see glossary at the end of this chapter).

Consider now the time T2. We have to examine the relationships between six genes—AA,
A1C, A2C, A1D, A21D, and A22D. The relationships between AA and the other five genes are
exactly the same as that between AA and the other two genes at time T1 because the split
between AA and the rest of the tree still maps to Sp1. A1C and A2C are paralogs—their split
maps to the duplication Dp1. Each pair among A1D, A21D, and A22D is paralogous too—the
split maps to either Dp1 or Dp2.

Let us now examine such pairs of genes where one gene comes from lineage C and another
from lineage D. Among those, A1C and A1D have been produced by speciation—they are joined
at a speciation point Sp2. On the other hand, A2C and A1D are paralogs—they are joined at the
point Dp1. Finally, to understand the relationships between A2C, A21D, and A22D, note that
these are the same as the already discussed relationships of genes AA, A1B, and A2B. In
addition, A21D and A22D are in-paralogs, and A1D is their out-paralog (see Glossary); the
difference here is in the order with which we pass the speciation and duplication events as we
move to the root. Xenology and gene loss are easily accounted for and do not change the status
of orthologs and paralogs, nor the rules we use to distinguish between them.

Fitch (2000) notes that orthology, paralogy, and xenology are all reflexive. This means that
for each of the three types of homologous relationships, if A has a certain type of relationship
to B, then B has the same relationship to A. None of the three, however, is transitive: If A has
a particular type of homologous relationship to B, and B is related to C in the same way, it may
not be true that the relationship between A and C is also the same. Homology, of course, is
reflexive and transitive, but other relationships mentioned in the glossary are all different: For
example, analogy is reflexive but not transitive.

The existence of orthologous and paralogous relationships does not sit well with some
authors. According to one strong opinion, orthologs and paralogs are postmodern catch-
words lacking real utility (Petsko, 2001). Others, including myself, think that all of the terms
discussed in this chapter are proving their usefulness day in and day out, allowing us “to speak
more, rather than less, accurately and comprehensibly, about what is really going on in genome
evolution”(Koonin, 2001). So what bothers the critics? Why not let “orthology”and “paralogy”
be, allowing us to speak comprehensibly about gene gains and losses, about extreme
conservation of some genes and extreme divergence of others, and about specialization and
takeover of molecular function? All these processes are at the heart of genome evolution and
function, and we cannot start making sense of them unless we have ways of describing various
kinds of common ancestry (or lack of such ancestry).

I think that the irritation of most critics (Ouzounis, 1999; Varshavsky, 2004) has less to do
with the definitions of orthology and paralogy than with our ability to distinguish between
orthologs and paralogs in practice. Similar concerns about other words have been raised. For
example, inference of any homology between proteins was once thought to be extremely
problematic: Early on, Winter et al. (1968) argued that because proteins do not leave a fossil
record and their evolution cannot be directly observed, the question of their homology is
intractable and should not even be asked. They proposed to co-opt “homology” for the
nonevolutionary uses, such as the degree of structural similarity.

Not everyone was so pessimistic about the power of inference, and ways of distinguishing
homology from analogy were proposed very soon thereafter by Fitch (1970a) and by others.
Three and a half decades later, we know that one can infer homology with considerable
success, on the basis of an evolutionarily informed measure of similarity between two
sequences and a statistical theory that tells us when such sequence similarity is too high to be
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explained by anything else but common ancestry (see Chapter 2). Thus, establishing homology
of two sequences has become quite routine. And so, I believe, it will be with orthologs and
paralogs: As the practical approaches for recognizing two types of homology improve, the
utility of the words will not be debated anymore.

In fact, computational techniques for inferring orthology and paralogy relationships have
been proposed. Let us revisit the events described in Fig. 3.1. When all duplication and
speciation events were known to us, our task was only to work out the correct names. Now, sup-
pose that we know the present-day species and the complete set of homologs of a given gene
that exist in these species, and we need to sort out orthologs and paralogs among them. The
species are A, C, E, and F, and there are six homologous genes, AA, AC, AE′, AE′′, AE′′′, and AF.
This setup corresponds to time T4 in Fig. 3.1, but we do not know yet about the speciation and
duplication events that have occurred in the past. As in Fig. 3.1, species D represents the
common ancestor of E and F, and species B represent the common ancestor of C and D; thus,
B and D are not observed at T4. We have two evolutionary trees (Fig. 3.2)—one for the homol-
ogous genes and the other for the four species. The catch is that the latter tree has to be inferred
on the basis of some external evidence, without knowing how gene A and its relatives evolved.

Our goal is to use information represented by the two trees in Fig. 3.2 to infer the scenario of
speciation and gene duplication that is shown in Fig. 3.1 (note that by time T4, four genes have
been lost and cannot be observed). More specifically, we need to label each internal branching
point in the gene tree as either a duplication or a speciation event.

If two terminal branches are joined in the gene tree, and they represent genes from two dif-
ferent species, intuition tells us that these genes must have been produced by speciation. One
such pair of branches in the gene tree is AE′′′ and AF , and the other pair with the same proper-
ties is AA and AE′. The same probably applies to the relationship between AC and its tree
neighbors: All genes on both sides of AC are from other species. So perhaps we can manually
assign the Sp labels to three nodes in the gene tree, indicated by labels g2, g3, and g5 in Fig. 3.2.
The other two nodes should perhaps be labeled as duplications.
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More formally, let us call the gene tree G and label each internal node in G as g1, g2, and so
on. Similarly, each internal node in the species tree, S, is designated s1, s2, ..., sn (usually, there
are more gene duplications than gene losses and, as a result, more genes than species, so gn >
sn). For any gi, let γ (g) be the set of species in which the descendant genes of gi occur. For
example, in the cases of g4 and g5, both γ (g) consist of species E and F. Similarly, for any si, let
σ(s) be the set of the existing species that descend from si. For example, in the case of s2, σ(s)
consists of species C, E, and F.

The mapping function M(g), which relates every gi in G to a unique si in S, is defined as
follows: For each gi, its M(g) is the lowest node in the species tree S, such that γ (g) is included
in σ(M(g)). In other words, the species M(g) is the last common ancestor of all species in which
the descendants of gene g are found. For example, M(g4) = s3, because all genes descending
from g4 are found in species E or F, and s3 is the lowest node from which E and F descend.

The main observation that allows us to identify the duplications is as follows: If, in a gene
tree, a node gi has a direct descendant node, which maps to the same place in the species tree as
gi itself, then gi is a duplication. In Fig. 3.2, this is the case for nodes g1 and g4.

Less formally, if the offspring of a node gi in a gene tree is distributed among a set of species,
and the offspring of a lower node gj is distributed among the same set of species (or among the
subset of that set), this means that no new species were produced between gi and gj. That way,
every g node that has the same M(g) as its descendant is registered as a duplication, and other-
wise it is speciation.

These ideas have been developed in a series of works by many authors [see Zmasek and Eddy
(2001) for review, discussion, important considerations of algorithm efficiency, that I omit
here, and for a practical algorithm]. This approach really works: In the case shown in Fig. 3.2,
it correctly identifies g1 and g4 as duplications and g2, g3, and g5 as speciations. The other two
types of events, horizontal gene transfer and gene loss, are not explicitly accounted for,
although they can be inferred by further analysis.

All this means that given good evolutionary trees for all homologous genes and for species
in which these genes reside, we can recover most of duplication and speciation events and thus
may distinguish orthologs from paralogs [in my informal discussion, I used a single, although
relatively complex, example, but in fact general applicability of the approach has been proven;
see Zmasek and Eddy (2001)]. But what this information is good for?

Strictly speaking, the story told by mapped orthologs and paralogs in the tree is mostly
about the evolution of the gene family. We learn about the fate of genes and their diverged
copies in the history of living organisms, and we can most directly relate this knowledge to trees
of other characters in the same set of species. However, there is another reason to be interested
in sorting out orthologs and paralogs, and it has to do with predicting protein function. The
basic idea is that orthologs are more likely to preserve biological function in the course of
evolution, and paralogs are more likely to evolve a new, if usually related, function (discussed
in Chapters 7 and 8).

Homology, orthology, and paralogy will be at the heart of almost every theme that we will
encounter in the rest of this book.

Glossary

Alloparalogy—same as out-paralogy (Koonin, 2005).
Analogy—any similarity that is not due to the common ancestry.
Co-orthology—relationship in which gene duplication in one species produced a set of genes, each of them

orthologous to the single homolog in the other species (Sonnhammer and Koonin, 2002).
Homology—relationship in which two characters have descended from a common ancestor.
In-paralogy—relationship in which paralogs were produced after speciation (Sonnhammer and Koonin, 2002).
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Isology—apparently simply a synonym for homology. Modern usage can be tracked to Fields and Adams (1994) and
annotations of chromosome 2 of Arabidopsis thaliana at TIGR (the Institute for Genome Research). I can make
no compelling case for using this term, but it still can be found is some GenBank annotations.

Orthology—relationship in which two homologs in two species (one in each species) are derived by speciation. The
common ancestor of these homologs is in the cenancestor of the two species (Fitch, 2000).

Out-paralogy—relationship in which paralogs were produced before speciation (Sonnhammer and Koonin, 2002).
Paralogy—relationship in which two or more homologs are related by gene duplication. When these homologs are in

one species, they are always paralogs; when they are in two or more species, they are paralogs, if in each of these
species there have been duplications.

Pro-orthology (from Holland, 1999, credited to A. C. Sharman)—relationship of a gene to each of its co-orthologs in
another species (i.e., when duplication occurred only in the latter).

Pseudoorthology–relationship between two paralogs after differential paralog loss in two lineages (Koonin, 2005).
The problem is that these proteins may be taken for orthologs, unless a genome sequence is encountered in which
the two paralogs are still present.

Pseudoparalogy—simultaneous presence of a regular ortholog and a xenolog in the same lineage. There have been no
duplications, and yet this pair of proteins can be taken for the paralogs. As with pseudoorthologs, the confusion
may be resolved if additional genomes are sequenced.

Sequelogy—a recently invented term (Varshavsky, 2004), apparently the exact synonym for sequence similarity: “A is
sequelog of B”means, by definition, that A and B are similar sequences. I am not sure what is gained by using this
word.

Semi-orthology (from Holland, 1999, credited to A. C. Sharman)—same as co-orthology.
Spalogy—a recently invented term (Varshavsky, 2004), apparently the exact synonym for spatial structure similarity:

“A is spalog of B” means, by definition, that A and B are similar structures. I am not sure what is gained by using
this word.

Super-orthology—relationship in which two genes are leaves on a rooted tree with duplications and speciations
assigned to each node, and all the nodes in the connecting path between these two genes are speciation events
(Zmasek and Eddy, 2002).

Synparalogy—same as in-paralogy (Koonin, 2005).
Synology—relationship between two orthologs after two complete genomes fused, for example, by hybridization,

resulting in two orthologs in the same genome (Gogarten, 1994). It appears to be the same as xenology, except that
the latter assumes a relatively small fraction of transferred genes compared to the genome as a whole. Synology
may also usefully cover orthologs produced by polyploidization. Fitch (2000) notes, however, that if the hybridiza-
tion of two species is successful, they are effectively the same species, and synology is not different from allele reas-
sortment in a locus. The same word was re-used by Lerat et al. (2005) with a different meaning, namely as a union
of paralogous and xenologous copies of a gene in the genome (i.e., any intragenomic replicates regardless of their
origin).

Trans-homology (from Holland, 1999, credited to A. C. Sharman)—relationship between two sets of postspeciation
paralogs; close, if not identical, to out-paralogy.

Ultra-paralogy—relationship in which two genes are leaves on a rooted tree with duplications and speciations assigned
to each node, and all the nodes in the smallest subtree containing these two genes are duplication events (Zmasek
and Eddy, 2002).

Xenology—relationship between two orthologs, one or both of which have been horizontally transferred (Jensen,
2001).
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4

Getting Ready for the Era 
of Comparative Genomics:
The Importance of Viruses

Virologists like to recollect the episodes in the history of science in which viruses played an
important role. Max Delbruck and the Phage Group at Cold Spring Harbor Laboratory is the
most famous example (“Phage and the Origins of Molecular Biology,”2006). Many other fun-
damental discoveries in molecular biology were facilitated by the simplicity of viral genetic
systems, with their limited number of tractable molecular components. This includes the
Hershey and Chase experiment on phage T4 infectivity, which settled the question of whether
genes were made of protein or nucleic acid (Hershey and Chase, 1952); Fraenkel-Conrat’s
demonstration of infectivity of TMV RNA (Fraenkel-Conrat et al., 1957); virus self-assembly
studies, also by Fraenkel-Conrat as well as others (reviewed in Fraenkel-Conrat, 1990); under-
standing of retrovirus genome strategy, which led to refinement and crystallization of the
central dogma of molecular biology (Crick, 1958, 1970); and the discovery of RNA splicing
(Berget et al., 1977; Chow et al., 1977).

These occurred decades ago. But how about now? Today, we have bacteria, yeasts, the
nematode Caenorhabditis elegans (which has no common name, although “elegant worm”
seems to be gaining popularity), flies, Arabidopsis thaliana (too many common names,
including mustard weed, Thale’s cress, and mouse ear, none of them gaining much traction),
sea squirts, mice, mosses, and so on. All of these are immensely useful model systems, some
simpler than others, but all with the number of genes in the thousands. The simplicity of
genome does not seem to be a major requirement for a model system anymore. So what about
viruses—are they still of any use as models of anything? In a world full of interesting living
species, who cares about viruses, except for virologists?

There is no doubt that the medical, agricultural, and other social impact of viruses is on the
scale from moderate to huge, depending on the disease. But more important to the themes in
this book, viruses continue to provide clues to many biological processes that were not
known only a few years ago—the phenomena whose significance eclipses host–pathogen
interactions. Posttranscriptional gene silencing, RNA interference, and related phenomena—
which were all but unknown 10 years ago and are, of course, all the rage of molecular biology
now (Zamore and Haley, 2005) and have been recognized by 2006 Nobel Prize—were
discovered and understood to be the RNA-level effects by plant virologists. The crucial obser-
vation was that RNA produced by virus-derived transgenes in plants is sufficient to shut down
the infection by the same virus (Lindbo and Dougherty, 1992a,b, 2005). When the host genes



required for this shutdown were isolated, one of them turned out to be eukaryotic RNA-
dependent RNA polymerase, which had been cloned originally as the enzyme responsible for
viroid replication in tobacco (Schiebel et al., 1998). Most likely, this is the same activity that
was discovered by Fraenkel-Conrat decades ago as he was trying to dissect the enzymology of
virus replication in plants (Khan et al., 1986). There are multiple evolutionary and functional
connections between replication of virus RNA and posttranscriptional gene silencing in
eukaryotes (Ahlquist, 2002).

In the future, there will be more discoveries from the observations of viruses. The following
is one example of what may be expected: Genomic RNA of brome mosaic virus, a plant virus
that replicates in cytoplasm without a DNA intermediate, appears to contain modified bases,
pseudouridylate and ribothymidylate (Baumstark and Ahlquist, 2001). We already knew that
rRNAs and tRNAs are full of these and other modifications, but to find them in virus mRNA,
even though the modified region is between two cistrons and is not translated, is a surprise. In
the same vein, several plant viruses encode a domain homologous to the 2-oxoglutarate-
dependent dioxygenase/AlkB family, which was discovered by comparative sequence analysis
and is predicted to possess demethylase or dealkylase activity (Aravind and Koonin, 2001).
Some of the members of this family appear to demethylate RNA (Ougland et al., 2004),
although the activity of virus-encoded homologs has not been determined. I believe we are
looking at the two facets of the enzymatic modification of mRNA: one equivalent to muta-
tional damage, which needs to be repaired, and the other having a functional role, perhaps in
control of mRNA stability, folding, and translation. If, as I expect, we will learn in the near
future that cellular mRNAs also contain functionally important enzymatic modifications,
perhaps constituting another level of regulation and recoding, the first indications will have
come from viruses. (In a sense, discovery of the cap structure on eukaryotic mRNA is part of
the same phenomenon, and this observation also came from studying viral transcripts; Wei
and Moss, 1974; Wei et al., 1975; Ensinger et al., 1975; Keith and Fraenkel-Conrat, 1975).

But let us return to what this chapter is about—the role of viruses (and virologists) in
defining comparative genomics. The reasons why viruses have been so popular as model
systems are relatively simple: The number of genes in virus genomes is small, and the amount
of genetically homogeneous progeny that can be obtained in the laboratory is large. These were
the properties that made it possible to clone and sequence virus DNAs and RNAs early on.
Even before the first genome sequence of a cellular life-form, Haemophilus influenzae, was
determined in 1995, there were approximately 200 complete virus genomes in the databases
(the exact number depends on how similar strains and isolates of the same virus are counted).
By that time, virologists had already realized that virus genomes should be studied in a sys-
tematic way.

In 1971, David Baltimore of the Massachusetts Institute of Technology, currently at
Caltech, provided the first system of viruses that was based on the diversity of forms of virus
genomes and the modes of their expression (Baltimore, 1971). Whereas genomes of cellular
organisms are, in a way, all the same—made of double-stranded DNAs, with all other nucleic
acid forms being transient in the life cycle—viruses are all different. Not only do virions of dif-
ferent viruses contain all sorts of genetic material—DNA or RNA, single-stranded or double
stranded—but also some virus life cycles do not include double-stranded DNA stage at all.
This diversity needed to be rationalized, and Baltimore’s system did just that. The fundamen-
tal idea was that every virus needs to produce a minimal set of two genetically encoded prod-
ucts (“sense-carrying units”): copies of the genomic nucleic acid and at least one mRNA to
express proteins. The pathways sufficient to perform both tasks are schematically represented
in Fig. 4.1.

Baltimore noted that “[t]here are many viruses about which so little is known that they
cannot be placed in the scheme.... However, as their transcription becomes understood, either
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they should fall into place in a recognized pattern, or new classes will have to be added.”What
is most amazing is how little of such an addition was in fact required since 1971. In fact, about
the only finding that makes it to the classification now, 35 years later, is that some viruses with
single-stranded RNA genomes have ambisense segments (i.e., RNAs in which one part is
positive-sense and the other is negative-sense). This is a relatively minor adjustment; most
groups of DNA viruses also transcribe different portions of genome into separate, less-than-
genome-length mRNAs, which Baltimore did not fail to discuss in 1971.

Let us now consider Baltimore’s proposal from a broader point of view. Since ancient times,
people have been pursuing the quest for the natural system of living forms. We would like to
know whether comparison of genomes brings us closer to such a system.

We are looking for ways to rationally organize a large number of diverse objects. As a
rule, the objects have complex structure that is not completely known. A sensible start
would be to find some number of categories, such that every object could belong to one cat-
egory. It is good if the number of categories is much smaller that the number of objects. The
main way to assign the objects to categories is to find some sort of similarity between these
objects and to use the similarities to define groups of related objects, be it genes, viruses, or
anything else.

There are different ways to organize things by similarity. To proceed, let us define the
meaning of the following words: classification, systematics, taxonomy, and phylogeny. Instead
of reviewing the history of (changing) usage of each of the four words, I intend to stay as close
to their literal meanings as possible.

Classification should be about classes. Classes, or categories, of objects can be defined in any
way we wish—for example, by the shape of the objects, the second letter of their names, or any
other properties. Classes do not necessarily uncover any intrinsic properties of the objects that
we classify. With the appropriately chosen basis for our classification, however, classes may
turn out to be natural categories, representing some objective and essential properties of the
entities. Drawing a line between objective and arbitrary classifications is not always easy. For
example, grouping words by the first letter or grouping people by the last letter of their last
names seem quite arbitrary. Yet, most Russian words that start with “a” are borrowed (often
from Greek but sometimes from Arabic by way of other languages), whereas some people may
recognize my last name as Armenian. Therefore, at least in a small way, certain patterns reflect-
ing something important about words in a language (or, in this case, about historical trajecto-
ries of certain words) can be gleaned merely from grouping them into classes based on a simple
alphabetical rule.

Classification is more interesting if it is hierarchical, i.e., some categories are themselves
grouped into a category. Again, there is no constraint on the ways in which we build such
hierarchies.
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Systematicsshould be about systems.This means not only that we group objects into classes but
also that we would like these classes to have relationships to each other, which represent some
intrinsic properties of these classes. The order of letters in the alphabet does not seem to reveal
anything deep and intrinsic about them; the alphabetical classification, therefore, is not a system-
atics because there is no specific relationship between words starting with “a”and words starting
with “b.”We want something better—some guiding principle on which to build the system.

Biologists would say, however, “surely such a guiding principle has been discovered; it is
called biological evolution.” Indeed, evolution is the force that produced and shaped the
observed life, and most approaches to biological systematics essentially amount to uncover-
ing the evolutionary history of the taxa that are examined. But there is no reason why the
historical development of organisms should be the only guiding principle for systematics.
An analogy from chemistry is the Periodic System of Elements. Conceived in 1869 by
Dmitry Ivanovich Mendeleev, the system captures the majority of then-known physical and
chemical properties of elements and their similarities and consistent differences between
different groups of them (Mendelejeff, 1869). Importantly, many properties of each element
are determined by, or at least strongly correlated with, a single parameter. This parameter
later turned out to be the positive charge of the nucleus of a chemical element, which, in
Mendeleev’s times, could be only approximated by atomic weight. Interestingly, the con-
temporaries of Mendeleev, notably Newlands in England and Meyer in Germany, devel-
oped similar systems at the same time. However, a notable distinction of Mendeleev’s system
is that, unlike the proposals of Newlands or Meyer, it contained empty classes (i.e., places for
the elements that remained to be discovered). Therefore, the system is robustly organized by
a guiding principle that reflects something profound about the elements and even predicts
new things about chemical organization of the universe. It is systematics, under the literal
definition proposed here. Yet, it does not tell us much about the natural history of chemical
elements.

Biological species are different from chemical elements, of course. The main distinction of
biological species from most other things is the foundation of the sense-carrying units,
evolving by descent with divergence from the common ancestor. Even so, there is no reason
why some important aspects of form and diversity of living things should not be presented as
some sort of a “periodic system.”Baltimore’s system of viruses is a good example of just such
a representation.

Taxonomy should be about taxa. That is where evolution starts playing a more prominent
role. Taxa are groups nested in an hierarchy. In biological systems, the most common and nat-
ural reason for the existence of a hierarchy is evolutionary process. For some thinkers, all tax-
onomy is by definition evolutionary. On the other hand, biologists often make use of
nonevolutionary hierarchies. One example is EC, the enzyme classification employed by the
International Union of Pure and Applied Chemistry (Tipton and Boyce, 2000). EC divides all
enzymes into six groups—oxidoreductases, transferases, hydrolases, lyases, isomerases, and
ligases—each of which is hierarchically divided further. For example, EC 2, transferases,
includes group EC 2.7, enzymes that transfer phosphorus-containing group. EC 2.7 includes
EC 2.7.4, phosphotransferases with a phosphate group as acceptor, which has a member EC
2.7.4.2, phosphomevalonate kinase. There exist at least two enzymes with phospho-
mevalonate kinase activity that have different, unrelated sequences and probably do not share
any common ancestor (such isofunctional but unrelated enzymes are discussed in Chapter 5).
Thus, EC may (although some will say should not) be called a biological taxonomy, but it is not
an evolutionary taxonomy.

More recently, the genomics community started putting together Gene Onthology, a knowl-
edge base and controlled vocabulary for annotating gene function. This is also a hierarchy that
contains both evolutionary and substantial nonevolutionary components.
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Finally, phylogeny should be about genesis of phylae. Although phylae literally means
“races”or “classes”in Greek, the scientific meaning of the word has to do with branches in the
trees that depict historic relationships between species. Although phylogenetic trees are famil-
iar to a biologist, trees are also objects of mathematics. They are formally defined in graphs,
and there are many different ways to construct tree-like graphs. Not every tree is truly repre-
sentative of the evolutionary history of the species that we are studying (see Chapter 11).
Moreover, even if the objects of interest do not have any evolutionary relationship, we can still
construct a tree-like representation of connections between them; this is common, for exam-
ple, in comparing gene expression patterns and other genomewide numeric data (see Chapter
14). Thus, phylogeny is a tree-like representation of ancestral relationships, but not every tree-
like representation of biologically interesting information is a phylogeny.

With this, as literal as possible, understanding of classification, systematics, taxonomy, and
phylogeny in hand, let us examine Baltimore’s proposal once again. The scheme shown in
Fig. 4.1 surely is a classification, and it is also a system: Not only are the objects (viruses)
partitioned into classes but also this is done on the basis of a principle. As with any good
system, the property chosen as the basis of the system—in this case, the path from genomic
nucleic acid to mRNA—allows one to make many predictions of other properties of viruses.
One such prediction, discussed by Baltimore, was that virions that do not pack mRNA have to
rely on cellular machinery to produce it, or to pack virus-encoded transcription enzyme into
virions. Baltimore’s scheme, however, is not a taxonomy—there are no nested taxa in it. It is
also not a phylogeny. The word “evolution” is not mentioned in the paper at all; even its root
(“evolved”) is only used once, in passing. I do not suppose this indicates lack of interest in evo-
lution on Baltimore’s part; more likely, he did not believe there was enough evidence to suggest
a sensible scenario for the evolutionary origin of different virus groups. Indeed, as we will soon
see, the evolutionary relationships between Baltimore’s groups are not intuitive.

Baltimore also remarked, “Viruses with similar transcriptional systems could have different
replicational systems, leading to the necessity to extend the class designations.” Such an
extended system proposed a few years later by Vadim Agol (1974) of Moscow University and
the Institute of Poliomielitis was the next major step in comparative genomics.

Agol defined four types of genetic elements: (+)DNA, (−)DNA, (+)RNA and (−)RNA.
Eight “elementary acts of synthesis” are theoretically possible, two for each of these genetics
elements; for example, (+)DNA can be copied either into (−)DNA or (−)RNA. There are 44
distinct “full acts of synthesis,” or interconversions of single-stranded and double-stranded
molecules. If we require that each life cycle contains one act of mRNA synthesis and at least
one act of multiplicative synthesis (increase in genome copy number), and only consider
graphs with no more than three edges, there are 35 distinct life cycle graphs that can be
constructed from these elements (Fig. 4.2).

The constraint on the number of edges was introduced for convenience; no fundamental
reason is known as to why the life cycles of viruses should have only two or three edges. In fact,
viruses appear to follow this rule: By and large, the life cycles of all known viruses are covered
by this set of simple graphs. (A few cases in which four or five edges may give a better explana-
tion of virus reproduction mechanism are discussed in Agol’s work, but with reasonable,
minor simplifications, they are all reduced to three-edged graphs.)

Agol’s scheme highlighted some empty classes and predicted that virus life cycles corre-
sponding to some of these new classes will be discovered. In fact, the class A1 in the DDRD
type has since been filled. This class is represented by animal hepadnaviruses and two groups
of plant pararetroviruses—caulimoviruses and badnaviruses. Interestingly, this class was
identified by the author as one of those for which such future discovery was most likely, based
on the observation that all acts of synthesis required for this class were already discovered in
nature.

Getting Ready for the Era of Comparative Genomics 37



Agol’s scheme is a classification and also a system. It is a taxonomy as well, because it
includes a natural hierarchy of classes, superclasses, and types. On the other hand, this hier-
archy is not phylogeny: In recent years, it became clear that some of the types, particular RR
and DDRD, are evolutionarily related, and that the DDR type may have to be split into evo-
lutionarily independent lineages. Baltimore’s classes are distributed among three of Agol’s
types. For example, Baltimore’s classes III, IV, and V belong to Agol’s type RR, and
Baltimore’s class IV is one of the six classes in type DDRD. This is because Baltimore was
mostly interested in classifying the existing viruses, whereas Agol was concerned in an
exhaustive enumeration of all logical possibilities, and his theoretical system was therefore set
up to include “blank” classes. Many graphs remain purely theoretical possibilities 30 years
later. The aforementioned class DDRD-A1 is the only novel class discovered since then; three
of the highest level groups, types DRRD, DRD, and RRD, remain completely vacant, and
approximately half of the classes in other types are also empty.
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The large number of “still-empty” cells in Agol’s system is interesting because it indicates
that classes of biological objects are usually unequally populated. In other words, nothing in
biology is purely combinatorial: Some sets of properties characterize a very large number of
biological objects, other combinations of properties are found rarely, and there are many
seemingly plausible but nonetheless empty classes. It is almost too easy to discover the basic
components of living systems and to invent the ways of mixing and matching them. What is
much more difficult is to understand the constraints that are imposed on such combinations in
the evolution of life. Most of the time, we can only guess about the reasons that “forbid”some
of the combinations. In fact, in the case of Agol’s empty types, his explanation was very good:
The empty superclasses typically involve an mRNA synthesis directed either by a single-
stranded DNA or by an RNA–DNA hybrid, and all empty types involve a synthesis of a
(+)DNA strand on a (−)RNA strand, or the opposite (+)RNA → (−)DNA reaction. In the
environment of the double-stranded DNA genomes, the RNA strands of these duplexes will
be prone to destruction, and single-stranded DNAs will be restored to two strands by the DNA
repair system. This remains a guess; experimental testing of this suggestion will require the
construction of artificial viruses, which appears to be within reach (Cello et al., 2002; Smith
et al., 2003).

The systems of viruses described previously mark the beginning of comparative genomics
in a most direct sense—that is, the work of comparing different genomes. Thus came to be the
idea of virus genomes as complete multigene entities, which are related to each other in specific
ways and can be studied as a whole. In the late 1970s and early 1980s, sequences of individual
virus genes and of complete virus genomes started to accumulate, and at approximately the
same time, biologists started to get better access to computing.

In 1980, David Botstein of MIT (now at Princeton University) presented a metaphor that
continues to catch on in molecular evolution and comparative genomics, in a work called “A
Theory of Modular Evolution for Bacteriophages.”That work was based on the observations
of several temperate bacteriophages with double-stranded DNA genomes. Only partial
nucleotide sequences were known for these phages, but genetic maps of many of them, partic-
ularly the lambda phage and its close relatives, were worked out in great detail. A remarkable
feature of these genomes was that the genes involved in one and the same function were, more
often than not, positioned close to each other in phage genomes, and arrays of such genes
occupied similar positions within the genomes. For example, in several lambdoid phages, the
group of genes coding for the phage head component was followed by the group of tail genes.
After the tail genes, a stretch of DNA could be found to which no gene functions were mapped
at the time, but remarkably, this stretch accounted for roughly the same fraction of each
genome. This was followed by genes involved in DNA recombination, then by DNA replica-
tion factors, and, finally, by lysis genes (Botstein, 1980).

Why was the conserved gene order remarkable? Colinearity of many genes in cellular life-
forms had already been demonstrated by genetic mapping of related enterobacteria, such as
Escherichia and Salmonella. In phages, however, there was a crucial difference: In some cases,
only the locations of the isofunctional genes were conserved, whereas the gene sequences
were quite different. One example was phage tails that look completely unlike one another.
Lambda’s tail is long and flexible and the tail of P22 is short and rigid, yet both are encoded by
tail modules located at identical positions in these phage genomes. Another example is lack of
similarity between biochemical activities of lysis genes in phages 80 and P22, respectively rep-
resented by glycosidase and endopeptidase, which target different chemical bonds within pep-
tidoglycan of the cell wall. In order to explain this contrast between gene colinearity and lack
of molecular similarity between functional groups of genes, Botstein proposed that these
groups can be transferred between genomes independently of one another, which was in agree-
ment with the observation that different lambdoid phages could recombine in multiple spots
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along the genome. This ability, then, provided the mechanism for exchanging genes or, more
important, groups of genes or “modules”—for example, the complete set of a half dozen genes
required for tail assembly.

Thus, the “module”idea has been released into comparative virology, from where it passed
to other areas of biology and, in due course, to the emerging discipline of comparative
genomics. It is worth remembering, however, that as early as the late 1950s, the idea of
bacterial operons (i.e., groups of functionally linked genes in bacteria that are also adjacent
on a chromosome, ensuring ease of regulation by way of a single control element) had been
proposed (Jacob et al., 1960). Dozens of operons in bacteria and in bacteriophages were
known by 1980. In fact, the choice between lysis and lysogeny pathways in temperate
bacteriophages was one of the favorite models to study operon organization of genes and
transcription regulation in prokaryotic cells. So, what was the difference between operons
and Botstein’s modules?

One distinction is that operon theory focused mostly on the functional aspects of gene
clustering on a chromosome—adjoining genes in bacteria are easier to coregulate, using
elaborations of the basic scheme that involves a single activator of transcription (operator)
and expressing multiple genes by internal initiation of translation on polycistronic mRNA.
The theory of modules considers the same gene clusters and emphasizes the ease with which
they can be transferred between genomes by DNA recombination. Although evolutionary
mobility of operons had been discussed before Botstein’s work, it had been viewed as a
relatively rare event, occurring in the background of much larger bacterial genome, which was
believed to evolve mostly by mutational divergence and by recombination that involves long
regions of high sequence similarity. In contrast, Botstein’s proposal decomposed the entire
phage genome into a moderate number of parts that could be inherited independently of one
another—there was almost no “stable background.” Botstein (1980) stated, “A rather large
and apparently diverse group of temperate bacteriophages are related in ways not easily
accounted for by standard ideas of evolution along branching trees of linear descents.”Thus,
evolution of viruses may have to be depicted as something different than a tree. Notably, this
idea derived from the empirical observation of molecular–genetic characters in completely
mapped, if not yet sequenced, genomes.

In Botstein’s proposal, the relatively short regions of high nucleotide sequence similarity,
located at the junctions between different modules, were thought to be necessary for the
mechanism of module exchange. Nowadays, many DNA recombination pathways are
known that do not require extended complementarity: When DNA homology is present, the
recombination machinery will take advantage of it, but when there is no lengthy stretches of
identical DNA, recombination may occur anyway. Recombination between distantly
related DNA genomes may have played an exceptional role in evolution of life, especially
early on (see Chapter 11). Genomes of the RNA viruses also contain plenty of evidence of
gene exchange.

Modular evolution theory fits well with Pauling and Zuckerkandl’s idea that a molecular
function can be performed in several mechanistically and evolutionarily unrelated ways.
Functionally analogous proteins do indeed exist, as the example with lysis genes of temperate
phages shows. Functional convergence at the molecular level will be discussed in much more
detail in Chapter 6.

Finally, the concept of modular evolution indicates that morphology may not always be a
reliable guide in evolutionary studies. The type of phage tail has been often used as a
phylogenetic marker, but if tail genes constitute just one module among many, accounting for
only a fraction of all phage genes, and if this module is free to “mix and match” with other
modules, then two phages with similar sets of tail genes may be placed into the same taxonomic
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group regardless of the other genes they have. On the other hand, phages that share most of the
genome but have different sets of tail genes may fall into separate groups.

One could argue that the situation is perhaps different when we deal with morphology of
cellular (especially multicellular) organisms. Here, the hope may be that morphology is deter-
mined by interaction of many genes and reflects their joint presence and coevolution—in con-
trast to viruses, in which morphology may be determined by too few genes and be less
representative of the rest of the genome. The International Committee on Taxonomy of
Viruses, nonetheless, still relies heavily on its virion morphology for defining at least the higher
order virus groups. This may be satisfactory for the purposes of classification and taxonomy,
but it would hardly be enough if we want our taxonomy to be informed by evolution and to
represent phylogenetic relationships. The impact of genome modularity on phylogeny is
discussed in Chapters 11 and 12.

These are just some of the implications of the “modular theory”: Chapter 14 provides a
brief discussion of “modular biology,” a new proposal for organizing and studying
genomewide data. But, perhaps  surprisingly, the beginnings of this project are in sequencing
virus genomes.

Another nonphylogenetic approach to virus classification was put forward by Eugene
Koonin in 1991 when he was still at the Institute of Microbiology, Academy of Sciences of the
USSR (Koonin, 1991). That work,dealing only with positive-stranded RNA viruses,had already
benefited from sequencing of virus genomes, but it examined not so much the individual
sequence relationships but, rather, similarities in genome strategies (i.e., the molecular mecha-
nisms employed by viruses to express their genes and replicate their genomes).The topic was thor-
oughly familiar to Baltimore in 1971 and Agol in 1974, but they were mostly interested in the
strategies of viral replication and transcription.However, for the largest group of viruses, those of
the RR type, the diversification of molecular strategies of genome expression takes place at the
level of mRNA translation into proteins.

The main outcome of virus genome expression is the production of individual virus
proteins. All viruses usurp ribosomal machinery of the host cell in order to express their pro-
teins, and almost all viruses encode more than one mature protein. Therefore, the main task of
a virus expression strategy is to produce several protein species from their mRNAs.

In bacteria, all virus genes can be translated into separate proteins from one polycistronic
RNA, which is the same as genomic RNA (the RNA that is translated and the RNA that is
packaged into virions may not be physically the same molecule, but, as a first approximation,
they have the same nucleotide sequence). Translation of many open reading frames (ORFs)
from the same polycistronic mRNA is the first expression strategy.

Many viruses use another mechanism to produce individual virus proteins: They code for a
large precursor protein that can be proteolytically processed into fragments with distinct roles
in the virus life cycle. Usually, the proteases required for such processing are included in the
large protein precursor and are able to release themselves as well as process the rest of the
protein (Bazan and Fletterick, 1989; Gorbalenya et al., 1988, 1989, 1991).

The third strategy of expressing individual proteins is to produce several different mRNAs
by transcribing the minus strand of the polycistronic RNA genome. The full-length mRNAs
will serve as the genomic RNA that can be encapsidated in the progeny virions and possibly
also as the messenger for translation of the 5′-proximal ORF. But (−)RNA may also be tran-
scribed, starting at some internal position, into a (+)RNA that has the same 3′ terminus as the
genomic RNA but is less than genome length. The role of such subgenomic RNAs is to direct
translation of the downstream genes in the virus genome.

Finally, and quite trivially, a virus can possess a fragmented genome, in which each RNA
fragment encodes exactly one protein that does not need to be processed further. All possible
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combinations of the four mechanisms (polycistronic expression, processing of a polyprotein
precursor, synthesis of subgenomic RNAs, and genome fragmentation) give 15 possible
strategies (Table 4.1).

Koonin also examined, but decided not to include into his classification, such transla-
tion-level events as frameshift, readthrough of leaky termination codon, and other recod-
ing mechanisms. This “ribosome gymnastics” is popular among positive-stranded RNA
viruses and also among distantly related retroviruses and some viruses with double-
stranded RNA genomes. Another discovery in recent years is the discontinuous synthesis
of 3′-coterminal RNAs in some virus groups (e.g., coronaviruses); it may be sufficiently dif-
ferent from other mechanisms of subgenomic RNA formation and could be placed into a
separate column.

In truth, only 9, rather than 15, expression strategies were proposed in Koonin’s 1991 paper,
and accordingly there were 18 classes. All those classes that involve polycistronic translation
were collapsed into just 2, with and without VPg. The reason was that for a long time, most
people thought that polycistronic translation was unavailable in eukaryotic cells. There,
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Table 4.1. Classification of Genome Replication and Expression Strategies in Viruses with
Positive-Stranded RNA Genomea

Genome expression Genome NonVPg utilizing VPg-utilizing 
mechanisms segmentation replication replication

1 Polycistronic Segmented
2 expression (1) Nonsegmented ssRNA phages
3 Polyprotein Segmented Comoviruses

processing (2) Nepoviruses
Bymoviruses

4 Nonsegmented Flaviviruses Picornaviruses
Pestiviruses Potyviruses

5 Subgenomic RNA  Segmented Dianthoviruses
formation (3) Tobraviruses

Tricornaviruses
Hordeiviruses

6 Nonsegmented Carmoviruses Luteoviruses (BYDV)
Tombusviruses
Potexviruses
Carlaviruses 
(Capilloviruses)

7 (1) + (2) Segmented
8 Nonsegmented Engineered flavivirus 

derivativesb

9 (1) + (3) Segmented
10 Nonsegmented
11 (2) + (3) Segmented Nodaviruses
12 Nonsegmented Alphaviruses Sobemoviruses

Rubiviruses Luteoviruses (BWYV,
Coronaviruses PLRV)
Tymoviruses

13 (1) + (2) + (3) Segmented
14 Nonsegmented
15 Genome segmentation

aModified from Koonin, E. (1991). Genome replication/expression strategies of positive strand RNA viruses: A
simple version of a combinatorial classification and prediction of new strategies. Virus Genes 5, 273–282. With kind
permission of Springer Science and Business Media.
bEngineered construct corresponding to one predicted class of viruses.



translation initiation most often proceeds by ribosome scanning from the 5′ end, which
provides for efficient translation only of the ORF closest to the 5′ end of mRNA. Or so it was
believed for several decades, until evidence of many exceptions to this rule was discovered;
most notably, several viral and some cellular mRNAs have sequence segments to which ribo-
some can bind directly, without scanning from the 5′ end, and to initiate translation on an ORF
placed downstream of such element (called IRES). In fairness to the scanning mechanism, it
has to be noted that these control elements seem to be used in nature mostly for scanning-inde-
pendent expression of the 5′-terminal ORF and not for polycistronic expression. However,
artificial bicistronic and polycistronic eukaryotic messengers have been constructed, in which
each ORF is placed under the control of its own IRES element and all ORFs in such constructs
can be expressed. Therefore, it seems possible that sooner or later we will find a eukaryotic
virus that also uses this expression mechanism.

The mechanisms of RNA replication are less well studied (although significant progress has
been made in this field since 1991; see Ahlquist et al., 2005). Koonin sensibly chose the mecha-
nism of initiation of RNA synthesis as a character that can have two states, namely use of a
protein (called VPg) with a covalently attached nucleotide as the primer of RNA synthesis or
VPg-free initiation. Combination of these two modes with 15 modes of individual protein
generation gives 30 strategies (Table 4.1).

Fifteen years after Koonin’s study, the state of the affairs has not changed much. Despite
ongoing sequencing of virus genomes and the discovery of several novel virus taxa, empty cells
mostly remain empty: Replication/expression strategies of newly described virus groups tend
to fall into already occupied classes. However, the principal possibility for the existence of
some currently empty classes has been demonstrated by genetic engineering (Geigenmuller-
Gnirke et al., 1991). But correlations observed by Koonin in 1991 mostly retain their status:
Prokaryotic-style polycistronic expression is actualized only by RNA phages and remains a
theoretical possibility for eukaryotic viruses; RNA phages remain the smallest and most
homogeneous group, not known to rely on VPg-primed RNA replication; and, for reasons
that are unclear, VPg-dependent replication, which is common among eukaryotic viruses, is
closely associated with the polyprotein processing strategy.

In summary, Koonin’s combinatorial scheme is a classification and a system but not really a
taxonomy. As indicated by Koonin, it also does not capture phylogenetic signal very well.
Although the same class often contains viruses that are evolutionarily closely related, the
opposite is not true: Some groups of viruses that are closely related at the sequence level may
have quite different strategies of replication/expression.

A more general conclusion is again the same as before: The combinatorial approach to
classification (at least to virus classification) appears to produce a larger number of possibili-
ties than is actually employed by nature. This results in many empty classes in Agol’s scheme
and in Koonin’s classification. Apparently, the evolutionary process operates under con-
straints, so its results do not look like the product of indiscriminate mixing and matching.
Perhaps every combinatorial classification should be expected to contain many empty classes
(more examples of this will be provided when the patterns of the presence and absence of genes
in genomes are discussed in Chapters 6 and 11).

It is now time to examine another line of comparative virus genomics, namely the study of
evolution of individual protein sequences. In the 1980s, these studies began producing
important, if not quite expected, results.

Three biochemical activities play a major role in genome replication and expression of
positive-stranded RNA viruses (Baltimore’s class IV; note that some of the comparisons that
we are about to discuss will show that Baltimore’s classes III and VI share a common ancestor
with class IV). First, RNA strand synthesis on an RNA template requires the processive
nucleotidyltransferase activity provided by the enzyme RNA-dependent RNA polymerase.

Getting Ready for the Era of Comparative Genomics 43



Second, many positive-stranded RNA genomes encode another enzyme, RNA-dependent
ATPase, which plays a nucleic acid remodeling role (e.g., removal of secondary structure from
self-paired regions of RNA or, conversely, RNA duplex formation), and may also control
association and dissociation of proteins with RNA. Viral (and homologous cellular) proteins
capable of doing all this are known under a slightly imprecise name—helicases. Third, cleav-
age of virus polyproteins requires virus-specific proteases, which belong to several unrelated
classes. In addition to these enzymes, viruses code for capsid proteins. In the case of positive-
stranded RNA viruses, there is often just one such protein, or there may be several, either
expressed independently or produced by proteolysis of a larger precursor, sometimes while or
after the capsid shell is assembled. (Other classes of virus-specific proteins—some possessing
interesting enzymatic activities and others playing regulatory roles in virus life cycle and host
evasion—are less widespread and are not examined here).

The relationships between various virus proteins, and between them and their cellular
homologs, began to come to light in the early 1980s. Everything started falling into place in
1984. One the most important activities, template-dependent RNA synthesis, has been genet-
ically mapped to a specific translation product, or at least to a specific RNA segment, in
genomes of several viruses. Kamer, Argos, and co-workers (Kamer and Argos, 1984; Argos
et al., 1984) reported statistically significant sequence similarity between what was (correctly)
inferred to be the main virus RNA replication enzyme RNA-dependent RNA polymerase
(RdRp). At approximately the same time, Haseloff and co-workers (1984) compared a subset
of these proteins and noticed the same similarities but also additional relationships in two
other protein domains.

The region of the highest sequence conservation in RdRp enzymes contained a string of
approximately 10 residues, with the tripeptide GDD in the middle (Fig. 4.3), often preceded by
Y or another bulky hydrophobic residue. Some positive-stranded RNA viruses (e.g.,
coronaviruses sequenced later) have SDD instead of GDD. RNA viruses from other groups,
those with double-stranded and negative-stranded RNA genomes as well as those that employ
reverse transcription, all possess related enzymes, now known to perform processive synthesis
of virus nucleic acid. The most conserved site in these proteins is always a variation on the
“GDD” theme, typically taking the form of YxDD in retroid viruses and UUDD (where U
stands for a bulky hydrophobic residue) in negative-stranded RNA viruses. The active center
of RdRp contains two magnesium ions that play a direct role in catalysis, and the first of the
two aspartic acid residue as well as some of the preceding residues (tyrosine in the best studied
reverse transcriptases) play a direct role in interaction with these metal cofactors.

Common features of these enzymes are not limited to the 10-residue region: There are
several other areas with especially high similarity, including some positions where the residues
were the same in all sequences. In addition, the approximate distances between these conserved
sites were similar in all sequences, and the positions of the RdRp-related regions as a whole
within each virus genome were partially conserved. This alignment is quite different from what
was considered, at the time, to be typical sequence conservation in a protein family.

The existence of families that consist of homologous proteins (orthologs in different species
or paralogs in the same species; see Chapter 3) was well established during the 1960s and 1970s.
However, the methods of finding homologs were less sensitive than what we have today, and
they tended to recover proteins that were globally similar to one another. Despite many point
mutations, and occasional insertions/deletions, each sequence included in these alignments
mostly consists of segments that were clearly aligned to their counterparts in all other
sequences, and the percentage of residues that fall into conserved regions was quite high.

This does not mean, of course, that the existence of more remote relationships between pro-
teins was completely unsuspected. Not only did theoretical consideration of descent with
divergence suggest that such relationships would exist but there was also plenty of empirical
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evidence—morphological, cytological, and biochemical—for the common ancestors of
various taxa and, most likely, of all living things. In more doubt, however, was the sensitivity
of our methods and whether we would ever learn to distinguish extreme evolutionary diver-
gence from convergence or from random coincidence.

In the meantime, however, unexpected sequence relationships were observed increasingly
more often. In the early 1980s, genomes of cancer-causing retroviruses were sequenced, and
when sequences of their oncogenes were compared to sequence databases, they turned out to
have homologs with known functions encoded by cellular genomes (Barker and Dayhoff,
1982; Doolittle et al., 1983). However, even though these similarities were unexpected, they
were not remote but, in fact, quite high—so high that no statistical theory was needed to con-
vince the audience that they were real indications of evolutionary relationship and similar
molecular function of viral oncogenes and their cellular homologs. Thus, we were already
doing well with “unexpected but high”sequence similarities; the problem was validating simi-
larities that were plausibly expected and yet quite low.

The auxiliary evidence, however, strongly supported sequence similarities between proteins
conserved in RNA viruses. First, there was plenty of genetic data mapping replication ability to
the RdRp domain. Second, conservation of gene order in virus genomes, pointed out by
Botstein in 1980, was likewise observed in RNA viruses. By gene order, we understand both the
colinearity of genetically mapped functions and the conservation of several different domain
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Figure 4.3. Conserved motifs in virus RNA-dependent RNA polymerases. Reprinted from Kamer, G., and Argos,
P. (1984). Primary structural comparison of RNA-dependent polymerases from plant, animal and bac-
terial viruses. Nucleic Acids Res. 12, 7269–7282, by permission of Oxford University Press.



sequences, even if each such pair of domains is only moderately conserved. Third, the rapid
growth of sequence databases became an important factor: One day we could be looking at two,
possibly homologous, sequences, trying and failing to distinguish short regions of similarity
signal from the background noise,and the next day we would see a new entry in the database that
produces statistically significant matches to both of the sequences. This nontransitivity of
sequence searching and scoring, and some ways to overcome it, was discussed in Chapter 2.

Technical details of all these comparisons are not very important to us at the moment.
Nowadays, we have much more sensitive and rigorous methods of database search and
statistical evaluation of similarities than those available 20 years ago, and homology between
many virus RdRp enzymes can be established in an unbiased fashion. But remarkably, even
today, some of the distant similarities between members of the RdRp family and their distant
relatives are still difficult to detect by a casual BLAST search, and more involved, iterative
probabilistic searches are required to match them. All the more glory to the pioneers of com-
parative molecular virology, who were able to unravel these similarities using the imperfect
tools.

Which brings me, again, to the title of this chapter, claiming that something about the
analysis of viral proteins turned out to be important not only for virology but also for com-
parative genomics in general. What was it? First, there is the aforementioned notion that gene
orthology is not synonymous with high sequence conservation—some pairs of orthologs are
closely related, whereas others are more distant—and analysis of virus-encoded enzymes and
structural proteins was one of the first case studies that has drawn our attention to this.
Second, not only is the identity between virus homologs low on average but also, as the proteins
evolve, the similarity between orthologs becomes confined to the increasingly shorter fraction
of the protein length—that turned out later to represent the mainstream way in which protein
families evolve. Third, viruses were the first model of a very long evolutionary process. This
obviously, does not have to be long in absolute time—more important is the rate of change per
generation, and in the case of viruses, generations are short and the number of changes per
genome per generation is higher than in cellular genomes—again, with obvious parallels to
subsequent analysis of cellular DNA genomes.

Rapid evolution of viruses with RNA genomes is sometimes attributed to a high rate of
nucleotide misincorporation in reactions catalyzed by RNA-dependent polymerases
(although, of course, high mutation rate will not automatically translate into high evolution
rate; see Koonin and Gorbalenya, 1989). But despite this handy molecular explanation, the
pattern of conservation in virus-encoded proteins could not be easily dismissed as yet another
unusual, extreme adaptation to intercellular parasitism. On the contrary, further sequencing
of viral and nonviral genomes alike provided more of the same, and a portrait of a “typical”
protein family started to emerge, looking like an assembly of sequence motifs separated by
noisy linker regions. A previously more familiar pattern of high sequence conservation along
the full length of the aligned proteins may in fact be a special, extreme case of sequence simi-
larity, whereas the “virus-like” conservation, centered on most important sequence motifs,
became a new null hypothesis of evolution within the protein family.

At approximately the same time as the observations of the unity of distantly related RdRp
enzymes, two other protein families encoded by RNA viruses came to light. One such family
consisted of cysteine proteases encoded by genomes of animal picornaviruses and plant
comoviruses (Argos et al., 1984). The other family included RNA helicase, at that time known
as a putative protein that was commonly found next to the RdRp domains and most likely was
involved in replication. Both families displayed the same picture of significant sequence diver-
gence as RdRp, with several relatively short conserved regions interspersed with longer
regions where similarity could not be easily detected. Importantly, within a few years, each of
these two families was connected to a particular family of cellular enzymes, which themselves
showed extreme sequence divergence.
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The relationship between cellular helicases and the second most conserved protein of RNA
viruses was understood not all at once. In fact, the report of a large ATPase superfamily, of
which helicases are a part, was first published in 1982 (Walker et al., 1982). In 1988, Hodgman
published the alignment of helicases in the form of a series of conserved blocks along the
sequence, removing from consideration the portions of proteins that were not amenable to
proper alignment (Fig. 4.4; this was one of the first printings of sequence conservation in such
condensed format, which remains popular today). So much for the idea that low conservation
and short motifs are the property of virus proteins only.

The other family also extended beyond viruses. The title of an article, “Poliovirus-Encoded
Proteinase 3C: A Possible Evolutionary Link between Cellular Serine and Cysteine Proteinase
Families” (Gorbalenya et al., 1986), speaks to the significance of sequence comparisons of
virus enzymes: Not only are viral and cellular enzymes distantly related but also their
similarities illuminate the evolutionary relationships between different classes of cellular
enzymes. In this case, again, the most pertinent information was presented as two short blocks
of local sequence conservation.

These reports were followed throughout the next two decades by increasingly sensitive
sequence analysis, resulting in many other conserved virus domains shared with prokaryotes
and eukaryotes (Aravind and Koonin, 2001; Putics et al., 2005). In almost every case, the
extent of sequence variation among virus homologs was comparable to variation in the
members of the same family encoded by cellular organisms, confirming that the extreme
divergence between viral proteins is not a fringe phenomenon.
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Motif             I                II            III             IV 

uvrD    26 VLAGAGSGKTRVLV_174_NILVDEFQNTN_16_VMIVGDDDQSIY_26_QNYRSTSNI
rop     19 VLAGAGSGKTRVIT_175_YLLVDEYQDTN_16_FTVVGDDDQSIY_26_QNYTSSGRI
recB    20 IEASAGTGKTFTIA_345_VAMIDEFQDTD_18_LLLIGDPKQAIY_24_TNWRSAPGM
recD   164 ISGGPGTGKTTTVA_ 82_VLVVDEASMID_16_VIFLGDRDQLAS_24_QLSRLTGTH

EBV     69 ITGTAGAGKSTSVS_113_VIVVDEAGTLS_26_IVCVGSPTQTDA_44_NNKRCTDVQ
HCMV   117 VTGTAGAGKTSSIQ_125_IIVIDECGLML_26_IICVGSPTQTEA_44_HNKRCTDLD
HSV     94 ITGNAGSGKSTCVQ_136_VIVIDEAGLLG_26_LVCVGSPTQTAS_44_HNKRCVEHE
VZV     87 ISGNAGSGKSTCID_135_VIVIDEAGLLG_26_IVCVGSPTQTDS_44_NNKRCQEDD

PIF    255 YTGSAGTGKSILLR_ 46_ALVVDEISMLD_25_LIFCGDFFQLPP_29_KVFRQRGDV

AlMV   821 VDGVAGCGKTTNIK_ 55_RLIFDECFLQH_15_VIGFGDTEQIPF_22_ITWRSPADA
BMV    687 VDGVAGCGKTTAIK_ 54_RLLVDEAGLIH_15_VLAFGDTEQISF_22_KTYRCPQDV
CMV    709 VDGVAGCGKTTAIK_ 54_RVLVDEVVLLH_15_ALCFGDSEQIAF_22_TTFRSFQDV
TMV    829 VDGVPGCGKTKEIL_ 57_RLFIDEGLMLH_15_AYVYGDTQQIPY_24_TTLRCPADV
TRV    901 VDGVPGCGKSTMIV_ 56_VLHFDEALMAH_15_CICQGDQNQISF_24_ETYRSPADV
SFV    183 VEGVPGSGKSAIIK_ 50_ILYVDEAFACH_16_VVLCGDPKQCGF_21_ISRRCTRPV
SV     183 VIGTPGSGKSAIIK_ 50_VLYVDEAFACH_16_VVLCGDPMQCGF_58_ISRRCTQPV

IBV   1209 VQGPPGSGKSHFAY_ 50_ILLVDEVSMLT_15_VVYVGDPAQLPA_30_KCYRCPKEI

BNYVV1 893 VKGGPGTGKSFLIR_ 48_IIFVDEFTAYD_11_IYLVGDEQQTGI_25_MNFRNPVHD
BNYVV2 121 VLGAPCVGKSTSIK_ 49_TMLVDEVTRVH_11_VICPGDPAQGLN_19_ASRRFGKAT
BSMV2  267 ISGVPGSGKSTIVR_ 41_LLIIDEYTLAE_11_VLLVGDVAQGKA_18_TTYRLGQET

Figure 4.4. Fragment of multiple sequence alignment showing the most conserved motifs in putative viral replica-
tion enzymes with helicase or DNA/RNA-dependent ATPase activity and in their cellular homologs.
Modified from Hodgman (1988) by permission of Nature Publications, Inc.



For the most important viral enzyme, RNA-dependent RNA polymerase, the discovery of
true cellular homologs has taken the longest time. It was known since the early 1980s that the
most conserved regions of virus RNA-dependent polymerases contain the universally
preserved diaspartate DD. Even though many other polymerases and nucleotidyltransferases
also contain aspartic acid residues in their active centers, the sequence comparisons have
unequivocally supported only the relationship between RdRp and RNA-dependent DNA
polymerase, the replication enzyme of retroviruses and related retroelements. The latter, of
course, are found in abundance in eukaryotic genomes and, to lesser extent, in prokaryotes. So
the homologs of RdRp encoded by cellular genomes, or at least the prime suspects for this role,
were known for a while. When x-ray structures of RdRp and reverse transcriptases became
available, their close similarity and equivalent positions of the most conserved residues left
little doubt that the two classes of polymerases are homologous. The shape of reverse
transcriptase resembled the right hand, with “palm,” “fingers,” and “thumb” domains; the
palm domain contained the residues required for nucleotidyltransferase activity. However, the
cell-encoded reverse transcriptases were all associated with integrated proviruses, retrotrans-
posons, and other such elements that seemed to be genomic parasites (the only homolog that
appears to have entered the mainstream of cellular function is telomerase, a distinct
eukaryote-specific reverse transcriptase involved in maintaining the integrity of chromosome
ends). Then, finally, two connections were made (Fig. 4.5). First, the structure of the catalytic
domain of one type of eukaryotic adenylate cyclase was solved, and it had the same palm
topology as the RNA-dependent polymerases. In fact, the reaction of nucleic acid polymer-
ization is mechanistically similar to the formation of a cyclic nucleotide: In both cases, the 5′
phosphate is attached to the 3′ hydroxyl, and the difference is whether these two groups are in
two different molecules, as in polymerization reaction, or in the same molecule, as in cyclic
nucleotide synthesis. Second, sequence similarity between the same adenylate cyclase and a
large, mysterious family of bacterial proteins, known as the GGDEF family after the most
conserved peptide, was shown (Pei and Grishin, 2001), suggesting a palmlike fold and a role in
nucleotide conversion for the GGDEF family. Both predictions were confirmed; the fold of
GGDEF proteins is similar to the palm domain (and GDE tripeptide is homologous to xDD
in polymerases), and some of the GGDEFs are diguanylate cyclases. In this case, however,
GGDEFs and adenylate cyclases, although distantly related to each other, are still closer than
the most dissimilar virus polymerases.

I described some notable work on comparative virology from 1971 to the early 1990s. Even
before virus nucleic acids were completely sequenced, they seemed small enough to be
amenable to genome-level analysis. The ideas and approaches first brought up in connection
with virus genome comparisons would reach the full bloom in the second half of the 1990s,
when, finally, complete genomes of cellular life-forms were sequenced. However, before the
completion of the first bacterial genome of H. influenzae, comparative genomics of RNA
viruses produced a crescendo: in 1993, when Eugene Koonin at the National Center for
Biotechnology Information, and Valerian Dolja, then at Texas A & M University (currently at
Oregon State University), published a long article titled “Evolution and Taxonomy of
Positive-Strand RNA Viruses: Implications of Comparative Analysis of Amino Acid
Sequences” (Koonin and Dolja, 1993). Not only does this work demonstrate the power of
comparative analysis for understanding ancient events in virus evolution but also it previews
the developments in computational genomics of the cellular organisms, which will be exam-
ined in the rest of this book. Here, I list several themes that take us from here to there:

1. Weak similarities between viral proteins are important; they take the form of conserved
sequence motifs, which can be validated by comparison of sequences with known properties
and by other auxiliary information, such as similar genomic layout. If analyzed correctly,
motifs reveal the mode of sequence evolution, where signals indicative of homology, common
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DNA polymerase I (phages, eukaryotes, and subset of bacteria) 
DPOL1_Taqu  601 EEGWLLVALDYSQIELRVLAHL 125 AFNMPVQGTAADLMKLAMVKLFPRL-  0 EEMGARMLLQVHDELVLEAPKE------RAEAVARLAKEVMEGVYP-  0 -LAVPLEVEVGIGE  825 
DPOL1_Bste  348 ESDWLIFAADYSQIELRVLAHI 125 AMNTPIQGSAADIIKKAMIDLNARLK  1 ERLQAHLLLQVHDELILEAPKE------EMERLCRLVPEVMEQAVT-  0 -LRVPLKVDYHYGS  574 
DPOL1_Ecol  373 PEDYVIVSADYSQIELRIMAHL 125 AINAPMQGTAADIIKRAMIAVDAWLQ  1 EQPRVRMIMQVHDELVFEVHKD------DVDAVAKQIHQLMENCTR-  0 -LDVPLLVEVGSGE  599 
DPOL_T7     460 GKPWVQAGIDASGLELRCLAHF 110 ALNTLLQSAGALICKLWIIKTEEMLV  7 WDGDFAYMAWVHDEIQVGCRTE-----EIAQVVIETAQEAMR-----  0 --WVGDHWNFRCLL  684 
DPOL_Tgor   395 GLWENIVYLDFRSLYPSIIITH  87 WYCKECAESVTAWGRQYIETTIREI-  0 -EEKFGFKVLYADTDGFFATIPGADAETVKKKAKEFLDYINA-----  0 -KLPGLLELEYEGF  582 
DPOLD_Scer  599 YYDVPIATLDFNSLYPSIMMAH  97 LPCLAISSSVTAYGRTMILKTKTAVQ  6 NGYKHDAVVVYGDTDSVMVKFGTTDLKEAMDLGTEAAKYVSTLF---  0 -KHPINLEFEKAYF  806 
DPOLA_Scer  855 LHKNYVLVMDFNSLYPSIIQEF  84 FYAKPLAMLVTNKGREILMNTRQ---  0 LAESMNLLVVYGDTDSVMIDTG---CDNYADAIKIGLGFKRLVN---  0 -ERYRLLEIDIDNV 1037 
DPOLZ_Scer  966 FYKSPLIVLDFQSLYPSIMIGY 116 MPCSDLADSIVQTGRETLEKAIDIIE  0 KDETWNAKVVYGDTDSLFVYL-----PGKTAIEAFSIGHAMAERVTQ  0 NNPKPIFLKFEKVY 1185 
POLII_Ecol  410 GLYDSVLVLDYKSLYPSIIRTF  78 FFDPRLVSSITMRGHQIMRQTKA---  0 LIEAQGYDVIYGDTDSTFVWLK----GAHSEEEATKIGRALVQHVNV  8 QQLTSALELEYETH  597 

Adenylate cyclase, soluble (bacteria) 
ACYC_Tbru   897 TDPVTLIFTDIESSTALWAAHP   0 ----DLMPDAVAAHHRMVRSLI----  0 GRYKCYEVKTVGDSFMIASKS-----PFAAVQLAQELQLCFLHHDWG 41 RVRVGIHTGLCDIR 1032 
CC1415_Ccre 405 RAMKAMLFADIQGFGALRDDQI   0 ---PVFVDGVMGTLARAIEAL-----  0 -AAPPIHVETWGDGLFLVFDE-----PIDAALAALALLEAHRAQDLR  8 GLRIGGHYGPVHLR  507 
ACYC9_Hsap  390 IEEVSILFADIVGFTKMSANKS   0 ---AHALVGLLNDLFGRFDRLC----  0 EETKCEKISTLGDCYYCVAGCPE--PRADHAYCCIEMGLGMIKAIEQ  9 NMRVGVHTGTVLCG  498 
CyaC_Anab   960 PRLITVLFSDIVGFTQLANTLR   0 ---SRRVAELLNEYLEFMTKAV----  0 FDNGGTVDKFMGDAILALYGAPEELTPNEQVRRAVNTARAMHSSLAQ 19 QFRCGIHQGTAVVG 1080 
mll0576_Mlot 35 RRVLTALCYDLVASTELLGLLG   0 ---IEDFEELILAFQMAAKEAI----  0 VSCSGTVRVEVGDGGVAVFPV----DLGAKDAASLTISAGLEIVRAC 12 HVRVGVATSMTLVG  143 
OGcyc_Rnor  889 FDQVTIYFSDIVGFTTISALSE   0 ---PIEVVGFLNDLYTMFDAVL----  0 DSHDVYKVETIGDAYMVASGLPRRNGNRHAAEIANMALEILSYAGNF 10 RVRAGLHSGPCVAG 1000 

GGDEF family of diguanlyate cyclases (bacteria) 
sll0821_   1129 REPLALLLCDVDFFKGFNDN--   0 -YGHPAGDRCLKKIADAMAKVAK---  0 -RPTDLVARYGGEEFAIILSET---SLEGAINVTEALQVEVANLAIP  9 TLSIGIAVYTPERH 1236 
YHCK_Bsub   222 HFQFALIYMDIDHFKTINDQ--   0 -YGHHEGDQVLKELGLRLKQTI----  0 -RNTDPAARIGGEEFAVLLPNC---SLDKAARIAERIRSTVSDAPIV  5 ELSVTISLGAAHYP  324 
YddV_Ecol   324 GTPLSVLIIDVDKFKEINDT--   0 -WGHNTGDEILRKVSQAFYDNV----  0 -RSSDYVFRYGGDEFIIVLTEA---SENETLRTAERIRSRVEKTKLK  9 SLSIGAAMFNGHPD  430 

Predicted polymerases involved in DNA repair or in small RNA pathways (bacteria and archaea) 
PH0162_Phor 430 AKLVGVIKGDVDHLGLFF--S-   4 ISEYATASRFMDYFFKFYLKQIIR-- 17 ERPNVVVVYAGGDDFFIVGAWNE--IFELAFRVRNAFSSYTGNNL--  0 TISMALGYFHPKTP  550 
MJ1672_Mjan 577 TRKIGILKMDVDNLGEIFTTGL   5 ISRMSTLSSMLTLFFTGYIPHLIK-- 12 FKDNIYLVYAGGDDTLIVGAWDA--VWELAKRIRGDFKKFVCYNPYI  0 TLSAGIVFVNPKFE  698 
TM1811_Tmar 488 GKKIASLLVDVDNLGKIFLKGL   4 LSRYSTLSRLMSFFFKERVESIVE--  0 -GKNVMVIYSGGDDLYLVGGWND--VLDVAKELREAFGRFTTNDFM-  0 TFSAGYVITDEKTS  594 
TM1794_Tmar 494 NGYIAVLLMDGDRMGDWML-GE  35 PAYHRGVSRTLGIFSQLVGKIV----  0 DRHNGMLVYSGGDDVLALLPADS--VLECANDIRKFFSGHLEYEIEI 31 TMSAGIAIVHHKFP  663 
AF1867_Aful 697 PKYYAILMMDGDEMGKLLS-GE  33 PAAHSSISRALKNFSVNHVPDVV---  0 RKGNGTLIYSGGDDVLVLLPVDT--AFDVATELAMTFSTSWNGWEML  3 KLSAGLLIVHYKHP  835 
BH0328_Bhal 326 TPYYAFLVCDGDQMGKALR---   4 IEDHQAFSKKLSEFAAKARKIVTT--  1 KRDEGELVYAGGDDVMAYLPLHR--CLDVAAKLQQLFGELMNEALPK  5 TLSVGIVIAHMMEP  437 
aq_387_Aaeo 339 NSYFSILMADGDEMGKWL--GL  10 ENFHKKFSEALFKFAQKITKIE----  0 DNICLKFVYLGGDDVLAVAHPSV--ILKAAKIIRKRFSEILKKELKP  7 TMSAGLVIAHEKEN  456 
SSO1429_Ssol 13 SRYIALIKADGNNAGKIF--G-   4 FSEYVDKSFRLDFGVKKMFYDTLL-- 16 SRILLGVLYLGGDDIMLLSPSAI--AVPFAVKMFKRSLEYTGFTFKV 21 -MEESKIHTGEKSS  154 

Viral RNA-dependent RNA polymerases 
RDRP_HC    2630 KKNPMGFSYDTRCFDSTVTEND  51 VLTTSCGNTLTCYLKASAACRAA---  0 -KLQDCTMLVNGDDLVVICESAG---TQEDAASLRVFTEAMT-----  0 --RYSAPPGDPPQP 2775 
RDRP_PV    1972 LMEEKLFAFDYTGYDASLSPAW  23 NSGTSIFNSMINNLIIRTLLLKTYKG  0 IDLDHLKMIAYGDDVIASYP---------HEVDASLLAQSGK-----  0 --DYGLTMTPADKS 2108 
RDRP_Phi6   315 KEWSLCVATDVSDHDTFWPGWL  58 QGATDLMGTLLMSITYLVMQLDHTAP 20 QGHEEIRQISKSDDAMLGWTKGR--ALVGGHRLFEMLKEGKVN----  0 -PSPYMKISEHGGA  495 

Reverse transcriptases – viral and cellular (telomerase) 
RT_MMLV     261 PSHQWYTVLDLKDAFFCLRLHP  26 QQGFKNSPTLFDEALHRDLADFRI--  0 -QHPDLILLQYVDDLLLAATSEL-----DCQQGTRALLQTLG-----  0 --NLGYRASAKKAQ  380 
RT_HIV      101 KKKKSVTVLDVGDAYFSVPLDE  27 PQGWKGSPAIFQSSMTKILEPFRK--  0 -QNPDIVIYQYMDDLYVGSDLEI----GQHRTKIEELRQHLL-----  0 --RWGLTTPDKKHQ  222 
TERT_Hsap   703 PPELYFVKVDVTGAYDTIPQDR 107 PQGSILSTLLCSLCYGDMENKLFAG-  0 IRRDG-LLLRLVDDFLLVTPHL----THAKTFLRTLVRGVP------  0 --EYGCVVNLRKTV  904 
TERT_Spom   581 GRKKYFVRIDIKSCYDRIKQDL 102 PQGSILSSFLCHFYMEDLIDEYLSF-  0 TKKKGSVLLRVVDDFLFITVNK----KDAKKFLNLSLRGFE------  0 --KHNFSTSLEKTV  778 

Figure 4.5. Conserved sequence motifs in viral RNA-dependent RNA polymerases, viral and cellular reverse transcriptases, and their cellular homologs with polymerase and
nucleotide cyclase activities. Modified from Makarova et al., Nucleic Acids Research Vol. 30, 2002 by permission of Oxford University Press].



function, and similar structure persist in the form of short regions of conservation inter-
spersed with nonconserved regions of variable length. This mode of evolution is relevant not
only to virus proteins but also to any large and diverse superfamily of proteins in prokaryotes
and eukaryotes.

2. Although the diversity of viruses may be mind-boggling, the number of building
blocks—in this case, conserved virus proteins—is limited. Only one protein, RNA-dependent
RNA polymerase, is found in all nondefective RNA viruses; nevertheless, the majority of virus
genes are conserved in several virus groups, and none of the viruses contain more than 20
discrete genes. In Chapter 5, we will see that the number of gene/domain blocks that make up
the cellular organisms is also finite, although of course much larger than in viruses, and is
amenable to analysis by present-day computer technologies.

3. Clustering by similarity produces a limited, tractable number of related protein groups
(families or superfamilies; there is no real difference between the two). For example, all RdRp
enzymes in RNA viruses fall into one of three conserved superfamilies. Likewise, all RNA
helicases encoded by positive-strand RNA viruses belong to one of the three helicase families.
Chapters 5 and 10 discuss how proteins encoded by complete genomes can be sorted into a
finite number of protein families, greatly facilitating the analysis of the molecular setup of a
cell.

4. Combinations of genes are not random. Three types of RdRps and three types of heli-
cases could give rise to nine polymerase–helicase combinations; however, in nature, only three
such combinations are widely distributed. Chapter 7 discusses the tendency of some genes to
occur in conserved arrays.

5. Conserved arrays of genes or protein domains are not merely the auxiliary factor in
determining the identity of protein sequences. The order of genes in virus genomes is a molec-
ular trait in its own right, as indeed is the information on gene co-occurrences mentioned pre-
viously. These traits can be used for function prediction and in evolutionary reconstruction.

6. There is abundant evidence for recombination between different virus genomes.
Extended regions of nucleotide identity are apparently not required for such recombination.
Recombination complicates reconstruction of phylogeny, but evolutionary and taxonomic
chaos does not ensue, as discussed in Chapters 11 and 12.
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The First Fact of
Comparative Genomics:
Protein Sequences are
Remarkably Resilient
in Evolution

In Chapter 4, I discussed the early years of comparative genomics, when completely sequenced
virus DNAs and RNAs helped us to sharpen our analytical tools and to define what is impor-
tant in comparative genomics. It was in the 1970s, 1980s, and early 1990s that we learned to pay
attention to subtle sequence similarities to genome context and non-random combinations of
molecular characters, some of which turned out to be more common than others. But the time
of full assault in genomics came with the advent of high-throughput sequencing of DNA of
cellular organisms. The first cellular genome, Haemophilus influenzae, a gram-negative pro-
teobacterium of gamma subdivision and a close relative of well-studied Escherichia coli, was
completely sequenced in 1995 (Fleischmann et al., 1995). Even earlier, individual chromo-
somes of various organisms and organelles had been sequenced; many genome sequences
from mitochondria and chloroplasts were available already in the 1980s and early 1990s, and
the two smallest chromosomes of yeast Saccharomyces cerevisiae were finished by the same
time as the first bacterial genome. Approximately 75 % of the E. coli chromosome was also fin-
ished by 1995, including one long contiguous DNA segment that covered more than one-
fourth of the genome. Finally, GenBank contained gene sequences from many major groups
of organisms, and it could be argued that the diversity of genomes on Earth has been quite
extensively sampled. So, when did studies of genes and genome sequences finally become
“genomics”?

An enormous number of new genes are sequenced every day, whether in the context of com-
plete genome sequencing or not. This increase in density of sequence space coverage is a ben-
efit in and of itself, regardless of which sequence comes from what species. But one theme to
which we will return many times in this book, and which I believe marks “genomics” in the
most proper sense, is that complete genomes are a special kind of sequence information, qual-
itatively different from just a very large collection of sequences. Importantly, if the genome of
a life-form is available in its entirety, then the facts about this life-form have to be explained
using information about the known and finite set of genes (I leave out the problems of verifi-
cation of genome completeness and accurate prediction of all genes encoded by the DNA
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sequence; these, nonetheless, are important tasks, also facilitated by comparative genomics
approaches). This completeness of the data changes the way we formulate and test hypotheses.
One example of this new thinking was discussed in Chapter 3, in which it was stated that the
correct assignment of orthologs, paralogs, and evolutionary events can only be achieved when
all homologous genes are known.

Because of this special role of genome completeness, a good date for the beginning of the
genomics era is July 28, 1995, when H. influenzae genome information, obtained by the group
headed by Craig Venter and Hamilton Smith at the Institute for Genome Research, was pub-
lished in the journal Science (Fleischmann et al., 1995). Even more important for genomics
was the rapid accumulation of other completely sequenced genomes, sampling the diversity of
taxonomic positions, habitats, genome sizes, lifestyles, complexities, and almost every other
imaginable trait. The growth of the genome division of GenBank in the years since the H.
influenzae genome information was published is shown in Fig. 5.1.The numbers of complete
genome sequences of bacteria are exploding, no doubt because of their small size that makes
them easier to sequence than eukaryotes and their well-recognized importance in society, and
the numbers of archaeal and eukaryotic genomes are also growing, slowly but steadily.

With these data in hand, and remembering the two “facts of sequence analysis” from
Chapter 1, I state the following as the “first fact of comparative genomics”:

Protein sequences and proteomes are well conserved in evolution; most proteins encoded by
completely sequenced genomes contain at least one region of significant similarity to sequences in dis-
tantly related species.

