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Foreword
WhenIwas learningepidemiologynearly 50yearsago, therewasbarelyonesuitable
textbook and a handful of specialized monographs to guide me. Information and
ideas in journals were pretty sparse too. That all began to change about 25 years ago
and soon we had a plethora of books to consider when deciding on something to
recommend to students at every level from beginners to advanced postgraduates.
This one is different from all the others. There has never been a single source of
detailed descriptive accounts and informed discussions of all the essential aspects
of practical epidemiology, written by experts and intended as a desk reference
for mature epidemiologists who are in practice, probably already specializing in
aparticular field, but inneedof current informationand ideas about every aspect of
the state of the art and science. Without a work like this, it is difficult to stay abreast
of the times. A comprehensive current overview like this where each chapter is
written by acknowledged experts chosen from a rich international pool of talent
and expertise makes the task considerably easier.

It had been a rare privilege to receive and read the chapters as they have been
written and sent to me through cyberspace. Each added to my enthusiasm for the
project. I know and have a high regard for the authors of many of the chapters, and
reading the chapters by those I did not know has given me a high regard for them
too. The book has a logical framework and structure, proceeding from sections on
concepts and methods and statistical methods to applications and fields of current
research. I have learned a great deal from all of it, and furthermore I have enjoyed
reading these accounts. I am confident that many others will do so too.

John M. Last

Emeritus professor of epidemiology

University of Ottawa, Canada



Preface
The objective of this book is to provide a comprehensive overview of the field of
epidemiology, bridging the gap between standard textbooks of epidemiology and
publications for specialists with a narrow focus on specific areas. It reviews the
key issues, methodological approaches and statistical concepts pertinent to the
field for which the reader seeks a detailed overview. It thus serves both as a first
orientation for the interested reader and a starting point for an in-depth study of
a specific area, as well as a quick reference and a summarizing overview for the
expert.

The handbook is intended as a reference source for professionals involved in
health research, health reporting, health promotion, and health system adminis-
tration and related experts. It covers the major aspects of epidemiology and may be
consulted as a thorough guide for specific topics. It is therefore of interest for public
health researchers, physicians, biostatisticians, epidemiologists, and executives in
health services.

The broad scope of the book is reflected by four major parts that facilitate
an integration of epidemiological concepts and methods, statistical tools, applica-
tions, and epidemiological practice. The various facets are presented in 39 chapters
and a general introduction to epidemiology. The latter provides the framework in
which all other chapters are embedded and gives an overall picture of the whole
handbook. It also highlights specific aspects and reveals the interwoven nature
of the various research fields and disciplines related to epidemiology. The book
covers topics that are usually missing from standard textbooks and that are only
marginally represented in the specific literature, such as ethical aspects, practical
fieldwork, health services research, epidemiology in developing countries, quality
control, and good epidemiological practice. It also covers innovative areas, e.g.,
molecular and genetic epidemiology, modern study designs, and recent method-
ological developments.

Each chapter of the handbook serves as an introduction that allows one to enter
a new field by addressing basic concepts, but without being too elementary. It also
conveys more advanced knowledge and may thus be used as a reference source
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for the reader who is familiar with the given topic by reflecting the state of the
art and future prospects. Of course, some basic understanding of the concepts
of probability, sampling distribution, estimation, and hypothesis testing will help
the reader to profit from the statistical concepts primarily presented in Part II
and from the comprehensive discussion of empirical methods in the other parts.
Each chapter is intended to stand on its own, giving an overview of the topic and
the most important problems and approaches, which are supported by examples,
practical applications, and illustrations. The basic concepts and knowledge, stan-
dard procedures and methods are presented, as well as recent advances and new
perspectives. The handbook provides references both to introductory texts and to
publications for the advanced reader.

The editors dedicate this handbook to Professor Eberhard Greiser, one of the
pioneers of epidemiology in Germany. He is the founder of the Bremen Institute for
Prevention Research and Social Medicine (BIPS), which is devoted to research into
the causes and the prevention of disease. This institute, which started as a small
enterprise dedicated to cardiovascular prevention, has grown to become one of
the most highly regarded research institutes for epidemiology and public health
in Germany. For almost 25 years Eberhard Greiser has been a leader in the field of
epidemiology, committing his professional career to a critical appraisal of health
practices for the benefit of us all. His major interests have been in pharmaceutical
care and social medicine. In recognition of his contributions as a researcher and
as a policy advisor to the advancement of the evolving field of epidemiology and
public health in Germany we take his 65th birthday in November 2003 as an
opportunity to acknowledge his efforts by editing this handbook.

The editors are indebted to knowledgeable experts for their valuable contribu-
tions and their enthusiastic support in producing this handbook. We thank all the
colleagues who critically reviewed the chapters: Klaus Giersiepen, Cornelia Heit-
mann, Katrin Janhsen, Jürgen Kübler, Hermann Pohlabeln, Walter Schill, Jürgen
Timm, and especially Klaus Krickeberg for his never-ending efforts. We also thank
Heidi Asendorf, Thomas Behrens, Claudia Brünings-Kuppe, Andrea Eberle, Ronja
Foraita, Andrea Gottlieb, Frauke Günther, Carola Lehmann, Anette Lübke, Ines
Pelz, Jenny Peplies, Ursel Prote, Achim Reineke, Anke Suderburg, Nina Wawro, and
Astrid Zierer for their technical support. Without the continuous and outstanding
engagement of Regine Albrecht – her patience with us and the contributors and
her remarkable autonomy – this volume would not have been possible. She has
devoted many hours to our handbook over and above her other responsibilities
as administrative assistant of the BIPS. Last but not least we are deeply grateful to
Clemens Heine of Springer for his initiative, support, and advice in realizing this
project and for his confidence in us.

Bremen
June 2004 Wolfgang Ahrens

Iris Pigeot
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Epidemiology and Related Areas 1

Various disciplines contribute to the investigation of determinants of human health
and disease, to the improvement of health care, and to the prevention of illness.
These contributing disciplines stem from three major scientific areas, first from
basic biomedical sciences such as biology, physiology, biochemistry, molecular
genetics, and pathology, second from clinical sciences such as oncology, gynecol-
ogy, orthopedics, obstetrics, cardiology, internal medicine, urology, radiology, and
pharmacology, and third from public health sciences with epidemiology as their
core.

Definition and Purpose of Epidemiology 1.1

One of the most frequently used definitions of epidemiology was given by MacMa-
hon and Pugh (1970):

Epidemiology is the study of the distribution and determinants of disease fre-
quency in man.

The three components of this definition, i.e. frequency, distribution, and deter-
minants embrace the basic principles and approaches in epidemiological research.
The measurement of disease frequency relates to the quantification of disease oc-
currence in human populations. Such data are needed for further investigations
of patterns of disease in subgroups of the population. This involves “… describing
the distribution of health status in terms of age, sex, race, geography, etc., …”
(MacMahon and Pugh 1970). The methods used to describe the distribution of dis-
eases may be considered as a prerequisite to identify the determinants of human
health and disease.

This definition is based on two fundamental assumptions: First, the occur-
rence of diseases in populations is not a purely random process, and second, it
is determined by causal and preventive factors (Hennekens and Buring 1987). As
mentioned above, these factors have to be searched for systematically in pop-
ulations defined by place, time, or otherwise. Different ecological models have
been used to describe the interrelationship of these factors, which relate to host,
agent, and environment. Changing any of these three forces, which constitute
the so-called epidemiological triangle (Fig. 1.1), will influence the balance among
them and thereby increase or decrease the disease frequency (Mausner and Bahn
1974).

Thus, the search for etiological factors in the development of ill health is one
of the main concerns of epidemiology. Complementary to the epidemiological
triangle the triad of time, place, and person is often used by epidemiologists to
describe the distribution of diseases and their determinants. Determinants that
influence health may consist of behavioral, cultural, social, psychological, biolog-
ical, or physical factors. The determinants by time may relate to increase|decrease
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Figure 1.1. The epidemiological triangle

over the years, seasonal variations, or sudden changes of disease occurrence. De-
terminants by place can be characterized by country, climate zone, residence, and
more general, by geographic region. Personal determinants include age, sex, eth-
nic group, genetic traits, and individual behavior. Studying the interplay between
time, place, and person helps to identify the etiologic agent and the environmen-
tal factors as well as to describe the natural history of the disease, which then
enables the epidemiologist to define targets for intervention with the purpose of
disease prevention (Detels 2002). This widened perspective is reflected in a more
comprehensive definition of epidemiology as given by Last (2001):

The study of the distribution and determinants of health-related states or events
in specified populations, and the application of this study to control of health
problems.

In this broader sense, health-related states or events include “diseases, causes
of death, behaviors such as use of tobacco, reactions to preventive regimens, and
provision and use of health services” (Last 2001). According to this definition, the
final aim of epidemiology is to promote, protect, and restore health. Hence, the
major goals of epidemiology may be defined from two overlapping perspectives.
The first is a biomedical perspective looking primarily at the etiology of diseases
and the disease process itself. This includes

the description of the disease spectrum, the syndromes of the disease and the
disease entities to learn about the various outcomes that may be caused by
particular pathogens,
the description of the natural history, i.e. the course of the disease to improve
the diagnostic accuracy which is a major issue in clinical epidemiology,
the investigation of physiological or genetic variables in relation to influencing
factors and disease outcomes to decide whether they are potential risk factors,
disease markers or indicators of early stages of disease,
the identification of factors that are responsible for the increase or decrease of
disease risks in order to obtain the knowledge necessary for primary preven-
tion,
the prediction of disease trends to facilitate the adaptation of the health services
to future needs and to identify research priorities,
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the clarification of disease transmission to control the spread of contagious
diseases e.g. by targeted vaccination programs.

Achievement of these aims is the prerequisite for the second perspective, which
defines the scope of epidemiology from a public health point of view. Especially in
this respect, the statement as given in Box 1 was issued by the IEA (International
Epidemiological Association) Conference already in 1975.

Box 1. Statement by IEA Conference in 1975 (White and Henderson 1976)

“The discipline of epidemiology, together with the applied fields of eco-
nomics, management sciences, and the social sciences, provide the essential
quantitative and analytical methods, principles of logical inquiry, and rules
for evidence for:

…;
diagnosing, measuring, and projecting the health needs of community
and populations;
determining health goals, objectives and priorities;
allocating and managing health care resources;
assessing intervention strategies and evaluating the impact of health ser-
vices.”

This list may be complemented by the provision of tools for investigating conse-
quences of disease as unemployment, social deprivation, disablement, and death.

Epidemiology in Relation to Other Disciplines 1.2

Biomedical, clinical and other related disciplines sometimes claim that epidemi-
ology belongs to their particular research area. It is therefore not surprising that
biometricians think of epidemiology as a part of biometry and physicians define
epidemiology as a medical science. Biometricians have in mind that epidemiology
uses statistical methods to investigate the distribution of health-related entities in
populations as opposed to handling single cases. This perspective on distributions
of events, conditions, etc. is statistics by its very nature. On the other hand, physi-
cians view epidemiology primarily from a substantive angle on diseases and their
treatment. In doing so, each of them may disregard central elements that constitute
epidemiology.

Moreover, as described at the beginning, epidemiology overlaps with various
other domains that provide their methods and knowledge to answer epidemi-
ological questions. For example, measurement scales and instruments to assess
subjective well-being developed by psychologists can be applied by epidemiol-
ogists to investigate the psychological effects of medical treatments in addition
to classical clinical outcome parameters. Social sciences provide indicators and
methods of field work that are useful in describing social inequality in health,
in investigating social determinants of health, and in designing population-based
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prevention strategies. Other examples are methods and approaches from demog-
raphy that are used to provide health reports, from population genetics to identify
hereditary factors, and from molecular biology to search for precursors of diseases
and factors of susceptibility.

Of course, epidemiology does not only borrow methods from other sciences
but has also its own methodological core. This pertains in particular to the de-
velopment and adaptation of study designs. It is also true for statistical methods.
In most cases they can directly be applied to epidemiological data, but sometimes
peculiarities in the data structure may call for the derivation of special methods
to cope with these requirements. This is in particular currently the case in genetic
epidemiology when e.g. modeling gene-environment interactions is needed.

The borderline between epidemiology and related disciplines is often blurred.
Let us take clinical medicine as an example. In clinical practice, a physician decides
case-by-case to diagnose and treat individual patients. To achieve the optimal
treatment for a given subject, he or she will classify this patient and then make
use of knowledge on the group to which the person belongs. This knowledge
may come from randomized clinical trials but also from (clinical) epidemiological
studies. A randomized clinical trial is a special type of a randomized controlled
trial (RCT). In a broad sense, a RCT is an epidemiological experiment in which
subjects in a population are randomly allocated into groups, i.e. a study group
where intervention takes place and a control group without intervention. This
indicates an overlap between clinical and epidemiological studies, where the latter
focus on populations while clinical trials address highly selected groups of patients.
Thus, it may be controversial whether randomized clinical trials for drug approval
(i.e. phase III trials) are to be considered part of epidemiology, but it is clear that
a follow-up concerned with safety aspects of drug utilization (so-called phase IV
studies) needs pharmacoepidemiological approaches.

When discussing the delimitation of epidemiology the complex area of public
health plays an essential role. According to Last’s definition (Last 2001) public
health has to do with the health needs of the population as a whole, in particular
the prevention and treatment of disease. More explicitly, “Public health is one
of the efforts organized by society to protect, promote, and restore the people’s
health. It is the combination of sciences, skills, and beliefs that is directed to the
maintenance and improvement of the health of all the people through collective or
social actions. (…) Public health … goals remain the same: to reduce the amount
of disease, premature death, and disease-produced discomfort and disability in the
population. Public health is thus a social institution, a discipline, and a practice.”
(Last 2001). The practice of public health is based on scientific knowledge of
factors influencing health and disease, where epidemiology is, according to Detels
and Breslow (2002), “the core science of public health and preventive medicine”
that is complemented by biostatistics and “knowledge and strategies derived from
biological, physical, social, and demographic sciences”.

In conclusion, epidemiology cannot be reduced to a sub-division of one of the
contributing sciences but it should be considered as a multidisciplinary science
giving input to the applied field of public health.
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Overview 1.3

The present handbook intends to reflect all facets of epidemiology, ranging from
basic principles (Part I) through statistical methods typically applied in epidemi-
ological studies (Part II) to the majority of important applications (Part III) and to
special fields of research (Part IV). Within these four parts, its structure is to a large
extent determined by various natural subdivisions of the domain of epidemiol-
ogy. These correspond mostly to the elements of the definition of epidemiology
as given by Last and quoted above, namely study, distribution, determinants (fac-
tors, exposures, explanatory variables), health-related states or events (outcomes),
populations, applications.

For instance, the concepts of a study and of determinants lead to the distinction
of observational epidemiology on the one hand and experimental epidemiology
on the other. In the first area, we study situations as they present themselves with-
out intervening. In particular, we are interested in existing determinants within
given populations. A typical example would be the investigation of the influence
of a risk factor like air pollution on a health-related event like asthma. In experi-
mental epidemiology, however, determinants are introduced and controlled by the
investigator in populations which he or she defines by himself or herself, often by
random allocation; in fact, experimental epidemiology is often simply identified
with RCTs. Clinical trials to study the efficacy of the determinant “treatment” are
a special type within this category. They are to be distinguished from trials of
preventive interventions, another part of experimental epidemiology.

The idea of the purpose of a study gives rise to another, less clearly defined,
subdivision, i.e. explanatory vs. descriptive epidemiology. The objective of an ex-
planatory study is to contribute to the search of causes for health-related events, in
particular by isolating the effects of specific factors. This causal element is lacking
or at least not prominent in purely descriptive studies. In practice this distinction
often amounts to different, and contrasting, sources of data: In descriptive epi-
demiology they are routinely registered for various reasons whereas in explanatory
or analytic epidemiology they are collected for specific purposes. The expression
“descriptive epidemiology” used to have a more restrictive, “classical” meaning
that is also rendered by the term “health statistics” where as a rule the determinants
are time, place of residence, age, gender, and socio-economic status.

“Exposure-oriented” and “outcome-oriented” epidemiology represent the two
sides of the same coin. Insofar this distinction is more systematic rather than
substantive. If the research question emphasizes disease determinants, e.g. envi-
ronmental or genetic factors, the corresponding studies usually are classified as
exposure-oriented. If, in contrast, a disease or another health-related event like
lung cancer or osteoarthritis is the focus, we speak of “outcome-oriented” studies,
in which risk factors for the specific disease are searched for. Finally, some subfields
of epidemiology are defined by a particular type of application such as prevention,
screening, and clinical epidemiology.

Let us now have a short look at the chapters of the handbook. Part I contains gen-
eral concepts and methodological approaches in epidemiology: After introducing
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the philosophical background and the conceptual building blocks of epidemiology
such as models for causation and statistical ideas (Chap. I.1), Chap. I.2 deepens the
latter aspect by giving an overview of various risk measures usually asked for in
epidemiological studies. These measures depend heavily on the study type chosen
for obtaining the data required to answer the research question. Various designs
can be thought of to collect the necessary information. These are described in
Chaps. I.3 to I.8. Descriptive studies and disease registries provide the basic in-
formation for health reporting. Experimental studies like cohort and case-control
studies, modern study designs, and intervention trials serve to examine associa-
tions and hypothesized causal relationships. Chapter I.9 discusses in detail the two
concepts of interaction and confounding, which are, on the one hand, very tech-
nical, but on the other hand fundamental for the analysis of any epidemiological
study that involves several determinants. They allow us to describe the synergy of
several factors and to isolate the effect of any of them. Chapters I.10 to I.13 con-
cern practical problems to be handled when conducting an epidemiological study:
field data collection in Chap. I.10, difficulties specific to exposure assessment in
Chap. I.11, some key aspects of the planning of studies in general in Chap. I.12, and
quality control and related aspects in Chap. I.13.

Due to the large variety of epidemiological issues, methodological approaches,
and types of data, the arsenal of statistical concepts and methods to be found in
epidemiology is also very broad. Chapter II.1 treats the question of how many units
(people, communities) to recruit into a study in order to obtain a desired statistical
precision. Chapter II.2 focuses on the analysis of studies where exposures and|or
outcomes are described by continuous variables. Since the relationships between
exposures and outcomes, which are the essence of epidemiology, are mostly rep-
resented by regression models it is not surprising that Chap. II.3 that is devoted to
them is one of the longest of the whole handbook. Chapter II.4 discusses in detail
the models used when the outcome variables are in the form of a waiting time until
a specific event, e.g. death, occurs. Given that in practice data are often erroneous
or missing, methods to handle the ensuing problems are presented in Chaps. II.5
and II.6. Meta-analysis is the art of drawing joint conclusions from the results of
several studies together in order to put these conclusions on firmer ground, in
particular, technically speaking, to increase their statistical power. It is the subject
of Chap. II.7. The last chapter on statistical methodology, Chap. II.8, concerns the
analysis of spatial data where the values of the principal explanatory variable are
geographic locations. The topic of this chapter is closely related to the fields of
application in Part III.

Although each epidemiological study contains its own peculiarities and specific
problems related to its design and conduct, depending on the field of application,
common features may be identified. Many important, partly classical, partly recent
applications of epidemiology of general interest to public health are defined by
specific exposures, and hence Part III starts with the presentation of the main
exposure-oriented fields: social (III.1), occupational (III.2), environmental (III.3),
nutritional (III.4), and reproductive epidemiology (III.5), but also more recent
applications such as molecular (III.6) and genetic (III.7). Clinical epidemiology
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(III.8) and pharmacoepidemiology (III.9) are large areas where knowledge about
the interplay between many types of exposures, e.g. therapies, and many types
of outcomes, usually diseases, is being exploited. A similar remark applies to
the classical domains of screening in view of early detection of chronic diseases
(Chap. III.10) and community-based health promotion, which mostly aims at
prevention (Chap. III.11). These fields extend to public health research and build
the bridge to the final part of this handbook.

Intensive research is going on in all of the foregoing areas, hence the selection
of the topics for Part IV might appear a bit arbitrary, but in our opinion these
seem to be currently the subject of particular efforts and widespread interest.
The first four are outcome-oriented and deal with diseases of high public health
relevance: infectious diseases (Chap. IV.1), cardiovascular diseases (Chap. IV.2),
cancer (Chap. IV.3), and muscoloskeletal disorders (Chap. IV.4). The public health
perspective is not restricted to these outcome-oriented research areas. The results
of epidemiological studies may have a strong impact on political decisions and the
health system, an area that is described for developed countries in Chap. IV.5. The
particular problems related to health systems in developing countries and the re-
sulting special demands for epidemiological research are addressed in Chap. IV.6.
The handbook closes with the very important issue of human rights and re-
sponsibilities that have to be carefully considered at the different stages of an
epidemiological study. These are discussed in Chap. IV.7 on ethical aspects.

Development of Epidemiology 2

Historical Background 2.1

The word “epidemic”, i.e. something that falls upon people (’επί upon; δ�ηµoς
people), which was in use in ancient Greece, already reflected one of the basic ideas
of modern epidemiology, namely to look at diseases on the level of populations,
or herds as they also have been called, especially in the epidemiology of infectious
diseases. The link with the search for causes of illness was present in early writings
of the Egyptians, Jews, Greeks, and Romans (Bulloch 1938). Both Hippocrates (ca.
460–ca. 375 BC) and Galen (129 or 230–200 or 201) advanced etiological theories.
Thefirst stressedatmospheric conditionsand“miasmata”but considerednutrition
and lifestyle as well (Hippocrates 400 BC). The second distinguished three causes
of an “epidemic constitution” in a population: an atmospheric one, susceptibility,
and lifestyle. The basic book by Coxe (1846) contains a classification of Galen’s
writings by subject including the subject “etiology”. For a survey on the various
editions of Galen’s work and a biography see the essay by Siegel (1968).

Regarding more specific observations, the influence of dust in quarries on
chronic lung diseases was mentioned in a Roman text of the first century. Paracelsus
in 1534 published the first treatise on occupational diseases, entitled “Von der
Bergsucht” (On miners’ diseases); see his biography in English by Pagel (1982).
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Ramazzini (1713) conjectured that the relatively high incidence of breast cancer
among nuns was due to celibacy. Sixty-two years later, Percival Pott (1775) was
among the first ones to phrase a comparative observation in quantitative terms.
He reported that scrotal cancer was very frequent among London chimney sweeps,
and that their death rate due to this disease was more than 200 times higher than
that of other workers.

The most celebrated early observational epidemiological study is that of John
Snow on cholera in London in 1853. He was able to record the mortality by this
disease in various places of residence under different conditions of water supply.
And by comparison he concluded that deficient quality of water was indeed the
cause of cholera (Snow 1855).

Parallel to this emergence of observational epidemiology, three more currents of
epidemiological thinking have been growing during the centuries and interacted
among them and with the former, namely the debate on contagion and living
causal agents, descriptive epidemiology in the classical sense of health statistics,
and clinical trials.

A contagion can be suspected from recording cases and their location in time,
space, families, and the like. The possibility of its involvement in epidemics has
therefore no doubt been considered since time immemorial; it was alluded to in the
early writings mentioned at the beginning. Nevertheless, Hippocrates and Galen
did not admit it. It played an important role in the thinking about variolation, and
later on vaccination as introduced by Jenner in 1796 (Jenner 1798). The essay by
Daniel Bernoulli on the impact of variolation (Bernoulli 1766) was the beginning
of the theory of mathematical modeling of the spread of diseases.

By contrast to a contagion itself, the existence of living pathogens cannot be
deduced from purely epidemiological observations, but the discussion around it
has often been intermingled with that about contagion, and has contributed much
to epidemiological thinking. Fracastoro (1521) wrote about a contagium animatum.
In the sequel the idea came up again and again in various forms, e.g. in the writings
of Snow. It culminated in the identification of specific parasites, fungi, bacteria,
and viruses as agents in the period from, roughly, 1840 when Henle, after Arabian
predecessors dating back to the ninth century, definitely showed that mites cause
scabies, until 1984 when the HIV was identified.

As far as we know, the term “epidemiology” first appeared in Madrid in 1802.
From the late 19th century to about the middle of the 20th, it was restricted to
epidemical infectious diseases until it took its present meaning (see Sect. 2.2 and
Greenwood 1932).

Descriptive epidemiology had various precursors, mainly in the form of church
and military records on one hand (Marshall and Tulloch 1838), life tables on the
other (Graunt 1662; Halley 1693). In the late 18th century, local medical statistics
started to appear in many European cities and regions. They took a more sys-
tematic turn with the work of William Farr (1975). This lasted from 1837 when
he was appointed to the General Register Office in London until his retirement
in 1879. In particular, he developed classifications of diseases that led to the first
International List of Causes of Death, to be adopted in 1893 by the International
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Statistical Institute. Farr took also part in the activities of the London Epidemi-
ological Society, founded in 1850 with him and Snow as founding members, and
apparently the oldest learned society featuring the word “epidemiological” in its
name.

Geographic epidemiology, i.e. the presentation of health statistics in the form
of maps, also started in the 19th century (Rupke 2000).

If we mean by a clinical trial a planned, comparative, and quantitative experi-
ment on humans in order to learn something about the efficacy of a curative or
preventive treatment in a clinical setting, James Lind is considered having done
the first one. In 1747 he tried out six different supplements to the basic diet of
12 sailors suffering from scurvy, and found that citrus fruits, and only these, cured
the patients (Lind 1753). Later he also compared quinine to treat malaria with less
well-defined control therapies (Lind 1771).

The first more or less rigorous trial of a preventive measure was performed
by Jenner with 23 vaccinated people, but he still used what is now being called
“historical controls,” i.e. he compared these vaccinated people with unvaccinated
ones of the past who had not been specially selected beforehand for the purpose
of the trial (Jenner 1798).

In the 19th century some physicians began to think about the general principles
of clinical trials and already emphasized probabilistic and statistical methods
(Louis 1835; Bernard 1865). Some trials were done, for example on the efficacy
of bloodletting to treat pneumonia, but rigorous methods in the modern sense
were established only after World War II (see Sect. 2.2), beginning in 1948 with
the pioneer trial on the treatment of pulmonary tuberculosis by streptomycin as
described in Hill (1962).

Let us conclude this all too short historical sketch with a few remarks on the
history of applications of epidemiology.

Clinical trials have always been tied, by their very nature, to immediate ap-
plications as in the above mentioned examples; hence we will not dwell on this
anymore.

Observational epidemiology, including classical descriptive epidemiology, has
led to hygienic measures. In fact, coming back to a concept of Galen (1951), one
might define hygiene in a modern and general sense as applied observational
epidemiology, its task being to diminish or to eliminate causal factors of any kind.
For example, the results of Snow’s study on cholera found rapid applications in
London but not in places like Hamburg where 8600 people died in the cholera
epidemic of 1892.

Hygiene was a matter of much debate and activity during the entire 19th century,
although, before the identification of living pathogens, most measures taken were
necessarily not directed against a known specific agent, with the exception of meat
inspection for trichinae. This was made compulsory in Prussia in 1875 as proposed
by Rudolf Virchow, one of the pioneers of modern hygiene and also an active
politician (Ackerknecht 1953).

Hygienic activities generally had their epidemiological roots in the descriptive
health statistics mentioned above. These statistics usually involved only factors like
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time, place of residence, sex, and age, but Virchow, for example, analyzed during
the years 1854–1871 the mortality statistics for the city of Berlin and tried to link
those factors with social factors like poverty, crowded dwellings, and dangerous
professions, thus becoming a forerunner of social epidemiology.

As a result of such reflections as well as of political pressure, large sewage systems
were built in Europe and North America, the refuse disposal was reorganized and
the water supply improved. Other hygienic measures concerned the structure and
functioning of hospitals, from reducing the number of patients per room and
dispersing wards in the form of pavilions to antiseptic rules. The latter had mainly
been inspired by more or less precise epidemiological observations on infections
after the treatment of wounds and amputations (Tenon 1788; Simpson 1868–1869,
1869–1870; Ackerknecht 1967), and on puerperal fever (Gordon 1795; Holmes 1842–
1843; Semmelweis 1861).

Milestones in Epidemiological Research2.2

The initiation of numerous epidemiological studies after the Second World War
accelerated the research in this field and led to a systematic development of study
designs and methods. In the following some exemplary studies are introduced
that served as role models for the design and analysis of many subsequent inves-
tigations. It is not our intention to provide an exhaustive list of all major studies
since that time, if at all feasible, but to exhibit some cornerstones marking the
most important steps in the evolution of this science. Each of them had its own
peculiarities with a high impact both on methods and epidemiological reasoning
as well as on health policies.

The usefulness of descriptive study designs has been convincingly demon-
strated by migrant studies comparing the incidence or mortality of a disease
within a certain population between the country of origin and the new host
country. Such observations offer an exceptional opportunity to distinguish be-
tween potential contributions of genetics and environment to the development
of disease and thus make it possible to distinguish between the effects of na-
ture and nurture. The most prominent examples are provided by investigations
on Japanese migrants to Hawaii and California. For instance, the mortality from
stomach cancer is much higher in Japan than among US inhabitants whereas
for colon cancer the relationship is reversed. Japanese migrants living in Cali-
fornia have a mortality pattern that lies between those two populations. It was
thus concluded that dietary and other lifestyle factors have a stronger impact
than hereditary factors, which is further supported by the fact that the sons of
Japanese immigrants in California have an even lower risk for stomach cancer
and a still higher risk for cancer of the colon than their fathers (Buell and Dunn
1965).

One of the milestones in the development of epidemiology was the case-control
design, which facilitates the investigation of risk factors for chronic diseases with
long induction periods. The most famous study of this type, although not the
first, is the study on smoking and lung cancer by Doll and Hill (1950). As early
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as 1943, the German pathologist Schairer published together with Schöniger from
the Scientific Institute for Research into the Hazards of Tobacco, Jena, a case-
control study comparing 109 men and women deceased from lung cancer with
270 healthy male controls as well as with 318 men and women who died from
other cancers with regard to their smoking habits (Schairer and Schöniger 1943).
Judged by modern epidemiological standards this study had several weaknesses,
still, it showed a clear association of tobacco use and lung cancer. The case-control
study by Doll and Hill was much more sophisticated in methodological terms. Over
the whole period of investigation from 1948 to 1952 they recruited 1357 male and
108 female patients with lung cancer from several hospitals in London and matched
them with respect to age and sex to the same number of patients hospitalized for
non-malignant conditions. For each patient, detailed data on smoking history
was collected. Without going into detail here, these data came up with a strong
indication for a positive association between smoking and lung cancer. Despite the
methodological concerns regarding case-control studies, Doll and Hill themselves
believed that smoking was responsible for the development of lung cancer. The
study became a landmark that inspired future generations of epidemiologists to
use thismethodology (cf. Chap. I.6 of this handbook). It remains to this day amodel
for the design and conduct of case-control studies, with excellent suggestions on
how to reduce or eliminate selection, interview, and recall bias (cf. Chaps. I.9, I.10,
I.12, I.13).

Because of the strong evidence they started a cohort study of 20,000 male British
physicians in 1951, known as the British Doctors’ Study. These were followed to
further investigate the association between smoking and lung cancer. The authors
compared mortality from lung cancer among those who never smoked with that
among all smokers and with those who smoked various numbers of cigarettes per
day (Doll and Hill 1954, 1964; Doll and Peto 1978).

Another, probably even more important cohort study was the Framingham
Heart Study that was based on the population of Framingham, a small com-
munity in Massachusetts. The study was initiated in 1949 to yield insights into
causes of cardiovascular diseases (CVD) (see Chap. IV.2 of this handbook). For
this purpose, 5127 participants free from coronary heart disease (CHD), 30 to
59 years of age, were examined and then followed for nearly 50 years to de-
termine the rate of occurrence of new cases among persons free of disease at
first observation (Dawber et al. 1951; Dawber 1980). The intensive biennial ex-
amination schedule, long-term continuity of follow-up and investigator involve-
ment, and incorporation of new design components over its decades-long his-
tory have made this a uniquely rich source of data on individual risks of CVD
events. The study served as a reference and good example for many subsequent
cohort studies in this field adopting its methodology. In particular, analysis of
these data led to the development of the perhaps most important modeling tech-
nique in epidemiology, the multiple logistic regression (Truett et al. 1967; see
Chap. II.3).

Two other leading examples of cohort studies conducted within a single popu-
lation or for comparison of multiple populations to assess risk factors for cardio-
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vascular events are the Whitehall Study of British civil servants (Rose and Shipley
1986; see also Chap. III.1) and the Seven Countries Study of factors accounting
for differences in CHD rates between populations of Europe, Japan, and North
America (Keys 1980; Kromhout et al. 1995; see Chap. IV.2).

In contrast to the above cohort studies that focused on cardiovascular diseases
the U.S. Nurses’ Health Study is an impressive example of a multipurpose cohort
study. It recruited over 120,000 married female nurses, 30 to 55 years of age, in
a mail survey in 1976. In this survey, information on demographic, reproductive,
medical and lifestyle factors was obtained. Nurses were contacted every two years
to assess outcomes that occurred during that interval and to update and to supple-
ment the exposure information collected at baseline. Various exposure factors like
use of oral contraceptives, post-menopausal hormone therapy, and fat consump-
tion were related to different outcomes such as cancer and cardiovascular disease
(Lipnick et al. 1986; Willett et al. 1987; Stampfer et al. 1985). The most recent results
have had an essential impact on the risk-benefit assessment of post-menopausal
hormone therapy speaking against its use over extended periods (Chen et al.
2002).

Final proof of a causal relationship is provided by experimental studies, namely
intervention trials. The most famous and largest intervention trial was the so-
called Salk vaccine field trial in 1954 where nearly one million school children
were randomly assigned to one of two groups, a vaccination group that received
the active vaccine and a comparison group receiving placebo. A 50 percent reduc-
tion of the incidence of paralytic poliomyelitis was observed in the vaccination
group as compared to the placebo group. This gave the basis for the large-scale
worldwide implementation of poliomyelitis vaccination programs for disease pre-
vention.

In recent years, the accelerated developments in molecular biology were taken
up by epidemiologists to measure markers of exposure, early biological effects, and
host characteristics that influence response (susceptibility) in human cells, blood,
tissue andothermaterial. These techniques augment the standard tools of epidemi-
ology in the investigation of low-level risks, risks imposed by complex exposures,
and themodificationof risksbygenetic factors.Theuseof suchbiomarkersof expo-
sure and effect has led to a boom of the so-called molecular epidemiology (Schulte
and Perera 1998; Toniolo et al. 1997; Chap. III.6 of this handbook), a methodolog-
ical approach with early origins. These developments were accompanied by the
sequencing of the human genome and the advances in high-throughput genetic
technologies that led to the rapid progress of genetic epidemiology (Khoury et al.
1993; Chap. III.7 of this handbook). The better understanding of genetic factors
and their interaction with each other and with environmental factors in disease
causation is a major challenge for future research.

Methodological Limits2.3

The successes of epidemiology in identifying major risk factors of chronic dis-
eases have been contrasted with many more subtle risks that epidemiologists have
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seemingly discovered. Such risks are difficult to determine and false alarms may
result from chance findings. Thus it is not surprising that in recent years many
studies showed conflicting evidence, i.e. some studies seem to reveal a signif-
icant association while others do not. The uncritical publication of such con-
tradictory results in the lay press leads to opposing advice and thus to an in-
creasing anxiety in the public. This has given rise to a critical debate about
the methodological weaknesses of epidemiology that culminated in the arti-
cle “Epidemiology faces its limits” by Taubes (1995) and the discussions that it
prompted.

In investigating low relative risks, say, below 2 or even below 1.5, the method-
ological shortcomings inherent in observational designs become more serious.
Such studies are more prone to yield false positive or false negative findings due
to the distorting effects of misclassification, bias, and confounding (see Chaps. I.9
and II.5 of this handbook). For instance, the potential effect of environmental
tobacco smoke (ETS) on lung cancer was denied because misclassification of only
a few active smokers as non-smokers would result in relative risks that might ex-
plain all or most of the observed association between ETS and the risk of lung
cancer in non-smokers (Lee and Forey 1996). Validation studies showed that this
explanation was unlikely (Riboli et al. 1990; Wells et al. 1998). Thus, the numerous
positive findings and the obvious biological plausibility of the exposure-disease
relationship support the conclusion of a harmful effect of ETS (Boffetta et al.
1998; Chan-Yeung and Dimich-Ward 2003; IARC Monograph on ETS 2004). This
example also illustrates that the investigation of low relative risks is not an aca-
demic exercise but may be of high public health relevance if a large segment of the
population is exposed.

It is oftenbelieved that large-scale studies areneeded to identify small risks since
such studies result in narrower confidence intervals. However, a narrow confidence
interval does not necessarily mean that the overwhelming effects of misclassifi-
cation, bias and confounding are adequately controlled by simply increasing the
size of a study. Even sophisticated statistical analyses will never overcome serious
deficiencies of the data base. The fundamental quality of the data collected or
provided for epidemiological purposes is therefore the cornerstone of any study
and needs to be prioritized throughout its planning and conduct (see Chap. I.13).
In addition, refinement of methods and measures involving all steps from design
over exposure and outcome assessment to the final data analysis, incorporating
e.g. molecular markers, may help to push the edge of what can be achieved with
epidemiology a little bit further.

Nevertheless a persistent problem is “The pressures to publish inconclusive
results and the eagerness of the press to publicize them …” (Taubes 1995). This
pressure to publish positive findings that are questionable imposes a particular
demand on researchers not only to report and interpret study results carefully
in peer reviewed journals but also to communicate potential risks also to the lay
press in a comprehensible manner that accounts for potential limitations. Both
authors and editors have to take care that the pressure to publish does not lead to
a publication bias favoring positive findings and dismissing negative results.
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Concepts and Methodological
Approaches in Epidemiology3

Extending the basic ideas of epidemiology presented above together with its defi-
nition, its scope and approaches will now be described further.

Concepts3.1

Epidemiology may be considered as minor to physical sciences because it does
not investigate the biological mechanism leading from exposure to disease as, e.g.,
toxicology does. However, the ability of identifying modifiable conditions that
contribute to health outcome without also identifying the biological mechanism
or the agent(s) that lead to this outcome is a strength of epidemiology: It is not
always necessary to wait until this mechanism is completely understood in or-
der to facilitate preventive action. This is illustrated by the historical examples
of the improvements of environmental hygiene that led to a reduction of infec-
tious diseases like cholera, that was possible before the identification of vibrio
cholerae.

What distinguishes epidemiology is its perspective on groups or populations
rather than individuals. It is this demographic focus where statistical methods
enter the field and provide the tools needed to compare different characteristics
relating to disease occurrence between populations. Epidemiology is a compara-
tive discipline that contrasts diseases and characteristics relative to different time
periods, different places or different groups of persons. The comparison of groups
is a central feature of epidemiology, be it the comparison of morbidity or mortality
in populations with and without a certain exposure or the comparison of expo-
sure between diseased subjects and a control group. Inclusion of an appropriate
reference group (non-exposed or non-diseased) for comparison with the group of
interest is a condition for causal inference.

In experimental studies efficient means are available to minimize the potential
for bias. Due to the observational nature of the vast majority of epidemiological
studies bias and confounding are the major problems that may restrict the in-
terpretation of the findings if not adequately taken into account (see Chaps. I.9
and I.12 of this handbook). Although possible associations are analyzed and re-
ported on a group level it is important to note that only data that provide the
necessary information on an individual level allow the adequate consideration of
confounding factors (see Chap. I.3).

Most epidemiological studies deal with mixed populations. On the one hand,
the corresponding heterogeneity of covariables may threaten the internal validity
of a study, because the inability to randomize in observational studies may impair
the comparability between study subjects and referents due to confounding. On
the other hand the observation of “natural experiments” in a complex mixture of
individuals enables epidemiologists to make statements about the real world and
thus contributes to the external validity of the results. This population perspective
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focuses epidemiology on the judgment of effectiveness rather than efficacy, e.g. in
the evaluation of interventions.

Due to practical limitations, in a given study it may not be feasible to obtain
a representative sample of the whole population of interest. It may even be desired
to investigate only defined subgroups of a population. Whatever the reason, a re-
striction on subgroups may not necessarily impair the meaning of the obtained
results; it may still increase the internal validity of a study. Thus, it is a misconcep-
tion that the cases always need to be representative of all persons with the disease
and that the reference group always should be representative of the general non-
diseased population. What is important is a precise definition of the population
base, i.e., in a case-control study, cases and controls need to originate from the
same source population and the same inclusion|exclusion criteria need to be ap-
plied to both groups. This means that any interpretation that extends beyond the
source population has to be aware of a restricted generalizability of the findings.

Rarely a single positive study will provide sufficient evidence to justify an inter-
vention. Limitations inherent in most observational studies require the consider-
ation of alternative explanations of the findings and confirmation by independent
evidence from other studies in different populations before preventive action is
recommended with sufficient certainty. The interpretation of negative studies de-
serves the same scrutiny as the interpretation of positive studies. Negative results
should not hastily be interpreted to prove an absence of the association under in-
vestigation (Doll and Wald 1994). Besides chance, false negative results may easily
be due to a weak design and conduct of a given study.

Study Designs 3.2

Epidemiological reasoning consists of three major steps. First, a statistical associa-
tion between an explanatory characteristic (exposure) and the outcome of interest
(disease) is established. Then, from the pattern of the association a hypotheti-
cal (biological) inference about the disease mechanism is formulated that can be
refuted or confirmed by subsequent studies. Finally, when a plausible conjecture
about the causal factor(s) leading to the outcome has been acknowledged, alter-
ation or reduction of the putative cause and observation of the resulting disease
frequency provide the verification or refutation of the presumed association.

In practice these three major steps are interwoven in an iterative process of hy-
pothesis generation by descriptive and exploratory studies, statistical confirmation
of the presumed association by analytical studies and, if feasible, implementation
and evaluation of intervention activities, i.e. experimental studies. An overview
of the different types of study and some common alternative names are given in
Table 1.1.

A first observation of a presumed relationship between exposure and disease
is often done at the group level by correlating one group characteristic with an
outcome, i.e. in an attempt to relate differences in morbidity or mortality of pop-
ulation groups to differences in their local environment, living habits or other
factors. Such correlational studies that are usually based on existing data (see
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Table 1.1. Types of epidemiological studies

Type of study Alternative name Unit of study

Observational

Ecological Correlational Populations
Cross-sectional Prevalence; survey Individuals
Case-control Case-referent Individuals
Cohort Follow-up Individuals

Experimental Intervention studies
Community trials Community intervention studies Communities
Field trials Healthy individuals
Randomized controlled trials RCT Individuals
Clinical trials Therapeutic studiesa Individual patients

a Clinical trials are included here since conceptually they are linked to epidemiology, although
they are often not considered as epidemiological studies. Clinical trials have developed into
a vast field of its own because of methodological reasons and their commercial importance.

Chap. I.4) are prone to the so-called “ecological fallacy” since the compared pop-
ulations may also differ in many other uncontrolled factors that are related to
the disease. Nevertheless, ecological studies can provide clues to etiological hy-
potheses and may serve as a gateway towards more detailed investigations. In such
studies the investigator determines whether the relationship in question is also
present among individuals, either by asking whether persons with the disease have
the characteristic more frequently than those without the disease, or by asking
whether persons with the characteristic develop the disease more frequently than
those not having it. The investigation of an association at the individual level is
considered to be less vulnerable to be mixed up with the effect of a third common
factor. For a detailed discussion of this issue we refer to Sect. 4.2.5 of Chap. I.3 of
this handbook.

Studies that are primarily designed to describe the distribution of existing
variables that can be used for the generation of broad hypotheses are often clas-
sified as descriptive studies (cf. Chap. I.3 of this handbook). Analytical studies
examine an association, i.e. the relationship between a risk factor and a disease
in detail and conduct a statistical test of the corresponding hypothesis. Typi-
cally the two main types of epidemiological studies, i.e. case-control and cohort,
belong to this category (see Chaps. I.5 and I.6 of this handbook). However, a clear-
cut distinction between analytical and descriptive study designs is not possible.
A case-control study may be designed to explore associations of multiple expo-
sures with a disease. Such “fishing expeditions” may better be characterized as
descriptive rather than analytical studies. A cross-sectional study is descriptive
when it surveys a community to determine the health status of its members. It is
analytic when the association of an acute health event with a recent exposure is
analyzed.
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Cross-sectional studies provide descriptive data on prevalence of diseases useful
for health care planning. Prevalence data on risk factors from descriptive studies
also help in planning an analytical study, e.g. for sample size calculations. The
design is particularly useful for investigating acute effects but has significant
drawbacks in comparison to longitudinal designs because the temporal sequence
between exposure and disease usually cannot be assessed with certainty, except
for invariant characteristics like blood type. In addition, it cannot assess incident
cases of a chronic disease (see Chap. I.3). Both case-control and cohort studies are
in some sense longitudinal because they incorporate the temporal dimension by
relating exposure information to time periods that are prior to disease occurrence.
These two study types – in particular when data are collected prospectively – are
therefore usually more informative with respect to causal hypotheses than cross-
sectional studies because they are less prone to the danger of “reverse causality”
that may emerge when information on exposure and outcome relates to the same
point in time. The best means to avoid this danger are prospective designs where
the exposure data are collected prior to disease. Typically these are cohort studies,
either concurrent or historical, as opposed to retrospective studies, i.e. case-control
studies where information on previous exposure is collected from diseased or non-
diseased subjects. For further details of the strengths and weaknesses of the main
observational designs see Chap. I.12 of this handbook.

The different types of studies are arranged in Table 1.2 in ascending order ac-
cording to their ability to corroborate the causality of a supposed association. The
criteria summarized by Hill (1965) have gained wide acceptance among epidemiol-
ogists as a checklist to assess the strength of the evidence for a causal relationship.
However, an uncritical accumulation of items from such a list cannot replace the
critical appraisal of the quality, strengths and weaknesses of each study. The weight
of evidence for a causal association depends in the first place – at least in part – on
the type of study, with intervention studies on the top of the list (Table 1.2) (see
Chap. I.8). The assessment of causality has then to be based on a critical judgment
of evidence by conjecture and refutation (see Chap. I.1 for a discussion of this
issue).

Table 1.2. Reasoning in different types of epidemiological study

Study type Reasoning

Ecological Descriptive; association on group level may be used for
development of broad hypotheses

Cross-sectional Descriptive; individual association may be used for development
and specification of hypotheses

Case-control Increased prevalence of risk factor among diseased may indicate
a causal relationship

Cohort Increased risk of disease among exposed indicates a causal
relationship

Intervention Modification (reduction) of the incidence rate of the disease
confirms a causal relationship
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Data Collection3.3

Data are the foundation of any empirical study. To avoid any sort of systematic bias
in the planning and conduct of an epidemiological study is a fundamental issue,
be it information or selection bias. Errors that have been introduced during data
collection can in most cases not be corrected later on. Exceptions from this rule
are for example measurement instruments yielding distorted measurements where
the systematic error becomes apparent so that the individual measurement values
can be adjusted accordingly. In other instances statistical methods are offered
to cope with measurement error (see Chap. II.5). However, such later efforts are
second choice and an optimal quality of the original data must be the primary
goal. Selection bias may be even worse as it cannot be controlled for and may affect
both the internal and the external validity of a study. Standardized procedures to
ensure the quality of the original data to be collected for a given study are therefore
crucial (see Chap. I.13).

Original data will usually be collected by questionnaires, the main measurement
instrument in epidemiology. Epidemiologists haveneglected for a long time thepo-
tential in improving the methods for interviewing subjects in a highly standardized
way and thus improving the validity and reliability of this central measurement
tool. Only in the last decade it has been recognized that major improvements
in this area are not only necessary but also possible, e.g. by adopting method-
ological developments from the social sciences (Olsen et al. 1998). Chapter I.10
of this handbook is devoted to the basic principles and approaches in this field.
Prior to the increased awareness related to data collection methods, the area of
exposure assessment has developed into a flourishing research field that provided
advanced tools and guidance for researchers (Armstrong et al. 1992; Kromhout
1994; Ahrens 1999; Nieuwenhuijsen 2003; Chap. I.11 of this handbook). Recent ad-
vances in molecular epidemiology have introduced new possibilities for exposure
measurement that are now being used in addition to the classical questionnaires.
However, since the suitability of biological markers for the retrospective assess-
ment of exposure is limited due to the short half-life of most agents that can be
examined in biological specimens, the use of interviews will retain its importance
but will change its face. Computer-aided data collection with built-in plausibility-
checks– that ismore andmorebeing conducted in the formof telephone interviews
or even using the internet – will partially replace the traditional paper and pencil
approach.

Often it may not be feasible to collect primary data for the study purpose
due to limited resources or because of the specific research question. In such
cases, the epidemiologist can sometimes exploit existing data bases such as reg-
istries (see Chap. I.4). Here, he or she usually has to face the problem that such
“secondary data” may have been collected for administrative or other purposes.
Looking at the data from a research perspective often reveals inconsistencies
that had not been noticed before. Since such data are collected on a routine ba-
sis without the claim for subsequent systematic analyses they may be of limited
quality. The degree of standardization that can be achieved in collection, doc-
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umentation, and storage is particularly low if personnel of varying skills and
levels of training is involved. Moreover, changes in procedures over time may
introduce additional systematic variation. Measures for assessing the usefulness
and quality of the data and for careful data cleaning are then of special impor-
tance.

The scrutiny, time and effort that need to be devoted to any data, be it routine
data or newly collected data, before it can be used for data analysis are rarely
addressed in standard textbooks of epidemiology and often neglected in study
plans. This is also true for the coding of variables like diseases, pharmaceuti-
cals or job titles. They deserve special care with regard to training and quality
assurance. Regardless of all efforts to ensure an optimal quality during data col-
lection, a substantial input is needed to guarantee standardized and well doc-
umented coding, processing, and storing of data. Residual errors that remain
after all preceding steps need to be scrutinized and, if possible, corrected (see
Chap. I.13). Sufficient time has to be allocated for this workpackage that pre-
cedes the statistical analysis and publication of the study results. Finally, all
data and study materials have to be stored and documented in a fashion that
allows future use and|or sharing of the data or auditing of the study. Materi-
als to be archived should not only include the electronic files of raw data and
files for the analyses, but also the study protocol, computer programs, the doc-
umentation of data processing and data correction, measurement protocols, and
the final report. Both, during the conduct of the study as well as after its com-
pletion, materials and data have to be stored in a physically safe place with
limited access to ensure safety and confidentiality even if the data have been
anonymized.

Statistical Methods in Epidemiology 4

The statistical analysis of an empirical study relates to all its phases. It starts at
the planning phase where ideally all details of the subsequent analysis should
be fixed (see Chap. I.12 of this handbook). This concerns defining the variables
to be collected and their scale, the methods how they should be summarized
e.g. via means, rates or odds, the appropriate statistical models to be used to
capture the relationship between exposures and outcomes, the formulation of
the research questions as statistical hypotheses, the calculation of the necessary
sample size based on a given power or vice versa the power of the study based
on a fixed sample size, and appropriate techniques to check for robustness and
sensitivity. It is crucial to have in mind that the study should be planned and
carried out in such a way that its statistical analysis is able to answer the re-
search questions we are interested in. If the analysis is not already adequately
accounted for in the planning phase or if only a secondary analysis of already
existing data can be done, the results will probably be of limited validity and
interpretability.
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Principles of Data Analysis4.1

Having collected the data, the first step of a statistical analysis is devoted to the
cleaning of the data set. Questions to be answered are: “Are the data free of mea-
surement or coding errors?” “Are there differences between centers?” “Are the
data biased, already edited or modified in any way?” “Have data points been re-
moved from the data set?” “Are there outliers or internal inconsistencies in the
data set?” A sound and thorough descriptive analysis enables the investigator to
inspect the data. Cross-checks based e.g. on the range of plausible values of the
variables and cross-tabulations of two or more variables have to be carried out
to find internal inconsistencies and implausible data. Graphical representations
such as scatter plots, box plots, and stem-and-leaf diagrams help to detect outliers
and irregularities. Calculating various summary statistics such as mean compared
to median, standard deviation compared to median absolute deviation from the
median is also reasonable to reveal deficiencies in the data. Special care has to be
taken to deal with measurement errors and missing values. In both cases, statisti-
cal techniques are available to cope with such data (see Chaps. II.5 and II.6 of this
handbook).