Proteome means the complete set of proteins predicted to be encoded by the genome. In the
literature, “proteome”also has a slightly different meaning—that is, proteins actually encoun-
tered in a sample, for example, “yeast membrane proteome”or “proteome of snake venomous
glands” (irresistibly called “venome” by Fry, 2005). “Distantly related” also needs some
elaboration.
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Figure 5.1. Complete genome sequences in public databases. The 2006 data are for the first 6 months of the year.
Diamonds, Bacteria; squares, Archaea; triangles, Eukarya. Data are from the NCBI genome division
and Nikos Kyrpides’ GOLD database (www.genomesonline.org).



Figure 5.2 shows some of the more reliably reconstructed portions of the Tree of Life. Some
of the numbers are based on direct evidence, such as dating the fossils. Other are the result of
extrapolation on the basis of sequence comparison and other data. Major animal clades have
separated nearly 600 million years ago. Regarding prokaryotes, it appears that deep clades of
Bacteria, such as proteobacteria and actinomycetes, or proteobacteria and spirochaetes, are
separated by more than 1 billion years, and the cyanobacterial clade is perhaps more than 
3 billion years old. Bacteria and Archaea may have split at approximately the same time if not
earlier (although in this case, the exact date is still not settled; see Chapter 12). In any case,
when comparing bacteria, archaea, and eukaryotes, we are dealing with enormous time spans
and a very large number of generations.

In the first fact of comparative genomics, distances between these extremely ancient line-
ages is exactly what is meant by “distantly related.” A random protein from a gram-positive
bacterium has a better than 50% chance of sharing a related sequence fragment with at least
one protein from a cyanobacterium. Note that the existence of a high-scoring fragment is not
the same as a reliable global alignment. Some proteins in distantly related genomes may

The First Fact of Comparative Genomics 53

Figure 5.2. Phylogenetic tree of Eukarya with the current estimates of divergence times for various clades.
Reproduced from Douzery, E. J., Snell, E. A., Bapteste, E., Delsuc, F., and Philippe, H. (2004). The
timing of eukaryotic evolution: Does a relaxed molecular clock reconcile proteins and fossils? Proc.
Natl. Acad. Sci. USA 101, 15386–15391. Copyright (2004) National Academy of Sciences, U.S.A.
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contain both conserved domains and nonconserved regions, but the fraction of proteins in a
proteome of any cellular species that are at least partially conserved in extremely diverse
organisms is high. In other words, proteins truly unique to a narrow phylogenetic group and
lacking homologs outside that group are in the minority in every proteome.

This first fact of comparative genomics may seem self-evident today, but it was not that
obvious as recently as 10–12 years ago. There was much evidence that similarities between pro-
teins in some families can persist despite large evolutionary distances, but the total number of
these conserved regions, the number of proteins that contain these regions, and the proportion
of such proteins in each proteome were all unknown.

However, as genome sequencing projects started generating data, Philip Green, then of
Washington University (currently at the University of Washington), with colleagues from the
same university and from the National Center for Biotechnology Information (NCBI), made
the first attempt to estimate these numbers (Green et al., 1993). They used five sets of
sequences that were thought to be more or less random samples of protein sets encoded by
several genomes: 2644 expressed sequence tags (ESTs) from human brain; 1472 ESTs of a nem-
atode Caenorhabditis elegans; 234 genes predicted in the sequenced portion of C. elegans
genome; 182 yeast genes, also predicted from the genome sequence; and the 1916 genes of E.
coli that were sequenced at the time. The authors defined ancient conserved region (ACR) as
statistically significant similarity between two proteins, which have diverged prior to the splits
of major animal phylae. By definition, human/worm, worm/yeast, and human/yeast matches
are all ACRs, as are similarities between a eukaryotic and a bacterial protein. In total, approx-
imately 30% of all genes contained an ACR. These sequences were then compared to the
SWISSPROT database, which could be viewed as a larger, also relatively independent sample
of protein universe (many gene products from these genome projects were not yet included in
SWISSPROT, but genes and proteins from all kinds of other organisms that were sequenced,
one at a time, over several decades were included). After removing all trivial matches between
a sequence and its close relatives, approximately 85% of all ACRs had a homolog in SWIS-
SPROT from a species far enough away from the query sequence, thereby also meeting the def-
inition of an ACR. The most notable quantitative observation was that the upper bound for
the fraction of eukaryotic proteins with ACRs was 40%. This was calculated as the ratio of two
percentages: 30% of genes with ACRs among all gene products and 85% of all existing ACRs
that were represented in the databases at the time of their analysis.

The impact of this prophetic paper on our current thinking about protein conservation is
significant and well deserved, but the actual numbers have been revised since 1993. The frac-
tion of proteins with database homologs in any genome typically increases with time: Whereas
the number of genes in the completely sequenced genome does not change much after annota-
tion [some open reading frames (ORFs) may be missed initially, but with modern gene predic-
tion techniques, the rate of such misses is low], the number of database entries from distantly
related clades continues to grow rapidly. With that, the chances increase for a previously
“orphan” sequence to find a match in a distantly related organism; thus, with time, there
remain increasingly fewer orphans in every genome. On the contrary, an ancient similarity is
“demoted” into a nonsimilarity only in the relatively rare case in which the match was a false
positive in the first place or in even rarer instances in which the distance between species is
revised downwards.

The increase in the sensitivity of the sequence comparison methods is also important: The
same set of sequences could be analyzed by BLAST in 1995, by gapped BLAST2 in 1996, by
PSI-BLAST in 1997, and by even more sensitive probabilistic searches later on—each time
reducing the number of orphan sequences. For example, in 1996 Methanococcus janaschii pro-
teome was analyzed using side-by-side searches by BLAST and BLAST2 against the NR data-
base at NCBI, and BLAST2 produced statistically significant sequence similarity for a much
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larger number of proteins, indicating that a more sensitive method may change our under-
standing of the genome dramatically, even when the sequences are compared to the same ref-
erence set (Koonin et al., 1997; this is further discussed later in this chapter and in Chapter 11).

Returning to the estimates of Green and coauthors, we now see that among the ACRs
shown in their Table 3 and believed to be eukaryote specific at the time, approximately two-
thirds are now known to also be present in Bacteria. For some of them, the sequence infor-
mation was simply not available, as in the case of Ser/Thr protein kinase catalytic domain,
which later was detected in many Bacteria and Archaea (Leonard et al., 1998). For other
proteins, the sequence was known but the fact of similarity could not be established until the
advent of more sensitive methods, as in the case of bacterial homologs of cytoskeletal
proteins tubulin and actin.

Three more remarks are in order. First, definitions of “ancient” in the first fact of compar-
ative genomics and in the study of Green et al. are not the same, nor are they the only two pos-
sibilities. Separation of metazoan clades, used as the milestone by Green et al., is surely very
old, but other time points, either more or less recent, may be more appropriate in other con-
texts. Second, it is common for the large-scale sequence analysis projects to use an operational
definition of similarity that involves some sort of across-the-board threshold (e.g., Green
et al. did not examine matches with BLAST scores less than 90). In an effort to minimize the
rates of false-positive matches, such thresholds are sometimes set “conservatively,” but the
definition of conservative is itself arbitrary. The percentage of conserved proteins in the same
genome on the same day will not be the same when the threshold of BLASTP E-value is set at
10−10 and 10−4. Thus, without knowing the details of computational protocol, one cannot be
sure what has actually been measured. Yet, we have seen in Chapters 2–4 that the theory of
homology, as well as the practice of detecting homologous genes and proteins, is not
restricted to sequences with very high similarity—a low-scoring match may still be indicative
of common ancestry. The most sensitive analysis does not use any arbitrary cutoff but instead
evaluates the significance of both high- and low-scoring matches, as we will soon discuss.
Third, in order to answer biological questions about gene and protein evolution and function,
we not only have to detect all sequence similarities but also have to define all homologs and
sort them into orthologs and paralogs (see Chapter 3). However, in a confluence of confu-
sions, some authors define orthologs as “highly similar homologs,”or all matches that pass a
certain score threshold. This is misleading because different pairs of orthologs may have
different degrees of similarity.

In 1995, the analysis of a partial protein list of E. coli, by Eugene Koonin, Roman Tatusov,
and Kenn Rudd of NCBI, appeared (Koonin et al., 1995; the first and second completely
sequenced genomes, of H. influenzae and Mycoplasma genitalium, were already available, but
not in time to be considered in that work). The 2328 putative proteins of E. coli known at that
time, which would turn out to represent approximately 55% of the E. coli proteome, were com-
pared to sequence databases using BLASTP and analysis of conserved sequence motifs, and
approximately 70% of all proteins were shown to have homologs in distantly related bacteria.
The results of this comparison are shown in Fig. 5.3. Even more convincing is the comparison
of the proteomes obtained by the subsequent genome projects involving H. influenzae,
M. genitalium, Methanococcus jannaschii, and Synechocystis sp. (Fig. 5.4).

The trend is the same in every genome: Most proteins—approximately 60–80% of them—
have homologs in distantly related species, separated by hundreds of millions of years. The
high fraction of broadly conserved proteins holds despite the difference in the number of
proteins in the proteomes—an order of magnitude within bacteria and even more between
bacteria and eukaryotes (and within eukaryotes). Differences in lifestyle also seem to have
relatively little impact; parasites, symbionts, and free-living species, phototrophs,
chemotrophs, and heterotrophs, simple and complex cells, fungi, and animals are all within
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Figure 5.3. Overview of sequence similarity detected in a genome-scale sequence analysis of the extensively sam-
pled genome of E. coli. Percentage points indicate the fractions of proteome that are most closely
related the homologs in the indicated taxa. Reproduced from Koonin, E. V., Tatusov, R. L., and Rudd,
K. E. (1995). Sequence similarity analysis of Escherichia coli proteins: Functional and evolutionary
implication. Proc. Natl. Acad. Sci. USA 92, 11921–11925. Copyright (1995) National Academy of
Sciences, U.S.A.

Figure 5.4. Overview of sequence similarity detected in a genome-scale sequence analysis of four completely
sequenced genomes. MJ, Methanococcus janaschii (current name: Methanocaldococcus jannaschii),
a methanogenic archaeon; HI, Haemophilus influenzae, a gammaproteobacterium; MG, Mycoplasma
genitalium, a gram-positive-related mollicute; Ssp, Synechocystis sp., a blue-green bacterium.
Reprinted from Koonin et al. (1997) by permission of Blackwell Publishing.
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the range. Let us call this number the percentage of proteins with homologs in distant
organisms (PHIDO).

At the time of sequencing of the first archaeal genome, Methanococcus janaschii (Bult et al.,
1996), much has been said about its uniqueness. The original report stated that most proteins
in this species did not look like any other proteins, resulting in a low PHIDO of 44%; almost
every observed similarity in that case was, by definition, to distantly related species because not
much sequence was available from archaea. Soon, however, we found that this low PHIDO
value resulted from the fact that the version of similarity search program used by the TIGR
group did not work very well at relatively large evolutionary distances, like those separating
archaeal proteins from their then available bacterial and eukaryotic database homologs. Only
the more advanced database search programs, such as gapped BLAST, could detect these sim-
ilarities. When we increased search sensitivity, many matches that were missed by the original
analysis could now be examined; most of them had strong statistical support and could be fur-
ther validated by analysis of the conserved sequence motifs (Koonin et al., 1997). All similari-
ties considered, PHIDO for Methanocccous janaschii, as of the beginning of 1997, was almost
70%. This percentage continues to increase as the diversity of prokaryotes becomes better
sampled by genome projects. So Methanocccous janaschii was not as unique as originally
believed: Perhaps as much of a surprise was the nonuniqueness of the majority of archaeal
genes. (In Chapter 11, we will talk about another evolutionary surprise offered by archaeal
genome sequences.)

One archaeal genome, Aeropyrum pernix, seems to be the only exception from the 60–80%
PHIDO rule; it has been noted, however, that the “unique”ORFs in its genome seem to be sig-
nificantly shorter than is typical of other archaea. It cannot be excluded that many of those
ORFs are spurious predictions rather than real genes.

It is important to note that PHIDO is about sequence similarity and not about what proteins
do. Many proteins belong to conserved families for which we cannot predict a biological func-
tion. On the other hand, the existence of such conserved uncharacterized protein families is in
itself an important result of complete genome sequencing: If we know that they exist, we can
direct our experiments toward identifying their function and structure.

The only group of DNA genomes that appears in violation of the first fact of comparative
genomics is viruses and bacteriophages. Most of these genomes are smaller than genomes of
cellular organisms, although a recently discovered mimivirus that infects amoebas appears to
code for approximately 1200 genes, which is more than some bacteria and archaea possess, and
the rumors about bacteriophage G suggest that its gene set size may also bridge the gap
between viruses and cellular organisms. However, regardless of the proteome size, virus pro-
teins are indeed likely not to match anything in the databases (except for trivially similar
sequences of different strains/isolates of the same virus). The PHIDO of DNA virus genomes
rarely exceeds 50% and commonly is closer to 20–30% (Liu et al., 2006).

The short generation time of most viruses presents more opportunity for divergence, so it is
possible that a fraction of “orphan”virus gene products are proteins that in fact do have data-
base homologs, but the divergence has changed them beyond recognition. It is also likely that
the diversity of viruses and their hosts has not been well sampled by sequencing projects, and
the homologs of the orphan virus proteins are waiting to be discovered. There is little doubt
that virus PHIDO will increase as we sequence more genes and improve sequence comparison
approaches; the only question is by how much. On the other hand, it cannot be excluded that
some aspect of virus lifestyle requires a truly high proportion of unique proteins (as opposed
to copies of homologs in other virus genomes that are changed beyond recognition); this
would involve some process of frequent gene innovation.

Thus far, we have examined conservation of protein sequences between completely
sequenced,distantly related genomes.A different,but equally important,aspect of evolutionary
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conservation in proteins is similarity between proteins encoded by the same genome (i.e., the
occurrence of paralogs). Every protein either has paralogs in the same proteome or is a “single-
ton” in this genome. In practice, some paralogs may be easier to recognize than others, but in
principle every proteome can be represented as a distribution of protein families by the number
of paralogs.

Some paralogs are highly similar, whereas others are extremely distantly related. Often, but
not always, the former corresponds to evolutionarily recent family expansions, whereas the lat-
ter represents ancient divergence. How should these different levels of similarity be repre-
sented, and which of them are of interest? We discussed the ways to detect the homologs and
build their hierarchy in Chapters 2 and 3, and these will be discussed further in this chapter.
Now, however, let us set the technicalities aside and examine some of the conclusions made
from the observations of paralogy in many completely sequenced genomes.

First and most important, the distribution of families by the number of paralogs in each
genome has one long tail, i.e., there are many proteins without paralogs and many families with
only two or three paralogs, but a small number of families consist of many paralogs. It can be
shown that the largest 5–10 families account for a significant proportion of proteins in every
proteome.

Second, the largest families of paralogs seem to be domain specific. In almost every
prokaryotic (bacterial or archaeal) proteome, the 10 largest families include Walker-type
ATPases/GTPases, permeases, helix–turn–helix transcription factors, and Rossmann-fold
enzymes that bind nucleotide cofactors (including NAD/NADP-dependent and 
FAD-dependent oxidoreductases, SAM-dependent methyltransferases, nucleoside-
diphosphosugar transferases, and a few other families). On the other hand, the top 10 list
in eukaryotes includes the serine/threonine/tyrosine/lipid kinase superfamily, various
classes of regulatory proteins with cysteine finger motifs, and, in multicellular species, Ig-
like domains and other modules involved in protein–protein interactions—none of which
are prominent in prokaryotes. There are also species-specific expansions of individual fam-
ilies, such as Fe–S oxidoreductases in Methanococcus or proteinases of the S1 clan in
Drosophila. Other families may experience lineage-specific reduction; for example, odorant
receptor families are large in species that use olfactory communication often, such as C. ele-
gans or mouse, but in humans most of the paralogs are functionally inactivated (Zozulia
et al., 2001).

Third, we can calculate a summary number for each genome—the percentage of proteins
with homologs in the same organism (PHISO). Unlike PHIDO, which is relatively stable from
species to species, PHISO displays large variation between species and seems to be correlated
with genome size.

PHISO is also sometimes called “paralogy level”and “extent of paralogy,”which, unfortu-
nately, sound similar to “degree of homology”and other ambiguous words that we decided to
avoid (see Chapter 3). We have to remember that “paralogy level” should not be taken as an
indication that paralogs are somehow distinguished by the level of sequence similarity.

In 1995, while analyzing the extent of paralogy in completely sequenced H. influenzae and
substantially covered E. coli, we noticed that the ratio of gene numbers in these two closely
related gammaproteobacteria was approximately 2.5 (~4200 in E. coli and ~1700 in H. influen-
zae), whereas the ratio of PHISO was 1.45 (50% in E. coli and 35% in H. influenzae). In a later
work, I noted that in several other cases the ratio of PHISO in two genomes was also roughly
equal to the square root of the ratio of genes in the same two genomes (Mushegian, 1999). Is
this a general trend? What drives evolution of PHISO and how it is related to the evolution of
gene number in the genome?

Let us first ask what could have been going on with the total number of genes in E. coli, H.
influenzae, and the common ancestor of these two relatively closely related gammaproteobacteria.
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One possibility is that the ancestor was more like E. coli, with a large genome and the ability to
utilize a wide range of substrates for growth and survival,not restricted to the habitat of the human
gut. Under this hypothesis, after divergence, the Haemophilus lineage experienced dramatic
geneloss,most likely while becoming a parasite of the nutrient-rich cavities in the human body.The
other hypothesis is that the ancestor had a smaller number of genes, like Haemophilus today,
andacquired genes in the course of evolution,adapting to the lifestyle that involved many habitats
with different resources. A middle-of-the-road hypothesis is that the ancestor had a medium-sized
genome, which split into two lineages, one of which experienced more gene losses and led to
H. influenzae and the other had more gene gains and led to E. coli.

I will not reconstruct gammaproteobacterial evolution in any detail here (for a thorough
examination of gammaproteobacterial gene content, see Lerat et al., 2005), but two observa-
tions are worth mentioning. First, it is very likely that many gene losses have indeed occurred
in H. influenzae lineage. Analysis of completely sequenced genome—which genes are in it and
which are not—indicates that many metabolic pathways have missing components in
H. influenzae (Tatusov et al., 1996). Interestingly, all known nutritional requirements of the
bacterium can be explained by the absence of specific metabolic enzymes. On the other hand,
it appears that every genetic lineage is experiencing gene gains and gene losses simultaneously,
and the observed number of genes is the balance of the two processes (Snel et al., 2005). Thus,
individual genes, or even complete pathways, may be lost even as the total number of genes in
a genome increases. On the contrary, a genome may experience reduction while at the same
time some genes may be gained.

What are the molecular mechanisms of all these changes? Gene losses are easier to under-
stand because mutations and deletions in DNA are relatively well studied from both molecu-
lar and evolutionary standpoints. Regarding gene gains, three main types of mechanisms can
be postulated for protein coding genes: (1) de novo generation of a coding ORF when a previ-
ously untranscribed/untranslated nucleic acid acquires signals that facilitate synthesis and
translation of an mRNA (or where coding potential of a preexisting mRNA is changed by
frameshift or another RNA recoding event); (2) horizontal gene transfer, which is a distinct
mechanism of gene gain as far as a particular lineage is concerned and will be discussed in that
context in Chapters 6 and 11; note, however, that when we discuss gene gain by life as a whole,
horizontal gene transfer is not very helpful because we still need to explain how this gene
emerged in the first place; and (3) duplication of a preexisting gene, followed by sequence
divergence and perhaps change of function.

Let us now examine the effect of gene gains and losses on the evolution of PHISO. The pic-
ture here is complicated. For example, if a single-copy, no-paralogs gene is lost from the
genome, the total number of genes will decrease, and so will the fraction of unique genes: But
then PHISO will increase, if only slightly. The general theory of these processes has been devel-
oped (Karev et al., 2002, 2004, 2005), but evolutionary events that have taken place in the actual
lineages leading to the existing species remain to be fully understood. However, analysis of par-
alogy in many bacterial genomes (Pushker et al., 2004) has confirmed our previous observa-
tions about the proportionality between the total number of genes in the genome and PHISO
value (Fig. 5.5). Moreover, the same trend seems to hold in eukaryotes. A biologically plausible
explanation for the wide applicability of this rule remains to be discovered.

It has been reported that if “essential families”are excluded from the genomes, then PHISO
is not dependent of genome size but is constant (Enright et al., 2003). In contrast, it is the num-
ber of protein families (or TRIBES in Enright et al.’s framework) that displays linear depend-
ency of the number of genes in the genome. It is difficult to evaluate the significance of these
observations for two reasons. First, Enright et al. used a stringent similarity threshold
(BLASTP E-value 10−10) in order to determine whether a protein has any homologs. In con-
trast,Pushker etal. (2004) used a more inclusive 10−5 cutoff.As argued many times in this book,
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both cutoffs are arbitrary; they generally underestimate the number of homologs, with faster
evolving families suffering from this underestimation more than slow evolvers, but the sample
obtained with the use of E-value 10−10, obviously, misses more homologs than the set with the
cutoff of 10−5. Second, the essentiality of an individual protein can be defined experimen-
tally—for example, if a null mutant of the corresponding gene is nonviable or otherwise repro-
ductively unsuccessful—but it is unclear to me how to define an essential family. Enright et al.
seem to use the conservation of families in different species as a proxy for their essential role,
and they excluded from their counts the families that are found in all domains of life. However,
even if some members of such families are essential, it is not clear that every member of each
such family is essential (in fact, there is evidence that this is not the case; Hutchison et al., 1999;
Glass et al., 2006). Thus, it is not clear how many proteins were removed from the examination
and, most important, why they were removed. TRIBES may be an interesting construct to
study, but it remains to be seen what it really tells us about paralogy and PHISO.

Interestingly, although PHISO is intended to characterize just one genome, in practice the
determination of the state of paralogy can be done in earnest only if we consider multiple
genomes. For example, if we want to study the closest similarities, as with in-paralogs (lineage-
specific gene multiplications), we need to know the speciation events to determine which par-
alogs have duplicated before and after each speciation (see Chapter 3). On the other hand,
suppose that we want to find all homologs of each protein in a given genome, regardless of the
degree of similarity. If some of the paralogs have been duplicated in a very distant ancestor,
they may be extremely diverse. If we match each protein to every other protein in the same
genome, the similarity between such paralogs may not stand out from the background. For
example, when annotating the proteomes of H. influenzae and M. genitalium in 1995 and 1996,
we studied two proteins with lipoate–protein ligase activity, LplA and LipB. They have the
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same molecular function, yet we and everyone else could not detect significant sequence simi-
larity between them and thought that they were unrelated to each other (Mushegian and
Koonin, 1996a). Escherichia coli has both proteins, and both H. influenzae and M. genitalium
have one lipoate–protein ligase each and of different type—LplA in M. genitalium and LipB in
H. influenzae—but direct comparison of these proteins to each other is not very illuminating.
If, however, we search databases of all known sequences using either LplA or LipB as a query,
we will find many sequences with significant similarity to the query—some closely and others
not so closely related. This would allow us to construct a multiple alignment and a sensitive
probabilistic model and find more remote homologs. Indeed, in 2000 these more sensitive
methods of analysis and more dense coverage of the sequence space proved that LplA and
LipB and, for good measure, biotin–protein ligases are all homologous to each other (Reche,
2000). Thus, even to establish homology of sequences within one genome, we may need
sequences from many genomes.

To sum up the list of main challenges is to reiterate what was said in Chapter 3: There are
homologs that are closely related to each other, and there are other homologs that are very dis-
tant; some homologs are orthologs, and some are paralogs; some paralogs are ancient dupli-
cations, and others are lineage-specific gene expansions. Add to this the co-orthology
problem: Because duplications can occur before and after speciations, there may be cases in
which gene A in genome A has no single ortholog in genome B but instead has a set of
co-orthologs. Thus, the relationships between some homologous genes and proteins cannot be
defined if we only consider one-to-one mapping; one-to-many and many-to-many mappings
may be more appropriate.

An innovative resolution of many of these issues was proposed by Roman Tatusov, Eugene
Koonin, and David Lipman at NCBI in 1997. The task of organizing orthologs in many
genomes was redefined as delineation of Clusters of Orthologous Groups (COGs; Tatusov
et al., 1997).

A simple COG, by definition, is a set of orthologs in three or more genomes that belong to
three or more phylogenetically distant lineages, one ortholog in each genome. One has 
to define, of course, which clades are close enough to be treated as one lineage. In the latest ver-
sion of the COG project, such discrete lineages include, for example, proteobacteria subdivi-
sions alpha, gamma, delta, and epsilon; low-GC gram-positive bacteria; actinomycetes;
spirochetes; Euryarchaeota; Crenarchaeota; and some others. Thus, if three orthologous
genes are found, one each, in E. coli, H. influenzae, and Pasteurella sp. and not found anywhere
else than in these three gammaproteobacteria, this will not satisfy the definition of a simple
COG—the clades in question are too close to each other. However, three orthologous genes,
one each in Bacillus halodurans, Thermotoga maritima, and Caulobacter crescentus, which rep-
resent three distantly related lineages—respectively, gram-positive Bacteria, deep clade of
Bacteria with uncertain affinities, and alphaproteobacteria—are a proper simple COG.
Incidentally, there is exactly one such triplet—COG03661, an alpha-glucuronidase.

Lineages can be lumped and split depending on the event horizon of interest. For example,
if we are examining evolution of only gammaproteobacteria and want to organize their
proteins in naturally defined groups, then Escherichia, Haemophilus, and Pasteurella may be
legitimate clades, and the approach will work as well.

Simple COG is the most basic unit of protein classification.But why three and not two or five?
The answer is linked to the method of COG construction. The most important notion here is
the BeT, which is a best hit in a similarity search (by the way, “BLAST hit” is a widely used jar-
gon, which I am trying to avoid in this book and replace with a “match”or, where possible, by a
longer explanation of similarity type and of the protocol with which it was detected). BeTs are
produced as follows: Suppose that we have N genomes and N lists of complete proteomes
encoded by each of these genomes. Each of the N lists is turned into a sequence database. Each
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protein is used as a query to search every other database. This produces N-1 BeTs for each pro-
tein. For a moment, we will ignore the possibility of ties, when two proteins A1B and A2B in
genome B have the same level of similarity to the query protein AA in genome A.

Let us consider query protein AA in genome A, and its BeT in genome B, protein AB. What
can be said about the BeTs for protein AB? There are two possibilities regarding its own BeT in
genome A: It is either protein AA or some other protein. The latter is not of interest, but the
former represents a special type of relationship: If AA and AB are each other’s BeTs, this is
called symmetric, or reciprocal, BeT (sometimes called SymBeTs).

Now consider AA and its SymBeT in the third genome C, protein AC. What can be said about
the relationship between AB and AC? Note that both AB and AC have selected AA as their BeTs
in genome A. Setting aside some minor details, such as the dependence of the similarity score
of length and amino acid composition of the queries, we can say that the probability of two
proteins to randomly choose, with the highest rank, the same protein from the database is the
reverse of the number of proteins in the database (i.e., in genome A). For most genomes,
the latter value is between 0.00001 and 0.002, and the chance probability of two proteins 
that are SymBeTs to share a SymBeT in a third genome is approximately the square of that
(although not exactly, because the trials are not completely independent; the exact statistics for
COGs remain to be developed and would be of great interest).

In this construct, two important objectives are achieved. First, there is a clearly defined way
to select triplets of proteins, one per genome, that are highly unlikely to be related by chance
only and therefore are most likely to be homologs (and, moreover, orthologs). Second, all this
is done without regard to the absolute level of sequence similarity: A weaker similarity will be
recorded the same as a stronger one because the top rank, not the threshold score, is used. The
criterion of homology used in this framework (i.e., symmetry of two or more proteins in being
each other’s highest ranking matches) and the use of triangles of symmetric BeTs are two main
novel ideas of Tatusov et al.’s paper and of the immensely useful COG framework.

Consider an arbitrary (but finite) number of completely sequenced genomes, each repre-
senting a distinct lineage of interest. (Technically speaking, we can register BeTs for any pair of
genomes, but in accord with our definition of phylogenetically distant lineages, we may
examine only BeTs between proteins that belong only to such lineages. Following the previous
example, BeTs between Haemophilus and Pasteurella will not be used for simple COG
construction, but BeTs between Pasteurella and spirochetes will be used.) Obviously, triangles
of BeT can be constructed for any three lineages. Suppose that AB and AC connect, by way of
symmetric BeTs, not only to AA in genome A but also to AD in genome D (Fig. 5.6). We then
will be looking at two simple COGs that share one side (the one defined by genes AA and AC).
Merging all such triangles with shared sides, we can produce polygons representing groups of
homologous proteins from evolutionarily distant clades.

The hypothesis of homology between BeTs agrees with intuition and is supported by calcu-
lations. Most important, the empirical testing indicates high precision of the method: The
fraction of triangles that consist of unrelated proteins is negligible. However, we also want
some evidence that the homologs recovered by this method are indeed orthologs rather than
paralogs.

Suppose that two orthologs AA and AB in genomes A and B are not a symmetric BeT. Then,
there are three possibilities: (1) Protein AA has a paralog (out-paralog; see Chapter 3) A1B in
genome B, such that similarity between AA and A1B is higher than similarity between AA and AB;
(2) the same situation is true for AB with regard to genome A; or (3) both AA and AB have “false
orthologs”in the other genome.However, there is no mechanism by which an out-paralog could
preserve higher evolutionary conservation than the ortholog; the only conceivable possibility
is sequence drift, which could result in occasional rank swaps between the best and second
best scoring homologs. Note, however, that in order for all this to happen, the effect of random
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processes has to be comparable, or slightly higher, than the difference between scores of the first
and second highest matches. This means that the difference between these two matches is very
small (i.e., they are closely related). Hence, the main reason why the BeTs would not be defining
the true sets of orthologs is that the picture of orthology is complicated by co-orthologs and 
in-paralogs—that is, by lineage-specific duplications.

There may be several approaches to solving this problem. One way out is to turn tables on
the notions of orthology and paralogy and to work out some other way of arranging homologs
into groups. In practice, this means either applying a more or less arbitrary similarity thresh-
old (i.e., favoring higher similarities and losing information about more subtle ones) or simply
declaring the orthology assignment too difficult (at least, too difficult for full automatization).
But the authors of the COG framework had a more interesting proposition, namely that, from
the evolutionary point of view, in-paralogs could be appropriately treated as essentially one
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and the same gene. This is because they have been produced by duplication within their own
lineage, after its split from all other lineages that have been examined. Therefore, at the point
of split, they had a single common ancestor.

Along comes the inclusion of in-paralogs, which earned COGs their name (indeed, if all
COGs were made up of one gene per lineage, there would be no reason to call them both clus-
ters and groups). Now a COG is allowed to contain several protein products from one species,
if they are in-paralogs. A good practical criterion is that in-paralogs are more similar to one
another than to any other homolog from any other lineage, which is essentially equivalent to
clustering of all these paralogs on a phylogenetic tree.

There are two ways in which an in-paralog may enter a COG. First, it may have no symmet-
ric BeTs in other genomes and be added to a COG only by association with its own in-paralog,
which has such a SymBeT. Second, and more interesting, different in-paralogs may be con-
nected by symmetric BeTs to different orthologs in different genomes (Fig. 5.6 Bottom). In this
case, the existence of in-paralogs provides for a COG that would not be defined otherwise.

Thus far, one factor that we have not taken into account is gene loss. Let A1 and A2 be a pair
of paralogs present in an ancestor (A1LCA and A2LCA). Suppose that the lineages A and B have
each lost one of the two paralogs so that the present-day genes are A1A and A2B. If there are no
other homologs of these genes in the genome, they are very likely to form a BeT. This is one way
to produce a false COG. This situation is helped by finding a genome in which both paralogs
are still present.

An extra step in COG construction is domain parsing. Many proteins consist of domains—
that is, parts of protein chain that fold on their own into semiautonomous structural units and
can have independent evolutionary history. If a protein consists of two or more domains, and
more than one of them are involved in BeTs, this produces a chimeric COG. Although all edges
(BeTs) in a graph are real, such artifactual COG in fact contains two nonorthologous proteins.

There are several algorithmic ways to detect multidomain proteins and dissect them into
individual domains. The main unsolved problem is how to decide where the border is between
two domains, especially when sequence similarity within each domain is low. In the COG proj-
ect, dissection was done mostly manually, but with the growth of the numbers of complete
genomes and phylogenetically distant lineages, some automation becomes imminent.

The first version of the COG database was built on the basis of just 7 genomes, which repre-
sented five lineages—three bacteria (gammaproteobacteria, gram-positive-like mycoplasmas,
and blue-green algae), one archaeon (Methanococcus janaschii), and one eukaryote (yeast)—and
there were 720 COGs altogether. The latest release utilizes information about 120 genomes
and contains almost 14,000 COGs.

The growth of the COG database with the addition of new genomes is an interesting
process. Suppose that we have COGs constructed before (“old COGs”) and also some proteins
from the old genomes that do not belong to any COGs. Some pairs of these proteins, however,
form SymBeTs among two lineages; the only problem is that they lack the SymBeTs in any
third lineage. These pairs are called TWOGs or “pre-COGs.” Some pre-COGs may also
contain more than two proteins because of in-paralogs.

When a new genome is added, several changes to the old version of the COG database may
happen. First, old COGs get new members. The relationships between proteins that are
already components of the old COGs will not change, but some of these proteins may form tri-
angles with orthologs from a new genome (see Fig. 5.6 Bottom). Second, some of the pre-
COGs may become COGs. Third, a new gene may link two preexisting COGs into one. Fourth,
the information from a new genome may indicate that some COGs are chimeric and need to be
split. The two main reasons to split a COG were discussed previously: One is pseudo-orthol-
ogy, which can be uncovered by a genome that has retained both paralogs, and the other is
domain fusion, which can be uncovered by a novel combination of domains in a new genome.
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In-paralogs in COGs behave in several ways. Some of them are connected to orthologs in
other genomes by regular symmetric BeTs, and others may be involved only in asymmetric
BeTs or in a mix of different types of BeTs; some paralogs may even be connected only within
their own genome. This differential connectivity of paralogs (and of orthologs, for that
matter) has not been well studied.

In addition to the graph of BeTs, several other types of information are associated with each
COG. Although COG construction relies on ranks instead of similarity scores, those scores
are also available and can be used, for example, for building approximate distance-based phy-
logenetic trees of proteins included in each COG.

Another important piece of information associated with each COG is phyletic pattern,
or the set of species in which members of each COG reside (Fig. 5.7). Phyletic patterns are
most appropriately encoded by binary vectors (i.e., strings of ones and zeroes). On the
other hand, “ones” can be converted to actual counts of in-paralogs in each species.
A binary vector thus becomes an interval vector, with coordinate values represented by real
numbers from zero to perhaps some large number. This is an interesting object that needs
to be studied further.

Finally, COGs have been functionally annotated by careful analysis of sequence similarity
to all functionally characterized homologs, including the remote ones (which do not have to
belong to the same COG or to any COG at all). The genome context of COGs is also examined,
sometimes providing additional clues to protein function (see Chapter 8).

The First Fact of Comparative Genomics 65

C0G0538
C0G0567
C0G1048
C0G0473
C0G0372
C0G0074
C0G0045
C0G0479
C0G1053
C0G0508
C0G1249
C0G0039
C0G0114
C0G1951
C0G1838

C0G1830
C0G0837
C0G0205
C0G0191
C0G0166
C0G0057
C0G0149
C0G0126
C0G0148
C0G0469
C0G0588
C0G0696
C0G3635

C0G0207
C0G1351

Figure 5.7. Phyletic patterns. Each row represents a COG, and each column represents a completely sequenced
genome. Genomes are sorted in the approximate order of traversing the cladogram shown at the top.
The presence of a COG in a given genome (“1”in a phyletic vector) is indicated by a black square. (Top)
enzymes of the TCA cycle; (middle) enzymes of glycolysis; (bottom) two types of thymidylate synthases.
The patchiness of phyletic patterns contains important information about biological function and evo-
lution of metabolic pathways, as discussed in more detail in Chapters 6, 8, and 11–14. Reprinted from
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Let us now examine various uses of COGs in comparative genomics:

1. COGs are tools for genome annotation. A list of proteins from a newly sequenced
genome can be quickly compared to the COG database, resulting in instantaneous functional
prediction of a significant fraction of putative proteins. Family relationships can be deter-
mined for even larger proportion of proteins. This is because there are many functionally
uncharacterized but conserved families of proteins, in which we can assign orthologs and par-
alogs by comparing two phylogenetic trees—one for the gene family and another for the
species in which these genes are found (see Chapters 3 and 7). Borrowing the functional anno-
tation from a COG to which a new protein is similar represents perhaps the most common
practical application of COGs.

2. COGs are indicators of potential errors in gene prediction. A “patchy”phyletic pattern,
when an orthologous gene is found in most lineages but is missing from some lineages, can
prompt a reinvestigation of sequence similarity and a search for remote homologs if there is
evidence that it should be present in genomes in which it has not yet been found. Sometimes,
especially when the sought ORF is short, it may be recovered from what was thought to be an
intergenic portion of the genome or as an inconspicuous appendage to a longer protein. For
example, this is how the smallest component of the tRNA-glutamate aminotransferase com-
plex in M. genitalium (Koonin and Aravind, 1998; Mushegian, 1999) and the gamma subunit
of 2-ketoglutarate ferredoxin reductase in Pyrococcus horikoshii (Huynen et al., 1999) were
identified.

3. COGs and phyletic patterns, on the other hand, may be indicators of genuine cases of
missing orthologs. Sometimes, this is explained by gene/pathway loss, for example, in the
course of genome simplification in parasitic species. In other cases, the patchy phyletic pattern
is caused by gene displacement, when the same molecular function is performed by nonorthol-
ogous proteins in different genomes. This is examined in more detail in Chapter 6.

4. COGs and phyletic patterns are tools for discovering functional links between genes. The
hypothesis is that proteins that work together—as parts of a multiprotein complex or as mem-
bers of the same biological pathway—tend to be present in genomes together and tend to be
lost from genomes simultaneously. This approach to function prediction is discussed in
Chapter 8.

5. COGs are a starting point for studying gene duplications and in-paralogy using stan-
dard phylogenetic inference from aligned sequences, as discussed in more detail in
Chapters 3 and 11.

6. COGs are tools for constructing evolutionary trees of genomes. This can be done in sev-
eral ways. For example, one can scale up the inference from alignments of gene or protein fam-
ilies: Either we can produce many trees, one for each family, and then try to derived a
reconciled, or consensus, tree from them (the “supertree”approach), or we can join alignments
of all families into one very long alignment and build the tree from that mega-alignment (if the
method of tree building involves a distance matrix, this is called the “supermatrix”approach).
Algorithmic details and limitations of both approaches have been discussed by Semple et al.
(2004), Bininda-Emonds (2004), and Creevey and McInerney (2005). On the other hand,
COGs can be used as characters in phylogenetic reconstruction or as the basis of measuring
distances between genomes; both of these approaches are based on the intuition that more
closely related genomes have more COGs in common than more distantly related ones (see
Chapters 11–13 for details).

7. COGs and phyletic patterns are tools to study gene histories when they are different or
nonrepresentative of the species’ histories. In particular, such events as xenology (horizontal
gene transfer) and gene loss can be inferred from the analysis of the discordance between
species’ history and phyletic pattern (see Chapters 6 and 11).
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8. COGs and phyletic patterns are tools for ancestor inference. Given COGs phyletic
pattern, the species’ tree, and the evolutionary model, one can infer, with various degrees of
certainty, the presence or absence of this COG in various ancestral species (see Chapter 13).

From these examples, it is quite clear that there are close connections between COGs,
phylogenies of genes, and phylogenies of species in which the COG members are found. Many
uses of COGs and trees overlap, whereas other uses are complementary to each other. In fact,
this list of COGs uses was inspired by a remarkable article, “Uses of Evolutionary Trees”
(Fitch, 1995), which will be examined again in Chapter 11.

The COG framework is used as a resource by a growing number of scientists. COGs are even
mentioned in textbooks, including David Mount’s Bioinformatics (2004). Mount describes the
COG framework as follows (pp. 524–525):

When entire proteomes of the two organisms are available, orthologs may be identified as the
most-alike sequences in reciprocal proteome similarity searches.... Using the protein from one of
the organisms to search the proteome of the other for high-scoring matches should identify the
ortholog as the highest-scoring match, or best hit. However, in many cases, each of the orthologs
belongs to a family composed of paralogous sequences related to each other by gene duplication
events. Hence, in the above database search, the ortholog will match not only the orthologous
sequence in the second proteome, but also these other paralogous sequences. The objective of the
clusters of orthologous groups (COGs) approach is to identify all matching proteins in the organ-
isms, defined as an orthologous group related by both speciation and duplication events. Related
orthologous groups in different organisms are clustered together to form a COG that includes both
orthologs and paralogs. These clusters correspond to classes of metabolic functions. A database
produced by analysis of the available microbial genomes and part of the yeast genome has been
made, and a newly identified microbial protein may be used as a query to search this database. Any
significant matches will produce an indication to the metabolic function of the query protein
(Tatusov et al., 1997).

To produce COGs, similarity searches were performed among the proteomes of phylogeneti-
cally distant clades of prokaryotes. Orthologous pairs were first defined by the best hits in recip-
rocal searches. A cluster of three orthologs in three different species was then represented as a
triangle on a diagram. Some triangles included a common side, representing the presence of the
same orthologous pair in a comparison of four or more organisms. Triangles with this feature were
merged into a cluster similar in appearance to Figure 11.6C, part i. Paralogs defined by sets of
three matching sequences in the selected organisms were also added to these clusters. The proteins
encoded by many prokaryotic organisms have been analyzed for COG relationships (Koonin et al.,
1997). A COG analysis provides an initial assessment of the genome composition of prokaryotic
organisms and should be followed by a more detailed analysis as described above for the worm and
yeast proteomes.

Descriptions of the COG framework, such as the one just cited, should be taken with cau-
tion. The objective of the COGs approach is resoundingly not “to identify all matching pro-
teins in the organisms”(i.e., all homologs). Neither can it be “to identify all matching proteins
in the organisms, defined as an orthologous group related by both speciation and duplication
events.” Any set of homologs is related by some combination of duplication and speciation
events,and it is not clear from that description what is the specific definition of the orthologous
group. But we now know that the goal of the COG approach is to select, among all homologs,
only the union of orthologs and in-paralogs, if the latter exist. Furthermore, some COGs cor-
respond to classes of metabolic functions (these are mostly large COGs, which indeed may
include many proteins with similar function, such as transporters for various divalent metal
ions or large superfamilies of class I and class II DNA and RNA helicases). However, the
majority of COGs correspond to exactly one molecular/metabolic function, not the whole
class of them. Such functions, of course, can be hierarchically organized into classes;
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for example, several nucleotidyltransferases can form a class of ferredoxin-fold nucleotidyl-
transferases or, using a different principle, we can assign some of them to the class of DNA
replication and repair enzymes and others into the class of proteins involved in posttranscrip-
tional modification of RNA. But formation of classes is external to construction of COGs.
Finally, not all paralogs, but only in-paralogs, are sought in COG building.

Previously in this chapter, we discussed PHIDO and PHISO. It is now time to introduce
PICO—percentage of proteins in COGs. In agreement with the first fact of comparative
genomics, the PICO value is high for most genomes. In prokaryotes PICO is close to 80%, with
only a few exceptions: The lime disease pathogen Borrelia burgdorferii is an extreme case of low
PICO, approximately 43 %. It has been noted that among many replicons that constitute the
Borrelia genome, there are several plasmids encoding many short, poorly conserved ORFs.
Perhaps these plasmids are more similar to DNA viruses, which also have lower COG cover-
age. Genomes of eukaryotes have lower PICO too, approximately 50%, but the expectation is
that their PICO will increase when more eukaryotic lineages are completely sequenced.

It is worth remembering that high percentages represented by PHIDO, PHISO, and PICO,
however obvious they may seem now, were not expected by prior scientific experience. Indeed,
as recently as 1993 and 1994, nothing of the sort was evident. The fraction of seemingly unique
proteins in the database was thought to be high, the limited ability of sequence comparison
programs to detect weak sequence similarities had been pointed out many times, and even pilot
projects on analysis of partially sequenced genomes of model organisms did not seem to be
very encouraging. It was not until the detailed examination of partially sequenced bacterial
genomes, E. coli (Koonin et al., 1995) and M. capricolum (Bork et al., 1995), that the indica-
tions for high fraction of conserved proteins started to accumulate. Only after completion of
several genome projects, and following the development of rapid and sensitive programs for
database searches (notably PSI-BLAST), was the question settled.

One special class of paralogs that is of considerable interest comprises the so-called lineage-
specific duplications. Let us call it PIPO—percentage of in-paralogs in the organism. Here, we
are interested only in those paralogs that have evolved by duplication in a given lineage after its
separation from all the other lineages that we are simultaneously considering. PIPO may be
determined by finding all pairs of paralogs in the same genome, such that they are closer to
each other than to any other protein in this or any other lineage under consideration. Every
such pair is part of a lineage-specific expansion, and in fact at least two-thirds of all lineage-
specific gene expansions in bacteria and archaea contain just two genes (Jordan et al., 2001;
Lespinet et al., 2002). But there is also a relatively small number of very large groups of in-
paralogs. Two of the largest known bacterial expansions are the PPE and PE families of
surface proteins involved in interactions with the host cells in M. tuberculosis; they consist
of 90 and 67 proteins, respectively.

As with many other studies of homologs, it is not very useful to define in-paralogs on the
basis of absolute degree of similarity; any predetermined cutoff may turn out to not be suffi-
ciently accurate in distinguishing between in-paralogs and other homologs. For example, aver-
age score density (i.e., similarity score per unit length of the alignments, averaged over all
aligned pairs) of yet another lineage-specific family of surface proteins in M. tuberculosis
(Mce1-like proteins, which have 24 family members altogether) is 0.21, whereas the average
score density of one 25-member expansion in Mycoplasma pneumoniae is 0.62. Neither value
is good for predicting the scores or score densities of other in-paralogs or, for that matter, any
homologs. What is of ultimate importance is the relative similarity: In-paralogs are closer to
each other in the evolutionary hierarchy than to any other homologs, whereas the absolute
scores and score densities may vary widely in different expanded families.

The PIPO values are different from all the other measures of inter- and intragenomic protein
similarity discussed in this chapter.Whereas PHIDO,PHISO,and PICO each cover more than
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half of proteins in every completely sequenced genome (exceptions are insignificant in
prokaryotes, and even eukaryotic proteomes seem to be within the range), the PIPO value is
lower and more widely varied—from 5 to 33% among prokaryotes (Jordan et al., 2001).
In many cases, this can be directly explained by a specific adaptive role of the proteins within
the expansion: Several large families in human pathogens are cell surface proteins involved in
host cell adhesion, and the largest lineage-specific expansion in E. coli is a 31-member set of in-
paralogs that encode LysR-like transcriptional activators consisting of HTH DNA-binding
domains fused to solute-binding regulatory domains. The relationship between this expansion
and the ability of E. coli to metabolize a huge variety of small organic molecules is obvious.

So, the first fact of comparative genomics tells us that most proteins belong to conserved
sequence families. What it does not tell is how many such families exist. This question will be
discussed in Chapter 10.

In practice, completely sequenced genomes are easily and routinely annotated every day
with the aid of COGs and other databases of conserved protein families (Daraselia et al., 2003;
Maheswari et al., 2005; Powell and Hutchison, 2006; Grzymski et al., 2006). This, perhaps, is
the most important practical application of the first fact of comparative genomics.

The First Fact of Comparative Genomics 69



6

The Second Fact of
Comparative Genomics:
Functional Convergence 
at the Molecular Level

The main conclusion of Chapter 5 is that the majority of genes have relatives in the same
genome, in other genomes, and in the databases. As we improve our ability to detect sequence
similarities and to evaluate them using statistical criteria, we detect increasingly larger num-
bers of such relationships between genes and connect increasingly more proteins into families
of homologous sequences. “Superfamilies” and sometimes even “hyperfamilies” are used to
characterize the unions of more distantly related families. For now, we will use these words as
intuition suggests: Members of a family are on average more similar to each other than mem-
bers of a superfamily to which this family belongs. The most important point to remember is
that sequences within a family, as well as within a super-/hyperfamily, are homologous: They
share a common ancestor. The support for the hypothesis that such ancestor existed comes
from the statistics of database search or, as with the COG project, the statistics of symmetric
BeTs across several genomes. However, the degree of sequence similarity, be it percentage of
identity, similarity score, or score density, may be different from family to family.

The evolutionary connections between different proteins, as well as between whole families
and superfamilies of proteins, are discovered constantly. There are many ways in which this
can lead to new structural, functional, and evolutionary inferences. Let us examine several
types of such inferences.

Proteins with Same or Similar Functions
We have two or more proteins, which are known to have similar functions. The immediate
question is whether they are evolutionarily related. Sometimes, the similarity between protein
sequences is high and easy to discover; other times, the similarity is so low that its significance
is difficult to evaluate. Such was the case, for example, with two classes of DNA ligases—
enzymes that close gaps and nicks in DNA and are therefore essential for genome replication
and repair. For decades, enzymologists knew that bacterial DNA ligases require NAD for
activity, and ligases encoded by eukaryotes, viruses, bacteriophages, and archaea depend on
ATP. The two classes of enzymes were thought to be unrelated. There are other key compo-
nents of DNA replication that are different in Bacteria and Archaea/Eukarya, including
initiator ATPase, main replicative helicase, DNA primase, and, most important, replicative

70



DNA polymerase. The most important evolutionary implication of these differences is
that DNA replication machinery may have evolved twice independently (Leipe et al., 2001); we
will discuss these matters in more detail in Chapter 12. DNA ligase, however, is not as good a
confirmation of this theory as was once thought. When the sensitive and specific PSI-BLAST
program became available, it was shown that iterative searches with probabilistic models of
both families indicate that the main catalytic (nucleotidyltransferase) domains of NAD-
dependent and ATP-dependent DNA ligases display statistically significant sequence similar-
ities (Aravind and Koonin, 1999), not obvious in pairwise sequence comparisons. The
three-dimensional structure of a representative ATP-dependent ligase was known at the time,
and it was clear that the short sequence motifs conserved between NAD-dependent and ATP-
dependent ligases correspond to well-defined elements of secondary structure in the latter
family, suggesting similar fold in two classes of ligases and mechanistic parallels in reaction
mechanism (i.e., transfer of nucleoside monophosphate group onto the 5′ end of the ligated
DNA fragment). At approximately the same time, the three-dimensional structure of the cat-
alytic domain of NAD-dependent ligase was published, and its structure turned out to be very
close to that of the ATP-dependent enzyme, just as predicted by Aravind and Koonin.
Curiously, the authors of that study unequivocally stated that there was no way to notice that
similarity by sequence analysis alone, without seeing the three-dimensional structures.

In a more recent example, we (Liu and Mushegian, 2004) and others (Cheng et al., 2004)
studied a protease that cleaves capsid protein of DNA bacteriophages. This cleavage occurs
simultaneously with the capsid assembly and is important for correct formation of phage
head, in which genomic DNA is packaged. The protease is encoded by phage genomes but is
not found in bacterial genomes, except for integrated prophages. Database searches, using sen-
sitive probabilistic approaches, showed that phage proteases are related to better studied pro-
teases encoded by herpesviruses of eukaryotes. This is of particular interest because the capsid
formation in herpesviruses is mechanistically quite similar to phage capsid assembly.
Moreover, formation of capsid and DNA packaging into it in both virus groups requires ter-
minase—the enzyme with ATPase activity that is orthologous in herpesviruses and in phages
but has only paralogs in other genomes. Added to all this evidence, the evolutionary relation-
ship between phage and herpesvirus head protease helps to build a stronger case for common
ancestry of capsids in viruses of bacteria and eukaryotes.

Proteins with Superficially Different Functions
We have two or more proteins with diverse functions, and use sequence comparison to estab-
lish evolutionary connections between them. When the evolutionary relationship is estab-
lished, the common molecular details of different functions may come to light. For example,
years ago we noticed that MutL, a protein that is involved in mismatch repair in bacteria and
has orthologs in humans that are mutated in many patients with colon cancer, displays
sequence similarity to a large family of bacterial signal transduction histidine kinases. More
detailed analysis with PSI-BLAST proved that two additional groups of proteins, chaperones
of the HSP90 family and one family of topoisomerases, also had a related sequence domain
(Mushegian et al., 1997). Although four classes of proteins may seem to have different func-
tions (mismatch repair in MutL, signal transduction in histidine kinases, protein folding and
other chaperone-like activities in HSP90, and DNA unwinding and rewinding in topoiso-
merase I), in fact they all bind and hydrolyze ATP. Indeed, the wealth of biochemical, phar-
macological, and structural evidence indicated that the conserved region corresponded to the
ATPase domain. At the time of these observations of sequence similarity, only one represen-
tative structure, that of topoisomerase, was known. However, several months later, structures
of the sequences from the other three groups were published. Again, structural biologists were
explicit in their conclusion that there was no way to make the connection at the sequence level
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without seeing the structure (Stebbins et al., 1997; Bilwes et al., 1999). Granted, at the time, the
sequence similarity was not very easy to observe; it required new methods and careful analysis
of all sequence similarities, not only those between proteins with the known structure. But
I think that this also illustrates lack of interest in sequence analysis among many structural
biologists. One team of crystallographers, however, was not so oblivious and noted that their
structure determination confirmed our prediction (Ban and Yang, 1998). The landscape of
structural biology, however, changes very fast; now, 10 years later, analysis of sequence families
and superfamilies is an accepted, necessary prerequisite to structure determination, at least in
the high-throughput, structural genomics approaches (discussed further in Chapters 9 and 10).

Completely Uncharacterized Proteins
This is, obviously, one of the most important applications of sequence similarity in the era of
complete genomes: We establish sequence similarity, infer homology, and use information
about well-studied homologs to infer the functions of the uncharacterized ones. Enough said;
most chapters in this book deal with this matter in one way or another.

The enterprise of finding remote sequence similarities between proteins and making
biological inferences from these similarities has been a resounding success. Genomic biology
is shaped by these approaches, and they are possible because we became exceedingly sophisti-
cated in detecting evolutionary signal in protein sequences, despite high divergence in many
protein families.

One may wonder how far our ability to infer the presence of a common ancestor goes, and how
far divergent evolution goes in proteins. Can it be that all proteins have a common ancestor, and
can we hope to determine what it was? Or, perhaps, if this cenancestor did not exist, or if it is
intractable, have there been a relatively small number of ancestral proteins that we can track
down? For example, can it be that each discrete molecular function has a common ancestor?

The rest of this chapter deals with the answer to this latter question. The answer, by and
large, appears to be “no”; indeed, the following can be stated as the “second fact of compara-
tive genomics”:

A molecular function does not require homologous genes; one and the same function can be performed
by several different gene products, which give no evidence of their common ancestry.

As discussed in Chapter 3, similarity in the absence of common ancestry is called analogy.
So, the other way of stating the second fact is to say that functional analogy at the molecular
level does exist. It is still not known how common functional analogy is, but the diversity of
examples that I discuss later seems to indicate that it is common enough—in fact, too common
to be ignored. Analogy of form and function, of course, has been discussed in evolutionary lit-
erature for several centuries. But I believe that study of analogy at the molecular level is of par-
ticular importance for understanding of the other levels of organization of living matter. And
I will argue that it is only in the context of complete genomes that analogy at the molecular level
can be studied in a definitive way.

Often, analogy is said to be the exact opposite of homology. But looking closer, we see that
this is not the case: Homology is the relationship by descent from a common ancestor,
whereas analogy is not just the absence of a common ancestor but, rather, similarity that
exists despite the lack of such an ancestor. Thus, two characters may be homologous even if
they are not similar—for example, when similarity between them becomes so low in the
course of divergent evolution that it can no longer be distinguished from random back-
ground. However, two characters may be called analogous only if they have some kind of
similarity in the first place. Thus, homology and analogy, when applied to characters that
change in evolution, can be treated as opposite hypotheses only after similarity between the
characters has already been established.
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When two characters are analogous, sometimes it is said that they have evolved by conver-
gence. But many authors, from morphologists of old to our contemporary Walter Fitch, who
discussed molecular homology and analogy in an important paper (Fitch, 2000), noted that
there are actually two distinct evolutionary situations. In one of them, the characters in the past
were less similar than they are now, and in the other, the degree of similarity did not change. The
first scenario can be called convergence, but the second should not be—as Fitch stated, “Why
call convergence what fails to converge?”—and may be called parallelism instead. Also note
that the same analogous trait may have history of both convergence and parallelism. Here, as
almost always in biology, it is important to decide what kind of evolutionary times are of inter-
est to us: It may be analogous and parallel at a more recent time horizon, but it may be analo-
gous and convergent if there has been a more ancient convergence that then stopped. I use
“analogy”whenever possible and use “convergence”where the case can be made that the ances-
tral traits were indeed less similar to each other than the contemporary ones.

Thus, what can be analogous at the molecular level? A short paper by Doolittle (1994) is illu-
minating. The beginning of that article states,

One of the most frequently asked questions after any lecture on the phylogenetic analysis of amino
acid sequences is “What about convergence?” ... The term “convergence” is used in many different
contexts, however, and much confusion can occur when the subject is raised. As in all matters, a little
care taken to define just what is meant can eliminate needless controversy.

Replacing “convergence” with “analogy,” but otherwise following the logic of Doolittle’s
paper, we can see several types of analogy.

Analogous Function
The function of two proteins is the same, but the proteins themselves are not similar in sequence
or in three-dimensional structure. Doolittle discussed hydrolysis of peptide bond: This function
can be performed by cysteine proteases, serine proteases, aspartyl proteases, and metallopro-
teases (threonine proteases, which were not characterized until later, should be added to the list;
Lowe et al., 1995). Many of these proteases are completely unrelated to each other; even serine
proteases are not monolithic, and they are thought to have emerged several (at least three) times.
Proteases as a whole may be too broad a class to expect homology: Even much lower levels of
their functional hierarchy contain analogous enzymes. But consider a relatively narrow func-
tional class of signal peptidases—for example, proteases that remove and/or degrade a leader
peptide of secreted proteins as they leave the cytoplasm. In this functional class, at least four
activities are known from unrelated clans of metalloproteases, aspartic proteases, and two clans
of serine proteases unrelated to the first two and only distantly related to each other (Rawlings
et al., 2006).

Analogous Mechanism
Spatial arrangement of a small number of functionally important amino acids is similar in two
proteins, but the proteins themselves are not similar in sequence and in three-dimensional
structure. Doolittle discussed the “catalytic triads”—that is, similarly arranged triplets of
residues in the active centers of two structurally different proteases, chymotrypsin and subtil-
isin. Catalytic triads of similar configuration, usually containing at least one histidine and
often also a D/E/N residue in one position and S/T residue in another position, are found in a
variety of proteases and also in other hydrolases. The arrangement is so distinctive that a
hydrolase activity can be predicted for a protein when nothing is known about it except its
sequence and three-dimensional structure. However, there is no evidence that all such proteins
are homologous, and dissimilarities in both sequence and structure are in some cases signifi-
cant enough to conclude that they most likely are not (Fig. 6.1).
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Another example of the same type from Doolittle’s work is the molecular setup used for
binding the phosphate group of ATP by two different superfamilies of kinases (Fig. 6.2). Most
known small-molecule kinases have Rossmann fold. An important determinant of catalysis is
the anion hole, which interacts with the gamma phosphate and in these kinases is made of a
short, contiguous in sequence, known as glycine-rich loop, which contains a lysine residue (the
GKS/T signature, also found in the ATP-binding P loops of helicases and other NTPases,
some of which were mentioned in Chapter 4). On the other hand, kinases of the serine/threo-
nine/tyrosine/lipid kinase superfamily have a different fold, called ATP-grasp, which also con-
tains an anion hole made of glycine loop and lysine. In this case, however, glycine-rich loop and
lysine are brought together from the different parts of the sequence—the loop from the N ter-
minus and lysine from the middle (Fig. 6.2).

Analogous Structure
The high-level spatial structure of two proteins is the same, but there is no sequence similarity.
This has to be elaborated further. On the one hand, it is commonly asserted that sequences
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Figure 6.1. Mechanistic convergence in serine proteases. (Top left) Chymotrypsin (PDB 1GG6). (Top right)
Subtilisin (PDB 1R0R). (Bottom) Side views of the same molecules, indicating the positions of catalytic
residues (black lines). All images of protein structures in this book, except for Fig. 9.2, were produced
using PyMOL (DeLano, 2002).



evolve faster than structures: Two sequences may diverge from the common ancestor to the
point of random sequence similarity while retaining similar three-dimensional structures. On
the other hand, it is widely accepted (and is probably true) that certain folds may be close to
optimal, in the sense that they afford certain thermodynamically favored properties to proteins
that adopt them. For example, dense packing of side chains, minimization of hydrophobicity
on the molecule surface and its maximization in the interior of the molecule, and other factors
minimize free energy of the polypeptide. If such folds are vastly more stable than the others (or,
as sometimes is said, they are more designable), then perhaps they represent attractors in the
space of structural evolution, and different sequences can converge into such optimal struc-
tures. It is clear that only the second case represents structurally analogous proteins, whereas
in the first case the proteins are homologous, even though they are not similar.

Are there any known cases of structural convergence? To prove convergence, one needs to
prove the absence of divergence. This is difficult, as discussed in more detail later and also
in Chapters 9 and 10, in which we again discuss the interplay of sequence and structure
evolution.

These cases of analogy at the molecular level presented by Doolittle have the following in
common: They are examples of protein properties that, however similar, nevertheless do not
indicate common evolutionary ancestry. It is remarkable that none of these types of analogy
at the molecular level involves the analogous origin of long amino acid sequences. After
several decades of sequence comparisons, there is not much evidence that two sufficiently long
stretches of sequence can converge to statistically significant similarity.

The story is different when only a small number of residues are involved. Here, I know of at
least two types of credible cases in which such local sequence convergence may be claimed.

First, there are cases of convergent changes inside homologous families. For example,
Doolittle reviewed the classic work from Allan Wilson’s lab at University of California-
Berkeley showing that some of the amino acid changes observed in the lysozymes of ruminant
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Figure 6.2. Mechanistic convergence in active centers of different kinases. (Left) Rossmann-fold kinase with
Walker-type ATP-binding loop (gluconate kinase, PDB 1KOF). The main chain and the side chains of
residues forming the loop are shown as black lines. In this case, catalytic lysine is part of the loop. (Right)
ATP-grasp kinase (cAMP-dependent kinase catalytic subunit, PDB 1CDK). The ATP-interacting
glycine-rich loop is shown as black lines. In this case, the lysine residue interacting with ATP is located
in a different part of the sequence, brought close to the loop and to the ATP molecule by packing of
strands in the beta sheet.



animals are also found in the lysozyme produced by columbine monkeys, which eat leaves and,
similar to ruminants, have evolved a compartmentalized stomach and host symbiotic bacteria
that have to be killed off by the lysozyme after they helped digestion in the foregut (Stewart
et al., 1987). Examination of multiple alignments of lysozymes from different mammals
indeed identifies several homologous positions with the same changes in bovids and langur
monkey. Some or all of these changes may play a role in adaptation to the very low acidity in
the environment of these enzymes. These changes are analogous and convergent. Note, how-
ever, that the overall direction of evolution of lysozymes is divergent: The phylogenetic tree of
lysozymes follows the mammalian phylogeny (Doolittle, 1994). This is not the same as the
emergence of similar sequences out of dissimilar ones, because sequences were related, and
recognizably so, to begin with. Neither do these parallel changes increase the overall similarity
of homologous sequences to one another. The effect of convergent changes on sequence
similarity is trivial.

Second, there are short amino acid motifs that appear to be exceedingly well designed for a
particular molecular function. One example is the DxDxDG motif, which has been found,
with variations, in many proteins that tightly bind a calcium ion (Ridgen and Galperin, 2004).
The best known structural context of this motif is a loop between two helices; an example of
this structure is the EF-hand in such regulatory Ca2+ binding proteins as the best studied
representative, calmodulin. Interestingly, in many Ca2+ binding proteins one or both of the
helices are replaced either by a beta strand or by an unstructured region. In these cases, it is
possible that the motif could have been inserted into different proteins by recombinational
transfer of a short DNA fragment. At the same time, the motif is simple enough to have a
nonnegligible chance of independent origin by mutation in many structural contexts.
Similarly, a simple CxxS signature has a fairly specific role: It acts as a strong redox equivalent
in almost all the proteins in which it is found, even though these proteins have quite different
sequences and folds (Fomenko and Gladyshev, 2002). In this case, again, it is quite possible
that the motif has evolved more than once, but recombinational transfer of this sequence
between genes cannot be excluded either.

To conclude, analogous proteins may display parallelism or convergence in general or
molecular function and in structure, either at a large scale or in a similar arrangement of a few
crucial residues. In all these cases, however, the sequences are dissimilar overall, except for,
perhaps, extremely short sequence motifs. In many of these cases, the three-dimensional struc-
tures of the analogous proteins are not similar. Moreover, if recombination plays a role in
dissemination of short motifs, then at least DNA segments encoding such motifs are homolo-
gous by definition.

All this may sound trivial to those familiar with comparative anatomy and other areas of
traditional biology curriculum. Similarities between morphological, anatomical, and physio-
logical traits of different organisms have been known to scientists for a long time. Fins of fishes
and finlike limbs of marine mammals; wings of various flying vertebrates, both extant and
extinct; eyes of mammals and of cephalopod mollusks; and spikes covering stems of various
higher plants—evolution of these and many other groups of organs that look and function
similarly have been quite thoroughly studied. We cannot say that analogy has not been
examined before.

The problem, however, is that many such examples of morphological convergence left open
the question of fundamental mechanisms that are used to produce similar biological struc-
tures. Consider the popular example of tetrapod limbs. Wings of birds and bats perform sim-
ilar functions and look similar in many ways, although, of course, there are also significant
morphological and anatomical differences. Quite clearly, they have evolved convergently from
the limbs of separate, nonflying ancestors. However, at the beginning, there was a limb of a
primitive tetrapod, from which both birds and mammals have descended. Thus, as with
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lysozymes of cattle and langurs, there is an increase in similarity of characters that, in the first
place, had evolved divergently from the common ancestor. Thus, the convergence in this case
may not extend to the level of individual genes. Rather, the molecular mechanism of morpho-
logical covergence may be in the repeated activation of the same genetic program. If this is the
case, winglike limbs may be morphologically analogous but genetically homologous.
Possibilities such as this are frequently raised in the literature, and there is even an extreme
opinion that most, if not all, morphological analogies between different organisms are the
results of retention and reactivation of fundamentally homologous, once-produced genetic
programs (Meyer, 1999).

Another morphological example, this time from botany, may argue that retention/reactiva-
tion of homologous genes is not sufficient to explain all cases of morphological analogy.
Consider sharp, woody, needle-like spikes on the branches of taxonomically diverse plants.
They include thorns, as in honey locust (Fabaceae); spines, as in barberry (Berberidaceae); and
prickles, as in blackberry (Rosaceae). All these unpleasant spikes are morphologically very
similar, and sometimes it is not easy to determine, by naked eye, to which type they belong.
Although the genetic control of formation of spikes of any type is not well understood, they
are all anatomically and developmentally different: Thorns are modified stems, spines are
modified leaves, and prickles are the outgrowths of the stem’s epidermis, bark, and some
parenchyma tissues. All this becomes obvious at the histological and ultrastructural levels. It is
difficult to believe that all genes controlling the development of thorns are exactly the same as
those involved in formation of prickles: The latter are rather simple, whereas the former retain
vascular tissue and can branch.

In recent years, comparison of genes involved in evolution of animal eyes has provided more
indications of the interplay of divergence and convergence at the molecular level. Many fasci-
nating details aside, there are essentially eight distinct optical solutions to seeing (Fernald,
2000, 2004; Arendt and Wittbrodt, 2001; Arendt, 2003). Several known components required
for building all eye types are Pax-6, a transcription factor that serves as a major developmen-
tal switch starting the eye development pathway; opsins, the apoproteins of visual pigments;
and crystallins, which are proteins packed in an orderly fashion with a refractory gradient in a
specialized part of the eye (lens in vertebrates or various isofunctional organs in invertebrates).
The evolutionary histories of these protein components of eye are all different. Pax-6 belong
to the superfamily of homeodomain genes, which appear to be eukaryote specific, having only
distantly related homologs in bacteria and archaea (i.e., helix–turn–helix DNA-binding
domains). Pax-6 is orthologous in all animals. Its emergence in animal genomes predates eye
formation: Nematodes and corals have no eyes but they have Pax-6 orthologs, which may play
a role in the formation of anterior end and sensory organs. Once recruited to control eye
formation, however, Pax-6 retained this function in all eyed invertebrates, as well as in verte-
brates, albeit with modifications. Opsins also predate the origin of metazoa: Orthologs of
opsins are found in most divisions of life, including Bacteria, Archaea, and Fungi (Zhai et al.,
2001; de la Torre et al., 2003; Terakita, 2005). In different animals, there are different num-
bers of opsins, and their evolution included many gains and losses of paralogs. By and large,
opsins of vertebrate eyes are paralogous to eye opsins of insects and nematodes (Terakita,
2005). Some of these genes have undergone mutations and selection and were tuned toward
absorbing light of different wavelengths. The overall evolutionary trend here is divergent, with
some parallel changes.

The situation with crystallins, however, is dramatically different. “Crystallins” are not a
protein family. Major refractory proteins in vertebrates belong to the heat shock 20 family;
in birds and crocodiles, the main crystallin is the enzyme lactate dehydrogenase; in
cephalopods, crystallin is glutathione S-transferase; and in fruit fly, it is a unique protein,
which consists mostly of long nonglobular regions and is not similar to any enzyme. All
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these classes of proteins are unrelated in sequence and structure, but nonetheless they are
functionally analogous, playing the same role of refracting and focusing light in lens or in
its structural analog. Also different are the signal transduction pathways between
photopigment and the membrane, as well as the membrane polarization status. In rhab-
domeric eyes of insects, G protein activates phospholipase C that produces inositol
triphosphate, which ultimately causes a spike in membrane potential followed by depolar-
ization. On the other hand, in ciliary eyes of vertebrates, G proteins signal via cyclic GMP
phosphodiesterase, and the membrane potential initially declines and then is restored by
hyperpolarization.

Thus, in the case of eye composition and development, the “null hypothesis,” in which
similar structures and functions are determined by homologous molecular components, is
rejected. The alternative is the second fact of comparative genomics, which states that similar-
ities in biological systems do not require homologous genes; instead, biological similarities are
enabled by a combination of analogous and homologous genes.

The stage for the discovery of this interplay of analogy and homology had been set before the
genomic era. Most microbiologists who were studying biosynthetic pathways in bacteria
worked with one or two model organisms, such as Escherichia coli and Bacillus subtilis. Often,
it was presumed that at least central biochemical pathways, such as biosynthesis of amino acids
or coenzymes, are the same everywhere. But a handful of scientists were interested in compar-
ing pathways in multiple species, and evidence of significant biochemical variation in proper-
ties of individual enzymes and in the layouts of the whole pathways has been accumulating. In
1976, Roy Jensen (then at the University of Buffalo, and currently at the University of Florida)
presciently noted that “the unity theme for biochemical pathways may have been overempha-
sized in the literature”and “in molecular biology, the remarkable productivity of experimental
systems such as E. coli and B. subtilis has tended to distort the generalized image of microbial
characteristics.”Also, Carl Woese and co-authors (Olsen et al., 1994) stated with sarcasm, “To
understand prokaryotes,we had only to determine how Escherichia colidiffers from the eukary-
otes. This was no invitation to creative thought, no unifying biological principle.”

Only with the complete genome sequences could the interplay of unity and diversity in the
genetic makeup of biochemical pathways be studied in quantitative detail. As far as I know,
one of the first definitive analyses of this sort was performed by Eugene Koonin’s group at the
National Center for Biotechnology Information as part of reconstruction of minimal genome,
which is discussed in more detail in Chapter 13. When the complete sets of genes in two species
are known, one can define all pairs of orthologs in two genomes. What results from such an
enumeration is evidence that although some functions are performed by orthologous genes in
two species, this is not the case for every function: Sometimes, one and the same function is
performed by nonhomologous genes. We called the lack of orthologous relationship in two
isofunctional proteins “nonorthologous gene displacement”(Mushegian and Koonin, 1996a;
Koonin et al., 1996). I will now discuss several themes relevant to our understanding of the
molecular level of this phenomenon, which I rename here displacement of orthologous genes
(DOGs). One reason for this name change is that the new name is more conducive to puns; the
other reason is that orthologous/xenologous gene displacements also exist and are of interest,
and the new term would be applicable here without confusion.

Because most of the completely sequenced genomes belong to microorganisms, which are
endowed with rich intermediate metabolism but have somewhat limited repertoire of other
functions, in the rest of this chapter I mostly give examples that have to do with the enzymes
that make up metabolic pathways and, to a lesser extent, with the proteins involved in genome
replication and expression. The notion of analogy at the molecular level, however, remains
valid for structural proteins, signal transduction circuits, and gene products involved in other
classes of biological processes.
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Mechanisms of DOGs
Suppose we have two species and two isofunctional but nonorthologous proteins, one in each
species. How this could have come to be? There are only two possibilities: Either there existed
an ancestor of two species in which both these proteins were present, or there has never been
such an ancestor (Fig. 6.3). If such an ancestor did exist, then the most plausible mechanism of
a DOG is differential gene loss. The common ancestor, of course, cannot be observed directly,
but the support of the differential loss scenario comes from the present-day genomes: In many
of them, especially in relatively large genomes of some free-living species, there coexist two dis-
similar gene products able to perform the same function. The first example we consider is from
the “bottom” or “triose” part of glycolysis (Fig. 6.4). This set of reactions is considered very
ancient and is found in nearly every species. Most enzymes in this pathway are orthologous
everywhere, but phosphoglycerate mutase, converting glycerol 2-phosphate and glycerol 3-
phosphate, is an exception. There are at least two families of enzymes with phosphoglycerate
mutase activity. One, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (the
product of the yibO gene in E. coli), belongs to the alkaline phosphatase superfamily. The fold
of this family consists of two three-layered cores with eight-stranded beta sheets (Fig. 6.5). The
other, cofactor-dependent enzyme (GpmA and its paralog GpmB in E. coli), is a member of
the acid phosphatase superfamily. This fold consists of a single core containing a six-stranded
beta sheet of a different connectivity. Escherichia coli and other large genomes from the
gamma subdivision of proteobacteria tend to have both types of these enzymes. However,
diverse parasitic proteobacteria with small genomes, and also free-living proteobacteria with
large genomes that belong to the alpha subdivision, contain just one of the two types. If we
compare, for example, Haemophilus influenzae (gammaproteobacteria) and Helicobacter
pylori (epsilonproteobacteria), we can see that phosphoglycerate mutase function in these two
species is a DOG. If we assume that a nonparasitic proteobacteria is a more adequate model of
the ancestral proteobacterial state than parasites Haemophilus and Helicobacter, and given
that glycolysis is an evolutionary invention clearly preceding proteobacterial divergence, it is
quite likely that this DOG was produced by differential gene loss. Moreover, in archaea, a dis-
tinct version of a cofactor-independent enzyme appears to have displaced other enzymes.
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There may be several forces facilitating differential gene loss.For example, two isofunctional
proteins may be differently regulated, and it is possible that each mode of regulation offers a
significant advantage in a given environment. Then, specialization toward one particular kind
of environment may remove purifying selection on the other isofunctional protein, which may
be inactivated and lost from the genome. The other possibility is that general reduction of the
genome size is advantageous to bacteria, for example, because of increased reproduction rate
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(Mira et al., 2001) or because of decreased cost of regulation (Ranea et al., 2005), and this dele-
tion drive results in differential elimination of two phosphoglycerate mutates, which can be
affordable if the organism spends at least part of its life cycle in rich medium (as is apparently
the case in symbionts and parasites, in which typically most nutrients are abundant, although
some, such as iron ions in human parasites, are limiting). Finally, a role in differential gene loss
may be played by random DNA rearrangements. The relative contribution of these factors
into gene displacement needs to be better understood.

The other mechanism of a DOG is independent recruitment of genes. This mechanism
does not require coexistence of two isofunctional genes in any one genome at any time.
Suppose that a metabolite in a cell may be converted into another metabolite in a single chem-
ical reaction, but the appropriate activity was not available in the last common ancestor of the
two species. After divergence of the two lineages, different genes are recruited to provide the
“missing link”(see Fig. 6.3). Consider β-lactam antibiotics, resistance to which in many path-
ogenic bacteria became an important medical problem. Bacterial strains that are resistant to
these antibiotics overexpress enzymes with β-lactamase activity that belong to at least two
completely unrelated protein families, namely metal-dependent and serine-dependent
enzymes. Both classes have multiple paralogs in most completely sequenced genomes, which
possess a wide variety of hydrolase activities. It is likely that lactamases of each class have
been separately recruited from different pools of hydrolases to fight the presence of a deadly
antibiotic in the environment.

Independent recruitment also appears to mark certain crucial evolutionary events. One
such event must have been the emergence of processive DNA polymerases. These main
enzymes of genome replication appear to have been mobilized on two independent occasions,
once in Bacteria and once in the Archaeal/Eukaryal lineage. The recruitment was from two dif-
ferent nucleotidyltransferase families: in Archaea/Eukaryota, the polymerase beta family
with ferredoxin-like fold, and in bacteria, a unique class of enzymes with a large fold that
contains pol-beta core but has no sequence similarity to archaeal counterpart (Leipe et al.,
1999; Lamers et al., 2006).

Several cases of independent recruitment may be hypothesized for the tricarboxylic acid
(TCA) cycle. It has been argued that the ancestral pathway was noncyclic and consisted of two
independent pathways from pyruvate; “oxidative branch” may have lead to α-ketoglutarate,
and the “reductive branch”to succinyl-CoA (Fig. 6.6). Two reactions are required to link these
branches into a cycle, to produce the pathway as it has been described in textbooks. Both
activities needed to complete the cycle exist in contemporary organisms as two nonhomolo-
gous versions, namely 2-ketoglutarate dehydrogenase/2-ketoglutarate oxidoreductase and
succinyl-CoA synthase/succinyl-CoA-acetoacetate-CoA transferase. So it is possible that the
two branches have been joined in the TCA cycle more than once in the evolution, using differ-
ent enzymes for this purpose (Huynen et al., 1999).

From where are the new genes recruited? One possibility is that a new gene is acquired from
another organism by horizontal transfer. There are many molecular mechanisms of gene
exchange between species, some requiring a specialized vector (virus, plasmid, or another
extrachromosomal element) and others relying mostly on the cellular systems of export and
uptake of macromolecules. These mechanisms have been reviewed, for example, in Bushman
(2001) and are not discussed here (but see Chapter 11 for more on the role of horizontal trans-
fer in evolution).

Access to genes from other organisms, however helpful for dissemination of existing genes,
does not solve the question of how new genes come into being. It is likely that the major way of
recruiting genes into new functions (and, simultaneously, to produce novel genes) is to use a
copy of a duplicated gene from the same genome. Acquisition of new function in a duplicated
gene most likely occurs by way of broadening specificity of a protein; results indicate that such
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broadening may be easy to achieve by means of only a few point mutations (Aharoni et al.,
2005).

Thus, gene displacement can occur in many ways. Selection that chooses one gene with a
given function among two or more, whereby a “displacer”gene eliminates a “displacee,”is just
one extreme case. More generally, displacement is a result of differential elimination or differ-
ential recruitment of two genes in two lineages, and in either case, the forces at play may be
random (gene drift by gain, loss, and duplication) or nonrandom (selection of genes or gene
variants for useful properties).

DOGs and the Types of Homology
When an ortholog of a gene in one species is displaced by an isofunctional gene in another
species, what are the homology relationships of these two genes? In the case of phosphoglycerate
mutase, the mutually displacing genes are evolutionarily unrelated at the sequence level, and,
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evidently, also at the level of three-dimensional structure of the protein products. Similar gene
function in the absence of common ancestry is, by definition, analogy. In other cases, mutually
displacing genes may share a common ancestral gene. Often, a DOG is between paralogous
genes: Two paralogs are differentially recruited, or differentially eliminated, to end up doing the
same function in two different lineages. A case in point is the helicase involved in replication of
genomic DNA. In yeast, the main replicative helicase A (YKL017c) belongs to the helicase
superfamily I,whereas in bacteria the main replicative helicase DnaB is thought to be specifically
related to DNA-annealing ATPases from the RecA/Rad51 family. Helicases and RecA enzymes
are distantly related, as demonstrated by sequence comparison and by the close similarity of the
spatial folds, and the last universal common ancestor of present-day organisms is thought to
have contained both a helicase and a RecA-like enzyme (Aravind et al., 1999; see Chapter 13).
Thus, helicases and RecA proteins are paralogs, and the relationship between replicative
helicases in yeast and bacteria can be described as a paralogous DOG.

Yet another type of DOG is a displacement by an ortholog from a different species, after it
has been introduced into the genome by horizontal gene transfer. This apparently has
happened multiple times in the history of essential genes involved in translation. For example,
several dozen DOGs can be discerned in the evolution of aminoacyl-tRNA synthetases, most
dramatically in spirochetes, which appear to have at least six of their aminoacyl-tRNA
synthetases displaced by orthologs from eukaryotes (in addition to other, more ancient
displacements; Wolf et al., 1999). Essential and highly conserved ribosomal protein S14
has also been transferred in this way (Brochier et al., 2000). This is an orthologous/xenologous
DOG.

Thus, based on the relationships of two isofunctional genes, a DOG can be analogous,
paralogous, or orthologous/xenologous. If each of these relationships is combined with the
two described mechanisms of a DOG (i.e., differential elimination and independent recruit-
ment), there will be six distinct types of DOGs.

Interestingly, the ragworm Nereis (Polychaeta) has been shown to contain two types of pho-
toreceptor cells,one with ciliate and the other with rhabdomeric-type receptors. Just like E.coli
with its two types of phosphoglycerate mutases, ragworm with its two types of photoreceptors
may be a model of the common ancestor of bilateral animals. One current hypothesis (Arendt
et al., 2002) is that each type was specialized—one involved in circadian clock and another in
phototaxis—and in two lineages, different types of receptors were recruited to serve in the
main visual organ. Thus, the majority of the pathway in insects and vertebrates may be a
paralogous displacement, but several components, such as crystallins and the enzymes down-
stream of G protein-coupled receptors, are the result of additional, analogous DOGs.

Relationships of genes under a DOG are commutative but not transitive. If the same func-
tion in species A and B is performed by genes related by analogous displacement, and the same
is true of species B and C, this gives no information about the relationship of functions in 
A and C: There may have been no DOG at all between these species.

DOGs and Horizontal Gene Transfers
Horizontally transferred genes can be recruited to perform a new function, or they can replace
an old gene that had the same function. However, horizontal gene transfer (HGT) is not a
sufficient condition of a DOG: A transfer may result in the coexistence of two isofunctional
genes rather than elimination of one of them. As already mentioned, most genomes, prokary-
otic and eukaryotic alike, contain only one of the two known types of phosphoglycerate
mutase; some bacteria, such as E. coli, and rare metazoans, such as sea urchin, have both types.
HGT is also not a necessary condition of a DOG. Differential recruitment of genes, resulting
in a DOG, may occur without any intergenomic gene transfer—the recruitment is from within
the same genome, after gene duplication/divergence or by way of gene polyfunctionality. For
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example, synthesis of mevalonate pyrophosphate, performed by phosphomevalonate kinase
(PMK), is an essential step in the mevalonate pathway, which is used for isoprenoid biosyn-
thesis by fungi, animals, plant chloroplasts, archaea, and a few bacteria. PMK typical of fungi,
plants, and some bacteria, however, is not found in archaea. But side chains of archaeal lipids
are made from isoprenoids, and many other enzymes in the mevalonate pathway are found in
archaea; therefore, it has been suggested that PMK is displaced by another protein in archaea.
Animals also have a mevalonate pathway but lack PMK of the fungal type. PMK in animals is
displaced by an analogous enzyme, which does not have orthologs in Archaea (Smit and
Mushegian, 2000). This, however, does not tell us which protein phosphorylates phospho-
mevalonate in archaea. The archaeal homolog of the preceding enzyme in the same pathway,
mevalonate kinase, which is paralogous to PMK and is also found in fungi, plants, animals,
and bacteria, has been shown to possess PMK activity in vitro (A. Osterman, personal com-
munication). It is possible that, whereas in other organisms it is specialized for only meval-
onate phosphorylation, in archaea it performs both phosphorylation reactions. Thus, the (still
hypothetical) utilization of archaeal mevalonate kinase to phosphorylate phosphomeval-
onate is a paralogous DOG with regard to fungal-type PMK and an analogous DOG with
regard to animal PMK. If this is the case, then the origin of this DOG in archaea must have
been by recruitment, which did not involve either HGT or gene duplication.

One-for-One and One-for-Many Relationships in DOGs
The DOGs discussed thus far involved one gene in each of the two (or more) genomes. But the
scope of analysis can be expanded to examine groups of genes. For example, a series of very
ancient DOGs involves components of the DNA replication initiation complex.

In Bacteria and Archaea/Eukarya, several components of replicative complex are not
orthologous. The aforementioned replicative helicase is a case of a simple, gene-for-gene DOG
in this protein complex. Other parts of the replicative machinery are involved in more complex
DOGs. In Bacteria, the opening of the origin of replication is achieved by the initiator
ATPase DnaA, and RNA primer for DNA replication is synthesized by a single-subunit
primase of the DnaG family. Both these proteins have multisubunit, nonorthologous coun-
terparts in Archaea/Eukarya—respectively, an origin recognition complex made of six differ-
ent proteins and a heterodimeric eukaryotic primase (Leipe et al., 1999).

Two other examples concern the recently discovered anabolic pathways involving 1-deoxy-
D-xylulose-5-phosphate (DXP). Isoprenoid biosynthesis, which proceeds by a five-step meval-
onate pathway in many species, is displaced by the DXP pathway in most bacteria (there are at
least seven committed steps to isopentenyl pyrophosphate). Similarly, there are two alternative
pathways of de novo pyridoxal phosphate biosynthesis from glyceraldehyde 3-phosphate in
bacteria, one requiring erythrose 4-phosphate (seven enzymatic reactions involving seven pro-
teins) and another requiring ribulose 5-phosphate (not less than five enzymatic steps, which
are apparently provided by only two proteins; Tanaka et al., 2005). In some of these cases, the
alternative pathways require different chemical precursors. One could argue that such pairs
of pathways with the same end point but different starting points are neither “the same func-
tion,” northe states of the same character. If, however, we allow a large set of precursors for
anabolic reactions, the functions “biosynthesis of pyridoxal from ribulose 5-phosphate” and
“biosynthesis of pyridoxal from D-erythrose 4-phosphate”can be represented more generally
as “biosynthesis of pyridoxal from the available precursors,” and the relationships between
alternative pathways in different species can be seen as DOGs.

DOGs and Operons
Complete and annotated genome sequences can be examined for correlation between gene
functions and their relative positions in the genome. Groups of proteins may belong to the
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same protein complex, or they may be components of the same metabolic or signaling path-
way. In many prokaryotes, genes coding for such groups of proteins may be found close to
each other on the chromosome. This trend was noticed many years ago in model species, E.
coli and B. subtilis, which led to the idea of operons—that is, groups of genes that are
involved in the same pathway, are located next to each other on a chromosome, and are
expressed together as a single multigene transcript. In eukaryotes, polycistronic transcripts
are relatively rare (viruses with genomic RNA being a special case; see Chapter 4), and
where they exist, it is not likely that they represent operons in this established sense.
Nonetheless, clustering of genes on chromosomes may reveal different types of functional
and evolutionary signal in various species. We will examine the progress in this area in
Chapter 8, but now we are concerned with DOGs and ask, What is the relationship between
DOGs and operons?

It seems that the existence of operons puts constraints on DOGs. Suppose that operon-like
arrangement of a group of genes increases fitness of the host, for example, by way of a more
efficient coregulation of these genes. A DOG that consists of a loss of a gene within this
operon, and a gain of an isofunctional gene elsewhere in the genome, may put the host at a dis-
advantage because the coregulation mechanism now has to be somehow reestablished. One
can therefore expect that if clustering of a group of genes on a chromosome is important, then
the DOGs will mostly occur in situ: The displacer gene will tend to occupy the same or almost
the same position as the displacee. Evidence of frequent gene displacements in situ is indeed
accumulating (Wolf et al., 1999; Yanai et al., 2002; Liu and Mushegian, 2004).

DOGs and Gene Competition
An intriguing aspect of DOGs is differential tolerance between the isofunctional pairs of
genes or pathways. Some such pairs seem to be capable of peaceful coexistence in the same
genome for a long time. For example, bacteria and eukaryotes have just one type of primase,
whereas archaea have both bacterial-type and eukaryotic-type enzymes. As mentioned previ-
ously, nonparasitic gammaproteobacteria with relatively large genomes have two types of
phosphoglyceromutases, not counting paralogs, whereas many other bacteria and even
eukaryotes have just one. Often, however, isofunctional pairs of genes are found to the exclu-
sion of one another. The reasons for such consistent intolerance are of special interest. Some
such cases are likely to be fundamental lifestyle choices, related to the functioning of large mul-
tiprotein complexes that were “genetically annealed” early in the evolution of life and more
recently have been largely banished from taking part in displacements (Woese, 2002). Such
DOGs, exemplified by replication enzymes and also by significantly different sets of proteins
involved in translation in Bacteria versus Archaea/Eukarya, are quite robust evolutionary
markers (see Chapters 12 and 13).

Other gene pairs, however, exhibit the same tendency toward strong mutual exclusion
without clear correlation to phylogeny. An interesting case of low mutual tolerance is the pair
of thymidylate synthases—the better studied, folate-dependent ThyA, widespread in all
kingdoms of life as well as in viruses—and the analogous enzyme, flavine-dependent
thymidylate synthase ThyX, which is found in some bacteria, some archaea, some bacterial
viruses, and also, oddly, in slime mold Dictyostelium. The lists of species in which each of the
alternative thymidylate synthases are found are evolutionarily incoherent, especially for
ThyX (see Fig. 5.7), which suggests multiple cases of horizontal transfer followed by rapid
displacement.

A patchy distribution of a gene, when ones and zeroes in its phyletic pattern are not nested
in the species’ tree, may seem to indicate that the history of this gene contains nothing but
horizontal transfer. But this is not necessarily the case: Generally, any phyletic pattern can be
explained by vertical inheritance and gene loss, by horizontal transfer, or by some combination
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of these factors, and the difference is only in the scoring function, or penalty, that we impose in
an attempt to reflect the probability of each type of such event. In Chapters 11–13, we will
examine ways to reconstruct the most plausible combinations of these events using phyletic
patterns in combination with evolutionary trees of genes and genomes. But regardless of the
evolutionary history of ThyA/ThyX displacements, the result is dramatic: Two enzymes seem
to avoid one another. The exception that supports the rule is the occurrence of both types of
thymidylate synthase in mycobacteria, where one of the two enzymes is clearly contributed by
an integrated prophage.

While on this topic, I would like to note that closer examination of the enzymatic mecha-
nism of thymidylate synthesis indicates that ThyA/ThyX is not one-on-one displacement.
Both enzymes transfer the hydroxymethyl group from a folate derivative to uridylate, with
concomitant reduction of hydroxymethyl to methyl. In the case of ThyA, the redox equivalent,
drawn from the same folate derivative, requires a coupled enzyme, dihydrofolate reductase.
ThyX needs no partner protein because its redox equivalent is provided by a flavine cofactor
(Myllykallio et al., 2002). Phyletic patterns of ThyA and dihydrfolate reductase are very close
to each other, so the DOG is actually between ThyA + DHFR, on the one hand, and ThyX on
the other hand.

Competition between multiprotein pathways is even more dramatic. In isoprenoid
biosynthesis, DXP and mevalonate pathways rarely coexist in the same organism. The only
clade that contains a full complement of enzymes from both pathways is higher plants,
but the two pathways are strictly compartmentalized there, with enzymes of the mevalonate
pathway staying in the cytoplasm and DXP enzymes going to chloroplasts. All other species
capable of isoprenoid biosynthesis have exactly one functional pathway to do it, although
the remnants of the other pathway are detected in some genomes (Smit and Mushegian,
2000).

DOGs, RNA–Protein Displacements, and RNA World
Thus far, all examples of DOGs concerned protein coding genes. However, nothing forbids
displacements between proteins and other sense-carrying units. One class of regulatory
modules in bacteria, called riboswitches, provides examples. Riboswitch is an element on a
polycistronic bacterial RNA that serves as a sensor of a specific low-molecular-weight
compound inside the cell. For example, S-adenosylmethionine (AdoMet), an important
intermediate in many biosynthetic and regulatory pathways (Kozbial and Mushegian,
2005), is synthesized de novo in most free-living bacteria. Production of the AdoMet pre-
cursor, amino acid methionine, is tightly controlled and can be turned on in response to a
decrease in AdoMet concentration. Proteobacteria regulate methionine biosynthesis with
the help of the protein, AdoMet-sensing transcriptional regulator (methionine repressor;
Phillips and Stockley, 1996). In gram-positive bacteria, however, the level of AdoMet is
sensed by a riboswitch—a highly conserved RNA sequence called S box that consists of
approximately 150 extensively base-paired nucleotides located at the 5′ ends of poly-
cistronic mRNAs—at least 11 of them in B. subtilis,—which control expression of at least
26 genes of sulfur metabolism and biosynthesis of methionine, cysteine, and AdoMet itself.
At elevated concentrations of AdoMet, riboswitches tightly bind the ligand, which appears
to cause premature termination of transcription (Winkler et al., 2003). Thus, the same
function is enabled by a protein coding gene in some species and by an RNA coding gene
(or, at least, RNA fragment) in another species. This is a rather clear example of an
RNA–protein DOG.

Most of the accepted scenarios of evolution of life on Earth include the RNA world—the
stage at which both genetic material and catalytic machinery of the living creatures were
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represented by RNA molecules and massive RNA–protein displacements must have occurred
at the time when ribozymes were being replaced by protein enzymes. A few ribozymes, how-
ever, appear to have never been displaced by protein enzymes and to persist in living organisms
from the RNA world all the way to the existing species. These ribozymes include peptidyl-
transferase and decoding activities of ribosomal RNA (Steitz and Moore, 2003) and process-
ing of tRNA 5’ ends performed by RNAase P (Hartmann and Hartmann, 2003).

Detection of DOGs Using Phyletic Patterns and Phylogeny
Homology, analogy, and DOGs exist regardless of our ability to detect them. The DOGs we
have discovered are most likely only a fraction of all DOGs that have occurred in evolution.
How can we recognize a DOG, and how many of them remain undetected?

There are two prerequisites for finding a DOG. First, there has to be empirical evidence that
similar molecular function is present in two lineages. Second, there has to be a way to robustly
define orthologs and to assert their absence. The latter is only possible if both genomes are
completely sequenced (see Chapter 3 for a discussion on how to define orthologs). But even if
genome sequences are complete and protein lists in both genomes are accurate, false negatives
and false positives in ortholog definition can occur, and they give rise to errors in DOG
prediction.

One type of error occurs when orthologs have low sequence similarity, which is not found by
a standard database search. Such was the case of “missing” RNAase H in the second
completely sequenced genome, Mycoplasma genitalium. The authors of the original annota-
tion (Fraser et al., 1995) did not find RNAase H homolog in M. genitalium and correctly con-
cluded that the proteome of this bacterium has to include the protein performing this essential
activity (RNAase H specifically destroys RNA when it is hybridized with complementary
DNA, and this is required for removing RNA primers left after initiation of replicative DNA
synthesis). Eugene Koonin and myself did not do much better when we concluded that the
homologs of RNAase H were indeed missing in Mycoplasma and proposed another putative
nuclease as a DOG (Mushegian and Koonin, 1996a). When sequence similarity searches
improved (in particular, when gapped BLAST and PSI-BLAST were introduced), it turned
out that a proper ortholog, albeit with low similarity to RNAase H, had been present in
M. genitalium genome all along (Bellgard and Gojobori, 1999). In Chapter 5, I noted that the
recovery of proteins that have relatives in distantly related genomes (the PHIDO value) tends
to improve with time, and with it, the number of correctly identified orthologs also rises.
Therefore, the estimated number of DOGs will tend to decrease as the sensitivity of sequence
comparison increases.

Other types of errors, on the contrary, result in the underestimation of DOGs. One case is
orthologous/xenologous displacement. Suppose that a gene AA in genome A has an ortholog
AB in genome B. It may be recognized as the ortholog using criteria given in Chapter 3
(basically, if we find no evidence of duplications). If, however, AB has been transferred into
genome B from the unobserved genome C, we may not find this out until we sequence the latter
genome.

DOGs are also missed when paralogs are erroneously taken for orthologs. Consider differ-
ential loss of paralogs, when gene duplicate precedes speciation and one paralog is lost in each
lineage. This may erase the evidence of duplication from the gene tree. Only if more genomes
are examined, and a genome that still harbors both paralogs is found, may we know the truth.
For example, elongation factor Tu, the GTPase that loads charged tRNAs onto ribosomes,
most likely has been duplicated early in bacterial evolution, and one copy or the other was lost
in most bacteria, except for gammaproteobacteria and Deinococcus (Lathe and Bork, 2001).
Interestingly, recent work suggests that very similar duplication/losses have occurred in the
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evolution of eukaryotic homolog of EF-Tu, within the eukaryotic clade itself (Keeling and
Inagaki, 2004). Differential loss of paralogs, when the remaining paralogs are able to play the
same biological roles, is by definition a paralogous displacement. Thus, frequency of paralo-
gous DOGs also tends to be underestimated.

In summary, even in the case of well-studied genomes, the precise set of DOGs is not easy to
ascertain. Phylogenetic trees for genes of interest and for species as a whole are helpful for
DOG finding: Any discordance between the two trees may suggest differential gene loss and
differential recruitment. Phyletic patterns of isofunctional genes are also useful in this regard:
They highlight “patchy” distribution of orthologs and alert to a possibility of the isofunc-
tional, nonorthologous genes in those species in which orthologs are missing.

A nagging question, however, is how to prove the analogous origin of isofunctional
proteins. It has been said that the ultimate proof is given by their three-dimensional struc-
tures. The hypothesis here is that similarity of three-dimensional structures supports the
idea of common ancestry, and lack of such similarity argues for analogous origin of the
common function. The problem with this two-part argument is that neither part is actually
true. On one hand, suppose that we find two structures to be similar, even though the simi-
larity of their sequences is at the random level. In this case, we are still left with the following
dilemma: Do we observe preservation of function in homologous proteins that diverged
beyond recognition, or is it rather convergence toward the common function of two
sequences that never had common ancestor? On the other hand, suppose that structures are
dissimilar. There is growing evidence that protein fold can change in the course of sequence
evolution. If this is true, then how can we be sure whether we observe unrelated molecules or
molecules that share a common ancestor but have diverged so much that they not only lost
all sequence similarity above the random level but also experienced fold change in one or
both molecules?

The problem is aggravated by lack of a good measure of structural similarity of proteins.
When comparing primary structure of proteins, we have at our disposal the evolutionary
model of sequence change and statistical theory of sequence similarity (see Chapter 2). In
contrast, statistical theory of structural similarity is, for all practical purposes, unavailable.
We will examine these problem is more detail in in Chapter 9. It is safe to say, however, that
the proof of analogy and convergence in protein function has to rely on the compatibility of
many lines of evidence. Consider again two types of thymidylate synthases, ThyA and
ThyX. Their sequences are not alignable in any meaningful sense. None of the functionally
important residues that are conserved in ThyA have a counterpart in ThyX, and vice versa.
The monomer of each thymidylate synthase appears to fold into an alpha-beta structure
with distinctive large beta sheet, but examination of functional forms of the enzymes shows
that these beta sheets are positioned in a completely different way with regard to intersub-
unit contacts and to substrates (Fig. 6.7). Moreover, as discussed previously, the cofactor
requirement of the two enzymes is quite different: ThyA needs a coupled enzyme, dihydro-
folate reductase, from which the reducing equivalent is derived, whereas ThyX uses bound
flavin nucleotide to the same end. Thus, ThyA and ThyX protein monomers may have super-
ficially similar features of tertiary structure, but everything else—sequence, catalytic
residues, patterns of oligomerization, functional coupling with other proteins, catalytic
cofactors, and reaction mechanisms—is different. The case for a common ancestor of these
two proteins is all but impossible to make. The hypothesis that no such ancestor existed
seems to be the one best compatible with the evidence.

A dramatic proof of the existence of analogy at the molecular level is given by the
RNA–protein displacements. Riboswitches discussed above are one such example.
Reconstruction of minimal ribosome also suggests a possibility of RNA–protein displace-
ments, when a function of a deleted segment of rRNA is taken over by a protein, or the other
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way around (see Chapter 13). In these cases, isofunctional molecules are protein and RNA,
which are definitely not homologous.

What may be the DOG frequency in nature? This can be studied from two different angles.
First, we can consider a pair of completely sequenced genomes and ask how many isofunc-
tional genes in two genomes have been displaced. Second, we can start with a group of iso-
functional proteins, such as the same EC class, ask how many isofunctional proteins within
a class are not homologous to each other, and examine their distribution across multiple
species.

Neither of these approaches has been implemented on a large scale, but several observations
are of interest. In an example of the first approach, when reconstructing a minimal gene set
(Mushegian and Koonin, 1996a; see Chapter 13), we counted all putative nonorthologous dis-
placements between the first two completely sequenced genomes, H. influenzae and M. geni-
talium; the two bacteria have approximately 1700 and 460 genes, respectively, of which 230
were shared (the first approximation of the minimal genome). Counting isofunctional but
nonorthologous proteins, which appeared necessary to fill the gaps in the rudimentary metab-
olism of the minimal organism, the number of DOGs was estimated to be approximately 25,
or close to 10% of the complete minimal genome (Mushegian and Koonin, 1996a). This
number has been revised downwards, mostly because of improved recognition of distantly
related orthologs (Mushegian, 1999; Koonin, 2001). Recently, I estimated the number of
protein–protein DOGs between Bacterial and Archaeo/Eukaryal ribosomes at approximately
10; both minimal and ancestral ribosome are thought to contain 35–45 proteins, which gives
the DOGs rate of 20–30% (Mushegian, 2005; see Chapter 13).

Using the second approach, Koonin and Galperin provided evidence that at least 10% of EC
classes contain isofunctional but nonorthologous proteins (Galperin et al., 1998; Galperin
and Koonin, 1999). This is very close to the previously discussed estimates made by genome
comparisons, although distribution of these isofunctional enzymes across the genomes is not
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Figure 6.7. Two unrelated types of thymidylate synthases. (Left) Monomer of folate-dependent ThyA (PDB
1BJG). Cofactor methylenetetrafolate is rendered as the black stick model, and the substrate UMP is
rendered as dotted spheres. (Right) Dimer (half of crystallographic tetramer) of flavin-dependent
ThyX (PDB 1O29) with flavin mononucleotide cofactor (sticks) and substrate analog (spheres). Both
protein subunits are needed to bind the substrate and the flavin mononucleotide cofactor.



well studied (theoretically, two enzymes with the same function may always be found in the
same set of genomes, in which case there is isofunctionality but there is no DOG). On the other
hand, new enzymes continue to be discovered, and the number of classes with isofunctional
enzymes may increase.

All things considered, I suspect that the average DOG frequency between two genomes is
5–10%. This can be viewed as an estimate of the frequency of analogous origin of similar
molecular functions.

90 Foundations of Comparative Genomics



91

7

Prediction of Function 
and Reconstruction of
Metabolism from Genomic
Data: Homology-Based
Approaches

Currently, GenBank contains completely sequenced genomes of 385 biological species, count-
ing strains of bacteria but not counting viruses and organelles, and also 339 draft assemblies,
462 genomes in progress, and several large “metagenomes” coming from sequencing of
uncultivated environmental samples (data from www.ncbi.nlm.nih.gov/genomes/static/
gpstat.html; accessed August 2, 2006). One goal of computational biology is to understand as
much as possible about life of all these species from their genomic sequences.

“As much as possible” is a useful qualification here. Computational inferences can only be
made at the background of biological knowledge, and they will be only as good as the models
that we derive from that knowledge. This becomes very obvious when we annotate a novel gene
based on similarity of its sequence to a better studied gene. In fact, establishment of homology
is the foundation of any computational prediction of gene function. Computational methods
are informed by previous knowledge of biology, and computational predictions are con-
firmed, or fail to be confirmed, by wet-lab experiments that involve gear such as petri dishes,
Eppendorf tubes, mouse cages, sunblock and rubber boots, and so on. Computers may seem
to be far removed from this physical world.

This is a good time to argue, however, that that computational, or dry-lab, experiments are in
fact not so different from what is going on in the wet lab. Computer predictions, such as detection
of homology or building a phylogenetic tree, are sometimes believed to be “theoretical” as
opposed to “experimental” work, but I do not think this is right. “Theoretical” has to do with
developing theories, and there may be elements of this in both wet-lab and dry-lab work. On the
other hand,gel electrophoresis and BLAST search are quite similar in that both use certain genet-
ically controlled, but chemically defined, properties of protein molecules in order to sort them by
similarity. The difference is only in the nature of signals that the molecules display in each case.

All this is relevant to computational analysis of protein function because a common point
of view is that the final word is always with wet-lab experiments, whereas computational
analysis is “mere speculation.” On the contrary, I believe that in the analysis of biological
function, dry-lab and wet-lab methods should be used together for testing compatibility of
different lines of evidence.



Therefore, how can we understand the biology of the newly sequenced genome from its
sequence? In this book, I hardly mention such themes as sequencing strategy, genome
assembly, and gene finding. Not that these problems are unimportant; on the contrary, it is
clear that complete understanding of molecular function requires accurate identification
of genes and their products. Fortunately, we have become quite good at finding a reason-
ably complete set of genes encoded by a genome sequence (which is not the same as suc-
cessful prediction of the complete sets of RNA and protein variants encoded by each gene;
for discussion of the approaches to these important problems, and some initial insights into
evolution and function of alternative transcripts and protein variants, see Kriventseva
et al., 2003; Kim et al., 2004; McCullough et al., 2005; Roth et al., 2005; Nakao et al., 2005;
Kimura et al., 2006; Yamashita et al., 2006). Thus, we will assume that we have a list of
genes predicted in a newly sequenced genome, together with the location of each gene in
this genome. We also have such lists for all genomes that have been sequenced before. Often,
the newly sequenced genome belongs to a species that has not been well studied. We may
know something about its living conditions and interactions with the environment, and, in
the case of cultivated microorganisms, we sometimes know the set of nutrients that are
required to grow this species in the laboratory, but functions of individual genes and their
products are not known to us.

The genomes sequenced earlier are all different, and some of them, like our newly sequenced
species of interest, have not been extensively studied. Others, however, may have been exam-
ined in great detail, and the knowledge about their genes, proteins, cells, bodily functions, and
interactions with the environment is available in scientific books and journals and also,
increasingly, in specialized on-line databases. (I am omitting the discussion of these databases;
as with all Internet resources, the best way to learn about them is to perform a search or to con-
sult the indispensable yearly database issue of Nucleic Acid Research for the types of databases
that are of the most immediate interest to us; for a meta-review, see Galperin, 2006). Our goal
is to make functional inferences about the molecular setup of a poorly studied species, based
on the information about other, better studied species.

This became known as the task of computational reconstruction or molecular pathways, or
metabolic reconstruction—the term first used, as far as I can judge, by Selkov et al. (1997),
who, however, defined it in a slightly narrower way as “an attempt to formulate a model recon-
ciling the sequence data with known biochemistry.”

As with some other new developments in comparative genomics, different people under-
stand metabolic reconstruction differently. There are automated and manual reconstructions;
reconstructions covering multiple genomes and reconstructions focused on just one genome
or one pathway across many genomes; flat files of tentative assignments and sophisticated
relational databases of predicted protein functions; static charts of known and missing func-
tions; as well as attempts to model kinetics of metabolic fluxes. Most of these efforts are inter-
esting, and some are more popular than others. What is not well studied is the accuracy of these
approaches.

Arguments about what constitutes good or not so good metabolic reconstruction occasion-
ally get quite passionate, sometimes approaching “behavior that would not be condoned in
other, more mature fields of science” [Joseph Felsenstein’s (2003) recollection of the early
period of another area of computational genomics]. I have been at the receiving end of some
such behavior, all the while being accused of the same (see Kyrpides and Ouzounis, 1999;
Mushegian, 2000), but examination of those episodes is no longer of interest. Rather, my goal
here is to examine what currently appears to be achievable in the art and science of metabolic
reconstruction, which scientific ideas enable these achievements, and which problems remain
unsolved. In discussing all this, I use “new genome,” “new sequence,” “new protein,” etc. to
indicate the species with completely sequenced genome for which a metabolic reconstruction
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is sought. The sequences that are deposited in the database can be “annotated,” “better
studied,” etc., or they can be “uncharacterized.” All new sequences are uncharacterized by
definition.

Databases of Biochemical Information

Good databases of empirical knowledge about biochemical pathways are essential for making
inferences about functions of new genes. And perhaps one of the most important components
of a good database is the indication of the primary evidence, on the basis of which the anno-
tation of the representative family member was done. In the past, the evidence supporting a
statement about the gene may have been scattered across journals and could not be easily
accessed from a sequence database such as GenBank. Later, an improvement was afforded by
partial incorporation of SWISSPROT information into GenBank entries). However, to eval-
uate the credibility of even this better curated information, one sometimes has to undertake
detective work. For example, in 1994–1996, while annotating bacterial genomes, Eugene
Koonin and I had to deal with the case of the protein then known as HemK. In Escherichia coli,
the hemK gene is found downstream of another gene of porphyrine biosynthesis. Biochemical
studies suggested that, among other activities required for the synthesis of mature heme, there
should be an enzyme protoporphyrinogen oxidase. This enzyme was not known, but some
genetic evidence attached this function to the aforementioned HemK. The SWISSPROT
database incorporated this evidence and correctly indicated that it was flimsy, at least as con-
cerned the E. coli protein; the homologs from other species, however, were sometimes anno-
tated as simply “protoporphyrinogen oxidase,” without “predicted” or “putative,” even in
SWISSPROT.

The problem is that HemK is not an oxidase. The inference based on the position of the
hemK gene was wrong. This is not to say that analysis of gene neighborhoods is always futile;
on the contrary, we will examine the productive uses of such an approach in Chapter 8. Alas, it
did not work in that particular case. On the other hand, sequence similarity analysis indicated
that the HemK family shares a set of conserved motifs with diverse methyltransferases, which
belong to the class I of methyltransferases, characterized by canonical Rossmann fold
(Schubert et al., 2003). It became clear that HemK, renamed into PrmC, is conserved in almost
every genome and has a very particular substrate specificity—namely, it methylates a specific
glutamine residue in peptide chain release factors (proteins that are required for termination
of translation) and this modified glutamine is essential for protein function (Nakahigashi
et al., 2002). Incidentally, peptide chain release factors in Bacteria and Archaea/Eukarya are a
nonorthologous DOG (see Chapter 6), but in an apparent case of local sequence convergence,
both types of release factors contain the GGQ tripeptide, where Q is the target of methylation
by HemK.

In 1995, the true biological function of HemK was not known, but it was quite clear that it
is a methyltransferase. This was mentioned in the study of E. coli proteins (Koonin et al., 1995),
which we examined in Chapter 5. However, a newly sequenced ortholog of HemK would most
commonly be annotated by transferring a more widely available annotation—that is, “proto-
porphyrinogen oxidase” (with or without “putative”). Finally, several years ago, the correct
annotation caught up with the databases and is no longer difficult to find.

Another problem with the database annotations of gene and protein functions is that, for
much of the 20th century, such functions were studied in a relatively small number of species—
either common model organisms or species that are of direct relevance to our existence. The
biology of mammals, yeasts, and laboratory strains of E. coli and Bacillus subtilis continues to
influence not only our view of metabolism in other species but also our definition of metabolic
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pathways and our understanding of protein function. For example, a wall map of biochemical
pathways contains the tricarboxylic acid (TCA) cycle, giving the impression that it is a
biochemical mainstay of every cell. But, as already discussed in Chapter 6, this set of reactions
takes place mostly in proteobacteria, including gammaproteobacteium E. coli and alphapro-
teobacteria, as well as in eukaryotic mitochondria, which are the descendants of an ancient
alphaproteobacterium. In many living species, however, the orthologs of the TCA cycle
enzymes are not arranged into a cycle. Out of the eight enzymatic reactions (not counting
shunts and variations at the entrance point), most genomes have six genes or less, with inter-
ruptions all over the cycle, and mycoplasmae as well as spirochetae have no TCA cycle enzymes
at all (see Fig. 6.6; Huynen et al., 1999).

One can argue, on the other hand, that eukaryotes and proteobacteria are species that mat-
ter most to us, so a version of any pathway found in these organisms is a sensible null hypothe-
sis after all. In addition, some order in the metabolic map is better than no order at all.
However, when we want to determine what was going on in a phylogenetically distant species,
or in ancestral living forms (see Chapter 13), it is important to remember that the “metabolic
map”as we know it is heavily influenced by studies in a small number of species, not necessar-
ily representative of every species we may want to examine.

Homology and Orthology: How to Use Them for Prediction 
of Protein Function, and What Can Go Wrong

As discussed in Chapter 3, two orthologs, one in each of two species, are more likely to have the
same molecular function, and the same biological function, than two paralogs. Paralogs are
more likely to evolve new, if related, functions. This has been called the principle of phyloge-
nomic by Zmasek and Eddy (2002). As an aside, phylogenomics is a term coined by Jonathan
Eisen (1998) to summarize the idea that the evolutionary tree can help us understand how bio-
logical functions are distributed across the members of a protein family. However, other
authors use this term to refer to other things—most often to large-scale phylogenetic analysis,
when gene/protein phylogenies of many genes in a genome are examined together. It will be
interesting to see which meaning will be used in the future.

The justification of the principle of phylogenomics is common sense. Orthologs, especially
single-copy genes in two species of similar complexity, are maintained in evolution, most likely
because they are required for the same function, which, ostensibly, their common ancestor also
had.Gene duplications,with divergence among paralogs,are thought to be the main mechanism
for evolving new functions (Ohno, 1970; Lynch and Conery, 2000; Kondrashov et al., 2002).

The phrase “more likely,” which occurs twice in the principle of phylogenomics, is impor-
tant. The link between homology (of any type) and function is loose—functions of any
homologs, including orthologs, can change in evolution. In general, however, it is less risky to
predict function by transferring annotation between orthologs than between paralogs. If bio-
logical function of an ortholog in any species is known, it can often be transferred directly.
When a new protein has no orthologs with known function but has paralogs with known func-
tion, direct transfer of annotation is more problematic, but there is a good chance to define
molecular function—for example, the class of chemical reactions that the predicted enzyme
might catalyze.

Another aspect of the problem is that there is no rigorous definition of biological func-
tion—in general and in the case of each particular protein. Often, despite all biological
evidence, it is impossible to say whether the functions of two proteins are “the same” or only
“similar.” As with characters, which exist at many levels and have complex relationships,
biological function has many facets.
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Consider, for example, the case of presenilin-1, the protein product of a gene that is specifi-
cally mutated in a large percentage of Alzheimer’s disease patients. Presenilin-1 gene has
homologs in all multicellular eukaryotes and even in unicellular organisms, including archaea
(Ponting et al., 2002). If the “biological function” of human presenilin-1 is to protect the
owner from Alzheimer’s disease, then the function of plant and prokaryotic homologs of
presenilin-1 is most certainly not the same (or even similar) as in the human protein because
plants do not get Alzheimer’s disease. Even if we learn molecular details, such as that prese-
nilin-1 is an intramembranous protease processing amyloid-beta propeptide (and several
other substrates, including developmental protein Notch, which was the first presenilin target,
discovered in a genetic screen in Drosophila), this does not cover “biological function”of plant
homologs—Arabidopsis has presenilin-like genes but does not have Notch or amyloid-beta.
Note that the last fact about plants is known because we have a completely sequenced plant
genome; thus, the definition of a protein function is influenced by genes that are present in the
same genome—and by genes that are absent from it.

We can redefine the function of presenilin in a way that will also cover functions of its
orthologs and paralogs in different species. For example, “intramembranous proteolysis of
various secreted or membrane-bound proteins” might be a sufficiently general description of
the molecular function of all presenilin-like proteins. However, imagine that species A
contains two paralogs of such intramembranous protease, species B lost one of them after the
split between A and B but retained the other, and species C also lost one but evolved four in-
paralogs (and, moreover, as C is a multicellular organism, these in-paralogs work in different
types of cells). Even after sorting all evolutionary relationships out, it is not possible to predict,
on the basis of this information, which homologs have which exact function.

All these are good problems to have, compared to the difficult cases of conserved protein
families about which nothing is known. In Chapter 8, we will discuss what to do with them. But
in fact, the percentage of protein families that are completely uncharacterized is not huge.
Given that the PHIDO and PHISO values (see Chapter 5) are each more than 50% in every
completely sequenced genome, annotation by homology provides functional clues to a large
percentage of proteins in any genome. Therefore, every practical way of computational recon-
struction of metabolism of a poorly studied species relies on finding all sequence homologies
to better studied proteins and partitioning the homologs into orthologs and paralogs.

Let us consider a predicted protein AA in a newly sequenced genome A, which has a homolog
AB in another genome B. Two possibilities are of interest for functional annotation of AA by
homology. First, we may apply tests of orthology, discussed in Chapter 3, and find out that AB
is the ortholog of AA, and the function of AB is known. Second, we may find out that AB is the
ortholog of AA, the function of AB is not known, but in species B there is also a paralog AB′ with
known function. (Yet another possibility, that there is no ortholog of AA in species B but there
is a paralog AB′ with known function, has exactly the same utility for functional annotation of
AA as the previous one).

Jonathan Eisen, then of Stanford University and currently of the University of California
at Davis, pointed out that if the terminal branches of an evolutionary tree of a gene/protein
family are labeled with the available functional information, the distribution of labels can be
used to infer the functions of the unknown homologs in that tree (Eisen, 1998). Eisen, however,
did not propose a practical algorithm implementing his ideas; this was first done by Zmasek
and Eddy (2002). The basic idea is to examine a position of an uncharacterized gene with
regard to a group of those homologs that have the same function. If it can be shown that the
uncharacterized gene is nested among isofunctional genes, then the new gene may be func-
tionally annotated by “borrowing”the annotation from this group of proteins. If, however, the
new gene falls outside of all clusters that have representatives with known functions, then the
specific function of such a gene cannot be inferred with confidence, although a more general
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description may be possible (Fig. 7.1; the details of the algorithm and the statistical criteria of
annotation reliability proposed by Zmasek and Eddy are not examined here).

The selection between specific and more general functional assignments is aided by the cat-
alogs of biological functions. As many other traits of biological systems, functions of individ-
ual genes and gene products can be classified in a hierarchical fashion. One such hierarchical
system is the IUPAC Enzyme Classification (EC) mentioned in Chapter 4. A similar approach
has been extended to all gene products, with and without enzymatic activity, to produce Gene
Onthology (GO; Schulze-Kremer, 1997; Ashburner et al., 2000). Two enzymes that share all
four numbers in EC have the same enzymatic activity, and two proteins that share all numbers
in GO hierarchies have the same molecular function (in fact, there are three different hierar-
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Figure 7.1. Mapping of known functions on the phylogenetic tree of a protein family. The query protein
(F28P22.13 of Arabidopsis thaliana; white box) belongs to the NAD/NADP-dependent alcohol dehy-
drogenase superfamily, but its neighbors in the tree are all uncharacterized proteins (gray box), and
there is no specific relationship between the query and any homolog with the precisely defined substrate
specificity. Reprinted from Zmasek, C. M., and Eddy, S. R. (2002). A simple algorithm to infer gene
duplication and speciation events on a phylogenetic tree. Bioinformatics 17, 821–828, by permission of
Oxford University Press.



chies in GO—one for molecular function, another for biological function, and the third for
cellular localization; any gene product may be annotated within all three hierarchies).
Inasmuch as orthologs tend to preserve the same function, they also tend to share all four EC
or GO numbers. Paralogs, however, tend to evolve different functions and often different,
albeit related, activities; therefore, they share only the first two or three EC numbers and may
have different GO numbers, at least in some of the GO hierarchies. Note that shared EC or GO
identifiers do not imply much about sequence similarity and common evolutionary origins:
Two enzymes with perfectly matching EC numbers may be nonorthologous to each other. This
is because of functional convergence, as discussed in Chapter 6.

Ultimately, however, the success of the whole enterprise of labeling the trees by orthologs
and paralogs, and inferring functions in that way, depends on the proportion of homologs that
have been experimentally studied and on the distribution of these well-studied homologs over
the tree. Recently proposed probabilistic approaches suggest that even the moderate
proportion of annotated genes/proteins in the tree (approximately 50%) may be sufficient to
annotate new function (Sjolander, 2004; Engelhardt et al., 2005)

Annotations by Homology and Errors Inherent in the Process

Bork and Koonin (1998), Devos and Valencia (2003), Park et al. (2005), Green and Karp
(2005), and others studied several types of mistakes that are common when annotation is
transferred from a database entry to an uncharacterized homolog. In effect, there are three
groups of errors. First, the homology may be inferred incorrectly—either true homologs are
not found or unrelated proteins are taken for homologs. Second, the homologs may be found
correctly, but the orthologs and paralogs may be assigned incorrectly. Third, an error can
occur even when the orthologs are properly assigned. Let us examine each group of errors in
more detail.

One possibility is that a homolog of the new protein is present in the database, but it is not
found. This often happens when an arbitrary threshold is used as a filter in sequence similarity
searches. For example, suppose that we ignore BLAST matches with E-value higher than 10−10

and conclude that there are no “significantly similar” sequences in the database. As discussed
throughout this book, different sequences evolve at different rates, and some pairs of
orthologs from two species are less similar to each other than other pairs of orthologs from the
same two species. For example, we and others failed to notice the ortholog of RNAase H in
completely Mycoplasma genitalium and tried to explain it by way of a DOG (see Chapter 6).
The truth was more simple: RNAase H is the enzyme that exhibits much less sequence similar-
ity than many other essential enzymes. The result of such error is undetected similarity and
lack of prediction—a clear false negative.

A milder version of the same mistake may be committed when some, but not all, homologs
of a new protein are detected. For example, if I pay attention only to the top 10 BLAST
matches, or do no more than three PSI-BLAST iterations (both cutoffs are, of course,
completely arbitrary), then I may end up with only uncharacterized homologs but will miss
more remote, yet better annotated, homologs. The result of this error is a failure to recover a
homolog suitable for functional annotation; in the context of function prediction and
metabolic reconstruction, this is also a false negative. The set of uncharacterized homologs,
however, may provide a lead: A more sensitive model can be built using this information, and
different comparison regimens may be employed to find more homologs, some of which may
be better studied.

Another way to miss relevant homologs has to do with the multidomain composition of
proteins. Multidomain proteins are found in all divisions of cellular life (reviewed in Ponting
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et al., 1999; Copley et al., 1999; Ponting and Dickens, 2001; Copley et al., 2002). If a database
search program is tuned to detect pairwise local similarity (as, for example, is the case with PSI-
BLAST), and if the best conserved domain has many homologs in the database, the matches
to this domain will dominate the results. However, sometimes the highest scoring domain does
not provide enough clues to protein function. For example, one family of DNA helicases,
widely distributed in many species, is named after the E. coli homolog, RecQ, involved in
recombination and repair. There are many RecQ homologs in multicellular eukaryotes. All
eukaryotic RecQ-like helicases, however, are multidomain proteins. To the N terminus of the
longest helicase domain, there is an additional N-terminal domain that is not found in E. coli
RecQ. There are two main classes of such N-terminal domains. One is mostly an alpha-helical,
coiled-coil domain, presumably involved in protein–protein interactions; this domain is found
in human RecQ-like protein mutated in Bloom’s syndrome patients and in its yeast ortholog
Sgs1. The other, three-layer alpha-beta-alpha domain is a 3′–5′ exonuclease, related to the
famous Klenow nuclease, RNAase D, and many other nucleases. This domain is found in
human Werner disease protein as well as in the RECQL4 protein, mutated in
Rathman–Thompson and RAPADILINO syndromes. Nonetheless, similarities in the heli-
case region tend to overwhelm the outputs of BLAST searches; the nuclease domain in Werner
syndrome protein, WRN, therefore was not discovered until several years after cloning of the
WRN gene and its identification as a RecQ helicase [computational discovery was published
by Mushegian et al. (1997) and Moser et al. (1997); the wet-lab verification was given by
Kamath-Loeb et al. (1998)], whereas the nuclease domain of RECQL4 seems to have not been
reported before.

In all these cases, focusing all attention on one, perhaps best-conserved domain of a protein
results in underprediction of its molecular function; moreover, if the best conserved domain
was functionally uncharacterized, the outcome is a false negative.

The opposite occurs when the new protein has no homologs in the database but we mistak-
enly think that such homologs do exist. Or we can correctly identify a family of homologs, all
of which are functionally uncharacterized, and then, instead of quitting, erroneously
conclude that this family is homologous to another, better studied family of proteins, when in
fact there is no evidence of such a homology (or, even more dramatically, there is convincing
evidence of homology with a completely different family). In one example of such error, a
candidate archaeal protein was sought that could perform conjugation of cysteine and
cognate tRNA; methanogenic archaea are notorious for lacking cysteinyl-tRNA synthetase
homolog, and it is of interest to understand the DOG that apparently has occurred there.
Using an original, but apparently not well-validated, computational method, the authors of
one recent study detected their candidate, MJ1544, and assigned the putative CysRS function
to it (Fabrega et al., 2001).

More careful computational experiments, using standard techniques of sequence compari-
son and well-established statistical methods, do not support this part of archaeal metabolic
reconstruction at all. Direct PSI-BLAST search immediately finds a moderately sized family
of MJ1544 homologs, scattered across a handful of archaeal and bacterial genomes, most of
which have a separate and easily recognizable CysRS. Moreover, when this family of unchar-
acterized homologs is converted into a hidden Markov model (HMM) and compared to other
HMMs using HHsearch (Soding, 2005), it shows high, statistically significant similarity to
many protein families and conserved domains with polysaccharide hydrolase activity. The
functional relevance of these sequence similarities is underscored by the fact that they cover
most of the length of MJ1544 and correspond to the known catalytic domains of these glyco-
sylhydrolases. On the contrary, none of these families is known to have affinity to amino acids,
tRNA, or ATP; thus, it is highly unlikely that these substrates are recognized by MJ1544 at all.

98 Foundations of Comparative Genomics



On the strength of this evidence, functional assignment of MJ1544 as the novel type of CysRS
appears to be a false positive, resulting from error in homology inference, i.e., suggesting
homology when there is none. (The “mystery of experimental verification of false predictions”
is further examined in Iyer et al., 2001).

Another way to misidentify a molecular function is by erroneous domain assignment.
Previously, we saw that examining just one of many domains may lead to false negatives or at
least to underprediction. But false positives are also easy to come by: For example, several
groups suggested that the protein MG262 of Mycoplasma genitalium is a DNA polymerase
(Bult et al., 1996; Ouzounis et al., 1996), even though it was already known that mycoplasmas
have not one but two DNA polymerases encoded by other genes. In reality, MG262 does not
contain a polymerase domain; it consists of a single domain with predicted nuclease activity,
which is, indeed, highly similar to nuclease domains found in family A of DNA polymerases.
Thus, a protein is named after a wrong domain, which may be present in its homologs but is
missing from the protein itself. Analogously, in the course of genome annotation of archaeon
Archaeoglobus fulgidus, several proteins have been annotated as inositol monophosphate
dehydrogenases (Klenk et al., 1997). In reality, all these Archaeoglobus proteins consist of non-
catalytic CBS domains, which are also present in inositol monophosphate dehydrogenases and
in many other proteins. What the Archaeoglobus proteins do not contain are the inositol
monophosphate dehydrogenase catalytic domains. This is a clear case of mistaken annotation,
originating from erroneous domain assignment and resulting in a false positive.

In another variation of these themes, false positives and false negatives can be caused by the
error of sequence filtering. The so-called “simple”or low-complexity regions are segments with
unusual amino acid or nucleotide composition. Homopolymer regions—that is, strings made
of just one residue, such as polyglutamine expansions implicated in many hereditary diseases
(Ding et al., 2002)—are the extreme cases of a low-complexity region, but there are also more
subtle patterns, such as enrichment in one or a few residues (Wootton, 1994; Wan and Wootton,
2000) or in perfect or degenerate repeats (Letunic et al., 2004). Compositionally biased, non-
globular regions are found in at least 20% of bacterial proteins (and in higher percentages in
parasites than in free-living organisms; Koonin et al., 1997). Many such regions have important
functions. For example, they serve as flexible connectors between globular domains, as inter-
faces of protein–protein interactions, and they may also contain signals for protein sorting or
degradation. Statistics of similarity search, however, breaks down in such regions because of
their skewed sequence composition. As a result, matches to low-complexity regions are usually
not informative, even as they seem statistically significant. The methods for obtaining correct
statistics in these regions have been proposed only recently (Yu et al., 2003).

In the 1990s, when the genome projects gained momentum, the issue of propagation of erro-
neous annotations caused concern to many of us. Annotations of newly sequenced genomes
were increasingly done by computers, whereas finding bugs in the annotation pipeline, and
cleaning up the results, requires slowly working human beings. There was a worry that errors
will propagate to the point at which the databases will become completely unreliable—a
meltdown compared by some researchers to mutational catastrophe in mathematical genetics
(Eigen, 1971; Tannenbaum and Shakhnovich, 2004). There has even been a mathematical
model of error spread in the databases that used formalism from the percolation theory and
seemed to indicate that a large fraction of errors will spread fast (Gilks et al., 2002).

Fortunately, as of today, the disaster did not quite come to be. The research community, by
and large, is aware of the problem and is up to the job of improving and correcting annotations
and functional predictions of proteins discovered in genomic projects—certainly not with per-
fect efficiency but still promptly enough to avert chaos. A particularly important source of reli-
able sequence annotations is a set of databases of conserved sequence domains. Behind each
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such database, there is a team of curators, to whose attention the community can bring the
errors. Even more important, when wet-lab experiments provide serious evidence that contra-
dicts dry-lab predictions, eventually this is reflected in such databases. To wit, the database
annotation of HemK started to improve even before its biological role became clear; first it was
recorded that there was no evidence for protoporphyrinogen oxidase activity, next the similar-
ity to methyltransferases was noted, and most recently, information about the substrate speci-
ficity appeared. Of course, once a correct annotation is present in the databases, it will also be
propagated automatically.

However, even if we infer homologs correctly, our prediction of protein function may still be
incorrect. One set of reasons has to do with errors in sorting homologs into orthologs and
paralogs. In Chapter 3, as well as earlier in this chapter, we discussed the principle of phyloge-
nomics, which states that orthologs are more likely to share the same molecular, and even
biological, function, whereas paralogs are more likely to have diverse, even if mechanistically
related, molecular functions (their biological functions may still remain unknown : although
most glutathione S-transferases are involved in maintaining redox balance in the cytoplasm
and detoxification of xenobiotics, recall that one paralog in cephalopods is the main lens
protein, utilized for its refractory properties rather than enzymatic activity).

Suppose that I have an uncharacterized paralog of a well-studied protein. If I erroneously
think that the two proteins are orthologous, I am going to be overly specific when transferring
functional annotation. This is overprediction, which can also occur as a result of inadvertent
mix-up between molecular and biological function, For example, upon re-annotating the first
completely sequenced genome of an archaeon M. janaschii, we came across a family of
proteins that seemed to have expanded in this species and was related to a group of diverse,
metal-dependent hydrolases found in many different species and possessing different biologi-
cal functions (Koonin et al., 1996). One of the members of this family was known in yeast and
mammals as a component of the protein complex involved in processing of the 3′terminus of
mRNAs, which is one step in the mRNA polyadenylation pathway. We chose to annotate the
members of this family in M. janaschii as “putative metal-dependent hydrolases,” inferring
metal dependence from the pattern of conserved histidines, which, in at least one structurally
characterized homolog, were involved in chelation of a zinc ion. However, in the absence of
robust orthology assignment in 1996, we called these proteins “putative metal-dependent
hydrolases, most likely nucleases.” The alternative proposal (Kyrpides and Ouzounis, 1999)
was that ours was an underprediction, and that proper annotation for at least some members
of the family would be “homolog of cleavage and polyadenylation specificity factor subunit.”
On the contrary, I think that their suggestion, although literally true, is in fact an overpredic-
tion. Indeed, it draws attention to specific biological functions of this enzyme in eukaryotes,
none of which have been demonstrated in archaea. At the same time, it does not state what is
really known about this protein, namely, that it is firmly predicted to have a metal-dependent
hydrolase activity.

One way to avoid these types of mistakes is to know your orthologs and paralogs and to
employ a well-controlled vocabulary. Underprediction, though it may be a problem in some
cases, can also be used as the annotation strategy: In a sense, it is safer to underpredict than to
overpredict a function. When I call a protein “putative mevalonate kinase,”most people would
think that this is the predicted function of this protein. If I choose to call the same protein
“mevalonate kinase homolog,” there is an ambiguity: The statement is formally correct,
inasmuch as it is stating that related, better studied proteins include mevalonate kinase, but it
is not obvious from that description whether or not I really intend to say that the novel protein
indeed has mevalonate kinase activity. However, if I decide to forego the last digits in the EC
number and change annotation to a more general one, such as “predicted kinase of GHMP
family,” my meaning becomes less specific but in a sense more clear: I know to which class the
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enzyme belongs, and I am making it explicit that I am not sure about its specificity. It is known
that the GHMP kinase family includes sugar kinases, mevalonate and phosphomevalonate
kinases, homoserine kinases, and other small-molecule kinases, as well as some proteins that
may not even be formally described as kinases, such as diphosphomevalonate decarboxylase
(Bork et al., 1993; Smit and Mushegian, 2000). My “generic” description of the protein
function leaves all these possibilities open, gauging the level of our ignorance.

Thus, partitioning into orthologs and paralogs, if done correctly, may help to determine the
appropriate level of functional prediction and annotation. In practice, however, there is always
some overprediction and underprediction. One reaction to all these difficulties is to use
annotation schemes that avoid sorting into orthologs and paralogs altogether (Ouzounis,
1999). I do not think that this is the best strategy: If we do not define orthologs, we simply
assume “reasonable doubt” about transferring annotation from a better studied homolog to
an uncharacterized protein across the genome. This mostly increases the underprediction rate.

It has also been proposed to define in a more precise way the meaning of qualifiers such as
“putative,”“possible,”and “predicted.”Many of such terminological suggestions are not very
intuitive, and they have not quite caught on.

It is nevertheless useful to incorporate the evidence for each prediction into the sequence
database, and it is perhaps better to do it in plain English than by using code words. For
example, the annotation may contain a summary of the experiments that led to the predic-
tion, the mutant phenotypes that have been observed, and so forth. This is quite practical in
the case of well-studied model organisms and indeed has been implemented for some of
them. For example, the following is the definition line of one yeast gene product, taken from
GenBank:

Part of actin cytoskeleton-regulatory complex Pan1p-Sla1p-End3p, associates with actin patches on
the cell cortex; promotes protein–protein interactions essential for endocytosis; previously thought to
be a subunit of poly(A) ribonuclease; Pan1p [Saccharomyces cerevisiae].

There are several desirable properties in this annotation. It contains information about the
biological role of Pan1p; complexes that it forms; and earlier, probably incorrect, guesses of its
function. What is missing is information about sequence similarities and the known homologs
of this protein, but in the on-line databases, these relationships are only a few mouse clicks
away (in this case, Pan1p is a large protein containing two relatively short regions of homology
to other proteins, namely two EH domains, consisting of paired EF hands, in an arrangement
typical of several endocytosis factors).

As we have previously seen, even when an uncharacterized protein has a correctly
recognized ortholog in the database, and even if this ortholog is encoded by a genome of well-
studied species, the annotation of the ortholog may be outright wrong. One notorious case is
a eukaryotic and archaeal pseudouridylate synthase, the enzyme involved in base modification
of rRNA, which for many years existed in the sequence databases under the name of
“centromere/microtubule-binding protein.” That annotation came from in vitro experiments
prompted by the spurious observation of a short C-terminal KKD signature, which was
thought to be a specific microtubule-binding signal (Jiang et al., 1993). The orthologs of this
protein are conserved in eukaryotes, archaea, and some bacteria, as is commonly the case with
the proteins involved in RNA metabolism and translation (Anantharaman et al., 2002). Some
of these archaeal proteins acquired incorrect annotation from their eukaryotic homologs.
Obviously, proper centromeres and microtubules are found only in eukaryotic cells (even
though cell division GTPase FtsZ, found in most bacteria and archaea, is the ortholog of
eukaryotic tubulin, the main protein component of microtubules), and “centromere-binding
protein” in a prokaryotic cell does not make much sense. In the context of classification of
protein function, such as EC or GO, this type of error is a serious misclassification.
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Another large class of errors can also occur after orthologs and paralogs has already been
defined. The function of many proteins can only be understood in context by examining other
genes encoded by the same genome. Such was the case of GlyA, serine–glycine
hydroxymethyltransferase, in M. genitalium. Homolog of GlyA is found in E. coli, and so the
Mycoplasma GlyA protein was assigned to a group of proteins involved in biosynthesis of
amino acids—undoubtedly prompted in part by a quick look at the name of the enzyme. This
is not problematic in the context of the metabolic capacities of E. coli, which, indeed, possesses
many enzymes for biosynthesis, degradation, and salvage of various amino acids—some of
which are incorporated into proteins, and others serve different roles. InM. genitalium, how-
ever, there are no other enzymes for de novo biosynthesis of any amino acid (if we do not count
a three-subunit complex that in Gram-positive bacteria and their relatives is required for
amidation of a particular species of Glu-tRNA to form Gln-tRNA). Serine hydroxymethyl-
transferase does not seem to have any role in amino acid biosynthesis in M. genitalium because
mycoplasmas receive their amino acids from their environment.

Better understanding of the role of GlyA in M. genitalium comes from the knowledge that
conversion of serine and glycine by this enzyme is one step in the pathway of C1 turnover by
folic acid, which is highly conserved in bacteria and eukaryotes and has several essential func-
tions, most notably a role in the thymidylate synthase reaction. In Chapter 6, we discussed a
DOG involving two types of thymidylate synthases; each requires a hydroxymethyl group,
donated by folate, in order to complete synthesis of thymidylate from uridylate. Without
thymidylate, there is no DNA; without folate cycle, there is no thymidylate; and without GlyA,
there is no folate cycle. Thus, the molecular function of GlyA (i.e., transfer of the hydrox-
ymethyl group) can be properly placed in more than one pathway or functional category: In
addition to amino acid biosynthesis, it has roles in the metabolism of folate (the category
“coenzyme biosynthesis”), thymidylate (“nucleoside biosynthesis”), and, additionally in bac-
teria, special initiating amino acid formylmethionine (“translation”). And although molecu-
lar function of GlyA was recognized correctly all along, the correct interpretation of its
biological role in mycoplasmas and other parasitic bacteria depends on knowing which other
genes are also found there and which ones are missing.

Placing Predicted Functions onto Metabolic Maps 
and Filling the Gaps

After functions of gene products have been predicted on the basis of their homology to
proteins in better studied species, these functions can be “placed on the metabolic map.” The
idea is simple: Buy a wall chart of metabolic pathways or use an on-line metabolic pathway
database, start at the top of the list of gene predictions for the newly sequenced genome, and
match every gene function to the same name in the database or on the chart. Continue gene
placement until you run out of genes on your gene list, and you will have a sketch of metabo-
lism in the genome of interest.

This is where the effort to use a controlled vocabulary for functional annotation, and to
employ hierarchical function classification schemes such as EC and GO, pays off. Matching
names and numbers can be automated, and the results of this matching can be displayed.
However, there are at least two complications.

One obvious problem is that, whatever we do, there will be vacant spots in the metabolic
database (i.e., known functions for which there are no good candidates in the genome that we
are annotating). At the same time, there will be many genes in the gene list that cannot be
placed on the map with any confidence. What needs to be investigated, then, is whether any of
the latter, “orphan” genes should be assigned to some of the former, “vacant” functions, and
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how to do that with reasonable degree of accuracy. (Of course, wet-lab experimentation
should in principle allow us to determine biological and molecular functions of all orphan
genes, but our quest at the moment is to determine what can be done by computational
genomics approaches). Here again, protein functions may transpire from the examination of
genome context.

Before we discuss examples of such approaches, another problem has to be mentioned. As
discussed at the beginning of this chapter, what metabolic maps really show is a consensus set
of reactions, generalized from the information obtained by studying a relatively small number
of organisms. A novel genome may belong to a species that performs chemical reactions still
unknown to humankind and not represented in the biochemical databases. For example, the
molecular function responsible for the ability of some microbes to incorporate a fluoride ion
into organic compounds, forming a rare C–F bond, was identified only recently (Dong et al.,
2004), and it was not until 2005 that the first-ever cadmium-dependent enzyme was discovered
(Lane et al., 2005). The fluorination activity requires a single protein molecule that had been
known for some time in several bacterial species under the name of COG1912. The fluorina-
tion of organic compounds, however, was not in the biochemical databases. Thus, the
complete metabolic map is a work in progress, and taking differences between species into
account is also an ongoing task. Our goal, then, is to start with the existing, if imperfect, meta-
bolic map, on which many predicted functions of genes in the newly sequenced genome have
already been placed, and to determine how far can we extend metabolic reconstruction.

For many gene products that cannot be confidently placed at a specific location in a map,
some functional annotation is in fact available. For example, the genome of alphaproteobac-
terium Agrobacterium tumefaciens encodes approximately 40 predicted S-adenosylmethionine-
dependent methyltransferases (some of which are misannotated, including the HemK ortholog,
which is still called “protoporphyrinogen oxidase”). The general, or molecular, functions of
these enzymes are known: They are transferring methyl (or carboxypropyl) groups from
S-adenosylmethionine to some substrate. We know this because these proteins have significant
sequence similarity to methyltransferases. However, in approximately half of all cases, the
orthologs of these proteins in other species have not been functionally uncharacterized. The
identity of their substrates, therefore, has not been established, and the exact biological func-
tion, or position on the metabolic map, remains unknown for all these enzymes.

From this simple example, we see the essence of the “candidate list” approach: Genes with
general functional predictions can be compared to the lists of functions that are “missing from
the map”in search of suitable matches. If, in the course of analysis of one pathway or another
in Agrobacterium, biochemists conclude that there must be a methyltransferase performing a
specific reaction, the list of orphan methyltransferases may be examined and two dozen can-
didates may be expressed and tested for a specific biological role or molecular activity.
Although this may seem a less satisfactory way of prediction, compared to pinpointing of an
ortholog with the known function, it is in fact a quite good way of planning confirmatory
experiments.

There are several limitations inherent in the candidate list annotation, the most important
of which is that we are selecting candidates only from the proteins that are already known to
perform similar chemistries, so we will miss an isofunctional protein if it belongs to a
completely uncharacterized COG or family. The other problem is that the function we are
searching for may be truly and completely missing in the newly sequenced genome.

Notwithstanding these difficulties, functional inferences from homology information can
be made for a large fraction of all conserved proteins in any genome. In most cases, one can
expect to infer functions of at least 50% of the proteome with some confidence. Of course, the
exact number depends on many factors, the most important of which is the choice of an
appropriately sensitive method of finding homologous sequences.
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This concludes our examination of methods that allow us to predict functions of uncharac-
terized proteins directly from their homology (better yet, orthology and paralogy) to other
proteins. Some such functions are predicted unequivocally; others are tentative, perhaps in the
form of candidate genes imprecisely matched to lists of candidate “missing”functions.

Our next task is to shorten these candidate lists and to predict functions of those proteins
that either have no homologs in the databases or have only homologs that are not functionally
characterized in any way. In Chapter 8, I discuss what is sometimes called the “nonhomology”
approach to function prediction and show that homology analysis is implicit in this class of
methods, too.
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8

Prediction of Function 
and Reconstruction 
of Metabolism:
Post-Homology Approaches

In addition to sequence homology, proteins have other recognizable features that are useful for
functional annotation, including signal sequences, which serve to facilitate localization or
retention of proteins in specific cellular compartments; hydrophobic and hydrophilic regions,
which can be used to find transmembrane, extracellular, and intracellular sequences; and reg-
ular (e.g., periodic) patterns of amino acid distribution. Sometimes, these traits of proteins are
called “intrinsic features” to indicate that they are computed directly from the protein
sequence, without database searches. This is slightly misleading because the most accurate
approaches to intrinsic feature prediction usually rely on machine learning (i.e., training of the
algorithm on a set of sequences that have a desired property). Thus, there is often an implicit
special-purpose database of reference sequences in this case, too. In any case, this information
may help in pinpointing the candidate gene for a “missing”function, for example, by selecting
those that are more likely to be targeted into a compartment of interest.

Other methods predict protein function by simultaneously examining the behavior of many
genes in multiple completely sequenced genomes. We examine two approaches that require no
other information than the genome sequences with correctly recognized open reading frames.
One of these methods is based on the analysis of conservation of gene order and gene clusters
across multiple species, and the other is based on analysis of the presence and absence of
homologous genes, also across multiple genomes.

We start with gene clustering and gene order conservation. This approach can be outlined as
follows: For gene AA in newly sequenced genome A, define its neighbor genes; also define the
orthologous gene(s) AB in genome B, AC in genome C, and so on, and find neighbors of AB,
AC, etc. Then compare the lists of neighbors.

There are actually two separate ideas here. One is that genes with related functions may have
a tendency to be clustered in the genome. This can be tested within a single genome and,
indeed, the basic concept of operons—groups of genes that are involved in the same process or
pathway and are (transcriptionally) regulated as one unit—was proposed without resorting
to interspecies comparison. The other idea is that if such clustering of genes with related
functions on the chromosome is selectively advantageous, then the same arrangement of
the orthologous genes may be observed in many different species: If AA and BA in genome A
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are neighbors, then their orthologs AB and BB in genome B also stand a good chance of
being neighbors. The important question is how to define and measure the “neighborliness”
of genes.

Clustering of genes on the chromosome may occur in three different forms. The most
extreme one is translational fusion, when two proteins are combined into one multidomain
protein (of course, one or both of the fusion partners may already be multidomain proteins).
In fact, one of the definitions of a multidomain protein is that its components can exist as sep-
arate proteins, or can have different fusion partners, in another species. Translational fusion of
genes is a strong indication that they are involved in the same biochemical pathway or a
functional system.

Another level of gene clustering is transcriptional fusion. Here, one RNA encodes several
open reading frames, which can direct synthesis of several distinct proteins, using either bac-
terial strategy of internal initiation of translation or, as discussed in Chapter 4, various virus-
like mechanisms of translating many proteins from one transcript. In this case too, the
products of these gene clusters (operons in bacteria) tend to work together, although excep-
tions, again, are known. The definition of “working together,” however, is broader for tran-
scriptionally fused proteins than for those proteins that are fused at the polypeptide level.
Operons often code proteins that act in the same metabolic or signaling pathway, but this does
not always mean that these proteins are physically linked or are produced in equimolar
amounts in the cell. In contrast, both properties are observed in translational fusions.

The third type of gene clustering does not involve polycistronic transcripts or polyproteins.
It is simply a tendency of certain genes to be positioned close to each other on a chromosome.
Some of these clusters may be revealed by analysis of a single genome, for example, by search-
ing for regions in which intervals between adjoining genes are shorter than the average for this
genome, or by finding zones with overrepresentation of particular types of pairwise gene
arrangement (head-to-head, tail-to-tail, or head-to-tail). Other clusters are discovered by
comparing lists of gene neighbors across many genomes and identifying genes that are found
in clusters in several genomes. Some of these clustered sets of conserved genes (“neighbor-
hoods”) may be functionally coregulated, although often the connection between them is
more remote, for example, these groups may display similar levels of expression (Rogozin
et al., 2002; Boutanaev et al., 2002; Kalmykova et al., 2005) or similar tissue specificity (Li
et al., 2005).

One example of successful functional inference by gene proximity is desiphering of biosyn-
thesis of terpenoids in Lyme disease spirochete, Borrelia burgdorferi. There are at least two
pathways of terpenoid biosynthesis in living organisms. The mevalonate pathway, which was
discovered first, operates, with variations, in fungi, animals, in plant cytoplasm, and in some
bacteria, including Borrelia. The trunk pathway comprises six enzymes, five of which have
orthologs in B. burgdorferi. Yeast isopenthenyl pyrophosphate isomerase (IPPI) has orthologs
in plants and animals, and it belongs to a vast Nudix family, which includes mostly enzymes
with pyrophosphatase activity (IPPI, however, is isomerase, not pyrophosphatase, and it is
thought to retain pyrophosphate-binding ability, which is handy for interacting with the sub-
strate). There are no orthologs of IPPI in B. burgdorferii, and all known enzymes from the
Nudix group in Borrelia are “taken” (i.e., unrelated functions can be assigned to them).
However, five genes of the mevalonate pathway in Borrelia are arranged in a row, close
together in the same DNA strand. This looks very much like an operon, and in the middle of
the same operon there is the sixth gene. A few years ago, we predicted that this protein is a
founding member of the new class of isopenthenyl pyrophosphate isomerases (Smit and
Mushegian, 1999), and this prediction turned out to be correct (Kaneda et al., 2001).

The already discussed case of HemK methyltransferase, however, shows the limitations of
inference-by-proximity. The hemK gene in Escherichia coli is one gene away from hemA,



another gene with the role in protoporphyrinogen biosynthesis, but HemK is involved in
modifying translation termination factor. Thus, gene clustering on the chromosome does not
guarantee functional linkage.

The accuracy of inference improves if we compare many genomes and using better defini-
tions and more quantitative approaches. But what is a neighbor? Is “closeness”or “neighbor-
liness”a binary (all-or-none) trait, or could there be degrees of it? Any two genes are separated
by some distance on a chromosome, and this distance can be measured, for example, in base
pairs or in the number of intervening genes, but what is the maximal distance between two pro-
teins at which they are still considered neighbors? How should we measure clustering of sev-
eral genes in one chromosome and how should we compare the extent of clustering in several
genomes? How should we handle insertions, deletions, and chromosome rearrangments?
What kinds of functional linkage exist, and what kind of linkage is possible to infer from gene
closeness?

The interplay of evolutionary, structural, and functional information is important here.
Gene clusters may be functionally significant, telling us about the involvement of genes in
the same pathway; this is what mostly concerns us in this chapter. However, clusters of genes
in two closely related species may reflect only the gene order in the common ancestor of the
two species. Finally, some clusters may be the by-product of the chromosome rearrange-
ments. We would like to distinguish the latter two signals from the functional connections
between clustered proteins.

Before the era of complete genomes, most evidence on chromosome colinearity came from
comparative karyotyping of eukaryotes and the study of chromosome translocations (Wolfe
et al., 1991; Sankoff et al., 1992; Hannenhalli et al., 1995). In the 1980s and 1990s, many
organellular genomes were sequenced, and the comparative studies of chloroplast genomes
indicated that gene order in the chromosome is affected by rearrangements (often inversions)
of large DNA segments. This is the area in which many interesting mathematical results and
new computer algorithms have been produced, as explained in much detail by Sankoff and
Blanchette (1998, 1999), Pevzner (2000), and Eichler and Sankoff (2003). These algorithms
for counting and ordering chromosome rearrangements, however, reveal mostly information
on the evolution of the chromosome as a physical entity and do not tell us much about protein
function. Since we are examining metabolic reconstruction in this chapter, we will not discuss
these studies in detail. Here, our attention will be mostly on the genomes of prokaryotes
(bacteria and archaea), in which gene order carries significant functional signal.

Anecdotal evidence of isofunctional operons in distantly related bacteria began to accumu-
late as early as the 1960s. Ribosomal genes were organized in similar operons in many distantly
related bacteria, and partial sequencing of Salmonella species, a gammaproteobacterium
diverged from E. coli approximately 150 million years ago, revealed long regions of near
perfectly conserved gene order in two species (Neidhardt et al., 1996).