After having cleaned the data set, descriptive measures such as correlation
coefficients or graphical representationswill help the epidemiologist tounderstand
the structure of the data. Such summary statistics need, however, to be interpreted
carefully. They are descriptive by their very nature and are not to be used to
formulate statistical hypotheses that are subsequently investigated by a statistical
significance test based on the same data set.

In the next step parameters of interest such as relative risks or incidences should
be estimated. The calculated point estimates should always be supplemented by
their empirical measures of dispersion like standard deviations and by confidence
intervals to get an idea about their stability or variation, respectively. In any case,
confidence intervals are more informative than the corresponding significance
tests. Whereas the latter just lead to a binary decision, a confidence interval also al-
lows the assessment of the uncertainty of an observed measure and of its relevance
for epidemiological practice. Nevertheless, if p-values are used for exploratory
purposes, they can be considered as an objective measure to “decide” on the
meaning of an observed association without declaring it as “statistically signifi-
cant” or “non-significant”. In conclusion, Rothman and Greenland (1998, p. 6) put
it as follows: “The notion of statistical significance has come to pervade epidemi-
ological thinking, as well as that of other disciplines. Unfortunately, statistical
hypothesis testing is a mode of analysis that offers less insight into epidemio-
logical data than alternative methods that emphasize estimation of interpretable
measures.”

Despite the justified condemnation of the uncritical use of statistical hypothesis
tests, they are widely used in the close to final step of an analysis to confirm or
reject postulated research hypotheses (cf. the next section). More sophisticated
techniques such as multivariate regression models are applied in order to de-
scribe the functional relationship between exposures and outcome (see Chaps. II.2
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and II.3). Such techniques are an important tool to analyze complex data but as it
is the case with statistical tests their application might lead to erroneous results
if carried out without accounting for the epidemiological context appropriately.
This, of course, holds for any statistical method. Its blind use may be misleading
with possibly serious consequences in practice. Therefore, each statistical analysis
should be accompanied by sensitivity analyses and checks for model robustness.
Graphical tools such as residual plots, for instance, to test for the appropriateness
of a certain statistical model should also routinely be used.

The final step concerns the adequate reporting of the results and their careful
interpretation. The latter has to be done with the necessary background informa-
tion and substantive knowledge about the investigated epidemiological research
field.

Statistical Thinking 4.2

According to the definitions quoted in Sect. 1.1, epidemiology deals with the distri-
bution and determinants of health-related phenomena in populations as opposed
to looking at individual persons or cases. Studying distributions and their deter-
minants in populations in a quantitative way is the very essence of statistics. In
this sense, epidemiology means statistical thinking in the context of health includ-
ing the emphasis on causal analysis as described in Chap. I.1 and the manifold
applications to be found all-over in this handbook. However, this conception of
epidemiology has started to permeate the field relatively late, and, at the beginning,
often unconsciously.

The traditional separation of statistics into its descriptive and its inferential
component has existed in epidemiology until the two merged conceptually though
not organizationally. The descriptive activities, initiated by people like Farr (see
Sect. 2.1) continue in the form of health statistics, health yearbooks and similar
publications by major hospitals, some research organizations, and various health
administrations like national Ministries of Health and the World Health Organi-
zation, often illustrated by graphics. The visual representation of the geographic
distribution of diseases has recently taken an upsurge with the advent of geograph-
ical information systems (Chap. II.8).

Forerunners of the use of inferential statistics in various parts of epidemiology
are also mentioned in Sect. 2.1. Thus, in the area of clinical trials, the efficacy
of citrus fruit to cure scurvy was established by purely statistical reasoning. In
the realm of causal factors for diseases the discovery of water contamination as
a factor for cholera still relied on quite rudimentary statistical arguments whereas
the influence of the presence of a doctor at child birth on maternal mortality was
confirmedbyaquantitativeargumentcomingclose toamodern testof significance.
The basic idea of statistics that one needs to compare frequencies in populations
with different levels of the factors (or “determinants”) to be studied was already
present in all of these early investigations. The same is true for statistics in the
domain of diagnosis where statistical thinking expresses itself by concepts like
sensitivityor specificityofamedical test although it seems that thiswasonly recently
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conceived of as a branch of epidemiology on par with the others, indispensable in
particular for developing areas like computer-aided diagnosis or tele-diagnosis.

The big “breakthrough” of statistical thinking in epidemiology came after the
elaboration of the theory of hypothesis testing by Neyman and Pearson. No self-
respecting physician wrote any more a paper on health in a population without
testing some hypotheses on the significance level 5% or without giving a p-value.
Most of these hypotheses were about the efficacy of a curative treatment or, to
a lesser degree, the etiology of an ailment, but the efficacy of preventive treatments
and diagnostic problems were also concerned.

However, theunderlyingstatistical thinkingwasoftendeficient.Non-acceptance
of the alternative hypothesis was frequently regarded as acceptance of the null hy-
pothesis. The meaning of an arbitrarily chosen significance level or of a p-value
was not understood, and in particular several simultaneous trials or trials on sev-
eral hypotheses at a time were not handled correctly by confusing the significance
level of each part of the study with the overall significance level. Other statistical
procedures that usually provide more useful insights like confidence bounds were
neglected. Above all, causal interpretations were often not clear or outright wrong
and hence erroneous practical conclusions were drawn. A statistical result in the
form of a hypothesis accepted either by a test or by a correlation coefficient far
from 0 was regarded as final evidence and not as one element that should lead to
further investigations, usually of a biological nature.

Current statistical thinking expresses itself mainly in the study of the effect
of several factors on a health phenomenon, be it a causal effect in etiologic re-
search (Chap. I.1), a curative or preventive effect in clinical or intervention tri-
als (Chaps. I.8, III.8, III.9, and IV.1), or the effect of a judgment, e.g. a medical
test or a selection of people in diagnosis and screening (Chaps. III.8 and III.10).
Such effects are represented in quantitative, statistical terms, and relations be-
tween the action of several factors as described by the concepts of interaction
and confounding play a prominent role (Chap. I.9). The use of modern statisti-
cal ideas and tools has thus allowed a conceptual and practical unification of the
many parts of epidemiology. The same statistical models and methods of analysis
(Chaps. II.1 to II.8) are being used in all of them. Let us conclude with a final
example of this global view. The concept of the etiological fraction (Chap. I.2)
may represent very different things in different contexts: In causal analysis it is the
fraction of all cases of a disease due to a particular factor whereas in the theory
of prevention it means the fraction of all cases prevented by a particular mea-
sure, the most prominent application being the efficacy of a vaccination in a given
population.

Multivariate Analysis4.3

An epidemiological study typically involves a huge number of variables to be col-
lected from the study participants, which implies a high-dimensional data set that
has to be appropriately analyzed to extract the essential information. This curse
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of dimensionality becomes especially serious in genetic or molecular epidemio-
logical studies due to genetic and familial information obtained from the study
subjects. In such situations, statistical methods are called for to reduce the di-
mensionality of the data and to reveal the “true” underlying association structure.
Various multivariate techniques are at hand depending on the structure of the data
and the research aim. They can roughly be divided into two main groups. The
first group contains methods to structure the data set without distinguishing re-
sponse and explanatory variables, whereas the second group provides techniques
to model and test for postulated dependencies. Although these multivariate tech-
niques seem to be quite appealing at first glance they are not a statistical panacea.
Their major drawback is that they cannot be easily followed by the investigator
which typically leads to a less deep understanding of the data. This “black box”
phenomenon also implies that the communication of the results is not as straight-
forward as it is when just showing some well-known risk measures supplemented
by frequency tables. In addition, the various techniques will usually not lead to
a unique solution where each of those obtained from the statistical analysis might
be compatible with the observed data. Thus, a final decision on the underlying
data structure should not be made without critically reflecting the results based
on the epidemiological context, on additional substantive knowledge, and on sim-
pler statistical analyses such as stratified analyses perhaps restricted to some
key variables that hopefully support the results obtained from the multivariate
analysis.

Multivariate analyses with the aim to structure the data set comprise factor anal-
ysis and cluster and discriminant analysis. Factor analysis tries to collapse a large
number of observed variables into a smaller number of possibly unobservable, i.e.
latent variables, so-called factors, e.g. in the development of scoring systems. These
factors represent correlated subgroups of the original set. They serve in addition
to estimate the fundamental dimensions underlying the observed data set. Cluster
analysis simply aims at detecting highly interrelated subgroups of the data set,
e.g. in the routine surveillance of a disease. Having detected certain subgroups of,
say, patients, their common characteristics might be helpful e.g. to identify risk
factors, prevention strategies or therapeutic concepts. This is distinct to discrim-
inant analysis, which pertains to a known number of groups and aims to assign
a subject to one of these groups (populations) based on certain characteristics of
this subject while minimizing the probability of misclassification. As an example,
a patient with a diagnosis of myocardial infarction has to be assigned to one of
two groups, one consisting of survivors of such an event and the other consisting
of non-survivors. The physician may then measure his|her systolic and diastolic
blood pressure, heart rate, stroke index, and mean arterial pressure. With these
data the physician will be able to predict whether or not the patient will survive.
A more detailed discussion of these techniques would be beyond the scope of this
handbook. We refer instead to classical text books in this field such as Dillon and
Goldstein (1984), Everitt and Dunn (2001), and Giri (2004).

However, in line with the idea of epidemiology, epidemiologists are mostly
not so much interested in detecting a structure in the data set but in explaining
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the occurrence of some health outcome depending on potentially explanatory
variables. Here, it is rarely sufficient to investigate the influence of a single variable
on the disease as most diseases are the result of the complex interplay of many
different exposure variables including socio-demographic ones. Although it is
very helpful to look first at simple stratified 2×2 tables to account for confounders
such techniques become impractical for an increasing number of variables to be
accounted forandarestrictednumberof subjects. Insuchsituations, techniquesare
needed that allow the examination of the effect of several variables simultaneously
for adjustment, but also for prediction purposes.

This is realized by regression models that offer a wide variety of methods to
capture the functional relationship between response and explanatory variables
(see Chap. II.3 of this handbook). Models with more than one explanatory variable
are usually referred to as multiple regression models, multivariable or multivariate
models where the latter might also involve more than one outcome. Using such
techniques one needs to keep in mind that a statistical model rests on assump-
tions like normality, variance homogeneity, independence, and linearity that have
all to be checked carefully in a given data situation. The validity of the model
depends on these assumptions which might not be fulfilled by the data. Various
models are therefore available from which an adequate one has to be selected. This
choice is partly based on the research question and the a priori epidemiological
knowledge on the relevant variables and their measurement. Depending on the
scale, continuous or discrete, linear or logistic regressions might then be used
for modeling purposes. Even more complex techniques such as generalized linear
models can be applied where the functional relationship is no longer assumed
to be linear (see Chaps. II.2 and II.3). Once the type of regression model is de-
termined one has to decide which and how many variables should be included
in the model where in case that variables are strongly correlated with each other
only one of them should be included. Many software packages offer automatic
selection strategies such as forward or backward selection, which usually lead
to different models that are all consistent with the data at hand. An additional
problem may occur due to the fact that the type of regression model will have an
impact on the variables to be selected and vice versa. The resulting model may
also have failed to recognize effect modification or may have been heavily affected
by peculiarities of this particular data set that are of no general relevance. Thus,
each model obtained as part of the statistical analysis should be independently
validated.

Further extensions of simple regression models are e.g. time-series models
that allow for time-dependent variation and correlation, Cox-type models to be
applied in survival analysis (see Chap. II.4) and so-called graphical chain models
which try to capture even more complex association structures. One of their
features is that they allow in addition for indirect influences by incorporating
so-called intermediate variables that simultaneously serve as explanatory and
response variables. The interested reader is referred to Lauritzen and Wermuth
(1989), Wermuth and Lauritzen (1990), Whittaker (1990), Lauritzen (1996), and
Cox and Wermuth (1996).
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Handling of Data Problems 4.4

Data are the basic elements of epidemiological investigation and information.
In the form of values of predictor variables they represent levels of factors (risk
factors and covariates), which are the determinants of health-related states or
events in the sense of the definition of epidemiology quoted in Sect. 1.1. As val-
ues of response (outcome) variables they describe the health-related phenomena
themselves. Measuring these values precisely is obviously fundamental in any
epidemiological study and for the conclusions to be drawn from it. The prac-
tical problems that arise when trying to do this are outlined in Chaps. I.10
to I.13. However, even when taking great care and applying a rigorous quality
control, some data as registered may still be erroneous and others may be miss-
ing. The question of how to handle these problems is the subject of Chaps. II.5
and II.6.

Intuitively, it is clear that in both cases the approach to be taken depends on
the particular situation, more precisely, on the type of additional information that
may be available. We use this information either to correct or to supplement certain
data individually or to correct the final results of the study.

Sometimes a naïve approach looks sensible. Here are two examples of the two
types of correction. First, if we know that the data at hand represent the size
of a tumor in consecutive months, we may be tempted to replace a missing or
obviously out-of-range value by an interpolated one. Second, when monitoring
maternal mortality in a developing country by studies done routinely on the
basis of death registers, we may multiply the figures obtained by a factor that
reflects the fact that many deaths in childbed are not recorded in these registers.
This factor was estimated beforehand by special studies where all such deaths
were searched for, e.g. by visits to the homes of diseased women and retrospec-
tive interviews. For example, in Guatemala the correcting factor 1.58 is being
used.

Even with such elementary procedures, though, the problem of estimating the
influence of their use on the statistical quality of the study, be it the power of a test
or the width of a confidence interval, is not only at the core of the matter but also
difficult. It should therefore not be surprising that the Chaps. II.5 and II.6 are more
mathematical.

The basic idea underlying the rigorous handling of measurement errors looks
like this. We represent the true predictor variables whose values we cannot ob-
serve exactly because of errors, via so-called surrogate predictor variables that
can be measured error free and that are being used for “correcting the errors”
or as surrogates for the true predictors. The way a surrogate and a predictor are
assumed to be related and the corresponding distributional assumptions form
the so-called measurement error model. Several types of such models have been
suggested and explored, the goal always being to get an idea about the mag-
nitude of the effect on the statistical quality of the study if we correct the fi-
nal results as directed by the model. Based on these theoretical results, when
planning a study, a decision about the model to be used must be taken before-
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hand, subject to the demand that it be realistic and can be handled mathemati-
cally.

The general ideas underlying methods for dealing with missing values are
similar although the technical details are of course quite different. The first step
consists in jointly modeling the predictor and response variables and the missing
value mechanism. This mechanism may or may not consist in filling in missing data
individually (data imputation). Next, the influence of correcting under various
models is investigated, and finally concrete studies are evaluated using one or
several appropriate models.

Meta-Analysis4.5

The use of meta-analyses to synthesize the evidence from epidemiological studies
has become more and more popular. They can be considered as the quantitative
parts of systematic reviews. The main objective of a meta-analysis is usually the
statistical combination of results from several studies that individually are not
powerful enough to demonstrate a small but important effect. However, whereas it
is always reasonable to review the literature and the published results on a certain
topic systematically, the statistical combination of results from separate epidemi-
ological studies may yield misleading results. Purely observational studies are in
contrast to randomized clinical trials where differences in treatment effects be-
tween studies can mainly be attributed to random variation. Observational studies,
however, may lead to different estimates of the same effect that can no longer be
explained by chance alone, but that may be due to confounding and bias po-
tentially inherent in each of them. Thus, the calculation of a combined measure
of association based on heterogeneous estimates arising from different studies
may lead to a biased estimate with spurious precision. Although it is possible to
allow for heterogeneity in the statistical analysis by so-called random-effects mod-
els their interpretation is often difficult. Inspecting the sources of heterogeneity
and trying to explain it would therefore be a more sensible approach in most
instances.

Nevertheless, a meta-analysis may be a reasonable way to integrate findings
from different studies and to reveal an overall trend of the results, if existing at all.
A meta-analysis from several studies to obtain an overall estimate of association,
for instance, can be performed by pooling the original data or by calculating
a combined measure of association based on the single estimates. In both cases, it
is important to retain the study as unit of analysis. Ignoring this fact would lead to
biased results since the variation between the different studies and their different
within-variabilities and sample sizes would otherwise not be adequately accounted
for in the statistical analysis.

Since the probably first application of formal methods to pool several studies by
Pearson (1904) numerous sophisticated statistical methods have been developed
that are reviewed in Chap. II.7 of this handbook.
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Applications of Epidemiological Methods
and Research Areas in Epidemiology 5

Epidemiology pursues three major targets: (1) to describe the spectrum of diseases
and their determinants, (2) to identify the causal factors of diseases, and (3) to
apply this knowledge for prevention and public health practice.

Description of the Spectrum of Diseases 5.1

Describing the distribution of disease is an integral part of the planning and evalu-
ation of health care services. Often, information on possible exposures and disease
outcomes has not been gathered with any specific hypothesis in mind but stems
from routinely collected data. These descriptions serve two main purposes. First,
they help in generating etiological hypotheses that may be investigated in detail
by analytical studies. Second, descriptive data form the basis of health reports that
provide important information for the planning of health systems, e.g. by estimat-
ing the prevalence of diseases and by projecting temporal trends. The approaches
in descriptive epidemiology are presented in Chap. I.3 of this handbook.

Complementary descriptive information relates to the revelation of the natural
history of diseases – one of the subjects of clinical epidemiology – that helps to
improve diagnostic accuracy and therapeutic processes in the clinical setting. The
understanding of a disease process and its intermediate stages also gives important
input for the definition of outcome variables, be it disease outcomes that are used
in classical epidemiology or precursors of disease and pre-clinical stages that are
relevant for screening or in molecular epidemiology studies.

Identification of Causes of Disease 5.2

Current research in epidemiology is still tied to a considerable extent to the general
methodological issues summarized in Sects. 3 and 4. These concern any kind of
exposures (risk factors) and any kind of outcomes (health defects). However, the
basic ideas having been shaped and the main procedures elaborated, the emphasis
is now on more specific questions determined by a particular type of exposure
(e.g. Chaps. III.1–III.4, III.7, III.9) or a special kind of outcome (e.g. Chaps. IV.1)
or both (e.g. Chap. III.6).

Exposure-oriented Research
The search for extraneous factors that cause a disease is a central feature of epi-
demiology. This is nicely illustrated by the famous investigation into the causes
of cholera by John Snow, who identified the association of ill social and hygienic
conditions, especially of the supply with contaminated water, with the disease
and thus provided the basis for preventive action. Since that time, the investi-
gation of hygienic conditions has been diversified by examining infective agents
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(Chap. IV.1), nutrition (Chap. III.4), pharmaceuticals (Chap. III.9), social condi-
tions (Chap. III.1) as well as physical and chemical agents in the environment
(Chap. III.3) or at the workplace (Chap. III.2). A peculiarity is the investigation
of genetic determinants by themselves and their interaction with the extraneous
exposures mentioned above (Chap. III.7).

Nutrition belongs to the most frequently studied exposures and may serve as
a model for the methodological problems of exposure-oriented research and its
potential for public health. There are few health outcomes for which nutrition
does not play either a direct or an indirect role in causation, and therefore a solid
evidence-base is required to guide action aiming at disease prevention and im-
provement of public health. Poor nutrition has direct effects on growth and normal
development, as well as on the process of healthy ageing. For example, 40 to 70%
of cancer deaths were estimated to be attributable to poor nutrition. The effect
of poor diet on chronic diseases is complex, such as, for example, the role of mi-
cronutrients in maintaining optimal cell function and reducing the risk of cancer
and cardiovascular disease. Foods contain more than nutrients, and the way foods
are prepared may enhance or reduce their harmful or beneficial effects on health.
Because diet and behavior are complex and interrelated, it is important, both in
the design and the interpretation of studies, to understand how this complexity
may affect the results. The major specific concern is how to define and assess with
required accuracy the relevant measure of exposure, free from bias.

The latter is a general problem that exposure-oriented epidemiology is faced
with, especially in retrospective studies (see Chap. I.11). The use of biological mark-
ers of exposure and early effect has been proposed to reduce exposure misclassifi-
cation. In a few cases, biomarker-based studies have led to important advances, as
for example illustrated by the assessment of exposure to aflatoxins, enhanced sensi-
tivity and specificity of assessment of past viral infection, and detection of protein
and DNA adducts in workers exposed to reactive chemicals such as ethylene oxide.
In other cases, however, initial, promising results have not been confirmed by more
sophisticated investigations. They include in particular the search for susceptibility
to environmental carcinogens by looking at polymorphism for metabolic enzymes
(Chap. III.6). The new opportunities offered by biomarkers to overcome some
of the limitations of traditional approaches in epidemiology need to be assessed
systematically. The measurement of biomarkers should be quality-controlled and
their results should be validated. Sources of bias and confounding in molecular
epidemiology studies have to be assessed with the same stringency as in other
types of epidemiological studies.

Modern molecular techniques have made it possible to investigate exposure
to genetic factors in the development or the course of diseases on a large scale.
A familial aggregation has been shown for many diseases. Although some of the
aggregation can be explained by shared risk factors among family members, it is
plausible that a true genetic component exists for most human cancers and for
the susceptibility to many infectious diseases. The knowledge of low-penetrance
genes responsible for such susceptibility is still very limited, although research
has currently focused on genes encoding for metabolic enzymes, DNA repair,



An Introduction to Epidemiology 31

cell-cycle control, and hormone receptors. In many studies only indirect evidence
can be used since the suspected disease-related gene (candidate gene) is not di-
rectly observable. To locate or to identify susceptibility genes, genetic markers are
used either in a so-called whole genome scan or in the investigation of candidate
genes (Chap. III.7). The latter can be performed through linkage studies, where the
common segregation of a marker and a disease is investigated in pedigrees; and
through association studies, where it is investigated whether certain marker alleles
of affected individuals will be more or less frequent than in a randomly selected in-
dividual from the population. Both, population-based and family designs are com-
plementary and play a central role in genetic epidemiological studies. In the case of
low-penetrance genes, association studies have been successful in identifying ge-
netic susceptibility factors. Given the lack of dependence of genetic markers from
time of disease development, the case-control approach is particularly suitable for
this type of investigation because their assessment is not prone to recall bias. More
pronounced than in classic epidemiology, the three main complications in genetic
epidemiology are dependencies, use of indirect evidence and complex data sets.

Outcome-oriented Research
Epidemiology in industrialized countries is nowadays dominated by research
on chronic diseases, among them cardiovascular diseases (Chap. IV.2), cancer
(Chap. IV.3) and musculoskeletal disorders (Chap. IV.4). Their epidemiology – es-
pecially the one of cancer – is characterized more than any other outcome-defined
epidemiology by the abundance of observational studies to find risk factors of all
kind.

Cardiovascular diseases have a multi-factorial etiology and confounding effects
are especially intriguing. For example, clustering of coronary heart diseases in
families could be due both to genetic factors and to common dietary habits. High
blood pressure plays both the role of an outcome variable and of a risk factor.
Typical features of the epidemiology of cardiovascular diseases are the existence
of many long term prospective studies, of intervention programmes like those
described in Chap. III.11, and of a decline of morbidity and mortality in some areas
and population groups whose causes are manifold, too, including for example
control of blood pressure and blood cholesterol.

In many respects cancer epidemiology exemplifies the strengths and the weak-
nesses of the discipline at large. Although it is a relatively young discipline, it has
been the key tool to demonstrate the causal role of important cancer risk factors,
like smoking, human papilloma virus infections in cervical cancer, solar radiation
in skin cancer, and obesity in many neoplasms. Cancer epidemiology is an area in
which innovative methodological approaches are developed as illustrated by the
increasing use of biological and genetic markers pertaining to causal factors and
early outcomes.

Bycomparison, the epidemiologyofmusculoskeletal disorders is lessdeveloped.
Already the definition of the various disorders and the distinction between them
are still subject to debate. Case ascertainment is often tricky. In spite of the high
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prevalence of for example back pain or osteoarthritis and their enormous negative
impactonqualityof life,mortality causedby themis significantly lower than thatby
cancer or cardiovascular diseases. Even simple estimates of prevalence leave wide
margins. Regarding established risk factors, we find for instance for osteoarthritis
and depending on its location, genetic factors, gender, obesity, heavy physical
workload, and estrogen use, but not much more seems to be known although
certain nutritional factors have been mentioned like red meat and alcohol.

The investigation of infectious diseases is the most important historical root of
epidemiology and is still of primary importance in developing countries. If a per-
son suffers from a particular outcome like tuberculosis, the exposure “infection by
the relevant micro-organism”, i.e. by mycobacterium tuberculosis, must have been
present by the very definition of the disease. However, it is not a sufficient condition
for overt disease, and many analytical studies examine the influence of co-factors
like social conditions, nutrition, and co-morbidities regarded as risk factors for
opportunistic infections. Purely descriptive health statistics, too, play a very impor-
tant role in controlling infectious diseases. Related activities are general epidemic
surveillance, outbreak studies by tracing possible carriers, and the search for infec-
tious sources like salmonella as sources of food poisoning or the various origins
of nosocomial illness. The most specific features of the epidemiology of infectious
diseases are mathematical modeling and prevention by immunization. Modeling
is to be understood in the sense of population dynamics. What is being modeled
is typically the time evolution of the incidence or prevalence of the disease in
question. The model, be it deterministic or stochastic, describes the mechanism of
the infection and depends on specific parameters like contact frequencies between
infected and susceptible subjects and healing rates. It is interesting to note that
the discoverer of the infectious cycle of malaria, Ronald Ross, also designed and
analyzed a mathematical model for it that led him to conceive of the threshold
principle (Bailey 1975; Diekmann and Heesterbeek 2000). Prevention of infectious
diseases can in principle be done in three ways: by acting on co-factors of the type
mentioned above; by interfering with the infectious process via hygiene, separa-
tion of susceptible persons from carriers or vectors, and elimination of vectors; or
by raising the immunity of susceptible people by various measures like preventive
drug treatment, the main method of immunization being a vaccination, though.
The effect of a vaccination in a population can be modeled in its turn, which leads
in particular to the basic epidemiological concept of herd immunity.

Application of Epidemiological Knowledge5.3

Epidemiological knowledge concerns populations. There are two ways to use this
knowledge. The first is group-oriented: It consists in applying knowledge about
a specific population directly to this population itself. This is part of Public Health.
The conceptually simplest applications of this kind concern the planning of the
health system (Chap. IV.5) and of health strategies. For instance, epidemiological
studies have shown that people exposed to inhaling asbestos fibers are prone to
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develop asbestosis and its sequels like cor pulmonale. We apply this knowledge to
the entire population by prohibiting the use of asbestos.

The second path is taken when we are confronted with an individual person,
typically in a clinical setting: We can then regard this person as a member of
an appropriate specific population for which relevant epidemiological knowledge
is available, and deal with her or him accordingly. As an example, a physician
confronted with a child suffering from medium dehydration due to acute diarrhea,
knows from clinical trials that oral rehydration (see Chap. IV.6) will normally be
a very efficient treatment. Hence she|he will apply it in this particular case.

Clinical epidemiology plays a major role for the second path, where epidemio-
logical knowledge is applied in all phases of clinical decision making, i.e. in daily
clinical practice, starting with diagnosis, passing to therapy, and culminating in
prognosis and advice to the patient – including individual preventive measures.

Prevention
The first of the two preceding examples belongs to population-based prevention
(see Chaps. I.8, III.11 and IV.6). The underlying idea is to diminish the influence
of risk factors identified by previous observational epidemiological studies. These
factors may be geographic, environmental, social, occupational, behavioral, nu-
tritional, or genetic. Risks of transmission of infectious diseases have long played
a particular role in Public Health: Their influence was reduced by public hygiene
in the classical sense. Applying observational epidemiology in order to diminish
or eliminate risk factors has therefore been termed hygiene in a modern, general
sense. Preventive measures in this context are sometimes themselves subject to an
a posteriori evaluation which may bear on one hand on the way they have been
implemented and on the other hand on their effectiveness.

Population-based preventive measures can also be derived from results of ex-
perimental epidemiology. The most important applications of this kind are vac-
cinations performed systematically within a given population. They have to be
subjected to rigorous efficacy trials before implementation. Preventive drug treat-
ments, e.g. against malaria or cardiovascular events, fall into the same category.

In many cases the target population itself is determined by a previous epidemi-
ological study. For instance, dietary recommendations to reduce cardiovascular
problems, and vaccinations against hepatitis B, yellow fever or influenza, are usu-
ally given only to people that were identified as being of high risk to contract the
disease in question.

Screening
Population-based treatments as a measure of Public Health are conceivable but
hardly ever implemented. There exists, however, a population-based application of
epidemiology in the realmof diagnosis, viz. screening (seeChap. III.10). Its purpose
is to find yet unrecognized diseases or health defects by appropriate tests that can
be rapidly executed within large population groups. The ultimate aim is mostly to
allow a treatment at an early stage. Occasionally, screening was also performed in
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order to isolate infected people, e.g. lepers. Classical examples of screening include
mass X-ray examination to detect cases of pulmonary tuberculosis or breast cancer,
and cytological tests to identify cancer of the cervix uteri. Screening programs
may concentrate on high risk groups if it would be unfeasible, too expensive, or
too dangerous to examine the entire original population. A striking example is
the screening for pulmonary tuberculosis in Norway where most of the prevalent
cases were found at an early stage by systematic X-ray examinations of only a small
fraction of the population.

Case Management
The concept of the individual risk of a person (see Chaps. I.2 and I.5) that un-
derlies the definition of risk groups represents a particular case of the second
way of applications of epidemiology, viz. dealing with an individual person on
the basis of epidemiological knowledge about populations to which she or he is
deemed to belong. The most important application of this idea, however, is clin-
ical epidemiology which was also called statistics in clinical medicine. It is the art
of case-management in the most general sense: diagnosis using the epidemio-
logical characteristics of medical tests like sensitivity and specificity, treatment
using the results of clinical trials, prognosis for a specific case based again on
relevant epidemiological studies. Chapter III.3 describes in detail fairly sophisti-
cated procedures involving all aspects of case-management including the opinion
of the patient or his|her relatives and considerations of cost, secondary effects, and
quality of life as elements entering the therapeutic decision.

Health Services
Health services research (HSR) is a vast and multiform field. It has no concise and
generally accepted definition but still there is a more or less general agreement
about its essential ideas. Its purpose is to lay the general, scientific foundations for
health policy in order to improve the health of people as much as possible under
the constraints of society and nature. The subjects of HSR are, in the first place, the
underlying structures, i.e. the basic elements concerned by questions of health and
the relations between them, in the second place the processes of health care delivery,
and in the third place the effects of health services on the health of the public.

On the methodological side, HSR means analysis and evaluation of all of these
aspects. The tools are mainly coming from mathematics and statistics, economics,
and sociology together with knowledge from clinical medicine and basic sciences
like biology. Epidemiology plays a particularly important role.

Evaluation implies comparison: comparison of different existing health care
systems, and comparison of an existing one with theoretical, ideal systems in order
to design a better one. Comparison of health care systems of different countries
has been a favorite subject. One of the main “factors” that distinguishes them is
the way medical services are being paid for and the form of health insurance.

The basic elements are physicians, nurses and other personnel, hospitals, equip-
ment, and money, but also the population getting into contact with the health
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system and its health status. Relations between these elements comprise health
needs and access to services, but also the organization of the health system.

Processes of health care delivery may of course mean the usual clinical curative
treatment of patients but also person- or community-based preventive actions
including environmental measures, health education, or health strategies like the
one that led to the eradication of smallpox.

Finally, the effects of health services, i.e. the output, can be measured in many
ways, e.g. by morbidity and mortality, life expectancy, quality of life preserved
or restored, and economic losses due to illness. Questions of effectiveness, i.e. the
value of outputs relative to (usually monetary) inputs, are in the limelight.

Epidemiology as a method serves two purposes. On the one hand, the results
of epidemiological investigations enter the field as basic parameters. Some ex-
perimental epidemiological studies like intervention trials are even considered as
belonging to health services research. On the other hand, many methods used in
health services research that stem from mathematical statistics and whose goal is
to study the influence of various factors on outcomes, are formally the same as
those employed in epidemiology.

Given the enormity and complexity of the subject many different “approaches”
and “models” have been proposed and tried out. Earlier ones were still fairly
descriptive and static, focusing on the functioning of the health services or on
health policy with a strong emphasis on the economic aspects. The input-output
model where the effects of changes of essential inputs on the various outcomes of
interest are studied, if possible in a quantitative way, is more recent. More than
others it allows to a large extent a “modular” approach, separating from each other
the investigation of different parts or levels of the health services.

Ethical Aspects 5.4

The protection of human rights is one of the most crucial aspects of all studies
on humans. Although there are substantial differences between experimental and
observational studies they both have to face the challenging task to protect the
privacy of all individuals taking part in a study. This also implies as a basic
principle that study subjects are asked for their informed consent.

Another ethical angle of epidemiological research concerns the study quality.
Poorly conducted research may lead to unsubstantiated and wrong decisions in
clinical practice or policy making in public health and may thus cause harm
to individuals, but also to society as a whole. Therefore, guidelines have been
prepared to maintain high study quality and to preserve human rights such as the
“Good Epidemiological Practice” provided by the International Epidemiological
Association in 1998.

Of course, the four general principles of the Declaration of Helsinki (World Med-
ical Association 2000) have to be followed, i.e. autonomy (respect for individuals),
beneficence (do good), non-maleficence (do no harm), and justice. These princi-
ples are of particular relevance in randomized controlled trials, where the inter-
vention (or non-intervention) may involve negative consequences for participants.
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Various recent developments in epidemiological research constitute a new chal-
lenge regarding ethical aspects. First, automated record linkage databases are now
at least partly available that capture both exposure and outcome data on an indi-
vidual level. Such databases have raised questions about confidentiality of patient’s
medical records, authorizing access to person-specific information, and their po-
tential misuse. Second, the inclusion of molecular markers in epidemiological
studies has led to a controversial debate on the potential benefit or harm of results
gained by genetic and molecular epidemiological studies. This raises the following
questions: Can knowledge on genetic markers be used in primary prevention pro-
grams? How should this knowledge be communicated to the study subjects who
may be forced into the conflict between their individual “right to know” and their
“right not to know”? A third driver of ethical questioning has been the discus-
sion about integrity and conflict of interests, in particular in cases of sponsored
epidemiological studies or when the results are contradictory.

As a consequence, an increasing awareness that ethical conduct is essential to
epidemiological research can be observed among epidemiologists. Thus, it is not
surprising that now basic principles of integrity, honesty, truthfulness, fairness
and equity, respect for people’s autonomy, distributive justice, doing good and not
harm have become an integral part in the planning and conduct of epidemiological
studies. Chapter IV.7 of this handbook is devoted to all of these aspects.
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Introduction 1.1

Epidemiology is the science that focuses on the occurrence of disease in its broadest
sense, with the fundamental aim to understand and to control its causes. This
chapter deals with the conceptual building blocks of epidemiology. First we offer
a model for causation, from which a variety of insights relevant to epidemiologic
understanding emerge. We then discuss the basis by which we attempt to infer that
an identified factor is indeed a cause of disease; the guidelines lead us through
a rapid review of modern scientific philosophy. The remainder of the chapter deals
with epidemiologic fundamentals of measurement, including the measurement of
disease and the measurement of causal effects.

Causation and Causal Inference 1.2

A General Model of Causation 1.2.1

InThe Magic Years, SelmaFraiberg (1959) characterizes every toddler as a scientist,
busily fulfilling an earnest mission to develop a logical structure for the strange
objects and events that make up the world that he or she inhabits. To survive
successfully requires a useful theoretical scheme to relate the myriad events that
are encountered. As a youngster, each person develops and tests an inventory
of causal explanations that brings meaning to the events that are perceived and
ultimately leads to increasing power to control those events.

If everyone begins life as a scientist, creating his or her own inventory of causal
explanations for the empirical world, everyone also begins life as a pragmatic
philosopher, developing a general causal theory that some events or states of nature
are causes with specific effects or effects with specific causes. Without a general
theory of causation, there would be no skeleton on which to hang the substance
of the many specific causal theories that one needs to survive. Unfortunately, the
concepts of causation that are established early in life are too rudimentary to serve
well as the basis for scientific theories. We need to develop a more refined set
of concepts that can serve as a common starting point in discussions of causal
theories.

Concept of Sufficient Cause and Component Causes 1.2.2

To begin, we need to define cause. For our purposes, we can define a cause of
a specific disease event as an antecedent event, condition, or characteristic that
was necessary for the occurrence of a specific instance of the disease at the moment
it occurred, given thatother conditions arefixed. Inotherwords, a causeof adisease
event is an event, condition or characteristic that preceded the disease event and
without which the disease event either would not have occurred at all or would
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not have occurred until some later time. With this definition it may be that no
specific event, condition, or characteristic is sufficient by itself to produce disease.
This definition, then, does not define a complete causal mechanism, but only
a component of it.

A common characteristic of the concept of causation that we develop early in life
is the assumption of a one-to-one correspondence between the observed cause and
effect. Each cause is seen as necessary and sufficient in itself to produce the effect.
Thus, the flick of a light switch appears to be the singular cause that makes the
lights go on. There are less evident causes, however, that also operate to produce
the effect: the need for an unspent bulb in the light fixture, wiring from the switch
to the bulb, and voltage to produce a current when the circuit is closed. To achieve
the effect of turning on the light, each of these is equally as important as moving
the switch, because absence of any of these components of the causal constellation
will prevent the effect.

For many people, the roots of early causal thinking persist and become manifest
in attempts to find single causes as explanations for observed phenomena. But
experience and reflection should easily persuade us that the cause of any effect
must consist of a constellation of components that act in concert (Mill 1843).
A “sufficient cause”, which means a complete causal mechanism, can be defined as
a set of minimal conditions and events that inevitably produce disease; “minimal”
implies that all of the conditions or events are necessary. In disease etiology,
the completion of a sufficient cause may be considered equivalent to the onset
of disease. (Onset here refers to the onset of the earliest stage of the disease
process, rather than the onset of signs or symptoms.) For biologic effects, most
and sometimes all of the components of a sufficient cause are unknown (Rothman
1976).

For example, tobacco smoking is a cause of lung cancer, but by itself it is
not a sufficient cause. First, the term smoking is too imprecise to be used in
a causal description. One must specify the type of smoke (e.g., cigarette, cigar,
pipe), whether it is filtered or unfiltered, the manner and frequency of inhalation,
and the onset and duration of smoking. More important, smoking, even defined
explicitly, will not cause cancer in everyone. So who are those who are “susceptible”
to the effects of smoking? Or, toput it inother terms,what are theother components
of the causal constellation that act with smoking to produce lung cancer?

When causal components remain unknown, we are inclined to assign an equal
risk to all individuals whose causal status for some components is known and iden-
tical. Thus, men who are heavy cigarette smokers are said to have approximately
a 10% lifetime risk of developing lung cancer. Some interpret this statement to
mean that all men would be subject to a 10% probability of lung cancer if they
were to become heavy smokers, as if the outcome, aside from smoking, were purely
a matter of chance. In contrast, we view the assignment of equal risks as reflecting
nothing more than assigning to everyone within a specific category, in this case
male heavy smokers, the average of the individual risks for people in that category.
In the classical view, these risks are either one or zero, according to whether the
individual will or will not get lung cancer.
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Figure 1.1. Three Sufficient Causes of a Disease

We cannot measure the individual risks, and assigning the average value to
everyone in the category reflects nothing more than our ignorance about the
determinants of lung cancer that interact with cigarette smoke. It is apparent
from epidemiologic data that some people can engage in chain smoking for many
decades without developing lung cancer. Others are or will become “primed”
by unknown circumstances and need only to add cigarette smoke to the nearly
sufficient constellation of causes to initiate lung cancer. In our ignorance of these
hidden causal components, the best we can do in assessing risk is to classify
people according to measured causal risk indicators, and then assign the average
risk observed within a class to persons within the class. As knowledge expands,
the risk estimates assigned to people will depart from average according to the
presence or absence of other factors that affect the risk.

For example, we now know that smokers with substantial asbestos exposure are
at higher risk of lung cancer than those who lack asbestos exposure. Consequently,
with adequate data we could assign different risks to heavy smokers based on their
asbestos exposure. Within categories of asbestos exposure, the average risks would
be assigned to all heavy smokers until other risk factors are identified.

Figure 1.1 provides a schematic diagram of sufficient causes in a hypothetical
individual. Each constellation of component causes represented in Fig. 1.1 is mini-
mally sufficient to produce the disease; that is, there is no redundant or extraneous
component cause – each one is a necessary part of that specific causal mechanism.
A specific component cause may play a role in one, two or all three of the causal
mechanisms pictured.

Figure 1.1 does not depict aspects of the causal process such as prevention,
sequenceor timingofactionof thecomponentcauses,dose, andothercomplexities.
These aspects of the causal process must be accommodated in the model by an
appropriate definition of each causal component. Thus, if the disease is lung cancer
and the factor E represents cigarette smoking, it might be defined more explicitly
as smoking at least 2 packs a day of unfiltered cigarettes for at least 20 years. If the
outcome is smallpox, which is completely prevented by immunization, U could
represent “unimmunized”. More generally, preventive effects of a factor C can be
represented by placing its complement “no C” within sufficient causes.

Strength of Effects 1.2.3

We will call the set of conditions necessary and sufficient for a factor to produce
disease the causal complement of the factor. Thus, the condition “(A and U) or
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(B and U)” is the causal complement of E in the above example. The strength of
a factor’s effect on a population depends on the relative prevalence of its causal
complement. This dependence of the effects of a specific component cause on the
prevalence of its causal complement has nothing to do with the biologic mecha-
nism of the component’s action, since the component is an equal partner in each
mechanism in which it appears. Nevertheless, a factor will appear to have a strong
effect if its causal complement is common. Conversely, a factor with a rare causal
complement will appear to have a weak effect.

In epidemiology, the strength of a factor’s effect is usually measured by the
change in disease frequency produced by introducing the factor into a popula-
tion. This change may be measured in absolute or relative terms. In either case,
the strength of an effect may have tremendous public health significance, but it
may have little biologic significance. The reason is that given a specific causal
mechanism, any of the component causes can have strong or weak effects. The
actual identity of the constituent components of the cause amount to the biology
of causation, whereas the strength of a factor’s effect depends on the time-specific
distribution of its causal complements in the population. Over a span of time, the
strength of the effect of a given factor on the occurrence of a given disease may
change, because the prevalence of its causal complements in various mechanisms
may also change. The causal mechanisms in which the factor and its complements
act could remain unchanged, however.

Interaction Among Causes1.2.4

Two component causes acting in the same sufficient cause may be thought of
as interacting biologically to produce disease. Indeed, one may define biological
interaction as the participation of two component causes in the same sufficient
cause. Such interaction is also known as causal co-action or joint action. The joint
action of the two component causes does not have to be simultaneous action: one
component cause could act many years before the other, but it would have to leave
some effect that interacts with the later component.

For example, suppose a traumatic injury to the head leads to a permanent
disturbance in equilibrium. Many years later, the faulty equilibrium may lead to
a fall while walking on an icy path, causing a broken hip. The causal mechanism
for the broken hip includes the traumatic injury to the head as a component cause,
along with its consequence of a disturbed equilibrium. The causal mechanism also
includes the walk along the icy path. These two component causes have interacted
with one another, although their time of action is many years apart. They also
would interact with the other component causes, such as the type of footwear, the
absence of a handhold, and any other conditions that were necessary to the causal
mechanism of the fall and the broken hip that resulted.

The degree of observable interaction between two specific component causes
depends on how many different sufficient causes produce disease, and the pro-
portion of cases that occur through sufficient causes in which the two component
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Figure 1.2. Another Example of Three Sufficient Causes of a Disease

causes both play some role. For example, in Fig. 1.2, suppose that G were only a hy-
pothetical substance that did not actually exist. Consequently, no disease would
occur from Sufficient Cause II, because it depends on an action by G, and factors
B and F would act only through the distinct mechanisms represented by sufficient
causes I and III. Thus, B and F would be biologically independent. Now suppose G
is present; then B and F would interact biologically. Furthermore, if C is completely
absent, then cases will occur only when factors B and F act together in the mech-
anism represented by Sufficient Cause II. Thus, the extent or apparent strength of
biologic interaction between two factors is dependent on the prevalence of other
factors.

Proportion of Disease Due to Specific Causes 1.2.5

In Fig. 1.1, assuming that the three sufficient causes in the diagram are the only ones
operating, what fraction of disease is caused by U? The answer is all of it; without
U , there is no disease. U is considered a “necessary cause”. What fraction is due
to E? E causes disease through two mechanisms, I and II, and all disease arising
through either of these two mechanisms is due to E. This is not to say that all disease
is due to U alone, or that a fraction of disease is due to E alone; no component
cause acts alone. Rather, these factors interact with their complementary factors
to produce disease.

There is a tendency to think that the sumof the fractionsofdiseaseattributable to
each of the causes of the disease should be 100%. For example, in their widely cited
work, The Causes of Cancer, Doll and Peto created a table giving their estimates
of the fraction of all cancers caused by various agents; the total for the fractions
was nearly 100% (Doll and Peto 1981, Table 20). Although they acknowledged that
any case could be caused by more than one agent, which would mean that the
attributable fractions would not sum to 100%, they referred to this situation as
a “difficulty” and an “anomaly”. It is, however, neither a difficulty nor an anomaly,
but simply a consequence of allowing for the fact that no event has a single agent
as the cause. The fraction of disease that can be attributed to each of the causes
of disease in all the causal mechanisms actually has no upper limit: for cancer, or
any disease, the upper limit for the total of the fraction of disease attributable to
all the component causes of all the causal mechanisms that produce it is not 100%
but infinity. Only the fraction of disease attributable to a single component cause
cannot exceed 100%.
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Induction Period and Latent Period1.2.6

The diagram of causes in Fig. 1.2 also provides a model for conceptualizing the
induction period, which may be defined as the period of time from causal action
until disease occurrence. If, in Sufficient Cause I, the sequence of action of the
causes is A, B, C, D, and E, and we are studying the effect of B, which, let us assume,
acts at a narrowly defined point in time, disease does not occur immediately after B
acts. It occurs only after the sequence is completed, so there will be a delay while C,
D, and finally E act. When E acts, disease occurs. The interval between the action
of B and the disease occurrence is the induction time for the effect of B.

In the example given earlier of an equilibrium disorder leading to a later fall
and hip injury, the induction time between the occurrence of the equilibrium
disorder and the later hip injury might be very long. In an individual instance,
we would not know the exact length of an induction period, since we cannot be
sure of the causal mechanism that produces disease in an individual instance, nor
when all the relevant component causes acted. We can characterize the induction
period relating the action of a component cause to the occurrence of disease in
general, however, by accumulating data for many individuals. A clear example of
a lengthy induction time is the cause-effect relation between exposure of a female
fetus to diethylstilbestrol (DES) and the subsequent development of clear cell
adenocarcinoma of the vagina. The cancer usually occurs between the ages of 15
and 30. Since the causal exposure to DES occurs early in pregnancy, there is an
induction time of about 15–30 years for the carcinogenic action of DES. During
this time, other causes presumably are operating; some evidence suggests that
hormonal action during adolescence may be part of the mechanism (Rothman
1981).

It is incorrect tocharacterizeadisease itself ashavinga lengthyorbrief induction
time. The induction time can be conceptualized only in relation to a specific
component cause. Thus, we say that the induction time relating DES to clear cell
carcinoma of the vagina is 15–30 years, but we cannot say that 15–30 years is the
induction time for clear cell carcinoma in general. Since each component cause in
any causal mechanism can act at a time different from the other component causes,
each can have its own induction time. For the component cause that acts last, the
induction time equals zero. If another component cause of clear cell carcinoma
of the vagina that acts during adolescence were identified, it would have a much
shorter induction time for its carcinogenic action than DES. Thus, induction time
characterizes a specific cause-effect pair rather than just the effect.

Disease, once initiated, will not necessarily be apparent. The time interval be-
tween disease occurrence and detection has been termed the latent period (Roth-
man 1981), although others have used this term interchangeably with induction
period. The latent period can be reduced by improved methods of disease detec-
tion. The induction period, on the other hand, cannot be reduced by early detection
of disease, since disease occurrence marks the end of the induction period. Earlier
detection of disease, however, may reduce the apparent induction period (the time
between causal action and disease detection), since the time when disease is de-
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tected, as a practical matter, is usually used to mark the time of disease occurrence.
Thus, diseases such as slow-growing cancers may appear to have long induction
periods with respect to many causes because they have long latent periods. The
latent period, unlike the induction period, is a characteristic of the disease and the
detection effort applied to the person with the disease.

Although it is not possible to reduce the induction period proper by earlier
detection of disease, it may be possible to observe intermediate stages of a causal
mechanism. The increased interest in biomarkers such as DNA adducts is an
example of attempting to focus on causes more proximal to the disease occurrence.
Such biomarkers may reflect the effects of earlier acting agents on the organism.

Some agents may have a causal action by shortening the induction time of other
agents. Suppose that exposure to factor A leads to epilepsy after an interval of
10 years, on the average. It may be that exposure to a drug, B, would shorten this
interval to 2 years. Is B acting as a catalyst or as a cause of epilepsy? The answer
is both: a catalyst is a cause. Without B the occurrence of epilepsy comes eight
years later than it comes with B, so we can say that B causes the onset of the
early epilepsy. It is not sufficient to argue that the epilepsy would have occurred
anyway. First, it would not have occurred at that time, and the time of occurrence
is part of our definition of an event. Second, epilepsy will occur later only if the
individual survives an additional eight years, which is not certain. Agent B not
only determines when the epilepsy occurs, it can determine whether it occurs.
Thus, we should call any agent that acts as a catalyst of a causal mechanism,
speeding up an induction period for other agents, as a cause in its own right.
Similarly, any agent that postpones the onset of an event, drawing out the in-
duction period for another agent, is a preventive. It should not be too surprising
to equate postponement to prevention: we routinely use such an equation when
we employ the euphemism that we prevent death, which actually can only be
postponed. What we prevent is death at a given time, in favor of death at a later
time.

Philosophy of Scientific Inference 1.2.7

Modern science began to emerge around the 16th and 17th centuries, when the
knowledge demands of emerging technologies (such as artillery and transoceanic
navigation) stimulated inquiry into the origins of knowledge. An early codification
of the scientific method was Francis Bacon’s Novum Organum, published in 1620,
which presented an inductivist viewof science. In this philosophy, scientific reason-
ing is said to depend on making generalizations, or inductions, from observations
to general laws of nature; the observations are said to induce the formulation of
a natural law in the mind of the scientist. Thus, an inductivist would have said that
Jenner’s observation of lack of smallpox among milkmaids induced in Jenner’s
mind the theory that cowpox (common among milkmaids) conferred immunity
to smallpox. Inductivist philosophy reached a pinnacle of sorts in the canons of
John Stuart Mill (1843), which evolved into inferential criteria that are still in use
today.
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Inductivist philosophy was a great step forward from the medieval scholasticism
that preceded it, for at least it demanded that a scientist make careful observations
of people and nature, rather than appeal to faith, ancient texts, or authorities.
Nonetheless, by the 18th century, the Scottish philosopher David Hume had de-
scribed a disturbing deficiency in inductivism: An inductive argument carried no
logical force; instead, such an argument represented nothing more than an as-
sumption that certain events would in the future follow in the same pattern as they
had in the past. Thus, to argue that cowpox caused immunity to smallpox because
no one got smallpox after having cowpox corresponded to an unjustified assump-
tion that the pattern observed so far (no smallpox after cowpox) will continue
into the future. Hume pointed out that, even for the most reasonable-sounding of
such assumptions, there was no logic or force of necessity behind the inductive
argument.