The first complete genome sequence of Haemophilus influenzae was published in 1995,
when a significant portion of E. coli genome was also available. Haemophilus influenzae is a
gammaproteobacteirum that is more distant from E. coli than Salmonella. H. influenzae also
has a much smaller genome than E. coli (less than 1800 protein coding genes in Haemophilus
vs. approximately 4200 in E. coli). There is essentially no long-range colinearity in gene order
between Escherichia and Haemophilus (Tatusov et al., 1996). At higher resolution, however,
there were 226 “gene strings” (i.e., the sets of adjacent orthologs running in the same order in
both genomes, allowing for one or two gene indels per string). In total, these strings contained
825 genes. The majority of strings contained 2–4 genes, and a few strings were relatively long
(e.g., 28 genes in one of the operons that consisted mostly of ribosomal proteins). These genes
accounted for 78% of all orthologs shared by H. influenzae and E. coli genome. Notably, only
half of these strings, and 40% of all genes that were included in strings, belonged to operons in
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E. coli (Tatusov et al., 1996), and the other half of the strings comprised genes without clear
functional connection to one another. Many, perhaps most, of these strings were probably
conserved because the ancestral gene order has not been completely disrupted by ongoing
genome rearrangements, not because of selective forces preserving functional links between
adjacent genes. In conclusion, at the evolutionary distance of several hundred million years,
approximately half of gene colinearity seemed to be explained by functional connections
between genes, and the other half appeared to be due to the evolutionary signal.

At the other extreme of divergent evolution in bacteria, we have compared the almost com-
plete genome of E. coli with a deeply branching blue-green Synechocystis sp. and the first com-
pletely sequenced archaeal genome Methanococcus janaschii (Koonin et al., 1997). Although
there were approximately 400 orthologs shared by all three species, only one-tenth of these
orthologs were arranged in conserved strings in all three genomes. Thus, at very large evolu-
tionary distances, the conservation of gene order is only barely seen. This is probably because
the selective advantages of gene clustering on the chromosome, such as the ability of species to
coexpress functionally linked genes as a single polycistronic transcript or a polyprotein, are
not infinitely high: Given enough time, any two adjoining genes will be set apart by DNA inser-
tions, deletions, and recombination, and these processes will not be offset by selection for gene
clustering on the chromosome.

Examination of the most conserved gene strings showed that each such string comprised
orthologs related in one and the same, quite specific, way: They were not merely involved in the
same biological function or metabolic pathway but were parts of stoichiometric multiprotein
complexes. Examples of such strings included ribosomal proteins, two of the largest subunits
of RNA polymerase, and a few others (Mushegian and Koonin, 1996b). Our observations
have been confirmed and extended by Peer Bork’s group at the European Molecular Biology
Laboratory in a paper with a self-explanatory title, “Conservation of Gene Order:
A Fingerprint of Proteins That Physically Interact” (Dandekar et al., 1998). Stoichiometric
amounts of proteins would be easier to obtain when all proteins are translated from the 
same transcript. Furthermore, a polycistronic transcript may perhaps be viewed as a cellular
microcompartment, where locally high concentrations of emerging proteins facilitate
their recognition and interaction. However, experimental evidence for these hypotheses is still
missing.

Analysis of “gene strings”relied on a narrow definition of conserved gene order: There had
to be two or more orthologs in the same order in two or more chromosomes, with no more than
two gene indels per species. This approach is intended to recover the most conserved, collinear
sets of genes. In fact, some of the conserved strings conforming to these constraints may be
quite “patchy” (Fig. 8.1). It seemed quite clear that there may be additional conservation of
local gene order, which we would not see if we did not consider longer indels and local permu-
tations of genes.

In 1999, Overbeek and co-workers, then of Integrated Genomics, Inc., proposed a broader
definition of a gene pair that is “close on the chromosome.”Two genes are a “close pair”if they
both belong to a group of genes encoded in the same DNA strand and none of these genes is sep-
arated from its immediate neighbors by more than 600 base pairs. The number 600 is not alto-
gether arbitrary: It may be seen as an estimate of intergenic distance in the known operons
(perhaps on the higher side). Thus, some genes may be considered “close” in this sense even if
they are separated by many genes, and a pair remains close if gene order is shuffled as long as all
genes stay in the same coding strand (Fig. 8.2). The “conserved pair of close genes”in genomes
A and B, then, is really not one pair but two pairs of orthologs AA,AB and BA, BB, such that AA
and BA are close in the genome A, and AB and BB are close in the genome B. The authors
noted that there are approximately 1000 conserved close pairs of genes in 4 genomes and
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nearly 58,000 such pairs in 31 genomes. One-third of all genes included in conserved close pairs
were functionally connected to each other.

This study is notable for the extended definition of conserved close pairs, but important
questions remained unanswered. Some of the “conserved close”genes are functionally linked,
but some are not: Why is this so, and what can be said about each of these subsets of genes? Do
all close genes that are functionally linked belong to operons, or are there other forms of clus-
tering? What are the forces that preserve gene clustering on the chromosome, if these genes are
not functionally linked?

Overbeek and coauthors also asked what would be the expected number of randomly
generated close conserved pairs. It is easy to see that the random component is not negligible
here: If AA and BA are adjacent in genome A, and both genes have orthologs in genome B, the
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random chance that a gene next to AB will happen to be BB is close to 1/1000, given that the
average number of genes in microbial genomes is on the order of 1000–2000 and that each gene
has two immediate neighbors. The chance will be even higher if we also count all genes that are
“close”in Overbeek’s sense. This statement, of course, is a simplification; it ignores gene polar-
ity and does not take into account different gene content in different species. But all things con-
sidered, even if gene order in all prokaryotic species was completely random, most close pairs
of genes in every genome would have a conserved close pair of orthologous genes in at least one
other genome. Overbeek et al. noticed, however, that if we consider longer gene strings or
require conservation of close pairs in a larger number of genomes, such random probability
diminishes very rapidly.

Javier Tamames of the Autonomous University of Madrid studied gene order conserva-
tion further (Tamames, 2001). In his formulation, three or more genes were considered a
“run” if they were found in at least two genomes in the same order, with no more than three
intervening genes. Tamames proposed three reasons why genes may be found in such runs:
(1) A run may be an indication of relatively recent common ancestry of two genomes,(2) a run
may be the result of lateral transfer of a block of genes, and (3) conservation of gene order
may be advantageous for the organism because of functional optimization that is provided by
gene adjacency. It may seem that only the latter case represents functional signal, whereas the
other two are purely evolutionary (i.e., they reflect only gene order in the common ancestor).
But, of course, some of the gene clusters in that common ancestor may have included func-
tionally linked genes, too, and therefore the first and last explanations are not mutually exclu-
sive. Regarding lateral gene transfer, there is a hypothesis that transfers of whole operons may
be more advantageous to the recipient than transfers of single genes or of groups of func-
tionally unrelated genes (Lawrence and Roth, 1996). This is because operon may be more
likely to code for a complete pathway and thus may be more likely to endow the recipient with
a complete new function. Clearly, this explanation of gene clustering also contains a
functional component.

In the same work, Tamames studied the shape of the curve that relates the number of genes
in runs and the evolutionary distance between species (Tamames, 2001). This curve is sigma-
like, indicating that in many groups of closely related species and genera, the gene order
remains very much the same, whereas in extremely diverged species the gene order is almost
randomized, with the exception of the small number of extremely well-conserved operons.
Most of these operons are dominated by ribosomal proteins, as had been previously noticed.
However, the middle, close-to-linear, part of the curve was considerable, suggesting that at a
broad range of medium evolutionary distances, there is an almost linear relationship between
evolutionary distance and gene order conservation.

These observations are compatible with the idea that genes that are functionally linked may
be more prone to staying clustered than random pairs of genes. Indeed, many of the best con-
served runs noticed by Tamames consisted mostly of genes that are functionally linked to each
other. Almost every such run, however, also included genes that seemed to be “out of place”
(i.e., without any connection to the pathway represented by other genes in the same run).
Obviously, there are two ways to look at these genes: Either they in fact do have a functional
connection to the rest of the group and this connection awaits discovery, or they are clustered
with the rest of the run for reasons other than a functional link. Some examples of the con-
served runs with such variations are shown in Fig. 8.3.

Wolf et al. (2001b) estimated the proportion of genes that belong to conserved sets, defined
along the same lines (at least two genes per a run and no more than two indels per a run). If we
ignore species that are closely related (i.e., species of the same genus and some closely related
genera, such as two enterobacteria Escherichia and Yersinia), the proportion of genes falling
into strings shared by at least two genomes is in the range of 5–25%, and require that the
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string is shared by at least three genomes, the proportion of genes that belong to strings declines
sharply. This indicates that the chance for an uncharacterized gene to become functionally
annotated on the sole basis of its closeness to genes with known functions is relatively low.

Rogozin et al. (2002) analyzed extended regions with conserved gene content in some detail.
They defined “neighborhoods” as regions more complex than strings or runs. For example,
strings AABACA, ABCB, BCCCDC, and CDED in genomes A, B, C, and D give rise to a neighbor-
hood consisting of genes A, B, C, D, and E. These and more complex configurations of neigh-
boring genes can be detected by a well-defined algorithmic approach. As in most other studies,
we start with conserved gene pairs. Rogozin and co-authors used COGs to define orthologous
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relationships between proteins in 23 bacteria and 8 archaea. They were interested in pairs of
adjacent orthologs (one or two indels allowed), shared by three or more genomes. There were
1505 such pairs, which included 1337 COGs. Most pairs were conserved in 3–13 genomes, and
there were very few pairs conserved in all genomes (as expected, all these pairs consisted of
ribosomal proteins and RNA polymerase subunits). Interestingly, among the gene pairs con-
served in 6 or more genomes, approximately two-thirds were clearly functionally linked; in
contrast, among pairs conserved in 3–5 genomes, only 36% were functionally linked. Thus, the
more genomes share a gene pair, the more reliable is the inference of their functional link. The
number of such widely-conserved pairs, however, decreases rapidly if we require them to be
present in more genomes.

Extension of pairs into gene arrays and neighborhoods resulted in inclusion of 6611 genes
into 118 neighborhoods; many of these genes, however, were found only in one or two
genomes, mostly as a result of an indel in one genome. Approximately half of all genes were
inherited in three or more genomes. Analysis of these neighborhoods confirmed previous
observations by Tamames. That is, the conserved sets of clustered genes contain a fair propor-
tion of functionally unlinked genes, along with some functionally linked ones. In this case,
again, a large fraction of genes must be linked for reasons other than functional interaction.
Rogosin and coauthors pointed out one such likely reason—adaptation to a similar mode of
transcription regulation, resulting in similar, most likely high, levels of expression.

The collaboration of two laboratories, Anne Bergeron’s (University of Quebec,
Montreal, Canada) and Matthieu Raffinot’s (CNRS-Evry) produced a further generaliza-
tion of the idea of conserved gene clusters (Luc et al., 2003). In their approach, conservation
of gene order is not required: What is important is conservation of local gene content.
Treating genome as a row of slots that can be occupied by differently labeled genes (e.g.,
COGs or individual conserved domains), we can set the distance between adjoining genes at
1 and express the distance between any two genes as a real number. The crucial parameter in
the analysis, δ, is the maximal distance at which two genes are still considered close. The
neighborhoods are called δ-teams and are rigorously defined. Consider four chromosome
fragments with gene orders AABADA, EBFBBBCBABGBHB, ICJCACKCBCCCLC, and
MDNDODCDADPDADQD. Each of the strings AABA, BBCBAB, ACKCBCCC, and CDADPDAD
are δ-chains at δ = 2, and the set {A, B, C} is a δ-team at δ = 2 on the genomes {A, B, C, D}.
The gene team formalism is capable of automatic detection of conserved gene clusters in
which gene order has been rearranged. This should produce more clusters, and more genes
per cluster than other current approaches. It will be interesting to study gene teams extracted
from different sets of genomes at various values of the δ parameter. I expect, however, more
of the same theme with variations: Along with novel functional links, there will be clusters
of genes that evade functional connection.

In this chapter, I view multidomain proteins and gene neighborhoods on the chromosome
as different, but ultimately related, modes of gene clustering because there is no clear-cut evo-
lutionary boundary between different types of gene fusion. Shuffling of discrete genes and of
protein domains occurs through fundamentally the same process of DNA recombination.
Teams include more genes than neighborhoods, neighborhoods include more genes than
operons; operons are fusions of genes at the transcriptional level, but some of the genes can be
fused even further, at the translational level, into multidomain proteins. Gene–neighborhood
and gene–team approaches can be naturally extended to deal with individual protein domains
(Pasek et al., 2005).

We now examine another approach to inference of protein function—the one that makes
inferences from the presence and absence of orthologs in different genomes. In Chapter 5,
I introduced phyletic patterns. They were invented by Tatusov, Koonin, and Lipman (1997) as
a way to represent the distribution of any COG across different phylogenetic lineages. The
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authors called them “phylogenetic patterns”and demonstrated how they can be used to track
gains and losses of genes in evolution. Matteo Pellegrini and co-workers, in David Eisenberg’s
laboratory at the University of California at Los Angeles (UCLA), suggested that the same
constructs, which they called “phylogenetic profiles,”can also be used to infer functional links
between genes and proteins (Pellegrini et al., 1999). In another terminological quibble, I prefer
“phyletic” to “phylogenetic,” because a pattern explicitly tells us about gene presence or
absence in each phylum, whereas the phylogenetic history of this gene remains implicit. (A sep-
arate and interesting problem of using phyletic patterns to learn more about evolution is
discussed in Chapters 12 and 13).

Phyletic pattern is a record of presences and absences of a gene (or else domain or COG) in
several completely sequenced genomes. Phyletic pattern most naturally takes the form of a
binary vector—that is, a string of numbers, where each number (binary coordinate, corre-
sponding to one genome) is set at either one, if a gene is present in a species, or zero, if a species
has no such gene. Let us therefore call the whole construct “phyletic vector.” The set of coor-
dinates of a vector (i.e., the list of species that are examined) can go in any order; one useful way
to order the coordinates is by traversing the tips of the phylogenetic tree (see Fig. 5.7). Any gene
found in only one species has phyletic vector with only a single coordinate set to one. If a vec-
tor corresponds to a COG, there will be, by definition, at least three nonzero coordinates in it
(see Chapter 5). In the rest of this chapter, we examine only vectors that correspond to COGs.

With two possible values for each coordinate, there can be ~2120 ≈ 1. 3292 × 1036 COGs in the
~120 species included in the current release of the NCBI COG database. In fact, there are only
14,669 COGs; obviously, only a tiny fraction of all possible phyletic vectors is encountered in
nature. Moreover, the number of phyletic vectors is smaller than the number of COGs because
there are groups of COGs that share the same vector (Fig. 8.4). More than 90% of all COGs
are found in less than one-third of all species, and only 70 COGs are found in every species.

Thus, the observed set of phyletic vectors is far from random: Some vectors are overrepre-
sented, and most vectors are not found at all. One reason for missing vectors is trivial: There
are only approximately 107 genes in the genomes that are included in the COG database.
However, distributions of each gene across genomes are not independent: For many pairs of
genes, their presences and absences across many genomes correlate. One type of such nonran-
dom distribution is when two or more genes are simultaneously present in the same set of
genomes and absent from the other genomes. The idea of Pellegrini and coauthors was that a
major reason for such coinheritance is functional connection between the coinherited pro-
teins. Their proposal was to find, for each gene, all genes with the same or similar phyletic pat-
tern, where “similar”was defined as any vector that has three or less coordinates different from
the vector of interest (in mathematics, this measure is called Hamming distance). Genes that
are functionally linked to the gene of interest were expected to be well represented among those
“phyletic neighbors”(i.e., genes with similar phyletic patterns).

This leaves many open questions. First, functional interaction may not be the only reason
why genes are coinherited: As with clustering on the chromosome, we may expect that the co-
presence of some groups of genes in the same genomes reflects mostly evolutionary closeness
of these genomes. Second, the allowance of Hamming distance up to three between the vectors
of coinherited genes is arbitrary—why not four or five? Finally, Pellegrini et al. produced no
actual discoveries using this approach in their original paper, limiting validation of the
approach only to demonstrating that genes that are known to be functionally linked indeed
tend to be coinherited. Thus, the proof of concept for this provocative idea deserved better.
Within several years, however, several groups used this principle to find candidates for “miss-
ing” functions, and several such discoveries were confirmed in the wet lab. In one example,
phyletic vectors aided in finding novel components of terpenoid biosynthesis pathway in bac-
teria. Most bacteria are unlike the aforementioned Borrelia: They do not produce terpenoids
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by the mevalonate pathway. Instead, they make terpenoids starting from 1-deoxy D-xylulose,
and in the late 1990s the first three genes in the corresponding pathway (dxs, dxr, and ygbP)
were cloned. Then Luttgen et al. (2000) searched for genes with the same phyletic pattern as
these genes and found ychB, a gene whose product indeed turned out to catalyze the remaining
reaction in the pathway.

Carlson et al. (2004) studied biosynthesis of selenocysteine, the 21st amino acid that is
encoded by certain UGA codons in a subset of archaea and eukaryotes. They wanted to
find a kinase that phosphorylates minor seryl-tRNA, the intermediate in selenocysteinyl-
tRNA biosynthesis. Only 2 of the 14 archaeal genomes completely sequenced at the time
insert selenocysteine into proteins, and search of the COG database revealed 27 COGs with
exactly that phyletic pattern (“one” in both selenocysteine-positive genomes, and “zero” in
the rest). Two of these 14 proteins were paralogs of known kinases. One of them, annotated
as “predicted sugar kinase,” had no orthologs in eukaryotes, and the other, annotated as
“predicted nucleotide kinase,” had orthologs only in humans, fruit flies, and nematodes
(i.e., the eukaryotes that also are able to insert selenocysteine into proteins) but no
orthologs in higher plants and fungi, which lack the selenocysteine insertion system.
The protein product indeed turned out to have strong and specific phosphoserine-tRNA
kinase activity.

In both these cases, some of the genes involved in the pathways were known, and their
phyletic vectors were used to query the database for all other phyletic vectors. But an interest-
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ing pattern query can also be made up. For example, Patrick Forterre of Universite Paris-Sud,
currently at Pasteur Institute, searched for genes associated with a particular phenotype,
namely the ability to thrive at very high temperatures (Forterre, 2002). Among 26 prokaryotes
covered at the time by the COG database, there were 6 hyperthermophiles (4 archaea and 2
bacteria with growth optimum from 80 to 106˚C), 1 thermophile with growth optimum much
lower than 80˚C, and 19 mesophiles. Phyletic vector with six coordinates set at one and 20 coor-
dinates set at zero was compared to the COG database, and only two COGs were associated
with such a vector. One COG was eliminated when a few more genomes of hyperthermophiles
were sequenced and turned out to lack this COG. The only remaining COG was reverse gyrase,
the enzyme that can positively supercoil covalently closed DNA, a property useful for
preventing excess denaturation of a double-stranded molecule at high temperature.

Another way to compare phyletic vectors is to search for a “complementary pattern” (i.e.,
for a vector in which all the ones and zeroes are reversed. The thought to flip the coordinates
occurred to me under slightly amusing circumstances. In 1998, I came across the paper by
Aurora and Rose of Johns Hopkins University in which they used their own method to predict
structure from sequence (Aurora and Rose, 1998). They applied that method (details of which
were never published) to search for thymidylate synthase in archaea. I had analyzed proteome
of M. janaschii a few months earlier as part of a large project of comparative analysis of sev-
eral completely sequenced genomes (Koonin et al., 1997), and in my opinion, there was a per-
fectly good candidate for thymidylate synthase function in that species—MJ0757. Aurora and
Rose saw it but dismissed it. Their reason for doing so and their suggestion of the alternative
candidate are not of much interest, but this prompted me to examine the phyletic distribution
of thymidylate synthase. To my amazement, several completely sequenced genomes indeed
lacked any recognizable homolog of thymidylate synthase. This is significant because the only
type of thymidylate synthase known at the time, specified by E. coli ThyA protein, is found in
a wide variety of eukaryotes, prokaryotes, and viruses. ThyA family members are exception-
ally well conserved in all these diverse species; in fact, this is one of the best conserved protein
sequences among those that cover such a large evolutionary span. Yet, Synechocystis,
Helicobacter, and several other bacteria and archaea have no ThyA homolog at all. Then
I examined the COG database and found that there was exactly one phyletic vector that had
every coordinate reversed compared to the vector for ThyA. This COG was already annotated
as “thymidylate synthase-complementing protein Thy1” based on the activity of a homolog
from the slime mold Dictyostelium, which was picked from the expression library for its ability
to rescue thymidylate auxotroph on thymidylate-lacking medium (Dynes and Firtel, 1989).

I discussed the possibility that Thy1 is another thymidylate synthase, a displacement of “miss-
ing” ThyA homolog in a subset of bacteria and archaea, with Eugene Koonin and Michael
Galperin, who extended the observation of “complementary” or “mirror” phyletic pattern of
ThyA and Thy1 to a larger number of species. This prediction was confirmed by showing the
activity of Thy1 homolog, renamed ThyX, from Thermotoga maritima (Myllykallio et al., 2001).

The main problem with matching phyletic vectors, whether in “direct”or “complementary”
manner, is that the process of gain and loss is never perfectly synchronous in different genes,
even if these genes and their products interact with each other. Gene losses, and related path-
way remodeling, perturb the pattern of vector coinheritance. The optimal way to find groups
of related phyletic vectors, and to understand what signal is represented in these groups, still
remains to be discovered. In the past few years, however, several advances toward this goal
have been made.

The key question in any comparison  of sequences, numeric vectors, or anything else, is the
choice of distance or similarity measure. Phyletic patterns are binary vectors, and there are
many ways to compare them. Galina Glazko and I have noted that there is a crucial require-
ment that needs to be satisfied by any distance measure between phyletic vectors (Glazko and
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Mushegian, 2004). Consider four proteins (or genes/domains/COGs) A, B, C, and D, with pat-
terns across seven genomes, A = (1011110), B = (0111110), C = (1000000), D = (0000001). We
are interested in whether there is a functional link between A and B, and between C and D. It
can be said that A and B proteins tend to be inherited together, and it is quite obvious that C
and D are not coinherited. Distances that are derived from correlation or mutual information
(in fact, these two distances are equivalent in the case of binary vectors; Li, 1990), where zero
coordinates do not contribute to the distance or similarity, are helpful for resolving this prob-
lem, whereas Hamming distance, Euclidean distance, and other so-called Lp-norm distances
are inadequate (Glazko and Mushegian, 2004). Apart from these preliminary observations,
not much is known about the properties of distance spaces between phyletic vectors, and more
work in this area is needed (Glazko et al., 2005).

Chromosome proximity and coinheritance are two types of genomewide information that
have been hailed as the “nonhomology methods of function prediction.” This name is some-
what misleading: Both methods rely, in a major way, on establishing the sets and positions of
homologous genes across many genomes. Only after all pairs of homologs (ideally, orthologs)
have been accurately defined can we hope to use their clustering or phyletic patterns for func-
tional inference. Perhaps “post-homology” may be a more appropriate moniker for these
methods.

So, what has been contributed, at the genome scale, by the post-homology methods of meta-
bolic reconstruction? The answer is surprisingly difficult to come by. Even David Eisenberg’s
group at UCLA, which did much to raise the profile of these approaches, never estimated the
efficiency and accuracy of these approaches in any detail. There are several on-line databases
in which a number of functional predictions are made for proteins in many completely
sequenced genomes, but these predictions are typically scored on the basis of complex, not
well-explained systems of joint inference from many types of evidence, starting with sequence
similarity, followed by post-homology methods, and further supplemented by analysis of
genome-scale profiling of gene expression and of protein–protein interactions.

One of the few studies in which the power of post-homology methods was evaluated directly
is the work by Huynen et al. (2000). They studied the performance of chromosome clustering
(including domain fusion) and phyletic pattern analysis in predicting functions of proteins in
M. genitalium. Important aspects of performance that they measured were coverage (percent-
age of all proteins for which a given method produces an inference), the type of function or
interaction that each method is able to predict, and the overlap with homology-based function
assignment. Conservation of gene order covered 37% of all genes, gene fusion covered 6%, the
co-occurrence of genes in operons without conservation of gene order covered 8% of genes,
and the coinheritance across genomes covered 11% of genes. The total fraction of genes anno-
tated by at least one of these post-homology methods was 50% because some genes were anno-
tated by more than one method. All this, however, resulted in only a modest increase in
functional understanding because, in the end, new functional features, not already evident
from sequence similarity alone, were predicted for only 10% of M. genitalium genes. Clearly,
functional inferences on the basis of sequence homology dominate every metabolic recon-
struction. On the other hand, for most genomes the gain of 10% translates into new functional
information for many hundreds of genes.

Interestingly, the same post-homology methods can be used to examine genetic elements that
do not encode proteins. One quite obvious application of the chromosome clustering approach
is to search the upstream regions of coregulated genes for conserved nucleotide motifs, which
may then be evaluated as the candidate regulatory elements. Recently, this has been combined
with phyletic vector analysis: Rodionov and Gelfand (2005) discovered a ribonucleotide reduc-
tase control element (NrdR) upstream of many known ribonucleotide reductase genes and
then found all occurrences of this element in bacterial genomes (which identified additional
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genes coregulated with ribonucleotide reductases). Next, they matched phyletic vectors of
nucleotide element NrdR and vectors of protein coding COGs. In this way, the predicted DNA-
binding protein with Zn-ribbon and ATP-cone motifs (COG1327) was identified as the cognate
transcription factor binding to NrdR.

The post-homology methods of functional annotation of genes and proteins are still in their
infancy and lack robust statistical framework. If there is a general conclusion from everything
that has been learned thus far, it is the evidence that gene content in genomes is extremely vari-
able. Although protein sequences even in distantly related genomes follow the first fact of com-
parative genomics, and conserved regions account for the majority of the proteomes, at the
same evolutionary distance there is much less conservation of gene order or of the repertoire
of shared genes.
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9

Structural Genomics: What
Does It Tell Us about Life?

Computational analysis of protein structure is a vast part of science, impossible to cover in one
chapter. In my dreams, I see a physicist, a crystallographer, a molecular biologist, an evolu-
tionist, a statistician, and a computer scientist joining forces and covering, in one book, all
computational aspects of structural biology, from deciphering the patterns of x-ray diffrac-
tion to classification of protein shapes and functions. This book is not that book, but if we
want to be true to the theme of evolutionary, structural, and functional signals—in genes, gene
products, and genomes—we need to understand what role is played by structural biology in all
this. We also want to know what the era of complete genome sequencing and the large-scale
structural genomics initiatives, funded on the heels of genome sequencing projects, are telling
us about protein structure.

Before examining the evidence, let me make it clear that the problem of predicting three-
dimensional structure from sequence, which seems to immediately enter any conversation on
computer analysis of protein structure, is not really the focus of this chapter. The attempts to
solve this difficult problem in one way or the other account for a substantial part of all litera-
ture in the field, and it has even been called the “Holy Grail”of computational structural biol-
ogy (or, for some people, of biology as a whole). But I have my doubts about that—the chalice,
in my opinion, is located elsewhere. In fairness, however, before searching for this “elsewhere,”
a few words about prediction of structure from sequence are presented.

As with any predictive modeling, it helps to agree on the measures of success and failure of
structure prediction. Suppose we have built a model of a protein molecule. Do we want the set
of atomic coordinates of this model to have minimal distance from the real set of coordinates,
whenever the latter becomes known? Or should we look to minimize some difference at
another level of structural organization of proteins—perhaps the difference in the number of
equivalent secondary structure elements connected in the same order or the difference in the
number of amino acid residues falling into these elements? These and many other parameters
may be relevant to comparison of protein structure, yet each of these properties can be meas-
ured in a variety of ways, and there is no principled argument as to what should be optimized
there. For example, the atomic coordinates are often compared by root mean square deviation
(RMSD) of the Euclidean distance between some superimposed atoms. But even the most
basic aspects of this distance measure have never been justified: We do not know which atoms
and how many of them should be superimposed, we do not know what the best way to super-
impose the atoms is, and we also lack theory that would relate the RMSD measure to any
aspect of protein evolution or function.
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Notwithstanding these difficulties, it is indeed possible to produce good, useful models of
unknown protein structures. But blunders, in the form of completely wrong models, also hap-
pen. Examples of both success and failure are given by recent nearly simultaneous prediction,
by two groups, of the structure of ataxin-3, the product of a gene mutated in Machado–Joseph
disease. One group, in a somewhat convoluted narrative replete with expressions such as “high
homology”(see Chapter 3 to recall why this is not helpful), suggested that predicted secondary
structure of ataxin-3 and its database relatives consists mostly of alpha-helices and reported
BLAST match with E-value of 2 × 10−7 between the N-terminal regions of ataxin-3 and of
adaptin-like domains involved in protein–protein interactions (mostly with clathrin, in the
context of endocytosis and membrane trafficking). The purported similarity was thought to
be further supported by genome context—that is, by the observation that some ataxin-3-like
proteins, also called josephins, form domain fusions with ubiquitin-interacting motifs, and so
do some of the adaptins (note the same spirit as in the approaches discussed in Chapter 8). The
title of the paper was “Structural Modeling of Ataxin-3 Reveals Distant Homology to
Adaptins” (Albrecht et al., 2003), but said revelation was wrong. Indeed, almost simultane-
ously, another group found remote sequence similarity between the ataxin-3 family and one of
the two classes of deubiquitinating enzymes (DUBs). Analysis of sequence similarity and
sequence-guided prediction of secondary structure indicated that ataxin-3 is likely to adopt
the same serine protease-like alpha-beta fold as this class of DUBs, very different from all-
alpha adaptin-like fold (Scheel et al., 2003). The conserved residues that are required for cat-
alytic activity of deubiquitinating proteases were also preserved in josephins. The hypothesis,
then, was that ataxin-3 and other josephins were DUB-like proteases involved in ubiquitin-
mediated degradation of some protein target. This helps to explain the role of ubiquitin-
interacting motifs in ataxin-3 and indicates that the genomic context argument proposed by
Albrecht etal.was misleading (as contextual arguments sometimes can be; see Chapters 7 and 8).
The deubiquitination activity of ataxin-3 has since been demonstrated experimentally, and
structural study indicates serine protease-like, and not adaptin-like, fold in josephin domains
(Burnett et al., 2003; Mao et al., 2005).

The josephin case is not an exception. For years, the Critical Assessment of Techniques for
Protein Structure Prediction (CASP) series of meetings has been giving researchers, as well as
fully automated servers, a chance to predict structures from sequences. After all predictions
are in, the real structures of the target proteins are made public. This is the format specifically
designed to assess the state of the art, and the results clearly demonstrate that there are better
predictors and worse predictors among both humans and robots, and that best predictors sub-
mit models of much better quality than the average ones, in every measurable way (Moult,
2005; Ginalski et al., 2005).

Several factors appear to play a major role in the success of structure prediction. First, pre-
dictions that rely on the comparison and consensus of several different methods are usually
better than those that use just one method. Second, consensus of fully automated methods,
which can be derived automatically using the “metaserver”Web portals, works very well, often
comparable to the best human experts. Third, the most successful approaches essentially con-
verge at a consistent application of increasingly sensitive methods of searching sequence data-
bases for distantly related homologs with known structure. Obviously, these approaches work
only when such a homolog exists in the database, and only for those investigators who know
sequence analysis well enough to detect it. Thus, structure prediction works mostly because
computational matching of sequences has become very sensitive and specific (see Chapter 2),
and once a template and its alignment to the query are known, the question of the three-
dimensional structure is, in a sense, settled (Ginalski et al., 2005).

Reading about the CASP meetings, and participating in three of the last four of them,
I could not help noticing where most of the progress is made from one competition to the next.
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In CASP3, which took place in 1998, the most successful prediction approaches were those
that used the PSI-BLAST program, which was still a novelty at the time. In CASP4 (2000),
everyone caught up on the importance of a probabilistic iterative search of large sequence
databases (and also on the importance of searching the NR database, and not only the space
of sequences with known structures, which is more sparsely populated). The overwhelming
advantage that year, however, was with the Rosetta method, which had been developed by
David Baker’s group at the University of Washington. This program starts with a sensitive
probabilistic search to find homologous domains and switches to the ingenious approach of
assembly from small template fragments if there are no homologs (the details of how it is done
are scattered across many publications throughout the years, so the reader interested in the
Rosetta algorithm has to assemble it from small fragments, too; see Simonst et al., 1999;
Bonneau et al., 2001a,b, 2002; Bradley et al., 2003, 2005; Chivian et al., 2003).

In CASP5 (2002), all of the best predictors employed metaservers—that is, Web sites that
interrogate a worldwide network of automated methods, collect structure predictions from
each server, and then use some rules to determine which known structure is most consistently
selected as a template for a given sequence. It is interesting to see which primary method has
the most impact of the metaserver outcome: In my experience of using metaservers, I usually
find that the structure with the best overall score is the same structure that is predicted by prob-
abilistic sequence matching algorithms, usually PSI-BLAST or profile-to-profile alignment
programs. Before CASP6, the most successful program of the latter sort was FFAS03
(Jaroszewski et al., 2005; this also used to be the default search engine in Rosetta), but
recently the upper hand seems to be had by the HHsearch algorithm, which compares a hid-
den Markov model (HMM) made from a query and its relatives to the library of known
HMMs (Soding, 2005).

A different view, quite common in the literature, is that we have at our disposal a variety of
significantly different methods, many of which do not (“merely”) match sequences but, rather,
directly compare sequence to structure using some physical or geometrical features of the
structure template, such as the relative spatial position of every pair of amino acids. Some of
these methods are called “threading,”although I no longer understand what this really means.
These “hybrid”methods may start with probabilistic sequence matching but then supplement
it with the physical terms that improve the discovery of the correct template. It is true that some
such capacity is part of many threading algorithms; however, as far as I know, it has never been
definitely proven that physical terms in the scoring functions employed by threading algo-
rithms give any specific advantage over probabilistic sequence comparison. On the contrary,
one recent assessment suggests that, in fact, most if not all relevant information about physi-
cal rules or protein folding is already captured in the function that is used for scoring sequence
similarity. A review written by some of the best predictors and the assessor of CASP competi-
tions (Ginalski et al., 2005) states this observation thus:

Since the first communitywide benchmarking of servers ... in 1998, such “sequence-only” algorithms
have proven to be competitive in structure prediction tests. Until today, the advantage of using the
structural information available for one partner in comparing two protein families has not been clearly
demonstrated in benchmarks.

In the same review,

Profiles generated with sequence alignment methods, such as PSI-BLAST, already include the
mutation preferences imposed by the native conformation. Threading algorithms would then be
required only if insufficient information exists about the sequences of proteins homologous to the
template protein. However, the majority of protein families with known structure do have sufficient
homologs to calculate local substitution preferences from multiple alignments. This observation gave
rise to hybrid methods, which were designed to utilize sequence information from multiple sequence
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alignments if available, but also added terms such as residue-based secondary structure preferences or
preferences to be buried in the core of the protein.... Such methods have been successfully applied in
genomewide structure prediction experiments and claimed a higher fold assignment rate than that
obtained with PSI-BLAST, which is routinely used as performance reference. However, direct com-
parison with profile–profile alignment methods turned out to be surprisingly favorable for the latter
ones, which became serious competitors in protein structure prediction. Presently, the advantage of
including the structural information in the fitness function cannot be clearly proven in benchmarks.

The prevalence of probabilistic sequence matching in successful structure prediction may
not be surprising for those of us who spent years studying sequence conservation and evolu-
tion of sequence families. But even as recently as 10 years ago, sequence analysis was not nec-
essarily expected to be the main engine of structural computational biology. For decades, the
inspiration in structure prediction came from the Anfinsen postulate, which states that protein
sequence contains all information sufficient for protein folding into native spatial structure,
characterized by the minimum of free energy of the protein molecule. This postulate still holds
(if we leave aside the quantitative aspects of folding efficiency and control, which may require
additional components in vivo, such as chaperone proteins), and it motivated many laborato-
ries to seek ways to compute the native conformation by finding that minimum.

The task of computing this minimum on the basis of protein physics turned out to be excep-
tionally difficult. Nonetheless, the struggles of biophysicists and computational structural
biologists have provided many useful heuristics that result in relatively quick and relatively
accurate, if approximate, estimation of many parameters involved in the determination of
protein structure. In the future, new ideas and more powerful computers may allow us to solve
the problem in principle. But the fact of the matter is that the physics-inspired approaches still
have a relatively minor impact on structure prediction, especially as it is currently practiced
(i.e., on a large, genome scale). Sequence comparison continues to be the main approach to
structure prediction.

But the problem with even the best structural models of proteins is that their accuracy is
usually wanting. It became more or less accepted that a model built on the basis of the struc-
ture of a homologous sequence will be much closer to that structure than to its own, when the
latter eventually becomes known. Again, the model can be improved by iterative multiple
alignment of related sequences, but physics-inspired approaches continue to be of only limited
use for such models.

Whatever the past and future promises of structure prediction might be, no one doubts that,
in a sense, it is a mature field: One can get proper education and acquire substantial practical
skills in it. Even a casual user can utilize a metaserver, receive the best prediction, and convert
a resulting alignment into a set of coordinates of a structural model of his or her favorite
sequence. Moreover, the combination of algorithmic innovation, better software engineering,
and, perhaps most important, focused production of X-ray and nuclear magnetic resonance
structures of many proteins, selected for diversity and coverage of the sequence space, gives us
the ability to predict folds for many proteins encoded in complete genomes.

The fraction of proteins with predictable folds is highest in bacteria and lowest in eukary-
otes, reaching 50% in many species in the past few years (Elofsson and Sonnhammer, 1999; Liu
and Rost, 2001; Orengo and Thornton, 2005). This percentage is likely to increase with time:
Newly sequenced species will undoubtedly produce proteins with novel folds, but this is likely
to be handily offset by the available structural templates and improved methods of structure
prediction. Moreover, the number of folds in nature is thought to be limited (see Chapter 10).

Yet, in the midst of all this good news, we may ask: Why do we want to predict protein struc-
ture from sequence in the first place? One answer to this question is idealistic: We want to do it
because this is a difficult problem and a worthy challenge to the human mind. However, in
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more practical terms, for those of us who are doing science here and now, what are we hoping
to achieve by building a model?

For decades since the advent of the suitable technology, direct determination of protein
structure was lengthy and costly. Also, the main expectation for structure prediction was that a
model will be used to infer something about protein with yet unknown structure and function.
At the beginning of the 21st century, however, experimental crystallography has become much
more efficient. This is closing the gap between the sequence and the unknown structure, per-
haps faster and certainly in a more definitive way than modeling is currently able to do. For
example, finding a highly specific ligand by docking it on a predicted structure remains quite
imprecise, unless the model and the template are very similar at the sequence level, and unless
we are willing to ignore the flexibility of both interacting partners. If,however,both protein and
ligand change shapes in the process of interaction, the modeling becomes so complicated that
determination of the real structure with bound ligand may rapidly approach cost-effectiveness.

Perhaps the true goal of structure prediction would be to computationally convert a
sequence into its three-dimensional structure—with accuracy higher than what is achievable
by x-ray diffraction. This challenge was posed by Milton Saier from the University of
California at San Diego at a bioinformatics meeting in Atlanta in 2001. Since then, indeed, the
National Institutes of Health has invited researchers to submit proposals in the area of such
very high-accuracy modeling. I will be glad to see any takers on this challenge and will be
thrilled to see them succeed.

However, imagine that one morning we wake up and learn that the structures of all proteins
have been experimentally determined. What would it do to fold prediction? Perhaps low-
accuracy prediction will no longer be needed (although, of course, protein design tasks, such
as targeted changes of local conformation of protein chain, will still require computational
experiments). What will become the Holy Grail of computational molecular biology? And
why not start the quest for that other chalice today?

I believe that the real goal of structural biology is to decipher evolutionary and functional
signals that emerge from the known, as well as predicted, biological structures. And to begin
this work in earnest, we need to examine the relationship between similarity of sequence and
similarity of structure.

The issue is really not too controversial, but its discussion in the literature is often confusing.
For example, time and again we read that “protein structure is better conserved in evolution
than protein sequence.”Let us call this “the first claim of evolutionary structural biology”and
examine it for what it is worth.

First, conservation of which structures and which sequences are we comparing? Obviously,
we are not talking about sequences and structures of two randomly selected proteins. Their
sequence similarity is likely to be random, and so may be their structural similarity: It is not of
much interest which of the two is higher or lower. The real meaning of “the first claim”is, more
or less, that protein structure is better conserved than protein sequence in the evolution of
homologous proteins. But even in this case, how we can start to compare the conservation of
sequence to conservation of structure, when sequences are linear strings of symbols and struc-
tures are sets of points in the three-dimensional space defined by their coordinates? The two
types of similarity are measured in completely different ways. Someday, perhaps, we will invent
a transformation that relates these different types of measurements to some sort of unified
scale, but it is currently not available. Instead of this task, give me comparison of apples and
oranges any day: At least they are all juicy and round, and some of them are even similar in size.

One way out of this confusion is to say that “better conserved” really means that two
homologs may have no similarity at the sequence level, but their structure can still be recog-
nizably similar. This statement is, of course, true. The proposal here is to pay attention not to
the degrees of similarity but to its discrete states. So let us take up this proposition and examine
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the ways in which common ancestry and commonalities in sequence, structure, and function
may interact.

First, two proteins are either homologous or they are not (see Chapter 3). Second, sequences
of any two proteins may be either similar or not. Unlike homology, sequence similarity is not
really an all-or-none trait, but we just agreed to discretize it and to threat it as a binary charac-
ter. Thus, there are four combinations of these properties. Unlike many other schemes that
enumerate different combinations of key components (recall, for example, the discussion of
virus expression strategies in Chapter 4 and of phyletic vectors in Chapter 8), in this case each
combination of traits is actually encountered in nature.

Sequences that are both similar and homologous are one of the main objects of study in
computational molecular biology. Most of this book is in one way or another devoted to dis-
cussing them. Homologous but not similar sequences are also of great interest; these
sequences have diverged beyond recognition, but as the methods for analysis of sequence sim-
ilarity improve, so too will our ability to match them and move at least some of them into the
first category.

A trivial, and perhaps the most common, case is when two sequences are neither similar nor
homologous. A randomly selected pair of sequences will most likely belong to this class.
Lastly, it is also possible that two sequences are similar but not homologous. In Chapter 6, we
examined various ways in which sequences can converge and concluded that the nontrivial
level of global similarity cannot be achieved by convergence. But convergent origin of local
simple patterns is possible, and there are also some other special cases, such as simple periodic
structures convergently forming similar (often fibrillar) regions in proteins. The challenging
question is whether more complex, aperiodic folds can also evolve by convergence.

In principle, this classification covers all possibilities without overlap—each pair of proteins
belongs to exactly one class. In practice, however, when presented with a pair of proteins, we
may not always be able to place this pair into a correct class. This limitation is technical, not
substantial.

If the state of structural similarity is also a binary trait, then adding it to the mix gives eight
classes. In this case, too, all classes are occupied (Table 9.1 and Fig. 9-1). Let us examine each
class, starting from the very last category. Similarities in Class VIII comprise all pairs of pro-
teins such that two proteins in the pair are unrelated to one another in every way -they are not
homologous and not similar, at either structural or sequence level.

At the other end of the spectrum, there are similarities that belong to class I. This class
includes pairs of homologous proteins with similar sequences and similar structures. In the
Structural Classification of Proteins (SCOP) database, the authoritative classification of all
protein structures (Andreeva et al., 2004), such pairs of proteins are related at the family or
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Table 9.1. Eight Classes of Sequence and Structure Similarity between Homologous and
Nonhomologous Proteins

Common evolutionary origin 
(homology) Sequence similarity Structural similarity Similarity class

Yes Yes Yes I
Yes No II
No Yes III
No No IV`

No Yes Yes V
Yes No VI
No Yes VII
No No VIII



superfamily level. The degree of similarity may vary for different pairs of proteins, but a fre-
quently cited threshold number is 30% of identity in a global alignment, which extends to the
whole protein domain (Orengo et al., 1994). At this level of sequence similarity, recognition of
structural similarity is not problematic, and finding sequence homologs in the context of a
protein database search is also trivial. Some of the protein pairs, however, may be assigned to
this class on the basis of much lower pairwise sequence similarity. As elaborated in Chapter 2,
this is because of high sensitivity and specificity of protein sequence analysis: In an extreme
case, multiple sequence alignment and construction of probabilistic model allows one to prove
sequence similarity and predict similar structure for groups of sequences such that many of
their pairwise similarities are at the level indistinguishable from the random background.

Similarities of classes II, III, or IV also deal with homologous proteins. Class II includes
such pairs that have sufficiently close sequences to establish their homology, and yet they adopt
different structures that belong to distinct folds. This type of similarity is of the utmost inter-
est: It represents the phenomenon of fold change in the evolution of proteins. Convincing
examples of this phenomenon are accumulating, and there is even some understanding of the
elementary evolutionary acts, or “moves,”that enable such fold changes, such as addition and
deletion of helices or strands, circular permutation of the entire fold, strand invasion or with-
drawal, beta-hairpin flip, and swap of subdomains (Grishin, 2001a,b; Krishna and Grishin,
2005; Vesterstrom and Taylor, 2006). These evolutionary reconstructions are seconded by the
observations of fold changes that may happen in the lifetime of one protein, as part of a natu-
ral function of that protein [see Carrel and Huntington (2003) for discussion of interprotein
strand invasion in the process of interaction between proteases and their inhibitors serpins].

Deletions and rearrangements of the small number of elements, even if they produce a new
fold, may not affect the majority of the old fold. After just one elementary move, the old and
new folds would contain a comparable number of helices and strands, most of which are con-
nected to each other in a similar order. But give it enough evolutionary time, and after several
small moves the difference between the starting fold and the final product may become
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Figure 9.1. Evolution of the eight classes of similarity shown in Table 9.1. Classes that are more common in nature
are indicated by boldface ovals, and transitions that are more likely to occur are indicated by boldface
arrows.



profound. To illustrate this, Nick Grishin at the Southwestern Medical Center at Dallas pro-
posed a hypothetical scenario of a series of evolutionary steps that could lead to an extreme
change, such as between an all-beta and an all-alpha protein (Fig. 9.2). All the structures in
Fig. 9.2 are those of the real proteins, and at least four of the seven moves are plausible from
the evolutionary standpoint, as a and b are homologs, and e, f, g, and h are most likely also
homologous to each other (although, of course, there is no claim that any of these proteins are
ancestral to one another). The existence of class II similarity between proteins is in direct
contradiction to the first claim of evolutionary structural biology.

Class III covers homologous pairs that do not have sequence similarity but retain structural
similarity. It is for members of this class that “the first claim”holds true. Presumably, class III
pairs evolve from class I pairs as sequences continue to diverge (unless, of course, the structure
changed abruptly at the point when sequence similarity is still recognizeable, as in class II). In
structure databases, this class of similarity is thought to be represented by pairs of sequences
that belong to different SCOP superfamilies within the same SCOP fold.

The number and diversity of folds is widely believed to be constrained, although the nature
of these constraints is only partially understood. It has been proposed that many, although
probably not all, existing folds are in some sense optimal. It has also been hypothesized that at
least some of these optimal folds may be “attractors”in the evolutionary space (i.e., that unre-
lated sequences might converge toward certain structures) (Ptitsyn and Finkelstein, 1980;
Finkelstein and Ptitsyn, 1987; Finkelstein et al., 1993; Babajide et al., 1997; Xia and Levitt,
2004; Wagner, 2005; Zeldovich et al., 2006).

Structural Genomics: What Does It Tell Us about Life? 125

C

A B C D

EFGH

C

CC

D

D

N N

D
D

D
C

C

C C

C C C CD

A
A

A

A

N N

N

N

N N
A

D

e e�

f

a a

e

e

a

e f

f f

c

c

c

b

b

b

d

b

e
f

fc
b

c

e

e

c

c

e��

Figure 9.2. The conceptual evolutionary path from an all-beta to an all-alpha protein (A) C-terminal domain of
alpha-amylase (PDB ID 1BPL); (B) C-terminal domain of G4-amylase (2AMG); (C) N-terminal
domain of the gamma subunit of glycogen phosphorylase kinase (1PHK); (D) N-terminal signaling
domain of sonic hedgehog (1VHH); (E) C-terminal domain of catabolite gene activator protein
(1CGP); (F) N-terminal domain of biotin repressor (1BIA); (G) C-terminal domain of ribosomal pro-
tein L11 (1FOW); (H) DNA-binding domain of HIN recombinase (1HCR). There are evolutionary
connections between a and b, possibly between these proteins and c, and between proteins e–h.
Reprinted from J. Struct. Biol., 134, Grishin, N. V., Fold change in evolution of protein structures,
pp. 167–185, copyright (2001), with permission from Elsevier.



Any pair of proteins that shares structural similarity but has only random-level sequence
similarity is potentially a class III candidate. To decide whether it indeed belongs to class III,
we need to know if two proteins are homologous (then it is a class III pair) or not (in which case
this pair belongs to class VII). In the practice of sequence and structure analysis, this is one of
the most difficult determinations to make. Devising the ways to distinguish between class III
and class VII pairs is a major challenge of computational structural biology.

The situation with class IV is even more dramatic. There is no reason to believe that it is
empty. Evolutionary processes that produce class II and class III pairs may act simultaneously
or consecutively, and this can produce homologs that no longer share either similar sequences
or similar folds. Inference of homology for these pairs of proteins is perhaps the most difficult.

The remaining three classes (V–VII) describe three kinds of similarity that are possible
among nonhomologous proteins. Class V comprises pairs of evolutionarily unrelated proteins
that converged at both sequence and structure levels, and class VI includes pairs of unrelated
proteins that have similar sequences but different structures. These classes are sparsely occu-
pied: In Chapter 6, it was shown that in most examples of sequence convergence, only small
parts of sequence can really converge. However, there are special cases of sequence evolution,
which result in convergence that we are able to recognize as such. These are sequences with
unusual, or statistically biased, amino acid composition. Regions that differ in frequency dis-
tribution of the constituent monomers—nucleotides or amino acids—are frequent in biopoly-
mers (Salamon and Konopka, 1992; Wootton, 1994; Wootton and Federhen, 1996). At least
one-fourth of all residues in protein databases are in compositionally biased regions, and more
than one-half of proteins have at least one such region (Wootton, 1994). These numbers are
somewhat lower for prokaryotes, but higher for eukaryotes. Regions with skewed composition
are especially common in proteins encoded by genomes with strongly biased A+T content
(e.g., Borrelia among prokaryotes and Plasmodium among eukaryotes). Biased regions
include nonglobular structural domains and periodic or quasi-periodic repeats. These occur
especially in large multidomain proteins, in which the nonglobular regions may serve as flexi-
ble hinges between discrete globular domains and repetitive regions tend to form domains with
supersecondary structure. Both types of regions frequently serve as sites of molecular interac-
tions. The connection between low complexity and lack of globularity is strong, and it works
both ways: Whereas low-complexity sequences tend to be unfolded, the structurally well-
folded domains tend to have a high compositional complexity that approaches a random dis-
tribution of amino acid frequencies. Low-complexity/non-globular structures may constitute
the majority of pairs that belong to similarity classes V through VII.

Each of the eight classes of similarity describes a specific kind of relationship between two
protein sequences. The evolutionary relationships between these eight classes are also of great
interest. The possibilities are shown in Fig. 9.1. Obviously, there are two nonoverlapping sub-
sets (quartets) of classes: The homologous sequences cannot become nonhomologous in the
course of evolution, and pairs of unrelated sequences cannot evolve to become homologs. In
each subset, the main direction of evolution is assumed to be duplication and descent with
modification. This generally leads to a decrease in similarity, at both sequence and structure
levels. An increase in similarity can also occur, but everything that we know thus far suggests
that, at least at the sequence level, this is a countervailing trend.

If sequences and structures of all proteins were known (or if structures of proteins could be
accurately inferred from their sequences), and if all evolutionary relationships between pro-
teins were also known, each pair of proteins in the universe would be assigned to one of the
eight classes of similarity shown in Table 9.1. Of course, scientists have not reached this stage
yet. But learning as much as possible about all eight types of sequence and structure similarity
between proteins is a goal that, in my opinion, forms the basis of a worthwhile research
program in computational structural biology. More specifically, we want to know
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how proteins are distributed between the eight classes;
what are the practical ways of distinguishing between these classes;
what are the pathways of evolution of different types of similarity; and
how to use this information to infer protein function and understand principles of protein

organization.

This program is already under way, by the efforts of many colleagues throughout the world,
and it will not become obsolete even after all protein structures are obtained or after the prob-
lem of computational protein folding is solved.

Not everyone is convinced of the worthiness of such an approach. For example, when dis-
cussing the protein folding problem, Blundell and Johnson (1993) stated the following:

Attention was also distracted by an often fruitless argument on evolution. It seems likely that many
protein structures have converged by the evolution of stable, common folds. Equally many proteins
have evolved by swapping exons corresponding to structural, and sometimes functional, modules to
give rise to complex multidomain structures. But it is difficult to be confident of divergent evolution,
and in any case the knowledge is not very useful. Karl Popper reminds us that a hypothesis is of little
value unless an experiment can be devised that might falsify it; this is certainly difficult for hypothesis
about divergent evolution of protein folds.

The general idea of that quotation seems to be that the evolution of proteins should not be
studied because it is a difficult problem irrelevant to protein folding anyway. But in this book,
I argue exactly the opposite, namely that the distraction takes place and confusion sets in not
when researchers care about evolution but rather when they stop paying attention to it. This
applies as much to protein structures (including protein fold prediction) as to genome
sequences. Speaking of Karl Popper, I do not think that difficulty of obtaining a falsification
is the point of his theory. Rather, falsifiability in principle is what distinguishes a scientific the-
ory from nonscience. I also do not recall Popper suggesting that scientists should stay away
from difficult problems. More important, a trouble with invoking Popper’s approach is that it
has little to say about the workings of historical method (although, notably, Popper did not
exclude observational sciences that try to infer past events from the realm of true science). One
way to provide falsification (and verification) in historical reconstruction is by probabilistic
inference, in which Popper did not seem to be very interested [further discussion of the
problems with Popperian justification of evolutionary studies, with emphasis on inference of
phylogenetic trees, can be found in Chapter 10 of Felsenstein (2003)].

Let us now return to the research program that is proposed here. It includes several exciting,
open questions, but perhaps the most interesting among them is how to decide between classes
III and VII (see Table 9.1 and Fig. 9.1).

As already noted, there is no statistical theory that would allow us to distinguish homolo-
gous from analogous proteins based on similarity of structures alone. Many structurally sim-
ilar proteins are known to be homologous, but they are so known because sequence similarity
of these proteins is high enough to infer homology. The real problem is when two proteins have
similar structure and yet sequence similarity between them is at the random level. It is in these
circumstances that we need to make a nontrivial choice among two hypotheses: one about
common ancestor and the other about independent origin of these two proteins.

Several types of approaches may be helpful in answering this question. All of them try to
find support for the first hypothesis (i.e., the common ancestry of two proteins). There does
not appear to be a truly independent way to prove the lack of common ancestry in protein
structures.

The first approach to substantiate the hypothesis of the common origin of two similar
structures is by improving the way to detect statistically significant sequence similarities
between proteins. During the past 20 years, there have been several scientific breakthroughs
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in algorithms and scoring functions for protein (see Chapter 2). With each of these achieve-
ments, the protein universe has become more linked, the families of protein sequences
acquired more members, and members of each family became more diverse. Along the way,
some pairs of structurally similar proteins turned out to be also similar at the sequence
level. To use the language of the SCOP database, improvement of probabilistic methods of
sequence comparison results in reassigning some fold-level similarities to a lower level of
hierarchy (i.e., superfamily level). And to use the definitions introduced previously in this
chapter some similarities that could belong either to class III or to class VII were reassigned
to class I when methods of sequence comparison became more sensitive. This process may
be expected to continue, as long as we do not run out of new ideas in sequence analysis.
What remains unknown, however, is whether each fold will end up being just one super-
family—that is, whether a common ancestor will be established for every fold. If we could
show that this is the case, it would follow that no structural convergence ever occurred, at
least up to the fold level—a nontrivial result indeed.

The second approach to infer common ancestry of similar protein structures relies on intro-
duction of novel characters. A 20-letter alphabet is most likely not the only one that is relevant
for evolutionary comparison of protein sequences. As discussed in Chapter 2, each amino acid
residue possesses not just one property, such as hydrophobicity or hydrophilicity, but rather a
whole array of properties. For example, serine is a hydrophilic amino acid with the hydroxyl
group on the small-sized side chain. Because it is small, it can be found in the turns of the main
chain, as can glycine and alanine; however, unlike these latter two, serine also commonly serves
as a nucleophile in catalysis (most often in hydrolases), which makes it similar to aspartic and
glutamic acids, as well as to cysteine. Although nucleophile serine in the conserved catalytic
center of a protein is physically the same as a small serine in a nonconserved loop, they are in a
sense different amino acids, with distinct functional roles and distinct evolutionary trajecto-
ries. Serine, moreover, is a target for posttranslational modifications, most prominently by
phosphorylation (in this respect, it is unlike G, A, D, E, or C but is quite obviously more simi-
lar to threonine and tyrosine—two other amino acids with hydroxyl groups in the side chains,
which are also subject to phosphorylation). In this case, even the physical identity of amino
acid side chains is different (phosphoserine vs. serine). New analytical techniques, such as mass
spectrometry, allow us to characterize many, eventually most, covalent modifications that
happen to proteins. The databases of the known amino acid derivatives and their locations in
proteins will continue to grow. More characters in the amino acid alphabet would result in a
better signal-to-noise ratio in protein sequence comparison. The work on such enlarged
alphabets has barely started.

An even more radical alphabet change would be to consider other characters besides the
identities and modifications of amino acid side chains. The protein sequence can be viewed as
a string on the alphabet that is much longer than what is provided by the amino acid chemistry.
Not much work has been done on this issue, but a few existing proposals include using dipep-
tides or other short words (Gonnet et al., 1994); matching elements of secondary structure
directly (Russell et al., 1996); and searching for certain “peculiar structural hallmarks,” such
as kinks and bulges in the protein main chain (Richardson et al., 1978; Hemmingsen et al.,
1994). In fact, the latter class of characters appears to play a role in Alexei Murzin’s (1998)
assignments of fold and superfamily level in the SCOP database. The statistical foundations of
all these approaches remain to be worked out.

The third approach is to use the post-homology evidence (see Chapter 8). Suppose that two
proteins with similar structures but random sequence similarity are found in similar genome
context across many different species: For example, they are surrounded by the same set of
homologous genes on the chromosome, or they are fused with the same set of homologous
domains. The idea is to treat such additional information as an indication of the possible
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common ancestry of such genes. Note that this is an argument different from using genome
context to infer similar functions of proteins. As can be recalled from Chapters 6 and 8, gene
function can indeed be inferred from similar genome context, but this does say much about
their common origin. In the context of the current task, however, this is not a problem. Indeed,
precisely because structure and function of genes in similar genome context does not have to
be similar, it is all the more telling when the structurally similar proteins are encoded by genes
that share the same genome context. In special cases, such as when two domains of the same
protein have very similar structure, the hypothesis of protein origin by intergenic duplication
seems all but proven. Note, however, that, as discussed in Chapter 8, more general quantitative
theory of genome context and its evolution remains to be developed, and even in the most
straightforward cases, such as those of duplicated domains, nothing has yet been put into a
quantitative framework that allows us to make a probabilistic inference.

All these, and probably other, new approaches will be worked out in the near future. The
fourth, perhaps most promising, new approach may be to study the structurally similar frag-
ments of unrelated folds, where “unrelated”means that the cost of conversion of one fold into
the other is evolutionarily or physically prohibitive. This would lead to the collection of truly
convergent pairs of protein fragments with similar structure (Nick Grishin, personal commu-
nication).

However, there is a major obstacle to these programs of study—the unsolved problem of
measuring structural similarity between proteins. The classification outlined in this chapter is
only possible if we can determine which pairs of structures are similar and which are not.
Moreover, although we agreed to treat structure similarity as a binary (all-or-none) character,
in reality similarity has degrees, and some pairs of similar sequences are more similar than the
others. What is the best way to measure structural similarity?

Often, there are multiple ways of measuring the distance between the same objects, and they
are not all equal in their ability to recover the signal in which we are interested. So how to
choose the right measure—in this case, the best measure of structure similarity?

The choice of the distance measure is more straightforward when there is a hypothetical
model, or several competing hypotheses, of the process that generates data. In that case, the
likelihood of the models given the data can be compared, and the best model can be selected
using, for example, likelihood ratio test. This approach is applied, for example, when studying
evolutionary relationships: One compares several models of character evolution, determines
the likelihood of each model given the phylogenetic tree, and selects the best model, in this way
obtaining the most plausible distance measure between characters. For protein structures,
however, there is no causative process model.

Hierarchical clustering is a useful way to organize the data on sequence and structure simi-
larity. Phylogenetic trees are perhaps the most familiar example of hierarchical clusters that
are studied by biologists; in this case, hierarchical structure of the cluster represents its evolu-
tionary history, as long as the distances between the sequences containing evolutionary infor-
mation. There is only one, but major, problem in applying the clustering algorithms to
structures: The differences between distances are informative only when the distances are rel-
atively small (distances are good for quantifying similarity but not as good in comparing the
degrees of dissimilarity). In other words, if two structures are very similar (as is the case for
most orthologs in two evolutionarily close species), they can be superimposed, which means
that a large number of homologous residues in both structures can be forced to occupy the
same space. But as evolutionary distance between sequences grows, structures undergo several
simultaneous types of change.

First, there are amino acid substitutions. When we score sequence similarities, the func-
tion that describes the cost of each type of substitution is straightforwardly derived from 
the database of aligned protein families. But what is the effect of substitutions on the 
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three-dimensional shape of proteins? Although, by definition, only the side chain atoms are
replaced in this case, the effect goes beyond the differences in side chains. Substitutions
between small and bulky amino acids may affect the configuration of the main chain, changed
patterns of hydrogen bonding between the replaced side chains affect the interactions between
elements of secondary structure, and the length of these elements may also change.

Second, there are short insertions and deletions of a relatively small number of amino acids,
which also affect the length of strands, helices, and loops, as well as their interactions. Third,
some combinations of substitutions and indels cause even more extensive remodeling, such as
the aforementioned changes in the number and orientation of helices and strands.

Thus, as dissimilarity between sequences grows, so too does the dissimilarity between pro-
tein structures. While sequence similarity is relatively high (by that we mean more than just
pairwise similarity; we assume that probabilistic searches in the databases of sequence and
sequence domains are also possible), there is no problem: We can use statistical theory of
sequence similarity to compute the distances between sequences and use them to indirectly
compare distances between different proteins with the known structures. This is useful in
many regards, but for the goals of direct structure comparison it is neither here nor there: It
does not provide any way to state which two shapes are the same, which are different, and by
how much.

The same problem remains if we decide to forego sequence similarity completely and to
develop some geometry- or topology-based measure to compare sequences. Many such meas-
ures have been proposed. They typically compare positions of certain atoms in the Euclidean
space or use some vector-based representation of protein structure. Most of these methods
have been optimized to recover, as closely as possible, the information on the relationships
between protein structures as they are captured in the existing databases, for example, in the
manually curated SCOP database, and they perform reasonably well (in the range of 80–90%
accuracy) on this data set. But the problem is that the method’s accuracy is an average. When
newly determined structures are submitted for similarity search, many stand an excellent
chance of being correctly linked to their closest relatives, whereas some will find no relatives at
all or will produce only matches of uncertain relevance. Typically, the structures in the first cat-
egory, which find relatives in unequivocal manner, match their structural relatives also at the
level of sequence similarity. On the other hand, the structures that do not match anything may
be either truly novel folds or extensively modified versions of already known folds (indeed,
what is reported as a novel fold is not infrequently assigned to already existing folds by the
SCOP database curators after more thorough visual examination). Thus, the automated
methods of structure comparison work best for structures that can also be compared at the
sequence level, and they are less useful when they are needed most.

Thus, structural similarity is a concept that remains poorly defined, and the existing scoring
functions for structural similarity work well only at a relatively narrow range of high similar-
ity. Moreover, most of the existing methods of structure comparison rely on some sort of map-
ping of equivalent structures and thus are not well suited for comparing sequences with
different folds. The state of the art can be summarized by another quotation from Ginalski
et al. (2005). The authors discuss one aspect of structure comparison, namely, the way to com-
pare quality of different CASP models of the same protein to its native structure. Obviously,
this should be a relatively easy task because a good homology model is by definition quite
similar to the native structure. However,

the structure prediction community has failed so far to define a standard model assessment algorithm.
The main reason for this is the lack of an exact definition of similarity between the native structures
of two proteins. Different structural classifications of proteins, such as SCOP, CATH, or FSSP, dis-
agree in many cases when assessing a weak similarity between two native structures, which is at the
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level of similarity between models for difficult to predict targets and the correct structure.... As a
result of the ambiguity of structural classification, the annotation of a model as “correct fold” or
“incorrect fold” remains rather arbitrary.

Herein lies the need of real understanding of structural diversity of proteins and the process
that generates them. Much in that realm, from fold recognition to structure classification, can
be accomplished without even looking at the structures (i.e., at the sequence comparison level).
However, it is hoped that in the future purely structure-based approaches will prove useful to
the supertask of deciphering functional, evolutionary, and structural signals in proteins. (The
quest for structural signals in protein structures may seem tautological, but in fact the ability
to discern the elements of structure that contain a signal, as opposed to noise, is not trivial.)

The task of building a robust classification of structures without using sequence similarity
remains formidable. One approach to this problem is to study physical restrictions that are
imposed on the ways in which proteins fold. This work started long ago, before nucleotide
sequencing became practical, and very general rules of what is allowable in protein folding
were discerned by examination of a small number of then-available protein structures (Levitt
and Chothia, 1976; Ptitsyn and Finkelstein, 1980; Richardson, 1981). Although the first
impression from high-resolution protein structures was that they are much less organized than
regularly ordered nucleic acids, this bewilderment was quickly replaced by the understanding
that proteins are not random conglomerates of alpha helices and beta strands, but they “obey
the restrictions of symmetry, simplicity, and good design.”Based on the analysis of propensi-
ties of protein chains to engage in various types of physical interactions, Ptitsyn and
Finkelstein (1980) proposed the following as the main principle of protein structures: “The
dominating majority of polar groups either form intramolecular hydrogen bonds or are
exposed on water while the maximum number of nonpolar groups are shielded from water.”

This simple idea has powerful implications. Most important, in order to practically achieve
these exposures and shieldings, protein molecules rely on the finite set of chemical groups and
on the limited repertoire of bond lengths and angles that are compatible with protein chem-
istry. This imposes a set of powerful restrictions on the architecture of a protein fold. The fol-
lowing are some well-known rules. First, turns between beta strands tend to be right-handed
(Fig. 9.3A). Second, knots (i.e., crossings of any two elements of secondary structure) are rare
(although examples of crossing loops are known; see Fig. 9.3B). Third, as a corollary of the
second restriction, two adjacent elements almost never cross, and two adjacent beta strands
are therefore usually antiparallel, whereas two beta strands separated by a helix are more com-
monly parallel to each other, with each strand being antiparallel to the helix. Fourth, beta
sheets have a twist (Fig. 9.3B), a feature for which different physical rationales have been
offered but that is not fully explained. Finally, most protein folds are arranged in two, three, or
four planar layers.

In the 1970s, these rules were used by several investigators, most notably Jane Richardson
of Duke University as well as Oleg Ptitsyn and Alexei Finkelstein of the Institute of Protein
Research, USSR, to enumerate various arrangements of the elements and layers in proteins
with known folds. One extensively studied example is a commonly encountered arrange-
ment of alpha helices and beta strands known as parallel alpha/beta topology due to the fact
that the basic unit of this type of fold is a beta strand that may be followed by either a loop
or an alpha helix, and when several such units are concatenated, the strands are parallel in
the sense that their C-termini point in the same direction (Figs. 9.3 and 9.4). The simplest
and largest class of structures with this topology is the four-layered alpha/beta barrel, which
we will also discuss later in this chapter. The other, also very large, class is the so-called dou-
bly wound parallel beta sheet—usually a three-layer structure that includes, in addition to
the sheet, two layers of alpha helices on both sides of the sheet. Jane Richardson (1981) says
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“with right-handed crossovers the simplest way of protecting both sides of the sheet is to
start near the middle and wind toward one edge, then return to the middle and wind to the
other edge.” Richardson has collected all variations of this arrangement, starting from the
six-stranded sheets with closest adherence to this organizing principle and then expanding
to folds that deviate from the standard by addition and deletion of stands and helices, as well
as changes in the “wiring order” of the elements (Fig. 9.4). She noted that the scheme
grouped “these domains into five gradually loosening levels of topological similarity, with-
out attempting to make any definite decision as to where the dividing line lies between diver-
gent and convergent examples.”

Another class of beta sheets, known as Greek-key topology, was simultaneously studied
along similar lines. The key element in all folds with this topology can be visualized as a beta
hairpin with two strands in each half, the upper half of which is bent to the left. Many pro-
teins, with unrelated sequences and different molecular functions, have folds that can be seen
as variations or elaborations of this theme. The most important variation is the addition of
one or more beta strands, which may be added at the N-terminal side of the main element, the
C-terminal side, or both sides. Their position and connectivity determine the extent of the
overall twist of the beta sheet, which may curl into a barrel, a half barrel, or end up being flat-
tened into two layers. Some variation is also introduced by occasional addition of alpha
helices. In 1980, Ptitsyn and Finkelstein enumerated 13 distinct all-beta Greek-key domains.
By “domain,” they meant a group of protein structures that had recognizable sequence simi-
larity and could be treated as one entity. That definition is similar to sequence family or super-
family, as it is understood today. Those 13 domains accounted for more than two-thirds of the
all-beta domains known at the time. Ptitsyn and Finkelstein wanted to go beyond simply enu-
merating the observed structures and asked for the most plausible explanation of the simul-
taneous existence of all these structurally similar groups of proteins. They concluded that
these groups could not be explained by sequence divergence because there was no evidence for
the common ancestor of any 2 of the 13 structural domains [with a trivial exception of two
copper-binding proteins, azurin and plastocyanin, which should have been included into one
“domain” (i.e., sequence superfamily), as, indeed, they are now]. Neither could these groups
be explained by functional convergence because functions were all different, without any
molecular commonality such as binding to the same ligand. Ptitsyn and Finkelstein (1980)
concluded,
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Figure 9.3. (A) Left-handed connection between adjoining beta strands. Reprinted from Adv Protein Chem., 34,
Richardson, J. S., The anatomy and taxonomy of protein structure, pp. 167–339, Copyright 1981, with
permission from Elsevier. (B) A three-layered parallel alpha/beta structure of a tRNA-N1-guanyl
methyltransferase TrmD of the SPOUT family (PDB ID 1P9P) showing two of the features described
in the text: the twist of the beta sheet, which is very common, and the crossing of two loops (at the fore-
ground), which is very rare.



We have to assume that the surprising similarity of beta-protein structures cannot be explained by
such biological reasons as evolution and functioning but [is] due to purely physical reasons favoring a
very limited class of structures in comparison with all others.

Today, we may not be satisfied with this conclusion. The three hypotheses explaining struc-
tural similarity in the absence of sequence similarity—sequence divergence, function conver-
gence, and satisfaction of structural constraints—are not mutually exclusive. We now know
that common function and common ancestry correlate, but imperfectly; in particular, as
homologous sequences diverge, functions of paralogs, and even those of some orthologs,
change. Therefore, difference in function does not do much for dismissing the hypothesis of the
common origin of two structural domains. Furthermore, physical constraints determine 
the space of possible protein structures, but this does not address the question of diver-
gence and convergence. Even when restricted by these constraints, the existing domains had to
evolve to their similar structures either by divergence from a common ancestor (and what is the
evolutionary relationship between this ancestor and proteins with other structures?) or by
convergence from different shapes.

Thus, if we want to discern the divergence and convergence events in protein evolution,
understanding of physical constraints on protein architecture is not sufficient. At the same
time, this understanding is necessary because all evolution takes place in this constrained space
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Figure 9.4. Richardson’s space of doubly wound alpha/beta folds and related structures. The extent of deviation
from the “ideal”structure (inset) increases from top to bottom. Reprinted from Adv Protein Chem., 34,
Richardson, J. S., The anatomy and taxonomy of protein structure, pp. 167–339, Copyright 1981, with
permission from Elsevier.



of allowable structures, and all changes in protein evolution are transitions either within an
allowable fold or from one such fold to another.

A fresh view on the interplay of physical constraints and evolutionary trajectories in protein
structure space is the proposal of a “periodic table”for protein structures by William Taylor of
the National Institute for Medical Research in London (Taylor, 2002). Taylor outlined the way
to enumerate all possible combinations of alpha helices and beta strands in a protein or, more
precisely, in a protein structural domain. In order to derive a manageable number of different
idealized structures (called forms), he imposed some restrictions of extremely general nature,
which have to do mostly with the properties of the whole molecule rather than those of indi-
vidual secondary structure elements and their connections. At the highest level, all proteins are
assigned to groups on the basis of the number of alpha and beta layers and the extent of twist
in the main beta sheet (Fig. 9.5). Structures with more than four layers are exceedingly rare and
are not considered. On the other hand, all-alpha and small ligand-dominated proteins are not
covered by the “periodic system” because layers are much more difficult to define in these
classes of proteins.

Each group defined by the number of layers and their “curl and stagger” can be subdivided
into smaller groups. A useful way to do this is by the number of beta strands. For example, the
form O-21 in Fig. 9.5 corresponds to an alpha-beta barrel, also known as TIM barrel (after the
enzyme triose phosphate isomerase, which was the first to be recognized as a regular, highly sym-
metrical shape;Lasters et al., 1988). TIM barrel is the most common fold in the known protein
universe, usually with six or eight strands in the beta sheet. The number of alpha helices around
the central barrel can vary,giving rise to 30 variations (Fig.9.6).Similar considerations allow one
to enumerate all other possibilities for other classes of proteins in Taylor’s periodic table.

Taylor pointed out the analogy between this system of protein structures and Mendeleev’s
periodic table. Filling the layers with secondary structure elements is akin to filling orbitals
with electrons, and there is distinct periodicity; for example, ideal forms with different setups
of beta layers may nevertheless have the same range of alpha layers. Of course, another anal-
ogy with periodic table is that Taylor’s system, as well as that of Mendeleev, is designed to be a
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Figure 9.5. Top level of Taylor’s (2002) periodic system of protein structures. Beta layers are shown by thick lines
or large open circles, and alpha helices are shown as small solid circles. Reprinted by permission of
Nature Publishing Group.



“flat,” nonhierarchical system and is not meant to represent the knowledge about evolution-
ary origins of its elements.

The elegance of both periodic systems is, nonetheless, breathtaking. And one remarkable
consequence of Taylor’s system for protein classification is that the completely defined space
of ideal forms provides us with a novel way to compare any two protein architectures. Namely,
we can map two real structures to their closest forms and then find the smallest form that con-
tains both of these forms as its subsets. The number of elements that have to be added,
removed, and rearranged to move between all these forms can be taken as the measure of dis-
tance between the structures. Algorithms are available to do all this with reasonable efficiency.
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Taylor’s forms are not concerned with the order in which strands and helices are connected.
However, after all real structures are assigned to their ideal forms, one can count all distinct
folds within any form. The rules of connectivity and handedness, described previously, impose
significant restrictions on the number of distinct folds in most forms. This is another manifes-
tation of the same rule that we have observed many times in different contexts, namely that the
classes defined by combination of several simple and reasonable principles tend to be nonran-
domly occupied by biological objects.

In the future, the properties of two spaces—the space of ideal structure forms (which can be
called Taylor space) and the space of allowed protein conformations [which should be called
Richardson space after the seminal work of Jane Richardson (1981)]—may be tied together.
The goal, then, will be to understand whether the elementary acts of fold change, such as those
outlined by Grishin and colleagues, can be used to explain transitions between folds in these
spaces. Particularly useful would be a function that would allow us to assign scores, or costs, to
compare various pairs of folds. This task is analogous to the scoring approaches used for
sequence comparison (see Chapter 2). In this way, we will undoubtedly get closer to the goal of
infusing the classification of protein structures with evolutionary information.

Thus, we return to the question posed at the beginning of this chapter: What do protein
structures tell us about genomes, and what can complete genome sequencing tell us about
protein structures?

Let us recall the first fact of comparative genomics and the studies of the extent of paralogy
in complete genomes (see Chapter 5). Completion of genome sequences puts the upper limit
on the number of protein families in the genome and on the number of distinct structures that
proteins encoded by a genome can have. If we ignore molecular motions, induced conforma-
tional changes, and changes resulting from protein posttranslational modifications, then each
protein has approximately one fold, and the total number of folds in any genome cannot be
higher than the total number of proteins. But in fact, the number of folds in a genome is much
lower than the number of proteins because of paralogs that share the same fold (similarity
classes II and III) and also because of the existence of unrelated proteins with similar struc-
tures (similarity class VII). Remembering that the average PHISO value (see Chapter 5) across
many genomes is often on the order of 50%, we can conclude that the number of distinct pro-
tein folds encoded by any genome cannot exceed 104. More accurate estimates are also avail-
able (we will examine them in more detail in Chapter 10), but in any case it is clear that the
progress in genome sequencing can give us the resources for making direct estimates of the
number of folds that are already known as well as the upper bound on the number of folds that
remain to be determined.

Sensitive methods of probabilistic sequence analysis, discussed previously in this chapter
and in Chapter 2, allow us to find homologs with the known three-dimensional structure for a
large fraction of proteins encoded by any completely sequenced genome. The most up-to-date
analyses indicate that such homologs are tractable for approximately half of all proteins in any
genome. This estimate needs several qualifications, however. First, this 50% figure actually
refers to proteins that have at least one domain with recognizable fold. Some such proteins may
also contain domains that do not have relatives with known structure, so the fraction of total
protein length that is covered by structurally characterized homologs may be lower. Second,
the percentage is average; the coverage with structurally characterized homologs is higher for
compact, globular domains and lower for membrane domains. Third, there are extreme
genomes, such as viruses and plasmid-rich genomes of some bacteria, for which the fraction of
proteins related to molecules with known structures is lower than 50%. However, as assess-
ment of the progress of structural genomics projects shows, coverage increases with time,
although perhaps the rate of such increase would benefit from better planning and coordina-
tion of target selection (Chandonia and Brenner, 2006).
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Fold distribution in different genomes is also of interest. Proteins belonging to each fold
within a given genome can be counted, and these counts in different genomes can be compared
(most appropriately, after normalization that takes into account differences in genome sizes).
Most often, the justification of these surveys is also given along the lines of structure predic-
tion, modeling, and optimal strategy for selecting representative targets to cover structure
space. But in fact, the results are interesting not only because they are monitoring the process
of structural sampling from that space but also on their own merit. Indeed, several observa-
tions of considerable scientific interest have emerged from these studies.

The first general observation is that the protein structure space as a whole and also each
complete proteome (which can be considered a sample from that space) comprise three cate-
gories of folds, called “superfolds,”“mesofolds,”and “unifolds”(see Chapter 10). Superfold in
the strict sense means a fold that consists of many sequence superfamilies. Using our defini-
tions, it is a large set of sequences that belong to similarity class VII. In any proteome-scale or
database-scale data set, the high end of the distribution of proteins by folds is always repre-
sented by one or more such superfolds. The TIM barrel fold is the most common fold in the
protein database, and it is also one of the most common folds in most microbial proteomes. On
the other hand, a fold may be very common in a proteome, and at the sequence level it may
resolve to just one superfamily of clear homologs. This is the case for kinases with serine/thre-
onine/tyrosine/peptide/lipid kinase fold: All proteins in this diverse group of proteins can be
shown to share common ancestry by sequence analysis (Cheek et al., 2005), so their shared
structure is clearly the result of divergent evolution of one sequence superfamily. In many
eukaryotes, this set of kinases is the fold with the largest number of representatives. This is not
a superfold in the previous sense, but it is a superfold in a different, simpler sense—a supersized
fold that happens to consist of many members of one sequence family (in the case of human
proteome, approximately 500; Milanesi et al., 2005). The second result of the fold surveys in
complete proteomes is that the usage of folds contains evolutionary and functional signals, but
these signals are quite subtle. More than two decades ago, it was noticed that the correlation
between structures and broad classes of protein functions is less than perfect. In her ground-
breaking review, Jane Richardson (1981) presciently noticed that biochemical activities such
as “protease,” “peroxidase,” “nuclease,” or “oxygen carrier,” do not define a protein sequence
family or fold: Each such activity can be represented by more than one type of protein. This
idea reaches its high point in the notion of gene displacement (see Chapter 6), when not just a
broad group of activities but, for all practical purposes, exactly the same molecular function is
enabled by two or more evolutionarily and structurally unrelated proteins. One exception,
however, was noted by Richardson: All nucleotide-binding proteins whose structures were
known in 1980 had one and the same fold, namely the three-layer alpha-beta-alpha Rossmann
fold (see Fig. 6.2). The Rossmann fold indeed seems to have a special affinity to nucleotides and
nucleotide derivatives: The ligands that are bound by different classes of Rossmann fold pro-
teins include ATP, GTP, NAD(P), FAD, S-adenosyl methionine, and nucleoside diphospho-
sugars. It can be said that almost every Rossmann fold protein interacts with some sort of
nucleotide derivative. However, the opposite is not true: Not all ATP-binding proteins are
Rossmanoids. Indeed, a survey of just one subset of ATP-utilizing enzymes, namely kinases,
showed that there are at least 10 distinct structural folds and up to 25 protein superfamilies that
have evolved kinase activity (Cheek et al., 2005). Similarly, S-adenosyl methionine is used as a
ligand and donor of various chemical entities by many Rossmann fold proteins—most notably
by a large group of SAM-dependent methyltransferases—but there are at least 12 unrelated
groups of SAM-binding proteins with different folds, including at least two groups of non-
Rossmanoid methyltransferases (Kozbial and Mushegian, 2005).

A similar picture is seen when fold usage is compared across evolutionary lineages. For
example, bacteria and eukaryotes use protein phosphorylation for cellular regulation and
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signal transduction. Serine/threonine kinases in eukaryotes are well studied and, as already
mentioned, are a very large sequence family, one of the largest in any eukaryotic proteome. In
bacteria, much of signal transduction is mediated by histidine kinases—also a large family,
although relatively smaller than serine/threonine kinases in eukaryotes and not related to them
in sequence or structure. For some time before the era of complete genomes, this seemed to be
a perfect evolutionary correlation: Protein phosphorylation in bacteria is enabled by histidine
kinases, and in eukaryotes serine/threonine kinases play broadly the same role (although pro-
tein substrates of these kinases, of course, as a rule are not homologous). Eventually, however,
exceptions started to accumulate. First, plant phytochromes and related animal cryp-
tochromes were shown to contain a histidine kinase-like domain (Schneider-Poetsch et al.,
1991), and then another histidine kinase was discovered in yeast (Ota and Varshavsky, 1993).
On the other hand, serine/threonine-type kinases were discovered in bacteria, first in some
human parasites, where they were initially explained (away) by occasional lateral transfer from
the host (Chiang et al., 1989; Munoz-Dorado et al., 1991), and then, with the advent of
genome-scale sequencing, in almost all bacterial genomes, where their evolutionary history
could not be reduced to secondary acquisition from eukaryotes and instead pointed to their
ancient origin (Leonard et al., 1998).

Has there been a specific evolutionary advantage for preferential expansion of histidine-
type kinases in bacteria, and serine/threonine-type kinases in eukaryotes, or are we seeing sto-
chastic processes at play? Can the size of a family or a fold in a given lineage determine the rate
of its own expansion, in some kind of a “rich get richer”rule? Little is known about the evolu-
tionary forces that shape the family and fold usage in various lineages. We examine some of the
novel approaches to this problem in Chapter 14.
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How Many Protein Families
are There?

In Chapter 5, we examined the first fact of comparative genomics, which states that protein
sequences are well conserved in evolution, or, more specifically, that modern methods of
sequence analysis have become sensitive enough to find homologs for the majority of protein
sequences in the database and for most proteins encoded by every sequenced genome. In other
words, most proteins belong to protein families: Some of these families are ancient, others are
more recent; some are large, others are small; some have representatives in many evolutionar-
ily distant species, others are distributed more narrowly—in the extreme case, they may be
found in just one genome. So, how many protein families are there?

This is an important question. In Chapters 5–9, we saw that the percentages of proteins that
have relatives in the same genome and in other genomes are much more than just genomic
trivia: They help us to understand and compare properties of different genomes, to set expec-
tations for predicting function at the genome scale, and to understand genome evolution. As
we include increasingly more genomes in our analysis, we will get closer to learning the organ-
izing principles of the protein space as a whole and perhaps to understanding origins and the
evolution of life (discussed further in Chapter 13). And one fundamental aspect of the protein
space is its partition into protein families.

But how do we define protein family? A natural way to do so is to use homology: A family is
such a set of proteins that every protein in it is homologous to all other proteins in the same
set, and has no homologous proteins outside of this set. In practice, however, there are at least
two difficulties with this definition.

One technical difficulty is that proteins consist of domains that can be fused and split, and
in many cases, homologous relationships characterize protein domains rather than whole pro-
teins. Thus, all operations on families have to take the domain organization of proteins into
account. Domain partitioning is an important problem that does not have a robust algorith-
mic solution. Nonetheless, there are several domain databases that are curated by human
experts, and they may be seen as a reasonable approximation of the universe of the known
domains.

A much larger problem is that, in general, the complete set of homologs of any protein is
unknown. For any protein, we can use our favorite state-of-the-art method to find all its
homologs. But no method is perfect, and the inference of homology is a statistical one, with
associated rates of false negatives and false discoveries. There is always a chance of missing
some homologs, especially the highly diverged ones. Obviously, we will also miss those homol-
ogous genes that have not been sequenced yet. (If we are concerned with evolution, we have to



140 Foundations of Comparative Genomics

add to this set all the ancient proteins that existed in ancestral, now extinct species). Thus, every
known protein family is really a sample of the true family.

As always with homologs, it is the common ancestry that matters, not the degree of similar-
ity. This is why division of the protein similarities into family and superfamily levels is arbi-
trary. Sequences within superfamilies are “allowed” to be less similar to each other than in
families. The lower bound of a similarity between two homologs within a superfamily is not
defined, but pairwise identity of ≥30% is often used as a cutoff to inclusion into a family. This
same percentage value is the inflexion point on a graph describing the success of homology
modeling: More than 90% of sequences that have homologs with the known structure and
sequence identity of ≥30% can be modeled by homology with high accuracy, whereas
sequences that have homologs less similar than 30% typically can be modeled only approxi-
mately (Orengo et al., 1994; Ginalski et al., 2005). I am not aware of any other significance of
the 30% mark, and because the rules of thumb in homology modeling will not concern us much
in this chapter, I use “families” in the sense of the known subset of the complete set of homol-
ogous proteins. This definition also covers superfamilies.

Comparison of structurally similar proteins is more of the same: Domains need to be taken
into account (methods to do so are available, although in general they are even less accurate
than the approaches to parsing sequence domains), and each structural family is a sample of
what might be the true set of proteins with similar structures. In addition, however, the quan-
titative theory of structural similarity is usefully defined only for very similar structures, and
statistics of structural comparison falls apart for most pairs of distantly related structures.
Furthermore, the problem of distinguishing homologous from analogous folds (i.e., separat-
ing class III from class VII similarities, discussed in Chapter 9) remains untractable. I call a
group of proteins with known structure a “structural family” when there is evidence that all
structurally similar proteins in this group are homologous. When the set contains structurally
similar proteins that may be analogous, this will be called “fold”(note that upon new evidence
a fold may turn out to be a structural family).

Finding sequence families and finding structural families of proteins are tasks of evolu-
tionary inference. At the technical level, however, they are usually presented as problems of
clustering by similarity. As for any problem of that type, these clustering tasks include three
main components: a measure of similarity between protein sequences or structures, a way of
producing clusters, and a statistics evaluating the significance of each cluster.

Frequently, these distinct tasks are lumped together in a somewhat confusing way. For
example, Yan and Moult (2005) note,

No sequence-based method is able to detect all evolutionary relationships: Experimental structure
determinations reveal previously undetectable relationships in many cases. Thus, all sequence-based
families are, in some sense, arbitrary, reflecting the effectiveness of current relationship detection
algorithms rather than the number of independent evolutionary lines.

In the same vein, Orengo and Thornton (2005) say:

As the number of known structures solved by x-ray crystallography and NMR techniques increased,
it became clear that protein structure is much more highly conserved throughout evolution than pro-
tein sequence.... In contrast to protein sequence, where in some families relatives have been detected
sharing fewer than 5% identical residues, in many protein families at least 50% of the structure, mainly
in the core of the protein, is highly conserved . . . and can be used as a fingerprint to detect very distant
relatives.

These quotes and many other similar ones, if read literally, suggest that structural families—
by which many authors also mean folds or, at least, they do not distinguish true structural fam-
ily from a fold—are more reliable estimators of the number of homologous families or



“independent evolutionary lineages” than sequence families. But such a statement may not
hold a closer scrutiny.

There is no doubt that sequence comparisons, even the most elaborate ones, are not guar-
anteed to find all homologs. It is also true that for this reason, every partitioning of protein
sequence database into families is imperfect. However, as I argued previously, any definition
of a sequence family is an estimation of its real size. Different assumptions and statistics may
be used for family or fold definition, and as they improve, so too does the accuracy of the esti-
mates. Also, in any given “relationship detection algorithm” the number of independent evo-
lutionary lines will always remain a statistical estimate. In that sense, every partition of the
protein space into families is an approximation, unless all existing proteins, all ancestral pro-
teins, and all lines of descent were known in advance (in which case there would be no reason
to seek answers for the evolutionary questions).

The same is true of clustering structural families. When we compare structures, we also esti-
mate the size of each structural family. The suggestion that direct comparison of structures
may produce a better estimate of real size of sequence families is quite common, but in fact,
just the opposite may be true. To illustrate this, let us turn on its head the argument made by
Orengo and Thornton (2005). They note that in sequence comparisons we can sometimes
detect homologs that have just 5% of identical residues. When comparing structures, however,
5% or even 15% of superimposed residues will not do much for establishing homology. Thus,
structure-based clusters of proteins are approximate (but not “arbitrary”) in exactly the same
sense as sequence families: They are but the estimates of the true clusters.

The number of protein folds is smaller than the number of sequence families—this much is
not controversial. This basic fact can be, at the first approximation, derived from the frequen-
cies of different types of events in divergent and convergent evolution. One such event is
descent with modification of two protein sequences, which may proceed to the point at which
the sequence similarity decreases to the background level, but structural similarity is still pre-
served. This was described in Chapter 9 as class III similarity. This process, which is most likely
the thoroughfare of protein evolution, results in the excess of sequence families over folds.
Another event is convergent evolution of folds (class VII similarity), which also results in an
excess of sequence families over folds. Finally, abrupt but local sequence change is possible,
which changes protein fold but maintains global sequence similarity (class II similarity). In
this process, the overall number of folds may increase only when the starting fold was
nonunique and the resulting fold is novel. Clearly, this accounts for only a fraction of the rela-
tively rare cases of fold change in divergent evolution (the list of examples of class II similari-
ties is too short to estimate accurately the rate of generation of new folds in this process). If
protein evolution is fully described by these processes, the net result is the excess of families
over folds, and the ratio of families to folds would keep increasing.

One factor that has not been considered thus far is gene loss. Genes, as well as whole families
and folds, are unevenly distributed in different evolutionary lineages. Families can be selec-
tively gained and expanded, but they may also be selectively lost. For example, yeast
Saccharomyces cerevisiae lacks many genes that are widely distributed in other fungal genomes
but must have been deleted in the ancestral lineage leading to hemiascomycetes (Aravind et al.,
2000). Even human proteome, thought to be one of the most complex among metazoa, lacks
a few genes that other animals have. Not only single genes but also complete families can be lost
in the evolution of individual lineages (and some ancestral proteins and protein families must
have been wiped out in all surviving lineages so that we may never know that they existed). Here
again, however, there is no process to countervail the excess of families over folds. Therefore,
and regardless of the exact numbers, an accurate estimation of the number of folds puts the
lower bound on the number of sequence families, and accurately estimated number of families
puts the upper bound on the number of folds. The problem is derive reasonable estimates for
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the numbers of families and folds in the protein universe as a whole and in completely
sequenced genomes.

The idea of a large excess of sequence families over structural folds has been discussed innu-
merable times in the literature. In this chapter, however, and also in Chapter 9, we have seen that
in order to correctly understand this excess, we have to overcome an apathetic attitude toward
evolution (e.g., “divergence versus convergence is difficult to prove and not interesting anyway;
what really matters is fold recognition”), as well as simplistic understanding of the generating
process (e.g., “structural similarity is the ultimate proof of common origin, even if sequence
similarity is not there”). As argued in Chapter 9, a more difficult, yet perhaps more principled,
approach is to account, as accurately as possible, for all divergent and convergent events in pro-
tein evolution. Enumeration of families and folds, then, can be viewed as a way to organize the
protein space in order to unravel these evolutionary events.

Attempts to estimate the number sequence families and folds have been undertaken many
times. Interestingly, the number of folds seems to attract more interest than the number of fam-
ilies, probably because of the belief that folds are more informative of the real state of affairs
and of the evolutionary history of the protein universe—a belief that may not be well-founded
after all. However, there is also a practical reason to estimate the fold numbers, and it has to do
with the ongoing needs of target selection for structural genomics projects. In these large-scale
efforts, high premium is put on identifying new folds and on increasingly dense coverage of the
fold space.

Perhaps surprisingly, the results of different estimates in the past decade vary significantly,
by more than an order of magnitude: from 400 to 8000 folds, and from 1000 to 24,000 sequence
families. Moreover, the numbers do not seem to converge with time, despite the growing data-
bases of protein sequences, structures, and families, which one would think provide the
increasingly representative samples of the protein universe. Sometimes these extremes of the
estimated family and fold numbers are thought to be the upper and lower bounds of the actual
numbers. In fact, this is probably not true because they have been obtained using different sta-
tistical models, with different underlying assumptions, and may not be directly comparable.

Early guesses that the total number of protein families may be on the order of 1000 are the
lore of biology. However, as far as I know, the reasons for choosing this number, rather than
500 or 5000, were never presented. It is true, however, that in 1992, Cyrus Chothia at the
Medical Research Council in the United Kingdom collected all sequences from the early stages
of yeast, worm, and human genome projects and compared them to sequence databases. One-
third of protein coding sequences from the genome projects had homologs in the databases
(homologs were operationally defined as high-scoring matches; the proportion of sequences
with database matches was somewhat underestimated in that protocol; Chothia, 1992). On the
other hand, one-fourth of all proteins in the sequence database had similarity to some
sequence in the database of protein structures, which, as of 1992, was though to include
approximately 120 discrete protein families. Note that this number referred to the sequence
families defined on the basis of high sequence similarities. In fact, the database of protein
structures contained a smaller number of spatial folds. Chothia examined all cases in which
several proteins shared the same fold, and if some of them included dissimilar sequences,
Chothia split such folds into a large number of sequence families. This roundabout approach
was needed because at the time the classification of structures was even more ad hoc than it
is now.

Multiplying 120 × 4 × 3 calculates to approximately 1500 families. Chothia noted, however,
that his way of determining whether proteins were related or not (i.e., the alignment of a large
fraction of both proteins in each pair, with identity of 25% or more, plus some conserved
residues with the known molecular function or other indications of common function) would
underestimate the percentage of related proteins in the sample. If only 80% of all sequence
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similarity signals are detected, the true number of protein families may be closer to 1000. The
number of folds should be smaller, but it was not clear by how much.

A crucial contribution of Chothia’s work was in his treatment of the three data sets—the
database of all known sequences, the database of proteins encoded by the known portions of
the model organisms slated for complete genome sequencing, and the set of sequences of each
protein whose structure has been determined—as independent samples from the protein uni-
verse. Note that this assumption is not entirely correct. For example, families are most likely
distributed across genomes in a nonrandom fashion, especially if we consider large families
and compare species with vastly different complexity. Databases of protein structures are
richer in certain classes of proteins: Notably, families of soluble, globular proteins are over-
represented, and other classes, such as disorganized, nonglobular, and membrane proteins, all
of which do not readily produce well-diffracting crystals, are underrepresented. Furthermore,
the sample of species represented in the databases is biased. For example, all three data sets
used by Chothia were extremely low on proteins from archaea, plants, and protists. However,
despite these concerns, the idea of independent sampling was used, and even statistically
tested, in later studies.

A few months after Chothia’s study, the paper by Philip Green and coauthors on ancient con-
served regions (ACRs) was published (Green et al., 1993). We examined it in Chapter 5, mostly
focusing on the concentration of ACRs in genomes (PHIDO value). However, in the same
work, the total number of ACRs was also estimated. For that purpose, Green et al. used the
BLOCKS database (see Chapter 2). Green et al. selected only those blocks that satisfied the def-
inition of an ACR—that is, those that contained representatives of at least two distantly related
eukaryotes or of a prokaryote and an eukaryote. There were 481 such regions. Approximately
two-thirds of all database ACRs in yeast and worm proteomes were represented in BLOCKS.
Recall that database ACR is such an ACR that also has a match in SWISSPROT. Then, 481÷
2/3 = 730 is the number of ACRs—or in other words, ancient protein families—that SWIS-
SPROT should contain. Given their own estimation that approximately 85% of all ACRs
already had a representative in SWISSPROT, the total number of ACRs would be near 900.
Strictly speaking, BLOCKS and SWISSPROT are not independent; the former has been
derived by analysis of conserved families in the latter, so this estimate is rather biased.

Green et al.’s and Chothia’s numbers may seem in good agreement, but this may be more of
a coincidence than true convergence of the estimates. Green et al.’s number concerns only
ACRs—that is, only such protein families that had sequences from two distant clades.
Chothia’s estimated set, then, would have only approximately 100 extra families to account for
all prokaryote-specific families, families specific to just one metazoan clade, and families
found in plants. This clearly does not make sense.

The other extreme of the family count—that is, 23,100 sequence families—comes from the
work by Orengo et al. (1994). In this pioneering study, several interesting questions were
raised, and some assumptions about protein universe were first tried out. Unfortunately, its
opening of the article is rather misleading: “It is important to realize that, as with sequence
comparisons, structural similarities form a continuum. Cutoff points for acceptable levels of
structural similarity for related folds were derived by empirical trials ... on proteins having dis-
tinct or common folds. If “distinct or common folds” are purported to form a continuum,
there needs to be an external criterion to decide which structures are similar and which are dif-
ferent. Nothing much has been proposed in this arena other than “expert knowledge.”
Moreover, if this idea about continuum is taken literally, then the purpose of delineating and
counting folds and families loses focus and becomes just a tactic of exploratory clustering, not
the study of evolutional, functional, and structural signals.

As with everything else in this book, I will hold a different view dear to my heart. The
statement of sequence continuum is true only in a trivial sense, namely that we can measure a
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distance between any two sequences, even between the unrelated ones (see Chapter 2).
However, most pairs of sequences in the database are related at a random level, and therefore
much of “sequence continuum” is noise. Similarly, we can define a distance measure and
compare every two structures; here again, most of the results of these comparisons are very
low-scoring similarities, which are not of interest.

Proteins are Pauling and Zuckerkandl’s sense-carrying units, and so are protein families. If
there are evolutionary, structural, and functional signals in families and folds, and if such sig-
nals can be distinguished from the noise, there has to be something discrete about them. Thus,
it is the discontinuity in the sequence and structure spaces that interests us—as a real phenom-
enon, not the result of an arbitrary “cutoff of convenience.”The counts of families and folds,
when done appropriately, should indeed give us an idea of what was going on in evolution, i.e.,
the number of “independent evolutionary lineages,” and what is going on today in structural
and functional organization of living species.

Let us return to the estimation of the number of sequence families by Orengo et al. Note
that despite a later publication date and, presumably, larger sizes of public databases than
those available to Chothia and Green, Orengo et al.’s study was still performed before the
complete genome era. The authors examined 2511 protein structures available at the time,
and the protein sequence corresponding to each of these structures was compared to every
other protein sequence in this set. Pairs with sequence identity of 25% or higher were joined
into clusters. This gave 212 families, 80 of which contained a single protein and 132 con-
tained two or more proteins. At this level of sequence identity, homology is inferred quite
reliably, so there were very few false positives or none at all. On the other hand, false nega-
tives could not be excluded. The authors noted that there are known examples of homolo-
gous proteins with pairwise identity less than 25%; for example, the lowest percentage of
identity between two members of the globin family is 15% (the family is nonetheless confi-
dently defined because each globin sequence is linked to at least some homologs by much
higher similarity). The authors’ empirical estimates showed that for a pair of proteins with
known structures and less than 25% sequence identity, the probability of having a common
fold was approximately one-third; in other words, some of the proteins and families perhaps
could be lumped into a smaller number of larger groups. Here, the authors made an assump-
tion that two groups of proteins with low similarity and similar fold can be considered
homologous if most proteins in one group have similar function to most proteins in another
group. With these modifications, the space of proteins with known structures can be parti-
tioned into 131 “hyperfamilies,”each consisting of one or more families. Some of the similar
folds remain distinct hyperfamilies even in this case, mostly when it can be shown that they
have different function.

There are several problems with this approach. First, biological and even molecular function
is difficult to define. Many proteins have multiple functions, and a complete set of functions
may not be known for any protein (see Chapters 5–7). Often, new functions are discovered for
what was thought to be an exhaustively well-studied protein. One of the more famous examples
is the role that a citric acid cycle enzyme, aconitase, plays in controlling cellular homeostasis of
iron (Rouault et al., 1991), but there is no shortage of “moonlighting proteins” anywhere we
look, even among such seemingly dedicated proteins as ribosomal proteins and aminoacyl
tRNA synthetases (Copley,2003;Jeffery,2005).At the whole-organism level,pleiotropic action
of genes is also a rule rather than an exception. Second, functions of proteins evolve in a way
that is not completely dependent on the extent of sequence identity. For example, a large group
of beta-barrel-like proteins (cupin superfamily) is certainly a homologous family, as evidenced
by statistically significant sequence similarities. The list of known functions for the members of
this family includes phosphomannose isomerases, CENP-C centromeric proteins, metabolite
sensors fused to helix–turn–helix transcription factors, epoxidases and dioxygenases with
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various specificities, oxalate decarboxylases, seed storage proteins, dTDP-4-dehydrorhamnose
3,5-epimerases,histone deacetylases,and other activities (Dunwell etal., 2001,2004;).With this
diversity of function,even looking at similar structures,we may not be able to use functional cri-
terion to join all these proteins in a superfamily or a hyperfamily, unless sequence similarity is
also present. The third and most serious problem is in some sense the opposite of the previous
one: Because of possible functional convergence, joining structures by similar function cannot
be done by default when there is no sequence similarity. Thus, the hierarchy built by Orengo
et al. starts as evolutionary classification at a lower level, when sequence similarity is high, and
then injects functional criterion into clustering. This may be convenient for many practical pur-
poses, but it is not the way to determine the “number of independent evolutionary lineages.”

With this concern in mind, let us examine the rest of the argument. Orengo et al. consider the
following simple model (in this chapter, I sometimes change the original authors’designations
in order to make different models more easily comparable to one another). The most impor-
tant numbers that we are looking for are FO and FA—respectively the total number of folds in
the protein structure universe and the total number of families in protein sequence space. We
will designate the observed numbers of folds and families FO

′ and FA
′, respectively. The esti-

mated values, as opposed to actual numbers, will be designated by F̂O
′ and F̂A

′. FO and FA are
estimations by definition.

Suppose that each of the FO folds in the protein structure universe is equally probable.
Suppose also that sampling of proteins for structure determination is random. Let us compare
only such families that none of the sequences within one of them shares more than 25%
sequence identity to any sequence from another family (in Orengo et al.’s framework, this
means that there is no good sequence-based argument for these families to share similar
fold). Under this extremely simple model, the probability of two families having the same
fold is 1/FO

′ , and the expected number of folds in the data set can be expressed as the ratio of all
possible comparisons to the observed structural matches. With 212 superfamilies, there are
212 × 211/2 = 22,366 possible structural comparisons. Among those, 583 pairs had significant
structural matches. Dividing the numbers, we estimate that the data set should contain
38 folds. If extended hyperfamilies are compared, there are 131 × 130/2 = 8515 possible pairs
and only 191 matches, which gives the F̂O

′ of 45. Both numbers are clearly off base because the
FO

′ in that data set was at least 80. Clearly, some of Orengo et al.’s assumptions must be invalid.
Which ones?

The authors concluded that, most important, the equal probability of every fold was not
compatible with the data: There were just nine superfolds, which contained between 3 and 11
sequence-unrelated families—56 families in total. On the other hand, 71 folds each contained
a single family. Thus, 11% of folds comprised 44% of families; the distribution of folds by the
number of families was “one-tailed.” The authors also studied the number of sequence fam-
ilies (if pairwise sequence identity was between 30 and 40%, this was called superfamilies, but
we agreed not to distinguish them from families). At this similarity level (called 30SEQ), there
were approximately 7700 sequence families. Using Chothia’s 1992 estimate that approxi-
mately one-third of predicted gene products coming from the large-scale sequencing projects
have similarities to the database sequences, Orengo et al. arrived at the FA of 23,100. From
this, FO can be reestimated: Given that there are 234 families with the known structure (the
slight inconsistency with a previous number of 211 is due to a slightly different inclusion
threshold, 25 vs. 30%; we are also ignoring the existence of large proteins that contain more
than one structural domain). Then, FA of all 30SEQ families is 23,100, or almost 10 times
higher. This means that the currently known FO

′ of approximately 80 expands to the FO value
of ~7900.

Thus, Orengo et al.’s main results are the following. First, the distribution of proteins over
families, and families over folds, is not random. This, perhaps, is one of the most important
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facts of computational structural biology. The properties of this one-tailed distribution have
been debated and studied ever since.

This distribution had been anticipated by much earlier studies in polymer physics and
thermodynamics, which had suggested that laws of physics and chemistry may favor adop-
tion of certain folds by proteins over other folds (see Chapter 9). This has often been dis-
cussed under the names of “designability,” “optimality,” “attraction in the evolutionary
space,” “robustness,” etc. Indeed, we do observe some very large families, as well as hyper-
families and superfolds. The existence of such extremely populated folds and families is,
most likely, a complex phenomenon that has to be explained by a combination of factors act-
ing at different levels. For example, two folds adopted by a variety of enzymes with diverse
activities, TIM barrel and Rossmann fold, are both highly symmetrical superfolds that may
be viewed as two “most designable” ways of packing a series of repetitive units of a beta
strand and an alpha helix.

But let us now count the occurrences of two representative classes of each superfold in dif-
ferent genomes: For example, yeast and archaea Sulfolobus sulfataricus have almost the same
numbers, but different percentages, of the Rossmann-fold S-adenosyl L-methionine (SAM)-
dependent methyltransferases (respectively, 30 and 31, accounting for 0.4 and 1% of all genes
in these genomes), and very different numbers and frequencies of another class of SAM-bind-
ing proteins, namely TIM barrel SAM-radical enzymes (respectively 5 and 24; Kozbial and
Mushegian, 2005). At this level, designability must have very little to do with the observed
counts of these protein families; selection for function may have played a more important role.
Thus, the reasons for the existence of superfolds may be complex.

The second significant lesson of Orengo et al.’s analysis is that the calculations of FO rely on
the FO

′ value, which, in their case, was derived from the database of folds. Structural classifica-
tion of proteins, however, is a difficult problem for both computers and human beings, and
there is not much choice with regard to databases of structural families, with only two data-
bases, SCOP (Andreeva et al., 2004) and CATH (Pearl et al., 2005), dominating the field. Most
studies, therefore, in effect estimate the total number of folds, as they are defined by SCOP (or
CATH). This is good for many practical purposes, but it may not provide a satisfaction of
knowing the number of different evolutionary lineages because, as already discussed, these
databases do not deal with the problems of structural convergence at the high levels of their
hierarchy.

Third, it became clear that the earlier estimate of 1000 for FA was an inspired, but not very
accurate, guess. The FO value is bound to be smaller than FA (and, as more recent studies show,
may indeed, with some assumptions, be close to 1000), but the FA value may be an order of
magnitude higher than 1000.

The fourth conclusion was that estimation of FA and FO may benefit from the rapid growth
of databases of sequences and sequence families. Two sides of this dynamic are of interest:
(1) the picture of families and their sizes at any given moment and (2) the information about
growth of these numbers with time. Orengo et al. did not make much use of this information in
their 1994 study, but they calculated the number of sequences and 30SEQ families in the data-
base for each year from 1960 to 1992 (Fig. 4 in their article). Although both numbers were
steadily growing, the family discovery rate (i.e., the ratio of 30SEQ families to sequences)
reached a plateau and even started to decline slightly sometime between 1981 and 1986.

More than a decade later, we are still counting families and folds. The new studies are based
on more involved statistical models than simple calculations of the early 1990s and also on
much larger databases of folds, families, and complete proteomes. But the estimates of FA and
FO continue to vary widely.

Chun-Ting Zhang of Tianjin University in China was one of the first to explicitly model the
relationship between sequences, families, and folds (Zhang, 1997). He used essentially the
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same data as Orengo et al. but examined them from a different angle. He formulated some
desirable properties that the inference of FA and FO should have. First, the growth of families
and folds over time should be an important aspect of the model. Second, the way to define
sequence families (e.g., which score threshold to use for including a protein into a family)
should enter the model as a constant. Zhang derived an equation that shows a log-linear
dependence between the newly identified families and the increase in number of the database
sequences. Zhang did not give the FA and FO values for the protein universe, but he provided
estimates for four species: Escherichia coli, yeast, worm, and humans. All these numbers were
on the higher side (e.g., 17,000 families and 5200 folds for human proteome).

In 1998, Chao Zhang and Charles DeLisi of Boston University further studied the distribu-
tion of folds by the number of families (Zhang and DeLisi, 1998). They proposed a random
sampling model that suggested the geometric distribution for the family numbers over fold
numbers. The estimate of fold number was given by the following equation (in our notation):
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where all designations are as usual, and F ′
AS is the observed number of protein families with

at least one representative with known structure. Zhang and DeLisi noted that when FA >> 
F ′

AS, the formula is not very sensitive to the FA value. But F ′
AS and F ′

O had to be substituted from
somewhere, and the values (736 and 361, respectively) were taken from the June 1997 release of
the SCOP database. Solving the equation, we have FO = 687, and the number remains close to
700 even if FA is allowed to grow as high as 105. The FO of ~700, obviously, is an order of mag-
nitude less than the estimate of 7900 given by Orengo et al.

In 1999, Sridhar Govinjaran, Ruben Recabarren, and Richard Goldstein of the University
of Michigan pointed out that most of the previous statistical theories of fold and family sam-
pling were based on simplified assumptions, and that the fit of the derived distributions to the
data was not very good. They noted that the estimation of the number of folds is the instance
of a long-known “species problem,” dating back to the father of 20th-century statistics (and
one of the fathers of modern genetics), R. A. Fisher. In this problem, the shape of the distri-
bution and the number of entities need to be estimated from a random sample drawn from the
population. Govinjaran and coauthors produced their own, more sophisticated model in
which the counts of folds over families were approximated by stretched exponential distribu-
tion, which appeared to give the best fit to the data in a likelihood ratio test. They found that
their distribution modeled reasonably well the folds that had extremely high, medium, and
extremely low numbers of families in them. In contrast, Zhang and DeLisi’s geometric distri-
bution fails to predict the excess of families in the superfolds, and it shifts the density toward
the middle of distribution. Govinjaran and co-workers give the FO estimate of approximately
4000, with the 90% confidence interval between 2105 and 8069. They also note that because of
the extreme rarity of many folds that consist of just one sequence family, perhaps 2000 of the
existing folds are unlikely to ever be observed. The FA value was not estimated.

Andrew Coulson at the University of Edinburgh and John Moult at the University of
Maryland Biotechnology Institute studied these distributions further and concluded that
there may be no way to approximate the shape of the distribution by one analytical formula
(Coulson and Moult, 2002). They showed that Zhang and DeLisi’s model resulted not only in
undercounting of families in superfolds but also underestimation of the number of folds that
consist of just one family. Because the latter category of families contributes the most to the
fold count, Zhang ad DeLisi’s model is also an underestimation of FO, and in fact, on the
updated data sets, Zhang and DeLisi’s model even underestimates FO′. At the same time,
Govinjaran et al.’s model overestimated the number of protein folds that had just one family
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in them. Coulson and Mount proposed a three-zone model, in which all folds are partitioned
into unifolds, mesofolds, and superfolds. Unifolds are all folds that consist of just one sequence
family each, superfolds are previously noted nine folds that contain more than 10 families
each, and mesofolds are folds with 2–10 families in them.

Coulson and Mount suggested that three types of folds have different properties, and that
any statistical estimation has to deal with three separate models, one for each zone. They
derived such a model, fitted parameters using SCOP release 1.37, and then asked whether thus
adjusted model would correctly describe the distribution of folds by the number of families in
a later, larger release of SCOP (1.48). The results seemed to be satisfactory, which allowed the
authors to estimate FO. The abstract of their publication states that “the total number of folds
is at least 10,000.” In the text, however, they note that the number is obtained if FA is taken to
be 50,000. The proportion of unifolds is estimated indirectly by assuming that there are nine
superfolds and by inferring the fraction of mesofolds using the “well-behaved” region of
distribution. The fraction of mesofolds fm, in turn, is given by the expression

$ ,
D F

N
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l

where Nm is the number of mesofolds, and D′ is the mean number of families per mesofold.
Most of the parameter fitting, however, is done using Orengo et al.’s FA of 23,100, and at that
point the total number of folds is ~4600. Clearly, the value of FA is of the utmost importance
for all other computation. However, I suspect that 23,100 is an overestimation of FA, and the
brief explanation by Coulson and Moult as to why they switched to a twofold higher FA is
confusing to me.

In 2000, Yuri Wolf, Nick Grishin, and Eugene Koonin of the National Center for
Biotechnology Information produced their own estimates for both FA and FO. This work con-
tained two important novel ideas, both having to do with sampling of families and folds.
(Coulson and Moult only mentioned this work in passing.) All previous efforts were essentially
confined to one and the same sample, in which families were defined in some way and then
assigned to SCOP folds. The resulting sample can be fitted to a favorite analytical distribution,
but the ways to evaluate the correctness of the model are limited to resampling (as was done by
Govinjaran et al.) or to evaluation of performance on the growing fold database (as was done
by Coulson and Moult). In contrast, Wolf and co-workers decided to take the suggestion of
Chothia (1992) and Green et al. (1993) seriously and used the information on the completely
sequenced genomes as an essentially independent sample of families and folds. As shown in
Chapter 9, a substantial fraction of proteins in all completely sequenced genomes belong to
families, and many proteins encoded by each genome have homologs of known structure; thus,
each proteome contains 103–104 proteins that can be assigned to families and 102–103 proteins
that can be assigned to folds. Although each particular proteome may be enriched in particu-
lar folds and depleted of the others, the union of many phylogenetically diverse proteomes is
probably not strongly biased compared to the universal population. Then, the distribution
may be fit to analytical form using families defined and folds predicted for complete proteomes
and then extrapolated to the universal population.

Wolf et al. employed logarithmic distribution, which is often used to model biological phe-
nomena that involve hierarchies and populations. For example, distribution of species by the
average number of individuals in populations appears to be well described by logarithmic
series (Pielou, 1969). Here, as in most other studies, the likelihood of the model was not
systematically evaluated but, instead, Wolf et al. optimized partitioning of proteins into
sequence families by focusing on the lower 90% of all families (i.e., ignoring superfolds) and
finding such a threshold for clustering sequences into families that provided a good fit of the
data to the logarithmic distribution. Interestingly, there was a sharp peak in the quality-of-fit
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function at the threshold of 0.3 bits per aligned position. With the aid of these inventions, two
things could be done. First, the number of families and folds in the universal population was
estimated. FA was in the range of ~4400–7300, and FO was between 900 and 1400. Second, fam-
ilies and predicted folds in complete proteomes could be counted. The percentage of families
with known or predicted fold varied from 5% in archaea and yeast (the only eukaryote in the
data set) to 10% in most bacteria and 20% in the universal population. In each case, this
translates to a much larger proportion of predicted folds for individual proteins because many
families contain large numbers of proteins.

Most recently, Moult’s group provided a direct count of FA by clustering all proteins
encoded by 67 completely sequenced prokaryotic genomes (Yan and Moult, 2005). They com-
pared several methods of family definition using SCOP families and folds and parsing proteins
into domains in order to avoid chimeric clusters. A total of 178,310 protein sequences were dis-
sected into 249,574 domains and then clustered into 31,874 sequence families. Distribution of
families by size is dramatic: 20,992 families are singletons, 4810 families are “doubletons,”and
6072 families contain three or more members. At the same time, singletons and doubletons
account for a small fraction of all proteins—respectively, 8.4 and 3.9% of the sequence space.
These results suggest that complete coverage of the sequence space by structural genomics
may be an unattainable goal, but almost complete coverage of 80–90% of structural space is
achievable with the current high-throughput structural biology approaches. For example, 88%
of proteins in 67 genomes fall in just 6072 families, and projection for 1000 genomes indicates
that 8000 experimentally determined structures may afford 70% domain coverage (ignoring
the complications associated with nonglobular and transmembrane proteins).

The idea that structural genomics will reach the point of diminishing returns is becoming
widely accepted; however, it is clear that at that point, a very substantial fraction of proteins,
on the order of 80%, will have a template for structural modeling. At the same time, it is evident
that for any completely sequenced genome, the complete coverage of proteome by structural
templates will be limited not by the high number of singletons but by the recalcitrance of some
proteins to current methods of structure determination. Indeed, if Yan and Moult’s numbers
are representative of the prokaryotic world, then a medium-sized proteome of 5000 proteins
will cluster to approximately 1000 sequence families, including all singletons, and for a large
fraction of those (at least one-third, I think) the template is already in the structure databases.

The fundamental question of the FA value, however, remains unresolved. I believe that
Moult’s study overestimates the proportion of singletons. I compared the proportion of larger
(tripletons and up) families in the set of 67 genomes with the coverage of the individual
genomes by the COG database. For example, the genome division of GenBank lists 1729 pro-
teins in Methanocaldococcus jannaschii, and 1514 of them (87.5%) are found in COGs. In
plague bacterium Yersinia pestis CO92, there are 3885 proteins, 3342 of which (86%) are in
COGs. At first glance, this seems like a remarkable corroboration of Yan and Moult’s
approach, and it is tempting to explain this agreement by pointing out that COGs, too, are
required to contain three or more proteins, and that substantial work on manual domain dis-
section is part of COG definition. However, closer analysis suggests a mere coincidence. First,
the training set of Yan and Moult included many pairs and triplets of closely related organ-
isms, and homologs of each protein could come from any of these organisms, including the one
in which the query was found. In contrast, COGs cannot be made of any three matches but are
initiated by three proteins found in three species separated by certain evolutionary distance
(see Chapter 5). If paralogs in one organism or homologs in strains and subspecies of one
species, or in species within one genus, were all allowed to form a COG, the coverage of genome
by COGs would be much higher. Second, Yan and Moult matched only proteins encoded by a
large yet finite selection of completely sequenced genomes. Using all homologs found in the
NR database for construction of family models would increase sensitivity of matching and
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move a fraction of singletons and doubletons into larger families. Finally, the PSI-BLAST
protocol that involved three iterations and threshold for model inclusion of 10−4 may be opti-
mal for keeping the false positives-to-true positives ratio under 1%, but in my experience this
underreports many matches.

These three factors, all contributing to overestimation of the number of very small families,
may be offset, to an unknown degree, by domain parsing. However, I believe that when all is
said and done, the number of small families will decline, perhaps by one-third.

The excess of proteins with paralogs over unique proteins is a complex affair. There are sev-
eral dozen very large sequence families, and together they account for a very large fraction of
proteins. On the other hand, when the excess of families over singletons is averaged over
all families, the number of proteins per family may turn out to be a small number, perhaps
close to 2.

Attempts to estimate FA and FO will, undoubtedly, continue. Increasing coverage of
sequence and structure space will result in more accurate numbers than are currently available.
One of the most interesting questions that will be answered in the not-so-distant future is
whether the excess of folds over families is, likewise, a relatively trivial phenomenon. Could 
it be that despite the existence of nine superfolds (are there only nine of them?), the average
number of families per fold is also less than two?
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Phylogenetic Inference
and the Era of Complete
Genomes

In the past 10 chapters, I tried as hard as I could to stress the importance of the evolutionary
inference for everything that is going on in computational biology. From inference of homol-
ogy to complex interplay of divergence and convergence in protein folds and complete path-
ways, nothing indeed makes sense except in light of evolutionary comparison of sequences.
But I barely mentioned the main workhorse of evolutionary inference, namely phylogenetic
trees. I now discuss this theme, but not without trepidation.

Only a few years have passed since the publication of the instant classic, Inferring
Phylogenies, by Joseph Felsenstein (2003). That book is the ultimate source of all things related
to phylogenies, from statistics and algorithms to idiosyncrasies of various schools of evolu-
tionary thought and the aesthetics of tree drawing. Add to it Felsenstein’s beautiful prose, and
the only question is, Why even bother to say anything more about phylogenetic approaches in
biology?

A few things, however, are not in Felsenstein’s book. First, very little is said there about actual
phylogenetic history of the known life-forms. Felsenstein knows more than anybody else about
the methods of phylogenetic inference, so I can imagine that application of these methods, even
with the goal of reconstructing the history of life on Earth, might look to him, well, applied.
Moreover, being aware of—indeed, keenly interested in—the limitations of each method of
phylogenetic inference, Felsenstein probably sees better than most that with the current state of
the data and algorithms, too many difficult phylogenetic questions, especially concerning the
ancient speciation events, do not have good answers. Continuing heated debate about specific
phylogenies, two of which are reviewed in Chapter 12,can be seen as indication of exactly that—
the problems may be still too difficult to settle even with the most advanced approaches.

Insufficiency of methods and data, of course, never prevented researchers from trying to
answer their favorite questions. However, the scientists of the 1960s and 1970s, and all the way
to the early 1990s, had to focus on a relatively small set of molecular sequences, but in the past
dozen years the picture became qualitatively different—complete genome sequences entered
the scene. And this era of complete genomes is another theme mentioned only in passing in
Felsenstein’s book. But in my opinion, the impact of completely sequenced genomes on our
understanding of phylogenetic problems and of the history of life is significant, and it only
grows as the space of genome sequences and deciphered gene functions becomes denser. We
always wanted to use molecules to reconstruct the evolutionary history of life—just as Pauling
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and Zuckerkandl told us to (see Chapter 1)—and now we are closer to this goal than ever
before.

Phylogenetic approaches in the era of complete genomes should not be viewed as just “more
of the same”: The challenge is not just to handle many more molecular characters by scaling
up our algorithmic approaches and computer hardware. As with everything else in biology,
complete genomes bring large, perhaps qualitative changes to our perspective of the phy-
logeny of life and to the methods of phylogenetic analysis. With that, let us now review some
basics of trees and biological phylogenies.

A tree is an object of mathematics, which can be defined using some notations of graph the-
ory. A graph is the set of points, called vertices or nodes, where some pairs of vertices are con-
nected by lines, called edges. A degree of a vertice is the number of other vertices in this graph
to which this vertice connects. An unrooted tree T is a connected graph of n vertices of degree
1 or 3 with no cycles and with 2n�3 edges (branches); a nonnegative real number (branch
length) may be assigned to every branch. Defined in such a way, trees are purely formal con-
structs, and they do not convey any biological information.

Living forms evolve by descent with modification, and one neage may be split in two, with
two descendants having different modifications in their sense-carrying units. This is why the
ancestor–descendant relationships, phylogenies, can be modeled as tree-like graphs. In a
species tree, nodes with degree 3 are speciation events. In a gene tree, these nodes can also rep-
resent speciations, or they can be intraspecies gene duplications—resulting in orthologs and
paralogs, respectively (see text and figures in Chapter 3, and note that speciations and dupli-
cations are depicted differently in Fig. 3.1 because we know in advance which is which. In
Fig. 3.2, however, the nodes corresponding to duplications and to speciations are indistin-
guishable).

The nodes in biological phylogenies are also called operational taxonomic units (OTUs).
OTUs are not always genes or species: They can be anything that reproduces with modifica-
tion, from kingdoms to single nucleotides. The internal nodes usually represent ancestral
OTUs, which are often unavailable to direct observation (but not always: when comparing
morphological characters, we may have paleontological evidence of the state of ancestral
OTUs, and when studying DNA and protein sequences, we may be able to recover ancestral
molecules from ancient specimens and sequence them).

Phylogenetic tree seems to be the most obvious way to represent evolutionary history.
The Tree of Life is taught in every life science class, from kindergarten to college, and the
power of metaphor makes it a favorite in popular literature and art. Even biologists
sometimes are convinced that life history is equivalent to a tree. But two things have to be
remembered here.

First, not every evolutionary history can be represented by a tree. In a most obvious exam-
ple, genealogy of individuals is certainly an example of an evolutionary history, but if an indi-
vidual has two parents, there is no tree. If evolutionary history of two species involves
hybridization, there is also no tree, and if evolutionary history of a gene involves horizontal
transfers, there is no tree either. These histories can be depicted as trees only if we agree to
change the aforementioned definition of a tree, or to allow some simplifications. For example,
human genealogy can be represented as a tree if only one gender is considered, which is indeed
done in mitochondrial genome-based phylogenies of humans (mitochondria are inherited
maternally by us). Phylogeny can be presented in a tree-like form if we assume, or conclude
from the data, that horizontal gene transfers can be ignored because they were so rare as to play
no significant role in this phylogeny. In addition, in a tree as previously defined, all splits pro-
duce two OTUs from one, but there is no reason why this would always be so in evolution: Splits
into more than two species or nearly instantaneous generation of more than two gene copies



are possible. This results in patterns that are called stars or bushes and also in nodes with
degrees other than 1 or 3.

Second, genetic and genomic data can be represented in the form of a tree, even though they
do not represent evolutionary information. Consider the quantitative picture of gene expres-
sion (often called “microarray data,”although, of course, information on gene expression can
be obtained by any kind of mRNA assay, from DNA array hybridization to massive signature
sequencing, or measured at the protein, not RNA, level by quantitative proteomics). The pat-
terns of gene expression are commonly organized as hierarchical clusters (Eisen et al., 1998),
which satisfy the definition of a tree, and yet contain no evolutionary signal; expression pat-
terns of genes within single organism are not OTUs and, unlike genes, they do not share a
common ancestor nor did they evolve from one another. This tree, however, contains a biolog-
ically informative functional signal, for example in the form of groups of coexpressed genes.
Thus, not every tree built from genomewide measurements is evolutionary, and not every
evolutionary history is a tree.

We now discuss those trees that do convey evolutionary information, and we start with a
brief introduction of the methods of inferring phylogenies (for an in-depth review, the reader
cannot do much better than reading Felsenstein’s book). We have a set of OTUs as the input
and would like to have a tree on which each OTU is placed at one node (usually, although not
always, a tip) in such a way that it reflects the evolutionary relationship between the OTUs.
Even for a handful of OTUs there exists a surprisingly large number of different trees. The true
tree has to be constructed by quantitative comparison of OTUs and optimization of some
parameters that come out of this comparison. For now, we will defer the question of what to
optimize and will describe one class of methods for phylogenetic inference, which relies on
construction of distance matrices.

Let dij = d(i, j) be a nonnegative real function d: X ∞ X ∅ R+, satisfying (1) dij > 0 for i ≠ j; (2)
dij = 0 for i = j; and (3) dij = dji for all i, j. Then d is a distance measure, and D = {dij} is a distance
matrix. In the preceding chapters, we discussed comparative analysis of genes, proteins, and
genomes, but there was almost no discussion of distance measures that are used to compare
them. Instead, we were talking about similarity and different ways of measuring it. It is not dif-
ficult to see that similarity and distance can be converted into one another. The space of dis-
tance measures, however, is better studied and easier to treat mathematically than the space of
similarities. Some of the known properties of the distance measures are discussed next.

If for a given D = {dij} there exists a tree T such that the sum of branch lengths along the
shortest path between any pair of terminal vertices i, j is equal to dij for all i, j, D is said to be
additive. If, in addition, dij satisfies triangle inequality dij ≤ dik + dkj, then d is called a metric.
A necessary and sufficient condition for additivity of D (or, in other words, for d to be a tree 
metric) is the four-points condition (Zaretsky, 1965; Buneman, 1974): For all sets of four ele-
ments there exists some labeling i, j, k, l X such that dij + dkl = djl + dki ≥ dil + djk. Furthermore, D
is said to be ultrametric if the three-points condition holds: For any three elements i, j, k, the
two closest elements i, j are at the same distance from the third element—that is, dij ≤ dik = dkj.
In other words, distance matrix is ultrametric if, for each triplet of elements, there is a tie for the
maximum of pairwise distances between them, and distance matrix is additive if, for each four
elements, there is a tie for the maximum of pairwise sums of distances between them.
Ultrametric condition is stronger than additivity, and additivity is stronger than metric
property: If distance matrix is ultrametric, it is also additive, and if it is additive, it is metric, but
the opposites are not true.

These properties of distance matrices are useful for constructing trees from them. For
example, it has been proven that if the distance matrix is additive, there exists a unique tree cor-
responding to it, and this tree can be constructed from the matrix in time that grows as a

Phylogenetic Inference and the Era of Complete Genomes 153



squared number of the OTUs. The problem of reconstructing tree from a nonadditive distance
matrix has not been solved in polynomial time, although approximate methods, such as neigh-
bor joining, can infer the tree in cubic time. Similar theorems have been proven for ultrametric
distance matrices (Gusfield, 1997). These facts are described in computer science textbooks
and in many books on computational biology.

All this is helpful when the set of distances have been already obtained, but these proper-
ties do not tell us how to get them. In Chapter 2, we reviewed the history of measuring simi-
larity between amino acid and nucleotide sequences. Perhaps the main conclusion was that
the a priori models need to be modified using the observations on the real data. Also, in the
case of scoring function for protein sequence alignments, the mathematical properties of the
distance measures, such as additivity, did not play a major role in the process. Moreover, it is
not quite clear that all genomewide distances could or should be ultrametric, additive, or
possess any other property. Every justification why this should be so goes back to computa-
tional tractability, not to any fundamental biological reason. Therefore, I propose the fol-
lowing as the “unnumbered fact of comparative genomics” or perhaps its “first Zen
observation”:

There exist a great many ways to measure distances between any entities in comparative genomics, be
it gene sequences, distributions of genes in genomes, patterns of gene expression, or something else.
The choice of good distance measure is extremely important for uncovering biological signals, but it
cannot be dictated solely by useful mathematical properties of distances.

Distance matrix methods are not the only way of reconstructing phylogenies. Most intro-
ductions to phylogenetic approaches start with another group of methods, namely those that
involve maximum parsimony. Distance matrix methods and parsimony methods try to find
the “best” tree by optimizing different properties of the tree. Roughly speaking, the former
methods try to minimize the distortion between the matrix of observed distances and the set of
distances that is induced when all OTUs are assigned to specific nodes in the tree, whereas the
latter methods try to minimize the amount of evolutionary change that is needed to explain a
particular tree.

Many authors believe that parsimony approaches are more intuitive or more valuable as a
didactic tool. Moreover, the past few decades have witnessed a passionate debate in which one
side posed that parsimony is the only viable approach to phylogenetic inference, that parsi-
mony is in the most basic way opposite to statistical inference, and that this is good. For exam-
ple, parsimony is purported to descend directly from Karl Popper’s teachings or from the
Okham’s razor. However, Felsenstein and others argue that both parsimony and distance
matrix methods are, in most cases, different incarnations of a fundamental statistical
approach—that is, maximum likelihood. Interestingly, Felsenstein notes that all major classes
of approaches to phylogenic inference can be traced back to a series of papers by A. Edwards
and L. Cavalli-Sforza, published at the same time as Pauling and Zuckerkand’s work (Edwards
and Cavalli-Sforza, 1963, 1964, 1965). [For discussion of nonstatistical justification of phylo-
genetic inference, see Chapter 10 of Felsenstein (2003). For a philosophical perspective, see
Sober (1991, 2004), and for lively discussion of strengths and pitfalls of cladistics, see Ridley
(1986)].

Other methods of building trees and inferring phylogenies, based on various algorithmic
and combinatorial ideas, continue to appear. We will not examine them here, but it important
to remember that the field is not lacking new ideas. And with the abundance of methods for
tree reconstruction, it is often assumed that a tree-like relationship between any OTUs exists
and is recoverable. But I already noted that in genomics we may have reasons to build and ana-
lyze trees that lack evolutionary content, and we also encounter evolutionary histories that do
not look like trees. In this chapter, we are particularly interested in biological processes that can
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be modeled as edges connecting branches on the tree. A graph that contains these connections,
or reticulations, is formally not a tree: Reticulations produce cycles, and some paths from the
OTU to the root are no longer unique (Fig. 11.1, top). Such graph may still be “tree-like”if the
number of cycles is moderate and it is clear that they are but an embellishment of a clearly
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Figure 11.1. A tree or not a tree? (Top) The graph on the left is a tree, and the graph on the right is not a tree. (Middle)
The tree of life as imagined before the era of complete genomes. Two symbiogenetic transfers of genes
from organellular to nuclear genomes were thought to be the only horizontal gene transfer events of any
consequence (note that these two reticulations mean that the Tree of Life is no longer a tree from the
graph theory point of view). (Bottom) The era of complete genomes may provide so many examples of
horizontal gene transfer that the Tree of Life is not at all like a tree, at least in its deepest branches. Note
that the picture at the bottom is a metaphor. In fact, a pessimistic conclusion that the high rate of hori-
zontal transfer makes it all but impossible to infer the ancient evolutionary events with any certainty
may not be true, and further improvements in phylogenetic methods may allow us to reconstruct these
early events in sufficient detail. The middle and bottom panels are reprinted with permission from
Doolittle (1999), copyright 1999, American Association for the Advancement of Science.



discernible tree structure. But, of course, it is quite possible to imagine an evolutionary history,
rich in reticulations, so that its tree-like aspect is barely visible (Fig. 11.1, middle and bottom).

Comparison of bacterial and archaeal genomes, especially those that live in the same habi-
tat,has produced much evidence for unusual evolutionary relationships between some of these
genomes—basically, the excess of bacteria-like genes in certain archaea and archaea-like
genes in certain bacteria. We examine this evidence in more detail later in this chapter and also
in Chapter 12. What is important to note now is that these relationships upend, in the most
direct way, the idea that phylogeny of every set of species can be represented by an acyclic
graph, or a tree in a formal sense. This may be one of the most profound discoveries that
genome sequencing brought upon evolutionary biology. It deserves to be recorded as the
“third fact of comparative genomics”:

Natural history of life is really complex, with significant contribution of events that cannot be repre-
sented on a conventional, cycle-free phylogenetic tree. In other words, universal phylogeny contains a
nonnegligible number of cycles.

But what if the phylogeny of a given set of OTUs can indeed be represented as a true tree?
Even in this case, there is a difference between the existence of the tree and our ability to recover
it. As with inference of common ancestry, which was examined in Chapters 2, 3, and 9, this,
fundamentally, is a statistical problem.

Any distance (or similarity), measured by any method, is a statistical estimate of a true dis-
tance. For example, suppose that we want to derive a distance measure from the counts of
nucleotide (or amino acid) substitutions between two homologous DNA (or protein) frag-
ments. The percentage of identity (PID) between two aligned homologs seems a well-defined
measure—a good place to start. However, May (2004) noted that even in this simple case, one
can express PID using at least four different denominators: the length of the shorter sequence;
the length of the alignment, which would include gaps; the number of the aligned pairs, which
would exclude gaps; and the arithmetic mean sequence length. These differently expressed
PID values have different statistical properties. Then, we have to account for reverse and
repeated mutations, and every assumption about them—even the assumption that they occur
infrequently or never—is part of the statistical model of sequence evolution.

Likewise, any tree is a statistical estimate of the true tree, achieved by way of modeling many
parameters that enter into building a tree. (Note that maximum parsimony methods are no dif-
ferent in this respect from distance matrix methods: In parsimony approaches, we seek to min-
imize evolutionary change, but the amount of evolutionary change is itself a parameter that
can be defined in different ways, and its measurement also results in nothing more than the esti-
mate of “true change.”) The fact that a program can be set up to produce some tree does not
mean that the tree is reliable—much like the fact that any two sequences can be aligned does
not ensure their evolutionary relationship (see Chapter 2).

However, let us not drive ourselves out of Eden just yet; in fact, many trees built from molec-
ular sequences are reasonable estimates of the true tree. Let us not concern ourselves with “bad
trees”and instead ask what “good trees”might be good for.

In 1995, Walter Fitch published one of the most comprehensive lists of uses for evolution-
ary trees in the pre-genomic era. The most obvious purpose of a tree, of course, is to represent
the evolutionary history of a set of homologous traits. However, there are many other things
for which the tree-like representations are helpful; Fitch showed 22 examples of different uses.
The following are the most important types of questions that can be answered with the aid of
evolutionary trees:

1. Trees are tools to study gene duplications. To distinguish duplications from specia-
tions (and paralogs from orthologs), one usually needs at least two trees—one for genes and
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another for species that contain them. We examined this theme in considerable detail in
Chapter 3.

2. Duplications is one example of a larger class of cases in which histories of individual
genes/proteins (or protein domains) are not the same as the history of the species in which these
genes reside. Other such cases include gene recombination of various kinds, as well as gene con-
version. Evidence of all these events can be noticed in the trees. Here again, comparison
between two trees is of significant help.

3. Yet another example of difference in species history and gene history, which can be stud-
ied by examination of evolutionary trees, is xenology (see Chapter 3) and other types of hori-
zontal gene transfer. This will be further discussed later in this chapter and in Chapter 12.

4. Trees are tools to study evolutionary models and parameters of sequence evolution.
Some of it can be done on the basis of just one tree: For example, one can infer a phylogeny of
a group of homologous sequences and then use the knowledge of tree topology to find the rel-
ative rates of evolution of several sequences within an in-group using comparison of these
sequences to the out-group (Kumar, 2005). In a more involved experiment, several detailed,
multiparameter models of evolution can be compared by asking how likely they are to produce
the observed data. These ideas are applicable not only for molecular sequences: Trees can also
be used, for example, to estimate the rates of gene gain and loss in genomes and to study the
behavior of other characters as well.

5. Trees are tools to infer the ancestral states of the OTUs, as proposed by Zuckerkandl and
Pauling (1965; see Chapter 1). Most classes of methods for tree construction can be modified
to be used for that purpose, and all sorts of OTUs are of interest in this respect. There is grow-
ing literature on reconstructing and then synthesizing the ancestral molecules based on align-
ments and trees of their present-day descendants (see the next example), and I dedicate a
significant part of Chapter 13 to the problem of reconstruction of ancestral gene content.

6. Trees are also tools of building up biological hypotheses by connecting different types of
data. For example, Thomson et al. (2005) examined the evolutionary origins of alcohol metab-
olism in yeast of the Saccharomyces group. Many yeast species live in fleshy fruits or in sugar-
rich plant sap. There, they convert sugars to pyruvate by glycolysis. Pyruvate is further
converted to acetaldehyde, which is reduced by alcohol dehydrogenase 1 (Adh1) to ethanol.
This is the ability for which yeasts have been domesticated by humans. Yeasts also have Adh2,
a paralog of Adh1, which works mostly in the opposite direction (i.e., to consume the accu-
mulated ethanol). Alignment of Adh1 and Adh2 is 348 amino acids long, with 24 substitu-
tions. Thomson and co-workers sequenced many Adh homologs from hemiascomycete yeasts,
constructed a maximum likelihood evolutionary tree, and inferred the sequence of common
ancestors, including AdhA—the putative common ancestor of Adh1 and Adh2 of S. cere-
visiae. Using one of the models for codon and amino acid evolution (PAML11; Yang, 1997),
they reconstructed almost all positions unambiguously, except for three sites where equal sup-
port was given to two or three candidate residues. Twelve possible combinations of amino
acids were synthesized, and the kinetic behavior of candidate AdhA enzymes showed that all
of them (except for a single nonfunctional variant) were more like Adh1 than Adh2, suggest-
ing that the ancestor was mostly making ethanol rather than consuming it. Thus, before the
Adh1–Adh2 duplication, production of ethanol was most likely not the strategy of food
hoarding but, rather, served some other purpose, perhaps recycling of NADH generated in
glycolysis or poisoning the competitors that cannot live in ethanol.

Another question is whether the Adh1–Adh2 duplication can be explained by a specific
selective pressure. The comparison of topologies of the Adh family tree and hemiascomycetes
consensus species tree suggests that the Adh1–Adh2 duplication occurred before the diver-
gence of the species of Saccharomyces sensu stricto but after the divergence of Saccharomyces
and Kluyveromyces. The latter event might have occurred approximately 80 million years ago
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(this is an estimation from molecular sequences—another use for a tree—since paleontology
is of no help here). Interestingly, at least eight other genes in the ancestor of Saccharomyces
seem to have undergone duplication at approximately the same time, and six of these duplica-
tions involved proteins that participate in the conversion of glucose to ethanol. With all the
reservations about the accuracy of the assumed molecular clock, the time of these duplica-
tions seems to be close (enough) to the age when fleshy fruit arose in the Cretaceous, during the
age of the dinosaurs. We do not know why fleshy fruit habitat would be conducive to having
two Adh enzymes with preference for two opposite reactions, but at least this question can now
be studied experimentally by inoculating some peaches with yeast strains of defined pheno-
types. Furthermore, trees can be studied in conjunction with geospatial, demographic, and
almost any other data that contain some sort of distance measurement or records changes in
character states.

The common thread running through all examples is that a tree is cross-referenced with
other data, which, in essence, provides labels to the nodes or branches in a tree. Then, distribu-
tion of these labels over the tree is studied in order to extract biologically important signals.
Fitch concluded his review (1995) thus: “While a nimble mind might well discover the results
inferred from these tree studies without recourse to a tree, the use of the tree simplifies and
speeds the road to understanding evolutionary processes.”

This comment is worth contemplating. For example, if I accept distance matrix methods as
a legitimate way to build a tree, many of the problems described previously can be solved by
making computations on such a matrix directly. This idea of talking about evolutionary prob-
lems “without recourse to a tree” is not about banning trees; it is about better understanding
what trees are for. However useful trees may be for presenting biological information, it is often
possible that they are not necessary for obtaining this information in the first place.

I believe that another list, complementary to Fitch’s, should also be of interest to biologists.
Let us call it “misuses of (or, at least, honest mistakes in using) evolutionary trees.”

The first type of misuse of evolutionary trees involves the wrong choice of characters. With
regard to sequences, the gravest misuse is to infer the tree from the alignment of characters that
should not have been aligned in the first place. In Chapter 2, I argued that sequence alignment has
two most basic but distinct uses: to screen the space of pairwise similarities and to find statistically
significant signals in the space of all possible alignments. Any two sequences can be “aligned”in
the sense of the Gibbs–McIntyre square diagram or Needleman–Wunsch approach; that is, some
subsequences from each sequence can be written on top of one another, and a score can be associ-
ated with such a match.As we have seen,computation of such a score does not prove the existence
of any signal, including an evolutionary one—a separate statistical theory is needed for that.

I also warned in Chapter 2 that any computer algorithm of pairwise or multiple sequence
alignments will build an “alignment”from almost any bunch of sequences. Some programs will
warn the user about random-level similarity in some of the sequences that it tries to align, but
I do not know of programs that would exit if similarity is too low. Likewise, programs for tree
inference are set up to build trees from the data, more or less regardless of what the data actually
represent. As long as alignment is in the right format, the tree-building program will process it.
In truth, some programs will complain if the values of some parameters are out of whack: For
example, NEIGHBOR from the popular PHYLIP package (Felsenstein, 2005) will post the
errors about infinite distances (which are roughly equivalent to background-level similarity
between sequences) but will output the tree nonetheless. However, just as alignments of
sequences with random-level similarity may lack biological meaning, the same will be true of a
tree built on such a basis.

Biological interpretations of meaningless alignments, leading to meaningless trees, can
still be encountered in, and need to be chased out of, scientific literature (Iyer et al., 2003). For
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example, a secreted factor from human macrophages, called macrophage migration inhibitory
factor (MIF), had been thought to conjugate with glutathione in vitro (Blocki et al., 1992). A
cautious interpretation of this observation would be that MIF has a cysteine residue that can
participate in redox reaction(s) under some experimental conditions. Instead, the authors of
the observation became enamored by a hypothesis that glutathione S-transferases (GSTs),
already known to play a role in protection of cells from certain toxic molecules, might also be
part of a cellular-level resistance of organism to pathogens. On that premise, they produced an
alignment of MIFs and glutathione S-transferases GSTs and then a “family tree”(Blocki et al.,
1993). William Pearson, who had spend a considerable part of his career studying GSTs,
showed, using several statistical tests, that the purported connection between MIFs and GSTs
was not supported by any sequence signal (Pearson, 1994). The tree only showed the relation-
ships within each of the two classes of proteins, but the edge drawn between MIFs and GSTs
was arbitrary. Later research proved the correctness of Pearson’s analysis: MIFs turned out to
have their own catalytic activity—not GST nor any transferase, but 4-oxocrotonate tau-
tomerase (Rosengren et al., 1997). The now known three-dimensional structure of MIFs is also
different from that of GSTs (Sugimoto et al., 1999). Glutathione conjugation has never been
shown to play any role in MIF biology, and cysteine residue that ostensibly conjugated glu-
tathione in mouse and human MIF is not conserved in many other homologous proteins.

Thus, homology between sequences is a necessary condition of any analysis that involves a
tree, and it has to be inferred from statistical assessment of sequence similarity and, perhaps,
similarity in protein structure. Homology cannot be inferred from the tree.

Another kind of misuse of a tree may happen even when the characters are fundamentally
sound (i.e., their homology is determined correctly). Modern methods of sequence analysis,
such as those examined in Chapters 2 and 5, are very sensitive. They can establish homology
between sequences when the absolute values of sequence identity/similarity are extremely low.
This is excellent for a qualitative conclusion—that is, that there is an evolutionary relationship
between two sequences—but most of the methods of phylogenetic inference are not well suited
to decide on the best tree in these circumstances. (A maximum likelihood model, which takes
account of all relevant evolutionary parameters, could be a general solution to a problem, but
such detailed models are rarely available in practice, and working with them may be computa-
tionally prohibitive.) However, as just discussed, most tree-building algorithms attempt to
build the best tree, no matter what the data are.

This is where assessment of statistical significance of a tree comes into play. Methods to do
so have been around for more than 20 years, beginning with different versions of data resam-
pling, such as bootstrap or jackknife tests, and supplemented more recently by Bayesian
approaches. A tree that does not show the degree of statistical support for each internal node
is not good for any biological inference.

In effect, this is the problem of discerning signal from statistical noise, by finding those
branching events in a tree that are well supported and those that are not. In a review of
Felsenstein’s book, David Penny (2004) noted that systemic biases in the data may be a much
more significant problem than statistical noise. There are indeed many types of systematic bias
in the data—most obvious, in the frequency of different characters and in the model of transi-
tion between different states. However, the difference between these biases and “noise” is
mostly in the degree of our understanding of the process. When we do not know that our data
are biased, we use simple models and simpler null hypotheses, and it is all noise to us. When we
become aware of the bias, and start taking it into account either by learning from the data or
by inventing a more sophisticated a priori model, then the bias becomes part of the model. The
rest remains noise until we learn even more.

One kind of bias, however, deserves special discussion. In 1978, Felsenstein examined one of
the statistical properties of the tree inference methods, called consistency. An estimator (in this
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case, phylogenetic inference) is statistically consistent when, upon the addition of more char-
acters, the best tree estimate converges on the true tree. Felsenstein studied simple models of
rooted phylogeny of three OTUs, in which a character has state 0 at the root and can change to
state 1, with certain probability along each branch, but can never change back. Probability of
change in character state can take only two values, for example, P along some branches and Q
along the other branches. Felsenstein asked whether certain methods of tree inference, namely,
a character-compatibility method and two different parsimony methods, are consistent under
various values of P and Q. He also examined unrooted phylogeny of four OTUs, with similar
properties of P, Q, and branch lengths. The main result was that, in these simple models, there
were always zones of P and Q values for which these methods will estimate wrong trees, and the
addition of more characters would not result in any improvement. Details aside, this zone is
defined by all cases in which P is much larger or much smaller than Q.

The insight from this work was summarized in the article abstract as follows (Felsenstein,
1978): “In all cases the conditions for this failure (which is the failure to be statistically consis-
tent) are essentially that parallel changes exceed informative, nonparallel changes.” In other
words, statistical inconsistency is found in trees, particularly those inferred by parsimony and
compatibility methods, when there are some (in Felsenstein’s example, two) relatively long
branches. A relatively small amount of parallel change in these long branches may artificially
draw the two branches together.

Felsenstein noted that unequal branch lengths may be a result of either noncontemporane-
ous OTUs (he had in mind the cases of morphological characters, some of which might come
from ancient organisms and others from existing organisms, and now we also have molecular
sequences related in the same way), or different rates of evolution along the branches leading
to several present-day OTUs. He also noted that a proper maximum likelihood estimate of a
tree would not be prone to such an artifact. On the other hand, the knowledge about the incon-
sistency zone in the P/Q parameter space [called the “Felsenstein zone” by John Huelsenbeck
(1997)] is useful for examining the properties of phylogenetic approaches: One can simulate
sets of sequences evolving under different values of P and Q and use these sequences to test the
consistency of any tree-building method.

Thus, there are three important ideas in Felsenstein’s paper: the observation that long
branches may be attracted to one another, the warning that this may cause problems in evolu-
tionary inference, and the proposal to use this effect for assessing consistency of phylogenetic
inference.

In the 1980s and early 1990s, several investigators studied the P/Q parameter space further,
under various evolutionary assumptions and within different frameworks of phylogenetic
inference, and interesting theoretical behaviors were noticed with simulated sequences.
However, it took almost two decades until the next milestone. In 1997, John Huelsenbeck, then
at the University of California at Berkeley and currently at the University of California at San
Diego, studied a real phylogeny that may be sensitive to the long branch attraction (LBA). Two
years earlier, a tree of insect orders had been constructed on the basis of 18S rRNA. Diptera
(flies and mosquitoes) was grouped in this tree with Strepsiptera, twisted-winged parasitic
insects that, according to morphology and physiology, have long been placed closer to
Coleoptera (beetles; Carmean and Crespi, 1995). Carmean and Crespi did not believe the
Diptera/Strepsiptera clade was correct and thought it was an LBA artifact. This hypothesis
had to be proven, so Huelsenbeck made extensive simulations and compared tree topologies
under different evolutionary models (using mostly maximum parsimony and maximum
likelihood methods of tree construction). He obtained significant supportive evidence in favor
of fast evolution of both taxa and the artifactual origin of the clade Diptera/Strepsiptera
(Huelsenbeck, 1997).
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Thus, by the late 1990s, LBA entered not just theory but also practice of phylogenetic infer-
ence. Other comments made by Huelsenbeck (1997), however, remained not sufficiently
appreciated. In my opinion, they should be better known, especially the following (pp. 69–70):

(1) The branches leading to Strepsiptera and Diptera are both very long and (2) the support for this
grouping [i.e., the clade of these two taxa] is moderately high according to the bootstrap method.
Unfortunately, these criteria for long-branch attraction are weak because they fail to identify whether
the branches are long enough to attract each other in a parsimony analysis. According to these crite-
ria, if the longest branches of a tree happen to be linked together, then long-branch attraction or
method inconsistency can be invoked. Yet, using this criteria, it is impossible to ascertain whether (1)
long branches do, in fact, belong together or whether (2) the long branches should be separated by
short branches but were linked together because of long-branch attraction.

I argue that two more tests must be passed before long-branched attraction can be invoked: It
should also be shown (1) that the branches are long enough to attract (i.e., if the long branches were
separated, that the maximum parsimony method [i.e., the same method as was used in the first place]
would link them together in the estimated phylogeny) and (2) that a method that is less sensitive to
the long-branch attraction problem gives a phylogenetic estimate in which the long branches are sep-
arated.

These criteria continue to be important, especially because in the past few years, several labs,
notably Herve Philippe’s (at Paris-Sud and, recently, at the University of Ottawa), demon-
strated that unequality of evolutionary rates in different taxa (commonly, in the OTUs at the
rank of family or above) is widespread, that an evolutionary history of even one clade may
include periods with significantly different rates, that popular distance matrix methods are as
prone to LBA artifact as parsimony and compatibility, and that even some of the maximum
likelihood methods are in practice inconsistent.