Causal inferencebasedonmerecoincidenceof events constitutes a logical fallacy
known as post hoc ergo propter hoc (Latin for “after this therefore on-account-of
this”). This fallacy is exemplified by the inference that the crowing of a rooster is
necessary for the sun to rise because sunrise is always preceded by the crowing.
The post hoc fallacy is a special case of a more general logical fallacy known as the
fallacy of affirming the consequent. This fallacy of confirmation takes the following
general form: “We know that if H is true, B must be true; and we know that B is
true; therefore H must be true”. This fallacy is used routinely by scientists in
interpreting data. It is used, for example, when one argues as follows: “if sewer
service causes heart disease, then heart disease rates should be highest where
sewer service is available; heart disease rates are indeed highest where sewer
service is available; therefore, sewer service causes heart disease”. Here, H is the
hypothesis “sewer service causes heart disease” and B is the observation “heart
disease rates are highest where sewer service is available”. The argument is of
course logically unsound, as demonstrated by the fact that we can imagine many
ways in which the premises could be true but the conclusion false; for example,
economic development could lead to both sewer service and elevated heart disease
rates, without any effect of the latter on the former.

Refutationism1.2.8

Many philosophers and scientists from Hume’s time forward attempted to set
out a firm logical basis for scientific reasoning. Perhaps none has attracted more
attention from epidemiologists than the philosopher Karl Popper.

Popper (1968) addressed Hume’s problem by asserting that scientific hypotheses
can never be proven or established as true in any logical sense. Instead, Popper
observed that scientific statements can simply be found to be consistent with
observation. Since it is possible for an observation to be consistent with several
hypotheses that themselves may be mutually inconsistent, consistency between
a hypothesis and observation is no proof of the hypothesis. In contrast, a valid
observation that is inconsistent with a hypothesis implies that the hypothesis as
stated is false, and so refutes the hypothesis. If you wring the rooster’s neck before
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it crows and the sun still rises, you have disproved that the rooster’s crowing is
a necessary cause of sunrise. Or consider a hypothetical research program to learn
the boiling point of water (Magee 1985). A scientist who boils water in an open
flask and repeatedly measures the boiling point at 100 ◦C will never, no matter how
many confirmatory repetitions are involved, prove that 100 ◦C is always the boiling
point. On the other hand, merely one attempt to boil the water in a closed flask or
at high altitude will refute the proposition that water always boils at 100 ◦C.

According to Popper, science advances by a process of elimination that he called
conjecture and refutation. Scientists form hypotheses based on intuition, conjec-
ture, and previous experience. Good scientists use deductive logic to infer predic-
tions from the hypothesis, and then compare observations with the predictions.
Hypotheses whose predictions agree with observations are confirmed only in the
sense that they can continue to be used as explanations of natural phenomena.
At any time, however, they may be refuted by further observations, and replaced
by other hypotheses that better explain the observations. This view of scientific
inference is sometimes called refutationism or falsificationism.

Refutationists consider induction to be a psychological crutch: repeated obser-
vations did not in fact induce the formulation of a natural law, but only the belief
that such a law has been found. For a refutationist, only the psychological comfort
that induction provides explains why it still has its advocates. One way to rescue
the concept of induction from the stigma of pure delusion is to resurrect it as
a psychological phenomenon, as Hume and Popper claimed it was, but one that
plays a legitimate role in hypothesis formation. The philosophy of conjecture and
refutation places no constraints on the origin of conjectures. Even delusions are
permitted as hypotheses, and therefore inductively inspired hypotheses, however
psychological, are valid starting points for scientific evaluation. This concession
does not admit a logical role for induction in confirming scientific hypotheses, but
it allows the process of induction to play a part, along with imagination, in the
scientific cycle of conjecture and refutation.

The philosophy of conjecture and refutation has profound implications for the
methodology of science. The popular concept of a scientist doggedly assembling
evidence to support a favorite thesis is objectionable from the standpoint of refu-
tationist philosophy, because it encourages scientists to consider their own pet
theories as their intellectual property, to be confirmed, proven, and when all the
evidence is in, cast in stone and defended as natural law. Such attitudes hinder
critical evaluation, interchange, and progress. The approach of conjecture and
refutation, in contrast, encourages scientists to consider multiple hypotheses and
to seek crucial tests that decide between competing hypotheses by falsifying one
of them. Since falsification of one or more theories is the goal, there is incentive
to depersonalize the theories. Criticism leveled at a theory need not be seen as
criticism of its proposer. It has been suggested that the reason why certain fields of
science advance rapidly while others languish is that the rapidly advancing fields
are propelled by scientists who are busy constructing and testing competing hy-
potheses; the other fields, in contrast, “are sick by comparison, because they have
forgotten the necessity for alternative hypotheses and disproof” (Platt 1964).
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Bayesianism1.2.9

There is another philosophy of inference that, like refutationism, holds an objec-
tive view of scientific truth and a view of knowledge as tentative or uncertain, but
which focusesonevaluationof knowledge rather than truth. Like refutationism, the
modern form of this philosophy evolved from the writings of 18th century British
philosophers, but the focal arguments first appeared in a pivotal essay by Thomas
Bayes (1763), and hence the philosophy is usually referred to as Bayesianism (How-
son and Urbach 1993). Like refutationism, it did not reach a complete expression
until after World War I, most notably in the writings of Ramsey (1931) and DeFinetti
(1937), and, like refutationism, it did not begin to appear in epidemiology until the
1970s (see, for example, Cornfield 1976).

The central problem addressed by Bayesianism is the following: In classical
logic, a deductive argument can provide you no information about the truth or
falsity of a scientific hypothesis unless you can be 100% certain about the truth of
the premises of the argument. Consider the logical argument called modus tollens:
“If H implies B, and B is false, then H must be false”. This argument is logically
valid, but the conclusion follows only on the assumptions that the premises “H
implies B” and “B is false” are true statements. If these premises are statements
about the physical world, we cannot possibly know them to be correct with 100%
certainty, since all observations are subject to error. Furthermore, the claim that
“H implies B” will often depend on its own chain of deductions, each with its own
premises of which we cannot be certain.

For example, if H is “television viewing causes homicides” and B is “homicide
rates are highest where televisions are most common”, the first premise used
in modus tollens to test the hypothesis that television viewing causes homicides
will be “If television viewing causes homicides, homicide rates are highest where
televisions are most common”. The validity of this premise is doubtful – after
all, even if television does cause homicides, homicide rates may be low where
televisions are common because of socioeconomic advantages in those areas.

Continuing to reason in this fashion, we could arrive at a more pessimistic
state than even Hume imagined: not only is induction without logical foundation,
but deduction has no scientific utility because we cannot ensure the validity of
all the premises. The Bayesian answer to this problem is partial, in that it makes
a severe demand on the scientist and puts a severe limitation on the results. It
says roughly this: If you can assign a degree of certainty, or personal probability,
to the premises of your valid argument, you may use any and all the rules of
probability theory to derive a certainty for the conclusion, and this certainty will
be a logically valid consequence of your original certainties. The catch is that your
concluding certainty, or posterior probability, may heavily depend on what you
used as initial certainties, or prior probabilities. And, if those initial certainties are
not those of a colleague, that colleague may very well assign a different certainty
to the conclusion than you derived.

Because theposteriorprobabilities emanating fromaBayesian inferencedepend
on the person supplying the initial certainties, and so may vary across individuals,
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the inferences are said to be subjective. This subjectivity of Bayesian inference
is often mistaken for a subjective treatment of truth. Not only is such a view of
Bayesianism incorrect, but it is diametrically opposed to Bayesian philosophy. The
Bayesian approach represents a constructive attempt to deal with the dilemma that
scientific laws and facts should not be treated as known with certainty, whereas
classical deductive logic yields conclusions only when some law, fact, or connection
is asserted with 100% certainty.

A common criticism of Bayesian philosophy is that it diverts attention away from
the classical goals of science, such as the discovery of how the world works, towards
psychological states of mind called “certainties”, “subjective probabilities”, or
“degrees of belief ” (Popper 1968). This criticism fails, however, to recognize the
importance of a scientist’s state of mind in determining what theories to test and
what tests to apply.

Most epidemiologists desire some interval estimate or evaluation of the likely
range for an effect in light of available data. This estimate must inevitably be
derived in the face of considerable uncertainty about methodologic details and
various events that led to the available data, and can be extremely sensitive to
the reasoning used in its derivation. Psychological investigations have found that
most people, including scientists, reason poorly in general and especially poorly
in the face of uncertainty (Kahneman et al. 1982). Bayesian philosophy provides
a methodology for such reasoning, and in particular provides many warnings
against being overly certain about one’s conclusions.

Such warnings are echoed in refutationist philosophy. As Peter Medawar put it,

I cannot give any scientist of any age better advice than this: the intensity of the
conviction that a hypothesis is true has no bearing on whether it is true or not.
(Medawar 1979)

We would only add that intensity of conviction that a hypothesis is false has no
bearing on whether it is false or not.

Impossibility of Proof 1.2.10

Vigorous debate is a characteristic of modern scientific philosophy, no less in
epidemiology than in other areas (Rothman 1988). Perhaps the most important
common thread that emerges from the debated philosophies is Hume’s legacy that
proof is impossible in empirical science. This simple fact is especially important
to epidemiologists, who often face the criticism that proof is impossible in epi-
demiology, with the implication that it is possible in other scientific disciplines.
Such criticism may stem from a view that experiments are the definitive source
of scientific knowledge. Such a view is mistaken on at least two counts. First, the
nonexperimental nature of a science does not preclude impressive scientific discov-
eries; the myriad examples include plate tectonics, the evolution of species, planets
orbiting other stars, and the effects of cigarette smoking on human health. Even
when they are possible, experiments (including randomized trials) do not provide



56 Kenneth J. Rothman, Sander Greenland

anything approaching proof, and in fact may be controversial, contradictory, or
irreproducible. The cold-fusion debacle demonstrates well that neither physical
nor experimental science is immune to such problems (Taubes 1993).

Some experimental scientists hold that epidemiologic relations are only sug-
gestive, and believe that detailed laboratory study of mechanisms within single
individuals can reveal cause-effect relations with certainty. This view overlooks
the fact that all relations are suggestive in exactly the manner discussed by Hume:
Even the most careful and detailed mechanistic dissection of individual events can-
not provide more than associations, albeit at a finer level. Laboratory studies often
involve a degree of observer control that cannot be approached in epidemiology; it
is only this control, not the level of observation, that can strengthen the inferences
from laboratory studies. And again, such control is no guarantee against error.

All of the fruits of scientific work, in epidemiology or other disciplines, are at
best only tentative formulations of a description of nature, even when the work
itself is carried out without mistakes. The tentativeness of our knowledge does not
prevent practical applications, but it should keep us skeptical and critical, not only
of everyone else’s work, but of our own as well.

Causal Inference in Epidemiology1.2.11

Biologic knowledge about epidemiologic hypotheses is often scant, making the
hypotheses themselves at times little more than vague statements of causal as-
sociation between exposure and disease, such as “smoking causes cardiovascular
disease”. These vague hypotheses have only vague consequences that can be diffi-
cult to test. To cope with this vagueness, epidemiologists usually focus on testing
the negation of the causal hypothesis, that is, the null hypothesis that the exposure
does not have a causal relation to disease. Then, any observed association can
potentially refute the hypothesis, subject to the assumption (auxiliary hypothesis)
that biases are absent.

If the causal mechanism is stated specifically enough, epidemiologic obser-
vations can provide crucial tests of competing non-null causal hypotheses. For
example, when toxic shock syndrome was first studied, there were two competing
hypotheses about the origin of the toxin. Under one hypothesis, the toxin was
a chemical in the tampon, so that women using tampons were exposed to the
toxin directly from the tampon. Under the other hypothesis, the tampon acted as
a culture medium for staphylococci that produced the toxin. Both hypotheses ex-
plained the relation of toxic shock occurrence to tampon use. The two hypotheses,
however, lead to opposite predictions about the relation between the frequency of
changing tampons and the risk of toxic shock. Under the hypothesis of a chemical
intoxication, more frequent changing of the tampon would lead to more exposure
to the toxin and possible absorption of a greater overall dose. This hypothesis pre-
dicted that women who changed tampons more frequently would have a higher risk
than women who changed tampons infrequently. The culture-medium hypothesis
predicts that the women who change tampons frequently would have a lower risk
than those who leave the tampon in for longer periods, because a short duration
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of use for each tampon would prevent the staphylococci from multiplying enough
to produce a damaging dose of toxin. Thus, epidemiologic research, which showed
that infrequent changing of tampons was associated with the risk of toxic shock,
refuted the chemical theory.

Another example of a theory easily tested by epidemiologic data related to the
finding that women who took replacement estrogen therapy were at a consider-
ably higher risk for endometrial cancer. Horwitz and Feinstein (1978) conjectured
a competing theory to explain the association: they proposed that women taking
estrogen experienced symptoms such as bleeding that induced them to consult
a physician. The resulting diagnostic workup led to the detection of endometrial
cancer at an earlier stage in these women, as compared with women not taking
estrogens. Many epidemiologic observations could have been and were used to
evaluate these competing hypotheses. The causal theory predicted that the risk of
endometrial cancer would tend to increase with increasing use (dose, frequency
and duration) of estrogens, as for other carcinogenic exposures. The detection
bias theory, on the other hand, predicted that women who had used estrogens
only for a short while would have the greatest risk, since the symptoms related
to estrogen use that led to the medical consultation tend to appear soon after use
begins. Because the association of recent estrogen use and endometrial cancer
was the same in both long-term and short-term estrogen users, the detection bias
theory was refuted as an explanation for all but a small fraction of endometrial
cancer cases occurring after estrogen use. (Refutation of the detection bias theory
also depended on many other observations. Especially important was the theory’s
implication that there must be a large reservoir of undetected endometrial cancer
in the typical population of women to account for the much greater rate observed
in estrogen users.)

The endometrial cancer example illustrates a critical point in understanding the
process of causal inference in epidemiologic studies: Many of the hypotheses being
evaluated in the interpretation of epidemiologic studies are non-causal hypotheses,
in the sense of involving no causal connection between the study exposure and
the disease. For example, hypotheses that amount to explanations of how specific
types of bias could have led to an association between exposure and disease are the
usual alternatives to the primary study hypothesis that the epidemiologist needs to
consider indrawing inferences.Muchof the interpretationof epidemiologic studies
amounts to the testing of such non-causal explanations for observed associations.

Causal Criteria 1.2.12

In practice, how do epidemiologists separate out the causal from the non-causal
explanations? Despite philosophic criticisms of inductive inference, inductively-
oriented causal criteria have commonly been used to make such inferences. If
a set of necessary and sufficient causal criteria could be used to distinguish causal
from non-causal relations in epidemiologic studies, the job of the scientist would
be eased considerably. With such criteria, all the concerns about the logic or
lack thereof in causal inference could be forgotten: it would only be necessary to
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consult the checklist of criteria to see if a relation were causal. We know from
philosophy that a set of sufficient criteria does not exist. Nevertheless, lists of
causal criteria have become popular, possibly because they seem to provide a road
map through complicated territory. A commonly used set of criteria was proposed
by Hill (1965); it was an expansion of a set of criteria offered previously in the
landmark Surgeon General’s report on Smoking and Health (1964), which in turn
were anticipated by the inductive canons of Mill (1843) and the rules given by
Hume. Hill suggested that the following aspects of an association be considered
in attempting to distinguish causal from noncausal associations: (1) strength,
(2) consistency, (3) specificity, (4) temporality, (5) biologic gradient, (6)plausibility,
(7) coherence, (8) experimental evidence, and (9) analogy.

Despite the popular view that these criteria should be used for causal inference,
there is no necessary or sufficient criterion for determining whether an observed
association is causal. This conclusion accords with the views of Hume, Popper,
and others that causal inferences cannot attain the certainty of logical deductions.
Although some scientists continue to promulgate causal criteria as aids to inference
(Susser 1991), others argue that it is actually detrimental to cloud the inferential
process by considering checklist criteria (Lanes and Poole 1984). An intermediate,
refutationist approach seeks to transform the criteria into deductive tests of causal
hypotheses (Maclure 1985; Weed 1986). Such an approach avoids the temptation
to use causal criteria simply to buttress pet theories at hand, and instead allows
epidemiologists to focus on evaluating competing causal theories using crucial
observations.

Measures of Disease Frequency1.3

A central task in epidemiologic research is to quantify the occurrence of disease in
populations. We discuss here four basic measures of disease occurrence. Incidence
timesaresimply the timesatwhichnewdiseaseoccursamongpopulationmembers.
Incidence rate measures the occurrence of new disease per unit of person-time.
Incidence proportion measures the proportion of people who develop new disease
during a specified period of time. Prevalence, a measure of status rather than of
newly occurring disease, measures the proportion of people who have disease at
a specific time.

Incidence Time1.3.1

In attempting to measure the frequency of disease occurrence in a population, it
is insufficient merely to record the number of people or even the proportion of the
population that is affected. It is also necessary to take into account the time elapsed
before disease occurs, as well as the period of time during which events are counted.
Consider the frequency of death. Since all people are eventually affected, the time
from birth to death becomes the determining factor in the rate of occurrence of
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death. If, on average, death comes earlier to the members of one population than
to members of another population, it is natural to say that the first population has
a higher death rate than the second.

In an epidemiologic study, we may measure the time of events in an individual’s
life relative to any one of several reference events. Using age, for example, the
reference event is birth, but we might instead use the start of a treatment or the
start of an exposure as the reference event. The reference event may be unique
to each person, as it is with birth, or it may be identical for all persons, as with
calendar time. The time of the reference event determines the time origin or zero
time for measuring time of events.

Given an outcome event or “incident” of interest, a person’s incidence time for
this outcome is defined as the time span from zero time to the time at which
the event occurs if it occurs. A man who experienced his first MI in 1990 at age
50 has an incidence time of 1990 in (Western) calendar time, and an incidence
time of 50 in age time. A person’s incidence time is undefined if that person never
experiences the event. (There is a useful convention that classifies such a person
as having an unspecified incidence time that is known to exceed the last time the
person could have experienced the event. Under this convention, a woman who had
a hysterectomy in 1990 without ever having had endometrial cancer is classified as
having an endometrial cancer incidence time greater than 1990.)

Incidence Rate 1.3.2

Epidemiologists often study events that are not inevitable, or that may not occur
during the period of observation. In such situations, the set of incidence times for
a specific event in a population will not all be defined or observed, and another
incidence measure must be sought. Ideally, such a measure would take into account
the number of individuals in a population that become ill as well as the length of
time contributed by all persons during the period they were in the population and
events are counted.

Consider any population, and a risk period over which we want to measure
incidence in thispopulation.Everymemberof thepopulationexperiences a specific
amount of time in the population over the risk period; the sum of these times over
all population members is called the total person-time at risk over the period.
Person-time should be distinguished from clock time in that it is a summation
of time that occurs simultaneously for many people, whereas clock time is not.
Person-time represents the observational experience in which disease onsets can
be observed. The number of new cases of disease divided by the person-time is the
incidence rate of the population over the period:

Incidence rate =
no. disease onsets∑

persons
time at risk for getting disease

When the risk period is of fixed length ∆t, the total person-time at risk over
the period is equal to the average size of the population over the period, N, times
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the length of the period, ∆t. If we denote the incident number by A, it follows that
the person-time rate equals A|(N × ∆t). This formulation makes clear that the
incidence rate has units of inverse time (per year, per month, per day, etc.). The
units attached to an incidence rate can be written as year−1, month−1, or day−1.

It is an important principle that the only events eligible to be counted in the
numerator of an incidence rate are those that occur to persons who are contributing
time to the denominator of the incidence rate at the time that the disease onset
occurs. Likewise, only time contributed by persons eligible to be counted in the
numerator if they suffer an event should be counted in the denominator. The time
contributed by each person to the denominator is sometimes known as the “time
at risk”, that is, time at risk of an event occurring. Analogously, the people who
contribute time to the denominator of an incidence rate are referred to as the
“population at risk”.

Incidence rates often include only the first occurrence of disease onset as an eli-
gible event for the numerator of the rate. For the many diseases that are irreversible
states, such as diabetes, multiple sclerosis, cirrhosis or death, there is at most only
one onset that a person can experience. For some diseases that do recur, such as
rhinitis, we may simply wish to measure the incidence of “first” occurrence, even
though the disease can occur repeatedly. For other diseases, such as cancer or heart
disease, the first occurrence is often of greater interest for study than subsequent
occurrences in the same individual. Therefore, it is typical that the events in the
numerator of an incidence rate correspond to the first occurrence of a particular
disease, even in those instances in which it is possible for an individual to have
more than one occurrence.

When the events tallied in the numerator of an incidence rate are first occur-
rences of disease, then the time contributed by each individual who develops the
disease should terminate with the onset of disease. The reason is that the individual
is no longer eligible to experience the event (the first occurrence can only occur
once per individual), so there is no more information to obtain from continued
observation of that individual. Thus, each individual who experiences the event
should contribute time to the denominator up until the occurrence of the event,
but not afterwards. Furthermore, for the study of first occurrences, the number
of disease onsets in the numerator of the incidence rate is also a count of people
experiencing the event, since only one event can occur per person.

An epidemiologist who wishes to study both first and subsequent occurrences
of disease may decide not to distinguish between first and later occurrences, and
simply count all the events that occur among the population under observation.
If so, then the time accumulated in the denominator of the rate would not cease
with the occurrence of the event, since an additional event might occur in the same
individual. Usually, however, there is enough of a biologic distinction between first
and subsequent occurrences to warrant measuring them separately. One approach
is to define the “population at risk” differently for each occurrence of the event:
the population at risk for the first event would consist of individuals who have not
experienced the disease before; the population at risk for the second event, or first
recurrence, would be limited to those who have experienced the event once and



Basic Concepts 61

only once, etc. A given individual should contribute time to the denominator of the
incidence rate for first events only until the time that the disease first occurs. At that
point, the individual should cease contributing time to thedenominatorof that rate,
and should now begin to contribute time to the denominator of the rate measuring
the second occurrence. If and when there is a second event, the individual should
stop contributing time to the rate measuring the second occurrence, and begin to
contribute to the denominator of the rate measuring the third occurrence, and so
forth.

Closed and Open Populations 1.3.3

Conceptually we can imagine the person-time experience of two distinct types of
populations, the closed population and the open population. A closed population
adds no new members over time, and loses members only to death, whereas an
open population may gain members over time, through immigration or birth, or
lose members who are still alive through emigration. (Some demographers and
ecologists use a broader definition of closed population in which births (but not im-
migration or emigration) are allowed.) Suppose we graph the survival experience
of a closed population of 1000 people. Since death eventually claims everyone, after
a period of sufficient time the original 1000 will have dwindled to zero. A graph of
the size of the population with time might approximate that in Fig. 1.3.

The curve slopes downward because as the 1000 individuals in the population
die, the population at risk of death is reduced. The population is closed in the sense
that we consider the fate of only the 1000 individuals present at time zero. The
person-time experience of these 1000 individuals is represented by the area under
the curve in the diagram. As each individual dies, the curve notches downward;

Figure 1.3. Size of a closed population of 1000 people, by time
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that individual no longer contributes to the person-time denominator of the death
(mortality) rate. Each individual’s contribution is exactly equal to the length of
time that individual is followed from start to finish; in this example, since the
entire population is followed until death, the finish is the individual’s death. In
other instances, the contribution to the person-time experience would continue
until either the onset of disease or some arbitrary cutoff time for observation,
whichever came sooner.

Suppose we added up the total person-time experience of this closed popula-
tion of 1000 and obtained a total of 75,000 person-years. The death rate would
be (1000|75,000) × year−1 since the 75,000 person-years represent the experi-
ence of all 1000 people until their deaths. Furthermore, if time is measured from
start of follow-up, the average death time in this closed population would be
75,000 person-years|1000 persons = 75 years, which is the inverse of the death rate.

A closed population facing a constant death rate would decline in size expo-
nentially (which is what is meant by the term “exponential decay”). In practice,
however, death rates for a closed population change with time, since the popula-
tion is aging as time progresses. Consequently, the decay curve of a closed human
population is never exponential. Life-table methodology is a procedure by which
the death rate (or disease rate) of a closed population is evaluated within succes-
sive small age or time intervals, so that the age or time dependence of mortality
can be elucidated. Even with such methods, it can be difficult to distinguish any
age-related effects from those related to other time axes, since each individual’s age
increases directly with an increase along any other time axis. For example, a per-
son’s age increases with increasing duration of employment, increasing calendar
time, and increasing time from start of follow-up.

An open population differs from a closed population in that individual contri-
butions need not begin at the same time. Instead, the population at risk is open
to new members who become eligible with passing time. People can enter a pop-
ulation open in calendar time through various mechanisms. Some are born into
it; others migrate into it. For a population of people of a specific age, individuals
can become eligible to enter the population by aging into it. Similarly, individuals
can exit from the person-time observational experience defining a given incidence
rate by dying, aging out of a defined age group, emigrating, or by becoming dis-
eased (the latter method of exiting applies only if first bouts of a disease are being
studied).

Steady State1.3.4

If the number of people entering a population is balanced by the number exiting the
population in any period of time within levels of age, sex, and other determinants
of risk, the population is said to be stationary, or in a steady state. Steady state is
a property that can occur only in open populations, not closed populations. It is,
however, possible to have a population in steady state in which no immigration
or emigration is occurring; this situation would occur if births perfectly balanced
deaths in the population. The graph of the size of an open population in steady
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Figure 1.4. Composition of an open population in approximate steady state, by time. > indicates entry

into the population, D indicates disease onset, and C indicates exit from the population without disease

state is simply a horizontal line. People are continually entering and leaving the
population in a way that might be diagrammed as shown in Fig. 1.4.

In the diagram, the symbol > represents a person entering the population,
a line segment represents their person-time experience, and the termination of
a line segment represents the end of their experience. A terminal D indicates that
the experience ended because of disease onset, and a terminal C indicates that
the experience ended for other reasons. In theory, any time interval will pro-
vide a good estimate of the incidence rate in a stationary population. The value
of incidence will be the ratio of the number of cases of disease onset, indicated
by D, to the area depicting the product of population × time. Because this ra-
tio is equivalent to the density of disease onsets in the observational area, the
incidence rate has also been referred to as incidence density (Miettinen 1976).
The measure has also been called the person-time rate, force of morbidity (or
force of mortality in reference to deaths), hazard rate, and disease intensity, al-
though the latter three terms are more commonly used to refer to the theoretical
limit approached by an incidence rate as the time interval is narrowed toward
zero.

Interpretation of an Incidence Rate 1.3.5

The numerical portion of an incidence rate has a lower bound of zero, but has
no upper bound; it has the mathematical range for the ratio of two non-negative
quantities, in this case the number of events in the numerator and the person-time
in thedenominator. At first it may seemsurprising that an incidence rate canexceed
the value of 1.0, which would seem to indicate that more than 100% of a population
is affected. It is true that at most only 100% of persons in a population can get
a disease, but the incidence rate does not measure the proportion of a population
with illness, and in fact is not a proportion at all. Recall that incidence rate is
measured in units of the reciprocal of time. Among 100 people, no more than
100 deaths can occur, but those 100 deaths can occur in 10,000 person-years, in
1000 person-years, in 100 person-years, or even in 1 person-year (if the 100 deaths
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occur after an average of 3.65 days each). An incidence rate of 100 cases (or deaths)
per 1 person-year might be expressed as

100
cases

person-year
.

It might also be expressed as

10,000
cases

person-century

or

8.33
cases

person-month

or

1.92
cases

person-week

or

0.27
cases

person-day
.

The numerical value of an incidence rate in itself has no interpretability because
it depends on the arbitrary selection of the time unit. It is thus essential in pre-
senting incidence rates to give the appropriate time units, either as in the examples
given above or as in 8.33 month−1 or 1.92 week−1. Although the measure of time
in the denominator of an incidence rate is often taken in terms of years, one can
have units of years in the denominator regardless of whether the observations were
collected over one year of time, over one week of time, or over ten years of time.

The reciprocal of time is an awkward concept that does not provide an intuitive
grasp of an incidence rate. The measure does, however, have a close connection to
more interpretable measures of occurrence in closed populations. Referring back
to Fig. 1.3, one can see that the area under the curve is equal to N ×T, where N is the
number of people starting out in the closed population and T is the average time
until death. Equivalently, the area under the curve in Fig. 1.3 is equal to the area of
a rectangle with height N and width T. Since T is the average time until death for
the N people, the total person-time experience is N × T. The time-averaged death
rate when the follow-up for the closed population is complete is N|(N × T) = 1|T;
that is, the death rate equals the reciprocal of the average time until death.

More generally, in a stationary population with no migration, the crude inci-
dence rate of an inevitable outcome such as death will equal the reciprocal of the
average time until the outcome. The time until the outcome is sometimes referred
to as the “waiting time” until the event occurs (Morrison 1979). Thus, in a station-
ary population with no migration, a death rate of 0.04 years−1 would translate to
an average time until death of 25 years.

If the outcome of interest is not death but either disease onset or death from
a specific cause, the waiting time interpretation must be modified slightly: The
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waiting time is the average time until disease onset, assuming that a person is
not at risk of other causes of death, or other events that remove one from risk of
the outcome of interest. That is, the waiting time must be redefined to account
for competing risks, that is, events that “compete” with the outcome of interest to
remove persons from the population at risk.

Unfortunately, the interpretation of incidence rates as the inverse of the average
“waiting time” will usually not be valid unless the incidence rate is calculated
for a stationary population with no migration (no immigration or emigration) or
a closed population with complete follow-up. For example, the death rate for the
United States in 1977 was 0.0088 year−1; in a steady state this rate would correspond
to a mean life-span, or expectation of life, of 114 years. Other analyses, however,
indicate that the actual expectation of life in 1977 was 73 years (Alho 1992). The
discrepancy is due to immigration and to the lack of a steady state. Note that the
no-migration assumption cannot hold within specific age groups, for people are
always “migrating” in and out of age groups as they age.

While the notion of incidence is a central one in epidemiology, it cannot cap-
ture all aspects of disease occurrence. Consider that a rate of 1 case|(100 years) =
0.01 years−1 could be obtained by following 100 people for an average of 1 year and
observing 1 case, but could also be obtained by following two people for 50 years
and observing 1 case, a very different scenario. To distinguish these situations, con-
cepts that directly incorporate the notion of follow-up time and risk are needed.

Incidence Proportions and Survival Proportions 1.3.6

For a given interval of time, we can divide the number of new cases of disease
occurring during that interval by the population size. If we measure the population
size at the start of the interval and no one enters the population (immigrates) or
leaves alive (emigrates) after the start of the interval, such a measure becomes
the proportion of people who become cases during the time interval among those
who were in the population at the start of the interval. We call this quantity the
incidence proportion, which may also be defined as the proportion of a closed
population at risk that becomes diseased within a given period of time. This
quantity is often called the “cumulative incidence” (Miettinen 1976), but the term
“cumulative incidence” is also used for another quantity we will discuss below.
A more traditional term for incidence proportion is “attack rate”, but we reserve
the term “rate” for person-time incidence rates.

If risk is defined as the probability of an individual developing disease in a spec-
ified time interval, then incidence proportion is a measure, or estimate, of average
risk. Although this concept of risk applies only to individuals and incidence pro-
portion to populations, incidence proportion is sometimes called “risk”. “Average
risk” is a more accurate synonym, one that we will sometimes use.

Like any proportion, the value of an incidence proportion ranges from zero to
one and is dimensionless. It is uninterpretable, however, without specification of
the time period to which it applies. An incidence proportion of death of 3% means
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something very different when it refers to a 40-year period than when it refers to
a 40-day period.

A useful complementary measure to the incidence proportion is the survival
proportion, which may be defined as the proportion of a closed population at risk
that does not become diseased within a given period of time. If R and S denote the
incidence and survival proportions, we have that S = 1 − R and R = 1 − S. Another
measure that is commonly used is the incidence odds, defined as R|S = R|(1−R), the
ratio of the proportion getting the disease to the proportion not getting the disease.
If R is small, S

.= 1 and R|S .= R; that is, the incidence odds will approximate the
incidence proportion when both quantities are small. Otherwise, because S < 1,
the incidence odds will be greater than the incidence proportion.

Under certain conditions there is a very simple relation between the incidence
proportion and the incidence rate of a nonrecurrent event. Consider a closed
population over an interval t0 to t1, and let ∆t = t1 − t0 be the length of the interval.
If N is the size of the population at t0, and A is the number of disease onsets over the
interval, then the incidence and survival proportions over the interval are R = A|N
and S = (N − A)|N. Now suppose the size of the population at risk declines only
slightly over the interval. Then N − A

.= N, S
.= 1, and so R|S .= R. Furthermore,

the average size of the population at risk will be approximately N, and so the
total person-time at risk over the interval will be approximately N∆t. Thus, the
incidence rate (I) over the interval will be approximately A|N∆t, and we obtain

R = A|N = (A|N∆t)∆t
.= I∆t

.= R|S .

In words, the incidence proportion, incidence odds, and the quantity I∆t will
all approximate one another if the population at risk declines only slightly over the
interval. We can make this approximation hold to within an accuracy of 1|N by
making ∆t so short that no more than one person leaves the population at risk over
the interval. Thus, given a sufficiently short time interval, one can simply multiply
the incidence rate by the time period to approximate the incidence proportion.
This approximation offers another interpretation for the incidence rate: it can be
viewed as the limiting value of the ratio of the average risk to the time period for
the risk as the duration of the time period approaches zero.

A specific type of incidence proportion is the case fatality rate, or case fatality
ratio, which is the incidence proportion of death among those who develop an
illness (it is therefore not a rate in our sense but a proportion). The time period for
measuring the case fatality rate is often unstated, but it is always better to specify
it.

Prevalence1.3.7

Unlike incidence measures, which focus on events, prevalence focuses on disease
status. Prevalence may be defined as the proportion of a population that has disease
at a specific point in time. The terms point prevalence, prevalence proportion, and
prevalence rate are sometimes used to mean the same thing. The prevalence pool is
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the subset of the population with the disease. An individual who dies with or from
disease is removed from the prevalence pool; consequently, death from an illness
decreases prevalence. Diseases with large incidence rates may have low prevalences
if they are rapidly fatal. People may also exit the prevalence pool by recovering
from disease or emigrating from the population.

Recall that a stationary population has an equal number of people entering and
exiting during any unit of time. Suppose that both the population at risk and the
prevalence pool are stationary, and that everyone is either at risk or has the disease.
Then the number of people entering the prevalence pool in any time period will
be balanced by the number exiting from it:

Inflow (to prevalence pool) = outflow (from prevalence pool) .

People can enter the prevalence pool from the nondiseased population and by
immigration from another population. Suppose there is no immigration into or
emigration from the prevalence pool, so that no one enters or leaves the pool except
by disease onset, death, or recovery. If the size of the population is N and the size
of the prevalence pool is P, then the size of the population at risk that “feeds”
the prevalence pool will be N − P. Also, during any time interval of length ∆t, the
number of people who enter the prevalence pool will be

I(N − P)∆t ,

where I is the incidence rate, and the outflow from the prevalence pool will be

I′P∆t ,

where I′ represents the incidence rate of exiting from the prevalence pool, that
is, the number who exit divided by the person-time experience of those in the
prevalence pool.

Prevalence, Incidence and Mean Duration 1.3.8

Earlier we mentioned that, in the absence of migration, the reciprocal of an inci-
dence rate in a stationary population equals the mean time spent in the population
before the incident event. Therefore, in the absence of migration and in a stationary
population, the reciprocal of I′ will be the mean duration of the disease, D, which
is the mean time until death or recovery. It follows that

inflow = I(N − P)∆t = outflow =
(
1|D

)
P∆t

which yields

P

N − P
= I × D ,

P|(N −P) is the ratio of diseased to nondiseased people in the population, or equiv-
alently, the ratio of the prevalence proportion to its complement (1 − prevalence
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proportion). (We could call those who are nondiseased healthy except that we
mean they do not have a specific illness, which doesn’t imply an absence of all
illness.) The ratio P|(N − P) is called the prevalence odds; it is the odds of having
a disease relative to not having the disease. As shown above, the prevalence odds
equals the incidence rate times the mean duration of illness. If the prevalence is
small, say less than 0.1, then

Prevalence proportion
.= I × D

since the prevalence proportion will approximate the prevalence odds for small
values of prevalence. More generally (Freeman and Hutchison 1980), under the
assumption of stationarity and no migration in or out of the prevalence pool,

Prevalence proportion =
I × D

1 + I × D

whichcanbeobtained fromtheaboveexpression for theprevalenceodds, P|(N−P).
Like the incidence proportion, the prevalence proportion is dimensionless, with

a range of zero to one. The above equations are in accord with these requirements,
because in each of them the incidence rate, with a dimensionality of the reciprocal
of time, is multiplied by the mean duration of illness, which has the dimensionality
of time, giving a dimensionless product.

Furthermore, the product I × D has the range of zero to infinity, which corre-
sponds to the range of prevalence odds, whereas the expression

I × D

1 + I × D

is always in the range zero to one, corresponding to the range of a proportion.
Unfortunately, the above formulas have limited practical utility because of the

no-migrationassumption, andbecause they donot apply to age-specific prevalence
(Miettinen 1976). If we consider the prevalence pool of, say, diabetics age 60–64,
we can see that this pool experiences considerable immigration from younger
diabetics aging into the pool, and considerable emigration from members aging
out of the pool. Under such conditions we require more elaborate formulas that give
prevalence as a function of age-specific incidence, duration, and other population
parameters (Preston 1987; Keiding 1991; Alho 1992).

Utility of Prevalence in Etiologic Research1.3.9

Seldom is prevalence of direct interest in etiologic applications of epidemiologic
research. Since prevalence reflects both the incidence rate and the probability of
surviving with disease, studies of prevalence, or studies based on prevalent cases,
yield associations that reflect the determinants of survival with disease just as
much as the causes of disease. The study of prevalence can be misleading in the
paradoxical situation in which better survival from a disease and therefore a higher
prevalence follows from the action of preventive agents that mitigate the disease
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once it occurs. In such a situation, the preventive agent may be positively associated
with the prevalence of disease, and so be misconstrued as a causative agent.

Nevertheless, foroneclassofdiseases, namely, congenitalmalformations, preva-
lence is usually employed. The proportion of babies born with some malformation
is a prevalence proportion, not an incidence rate. The incidence of malformations
refers to the occurrence of the malformations among the susceptible populations
of embryos. Many malformations lead to early embryonic or fetal death that is
classified, if recognized, as a miscarriage rather than a birth. Thus, malformed
babies at birth represent only those individuals who survived long enough with
their malformations to be recorded as a birth. This is indeed a prevalence measure,
the reference point in time being the moment of birth. The measure classifies the
population of newborns as to their disease status, malformed or not, at the time
of birth. This example illustrates that the time reference for a prevalence need not
be a common point in calendar time: it can be a point on another time scale, such
as an individual’s life span.

It would be more useful and desirable to study the incidence than the preva-
lence of congenital malformations; as already noted, studying prevalence makes it
impossible to distinguish the effects of agents that increase the incidence rate from
the effects of agents that increase survival with the disease once the disease occurs.
Unfortunately, it is seldom possible to measure the incidence rate of malforma-
tions, since the population at risk, young embryos, is difficult to ascertain, and
learning the occurrence and timing of the malformations among the embryos is
equally problematic. Consequently, in this area of research, incident cases are not
usually studied, with most investigators settling for the theoretically less desirable
but much more practical study of prevalence at birth.

Prevalence is sometimes used to measure the occurrence of nonlethal degen-
erative diseases with no clear moment of onset. It is also used in seroprevalence
studies of the incidence of infection, especially when the infection has a long
asymptomatic (silent) phase that can only be detected by serum testing (such as
HIV infection). In these and other situations, prevalence is measured simply for
convenience, and inferences are made about incidence by using assumptions about
the duration of illness. Of course, in epidemiologic applications outside of etiologic
research, such as planning for and managing health resources and facilities, health
economics, and other public-health activities, prevalence may be a more relevant
measure than incidence.

Measures of Effect 1.4

Epidemiologists use the term effect in two senses. In one sense, any case of a given
disease may be the effect of a given cause. Effect is used in this way to mean the
endpoint of a causal mechanism, identifying the type of outcome that a cause
produces. For example, we may say that HIV infection is an effect of sharing
needles for drug use. This use of the term effect merely identifies HIV infection as
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one consequence of the activity of sharing needles. Other effects of the exposure,
such as hepatitis B infection, are also possible.

In a more particular and quantitative sense, an effect is also the amount of
change in a population’s disease frequency caused by a specific factor. If disease
frequency is measured in terms of incidence rate or proportion, then the effect is
the change in incidence rate or proportion brought about by a particular factor.
We might say that for drug users, the effect of sharing needles, compared with
not sharing needles, is to increase the average risk of HIV infection from 0.001 in
one year to 0.01 in one year. Although it is customary to use the definite article
in referring to this second type of effect (“the” effect of sharing needles), it is not
meant to imply that this is a unique effect of sharing needles. An increase in risk
for hepatitis or other diseases remains possible, and the increase in risk of HIV
infection may differ across populations and time.

In epidemiology it is customary to refer to potential causal characteristics as
exposures. Thus, “exposure” can refer to a behavior (such as needle sharing),
a treatment (such as an educational program about hazards of needle sharing),
a trait (such as genotype), or an exposure in the ordinary sense (such as injection
of contaminated blood).

Population effects are most commonly expressed as effects on incidence rates
or incidence proportions, but other measures based on the incidence times or
prevalences may also be used. Epidemiologic analyses that focus on survival time
until death or recurrence of disease are examples of analyses that measure effects
on incidence times. Absolute effects are differences in incidence rates, incidence
proportions, prevalences or incidence times. Relative effects involve ratios of these
measures.

Simple Effect Measures1.4.1

Consider a cohort followed over a specific time interval – say 1996 to 2000, or age 50
to 69. If we can imagine the experience of this cohort over the same interval under
two different conditions – say, “exposed” and “unexposed” – then we can ask what
the incidence rate of any outcome would be under the two conditions. Thus, we
might consider a cohort of smokers and an exposure that consisted of mailing to
each cohort member a brochure of current smoking cessation programs in their
county of residence. We could then ask what the lung-cancer incidence rate would
be in this cohort if we carry out this treatment, and what it would be if we did not
carry out this treatment. The difference between the two rates we call the absolute
effect of our mailing program on the incidence rate, or the causal rate difference.
To be brief we might refer to the causal rate difference as the excess rate due to the
program (which would be negative if the program prevented some lung cancers).

In a parallel manner, we may ask what the incidence proportion would be if we
carry out this treatment, and what it would be if we do not carry out this treatment.
The difference of the two proportions we call the absolute effect of our treatment on
the incidence proportions, or causal risk difference or excess risk for short. Also in
a parallel fashion, the difference in the average lung-cancer-free years of life lived
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over the interval under the treated and untreated conditions is another absolute
effect of treatment.

To illustrate the above measures in symbolic form, suppose we have a closed
cohort of size N at the start of a fixed time interval, and that anyone alive without
the disease is at risk of the disease. Further, suppose that if every member of the
cohort gets exposed throughout the interval, A1 cases will occur and the total time
at risk will be T1, but if no member of the same cohort is exposed during the
interval, A0 cases will occur and the total time at risk will be T0. Then the causal
rate difference will be

A1

T1
−

A0

T0
,

the causal risk difference will be

A1

N
−

A0

N
,

and the causal difference in average disease-free time will be

T1

N
−

T0

N
.

Each of these measures compares disease occurrence by taking differences, and
so are called difference measures, or absolute measures.

More commonly, effect measures are defined by taking ratios. Examples of such
ratio (or relative) measures are the causal rate ratio

A1|T1

A0|T0
=

I1

I0
,

where Ij = Aj|Tj is the incidence rate under condition j (1 = exposed, 0 =
unexposed); the causal risk ratio

A1|N
A0|N

=
A1

A0
=

R1

R0
,

where Rj = Aj|N is the incidence proportion (average risk) under condition j; and
the causal ratio of disease-free time,

T1|N
T0|N

=
T1

T0
.

The rate ratio and risk ratio are often called relative risk measures. The three
ratio measures are related by the simple formula

R1

R0
=

R1N

R0N
=

A1

A0
=

I1T1

I0T0
,

which follows fromthe fact that thenumberof cases equals thedisease rate times the
time-at-risk. A fourth relative risk measure can be constructed from the incidence
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odds. If we write S1 = 1 − R1 and S0 = 1 − R0, the causal odds ratio is then

R1|S1

R0|S0
=

A1|(N − A1)

A0|(N − A0)
.

The definitions of effect just given are sometimes called counterfactual, or
potential-outcome definitions. Such definitions may be traced back to the writ-
ings of Hume, but received little attention from scientists until the 20th century
(see Lewis (1973) and Rubin (1990) for early references in philosophy and statis-
tics, respectively). They are called counterfactual because at least one of the two
circumstances in the definitions must be contrary to fact: The cohort may be ex-
posed or “treated” (e.g., every member sent a mailing) or untreated (no one sent
a mailing); if the cohort is treated, then the untreated condition will be counterfac-
tual, and if it is untreated, then the treated condition will be counterfactual. Both
conditions may be counterfactual: If only part of the cohort is sent the mailing,
both conditions in the definitions will be contrary to this fact. Although some
authors have objected to counterfactual causal concepts on philosophical grounds,
it turns out that such concepts directly parallel concepts found in graphical and
structural-equation models of causality (Pearl 2000; Greenland and Brumback
2002).

An important feature of counterfactual definitions of effect is that they involve
two distinct conditions: an index condition, which usually involves some exposure
or treatment, and a reference condition against which this exposure of treatment
will be evaluated – such as no treatment. To ask for “the” effect of exposure is
meaningless without reference to some other condition. In the above example, the
effect of one mailing is only defined in reference to no mailings. We could have
instead asked about the effect of one mailing relative to four mailings; this is a very
different comparison than one versus no mailing.

Effect Measure Modification1.4.2

Suppose we divide our cohort into two or more distinct categories, or strata. In
each stratum, we can construct an effect measure of our choosing. These stratum-
specific effect measures may or may not equal one another. Rarely would we have
any reason to suppose that they do equal one another. If indeed they are not equal,
we say that the effect measure is heterogeneous or modified across strata. If they are
equal, we say that the measure is homogeneous, constant or uniform across strata.

A major point about effect measure modification is that, if effects are present,
it will usually be the case that only one or none of the effect measures discussed
above will be uniform across strata. In fact, if the exposure has any effect on an
occurrence measure at most one of the ratio or difference measures of effect can
be uniform across strata. As an example, suppose among males the average risk
would be 0.50 if exposure was present, but would be 0.20 if exposure was absent,
whereas among females the average risk would be 0.10 if exposure was present but
would be 0.04 if exposure was absent. Then the causal risk difference for males is
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0.50−0.20 = 0.30, five times the female difference of 0.10−0.04 = 0.06. In contrast,
for both sexes the causal risk ratio is 0.50|0.20 = 0.10|0.04 = 2.5. Now suppose we
change this example to make the differences uniform, say by making the exposed
male risk 0.26 instead of 0.50. Then both differences would be 0.06, but the male
risk ratio would be 0.26|0.20 = 1.3, much less than the female risk ratio of 2.5.

Relative versus Absolute Measures 1.4.3

As mentioned above, we refer to differences in incidence rates, incidence propor-
tions, prevalencesor incidence timesas absolutemeasures.Relative effectmeasures
are based on the ratio of an absolute effect measure to a baseline measure of oc-
currence. Analogous measures are used routinely whenever change or growth is
measured. For example, suppose that an investment of a sum of money has yielded
a gain of $ 1000 in 1 year. Knowing the gain might be useful in itself for some
purposes, but the absolute increase in value does not reveal by itself how effective
the investment was. If the initial investment was $ 5000 and grew to $ 6000 in 1 year,
then we could judge the investment by relating the absolute gain, $ 6000 − $ 5000,
to the initial amount. That is, we take the $ 1000 gain and divide it by the $ 5000
of the original principal, obtaining 20% as the relative gain. The relative gain puts
the absolute gain into a perspective that reveals how effective the investment was.

Because the magnitude of the relative effect depends on the magnitude of the
baseline occurrence, the same absolute effect in two populations can correspond
to greatly differing relative effects (Peacock 1971). Conversely, the same relative
effects for two populations could correspond to greatly differing absolute effects.

Attributable Fractions 1.4.4

Although the counterfactual approach to effects has provided the foundation for
extensive statistical and philosophical developments in causal analysis, it takes no
account of the mechanisms that produce effects. Suppose that all sufficient causes
of a particular disease were divided into two sets, those that contain a specific
cause (exposure) and those that do not, and that the exposure is never preventive.
This situation is summarized in Fig. 1.5.

C and C′ may represent many different combinations of causal components.
Each of the two sets of sufficient causes represents a theoretically large variety of
causal mechanisms for disease, perhaps as many as one distinct mechanism for

Figure 1.5. Two Types of Sufficient Causes of a Disease
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every case that occurs. Disease can occur either with or without E, the exposure of
interest. The causal mechanisms are grouped in the diagram according to whether
or not they contain the exposure. We say that the exposure E causes disease if
a sufficient cause that contains E gets completed. Thus, we say that exposure can
cause disease if exposure will cause disease under at least some set of conditions C.

Perhaps the most straightforward way to quantify the effect of the exposure
would be to estimate the numbers of cases that were caused by E. This number is
not estimable from ordinary incidence data, because the observation of an exposed
case does not reveal the mechanism that caused the case. In particular, people who
have the exposure can develop the disease from a mechanism that does not include
the exposure. For example, a smoker may develop lung cancer through some
mechanism that does not involve smoking (for example, one involving asbestos or
radiation exposure). For such lung cancer cases, their smoking was incidental; it
did not contribute to the cancer causation. There is currently no way to tell which
exposures are responsible for a given case. Therefore, exposed cases include some
cases of disease caused by the exposure, if the exposure is indeed a cause, and some
cases of disease that occur through mechanisms that do not involve the exposure.

The observed incidence rate or proportion among the exposed reflects the
incidence of cases in both sets of sufficient causes represented in Fig. 1.5. The
incidence of sufficient causes containing E could be found by subtracting the
incidence of the sufficient causes that lack E. Unfortunately, the latter incidence
cannot be estimated if we cannot distinguish cases for which exposure played an
etiologic role from cases for which exposure was irrelevant (Greenland and Robins
1988). Thus, if I1 is the incidence rate of disease in a population when exposure
is present, and I0 is the rate in that population when exposure is absent, the rate
difference I1 − I0 does not necessarily equal the rate of disease with the exposure
as a component cause.

To see the source of this difficulty, imagine a cohort in which, for every member,
the causal complement of exposure, C, will be completed before the sufficient
cause C′ is completed. If the cohort is unexposed, every case of disease must be
attributable to the cause C′. But, if the cohort is exposed from start of follow-up,
every case of disease occurs when C is completed (E being already present), so
every case of disease must be attributable to the sufficient cause containing C
and E. Thus, the incidence rate of cases caused by exposure is I1 when exposure is
present, not I1 − I0.

Several other measures have often been incorrectly interpreted as the fraction
of cases,

I1 − I0

I1
=

I1|I0 − 1

I1|I0
=

IR − 1

IR
,

caused by exposure, or etiologic fraction. One such measure is the rate fraction
also known as the relative excess rate, in which IR denotes the incidence rate ratio.
The preceding example shows that the rate fraction is generally not equal to the
fraction of cases in which exposure played a role in the disease etiology, for in the
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example the latter fraction is 100%. Another fractional measure is (A1 − A0)|A1,
the excess caseload due to exposure, which has been called the excess fraction
(Greenland and Robins 1988). The preceding example shows that this measure
may be far less than the etiologic fraction, for in the example the latter fraction is
100%, regardless of A0.