Much of this is serious theoretical phylogenetics. But it also had a side effect of introducing
some postmodern discourse in evolutionary biology, which can be summed up as yet another
nonnumbered fact of comparative genomics:

In a discussion about phylogeny of any group of organisms, the probability of bringing up unequal evo-
lutionary rates and ensuing LBA artifacts approaches 100% with time.

In order to avoid an ad hoc introduction of LBA into scientific discussion, and to find it
when it really happens, we should follow Huelsenbeck’s advice. As he pointed out, the ulti-
mate question for practicing phylogeneticists is usually not whether there are long branches
in a given tree and not whether they are attracted to each other. What is most often of inter-
est is the correctness of phylogenetic inference. With this in mind, and remembering the “ten
commandments of detection,” which define what is permissible for an author of a mystery
novel (Knox, 1928), I propose the “five rules of (long branch) attraction in phylogenetics,”
or, rather, the rules of invoking the LBA artifacts. Rules 1–4 are taken, with modification,
from Huelsenbeck’s (1997) work. Rule 5, as far as I know, has not been explicitly introduced,
although, when this manuscript was submitted to the publisher, I became aware of a
thoughtful review by Bergsten (2005) that discusses essentially the same rule and many
related issues.

Rule 1: In order to invoke LBA, it is necessary but not sufficient to have both long branches and
short branches in a tree.

Rule 2: In order to invoke LBA, it is necessary but not sufficient that relatively long branches
in a tree indeed attract each other.

Rule 3: In order to invoke LBA, it is necessary to show that two or more branches are grouped
together, but the same is not sufficient because these branches may be a proper clade.
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Rule 4: LBA cannot be invoked automatically if phylogeny inferred by a more LBA-resistant
approach displays the same clades with comparable statistical support.

Rule 5: LBA cannot be invoked automatically if there are more than two long branches in a
tree.

In order to better understand rule 5, let us examine an unrooted tree with four branches,
three of which are “long enough to significantly attract each other”and one is short (Fig. 11.2
and Table 11.1). The true topology of the tree is (AB)(CD). There are three pairs of long
branches in this tree and, accordingly, three ways in which two branches can attract one
another: (BC), (CD), and (BD). Note that in the second of these cases, LBA may mislead us
into thinking that C and D are closer to each other than they really are, but the clades (AB) and
(CD) are still inferred correctly (this has been shown to happen more often in maximum parsi-
mony inference, and the parameters that favor this particular kind of LBA are called “Farris
zone” after famous evolutionist and proponent of parsimony methods John Farris; see
Swofford et al., 2001). Furthermore, depending on the relative strength of each pairwise
attraction, there are four formal possibilities of “net attraction,” two of which do not change
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Figure 11.2. A phylogenetic tree with four taxa, A–D, and five possible places for the root of the tree (1–5). The
correct topology of the tree is (AB)(CD).

Table 11.1. Possible Artifacts of Attraction of Two Long Branches in Such a Tree as Shown in
Fig. 11.2a

Net LBA result

(BC) (CD) (CD)

position Wrong clade Wrong rooting Wrong clade Wrong rooting Wrong clade Wrong rooting

1 Yes No No No Yes No
2 Yes Yes No No Yes Yes
3 Yes Yes No Yes Yes No
4 Yes No No Yes Yes Yes
5 Yes Yes No No Yes Yes

aArtifactual clades and wrong positions of the root are possible in some, but not all, cases.

True root 



the topology of the tree (see Fig. 11.2). In addition to these varied effects on tree topology and
on apparent branch length, there may also be consequences of LBA on rooting because many
methods of root inference involve computation of branch lengths, whereas rooting on the out-
group brings into the picture a new branch (the said out-group) that is long by definition.

From these preliminary qualitative considerations, it is clear that a detailed study of LBA on
more than two branches and a theoretical model of behavior for an arbitrary number of long
branches are needed. In Chapter 12, we examine two cases in which LBA has been invoked
without regard to some of the rules outline previously, leading, in my opinion, to erroneous
conclusions.

LBA is a special case of a broader class of events, which have been known in phylogenetics
under the name homoplasy. Homoplasy, for all practical purposes, is a synonym of conver-
gence, the term that we examined in detail in Chapter 6.

Let us now discuss how the discovery of one such major inconsistency led to the third fact of
comparative genomics, which was introduced earlier in this chapter. The first archaeal
genome, Methanococcus (Methanocaldococcus) janaschii, was sequenced in 1995. The original
report stated that most proteins in this species were unique (PHIDO of 44%; see Chapter 5).
Craig Venter, then of The Institute for Genomic Research and later of Celera and human
genome sequencing fame, stated that “two-thirds of its genes are unlike anything we’ve seen in
biology before” (quoted in Department of Energy press releases, for example,
www.pnl.gov/er_news/10_96/down_ar.txt; accessed August 11, 2006). However, Eugene
Koonin and co-workers, including myself, reanalyzed the genome using gapped BLAST, the
most sensitive database search program at the time, and found that statistically significant sim-
ilarities, coupled with the analysis of conserved sequence motifs, increased the fraction of evo-
lutionarily nonunique proteins in Methanococcus to slightly more than 72%. This is a large
difference, which had brought archaeal PHIDO fully in line with other species (see Chapter 5).
However, average and median highest scores between Methanococcus proteins and their clos-
est homologs were significantly lower than for the other microbes sequenced at the time. This
difference must be explained by much better sampling of the evolutionary neighborhoods of
these other bacteria at the time (i.e., many sequenced Proteobacteria for Haemophilus influen-
zae, many Gram-positive bacteria for Mycoplasma genitalium, and bacteria at-large for
Synechocystis sp.).

Approximately 5% of Methanococcus genes had detectable homologs only in archaea. The
remaining ~68% of nonunique genes had detectable homologs in bacteria, eukaryotes, or
both. This is where the real evolutionary surprise was awaiting. But to explain what it was, I
have to give an extremely brief summary of the leading theory of the three domains of life. This
theory, the debates surrounding it, and how it survived and became accepted deserve better
than what I reduce it to in the next three paragraphs. Fortunately, the firsthand accounts are
available, most notably from Carl Woese and co-workers: The interested reader should consult
Olsen et al. (1994), Woese (2004), and additional references that will be given in the rest of this
chapter as well as Chapter 12.

A hypothesis that was decidedly unorthodox in the 1960s and 1970s when first proposed by
Carl Woese, but by the 1990s enjoyed considerable support and respect, with only a few detrac-
tors, postulated that Archaea are the third major kingdom of life, along with Bacteria and
Eukarya. The relationship between three kingdoms was under debate for many years, but two
main facts seemed to be pinned down. First, the phylogeny based on ribosomes (started in the
1960s and 1970s as comparison of oligonucleotide and peptide maps of ribosomal RNA and
proteins from different prokaryotes and followed in the 1980s by sequencing and comparison
of rRNA and ribosomal protein genes) indicated two ancient splits. One was separation
between bacteria and the rest of living forms, and another was separation between archaea and
eukarya. This topology of tree of life can be written as ((AE)B) in the standard Newick format.
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Partial genome sequencing in the 1980s and early 1990s sampled many prokaryotic and
eukaryotic genomes, and it was found that many protein coding genes also supported the split
into (AE) and B. This was confirmed at two levels. If a protein had orthologs in all three king-
doms A, E, and B (phyletic pattern 111), the phylogenetic tree of such orthologs tended to dis-
play the ((AE)B) topology. However, if a protein was not omnipresent, it usually had phyletic
pattern 110 or 001; that is, it was found either only in AE or only in B. This was mostly true for
proteins involved in translation (ribosomal proteins, initiation and elongation factors, and
some aminoacyl tRNA synthetases), transcription (multisubunit RNA polymerase and sev-
eral eukaryote-like transcription factors), and replication (most notably, Archaea/Eukarya
had type B replicative polymerase and ATP-dependent DNA ligase, whereas bacteria had type
C polymerase and NAD-dependent DNA ligase; see Chapters 6, 12 and 13). Thus, based at
least on this large collection of essential genes, it was concluded that prokaryotes are most
likely two different kingdoms, not one.

The second important fact had to do with the position of the root. ((AE)B) is a rootless tree
of life, and theoretically there may be three places to insert the root in it, one on each branch.
The two most popular methods of rooting evolutionary trees were not applicable in this case:
Rooting on the out-group was out of question because there is no out-group in the tree that
encompasses all life, and rooting on the midpoint between the major clades is also technically
impossible when there are only three clades. The new idea was to search for a particular class
of genes, namely those that were represented by pairs of paralogs in all living forms. Such genes
must have been duplicated prior to divergence of A, E, and B, and each ancestral member of
such a pair gave rise to its own set of orthologs. The complete tree produced by the progeny of
one ancestral paralog will then be an out-group for the tree given by the descendants of the
other paralog. Thus, trees for two ancestral paralogs can be rooted on one another, if we can
determine which genes have been duplicated prior to the divergence of A, E, and B.

Reconstruction of gene content in an ancestral genome has to combine traditional methods
of phylogenetic inference with some novel algorithmic approaches, which help to account for
gene losses and displacements, and to be checked for internal consistency (i.e., that the inferred
metabolism makes sense) and for compatibility with paleontological, biochemical, and other
planetary evidence.We have seen one example of a partial historical reconstruction of one short
pathway earlier in this chapter, and I devote much of the next two chapters to reconstruction of
ancestral cells and metabolisms. And it will become evident that many genes in the genome of
the last common ancestor of A, E, and B had paralogs. In 1989, Iwabe and co-authors at Kyoto
University used one such pair, two GTPases involved in translation initiation, to root the tree of
life, and shortly thereafter several other authors attempted to do the same with additional pairs
of paralogs, including V- and F-type ATPase subunits, aminoacyl-tRNA synthetases, and a
few others. Details aside, most trees agree on the same root placement between AE and B.

Thus, by the mid-1990s, the most straightforward interpretation of the tree of life was that
the ancestral lineage evolved by two major splits: first into (AE) and B, and then by bifurcating
(AE) into A and E. Of course, major questions remained, particularly concerning the identity
of the common ancestor (was it more like modern bacteria, more like archaea, or yet some-
thing else?) and the origin of eukaryotes. However, the expectation of the complete genome
sequencing was that the Methanococcus proteome would broadly support the ((AE)B) topol-
ogy of the three kingdoms, in the same way as the translation-related subset of archaeal genes
did: either by the ((AE)B) topology of the gene trees or, if genes are lineage specific, by phyletic
pattern 110 (A E -) . This, however, was not what we observed.

We examined the taxonomic identity of the closest database homologs of each protein of
M. jannaschii, which were collected using the gapped BLAST software, and found the follow-
ing. For 44% of proteins, the closest bacterial homolog had significantly higher similarity to
the M. jannaschii protein than the closest homolog from Eukarya (the difference of at least
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5 percentage points between similarity levels determined by WUBLAST) or, in many cases,
no eukaryotic homolog of the archaeal protein could be detected at all. The percentage of
M. jannaschii proteins for which the opposite was true (i.e., the closest homolog from Eukarya
was significantly closer to the query than the nearest homolog from Bacteria) was much lower
at only 13%. The remaining 43% of proteins had exclusively archaeal homologs, none at all, or
they were approximately equidistant from their bacterial and eukaryotic homologs. In the
years since our initial study, with improved sequence comparison and increase in dense cover-
age of the sequence space by genome projects, the majority of this group was parsed into either
Bacteria-like or Eukarya-like genes, and Bacteria-like proteins are still in excess after these
later recalculations.

Thus, essentially only 13% of archaeal proteins supported the Woesean ((AE)B) topology,
which, by the mid-1990s, had seemed to be finally settled by the rRNA and other evidence. In
contrast, 44% of proteins supported the ((AB)E) topology. We also saw the same trends in a
large collection of proteins from a distantly related archaeon, Sulfolobus solfataricus, whose
genome sequencing was ongoing at the time. Thus, the distribution of Bacteria-like and
Eukarya-like genes was not peculiar to Methanococcus but seemed to be a genuine property of
all Archaea.

There was another clear trend in the data: The “Bacteria-like” genes in Methanococcus
tended to be concerned with energy supply and with biosyntheses of amino acids, nucleotides,
coenzymes, and polysaccharides. In contrast, the “Eukarya-like”genes mostly had to do with
genome maintenance and expression. There were some exceptions to this rule; for example, we
saw a fragment of eukaryote-style mevalonate pathway for isoprenoid biosynthesis and, on
the other hand, bacterial-style primase of the DnaG family. In any case, proteome of Archaea
appeared to consist of two components with different evolutionary histories. Hence the
suggestion of “chimeric origin for the Archaea” in our article (Koonin et al., 1997).

Several months later, James Lake’s group at UCLA published an article with the title that
tells essentially the same story: “Genomic Evidence for Two Functionally Distinct Gene
Classes”(Rivera, 1998). Notwithstanding some technical differences with our work (they used
ungapped BLAST for similarity detection and transformed the raw scores in a different way),
their observations agreed with ours: Archaeal genes involved in metabolism (called “opera-
tional” by Lake and colleagues) tended to be Bacteria-like, and genes involved in replication,
repair, transcription, and translation (“informational genes”) were more Eukarya-like.

The main difference between the two articles was in the evolutionary scenarios that were
offered to explain the data. We speculated that the origin of Archaea included a massive hori-
zontal gene transfer between two types of ancient organisms—the ancestor of eukaryotes,
which donated informational genes, and the ancestor of Bacteria, providing operational
genes. A rather technical question is whether this process is more appropriately described as
horizontal gene transfer or as a wholesale fusion of two organisms, perhaps followed by mas-
sive gene losses (to explain the “missing subsets”of ancestral genes). Lake’s interpretation also
involved massive gene fusion and loss, but he thought that the donors of genes were ancient
Archaea, on the one hand, and Bacteria, on the other hand, whereas the resulting clade was the
ancestor of modern eukaryotes (Fig. 11.3). As we will see later, the most important, and new,
point on which both theories agree is that the evolution of life involves massive gene trans-
fer/genome fusion, and therefore the tree of life is not a tree: It contains at least one cycle. The
difference between our and Lake’s scenarios was mostly in the position of the root of the tree.

Since this work, there has been much debate about the role of horizontal gene transfer in the
early evolution of life. In my opinion, the discussion of the deep branches in the tree of life boils
down to the following three problems:

1. Whether Woesean topology ((AE)B), with two splits and a root between bacteria and all
the others, is sufficient to explain true phylogeny of all life.
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2. If it is not, and a better explanation of the evidence is needed, whether such better expla-
nation involves massive horizontal gene transfer (with variations such as merger of complete
genomes and massive gene loss).

3. If horizontal gene transfer (HGT) played a role, what was the identity of the donor(s)
and recipient(s).

In my opinion, the debate regarding the first two questions is, for all practical purposes, over,
and the answers are, respectively, negative and affirmative. At least one important cycle close
to the root of the tree of life has to be postulated in order to explain the evidence. The answer
to the third question, however, is still open, although the decade of accumulating molecular
data seems to lend more support to Lake’s scenario.

Here, I have to digress and to discuss a somewhat technical matter. BLAST similarity score
is a standard surrogate measure of similarity between sequences that can be obtained auto-
matically and relatively quickly using a popular, well-supported suite of software. Probability
of chance observation of score equal or higher (see Chapter 2) is simultaneously computed,
and the rank of similarity (e.g., the highest or second highest score) is yet another measure eas-
ily derived from BLAST analysis. But we are often warned against using BLAST scores when
talking about evolution.

I know of three main grievances here. First, to some investigators, discussion of evolution
has to be over a phylogenetic tree, whereas BLAST comparisons emphasize distance/similar-
ity, score ranks, and other parameters that are seen as mere “raw material” for building a tree.
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Figure 11.3. The “ring of life.”Eocytes is a name given by James Lake to a subset of Archaea; neither this name nor
the notion of the high taxonomic rank of this group are widely accepted. The circle at the bottom of
the tree of life is accepted by most and in fact is not much different from the reticulations shown in
Fig. 11.1. The identity of genomes that have been fused in early evolution of life remains to be thor-
oughly established. Reprinted from Rivera and Lake (2004) by permission of Nature Publishing
Group.
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This is a verbal jousting: Good information about evolution may be obtained “without
recourse to a tree”(Fitch, 1995). Thus, “BLAST is not a program for studying evolution”is not
a valid argument. A specific reason needs to be provided why BLAST similarities are unsuit-
able for answering a specific evolutionary question.

The second concern is about incompleteness of BLAST results. One famous example is the
hypothesis of the bacterial origin of a subset of proteins encoded by human genome (Lander
et al., 2001). This explanation, which involved xenology, was offered when BLAST searches of
the National Center for Biotechnology Information NR database failed to report any
orthologs of these human proteins in other vertebrates or even in two completely sequenced
metazoan animals, nematode and fruit fly, but showed many bacterial orthologs. A compari-
son of the same human sequences to the EST databases (also by BLAST), however, found
orthologs of human proteins in many EST libraries from various metazoa (Salzberg et al.,
2001). Thus, instead of the single scenario of direct xenologous transfer of bacterial gene into
a human genome, one has to consider others, such as horizontal transfer from bacteria much
earlier in evolution, perhaps in the Deuterostomia clade, or even a phylogeny that includes
hardly any xenology and instead explains the phyletic pattern of these genes by losses in worm
and fly lineages (Andersson et al., 2001). But even though this and similar stories often pre-
sented as an example of insufficiency of BLAST analysis for evolutionary inferences, this is
really a problem of access to sequence and has nothing to do with the BLAST program: The
fault of initial observation was that EST databases were not searched, not that the search
method biased the evolutionary estimates. (Interestingly, at least one group of enzymes in
Metazoa, namely those involved in biosynthesis of neuromediators from amino acids,
nonetheless may have been xenologously transferred from various groups of bacteria to the
metazoan lineage on at least five separate occasions; for discussion of the advantages of this
scenario over most alternatives, see Iyer et al., 2004).

The third type of complaint states that BLAST scores may be too crude of a distance meas-
ure between sequences. This objection is heard even from the authors who otherwise support
the use of distance matrix methods in phylogenetic analysis. For example, Ludwig et al. (1998)
warns,

Only careful data analysis starting with a proper alignment, followed by the analysis of positional
variability, rates and character of change, testing various data selections, applying alternative treeing
methods and, finally, performing confidence tests, allows reasonable utilization of the limited phylo-
genetic information.

Technical sophistication and understanding of limitations of our methods are good. If
there is anything inherently careless or sloppy about BLAST scores, we should not use them—
but is there? Indeed, these scores are derived using sensitive probabilistic models of sequence
similarity, which utilize significant evolutionary information in the form of substitution
matrices (see Chapter 2). When transformed into bits, similarity scores are not arbitrary units
but reflect specificity of signal detection at the background of complete sequence database
(Altschul, 1991). High similarity scores are indicative of evolutionary and functional connec-
tions between sequences—this is the first fact of computational molecular biology (see
Chapter 1). Moreover, transformed BLAST distances allow “testing various data selections,
applying alternative treeing methods and, finally, performing confidence tests.” All this is not
controversial. So, what is the reason to distrust the phylogenetic inference based on the
BLAST data?

In fact, all distances, whether derived from BLAST, multiple sequence alignments, or any-
where else, have their limitations. The key fact in phylogenetic inference is that every distance
between two molecules is a statistical estimate of the true evolutionary distance; same as in
parsimony methods, every minimization of character state changes is an estimated value of the
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true minimum. Likewise, every reconstructed phylogenetic tree is an estimate of the true phy-
logeny. The advantage of the multistep protocol outlined by Ludwig et al. is that incorporat-
ing more knowledge into the method may result in a better statistical estimate. However, if
BLAST scores or their simple transformations are equally good statistical estimators as the
distances induced on the trees, we would certainly want to know about it in this era of complete
genomes and phylogenomics. In other words, no approach should be dismissed solely because
it is too simple; each method of computational experiment needs to be evaluated in its own
right. This is not different from wet lab: I may contend that only DNA purified in CsCl gradi-
ent is the pure DNA, but I may not need that pure of a sample in order to clone a gene. After all
is said and done, there are few specifics regarding what may be wrong with BLAST scores in
any sense.

One of the very few reports in which the problem has been clearly defined is that by Koski
and Golding (2001), with the memorable title, “The Closest BLAST Hit Is Often Not the
Nearest Neighbor.” The basic phenomenon is what the title says: Suppose I use a protein
sequence AA from organism A to search a collection of other proteomes B, C, D, etc. with the
BLAST program and find that a homolog AB in the proteome B is the highest scoring BLAST
match of AA. I then build a tree of all detected homologs and ask what is the nearest neighbor
of AA in this tree. The nearest tree neighbor is defined, for example, as the protein that I can
access from AA by passing the smallest number of internal nodes in the tree (the tie in the num-
ber of nodes may be broken, e.g., by the shorter length of traversed branches). It turns out that
in a number of cases, the nearest tree neighbor is not the same as the BLAST neighbor AB but,
rather, a homolog from some other species. Thus, the BLAST neighbor and the tree neighbor
may not be one and the same.

We studied this effect, which we call Koski–Golding incompatibility (KGI), in more detail
(G. Glazko, M. Goel, and A. Mushegian, unpublished). First, we examined the occurrence of
KGI at the genome scale. For most interspecies comparisons, BLAST neighbor and tree
neighbor properties are very good statistical predictors of one another. For two proteomes
specifically studied by Koski and Golding, bacterium Escherichia coli and archaeon
Aeropyrum pernix, KGI was observed in less than 18 and 45% of all cases, respectively.
Second, the relatively large gap between the rate of KGIs in E. coli and A. pernix narrowed sig-
nificantly if instead of one-way BLAST matches, the symmetric BeTs are considered.
SymBeTs are excellent rejectors of the null hypothesis that BLAST neighbor property was
uninformative with regard to the tree neighbor property. The percentage of KGI among the
proteins involved in SymBeTs decreases to 9 and 18%, respectively. Approximately half of
these KGIs go away with better normalization of BLAST scores and when the statistical ties
between the first few top-ranking matches in the case of complex co-orthologous relation-
ships are taken into account. The fraction of KGIs that remains unexplained is therefore less
than 10% in most species.

Thus, Koski and Golding made an important contribution to comparative genomics by
defining a specific technical problem with BLAST scores. They think that the only way to
know whether a gene suffers from a KGI is to build a tree. We have observed, however, that at
the genomic scale the rate of KGIs can be reduced without recourse to a tree by implement-
ing some automated filters on the BLAST neighbor sets. This is analogous to removing non-
informative or incompatible characters from sequence alignments, which is a standard
practice in many methods of phylogenetic inference. Much of the following analysis in this
chapter and Chapters 12 and 13 concerns similarity and orthologous relationships between
SymBeTs.

So, was there massive HGT in early evolution of prokaryotes, and could there be significant
extent of HGT in more recent times? This question remains contested. Lawrence and
Hendrickson (2003) wrote,
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It ... seems that complete genome sequences have generated more debate, speculation, discussion, and
publication of works—both those presenting objective analyses of new data and extrapolation of data
according to one’’ point of view—regarding horizontal (lateral) gene transfer (HGT) than any other
subject.

Let us review the evidence.One could approach the phenomenon of HGT, for example, from
the mechanistic angle, studying the enzymatic activities and molecular complexes that enable
gene passage between species. Another angle is to focus on the adaptation value—that is, the
utility of HGT to an individual organism or evolving species (including comparison of the
adaptationist hypothesis with various “selfish DNA”models)—and yet another perspective is
that of population genetics—the dynamics of allele transfer and spread in populations. My
interest here, however, will be in the evidence that comes from comparative genomics and that
tells us how HGT shapes the gene content of living species.

I believe that there are essentially nine groups of relevant observations:

1. Perhaps the earliest type of evidence that is naturally explained by HGT is the abundance
of highly similar genes in diverse bacteria—genes encoded by plasmids and other mobile ele-
ments. Various types of “selfish genetic element”narratives have been used to explain dissem-
ination of viruses, insertion sequences, transposons, and other such elements that are of no
immediate use to bacteria. But many plasmid-borne genes provide hosts with immediate
advantages, such as detoxification of antibiotics, bacteriocins, or resistance to phages. There is
also ample evidence of plasmid-borne groups of genes that provide novel metabolic functions,
notably utilization of novel sources of food, but also essential biosynthetic functions. In such
cases, “selfishness” is beside the point.

2. This set of observations is closely paralleled by the evidence at the nucleotide level. In
most microbial genomes, there are reasons with unusual nucleotide frequency distributions,
which differs from average base composition, and often contain genes that encode proteins
more closely related to gene products in distant bacteria or in mobile genetic elements, such as
phages, insertion sequences, or broad host range plasmids. Nucleotide evidence of gene mobil-
ity, however, seems to be eradicated (or “ameliorated”) relatively quickly because of apparent,
but not well-understood, constraints on local base composition in many bacteria. The rate of
amelioration appears to be lower in the amino acid sequence, which may be useful for dating
the HGT events (Lawrence and Ochman, 1997).

3. Eukaryotes have acquired two large batches of bacterial genes by symbiogenesis. First,
an ancient alpha-proteobacterium gave rise to mitochondria after being engulfed by an ances-
tor of eukaryotes (perhaps the ancestor of all known eukaryotes, since the currently known
amitochondrial eukaryotes may be the result of a secondary loss of mitochondria). Second,
some eukaryotes have additionally acquired ancient cyanobacteria, which gave rise to chloro-
plasts. This may have happened on more than one occasion. Genes that used to be encoded by
genomes of these previously autonomous bacteria have been mostly transferred into the
nuclear genomes of the hosts. This is another massive horizontal transfer with which no one
seems to have any major disagreements.

4. As discussed previously, proteomes of Archaea and Eukarya can be partitioned into two
distinct and large classes of proteins with apparently different evolutionary affinities: Some
protein sequences display ((AE)B) topology, whereas others show topology ((AB)E). All sen-
sible phylogenetic explanations of how this came to be include horizontal transfer at a large
scale (tens of percent of all genes) or whole-genome fusion and subsequent gene losses. One
radically dissenting opinion on the origin of archaea has been offered by Thomas Cavalier-
Smith (2002a); it is of great interest (at least to me) despite its eccentricity, and I will discuss
and, I hope, rebuff it in Chapter 12.

5. Complete genomes of distinct microorganisms sharing the same habitat provide further
evidence. A first thermophilic bacterium with completely sequenced genome, Aquifex
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aeolicus, has a set of proteins that are commonly found in thermophilic and hyperther-
mophilic archaea but are rarely found in other bacteria, including proteobacteria to which
Aquifex is related (Aravind et al., 1998). Nelson et al. (1999) have shown that Thermotoga mar-
itima also has a fraction of proteins related to homologs from thermophilic archaea but rarely
found in mesophilic bacteria, including low-GC Gram-positive bacteria (most likely the sister
clade of Thermotoga, as judged by analysis of many molecular characters). Methanosarcina
mazei, a methanogenic archaeon that, unlike most of its close relatives, is mesophilic, has a
larger proportion of genes with only bacterial homologs compared to other archaea: Of 3371
protein coding open reading frames, as many as 544 had statistically significant matches only
in bacteria, but none in other archaea (Galagan et al., 2002). Note that the meaning of this lat-
ter number was quite different in 2002 than it was in 1996; when we reported that a M. jan-
naschii protein had matches only in bacteria, this may have reflected, among other things,
insufficient information about archaeal genomes. But two dozen completed archaeal genomes
later, a M. mazei protein with recognizable homologs only in bacteria, but not in genomes from
its own taxonomic neighborhood, provides a much stronger suggestion of the HGT scenario.
Finally,a bacterium that lives in crystallizing concentrations of sodium chloride,Salinibacter sp.,
was found to share a large fraction of its genes with halophilic archaea (Mongodin et al., 2005).

6. The phylogenetic tree of a gene family may not always be the same as the tree of the
species in which these genes reside. Anomalies of this sort are more commonly observed in
operational genes, but informational genes also display such evidence, and for some of them,
strong cases have been made for horizontal transfer. Aminoacyl-tRNA synthetases seem to be
especially prone to having family trees distinct from those of their host species (Aravind et al.,
1998), and strong disagreement has also been observed between bacterial tree and the family
tree of ribosomal protein S14 (Brochier et al., 2000).

7. Evidence that is compatible with HGT can be obtained by comparing trees of different
genes from the same set of species, without recourse to a species tree. For example, there are 188
genes that are specifically shared by five phylogenetically diverse photosynthetic bacteria
(Raymond et al., 2002). When trees are built from the sequence alignments of these genes, there
are 15 different topologies, 4 of which are supported by at least 10% of all family trees. A qual-
itatively similar picture is observed with the trees of archaea-specific gene families (Makarova
and Koonin, 2005).

8. In Chapter 6, we discussed DOGs—displacements of orthologous genes, or functional
convergences at the molecular level. Every gene displacement is based on recruitment of two
or more genes to perform the same function. There are only two possibilities of recruitment:
A new gene can be recruited either from genes present in the same genome or from another
genome. In the latter case, the DOG is produced by HGT.

9. In Chapter 8, we discussed phyletic patterns, which are binary vectors coding the pres-
ence and absence of proteins/COGs in different species. Currently, the COG database includes
more than 110 microbial species and almost 14,000 COGs. By definition, COG is a set of
orthologous groups found in at least 3 species, so a phyletic vector of a COG may have three or
more coordinates set at 1. Only 46 COGs have every coordinate equal to 1, whereas 88% of all
COGs are found in less than 30 species. Thus, an overwhelming majority of phyletic vectors are
dominated by gene absences: Out of 10 broadly conserved proteins, 9 will not be found in a ran-
domly picked bacterial or archaeal species. One explanation for such sparse distribution of
genes in genomes, especially when these genomes are evolutionarily distant from each other, is
that genes are passed between genomes by HGT.

These nine lines of evidence are summarized in Table 11.2. The correctness of each obser-
vation is not in doubt—for example, no one argues with the existence of two gene classes in
archaea or with the notion of gene displacement—it is the evolutionary history that leads to
each observation that needs to be explained. Thus, let us call them the “nine facts that have to
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be explained.” Each of the nine facts can be seen as the effect of HGT, either in ancient or in
more recent times. However, other explanations, that do not involve HGT, can be put forward
to account for some of the nine facts. It is the strength and implications of these alternative
explanations that will concern us now.

We have already had a look at the first line of counterargument, which claims technical arti-
facts, such as incompleteness of the sequence databases or poor choice of distance measures.
It is clear that each of the nine facts is quite robust to these methodological problems. In a care-
ful phylogenetic study—for example, if BLAST-derived distances are replaced by JTT evolu-
tionary model and maximum likelihood analysis—the HGT hypothesis may be refuted for a
fraction of genes, but none of the nine facts can be dismissed: Each of them remains supported
by many different genes in many different genomes. There has to be a more substantive expla-
nation.

The second type of argument makes no specific refutation of evolutionary scenarios for spe-
cific genes. Rather, general functional and evolutionary considerations are brought up. For
example, there are known functional barriers, such as site-specific and nonspecific DNA
degradation systems, that may be guarding cells against invasion of parasitic and pathogenic
DNA. Of course, on the other hand, some bacterial species are naturally competent, which
means that they can take up large fragments of foreign DNA (the first completely sequenced
bacterium, H. influenzae, is one of the best studied examples). Moreover, it is well documented
that many genes are transferred between cells not by serendipitous fragments of genomic
DNA but, rather, by viruses and plasmids that are already engineered to resist host defenses.

The next set of arguments examines the implications of gene transfer at the level of evolving
populations. In particular, Charles Kurland of the University of Lund has described many
factors that he believes to be formidable evolutionary obstacles to “rampant horizontal gene
transfer” (Kurland et al., 2003; Kurland, 2005). He essentially sees four main barriers. First,
there is a negative effect of large population size: Any new gene is likely to be acquired by only
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Table 11.2. Nine Facts That Argue Strongly in Favor of Ancient and Ongoing Horizontal
Gene Transfer

Evolutionary distance Rate of HGT: % 
between donor and of all genes in the Explanations that do not 

Evidence recipient recipient genome involve HGT?

1. Similarity of genes encoded Various ~10 No
by mobile elements
2. Nucleotide frequency statistics Various ~10 No
3. Symbiotic origin of organelles Large >10 No
4. Two gene classes in Archaea Large >>10 Confluence of artifacts 
and Eukarya (e.g., unequal evolutionary

rates)
5. Closely related genes in species Large >10 Retained ancestral genes
that share the habitat
6. Discordance between the Large ~10 Differential gene losses and
consensus genome tree and protein unequal evolutionary rates
family tree
7. Discordance between the Large >10 Differential gene losses and
individual family trees in the unequal evolutionary rates
same set of genomes
8. Displacement of orthologous Large 5–10 Differential gene losses
genes
9. Dominance of sparse Various Unknown Differential gene losses
phyletic patterns



a few recipient cells, and mathematical modeling indicates that in the absence of very strong
selective advantage, the transferred gene will be lost before it can spread in the population.
Second, many gene products belong to co-adapted cellular systems, where proteins, nucleic
acids, membranes, polysaccharides, and other components are “optimally fitting together.”
Such optimality is thought to be difficult to achieve when a recipient gains some but not all
components of a larger complex. Third, even the most benign foreign gene incurs costs to the
recipient, such as the expense of replicating extra DNA and, potentially, of mutation load if
the gene is inserted in a functional region of the recipient’s genome. Fourth, selection is never
distributed evenly across the habitat. Hence, even if a new gene initially spreads because of
positive selection, it will have additional opportunities to be lost when selection is removed.

However, each of these obstacles is relative. For example, the existence of the first barrier is
equivalent to the suggestion that HGT should be favored in small populations, in which the
density of both donor and recipient is sufficiently high. This immediately brings to mind habi-
tats such as hydrothermal vents, mats, and, as the ultimate case of dense cohabitation, sym-
biogenesis. These ideas are fully compatible with the nine facts, especially with facts 3–5. The
third and fourth barriers essentially state that the transferred gene has to offer immediate and
strong selective advantage. This may be fulfilled in the case of transferred operons, which can
bring in whole new pathways, but even a singly transferred gene can confer a strong selective
advantage, such as resistance to antibiotics produced by some of the cohabiting microorgan-
isms. This would be compatible not only with fact 1 but also with fact 8. In any case, patchiness
of the environment and changing selection pressures affect all genes in the genome, and there
is nothing particular here about horizontally transferred genes. Regarding the third barrier,
“optimal fit”essentially seems to be the same as the “complexity hypothesis,”which states that
it is more difficult to transfer a gene if its product needs to interact physically with many mol-
ecules at the same time (Jain et al., 1999). But we know that DOGs do happen, although they
are less frequent among the informational than the operational genes. Thus, all four of
Kurland’s barriers are worth thinking about, but more than anything else, they help us to
understand the circumstances in which HGTs are more likely to occur. Examination of
Kurland’s arguments leads me to suspect that his disagreements are not as much with the facts
as they are with the characterization of HGT as “rampant”or “massive.” We will return to the
semantics later.

The next line of defense against the prominent role of HGT is the suspicion of tree artifacts,
most prominently LBA. It is true that most of the branches in the phylogenetic trees of
prokaryotic lineages are long. However, LBA has to be demonstrated in each case separately,
for example, using the rules outlined previously. The alternative (“at this branch length, we will
not believe any tree, no matter what it shows”) can lead to eccentric theories, as exemplified in
Chapter 12. In any case, LBA is all but useless for explaining the issues of gene content, when
some genes are shared by disparate groups of genomes, as in facts 3, 8, and 9.

But perhaps at the heart of the debate of the HGT status is the argument crisply stated by
Koonin (2003b). It points out that any phylogenetic evidence of HGT can also be attributed to
a combination of gene duplications and gene losses. In Fig. 11.4, this is illustrated for a gene
with patchy phyletic distribution. The only way in which this distribution can be explained
without any HGT at all is if the ancestral gene was present in the genome in the last node from
which all depicted species descend—in this case, the last universal common ancestor. But
under the same hypothesis, we also have to accept 10 gene losses in different lineages. An alter-
native explanation is one act of HGT, most likely from bacteria to halophilic archaea.

One could argue that the consensus species tree is reconstructed incorrectly and that in a true
tree, the phyletic pattern of this gene would have been more compact and explainable without
HGT, or with a much smaller number of gene losses. This argument does not hold: The tree
topology shown in Table 11.2 is well supported by many molecular characters of all kinds and
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is perhaps as close an approximation of the (non-reticulated) evolutionary history of life as we
can get. Moreover, in the last release of the COG database, there are approximately 103 phyletic
patterns altogether, and 90% of them are “patchy”(fact 9 of HGT). We would be hard-pressed
to produce a tree with such rearrangement of branches that could satisfy an HGT-less scenario
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Figure 11.4. How many gene losses are we prepared to accept in order to reject a single act of horizontal gene trans-
fer? Two scenarios of evolution for anaerobic glycerol 3-phosphate dehydrogenase GlpB. The con-
sensus phylogenetic tree is shown, and the species that have this protein—(left to right) Halobacterium
sp. (archaea), Vibrio cholerae, H. influenzae, and Escherichia coli (all gammaproteobacteria)—are
marked by gray boxes at the tips of the tree. (Top) Scenario with horizontal transfer: Emergence of the
gene in the gammaproteobacterial ancestor (black box) and one act of transfer to halobacteria explain
the tree. (Bottom) Scenario without horizontal transfers: Lightning bolts indicate gene losses that need
to be invoked to explain phyletic distribution of GlpB in this case. Modified from Koonin (2003b) by
permission of Blackwell Publishers.
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Figure 11.5. Gene duplication and loss in the evolution of elongation factor Tu. An ancient duplication of the tuf
gene (tufA) occurred early in the divergence of eubacteria with the addition of a second tuf gene (tufB)
upstream of the rpmG gene, the first gene in the proposed ancient transcriptional unit. As inferred
from the current genome location, tufA has been lost in both the Chlamydia and epsilonproteobacte-
ria, whereas tufB is lost in Buchnera, Synechocystis, the spirochetes, and low- and high-GC  Gram-pos-
itive bacteria. Clostridia, a Gram-positive low-GC taxon, has maintained the tuf duplication,
suggesting the other low-GC Gram-positive taxa lost tufB in a separate event from the high-GC
Gram-positive clade. The duplication is maintained in the remaining proteobacteria and Deinococcus
radiodurans. Reprinted by permission of Federation of the European Biochemical Societies from
Evolution of tuf genes: ancient duplication, differential loss and gene conversion, by Lathe, W. C., 3rd,
and Bork, P., FEBS Letters, 502(3), 113–116, copyright 2001, Elsevier.

for all of these patterns simultaneously (this is my unproven conjecture; actually doing this sort
of “reconciliation”would be a useful exercise, even though I predict it will fail).

Notably, the same two competing scenarios need to be evaluated not only when evolution-
ary histories of genes with sporadic occurrence are examined, but also in the case of anomalies
in phylogenies of omnipresent genes. For example, the phylogenetic tree of the elongation fac-
tor Tu in bacteria appears to be better compatible with ancient duplication and differential loss
of paralogs in different lineages than with HGT (Lathe and Bork, 2001; Fig. 11.5).

Thus, any suspicion of HGT can also be explained by gene loss, sometimes interspersed with
gene duplication. The difference between using such explanation for a rare gene and for the
omnipresent genes is mostly in that in the former case, the dichotomy of the two scenarios
comes sharply into focus. Another, more substantive, difference is that although in both cases
the distribution of genes is mapped onto the species tree, it is done in a different way:
A phyletic pattern of a gene is mapped to the tips of the tree, but a gene tree is mapped onto tips
and at least some of the internal branches.

The question, ultimately, is not about choosing either the HGT explanation or the gene-loss
explanation, to the exclusion of one another. The real question is about estimating the rates of
both processes. Thus, instead of asking whether HGT is “rampant,”“massive,”or “sporadic,”
we can ask whether it is more rampant than gene loss, whether it is massive enough to explain
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the history of a substantial portion of genes in the genome, whether it is too sporadic to per-
turb evolutionary signal in a species tree built on the basis of concatenated sequence align-
ments of multiple genes, and so on.

The question of rates of HGT and gene loss, or about the form of the function that assigns
costs to both processes (and also to gene births, which, obviously, had to occur in some ances-
tral life-form), is one of the central questions of gene content-based phylogeny, and indeed of
comparative genomics. One type of such function is unweighted parsimony, in which we sim-
ply count the number of events that explain the distribution of genes given the species tree. The
scenario with the smallest number of events is declared a winner. This, clearly, is not an espe-
cially realistic model for several reasons, the most immediate of which is the relative ease with
which genes seem to be lost upon changes in selection. Many examples of that can be seen in
the genomes of pathogenic microorganisms, which were among the earliest completely
sequenced species. These bacteria live in human and animal body cavities—environments that
are rich in several classes of nutrients, for example, amino acids and nucleobases (although, on
the contrary, some essential microelements, such as iron, seem to be depleted in such environ-
ments, and many human pathogens have specific adaptations for scavenging iron and gene
switches that sense iron concentration ). Genes in the pathways of de novo biosynthesis of these
metabolites are lost quite frequently (Fig. 11.6). Thus, it is tempting to say that loss of a gene is
much more common than gene gain, either by birth or by HGT. But here again, the crucial
question is, by how much?

In the absence of direct studies of gene loss and gain—studies that have not been done in
the laboratory yet, even though it should be possible to set up such an experiment with the
existing technology—we can only estimate these rates from the gene content of the existing
genomes. One way to do so is to compare many genomes of closely related species. For
example, one of the best sampled clades of bacteria are gammaproteobacteria. Here, we
have a large number of closely related orthologous genes, which can be used to estimate the
relative times since divergence of strains, species, and genera. In the same set of genomes,
we can count all cases of gene gains and gene losses, especially those that are seen in just one
or a small number of lineages. This provides a direct estimation of the instantaneous rate of
gene loss and gain in an evolutionary lineage, which can be extrapolated to larger evolu-
tionary distances (Lerat et al., 2005). The main result of this and other studies work is that
there are both rampant and rare aspects to HGT: Most important, although the absolute
number of genes that have been horizontally transferred at least once in their lifetime
appears to be high (on the order of hundreds), the HGT events are rare in the sense that
most genes (>90%) have been transferred not more than once in their lifetime or,
commonly, not at all.

Another, indirect way to define the cost function for gene loss and HGT is to assess the effect
of different loss-to-HGT ratios on gene content of ancestral genomes. The point here is that if
we prohibit HGT altogether, the result will be either a grotesque “mother of all genomes”—
the last common ancestor that had all imaginable genes and evolved only by differential gene
loss—or an implausible scenario of gene birth in multiple lineages (i.e., parallel and/or con-
vergent sequence evolution on an unprecedented scale). Alternatively, we can put a constraint
on the size of the common ancestor of a group of species. For example, we can request that the
number of genes in the common ancestor not exceed the genome size of a present-day species
that lives in a similar environment. We can also require that the ancestral set of genes contains
a relatively coherent set of genes, sufficient to build most of the pathways that enable func-
tioning of a primitive organism. Then, we can use information about the distribution of
genes/COGs in today’s species to infer the status of each gene in the common ancestor and to
find the values of gene gain and loss rate that satisfy the constraints imposed on the ancestor.
This search for the weight function has been performed by Snel et al. (2002) and by Mirkin et al.
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Figure 11.6. Gene losses in parasitic bacteria. Fragment of the metabolic map, representing biosynthesis of amino
acids proline and arginine. Open boxes indicate enzymes present in E. coli, where these pathways were
defined originally. Gray boxes indicate genes that have been retained in Neisseria gonorrhoea (top) and
Treponema pallidum (bottom). From Kyoto Encyclopedia of Genes and Genomes Web site
(www.genome.jp/kegg; accessed May 15, 2006); Copyright 1995–2006, Kanehisa Laboratories.



(2003), and the most consistent results were obtained when the rates of gene loss and HGT
were comparable (see Chapter 13).

Thus, is HGT rare, common, or rampant? Perhaps, in the end, this is not the correct ques-
tion to ask. Different aspects of HGT may be quantitatively different. So, inspired by Chapter
17 of James Joyce’s Ulysses:

What is rare in horizontal gene transfer?
The transfer over the lifetime of an individual gene. Most genes are transferred only once

during their lifetime or not at all (Lerat et al., 2005).
Most likely, fixation of a transferred gene in the population of recipient. Most genes are

fixed only if they confer strong selective advantage, and perhaps even then only if the pop-
ulation of recipient is small enough (Kurland et al., 2003; Kurland, 2005).

What is neither very rare nor very common in horizontal gene transfer?
The DOGs in two similarly sized microbial genomes. Perhaps only 5–10% of genes are

DOGs, and not all of them are the result of HGT (see Chapter 6).
Genes that have been horizontally transferred in the recent history of a given lineage (Price

et al., 2005).
What is common in horizontal gene transfer?

The fraction of genes in archaeal and eukaryotic genomes that have been acquired by
ancient HGT or a whole genome fusion.

The fraction of genes/COGs that have been horizontally transferred at least once in their
lifetime.

What is of unknown frequency in horizontal gene transfer?
The relative rate of losses and horizontal transfers in the general population and in the evo-

lutionary histories of individual genes. The best current estimate is that they are not
strongly different for prokaryotic genes.

The proportion of reticulations that need to be added to the tree of life to fully explain what
was going on in evolution. I believe that the ratio of reticulate to “conventional”branches
will be not higher than 20–30%.
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12

Two Stories about Evolution

This chapter is about two episodes in the history of Life and about human efforts to make sense
out of complex data.

The first story is about the origins of Archaea and their relationship to Bacteria and
Eukarya. The discovery that Archaea are a unique form of life belongs to Carl Woese. He pos-
tulated that an unusual relationship exists between Archaea and the other two divisions of Life
almost 30 years ago. This is what we also think today, but during the past three decades there
have been several shifts in understanding of what this relationship really is. Scientific discus-
sions of this question continue, but something resembling a mainstream opinion has eventu-
ally emerged. Computational analysis of molecular sequences and gene content in various
completely sequenced genomes mostly supports the opinion that can be summarized as
follows:

1. Bacteria and the common ancestor of Archaea/Eukarya are ancient sister groups.
2. The common ancestor of Archaea/Eukarya most likely was a prokaryote of archaeal

type.
3. Early evolution of life included a period of massive horizontal gene transfer; therefore,

the tree of life has one or more cycles close to its root.
4. The direction of transfer and the identity of the partners that exchanged genes are not

completely clear: They probably were all prokaryotes, and massive exchange of genes and gene
modules may have played a role in the emergence of the eukaryotic cell.

5. There are two components of the cell that display physical continuity between genera-
tions: lipid plasma membrane and DNA genome. Whether coincidental or not, the protein
modules that are required for their maintenance—respectively, enzymes of lipid biosynthesis
and the system of DNA replication—are fundamentally different in Archaea and Bacteria.
The situation with Eukarya is even more complex: Their DNA replication is archaeal, but lipid
biosynthesis is similar to that in Bacteria. All this suggests ancient DOGs (see Chapter 6),
which need to be understood and worked into any evolutionary scenario.

This is a broad framework for the understanding of early phylogeny of life. But long-time
dissenter Thomas Cavalier-Smith, at Oxford University, takes issue with most of these state-
ments and puts forward an elaborate hypothesis, which proposes that Archaea and Eukarya
are extremely recent, extensively derived descendants of Gram-positive bacteria (Cavalier-
Smith, 2002a) that should be called “neomura” for their derived membrane structure. My
intent here is to show that Cavalier-Smith’s hypothesis deserves serious evaluation and criti-
cism. I will also argue that despite its appealing features, this theory is not as well supported by
the evidence as Cavalier-Smith would like us to believe.
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The second story is about invertebrate animals. Textbooks describe many lineages of inver-
tebrates, but scientists cannot agree on Metazoan phylogeny. Analysis of shared traits gives a
puzzling result: Almost every subset of invertebrate animals shares a few common anatomical
and embryological traits. It is difficult to determine which of these traits are true synapomor-
phies—that is, shared innovations specific to the clade in which they are found [according to
cladistic schools of systematics, synapomorphies are the only reliable basis of phylogenetic
inference (Ridley, 1986), but they are useful even for those who do not strictly adhere to the
cladistic canon]. For two centuries, the main route of invertebrate evolution was thought to be
marked by the growing complexity of body plan, and several clades of animals were defined on
the basis of morphological innovations having to do with gross morphology and anatomy.
True body cavity (coelom) was thought to be one such synapomorphy, missing from flatworms
and roundworms (including nematodes) and present in more complex animals. Within
animals with true coelom, Coelomata, a clade of animals with segmented bodies (sometimes
called Articulata) consisting of annelids, arthropods, and some minor groups, had been
defined.

In 1997, this two-centuries-old understanding was shaken. Sequencing of rRNA from
diverse invertebrates was undertaken, and Ecdysozoa, “a clade of molting animals” that con-
sists of nematodes and arthropods, to the exclusion of plathelminthes, annelids, and other
protostomes, was proposed (Aguinaldo et al., 1997). Moreover, rRNA evidence appeared to
support the monophily of most of those other protostomes, under the name of
Lophotrochozoa, in contrast with the more traditional view, in which plathelminthes that
lacked any body cavity and true mesoderm were considered far more primitive than three-
layered, coelomic mollusks or annelids. Under this theory, Ecdysozoa and Lophotrochozoa
were true clades, and Coelomata was not. Some support of these views could be found in older
work too.

Intense discussion of invertebrate taxonomy continues. Ecdysozoan and lophotrochozoan
clades are seen in phylogenetic trees, although mostly under special circumstances. But not
every kind of molecular character supports these clades—many characters continue to sup-
port the coelomate phylogeny. In my second story, I review the Coelomata–Ecdysozoa stand-
off and argue that inconsistency between metazoan trees built on different sets of molecular
characters is a real and important phenomenon, but that it cannot be ruled in favor of
Ecdysozoa with the existing evidence. Here again, I examine the results of genome-scale analy-
sis. I also show, using very recent data on molting-related genes in the nematode, that only a
diminutive proportion of genes required for molting are synapomorphic in insects and worms.

In 2002, Cavalier-Smith published two long treatises, one focusing on the evolution of
prokaryotes and early eukaryotes and the other mainly dealing with radiation of different
groups of protists (Cavalier-Smith, 2002a,b). I focus on the first of these papers, which was
concluded by the author thusly: “I invite the strongest possible reasoned criticisms of this
synthesis.”

The dissenting opinions of Cavalier-Smith on various evolutionary questions have been
published throughout the years, and the history of science figures quite prominently in his nar-
rative. However interested in history, I will not concern myself with the debates of the 1970s
through the 1990s. This chapter pertains to Cavalier-Smith’s synthesis as published in 2002, as
well as to relevant facts that came to light since then. [When the manuscript for this chapter was
almost finished, Cavalier-Smith published a new work on the placement of the root of
Bacteria (Cavalier-Smith, 2006). This interesting question, to which I believe Cavalier-Smith
continues to make a genuinely important contribution, is beyond my current scope. However,
he appears to presume in the latest work that his 2002 paper has largely settled the question of
the evolutionary novelty of Archaea, which is why I believe that strong “reasoned criticisms”
of that paper are all the more important.]
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Cavalier-Smith (2002a) summarizes his critique of the current views of the origin of
Archaea and Eukarya by “concentrating on six things” that form the core of his argument.
Here is my summary of these six things:

1. Almost all neomuran characters are adaptations to thermophily and “nearly all
neomuran characters can be used to polarize unambiguously the direction of evolution from
posibacteria to neomura, not the reverse”.

2. After the emergence of neomura, archaea went on to adapt to hyperthermophily, and all
characters unique to modern archaea can be explained by such adaptations (or else by adap-
tations to high salt).

3. Paleontological evidence shows the same, and it also shows that the Archaea/Eukarya
clade is four times younger than Bacteria.

4. Evolution of prokaryotes and early eukaryotes was “quantum and mosaic”—that is,
long periods of relatively slow evolutionary change were interrupted by bursts of extremely
rapid evolution. “Rapid evolution”here has two meanings: acceleration of the rate with which
molecular characters change within a lineage, and a burst of divergence that gives rise to new
lineages. Such patterns of evolution ridicule the idea of the molecular clock and distort all phy-
logenetic trees, particularly by making shorter branches look artifactually long and by obscur-
ing the true branching order. In addition, these effects prevent correct rooting of the tree of life
because the only more or less reliable way to do so relies on analysis of trees made of pairs of
ancestral paralogs, and such trees would also be distorted by quantum and mosaic evolution.

5. The root of all life is within Gram-negative bacteria, most likely green nonsulfur bacteria.
6. Horizontal gene transfer (HGT) is frequent in life but not as frequent as to distort the

evolutionary signal. We just have to focus on coadapted cellular systems, and not overempha-
size any single molecule.

Thus spake Cavalier-Smith. I will now give my brief response to the “six things,” and then
will explain my disagreements with some of them in more detail.

I have no quarrel with Thing number 6. HGT is indeed frequent, but it is nonetheless
amenable to quantitative analysis. The evidence for HGT was examined in Chapter 11. Calling
HGT “rare” or “frequent” may rub some people the wrong way, but the real question, of
course, is which genes were horizontally transferred, and with what consequences for genetic
makeup, structure, function, and further evolution of living forms.

I believe that Thing number 4, the notion of “quantum and mozaic evolution” in prokary-
otes,at present lacks unequivocal quantitative support,and the burden of proof is on Cavalier-
Smith. Thus far, such signal has not been teased out from either molecules or paleontology, at
least as far as paleomicroorganisms are concerned. Rather, these evolutionary patterns are
invoked by Cavalier-Smith as an ad hoc hypothesis, without which he would be unable to rec-
oncile his theory with conflicting evidence. The alternative evolutionary scenario, which I sup-
port and which Cavalier-Smith mentions, only to dismiss without much evaluation, does not
require quantum and mozaic evolution, although it does not reject such evolutionary pattern
either. Unequal evolutionary rates are like HGT: They certainly perturb the evolutionary sig-
nal, but not to the extent that we cannot trust our own judgment.

I accept Thing number 1 as far as thermophily is concerned, and parts of Thing number 2
that have to do with adaptation to hyperthermophily. At the same time, not all traits specific to
all Archaea are relevant to hyperthermophily, and hypersalinity is probably of minor impor-
tance in emergence of these traits. Finally, and going to the core of my disagreement with
Cavalier-Smith, I discuss genomic evidence supporting a different explanation of all those
things—an explanation that Cavalier-Smith is aware of but that he does not take seriously—
namely that bacteria and archaea are ancient sister groups, and only eukarya are relatively
recent (although probably not as recent as he thinks).
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Several general premises of Cavalier-Smith’s work are valuable. He reminds us that treating
living species as “bags of genes” (i.e., as simply lists of genes or COGs) is not sufficient for
understanding evolution. Tracking evolutionary trajectories of individual genes has to be sup-
plemented with cell biology and with analysis of functional coherence of gene ensembles.
Many researchers try to emphasize exactly this in their work, looking not just at the individual
genes but also at biochemical pathways and structural assemblies formed by genes, or at
groups of genes whose correlation only became known as a result of complete genome
sequencing (recall the discussion in Chapters 7 and 8 of phyletic patterns and conserved clus-
ters of genes on the chromosomes). Cavalier-Smith argues for even more comprehensive syn-
thesis, which would account for spatial organization of pathways and systems in the living cell.
He is particularly concerned with the importance of cellular membrane—an organelle that,
like DNA and unlike typical protein, is long-lived and physically passed between generations.
He is interested in geological, paleontological, and paleoclimatological facts and is not shy
to build hypotheses that take all these facts into consideration, together with molecular
record. Much of this championship is exactly in line with biology of today, in which we try
to capture the spirit of such a research program by calling it “systems biology” and even
“planetary biology.”

Cavalier-Smith is a feisty writer. Compared to the generally monotonous style of scientific
discourse, some of his invectives sound almost Bardean. The following quotes from his 2002
treatise give an idea: “despite repeated vociferous denial of this basic fact [i.e., fundamental
similarity of cell organization of eubacteria and archaebacteria] by a few influential bio-
chemists”; “an obsession with gene expression has prevented molecular biologists from under-
standing cell evolution, for which novel properties of gene products are fundamentally more
important”; “as has long been evident to anyone not seduced by the false dogma of the molec-
ular clock”; “GenBank ignorantly uses the term ‘crown eukaryotes’ for an arbitrary subset of
eukaryotes that have short branches on rRNA trees”; and “archaebacteria are just somewhat
unusual bacteria” (which their unwarranted and undesirable renaming as archaea...
attempted to conceal).

Cavalier-Smith is serious about words, especially about names of taxa. Not only does he
criticize names that he finds unfortunate or misleading but also he coins new Latinisms, giving
dozens of new formal names, or sometimes renaming to formalize earlier suggestions, viz.
alpha subdivision of proteobacteria into alphabacteria. I agree that clear and informative
names are important. But Cavalier-Smith prefers “archaebacteria” over “archaea,” and this,
I think, is figured out backwards. When Carl Woese first came up with “archaebacteria,” his
meaning was clear: “ancient bacteria,” or, most likely, “the oldest bacteria of them all,” with
the implication that they possess the features of the common ancestor of all bacteria. This
meaning was almost certainly wrong because current evidence does not support origin of bac-
teria from within archaea; Cavalier-Smith and everyone else can agree on this without a fight.
When Woese proposed to change “archaebacteria” to “archaea,” it was mostly to reflect that
fact—”ancient, and distinct from bacteria” (Woese, 2004). One may disagree with this state-
ment and put forward some alternative theory, such as Cavalier-Smith does, making the case
that archaea are derived, not ancient, bacteria. However, “archaebacteria,” currently favored
by Cavalier-Smith, are neither here nor there: The term appears to state the bacterial nature of
“archaebacteria,”but the root archae runs against Cavalier-Smith’s own notion of their evolu-
tionary novelty.

One can have legitimate grievances with Woese and, perhaps, hold a different type of con-
ceit against him. Indeed, Woese presided over sequencing of the first archaeal genome
Methanococcus (Methanocaldococcus) jannaschii (Bult et al., 1996); appears to have not
noticed the unprecedented breakdown of its genes into two large categories with distinct evo-
lutionary affinities, which was noted by others (Koonin et al., 1997; Rivera et al., 1998); and
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then discoursed as if this evolutionary pattern has been evident all along, or perhaps as if it was
novel but minor observation compared to the really important question of what happened ear-
lier in evolution (Olsen and Woese, 1997; Woese, 1998a,b, 2000, 2002). But as far as opposing
the name “Archaea”goes, I would argue that it is the “bacterial”part of the latter that we have
more reason to drop, not the “archaic”part.

Cavalier-Smith’s substantive arguments are from four angles: cell biology, physical environ-
ment of the ancient life-forms, paleontology, and molecular characters. As already said, cen-
tral to his explanations is the notion of neomura (“the new-walled organisms”). According to
his hypothesis, neomura is a bacterial clade that had emerged from within the gram-positive
bacteria approximately 850 million years (My) ago and gave rise to strongly derived bacteria,
including “archaebacteria”– (what most people call Archaea) as well as perhaps other bacte-
ria that are either extinct or not available for our analysis, and also to eukaryotes. Sometimes,
however, “neomuran” refers to the existing branches of this clade (i.e., only present-day
neomura). Remaining cladistically and linguistically consistent about these meanings (only
tips of the tree, or also all the stems) requires some concentration.

Cavalier-Smith starts with 19 molecular traits defining “neomura.” Here, I cluster these
traits into functional systems. Trait numbers are as given by Cavalier-Smith, except that
I prepend them with “AE”(Archaea + Eukarya). I am not sure why Cavalier-Smith numbered
them in the order he did. Trait descriptions are nearly verbatim from Cavalier-Smith, and my
commentaries are in square brackets.

1. Genome replication and maintenance
Trait AE5: Replicative DNA polymerase of the B family (palm-like fold), inhibited by

aphidicolin. Replicative sliding clamp is PCNA-type, not part of type C DNA poly-
merase holoenzyme [in fact, sliding clamps in all living forms belong to “PCNA-type,”
which is not only a fold type but also a monophyletic sequence family; a detailed com-
parison of shared and unique components of replication systems can be found in Leipe
et al. (1999), which Cavalier-Smith selectively cites but not on this topic].

Trait AE4: Core histones are present, with characteristic fold (“histone fold”). In some
species, they are secondarily lost.

Trait AE6: Flap endonucleases and RAD2 repair enzymes are common. [They are not
necessarily an AE innovation: Recent analysis of sequence and structure similarity con-
nects FLAPs to two other superfamilies of nucleases, bacterial YacP and widespread
PIN, and the common ancestor of these nucleases can be traced back to the common
ancestor of all prokaryotes (Anantharman and Aravind, 2006)].

Trait AE17: DNA topoisomerase VI (known in Eukarya as meiotic protein Mre11).
Trait AE19: DNA initiation helicase is represented by hexameric Mcm instead of

bacterial-type DnaB.
2. RNA metabolism

Trait AE7: mRNA is transcribed by RNA polymerase consisting of more than seven
subunits, not four as in bacteria [in fact, core RNA polymerase in bacteria has five-sub-
unit composition, i.e., alpha2-beta-beta�-omega].

Trait AE3: Pseudouridylates in rRNA, at least some of which are inserted by a mech-
anism that requires C/D box snoRNAs.

Trait AE10: Some unique modifications in tRNA.
Trait AE11: Exosomes.
Trait AE14: Triplets CCA at the 3� ends of tRNAs are not encoded by the tRNA genes

and added posttranscriptionally [in fact, substantial diversity of the mechanisms of
tRNA 3� end formation are observed, from precise encoding of CCA in the genome to
consistent adding of all 3� terminal adenines with intermediate mechanism that involves
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complementary synthesis of 3� terminal nucleotides followed by their removal and
repair. Analysis of taxonomic distribution of these strategies does not identify strong
synapomorphies].

Trait AE16: 5′-OH/3p protein-spliced tRNA introns with homologous endonucleases.
[This section is an incomplete list of synapomorphies. More comprehensive lists can be
found in Anantharaman et al.(2002) and Mushegian (2004). For example, Archaea and
Eukarya share two RNA-binding domains, Peter Pan/Brx1/Ssf1 and PAZ, which play
prominent roles in Eukarya in ribosome maturation and posttranslational gene silenc-
ing, respectively, although both of these domains are derived versions of more
commonly distributed folds, similar to the case of FLAP nuclease].

3. Protein synthesis
Trait AE8: “Many similarities in rRNA and proteins.” [Most of those are genuine

synapomorphies, which have suggested evolutionary importance of Archaea in the first
place (Woese et al., 1990). It is this importance that Cavalier-Smith thinks is overblown.
For analysis of these synapomorphies, see Anantharaman et al. (2002), Klein et al.
(2004), and Mushegian (2005)].

Trait AE15: Translation initiation: The initiatory amino acid is methionine, not formyl-
methionine. Larger repertoire of initiation factors, including eIF-, 2A, 2B, 5A [and 6].

Trait AE12: Translation elongation: More similar elongation factors, sharing some
biochemical properties not found in bacteria, such as sensitivity to diphtheria toxin.

Trait AE13: Similar rules cotranslational selenocysteine insertion into proteins: Well-
defined RNA element (SECIS) that directs insertion, and specific SECIS-binding
protein.

4. Protein sorting and turnover in the cell
Trait AE1: Signal recognition particle contains extra components—7S RNA has a

synapomorphic helix 6 that interacts with the SRP19 protein. Secretion in “neomura” is
mostly cotranslational. Bacterial SecA, which binds to secreted proteins in cytoplasm
and carries them to SRP, is missing.

Trait AE2: Cotranslational glycosylation of proteins that occurs by transfer of
acetylglucosamine and mannose from an isoprenoid (dolichol) carrier to N-asparagine
and is mediated by synapomorphic oligosaccharyl transferase.

Trait AE9: Unique set of chaperones, including CCT-type group II chaperonins with
eightfold symmetry (not sevenfold as in bacterial Hsp60). Built-in cap that replaces 
co-chaperonin Hsp10 [Our tentative assignment of the Hsp10 homology and function to
Methanococcus protein MJ0073 (Koonin et al., 1997) was an error]. Prefoldin, a chaper-
one complex that delivers proteins to the lumen of chaperonin.

5. Miscellaneous
Trait AE18: Specific insertion in the catalytic subunit of V-ATPase.

According to Cavalier-Smith, there are also Archaea-specific, “unique archaebacterial”
molecular traits, but there are relatively few of them. Here they are, again with his numbering:

Trait A1: Side chains of membrane lipids are made of prenyl ethers, not of acyl esters.
Trait A2: Flagellar shaft of archaea is made of acid-insoluble glycoproteins related to pilin,

not of acid-soluble flagellins.
Trait A3: DNA-binding protein 10b.
Trait A4: Unique tRNA modifications, such as archaeosine in the D-loop.
Trait A5: Tiny protein LX in the large ribosomal subunit.
Trait A6: No HSP90 chaperone.
Trait A7: RNA polymerase A subunit split into two proteins.
Trait A8: Glutamate synthase split into three proteins.
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The point of these two lists is to illustrate the notion that all neomuran traits, and also most
Archaeal traits, are adaptations of one or more of the following three cellular systems: (1) cell
envelope; (2) the way the ribosomes interact with cell envelope, especially with regard to pro-
tein secretion; and (3) chromatin. Cavalier-Smith makes the case that all this is best understood
as concerted adaptation to thermophily, with further adaptation to hyperthermophily in
Archaea. He also states that none of these involve changes in metabolism. Moreover, all these
changes, Cavalier-Smith says, can be unambiguously polarized—from ancestral mesophilic
bacterial-like form to derived Neomura. We cannot help noticing that all the AE traits are pre-
served in eukaryotes, which have been largely mesophilic throughout their evolutionary his-
tory, but to that Cavalier-Smith says that these adaptations are fixed because they have turned
out to also be superior at cool temperatures. Moreover, “since none of them [traits AE1–AE11
and A1–A6] are reversed in secondary mesophiles, they are ‘valves’that can be used to polarize
from mesophilic bacteria to hyperthermophilic archaebacteria.”

It is interesting, and at times inspiring, to witness creative thinking of Cavalier-Smith, as he
links, one by one, most of the traits AE and A to thermophily (although differences between
“simply” thermophily and hyperthermophily are not consistently explained). Some of his
explanations are plausible, such as the hypothesis that bacterial predecessor of proteasomes,
the heat shock-inducible HslUV protease, must have been replaced by constitutive proteasome
in thermophiles, where removal of denatured proteins from the cytoplasm might be more of a
nagging problem.

Other constructs of Cavalier-Smith are more strained. Consider, for example, the contorted
story about evolution of protein secretion—a story that, in fact, is central to Cavalier-Smith’s
synthesis. In bacteria, he says, membrane proteins are inserted in plasma membrane cotrans-
lationally by the SecYEG complex. Secreted and periplasmic proteins, on the contrary, are
expressed in cytoplasm and need to bind to SecA (in some bacteria, there is also a backup sub-
unit SecB, which may have been invented later) in order to be delivered for insertion into the
membrane. In “neomura,”all secreted and membrane proteins experience translational arrest
after synthesis of the leader peptide, and they resume translation upon ribosome binding to
evolved signal recognition particle. This, according to Cavalier-Smith, is adaptation for ther-
mophily in order for protein to not be denatured in cytoplasm. This streamlined protein secre-
tion, Cavalier-Smith says, happens to be as good for mesophiles as it is for thermophiles, and
that is why it remains in place even after secondary switch of most “neomurans”to mesophily.

However compelling this story may sound, it is not difficult to construct an alternative.
Could translational arrest and cotranslational insertion of the growing protein chain into the
membrane have evolved in mesophiles? There is at lease one plausible reason to suggest that,
indeed, it could. What had to be survived and conquered was not thermal or other stress-
induced denaturation of proteins in the cytoplasm. For that, all living forms, thermophiles and
mesophiles alike, have cytoplasm teeming with molecular chaperones that work on renaturing
misfolded proteins and with proteases to degrade the proteins that could not be refolded. Later
in evolution, these nonspecific proteases are supplemented in the cytoplasm by specialized
HslUV and proteasome. In contrast, in periplasmic and membrane compartments, similar
problems of repair and garbage removal also exist, but the chaperones are scarce. Ostensibly,
(hyper)thermophiles are affected by this problem even more than mesophiles. The mode of
protein secretion is not of much relevance here; however the cell did it in the cytoplasm, the
problems outside the cell are exacerbated at high temperature. Cotranslational protein secre-
tion does not do much to protect cytoplasm from misfolded proteins upon moving into the
hotter habitats.

A factor that would force a solution similar to the cotranslational secretion mechanism,
however, exists, and it is not strongly dependent on the temperature of the habitat. This factor
is the increase in complexity of interactions with the environment, which requires a larger
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repertoire of membrane-bound and secreted proteins. These classes of proteins account for a
larger proportion of proteomes in heterotrophs than in autotrophs, in agreement with the need
for heterotrophs to seek and acquire a diverse array of chemical compounds, which requires
more proteins that serve as sensors, carriers, and transporters (Galperin, 2005). An intrinsic
property of any exported or membrane-associated protein is the presence of a signal peptide,
an (usually) N-terminal hydrophobic protein segment, which is inserted into the membrane at
the first step of secretion. Nature has not come up with any other major way of targeting pro-
teins into plasma membrane in prokaryotes (in eukaryotes, protein prenylation is one notable
alternative, but it does not concern us here). Thus, if a cell needs to insert a protein into mem-
branes, this protein usually contains a hydrophobic segment, even if the rest of the sequence is
not strongly, or not at all, hydrophobic. This segment either remains unfolded, which is ener-
getically disfavored and makes it a prey of cytoplasmic proteases, or it may try to minimize
potential energy and shield itself from the solution by other parts of the same protein, thus pre-
venting these other parts from folding correctly, with the same detrimental effect on the pro-
tein function. It follows that the main advantage of translational arrest and cotranslational
membrane insertion is to prevent the leader peptides from interfering with the correct folding
of the remainder of the protein, in order to keep the cytoplasmic burden of misfolded proteins
under control. Similar burden in extramembraneous space is avoided by cleaving the signal
peptide off as it traverses the membrane. The temperature of the environment plays at best
only a secondary role in all this. I believe this casts serious doubt on Cavalier-Smith’s proposed
tight connection between the origin of cotranslation secretion mechanism and thermophily;
indeed, my proposal appears to rely on a more robust selection pressure, which is independent
of the hot environment.

In Cavalier-Smith’s mind, many other AE traits are consequences of the cotranslational
protein insertion mechanism. This seems to be his explanation of all ribosomal synapomor-
phies, such as specific subsets of AE ribosomal proteins, which are either very strongly
diverged in bacteria or, more typically, not found there at all (at least with the existing methods
of sequence and structure comparison). This explanation has several weak aspects. First, as
discussed previously, increased complexity of secretion may be explained “isothermically”by
increased access to different sources of food in heterotrophs, with concomitant dedication of
an increasingly larger fraction of proteome to secreted proteins. Second, there are approxi-
mately 25 AE-specific ribosomal proteins, only 3 or 4 of which are directly involved in interac-
tion of the ribosome exit channel with membrane (Harms et al., 2001; Klein et al., 2004;
Mushegian, 2005). Thus, to say that all ribosomal proteins polarize the direction of evolution
from mesophilic bacteria from thermophilic “neomura” would be an exaggeration. Viewing
the loss of the Hsp90 chaperone in archaea as hyperthermophily related, in the meantime, is
outright strange.

Occasionally, Cavalier-Smith has to invoke other extreme habitats in order to explain the
AE/“neomuran” traits, such as high acidity as the factor selecting for acid-resistant archaeal
flagella.High salinity is also mentioned as a bacteria-to-neomura polarization factor but is not
explicated. This is good because, in my opinion, salinity is of minor, if any, importance for
explaining archaeal origin (and sequencing of Salinibacter, a bacterium that lives in crystal-
lizing conditions of NaCl, indicates that despite ample opportunity of horizontal gene trans-
fer between this bacterium and cohabiting halophilic archaea, Salinibacter’s archaea-like
genes are involved mostly in energy transduction and ion transport, not in protein secretion or
membrane maintenance; Mongodin et al., 2005).

One more protein complex, which, in Cavalier-Smith’s opinion, is a crucially important
synapomorphy—namely, the system of biosynthesis of N-linked glycoproteins—appears,
according to his own assessment, to be adaptive not to hyperthermophily “but to lysozymes
and antibiotics secreted by posibacterial ancestors” of neomura. Indeed, this synapomorphy
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is an important evolutionary marker, and utility of this biochemical pathway for protection
against lysozymes and antibiotics may well be the reason for its provenance. But lysozymes,
microcides, and antibiotics are produced by all kinds of bacteria, wherever researchers look
for them, and most bacteria have evolved multiple strategies to defend themselves against these
toxins. Posibacterial ancestral relationships to Archaea, meanwhile, is a hypothesis that needs
to be proven separately.

I am far from saying that none of the archaeo-eukaryal synapomorphies are adaptations to
thermophily. On the contrary, I agree with Cavalier-Smith about several of them. The afore-
mentioned replacement of HslUV by constitutive proteasome may be one. Also likely to be
true, although perhaps not uniquely contributed to science by Cavalier-Smith, are the cases
that can be made for the emergence of histones and reverse gyrase, which are viewed by most
authors as adaptations for negative supercoiling of DNA, useful when melting of the double-
stranded molecule has to be resisted (Forterre, 2002). Cavalier-Smith may also be correct that
some other peculiarities of AE-type replication can be seen as ways to handle complications
imposed by histones.

On the crucial distinction of the main DNA replicative enzymes in Bacteria versus
Archaea/Eukarya, however, Cavalier-Smith has nothing much to say, except for advising not
to obsess over them and asserting that bacterial, evolutionary unique PolC/DnaE polymerase
is ancestral [when this book was at the final revision stage, this structure became known
(Lamers et al., 2006); it is similar to polymerase beta and to various nucleotidyltransferases,
but its ancestral status with regard to Archaea has not been proven]. Archaeal/eukaryotic type
B polymerase, he holds, is derived from bacterial repair polymerase, but specific selective
factor facilitating this is not identified.

Up to this point, we have seen that thermophily, which Cavalier-Smith promised to be the
overriding theme for all “neomuran” and even more so for the Archaeal traits (hyperther-
mophily in this case), in fact is not sufficient to explain even a fraction of them. For a remain-
ing subset of synapomorphies, the evidence is also shaky. Pseudouridylation, says
Cavalier-Smith, rigidifies RNA. Physical measurements in vitro support this notion, as
do the indications that at least some pseudouridines are found in “loose regions” of rRNA.
On the other hand, ribosomal large subunit in mesophilic Escherichia coli contains
10 pseudouridines, whereas the numbers in the studied archaea vary from 3 to 6 [see Ofengand
et al. (2001) and Del Campo et al. (2005), in which the number of pseudouridines in rRNA of
archaeon Haloarcula was revised downward)], which does not follow from the predicted role
of pseudouridylation. Neither can I make heads nor tails of Cavailer-Smith convoluted argu-
ment about the terminal nucleotides of tRNAs, which seems to end with doubt as to its rela-
tionship to thermophily. Cavalier-Smith concedes that not each trait on his list was selected
directly as adaptation to heat, but selective sweeps and gene hitch-hiking must have also been
involved. I have no argument with this general statement, but of course it can be invoked to
explain any evolutionary scenario. Finally, splits of genes (traits A7 and A8) are good archaeal
synapomorphies, but, as with splits and fusions of other genes in various other prokaryotic lin-
eages, there is no robust evidence of selective advantage of these events; as discussed in
Chapter 8, clustering on the chromosome seems to be the defining adaptation in prokaryotes,
after which the precise type of fusion (coordinated expression, polycistronic mRNA, or mul-
tidomain protein) seems to be a relatively easy, perhaps in some cases almost neutral, modifi-
cation. Until a specific role of these splits in archaea is discerned, all they argue for is
monophyly of Archaea, which is not in doubt, at least within the frame of this debate.

Let us now look at the same evidence of “neomuran” synapomorphies, as it is presented to
us by comparative genomics, starting from the reviled bags-of-genes approach and working
our way toward a higher-level view. One of the best organized bags of genes is the COG data-
base, which was discussed in detail in several previous chapters. Currently, the database
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includes 110 prokaryotic species (16 archaea and 94 bacteria) and almost 14,000 COGs. This
data set allows us to identify a mix of archaeo/eukaryal and archaeal gene-gain synapomor-
phies automatically and then separate AE from A by comparison with a separate set of
eukaryotic othologous groups (KOGs, also developed at NCBI).

Synapomorphies in this approach are detected by analysis of phyletic patterns. It can be
either deterministic, when the state of COG is set at “1” in all archaea and at “0” in all bacte-
ria, or probabilistic, when certain flexibility is allowed to account for secondary gene loss and
horizontal transfer—two processes that were discussed in Chapter 11. I used the psi-square
program for probabilistic matching of binary vectors (Glazko et al., 2006) to derive the set of
A + AE synapomorphies. These COGs tell a story that is quite similar to what I described pre-
viously: There are between 300 and 400 COGs largely specific to archaea as opposed to bacte-
ria, more than half of them with confidently predicted functions, the exact number depending
on the parameters of the search. This list includes many COGs that indeed belong to the func-
tional systems emphasized by Cavalier-Smith. For example, a relatively conservative set of
search parameters results in 24 genes making up most of the replication complex and nonbac-
terial machinery for DNA recombination and repair, 71 genes whose products are involved in
RNA biosynthesis and turnover, 22 transcription factors, seven components of flagella, and
nine factors of protein folding and secretion machinery. At the same time, at least 23 proteins
on the list are metabolic enzymes—mostly archaea-specific analogs of bacterial enzymes with
similar activities—and one-third of A/AE synapomorphies are completely uncharacterized
proteins, some of which are likely to be involved in intermediary metabolism as well. Thus, the
list of archaeal synapomorphies is a much broader palette than a tight bunch of coinherited
functional modules. Polarization from bacterial to archaeal traits, hinged on transition from
mesophily to (hyper)thermophily, has to be more or less arbitrarily hand-picked from
the extended set of other synapomorphies, many of which may be more amenable to other
explanations.

Thus, only some, as opposed to all, “neomuran” synapomorphies may indeed have been
adaptations to hyperthermophily. In reality, however, all this is a mere prerequisite for the
debate on the evolutionary position of “neomura.” The crucial question is when these
synapomorphies, and the clades defined by them, emerged. The earlier hypothesis of the
cenancestral position of archaea and the suggestion of ancestral position of eukaryotes, with
prokaryotes being secondarily simplified, need not be examined here. The real debate is about
three points:

1. Whether archaea-like prokaryotes are ancient or recently derived: Many people, includ-
ing myself, say “ancient,” whereas Cavalier-Smith says “recently derived.” This can be called
the question of long vs. short Archaea stem. (In effect, this is also the question of the identity
of the last universal common ancestor—whether it was a form most similar to a modern-type
bacterium, as Cavalier-Smith would have it, or some other type of organism, as I will argue in
more detail in Chapter 13).

2. Whether eukaryotes are more recent than archaea: This can be called the question of
long vs. short Eukarya stem.

Four logical combinations of answers to the above two questions are possible. Cavalier-
Smith supports “short A, short E,” whereas many others think “long A, long E.” I tentatively
think (in part convinced by some of Cavalier-Smith’s arguments) that the answer is “long A,
shorter E” (“long E, short A” need not be considered seriously). Absolute dating is important
here.

3. Whether the universal tree of life involves massive horizontal gene transfer and, perhaps,
even a wholesale fusion of genomes: This can be called the question of cyclic vs. acyclic graph
of life. The emerging consensus view, that it is cyclic, with some uncertainty as to the placement
of the reticulate branches and the root, was discussed in Chapter 11. Cavalier-Smith agrees
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that HGT occurs in nature, but this should not prevent us from reconstructing the history of
life. We disagree on the ratio of gene losses to gene gains (which include HGT events), and in
the previous chapter I followed Eugene Koonin’s argument that any model that allows large
excess of gene losses over HGT would produce absurdly large ancestral genomes. Cavalier-
Smith, in the meantime, appears to have no problem with a large, perhaps up to tenfold, excess
of gene losses.

I now discuss Cavalier-Smith’s argument that “neomuran” origin is a recent event, coming
from within actinomycetes, and conclude that this is not likely to be the case. Instead, Archaea
originated, perhaps indeed in large part as adaptation to thermophily, in more ancient times.
Therefore, Archaea are a sister group of most, perhaps all, of contemporary groups of
Bacteria. As already shown, the arguments about concerted evolution of neomuran synapo-
morphies as adaptations to thermophily are not as airtight as Cavalier-Smith would like us to
believe. This means that we have to turn for supporting evidence to his other arguments,
namely paleontology and trees based on molecular characters, and the picture here is not much
brighter for Cavalier-Smith’s theory.

What follows is the summary of my understanding of the paleontological evidence,and “the
strongest reasoned criticism” is invited from practicing paleontologists, which I am not.
Morphology of both bacteria and archaea is too simple to reliably distinguish their fossils with
the available methods, either by eye or by microscope, and conclusions have to be supple-
mented by analysis of chemical markers that are produced only by living organisms. There are
two major types of such markers: One consists of specific molecules and the other of specific
patterns of shift in relative abundance of isotopes of certain elements. Protists, with their more
complex morphology and, in many cases, sculpted cell envelopes, provide a larger array of
fossilized morphological traits.

Biological fixation of CO2 by the Rubisco enzyme is biased against 13C and enriches the bio-
mass in 12C. Carbon isotope ratio that may be indicative of Rubisco-like fixation can be dated at
3.7 Gy ago (Sirevag et al., 1977). Biological sulfate reduction depletes 34S compared to 32S, and
this depletion can be traced to perhaps 3.47 Gy ago (Shen et al., 2001). From this pair of datings
comes the first of the paleomicrobiological one–two punches of Cavalier-Smith synthesis: Since
the sulfate reducer-suggesting deposits (Warrawoona) are in gypsum, which is unstable above
60˚C, the deposits must have been left behind by a mesophile. All currently known archaeal sul-
fate reducers are hyperthermophiles, and the known mesophilic sulfate reducers are found
among Gram-positive bacteria or proteobacteria. Cavalier-Smith thinks this leaves proteobac-
teria as the culprit of the 3.5 Gy-old deposit. So far, so good; I am not certain that these were
modern-type proteobacteria rather than some of their ancestors, but I can tentatively agree with
the 3.5 Gy dating as a reasonably early estimate of bacterial life. Deposits from mesophilic
environments, of course, tell us nothing about what was going on with thermophiles at the time.

The second punch of Cavalier-Smith is morphology. Eukaryotes began to diversify in shapes
and surface sculpture approximately 850 My ago, and Cavalier-Smith suggests that this should
be a robust estimate of the origin of eukaryotes. He argues that “any assignment of a 2.0 Gy
fossil to eukaryotes needs to explain why eukaryotes went so long without diversification,”and
on that topic he is indignant: “If no sound suggestion as to why this should be so [i.e., no fossils
before 850 My, many fossils after that time], we should regard this as antiscientific special plead-
ing of the worst kind.”This is bold from someone who firmly believes in “quantum and mosaic
evolution”in archaeal and eukaryal stems but teaches that no evidence of such evolution should
be expected to have survived in the completely sequenced genomes (see later).

There is another piece of evidence that Cavalier-Smith needs to explain. Most Eukarya, and
only Eukarya, make steranes with a modified carbon atom in the 24th position. Such mole-
cules are preserved in the fossils and are found at least in 1.64 Gy Barney Creek formation,
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if not earlier (Pearson et al., 2003). This is twice as old as Cavalier-Smith would have it. He
handles the problem as follows: Instead of dealing with specific synapomorphy of 24C-modi-
fied sterans, Cavalier-Smith tells us that several groups of bacteria have recently been shown to
synthesize sterols and, therefore, sterans are totally useless as evolutionary markers. This is a
verbal trick. In fact, genes coding for two enzymes of sterol biosynthesis, squalene monooxy-
genase and oxysqualene synthase, are found in three bacterial lineages—Plactomycetales,
Myxobacteriales, and Methylococcales—and the latter enzyme is additionally found in
mycobacteria. These clades are distant from each other, and whenever both enzymes are pres-
ent, their genes are found as a pair adjacent on the chromosome, which is compatible with dis-
semination across distant clades by horizontal transfer. Moreover, sterol modifications in
mycobacteria are almost certainly secondary adaptations, facilitating interactions with sterol-
containing cellular membranes of their animal hosts (Gatfield and Pieters, 2000), and the
pathway of sterol biosynthesis in mycobacteria appears to be incomplete and possibly work-
ing in the catabolic direction (Bellamine et al., 1999). Most important, none of the bacterial
species makes 24C-modified sterans, which remains a eukaryotic synapomorphy, useful for
fossil identification.

So much for paleontology: Neither Cavalier-Smith nor anyone else has good dating for
Archaea; the late dating of Eukarya still needs to be reconciled with the more ancient evidence
of the unrefuted biochemical marker; and so this leg of the argument for recent origin of
Neomura is shaky too, especially as it concerns Archaea. This leaves us with molecular
characters and phylogenetic trees inferred on their basis.

Cavalier-Smith suggests that the idea about extreme antiquity of Archaea comes from three
sources: methanogenic lifestyle arguably compatible with early atmosphere; split on rRNA;
and “apparently large but biologically trivial differences in gene expression molecules.”This is
disingenuous: The truth of the matter is that virtually every sequence-based tree supports a
deep split between Bacteria and Archaea. Cavalier-Smith, of course, is aware of all this, but he
is unfazed. Most of his argumentation falls back on rRNA trees anyway:

I pointed out earlier that rRNA cannot possibly be a molecular clock, since nuclear rRNA, plastid and
mitochondrial RNA must have evolved at different rates... It is now abundantly clear that all three
types of rRNA evolve at two or three orders of magnitude different rates in different evolutionary lin-
eages.

This, of course, is not directly relevant to the rates of rRNA evolution observed in free-living
organisms. More to the point, Cavalier-Smith quotes an example of the heterogeneous rate of
rRNA evolution in Foraminifera, reminds us of the theoretical considerations indicating that
the molecular clock may have insufficient mechanistic or theoretical basis (Ayala, 1997, 1999),
brings up a classic observation by G. G. Simpson that the origin of new groups is often marked
by rapid evolution, and correctly points out that unequal rates of rRNA evolution are often
confirmed when the fossil record is available.

It must be noted that methods that assume no molecular clock do exist, and they give qual-
itatively the same result for bacterial and archaeal origins. Moreover, a deep split between two
groups is observed not only for the rRNA trees but also for the trees built on the basis of the
distance matrices derived from concatenated sets of orthologous proteins, which are mostly
involved in transcription and translation; from pairwise percentage of sequence identity in
orthologs; from the proportion of shared genes; from co-occurrence of orthologous gene
pairs; and from conservation of local content of orthologous genes, allowing for permutation
of gene order. These are discussed in more detail in Wolf et al. (2001a), Dutilh et al. (2004) and
Snel et al. (2005), except for the tree based on local neighborhood conservation, which can be
found on-line at my Web site (http://research.stowers-institute.org/bioinfo). Note that the last
three types of trees capture evolutionary signal from many functional classes of proteins.
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Never in these trees are archaea nested within actinobacteria, from which, according to
Cavalier-Smith, all “neomura”have originated.

All this requires a potent counterargument. Cavalier-Smith finds one in the radical idea that
most, if not all, phylogenetic trees of bacteria and archaea, built on the basis of most, if not all,
molecules, are ridden with a king of all artifacts, the most vicious case of the long branch
attraction—the attraction that may occur regardless of the observed branch lengths. Enter the
long stem attraction, which can disguise every aspect of the tree, including branch lengths
(short branches will appear artifactually long), branching order, and root position (no
prediction regarding the specific way in which the latter two would be distorted).

The difference between long branch and long stem is the following: In the long-branch sce-
nario, fast evolution goes on, whereas in the long-stem scenario evolutionary rates are high for
awhile and then they become low again and continue at a low rate after speciation. Another dif-
ference is that a long branch can be observed directly, at least in principle, whereas a long stem
may be forever hidden from view.

The long-stemmed affair does not have to be supported by the evidence. On the contrary, the
whole point of Cavalier-Smith is that it would be naive to expect the evidence, because of the
conniving artifacts. This line of argument is best seen when Cavalier-Smith re-interprets the
data of Iwabe et al. (1989) on rooting of the universal tree of life. In that classic work, two par-
alogous proteins present in every genome and more than likely produced by gene duplication
before the last universal common ancestor were used as each other’s outgroups to root them on
one another. This gives the root of life between Bacteria and Archaea, supported by several
other similar analyses. Cavalier-Smith points out various weaknesses of these other analyses,
and some of these critiques may have a point. However, what he really needs to explain (away)
is the most robust rooting from Iwabe and co-authors, and this is how it is done: In the EF2/G
part of the tree, the (AE)B topology is said to be wrong because AE evolves too fast and, being
a long branch, attracts to another long branch—that is, to the EF1a/Tu subtree as a whole. On
the other hand, that latter subtree is also a long branch, but, according to Cavalier-Smith, at
the same time it somehow manages to evolve not fast enough and therefore produces the same
(AE)B topology for a completely different reason—as an artifact of too few synapomorphies.
I suppose we should call this frivolous.

Whether there is an unfortunate confluence of artifacts or not, can we find an independent
way to evaluate Cavalier-Smith’s claims? The answer is yes, and Cavalier-Smith posits that the
help might come from the complete genome sequences. Cavalier-Smith proposed to deduce
species’position in a tree on the basis of their cellular organization: For example, examination
of morphological and cytological features allowed him to place thermophiles Aquifex aeolicus
and Thermotoga maritima into proteobacterial and Gram-positive clades of Bacteria, respec-
tively. However, this is exactly the same placement that is observed for these species in most
proteome-based trees (Wolf et al., 2001a; Dutilh et al., 2004). One would think that the
remarkable congruence between these objectively inferred, statistically supported phylogenies
and Cavalier-Smith’s expert assessment would be seen, in his eye, as the validation of
these tree-building methods. But this is to no avail, apparently because these trees are of the
disreputable bag-of-genes persuasion.

The other comparative genomics tests that Cavalier-Smith proposes are as follows.
According to his own revision of bacterial systematics (which is interesting in its own right
and discussed in great detail in the same paper, but it is not evaluated here), there are seven
deep phyla of bacteria. Cavalier-Smith says that if a well-supported tree showed that an
archaeal gene is shared by all bacterial phylae, this would disprove the novelty of Archaea. To
assess the distribution of genes in clades, one could use phyletic patterns of gene
families/COGs, together with phylogenetic trees built on the basis of sequences of these same
COGs. However, the particular test proposed by Cavalier-Smith would not be conclusive.
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Indeed, if all clades (or at least five or six out of seven, allowing for some gene losses, which
are common according to Cavalier-Smith and everyone else) have a gene also found in
archaea, this means that this gene is widely distributed in all prokaryotes; what would then be
a basis for calling it “archaeal” in the first place? A more refined quantitative version of this
test may be perhaps devised, but Cavalier-Smith does not offer any guidance here.

Another test suggested by Cavalier-Smith is to show that all cyanobacteria, for which reli-
able paleontological dating of 2.5 Gy is available, have acquired an archaeal gene. This is a sen-
sible test that should be performed when broader diversity of cyanobacterial genomes is
sequenced.

In that same spirit, I tried another test, which can be viewed as a modification of Cavalier-
Smith’s first test. If actinobacteria were ancestral to neomura, then archaea should be sharing
more genes with actinobacteria than with other bacterial phylae. (Perhaps preemptively,
Cavalier-Smith dictates that there should be no such expectation of specific sequence similar-
ity between neomuran and actinobacterial proteins, even though, in his theory, the latter are
the closest bacterial relatives of the former—all because of the long branch/stem attraction
artifacts. My test, however, is different, because it deals not with the rate of sequence evolution
but with the relative rate of gene retention; see also Chapter 5 for explanation why COGs are
relatively resistant to unequal rates of sequence evolution.) As a first approach to the problem,
I measured, for each COG, its archaeal, actinobacterial, and proteobacterial propensities,
expressed as the decimal fraction of all species within the corresponding clade that have this
COG. Each COG becomes a vector in the Euclidean space defined by these three propensities.
It turns out that almost all data scatter in this space is explained by three principal components
(PCs), the first of which is parallel to the line defined by points (0;0;0) and (1;1;1). This PC has
to do with gene rarity and is not of immediate interest to us. The second PC describes the sep-
aration between bacteria-specific and archaea-specific COGs and is also not directly relevant.
Finally, the third PC contrasts COGs shared by archaea with actinomycetes to those shared
between archaea and proteobacteria. Data projection on this PC indicates that for those genes
that are found in most species of their respective lineage, the number of archaeo-actinobacterial
exceeds the number of archaeo-proteobacterial ones. In other words, if a gene is found in most
archaea, this is a good predictor of whether it will also be found in most actinomycetes and vice
versa. The same cannot be said about archaea and proteobacteria. This result needs to be
examined further because it points out a possible specific relationship between Archaea and
actinomycetes (although it does not say what this relationship is: recent origin of the former
from the latter, as Cavalier-Smith would have it, is one, but not the only, possibility).

In Cavalier-Smith’s most recent paper (2006), the conclusions published in 2002 are
repeated as the settled truth. Some novel tropes are also introduced, the most relevant to the
“novelty of neomura”being the evolutionary history of proteasome-like protease HslUV and
of proteasome itself. To wit, Cavalier-Smith proposes, “I argue here that the proteasome 20S
core particle evolved from the simpler HslV, not the reverse. If this evolutionary polarization
is correct, it excludes the root of the universal tree from a clade comprising neomura and actin-
omycete actinobacteria”—because only Archaea + Eukarya (neomura to Cavalier-Smith) and
actinomycetes share the proteasome core.

No one I know argues that HslUV evolved from the proteasome.But the presence of the core
proteasome in “neomura”proves mostly that this complex is ancestral in Archaea + Eukarya.
To assert that it is also ancestral in actinomycetes, more argumentation is needed, for which the
following passes:

If proteasomes have never been lost from free-living bacteria, they evolved only in the immediate com-
mon ancestor of Actinomycetales, and thus may be only half as old as actinobacteria. If that is cor-
rect and proteasomes have always been vertically inherited, neomura must be more closely related to

Two Stories about Evolution 191



Actinomycetales (as several other characters such as cholesterol biosynthesis also suggested ...),
making Actinobacteria paraphyletic.

Note that the cholesterol connection does not hold water, as has been discussed previously in
this chapter, whereas the truth of the whole statement is dependent on “if always vertically
inherited.”

The most obvious response to the latter proposition is that proteasome indeed may not
always be vertically inherited. Cavalier-Smith is aware of such an argument, which he
dismisses without evidence:

The red herring of lateral gene transfer might be raised against the above interpretation. Gille et al.
assumed that proteasome genes were laterally transferred from archaebacteria to the common ances-
tor of actinomycetes. However, they presented no phylogenetic analysis to support this assumption;
unpublished trees give no support for lateral transfer, but as the a- and b-subunits and HslV proteins
are very divergent and with too long branches for satisfactory phylogenetic analysis, such a possibility
cannot be excluded with total confidence (J. Archibald, pers. comm.).

Here, as in the previous case with specific affinity between archaeal and actinomycete proteins,
Cavalier-Smith seems to be selling his own argument short: In fact, preliminary analysis shows
that actinomycete catalytic subunits of proteasome form two clades on a tree, one of which is
very deep (unpublished).

I presented my arguments. I believe they show that, with all the valuable insights into cell
physiology (and in his 2006 paper, Cavalier-Smith seems to be more welcoming to gene-content
phylogenies, although he apparently refrains from building any tree), with all the inspired
guesses about many other events in the evolution of life, and with the possible genomic
evidence of a specific relationship between Archaea and Actinomycetes, the case for recent
(850 My ago) timing of Archaea appearance from within Gram-positive bacteria is just
not there.

We now discuss the other story about evolution.The nearly instant triumph of the Ecdysozoa
hypothesis in the late 1990s is in contrast with the traditional emphasis on the importance of the
body cavity—coelom—in organization and evolution of body plan. The Coelomata clade
seemed to be better supported by anatomical and developmental evidence, although other the-
ories were also proposed. Anatomical evidence is not plentiful for Ecdysozoa: Rigid exoskele-
ton that requires molting is very nearly the only morphological trait that unites nematodes and
arthropods. Lack of ciliate epithelia is another shared feature, but it is more than likely a
consequence of having the exoskeleton not an independent character (see later).

Simultaneously with the ecdysozoan hypothesis, another major clade of invertebrates,
Lophotrochozoa, has been proposed. This is an even more puzzling entity, where evolutionar-
ily primitive Plathelminthes with two germ layers are united with such highly evolved three-
layered animals as, for example, Mollusca. Lophotrochozoa are also synapomorphy poor. The
word itself is Humpty Dumpty’s portmanteau, produced by fusion of “lophophore”and “tro-
chophore,”which only sound similar but in fact refer to two different things, found in different
subsets of taxa. Lophophore is a horseshoe-shaped feeding apparatus surrounded by cirri,
found in such groups as Brachiopoda, Bryozoa, and Phoronida, whereas trochophore is a swim-
ming larva found in other taxa, such as Annelida. Thus, “Lophotrochozoa”means more or less
“animals that have either a particular type of a larva, or a particular type of feeding apparatus
in adults.”Except for the fact that all these forms have ciliate epithelia, this is not really a basis
on which to derive a natural group of organisms.

In an attempt to unify taxa within Lophotrochozoa, spiral cleavage of the embryo has been
proposed as a better synapomorphy. This has two problems: first, that many of lophophoran
animals lack it, and second, that the pattern of embryo cleavage is known to be prone to homo-
plasy (repeated gain and loss of a trait in different lineages) in response to several factors,
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notably the size and position of the yolk sac, which itself is extremely variable in invertebrates,
sometimes differing significantly even among closely related species.

So why the surrender to the new taxonomy of invertebrates? I will examine the evidence,
focusing on Ecdysozoa and molecular traits that come from completely sequenced genomes
and functional genomic studies. No such resources are available for Lophotrochozoa,
although the pipeline of genome sequencing includes at least Schmidtea mediterranea
(Plathelminthes; Turbellaria) and Aplysia sp. (Gastropoda; Mollusca). Give sequencing
machines and people some time, and we can examine molecular evidence for Lophotrochozoa
as well.

The Ecdysozoa hypothesis in its modern form was precipitated by two types of observa-
tions. One is cladistic analysis of a large collection of morphological and molecular traits [in
this work, I focus on the latest and most detailed such study—that by Peterson and Eernisse
(2001)]. The other is the work on rRNA-based phylogeny, where many investigators started
noticing that nematode sequences tended to give very long branches. This led to a realization
that some or all nematodes are fast-evolving species. Comparison of various nematodes to
other animals in standard relative rate tests indicated that rRNAs in many nematodes indeed
evolved much faster than the others. For example, rhabditid nematodes, including
Caenorhabditis elegans, are fast evolvers, whereas a basal enoplean nematode Trichinella
seems to evolve relatively slowly.

Aguinaldo et al. (1997) examined a phylogentic tree built from 18S rRNAs representing a
large variety of invertebrates, with some effort to sample many species within each type of ani-
mals. The main conclusion from these trees was that all molting animals form one clade, which
was given the name Ecdysozoa. The ecdysozoan clade, however, would not have been noticed
by an average practicing phylogeneticist; in fact, the majority of nematode species had rRNAs
that, in most cases, did not cluster with arthropod rRNAs. Only inclusion of certain nematode
species, which have been determined to evolve slowly, produced the Ecdysozoan topology. The
authors concluded that the Coelomata topology, accepted by many zoologists for many
decades on the strength of the underlining concept of gradual increase in body plan complex-
ity, is caused by the long branch attraction artifact.

Several of the rules of invoking the LBA artifact (see Chapter 11) were not observed in
that study. In particular, rule 5 (never assume the attraction to the out-group, if there is
more than one long-branched in-group) was not given much thought. This is too bad
because many arthropods, including well-sequenced dipteran insects, are also fast evolvers,
and their presence adds long branches, which, as we have seen, may affect the tree in
unknown ways. The comparative anatomy concerns that I discussed previously were not
discussed either. The importance of ecdysis (molting), however, seems to have swayed the
“evo-devo”community, and the theory spread like wildfire. But let us look at the data more
closely.

The ecdysozoan hypothesis was corroborated by phylogeny of 28S rRNA (Mallatt and
Winchell, 2002). As already mentioned, cladistic analysis of morphological traits also sup-
ported the monophyly of Ecdysozoa, but, interestingly, it failed to support monophyly of
Lophotrochozoa (Peterson and Eernisse, 2001). We will return to that analysis later.

When protein coding genes were examined, however, nothing really worked in favor of the
Ecdysozoa. The topology of a tree obtained from aligned homeoboxes from Hox genes, fre-
quently cited as supportive of the ecdysozoan hypothesis (Balavoine et al., 2002), is not reliable
because at least 20% of orthologs from different species were misassigned in this study (my
unpublished observations). This tree was criticized on several other grounds (Zdobnov et al.,
2005). Trees built from myosin II sequence and also purported to favor Ecdysozoa (Ruiz-Trillo
et al., 2002) in fact gave virtually no statistical support to that clade, except for a single case (one
tree with Bayesian posterior probability of 71% among multiple trees without statistical
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support for Ecdysozoa). Also, putative synapomorphy of internal sequence triplication in
beta-thymosin (Manuel et al., 2000) turned out to lack evolutionary signal (Telford, 2004).

In 1998, we attempted the first proteome-based analysis of the ecdysozoan hypothesis. We
collected 42 quartets of likely orthologous proteins from humans, flies, worms, and yeast (this
number was small because fly and human genome sequences were far from completion) and
built neighbor-joining trees for each quartet (Mushegian et al., 1998). The result was interest-
ing: Approximately two-thirds of the trees favored the Coelomata hypothesis [i.e., tree topol-
ogy (((human; fly)worm)yeast)], and approximately one-third looked Ecdysozoan
[((human(fly; worm))yeast)]. There were indications that unequal evolutionary rates may play
a role in inconsistent tree topologies: Trees with shorter branches tended to support the
ecdysozoan hypothesis, and trees with longer branches favored Coelomata. On the other
hand, trees with Coelomata-like topology had much better statistical support than trees that
favored Ecdysozoa. Finally, after completion of human and fly genomes, orthologs could be
identified more robustly, and some of our 42 quartets turned out to contain paralogs.
After they were removed, the distribution of the remaining trees shifted even more toward
supporting Coelomata (Xie and Ding, 2000).

In recent years, much larger sets of orthologs from various eukaryotes were compiled. The
databases were also scouted, and targeted sequencing was occasionally performed, in order
to include more genes and more species. For example, Blair Hedges and colleagues at
Pennsylvania State University obtained protein sequences by translating ESTs from
Trichinella, a nematode that is supposed to be a relatively slow evolver (Aguinaldo et al.,
1997). The outcome of these efforts was very similar to that of our work: The majority of pro-
tein-based trees favored Coelomata, although there was always a smaller fraction of trees
supporting Ecdysozoa. The correlation between branch lengths and observed tree topology,
however, all but disappears in these larger, more comprehensive data sets (Blair et al., 2002).
In another study, Wolf et al. (2002) investigated the problem from a different angle by simu-
lating series of trees with fixed topology (coelomate or ecdysozoan) and controlled variation
of branch lengths. They studied this parameter space with a number of standard phylogeny
methods and found that some of these methods, particularly those that use the maximum
likelihood approach, were robust to LBA artifacts. That is, when the branch length ratios in
simulated trees were set to be in the range of what was actually observed in nematodes and
arthropods, the tree topology was correctly reconstructed in at least 70% of cases. The major-
ity of actual trees supported Coelomata, and the LBA artifacts appear to have been ruled out
in this case.

Consistency of conclusions from different kinds of observations is of high value in those
sciences in which direct experiments in controlled environments are difficult to perform.
Therefore,a premium should be put on such a topology,be it Coelomata- or Ecdysozoa-favoring,
which is supported by trees built on the basis of different types of characters—especially if
these characters evolve under reasonably diverse models. In the test of consistency of various
types of trees, the Coelomata hypothesis wins hands down: It is supported by individual and
concatenated protein sequence alignments, by measures of shared gene content and conserved
domain architecture, by chromosomal syntheny of protein coding genes, and by positions of
indels in exons. In contrast, support of Ecdysozoa, after all, comes only from rRNA and,
under some models of gain and loss, from positions of orthologous introns in protein coding
genes (reviewed in Zdobnov et al., 2005).

Dopazo et al. (2004) proposed several tests aimed at finding protein sequences with the same
relative rate of evolution in arthropods (i.e., fruit fly and mosquito) and nematodes (i.e., two
species of Caenorhabditis). There are not many of these genes, but those that possess this
property of similar evolutionary rate tend to support Ecdysozoan topology, whereas the
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majority of other genes supports Coelomata. In another work, Herve Philippe and co-authors
(2004) made two important contributions. First, they presented the largest set of full and par-
tial alignments of many sequences from 35 diverse species of invertebrates. The set consists of
146 genes (more than 35,000 positions occupied in at least two-thirds of species). Second, they
proposed what might be called the “sliding out-group test.” The idea here is that if the data is
suffering from the LBA, and if this attraction is between a long in-group and an out-group,
then by choosing another, more recently evolved and/or slowly evolving out-group, one may
reduce the attraction and eliminate some artifactual clades (Fig. 12.2).

The results of this approach were not exactly as expected: When a usual out-group
(yeast) was replaced with a more closely related and slower evolving basal metazoan,
cnidarian Hydra, the grouping of Plathelminthes and Nematoda was observed, which,
according to the authors, “does not make any biological sense.” Yet, in fact, this grouping
has been making all the sense in the world to generations of zoologists, even if the initial
definition of a group is mostly by negation: These are both primitive worms lacking coelom
(although a hypothesis also has been put forward that some worms may be acoelomic
secondarily). True body cavity allows a major innovation in the animal kingdom—that is,
uncoupling between movements in the digestive tract and the motility of the whole animal—
lifting many constraints on morphogenesis and behavior. Thus, worms without genetic
program for true coelom development are dead-enders on the road of morphological
progress (although, obviously, nematodes enjoy considerable biological progress on Earth
in terms of sheer biomass and taxonomic diversity). Hypotheses that Plathelminthes/
Nematoda is a true clade or, possibly, that flatworms and roundworms are both basal
branches are worth serious consideration.
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Thus, these new results again can be seen as providing evidence for Coelomata (and, in one
act of joining flatworms and roundworms, disrupting both Ecdysozoa and Lophotrochozoa
clades). Note also that Philippe’s group, which did much to promote Felsenstein’s discovery of
LBA and to quantify its effects, seems to be oblivious to the fifth rule of LBA: They seem
to always assume that the long branch of their interest is always to the out-group and not to
another in-group.

Thus, ecdysozoan topology is observed in trees that are based on rRNA sequences and
subsets of protein sequences, if these data are adjusted to account for unequal evolutionary
rates. On the other hand, Coelomata topology is consistently seen in trees based on different
genome characters, some of which are much less prone to LBA artifacts than others. It seems
that rapid evolution of everyone’s favorite nematode, C. elegans, notwithstanding, there is
simply not enough LBA artifacts out there to explain away all support for Coelomata. It will
take much more than shopping single-sequence trees to refute the theory of body plan
evolution.

But what about morphology? Peterson and Eernisse (2001) collected the evidence on the
state of 138 morphological characters and analyzed the matrix of these characters using
maximum parsimony methods, with resampling of taxa and characters. Their results sup-
ported monophyly of Ecdysozoa. The authors followed the “total evidence” approach, being
agnostic about the evolutionary theories and modes of character evolution and admitting
some degree of arbitrariness in how they coded the character states. I was interested in finding
out which of their characters gave the most specific contribution to the monophyly of
Ecdysozoa. For that purpose, I examined their Table 1 in detail.

Among 138 characters used by Peterson and Eernisse, at least 28 were completely uninfor-
mative with regard to Ecdysozoa and Lochotrophozoa, in that they changed states only
within groups external to these lineages (i.e., either within the groups basal to Eubilateria
or within Deuterostomes). I examined the remaining 110 characters using the compatibility
approach, asking which characters gave support to the Ecdysozoa hypothesis, which to the
Coelomata hypothesis (or, as a proxy to it, the Acoelomata clade, in which flatworms joined
with roundworms), and which ones were not able to distinguish the two hypotheses. To do so,
I asked, for each character, whether it was synapomorphic or nested within Ecdysozoa, within
Acoelomata (defined by the union of their Plathyzoa and Cycloneuralia; i.e., roughly flat-
worms and roundworms, respectively), within both, or not at all. If a character state is synapo-
morphic or nested within one group, it supports this group. Each character may support either
one grouping, in which case this character is retained, or both groupings, in which case it is dis-
missed. This test inevitably simplifies the picture, but nevertheless it provides an initial
overview of the problem.

The results are shown in Table 12.1 (full matrix and intermediate steps of the analysis are
available on my Web site, http://research.stowers-institute.org/bioinfo). The numeric advan-
tage seems to be with Ecdysozoa: Eleven characters support this clade, and only six support
Coelomata. However, if we look closer at what the traits really are, the result is turned on its
head. Indeed, traits 44 and 108—lack of neoblast and frontal complex—may not be synapo-
morphic at all; they are probably ancient states. Traits 78–80 seem to be correlated and go back
to the defining trait of rigid exoskeleton that requires molting—that is, the initial hypothesis
for which independent morphological evidence is sought. Moreover, traits 10, 13–14, 15, and,
probably, 19 essentially say the same thing, namely that nematodes and arthropods do not have
cilia. This is most likely a direct consequence of the exoskeleton. For animals with ciliated
epithelia, the type of cilia may be an important phylogenetic marker, but for animals without
cilia this is essentially one character counted as four or five.

Thus, analysis of morphology, when taken beyond the “bag of characters,” fails to recover
any traits common to Ecdysozoa and not directly related to molting. The support for this clade
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in Peterson and Eernisse’s trees may be explained, in part, by counting lack of cilia as five inde-
pendent traits—now, that’s a long branch! Truly, “unweighted parsimony is stupid”(Cavalier-
Smith, 2002a).

Finally, what about the molting process? Perhaps this is indeed a morphological and devel-
opmental synapomorphy—a derived trait arisen only once in evolution? I have my doubts.
What molts in arthropods and what molts in nematodes are biochemically different entities—
rigid shell made mostly of polysaccharide chitin in the former, and flexible cuticle on the foun-
dation of protein collagen, encrusted on the outside by thin layers of glycoproteins and
lipids/glycolipids, in the latter. Chitin in nematodes has been detected only in pharynx (where,
in fairness, it behaves similarly to the arthropod exoskeleton, being shed and replaced with
each molt) and in eggshells. Several decades of research did identify only a few shared factors
of molting in nematodes and arthropods. For example, ecdysones were found in both
Drosophila and C. elegans, and yet, ortholog of fly ecdysone receptors is missing from the
worm. All this begs the question whether molting in invertebrates is monophyletic.

Analysis of molecular characters that make up the molting pathways would be of help in
answering this question. This can initially be done without much regard to sequence similarity
or evolutionary rate by high-throughput genetic and genomic assays in worm and fly. When
many genetic factors are found, this can be supplemented with the power of sequence analysis,
looking for fast-evolving and slow-evolving homologs of each factor in other species. A study
of exactly this type was published as I was writing this chapter (Frand et al., 2005).
A genomewide RNAi screen in C. elegans was done, and various molting phenotypes resulting
from knock-down of a specific worm gene were recorded. Between 50 and 100 genes had high
penetrance and phenotype highly specific to molting. One-fifth of them had no orthologs in
fruit fly, and most of those were worm specific (i.e., they also lacked paralogs in Drosophila and
other metazoa). There are only two candidate synapomorphies: Nuclear receptors noah-1 and
noah-2 are orthologous in worm and fly but missing in humans. Time will tell whether these
candidates hold against sequencing of other invertebrate genomes (finding them in nonmolting
animals would not help their case).Most other molting factors were found in all three species,some-
time in complex paralogous or co-orthologous relationships. Interestingly, one gene involved

Two Stories about Evolution 197

Table 12.1. Morphological and Developmental Characters Informative with Regard to Either
Ecdysozoa or Coelomata Hypothesesa

Compatible with Compatible with 
Trait Ecdysozoa Coelomata or Acoelomata Trait description

13 Yes No Ciliated epidermis
14 Yes No Densely multiciliated epidermis
15 Yes No Step in cilia
19 Yes No Spermatozoa with accessory centriole
42 No Yes Teloblastic segmentation
44 Yes No Neoblasts
78 Yes No Cuticle with chitin
79 Yes No Trilaminate epicuticle
80 Yes No Trilayered cuticle
86 No Yes Head separated into three segments
91 No Yes Food modified with limbs
104 No Yes Circumesophageal nerve ring
105 No Yes Dorsal and ventral nerve cords
108 Yes No Frontal comples
109 No Yes Tanycytes

aRaw data were taken from Peterson and Eernisse (2001) and filtered as described in the text.



198 Foundations of Comparative Genomics

Key

A B C D E

Lineage distributions

Sydney

Geo
rg

es
 RN

epean R
N

20 km

South

Pacific

Ocean
AUSTRALIA

Euastacus

H1
H2

H4
H5

H8
H9

H11
H12

H13
H14

H15

H16
H17

H18
H19

H10

H6
H7

H3

X

X

X

Lineage A

Lineage B

Lineage D

Lineage E

Lineage C

E. dharamahu

E. bisputo

E. daylam

Cherax destructor

N
attat R

2%

Figure 12.3. Use of phylogenetic trees to assess the strategy of biodiversity preservation. Rapid loss of habitats for
lineage A of the spiny crayfish Euastacus puts a premium on preservation of the habitats of lineage B,
as otherwise a deeper clade (small x) will also be lost. Reprinted from Faith and Baker (2006) under
Creative Commons License.



in molting (F20G4.1, an uncharacterized protein containing WD40 repeats) is shared by
worms and humans, to the exclusion of the fly. There is no physiological basis for such a
phyletic pattern, which, I think, is explained by random lineage-specific loss. What is interest-
ing, however, is that the rate of discovery of molting-related worm–fly synapomorphies thus
far barely exceeds the occurrence of this random pattern. Thus, the initial outline of genetic
blueprint for molting is not lending any support for the ecdysozoan hypothesis.

In this chapter, we discussed phylogenies of deep clades, such as major groups of prokary-
otes or invertebrate animals. These trees are genuinely important for fundamental evolution-
ary biology, but can they, too, be of more immediate practical use? When our 1998 article on
43 quartets of orthologs was under revision, some colleagues and even one reviewer of our
manuscript were concerned about social repercussions of Ecdysozoa and Coelomata. They
thought that the order of branching in Metazoa may affect the choice of model system for
study of human diseases. The argument was approximately as follows: If Coelomata are real,
then flies are closer to humans, and fly geneticists may get an advantage in funding over the
worm geneticists; however, if Ecdysozoa are the true clade, then flies and worms are equidis-
tant from humans, and postdocs from worm labs have as good of job prospects as those from
the fly labs. Under the same logic, researchers studying the biology of Archaea should be fight-
ing tooth and nail for acceptance of Neomura because this would nest the archaean clade into
economically much more important actinomycetes. These considerations, of course, are as
ridiculous as they sound.

However, similar considerations regarding the topology of the Tree of Life are indeed rele-
vant to some areas of public policy, such as protection of biodiversity on Earth. Many prob-
lems in this domain can be cast as the problem of statistical sampling over the evolutionary
tree, followed by optimization of costs of species’ preservation. I refer the interested reader to
the insightful paper of Daniel Faith on this theme (Faith and Baker, 2006; Fig. 12.3).
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13

Minimal and Ancestral
Genomes

This chapter is about reconstruction of two types of genetic systems that may seem similar,
and are often discussed together, but that are in fact quite different. One is ancestral genome,
which is the inference of the genetic makeup of a common ancestor of two or more contem-
porary genomes. For example, we may be interested in reconstructing the genome of the last
common ancestor of all known yeasts, all spirochetes, or indeed, of all living forms currently
known on Earth. The other construct is minimal genome, which is the smallest gene set capa-
ble of sustaining itself.

The first construct is one of the modern applications of the research program set forth by
Pauling and Zuckerkandl (see Chapter 1). We compare genes (and gene products) of the exist-
ing species and want to infer the set of genes that their ancestor had (“what the ancestor was”),
as well as the process that is required to transform this ancestor into the currently living species.
Ancestral genomes are relative, in the sense that different groups of the existing species will
have different last common ancestors. On the other hand, there was probably only one last
common ancestor of all life on Earth. At a meeting in Les Treilles, France, in 1996, Christos
Ouzounis (then at Stanford Research Institute and currently at the Centre for Research and
Technology Hellas) proposed the name last universal common ancestor (LUCA) for it.

The second construct requires more explanation. Minimal genome is an object of genetic
engineering,or “synthetic biology.”Most often, the “minimal genome approaches”assume two
things. First, we are interested in a minimal genome that sustains a modern-type cell. That is, it
must get by with genes that have homologs in some existing species, so we are not considering
genes that are completely unheard of, i.e., genes that have no homologs or at least analogs in the
sequence databases. Second, we supply the minimal cell with nutrients that we define ourselves.
Thus, we do not concern ourselves with any biochemistry that we cannot provide in the labora-
tory. The minimal genome is also relative, in the sense that not all its genes are required under all
growth conditions: Modifications of the growth medium, for example, may add or remove
genes. To put together the list of genes that are expected to enable functioning of minimal
genome, we use a computer, but the proof of “minimality” has to come from the lab.

Neither of the minimal genome assumptions is set in stone. We can speculate about genetic
systems completely different from those that we see in the extant organisms. We can also try to
construct genes, proteins, and other molecules that have never been found in nature [for exam-
ples of nonnatural nucleotides and amino acids incorporated into cell gene expression pro-
gram, see Martinot and Benner (2004), Wu et al. (2004), Deiters and Schultz (2005), and Wang
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et al. (2006); for more general discussion of synthetic biology and the types of new chemistries
it might be able to accommodate, see Benner et al. (2004) and Benner and Sismour (2005)].

All these projects rely on building models, and all models can be classified into several broad
types, differing in their general temporal direction. In one approach (“forward in time”), we
may use the knowledge about the earlier, perhaps prebiotic, stages of Earth existence, and
about possibilities of inorganic and organic chemistry. For example, we can ask which
conditions on Earth favored the origin of life, what this primitive life might look like, and what
functions ancestral genomes may have possessed. This same list of functions is also relevant
for defining the list of parts that minimal genome should have (although, again, there is no
requirement for a minimal genome to survive in a habitat that existed at the dawn of life on
Earth; present-day minimal genomes live on other, better defined media).

The other approach (“backward in time”) takes the knowledge of the contemporary
genomes and infers earlier life-forms using some sort of evolutionary model, and it also uses
genome comparison to identify those components of present-day cells that are indispensable
for life and have to be included in a minimal genome. Obviously, completely sequenced
genomes are particularly useful for the approaches of this second type. (Synthetic biology,
perhaps, should be classified as the “sideways in time”approach.)

Comparative genomics helps to define the gene content of the ancestral genomes, and it is
also useful for understanding the gene composition of minimal genomes. Many of the com-
putational approaches to inferring the ancestral genomes and to building minimal gene sets
are essentially the same, but this does not mean that the two constructs are interchangeable:
It is important to not confuse one with the other.

In fact, it is not too difficult to avoid the confusion. All we have to do is define two condi-
tions, one for ancestral and one for minimal genome. The condition for the ancestral genome
is the phylogenetic position of the ancestor that we are trying to reconstruct. In the rest of this
chapter, of all ancestors of different phylogenetic clades we will be most interested in the last
common ancestor of all living forms, the LUCA. The condition for minimal genome is the
defined environment in which we want a cell with minimal genome to survive.

Given these two conditions, every gene belongs to exactly one of the following categories:
(1) minimal and ancestral, (2) minimal but not ancestral, (3) ancestral but not minimal, and
(4) neither minimal nor ancestral. Let us take a closer look at each of these categories.

Minimal and ancestral genes (Min + Anc+): These genes are required for sustaining a modern-
type cell (as noted, on a given growth medium), and their orthologs must have been present
in the LUCA. Ribosomal proteins, some aminoacyl-tRNA synthetases, components of
DNA-dependent RNA polymerase, and diverse other proteins, including many metabolic
enzymes, belong to this class.

Minimal but not ancestral (Min+ Anc-): These genes are required for survival of the modern-
type cell, but their orthologs were not found in LUCA. In some cases, the function was miss-
ing in LUCA altogether. For example, one modern hypothesis holds that LUCA had an
RNA genome and did not require the enzymes of DNA replication. If this is correct, then
the main processive DNA polymerase has been recruited twice in the history of life—once
in the bacterial lineage and another time in archaeo/eukaryal lineages. In other cases, a gene
displacement (DOG; see Chapter 6) removes the ancestral gene and replaces it with an iso-
functional gene, as may have happened with ancestral flavin-dependent thymidylate syn-
thase, which was likely present in LUCA but is replaced by folate-dependent thymidylate
synthase in most living species (and, for good measure, in many viruses). The irony of placing
thymidylate biosynthesis into LUCA while also considering a hypothesis that the same
ancestor had no DNA is not lost on me. I will discuss this problem later in this chapter.
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Ancestral but not minimal (Min- Anc+): There is no requirement, nor any evidence, that
LUCA had minimal genome, which contained the handful of genes necessary and sufficient
for survival in LUCA habitat. On the contrary, many authors, particularly Steven Benner
(of the Swiss Polytechnic Institute in the 1980s and 1990s, when much of his relevant work
was published, and currently of the University of Florida), have developed a well-reasoned
argument that LUCA was probably metabolically rich (Benner et al., 1987, 1989, 1993). For
example, LUCA most likely contained a considerable number of enzymes for biosynthesis
of amino acids de novo. But if the growth medium for minimal genome contains some amino
acids, then the enzymes for their biosynthesis are not part of minimal cell, and their genes
are not part of minimal genome on that medium.

Neither minimal nor ancestral (Min- Anc-): Most of the known genes probably belong to this
category. Such are all genes gained in individual lineages since the LUCA. Their functions
were either not needed in LUCA or may have been played by different genes there. Minimal
genome can get by without them, too.

Thus, minimal genome is a construct that is distinct from LUCA or indeed any genome
ancestral to any group of species. Because it is made on the basis of the modern-type genes, it
is also distinct from the early forms of life. Furthermore, there was most likely only one LUCA
of all life on Earth, but there may be many minimal genomes, each corresponding to a partic-
ular growth medium or habitat. Finally, minimal genome is not the same as the smallest of the
currently known genomes of the autonomously living microorganisms, even though some of
these organisms, notably mycoplasmas, are used in the experimental work on genome-size
reduction.

The interest in mycoplasmas, a group of extracellular bacterial parasites of plants and ani-
mals, was fueled by sustained argument for their extreme simplicity, made throughout the
years by Harold Morowitz at Yale (currently at George Mason University) and some other
authors. These bacteria, with their small size, small amount of genomic DNA, and the “unit
membrane” (i.e., a single lipid membrane with a thin, if any, peptidoglycan layer), were
thought to be the closest approximation of a “minimal cell” among all known living forms
(Morowitz and Cleverdon, 1959; Morowitz and Tourtellotte, 1962; Morowitz, 1964, 1984).
The possibility that mycoplasmas may also be primitive or ancestral cells, however, was put to
rest 25 years ago by analysis of ribosomal RNA, which showed that mycoplasmas are derived
Gram-positive bacteria (Woese et al., 1980).

The smallest known genome among the mycoplasmas is the 580-kb chromosome of
Mycoplasma genitalium. It was the second completely sequenced cellular genome, and the
gene set encoded by M. genitalium has been called “minimal” (Fraser et al., 1995). In fact, it
was not known whether it is minimal in any sense.

There are two ways to proceed from the smallest known genome to the minimal genome.
One is to employ molecular genetics and try to reduce genome size, deleting one or more genes
at a time. The other strategy relies on the computational methods of comparative genomics.
I discuss the results of these computer studies first and then return to the wet-lab experiments.

When M. genitalium genome sequence was published in 1995, the only other fully sequenced
genome was Haemophilus influenzae. There are 468 protein coding genes in M. genitalium and
1711 protein coding genes in H. influenzae (genes that code for functional RNA other than
mRNA also count, of course; some of those are discussed later).

Eugene Koonin and I decided that the set of genes shared between these two species may be
a better approximation of the minimal genome than the actual genome of M. genitalium
(Mushegian and Koonin, 1996a). One reason we thought this to be the case was that Gram-
positive bacteria (the clade that includes mycoplasmas) and Proteobacteria (the clade that
includes Haemophilus) separated a very long time ago, at least 1.2 Gy. Since their divergence,
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genomes of these species must have had ample time to gain and lose genes, so the orthologs that
are still shared by the two species are there because their presence is most likely strongly
selected for: Perhaps life without them is not sustainable.

On the other hand, if long absolute times since the split and short generation time in both
bacteria resulted in significant sequence divergence, then the orthologous genes might be
there, but we may be unable to recognize their relationship. Thus, substantial evolutionary dis-
tance between two fully sequenced genomes may suggest the minimal gene set of shared
orthologs, if only we were able to overcome the effect of this same distance on sequence
similarity.

The other reason to expect that orthologous genes in H. influenzae and M. genitalium
approximate minimal genome was the observation that both bacteria had substantially
reduced their repertoire of biosynthetic enzymes, as they came to rely on the host for many
classes of nutrients. We thought that the genes that were not deleted in both species are more
likely to be strictly required for cell function. (On the other hand, some of the shared gene
products might be parallel or convergent adaptations to this lifestyle, for example, virulence
factors.)

When all sequence comparisons were done, we found 244 shared orthologous genes. Thus,
despite large evolutionary distance (and in agreement with the first fact of comparative
genomics, discussed in Chapter 5), more than half of the smaller genome had recognizable
orthologs in the larger genome. Ten years later, we know of several orthologs that we missed in
that analysis because of low sequence similarity, but I think that at least 90% of all shared
orthologs in these two species have been identified already in 1996.

A few features of the shared set of orthologs were obvious: The minimal set built on the basis
of H. influenzae–M. genitalium comparison would not have a gene if it is missing from any one
of the two genomes. For example, M. genitalium has no genes coding for the enzymes of citric
acid cycle and no genes coding biosynthesis of fatty acids or any amino acids: Accordingly,
minimal genome would not have any of those pathways. But we attempted to reduce this
shared set even further by eliminating the “parasitism-specific” genes. Function prediction
suggested two genes potentially involved in the interaction with human host, and we deleted
them from the minimal gene set.

This turned out to be an overcorrection. One gene, putative hemolysin, is most likely indeed
a factor involved in adaptation to parasitic lifestyle (iron is a limiting nutrient for parasitic bac-
teria that live in humans and animals, so most of them have evolved strategies of scavenging
iron, for example, by breaking open red blood cells). But the other, an endopeptidase proto-
typed by Escherichia coli ygjD gene product (MG046 in M. genitalium, COG00533), should
have stayed in the minimal set. We deleted it because it contained a leader peptide, and some of
its homologs in other species were annotated as sialoglycoproteases. We concluded, most likely
erroneously, that this protein may be involved in the interaction of parasite with the sialylated
extracellular proteins of the host. Later genome sequencing, however, indicated that this is one
of extremely widespread and well-conserved proteins: in the latest release of the COG data-
base, each genome had an ortholog of this gene. The exact function of this metalloprotease is
still not known with certainty, but it is an essential protein in E. coli and Bacillus subtilis
(Arigoni et al., 1998).

The other small handful of proteins that we eliminated from the list of orthologs were three
components of a putative phosphotransferase system (PTS)—a specialized system for simul-
taneous uptake and phosphorylation of sugar molecules. The set of orthologs was not suffi-
cient for making the full, functioning PTS complex, and a minimal gene set already contained
a predicted sugar permease and a few predicted sugar kinases, which would achieve the same
result as the PTS. Specificity of the transporter may be a problem, of course, but we noted that
the transport proteins included in the minimal gene set tended to be of broad specificity.
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For example, the only amino acid transport system that survived the filter of shared orthology
turned out to import nonspecific oligopeptides, thus elegantly solving the problem of
supplying a variety of amino acids for protein biosynthesis and other processes.

There was also another systematic source of missed orthologs. Operational definition of the
orthologs started with the symmetrical best matches between H. influenzae and M. genitalium
proteins (the seeds of the algorithm that would become the main way to define COG in later
work from Koonin’s group; see Chapter 5). However, after provisional lists were assembled, we
analyzed the phylogenetic tree of each family, including all homologs that could be found in
the database, and compared the topology of the tree with what was thought to be the order of
branching in the tree of life [i.e., Woesean topology ((AE)B)]. We wanted to see that the two
bacterial proteins were separated from each other by a smaller number of branching events
than either of them was from what we thought was an out-group. In particular, if one of the
bacterial proteins was too close to an archaeal ortholog (e.g., one archaeal and one bacterial
protein formed a clade to the exclusion of the other bacterial protein, or the order of speciation
was not well resolved), this gene would not make the list of 244. Several proteins, including
three glycolytic enzymes, were in this category. Of course, little did we know at the time that
phylogenies operational genes by and large did not follow the Woesean topology and instead
tended to be ((AB)E). This was not discovered until later in 1996 (published the next year;
Koonin et al., 1997), when the complete sequence of M. janaschii was properly analyzed (see
Chapter 11).

The reader will notice that, contrary to what I proposed previously, in our 1996 work we
did not fix the contents of the growth medium in advance. Instead, we decided to examine
whether the properties of the minimal organism, including its nutritional requirements,
could be deduced from the minimal gene set that we had thus far. In order to do that,
we related the orthologs to the map of biochemical pathways, as they were known at the
time. Of course, very little biochemical study had been done for either of the “parental”
genomes of the minimal gene set, but there were model organisms with well-studied
biochemistry related to each parent: gammaproteobacteria E. coli and Salmonella, of a
low-GC Gram-positive bacterium B. subtilis, and partial biochemical information about a
few mycoplasmas.

When the orthologs found in H. influenzae and M. genitalium proteomes were superim-
posed on the composite metabolic map, we saw that several pathways were present in an
incomplete form. For example, not all enzymes of glycolysis were among the products of
minimal gene set, and if we brought the “archaeal/bacterial”glycolytic enzymes back into the
minimal gene list, then it became almost complete, but phosphoglycerate mutase remained at
large. Similarly, all functions needed for salvage of all nucleotides were present, except for
nucleoside diphosphate kinase. These “gaps”could be explained in one of three ways: A func-
tion could be truly missing in both “parents”; it was present in both species, performed by
orthologous proteins, but we were unable to recognize their orthology; or the same function
was performed by proteins that were not orthologous at all.

To determine whether we could explain some of these “missing links” in one of these three
ways, we did the following. First, we asked whether the two genomes contained nonortholo-
gous proteins with the same predicted function. We found that this was indeed the case: for
example, H. influenzae and M. genitalium each had a gene coding for a protein with phospho-
glycerate mutase activity, but to the best of our ability to detect distant sequence relationships,
we could not find any evidence of similar sequence or structure in these two isofunctional
proteins (later studies indicated that there indeed was no similarity; see Chapter 6). In another
example, two predicted lipoate–protein ligases not orthologous to one another were
found, one in each genome: H. influenzae had an ortholog of E. coli LplA, and M. genitalium
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contained the ortholog of the second E. coli ligase, LipB. Thus came about the idea of
nonorthologous gene displacement (Koonin et al., 1996 and Chapter 6).

Second, we searched for candidate gene displacements (i.e., the predicted proteins that could
possess the needed activity) using analysis of sequence homology and early version of genomic
context approaches (see Chapters 7 and 8). Not all of our guesses about these missing links were
equally lucky. For example, RNAase H was presumed missing in M. genitalium; this was the only
unaccounted-for enzyme of basic DNA replication machinery.Because it is indispensable in repli-
cation, due to the need to remove the RNA primers left behind by primase at the replication initi-
ation sites, we nominated gene MG262, which contains conserved phosphohydrolase motifs, as a
displacer of RNAase H. This answer to the problem was wrong: The real, orthologous RNAase
H was encoded by M.genitaliumall along (MG099;COG00164),and we simply missed it because
of low sequence similarity,not tractable by the ungapped,noniterative BLAST program available
to us at the time. Today, finding members of this COG is easier; this is one of the most pervasive
COGs, found in more than 95% of all species included in the COG database.

On the other hand, nucleoside diphosphate kinase (NDK), encoded by the essential, excep-
tionally well-conserved gene, was missing in M. genitalium (today we know that there are also
no homologs of this gene in other mycoplasmas as well as in such Gram-positive bacteria as
Fusobacterium nucleatum and one species of Clostridia). The NDK activity, however, is essen-
tial in every cell because it supplies triphosphates for DNA and RNA synthesis; deficiency of
this enzyme in humans is responsible for metastases of several tumors (Ouatas et al., 2003). We
proposed MG268 (COG01428) as a candidate displacement because of its distant similarity
to deoxynucleotide kinases. On the other hand, it has been shown that several overexpressed
and partially purified small-molecule kinases in mycoplasmas can phosphorylate nucleoside
diphosphates (Pollack et al., 2002). Whether they moonlight in this way in vivo, however,
remains unknown, and MG268 could still turn out to be the principal NDK in Mycoplasma.
These hits and misses,however,do not change the basic fact that orthologous genes are displaced
in evolution, and that any method of minimal genome reconstruction that relies only on
counting shared orthologs will underestimate the minimal gene set.

Returning to the picture that emerged after supplementing the set of orthologs by proteins
that have been displaced between the two species, we found that the resulting amended set of
256 genes could provide for a coherent enough, if pared down, metabolism. Nutritional
requirements of a minimal genome would be quite extensive, including all amino acids, nucle-
obases, at least some sugars (although transketolase was available to make longer skeleton
monosaccharides from the shorter ones), and fatty acids. Coenzymes represented a special and
interesting case. Minimal gene set contained enzymes dependent on the following cofactors:
NAD(P), FAD, S-adenosyl methionine, lipoate, pyridoxal, thiamine, folate, and coenzyme A.
None of these coenzymes can be synthesized de novo by M. genitalium nor, consequently, by
minimal genome. But minimal genome included most of the enzymes required for the last step
of coenzyme assembly or activation, including FAD synthase that conjugates flavine and ade-
nine nucleotides, SAM synthase that makes S-adenosyl methionine from ATP and methion-
ine, lipoate–protein ligase, and dephospho-CoA kinase. There were also a few putative kinases
that might activate pyridoxal and thiamine by phosphorylation. The complete set of enzymes
enabling C1 turnover by folate was also present (this cycle is the source of functional groups for
two important syntheses, those of formylmethionine and of thymidylate).

Thus, the gene set identifies the nutritional requirements of the organism with minimal
genome. Informational genes (see Chapter 11) appear to have a much higher retention rate in
the minimal genome than operational genes: The translation apparatus of M. genitalium is
placed into the minimal genome without much gene loss. The main transcription enzyme, mul-
tisubunit RNA polymerase, also makes it into the minimal gene set in its entirety (except for the
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tiny sigma subunit that has not been discovered in any mycoplasmas yet), as do the sigma fac-
tor and two RNA elongation factors. In contrast, none of specific transcription factors made
it to the minimal genome, underscoring the difference in transcription mechanisms in
mycoplasmas and proteobacteria (however, it is quite likely that there are still undiscovered
DOGs in this class of proteins). Replication machinery of Mycoplasma remains intact in the
minimal genome, although the number of functional DNA repair systems is strongly reduced.

In the decade that passed since that first publication on the minimal genome, researchers
gained access to many more genome sequences. If we tried to repeat the experiment today, we
would see the same trends as 10 years ago, but magnified in interesting ways. The two first fully
sequenced genomes comprised 2300 genes, approximately 250 of which (50% of the smaller
and 14% of the larger genome) were shared between both genomes, and perhaps at least 20
more genes were isofunctional, mutually displacing genes. The last release of the National
Center for Biotechnology Information (NCBI) COG database includes genomes of archaea,
bacteria, and unicellular eukaryotes, and they contain approximately 107 genes, most of which
belong to one of ~14,000 COGs. Drastically, only 50 of these COGs are found in all genomes
without exception.

The list of COGs that are found in all completely sequenced genomes is of some interest
(Table 13.1). Approximately two-thirds of these proteins are involved in translation, and only

206 Foundations of Comparative Genomics

Table 13.1. COGs Found in All Completely Sequenced Unicellular Genomes or in at Least
95% of Thema

COG No. Functional category Molecular function

COGs found in all completely sequenced 
species

COG00037 Cell cycle Predicted ATPase of the PP-loop superfamily
implicated in cell cycle control

COG00358 DNA replication, recombination, and repair DNA primase (bacterial type)
COG01109 Monosaccharide metabolism Phosphomannomutase
COG00528 Nucleotide metabolism Uridylate kinase
COG00533 Protein folding and repair Metal-dependent proteases with possible chap-

erone activity
COG00492 Protein folding and repair Thioredoxin reductase
COG00201 Protein secretion Preprotein translocase subunit SecY
COG00541 Protein secretion Signal recognition particle GTPase
COG00552 Protein secretion Signal recognition particle GTPase
COG00018 RNA metabolism and translation Arginyl-tRNA synthetase
COG00030 RNA metabolism and translation Dimethyladenosine transferase (rRNA methy-

lation)
COG00008 RNA metabolism and translation Glutamyl- and glutaminyl-tRNA synthetases
COG00124 RNA metabolism and translation Histidyl-tRNA synthetase
COG00143 RNA metabolism and translation Methionyl-tRNA synthetase
COG00016 RNA metabolism and translation Phenylalanyl-tRNA synthetase alpha subunit
COG00012 RNA metabolism and translation Predicted GTPase; probable translation factor
COG00442 RNA metabolism and translation Prolyl-tRNA synthetase
COG00081 RNA metabolism and translation Ribosomal protein L1
COG00244 RNA metabolism and translation Ribosomal protein L10
COG00080 RNA metabolism and translation Ribosomal protein L11
COG00102 RNA metabolism and translation Ribosomal protein L13
COG00093 RNA metabolism and translation Ribosomal protein L14
COG00200 RNA metabolism and translation Ribosomal protein L15
COG00197 RNA metabolism and translation Ribosomal protein L16/L10E
COG00256 RNA metabolism and translation Ribosomal protein L18
COG00198 RNA metabolism and translation Ribosomal protein L24
COG00087 RNA metabolism and translation Ribosomal protein L3
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Table 13.1 COGs Found in All Completely Sequenced Unicellular Genomes or in at Least
95% of Thema

COG No. Functional category Molecular function

COG00088 RNA metabolism and translation Ribosomal protein L4
COG00094 RNA metabolism and translation Ribosomal protein L5
COG00097 RNA metabolism and translation Ribosomal protein L6P/L9E
COG00100 RNA metabolism and translation Ribosomal protein S11
COG00099 RNA metabolism and translation Ribosomal protein S13
COG00052 RNA metabolism and translation Ribosomal protein S2
COG00522 RNA metabolism and translation Ribosomal protein S4 and related proteins
COG00049 RNA metabolism and translation Ribosomal protein S7
COG00096 RNA metabolism and translation Ribosomal protein S8
COG00103 RNA metabolism and translation Ribosomal protein S9
COG00172 RNA metabolism and translation Seryl-tRNA synthetase
COG00441 RNA metabolism and translation Threonyl-tRNA synthetase
COG00231 RNA metabolism and translation Translation elongation factor P (EF-P)/transla-

tion initiation factor 5A (eIF-5A)
COG00480 RNA metabolism and translation Translation elongation factors (GTPases)
COG00532 RNA metabolism and translation Translation initiation factor 2 (IF-2; GTPase)
COG00180 RNA metabolism and translation Tryptophanyl-tRNA synthetase
COG00162 RNA metabolism and translation Tyrosyl-tRNA synthetase
COG00525 RNA metabolism and translation Valyl-tRNA synthetase
COG00202 Transcription DNA-directed RNA polymerase; alpha 

subunit/40 kDa subunit
COG00085 Transcription DNA-directed RNA polymerase; beta 

subunit/140 kDa subunit
COG00086 Transcription DNA-directed RNA polymerase; beta′

subunit/160 kDa subunit
COG00250 Transcription Transcription antiterminator
COG00195 Transcription Transcription elongation factor

COGs found in 95–99% of the completely sequenced species

COG00128 Amino acid metabolism 5-Enolpyruvylshikimate-3-phosphate 
synthase

COG00601 Amino acid metabolism ABC-type dipeptide/oligopeptide/nickel trans-
port systems; permease components

COG01173 Amino acid metabolism ABC-type dipeptide/oligopeptide/nickel trans-
port systems; permease components

COG00436 Amino acid metabolism Aspartate/tyrosine/aromatic aminotransferase
COG00136 Amino acid metabolism Aspartate-semialdehyde dehydrogenase
COG00527 Amino acid metabolism Aspartokinases
COG00082 Amino acid metabolism Chorismate synthase
COG00329 Amino acid metabolism Dihydrodipicolinate synthase/N-acetylneuram-

inate lyase
COG00112 Amino acid metabolism Glycine/serine hydroxymethyltransferase
COG00520 Amino acid metabolism Selenocysteine lyase
COG00169 Amino acid metabolism Shikimate 5-dehydrogenase
COG00006 Amino acid metabolism Xaa-Pro aminopeptidase
COG00206 Cell cycle Cell division GTPase
COG00190 Coenzyme metabolism 5;10-Methylene-tetrahydrofolate dehydrogenase/

methenyl tetrahydrofolate cyclohydrolase
COG00237 Coenzyme metabolism Dephospho-CoA kinase
COG00294 Coenzyme metabolism Dihydropteroate synthase and related enzymes
COG00171 Coenzyme metabolism NAD synthase
COG01136 Detoxification ABC-type antimicrobial peptide transport

system; ATPase component
COG01132 Detoxification ABC-type multidrug transport system; ATPase

and permease components

Continued
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Table 13.1. COGs Found in All Completely Sequenced Unicellular Genomes or in at Least
95% of Thema––Cont’d

COG No. Functional category Molecular function

COG00258 DNA replication, recombination, 5′-3′ exonuclease (including N-terminal
and repair domain of PolI)

COG00470 DNA replication, recombination, ATPase involved in DNA replication
and repair

COG00178 DNA replication, recombination, Excinuclease ATPase subunit
and repair

COG00556 DNA replication, recombination, Helicase subunit of the DNA excision repair 
and repair complex

COG00582 DNA replication, recombination, Integrase
and repair

COG00350 DNA replication, recombination, Methylated DNA–protein cysteine 
and repair methyltransferase

COG00084 DNA replication, recombination, Mg-dependent Dnase
and repair

COG00494 DNA replication, recombination, NTP pyrophosphohydrolases including 
and repair oxidative damage repair enzymes

COG00322 DNA replication, recombination, Nuclease subunit of the excinuclease complex
and repair

COG00177 DNA replication, recombination, Predicted EndoIII-related endonuclease
and repair

COG00468 DNA replication, recombination, RecA/RadA recombinase
and repair

COG00164 DNA replication, recombination, Ribonuclease HII
and repair

COG00210 DNA replication, recombination, Superfamily I DNA and RNA helicases
and repair

COG00550 DNA replication, recombination, Topoisomerase IA
and repair

COG00188 DNA replication, recombination, Type IIA topoisomerase (DNA gyrase/topo II;
and repair topoisomerase IV); A subunit

COG00187 DNA replication, recombination, Type IIA topoisomerase (DNA gyrase/topo II;
and repair topoisomerase IV); B subunit

COG00636 Energy supply F0F1-type ATP synthase; subunit
c/Archaeal/vacuolar-type H+-ATPase; subunit K

COG00039 Energy supply Malate/lactate dehydrogenases
COG01249 Energy supply Pyruvate/2-oxoglutarate dehydrogenase

complex; dihydrolipoamide dehydrogenase (E3)
component; and related enzymes

COG01028 Lipid metabolism Dehydrogenases with different specificities
(related to short-chain alcohol dehydrogenases)

COG00142 Lipid metabolism Geranylgeranyl pyrophosphate synthase
COG00558 Lipid metabolism Phosphatidylglycerophosphate synthase
COG00020 Lipid metabolism Undecaprenyl pyrophosphate synthase
COG00575 Lpid metabolism CDP-diglyceride synthetase
COG00126 Monosaccharide metabolism 3-phosphoglycerate kinase
COG00148 Monosaccharide metabolism Enolase
COG00697 Monosaccharide metabolism Permeases of the drug/metabolite transporter

(DMT) superfamily
COG00477 Monosaccharide metabolism Permeases of the major facilitator superfamily
COG00061 Monosaccharide metabolism Predicted sugar kinase
COG00469 Monosaccharide metabolism Pyruvate kinase
COG00149 Monosaccharide metabolism Triosephosphate isomerase
COG00057 Monosaccharide metabolism/ Glyceraldehyde-3-phosphate

Energy supply dehydrogenase/erythrose-4-phosphate
dehydrogenase
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Table 13.1. COGs Found in All Completely Sequenced Unicellular Genomes or in at Least
95% of Thema

COG No. Functional category Molecular function

COG00563 Nucleotide metabolism Adenylate kinase and related kinases
COG00504 Nucleotide metabolism CTP synthase (UTP-ammonia lyase)
COG00537 Nucleotide metabolism Diadenosine tetraphosphate (Ap4A) hydrolase

and other HIT family hydrolases
COG00167 Nucleotide metabolism Dihydroorotate dehydrogenase
COG00518 Nucleotide metabolism GMP synthase; glutamine amidotransferase

domain
COG00519 Nucleotide metabolism GMP synthase; PP-ATPase domain/subunit
COG00105 Nucleotide metabolism Nucleoside diphosphate kinase
COG00461 Nucleotide metabolism Orotate phosphoribosyltransferase
COG00284 Nucleotide metabolism Orotidine-5′-phosphate decarboxylase
COG00462 Nucleotide metabolism Phosphoribosylpyrophosphate synthetase
COG00209 Nucleotide metabolism Ribonucleotide reductase; alpha subunit
COG00125 Nucleotide metabolism Thymidylate kinase
COG00127 Nucleotide metabolism Xanthosine triphosphate pyrophosphatase
COG00449 Polysaccharide metabolism, including Glucosamine 6-phosphate synthetase; contains

cell wall metabolism in prokaryotes amidotransferase and phosphosugar isomerase
domains

COG00438 Polysaccharide metabolism, including Glycosyltransferase
cell wall metabolism in prokaryotes

COG00463 Polysaccharide metabolism, including Glycosyltransferases involved in cell wall 
cell wall metabolism in prokaryotes biogenesis

COG00750 Polysaccharide metabolism, including Predicted membrane-associated Zn-dependent
cell wall metabolism in prokaryotes proteases 1

COG00472 Polysaccharide metabolism, including UDP-N-acetylmuramyl pentapeptide 
cell wall metabolism in prokaryotes phosphotransferase/UDP-N-acetylglu-

cosamine-1-phosphate transferase
COG00459 Protein folding and repair Chaperonin GroEL (HSP60 family)
COG00484 Protein folding and repair DnaJ class molecular chaperone with C-terminal

Zn finger domain
COG01214 Protein folding and repair Inactive homolog of metal-dependent

proteases; putative molecular chaperone
COG00443 Protein folding and repair Molecular chaperone
COG00576 Protein folding and repair Molecular chaperone GrpE (heat shock protein)
COG00526 Protein folding and repair Thiol-disulfide isomerase and thioredoxins
COG00681 Protein secretion Signal peptidase I
COG00013 RNA metabolism and translation Alanyl-tRNA synthetase
COG00215 RNA metabolism and translation Cysteinyl-tRNA synthetase
COG00073 RNA metabolism and translation EMAP domain
COG00060 RNA metabolism and translation Isoleucyl-tRNA synthetase
COG00024 RNA metabolism and translation Methionine aminopeptidase
COG02890 RNA metabolism and translation Methylase of polypeptide chain release factors
COG00130 RNA metabolism and translation Pseudouridylate synthase
COG00101 RNA metabolism and translation Pseudouridylate synthase
COG00009 RNA metabolism and translation Putative translation factor (SUA5)
COG00343 RNA metabolism and translation Queuine/archaeosine tRNA-ribosyltransferase
COG00090 RNA metabolism and translation Ribosomal protein L2
COG00091 RNA metabolism and translation Ribosomal protein L22
COG00089 RNA metabolism and translation Ribosomal protein L23
COG00255 RNA metabolism and translation Ribosomal protein L29
COG00051 RNA metabolism and translation Ribosomal protein S10
COG00048 RNA metabolism and translation Ribosomal protein S12
COG00199 RNA metabolism and translation Ribosomal protein S14
COG00184 RNA metabolism and translation Ribosomal protein S15P/S13E

Continued



210 Foundations of Comparative Genomics

Table 13.1. COGs Found in All Completely Sequenced Unicellular Genomes or in at Least
95% of Thema — Cont’d

COG No. Functional category Molecular function

COG00186 RNA metabolism and translation Ribosomal protein S17
COG00185 RNA metabolism and translation Ribosomal protein S19
COG00092 RNA metabolism and translation Ribosomal protein S3
COG00098 RNA metabolism and translation Ribosomal protein S5
COG00361 RNA metabolism and translation Translation initiation factor 1 (IF-1)
COG00454 Transcription Histone acetyltransferase HPA2 and related

acetyltransferases
COG00517 Unknown CBS domain
COG00596 Unknown Predicted hydrolases or acyltransferases

(alpha/beta hydrolase superfamily)
COG00500 Unknown SAM-dependent methyltransferases

aGenomes are from the extended version of the unicellular subset of the NCBI COG database
(www.ncbi.nlm.nih.gov/COG/grace/uni.html and Yu. Wolf, personal communication), in which Eukarya are repre-
sented by a subset of Fungi and Microsporidia.

one biological function, namely basic transcription of DNA, is substantially complete. If we
add to the list those genes that are found in more than 95% of all genomes (103 more COGs),
the picture becomes more coherent, but not by much. We gain several proteins required for
translation, but not all of them; synthesis of membrane lipids is hardly represented at all (dis-
tal part of isoprenoid biosynthesis that emerges in the 95% set may have other functions in bac-
teria); some enzymes of nucleotide and cofactor salvage also come into the picture; and there
are very few replication genes, none of them directly concerned with processive synthesis of
DNA genome.

The list of omnipresent COGs corresponds to 3.5% of all COGs and to approximately 10%
of genes encoded by the smallest free-living genome. Granted, some of the genes may have
been missed, either in the process of genome annotation (Nielsen and Krogh, 2005) or even,
perhaps, in the process of COG construction. However, more detailed analysis shows that
scarcity of the omnipresent genes is not an artifact of gene prediction. When the complete
COG database is ranked by the number of genomes that have each COG (Fig. 13.1), there is a
near-perfect log-linear dependency across most of the data range. The decay is rapid: Less than
1%  of all COGs are found in at least 95% of all genomes, and only approximately 5% are found
in more than two-thirds of all genomes. In contrast, the decrease in the COG frequency among
the minimal gene set is slow: 93% of the minimal set COGs are found in more than two-thirds
of all genomes (Fig. 13.1). Thus, the minimal gene set constructed in 1996 from just two dis-
tantly related bacterial genomes was strongly enriched in the universally conserved,
omnipresent genes.

It is worth remembering that nearly a half of all species included in the COG database (53
genomes out of 109) are pathogenic bacteria, which have experienced profound reduction of
gene content. What happens if we count shared orthologs only in genomes that have more
autonomous lifestyles and, on average, larger gene numbers than parasites? I excluded human,
animal, and plant parasites from the COG database (as an aside, this removes almost 3000 of
the COGs, many of which may be “parasitism-specific” genes and are of great interest for
future understanding of the fundamental mechanisms of pathogenesis and identifying poten-
tial drug targets). The distribution of COGs that survived the removal of parasitic species was
qualitatively the same as with the complete data set (see Fig. 13.1). The properties of the very
top percentile, however, were different. If we focus on the proteins present in more than 95%



of all free-living species, we find almost twice as many proteins as in the case of the equivalent
percentile for the complete data set. Among 98 proteins that are found in almost all free-living
species, are all COGs shown in Table 13.1, as well as 50 additional COGs, 40 of which are
enzymes for de novo biosynthesis or salvage of amino acids, nucleotides, and coenzymes. On
the other hand, gain in operational genes is modest: there are no additions among ribosomal
proteins, just one new aminoacyl-tRNA synthetase, etc. The reason is quite obvious: the loss
of genes in parasites has more impact on operational genes than on informational genes.