There has been much confusion in the epidemiologic literature over the def-
inition and interpretation of terms related to the above concepts. The term “at-
tributable risk” has, at one time or another, been used to refer to the risk difference,
the rate fraction, the etiologic fraction, and the excess fraction. The terms “eti-
ologic fraction”, “attributable fraction”, and “attributable proportion” have each
been used to refer to the etiologic fraction at one time, the excess fraction at others,
and the rate fraction at still other times.

In a closed cohort, the fraction of the exposed incidence proportion R1 = A1|N
that is attributable to exposure is exactly equal to the excess fraction:

R1 − R0

R1
=

A1|N − A0|N
A1|N

=
A1 − A0

A1
,

where R0 = A0|N is what the incidence proportion would be with no exposure. An
equivalent formula for the excess fraction is

R1 − R0

R1
=

R1|R0 − 1

R1|R0
=

RR − 1

RR
,

where RR is the causal risk ratio. The rate fraction is often mistakenly equated
with either the etiologic fraction or the excess fraction. To see that it is not equal
to the excess fraction, let T1 and T0 represent the total time at risk that would be
experienced by the cohort under exposure and nonexposure during the interval of
interest. The rate fraction (I1 − I0)|I1 then equals

A1|T1 − A0|T0

A1|T1
.

If exposure has any effect, and if the disease removes people from further
risk (as when the disease is irreversible), then T1 will be less than T0. The
last expression cannot equal the excess fraction (A1 − A0)|A1 if T1 ≠ T0, al-
though if the exposure effect on total time at risk is small, T1 will be close
to T0 and so the rate fraction will approximate the excess fraction. Although
the excess fraction and rate fraction for an uncommon disease will usually be
close to one another, for reasons outlined above both may be much less than
the etiologic fraction (Greenland and Robins 1988). This discrepancy leads to
some serious issues in policy and legal settings, in which the etiologic frac-
tion corresponds to the probability of causation (PC), i.e., the probability that
the disease of a randomly selected case had exposure as a component cause.
In these settings an estimate of the excess fraction or rate fraction in the ex-
posed is often presented as an estimate of PC. Unfortunately, the excess frac-
tion and rate fraction can be considerably different from the PC, even if the
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disease is rare; hence, such presentations are misleading (Greenland and Robins
2000).

For convenience, we refer to the family of fractional measures, including the
etiologic, excess, and rate fractions as “attributable fractions”, a term originally
introduced by Ouellet et al. (1979) and Deubner et al. (1980). They are also of-
ten called “attributable risk percent” (Cole and MacMahon 1971) or “attributable
risk” (Walter 1976), although the latter term is also used to denote the risk dif-
ference (MacMahon and Pugh 1970). These measures were intended for use with
exposures that have a net causal effect; they become negative and hence difficult
to interpret with a net preventive effect. One simple approach for dealing with
preventive exposures is to interchange the exposed and unexposed quantities in
the above formulas, interchanging I1 with I0, P1 with P0, A1 with A0, and T1 with
T0. The resulting measures have been called preventable fractions, and are easily
interpreted. For example, (A0 − A1)|A0 = (R0 − R1)|R0 = 1 − R1|R0 = 1 − RR
is the fraction of the caseload under nonexposure that could be prevented by
exposure.

Population Attributable Fractions and Impact Fractions1.4.5

One often sees in the literature a definition of “population attributable risk” or
“population attributable fraction” as the reduction in incidence that would be
achieved if the population had been entirely unexposed, compared with its cur-
rent (actual) exposure pattern. One should recognize that this concept, due to
Levin (1953), is just a special case of the definition of attributable fraction based
on exposure pattern. In particular, it is a comparison of the incidence (either rate
or number of cases, which must be kept distinct) under the observed pattern of
exposure, and the incidence under a counterfactual pattern in which exposure or
treatment is entirely absent from the population. A more general concept is the
“impact fraction” (Morgenstern and Bursic 1982), which is a comparison of inci-
dence under the observed exposure pattern, and incidence under a counterfactual
pattern in which exposure is only partially removed from the population. Again,
this is a special case of our definition of attributable fraction based on exposure
pattern.

Estimation of Effects1.4.6

Effects are defined in reference to a single, enumerable population, under two
distinct conditions. Such definitions require that one can meaningfully describe
each condition for the one population. Consider, for example, the “effect” of sex
(male versus female) on heart disease. For these words to have content, we must
be able to imagine a cohort of men, their heart-disease incidence, and what their
incidence would have been had the very same men been women instead. The
apparent ludicrousness of this demand reveals the vague meaning of sex effect.
To reach a reasonable level of scientific precision, sex effect could be replaced by
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more precise mechanistic concepts, such as hormonal effects and effects of other
sex-associated factors. With such concepts, we can imagine what it means for the
men to have their exposure changed: hormone treatments, sex-change operations,
and so on.

The single population in an effect definition can only be observed under one
of the two conditions in the definition (and sometimes neither). This leads to the
problem of effect estimation, which is to predict accurately what the magnitude
of disease occurrence would have been in the single population under conditions
that did not in fact occur (counterfactual conditions). For example, we may have
observed I1 = 50 deaths|100,000 person-years in a target cohort of smokers over
a 10 year follow-up, and ask what rate reduction would have been achieved had
these smokers quit at the start of follow-up. Here, we observed a rate I1 and
are asking about I0, the rate that would have occurred under complete smoking
cessation.

Since I0 is not observed, we must predict what it would have been. To do
so, we would want to refer to outside data such as data from a cohort that
was not part of the target cohort. From these data, we would construct a pre-
diction of I0. The point we wish to emphasize here is that neither the out-
side cohort nor the prediction derived from it are part of the effect measure:
they are only ingredients in our estimation process. This point is overlooked
by effect definitions that refer to two separate “exposed” and “unexposed” pop-
ulations. Such definitions confuse the concept of effect with the concept of
association.

Measures of Association 1.4.7

Consider a situation in which we contrast a measure of occurrence in two different
populations. For example, we could take the ratio of cancer incidence rates among
males and females in Canada. This cancer rate ratio comparing the male and
female subpopulations is not an effect measure, because its two component rates
refer to different groups of people. In this situation, we say that the rate ratio is
only a measure of association; in this example, it is a measure of the association of
gender with cancer incidence in Canada.

As another example, we could contrast the incidence rate of dental caries
in a community in the year before and in the third year after the introduc-
tion of fluoridation of the water supply. If we take the difference of the rates
in these before and after periods, this difference is not an effect measure, be-
cause its two component rates refer to two different subpopulations, one before
fluoridation and one after. There may be considerable or even complete over-
lap in the persons present in the before and after periods; nonetheless, the ex-
periences compared refer to different time periods. In this situation, we say
that the rate difference is only a measure of association; in this example, it is
a measure of the association of fluoridation with dental caries incidence in the
community.
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Confounding1.5

In the preceding example of dental caries, it is tempting to ascribe any and all of
a decline in incidence following fluoridation to the act of fluoridation itself. Let us
analyze what such an inference translates into in terms of measures of effect and
association. The effect we wish to measure is that which fluoridation had on the
rate; to measure this effect, we must contrast the actual rate under fluoridation
with the rate that would have occurred in the same time period had fluoridation
not been introduced. We cannot observe the latter rate, for it is counterfactual.
Thus, we substitute in its place, or exchange, the rate in the time period before
fluoridation. In doing so, we substitute a measure of association (the rate difference
before and after fluoridation) for what we are really interested in (the causal rate
difference between rates without and with fluoridation in the post-fluoridation
time period).

This substitutionwill bemisleading to the extent that the ratebeforefluoridation
does not equal and so should not be exchanged with the counterfactual rate (i.e.,
the rate that would have occurred in the post-fluoridation period if fluoridation
had not been introduced). If the two are not equal, then the measure of association
we are using will not equal the measure of effect we are substituting it for. In
such a circumstance, we say that our measure of association is confounded (for
our desired measure of effect). Other ways of expressing the same idea is that the
before-after rate difference is confounded for the causal rate difference, or that
confounding is present in the before-after difference (Greenland and Robins 1986).
On the other hand, if the rate before fluoridation does equal the counterfactual
rate, so that the measure of association equals our desired measure of effect, we say
that the before-after difference is unconfounded, or that no confounding is present
in this difference.

The preceding definitions apply to ratios as well as differences. Because ratios
and differences contrast the same underlying quantities, confounding of a ratio
measure implies confounding of the corresponding difference measure and vice
versa: If the value substituted for the counterfactual rate or risk does not equal that
rate or risk, both the ratio and difference will be confounded.

The above definitions also extend immediately to situations in which the con-
trasted quantities are average risks, incidence times, or prevalences. For example,
one could wish to estimate the impact of fluoridation on caries prevalence three
years after fluoridation began. Here, the needed but unobserved counterfactual is
what the caries prevalence would have been three years after fluoridation began
had fluoridation not begun; for it, we might substitute the prevalence of caries at
the time fluoridation began. It is possible (though perhaps rare in practice) for
there to be confounding for one effect measure and not another if the two effect
measures derive from different underlying occurrence measures. For example,
there could in theory be confounding of the rate ratio but not the risk ratio.

One point of confusion in the literature is the failure to recognize that odds
are risk-based measures, and hence odds ratios will be confounded under exactly
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the same circumstances as risk ratios (Miettinen and Cook 1981; Greenland and
Robins 1986; Greenland 1987). The confusion arises because of the peculiarity
that the causal odds ratio for a whole cohort can be closer to the null than any
stratum-specific causal odds ratio. Such noncollapsibility of the causal odds ratio
is usually confused with confounding, even though it has nothing to do with the
latter phenomenon (Greenland et al. 1999).

Consider again the fluoridation example. Suppose that, within the year after
fluoridationbegan,dental-hygieneeducationprogramswere implemented in some
of the schools in the community. If these programs were effective, then (other
things being equal) some reduction in caries incidence would have occurred as
a consequence of the programs. Thus, even if fluoridation had not begun, the
caries incidence would have declined in the post-fluoridation time period. In
other words, the programs alone would have caused the counterfactual rate in our
effect measure to be lower than the pre-fluoridation rate that substitutes for it.
As a result, the measure of association (which is the before-after rate difference)
must be larger than the desired measure of effect (the causal rate difference). In
this situation, we say the programs confounded the measure of association, or that
the program effects are confounded with the fluoridation effect in the measure of
association. We also say that the programs are confounders of the association, and
that the association is confounded by the programs.

Confounders are factors (exposures, interventions, treatments, etc.) that ex-
plain or produce confounding. In the present example, the programs explain why
the before-after association overstates the fluoridation effect: The before-after risk
difference or ratio includes the effects of programs, as well as the effects of fluori-
dation. More generally, a confounder explains a discrepancy between the desired
(but unobservable) counterfactual risk or rate (which the exposed would have had,
had they been unexposed) and the unexposed risk or rate that was its substitute.
In order for a factor to explain some of this discrepancy, and thus confound, it
must be capable of affecting or at least predicting the risk or rate in the unex-
posed (reference) group. In the above example, we assumed that the presence of
the dental-hygiene programs in the years after fluoridation accounted for some of
the discrepancy between the before-fluoridation rate and the (counterfactual) rate
that would have occurred 3 years after fluoridation if fluoridation had not been
introduced.

A large portion of epidemiologic methods are concerned with avoiding or
adjusting (controlling) for confounding. Such methods inevitably rely on the
gathering and proper use of confounder measurements. The most fundamen-
tal adjustment methods rely on the notion of stratification on confounders. If
we make our comparisons within specific levels of a confounder, those compar-
isons cannot be confounded by that confounder. For example, we could limit our
before-after fluoridation comparisons to schools in states in which no dental-
hygiene program was introduced. In such schools, program introductions could
not have had an effect (because no program was present), and so any decline
following fluoridation could not be explained by effects of programs in those
schools.
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Selection Bias1.6

Selection biases are distortions that result from procedures used to select subjects,
and from factors that influence study participation. The common element of such
biases is that the relation between exposure and disease is different for those who
participate and those who should be theoretically eligible for study, including
those who do not participate. The result is that associations observed in the study
represent a mix of forces determining participation, as well as forces determining
disease.

Self-Selection Bias1.6.1

One form of such bias is self-selection bias. When the Centers for Disease Control
(CDC) investigated subsequent leukemia incidence among troops who had been
present at the Smoky Atomic Test in Nevada (Caldwell et al. 1980), 76% of the troops
identified as members of that cohort had known outcomes. Of this 76%, 82% were
traced by the investigators, but the other 18% contacted the investigators on their
own initiative in response to publicity about the investigation. This self-referral
of subjects is ordinarily considered a threat to validity, since the reasons for self-
referral may be associated with the outcome under study (Criqui et al. 1979). In
the Smoky study, there were four leukemia cases among the 0.18 × 0.76 = 15% of
cohort members who referred themselves and four among the 0.82 × 0.76 = 62%
of cohort members traced by the investigators, for a total of eight cases among the
76% of the cohort with known outcomes. These data indicate that self-selection
bias was a small but real problem in the Smoky study. If the 24% of the cohort with
unknown outcomes had a leukemia incidence like that of the subjects traced by
the investigators, we should expect that only 4(24|62) = 1.5 or about 1 or 2 cases
occurred among this 24%, for a total of only 9 or 10 cases in the entire cohort.
If, however, we assumed that the 24% with unknown outcomes had a leukemia
incidence like that of subjects with known outcomes, we would calculate that
8(24|76) = 2.5 or about 2 or 3 cases occurred among this 24%, for a total of 10 or
11 cases in the entire cohort.

Self-selectioncanalsooccurbefore subjectsare identified for study.Forexample,
it is routine to find that the mortality of active workers is less than that of the pop-
ulation as a whole (McMichael 1976; Fox and Collier 1976). This “healthy-worker
effect” presumably derives from a screening process, perhaps largely self-selection,
that allows relatively healthy people to become or remain workers, whereas those
who remain unemployed, retired, disabled, or otherwise out of the active worker
population are as a group less healthy (Wang and Miettinen 1982).

Diagnostic Bias1.6.2

Another type of selection bias occurring before subjects are identified for study is
diagnostic bias (Sackett 1979). When the relation between oral contraceptives and
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venous thromboembolism was first investigated with case-control studies of hospi-
talized patients, there was concern that some of the women had been hospitalized
with a diagnosis of venous thromboembolism because their physicians suspected
a relation between this disease and oral contraceptives and had known about oral
contraceptive use in patients who presented with suggestive symptoms (Sartwell
et al. 1969). A study of hospitalized patients with thromboembolism could lead to
an exaggerated estimate of the effect of oral contraceptives on thromboembolism
if the hospitalization and determination of the diagnosis were influenced by the
history of oral-contraceptive use.

Information Bias 1.7

Once the subjects to be compared have been identified, the information to be
compared must be obtained. Bias in evaluating an effect can occur from errors
in obtaining the needed information. Information bias can occur whenever there
are errors in the measurement of subjects, but the consequences of the errors are
different depending on whether the distribution of errors for one variable (for
example, exposure or disease) depends on the actual value of other variables.

Fordiscrete variables (variableswithonly a countablenumberofpossible values,
such as indicators for sex), measurement error is usually called classification
error or misclassification. Classification error that depends on the values of other
variables is referred to as differential misclassification. Classification error that
does not depend on the values of other variables is referred to as nondifferential
misclassification.

Differential Misclassification 1.7.1

Suppose a cohort study were undertaken to compare incidence rates of emphy-
sema among smokers and nonsmokers. Emphysema is a disease that may go
undiagnosed without unusual medical attention. If smokers, because of concern
about health-related effects of smoking or as a consequence of other health ef-
fects of smoking (such as bronchitis), seek medical attention to a greater degree
than nonsmokers, then emphysema might be diagnosed more frequently among
smokers than among nonsmokers simply as a consequence of the greater med-
ical attention. Unless steps were taken to ensure comparable follow-up, an in-
formation bias would result: A spurious excess of emphysema incidence would
be found among smokers compared with nonsmokers that is unrelated to any
biologic effect of smoking. This is an example of differential misclassification,
since the underdiagnosis of emphysema, a classification error, occurs more fre-
quently for nonsmokers than for smokers. Sackett (1979) has described it as a di-
agnostic bias, but unlike the diagnostic bias in the studies of oral contraceptives
and thromboembolism described earlier, it is not a selection bias, since it oc-
curs among subjects already included in the study. Nevertheless, the similarities
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between some selection biases and differential misclassification biases are worth
noting.

In case-control studies of congenital malformations, the etiologic information
may be obtained at interview from mothers. The case mothers have recently given
birth to a malformed baby, whereas the vast majority of control mothers have
recently given birth to an apparently healthy baby. Another variety of differential
misclassification, referred to as recall bias, can result if the mothers of malformed
infants recall exposures more thoroughly than mothers of healthy infants. It is
supposed that the birth of a malformed infant serves as a stimulus to a mother
to recall all events that might have played some role in the unfortunate outcome.
Presumably such women will remember exposures such as infectious disease,
trauma, and drugs more accurately than mothers of healthy infants, who have not
had a comparable stimulus. Consequently, information on such exposures will be
ascertained more frequently from mothers of malformed babies, and an apparent
effect, unrelated to any biologic effect, will result from this recall bias. Recall
bias is a possibility in any case-control study that uses an anamnestic response,
since the cases and controls by definition are people who differ with respect to
their disease experience, and this difference may affect recall. Klemetti and Saxen
(1967) found that the amount of time lapsed between the exposure and the recall
was an important indicator of the accuracy of recall; studies in which the average
time since exposure was different for interviewed cases and controls could thus
suffer a differential misclassification.

The bias that is caused by differential misclassification can either exaggerate
or underestimate an effect. In each of the examples above, the misclassification
serves to exaggerate the effects under study, but examples to the contrary can also
be found. Because of the relatively unpredictable effects of differential misclas-
sification, some investigators go through elaborate procedures to insure that the
misclassification will be nondifferential, such as blinding of exposure evaluations
with respect to outcome status. Unfortunately, even in situations when blinding
is accomplished or in cohort studies in which disease outcomes have not yet oc-
curred, collapsing continuous or categorical exposure data into fewer categories
can induce differential misclassification (Wacholder 1991; Flegal et al. 1991).

Nondifferential Misclassification1.7.2

Nondifferential exposure or disease misclassification occurs when the proportion
of subjectsmisclassifiedonexposuredoesnotdependondisease status,orwhen the
proportionof subjectsmisclassifiedondiseasedoesnotdependonexposure.Under
certain conditions, any bias introduced by such nondifferential misclassification
of a binary exposure or disease is predictable in direction, namely toward the null
value (Newell 1962; Keys and Kihlberg 1963; Gullen et al. 1968; Copeland et al.
1977). Contrary to popular misconceptions, however, nondifferential exposure or
disease misclassification can sometimes produce bias away from the null (Walker
and Blettner 1985; Dosemeci et al. 1990; Chavance et al. 1992; Kristensen 1992).
In particular, when both exposure and disease are nondifferentially misclassified
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but the classification errors are dependent, it is possible to obtain bias away from
the null (Chavance et al. 1992; Kristensen 1992), and the simple bias relations just
given will no longer apply. Dependent errors can arise easily in many situations,
such as in studies in which exposure and disease status are both determined from
interviews.

Because the bias from independent nondifferential misclassification of a di-
chotomous exposure is always in the direction of the null value, historically it has
not been a great source of concern to epidemiologists, who have generally con-
sidered it more acceptable to underestimate effects than to overestimate effects.
Nevertheless, such misclassification is a serious problem: The bias it introduces
may account for certain discrepancies among epidemiologic studies. Many studies
ascertain information in a way that guarantees substantial misclassification, and
many studies use classification schemes that can mask effects in a manner identical
to nondifferential misclassification.

Suppose aspirin transiently reduces risk of myocardial infarction. The word
transiently implies a brief induction period. Any study that considered as exposure
aspirin use outside of a narrow time interval before the occurrence of a myocardial
infarction would be misclassifying aspirin use: There is relevant use of aspirin,
and there is use of aspirin that is irrelevant because it does not allow the exposure
to act causally under the causal hypothesis with its specified induction period.
Many studies ask about “ever use” (use at any time during an individual’s life) of
drugs or other exposures. Such cumulative indices over an individual’s lifetime in-
evitably augment possibly relevant exposure with irrelevant exposure, and can thus
introduce a bias toward the null value through nondifferential misclassification.

In cohort studies in which there are disease categories with few subjects, inves-
tigators are occasionally tempted to combine outcome categories to increase the
number of subjects in each analysis, thereby gaining precision. This collapsing of
categories can obscure effects on more narrowly defined disease categories. For
example, Smithells and Shepard (1978) investigated the teratogenicity of the drug
Bendectin, a drug indicated for nausea of pregnancy. Because only 35 babies in
their cohort study were born with a malformation, their analysis was focused on
the single outcome, “malformation”. But no teratogen causes all malformations;
if such an analysis fails to find an effect, the failure may simply be the result of
the grouping of many malformations not related to Bendectin with those that are.
In fact, despite the authors’ claim that “their study provides substantial evidence
that Bendectin is not teratogenic in man”, their data indicated a strong (though
imprecise) relation between Bendectin and cardiac malformations. Unwarranted
assurances of a lack of effect can easily emerge from studies in which a wide range
of etiologically unrelated outcomes are grouped.

Nondifferential exposure and disease misclassification is a greater concern in
interpreting studies that seem to indicate the absence of an effect. Consequently,
in studies that indicate little or no effect, it is crucial for the researchers to con-
sider the problem of nondifferential misclassification to determine to what extent
a real effect might have been obscured. On the other hand, in studies that describe
a strong nonzero effect, preoccupation with nondifferential exposure and disease
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misclassification is rarely warranted, provided that the errors are independent.
Occasionally, critics of a study will argue that poor exposure data or a poor dis-
ease classification invalidate the results. This argument is incorrect, however, if
the results indicate a nonzero effect and one can be sure that the classification
errors produced bias towards the null, since the bias will be in the direction of
underestimating the effect.

The importance of appreciating the likely direction of bias was illustrated by
the interpretation of a study on spermicides and birth defects (Jick et al. 1981a, b).
This study reported an increased prevalence of several types of congenital disorder
among women who were identified as having filled a prescription for spermicides
during a specified interval before the birth. The exposure information was only
a rough correlate of the actual use of spermicides during a theoretically relevant
time period, but the misclassification that resulted was in all probability nondiffer-
ential and independent of errors in outcome ascertainment, because prescription
information was recorded on a computer log before the outcome was known. One
of the criticisms raised about the study was that inaccuracies in the exposure infor-
mation cast doubt on the validity of the findings (Felarca et al. 1981; Oakley 1982).
Whatever bias was present on this account, however, would not likely have led to
an underestimation of any real effect, so this criticism is inappropriate (Jick et al.
1981b).

Generally speaking, it is incorrect to dismiss a study reporting an effect simply
because there is substantial nondifferential misclassification of exposure, since an
estimate of effect without the misclassification could be even greater, provided
that the misclassification probabilities apply uniformly to all subjects. Thus, the
implications of nondifferential misclassification depend heavily on whether the
study is perceived as “positive” or “negative”. Emphasis on measurement instead
of on a qualitative description of study results lessens the likelihood for misin-
terpretation, but even so it is important to bear in mind the direction and likely
magnitude of a bias.

Misclassification of Confounders1.7.3

If a confounding variable is misclassified, the ability to control confounding in
the analysis is hampered (Greenland 1980; Brenner 1993; Marshall and Hastrup
1996). While independent nondifferential misclassification of exposure or disease
usually biases study results in the direction of the null hypothesis, independent
nondifferential misclassification of a confounding variable will usually reduce
the degree to which confounding can be controlled and thus can cause a bias in
either direction, depending on the direction of the confounding. For this reason,
misclassification of confounding factors can be a serious problem.

If the confounding is strong and the exposure-disease relation is weak or zero,
misclassification of the confounding factor can lead to extremely misleading re-
sults. For example, a strong causal relation between smoking and bladder cancer,
coupled with a strong association between smoking and coffee drinking, makes
smoking a strong confounder of any possible relation between coffee drinking and
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bladder cancer. Since the control of confounding by smoking depends on accurate
smoking information, and since some misclassification of the relevant smoking
information is inevitable no matter how smoking is measured, some residual con-
founding is inevitable (Morrison et al. 1982). The problem of residual confounding
would be even worse if the only available information on smoking were a simple
dichotomy such as “ever smoked” versus “never smoked”, since the lack of detailed
specification of smoking prohibits adequate control of confounding. The resulting
confounding is especially troublesome because to many investigators and readers
it may appear that confounding by smoking has been controlled.

Conclusions 1.8

Epidemiology is concerned with making inferences about the distribution and
causes of disease and health in human populations. One should bear in mind
that these inferences, like any scientific inference, can never be drawn with com-
plete certainty, and will often be highly tentative in light of unresolved validity
issues, such as uncontrolled confounding. The uncertainties stemming from va-
lidity issues cannot always be addressed by statistical methods; hence the pro-
cess of epidemiologic inference is a more complicated process than statistical
inference. Epidemiologic inference is further complicated by subtleties that arise
when quantifying and measuring population effects, such as the distinction be-
tween number of individuals harmed by an exposure and the excess caseload
produced by an exposure. These subtleties also cannot be addressed using or-
dinary statistical theory, and yet they can be of crucial importance in attempts
to employ epidemiologic results in decision-making contexts. The proper con-
duct and interpretation of epidemiologic research and its application in public
health requires mastery of epidemiologic concepts and methods that are out-
lined in this chapter and elucidated further in the subsequent chapters of this
handbook.
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Introduction 2.1

A major aim of epidemiologic research is to measure disease occurrence in rela-
tion to various characteristics such as exposure to environmental, occupational,
or lifestyle risk factors, genetic traits or other features. In this chapter, various
measures will be considered that quantify disease occurrence, associations be-
tween disease occurrence and these characteristics as well as their consequences
in terms both of disease risk and impact at the population level. As is common
practice, the generic term exposure will be used throughout the chapter to denote
such characteristics. Emphasis will be placed on measures based on occurrence
of new disease cases, referred to as disease incidence. Measures based on disease
prevalence, i.e., considering newly occurring and previously existing disease cases
as a whole will be considered more briefly.

We will first define the basic measure of disease incidence, namely the inci-
dence rate, from which other measures considered in this chapter can be derived.
These other measures, namely measures of disease risk, measures of association
between exposure and disease risk (e.g., relative risk), and measures of impact of
exposure-disease associations (e.g., attributable risk) will be considered succes-
sively. Additional points will be made regarding standardized incidence rates and
measures based on prevalence.

Incidence and Hazard Rates 2.2

Definition 2.2.1

The incidence rate of a given disease is the number of persons who develop the
disease (number of incident cases) among subjects at risk of developing the disease
in the source population over a defined period of time or age. Incidence rates are
not interpretable as probabilities. While they have a lower bound of zero, they
have no upper bound. Units of incidence rates are reciprocal of person-time, such
as reciprocals of person-years or multiples of person-years (e.g., 100,000 person-
years). For instance, if 10 cases develop from the follow-up of 20 subjects and for
a total follow-up time of five years, the incidence rate is 10|100 = 0.1 cases per
person-year (assuming an instantaneous event with immediate recovery and all
20 subjects being at risk until the end of the observation period).

Usually, incidence rates are assessed over relatively short time periods compared
with the time scale for disease development, e.g., intervals of five-years for chronic
diseases with an extended period of susceptibility such as many cancers.

Synonyms for incidence rate are average incidence rate, force of morbidity,
person-time rate, or incidence density (Miettinen 1976), the last term reflect-
ing the interpretation of an incidence rate as the density of incident case oc-
currences in an accumulated amount of person-time (Morgenstern et al. 1980).
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Mortality rates (overall or cause-specific) can be regarded as a special case of
incidence rates, the outcome considered being death rather than disease occur-
rence.

Incidence rates can be regarded as estimates of a limiting theoretical quantity,
namely the hazard rate, h(t), also called the incidence intensity or force of mor-
bidity. The hazard rate at time t, h(t), is the instantaneous rate of developing the
disease of interest in an arbitrarily short interval ∆ around time t, provided the
subject is still at risk at time t (i.e., has not fallen ill before time t). Technically, it
has the following mathematical definition:

h(t) = limit∆↓0∆−1 Pr(t ≤ T < t + ∆|t ≤ T) , (2.1)

where T is the time period for the development of the disease considered and Pr
denotes probability. Indeed, for time intervals in which the hazard rate can be
assumed constant, the incidence rate as defined above represents a valid estimate
of the hazard rate. Thus, this result applies when piecewise constant hazards
are assumed, which can be regarded as realistic in many applications, especially
when reasonably short time intervals are used, and leads to convenient estimating
procedures, e.g., based on the Poisson model.

Strictly speaking, incidence and hazard rates do not coincide. Hazard rates
are formally defined as theoretical functions of time whereas incidence rates are
defined directly as estimates and constitute valid estimates of hazard rates under
certain assumptions (see above). For the sake of simplicity however, we will use
the terms incidence rates and hazard rates as synonyms in the remainder of this
chapter unless a clear distinction is needed.

Estimability and Basic Principles of Estimation2.2.2

From the definitions above, it ensues that individual follow-up data are needed
to obtain incidence rates or estimate hazard rates. Alternatively, in the absence
of individual follow-up data, person-time at risk can be estimated as the time
period width times the population size at midpoint. Such estimation makes the
assumption that individuals who disappear from being at risk, either because
they succumb, or because they move in or out, do so evenly across the time
interval. Thus, population data such as registry data can be used to estimate
incidence rates as long as an exhaustive census of incident cases can be ob-
tained.

Among the main designs considered in Part I of this handbook, the cohort
design (cf. Chap. I.5) is the ideal design to obtain incidence or hazard rates for
various levels or profiles of exposure, i.e., exposure-specific incidence or hazard
rates. This is because follow-up is available on subjects with various profiles of
exposure. In many applications, obtaining exposure-specific incidence rates is not
trivial however. Indeed, several exposures are often considered, some with several
exposed levels and some continuous. Moreover, it may be necessary to account
for confounders or effect-modifiers. Hence, estimation often requires modeling.
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Methods of inference based on regression models are considered in detail in Part II
of this handbook, particularly Chaps. II.3 and II.4.

Case-control data (cf. Chap. I.6) pose a more difficult problem than cohort data
because case-control data alone are not sufficient to yield incidence or hazard
rates. Indeed, they provide data on the distributions of exposure respectively in
diseased subjects (cases) and non-diseased subjects (controls) for the disease un-
der study, which can be used to estimate odds ratios (see Sect. 2.4.3) but are not
sufficient to estimate exposure-specific incidence rates. However, it is possible to
arrive at exposure-specific incidence rates from case-control data if case-control
data are complemented by either follow-up or population data, which happens for
nested or population-based case-control studies. In a nested case-control study,
the cases and controls are selected from a follow-up study. In a population-based
case-control study, they are selected from a specified population in which an
effort is made to identify all incident cases diagnosed during a fixed time inter-
val, usually in a grouped form (e.g., number of cases and number of subjects by
age group). In both situations, full information on exposure is obtained only for
cases and controls. Additionally, complementary information on composite inci-
dence (i.e., counts of events and person-time) can be sought from the follow-up
or population data. By combining this information with odds ratio estimates,
exposure-specific incidence rates can be obtained. This has long been recog-
nized (Cornfield 1951, 1956; MacMahon 1962; Miettinien 1974, 1976; Neutra and
Drolette 1978) and is a consequence of the relation (Miettinen 1974; Gail et al.
1989):

h0 = h∗(1 − AR) , (2.2)

where AR is the attributable risk in the population for all exposures considered,
a quantity estimable from case-control data (see Sect. 2.5.1), h0 is the baseline
incidence rate, i.e., the incidence rate for subjects at the reference (unexposed)
level of all exposures considered and h∗ is the composite or average incidence
rate in the population that includes unexposed subjects and subjects at various
levels of all exposures (i.e., with various profiles of exposure). The composite
incidence rate h∗ can be estimated from the complementary follow-up or pop-
ulation data. Equation (2.2) simply states that the incidence rate for unexposed
subjects is equal to the proportion of the average incidence rate in the popula-
tion that is not associated with any of the exposures considered. Equation (2.2)
can be specialized to various subgroups or strata defined by categories of age,
sex or geographic location such as region or center, on which incidence rates
are assumed constant. From the baseline rate h0, incidence rates for all lev-
els or profiles of exposure can be derived using odds ratio estimates, provided
odds ratio estimates are reasonable estimates of incidence rate ratios as in the
case of a rare disease (see Sect. 2.4). Consequently, exposure-specific incidence
rates can be obtained from case-control data as long as they are complemented
by follow-up or population data that can be used to estimate average incidence
rates.
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Example 1 . Exposure-specific incidence rates of breast cancer were obtained
based on age as well as family history in first-degree relatives, re-

productive history (i.e., age at menarche and age at first live birth), and history
of benign disease from the Breast Cancer Detection and Demonstration Project
(BCDDP). The BCDDP combined the prospective follow-up of 284,780 women
over five years, and a nested case-control study (Gail et al. 1989) with about 3000
cases and 3000 controls. For each five-year age group from ages 35 to 79 years,
composite incidence rates were obtained from the follow-up data. In age groups
40–44 and 45–49 years, 162 and 249 new cases of breast cancer developed from
the follow-up of 79,526.4 and 88,660.7 person-years, yielding composite incidence
rates of 203.7 and 280.8 per 105 person-years, respectively. For all women less than
50 years of age, the attributable risk for family history, reproductive history and
history of benign breast disease was estimated at 0.4771 from the nested case-
control data (see Sect. 2.5.1). By applying (2.2), baseline incidence rates for women
at the reference level of all these factors were 203.7 × (1 − 0.4771) = 106.5 and
280.8 × (1 − 0.4771) = 146.8 per 105 person-years, respectively. For a nulliparous
woman of age 40, with menarche at age 12, one previous biopsy for benign breast
disease, and no history of breast-cancer in her first-degree relatives, the corre-
sponding odds ratio was estimated at 2.89 from logistic regression analysis of the
nested case-control data (see Sect. 2.4.6), yielding an exposure-specific incidence
rate of 106.5 × 2.89 = 307.8 per 105 person-years. For a 45-year old woman with
the same exposure profile, the corresponding exposure-specific incidence rate was
146.8 × 2.89 = 424.3 per 105 person-years. �

Finally, cross-sectional data cannot provide any assessment of incidence rates
but instead will yield estimates of disease prevalence proportions as discussed in
Sect. 2.6 of this chapter.

Relation with Other Measures2.2.3

The reason why exposure-specific incidence or hazard rates are central quantities
is that, once they are available, most other quantities described in this chapter can
be obtained from them, namely measures of disease risk, measures of association
between exposure and disease risk, and measures of exposure impact in terms
of new disease burden at the population level. However, it should be noted that
measures of impact as well as some measures of association (i.e., odds ratios) can
be estimated from case-control data alone without relying on exposure-specific
incidence rates (see Sects. 2.3 and 2.4). Moreover, cross-sectional data can yield
estimates of measures of association and impact with respect to disease prevalence
(see Sect. 2.6.2).
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Measures of Disease Risk 2.3

Definition 2.3.1

Disease risk is defined as the probability that an individual who is initially disease-
free will develop a given disease over a specified time or age interval (e.g., one year
or lifetime). Of all incidence and risk measures, this measure is probably the one
most familiar and interpretable to most consumers of health data.

If the interval starting at time a1 and ending just before time a2, i.e., [a1, a2), is
considered, disease risk can be written formally as:

π(a1, a2) =

a2∫
a1

h(a){S(a)|S(a1)}da . (2.3)

In (2.3), h(a) denotes the disease hazard at time or age a (see Sect. 2.2). The
function S(·), with (·) an arbitrary argument, is the survival function, so that S(a)
denotes the probability of still being disease-free at time at age a, and S(a)|S(a1)
denotes the conditional probability of staying disease-free up to time or age a
for an individual who is free of disease at the beginning of the interval [a1, a2).
Equation (2.3) integrates over the interval [a1, a2) the instantaneous incidence rate
of developing disease at time or age a for subjects still at risk of developing the
disease (i.e., subjects still disease-free). Because the survival function S(·) can be
written as a function of disease hazard through:

S(a2)|S(a1) = exp

⎧⎨⎩−

a2∫
a1

h(a)da

⎫⎬⎭ , (2.4)

disease risk is also a function of disease hazard.
By specializing the meaning of functions h(·) and S(·), various quantities can

be obtained that measure disease risk in different contexts. First, the time scale
on which these functions as well as disease risk are defined corresponds to two
specificusesof risk. Inmost applications, the relevant timescale is age, sincedisease
incidence is influenced by age in most applications. Note that by considering the
age interval [0, a2), one obtains lifetime disease risk up to age a2. However, in
clinical epidemiology settings, risk refers to the occurrence of an event, such as
relapse or death in subjects already presenting with the disease of interest. In this
context, the relevant time scale becomes time from disease diagnosis or, possibly,
time from some other disease-related event, such as a surgical resection of a tumor
or occurrence of a first myocardial infarction.

Second, risk definition may account or not for individual exposure profiles. If no
risk factors are considered to estimate disease hazard, the corresponding measure
of disease risk defines the average or composite risk over the entire population
that includes subjects with various exposure profiles. This measure, also called
cumulative incidence (Miettinen 1976), may be of value at the population level.
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However, the main usefulness of risk is in quantifying an individual’s predicted
probability of developing disease depending on the individual’s exposure profile.
Thus, estimates of exposure-specific disease hazard have to be available for such
exposure-specific risk (also called individualized or absolute risk) to be estimated.

Third, the consideration of competing risks and the corresponding definition of
the survival function S(·) yields two separate definitions of risk. Indeed, although
risk is defined with respect to the occurrence of a given disease, subjects can
die from other causes (i.e., competing risks), which obviously precludes disease
occurrence. The first option is to define S(a) as the theoretical probability of
being disease-free at time or age a if other causes of death (competing risks) were
eliminated yielding a measure of disease risk in a setting with no competing risks.
This measure may not be of much practical value. Moreover, unless unverifiable
assumptions regarding incidence of the disease of interest and deaths from other
causes can be made, for instance assuming that they occur independently, the
function S(·) will not be estimable. For these reasons, it is more feasible to define
S(a) as the probability that an individual will be alive and disease-free at age a
as the second option, yielding a more practical definition of disease risk as the
probability of developing disease in the presence of competing causes of death (see
Sect. 2.3.5).

From the definition of disease risk above, it appears that disease risk depends
on the incidence rate of disease in the population considered and can also be
influenced by the strength of the relationship between exposures and disease if
individual risk is considered. One consequence is that risk estimates may not be
portable from one population to another, as incidence rates may vary widely among
populations that are separated in time and location or even among subgroups of
populations, possibly because of differing genetic patterns or differing exposure to
unknown risk factors. Additionally, competing causes of death (competing risks)
may also have different patterns among different populations, which might also
influence values of disease risk.

Range2.3.2

Disease risk is a probability and therefore lies between 0 and 1, and is dimension-
less. A value of 0 while theoretically possible would correspond to very special
cases such as a purely genetic disease for an individual not carrying the disease
gene. A value of 1 would be even more unusual and might again correspond to
a genetic disease with a penetrance of 1 for a gene carrier but, even in this case,
the value should be less than 1 if competing risks are accounted for.

Synonyms2.3.3

Beside the term “disease risk”, “absolute risk” or “absolute cause-specific risk”
have been used by several authors (Dupont 1989; Benichou and Gail 1990a, 1995;
Benichou 2000a; Langholz and Borgan 1997). Alternative terms include “individ-
ualized risk” (Gail et al. 1989), “individual risk” (Spiegelman et al. 1994), “crude
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probability” (Chiang 1968), “crude incidence” (Korn and Dorey 1992), “cumulative
incidence” (Gray 1988; Miettinen 1976), “cumulative incidence risk” (Miettinen
1974) and “absolute incidence risk” (Miettinen 1976).

The term “cumulative risk” refers to the quantity
∫ a2

a1
h(a)da and approximates

disease risk closely in the case where disease is rare.
The term “attack rate” defines the risk of developing a communicable disease

during a local outbreak and for the duration of the epidemic or the time during
which primary cases occur (MacMahon and Pugh 1970, Chap. 5; Rothman and
Greenland 1998, Chap. 27).

The term “floating absolute risk”, introduced by Easton et al. (1991), refers to
adifferent concept fromdisease risk. Itwasderived to remedy the standardproblem
that measures of association such as ratios of rates, risks or odds are estimated in
reference to a baseline group, which causes their estimates for different levels of
exposure to be correlated and may lead to lack of precision if the baseline group is
small. The authors proposed a procedure to obtain estimates unaffected by these
problems and used the term “floating absolute risk” to indicate that standard
errors were not estimated in reference to an arbitrary baseline group.

Interpretation and Usefulness 2.3.4

If exposure profiles are not taken into account, the resulting average risk has
little usefulness in disease prediction. Average risk estimates may be useful only
for diseases for which no risk factors have been identified. Otherwise, they only
provide overall results such as “one in nine women will develop breast cancer at
sometime during her life” (American Cancer Society 1992), which are of no direct
use in quantifying the risk of women with given exposure profiles and no direct
help in deciding on preventive treatment or surveillance measures.

Upon taking individual exposure profiles into account, resulting individual
disease risk estimates become useful in providing an individual measure of the
probability of disease occurrence, and can therefore be useful in counseling. They
are well suited to predicting risk for an individual, unlike measures of association
that quantify the increase in the probability of disease occurrence relative to
subjects at the baseline level of exposure, but do not quantify that probability itself.

Individual risk has been used as a tool for individual counseling in breast
cancer (Benichou et al. 1996; Gail and Benichou 1994; Hoskins et al. 1995). Indeed,
a woman’s decision to take a preventive treatment such as Tamoxifen (Fisher et al.
1998; Wu and Brown 2003) or even undergo prophylactic mastectomy (Hartman
et al. 2001; Lynch et al. 2001) depends on her awareness of the medical options,
on personal preferences, and on individual risk. A woman may have several risk
factors, but if her individual risk of developing breast cancer over the next 10 years
is small, she may be reassured and she may be well advised simply to embark
on a program of surveillance. Conversely, she may be very concerned about her
absolute risk over a longer time period, such as 30 years, and she may decide to
use prophylactic medical treatment or even undergo prophylactic mastectomy if
her absolute risk is very high.



98 Jacques Benichou, Mari Palta

Estimates of individual risk of breast cancer are available based on age, fam-
ily history, reproductive history and history of benign disease (Gail et al. 1989;
Costantino et al. 1999) and were originally derived from the BCDDP that com-
bined a follow-up study and a nested case-control study (Gail et al. 1989). This
example illustrates that not only exposures or risk factors per se (such as family
history) may be used to obtain individual risk estimates but also markers of risk
such as benign breast disease which are known to be associated with an increase
in disease risk and may reflect some premalignant stage. In the same fashion, it
has been suggested to improve existing individual risk estimates of breast cancer
by incorporating mammographic density, a risk marker known to be associated
with increased breast cancer risk (Benichou et al. 1997). In the cardiovascular field,
individual risk estimates of developing myocardial infarction, developing coronary
heart disease, dying from coronary heart disease, developing stroke, developing
cardiovascular disease, and dying from cardiovascular disease were derived from
the Framingham heart and Framingham offspring cohort studies. These estimates
are based on age, sex, HDL, LDL and total cholesterol levels, smoking status, blood
pressure and diabetes history (Anderson et al. 1991).

Individual risk is also useful in designing and interpreting trials of interventions
to prevent the occurrence of a disease. At the design stage, disease risk may be
used for sample size calculations because the sample sizes required for these
studies depend importantly on the risk of developing the disease during the period
of study and the expected distribution of exposure profiles in the study sample
(Anderson et al. 1992). Disease risk has also been used to define eligibility criteria
in such studies. For example, women were enrolled in a preventive trial to decide
whether the drug Tamoxifen can reduce the risk of developing breast cancer (Fisher
et al. 1998). Because Tamoxifen is a potentially toxic drug and because it was to be
administered to a healthy population, it was decided to restrict eligibility to women
with somewhat elevated absolute risks of breast cancer. All women over age 59 as
well as younger women whose absolute risks were estimated to equal or exceed
that of a typical 60-year old woman were eligible to participate (Fisher et al. 1998).
Individual risk has been used to interpret results of this trial through a risk-benefit
analysis in order to help define which women are more likely to benefit from using
Tamoxifen. Women were identified, who had a decrease in breast cancer risk and
other events such as hip fracture from using Tamoxifen surpassing the Tamoxifen-
induced increase in other events such as endometrial cancer, pulmonary embolism
or deep vein thrombosis (Gail et al. 1999).

Disease risk can also be important in decisions affecting public health. For
example, in order to estimate the absolute reduction in lung cancer incidence
that might result from measures to reduce exposure to radon, one could cate-
gorize a general population into subgroups based on age, sex, smoking status
and current radon exposure levels and then estimate the absolute reduction in
lung cancer incidence that would result from lowering radon levels in each sub-
group (Benichou and Gail 1990a; Gail 1975). Such an analysis would complement
estimation of population attributable risk or generalized impact fractions (see
Sect. 2.5).



Rates, Risks, Measures of Association and Impact 99

The concept of risk is also useful in clinical epidemiology as a measure of the
individualized probability of an adverse event, such as a recurrence or death in
diseased subjects. In that context, risk depends on factors that are predictive of
recurrence or death, rather than on factors influencing the risk of incident disease,
and the time-scale of interest is usually time from diagnosis or from surgery rather
than age. It can serve as a useful tool to help define individual patient management
and, for instance, the absolute risk of recurrence in the next three years might
be an important element in deciding whether to prescribe an aggressive and
potentially toxic treatment regimen (Benichou and Gail 1990a; Korn and Dorey
1992).

Properties 2.3.5

Two main points need to be emphasized. First, as is evident from its definition,
disease risk can only be estimated and interpreted in reference to a specified
age or time interval. One might be interested in short time spans (e.g., five
years), or long time spans (e.g., 30 years). Of course, disease risk increases as
the time span increases. Sometimes, the time span is variable such as in lifetime
risk.

Disease risk can be influenced strongly by the intensity of competing risks
(typically competing causes of death, see above). Disease risk varies inversely as
a function of death rates from other causes.

Estimability 2.3.6

It follows from its definition that disease risk is estimable as long as hazard rates for
the disease (or event) of interest are estimable. Therefore, disease risk is directly
estimable from cohort data, but case-control data have to be complemented with
follow-up or population data in order to obtain the necessary complementary
information on incidence rates (see Sect. 2.2.2).

It has been argued above (see Sect. 2.3.1) that disease risk is a more use-
ful measure when it takes into account competing risks, that is the possibil-
ity for an individual to die of an unrelated disease before developing the dis-
ease (or disease-related event) of interest. In this setting, disease risk is de-
fined as the probability of disease occurrence in the presence of competing risks,
which is more relevant for individual predictions and other applications dis-
cussed above than the underlying (or “net” or “latent”) probability of disease
occurrence in the absence of competing risks. Moreover, disease risk is identifi-
able without any unverifiable competing risk assumptions in this setting, such
as the assumption that competing risks act independently of the cause of in-
terest because, as Prentice et al. (1978) emphasize, all functions of the disease
hazard rates are estimable. Death rates from other causes can be estimated ei-
ther internally from the study data or from external sources such as vital statis-
tics.
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Example 1. (continued)
In order to obtain estimates of breast cancer risk in the presence of

competing risks, Gail et al. (1989) used 1979 United States (US) mortality rates from
year 1979 for all causes except breast cancer to estimate the competing risks with
more precision than from the BCDDP follow-up data. In age groups 40–44 and 45–
49 years, these death rates were 153.0 and 248.6 per 105 person-years, respectively,
hence of the same order of magnitude as breast cancer incidence rates. In older
age groups, these death rates were much higher than breast cancer incidence rates,
thus strongly influencing breast cancer risk estimates for age intervals including
these age groups. For instance, death rates from causes other than breast cancer
were 1017.7 and 2419.8 per 105 person-years in age groups 65–69 and 70–74 years,
respectively, whereas average incidence rates of breast cancer were 356.1 and 307.8
per 105 person-years in these age groups, respectively. �

Estimation from Cohort Studies2.3.7

Estimation of disease risk rests on estimating disease incidence and hazard rates,
a topic also addressed in Part II of this handbook. Several approaches have been
worked out fully for disease risk estimation. A brief review of these approaches is
given here starting with average risk estimates that do not take exposure profiles
into account and continuing with exposure-specific estimates.

Estimates of Average Disease Risk
The density or exponential method (Miettinen 1976; Kleinbaum et al. 1982, Chap. 6;
RothmanandGreenland 1998,Chap. 3) relies on subdividing the timeor age scale in
successive time or age intervals I1, … , Ii, … , II (e.g., one- or five-year intervals) on
which the rate of disease incidence is assumed constant (i.e., piecewise constant).
Disease riskover timeorage interval [a1, a2), that is theprobability foran individual
to experience disease occurrence over interval [a1, a2) is taken as one minus the
probability of staying disease-free through the successive intervals included in
[a1, a2). Assuming thatdisease is rareoneachof the successive intervals considered,
disease risk can be estimated as:

π̂(a1, a2) = 1 − exp

(
−
∑

i

ĥi∆i

)
. (2.5)

The sum is taken over all intervals included in [a1, a2). Notation ∆i denotes the
width of interval i, whereas ĥi denotes the incidence rate in interval i, obtained as
the ratio of the number of incident cases over the person-time accumulated during
follow-up in that interval.

While (2.5) is simple to apply, its validity depends on several assumptions.
The assumption that disease incidence is constant over each time or age interval
considered makes it a parametric approach. However, if intervals are small enough,
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this will not amount to a strong assumption. Moreover, it relies on the assumption
that disease incidence is small on each interval. If this is not the case, a more
complicated formula will be needed. Finally, this approach ignores competing
risks.

Benichou and Gail (1990a) generalized this approach by lifting the condition
on small incidence on each interval and allowing competing risks to be taken into
account. They derived a generalized expression for the estimate of disease risk over
time or age interval [a1, a2) as:

π̂(a1, a2) =
∑

i

ĥ1i

ĥ1i + ĥ2i

[
1 − exp

{
−
(

ĥ1i + ĥ2i

)
∆i

}]
A(i) , (2.6)

with A(i) =
∏
j<i

exp
{

−
(

ĥ1j + ĥ2j

)
∆j

}
.

In (2.6), the sum is taken over all intervals included in [a1, a2), ∆i denotes the width
of interval i, ĥ1i denotes the disease incidence rate in interval i, ĥ2i the death rate
from other causes in interval i, and the product in A(i) is taken over time intervals
in [a1, a2) from the first one to the one just preceding interval i. Death rates can
be obtained in a similar fashion as disease incidence rates. It should be noted that
disease risk can be estimated for a much longer duration than the actual follow-up
of individuals in the study if age is the time scale (open cohort) provided there is
no secular trend in disease incidence.

Variance estimates were derived by Benichou and Gail (1990a). Moreover, based
on simulations of a closed cohort, they found that resulting confidence intervals
have satisfactory coverage, especially with the log transformation, and observed
little or no bias on risk estimates with a sufficient number of intervals even when
disease incidence varied sharply with time.

The actuarial method or life table method (Cutler and Ederer 1958; Elveback
1958; Fleiss et al. 1976; Kleinbaum et al. 1982, Chap. 6; Rothman and Greenland
1998, Chap. 3) shares similarities with the density method, although it was derived
from a less parametric viewpoint. As with the density method, time is split into
intervals. In each time interval i, the probability for an individual who is disease-
free at the beginning of the interval to stay disease-free throughout the interval
is estimated. Disease risk is obtained as one minus the estimated probability of
staying disease-free throughout the successive time intervals included in [a1, a2)
as:

π̂(a1, a2) = 1 −
∏

i

(ni − wi|2 − di)

(ni − wi|2)
, (2.7)

where the product is taken over all intervals included in [a1, a2), ni denotes the
number of disease-free subjects at the beginning of interval i, di the number of
incident cases occurring in interval i, and wi the number of subjects either lost to
follow-up or dying from other causes (competing risks) in interval i. The actuarial
approach is most appropriate when grouped data are available and the actual
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follow-up of each individual in each interval is not known. The person-years of
follow-up for subjects lost to follow-up or affected with competing risks in interval i
is not used directly but, if one assumes that the mean withdrawal time occurs at the
midpoint of the interval, then the denominator in each product term of (2.7) can
be regarded as the effective number of persons at risk of developing the disease
in the corresponding interval. Namely, it represents the number of disease-free
persons that would be expected to produce di incident cases if all persons could
be followed for the entire interval (Elandt-Johnson 1977; Kleinbaum et al. 1982,
Chap. 6; Littell 1952). The actuarial method can be regarded as a refinement of the
simple cumulative method (Kleinbaum et al. 1982, Chap. 6) that ignores quantity wi

and simply estimates disease risk as the number of individuals who contract the
disease, dividedby the total number in the cohort, or exposure subgroup of interest.
The actuarial method is preferable to this direct method because, in practice, it
is rare that a large enough cohort can be followed over a long enough time to
reliably estimate the risk of disease by this simple method. Moreover, the simple
cumulative method cannot handle the case when subjects are followed for varying
lengths of time, which often occurs because subjects can be enrolled at different
times whereas the follow-up ends at the same time for all subjects.

As shown by several authors (Cutler and Ederer 1958; Fleiss et al. 1976), the
actuarial method results in biased estimates of risk even in the unlikely and most
favorable event (in terms of bias) of all withdrawals occurring at the interval
midpoints. Alternative approaches based on different choices of the quantity to
subtract from ni (i.e., choices different from wi|2) are not subject to less bias,
however (Elandt-Johnson 1977). The problem can be best handled by using narrow
intervals but this is done at the expense of a larger random error (i.e., less precise
estimates of risk).

Compared to the density method ((2.5) and (2.6)), the actuarial method has
the advantage of not requiring knowledge of individual follow-up times in each
interval but only knowledge of the number at risk at the beginning of the interval
and the number of withdrawals. The density method could be used however
without knowledge of follow-up time by assigning a follow-up time of half the
interval width to subjects who are lost to follow-up, develop disease or die from
other causes, in an analogous fashion as with the actuarial method (Benichou and
Gail 1990a). The actuarial method requires neither the assumption of constant
incidence rate nor rarity of disease incidence on all time intervals. However, bias
is less of a problem with the density than the actuarial method and the density
method applies naturally to open cohorts and extends easily to risk estimates that
take exposure profiles into account (see below).

When individual follow-up times are all known, a fully nonparametric risk
estimate can be obtained in the spirit of the Kaplan–Meier estimate of survival
(Kaplan and Meier 1958; see also Chap. II.4 of this handbook). Disease risk is
estimated through summation on all distinct times in [a1, a2) at which new disease
cases occur (Aalen and Johansen 1978; Kay and Schumacher 1983; Gray 1988;
Matthews 1988; Keiding and Andersen 1989; Benichou and Gail 1990a; Korn and
Dorey 1992). Corresponding variance estimates were derived (Aalen 1978; Aalen
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and Johansen 1978; Keiding and Andersen 1989; Benichou and Gail 1990a; Korn
and Dorey 1992) from which confidence intervals can be obtained, based on the
log transformation as suggested by Benichou and Gail (1990a) and Keiding and
Andersen (1989), or based on the approach of Dorey and Korn (1987).

Upon comparing the generalized density method (see (2.6)) and the nonpara-
metric method, Benichou and Gail (1990a) showed that the loss of efficiency of the
nonparametric method is small compared to the density method. Moreover, the
nonparametric method yields little bias in risk estimates as well nearly nominal
coverage for confidence intervals of risk with the log transformation. Nominal cov-
erage refers to the theoretical probability of a confidence interval to cover the true
parameter and may be assessed using simulations (i.e., a 95% confidence interval
will be said to have nominal coverage if it does include the true parameter value in
95% of the cases). Hence, properties of the generalized density and nonparametric
methods agree closely. However, the generalized density method has the advantage
of simplicity of computation and is better suited to open cohorts.

Estimates of Exposure-specific Disease Risk
In order to obtain risk estimates that depend on exposure profiles, the cohort
could be subdivided into subcohorts based on exposure levels and the methods
above applied to these subcohorts. However, this approach would be impractical
because it would yield risk estimates with very low precision. In order to remedy
this problem, a natural approach to incorporate exposures is to model incidence
rates through regression models.

BenichouandGail (1990a)proposedadirect extensionof thegeneralizeddensity
method (2.6). This extension is based on assuming that the disease hazard rate
on each time or age interval i is the product of a constant baseline hazard rate
for subjects at the reference level of exposure in interval i and a function of the
various exposures. The corresponding parameters, i.e., baseline hazard rates and
hazard ratio parameters for exposure can be jointly estimated by maximizing
the piecewise exponential likelihood, which is equivalent to the usual Poisson
likelihood for the analysis of cohort data (Holford 1980; Laird and Oliver 1981).
Corresponding variance estimates are available (Benichou and Gail 1990a). In
simulations, risk estimates appeared subject to little bias, variance estimates were
also little biased and coverage of confidence intervals was nearly nominal, except
for the exposure profiles with very few subjects (Benichou and Gail 1990a). Other
parametric approaches were considered to obtain risk estimates of cardiovascular
events from the Framingham studies (Anderson et al. 1991). Semi-parametric
estimators of risk were also derived (Benichou and Gail 1990a). In contrast with
the previous approach where a piecewise exponential or Poisson distribution is
assumed, the baseline disease hazard rate is expressed as an unspecified function
of time or age rather than a constant, which corresponds to the semi-parametric
Cox regression model (Cox 1972). Risk estimates are obtained as functions of
the partial likelihood estimates (Cox 1975) of hazard ratio parameters and related
Nelson-Aalen estimatesof cumulativebaselinehazards (Borgan 1998). Fromresults
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in Tsiatis (1981) and Andersen and Gill (1982) on the joint distribution of these
parameter estimates, Benichou and Gail (1990a) derived an asymptotic variance
estimator.

Regression based methods appear well suited for estimating exposure-specific
disease risk and are therefore useful for the purpose of individual prediction.
Compared to the semi-parametric approach, the generalized density method ap-
pears easier to implement while providing a good compromise between bias and
precision.

Estimation from Population-based
or Nested Case-Control Studies2.3.8

As discussed above, whereas disease risk is directly estimable from cohort data,
case-control data have to be complemented with follow-up or population data in
order to obtain the necessary information on incidence rates. If such complemen-
tary data are available, exposure-specific incidence rates and exposure-specific
disease risk can be estimated. All approaches proposed in the literature rely on
regression methods.

The Hybrid Approach
This approach relies on the assumption of piecewise constant incidence rates and
on (2.2) to obtain baseline incidence rates in strata defined by factors such as
age, sex, race or geographic area (see Sect. 2.2.2). Odds ratio estimates are then
combined with baseline incidence rates to arrive at exposure-specific incidence
rates (see Sect. 2.2.2). Applying (2.6) to these rates and death rates from competing
causes, disease risk estimates can be obtained for desired time intervals. This
approach has been used in practice to obtain individual risks of breast cancer by
Gail et al. (1989) (see Example 1 below). Resulting disease risk estimates can be
termed estimates of individual breast cancer risk since they depend on age and
individual exposure profile (216 profiles were considered overall). The approach
can be seen as a multivariate extension of earlier work by Miettinen (1974). It has
been termed a hybrid approach (Benichou 2000a) since it relies on two models,
namely the piecewise exponential model that underlies the density method (i.e.,
constant incidence by age group) and the logistic model used to obtain odds ratio
estimates from the nested case-control data (see Sect. 2.4.6). It can be applied to
population-based case-control data with no individual follow-up of subjects in
a similar manner as to nested case-control data, as discussed and illustrated for
bladder cancer by Benichou and Wacholder (1994) (see Example 2 below).

Variance estimators for risk estimates are complex since exposure-specific in-
cidence rate estimates involve odds ratio parameters obtained through logistic re-
gression from the case-control data and counts of incident cases from the follow-up
or population data. Estimators of variances and covariances of age- and exposure-
specific incidence rates that take into account all sources of variability have been
fully worked out for various sampling schemes regarding control selection in the
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general case (Benichou and Gail 1990a) and specifically to account for the special
features of the BCDDP data (Benichou and Gail 1995). Simulations tailored to the
BCDDP data showed a small upward bias in risk estimates due to the small upward
bias incurred by using odds ratios to estimate hazard ratios when the rare-disease
assumption appeared questionable. Variance estimates had very little bias and
yielded confidence intervals with near nominal coverage. Coverage was improved
with the logit transformation.

Example 1. (continued)
Applying (2.6) to exposure-specific incidence rates of breast cancer

estimated from the BCDDP data (see Sect. 2.2.2) and death rates from other causes
estimated from US mortality data (see Sect. 2.3.6), risk estimates of breast cancer
can be obtained. For instance, the 10-year risk of developing breast cancer between
ages 40 and 50 years for a woman initially free of breast cancer at age 40 years
and with the exposure profile considered in Sect. 2.2.2 (i.e., nulliparous woman
with menarche at age 12 years, one previous biopsy for benign breast disease,
and no history of breast cancer in her first-degree relatives) is obtained as a sum
of two terms. The first term π̂1, corresponding to age interval 40–44, is obtained
from (2.6) as:

π̂1 =
307.8 ×10−5

307.8 ×10−5 + 153.0 ×10−5

[
1 − exp

{
−5
(
307.8 ×10−5 + 153.0 ×10−5

)}]
= 0.0152 .

The second term π̂2, corresponding to age interval 45–49, is obtained from (2.6)
as the product of the probability of developing breast cancer in age interval 45–49
times the probability of having stayed free of breast cancer and not died from other
causes in age interval 40–44:

π̂2 =
424.3 ×10−5

424.3 ×10−5 + 248.6 ×10−5

[
1 − exp

{
−5
(
424.3 ×10−5 + 248.6 ×10−5

)}]
× exp

{
−5
(
307.8 ×10−5 + 153.0 ×10−5

)}
= 0.0204 .

Thus, the 10-year risk of developing breast cancer is obtained as the sum 0.0152 +
0.0204 = 0.0356, or 3.6%. The corresponding 95% confidence interval based on
taking all sources of variability into account can be estimated as 3.0% to 4.2%
through computations described in Benichou and Gail (1995). Breast cancer risk
estimates can be obtained for all age intervals in the range 20–80 years and all
216 exposure profiles including the profile considered above. This whole approach
to individual breast cancer risk estimation is known as the “Gail model” and
has enjoyed widespread use in individual counseling, designing and interpreting
prevention trials. Practical implementation has been greatly facilitated by the
development of graphs (Benichou et al. 1996) as well as a computer program
(Benichou 1993a) and its modified version that is available on the US National
Cancer Institute web site at http:||bcra.nci.nih.gov|brc|. �
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Example 2 . In the year 1978, incident cases of bladder cancer were identified
through 10 cancer registries in the United States. For instance, 32 in-

cident cases were identified among white males aged 45–64 years whose population
numbered 97,420 individuals. Assuming that this population remained constant
throughout the year 1978, these data yielded an average incidence rate of 32.8
per 105 person-years. The National Bladder Cancer Study was a population-based
case-control study conducted at the ten cancer registries. Incident cases aged 21–84
years were selected from the registries. Controls aged 21–84 years were selected
from telephone sampling or Health Care Financing Administration rosters and
frequency-matched to cases on geographic area, age and sex. Based on case-control
data from two states (Utah and New Jersey) and one large city (Atlanta), odds ratios
were estimated for smoking status (never smoker, ex-smoker, current light smoker,
current heavy smoker) and occupational exposure to carcinogens (yes, no) using
logistic regression (see Sect. 2.4.6). Moreover, the attributable risk for smoking
and occupational exposure was estimated for white males in each of the nine strata
resulting from the three areas and three age groups (i.e., 21–44, 45–64 and 65+
years) (see Sect. 2.5.1). Among white males aged 45–64 years in Utah, it was esti-
mated at 54.0%, yielding a baseline incidence rate of 32.8 × (1 − 0.540) = 15.1 per
105 person-years. The odds ratios for current heavy smokers (≥ 20 cigarettes per
day) and occupational exposure were estimated at 2.9 and 1.6. Hence, among white
males aged 45–64 years inUtah, exposure-specific incidence rates were estimated at
15.1 × 1.6 = 24.1 per 105 person-years for never smokers with a history of occupa-
tional exposure, and 15.1×2.9×1.6 = 69.8 per 105 person-years for current heavy
smokers with a history of occupational exposure assuming a multiplicative effect
of smoking and occupational exposure (and allowing for rounding error). From
these exposure-specific incidence rates, estimates of the risk of bladder cancer over
specified age intervals could be derived, using (2.6). �

Other Parametric Approaches
A pseudo-likelihood approach also relying on the assumption on piecewise con-
stant incidence (i.e., piecewise exponential model) has been proposed as an alter-
native to the hybrid approach (Benichou and Wacholder 1994). In each stratum
separately, observed distributions of exposure in the cases and controls are applied
to counts of incident cases and person-time to obtain respective expected numbers
of incident cases and of person-time per stratum and exposure level. Then, baseline
incidence rates and hazard ratios are jointly estimated from these expected quan-
tities under a piecewise exponential model. Joint estimation proceeds from maxi-
mizing the likelihood corresponding to this model. Since this likelihood includes
expected rather than observed counts, it is termed a pseudo-likelihood. Thus, the
procedure includes two steps. In the first step, expected numbers of incident cases
and person-time per exposure and stratum are calculated. Then, the parameters of
interest (i.e., stratum-specific baseline incidence rates and hazard ratios) are esti-
mated from these expected counts through maximizing a pseudo-likelihood. This
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approach is easy to implement, as was illustrated on population-based case-control
data of bladder cancer.

Example 2. (continued)
Amongwhitemales aged 45–64 years and inall other strata separately,

observed proportions of cases (respectively controls) with given joint level of
smoking and occupational exposure among the eight (four times two) joint levels
considered were applied to counts of incident cases (respectively person-time) to
obtain expectedcountsby stratumand joint exposure level.Namely, theproductsof
the counts by the observed proportions were formed. Using these expected counts,
a pseudo-likelihood based on the piecewise exponential model was maximized
yielding estimates of relative hazards and stratum-specific baseline incidence rates.
For instance, the baseline incidence rate for white males aged 45–64 years in Utah
was estimated at 13.7 per 105 person-years and relative hazards for current heavy
smoking and occupational exposure were estimated at 2.9 and 1.5, respectively.
Hence, among white males aged 45–64 years in Utah, exposure-specific incidence
rates were estimated at 13.7 × 1.5 = 20.6 per 105 person-years for never smokers
with a history of occupational exposure, and 13.7 × 2.9 × 1.5 = 61.9 per 105

person-years for current heavy smokers with a history of occupational exposure
still assuming a multiplicative effect of smoking and occupational exposure (and
allowing for rounding error). �

A full likelihood approach has also been proposed based on the piecewise
exponential model (Benichou and Wacholder 1994). All parameters (i.e., baseline
rates, hazard ratios and conditional probabilities for the distribution of exposure
in the cases and controls) are estimated jointly through maximizing a likelihood
involving all parameters. This approach may prove intractable in practice except in
simple situations with few exposure levels considered. A full likelihood approach
based on the logistic model (Greenland 1981) appears much easier to implement.
Baseline incidence rates are obtained by simply adding to the stratum parameter
estimates from the logistic model a term corresponding to the logarithm of the
ratio of sampling fractions among cases and controls in the stratum (Greenland
1981; Prentice and Pyke 1979; also similar to discussion of (2.8) in Sect. 2.4.6).

Example 2. (continued)
Although it required the estimation of 60 additional parameters rel-

ative to the pseudo-likelihood approach, the full likelihood approach based on the
piecewise exponential model could be implemented. The 60 additional parame-
tersdescribed the conditionalprobabilities of exposure (smokingandoccupational
exposure) in the cases and controls for all nine strata. For instance, the baseline
incidence rate for white males aged 45–64 years in Utah was estimated at 13.9
per 105 person-years and relative hazards for current heavy smoking and occupa-
tional exposure were estimated at 2.9 and 1.6, respectively. Hence, among white



108 Jacques Benichou, Mari Palta

males aged 45–64 years in Utah, exposure-specific incidence rates were estimated
at 13.9 × 1.6 = 22.2 per 105 person-years for never smokers with a history of oc-
cupational exposure, and 13.9 × 2.9 × 1.6 = 64.1 per 105 person-years for current
heavy smokers with a history of occupational exposure still assuming a multi-
plicative effect of smoking and occupational exposure (and allowing for rounding
error). �

Upon comparing the pseudo-likelihood, full likelihood and hybrid approach on
population-based case-control data of bladder cancer, Benichou and Wacholder
(1994) noted that the hybrid approach seemed to be less efficient for incidence rate
estimation than the other two approaches, which were themselves equally efficient.
They discussed other advantages of the pseudo-likelihood and full likelihood
approaches. Namely, these approaches allow direct estimation of hazard ratios
rather than odds ratios. Furthermore, the pseudo-likelihood approach and the full
likelihood approach (in its version relying on the piecewise exponential model) can
be applied to more general regression models, e.g., models with an additive form
using hazard rate difference parameters rather than hazard ratio parameters (see
Sects. 2.4.4 and 2.4.6). Finally, all three approaches require that cases and controls
be selected completely at random and that incident cases or at least a known
proportion of them (i.e., known sampling fraction) be fully identified.

Semi-parametric Approach
In nested case-control studies, controls are usually individually matched to cases
on time. Namely, for each case, one (or several) control(s) is (are) selected among
subjectswith the sameageand lengthof follow-up in the cohort as the case (Breslow
et al. 1983; Liddell et al 1977; Mantel 1973; see also Chap. I.7 of this handbook). The
three parametric approaches described above do not apply readily to this context
of individual time matching of controls to cases. Langholz and Borgan (1997)
developed a semi-parametric approach to handle this case. Their approach can
be regarded as an extension of the semi-parametric approach for cohort studies
described above (see Sect. 2.3.7). Incidence rates are expressed as the product of
baseline incidence rates of an unspecified form times a function of the covariates
representing the hazard ratio (Cox 1972). Hazard ratio parameter estimates are
obtained from maximizing the partial likelihood of the Cox model for nested case-
control data (Oakes 1981; Prentice and Breslow 1978). Risk estimates are obtained by
combining partial likelihood hazard ratio parameter estimates and corresponding
cumulative hazard estimates.

A direct comparison of the semi-parametric approach with the parametric ap-
proaches presented above is not possible because the semi-parametric approach
applies only to time-matched data, which the parametric approaches cannot han-
dle. The semi-parametric approach requires observation of individual follow-up
time of each subject in the original cohort in order to form the risk sets for each
failure time and enable control selection. It is therefore potentially less widely
applicable than the parametric approaches.
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Final Notes and Additional References 2.3.9

General problems of definition of disease risk, interpretation and usefulness, prop-
erties, estimation and special problems have been reviewed in detail (Benichou
2000a). Special problems include accounting for continuous or time-dependent
exposure, estimation of disease risk from two-stage case-control data, and vali-
dation procedures for disease risk estimates. Finally, an important challenge is to
increase awareness of the proper interpretation and use of disease risk in practice
and develop general software for easier implementation.

Measures of Association 2.4

Definitions and General Points 2.4.1

Measures of association have a long history and have been reviewed in many text-
books. They assess the strength of associations between one or several exposures
and the risk of developing a given disease. Thus, they are useful in etiologic re-
search to assess and quantify associations between potential risk (or protective)
factors and disease risk. The question addressed is whether and to what degree
a given exposure is associated with occurrence of the disease of interest. In fact,
this is the primary question that most epidemiologic studies are trying to answer.

Depending on the available data, measures of association may be based on
disease rates, disease risks, or even disease odds, i.e., π|(1 − π), with π denoting
disease risk. They contrast rates, risks or odds for subjects with various levels of
exposure, e.g., risks or rates of developing breast cancer for 40-year old women
with or without a personal history of benign breast disease. They can be expressed
in terms of ratios or differences of risks or rates among subjects exposed and
non-exposed to given factors or among subjects with various levels of exposure.

Measures of association can be defined for categorical or continuous exposures.
For categorical exposures, any two exposure levels can be contrasted using the
measures of association defined below. However, it is convenient to define a refer-
ence level to which any exposure level can be contrasted. This choice is sometimes
natural (e.g., non-smokers in assessing the association of smoking with disease oc-
currence) but can be more problematic if the exposure considered is of continuous
nature,where a rangeof lowexposuresmaybeconsideredpotentially inconsequen-
tial. The choice of a reference range is important for interpreting results. It should
be wide enough for estimates of measures of association to be reasonably precise.
However, it should not be so wide that it compromises meaningful interpretation
of the results, which depend critically on the homogeneity of the reference level.
For continuous exposures, measures of association can also be expressed per unit
of exposure, e.g., for each additional gram of daily alcohol consumption. The ref-
erence level may then be a precise value such as no daily alcohol consumption or
a range of values such as less than 10 grams of daily alcohol consumption.
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Usefulness and Interpretation2.4.2

When computing a measure of association, it is usually assumed that the relation-
ship being captured has the potential to be causal, and efforts are taken to remove
the impact of confounders from the quantity. Section 2.4.6 provides a summary
of techniques for adjustment for confounders. Nonetheless, except for the spe-
cial case of randomized studies, most investigators retain the word “association”
rather than “effect” when describing the relationship between exposure and out-
come to emphasize the possibility that unknown confounders may still influence
the relationship.

RothmanandGreenland (Chap. I.4of thishandbook) take efforts todifferentiate
the concepts of effect and association, and adopt the framework of counterfactuals,
popular in the field of economics (Wooldridge 2001), to define the term effect
size. They then define “measure of association” as computed to compare two
actual populations. Hence, the distinction is one of a true causal concept versus
one that may be subject to the confounding of the true effect arising from the
population mix of characteristics at hand. These definitions are more precise
and serve as reminders of the true nature of causality. We will retain the less
precise, but more common terminology where “measure of association” refers
to either or both concepts. We also note that the discussion here is limited to
measures of association with a binary (i.e. coded as 1 = present, 0 = absent)
or event count (number of events) outcome. In many situations, classification
into disease versus no disease is not clear-cut. For example, the definition of
an abnormal lipid profile has undergone frequent change. In such cases, using
measures based on continuous outcomes may be a better choice. We comment
on relationships between measures of association for continuous and categorical
outcomes in Sect. 2.4.6.

When choosing a measure of association, the primary goal is interpretability
and familiarity to consumers of the information. Another guideline is that the
measure of association should allow as simple a description of the association as
possible. For example, it has been empirically observed that risk ratios are more
likely than risk differences to remain constant across subpopulations with different
risk levels (Breslow and Day 1980, Chap. 2), hence simplifying description of the
association of the exposure with the outcome. Breslow and Day (1980, Chap. 2)
also point out that ratios can be converted to differences by taking the logarithm
of the risk or rate.

Definitions and properties of measures of association as well as relations among
them are reviewed below for measures based on ratios and measures based on
differences. Then, estimability of these measures from cohort and case-control
designs and general points regarding estimation of these measures are considered,
including an overview of techniques to adjust for confounders. More details re-
garding inference, namely estimating these measures and assessing the statistical
significance of apparent associations, will be presented in Part II of this handbook.

The below Table 2.1 provides an overview of measures of association discussed
in this chapter:



Rates, Risks, Measures of Association and Impact 111

Table 2.1. Measures of association discussed in this chapter (GLM = generalized linear model; see

Sect. 2.4.6)

Measure Lower Upper Null Definition Link function
limit limit value in GLM

Rate ratio (HR) 0 +∞ 1 hE|hE Log
Risk ratio (RR) 0 +∞ 1 πE|πE Log
Odds ratio (OR) 0 +∞ 1 [πE|(1 − πE)]| Logit

[πE|(1 − πE)]

Rate difference −∞ +∞ 0 hE − hE Identity
Risk difference −1 +1 0 πE − πE Identity

Measures Based on Ratios 2.4.3

General Properties
Ratio based measures of association are particularly appropriate when the effect of
the exposure is multiplicative, which means there is a similar percent increase or
decrease associated with exposure in rate, risk or odds across exposure subgroups.
As noted above, effects have often been observed to be multiplicative, leading
to ratios providing a simple description of the association (e.g., see Breslow and
Day 1980, Chap. 2). Ratio measures are dimensionless and range from zero to
infinity, with one designating no association of the exposure with the outcome.
When the outcome is death or disease, and the ratio has the rate, risk or odds
of the outcome with the exposed group in the numerator, a value less than one
indicates a protective effect of exposure. The exposure is then referred to as a pro-
tective factor. When the ratio in this set-up is greater than one, there is greater
disease occurrence with exposure, and the exposure is then referred to as a risk
factor.

It can be shown that numerically, the odds ratio falls the furthest from the null,
and the risk ratio the closest, with the rate ratio in between. For example, from the
below Table 2.2, based on a fictitious data from a cohort study for a disease that
is not rare, we would obtain a risk ratio R̂R = 0.3|0.1 = 3.00 and an odds ratio
ÔR = [(30)(90)]|[(10)(70)] = 3.86. If we assume a constant hazard, so that the risk
for each group is 1 − exp(−hT), with T being the follow-up time for each subject,
we have the rate ratio ĤR = ln(1−0.3)| ln(1−0.1) = 3.39 (see Sects. 2.3.1 and 2.4.6).
Hence 1 < R̂R < ĤR < ÔR.

Table 2.2. Data from fictitious cohort study

Exposed Unexposed

Diseased 30 10

Non-diseased 70 90
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The difference in magnitude between the above ratio measures is important to
keep in mind when interpreting them for diseases or outcomes that are not rare.
For rare outcomes the values of the three ratio measures tend to be close. Ratios
become differences on the logarithmic scale, and estimation and inference often
take place on the log scale, where zero indicates no association.

Rate Ratios
As the name implies, the rate ratio is the ratio between the rate of disease among
those exposed and those not exposed or hE|hE. Conceptually, the rate ratio is
identical to a hazard ratio HR. The latter term tends to be used when time de-
pendence of the rate is emphasized, as the hazard is a function that may depend
on time. The situation of a constant rate ratio over time is referred to as pro-
portional hazards. The proportional hazards assumption is often made in the
analysis of rates (see below). Theoretically, the hazard ratio at a given time point
is the limiting value of the rate ratio as the time interval around the point be-
comes very short, just as the hazard is the limiting quantity for incidence rate
(see Sect. 2.2.1). The rate ratio has also been called the Incidence Density Ratio
(Kleinbaum et al. 1982, Chap. 8). It may be noted that the rate ratio is attenuated
by less than perfect specificity of the outcome criteria, but relatively unaffected
by less than perfect sensitivity, especially when the rate is low, as long as the sen-
sitivity is unaffected by exposure. In other words, if cases are equally missed in
the exposed and unexposed groups, the rate ratio is relatively unaffected. How-
ever, if non-cases are considered cases, the ratio will be lower than if diagnostic
criteria identified only true cases. Even in the fictitious example above with high
incidence rates, 80% sensitivity leads to a slightly attenuated rate ratio of 3.29
from

ĤR = ln [1 − (0.80)(0.3)] | ln[1 − (0.80)(0.1)] = 3.29

(as compared to the correct rate ratio of 3.39 from Table 2.2), while 80% specificity
leads to a severely biased rate ratio of

ĤR = ln[0.80(1 − 0.3)]| ln[0.80(1 − 0.1)] = 1.77 .

Rate ratios are extremely useful because of the ease of estimating them in many
contexts. They refer to population dynamics, and are not as easily interpretable
on the individual level. It has been argued, however, that rate ratios make more
sense than risk ratios (see below) when the period subjects are at risk is longer
than the observation period (Kleinbaum et al. 1982, Chap. 8). Numerically, the
rate ratio is further from the null than the risk ratio. When rates are low, the
similarity of risk and rate leads to rate ratios being close to risk ratios, as discussed
below. Some investigators tend to refer to rate ratios as relative risks, creating some
confusion in terminology. Further considerations of how the rate ratio relates to
other ratio based measures of association are offered by Rothman and Greenland
(1998, p 50).
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Risk Ratios
The risk ratio, relative risk or ratio of risks of disease among those exposed πE

and those not exposed πE, RR = πE|πE, has been viewed as the gold standard
among measures of association for many years. It is eminently interpretable on the
individual level as a given-fold increase in risk of disease. Like other ratio-based
measures, it tends to be more stable than the risk difference across population
groups at widely different risk. However, similar to rate ratios and odds ratios
(introduced in Sect. 2.4.3), the risk ratio can be viewed as misleading in the public
eye when the risk among both the unexposed and the exposed is very low, yet many-
fold increased by exposure. Another disadvantage of the risk ratio is its asymmetry
with respect to the definition of an event, so that the risk ratio for not having an
event, (1 − πE)|(1 − πE), cannot be directly computed from the risk ratio for having
an event. For example, knowing that the risk ratio for an event RR = 3.00, the
scenario πE = 0.3, πE = 0.1 results in (1 − πE)|(1 − πE) = 0.7|0.9 = 0.78, while the
scenario πE = 0.6, πE = 0.2, which represents the same risk ratio of 3.00, results in
(1 − πE)|(1 − πE) = 0.4|0.8 = 0.50. The risk ratio depends on the length of the time
interval considered because risk itself refers to a specific interval (see Sect. 2.3.1). In
the literature, the term relative risk is often used to denote the rate ratio as well as
the risk ratio, creating some confusion. Therefore, we will avoid the term “relative
risk” in the following. Numerically the risk ratio is closer to the null than the rate
ratio for the same data (see above).

Cornfield et al. (1959), in the smoking versus lung cancer debate, derived several
theoretical properties of the risk ratio, which have further supported its use. In this
debate, Cornfield, along with Doll and Hill, argued against strong opposition from
R.A. Fisher and Joseph Berkson that the association was causal, and not likely due
to unmeasured confounders, such as a genetic predisposition to both smoke and
contract lung cancer. First of all, Cornfield et al. (1959) turned attenuation of the
risk ratio due to lack of specificity of the outcome into an advantage, by noting that
the ratio will become stronger as the disease subtype affected by the exposure is
honed. Second, Cornfield et al. demonstrated that if a confounder is to explain the
outcome with exposure risk ratio RR > 1, that confounder has to have risk ratio at
least RR, and in addition the prevalence of the confounder must be at least RR times
greater among the exposed than among the unexposed. Lin et al. (1998) presented
more general formulas that confirm Cornfield et al.’s assertions under assumptions
of no interaction between the confounder and exposure. These theoretical results
have led investigators to reason that high risk ratios (say above 1.4; Siemiatycki
et al. 1988) are not likely to be explained by uncontrolled confounding.

Odds Ratios
For several reasons, the odds ratio has emerged as the most popular measure of
association. The odds ratio is the ratio of odds, OR = [πE|(1 − πE)]|[πE|(1 − πE)].
Historically, the odds ratio was considered an approximation to the risk ratio
obtainable from case-control studies. The reason for this is that the probabilities
of being sampled into case and control groups cancel in the calculation of the odds
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ratio, as long as sampling is independent of exposure status. Furthermore, when
πE and πE are small, the ratio (1−πE)|(1−πE) has little influence on the odds ratio,
making it approximately equal to the risk ratio πE|πE. The assumption of small πE

and πE is referred to as the rare-disease assumption. Kleinbaum et al. (1982) have
pointed out that in a case-control study of a stable population with incident cases
and controls being representative of non-cases, the odds ratio is the rate ratio.
Numerically, the odds ratio is the furthest from the null of the three ratio measures
considered here.

More recently, the odds ratio has gained status as an association measure in its
own right, and is often applied in cohort studies and clinical trials, as well as in
case-control studies. This is due to many desirable properties of the odds ratio.
First of all, focusing on risk rather than odds may be a matter of convention rather
than a preference based on fundamental principles, and using the same measure
across settings has the advantage of consistency and makes comparisons and meta-
analyses easy. In contrast to the risk ratio, the odds ratio is symmetric so that the
oddsratio fordisease is the inverseof theoddsratio fornodisease.Furthermore, the
odds ratio based on exposure probabilities equals the odds ratio based on disease
probabilities, a fact that follows fromBayes’ theorem(e.g., Cornfield 1951;Miettinen
1974; Neutra and Drolette 1978) or directly from consideration of how cases and
controls are sampled. The disease and exposure odds ratios are sometimes referred
to as prospective and retrospective odds ratios, respectively. Finally, odds ratios
from both case-control and cohort studies are estimable by logistic regression,
which has become the most popular approach to regression analysis with binary
outcomes (see Sect. 2.4.6).

Some investigators feel that the risk ratio is more directly interpretable than the
odds ratio, and have developed methods for converting odds ratios into risk ratios
for situations when risks are not low (Zhang and Yu 1998).

Measures Based on Differences2.4.4

General Properties
Difference based measures are appropriate when effects are additive (e.g., see
Breslow and Day 1980, Chap. 2), which means that the exposure leads to a similar
absolute increase or decrease in rate or risk across subgroups. The difference
in odds is very rarely used, and not addressed here. As noted above, additive
relationships are less common in practice, except on the logarithmic scale, when
they are equivalent to ratio measures. However, difference measures may be more
understandable to the public when the outcome is rare, and relate directly to
measures of impact discussed below (see Sect. 2.5).

The numerical ranges of difference measures depend on their component parts.
The rate difference ranges from minus to plus infinity, while the risk difference is
boundedbetweenminusandplusone.Thesituationofnoassociation is reflectedby
a difference measure of zero. When the measure is formed as the rate or risk among
the exposed minus that among the non-exposed, a positive value indicates that
the exposure is a risk factor, while a negative value indicates that it is a protective
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factor. It can be shown that the risk difference falls numerically nearer to the
null than does the rate difference. For example, Table 2.2 yields a risk difference
of 0.30 − 0.10 = 0.20, while the rate difference is ln(0.70) + ln(0.90) = 0.25.
However, they will be close for rare outcomes. In contrast to ratio measures,
difference measures are always attenuated by less than perfect sensitivity (i.e.,
missed cases), but the rate difference is unaffected by less than perfect specificity.
The risk difference is also relatively unaffected when risk is low. In the fictitious
example above, if the sensitivity of the test used to detect disease is 80%, the rate
difference is − ln[1 − (0.80)(0.3)] + ln[1 − (0.80)(0.1)] = 0.19, but if the specificity
is 80%, the rate difference remains at 0.25.

Rate Differences
The rate difference is defined as hE − hE, and has been commonly employed to
compare mortality rates and other demographic rates between countries, time pe-
riods and|or regions. In such comparisons, the two rates being compared are often
directly standardized (see Sect. 2.6) to the age and sex distribution of a standard
population chosen, e.g., as the population of a given country in a given census year.

For the special case of a dichotomous exposure, the rate difference, i.e., the
difference between the incidence rates in the exposed and unexposed subjects
has been termed “excess incidence” (Berkson 1958; MacMahon and Pugh 1970;
Mausner and Bahn 1974), “excess risk” (Schlesselman 1982), “Berkson’s simple
difference” (Walter 1976), “incidence density difference” (Miettinen 1976), or even
“attributable risk” (Markush 1977; Schlesselman 1982), which may have caused
some confusion.

Risk Differences
The risk difference πE − πE is parallel to the rate difference discussed above, and
similar considerations apply. Due to the upper and lower limits of plus, minus
one on risk, but not on rate, risk differences are more difficult to model than rate
differences.

Estimability 2.4.5

Because exposure-specific incidence rates and risks can be obtained from cohort
data, all measures of association considered (based on ratios or differences) can be
obtained as well. This is also true of case-control data complemented by follow-up
or population data (see Sects. 2.2 and 2.3). Case-control data alone allow estimation
of odds ratios thanks to the identity between disease and exposure odds ratios (see
Sect. 2.4.3) that extends to the logistic regression framework. Prentice and Pyke
(1979) showed that the unconditional logistic model (see also Breslow and Day
1980, Chap. 6) applies to case-control data as long as the intercept is disregarded
(see Sect. 2.4.6). Interestingly, time-matched case-control studies allow estimation
of hazard rates (e.g., see Miettinen 1976; Greenland and Thomas 1982; Prentice and
Breslow 1978).
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Estimation2.4.6

The most popular measures of association have a long history of methods for esti-
mation and statistical inference. Some traditional approaches have the advantage
of being applicable in small samples. Traditional methods adjust for confounders
by direct standardization (see Sect. 2.6.1) of the rates or risks involved, prior to
computation of the measure of association, or by stratification, where association
measures are computed separately for subgroupsand thencombined. Formeasures
based on the difference of rates or risks, direct standardization and stratification
can be identical, if the same weights are chosen (Kahn and Sempos 1989). Generally,
however, direct standardization uses predetermined weights chosen for external
validity, while optimal or efficient weights are chosen with stratification. Efficient
weights make the standard error of the combined estimator as small as possible.
Regression adjustment is a form of stratification, which provides more flexibility,
but most often relies on large sample size for inference.

In modern epidemiology, measures of association are most often estimated
from regression analysis. Such methods tend to require large sample sizes, in par-
ticular when based on generalized linear models (often abbreviated GLM). In this
context, the ratio, difference or other association measures arise from the regres-
sion coefficient of the exposure indicator, and different measures of association
result depending on the transformation applied to the mean of the outcome vari-
able. Note that the mean of an event count over a unit time interval is the rate,
and the mean of a binary outcome is the risk. For example a model may use the
logarithm of the rate (ln(h)) or risk (ln(π)) as the outcome to be able to estimate
ratio measures of association.

The function applied to the rate or risk in a regression analysis is referred to
as the link function in the framework of generalized linear models underlying
such analyses (see McCullagh and Nelder (1989) and Palta (2003) for theory and
practical application). For example, linear regression would regress the risk or rate
directly on exposure without any transformation, which is referred to as using the
identity link. When the exposure is the only predictor in such a model, all link
functions fit equally well and simply represent different ways to characterize the
association. However, when several exposures or confounders are involved, or if
the exposure is measured as a continuous or ordinal variable, some link functions
and not others may require interaction or non-linear terms to improve the fit. The
considerations in choosing the link function parallel those for choosing a measure
of association as multiplicative or additive and as computed from rates, risks or
odds, discussed above (see Table 2.1).

Both traditional and regression estimation is briefly overviewed below, with
more details provided in Chap. II.3 and Chap. II.4 of this handbook.

Estimation and Adjustment for Confounding of Rate Ratios
Estimation of the rate or hazard ratio between exposed and non-exposed individu-
als can be based on either event counts (overall or in subgroups and|or subintervals
of time), or on the time to event for each individual, where the time for subjects
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without events are entered as time to end of follow-up, and are referred to as being
censored (see Chap. II.4).

In the first case, estimation can proceed directly by forming ratios of interest,
or by modeling the number of events on exposure by a generalized linear model.
When ratios are formed directly as the ratio of the number of cases DE divided by
the person time at risk tE, i.e. DE|tE, in those exposed and DE|tE in those unexposed,
the 95% confidence interval of the resulting rate ratio HR = DE|tE|DE|tE is obtained
as (Rothman and Greenland 1996)[

exp
(

ln( ĤR) − 1.96(1|DE + 1|DE)1|2
)

, exp
(

ln( ĤR) + 1.96(1|DE + 1|DE)1|2
)]

.

In either case, it is often necessary to adjust for confounding factors, including
age and sex. When rate ratios are formed directly, the rates are generally adjusted
by direct standardization (see Sect. 2.6.1) or by use of the standardized mortality
(or morbidity or incidence) ratio SMR or SIR (see Sect. 2.6.1). The SMR and SIR
have found wide application in investigations of the potential health effects of
occupational exposures.

A common regression approach to estimating rate ratios requires information
on event count and person time at risk for each subgroup, time interval and
exposure level of interest. To obtain rate ratios from the regression requires that
the logarithm of the mean number of events be modeled. This is referred to in
the generalized linear model framework as using a log link function. The resulting
regression equation is

ln(hi) = − ln(ti) + β0 + βEEi + β1X1i + β2X2i + … ,

where the subscript i indicates subject, i = 1, … , n, Ei is an indicator that equals 0
for the unexposed and 1 for the exposed. In this equation, β0 is the logarithm of the
rate per time unit for the unexposed with confounder values, X1, X2, … = 0. Care
should be taken to center confounders so that this intercept is meaningful. The
quantity ln(ti) is referred to as the offset, and allows event counts over different size
denominators to be used as the outcome variable. In the case when disease rates
in a population are modeled, ti are population sizes. The rate ratio for exposure
adjusted for confounders X1, X2, … is obtained as exp(βE). Differences in rate ratios
across levels of X can easily be accommodated by the inclusion of interaction terms
in the model. Inferences on the rate ratio follow from the standard error of the
estimate β̂E of βE, which is approximately normally distributed with reasonable
large sample sizes, so that a 95% confidence interval for the rate ratio is[

exp
(

β̂E − 1.96se
(

β̂E

))
, exp

(
β̂E + 1.96se

(
β̂E

))]
.

The standard errors se( β̂E) can be obtained from maximum likelihood theory,
assuming that the counts follow a Poisson or negative binomial distribution. The
variance of the Poisson distribution equals the rate, while the negative binomial
distribution allows for possible clustering of events leading to the variance being
larger than the rate.
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There are also several approaches available in most statistical software packages
to adjust standard errors for so called overdispersion. Overdispersion refers to
variability in rates being larger than expected from a Poisson count process. For
example, events may cluster in time, or there may be unmeasured characteristics of
the population influencing the rate, so that the overall count arises from a mixture
of different rates. An example of overdispersion (Palta 2003) arises in overall cancer
rates because different cancers predominate for different ages and genders. One
of the approaches to adjusting for overdispersion, is to use a robust or sandwich
estimator of the standard error of β̂E available in software packages, such as PROC
GENMOD in SAS (1999) that fit generalized estimating equations (Liang and Zeger
1986).

When the data consist of times to event for individuals, the rate ratio, or hazard
ratio can be estimated by techniques designed for survival analysis (e.g., see Hos-
mer and Lemeshow 1999 and Chap. II.4 of this handbook). Most parametrically
specified survival distributions (i.e., distributions S(t) = 1 − F(t), where F is the
distribution of time to event) lead to hazard ratios hE(t)|hE(t) that vary over time.
When the hazard ratio remains constant, this is referred to as proportional hazards.
This property holds when the time to event follows the exponential distribution,
so that the probability of avoiding an event up to time t is given by S(t) = exp(−ht)
where h is a constant hazard, and for the Weibull distribution S(t) = exp[(−ht)γ] as
long as γ is the same for the exposed and non-exposed groups. Models are some-
times fit that assume that the exponential distribution holds over short intervals,
i.e., piecewise constant hazard. In these models, the hazard ratio is constant across
short intervals, but can be allowed to change over time. An exponential distribu-
tion for time to event leads to the Poisson distribution for number of events in
a given time period.

In the situation of proportional hazards, estimation of the hazard ratio can
proceed without specifying the actual survival distribution via the Cox model,
where estimation is based on so called partial likelihood (Cox 1972). The reason
this works is that the actual level of the hazard cancels out; similarly to how the
offset becomes part of the intercept in the regression model given by (2.8) above.

Estimation and Adjustment for Confounding for Risk Ratios
In a cohort study with a fixed follow-up time, the risk ratio can be estimated in
a straightforward manner. From a 2 × 2 table (see Table 2.3) with cells a, b, c, d,
where a is the number diseased and exposed, b is the number diseased and unex-
posed, c the number non-diseased and exposed and d the number non-diseased
and unexposed,the risk ratio is estimated by R̂R = {a|(a + c)}|{b|(b + d)}.

Table 2.3. Notation for a generic 2 × 2 table from cohort or case-control study

Exposed Unexposed

Diseased a b

Non-diseased c d



Rates, Risks, Measures of Association and Impact 119

Statistical inference can be based on the approximate standard error (Katz et al.
1978)whichcanbeestimatedas se(ln( R̂R)) = {a|(a+c)+d|b(b+d)}1|2. In caseswhere
follow-up time is not fixed, the risk ratio can be calculated from the individual
risks estimated from the rate or hazard function. However, this is rarely done, as
investigators tend to prefer the rate or hazard ratio as the measure of association
in such situations. The risk ratio can be estimated from case-control studies only
when the ratio of sampling probabilities of cases and controls is known, or by using
the odds ratio (see above) as an approximation.

Although standardization can be used either as direct standardization to adjust
risks before forming ratios or as indirect standardization to compute the SMR (see
Sect. 2.6.1) fromrisks ina referencepopulation, it is oftenmoreappropriate to apply
stratified analyses to adjust the risk ratio for confounders (see also Sect. 2.6.1). For
example, a studyof cancer risk in individuals exposedornot exposed toa risk factor
may be stratified into age groups, or a study investigating outcomes in neonates
may be stratified by birth weight. Stratum-specific risk ratio estimates can be
calculated and then be combined for instance by the popular Mantel–Haenszel
estimator that is known to have good properties. It is given by

R̂RMH =
∑(

ai

(
bi + di

)
|ni

)/∑(
bi

(
ai + ci

)
|ni

)
,

where the sums are across strata and ni is the number of subjects in stratum i.
This estimator is stable in small samples, but has a larger standard error than the
corresponding estimator from regression modeling. Formulas for the standard
error are provided by Breslow and Day (1987) and by Rothman and Greenland
(1998).

From regression analysis, the risk ratio can be obtained as exp(βE) from fitting
the binary or binomial (grouped binary events) outcome to the model:

ln(πi) = β0 + βEEi + β1X1i + … .

This is a generalized linear model with error distribution reflecting each binary
outcome being independent with variance πi(1 − πi) and log link. Clearly, the log
link isnot ideal, asπi > 1canresult fromsomeexposure-confoundercombinations.
Nonetheless, this model tends to be reasonable with lowrisks. Maximum likelihood
or generalized estimating equation fitting automatically provides large sample
inference, with or without adjustment for deviations from the binomial error
structure by robust standard errors. Deviations from binomial structure may result
from clustering or correlation between events within subgroups, or from multiple
events per person (e.g., cavities in teeth when teeth are individually counted).

Another option for the link function when modeling the risk by a generalized
linear model is the so-called complementary log-log link resulting in the model:

ln(− ln(1 − πi)) = β0 + βEEi + β1X1i + … .

This model has the advantage of always estimating risks to be in the range 0 to 1.
However, exp(βE) is the rate ratio rather than the risk ratio.
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Estimation and Adjustment for Confounding for Odds Ratios
In the traditional setting, the odds ratio in an unmatched case-control or cohort
study is estimated from a 2 × 2 table (see Table 2.3) as ÔR = ad|bc. Inference can
be based on exact methods, which historically were difficult to implement, but
are now available in most statistical software packages, such as the SAS procedure
PROC FREQ. With the exact approach, the confidence interval for the odds ratio is
obtained from the non-central hypergeometric distribution. Over the years, many
approximations to this interval have been developed, the most accurate of which
is the Cornfield approximation (Cornfield 1956). Another, less accurate method is
based on the approximate standard error of ln( ÔR) known as the Woolf (1955) or
logit method, where se(ln( ÔR)) is calculated as (1|a + 1|b + 1|c + 1|d)1|2. The logit
method takes its name from being related to an approximation used for fitting
logistic regression. Although the approximation has limited use for reporting final
study results, it is useful to have an explicit approximation of the standard error
for study planning purposes.

Stratifiedmethods forestimating theodds ratioeitherbuildon takingaweighted
averageof the stratumspecific logodds ratios,using the inversesof the logitmethod
standard errors for each stratum as the weights, or using the Mantel–Haenszel
stratified odds ratio estimator (Mantel and Haenszel 1959),

ÔRMH =
(∑

aici|ni

)
|
(∑

bidi|ni

)
,

where the sums are across strata with tables as depicted in Table 2.3 for each
stratum and ni is the number of subjects in stratum i. This odds ratio estimator
has been shown to have excellent properties even when strata are very small
(Birch 1964; Breslow 1981; Breslow and Day 1980, Chaps. 4–5; Landis et al. 1978,
2000; Greenland 1987; Robins and Greenland 1989). The confidence interval for
a stratified odds ratio can be obtained by exact methods or by the approximation
of Miettinen (1976) where se(ln( ÔR)) is calculated as ln( ÔRMH)|χMH. Here χMH is
the square root of the Mantel–Haenszel stratified chi-square test used to test the
null hypothesis that the odds ratio equals one (Mantel and Haenszel 1959). This
test statistic is computed as

χ2
MH =

∑
[ai − (ai + bi)(ai + ci)|ni]

2 |[
(ai + bi)(ai + ci)(di + bi)(di + ci)|

(
n2

i (ni − 1)
)]

.

The 95% confidence interval for the odds ratio is then given by[
exp

(
ln
(

ÔR
)
−1.96

(
ln
(

ÔRMH
)

|χMH
))

, exp
(
ln
(

ÔR
)
+1.96

(
ln
(

ÔRMH
)

|χMH
))]

.

A special case of stratification occurs when data are pair matched, such that each
case is matched to a control, e.g., based on kinship or neighborhood. In this case,
the Mantel–Haenszel odds ratio estimator becomes m++|m−−, where m++ is the
number of pairs (matched sets) where both the case and the control are exposed,
and m−− is the number of pairs where neither is exposed. Breslow and Day (1980,
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Chap. 7) provide additional formulas for the situation when several controls are
matched to each case. Confidence intervals can again be obtained by exact formulas
(Breslow and Day 1980, Chap. 7). It is well known that although matched studies are
not technically confounded by the factors matched on because cases and controls
are balanced on these, odds ratios based on the matched formula are larger than
odds ratios not taking the matching into account. We discuss this phenomenon
further in the logistic model framework below.

Increasingly, logistic regression is used for the estimation of odds ratios from
clinical trials, cohort and case control studies. Logistic regression fits the equation:

ln
(
πi|(1 − πι)

)
= β0 + βEEi + β1X1i + … , (2.8)

with Ei denoting the exposure status and X1i, X2i, … the confounder variables of
individual i. For a cohort study β0 is ln(πi|(1 − πι)) for an unexposed individual
with all confounders equal to 0. For such a person, then, the risk of disease πi =
exp(β0)|[1+exp(β0)]. In a case-control study, the intercept in (2.11) is β0 = β0,cohort+
ln(P1|P0), with P1 and P0 the probabilities for being sampled into the study for cases
and controls, respectively. We see again that risk can be estimated from a case-
control study only when the sampling scheme of cases and controls is known. The
odds ratio for exposure, adjusted for confounders is exp(βE).

In the generalized linear model framework, (2.8) is said to use the logit link,
where the logit function is defined as g(π) = ln(π|(1 − π)). The logit link is the one
that follows most naturally from the mathematical formulation of the binomial
distribution (McCullagh and Nelder 1989), and is referred to as the canonical link,
whereas the log is the canonical link for rates. Just as for other generalized linear
models, maximum likelihood based and robust standard errors are available, with
the latter taking into account clustering of events. It should be noted, however, that
generalizations of logistic regression to the longitudinal or clustered setting by
generalized estimating equations do not work for case-control studies (Neuhaus
and Jewell 1990).

Matched data can be analyzed by conditional logistic regression that fits the
model:

ln(πji|(1 − πji)) = β0j + βEEji + β1X1ji + … (2.9)

for individual i in the matched set j. Estimation of βE and β1, … is based on
algorithms that compare individuals only within and not between matched sets.
For example, for matched pairs, estimation is based on differences in exposure and
confounders. These algorithms do not actually estimate the matched set specific
intercepts β0j that cancel out. All variables that do not vary within matched sets
are automatically absorbed into β0j although interactions of such variables with
those that vary within set can be included in the model. For example, in SAS,
PROC PHREG can be tricked into fitting this model (e.g., see Palta 2003). While
the conditional logistic regression model is usually fit by large sample methods,
such as maximum likelihood, exact procedures have also become available (e.g.,
Mehta et al. 2000). Again, taking matching into account in the analysis results in
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larger coefficients than those of the unmatched model (2.11). When all matching
variables are explicit (such as age and sex) they can be directly entered as covariates
in (2.11).