We can work our way down the ranked lists of COGs, admitting the most widespread COGs
to the minimal set first and then accepting the COGs that are found in increasingly lower pro-
portion of all genomes, on the premise that many of these genes code for essential functions,
but in some genomes they are displaced by isofunctional genes. In this way, many classes of
functions become better represented, and the corresponding model of minimal metabolism
becomes more coherent, with fewer gaps. For example, the top 15th percentile of frequency-
ranked COGs consists of 298 genes, 63 of which are involved in translation and include
26 ribosomal proteins, 7 aminoacyl-tRNA synthetases, 5 enzymes of rRNA modification, etc.
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Figure 13.1. Distribution of COGs from the unicellular subset of the NCBI COG database in completely
sequenced genomes. (Horizontal axis) COGs ranked by their frequency. (Vertical axis) Frequency of
each COG. Each axis is scaled from 100 to 0%. Solid and dotted curves are complete data set (1.4 × 103

COGs in 10 genomes) and COGs that are found in free-living species (1.12 × 103 COGs in 56 genomes),
respectively. The top curve corresponds to ~260 COGs that belong to the minimal gene set defined by
comparison of two completely sequenced bacteria genomes in 1996.



Note that even on that list, aminoacyl-tRNA synthetases are rare, in agreement with the
apparently high level of horizontal gene transfer and displacement in the evolution of this
group of proteins (Wolf et al., 1999).

Thus, comparative genomic approaches to minimal genome, even with careful ortholog def-
inition and allowing some across-the-board rate of gene absences in the sequenced genomes,
can only get so far. It is more evident than ever that an accurate reconstruction is impossible
without a systematic accounting for specific DOGs.

Note that as long as we agree on the composition of the medium for growing the minimal
genome, some of the problems associated with gene loss and displacement go away. For exam-
ple, if we provide coenzymes in the environment, all that is needed is the machinery to bring
them into the cell, and we do not have to add genes for coenzyme biosynthesis to the minimal
genome.

Thus far, all gene lists and all pathways that we were able to put together consisted only of
protein coding genes. This, or course, is a simplification. Clearly, many essential genes code for
functionally important RNAs that are never translated. Ribosomal RNA acts as a ribozyme
that performs at least two essential activities of the ribosome, decoding of mRNA and syn-
thesis of peptide bonds. Another essential ribozyme is the RNA component of RNAase P.
Each cell also has the RNA component of signal recognition particle, several dozen tRNAs,
and so on. Moreover, some of the gene displacements may be between protein coding and
RNA coding genes (see Chapter 6). The complete account of a minimal set of noncoding
RNAs is not yet available.

As a first approach to minimal RNA genome and RNA–protein displacements, I have
reconstructed the set of protein and RNA elements sufficient to sustain minimal ribosome
(Mushegian, 2005). This work was built on the earlier efforts from the labs of Steven Harvey
(then at the University of Alabama and now at Georgia Institute of Technology) and Robin
Guttell of the University of Texas, which have defined minimal ribosomal RNA as the set of
rRNA regions conserved in all living forms and in two types of organellular ribosomes (Mears
et al., 2002). This approach is obviously very similar to finding shared orthologs that we have
used to obtain the minimal protein set. Mears et al., however, dealt with domains of one long
rRNA molecule, rather than with individual protein coding genes. This difference is not as
great as it might seem: First, the definition of orthologous proteins also involves domain dis-
section (see Chapter 5), and second, two ribosomal RNAs are known to contain separate func-
tional domains that may have even been separate entities in the past, and some of the currently
known RNA genes are even transcribed as several distinct fragments that are subsequently
spliced.

There are many lineage-specific indels in all ribosomal RNAs; one can use the alignment of
all rRNAs from diverse life-forms and to find all regions that are not deleted in any of these
sequences. This intersection of all rRNAs would then be a candidate minimal rRNA. Of
course, this would not take account of domain displacements: What if two nonaligned seg-
ments of rRNA play the same roles, and one is deleted only if the other is inserted? Fortunately,
nature provided a (significant part of ) an answer: This minimal, or omnipresent, portion of
universally shared rRNA is very close to the pair of extremely deleted rRNAs found in mito-
chondria of nematodes. As the first approximation, every segment found in every other ribo-
somal rRNA is also found in nematode mitochondrial rRNAs, and almost every segment
missing from an rRNA from any species is also missing from the nematode mitochondrial
mRNAs. All told, the small-subunit (SSU) rRNA in nematode mitochondria has lost ~55%
of bases compared to a bacterial rRNA, the large-subunit (LSU) rRNA lost three-fourths of
all bases compared to bacteria, and mitochondrial 5S RNA is not found in nematodes at
all (Mears et al., 2002). The remaining, universally conserved rRNA domains include most of
the regions with the known function, particularly the peptidyltransferase center in the large
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subunit; the decoding sites in the small subunits; the A, P, and E sites of interaction with
tRNA; and most of the intersubunit interface, which mediates interaction of the large and
small subunits with very little help from ribosomal proteins. Thus, rRNA from any species can
be partitioned into three sequence components: regions that can be aligned to nematode mito-
rRNA—those may be noncontiguous in the sequence alignment, but pairs of such linear ele-
ments are typically brought together to form highly ordered conserved structures in rRNA;
those that do not align to, but have a functional equivalent within, mito-rRNA, to serve as con-
nectors between well-conserved elements of sequence and structure; and sequences that are
aligned to gaps in the nematode mito-rRNA. The first two components together can be viewed
as the minimal rRNA model.

Mears et al. (2002) did not have much to say about the protein component of the minimal
ribosome other than to note that, according to their calculations, 22 ribosomal proteins had
orthologs in “3P2O” (i.e., in three major phylae of life—Bacteria, Archaea, and Eukarya—
and in two types of organelles). I made a recount and found that the actual number is not 22
but more than 30. I settled on the exact number of 32, allowing for one or two absences among
the 66 genomes that the COG database included at the time. These “extra” components were
found by running PSI-BLAST searches to convergence and with more permissive parameters.
Some of the “novel”sequences that Mears et al. did not include were already annotated in the
database as ribosomal proteins, and a few were even studied biochemically. Nonetheless,
I thought that not all of these proteins properly belong to the minimal ribosome: An additional
requirement must be that they have cognate interaction sites in Min rRNA. The intersection of
omnipresent proteins and proteins that bind Min rRNA gives the set of 25 ribosomal proteins,
14 in SSU and 11 in LSU. I called this protein set Min1. Interestingly, attrition of proteins was
higher in LSU than in SSU (45% of the SSU proteins were included in Min1, compared to 20%
of the LSU proteins), in agreement with the earlier suggestion that proteins are more impor-
tant for holding together three relatively mobile domains of the SSU RNA, whereas the LSU
RNA can pack on its own (Brodersen et al., 2002; Bashan et al., 2003).

Min1, however, did not account for gene displacements. In fact, until very recently, little was
known about functions of most ribosomal proteins, so it was not known which ribosomal pro-
teins (nor which rRNA segments) may be isofunctional in different species. By 2004, however,
we could already benefit from the high-resolution x-ray structures of complete SSU from the
bacterium Thermus thermophilus and complete LSUs structures from bacterium Deinococcus
radiodurans and archaeon Haloarcula marismortui (Brodersen et al., 2002; Bashan et al., 2003;
Klein et al., 2004). The high-resolution structure of an archaeal SSU, or of any complete ribo-
some, remains to be determined. But at least with two types of LSU structures in hand, some
of the putative displacements can be proposed using the location of each protein with regard
to the homologous RNA segments as the proxy of its function.

Ribosomal proteins exist in two main types: Bacterio/organellar and Archaeo/Eukaryal.
Specifically, if a ribosomal protein has orthologs in all living species, the phylogenetic tree of
such orthologs is (B(AE)), and if a protein is not omnipresent, its phyletic pattern is either B–
or -AE (see Chapters 11 and 12 for discussion of this theme and other issues related to the Tree
of Life). Therefore, to find genes that replace each other in bacterial/organellar vs.
archaeo/eukaryal ribosome, I collected all proteins found either only in Bacteria or only in
Archaea/Eukarya and asked whether the two sets included any proteins that share an interac-
tion site on Min-rRNA. This comparison of LSUs from H. marismortui and D. radiodurans
identified several probable displacements in the large subunit, which are listed in Table 13.2.
Interestingly, most of them are not one-to-one displacements: There are six distinct locations
on the rRNA, with which either nine bacterial or eight archaeal proteins could interact [see the
discussion of most of the same displacements by Harms et al. (2001) and Klein et al. (2004),
both of whom, however, examine only functional, not evolutionary, implications].
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Table 13.2. Protein–Protein and Protein–RNA Displacements in Minimal and Ancestral
Ribosomea

Ribosome functional Bacterial protein  Archaeo-Eukaryal 
site protein Comments

Exit tunnel opening L17 L31E Both proteins are from the alpha-beta
fold class, but the number and
arrangement of secondary structure
elements are different, and two fami-
lies do not show sequence similarity.

Exit tunnel interior L23 L39E 
L34 L37E 

Helix 25 (common part) L20 L32E In the middle of L32E protein, there is
L21 a 45-amino-acid stretch forming a

twisted loop. It penetrates the
ribosome body, interacts with the
min-rRNA region of Helix 25, and
appears to be taking over the RNA
contacts which, in bacteria, are
enabled by interacting, extended
regions of two proteins, L20 and L21.
Both L32E and L21 have many posi-
tively charged residues in these regions
(as many other ribosomal proteins
do), but there is no clear indication of
an evolutionary relationship.

P-loop, P-tRNA L27 L21E Two proteins belong to the same fold 
interaction class and share additional specific

features, such as the strong twist of the
beta sheet. There is, however, no
sequence similarity between L27 and
L21E.

Helix 75, E-tRNA L31 L15E Elongated loopy regions of L15E and
interaction L33 L44E L44E contact each other, Helix 75,

and tRNA at the exit site. This
composite protein structure is struc-
turally and functionally replaced by a
single protein, L31, in Bacteria. There
remains the globular part of L44E,
which also interacts with tRNA at the
exit site and is replaced by a smaller
globular protein L33 in Bacteria

Intersubunit bridge B6 L19 L24E L19 and L24E belong to the all-beta
fold class but are dissimilar at the
sequence level. Both L19 and L24E,
however, donate two beta strands in a
similar way, to form an interprotein
beta sheet with S14.

aModified from Mushegian (2005) by permission of the RNA Society.



Furthermore, some DOGs within ribosome may involve a protein and an RNA; that is, the
function of a deleted rRNA element in one clade is taken over by an extra protein in another
clade, or an insertion of additional nucleotides in rRNA in one clade obviates a need for a ribo-
somal protein in another clade. The most relevant observation here concerns the interactions
between proteins and a nonminimal region of the LSU RNA. There is a 50-base insert in
Haloarcula RNA, which extends RNA helix 25. This region interacts with the globular
domain of archaeal L32E protein. In bacteria, L32E is displaced by L20 and L21 (see Fig. 3.3),
but there is no RNA site in bacteria that would interact with these displacers. Interestingly,
however, bacterial L20 makes extensive contacts with the globular portion of L21, which in
turn contacts L15. Thus, the Archaea-specific extension of RNA helix 25 and the globular
domain of Bacteria-specific L21 may be isofunctional, yet they are obviously not orthologous.

There is less evidence of gene displacement in the SSU because structural corroboration
cannot be done for SSU until we have a high-resolution structure from archaea. There are,
however, three Bacteria-specific proteins, S6, S16, and S18, which contact Min-rRNA in the
SSU, and at least seven proteins that belong to the small ribosomal subunit in
Archaea/Eukarya. Some of these may displace each other. Interestingly, SSU may also harbor
a possible RNA–protein displacement. It is suggested by the strange case of the S8 protein,
which interacts with rRNA mostly via helices 21, 22, and 25, which do not belong to Min
rRNA. S8 is found in all major clades (although not in every species) and has extensive inter-
actions with Min1 protein S2 and S17. A bacterial-like S8 homolog is present in nematode and
probably works in mitochondrial translation (although, like some other nuclear-encoded
mitochondrial ribosomal proteins, it lacks a defined mitochondria-targeting peptide).
However, nematode mitochondrial RNA has no S8 interaction site, which therefore has to be
replaced by something else—perhaps by extra proteins.

This is the outline of the computational approaches that can be used to construct a mini-
mal genome on the basis of the knowledge of gene sets encoded by completely sequenced
genomes of microorganisms. These reconstructions are confined to prokaryotic type of cell
organisation because the addition of nucleus and other organelles requires a much larger
complement of genes, and the experimental gene knockouts in yeast indicate that there are
many more essential genes in eukaryotes than in bacteria (Mushegian, 1999). The main
conclusions thus far are the following:

1. The minimal genome is an object of synthetic biology, and its characteristics can be
defined differently depending on the goal of the experimentator. The estimates of the size
of a minimal genome, therefore, is all relative. In particular, it is dependent on the parameters
of the environment, particularly the nutrients that are available to the minimal cell.

2. A minimal cell that shares many features of the smallest known bacterial genomes can
probably sustain itself with approximately 300 protein coding genes. Such a cell is simplified
even in comparison with the small genomes of mycoplasmas. It would have glycolysis as the
sole source of energy; would need to import all amino acids, nucleobases, some sugars, fatty
acids, and precursors of most coenzymes; would have only rudimentary systems of DNA
repair, gene regulation, and signal transduction; and would lack the cell wall.

3. The minimal genome also must contain several dozen genes that encode untranslated
RNAs (tRNAs, rRNAs, the RNA components of SRP and RNAase P, and some others).

4. The completeness of the minimal genome is dependent on our ability to identify gene dis-
placements, including RNA–protein displacements.

A different, and most direct way to learn about minimal genome is to start knocking out genes
of your favorite prokaryote one by one—either randomly and without recourse to computa-
tional analysis or according to a plan that relies on comparative genomics. The first experiment
of this sort was reported by Mitsuhiro Itaya of Mitsubishi Kasei Institute of Life Sciences
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before the completion of the first genome sequencing projects (Itaya, 1995). Itaya used rare
NotI restriction sites, quasi-randomly distributed in the genome of B. subtilis, and attempted
to insert a minitransposon into as many such sites as possible. He was able to identify insertions
into 79 loci, only 6 of which had any impaired-growth phenotype on rich medium. Statistical
analysis indicated that the indispensable DNA may constitute 318–562 kbp or, given that the
size of an average bacterial open reading frame is close to 1 kbp, 300–500 genes (Itaya, 1995).
Of course, B. subtilis is a large genome with relatively large PHISO (see Chapter 5) and, prob-
ably, much functional redundancy between genes. In any case, PHISO in Itaya’s projected min-
imal gene set would have to be lower than in B. subtilis, and many genes that are dispensable in
B. subtilis because of functional redundancy would become unique and possibly indispensa-
ble in a smaller genome.

It is thus better to use a smaller genome as a starting point. This is exactly what Craig Venter,
Hamilton Smith, and Clyde Hutchison and co-workers have done at the J. Craig Venter
Foundation (Hutchison is also professor at the University of North Carolina). They applied a
series of increasingly precise protocols to insert tetracycline resistance cassette into as many
genes of M. genitalium as possible, characterized the insertion mutants at the single-colony
level, controlled for possible complementation by mutants in mixed colonies, and verified the
phenotypes in multiple passages (Hutchison et al., 1999; Glass et al., 2006). All told, 100 pro-
tein coding genes could be disrupted without lethal effects, although some mutants grew
slowly (interestingly, mutants in 3 genes grew faster than the wild type). On the other hand,
none of the known 43 RNA-encoding genes could be successfully disrupted. Thus, 382
nondisrupted protein coding genes of M. genitalium and its 43 RNA coding genes are the clos-
est current experimental approximation of the minimal gene set. Almost all genes identified in
our 1996 article, as well as the most likely candidate essential genes discussed in this chapter,
belong to this group of 382 genes. One notable exception is RecA, the multifunctional DNA
strand exchange ATPase. This gene is found in every completely sequenced genome and is
included in all lists of essential and minimal genes, and yet Glass et al. (2006) were able to
recover a viable mutant with insertion in this gene.

Almost 400 essential genes obtained in this experiment are most likely an underestimation:
Some genes that are dispensable when singly mutated may actually form synthetic lethals in
double-deletion experiments. One reason for such a large difference between this experiment
and our theoretical expectation has already been stated: All counts of shared orthologs ignore
the isofunctional genes in two distantly related species, and even though our analysis of mini-
mal gene set (Mushegian and Koonin, 1996a) alerted us to the phenomenon of nonortholo-
gous gene displacement (Koonin et al., 1996), we were still unable to identify all displacements
correctly.

After all nonessential genes are engineered out of the M. genitalium genome (which will
become a very small genome already called Mycoplasma laboratorium;Glass et al., 2006), what
may be the next steps to reduce the genome size even further? One approach may be to explore
DOGs in more depth, especially those that are of many-to-one nature (see Chapter 6). If
needed, viruses can be brought into comparison: For example, RNA synthesis in bacteria is
performed by the holoenzyme that consists of four types of constitutive subunits—alpha,
beta, beta�, and omega (although omega subunit has not been found in mycoplasmas thus
far)—but phages of the T3/T7 group use a single-subunit RNA polymerase. Replacement of
polymerase would result in the net removal of two or three genes; of course, this would require
redesigning all promoters and much of the transcription regulation system, which would be a
formidable engineering problem.

Polyfunctionality of proteins may also be exploited.As we have previously seen,M.genitalium
may be doing this already, for example, if the function of its missing nucleoside diphosphate
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kinase is performed by another small-molecule kinase on a side (Pollack et al., 2002). Perhaps
some of the enzymes encoded in minimal genome may be reengineered to a broader specificity.
Another, indirect way to enable further reductions is to redesign the metabolism in a more
modular form. For example, the pair of genes, folate-dependent thymidylate synthase and
dihydrofolate reductase, both of which are essential in M. genitalium, could be replaced by
flavin-dependent thymidylate synthase (one gene), which is the only enzyme of de novo
thymidylate synthesis in many bacteria (Mylykallio et al., 2002). This, however, will not result
in net elimination of a gene because dihydrofolate reductase plays an additional essential role
in C1 turnover by folate, which is also needed for several other cellular processes. Uncoupling
of thymidylate synthesis from folate metabolism, however, may facilitate further engineering
of the latter pathway. Finally, reduction of genome size, as opposed to gene number, can be
undertaken when nonessential portions of all genes (and of intergenic regions) are defined
and deleted.

Compendium of orthologs shared by different lineages of living forms may also be used to
reconstruct the ancestral genome. Unlike minimal genome, which is the man-made construct,
the reconstructed ancestral genome is supposed to be our best guess of the genetic makeup of
an organism that really existed. As already mentioned, gene content in the common ancestor
is an important source of information about the properties of such ancestor and the
conditions in which it might have lived.

Before discussing some recent work, in which comparative genomics was ingenuously
used to reconstruct LUCA, let us review a few current assumptions about early evolution
of life:

1. The current world operates under the central dogma of molecular biology. DNA is the
genome of cellular organisms, and RNA has multiple functional roles, including catalytic
functions but not genomic function (except in some viruses; see Chapter 4).

2. There had been an earlier stage in the evolution of life, which is often referred to as the
“RNA world.” The RNA world has been initially, and perhaps most rigorously, defined as
the world in which life consisted of species with RNA genomes and RNA enzymes. There
was no DNA to play a genomic role, and there were no encoded proteins. More recently, the
RNA world came to have two more meanings. One of them is a stage in evolution when
genomic DNA was still not around, but RNA already started to encode proteins that (even-
tually) took over many enzymatic functions. Yet another meaning of “RNA world” is quite
loose and simply refers to the variety of RNA functions observed in the ancestral as well as
contemporary cells.

3. Many names have been given to various organisms that are thought to have existed in the
RNA world in the first two senses. The transition from the RNA–RNA world to the
RNA–protein world was modeled as the evolution from “the last riboorganism”to “the break-
through organism” (Benner et al., 1987, 1989). An entity similar to the breakthrough organ-
ism has been called “progenote” by Carl Woese. There are many speculations, and some
detailed reconstructions, of these earlier stages of evolution (Benner et al., 1987, 1989, 1993;
Penny and Poole, 1999; Koonin and Martin, 2005). However, as elsewhere in this book, my
main attention is on the bread and butter of comparative genomics—that is, the analysis of
protein coding genes—and on the “backwards” direction of evolutionary reconstruction,
when we use information about the proteins we know today to learn as much as we can about
the ancestral species. In this way, we may obtain only limited information about riboorganisms
and will have to focus on the genomes that encoded proteins.

4. The entity that is of much interest is LUCA. This is the organism that lived at the root of
the three main kingdoms of life—Bacteria, Archaea, and Eukarya.
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5. There are several thorny questions about LUCA. One concerns its cellular organiza-
tion: Was it a prokaryote? A bacterium? An archaeon? An entity that combined some fea-
tures of bacteria and archaea (and/or eukaryotes, for good measure)? The other concerns its
genetic discreteness: Was it an organism in a modern sense, or perhaps a loose association of
semiautonomous, self-replicating “sense-carrying units,” some of which encoded products
that provided benefits to other such units (Woese, 1998a, 1999, 2002; Leipe et al., 1999;
Koonin and Martin, 2005; Koonin, 2006; see in particular the open discussion accompany-
ing the latter publication)?

At the same time, there are many questions about the status of individual genes in LUCA.
The two molecules that are long-lived and always physically passed between generations of the
present-day organisms, DNA genome and plasma membrane. Machinery for synthesis of
both these molecules exists in two drastically different forms in modern organisms. The sys-
tems of DNA replication contain several homologous components in all species (Leipe et al.,
1999), but the main catalytic (nucleotidyltransferase) domain of processive DNA polymerase,
the replicative helicase, the origin recognition ATPase, and DNA primase are nonorthologous
in Bacteria and Archaea/Eukarya. Thus, what was the status of DNA replication machinery,
and of the DNA genome, in LUCA? Likewise, the pathway of lipid side chain biosynthesis is
also different in the three domains of life. In this case, however, Archaea uniquely have iso-
prenoid side chains in their lipids, which they synthesize via a modified mevalonate pathway.
Bacteria and Eukarya have fatty acid side chains, and they also make isoprenoids, either by the
mevalonate pathway in animals, fungi, a subset of bacteria, and plant cytoplasm, or by the
alternative, methylerythritol phosphate pathway in most bacteria and plant chloroplasts.
Thus, what were the lipid side chains in LUCA?

Of course, the status of all other cellular systems in LUCA is also of interest. Rampant gene
loss and displacement will complicate our efforts to infer the ancestral gene content, same as
it interferes with most other inferences, whether they have to do with phylogenetic tree,
metabolic pathways, or minimal genome.

When talking about reconstructing the ancestral genes, I will be mostly concerned with
gene lists—that is, the statements of presence and absence of the ancestral orthologs in
LUCA. A different line of investigation may use the contemporary offspring of each ances-
tral gene in order to estimate the actual sequence of the ancestor. This is a tremendously inter-
esting endeavor (recall the example of reconstructed ancestral alcohol dehydrogenase from
yeast in Chapter 11), but I will not address it here in any detail for several reasons, one of
which is that at the very large evolutionary distances that separate LUCA from the modern
organisms, such reconstruction is almost impossible, except perhaps for a few very slowly
evolving genes. In contrast, the gene content of LUCA may be inferred with reasonable
accuracy.

One of the first purposeful reconstructions of the ancestral set of molecular functions
was done by Steven Benner and co-workers in the early 1990s (Gonnet et al., 1992; Benner
et al., 1993). The central ingredient of their work was the database of highly scoring
sequence pairs, obtained by exhaustive matching of the sequences in the SWISSPROT
database. By applying single-linkage algorithm and joining pairs that shared a protein into
clusters, they determined “connected components.” In the circumstances in which sequence
sampling of different divisions of life was highly uneven (before the advent of fully sequenced
genomes), the authors selected such connected components that include proteins from two or
more “superkingdoms”(Bacteria, Archaea, or Eukarya). Those connected components were
more likely to represent proteins with universally important molecular functions. Even
though archaeal sequences were the limiting resource at the time, there were 36 connected
components that contained proteins from archaea and at least one other domain of life.
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Twenty of these components were families of proteins with enzymatic activity, representing
glycolysis, tricarboxylic acid cycle, amino acid biosynthesis, urea cycle, synthesis of ATP, and
DNA transcription. The other 16 were ribosomal proteins. This early work was an encour-
aging proof of concept: Computer methods were shown to be sufficiently mature to be sys-
tematically applied to reconstruct at least fragments of an ancient metabolism, despite the
incompleteness of all genome sequences at the time. The main biological conclusion from
that study was that the ancestor of all modern life-forms may have been metabolically quite
complex.

In 1996, Christos Ouzounis and Nikos Kyrpides, of IMBB in Greece, now at the Joint
Genome Institute at the U.S. Department of Energy, produced a similar kind of recon-
struction. The protein database available to them was larger and reflected the more
advanced stages of several large-scale genome projects. Instead of exhaustive all-against-
all comparison, they used the PROSITE patterns, selected all proteins with matches to
these diagnostic expressions, and for each family of proteins that matched one and the same
PROSITE pattern, examined the phylogenetic position of the genomes in which these pro-
teins were found. There were 944 protein families identified in that way, 77 of them found
in all three kingdoms of life. The authors analyzed the composition of the universal set,
finding substantial diversity of function, and, having observed two glycolytic enzymes, pre-
dicted that if we find a few enzymes from one pathway in the set of universal families, then
the genes completing the pathway are likely to be discovered later (they noted that comple-
tion of a genome can bring surprises, such as the lack of at least three enzymes of the TCA
cycle in fully sequenced H. influenzae, but were optimistic that gene loss is nevertheless
rare). As we now know, this expectation was not quite correct: Gene losses and DOGs
appear to be common enough so as to make it difficult to infer the status of the pathway on
the basis of its few components, either in the extant genome or, especially, in the ancestral
one. Interestingly, in the same work, Ouzounis and Kyrpides were one of the first to raise
the possibility of what they called “mosaicism” of archaeal genomes, on the strength of
only a few examples, such as the presence of both bacteria-like (HU) and eukaryotic-like
histones. This prescient observation was confirmed soon after their publication (see
Chapter 11).

The next major contribution in LUCA reconstruction was the work by Boris Mirkin of
Birkbeck College and Eugene Koonin at NCBI (Mirkin et al., 2003). They realized that
phyletic patterns (see Chapter 6) contain information about gene gains and losses, and
consequently may inform about the status (presence or absence) of many, if not all, genes in
the common ancestor. They formulated the problem as follows:

Given a species tree and a set of orthologs with a particular phyletic pattern of presence–absence of
the species within the analyzed set of species (this set of species should be the same as in the tree), find
the most parsimonious mapping of the set of orthologs on the tree. Such a mapping corresponds to the
most parsimonious evolutionary scenario for the given set of orthologs, i.e., the scenario with the
smallest possible number of events.

As always with parsimony, it helps to define the reason why we are searching for the “sim-
plest” or “most economical” scenario. Parsimony should perhaps not be its own justification
(see more detailed discussion in Sober, 1991, 2004; Felsenstein, 2003), and evolution is most
likely not parsimonious in several respects. Cavalier-Smith (2002a; see Chapter 12) noted that
it is not parsimonious with regard to gene losses, which can be most easily illustrated by the fol-
lowing kind of argument: Earlier in this chapter, we saw that the pathways of amino
acid biosynthesis de novo tend to be quickly lost upon switch of free-living bacteria to parasitic
lifestyle. If the parsimony principle was unabashedly used for studying evolution of
genomes, and if data on amino acid biosynthesis were used as the set of characters, the most
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parsimonious solution would be to place all parasites into one clade, to the exclusion of all
free-living bacteria. This makes no sense.

Evolution may also be nonparsimonious with regard to horizontal gene transfers (HGTs).
Thus, any realistic assumptions about evolution have to include some quantitative estimation
of the rate of gene loss and gene gain (of which HGT is a special case)—that is, to assign costs,
or weights, to the gene gain and gene loss events. This, in fact, is what Mirkin and co-authors
did.

There were several further assumptions. First, Mirkin and co-authors did not examine the
topology of trees that could be obtained from sequence alignments of each family. Instead,
only the presence–absence patterns of genes (phyletic vectors) were studied. This is despite
many examples showing that phylogenetic trees of individual sequence families may disagree
with any consensus species tree (see Chapters 6, 11, and 12). Second, genomes were treated as
“bags of genes,” and dependencies between gene losses were not studied (at least one recent
investigation, however, indicates that losses of genes within the same pathway are nonrandom,
with both rate of loss and the order in which genes are lost being influenced by earlier loss
events; Tanaka et al., 2005, 2006; Makino and Gojobori, 2006). Finally, the method is sensitive
to the topology of the species tree.

Mirkin and co-workers considered three types of events: gene loss, emergence of a new
gene/COG (either by duplication or perhaps, less commonly, from a noncoding sequence), and
acquisition of a gene/COG by HGT. Emergence of a new COG, whether by duplication or
xenology, is considered a gain in the remainder of their argument. The basic procedure for
counting gain and loss events is illustrated in Fig. 13.2.

Suppose that a gene is found in lineages B, C, and D, whose known phylogeny is shown in
Fig. 13.2A. Such phyletic pattern may be explained either by a gene gain by the last common
ancestor of B, C, and D (open circle; one event) or by gene appearance in the last
common ancestor of all four species (open circle; first event) followed by gene loss in the
lineage leading to A (black circle; second event). According to the parsimony principle, the
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Figure 13.2. Inference of the presence or absence of a COG at the root of the species’ phylogenetic tree, given that
tree and the status of the COG in the extant species. Gray boxes indicate the species that have a COG.
Gene gains are indicated by open circles, and gene losses are indicated by solid circles. Panels A and B
are reprinted with modification from Mirkin et al. (2003) under BioMed Central Open Access license
agreement.



one-event explanation is better than the two-event scenario. In Fig. 13.2B, a more complex sit-
uation is shown. It is a toss-up between two scenarios of two events each (either one gain + one
loss or two gains).

After the raw counts of possible events explaining each phyletic pattern at the background
of the species tree are obtained, there may be ties for the minimal count. That is where biolog-
ical realism has to come into play. As already said, there is no reason to consider all gains and
all losses equally likely: It is generally easier to lose genes than to gain them, so in the case of a
tie for event number, it is sensible to choose the scenario with the smallest number of gains. All
this may be good for breaking the ties, but in the complex reconstructions with many gains and
losses, the relative costs of gains and losses have to be substituted in order to provide a meas-
ure of the least costly scenario. General mathematical approaches for character weighting
have been developed (Swofford and Madison, 1992; Swofford et al., 1996; Bruno et al., 2000),
but the question is what the actual value of the weights should be. If the extreme values of the
weights are chosen, there are interesting consequences. For example, if we decided that gene
losses are rare, and that their use in the evolutionary scenario has to be strongly penalized,
whereas gene gains were low-cost events, the scenarios for patterns with many absences will
tend to push losses deeper into the past because one gene loss in a distant ancestor would take
care of all absences, and regaining the gene is cheap and thus is allowed to occur many times.
Conversely, if gains are to be strongly penalized (which is essentially what is argued by the pro-
ponents of the rareness of HGT; see Chapter 11) and losses are thought to have low cost, then
losses will tend to be more numerous and more recent.

Mirkin et al. (2003) call the crucial parameter the “gain penalty”(although, of course, it is a
factor that can be applied to either favor or penalize gene gains). Gain penalty, g, was estimated
indirectly by varying its values and comparing solutions for each value. Since the value of g
directly influences the list of genes that are placed into the reconstructed LUCA, we can seek,
for example, such a LUCA that is more functionally coherent than the others. The authors
studied the range of g values from 0.1 (10 gains are equivalent to 1 loss) to 10 (10 losses score
the same as 1 gain). In the first case, gains would be prevalent in the history of most COGs, and
in the second case phyletic patterns would be explained mostly by genes losses. Expectedly, the
total number of gains needed to explain all observed phyletic patterns was becoming increas-
ingly smaller with an increase of g, and the number of losses grew with an increase of g.

Perhaps less expected was a sharp difference in the ratio of two types of events experienced
between two neighboring g values: At g = 0.9, there were almost four times as many HGT
events as there were losses, but at g = 1.0, the numbers of the two types of events were almost
equal. The LUCA gene sets reconstructed for these two values of the g parameter indeed had
some special properties.

As g increased from 0.1, small fragments of different cellular pathways were slowly gained.
LUCA0.9 was the first genome that had significant portions of many metabolic pathways.
LUCA1.0, with 572 genes, had the complete translation system, except for glycyl-tRNA syn-
thetase (a well-known displacement); the set of basal RNA polymerase subunits, transcription
termination factors, and several helix–turn–helix transcription regulators; the complete set of
the bacterial-type H+-ATPase subunits; and many complete or nearly complete metabolic
pathways, including almost complete glycolysis (again, a missing phosphoglyceromutase is a
gene displacement well-known to us by now), complete TCA cycle, nucleobase biosynthesis,
and nucleotide salvage and substantially full pathways for biosynthesis of amino acids.
Coenzyme biosynthesis pathways, however, continued to be incomplete.

In a recurring theme, the replicative DNA polymerase, helicase, and replication initiation
ATPase were missing from LUCA1.0. Bacterial DNA polymerase I was present, but this may
have been an artifact of it being shared by bacteria and eukaryotes, in which it replicates
mitochondrial DNA and must have been gained by HGT from the protomitochondrial
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alphaproteobacterial endosymbiont. It is not clear whether this protein really belongs to
LUCA or what, if any, was the identity of the DNA replication enzyme.

Thus, the full account of HGT and gene displacement cannot be taken even in this second-
generation approach. Undoubtedly, phylogenetic trees of individual gene families have to be
studied to detect some HGTs and perhaps to improve the cost function. One other parameter
that would become explicit in this analysis, and that would improve the reconstruction, is the
relative lengths of branches in different parts of the species’ tree. Consider two cases of gene
gain (single event in each case), mapped onto the same phylogenetic tree (see Fig. 13.2). When
deciding whether the gene has been present at the root, the parsimony principle will not distin-
guish between these cases—it states only that both distributions are explained by the same
number of events. If, however, the branch lengths are included in the model, the left-hand case
becomes more suggestive of the ancestral presence of the gene because it appears to persist in
evolution since more ancient times.

What about the status of DNA genome in LUCA? This is a topic of a vivid discussion in
recent years. One idea is that there was none: LUCA might have had an RNA genome, together
with a rich repertoire of proteins, and DNA replication could have been invented twice
independently, once in a lineage leading to Bacteria and the other time in the clade leading to
Archaea/Eukarya. This hypothesis explains the lack of orthology between several major
components of DNA replication machinery. However, it does not illuminate the peculiar
evolutionary history of several enzymes that work with DNA, such as three subunits of DNA-
dependent RNA polymerase and bacterial-type DnaG primase,as well as some very specialized
enzymes that are involved in biosynthesis of deoxyribonucleotides, such as flavin-dependent
thymidylate synthase and two subunits of ribonucleotide reductase. Most reconstructions con-
fidently place all these enzymes into LUCA, suggesting that deoxyribonucleotides might have
been present already (Mirkin et al., 2003; Koonin, 2003a; Ouzounis et al., 2006).

One of the explanations elaborated by Patrick Forterre in recent years hypothesizes that
LUCA had an RNA genome, and DNA genomes first emerged in virus-like parasites, as a
resistance mechanism against the host surveillance systems that we are searching for and
destroying foreign genomes. Under this hypothesis, deoxyribonucleotide precursors and
DNA replication systems of different viruses have been independently hijacked by cellular
genomes two or maybe even three times (Filee et al., 2003; Forterre, 2005, 2006). Another
hypothesis, which seems to be more general than that of Forterre, is that LUCA may have had
an RNA genome with a virus-like strategy, similar to what is found in retroid viruses of
Baltimore class VI/Agol DDRD class (see Chapter 4). Under this hypothesis (Leipe et al.,
1999; Koonin et al., 2006), portions of LUCA genome may have been copied into DNA inter-
mediates that were transcribed into mRNAs. This was supplanted by modern-type DNA
genomes twice in two main early lineages.

Finally, what about lipid side chains? They are represented by fatty acids in bacteria and
eukaryotes and by isoprenoids in archaea (other chemical details are also different but can be
left out for the moment). Isoprenoids are also found in all known divisions of life, and almost
all nonparasitic species, but outside the Archaea they play no role as lipid side chains (even
though their highly elaborated derivatives, such as sterols, are obviously important for mem-
brane function in eukaryotes). Here, again, we have an ancient split, but with the -BE or 
A—phyletic pattern, different from the -AE or B—pattern observed in DNA replication.
Moreover, isoprenoid biosynthesis appears to have been invented twice, once as the mevalonate
pathway and another time as the deoxy-D-xylulose phosphate pathway.

What was the status of lipid side chains in LUCA, or were there any? One proposal is that
ancient cells lived in microcompartments with inorganic cell walls, which obviated the need of
membranes, and the escape from these compartments was only possible with the invention of
lipid side chains (Koonin et al., 2006). Under this scenario, the organism with bacteria-like
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DNA replication was able to escape when it invented fatty acids biosynthesis. What kind of
side chain enabled the escape of the archaeo-eukaryal lineage is anybody’s guess. But even if
there was an ancestral lipid side chain, its evolution almost certainly involved multiple gene
and whole-pathway displacements.

Our trip into the past is over for now. More genome sequencing will undoubtedly bring us
closer to the understanding of the common ancestors of present-day genomes and will provide
tools and resources for engineering minimal genomes.
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14

Comparative Genomics
and Systems Biology

Ours are interesting times for comparative genomics. The words “bioinformatics” and
“computational biology” barely existed 15 years ago. They were first used as Medline
keywords in the 1990 paper describing the first steps of the National Center for Biotechnology
Information (Benson et al., 1990), and the achievements in the area at that time could be
summarized in a few monographs. But as I am writing this in mid-2006, the count of articles,
and even books, on various aspects of bioinformatics is all but lost, and Google search already
finds approximately 600 Web sites that contain the expression “traditional bioinformatics,”
which is typically understood as analysis of biological sequences, the Pauling and
Zuckerkandl sense-carrying units.

As people were still trying to get used to traditional as well as perhaps nontraditional bioin-
formatics, to “comparative genomics,” “functional genomics,” and a host of other “omics”
(Petsko, 2002; Nicholson, 2006; Joyce and Palsson, 2006), a strange thing happened. More or
less suddenly, all these formerly scientific disciplines have been relegated to the level of
enabling technologies. The real game in town is now systems biology. That expression occurs
more than 1300 times in Medline, 99% of them after 2000, when the namesake institute was
founded in Seattle by Leroy Hood. “Systems biology” is found at approximately 5 million
websites. These are spectacular results for an area of science that is still trying to define itself.

In a commentary on the state of genomics and systems biology, Maureen O’Malley and
John Dupre, social scientists at the Center for Genomics in Society at the University of Exeter,
noted that “much of the discussion of the status of genomes has been conducted via evalua-
tions of the evolving metaphors in genomic discourse—from the ineptness of the blueprint
metaphor to analogies with jazz scores and Theseus’s ship” (O’Malley and Dupre, 2005). In
this book, I tried to present ideas and generalizations that demonstrate that comparative
genomics is neither a set of enabling technologies nor a postmodern juggling of metaphors
but, rather, a coherent discipline that discovers new facts about biology and generates new
understanding. I hope that the view of genome as a system was at least implicit—or, more
often, explicit—in the preceding chapters. So, what is added by the systems biology
“discourse”?

O’Malley and Dupre (2005) say:

Under the systems biology rubric are two different (but not mutually exclusive) understandings
of “system.” The first account is given by scientists who find it useful for various reasons (including
access to funding) to refer to the interconnected phenomena that they study as “systems.” The second
definition comes from scientists who insist that systems principles are imperative to the successful
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development of systems biology. We could call the first group “pragmatic systems biologists” and the
second “system-theoretic biologists.”... The majority of today’s systems biologists fall into the for-
mer category, united simply by an agreement that systems biology involves the study of interacting
molecular phenomena through the integration of multilevel data and models. For them, “system” is a
convenient but vague term that covers a range of detailed interaction with specifiable function.... For
hard-line systems-theoretic biologists, however, an ad hoc approach to systems is inadequate. It is cru-
cial, they argue, “to analyze systems as systems, and not as mere collections of parts” in order to
understand the emergent properties of component interactions.

In the same essay, the early influences on systems theory are sketched, going back to Norbert
Wiener and Ludwig von Bertalanffy. But there is another, more immediate source of inspira-
tion for at least “theoretical systems biologists,”namely the study of complex networks.

The history of that discipline will be written in the foreseeable future; its roots are in graph
theory and statistical physics and also in empirical examination of social relationships. Of more
immediate interest to us, in this final chapter of a book about comparative genomics, is the fol-
lowing question: Are there any facts or at least claims about biology that are emerging from the
network-level analyses of the living systems? In other words, it is not too difficult to present
genome structure and function in the form of a large number of gene  nodes connected by some
tangled edges, which look like a dandelion or, to a less romantic soul, like a dust bunny. Most of
us have seen such figures, but what do these images tell us about biological systems? This final
chapter is a brief overview of some biologically significant observations emerging from the
examination of genomewide dust bunnies.

Systems biology constructs are built, as a rule, from Pauling and Zuckerkandl’s “sense-car-
rying units”—most often, from some combination of genes, transcripts, proteins, and so on.
Often, relationships between these sense-carrying units are represented in the form of graphs.
Sometimes, genes/proteins are vertices of the graph, such as in diagrams of gene–gene or pro-
tein–protein interactions, and the edges represent either experimentally determined or
inferred relationships between genes and proteins. In other representations, genes may be
edges, and nodes may represent something else as in the charts of metabolic pathways. In this
case, nodes correspond to metabolic intermediates, usually known from the experiment. In the
rest of this chapter, we will mostly discuss the examples in which nodes correspond to sense-
carrying units. As always in graphs, edges are defined as pairs of nodes: In our case, the edge is
a pair of genes that has the right type of relationship. In any given graph, some pairs of nodes
may be connected, but usually not all of them.

Second, there are many biologically interesting ways to connect pairs of genes or proteins.
For example, genes can be connected because they share sequence similarity, because they are
neighbors on a chromosome, because their products interact, or because they have similar
phyletic patterns. Some of these relationships are binary (yes or no, all or none, present or
absent). Other types of relationships are measured quantitatively on some interval: For exam-
ple, proteins can interact strongly or weakly; transiently or over the whole lifetime; in all sam-
ples that have been examined or in only some of them. Relationships may also be conditional:
Two genes/gene products may interact only in some contexts, such as the presence of the third
component or factor in appropriate amounts; only at high concentrations of both components;
or only at night. These conditions also help to define the edges between pairs of genes/proteins.
One interesting set of problems in systems biology has to do with the ways to measure various
kinds of (possibly conditional) relationships between genes and to find the conditions or
thresholds that define the edges between genes. Obviously, we are most interested in such meas-
ures and thresholds that allow us to detect biologically important signals in the data.

The graphs that we were discussing are undirected: Two nodes that constitute an edge are
equivalent (i.e., edges do not have starting or ending points). However, edges can be given direc-
tion, sometimes using quite obvious rules. For example, an arrow at one end of an edge can be
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drawn to show that a gene regulates expression of another gene, or that the product of reaction
catalyzed by one protein is the substrate for another protein. In many other cases, the ways to
direct the edges are not obvious. For example, two genes may have very similar patterns of
expression across the range of conditions, and perhaps they should be connected by the edge
on this basis; but is there any way to polarize this edge, if genes are not directly acting on each
other? Another interesting problem in systems biology is to find general approaches to assign-
ing direction to the edges—again, in a way that would reveal something interesting about the
biological systems that we are studying.

Previously discussed graphs are also unweighted: Two nodes either have an edge between
them or they do not, and there is just one kind of edge. But edges can be given weights, which
can be visually represented, for example, as lines of different thickness. Weights may directly
reflect some biological property, such as the strength of interaction between genes. Weights
may also reflect some technical aspect of the experiment, such as reproducibility with which a
certain type of relationship is observed. Yet another interesting problem in systems biology is
to find biologically meaningful ways to assign weights to edges in the genomewide networks.
Different edges in the same graph may also be of fundamentally different nature—for exam-
ple, representing either genetic interactions between genes or physical interactions between
their products—which may be represented as different “colors.”Issues related to coloring bio-
logical networks are also of great interest.

From these general considerations, it is quite clear that the same set of genes—for example,
all genes in a genome—can be connected into a network in many different ways, which reflect
different types of relationships between genes. A critical question, however, is what to do with
the networks once they are constructed. Perhaps the only way to answer this question is to
decide which properties of biological networks are worth studying. Going out an a limb,
I propose the following as “the first expectation of systems biology”:

Interesting biology will tend to manifest itself mostly at the level of relatively small, local subgraphs
in the gene networks, and not so much at the level of the global properties of the network.

In other words, even if we define the network of all genes in a genome, it is the pattern of con-
figurations of a small number of nodes (genes/proteins) that will be of main interest. The study
of these local configurations should allow us to make statements about modes of gene regula-
tion, metabolic flux through the pathways, stability of the system under different kinds of per-
turbations,and evolution of all of these.At the end of the chapter, I will mention some directions
of this local network analysis. First, however, I briefly discuss the global properties of complex
networks, some of which receive much attention these days—a fad that I expect to pass.

A formal description of any network is most properly made in the language of graph theory
or, perhaps also satisfactorily, of statistical physics. This gives a way to describe the quantita-
tive properties of the network, such as “network clustering coefficient,”“largest node degree,”
“betweenness centrality,” “modularity,” and so on (in a recent survey, at least 30 measures of
global properties of complex networks were recognized; Costa et al., 2006). Often, however,
discussion of networks is overloaded with the metaphors.

Perhaps one of the most famous semimetaphoric constructs produced by this line of inquiry
is a “small world” network. Informally, it can be defined as a network in which (almost) any
node can be reached from (almost) any other node in a small number of steps. At this point, the
“six degrees of separation”meme is usually invoked, which appears to have been introduced in
1967 by the social psychologist Stanley Milgram of Yale University, who sent passport-size
packages to a few hundred randomly selected individuals in Nebraska and Kansas and asked
them to make a connection with target individuals in the Boston area, with a restriction to only
send the packets to someone whom the originator knew on a first-name basis, the same for the
next sender, and so on, until the target is reached. His famous result, first publicized in a
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popular magazine (Milgram, 1967), was that residents of the Midwest and Boston area (and,
by implication, the entire United States) are connected by not more than six first-name
acquaintances. As later inquiry showed, however, Milgram’s evidence was rather limited, with
only a few dozen chains completed (Travers and Milgram, 1969; Kleinfeld, 2001). More impor-
tant, however, in 1998 Duncan Watts and Steven Strogatz of Cornell University published an
article on the theory of small world networks, in which they did two main things. First, they
showed how a simple set of rules can be used to generate a small world network either from a ran-
domly connected graph or from a highly regular ring-like graph while preserving the numbers of
nodes and edges in it (Fig. 14.1). Second, they found that several kinds of real networks, includ-
ing some social networks but also, interestingly, the network of connections between neurons in
nematode Caenorhabditis elegans, are small world networks, with the characteristic “degree of
separation”between neurons in the nematode much less than the proverbial six (in fact, it is 2.65).
Watts is at Columbia University now, where he has initiated the study of e-mail chains, which
seems to be consistent with Milgram’s prediction—with the qualification that Internet users in
the 21st century may be a different social network than U.S. mail users in 1967.

What has not been shown, of course, is that the process described by Watts and Strogatz (or
other models that can be set up to produce small world networks) has relevance to biological
“small worlds.”Moreover, some initial “discoveries”of small worlds in biological systems did
not stand up to more detailed examination. For example, the small world nature of a network
that connects cellular metabolites has been reported, with characteristic separation degree
between 3 and 4 (Jeong et al., 2000; Wagner and Fell, 2001). These observations, however, were
refuted when the irreversibility of reactions and additional considerations of the actual fate of
individual carbon atoms were taken into account (i.e., when the connections were retained
only between those compounds that actually share at least one carbon atom), which resulted
in characteristic separation degree of more than 8 (Ma and Zeng, 2003; Arita, 2004). Thus, the
very extent to which different biological systems have small world properties is an open
question, and the reasons for such properties, when they are indeed observed, remain unclear.
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Figure 14.1. Random rewiring procedure that can produce a “small world” network from a regular ring lattice,
without altering the number of vertices or edges in the graph. A vertex and the edge that connects it to
its nearest clockwise neighbor are chosen, and with a constant probability p, this edge is reconnected
to a vertex chosen at random over the entire ring, with duplicate edges forbidden. This is repeated
clockwise for each vertex in turn, then the edges that connect vertices to their second-nearest neigh-
bors are randomly rewired with the same probability, and the process is repeated with increasingly
more distant neighbors after each full turn. For p = 0, the original ring is unchanged; for p = 1, all edges
are rewired randomly; and for certain intermediate values of p, the graph is a small world network.
Reproduced from Watts and Strogatz (1998) by permission from Nature Publishing Group.



The other extremely popular concept, also mixing metaphor with quantitative observation, is
“scale-free”networks. The formal definition of “scale-free”with regard to networks is still under
debate. In fact, the only type of distribution that satisfies all attempted definitions of scale-free is
the power law distribution, well-known in mathematics. Therefore, scale-free probably has no
independent meaning and is subsumed by the power laws (for details, see Newman, 2005). The
intuition here is the famous 80/20 rule and other similar rules, which state that there are many
poor people but few very rich people, that there are many small towns but few very large towns,
or that some words are very frequent in most texts but the majority of words are rarely encoun-
tered. More formally, the power law distribution is described as fi = Ci−γ, where fi is the number of
nodes with degree i, C is a term that is generally not of interest (it is introduced to ensure that fre-
quencies sum to 1), and γ is a parameter called the power law exponent, which in many power law
networks takes values from 1 to 3 (Fig.14.2).Not every power law distribution comes from analy-
sis of a network (e.g., I know of no natural or social network that directly induces the distribution
of cities by size), but some networks exhibit the power law distribution of the edge degrees (i.e.,
the number of edges connecting to each node). Unlike the case of small world networks, at least
one good reason why power laws may be frequently observed in biological data sets is known.
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Figure 14.2. Cumulative degree distributions for six different networks. The horizontal axis for each panel is vertex
degree k (in-degree for the citation and Web networks, which are directed), and the vertical axis is the
cumulative probability distribution of degrees (i.e., the fraction of vertices that have degree greater than
or equal to k). (A) The collaboration network of mathematicians (from Grossman and Ion, 1995); (B)
citations between 1981 and 1997 to all papers cataloged by the Institute for Scientific Information (from
Redner, 1998); (C) a 300-million vertex subset of the World Wide Web, circa 1999 (from Broder et al.,
2000); (D) the Internet at the level of autonomous systems, April 1999 (from Chen et al., 2002); (E) the
power grid of the western United States (from Watts and Strogatz, 1998); and (F) the protein interac-
tion network of proteins in the metabolism of the yeast Saccharomyces cerevisiae (from Jeong et al.,
2001). When not carefully analyzed, each of these distributions can be fitted to a power law curve of
some sort, and yet only networks c, d, and f appear to have power law degree distributions. Network b
is approximately power law-like in the tail, but it has a different behavior when the edge degree is small.
Network e has an exponential degree distribution (note a different scale on the horizontal axis).
Network a may have a truncated power law degree distribution or possibly two separate power law
regimes with different exponents. See Newman (2003) for more detailed description of each network.
Reproduced with permission from Newman, M. E. J. (2003). The structure and function of complex
networks. SIAM Rev. 45, 167–256. Copyright © Society for Industrial and Applied Mathematics.



The analysis of degree distribution in biological networks has resulted in the reporting
power laws everywhere, from ecosystems to virus epidemics, cellular populations, and gene
interactions (Harrison and Gerstein, 2002; Jose and Bishop, 2003; Gatenby and Frieden, 2004;
Marquet et al., 2005). I expect, however, that this system-theoretic binge will very soon be
moderated by the following cautionary observations. First, often the power law-like behavior
is reported on the basis of fitting a single family of curves: Basically, what is asked is which
value of the γ parameter gives the best fit to the data. However, what should be asked instead is
whether other distributions, such as logarithmic or stretched exponential, would give a better
fit. Second, it is known that many real-life data sets exhibit power law behavior only on an
interval of i (Newman, 2005; Adamic, 2006). Third, power law properties of the observed
sample may not be representative of population, and some real-life networks with unique
properties are not easily tractable by sampling (Stumpf et al., 2005). Finally, it has been
proposed that many networks, when analyzed using a popular but misleading technique of
frequency degree plots, can give the illusion of the power law distribution, or they can
incorrectly estimate the γ parameter when the power law distribution is indeed present (Tanaka
et al., 2005; Doyle et al., 2005).

All these reservations about the role of power laws in biological networks are serious, and yet
there are biological data sets that,although not necessarily taking the network form,are described
by power laws in a natural way. This is because biological data sets are made of sense-carrying
units or of operational taxonomic units.And the standard way of making new genes and proteins
is by duplication of already existing genes, much like the standard way of making new OTUs is
speciation. Enter the so-called Yule process, which can be summarized as follows [the line of
explanation is from Newman (2005), which offers more quantitative detail].

Suppose we have a set of taxa or protein families (similar rules may apply to social objects,
such as cities, scientific articles, or Web pages; we discuss them in parallel for now, but it should
be quite clear that all these examples deal with different types of entities that may have unique
features in addition to general themes). New entities are produced occasionally: Genes
undergo duplications, and species split (or new cities appear on the map, and scientists publish
new papers). Each entity is characterized by some quantitative property, such as the number of
proteins in a family, species in a genus, or citations that each paper receives. Each new entity is
associated with some initial value of that property, often but not always equal to one: When a
new genus emerges, it may have just one species in it (towns, however, usually are designated as
towns when they have at least a few dozen residents, and new scientific papers are usually cited
zero times at the moment of their publication).

Some families (genera/cities/papers) continue to acquire new genes (species/residents/
citations), but some do not. As a first approximation, all these systems are characterized by a
property that the probability of gaining new entities is proportional to the number of already
existing entities. Indeed, the more genes in a family (species in a genus), the higher the chance
that at least some of them will undergo duplication (speciation). Note that in the social enti-
ties, the mechanism of gaining new members may be different (a research paper that is widely
cited becomes better known, which makes it more likely that someone else will cite it; large
cities may attract more migrants for social reasons). This process, studied by Yule (1925), is
also called “rich get richer,”“cumulative advantage,”or, in the context of networks, “preferen-
tial attachment.”It can be shown that this generates data sets that have power law distribution,
as initially proposed by the Nobel prize winner in economics Herbert Simon (Simon, 1955),
applied to citation networks by de Solla (1976), and popularized for biological networks by
several researchers, especially Albert-Lazslo Barabasi of the University of Notre Dame,
starting at least from Barabasi and Albert (1999).

Elsewhere in this book, especially in Chapters 5 and 10, we examined the attempts to make
sense of the distribution of gene families and protein folds in completely sequenced genomes
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and in sequence databases. New appreciation of the power laws has resulted, in the past several
years, in new models for this process. It appears now that the distribution of protein folds by
the number of families, of families by the number of members in each complete genome, and
perhaps of genes by the number of transcripts at any given time in a cell is best represented by
a modified power law formula or, more precisely, by the so-called generalized Pareto function
fi = C(i + a)−γ, where a is another parameter that is not well -understood, and the values of a and
γ are different for different data sets (Kuznetsov, 2001). This function is asymptotically close
to power law when i is large.

Thus, power law-like behavior, or something close to it, is seen in distributions of sense-
carrying units and OTUs. This is not the same as stating that power laws are observed in all
biological networks—not all of them are necessarily produced by a “rich get richer” type of
process (on the other hand, there are other types of processes that may produce the power law
distribution of node degrees, although none of these processes have been shown to operate in
biological systems). Thus, we return to the set of problems listed at the beginning of this
chapter, particularly to the ways of deriving networks in the first place. Indeed, without a
proper way for building a network, we cannot hope to discover the laws that describe it.

Most of this book (and, I argue, most of comparative genomics) is built on the foundation
of detecting and evaluating sequence similarities between sense-carrying units. As discussed in
Chapter 2, “nothing in genomics makes sense except in light of sequence comparison.”
Indeed, sequence similarity is instrumental in establishing homology (see Chapter 3) and was
essential in trying whole-genome approaches on viruses (see Chapter 4). “The first fact of
comparative genomics” (see Chapter 5) is a direct result of applying sensitive methods of
sequence similarity searches to complete genomes of cellular organisms. “The second fact”
(see Chapter 6) is about the reverse situation, when the top-of-the-line methods of sequence
and structure comparison reject the common ancestry hypothesis for isofunctional proteins.
Whole-genome metabolic reconstruction (see Chapters 7 and 8) is about using homology and
posthomology methods for understanding functions of gene products. Phylogenetic ques-
tions in the era of complete genomes are based on comparison of molecular characters (see
Chapters 11 and 12). So how about “nontraditional bioinformatics” and systems biology—
can it also be built on some kind of similarity that would be of fundamental importance?
I believe that the answer to this question is “Yes!” (which is why I am asking it, of course).

The genomewide measurements associated with every gene in a completely sequenced
genome have been introduced before. Such sets of numbers connected with a gene are (or
should be) called gene vectors. In different experiments, the same gene or gene product can be
associated with a phyletic gene vector, an expression gene vector, a protein–protein interaction
gene vector, a phenotypic vector, a subcellular localization vector, and so on. I suggest that,
much like sequence similarity has become the main organizational principle of comparative
genomics, nothing in systems biology will make sense except in light of similarity between gene
vectors. Let us have a closer look at them.

A gene vector space, or vector database, is a set of vectors Xij = (xi1, xi2, ..., xiN), where 
I = 1, ..., M, and j = 1, ..., N. M and N indicate, respectively, the number of genes and the num-
ber of data points/experimental conditions produced by a genomewide experiment and associ-
ated with each gene. Measurements may be relative, as with data obtained in two-color printed
gene expression arrays, or absolute, as in gene expression measured on the Affymetrix high-
density array platform. Some types of measurements may be numerically encoded discrete states,
such as gene presence vs. absence, or change vs. no change of gene expression. Furthermore,
vectors can represent not only direct experimental measurements, but also models derived from
groups of related vectors. The following are but a few examples of gene vectors:

Phyletic vectors: These were first introduced in Chapter 5, when we discussed the COG
database. Each of the 14,000 COGs in the current release of the COG resource is associated
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with a phyletic vector, where the jth coordinate ( j = 1, ..., 110) is set at 1 if it is represented
in the jth genome and 0 if it is not. This is a simplification; some COGs contain in-
paralogs, so they could also be viewed as vectors in which some coordinates are neither
1 nor 0 but represent either actual or normalized counts of in-paralogs. If we compare
COGs in the 110-dimensional genome space, we can find groups of coinherited COGs,
which may correspond to biochemical pathways (see Chapter 8). But we can also compare
genomes in 14,000-dimensional vector space to see groups of genomes that share more
genes with one another and to discern phylogenetic signal in these vectors (see Chapters
11 and 12).

Protein interaction vectors: Screening of protein–protein interaction (PPI) at a large scale
can be done with the yeast two-hybrid system and other similar technologies that register
only pairwise PPI, as well as with various affinity purification schemes, which record the
protein content of a complex but does not directly discern individual interacting pairs.
The PPI-related vectors can be binary (e.g., protein is present/absent), or they may include
information about relative or absolute abundance of each protein in each sample.
The PPI vector space can be analyzed in several ways. For example, purification vectors
can be compared in the space of protein coordinates, protein vectors can be compared in
the purifications’space, or proteins can be compared in the protein space. In the first case,
the search result would be the set of similar purifications; in the second and third cases,
the results are the sets of proteins copurifying with each other. Along with physical
interaction between gene products, one can also study genetic interactions in model
organisms using any number of clever genomewide schemes (Tong et al., 2001; Giaever
et al., 2002; Schuldiner et al., 2005)

Gene expression vectors: These are familiar from numerous publications on array-based
expression profiling. In this case, the coordinates of a vector correspond to different
samples, treatments, or conditions under which the measurements were made. For
instance, they may represent tissue samples from different patients or observations made
at different time points.

Protein localization vectors. In this case, the coordinates of a vector represent all cellular
locations in which at least one protein has ever been observed. The complete set of possi-
ble locations is not known, and analysis of localization vectors indicates that the current
vocabulary used to describe these locations is drastically inadequate (Robert Murphy,
Carnegie Mellon University, personal communication).

In each of these cases, finding groups of gene vectors related by some sort of similarity are of
great interest. But all too often, the discussion of ways to find groups in the data starts and ends
with the discussion of the clustering algorithms. The terms of the art, such as “hierarchical clus-
tering,” “K-means,” “partitioning around medoids,” “self-organizing maps,” “support vector
machines,”and many others,are all around us.However, in my opinion, two things are often over-
looked in this discussion, one of which comes before and another after the clustering process.

In Chapter 2, we examined an analogous situation with sequence similarities. Much atten-
tion has been given by researchers and by textbook authors to algorithms for finding highly
scoring sequence pairs. But these algorithms, important as they are for efficient database
searches, are not capable of finding biologically important signals unless two other ingredients
are also present, namely a good measure of distance/similarity between sequences and a sta-
tistical theory that allows us to evaluate the significance of the similarities that we observe. The
same is true in comparing gene vectors. We should be concerned not only about fast ways to
partition vectors into groups but also (or perhaps mostly) about finding a good way to meas-
ure distance/similarity, without which we would not be able to sensibly define groups of related
vectors, and about evaluating the significance of clusters.
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In the rest of this chapter, I focus on binary vectors (i.e., such vectors that have only ones or
zeroes as coordinates). Most of my examples will deal with phyletic vectors, for which binary
form (presence or absence of a given gene/COG in a given genome) may be quite natural. One
problem with distances between phyletic vectors was discussed in Chapter 8: If x1 = (1011110),
y1 = (0111110), x2 = (1000000), y2 = (0000001), and we are interested in whether there is a spe-
cial relationship between genes x1 and y1, and between genes x2 and y2, we need a distance/
similarity measure that distinguishes pairs of genes such as x1 and y1, which are indeed found
together, from pairs such as x2 and y2, which are not. But some of the measures frequently
advocated in the literature for comparing phyletic and other vectors, such as Hamming or
Euclidean distances, actually give the same distance value for both pairs of vectors.

There are other properties of distance measures that are not desirable. For example, the
popular Jaccard similarity coefficient is written as 

,J M M M
M

11 01 10

11=
+ +

where M11 is the number of coordinates set to “one”in both vectors, and M01, M10 are, respec-
tively, the number of coordinates set to “one”in the first but not the second, and in the second
but not the first vector. The distances derived from it may give counterintuitive results when
binary vectors are concerned. Suppose that we want to compare two genomes using the num-
ber of shared orthologs, as is commonly done in phylogenetic analysis (see Chapters 12 and
13). If the two genomes have a similar number of genes, and approximately half of the genes in
each genome are also found in another genome, we would expect the similarity to be approxi-
mately one-half. However, the Jaccard coefficient gives one-third, and for this reason there has
been a suggestion to normalize it differently (Mirkin and Koonin, 2003). Yet another awkward
property of some distances is that they behave differently when the number of “ones” is large
and when it is small (Fig. 14.3).
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Figure 14.3. Measuring distances between genomewide binary vectors: differential sensitivity of different distance
measures to vector spaces dominated by zeroes. The genome content distances between two simulated
genomes are shown. One genome, N1, has a constant size of 1000 genes, and the size of the other
genome, N2, is shown on the horizontal axis. The number of genes N12 shared by N1 and N2 is 100 in
all cases. Three types of weighted-average distances (Glazko et al., 2005), namely Jaccard coefficient
(JC), Maryland Bridge distance (MB), and Dutilh weighted average (WA), tend to have low resolution
either on the whole interval or on large parts of it.



In fact, all these problems are related: They have to do with the behavior of the distance
measure when vectors are dominated by zeroes. Therefore, in many cases, distance/similarity
measures that are based on correlation coefficient or on mutual information, where zeroes do
not contribute to the result, work better than the others. In fact, it has been shown that for the
case of binary vectors, these two measures have an exact relation (for the proof and details, see
Li, 1990). Recently, there has been much empirical testing of different distance measures and
their ability to find groups of related genomewide vectors, and there appear to be two main
conclusions from these studies. First, even though we can measure pairwise distances between
every two vectors in a given space, in fact only relatively short distances are indicative of a
biological signal—the rest is a gray zone or pure noise. Second, high pairwise similarity
between vectors defines (usually small) clusters of vectors, representing genes/proteins that
have some sort of functional or evolutionary connection. For example, cluster of expression
vectors defines genes likely to be involved in the same transcriptional program, cluster of
phyletic vectors defines genes likely to belong to the same biochemical pathway, and so on.
However, the relationship between such clusters and other types of information about the
same genes is usually only approximate. In other words, clusters of “linked” genes obtained
using different types of genomewide data—the units of transcriptional coregulation, the
pathways from the biochemistry textbook, the patterns of gene coinheritance, the groups of
genes adjacent on the chromosome, and so forth—map only imperfectly onto each other.

This can be illustrated by a study mentioned in Chapter 8 (Glazko and Mushegian, 2004),
in which we clustered all COGs on the basis of correlation distance between their phyletic
vectors (see Fig. 8.4). There, we wanted to determine whether genes/COGs that belong to the
same pathway or functional system can be efficiently assigned to the same cluster of phyletic
patterns (i.e., a group of coinherited genes). But whatever we tried, we rarely recovered clus-
ters that would correspond to an entire biochemical pathway and nothing but that pathway.
Only a few pathways or complexes, such as the deoxy-D-xylulose phosphate pathway of ter-
penoid biosynthesis, lipid A biosynthesis, aerobic branch of cobalamine biosynthesis, and
the NADH–ubiquinone oxidoreductase complex, were recovered in their entirety by at least
one clustering method. The majority of clusters of phyletic vectors that were found mostly
belonged to one of two types. On one end of the spectrum, there were three very large clus-
ters with mostly phylogenetic, rather than functional, signal: One set of COGs was found in
all species, another only in bacteria, and the third only in archaea/eukarya. The former type
of pattern is a subset of the minimal gene set that takes no account of gene displacement (see
Chapter 13), and the latter two patterns indicate divergence of some pathways and inde-
pendent origin of other pathways in bacterial clade and in archaeal/eukaryal clade of life
(see Chapter 12). Each of these three classes includes COGs from many different functional
systems. For example, COGs found in all bacteria and nothing but bacteria include riboso-
mal proteins, factors of transcription and translation, several enzymes involved in DNA
replication (including catalytic subunit of replicative DNA polymerase III and NAD-
dependent DNA ligase), components of secretion apparatus, and several enzymes with
predicted molecular function but unknown biological role. Even though this large cluster is
formally well-defined, it represents a mix of many functions and systems, not one discrete
module.

Most of the cluster space,however, consisted of small clusters that included proteins from the
same pathway but, as a rule, excluded a significant portion of the same pathway. Indeed, 48 of
the 52 metabolic pathways that we examined in detail were distributed among two, three,or four
clusters. For example, the path of riboflavin biosynthesis was split between two clusters, one of
which also included the components of two pathways for biosynthesis of several different
amino acids. In this case, “pathway fragmentation”may represent an artifact of our clustering
method when applied to the evolutionary noisy (i.e., prone to gene gain and loss) data.
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In other cases, however, the split of a seemingly wholesome pathway into fragments may
represent a genuine functional signal. For example, the bacterial type IV secretion apparatus
came out as four distinct clusters, one of which was made of genes virB8, virB9, virB10, and
virB4, which is exactly the subset of the Agrobacterium tumefaciens VirB operon that has been
shown to constitute a functionally and structurally discrete module that acts on the side of the
recipient bacterium and is sufficient for DNA uptake by the recipient (Liu and Binns, 2003).
Here, “pathway fragmentation”may reveal the existence of closely associated groups of genes
and gene products that work together in different circumstances and remain tightly associated
in some way in the evolution. A similar idea has been described by Hartwell et al. (1999):

A functional module is, by definition, a discrete entity whose function is separable from those of other
modules. This separation depends on chemical isolation, which can originate from spatial localization
or from chemical specificity. A ribosome, the module that synthesizes proteins, concentrates the reac-
tions involved in making a polypeptide into a single particle, thus spatially isolating its function. A signal
transduction system, on the other hand, such as those that govern chemotaxis in bacteria or mating in
yeast, is an extended module that achieves its isolation through the specificity of the initial binding of
the chemical signal (for example, chemoattractant or pheromone) to receptor proteins, and of the
interactions between signaling proteins within the cell. Modules can be insulated from or connected to
each other. Insulation allows the cell to carry out many diverse reactions without cross-talk that would
harm the cell, whereas connectivity allows one function to influence another. The higher-level proper-
ties of cells, such as their ability to integrate information from multiple sources, will be described by
the pattern of connections among their functional modules.

This sounds eminently reasonable, perhaps to the point of being quite obvious: In fact, all
this could be a definition of any biological pathway. What is less obvious is that high-throughput
and comparative genomic approaches tend to find modules usually composed of a smaller
number of genes/proteins than the biochemical pathways taken off the wall map (or than the
protein complexes purified in a biochemistry lab). Thus, each new space of genome vectors
may split genes into modules in a novel way, not always known from the investigation of other
vector spaces.

This has been observed on many types of genomewide vectors, such as protein–protein
interaction vectors, where most macromolecular complexes, even those that have been studied
for a long time and thought to be well-defined, contain a “nucleus” and “periphery” (Gavin
et al., 2006; Fig. 14.4); gene expression vectors in eukaryotes, where usually only a subset of
genes in the same pathway or complex is tightly controlled at the transcription level
(de Lichtenberg et al., 2005); phyletic vectors, and so on (reviewed in Campillos et al., 2006).
Instability of most operons in bacterial evolution (see Chapter 8) may also be seen as manifes-
tation of the same phenomenon.

One way to view these developments is to admit that our knowledge of pathways and com-
plexes had been limited by the relatively small scale of investigation, where we could only study
a small number of components at a time and only a handful of model organisms. The era of
complete genomes and high-throughput approaches, however, increases dimensionality of the
data and introduces, in earnest, evolution into our study of biological function. In the same
article by Hartwell et al. (1999) we also read,

Modular structures may facilitate evolutionary change. Embedding particular functions in discrete
modules allows the core function of a module to be robust to change, but allows for changes in the prop-
erties and functions of a cell (its phenotype) by altering the connections between different modules.
If the function of a protein were to directly affect all properties of the cell, it would be hard to change
that protein, because an improvement in one function would probably be offset by impairments in others.
But if the function of a protein is restricted to one module, and the connections of that module to other
modules are through individual proteins, it will be much easier to modify, make and prune connections
to other modules.
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Of course, modularity is not only a prerequisite, but also the result of evolution—mostly of
differential gain, loss, functional takeover, and redistribution of molecular functions between
genes that are available in each species. An appropriately selected measure of distance between
the genomewide vectors is the clue to defining these modules or to “establishing” and “prun-
ing”connections.

Another level of understanding of biological modules may be afforded by looking at their
internal structure. Suppose that the edges in the network have been defined using a sensi-
tive distance measure and a sound way of selecting statistically significant edges and
removing the spurious ones. What can be said about the properties of the resulting graphs?

One of the best approaches to this type of analysis comes from the work of Uri Alon’s
group at Weizman Institute of Science. Alon and co-authors studied several types of net-
works, most famously the graphs of transcriptional regulation in several species. This is an
example of polarized network, in which edges are naturally directed from the nodes repre-
senting transcriptional regulators to nodes representing their target genes, some of which
may themselves be transcriptional regulators. Instead of examining the global properties
of transcriptional regulation network, Alon and co-workers focused on local configura-
tions of small sets of nodes in these networks, which they called “network motifs” (Shen-
Orr et al., 2002). In that work and many publications that followed, the idea was
generalized for different types of graphs consisting of different but usually small (from
three to five) number of nodes. For example, for three nodes and directed edges connecting
each of them to at least one other node, there are 13 possible network motifs (see Fig. 14.5).
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Figure 14.4. Protein–protein interaction matrix and modular network induced by it. Visualization of the yeast U2
snRNP complex is from the on-line resource, “Protein Complexes in Yeast” (available at http://yeast-
complexes.embl.de, accessed August 18, 2006). The matrix of protein–protein interactions is shown
on the left. Columns, proteins used as bait; rows, protein–protein interaction vector for each bait.
Results of heuristic clustering of these vectors with two different distance thresholds are shown on the
right. The smaller network (top) corresponds to the core module of the U2 snRNP complex, corre-
sponding to a subset of proteins with stronger degree of clustering (indicated by dark gray shading on
the left). The larger network also includes attachment modules, corresponding to more loosely 
connected proteins (indicated by light gray shading on the left). Data are from Gavin et al. (2006).



These motifs are not equally likely to be found in the well-studied transcriptional circuits of
bacteria and yeasts: One type of motif, the so-called feed-forward loop, is strongly over-
represented, and several types of motifs are underrepresented.

Transcription maps of fruit fly development and of sea urchin early embryo show over- and
underrepresentation of additional motifs, although the feed-forward loop is also highly repre-
sented there. Interestingly, several social networks with naturally defined edge direction, such
as links between Web pages or the order of words in texts from several languages, show com-
pletely different distribution of the same motifs. Another directed biological network studied
by Alon’s group is the “wiring diagram”of neurons in nematode. There, direction is also given
naturally by axons that make synaptic contacts with other cells. Interestingly, the “triad 
significance profile”of this network is very similar to the transcriptional network of multicellular
eukaryotes.

The statistics used by Alon and co-workers to compute the significance of network motifs
may have to be improved (Artzy-Randrup et al., 2004), but this does not change the fact that
biological and social networks have their own specific profiles of frequencies of each three-node
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motif. The feed-forward loop most commonly overrepresented in biological networks,
appears to be optimally suited, and probably selected, for a particular biological function.
Indeed, both mathematical modeling and experimentation in vivo indicate that this motif is
optimal for ensuring gene expression in response to a continuing stimulus or inducer, as
opposed to a stochastic fluctuation of the inducing agent.

The picture is further elaborated, even for the simplest, three-node motifs, by different
polarity of transcriptional regulation and by different gate logic at the signal-receiving end.
This offers a large variety of gene regulatory behaviors, many of which are adaptive (for the
most recent and most detailed treatise, see Alon, 2006). Thus, biologically significant signals
can emerge from analysis of patterns of local connectivity in transcription and signal trans-
duction networks, as well as in the networks of physical connections between cells. Notably,
edges in network motifs are directed; without directionality, the diversity of motifs would be
low, and most of the interesting biology would be untractable.

What about other types of biological networks—can we add complexity to their local struc-
ture by giving direction to at least some edges? Is there any way to direct an edge between two
phyletic vectors or between two gene expression vectors when none of them directly regulates
the other? It is obvious that we can add some external information, such as the transcription
regulation or the order of reactions in a biochemical pathway. But can we direct the edges using
information derived from the same vector space? This question has not been examined in
earnest thus far, and yet it seems to be quite central for the systems biology framework. I finish
this chapter (and this book) with a brief preview of the possibilities.

One idea is to use ranks. A vector may be the nearest neighbor of another vector, the second
nearest, or the ith nearest. Likewise, a probabilistic similarity search in vector space, analogous
to PSI-BLAST search of sequence similarity (Zhou et al., 2002; Glazko et al., 2006) may find
related vectors in one or more steps, also giving a rank order to matching vectors. We may
define edges by directing them from a given query gene to all genes whose gene vectors are
within certain similarity rank from the query. Analogously to the graphs of sequence similar-
ity (see Fig. 2.6), such relationships are neither commutative nor transitive, providing
complex, asymmetrical properties of the gene network.

The other approach, recently proposed for gene expression vectors, relies on teasing out a
specific type of stochastic dependency between vectors. For example, we can ask which pairs
of genes satisfy the condition Y = XZ, where X and Y are random variables representing
expression of genes x and y, and Z is another random variable, stochastically independent of
X (Klebanov et al., 2005). When this condition is satisfied, one can draw an arrow from X to Y.
This does not automatically give us an arrow in the opposite direction because in the expres-
sion X = Y/Z, the variables Y and 1/Z are not necessarily stochastically independent.

When all is said and done, will there be “feed-forward loops,” “bi-fans,” and other clusters
with interesting structure in different types of gene networks? The answer, undoubtedly, is yes,
but we do not know which “facts of systems biology”will follow from analysis of these motifs.
What we do know, however, is that comparative genomics continues to expand, from pairwise
sequence matching to finding patterns in gene networks across many, and more to come,
genomes.
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