It is useful to know that, when an outcome is originally normally distributed, but
dichotomized and analyzed by logistic regression, the resulting coefficients in the
unconditional model (2.11) are approximately 1.7 times as large as the coefficients
that would have resulted from ordinary regression of the original continuous
outcome, “standardized” by being divided by its residual standard deviation. (Note
that theword standardizedhere isused todenoteaconversion tostandarddeviation
units, rather than in the sense of direct standardization discussed in Sect. 2.6.1.)
This result emerges from the relationship between the variances of the logistic and
normal distributions (Johnson and Kotz 1970). While the logit link is related to the
logistic distribution, another link function, the probit can be shown to arise directly
when a continuous outcome from ordinary regression with normally distributed
errors is dichotomized (Palta 2003). The probit link is defined as g(π) = Φ−1(π)
where Φ−1 is the inverse of the cumulative normal distribution. This link yields
the same coefficients as the “standardized” ones from ordinary regression of the
continuous outcome. Apart from this difference, the logit and probit provide a very
similar fit. In both cases, of course, dichotomizing the outcome results in loss of
information and thus in loss of statistical efficiency, which yields larger standard
errors relative to the size of the regression coefficients.

The idea of logistic regression providing coefficients that are related by “stan-
dardization” to those that would arise from regression analysis of an underly-
ing continuous variable (e.g., blood pressure being dichotomized into hyperten-
sion or not) also provides a framework for understanding the difference between
a matched and an unmatched analysis. In an unmatched analysis, the coefficients
are for theoutcome“standardized” to the scaleof theoverall residual standarddevi-
ation across the population. This means that the original continuous regression co-
efficient isdividedby that standarddeviation. Inamatchedanalysis, thecoefficients
are “standardized” to the residual standard deviation within each matched set.
This happens by explicitly including a matched set specific intercept in the model
(see (2.12)). Hence, the standard deviation within matched sets does not contain the
variationarising fromdifferentmatchedsetshavingadifferent levelof theoutcome,
and hence matched coefficients are larger (Palta et al. 1997; Palta and Lin 1999).

Estimation and Adjustment for Confounding for Rate Differences
Regression estimation of the rate difference with and without adjustment for
confounders can be done in the generalized linear model framework by specifying
the identity link function, resulting in linear regression of the rates with variance
arising from the Poisson distribution. Overdispersion can be handled the same way
as for ratios. However, unequal time intervals cannot be as easily accommodated
with the identity link. Instead, weighted ordinary regression of observed rates can
be employed, where inverse variance weights automatically account for the interval
length (Breslow and Day 1987, Chap. 4).
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Measures of Impact 2.5

Measures of impact are used to assess the contribution of one or several exposures
to the occurrence of incident cases at the population level. Thus, they are useful in
public health to weigh the impact of exposure on the burden of disease occurrence
and assess potential prevention programs aimed at reducing or eliminating expo-
sure in the population. They are sometimes referred to as measures of potential
impact to convey the notion that the true impact at the population level may be dif-
ferent from that reflected by these measures except under very specific conditions
(see Sect. 2.5.1). The most commonly used measure of impact is the attributable
risk. This measure is presented in some detail below. Then, other measures are
briefly described. Table 2.4 provides an overview of measures of impact discussed
in this chapter.

Attributable Risk 2.5.1

Definition
The term “attributable risk” (AR) was initially introduced by Levin in 1953 (Levin
1953) as a measure to quantify the impact of smoking on lung cancer occurrence.
Gradually, it has become a widely used measure to assess the consequences of an
association between an exposure and a disease at the population level. It is defined
as the following ratio:

AR =
{
Pr(D) − Pr

(
D|E)} |Pr(D) . (2.10)

The numerator contrasts the probability of disease, Pr(D), in the population,
which may have some exposed, E, and some unexposed, E, individuals, with the
hypothetical probability of disease in the same population but with all exposure
eliminated Pr(D|E). Thus, it measures the additional probability of disease in the
population that is associated with the presence of an exposure in the population,
and AR measures the corresponding proportion. Probabilities in (2.10) will usually
refer to disease risk although, depending on the context, they may be replaced with
incidence rates.

Unlike measures of association (see Sect. 2.4), AR depends both on the strength
of the association between exposure and disease and the prevalence of exposure in
the population pE. This can be seen for instance through rewriting AR from (2.10).
Upon expressing Pr(D) as

Pr(D|E)pE + Pr
(
D|E) pE with pE = 1 − pE ,

both in the numerator and the denominator, and noting that

Pr(D|E) = RR × Pr
(
D|E) ,

the term Pr(D|E) cancels out and AR is obtained as (Cole and MacMahon 1971;
Miettinen 1974):

AR =
{

pE(RR − 1)
}

|
{

1 + pE(RR − 1)
}

, (2.11)
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Table 2.4. Measures of impact discussed in this chapter

Measures Range Definitiona Usual interpretation(s)b

Attributable risk −∞ to 1 1) {Pr(D) − Pr(D|E)}|Pr(D) Proportion of disease cases in the population

(AR) 0 to 1 for risk factor 2) {pE(RR − 1)}|{1 + pE(RR − 1)} attributable to exposure. Proportion of disease

3) pE|D(RR − 1)|RR cases in the population potentially preventable

by eliminating exposure

Attributable risk −∞ to 1 1) {Pr(D|E) − Pr(D|E)}|Pr(D|E) Proportion of disease cases among the exposed

among the exposed 0 to 1 for risk factor 2) (RR − 1)|RR attributable to exposure

(ARE)

Sequential 0 to 1 for risk factor Contributions of a given exposure to the Proportion of disease cases in the population

attributable risk joint attributable risk to several exposures potentially preventable by eliminating a given

for a given order of exposures exposure when several exposures are removed in

a given sequence

Partial attributable 0 to 1 for risk factor Average contribution of a given exposure to Average proportion of disease cases in the

risk the joint attributable risk to several population potentially preventable by eliminating

exposures over all possible exposure orders a given exposure when several exposures are removed

in sequence over all possible orders of removal

Prevented −∞ to 1 1) {Pr(D|E) − Pr(D)}|Pr(D|E) Proportion of disease cases averted (“prevented

(preventable) fraction 0 to 1 for protective 2) pE(1 − RR) fraction”) in relation to the presence of a protective

(PF) factor exposure or intervention in the population. Proportion

of cases that could be potentially averted (“preventable

fraction”) if a protective exposure or intervention were

introduced de novo in the population
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Measures Range Definitiona Usual interpretation(s)b

Generalized impact −∞ to 1 {Pr(D) − Pr∗(D)}|Pr(D) Proportion of disease cases potentially averted

fraction 0 to 1 for risk factor and (fractional reduction of disease occurrence)

modified distribution from changing the current distribution of exposure

with lowering of in the population to some modified distribution

exposure

Person-years of life ≥ 0 for risk factor Difference between current life expectancy Person-time of life lost at the population level

lost (PYLL) (person-years) and life expectancy with exposure removed attributable to exposure

at the population level

Average potential ≥ 0 for risk factor Average difference per exposed person Average loss of life expectancy per person attributable

years of life lost (years) between current life expectancy and life to exposure

(PYLL) expectancy with exposure removed

a Pr(D), Pr(D|E), Pr(D|E) and Pr∗(D) denote probabilities of disease (disease risks), namely the overall probability of disease in the population, the probability of disease in
the population with all exposure eliminated, the probability of disease among exposed individuals, and the overall probability of disease under a modified distribution of
exposure, respectively. Alternatively, they may refer to disease rates depending on the context. The terms pE and pE|D respectively refer to the overall exposure prevalence in
the population and the exposure prevalence in the diseased individuals. The term RR refers to risk or rate ratios for exposed relative to unexposed individuals.
b Interpretations subject to conditions (see text)
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a function of both the prevalence of exposure in the population, pE, and the rate
ratio or relative risk, RR.

An alternative formulation underscores this joint dependency in yet another
manner. Again, upon expressing Pr(D) as

Pr(D|E)pE + Pr
(
D|E) pE with pE = 1 − pE

and noting that

Pr(D|E) = RR × Pr
(
D|E) ,

the numerator in (2.10) can be rewritten as

pEPr(D|E) − pEPr(D|E)|RR .

From using Bayes’ theorem to express Pr(D|E) as Pr(E|D)Pr(D)|pE , it then becomes
equal to

Pr(D)pE|D(1 − 1|RR) ,

after simple algebra. This yields (Miettinen 1974):

AR = pE|D(RR − 1)|RR , (2.12)

a function of the prevalence of exposure in diseased individuals, pE|D, and the rate
ratio or relative risk, RR.

A high relative risk can correspond to a low or high AR depending on the
prevalence of exposure, which leads to widely different public health consequences.
One implication is that, portability is not a usual property of AR, as the prevalence
of exposure may vary widely among populations that are separated in time or
location. This is in contrast with measures of association such as the relative
risk or rate ratio which are more portable from one population to another, as
the strength of the association between disease and exposure might vary little
among populations (unless strong interactions with environmental or genetic
factors are present). However, portability of RR can be questioned as well in the
case of imperfect specificity of exposure assessment, since misclassification of
non-exposed subjects as exposed will bias RR towards unity, which will affect
differentially RR estimates in various populations depending on their exposure
prevalence. This is not a problem with AR, which is not affected by imperfect
specificity of exposure assessment.

Range
When the exposure considered is a risk factor (RR > 1), it follows from the above
definition that AR lies between 0 and 1. Therefore, it is very often expressed as
a percentage. AR increases both with the strength of the association between
exposure and disease measured by RR, and with the prevalence of exposure in the
population.Aprevalenceof 1 (or 100%)yieldsavalueofARequal to theattributable



Rates, Risks, Measures of Association and Impact 127

risk among the exposed, that is (RR−1)|RR (see Sect 2.5.2). AR approaches 1 for an
infinitely high RR provided the exposure is present in the population (i.e., non-null
prevalence of exposure).

AR takes a null value when either there is no association between exposure and
disease (RR = 1) or there are no exposed subjects in the population. Negative
AR values are obtained for a protective exposure (RR < 1). In this case, AR
varies between 0 and −∞, a scale on which AR lacks a meaningful interpretation.
One solution is to reverse the coding of exposure (i.e., interchange exposed and
unexposed categories) to go back to the situation of a positive AR, sometimes
called the preventable fraction in this case (Benichou 2000c; Greenland 1987; Last
1983). Alternatively, one must consider a different parameter, namely the prevented
fraction (see Sect. 2.5.4).

Synonyms
Some confusion in the terminology arises from the reported use of as many as
16 different terms in the literature to denote attributable risk (Gefeller 1990, 1995).
However, a literature search by Uter and Pfahlberg (Uter and Pfahlberg 1999) found
some consistency in terminology usage, with “attributable risk” and “population
attributable risk” (MacMahon and Pugh 1970) the most commonly used terms by
far followed by “etiologic fraction” (Miettinen 1974). Other popular terms include
“attributable risk percentage” (Cole and MacMahon 1971), “fraction of etiology”
(Miettinen 1974), and “attributable fraction” (Greenland and Robins 1988; Last
1983; Ouellet et al. 1979; Rothman and Greenland 1998, Chap. 4).

Moreover, additional confusion may originate in the use by some authors
(MacMahon and Pugh 1970; Markush 1977; Schlesselman 1982) of the term “at-
tributable risk” to denote a measure of association, the excess incidence, that is
the difference between the incidence rates in exposed and unexposed subjects (see
Sect. 2.4.4). Context will usually help the readers detect this less common use.

Interpretation and Usefulness
While measures of association such as the rate ratio and relative risk are used to
establish an association in etiologic research, AR has a public health interpretation
as a measure of the disease burden attributable or at least related to one or several
exposures. Consequently, AR is used to assess the potential impact of prevention
programs aimed at eliminating exposure from the population. It is often thought
of as the fraction of disease that could be eliminated if exposure could be totally
removed from the population.

However, this interpretation can be misleading because, for it to be strictly cor-
rect, the three following conditions have to be met (Walter 1976). First, estimation
of AR has to be unbiased (see below). Second, exposure has to be causal rather
than merely associated with the disease. Third, elimination of exposure has to be
without any effect on the distribution of other risk factors. Indeed, as it might be
difficult to alter the level of exposure to one factor independently of other risk fac-
tors, the resulting change in disease load might be different from the AR estimate.
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For these reasons, various authors elect to use weaker definitions of AR, such as
the proportion of disease that can be related or linked, rather than attributable, to
exposure (Miettinen 1974).

A fundamental problem regarding causality has been discussed by Greenland
andRobins (1988)andRobinsandGreenland(1989)whoconsidered theproportion
of disease cases for which exposure played an etiologic role, i.e., cases for which
exposure was a component cause of disease occurrence. They termed this quantity
the etiologic fraction and argued that it was a more relevant measure of impact
than AR. Rothman and Greenland (1998, Chap. 4) argued that AR and the etiologic
fractions are different quantities using logical reasoning regarding causality and
the fact that disease occurrence may require several component causal factors
rather than one. The main problem with the etiologic fraction is that it is usually
impossible to distinguish exposed cases for whom exposure played an etiologic
role from those where exposure was irrelevant. As a consequence, estimating
the etiologic fraction will typically require non-identifiable biologic assumptions
about exposure actions and interactions to be estimable (Cox 1984, 1985; Robins
and Greenland 1989; Seiler 1986). Thus, despite its limitations, AR remains a useful
measure to assess the potential impact of exposure at the population level and
can serve as a suitable guide in practice to assess and compare various prevention
strategies.

Several authors have considered an interpretation of AR in terms of etiologic
research. The argument is that if an AR estimate is available for several risk factors
jointly, then its complement to 1, 1 − AR, must represent a gauge of the proportion
of disease cases not explained by the risk factors used in estimating AR. Hence,
1 − AR would represent the proportion of cases attributable to other (possibly
unknown) risk factors. For instance, it was estimated that the AR of breast cancer
was 41% for late age at first birth, nulliparity, family history of breast cancer and
higher socioeconomic status, which suggested that at least 59% of cases had to be
attributable to other risk factors (Madigan et al. 1995). A similar type of reasoning
was used in several well-known reports of estimated percentages of cancer death
or incidence attributable to various established cancer risk factors (e.g., smoking,
diet, occupational exposure to carcinogens …). Some of these reports conveyed
the impression that little remained unexplained by factors other than the main
establishedpreventable risk factors and that cancerwasamostlypreventable illness
(Colditz et al. 1996, 1997; Doll and Peto 1981; Henderson et al. 1991; Ames et al.
1995). Such interpretation has to be taken with great care since ARs for different
risk factors may add to more than 100% because multiple exposures are usually
possible (e.g., smoking and occupational exposure to asbestos). Moreover, this
interpretation can be refuted on the basis of logical arguments regarding the fact
that disease occurrence may require more than one causal factor (see Rothman
and Greenland 1998, Chap. 2). Furthermore, one can note that once a new risk
factor is considered, the joint unexposed reference category changes from lack
of exposure to all previously considered risk factors to lack of exposure to those
risk factors and the new risk factor (Begg 2001). Because of this change in the
reference category, the AR for the new risk factor may surpass the quantity 1 − AR
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for previously considered risk factors. Thus, while it is useful to know that only
41% of breast cancer cases can be attributed to four established risk factors in
the above example, it is entirely conceivable that new risk factors of breast cancer
may be elicited which yield an AR of more than 59% by themselves in the above
example.

Properties
AR has two main properties. First, AR values greatly depend on the definition of
the reference level for exposure (unexposed or baseline level). A more stringent
definition of the reference level corresponds to a larger proportion of subjects
exposed and, as one keeps depleting the reference category from subjects with
higher levels of risk, AR values and estimates keep rising. This property has a major
impact on AR estimates as was illustrated by Benichou (1991) and Wacholder et al.
(1994). For instance, Benichou (1991) found that the AR estimate of esophageal
cancer for an alcohol consumption greater or equal to 80 g|day (reference level
of 0–79 g|day) was 38% in the Ille-et-Vilaine district of France, and increased
dramatically to 70% for an alcohol consumption greater or equal to 40 g|day (i.e.,
using the more restrictive reference level 0–39 g|day) (see Example 3 below). This
property plays a role whenever studying a continuous exposure with a continuous
gradient of risk and when there is no obvious choice of threshold. Therefore, AR
estimates must be reported with reference to a clearly defined baseline level in
order to be validly interpreted.

Example 3 . A case-control study of esophageal cancer conducted in the Ille-et-
Vilaine district of France included 200 cases and 775 controls selected

bysimple randomsampling fromelectoral lists (Tuyns,Pequignot and Jensen 1977).
The assessment of associations between alcohol consumption and smoking with
esophageal cancer has been the focus of detailed illustration by Breslow and Day
(1980) who presented various approaches to odds ratio estimation with or without
adjustment for age. As in previous work (Benichou, 1991), four levels of alcohol
consumption (0–39, 40–79, 80–119 and 120+ g|day) are considered here as well
as three levels of smoking (0–9, 10–29, 30+ g|day) and three age groups (25–44,
45–54, 55+ years). There were 29, 75, 51 and 45 cases with respective alcohol
consumptions of 0–39, 40–79, 80–119 and 120+ g|day. Corresponding numbers of
controls were 386, 280, 87 and 22, respectively. The first reference level considered,
0–79 g|day, included 104 cases and 666 controls, leaving 96 cases and 109 con-
trols in the exposed (i.e., 80+ g|day) category (see Table 2.5). The corresponding
crude (unadjusted) odds ratio was estimated as (96 × 666)|(104 × 109) = 5.6 (see
Sect. 2.4.6). Using methods described below, the crude AR estimate was 39.5% for
alcohol consumption and the age- and smoking-adjusted AR estimates were close
to 38%. The second reference level considered, 0–39 g|day, was more restrictive
and included only 29 cases and 286 controls, leaving 171 cases and 489 controls
in the exposed (i.e., 40+ g|day) category (see Table 2.5). The corresponding crude
odds ratio was estimated as (171 × 386)|(29 × 389) = 5.9 (see Sect. 2.4.6). Using
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Table 2.5. Numbers of cases and controls in the reference and exposed categories of daily alcohol

consumption according to two definitions of the reference category – Data from a case-control study

of esophageal cancer (from Tuyns, Pequignot and Jensen 1977)

More restrictive definition of reference category (0–39 g|day)
Reference Exposed Total
category category

(0–39 g|day) (40+ g|day)

Cases 29 171 200

Controls 386 389 775

Total 315 660 975

Less restrictive definition of reference category (0–79 g|day)
Reference Exposed Total
category category

(0–79 g|day) (80+ g|day)

Cases 104 96 200

Controls 666 109 775

Total 770 205 975

methods described below, the crude AR estimate was 70.9% and adjusted AR esti-
mates were in the range 70% to 72%. The marked increase mainly resulted from the
much higher proportion of subjects exposed with the more restrictive definition
of the reference category (63% instead of 14% of exposed controls). �

The second main property is distributivity. If several exposed categories are
considered instead of just one, then the sum of the category-specific ARs equals
the overall AR calculated from combining those exposed categories into a single
one, regardless of thenumber and thedivisionsof theoriginal categories (Benichou
1991; Wacholder et al. 1994; Walter 1976), provided the reference category remains
the same. This property applies strictly to crude AR estimates and to adjusted
AR estimates calculated on the basis of a saturated model including all possible
interactions (Benichou 1991). It applies approximately to adjusted estimates not
based on a saturated model (Wacholder et al. 1994). Thus, if an overall AR estimate
is the focus of interest, there is no need to break the exposed category into several
mutually exclusive categories, even in the presence of a gradient of risk with
increasing level of exposure. Of course, if the impact of a partial removal of
exposure is the question of interest, retaining detailed information on the exposed
categories will be necessary (Greenland 2001).

Example 3. (continued)
For the more restrictive definition of the reference category of daily

alcohol consumption (0–39 g|day), the crude AR was estimated at 70.9%. The sep-



Rates, Risks, Measures of Association and Impact 131

arate contributions of categories 40–79, 80-119 and 120+ g|day were 27.0%, 22.2%
and 21.7%, summing to the same value 70.9%. Similarly, for the less restrictive
definition of the reference category (0–79 g|day), the crude AR was estimated at
39.5% and the separate contributions of categories 80–119 g|day and 120+ g|day
were 18.7% and 20.8%, summing to the same value 39.5%. �

Estimability and Basic Principles of Estimation
AR can be estimated from cohort studies since all quantities in (2.10), (2.11)
and (2.12) are directly estimable from cohort studies. AR estimates can differ
depending on whether rate ratios, risk ratios or odds ratios are used but will
be numerically close for rare diseases. For case-control studies, exposure-specific
incidence rates or risks are not available unless data are complemented with follow-
up or population-based data (see Sect. 2.2.2). Thus, one has to rely on odds ratio
estimates, use (2.11) and estimate pE from the proportion exposed in the controls,
making the rare-disease assumption also involved in estimating odds ratios rather
than relative risks. For crude AR estimation, the estimate of the odds ratio is taken
as ad|bc and that of pE as c|(c + d), where, as in Table 2.3, a, b, c and d respectively
denote the numbers of exposed cases, unexposed cases, exposed controls and un-
exposed controls. Alternatively, one can use (2.12), in which the quantity pE|D can
be directly estimated from the diseased individuals (cases) as a|(a + b) and RR
can be estimated from the odds ratio again as ad|bc. Using either equation, the
resulting point estimate is given by (ad − bc)|{d(a + b)}.

Variance estimates of crude AR estimates are based on applying the delta-
method (Rao 1965). For instance, an estimate of the variance for case-control data
is given by the quantity

var
(

ÂR
)

= b(c + d){ad(c + d) + bc(a + b)}|{d3(a + b)3} .

Various (1−α)% confidence intervals for AR have been proposed that can be ap-
plied to all epidemiologic designs once point and variance estimates are obtained.
They include standard confidence intervals for AR based on the untransformed
AR point estimate, namely

ÂR ± z1−α|2se
(

ÂR
)

;

AR confidence intervals based on the log-transformed variable ln(1 − AR), namely

1 −
(
1 − ÂR

) [
exp

{±z1−α|2se
(

ÂR
)

|
(
1 − ÂR

)}]
(Walter 1975) ;

as well as confidence intervals based on the logit-transformed variable ln{AR|(1 −
AR)}, namely{

1 +
{(

1 − ÂR
)

| ÂR
} (

exp
[±z1−α|2se

(
ÂR
)

|
{
ÂR

(
1 − ÂR

)}])}−1

(Leung and Kupper 1981).
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In the previous formulae, z1−α|2 denotes the (1−α|2)th percentile of the standard
normal distribution, ÂR denotes the AR point estimate and se( ÂR) its correspond-
ing standard error estimate. Whittemore (1982) noted that the log-transformation
yields a wider interval than the standard interval for AR > 0. Leung and Kupper
(1981) showed that the interval based on the logit transform is narrower than the
standard interval for values of AR strictly between 0.21 and 0.79, whereas the
reverse holds outside this range for positive values of AR. While the coverage
probabilities of these intervals have been studied in some specific situations and
partial comparisons have been made, no general studies have been performed to
determine their relative merits in terms of coverage probability.

Detailed reviews of estimability and basic estimation of AR for various epi-
demiologic designs can be found in Walter (1976) and Benichou (2000b, 2001)
who provide explicit formulae for ÂR and se( ÂR) for cohort and case-control
designs.

Example 3. (continued)
For the more restrictive definition of the reference category of daily

alcohol consumption (0–79 g|day), the crude AR estimate was obtained as:

(171 × 386 − 29 × 389)|(386 × 200) = 0.709 ,

or 70.9%. Its variance was estimated as:

29 × 775 × (171 × 386 × 775 + 29 × 389 × 200)|
(
3863 × 2003

)
= 0.00261 ,

yielding a standard error estimate of 0.051, or 5.1%. The corresponding 95%
confidence intervals for AR are given by 60.9% to 80.9% (no transformation),
58.9% to 79.4% (log transformation), and 60.0% to 79.8% (logit transformation),
very similar to each other in this example. �

Adjusted Estimation
As is the case for measures of association, unadjusted (or crude or marginal)
AR estimates may be inconsistent (Miettinen 1974; Walter 1976, 1980, 1983). The
precise conditions under which adjusted AR estimates that take into account the
distribution and effect of other factors will differ from unadjusted AR estimates
that fail to do so were worked out by Walter (1980). If E and X are two dichotomous
factors taking levels 0 and 1, and if one is interested in estimating the AR for
exposure E, then the following applies. The adjusted and unadjusted AR estimates
coincide (i.e., the crude AR estimate is unbiased) if and only if (a) E and X are such
that Pr(E = 0, X = 0)Pr(E = 1, X = 1) = Pr(E = 0, X = 1)Pr(E = 1, X = 0), which
amounts to the independence of their distributions, or (b) exposure to X alone does
not increase disease risk, namely Pr(D|E = 0, X = 1) = Pr(D|E = 0, X = 0). When
considering one (or several) polychotomous factor(s) X forming J levels (J > 2),
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conditions (a) and (b) can be extended to a set of analogous sufficient conditions.
Condition (a) translates into a set of J(J − 1)|2 conditions for all pairs of levels j
and j′ of X, amounting to an independent distribution of E and all factors in X.
Condition (b) translates into a set of J − 1 conditions stating that in the absence of
exposure to E, exposure to any of the other factors in X, alone or in combination,
does not increase disease risk.

The extent of bias varies according to the severity of the departure from con-
ditions (a) and (b) above. Although no systematic numerical study of the bias of
unadjusted AR estimates has been performed, Walter (1980) provided a revealing
example of a case-control study assessing the association between alcohol, smok-
ing and oral cancer. In that study, severe positive bias was observed for crude AR
estimates, with a very large difference between crude and adjusted AR estimates
both for smoking (51.3% vs. 30.6%, a 20.7 difference in percentage points and 68%
relative difference in AR estimates) and alcohol (52.2% vs. 37.0%, a 15.2% absolute
difference and 48% relative difference). Thus, the prudent approach must be to
adjust for factors that are suspected or known to act as confounders in a similar
fashion as for estimating measures of associations.

Two simple adjusted estimation approaches discussed in the literature are in-
consistent. The first approach was presented by Walter (1976) and is based on
a factorization of the crude risk ratio into two components similar to those in Mi-
ettinen’s earlier derivation (Miettinen 1972). In this approach, a crude AR estimate
is obtained under the assumption of no association between exposure and disease
(i.e., values of RR or the odds ratio are taken equal to 1 separately for each level of
confounding). This term reflects the AR only due to confounding factors since it
is obtained under the assumption that disease and exposure are not associated. By
subtracting this term from the crude AR estimate that ignores confounding fac-
tors and thus reflects the impact of both exposure and confounding factors, what
remains is an estimate of the AR for exposure adjusted for confounding (Walter
1976). The second approach is based on using (2.11) and plugging in a common
adjusted RR estimate (odds ratio estimate in case-control studies), along with an
estimate of pE (Cole and MacMahon 1971; Morgenstern 1982). Both approaches,
while intuitively appealing, were shown to be inconsistent (Ejigou 1979; Greenland
and Morgenstern 1983; Morgenstern 1982) and, accordingly, very severe bias was
exhibited in simulations of cross-sectional and cohort designs (Gefeller 1995).

By contrast, two adjusted approaches based on stratification yield valid esti-
mates. The Mantel–Haenszel approach consists in plugging-in an estimate of the
common adjusted RR (odds ratio in case-control studies) and an estimate of the
prevalence of exposure in diseased individuals, pE|D, in (2.12) in order to obtain an
adjusted estimate of AR (Greenland 1984, 1987; Kuritz and Landis 1987, 1988a,b).
In doing so, it is possible to adjust for one or more polychotomous factors forming
J levels or strata. While several choices are available for a common adjusted RR or
odds ratio estimator, a usual choice is to use a Mantel–Haenszel estimator of RR in
cohort studies (Kleinbaum et al. 1982, Chaps. 9 and 17; Landis et al. 2000; Rothman
and Greenland 1998, Chaps. 15–16; Tarone 1981) or odds ratio in case-control studies
(Breslow and Day 1980, Chaps. 4–5; Kleinbaum et al. 1982, Chaps. 9, 17; Landis et al.,
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2000; Mantel and Haenszel 1959; Rothman and Greenland 1998, Chaps. 15–16) (see
Sect. 2.4.6). For this reason, the term “Mantel–Haenszel approach” has been pro-
posed to denote this approach to adjusted AR estimation (Benichou 1991). When
there is no interaction between exposure and factors adjusted for, Mantel–Haenszel
type estimators of RR or odds ratio have favorable properties, as they combine lack
of (or very small) bias even for sparse data (e.g., individually matched case-control
data) and good efficiency except in extreme circumstances (Birch 1964; Breslow
1981;BreslowandDay 1980,Chaps. 4–5; Landis et al. 1978; Landis et al., 2000).More-
over, variance estimators are consistent even for sparse data (“dually-consistent”
variance estimators) (Greenland 1987; Robins and Greenland 1989). Simulation
studies of cohort and case-control designs (Gefeller 1992; Greenland 1987; Kuritz
and Landis 1988a,b) showed that adjusted AR estimates are little affected by small-
sample bias when there is no interaction between exposure and adjustment factors,
but can be misleading if such interaction is present.

Example 3. (continued)
In order to control for age and smoking, nine strata (joint categories)

of smoking× age have to be considered. The Mantel–Haenszel odds ratio estimate
can be calculated from quantities aj, bj, cj and dj that respectively denote the
numbers of exposed cases, unexposed cases, exposed controls and unexposed
controls in stratum j, using the methods in Sect. 2.4.6. With the more restrictive
definition of the reference category for daily alcohol consumption, the Mantel–
Haenszel odds ratio was estimated at 6.2, thus slightly higher than the crude odds
ratio of 5.9. Combined with an observed proportion of exposed cases of 171|200 =
0.855, this resulted in an adjusted AR estimate of 0.855 × (6.2 − 1)|6.2 = 0.716 or
71.6% using (2.12) (allowing for rounding error), slightly higher than the crude AR
estimate of 70.9%. The corresponding estimate of the standard error was 5.1%.�

The weighted-sum approach also allows adjustment for one or more polychoto-
mous factors forming J levels or strata. The AR is written as a weighted sum over
all strata of stratum-specific ARs, i.e.,

∑J
j=1 wjARj (Walter 1976; Whittemore 1982,

1983). Using crude estimates of ARj separately within each stratum j and setting
weights wj as proportions of diseased individuals (cases) yields an asymptotically
unbiased estimator of AR, which can be seen to be a maximum-likelihood estima-
tor (Whittemore 1982). This choice of weights defines the “case-load method”. The
weighted-sum approach does not require the assumption of a common relative
risk or odds ratio. Instead, the relative risks or odds ratios are estimated separately
for each adjustment level with no restrictions placed on them, corresponding to
a fully saturated model for exposure and adjustment factors (i.e., a model with
all interaction terms present). From these separate relative risk or odds ratio esti-
mates, separate AR estimates are obtained for each level of adjustment. Thus, the
weighted-sum approach not only accounts for confounding but also for interac-
tion. Simulation studies of cohort and case-control designs (Gefeller 1992; Kuritz
and Landis 1988a,b; Whittemore 1982) show that the weighted-sum approach can
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be affected by small sample bias, sometimes severely. It should be avoided when
analyzing sparse data, and should not be used altogether for analyzing individually
matched case-control data.

Example 3. (continued)
As with the Mantel–Haenszel approach, nine strata (joint categories)

of smoking×age have to be considered in order to control for age and smoking. In
each stratum separately, an AR estimate is calculated using the methods for crude
AR estimation (see above). For instance, among heavy smokers (30+ g|day) in age
group 65+ years, there were 15 exposed cases, five unexposed cases, four exposed
controls, and six unexposed controls, yielding an odds ratio estimate of 4.5 and
an AR estimate of 58.3%. The corresponding weight was 20|200 = 0.1, so that
the contribution of this stratum to the overall adjusted AR was 5.8%. Summing
the contributions of all nine strata yielded an adjusted AR estimate of 70.0%,
thus lower than both the crude and Mantel–Haenszel adjusted AR estimates. The
corresponding standard error estimate was 5.8%, higher than the standard error
estimate from the Mantel–Haenszel approach because fewer assumptions were
made. Namely, the odds ratio was not assumed common to all strata, so that
nine separate odds ratios had to be estimated (one for each stratum) rather than
a single common odds ratio from all strata. To circumvent the problem of empty
cells, the standard error estimate was obtained after assigning the value 0.5 to all
zero cells. �

A natural alternative to generalize these approaches is to use adjustment proce-
dures based on regression models, in order to take advantage of their flexible and
unified approach to efficient parameter estimation and hypothesis testing. Regres-
sion models allow one to take into account adjustment factors as well as interaction
of exposures with some or all adjustment factors. This approach was first used by
Walter (1976), Sturmans et al. (1977) and Fleiss (1979) followed by Deubner et al.
(1980) and Greenland (1987). The full generality and flexibility of the regression
approach was exploited by Bruzzi et al. (1985) who developed a general AR estimate
based on rewriting AR as

1 −
J∑

j=1

I∑
i=0

ρijRR−1
i|j .

Quantities ρij represent the proportion of diseased individuals with level i of expo-
sure (i = 0 at the reference level, i = 1, … , I for exposed levels) and j of confounding
and can be estimated from cohort or case-control data (or cross-sectional survey
data) using the observed proportions. The quantity RR−1

i|j represents the inverse
of the rate ratio, risk ratio or odds ratio depending on the context, for level i of
exposure at level j of confounding. It can be estimated from regression models
(see Sect. 2.4.6), both for cohort and case-control data (as well as cross-sectional
data), which allows confounding and interactions to be accounted for. Hence,
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this regression-based approach to AR estimation allows control for confounding
and interaction and can be used for the main epidemiologic designs. Depend-
ing on the design, conditional or unconditional logistic, log-linear or Poisson
models can be used. Variance estimators were developed based on an extension
of the delta-method to implicitly related random variables in order to take into
account the variability in estimates of terms ρij and RR−1

i|j as well as their corre-
lations (Basu and Landis 1995; Benichou and Gail 1989, 1990b). This regression
approach includes the crude and two stratification approaches as special cases
and offers additional options (Benichou 1991). The unadjusted approach corre-
sponds to models for RR−1

i|j with exposure only. The Mantel–Haenszel approach
corresponds to models with exposure and confounding factors, but no interaction
terms between exposure and adjustment factors. The weighted-sum approach cor-
responds to fully saturated models with all interaction terms between exposure
and confounding factors. Intermediate models are possible, for instance models
allowing for interaction between exposure and only one confounder, or models
in which the main effects of some confounders are not modeled in a saturated
way.

Example 3. (continued)
Still considering the more restrictive definition of the reference cate-

gory fordailyalcohol consumption,anunconditional logisticmodel (seeSect. 2.4.6)
with two parameters, one general intercept and one parameter for elevated alcohol
consumption, was fit, ignoring smoking and age. The resulting unadjusted odds
ratio estimate was 5.9 as above. The formula above for 1 − AR reduced to a single
sum with two terms (i = 0, 1) corresponding to unexposed and exposed categories,
respectively. The resulting unadjusted AR estimate was 70.9% (standard error es-
timate of 5.1), identical to the crude AR estimate above. Adding eight terms for
smoking and age in the logistic model increased the fit significantly (p < 0.001,
likelihood ratio test) and yielded an adjusted odds ratio estimate of 6.3, slightly
higher than the Mantel–Haenszel odds ratio estimate of 6.2 (see above). This re-
sulted in an adjusted AR estimate of 71.9%, slightly higher than the corresponding
Mantel–Haenszel AR estimate of 71.6%, and with a slightly lower standard error
estimate of 5.0%. Adding two terms for interactions of smoking with alcohol con-
sumption (thus allowing for different odds ratio estimates depending on smoking
level) resulted in a decreased AR estimate of 70.3% (with a higher standard error
estimate of 5.4% because of the additional parameters estimated). Adding six more
terms allowed for all two-by-two interactions between alcohol consumption and
joint age × smoking level and yielded a fully saturated model. Thus nine odds
ratios for alcohol consumption were estimated (one for each stratum) as with the
weighted-sum approach. This resulted in little change as regards AR, with an AR
estimate of 70.0%, identical to the AR estimate with the weighted sum approach,
which precisely corresponds to a fully saturated model. The corresponding stan-
dard error estimate was increased to 5.6% due to the estimation of additional
parameters. �
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A modification of Bruzzi et al.’s approach was developed by Greenland and
Drescher (1993) in order to obtain full maximum likelihood estimates of AR. The
modification consists in estimating the quantities ρij from the regression model
rather than simply relying on the observed proportions of cases. The two model-
based approaches seem to differ very little numerically (Greenland and Drescher
1993). Greenland and Drescher’s approach might be more efficient in small samples
although no difference was observed in simulations of the case-control design even
for samples of 100 cases and 100 controls (Greenland and Drescher 1993). It might
be less robust to model misspecification, however, as it relies more heavily on
the RR or odds ratio model used. Finally, it does not apply to the conditional
logistic model, and if that model is to be used (notably, in case-control studies with
individual matching), the original approach of Bruzzi et al. is the only possible
choice.

Detailed reviews of adjusted AR estimation (Benichou 1991, 2001; Coughlin
et al. 1994; Gefeller 1992) are available. Alternative methods to obtain estimates
of variance and confidence intervals for AR have been developed either based on
resampling techniques (Gefeller 1992; Greenland 1992; Kahn et al. 1998; Kooperberg
and Petitti 1991; Llorca and Delgado-Rodriguez 2000; Uter and Pfahlberg 1999) or
on quadratic equations (Lui 2001a,b, 2003).

Final Notes and Additional References
General problems of AR definition, interpretation and usefulness as well as proper-
ties have been reviewed in detail (Benichou 2000b; Gefeller 1992; Miettinen 1974;
Rockhill et al. 1998a,b; Walter 1976). Special issues were reviewed by Benichou
(2000b, 2001). They include estimation of AR for risk factors with multiple levels
of exposure or with a continuous form, multiple risk factors, recurrent disease
events, and disease classification with more than two categories. They also include
assessing the consequences of exposure misclassification on AR estimates. Specific
software for attributable risk estimation (Kahn et al. 1998; Mezzetti et al. 1996) as
well as a simplified approach to confidence interval estimation (Daly 1998) have
been developed to facilitate implementation of methods for attributable risk esti-
mation. Finally, much remains to be done to promote proper use and interpretation
of AR as illustrated in a recent literature review (Uter and Pfahlberg 2001).

Attributable Risk Among the Exposed 2.5.2

The attributable risk in the exposed (ARE) or attributable fraction in the exposed
is defined as the following ratio (Cole and MacMahon 1971; Levin 1953; MacMahon
and Pugh 1970; Miettinen 1974):

ARE =
{
Pr(D|E) − Pr

(
D|E)} |Pr(D|E) , (2.13)

where Pr(D|E) is the probability of disease in the exposed individuals (E) and
Pr(D|E) is the hypothetical probability of disease in the same subjects but with all
exposure eliminated. Depending on the context, these probabilities will refer to
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disease risk or may be replaced with incidence rates (see Sect. 2.5.1). ARE can be
rewritten as:

ARE = (RR − 1)|RR , (2.14)

where RR denotes the risk or rate ratio. Following Greenland and Robins (1988),
RothmanandGreenland(1998,Chap.4)proposed touse the terms“excess fraction”
for the definition of ARE based on risks or risk ratios and “rate fraction” for the
definition of ARE based on rates or rate ratios.

Like AR, ARE lies between 0 and 1 when exposures considered are risk factors
(RR > 1) with a maximal limiting value of 1, is equal to zero in the absence of
association between exposure and disease (RR = 1), and is negative for protective
exposures (RR < 1).

As for AR, ARE has an interpretation as a measure of the disease burden at-
tributable or at least related to one or several exposures among the exposed sub-
jects. Consequently, ARE could be used to assess the potential impact of prevention
programs aimed at eliminating exposure from the population. These interpreta-
tions are subject to the same limitations as corresponding interpretations for AR
however (see Sect. 2.5.1). Moreover, ARE does not have a clear public health inter-
pretation because it does not depend on the exposure prevalence but only on the
risk or rate ratio of which it is merely a one-to-one transformation. For the assess-
ment of the relative impact of several exposures, ARE will not be an appropriate
measure since ARE for different exposures refer to different groups of subjects in
the population (i.e., subjects exposed to each given exposure).

ARE being a one-to-one function of RR, issues of estimability and estimation
for ARE are similar to those for RR. They depend on whether rates or risks are
considered. For case-control studies, odds ratios can be used. Greenland (1987)
specifically derived adjusted point estimates and confidence intervals for ARE

based on the Mantel–Haenszel approach.

Sequential and Partial Attributable Risks2.5.3

Upon considering multiple exposures, separate ARs can be estimated for each
exposure as well as the overall AR for all exposures jointly. Except in very special
circumstances worked out by Walter (1983) (i.e., lack of joint exposure or additive
effects of exposures on disease risk or rate), the sum of separate AR estimates over
all exposures considered will not equal the overall AR estimate.

Because this property is somewhat counter-intuitive and generates misinterpre-
tations, three alternative approaches have been suggested, one based on consid-
ering variance decomposition methods (Begg et al. 1998) rather than estimating
AR, one based on estimating assigned share or probability of causation of a given
exposure with relevance in litigation procedures for individuals with multiple ex-
posures (Cox 1984, 1985; Lagakos and Mosteller 1986; Seiler 1986; Seiler and Scott
1987; Benichou 1993b; McElduff et al. 2002), and one based on an extension of the
concept of AR (Eide and Gefeller 1995; Land et al. 2001). This last approach relies on
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partitioning techniques (Gefeller et al. 1998; Land and Gefeller 1997) and keeps with
the framework of AR estimation by introducing the sequential AR that generalizes
the concept of AR. The principle is to define an order among the exposures consid-
ered. Then, the contribution of each exposure is assessed sequentially according
to that order. The contribution of the first exposure considered is calculated as the
standard AR for that exposure separately. The contribution of the second expo-
sure is obtained as the difference between the joint AR estimate for the first two
exposures and the separate AR estimate for the first exposure, the contribution of
the third exposure is obtained as the difference between the joint AR estimates
for the first three and first two exposures, etc …. Thus, a multidimensional vector
consisting of contributions of each separate exposure is obtained.

These contributions are meaningful in terms of potential prevention programs
that consider successive rather than simultaneous elimination of exposures from
the population. Indeed, each step yields the additional contribution of the elimi-
nation of a given exposure once higher-ranked exposures are eliminated. At some
point, additional contributions may become very small, indicating that there is not
much point in considering extra steps. By construction, these contributions sum
to the overall AR for all exposures jointly, which constitutes an appealing prop-
erty. Of course, separate vectors of contributions are obtained for different orders.
Meaningful orders depend on practical possibilities in implementing potential pre-
vention programs in a given population. Average contributions can be calculated
for each given exposure by calculating the mean of contributions corresponding
to that exposure over all possible orders. These average contributions have been
termed partial attributable risks (Eide and Gefeller 1995) and represent another
potentially useful measure. Methods for visualizing sequential and partial ARs are
provided by Eide and Heuch (2001). An illustration is given by Fig. 2.1. A detailed
review of properties, interpretation, and variants of sequential and partial ARs was
provided by Land et al. (2001).

Figure 2.1. Sequential attributable risk estimates for elevated alcohol consumption (80+ g|day) and

heavy smoking (10+ g|day) for two different orders of removal (a: alcohol, then smoking; b:

smoking, then alcohol) – Case-control data on esophageal cancer (Tuyns, Pequignot and Jensen 1977;

cf. Example 3)

Example 3. (continued)
Smoking is also a known risk factor of esophageal cancer so that it

is important to estimate the impact of smoking and the joint impact of smoking
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and alcohol consumption on esophageal cancer in addition to that of alcohol
consumption alone. Using the first category (i.e., 0–9 g|day) as the reference level
of smoking, there were 78 cases in the reference level of smoking, 122 cases in the
exposed level (i.e., 10+ g/day), 447 controls in the reference level and 328 controls
in the exposed level. From these data, the crude odds ratio estimate for smoking at
least 10 g|day was 2.1 and the crude AR estimate for smoking at least 10 g|day was
32.4%. Moreover, there were nine cases and 252 controls in the joint reference level
of alcohol consumption and smoking (i.e., 0–39 g|day of alcohol and 0–9 g|day of
tobacco), which yielded a crude joint odds ratio estimate of 10.2 and a crude joint
AR estimate for drinking at least 40 g|day of alcohol or smoking at least 10 g|day
of tobacco of 86.2%.

Furthermore, the crude AR estimate for alcohol consumption of at least 40 g|day
was estimated at 70.9% in Sect. 2.5.1. Hence, considering the first order of risk factor
removal (i.e., eliminating alcohol consumption above 39 g|day followed by elimi-
nating smoking above 9 g|day) yields sequential AR estimates of 70.9% for elevated
daily alcohol consumption and 86.2% − 70.9% = 15.3 percentage points for heavy
smoking so that, once elevated alcohol consumption is eliminated, the additional
impact of eliminating heavy smoking appears rather limited (Fig. 2.1a). Consid-
ering the second order (i.e., eliminating heavy smoking first) yields sequential
AR estimates of 32.4% for heavy smoking and 86.2% − 32.4% = 53.8 percentage
points for elevated alcohol consumption so that, once heavy smoking is eliminated,
the additional impact of eliminating elevated alcohol consumption remains major
(Fig. 2.1b). A summary of these results is provided by partial ARs for elevated alco-
hol consumption and heavy smoking, with estimated values of 62.4% and 23.9%,
respectively, again reflecting the higher impact of elevated alcohol consumption
on esophageal cancer. �

Preventable and Prevented Fractions2.5.4

Whenconsideringaprotective exposureor intervention, anappropriate alternative
to AR is the preventable or prevented fraction (PF) defined as the ratio (Miettinen
1974):

PF =
{
Pr
(
D|E) − Pr(D)

}
|Pr(D|E) , (2.15)

where Pr(D) is the probability of disease in the population, which may have some
exposed (E) and some unexposed (E) individuals, and Pr(D|E) is the hypothetical
probability of disease in the same population but with all (protective) exposure
eliminated. Depending on the context, these probabilities will refer to disease risk
or may be replaced with incidence rates (see sections above). PF can be rewritten
as:

PF = pE(1 − RR) , (2.16)
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a function of both the prevalence of exposure, pE, and the risk or rate ratio, RR.
Thus, a strong association between exposure and disease may correspond to a high
or low value of PF depending on the prevalence of exposure, as for AR. Moreover,
portability is not a typical propertyofPF, as forAR.As forARagain, itmaybeuseful
to compare PF estimates among population subgroups to target prevention efforts
to specific subgroups with a potentially high impact (as measured by the PF).

For a protective factor (RR < 1), PF lies between 0 and 1 and increases with the
prevalence of exposure and the strength of the association between exposure and
disease.

PF measures the impact of an association between a protective exposure and
disease at the population level. It has a public health interpretation as the pro-
portion of disease cases averted (“prevented fraction”) in relation to the presence
of a protective exposure or intervention in the population, among the totality of
cases that would have developed in the absence of that factor or intervention in
the population. In this case, it is useful to assess prevention programs a posteriori.
Alternatively, it can be used to assess prevention programs a priori by measuring
the proportion of cases that could be potentially averted (“preventable fraction”)
if a protective exposure or intervention were introduced de novo in the population
(Gargiullo et al. 1995). These interpretations are subject to the same limitations as
corresponding interpretations for AR however (see Sect. 2.5.1).

PF and AR are mathematically related through (Walter 1976):

1 − PF = 1|(1 − AR) . (2.17)

From (2.17), it appears that, for a protective factor, PF estimates will usually differ
from AR estimates obtained by reversing the coding of exposure. This follows
from the respective definitions of AR and PF. While AR, with reverse coding,
measures the potential reduction in disease occurrence that could be achieved if all
subjects in the current population became exposed, PF measures the reduction in
disease occurrence obtained from introducing exposure at the current prevalence
in a formally unexposed population (Benichou 2000c).

In view of (2.17), estimability and estimation issues are similar for AR and PF.
Specific PF adjusted point and confidence interval estimates were derived using
the Mantel–Haenszel approach (Greenland 1987) and weighted-sum approaches
(Gargiullo et al. 1995).

Generalized Impact Fraction 2.5.5

The generalized impact fraction (GIF) or generalized attributable fraction was
introduced by Walter (1980), and Morgenstern and Bursic (1982) as the ratio:

GIF =
{
Pr(D) − Pr∗(D)

}
|Pr(D) , (2.18)

where Pr(D) and Pr∗(D) respectively denote the probability of disease under the
current distribution of exposure and under a modified distribution of exposure.
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As for AR and PF, these probabilities denote risks or can be replaced by incidence
rates depending on the context.

The generalized impact fraction not only depends on the association between
exposure and disease as well as the current distribution (rather than just the preva-
lence) of exposure, but also on the target distribution of exposure considered that
will yield Pr∗(D). It is a general measure of impact that includes AR and PF as
special cases. AR contrasts the current distribution of exposure with a modified
distribution defined by the absence of exposure. Conversely, PF contrasts a distri-
bution defined by the absence of exposure with the current distribution of exposure
(prevented fraction) or target distribution of exposure (preventable fraction).

The generalized impact fraction can be interpreted as the fractional reduction
of disease occurrence that would result from changing the current distribution of
exposure in the population to some modified distribution. Thus, it can be used
to assess prevention programs or interventions, targeting all subjects or subjects
at specified levels, and aimed at modifying or shifting the exposure distribution
(reducing exposure), but not necessarily eliminating exposure. For instance, heavy
smokers couldbe specifically targetedby interventions rather thanall smokers. The
specialARcasecorresponds to thecompleteeliminationofexposurebyconsidering
a modified distribution putting unit mass on the lowest risk configuration and
can be used to assess interventions aimed at eliminating (rather than reducing)
exposure. Alternatively, the general impact fraction could be used to assess the
increase in disease occurrence as a result of exposure changes in the population,
such as the increase in breast cancer incidence as a result of delayed childbearing
(Kleinbaum et al. 1982, Chap. 9). Such interpretations are subject to the same
limitations as for AR and PF (see Sect. 2.5.1).

The generalized impact fraction has been used for instance by Lubin and Boice
(1989) who considered the impact on lung cancer of a modification in the distribu-
tion of radon exposure consisting in truncating the current distribution at various
thresholds and by Wahrendorf (1987) who examined the impact of various changes
in dietary habits on colo-rectal and stomach cancers.

Issues of estimability are similar to those for AR and PF. Methods to estimate
the generalized impact fraction are similar to methods for estimating AR and PF.
However, unlike for AR or PF, it might be useful to retain the continuous nature of
exposures to define the modification of the distribution considered (for instance
a shift in the distribution), and extensions of methods for estimating AR for
continuous factors (Benichou and Gail 1990b) are relevant in this context. Drescher
and Becher (1997) proposed extending model-based approaches of Bruzzi et al.
(1985) and Greenland and Drescher (1993) to estimate the generalized impact
fraction in case-control studies and considered continuous as well as categorical
exposures.

Person-Years of Life Lost2.5.6

Person-years of life lost (or potential years of life lost, PYLL) for a given cause of
death is a measure defined as the difference between current life expectancy of
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the population and potential life expectancy with the cause of death eliminated
(Smith 1998). For instance, one may be interested in PYLL due to prostate cancer in
men, breast cancer in women, or cancer as a whole (all sites) in men and women.
Methods for estimating PYLL rely on calculating cause-deleted life tables. Total
PYLL at the population level or average PYLL per person may be estimated. As
an example, a recent report from the Surveillance, Epidemiology and End Results
(SEER) estimated that 8.4 million years of life overall were lost due to cancer in
the US population (both sexes, all races) in the year 2001, with an average value of
potential years of life lost per person of 15.1 years. Corresponding numbers were
779,900 years overall and 18.8 years on average for breast cancer in women, and
275,200 years overall and 9.0 years on average for prostate cancer in men (Ries
et al. 2004).

PYLL represents an assessment of the impact of a given disease. Thus, it is not
directly interpretable as a measure of exposure impact, except perhaps for diseases
with a dominating risk factor, such as asbestos exposure for mesothelioma or
human papilloma virus for cervical cancer.

However, it is possible to obtain a corresponding measure of the impact of
a given exposure by converting PYLL due to a particular cause of death to PYLL
due to a particular exposure. Estimation of an exposure-specific PYLL is obtained
through applying an AR estimate for that exposure to the disease-specific PYLL,
namely calculating the product PYLL times AR, which yields the fraction of PYLL
attributable to exposure. In this process, several causes of deaths may have to
be considered. For instance, the fractions of PYLL for mesothelioma and lung
cancer would need to be added in order to obtain the overall PYLL for asbestos
exposure. In contrast with AR that provides a measure of exposure impact as
a fraction of disease incidence (or death), such calculations of PYLL will provide
a measure of exposure impact on the life expectancy scale. As for AR, the impact
of a given exposure on the PYLL scale will depend on the prevalence of exposure
in the population and strength of association between exposure and disease(s).
Moreover, it will depend critically on the age-distribution of exposure-associated
diseases and their severity, i.e. case fatality.

Other Topics 2.6

Standardization of Risks and Rates 2.6.1

Risks and rates can usually not be directly compared between countries, regions
or time periods because of differences in age structure. For example, an older
population may appear to have higher rates of certain cancers, not because of the
presence of risk factors, but because of the higher age itself. This is a form of
confounding. In the tradition of demography, so called standardization is applied
to reported rates and risks to adjust for differences in age and possibly other
confounders. Direct standardization is the most commonly used technique. It
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proceeds by forming a weighted average of age specific rates or risks, where the
weights reflect a known population structure. This structure is typically chosen
as that of a country in a given census year, the so-called standard population.
A directly standardized rate can be written:

SR =
∑

nS
j hj|

∑
nS

j =
∑

wS
j hj , (2.19)

where nS
j is the number of individuals in age group j in the standard population, hj

are age specific rates in the population under study, and wS
j are weights such that∑

wS
j = 1. A standardized risk can be computed in the same manner. Since the

weights are fixed and not estimated, the variance of the estimated standardized
rate is

var
(∑

wS
j hj

)
=
∑(

wS
j

)2
hj , (2.20)

based on the Poisson assumption for the age specific rates. For risks, the binomial
assumption may be used for the age specific risks.

When age-specific rates or risks are not available in the population under study,
indirect standardization may be used. This technique is less common, but requires
knowledge only of the age distribution, and not the age-specific rates, in the pop-
ulation under study. The indirectly standardized rate is obtained by (SMR)(CR0),
where SMR is the standardized mortality or morbidity ratio (see below), and CR0

is the crude (i.e., original overall) rate in a reference population that provides
stratum-specific rates.

The standardized mortality or morbidity ratio is a ratio between observed
and expected event counts, where the expected count is based on age specific
rates or risks in a reference population, which is a non-exposed or general pop-
ulation group. Then the standardized mortality (or morbidity or incidence) ra-
tio

SMR or SIR = DE|E0 =
∑

njhj|
∑

njh0j ,

where DE is the number of events in the exposed and E0 is the expected number
of events obtained from the rates h0j in the unexposed applied to the sample com-
position of the exposed. The SMR can also be re-written as a weighted average
of sex- and age-specific (say) rate ratios hj|h0j with weights wj = njh0j. It can be
shown that these weights minimize the standard error of the weighted average
(Breslow and Day 1987, Chap. 2) as long as the rates in the reference population
are assumed to be known rather than estimated. Stratified analyses as discussed
above, on the other hand, choose weights that minimize the standard errors when
the rates are estimated among both the exposed and the unexposed. The SMR
has the advantage that age- and sex-specific rates are not needed for the exposed
group.

The denominator of the SMR is generally obtained from age- and sex-specific
rates in the entire regional population. This allows the random variation of the
denominator to be considered to be none, and confidence intervals can be based
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on the estimate 1|D1|2
E for the standard error of ln(SMR). This standard error

computation also assumes that the events among the exposed are uncorrelated (do
not cluster), ormore specifically, that the event count followsaPoissondistribution.

It may be noted that directly standardized rates are based on a choice of stan-
dard population to generate weights. While the weights used for the SMR result
from the composition of the comparison group and do not involve a true standard
population, the weights used in direct standardization are external as they result
from information outside the samples being compared. In principle, the latter
weights are similar to survey weights applied in for examples the National Health
and Nutrition Examination Survey (NHANES), where the sample must be stan-
dardized to the US population to account for the methodology used in drawing it.
While improving external validity, weights from direct standardization and survey
weights always result in loss of statistical efficiency, i.e., standard errors will be
larger than for crude, or non-weighted rates and risks. In contrast, many of the
methods to adjust for confounding discussed in Sect. 2.4 are internal to the specific
comparison and designed to optimize statistical efficiency.

Measures Based on Prevalence 2.6.2

Prevalence is the number of cases either at a given point in time (point prevalence)
orovera timeperiod(periodprevalence)dividedby thepopulationsize.Prevalence
can be easier to obtain than incidence. For example, a population survey can
determine how many individuals in a population suffer from a given illness or
health condition at a point in time.

Measures of association based on prevalence parallel those for risk (for point
prevalence) or incidence rates (for period prevalence). For example, one can form
prevalence ratios, prevalence differences and prevalence odds ratios. Measures of
impact based on prevalence can also be obtained.

Prevalence and the measures of association based on it are useful entities for
health policy planning and for determining the level of services needed for indi-
viduals with a given health condition in the population. It is usually considered
less useful for studying the etiology of a disease. The reason for this is that un-
der certain assumptions prevalence of a disease equals its incidence multiplied
by its duration (Kleinbaum et al. 1982, Chap. 8). These assumptions are that the
population is stable, and that both the incidence and prevalence remain constant.
Under more general conditions, prevalence still reflects both incidence and dura-
tion, but in a more complex manner. For a potentially fatal or incurable disease,
duration means survival, and the exposures that increase incidence may reduce or
increase survival and hence the association of an exposure with prevalence may
be very different than its association with incidence. On the other hand, when
a disease or condition can be of limited duration due to recovery or cure, and its
duration is maintained by the same exposures that caused it, prevalence can be
more meaningful than incidence. For example, it is conceivable that weight gain
in a person may have caused hypertension, and when the person loses the same
amount of weight she|he moves out of being hypertensive. In this latter case, the
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prevalence ratio between the percentages with hypertension in those exposed and
unexposed to the risk factor captures the increase in the risk of living with the
condition caused by the exposure, while the incidence ratio captures only part of
the etiologic association.

Conclusions2.7

Disease frequency is measured through the computation of incidence rates or
estimation of disease risk. Both measures are directly accessible from cohort data.
They can be obtained from case-control data only if they are complemented by
follow-up or population data. Using regression techniques, methods are available
to derive incidence rates or risk estimates specific to a given exposure profile.
Exposure-specific risk estimates are useful in individual prediction.

Awidevarietyofoptionsand techniquesareavailable formeasuringassociation.
The odds ratio is presently the most often used measure of association for both
cohort and case control studies. Adjustment for confounding is key in all analyses
of observational studies, and can be pursued by standardization, stratification and
by regression techniques. The flexibility of the latter, especially in the generalized
linear model framework, and availability of computer software, has made it widely
applied in the last several years.

Several measures are available to assess the impact of an exposure in terms
of the occurrence of new disease cases at the population level, among which the
attributable risk is the most commonly used. Several approaches have been de-
veloped to derive adjusted estimates of the attributable risk from case-control as
well as cohort data, either based on stratification or on more flexible regression
techniques. The concept of attributable risk has been extended to handle pre-
ventive exposures, multiple exposures, as well as assessing the impact of various
modifications of the exposure distribution rather than the mere elimination of
exposure.
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Introduction3.1

We begin by setting out some definitions in descriptive epidemiology, the sources
of data from which such studies arise and provide a brief outline of the sections
that comprise this chapter.

Definitions3.1.1

A distinction has traditionally be drawn between “descriptive” and “analytic”
epidemiology, and their characteristics as ‘hypothesis generating’ or ‘hypothesis
testing’, respectively, have been taught to generations of students. This distinction
may perhaps reflect the dichotomy between distribution and of causes of disease,
in the dictionary definition of Epidemiology (Last 2001): “The study of the distri-
bution and determinants of health-related states or events in specified populations,
and the application of this study to control of health problems”.

Describing the distribution of disease is an integral part of the planning and
evaluation of health care services, but, in the context of investigative epidemiology,
the distinction is an arbitrary one. There are no real differences in the concepts,
methods, or deductive processes between descriptive and analytic epidemiology,
for example, between the information conveyed by the observations of an associa-
tion between the risk of liver cancer and being engaged in a specific occupation, or
having markers of infection by a certain virus. Both may tell us something about
the cause of liver cancer. Only the sources of information differ. In the former case,
it has derived from some routine source (a dataset or register maintained for gen-
eral disease surveillance purposes, or even for unrelated administrative reasons).
These sources include information on possible exposures or disease outcomes that
have not been collected with the testing of any specific hypothesis in mind. It is this
use of routinely collected data that characterises descriptive studies.

Descriptive epidemiology is certainly not synonymous with ecological studies
of groups, as suggested by some authors (Estève et al. 1994), since most “descrip-
tive” studies have information on distribution and levels of several exposure vari-
ables for individual members of the population studied. In their classic textbook,
MacMahon and Trichopoulos (1996) liken this phase of epidemiological investiga-
tion to the early questions in the parlour game “20 questions” – using generally
available information to focus down the field of enquiry to one that may need ex-
pensive ad hoc study. But the variables available in routine data sources are no less
“exposures” from the point of view of methodology, or deductive reasoning, than
are those measured by questionnaire, physical examination, or biochemical tests.
The fact that some “exposures” may be remote from the molecular mechanisms
involved in disease aetiology is a familiar one when considering “cause” of disease,
especially from a public health perspective of devising appropriate methods of
prevention. “Cause” is a relative concept, that only has meaning in epidemiology
terms of its removal being associated with a diminished risk of the disease, and, in
this context, it is just as relevant to improve educational levels in a population as
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a means of reducing infection by HIV as it is to identify the mechanisms by which
the virus enters the host cell.

“Exposures” in descriptive epidemiology are those characteristics of individuals
that arepresent in thepre-existingdata sets available for study.Themost commonly
available are personal characteristics, the so-called “demographic” variables, sys-
tematically collected by vital statistics and health care institutions. They include
birth date (or age), sex, address (current place of residence), birthplace, race|ethnic
group, marital status, religion, occupation, and education. From sources within
the health sector, there may be much more detail on diagnostic and therapeutic
interventions, while community surveys may include information on health deter-
minants, such as tobacco and alcohol use, weight, height, blood pressure, and so
forth.

Disease outcomes may be in terms of incident cases (from disease registers),
deaths (vital statistics), episodes of morbidity (utilisation statistics from health
services), or prevalence of, especially, chronic conditions from population surveys.

Information on “exposure” and “outcome” for the same individual may be taken
from a single source (e.g. a disease register, or population survey), or it may be
necessary to perform record linkage between different sources to obtain exposure
and outcome information on individuals in the population under study.

Sources of Data 3.1.2

There is a wide variety of sources of information that can be drawn upon for in-
formation on exposure and disease outcome. They are of two broad types: systems
based on populations, containing data collected through personal interviews or
examinations; and systems based on records, containing data collected from vital
and medical records. They include:

Census data, or population registers
Vital statistics (especially death certificate data)
Disease registers, recording new cases of specific diseases in defined popula-
tions (the best known example being cancer registries)
Notification systems (especially for infectious diseases)
Hospital activity statistics, especially on admissions|discharges from hospital,
including diagnosis
Primary care contacts
Diagnostic services (pathology, etc)
Community surveys (e.g., those carried out by the NCHS in the USA (Freid
et al. 2003).

Some of these are described in Chap. I.4 of this handbook.

Outline of the Chapter 3.1.3

The chapter comprises four sections, beginning with an introduction of the most
important measurements in descriptive epidemiology. Since these are primarily
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concerned with risk or burden of disease in a single population, appropriate meth-
ods for comparisons between populations – the hallmark of epidemiology – are re-
quired. Section 3.4 illustrates how these tools can be applied in the study designs fa-
miliar to epidemiologists, with a special emphasis on ecological studies. Section 3.5
provides a series of examples, illustrating the principles of descriptive studies.

Measurement3.2

Incidence3.2.1

Incidence is the number of new cases occurring. It can be expressed as an absolute
number of cases or in relation to the size of the population at risk, and time during
which the cases occur, as an incidence rate (cf. Chaps. I.2 and I.5 of this handbook).
Incidence requires definition of the moment at which the disease “begins”, when an
individual becomes a new “case”. This may be straightforward for many infectious
diseases. However, for most, time of onset is less clear cut, and is by convention
considered to be the time of diagnosis, although this is a somewhat arbitrary
point in time, and dependant upon local circumstances. Incidence may refer to
the number of new disease events, or to the number of individuals affected. The
distinction is important where the same individual may have more than one event
of the same disease, during the period of observation (e.g. common infections,
accidents, etc).

Incidence data are available from disease registers, including notification sys-
tems for infectious diseases. Disease registers are part of surveillance systems for
various diseases. When they are based on notification of disease events, their suc-
cess depends upon the patient seeking medical advice, the correct diagnosis being
made, and notification of it being made to the public health authorities. Complete-
ness is very variable, but probably higher for serious or highly contagious diseases.
Registers have been more important, and successful, for cancer than for any other
condition. This is because of the serious nature of most cancers, which means that,
except in a few societies without access to medical care and concepts, those affected
will almost always present for diagnosis (and treatment, if available). As a result,
enumeration of incident cases of cancer is relatively easy in comparison with other
diseases, and this has permitted the establishment of a worldwide network of can-
cer registries, providing data on defined populations (Jensen et al. 1991). Incidence
data from cancer registries worldwide that meet defined criteria regarding com-
pleteness and validity are published at five-year intervals in the Cancer Incidence
in Five Continents series. The latest volume (8th) contains comparable incidence
information from 186 registries in 57 countries, mainly over the period 1993–1997
(Parkin et al. 2002).

Other sources of information on incidence include:
1. Retrospective or prospective surveys for incident cases of a particular disease.

The approach is similar to ongoing registers, except that it is limited in time.



Descriptive Studies 161

2. Community surveys. General morbidity surveys record all cases of disease
appearing in a sample of the community, e.g. at primary care level, during
a period of time. They are most efficient for relatively common conditions.

3. Hospital activity statistics. These summarise hospital admissions. Such statis-
tics are usually event-based, so there may be multiple admissions for the same
disease event. The numbers of hospitalisations is also affected by the facilities
available, admissions policies, and social factors. It may be difficult to define
the population at risk, unless national-level data can be compiled.

Incidence rates are of particular value in the study of disease aetiology, since they
are informative about the risk of developing the disease in different population
groups.

Prevalence 3.2.2

Prevalence is the number, or more usually, the proportion of a population that has
the disease at a given point in time (Rothman and Greenland 1998; cf. Chap. I.2
of this handbook). For many diseases (e.g., hypertension, diabetes), prevalence
usefully describes the number of individuals requiring care, and may be useful
in planning health services. Prevalence is proportional to the incidence of the
disease, and its duration (and when both are constant, then Prevalence = Inci-
dence × Duration). In the absence of useful data on incidence or mortality, preva-
lence may be used to compare the risk of disease between populations, although
this has clear drawbacks, not least because prevalence is related also to the mean
duration of the disease. The mean duration may simply reflect the availability of
effective treatment, allowing prolonged survival. For some chronic diseases, what
to consider as the moment of cure (after which an individual is no longer a “case”)
is a problem when trying to calculate comparable indices of prevalence between
populations (Pisani et al. 2002). Population surveys are a common source of infor-
mation on prevalence of the more common conditions or complaints, including
those that may exist in asymptomatic form, and therefore remain unrecognised in
a clinical setting.

A less commonly used measure is period prevalence, which is the sum of all
cases of the disease that have existed during a given period, divided by the average
population at risk during the period. It has been used for studying mental illness,
where the exact time of onset is difficult to define, and when it may be difficult to
know whether the condition was present at a particular point in time.

Case Fatality|Survival 3.2.3

Case fatality is a measure of the severity of a disease. It is the proportion of
cases of a particular disease that are fatal within a specified time. Survival is
proportion of cases that do not die in a given interval after diagnosis (and is equal
to 1-fatality).Thesurvival time isdefinedas the time that elapsedbetweendiagnosis
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and death. Computation of survival depends upon follow-up of diagnosed patients
for deaths or withdrawal from observation. There are two related approaches to
the estimation of survival: the Kaplan–Meier and actuarial, or life-table, methods.
The former (Kaplan and Meier 1958) is particularly useful when exact survival
times are available, since smooth estimates of survival as a function of time since
diagnosis can be obtained. The actuarial method requires a life-table with survival
times grouped usually into intervals that permit the calculation of the cumulative
probability of survival at time ti from the conditional probabilities of survival
during consecutive intervals of follow-up time up to and including ti (Cutler and
Ederer 1958; Ederer et al. 1961). Information from all cases is used in the estimation
of survival, including those withdrawn due their follow-up ending owing to closure
of study, and those who are lost to follow-up before the termination. In both cases
follow-up is censored before the time of the outcome event, usually the death of the
patient. “Observed survival” is influenced not only by mortality from the disease
of interest, but also by deaths from other causes. If these deaths can be identified,
they can be treated as withdrawals, and the “corrected survival” (also referred to as
“net survival”) calculated. Alternatively, allowance for deaths due to causes other
than the disease under study is made by calculation of “relative survival” (Ederer
et al. 1961). This makes use of an appropriate population life-table to estimate
expected numbers of deaths. The issue of competing risks is discussed in detail in
Chap. I.2 of this handbook. For comparisons between different populations, age
standardisation of survival is necessary (see Sect. 3.3.1).
For amoredetaileddescriptionof survival analysis, seeChap. II.4of thishandbook.

Mortality3.2.4

Mortality is the number of deaths occurring in a population, and is the product of
the incidence and the fatality of the disease.

Mortality statistics derive from the information on death certificates, collected
by civil registration systems recording vital events (births, marriages, deaths). The
responsible authority varies between countries, but usually the first level of data
collection and processing is the municipality or province, with collation of national
statistics being the responsibility of the Ministry of Health, or the Interior Ministry.
Death certificates record information on the person dying, and the cause of death,
as certified, usually by a medical practitioner. The International Classification of
Diseases (ICD) provides a uniform system of nomenclature and coding, and a rec-
ommended format for the death certificate (WHO 1992). Mortality statistics are
produced according to the underlying cause of death; this may not equate with
the presence of a particular disease. Although the ICD contains a set of rules and
guidelines that allow the underlying cause to be selected in a uniform manner,
interpretation of the concept probably varies considerably e.g. when death occurs
from pneumonia in a person previously diagnosed as having cancer. Comprehen-
sive mortality statistics thus require that diagnostic data is available on decedents,
which are transferred in a logical, standardised fashion to death certificates, which
are then accurately and consistently coded, compiled and analysed.
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It is well known that mortality data may be deficient both in completeness of
ascertainment, and in the validity of the recorded cause of death (Alderson 1981).
A huge number of studies of the validity of cause of death statements in vital statis-
tics data have been carried out. These compare cause of death entered on the death
certificate with a reference diagnosis, which may be derived from autopsy reports
(e.g. Heasman and Lipworth 1966), detailed clinical records (Puffer and Wynne-
Griffith 1967), or cancer registry data (Percy et al. 1981). They reveal that the degree
of accuracy of the stated cause of death declines as the degree of precision in the
diagnosis increases. Despite the problems, mortality data remain the most valuable
source of information on disease burden, and a useful proxy for risk of disease in
many circumstances. A major advantage is in their widespread availability. About
30% of the world population is covered by national vital registration systems pro-
ducing mortality statistics, including all of the developed countries, and many of
the developing countries. National level statistics are collated and made available
by the WHO (2004, http:||www3.who.int|whosis). Nevertheless, some knowledge
of the likely accuracy of the data available is a prerequisite to their intelligent
use. Thus, the fact of publication by national and international authorities is not
a guarantee of data quality. For some countries, or time periods, coverage of the
population is manifestly incomplete, and the so-called mortality rates produced
are implausibly low. The WHO Statistical Information System publishes tables of
estimated coverage and completeness of mortality statistics in their database. As
well as deficiencies in these, quality of cause of death information may be poor.
This can sometimes be predicted when a substantial proportion of certificates
are completed by non-medical practitioners. (WHO formerly published a useful
table in ‘World Health Statistics Annual’ (WHO 1998) giving – for a few coun-
tries at least – the relevant percentage). Otherwise, quality of data must be judged
from indicators such as the proportion of deaths coded to Senility and Ill Defined
Conditions.

The mortality rate – the number of deaths in relation to the population at risk,
in a specified period of time – provides an indicator of the average risk to the
population of dying from a given cause (while fatality represents the probability
that an individual with the disease will die from it). Mortality rates are the most
useful measure of the impact, or burden of disease in a population. They are prob-
ably equally often used as a convenient proxy measure of the risk of acquiring the
disease (incidence) when comparing different groups, because of their availabil-
ity, although such use introduces the assumption of equal survival|fatality in the
populations being compared.

The infant mortality rate is a widely used indicator of the level of health and
development. It is calculated as the number of deaths in children aged less than one,
during a given year, divided by the number of live births in the same year. Other
similar indicators include the fetal death rate, stillbirth or late fetal death rate,
perinatal mortality rate, neonatal mortality rate, and post neonatal mortality rate.
These data may be collected by household survey, rather than the vital statistics
system, especially in developing countries (United Nations 1984).



164 D. Maxwell Parkin, Freddie I. Bray

Person-Years of Life Lost (PYLL)3.2.5

The concept of person-years of life lost (PYLL) was introduced over 50 years
ago (Dempsey 1947) in order to refine the traditional mortality rates, by providing
aweighting fordeathsoccurringatdifferent ages.Thesemethods started tobecome
more widely used from the late 1970’s in health services planning (Murray and
Axtell 1974). There are many variations in the calculations used (summarised
by Murray 1994). There are four variants of ‘normal’ lifespan against which to
compare premature death. The simplest is to choose a fixed value for the potential
limit where ages ranging from 60 to 85 have been used. Potential years of life lost
are calculated as

L∑
x=0

dx(L − x) ,

where dx is the number of deaths at age x, and L is the potential limit to life.
This method gives no importance to deaths over the upper limit. To avoid this,
calculating the expected years of life lost, using the expectation of life at the age of
death (ex), derived from an appropriate life-table, seems a better solution:

l∑
x=0

dxex ,

where l is the last age group and ex is the expectation of life at each age. The ex-
pectation of life (ex) may be taken from a period life-table, or more appropriately,
be cohort-specific. This method is not suitable, however, for comparing between
populations with different expectations of life. For this purpose, a standard expec-
tation of life (e∗

x), taken from some ideal standard population, should be used. The
calculated indicator then becomes the standard expected years of life lost. Another
variation is to give different weights to years of life lost at different ages. The ra-
tionale is that the economic, or social, “value” of individuals varies with their age.
In addition, discounting may be used, to give decreasing weights to the life years
saved over time, admitting that life years in the future are valued less highly than
at present (Das Gupta et al. 1972; Layard and Glaister 1994).

The approach has been taken a step further, with the development of indices that
take into account non-fatal health outcomes of disease, such as “Quality Adjusted
Life Years (lost)” (QALYs) or “Disability Adjusted Life Years (lost)” (DALYs) (Mur-
ray 1994; Morrow and Bryant 1995). Essentially, these admit that, between onset
of a disease, and death or recovery, there is a spectrum of morbidity, which can
be quantified in terms of its duration and severity. Three elements are needed in
calculating these indices, therefore- the incidence of the disease, its mean duration
or, equivalently, survival probability, and a measure of life “quality” in between
onset and end of disease. The problem in using these indices lies in ascribing
values to quality of life, or level of disability, since both are subjective, and will
vary with time since diagnosis, and in different cultural and socio-economic set-
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tings. Nevertheless, the estimation of DALYs for different conditions worldwide
has been widely used by the World Health Organization (WHO) as a means of
establishing priorities for health care programmes (WHO 2000). The calculation
involves summing the standard expected years of life lost (using a standard model
life-table with expectation at life at birth being 82.5 for females and 80 for males),
with the time lived between onset and death in different disability classes having
a severity weighting between 0 and 1 (Table 3.1). Both an age weighting function,
and a discount rate (of 3% per year) are applied (Murray and Lopez 1996).

Table 3.1. Definitions of disability weighting (Murray 1994)

Description Weight

Class 1 Limited ability to perform at least one activity in one of the following 0.096

areas: recreation, education, procreation or occupation.

Class 2 Limited ability to perform most activities in one of the following areas: 0.220

recreation, education, procreation or occupation.

Class 3 Limited ability to perform activities in two or more of the following 0.400

areas: recreation, education, procreation or occupation.

Class 4 Limited ability to perform most activities in all of the following areas: 0.600

recreation, education, procreation or occupation.

Class 5 Needs assistance with instrumental activities of daily living such as 0.810

meal preparation, shopping or housework.

Class 6 Needs assistance with activities of daily living such as eating, personal 0.920

hygiene or toilet use.

Rates of Disease 3.2.6

Although the dimensions of a health problem may be expressed by the abso-
lute numbers of events (for example, the numbers of cases of infectious dis-
eases, including AIDS, reported through WHO’s surveillance data (WHO 2004,
http:||www3.who.int|whosis)), comparisons between population groups require
that the number of events is related to the size of the population in which they
occur, by the calculation of rates or proportions. “Rate”, as the name implies, incor-
porates a time dimension – the number of events occurring in a defined population
during a defined time period. The term rate is often used interchangeably with
risk, although, the risk of disease is a probability, or proportion, and describes
the accumulation of the effect of rates over a given period of time. Ideally, we
would estimate a rate by ascertaining, for every individual in the population, the
risk of being diagnosed or dying at a given age and specific point in time. This
instantaneous rate requires that the designated period of time is infinitely small,
approaching zero. In practice, the average rate of occurrence of new cases or deaths
in a sufficiently large population is calculated for a sufficiently long time period. In
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this formulation, the denominator is the underlying person-time at risk in which
the cases or deaths in the numerator arose. Prevalence, and survival, as defined
above, are proportions (or percentages), not rates, as there is no time dimension,
although the term “rate” is frequently appended.

Population at Risk3.2.7

For the denominators of proportions, such as prevalence and survival, the popula-
tion at risk comprises the number of individuals at a point in time. When rates are
calculated, the time period of observation also needs to be specified. The denomi-
nator is calculated as units of person-time (Last 2001), whereby each person in the
study population contributes one person-year for each year of observation before
disease develops, or the person is lost to follow-up. In prospective cohort studies,
the individuals can be followed up until the end of the study, and summation
of the varying lengths of individual follow-up accurately represents the person-
time at risk of disease. However, in descriptive epidemiology, information on the
population-at-risk is not usually available at the individual level, unless there is an
accurate population register. It is usually necessary to approximate person-years at
risk using cross-sectional population data from national statistical organisations.
The estimation of the denominator, a summation of the mid-year estimates for
each of the years under consideration, is thus dependent on both the availability
and completeness of demographic information on the population under study. In
most developing and developed countries, 10-yearly population censuses provide
basic population estimates by age, sex and census year, and statistical offices often
produce estimates for intercensal years, based on rates of birth, death and migra-
tion. The approximation assumes there is stability in the underlying population,
as individuals traverse the age-time plane represented by the well-known Lexis
diagram (Fig. 3.1). The German demographer Lexis (1875) described this graphical
representation of the life history of subjects according to birth cohort (the abscissa)
and age (the ordinate). The modern interpretation of the Lexis diagram displays
subjects arranged by calendar year of event and age at time of event on the same
unit scale, with each cell corresponding to a year of birth, the diagonal tracing the
experience of subjects born in the same year, who are under observation until ei-
ther the end of follow-up, the event of interest occurs, or they are lost to follow-up.
In the commonly tabulated system used for vital rates, a synthetic birth cohort
over a 10-year range is derived from the combined experience of a 5-year age group
over 5 years of occurrence. Approximate cohorts are identified by their central year
of birth, and overlap each other by exactly five years. Given a steady state of demo-
graphic gains and losses, where the number of individuals in a designated period
entering an age group equals the number that leave, the method can be considered
to provide adequate estimates of the person-time at risk in most circumstances.
For diseases that are relatively rare (of low prevalence), the estimate is not unduly
biased by the fact that the numerator is a subset of the denominator.

It should be recalled that the number of units of person-time does not repre-
sent a number of independent observations. 100 person-years of observation may
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Figure 3.1. The modern Lexis diagram depicting three subjects under observation between

1985–2000. Individual A is lost to follow up aged 24 in 1991, B is alive at the end of follow-up (end of

2000) and C has the outcome of interest at the age of 42 in 1997 – the year of birth (DOB) can be

ascertained for C by period – age = 1955, and his “life journey” represented by the diagonal line from

DOB to 1997

result from 100 persons being followed for 1 year each, or from 20 people under
observation for 5 years.

Population at risk should, ideally, only include those persons who are potentially
susceptible to the disease being studied. Sometimes, this is taken into account in
the denominator, for example in studying occupational diseases (where only those
in the relevant occupation are at risk), and in infectious disease epidemiology,
where a large proportion of the population is immune.

Comparisons Between Populations 3.3

In descriptive studies, comparisons between two or more populations are usu-
ally based on rates that account for the person-time at risk in each group using
mid-year population estimates. The summary measure is estimated by stratify-
ing on some well-known factor to remove its effect as a potential confounder.
Comparisons of disease risk as a rule must take into account the effects of age,
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given its influence on both the disease process and the exposure of interest across
groups.

The graphical representation of age-specific rates in a particular population de-
scribes how risk evolves with age. In comparing age disease curves in two (or more)
populations it is a useful point of departure, often alerting the researcher to anoma-
lies in thedata,or tocertainhypotheses thatwarrant further investigation.Standard
methods exist for comparing rates in two or more populations. The simple tech-
niques include the comparison of rates based on age standardisation, and stratifica-
tion methods that pool the age-specific rates to obtain a weighted ratio (Mantel and
Haenszel 1959). In the presence of heterogeneity in the age-specific rates, pooling or
standardisation may not provide a satisfactory measure of relative risk, and visual
inspections together with statistical tests that look for departures from the assump-
tion of proportionality (homogeneity) should be investigated (Estève et al. 1994).

Greater flexibility and a more unified framework is a prerequisite when dealing
witha seriesofpopulationcomparisonsand, givenmostdiseasesaremultifactorial,
the analysis must consider the association between numerous factors on disease
risk whilst adjusting for several potential confounders. Statistical models offer
quantitative andcomparable estimatesofdisease risk according to level of exposure
basedonobjective criteria for choosing thebestdescriptionof thedataandwhether
variations observed are real or due to chance. Some methods for the analysis of
two groups, and multiple groups are briefly described below.

Comparisons Between Two Groups3.3.1

Standardisation

The Direct Method. Crude rates can be thought of as a weighted sum of age-
specific rates that render biased comparisons between populations, if the weights
that represent the size of each age-stratum are different in each population com-
pared. The age-standardised rate is the summary rate that would have been ob-
served, given the schedule of age-specific rates, in a population with the age com-
position of some reference population, called the standard. The calculation of the
standardised rate is an example of direct standardisation, whereby the observed
age-specific rates in each group are applied to the same standard, i.e. the same
age-specific weights. Age groups are indexed by the subscript i, di is the number
of cases, yi is the number of person-time at risk (frequently obtained by multiply-
ing population estimates based on those at risk by the length of the observation
period) and wi is the proportion of persons or weight of age group i in the chosen
standard population. The age-standardised rate (ASR) is given by:

ASR =
∑

i

diwi|yi .

The main criticism of the technique stems from the need to select an arbitrary
standard population. The most widely used reference for global comparisons is the
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world standard, as proposed by Segi (1960) on the basis of the pooled population
of 46 countries, and modified for the first volume of Cancer Incidence in Five
Continents by Doll et al. (1966). Although this does not really resemble the age
structure of the current population of the world (so that ASR’s will rarely be
similar to crude rates), this is of little importance, since it is the ratio of ASR’s (the
standardised rate ratio), an estimate of relative risk between populations, that is
the focus of interest. This has been shown to be quite insensitive to the choice of
standard (Bray et al. 2002; Gillum 2002).
Another form of direct standardisation involves the cumulative risk, defined as the
probability that an individual will develop the disease in question during a certain
age span, in the absence of other competing causes of death. The age span over
which the risk is accumulated must be specified. The age ranges 0–64 and 0–74
are generally used, and attempt to give two representations of the lifetime risk of
developing the disease. Other age ranges may be more appropriate for more specific
needs, such as investigating childhood diseases. If the cumulative risk using the
above age ranges is less than 10%, as is the case for relatively rare diseases, it can
be approximated very well by the cumulative rate (cf. Chap. I.2).

The cumulative rate is the summation of the age-specific rates over each year
of age from birth to a defined upper age limit. As age-specific incidence rates are
typically computed for five-year age intervals, the cumulative rate is then five times
the sum of the age-specific rates calculated over the five-year age groups, assuming
the age-specific rates are the same for all ages within the five-year age stratum. The
cumulative rate from 0 to 74 is given by:

5
15∑
i=1

di|yi .

The precise mathematical relationship between the cumulative rate and the cumu-
lative risk (Day 1992) is:

cumulative risk = 1 − exp(−cumulative rate) .

The cumulative rate has several advantages over age-standardised rates. Firstly, the
predicament of choosing an arbitrary reference population is irrelevant. Secondly,
as an approximation to the cumulative risk, it has a greater intuitive appeal, and is
more directly interpretable as a measurement of lifetime risk, assuming no other
causes of death are in operation.

The Indirect Method. An alternative form of age standardisation, known as the
indirect method, involves calculating the ratio of the total number of cases observed
in the population of interest, O =

∑
i di, to the number of cases which would be

expected, E, if the age-specific risks of some reference population applied. The
expected number of cases in a study population is given by

E =
∑

i

miyi ,
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where the mi are age-specific rates for the reference population, and yi the num-
ber of persons in age class i in the population of interest. The ratio is termed
the standardised mortality ratio (SMR) when deaths and mortality rates are
used; the terms “standardised incidence ratio” (SIR) or “standardised morbid-
ity ratio” are used for incidence data. Expressed as a percentage, the calculation
is:

SMR (or SIR) =
O

E
× 100 .

There are two ways in which the reference population can be chosen. If the aim is to
compare several populations with a specific reference population, then it would be
sensible to choose a reference population with relatively large numbers of observed
cases, since this increases the precision of the reference rates. A second strategy
would be to create a pooled population from those to be compared; this has the
advantage of increasing the precision of the reference rates and is analogous to
comparing the observed rate in each population with that expected if the true
age-specific risks were identical in all of the populations. Whichever approach
is taken, it is important to realise that the SMRs of the individual populations
can only be compared with the reference population. In addition, the SMR for
population A compared with population B is not the inverse of the SMR for B
compared with A.

Both direct and indirect standardisation can give a reasonable summary of
a multiplicative effect, and are normally close in practice. Indirect standardisation
however requires a further assumption of uniformity of the effect – the SMR has
optimal statistical properties only if the force of incidence in the population of
interest is proportional to that of the reference.

Direct standardisation is preferred for statistical reasons, given that a ratio of
SMRs for two comparison groups may in some instances misrepresent the under-
lying stratum-specific ratios (Breslow and Day 1987). The risk ratio of two directly
standardised rates (based on the same standard) has an associated confidence
interval based on either exact variance calculations (Rothman and Greenland
1998) or a close approximation given by Smith (1987). As already mentioned,
heterogeneity in the age-specific rates may render the relative risk estimate in-
valid.

Stratification: The Mantel–Haenszel (MH) Estimate
The standardised rate ratio is not a very efficient estimator of relative risk, since
the weightings for the age strata are entirely arbitrary. More efficient summary
measures assume uniformity across strata. The common rate ratio ρ for popula-
tion 1 compared with population 0 is ρ = λ1i|λ0i. This relation can be written as
λ1i = λ0iρ or, in the form of a log-linear model, as:

ln
(
λ1i

)
= ln

(
λ0i

)
+ ln

(
ρ
)

.

This is sometimes called the multiplicative model.
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The Mantel–Haenszel (MH) estimate of the common rate ratio ρ is simply the
weighted average of the ratio of the age-specific rates

ρ̂ =

∑
i

d1iy0i
y· i∑

i

d0iy1i
y· i

,

where · denotes summation over the index it replaces.
The Cochran–Mantel–Haenszel (CMH) tests the hypothesis ρ ≠ 1 against the

null hypothesis ρ = 1 (Cochran 1954), e.g. whether the force of incidence is iden-
tical in the two populations being compared (ρ = 1). However the CMH test is
valid only if the age-specific rate ratios are approximately proportional, i.e. ρi ≈ ρ.
Therefore, it is important to check this assumption. Several such tests are described
by Breslow (1984); one method involves comparing the numbers of cases observed
and expected under the assumption of proportionality, while another tests the
same null hypothesis against the specific alternative of a trend (increasing or de-
creasing) in the age-specific rate ratios. The different hypotheses which can be
tested and their corresponding alternative hypotheses are shown in Table 3.2 and
Fig. 3.2. More details and the required formulae can be found in Estève et al. (1994).

Table 3.2. Null hypotheses and corresponding alternatives for the common rate ratio ρ

H0 (null hypothesis) Ha (alternative hypothesis)

ρ = 1 ρ ≠ 1, test for a common rate ratio
(i.e. assumes proportionality)

ρi = ρ ρi unrestricted, test for heterogeneity in the ρi

ρi = ρ ρi = ρ × f (i), test for trend in the ρi

with the age values i

Comparisons Between Multiple Groups 3.3.2

In practice, when comparing multiple populations the simple methods above offer
some serious limitations. Generally, a series of pairwise comparisons may yield
spurious significant resultsdue tomultiple testing, and is thereforenot appropriate.
In indirect standardisation the choosing of the age-specific risks of one population
as a reference over several others is inconsistent: the ratio of population 1 relative
to population 0 is not the inverse of the ratio of the population 0 relative to
population 1.

In most studies, there are a number of confounders that require examination
and possible adjustment, other than age. The Mantel–Haenszel estimates may
be extended to adjust simultaneously for several confounders but we may not
have sufficient data to simultaneously consider many strata. In addition, it is not
possible to classify an explanatory variable as an exposure or a confounder using
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Figure 3.2. Graphical representation of the null hypotheses and alternatives described in Table 3.2

this method, and a separate analysis is required to obtain rate ratios for each
exposure adjusted for the confounders.

Aregressionmodelprovides auniformframework for estimating themagnitude
of the effect of interest, testing whether the effect is uniform across subgroups of
the populations (effect modification), whether the effects of potential confounders
may account for the effect, and whether a particular model given a parsimonious
but adequate description of the observed data.

Further details on appropriate regression models as well as the techniques and
strategies required in statistical modelling are described in Chaps. II.3 and II.4 of
this handbook. A particular model that attempts to quantify trends in rates over
time as a function of age, period of event, and year of birth is described in detail
in Sect. 3.5.3.
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Study Designs
in Descriptive Epidemiology 3.4

Data on Individuals 3.4.1

Investigation of observed associations between exposure variables, and disease
outcomein individuals,maybe investigatedusingcohort (prospective) (cf.Chap. I.5
of this handbook), case-control (retrospective) (cf. Chap. I.6) and cross-sectional-
study designs.

Cohort Designs
The basic descriptive epidemiological study involves a comparison of disease rates
in individuals categorized according to exposure variables that have been obtained
from “routine” data sources, and relate to personal (demographic) characteristics,
place (of residence, birth, diagnosis), and time (of birth, of diagnosis). The focus
is on the risk in one exposure group, relative to another. Relative risks may be
approximated by the ratio of disease rates, with person-years at risk estimated from
census data (or population registers, if available). The simplest way to adjust for the
major confounders (especially age) is by standardisation of the rates used for the
rate ratios (Sect. 3.3.1). The idea of comparing summary rates for two populations
seems appealing since we would hope to describe the differences between the two
as a simple ratio. However, this simple description would only be appropriate if the
proportional differences in age specific rates were constant across all age groups,
i.e. – if the assumption of proportionality holds (see Sect. 3.3.1). The multiplicative
model presented in Sect. 3.3.1 is important in descriptive cancer epidemiology,
since the aim is generally to estimate ρ and its statistical significance (Breslow
1984; Estève et al. 1994).

Alternatives to the rate ratios of age standardised rates are the Mantel–Haenszel
estimate (MH) introduced in Sect. 3.3.1, which has been shown to be particularly
robust, and the internal standardisation method of maximum likelihood (ML),
which has optimal statistical properties (Breslow and Day 1975). Providing the
assumption of proportionality of the ratio of the age-specific rates in the two
groups is valid, the values obtained from the three methods should be close.

An alternative method of comparison is to calculate the standardised inci-
dence ratio (SIR) for the populations being compared to a reference population
(Sect. 3.3.1). This indirect standardisation is often preferred to direct standardi-
sation to increase statistical precision for rare diseases or small populations. As
already mentioned in Sect. 3.3.2, when more than one confounding variable (age) is
present, the adjustment methods discussed above are not suitable, and it is more ef-
ficient to use standard log-linear modelling methods (Kaldor et al. 1990). When the
population-at-risk in each cell of the cross-classification is available, it is assumed
that the number of cases or deaths per cell has a Poisson distribution, with mean
value proportional to the number of person-years at risk, and that the logarithm
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of the rate is a linear function of the classification variables. Poisson regression
provides adjusted relative risk estimates for each population group, with reference
to an appropriate standard. Even when age is the only confounding variable, sta-
tistical modelling has advantages over standardisation and related techniques in
relative risk estimates with greater numerical stability (Breslow and Day 1987).

Case-Control Comparisons
Very often, in descriptive studies, the information on the cases|deaths is more
detailed, in terms of variables of interest, than that on the population at risk. For
example, the case file may include information on occupation, socio-economic
status, or details about date of immigration, while the population-at-risk cannot
be categorized in such detail. Analysis has to rely entirely on the numerator data,
that is, on proportionate incidence or mortality data. Comparison of proportions
between different case series via the proportionate mortality ratio (PMR) or pro-
portionate incidence ratio (PIR) is generally, implicitly at least, an attempt to
approximate the relative risk or ratio of rates. Confounding by age (as a result
of different age structures of the case series being compared) can be removed by
indirect standardisation techniques, with the fraction of deaths or of cases due
to specific causes in the reference series as the standard (Breslow and Day 1987).
Proportionate methods are, however, relative measures, and the PMR for a specific
disease (age standardized) is close in value to the ratio of the SMR for the disease,
to the SMR for all causes (Kupper et al. 1978).

Odds ratios provide a better estimate of relative risk than the ratio of propor-
tions, in most circumstances (Miettinen and Wang 1981). Odds ratios are estimated
by case-control comparisons, comparing exposure status among the cases of the
disease of interest, and cases|deaths of other (control) diseases. Unconditional
logistic regression or stratified analyses are performed to obtain maximum likeli-
hood estimates of the odds ratios (Breslow and Day 1980). The odds ratio values
based on logistic regression are heavily dependent on the choice of the controls:
if the risk for the subjects used as controls is unrelated to exposure, the estimates
from the logistic model for the effects of exposure closely approximate those which
would be obtained using Poisson regression with denominator populations.

These methods have been widely used in the study of disease risk by social
status and occupation (Logan 1982), and in migrant populations (Marmot et al.
1984; Kaldor et al. 1990).

Cross-Sectional Studies
In contrast to longitudinal studies, for which observations of cause and effect
represent different points in time, cross-sectional studies simultaneously observe
exposure status and outcome status at a single point in time, or over a short period
in the lifeofmembersofa samplepopulation.Theanalysisproceedsbydetermining
the prevalence “rates” in exposed and non-exposed persons, or according to level
of exposure, commonly using data from complete population surveys to correlate
putative aetiological factors with outcome.
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Cross-sectional studies are relevant to public health planning, in that they may
provide information on the care requirements of a population at a given point in
time. In the context of investigative enquiries, they can be considered advantageous
to more complex designs in measuring the association between diseases of slow
inception and long duration, where the time of onset is difficult to establish,
such as osteoarthritis or certain mental disorders, and exposures that endure over
a prolonged time period e.g. HLA antigens or air pollution levels. They are simpler,
quicker and more economical than cohort (longitudinal studies), as no follow-up
of individuals is required. In addition, the sample may be more representative of
the target population as they are based on a sample of the general population.

There are however two major drawbacks to cross-sectional studies. Firstly, it
is difficult to establish whether the temporal sequence is from that of exposure
to outcome or vice versa. Are individuals, for instance, in lower socio-economic
groups more likely to develop mental disorders, or is it that mental illness triggers
a series of events that relegates persons from a wide-spectrum of socio-economic
groups to a lower status at the time of measurement? Thus it is important to
consider the possibility of reverse causation – whereby exposure status is in part
a consequence of disease – the association obtained in a cross-sectional study may
be wholly different from that obtained at time of the disease origin. Secondly, as it
is usually not possible to determine incidence in cross-sectional studies, the use of
prevalence as a proxy of frequency may distort the exposure-disease relationship
as, by definition, the prevalence measure will include a larger number of cases with
a long duration of disease relative to incidence. Hence persons who die or recover
quickly tend to be less likely to be included as a prevalent case than persons with
long-lasting disease.

In descriptive studies, measures of exposure and outcome are taken directly
from existing survey datasets. These include general purpose datasets, such as
that derived from the General Household Survey in the UK (Office for National
Statistics 2004), a multi-purpose continuous survey which collects information
on a range of topics, including health and the use of health services from people
living in private households in Great Britain. Other datasets, more specific to health
topics include the National Health Interview Survey (NHIS) and National Health
and Nutrition Examination Survey (NHANES) carried out by the National Center
for Health Statistics (2004) in the USA.

The analysis proceeds by classifying exposure and outcome status dichoto-
mously in a contingency table. A prevalence rate ratio can be calculated as the
ratio of the prevalence of the outcome in those exposed to the putative risk factor
compared with those not exposed, or where the level of exposure varies by inten-
sity, test for a trend in outcome by exposure category. A case-control approach
to the analysis can also be taken, whereby the odds ratio is calculated, although
it is important to appreciate that the two ratios are not equivalent and only ap-
proximate each other when the prevalence and odds are small and the disease is
rare (cross-sectional studies however require relatively common outcomes). Con-
founding is an important bias (cf. Chap. I.9 of this handbook) and multivariate
techniques such as logistic regression (estimating odds ratios) and proportional
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hazards models (estimating prevalence rate ratios) can be used when the outcome
is, for example, the presence or absence of disease.

Ecological Studies3.4.2

Main Characteristics
The characteristic of ecological studies is that exposure and outcome are measured
on populations|groups, rather than on individuals. The units of observation may
be populations defined by place of residence (counties, regions, districts, etc), by
personal characteristics, such as race, religion, or socio-economic status, or by
time (birth cohorts). Usually, these studies are descriptive, in that they exploit pre-
existing sources of information, rather than data collected to investigate a specific
hypothesis. Thus, the outcome (disease) data are the likes of mortality rates, in-
cidence rates, or prevalence data from health surveys. Exposure information may
be from sources such as household|community surveys, environmental measure-
ments, or commercial sources (data on production or sales). Exposure is expressed
as an aggregate (summary) measure such as population mean, median, proportion
etc. based on observations from individuals within the group. Exposure data may
also be some environmental measurement (e.g. of air pollution, ambient tempera-
ture, etc). The essential difference from most epidemiological study designs is that
there is no information on the joint distribution of exposure and outcome in the
individuals within the populations being studied. Table 3.3 shows two populations
(A and B). In studies in which data on individuals are available, the numbers in
the individual cells of each table are known, and we may calculate relative risks
or odds ratios for each (and combine the results from the two strata). However,
in an ecological study, only the values in the margins of each table (with nEA de-
noting the number of exposed and nEA the number of non-exposed subjects in
population A and nDA denoting the number of diseased and nDAthe number of
non-diseased subjects in population A, analogously for population B) are known,
so that we have simply prevalence of exposure, and disease incidence or prevalence,
for populations A and B.

Ecological studies may be used to generate (or test) aetiological hypotheses, and
to evaluate interventions at the population level.

The main problem, as described below, is that ecological designs are usually
being employed to make such inferences (concerning cause|prevention) about in-
dividuals, based upon observations using groups. Such interpretations are prey to
a variety of artefact, referred to collectively as “the ecological fallacy” (Piantadosi
et al. 1988). However, ecological studies may have particular value when some char-
acteristic of the group (rather than the sum of individuals within it) is important in
determining outcome, so that ecological designs are more appropriate than studies
of individuals within the groups (see Sect. 3.4.2). Similarly, ecological studies may
be used to evaluate the effect of population-level interventions, especially if the
interest is in the effect at group rather than individual level. Thus, the relationship
between exercise and mortality from cardiovascular disease may be known from
individual based studies, but the effectiveness of an educational programme on
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Table 3.3. Ecological study: comparison of prevalence of exposure and outcome in two populations A

and B

A
Diseased Non-diseased Total

Exposed ? ? nEA

Unexposed ? ? nEA

Total nDA nDA

prevalence of exposure in A =
nEA

nEA + nEA

rate of disease in A =
nDA

nDA + nDA

B
Diseased Non-diseased Total

Exposed ? ? nEB

Unexposed ? ? nEB

Total nDB nDB

prevalence of exposure in B =
nEB

nEB + nEB

rate of disease in B =
nDB

nDB + nDB

the topic in influencing disease rates might choose an ecological design, to capture
the combined effect at group and individual level.

Types of Design

Exploratory Ecological Studies. The term “exploratory ecological study” has
sometimes been used to describe the comparison of disease rates between popula-
tions defined, for example, by place of residence, ethnic group, birthplace, or birth
cohort (Estève et al. 1994; Morgenstern 1982). In fact, it is hard to understand the
justification for the use of the term “ecological” for such studies. They compare
disease risk among individuals characterised by various exposure variables (such
as place of residence, or birthplace, or period of birth), and as such, differ only in
the source of information, from cohort studies using questionnaires or biological
measurements, comparing disease rates according to exposure type or level (oc-
cupational groups, smoking status, etc). Probably, the term should be reserved for
comparisons between groups in which “exposure” has not been measured, but is
simply assumed from some sort of a priori knowledge or guesswork. This is the
basis of many studies carried out with quite sophisticated laboratory methods,
where the subjects comprise some sort of sample (usually by no means random)
from populations believed to be at high|medium|low exposure of something. An-
other version would be studies in which exposure is not measured, and may not
even be defined, but is assumed to have some underlying spatial or temporal dis-
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tribution; the purpose of the analysis is to see if disease risk in the population
groups studied has, too. This includes studies of geographical clustering and of
spatial autocorrelation (cf. Chap. II.8 of this handbook).

Multigroup Comparison Ecological Study. This is the most commonly used study
design. For several populations (usually geographical regions), outcome (disease)
levels (prevalence, rates) are compared with exposure (means, proportions) to
variables of interest. An example is given by the early studies suggesting the im-
portance of blood lipids in the aetiology of ischaemic heart disease. Coronary heart
disease rates were compared with plasma cholesterol and dietary fat intake in dif-
ferent populations (McGill 1968). Figure 3.3 shows a well-known example from Doll
and Peto (1981), relating lung cancer mortality to consumption of manufactured
cigarettes.

Figure 3.3. International correlation between manufactured cigarette consumption per adult in 1950

while one particular generation was entering adult life (in 1950), and lung cancer rates in that

generation as it enters middle age (in the mid-1970s)

Time Trend Ecological Studies. A single population is studied, but is cut up into
groups corresponding to different time periods. The objective of the study is to
determine whether the time trend in outcome (disease rates) corresponds to time
trend in exposure.
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MultipleGroupTime-trendEcologicalStudies. These are amixtureofmultigroup
and time trenddesigns.Change in exposure andoutcomeover time is compared for
several populations. Dwyer and Hetzel (1980) compared time trends in coronary
heart disease mortality in three countries in relation to changes in major risk
factors. The advantage of this design is that it is less subject to confounding than
with a single population, i.e. the unmeasured factor, related to both exposure and
outcome (change in disease) is unlikely in several different populations, but quite
possible in one.

Analytic Methods
The simplest level of analysis is to plot the disease rate and indicator of exposure
for each population on a scattergram, and to calculate a correlation coefficient.
This merely indicates the level (strength and direction) of association between
the parameters; it does not necessarily imply that the exposure variables predict
outcome, rather that other influencing factors (confounders) are likely to have been
well controlled in the ecological grouping. Moreover, the correlation coefficients
may be quite biased, especially if the groups for study have been chosen on the
basis of their level of exposure.

More usually, interest lies in quantifying the magnitude of the effect to be
expected from different levels of exposure, and regression of group-specific disease
rates (Y) on group-specific exposure prevalence (x) is the method employed. The
simple linear model (Y = α+βx+ε with ε denoting an error term) is typically used.
An estimate of the effect of exposure (at the individual level) can be derived from
the regression results (Beral et al. 1979). The relative risk is the ratio of the disease
rate (Y) in an exposed population (x = 1) divided by the rate in an unexposed
population (x = 0) Assuming the above linear model for Y , this results in

RR =
α + β × 1

α + β × 0
=

α + β
α

= 1 +
β
α

.

If a log-linear model is fitted, such that ln(Y) = α + βx + ε, then the estimate of
relative risk can be derived as exp(β). For more details on regression models we
refer to Chap. II.3 of this handbook.

These equations assume that the groups studied are perfectly homogenous for
exposure, and that the relationship modelled (prediction of disease rate) is valid
at both extremes of exposure (nil, or total), a situation that is rarely observed
in practice. Homogeneity of exposure is unlikely, of course, and the summary
statistics (means,medians)have largeandunknownerror terms.Trying tomitigate
the problem by studying small population gives rise to different technical problems
(measurement error, migration), and a larger variance of estimated disease rates.

In the situation where the rates in the different populations being compared
have different precision (due to varying size), weighted regression is frequently
used, to give more emphasis to the larger units. The usual weighting applied
is the inverse of the variance, although maximum likelihood methods (taking
into account variation in rates that would be expected by chance) may be more
appropriate (Pocock et al. 1981)
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Time Lagging. It is reasonable to take exposure date from an earlier period than
that for the outcome (disease). Varying the interval to obtain the best fit (correla-
tion, for example) has been used to provide information on the possible induction
period between exposure and disease. Rose (1982) found that the correlation be-
tween serum cholesterol and coronary heart disease mortality in men aged 40–59
in 7 countries was maximal when the interval between the two measures was
15 years.

Advantages of Ecological Studies
There are several advantages to ecological study designs.

They are very economical, since they use existing data on exposure and out-
come, with no costs involved in collection.
They are very rapid; even compared with case-control studies, where time is
needed for recruitment, e.g., for investigating suspect clusters.
Very large numbers can be studied, so that small increases in risk can be
investigated. Small risks affecting large numbers of people are important from
a public health point of view.
They may – and ideally do – include populations with a very wide range of
exposure level (more than can be found in a single population used for con-
ventional cohort or case-control studies). For example, the range of variation
in dietary fat intake in a single population may be too small to demonstrate the
differences in risk at different levels (Prentice and Sheppard 1990).
They may be the only practical analytic approach to investigating the effects
of an exposure that is relatively constant in a population, but differs between
populations e.g. exposure to external environment (air, radiation, water).
In many circumstances, individual measures of exposure are difficult or im-
possible to obtain. This is often the case in studies of diet and disease, since
collection of individual food records is difficult, may not reflect habitual intake,
and does not allow for individual variability in metabolic response to a given
diet. 24-hour dietary recalls, although of little value in the study of dietary
exposures in individuals, may, when averaged for a population, may provide
a useful indicator of exposure for ecological analysis. The same principles
apply to average exposures to air pollution, trace elements in soil|water, and
so on.
There may be interest in “contextual effects”, that is group or community
level effects, rather than inferences about individual exposure-outcome. This is
particularly important in communicable disease epidemiology, where models
of transmission have a group component e.g. transmission of vector borne-
diseases will be dependant upon the prevalence of carriers in the population
(Koopman and Longini 1994). Ecological studies are relevant in examining the
effects of policy, laws, social processes where contextual, as well as individual
effects, are relevant to the outcome.
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Disadvantages of Ecological Studies
The above advantages have to be contrasted with several disadvantages, not only
from a technical perspective.

Technical Disadvantages.
Data problems
The data on exposure are obtained from existing sources, usually not compiled
for the purpose for which they are being used, and may in consequence lead
to a somewhat inaccurate estimator of the relevant exposure. Thus, data based
on production, sales, or food disappearance give only an approximate guide to
actual exposure, even at the group level. If the data are from a sample of the
population, this may be unrepresentative of the group. The outcome (disease)
variables are subject to similar concerns. Data quality may differ between the
populations, due, for example, to varying completeness of death registration.
Lack of comparability may also result from changes in disease classification
or coding over time. A further concern is the accuracy of person-years at
risk for group data. This is an issue for all types of descriptive study, where
person-years at risk are estimated from cross-sectional counts, rather than
longitudinal observation of individuals. Moreover, migration of populations
will make comparisons over time difficult since cases of disease may not be
exactly from the exposed population. This problem is compounded if migration
is related to the presence of the disease studied. A solution commonly adopted
is simply to assert that the populations studied are “stable”, without having any
objective evidence to that effect.
Misclassificationof exposurewithin thegroupsbeing studiedmayhave surpris-
ing consequences. Even when non-differential (unrelated to outcome) the bias
in estimated risk of exposure may be away from the null value – the opposite
to the familiar situation in individual-based studies (Brenner et al. 1992).
Availability of data
The number of variables available for the populations studied is quite limited.
There is little scope for any adjustment for possible confounding (limited
though this is in ecological studies).
Problem of induction period
It is reasonable to assume that there is some delay between exposure and
outcome, and that both should not be measured at the same time. It is not
difficult to find published studies in which the exposure measures post-date
those of outcome. Some time lag should be included (e.g. Fig. 3.3), but this
involves assumptions, possibly arbitrary, as to the appropriate mean interval to
use. Furthermore, exposure information may not be available for the relatively
distant past, and, when it is, the population in the units of analysis will comprise
different individuals, if exposure and outcome measures are far apart in time.
Ecological fallacy
It is the main problem when inferences about individual exposure-outcome
associations are being inferred from observations at the group level (Piantadosi
et al. 1988). In this instance, the assumption being made is that the single
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Figure 3.4. Two situations illustrating the difference between ecological and individual associations

between exposure and disease (from Walter 1991)

measureof exposure applies to allmembersof thegroup.This is rarely so.Often,
it is obvious (e.g. exposurevariable is agroupmean,with itsownvariance). Else,
it is intuitive (e.g. exposurevariable is anenvironmentalmeasure–e.g. solarUV,
nitrate in drinking water) but individual behaviours result in varying exposure
to it (wearing hats, long holidays or work periods elsewhere, using bottled
water, etc.). As a result, there may be a difference between the relationship at the
individual level (within groups) and group level (between groups). Ecological
associationsmaybeweaker, or stronger, than relevant associations at individual
region. Figure 3.4 (from Walter 1991) illustrates two extreme scenarios. In A,
there is a strong covariance between exposure and outcome within groups,
but a very weak one between groups. An ecological analysis, based on a single
aggregate measure of exposure and outcome for each group would show only
a weak association. In B, the association within groups is weak, but appears
strong when examined between groups.
Ecological bias
Due to the failure of the expected ecological effect estimates to reflect the
biological effect at the individual level, two forms of bias are said to exist (Mor-
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genstern 1982). Aggregation bias: data are aggregated, ignoring the information
from the subgroups from which the individual observations came. Specifica-
tion bias: a problem of using groups that in some way are related to the disease
(irrespective of the exposure under study). It may result from extraneous risk
factors being differentially distributed by group, or from property of the group
itself (contextual effects). The sum of these two components provides “the
ecological bias” (cross level bias) which is present. Table 3.4 gives an example.

Table 3.4. An example of ecological (cross level) bias

Population Prevalence of exposure Exposed
nE NE RE

A 0.25 1200 1 ×106 1.2

B 0.50 3330 2 ×106 1.67

C 0.75 6000 3 ×106 2.0

All (0.50) 10,530 6 ×106 1.76

Population Non-exposed Total
nE NE RE nT NT RT

A 1800 3 ×106 0.6 3000 4 ×106 0.75

B 1670 2 ×106 0.84 5000 4 ×106 1.25

C 1000 1 ×106 1.0 7000 4 ×106 1.75

All 4470 6 ×106 0.75 15,000 12 ×106 1.25

The relative risk of exposure in each of the three populations, A, B and C,
is 2.0 (RE|RE with RE and RE denoting the disease rates in the exposed and
non-exposed subjects, respectively), i.e., there is no difference in the effect
of exposure within the different groups. Although the overall (crude) relative
risk, summing the cases and populations at risk for the three groups is 2.35 =
1.76|0.75, the relative risk, standardized for group, can be estimated by

R̂R =
∑

nE∑(
nENE

)
|NE

,

where the summation is across groups,with nE denoting thenumberofdiseased
subjects among the exposed and NE denoting the total number of exposed
subjects in the population (analogously for the non-exposed and the total
population). In the example shown, therefore

R̂R =
1200 + 3330 + 6000

(1800∗1)|3 + (1670∗2)|2 + (1000∗3)|1
= 2.0 .

The difference between the unadjusted and adjusted estimates (2.35 and 2.0)
shows that there is confounding by other risk factors, which are different
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between the groups (as shown by different risks in the non-exposed) indicating
a specification bias. Figure 3.5 shows the linear regression of the rate of disease
(RT) on the prevalence of exposure, and the ecological estimate of relative
risk (Sect. 3.4.2). The large difference between the estimates based on ecologic
and crude individual data (9.0 and 2.35) is the result of aggregation bias since
the extraneous factor that increases the risk among the non-exposed is most
prevalent in the most exposed population (C).

Figure 3.5. Ecological analysis (linear regression: y = α + βx) of the hypothetical data summarised in

Table 3.4: α = 0.25, β = y − α|x = 2.0, RR = 1 + β|α = 9.0

Confounding and Effect Modification in Ecological Studies. Confounding in epi-
demiological studies arises when two exposure variables are statistically associated
(correlated), and at least one of them is also an independent risk factor for the
disease under study, so that both will appear to be so if examined separately. In
individual-based studies, with many subjects, it is feasible to separate their effects
(by stratification, or multivariate methods), because perfect correlation between
variables is very unlikely. When groups are studied, however, there may be perfect
correlation between variables, particularly if the populations studied are few in
number (e.g. the hi-lo two group studies beloved of laboratory workers), and large
in size.
Furthermore, risk factors that are independent of exposure at the individual level
may be correlated with it, and thus be confounders, when aggregated at the popu-
lation level. Conversely, a confounding variable at the individual level may not be
so at the ecological level; for example, although the risk of most cancers is quite
different in males and females, sex, as an ecological variable, will not be associated
with disease rates in geographical areas because the ratio of males to females is
broadly similar in all.

Effect modification (or interaction) refers to variation in the magnitude of the
effect of an exposure across the levels of a third (covariate). Effect modification can
be present in an ecological association, even when not evident at the individual
level. Greenland and Morgenstern (1989) give an example of a cofactor (e.g. nutri-
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tional deficiency) with different prevalence in the populations (regions) studied,
which is not a risk factor in the absence of the study factor (smoking). Thus, the
non-smoker rates would be the same in all regions (and region would not, there-
fore, be a confounder in an individual based study of smoking and disease), but
the effect of smoking would differ by region.

Descriptive Studies 3.5

Personal Characteristics 3.5.1

Routine sources of information on morbidity and mortality include informa-
tion on the so-called “demographic” variables (age, sex, marital status, reli-
gion, race, education, occupation etc) of the cases, and the corresponding data
on population-at-risk may likewise be available. This allows investigations of
how characteristics of the individual relate to the risk of disease. Since they
may often have striking effects on disease intensity, a number of these vari-
ables (particularly age) can be considered as amongst the foremost risk factors
for many diseases. Exploration of the relationship between personal character-
istics and disease have generated and confirmed many hypotheses, and impor-
tantly, elucidated particular mechanisms concerning other putative factors, by
taking account of the strong confounding effects of routine variables that may
otherwise have distorted the relationship between outcome and the exposure of
interest.

Age
The increases with age in morbidity of, and mortality from, disease are more
apparent than for any other variable. Excluding accidental and violent deaths, there
is a 500-fold variation in the death rate from all causes between the ages of 20 and 80
(Peto and Doll 1997). For epithelial cancers, as well as for cardiovascular disease
and chronic respiratory disease, there is more than a 1000-fold difference. The age-
specific patterns also differ between and within diseases; Fig. 3.6 compares the age-
specific incidence of several types of cancer. The effects of age are most commonly
ascribed to an individual’s cumulative exposure to environmental insults (e.g.
socio-cultural or behavioural factors) over a life span, or in the case of, for example,
breast cancer, to the effects of hormonal changes. While the process of ageing
is commonly put forward as a possible mechanism in its own right e.g. through
declining immunologicaldefences, or an increasingnumberofmutations incertain
somatic cells (Lilienfeld and Lilienfeld 1980), others suggest that while ageing is
clearly related to disease, there is no evidence that ageing itself is a biological
process that causes disease (Peto and Doll 1997).

The fundamental importanceofageasamajorconfounder inalmostall epidemi-
ological studies is exemplified by age standardisation or stratification to control
for its effects (see Sect. 3.3.1).
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Figure 3.6. Age-specific incidence rates. England and Wales, selected cancer sites, 1990–1992

Interesting formsof thedistributionofdisease riskbyagehavemotivatedaseries
of hypotheses as to the biological mechanisms underlying particular diseases. The
bimodality of Hodgkin lymphoma (Fig. 3.6) suggested that it comprised at least
two distinct forms of the cancer, and the likelihood of differing aetiologies. Early
investigations seeking biological explanations for particular age-disease patterns
led to hypotheses concerning the importance of early development to disease later
in life. More recently, a life course approach to chronic and infectious disease
has been conceptualised, which considers the long-terms effects of factors during
gestation, childhood and adolescence on subsequent adult morbidity or mortality
(Kuh and Ben-Shlomo 1997).

The importance of period of birth (birth cohort) is clear when investigating
changes in disease risk over time (see Sect. 3.5.3); it was through the study of
age-curves that the influence of generation effects on disease were first realised,
however. In examining the age-specific mortality rates from tuberculosis in dif-
ferent calendar periods of time, Frost (1939) after Andvord (1930) showed that
the peak in more recent cross-sectional age-mortality curves (in 1930) at later
ages (50–60) compared to peaks in young children (0–4) previously (in 1880) and
at the ages 20–40 (in 1910) was an illusion – an examination of the same age
curves by cohort indicated subjects comprising the 1930 age curve passed through
greater risks in previous decades – the class of individuals whom were children
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in 1880 and who were aged 50–60 (if still alive) by 1930 (Fig. 3.7). In concluding,
he noted that contemporary peaks of mortality in later life did not signify a post-
ponement of maximum risk, but rather were the residuals of higher rates in early
life.

Korteweg (1951) similarly demonstrated that a cross-sectional view of age curves
of lung cancer mortality led to an erroneous interpretation as the age curves were
artificially pushed down by the increase in lung cancer in younger age groups – the
consistent pattern of declining rates at relatively early ages (65 and over) for five
consecutive periods between 1911 and 1945 was therefore not an observation that
required a biological explanation. The mechanisms that promoted lung cancer, he
observed, acted particularly (but not exclusively) in younger people.

Figure 3.7. Age-specific mortality rates from tuberculosis in Massachusetts, by period (a) and by birth

cohort (b) (Frost 1939)

Several well-known biases may distort the underlying age disease relationship.
The quality of mortality statistics in the very elderly is particularly affected by
the precision and coding of the death certificate, as well as the decision as to the
underlying cause of death. For incidence data, case ascertainment is less effective in
the very old, in part due to inaccuracy in the abstraction and coding of diagnostic
information, in part due to competing causes of death.

Sex
There are, for certain diseases, substantial differentials in the rates in men com-
pared to women (sex ratio), that may represent fundamental differences in expo-
sure to environmental risk factors, and|or response to them. Mortality rates from
several common causes of death, such as ischaemic heart disease, malignant neo-
plasms, and HIV-AIDS (in western countries), have sex ratios substantially greater
than one. The disparity is perhaps not surprising given the contrasting social,
cultural and behavioural practices of men and women, and the strong lifestyle
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component of such diseases. Other than environmental exposures, endogenous
factors, such as the sex hormones, may contribute to differences in risk between
the sexes, acting as promoters of disease pathogenesis or as protective factors,
while our understanding of the putative impact of sex-specific genetic predispos-
ing factors is in its infancy.

The marked differences between the sexes in the incidence of some common
cancers are shown in Fig. 3.8; for many of these neoplasms much of the variation
can be explained by contrasting levels of exposure to well-established carcinogens
in men relative to women. Hence, the high male:female (M:F ratio) for mesothe-
lioma is largely a consequence of historical exposure to asbestos in men through
certain occupations, while lung cancer largely replicates the past history of to-
bacco smoking in men relative to women. Based on site-specific M:F ratios of
age-standardised rates in developed countries, the majority of the cancers of the
head and neck, as well as of the bladder and oesophagus are also much more
common in men reflecting the heavier alcohol consumption acting independently
and multiplicatively with tobacco smoking.

For M:F ratios lower than one, the most outstanding example is for breast
cancer for which there is a 500-fold difference in risk in women relative men,
which might be attributable to the mammary gland mass, as a correlate of the
number of cells susceptible to transformation, as well as hormonal milieu. Dif-
ferences in gallbladder cancer are probably attributable to a higher prevalence of
gallstones in women relative to men. A corresponding distribution of sex-ratios is
observed for cancer mortality, but additionally, differences in survival, (through
gender rather than biological differences e.g. stage of presentation) modifies the
differentials.

Ethnic Group
Variations in the risk of disease and differences in the health experience of individ-
uals from different ethnic groups have been the subject of many studies (Macbeth
and Shetty 2001). Studies within multi-ethnic societies are more valuable than
international comparisons, if the primary variable of interest is ethnicity or racial
group, since at least some of the environmental differences present in interna-
tional comparisons are reduced or eliminated. There are plenty of examples of
such studies from multi-ethnic populations in all parts of the world.

Interpretation of ethnic differences in risk should first consider the possibility
of data artefact. Even within a single country, it is possible that differential access to
health care and diagnostic services by ethnic group may influence reporting rates
of disease, for example, access to and acceptance of screening programmes has
been shown to differ by ethnic group in several countries (Parker et al. 1998; Seow
et al. 1997). Differences in access to treatment certainly can affect outcome, so that
survival rates from cancer are well known to vary by race|ethnicity (Baquet and
Ringen 1986); since mortality rates are determined by both incidence of disease
and survival, this is a major consideration if mortality is being used, as it often is,
to provide information on cancer risk.
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Figure 3.8. M:F ratios of age-standardised rates for the common cancers in developed areas

worldwide (Parkin et al. 2002)

Artefact aside, the principal question posed by observed inter-ethnic differences
in risk is how much is due to variation in exposure (to “carcinogens” or “risk
factors”), and how much is the result of inherent differences in susceptibility to
such exposures (and hence genetically determined).

From an epidemiological point of view, the variable ‘ethnicity’ or ‘race’ defines
a constellation of genetic factors, which relate to susceptibility to a given disease.
Of course, there is considerable variation within a given ethnic or racial group
(however this is defined), but there are often sufficiently large differences between
them to yield distinctive patterns of risk. If “ethnicity” is the variable of interest,
the first consideration is to eliminate the effect of confounding variables, associated
with the risk of disease and differentially distributed by ethnic group. The relevant
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exposure variable are quite likely to be exposures such as tobacco, alcohol, diet,
infection etc, but in descriptive studies, there will generally only be information on
so-called demographic variables such as social class (or occupation, educational
level), place of residence, marital status and so on, that are proxies for these.

A striking illustration of the likely influence of genetic factors on risk of disease
is provided by certain cancers of childhood. For bone tumours (Fig. 3.9), there are
very marked differences in incidence between ethnic groups for which no plausible
environmental “exposure” can be imagined. Any such exposure would have to be
very carcinogenic (to act so early in life), very tissue specific, and be very unevenly
distributed by ethnic group.

The most fruitful approach using routine data sources is through the study
of migrants (see Sect. 3.5.4), that attempt to separate the “genetic” and “environ-
mental” components of differences by studying disease risk in a given migrant
population in comparison with that in the host population (similar environment,
different genetics) and in the population living in place of origin (similar genetics,
different environment).

Socio-economic Status
Socio-economic status is an extremely important but rather vague term for a whole
host of factors that require individual consideration and action, such as income,
occupation, living conditions, education and access to services. For many dis-
eases, such as cardiovascular disease (Rose and Marmot 1981) and cancer (Smith
et al. 1991; Kogevinas et al. 1997), a clear gradient by social class is observed,
with the highest disease rates or the poorest outcome often observed within the
lowest socio-economic grouping. The influence of social status has a marked ef-
fect on disease outcomes in adults and in both prenatal development and infant
mortality.

While the magnitude of gradients of many disease outcomes tend to vary addi-
tionally with time reflecting in part changing social and economic circumstances
(Marmot 1999), the impact of general improvements in health often fail to reach
the most disadvantaged: Since the 1920s, for instance, improving infant survival
rates over half a century in the U.K. was not observed amongst those considered
least advantaged (with the consistently highest infant mortality rates) (Rosen 1993).
A recent advance has been the linking of “deprivation” scores, an index that com-
bines a number of social variables from censuses according to area of residence,
to data records from routine data sources (e.g. cancer registries) at the small area
level (Carstairs 1995).

In measuring socio-economic status, a number of potential surrogates may
provide a reproducible definition, such as affluence (income), living conditions or
occupation. From a perspective of routine systems based on populations, some
of the most illustrative stem from the pioneering series of reports published by
the Office for National Statistics, formerly the Registrar General for England and
Wales. The Registrar General’s social classes were derived from a classification
of occupations according to status and level of responsibility (and for married
women, on the basis of their husband’s employment). Figure 3.10 demonstrates
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Figure 3.10. Infant mortality by sex, occupational class and cause of death (Occupational Mortality

1970–1972; Registrar General’s Office for England and Wales 1978, p 158)

the uniform socio-economic gradients of infant mortality by cause, with the most
abrupt increases observed for accidents and respiratory disease.

There are interpretational difficulties with socio-economic data from routine
sources. Although selection bias should be minimal if the comparison of health
events with survey data is made from the same population at the same time,
measurement bias is of particular concern. In occupational studies, the respondent
is asked for only one occupation, even though they may have had a history of
different professions (see Sect. 3.5.1).

The consistent findings of poorer disease outcomes amongst the more disadvan-
taged social groups have political as well as public health implications. In addition
to pinpointing the need for health promotion and disease prevention strategies
targeted at low socio-economic groups, health inequality also demonstrates a need
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for change at the societal level: improving health by improving incomes, basic
housing, and working conditions. However, the practical importance of the vari-
able as an independent risk factor in epidemiological studies is perhaps overstated.
Health-deprivation gradients are now well established in most disease domains,
and specific public health actions are difficult to formulate and implement given
social class acts as a surrogate for a vast and complex array of social and environ-
mental processes, congenital characteristics and early life experiences.

Marital Status
A number of epidemiological studies have examined marital status in relation to
disease risk. While it is apparent that there are major differences in disease rates
according to this variable – married persons often have lower death rates than
single persons – there are commonly difficulties inferring the true nature of the
association. The main difficultly arises in determining whether being married per
se offers health advantages, or if there are certain characteristics of good health
or long life that favour an individual’s predisposition to marriage. The variable
has, however, proved useful in determining certain surrogate populations – such
as never-married males as proxies for homosexual men (Biggar et al. 1987). In
this context, the variable was used to establish increases from the mid-1970 s in
AIDS-related cancers such as Kaposi’s sarcoma in single men aged 20 to 49 years
old (Biggar et al. 1987).

Occupation
Descriptive studies have made an important contribution to occupational epi-
demiology, through the analysis of routine record sources. In some countries,
occupations are recorded on death certificates or in disease registers. Such routine
record data sets can be used to calculate cancer risks in different occupations.
If the comparisons are to involve rates (of mortality, or incidence), then suitable
population-at-risk data must be available from the census or population register,
with occupations classified in the same way; failing this, proportionate methods
may be used (Sect. 3.4.1). Routine record studies are relatively inexpensive and
often entail very large numbers of subjects. Occupation is specified in terms of job
titles. A limiting factor of such analyses is the validity of the job title information
collected. With an interviewer-administered questionnaire, quite valid job histo-
ries can be obtained, but the validity of occupations recorded on routine records
such as death certificates or tumour registers is typically mediocre (Wigle et al.
1982; Steenland and Beaumont 1984; Armstrong et al. 1994). In addition, routine
records typically contain only one of the subject’s jobs, usually the most recent
which may include “retired”. In a large sample of Montreal workers, it was esti-
mated that, on average, about 62% of working years were spent in the job of longest
duration, and about 50% in the last job (Siemiatycki 1996). Some of the defects of
the limited information on occupation available in routine records can be reduced
by linkage with more valid sources of occupational data. Examples are in Canada
(Howe and Lindsay 1983) where a government-run labour force survey was linked
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to mortality records, and especially in the Nordic countries where census data
has been linked to the cancer registry (Lynge and Thygesen 1990; Andersen et al.
1999). Despite these limitations, analyses using job titles are useful. Several associ-
ations with cancer have been discovered by means of analyses based on job titles.
Table 3.5 shows results from the Decennial Occupational Mortality analysis (Regis-
trar General 1978) based on deaths occurring in England and Wales in 1970–1972,
and cancer registrations in 1968–1969. Analyses such as these are most valid and
valuable when the workers have a relatively homogeneous exposure profile – for
example miners, motor vehicle drivers, butchers and cabinetmakers. However, job
titles are limited as descriptors of occupational exposures (Siemiatycki et al. 1981).
On the one hand, many job titles cover workers with very diverse exposure pro-
files, while on the other, multiple exposures are found to occur in many occupation
categories. Several approaches have been used to better define actual exposures.
One such is the Job Exposure Matrix (JEM). A JEM is simply an automatic set of
indicators showing which exposures may occur in which occupations (Hoar et al.
1980; Siemiatycki 1996; Chap. I.11 of this handbook).

Place of Residence3.5.2

Place of residence is an important variable in descriptive epidemiology. It is almost
always available in routine sources of events of disease (registers, surveys, death
certificates), and population-at-risk is very often available for small geographic
units too. “Geographic pathology”-comparisons of disease rates or risk of individ-
uals living in different areas has been one of the longest established and productive
types of descriptive study for more than a century (Hirsch 1883). National popula-
tions have often been the unit of study. The reason is that this dimension is the one
for which statistics – especially mortality – are collected and published. Differences
in disease between countries may indeed be striking. Sometimes, the reasons are
obvious, and correspond to the known distribution of causal agents – as for some
infectious diseases. But for some diseases, the clear international variations in
incidence or mortality have prompted research to better understand the reasons
behind them.

Valid comparisons of data deriving from routine data sources in international
studies require that there is fair comparability in diagnostic criteria, and in record-
ing and coding the events concerned. Variation in quality and completeness of
death registration has been mentioned as a source of bias in epidemiological stud-
ies, and it is easy to find examples of uncritical use of such data (Carroll 1975).
For diseases where there are differences in diagnostic criteria internationally,
special studies of disease incidence|prevalence may be undertaken, using similar
definitions and criteria in the different participating centres. Examples are in-
ternational studies of cardiovascular disease and its determinants (the MONICA
project, Tunstall-Pedoe et al. 1988) and of Asthma (ISAAC study, Pearce et al. 1993).

National boundaries have not always been based on levels of exposure to envi-
ronmental risk factors, nor of the genetic homogeneity of the populations within
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Table 3.5. Stomach cancer deaths and registrations by occupation unit and cancer: men aged 15–74 giving units with significantly raised PMRs and PIRs in

1968–1969 (p < 0.01) (Registrar General’s Office for England and Wales 1978)

Cancer (ICD number) Deaths 1970–1972 Registrations 1968–1969
Occupation All cancer PMR All cancer PIR
Order Unit Title Observed Observed

15–74 15–64 65–74 15–74 15–74

Stomach (151)
II 007 Coal mine – face workers 615 142∗∗ 127∗∗ 44 182∗∗
II Coal miner – other underground 45 214∗∗
II 008 Coal mine-workers above ground 120 159∗∗ 139∗ 34 207∗∗
II 007 Coal miners (so described) 615 142∗∗ 127∗∗ 270 146∗∗
IV 015 Fumacemen, kilnmen, glass and ceramics 16 122 72 9 173

VII 054 Other metal making, working; jewellery and 262 121∗ 133∗∗ 96 145∗∗
electrical production process workers

X 064 Fibre preparers 35 191∗ 110 13 194∗
XIV 089 Workers in rubber 44 123 122 27 175∗∗
XV 098 Construction workers nec 256 102 106 127 132∗∗
XVI 102 Boiler firemen 121 107 120 69 143∗∗
XVIII 106 Railway lengthmen 65 103 113 33 156∗
XVIII 113 Labourers and unskilled Workers nec, building 149 109 78 56 143∗

and contracting
XVIII 114 Labourers and unskilled workers nec, other 1120 114∗∗ 113∗∗ 781 122∗∗
XIX 123 Inspectors, supervisors, transport 84 94 109 50 149∗∗
XX 136 Warehousemen, storekeepers and assistants 664 103 111 314 129∗∗
XXII 144 Shop salesmen and assistants 109 89 100 11 111

∗ those results significant at the 1% level are denoted ∗∗ and those at the 5% level ∗
nec = not elsewhere classified
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them. Thus, study of populations within, and sometimes across, national bound-
aries has been particularly informative. The geographic units of study can be as
small as compatible with a sufficient number of events to generate stable disease
rates within them, and availability of information on the population-at-risk. Issues
of comparability, that may be a source of bias in international comparisons, are
usually less important, because recording procedures are in general more similar
within countries than between them.

Mapping
“Spot maps”, which show the location of individual cases|deaths have a long
history, initially in the investigation of the epidemiology of infectious diseases,
more recently as an adjunct to the investigation of clusters of disease (Sect. 3.5.4).
For non-communicable diseases, the more familiar method is the chloropleth
(thematic) map, which uses distinct shading or colour to geographic units, usually
these are administrative or statistical areas. The reasons for presenting data on
risk by place of residence as a map rather than a table are not simply aesthetic.
As well as conveying the actual value associated with a particular area, a map
conveys a sense of the overall geographic pattern of the mapped variable, and
allows comparison between the patterns on different maps. This is especially
valuable when used to suggest possible causative hypotheses. There are now a large
number of disease atlases available, for individual countries (USA, Pickle et al. 1987;
UK, Gardner et al. 1984; France, Salem et al. 1999; China, Editorial Committee
1979), or for regions where it is considered that issues of comparability between
the participating countries can be overcome (Europe, WHO 1997; Baltic region,
Pukkala et al. 2001).

There are a number of specific technical issues to be considered
Choice of map
As well as the various map projections, the cartogram has been used by some
authors (see Fig. 3.11) (e.g. Verhasselt and Timmermans 1987; Howe 1977). This
allocates to the units of study an area proportional to their population size. The
idea is to draw attention to the relative numerical importance of the differences
displayed, but the resulting maps generally appear somewhat bizarre.
Choice of geographic unit
As noted above, the size of the unit for study is a compromise between the need
to provide as much geographic detail as possible (so as to show up any pockets
of high or low risk), and achieving stable rates (small variance), so that any
spatial patterns are not obscured by random variation.
Choice of parameter
The functions plotted are usually rates or ratios. The basic problem is how to
compromise between illustrating the actual value of the rate|ratio (generally age
standardised in some way) in the different units, which may be influenced by
random variation, and giving more weight to those areas with lower variance in
the statistic, that are unlikely to be due to chance. It is often the case that sparsely
populated units cover large geographic areas, while densely populated cities
are small. Mapping may well result in impressive high or low values for eye-
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Figure 3.11. Cartogramm of mortality from cancers of the trachea, bronchus and lung (1981–1984)

(Howe 1977)

catchingly big areas. Plotting the p-values as level of “statistical significance”
is not the answer, as this simply highlights differences between the populous
units, even when the magnitude of the difference (reflecting its biological
significance) is small.
There have been various attempts to circumvent this fundamental problem.
The US Atlas of Cancer Mortality used a scale that was a combination of the
relative value (e.g., top 10th percentile) and its statistical significance. There is
no logical solution to the problem of how to present such maps (is a relative
risk of 2 with p = 0.002 more or less impressive than an R̂R of 4 and p = 0.05?).
A different approach is to try to reduce the random variation of rates in small
units by assuming that rates in adjacent units will tend to be similar, under
the assumption that there is an underlying geographic pattern. Pukkala et al.
(2001) colour their maps by giving a value to each unit that is the weighted (by
distance) average of the other units within 200 km (Fig. 3.12). A more formal
method is to plot empirical Bayes estimates of the rates, whereby the values
for the units (areas) that are imprecise are improved by estimates from other
appropriate areas (Clayton and Kaldor 1987).
Choice of range
The number of classes into which to divide the range of values is a compromise
between detail and clarity. Usually, 5–10 classes are used. There are various
choices for the class intervals to be used. The simplest is to use constant
intervals (equal steps), in which the range of values is divided into a number of
categories of equal size; this works well if the distribution of the data between
the units is relatively even, but otherwise may be dominated by extreme values,
even leaving some classes with no entries at all. If the data set displays an
approximately normal frequency distribution, class intervals may be standard
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Figure 3.12. Mortality rates from cancer of the cervix uteri in Northern Europe (Pukkala et al. 2001)

deviation values; it is useful if the idea of the map is to illustrate deviations from
a mean value. Natural divisions of the scale may be used, based upon low points
observed in the actual frequency distribution, or on some prior knowledge or
hypothesis of important dividing values. A relative scale, based on percentiles of
the units being mapped, results in irregular variable intervals, but a predictable
number of values in each class. The percentiles do not need to be even – in
the Scottish Cancer Atlas, the percentiles were 5th, 15th, 35th, 65th, 85th, 95th,
which draws attention to areas of both high and low incidence (Kemp et al.
1985). The same scheme was used for the atlas of cancer mortality in Europe
(Smans et al. 1992; Fig. 3.13). This approach means that there is no arbitrary
selection of values to plot, and that the colouring of all maps tends to be about
the same. However, it will obscure outlying (very high or very low values).
Choice of shading|colour
The change of shading or colour should convey as closely as possible the pro-
gression of risk. Colour maps are more visually pleasing, and can convey more
information than those in monochrome. The choice of colours to illustrate
the gradations of the scale of the map is not arbitrary, and ideally should fol-
low a scale based on the sequence of the spectrum, and degree of whiteness
(chroma) (Smans and Estève 1992).
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Figure 3.13. Mortality from oesophageal cancer in Europe 1971–1978 (females) (Smans et al. 1992)

Urban-Rural Comparisons
There have been many studies in which individuals have been classified into urban
or rural dwellers, on the basis of some characteristic of their place of residence,
usually, its administrative designation or otherwise as a town|city, or on the basis
of population density of the administrative areas (Nasca et al. 1980; Friis and Storm
1993; Barnett et al. 1996). Although distinct differences in the risk of various dis-
eases may be observed, the reasons underlying them are generally obscure. Often,
the interest may be in the effects of air pollution on health, given that most air pol-
lution (due to traffic, domestic smoke, or industry) will be more intense in urban
areas. However, urban-rural classifications of place of residence is an inefficient
way to approach this topic, given the multiplicity of covariates involved.

Clustering
The topic is briefly introduced in Sect. 3.5.4, where combinations of person, place
and time are considered.

Time 3.5.3

Investigations of the occurrence of diseases over time are standard tools in epi-
demiological science and public health surveillance. In the context of investigative
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epidemiology, temporal studies may generate novel aetiological hypotheses, or
provide confirmatory evidence of existing ones. As well as offering a unique possi-
bility to quantify how risk in populations is changing over time, they offer clues as
to the underlying determinants of the observation. Changes in the evolution of in-
cidence rates with time usually imply (in the absence of artefacts) consideration of
plausible mechanisms of, and changes in, environmental exposures (time-lagged
by an approximation of the induction period). Excepting large migrational effects,
genetic factors only have a minor impact on time trends of disease (MacMahon
and Pugh 1970).

Time trends are also of major importance in measuring the impact of disease
control; in studying the effects of primary prevention interventions, screening
programmes, and the efficacyof treatment regimes.Theevaluationof implemented
programmes (planned or unplanned), may take a ‘before and after’ approach to
assess the impact of the intervention on incidence or mortality at the population
level. In determining the effectiveness of screening (organised or opportunistic),
trends in incidence or mortality, dependant on the specific disease under study,
targeted population before and after implementation, or comparisons between
screening and non-screened groups.

Time Trends of Routine Data
The strengths and weaknesses of incidence and mortality data in studying time
trends is a subject of much debate. There are complexities in examining trends
in either measure, and to avoid erroneous conclusions it is usually necessary to
consider the possibility that artefactual changes over time may have in some way
distorted the observed trend.

If the mortality rate is used as a surrogate measure of the risk of developing the
disease, a strong assumption of constancy over time in the fatality ratio is required.
As survival for many diseases has been improving for several decades, it may be
inappropriate to utilise mortality trends as proxies for risk other than for the most
fatal diseases. Ideally, mortality rates are best utilised as measures of outcome,
rather than occurrence in time trends studies.

Generally a description that utilises several of these indicators serves to clarify
their key properties and aid understanding of the underlying disease processes.
There are also a number of temporal datasets on putative or known risk factors
collected for particular studies based on, for example, repeated surveys or national
surveys, that may be of some utility in elucidating observed trends. Correlation
analyses that link such data with trends may clarify particular hypotheses, but are
limited by their coverage and quality, as well as various potential ecological biases
(Morgenstern 1998, Sect. 3.4.2).

Describing Secular Trends
Time trend data should be analysed according to the problem under investigation,
and the structural characteristics of the data. In the field of health monitoring,
the goal might be to determine the nature of the recent secular trend. An esti-
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mate of the magnitude and direction (the EAPC – estimated annual percentage
change) of the trend over a limited period of time (the last 10 years, say) could
be obtained using a simple log-linear model. The EAPC is a useful descriptive
measure, but should be interpreted with some caution. 95% confidence intervals
for the slope should always be given and should help in assessing whether the
fitted linear trend may have arisen through chance. If there are elements of cur-
vature in the trend, the EAPC will give incorrect and imprecise estimates of the
average unit change. In describing recent trend patterns, the particular choice
of time points is often arbitrary and, in the absence of highly stable rates over
time, the EAPC may vary according to the period of time nominated. A preferable
description might involve some modelling procedure that could identify sud-
den changes in the long-term trend, and on that basis, estimate the direction
and magnitude of the slope for each epoch of time in which rates are relatively
stable.

Methods that seek abrupt linear changes in trend have been devised by Chu et al.
(1999), and by Kim et al. (2000), the latter technique having been implemented
in a specially written (and freely available) statistical software package entitled
“JoinPoint”. The joinpoint regression model essentially searches the temporal data
for a few continuous linear phases. The procedure is motivated by the problem
of determining the number of joinpoints, i.e. breaks in time where abrupt linear
changes occur, and an estimate of the EAPC between joinpoints. The minimum
and maximum number of joinpoints are user-specified in the software package.
To determine up to two joinpoints, for example, a model indicating no change is
compared against the model containing two joinpoints. If the null hypothesis of
no joinpoints is rejected, then the procedure is applied to test the null hypothesis
of one joinpoint against the alternative of two joinpoints. Otherwise, the test
for the null hypothesis of no change is considered against the alternative of one
joinpoint.

Statistical models may also be used to make forecasts of the likely future can-
cer burden. Prediction models are an important (but hazardous) aspect of pub-
lic health surveillance, and predictions can help answer both scientific and ad-
ministrative questions (Hakulinen and Hakama 1991). The choice of statistical
model, prediction base, future year of prediction, and the precision of the esti-
mates (Dyba et al. 1997) are important considerations in making predictions of
burden that account for risk and demographic effects of ageing and population
growth.

Age Period Cohort Analyses
The first use of the term “cohort” is attributed to Frost in a letter written to
a colleague in 1935. The note was published posthumously alongside his landmark
paper that discussed some insights that could be attained by visually examin-
ing age-specific death rates from tuberculosis according to cohorts, members of
a community who share the same birth period, rather than simply in the usual
cross-sectional way (Frost 1939). The present day usage of cohort obviously ex-
tends well beyond the closed or hypothetical sense of the term – age-period-cohort
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analysis is usually employed to describe temporal studies that include birth cohort
analyses, to distinguish it from the generic usage of cohorts in prospective studies
(Liddell 1988). In general, such an analysis allows one to examine the influence of
each of the three time components, and the importance of the particular properties
they represent:

Birth cohort effects may relate to birth itself, or may approximate factors related
to birth only by exerting influences that are shared in the same group as they
age together. An examination of rates according to birth cohort may thus give
some insight into the nature and intensity of disease-correlated exposures
that may vary across successive generations, and has played a vital role in
corroborating evidence from other types of epidemiological study. Temporal
patterns in environmental risk factors tend to affect particular generations of
individuals in the same way as they age together, and are more likely to exert
particular influence on earlier stages of disease development.
Period effects, on the other hand, may act as surrogate measures of events
that quickly change incidence or mortality with the same order of magnitude
regardless of the age group under study. These effects may be the result of
planned interventions that act at later stages of the disease process e.g. novel
therapies that improve survival in all age groups. More frequently, they are due
to artefactual changes over time e.g. changes in ICD revisions or improvements
in diagnostic procedures.
Age is without doubt a powerful determinant of cancer risk, since it parallels
the cumulative exposure to carcinogens over time, and the accumulation of the
series of mutations necessary for the unregulated cell proliferation that leads
to cancer.

A graphical representation of the age-specific rates by period and birth cohort
is an essential element of the analysis. Time-specific rates by age though com-
mon representations (as in Fig. 3.14), are sometimes not helpful in elucidating
the importance of each of the time components – without transformation of
the y-axis, the rates can be too closely packed to clearly display the changes,
while additionally for cohort trends, they are difficult to interpret, in view of
the obvious fact that each generation-specific rate is only observed for a max-
imum of a few age groups, and at the extremes, only for one age band. Much
more informative is the depiction of the age-specific rates with period and co-
hort representing the x coordinates of the two graphs respectively (Fig. 3.15).
Time effects of either origin are therefore apparent when the age-specific trends
are changing in consecutive periods or cohorts in the same way across all age
groups.

The effects of the components are sometimes evident to the extent that further
investigation may seem unnecessary, given the limited number of variables that re-
quire attention. The interpretation of the majority of temporal analyses is however
usually more complicated. Rates may fluctuate over time according to the level of
random error inherent in the data, dependent on the magnitude of the person-time
and the rarity of the disease under investigation. In most situations, the random
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Figure 3.14. Cohort-specific incidence rates by age, England, oral cavity cancer, males, 1968–1997.

Arrows indicate the midpoint of the period of disease events and year of birth in the left and right

figure, respectively

variation is particularly high in younger persons in recent cohorts. The attribution
of changes in the trend to period or cohort effects on the basis of visual means is
therefore often not straightforward nor satisfactory, and a comparison of the two-
dimensional age-period versus age-cohort graphs can lead to arbitrary opinions
as to which component more adequately describes the data. It is in these situations
that our understanding of the evolution of cancer risk can be greatly enhanced
by the use of more formal statistical procedures. Models offer quantitative and
comparable estimates of trend based on objective criteria for choosing the best
description of the data, and statistical tests to decide whether the trends are real
or random (Estève 1990). The consequences of subjective judgments based exclu-
sively on graphical descriptions are thus avoided. Statistical models of this nature
do not provide definitive answers, but offer some guidance as to the importance
of each component.

The Age-Period-Cohort Model
The emerging importance of birth cohort analyses is in part due to the exten-
sive theoretical and applied research into the age-period-cohort (APC) model in
recent times, and importantly, knowledge of its inherent mathematical limita-
tions (Holford 1983; Clayton and Schifflers 1987a,b). The accumulation of available
data, advances in statistical theory, including development of the generalised lin-
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ear model (Nelder and Wedderburn 1972) alongside an increasing availability of
software dedicated to fitting such models also contribute to the development.

As birth cohort is related to a linear function of calendar period and age,
the full APC model cannot, given a default set of model constraints, identify all
of the parameters of the three components, nor – on introduction of a further
constraint – provide a unique set of estimates. While the APC model is used
extensively in applied temporal analyses of disease, the statistical methodologies
used to circumvent this problem are numerous and diverse, an indicator of an
enduring lack of consensus as to how best to provide satisfactory inferences.

In parallel with advances in statistical theory and computing power, theoretical
and applied research on the APC model began to flourish in the late 1970’s. During
the next couple decades, a number of solutions were offered as how should one
present the joint components (e.g. Glenn 1976; Moolgavkar et al. 1979; Day and
Charnay 1982; Osmond and Gardner 1982; Holford 1983; Fienberg and Mason 1985;
Kupper et al. 1985; Clayton and Schifflers 1987a,b; Tarone and Chu 1992, 1996).
A number of reviews and critique of APC models has also been published (e.g.
Holford 1998).
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The Lexis diagram (see Sect. 3.2.7) considers the location of incident cases
on one plane, with three time coordinates used to classify events, the date of
diagnosis, age at diagnosis, and the date of birth of the individual(s) affected.
The third axis, denoted by the diagonal bands crossing the plane from top left
to bottom right, represents the date of birth. The APC regression model in-
volves additive contributions of the three time effects on the rate, and is given
by:

E
[
ln rij

]
= µ + ai + pj + ck ,

where rij = Yij|nij is the incidence (or mortality) rate with nij is the number
of person-time in age group i and period j, assumed fixed and known. ai is
the fixed effect of age group i (i = 1, 2, … , I), pj the fixed effect of period j
( j = 1, 2, … , J), and ck the fixed effect of birth cohort with k = 1, 2, … , K where
k = I − i + j. The number of cancer cases, yij are assumed to be distributed as
a Poisson random variable with mean λij. The model can be estimated read-
ily using maximum likelihood techniques. The numbers of events are fitted via
a generalised linear model assuming Poisson errors and a log-link function re-
lating the mean to the linear component. The logarithm of the corresponding
person-time is declared as an offset, an added constant set to unity for which
estimation is not required. The goodness-of-fit is determined as usual by the
deviance.

The Identifiability Problem. Intrinsic to recognising the inherent limitations of
the APC model is the fact that knowledge of any two factors implies knowledge
of the third, making one of the factors redundant. As mentioned above, the index
of cohort is defined by the corresponding indexes of age and period, and hence
the three factors are exactly linearly dependant on each other. One further linear
constraint must be imposed to ensure the parameter estimates are unique, but the
crux of the problem is that this choice of constraint is completely arbitrary in the
absence of compelling external information that one can bring to bear in making
the selection.
Period and cohort can be considered as weak proxies for our own ignorance
regarding the real determinants of time trends (Hobcraft et al. 1985), and it
is important that the APC model should be considered as an exploratory tool
for investigating the underlying reasons for significant period and cohort ef-
fects, adjusted for age. Despite their limitations, such models can render in-
formative results capable of augmenting interpretations based on purely visual
approaches.

Classifying Solutions to the Identifiability Problem. A number of methods have
been proposed that introduce particular constraints on the above APC parame-
terisation so that the identifiability problem appears to be at once resolved, thus
yielding unique trend estimates. Such methods often make assumptions founded,
necessarily, on mathematical rather than biological principles, that, if inconsistent
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with reality, induce a bias in all trends, leading to erroneous interpretation. There-
fore, such solutions must be carefully scrutinised alongside our present knowl-
edge of the aetiology of the cancer under study. Amongst the methods proposed,
a distinction can be drawn that classifies ways of dealing with the analysis and
presentation of results from the APC model.
As Holford (1998) points out, that a number of quantifies can be derived that are
estimable and may fulfil the investigative objectives of a temporal study. Such es-
timable functions avoid any imposition of mathematical statements. Rather they
are specific reparameterisations that offer summaries of the trends that are identi-
cal for any particular set of APC parameters. These conservative but (statistically)
correct strategies will be compared with methods that incorporate external data
or provide a certain mathematical solution for the cancer outlined, in order to as-
certain the level of insight obtained, and the similarities and differences between
the methods.

Several authors, notably, Holford (1983) and Clayton and Schifflers (1987b)
have noted that certain reparameterisations of the parameters are unique re-
gardless of the constraints imposed, ensuring identifiability, without making any
further biological, epidemiological or mathematical assumptions. Holford (1983)
suggested, given the large number of parameters included in the full APC model,
for simplicity it is sensible to highlight the non-identifiability in terms of two
parameters, one representing a linear function of the three (non-identifiable)
slopes and the other, the identifiable curvature of each effect. Clayton and Schif-
flers (1987a) introduced the term drift or net drift in describing a model for
which the two-factor models, age-period and age-cohort, fit the data equally
well.

Drift or δ can be thought of as the average annual change in the rates over time,
the passage of time that is common to both axes, calendar period and birth cohort,
a quantity that cannot be disentangled between the time axes of calendar period
and birth cohort. It has become an integral part of the APC modelling strategy,
drift being utilised as an estimate of the rate of change of the regular trend, and
a partitioner of first order and curvature effects. The age-drift model implies the
same linear change in the logarithm of the rates over time in each age group. Given
the linear component over time is identifiable but cannot be allocated in any way
to period or cohort, δ can be estimated by either specifying period or cohort as
a continuous covariate, and the resulting EAPC estimated as eδ − 1, expressed in
the unit of origin.

Perhaps the easiest way to avoid the issue is to ignore the possibility of a three-
factor model. However, if such a preference is founded simply on the basis of
adequacy of model fit, such an approach may be biased if one of the three effects
follows a purely linear pattern (Kupper et al. 1985). In addition, the age-period and
age-cohort models are not nested within each other and are therefore not directly
comparable. Given its simplicity relative to methods dealing with the three-factor
model, however, two-factors models are commonly applied, often when there are,
a priori beliefs in the nature of the temporal pattern.
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Combinations 3.5.4

Space Time Clustering
Clustering results from the aggregation of cases (or deaths) in terms of disease
group, time and space, where the number of cases is substantially greater than we
would expect when the natural history of the disease and chance fluctuations are
taken into account. Investigation of observed clusters, or search for clustering of
different diseases is probably one of the most frequent types of study in descriptive
epidemiology. There are, in general, two aims: to identify a possible aetiological
role for infectious agents in non-communicable diseases, and to identify health
hazards of sources of environmental contamination, the most popular suspects be-
ing sources of pollution (toxic waste dumps, industrial plants) or radiation (nuclear
power, electro magnetic fields). Cancer and congenital malformations are the usual
subjects of study. It is doubtful if the aetiological insights gained are commensurate
with the huge volume of research effort (Rothman 1990), although explanations
for some clusters of disease have been forthcoming (mesothelioma and sources of
asbestos (Baris et al. 1987; Driscoll et al. 1988), mercury and Minimata disease in
Japan (Tsuchiya 1992) and dental caries and fluoride in water (Dean 1938)).

Studies of clustering are either a priori or ad hoc. A priori investigation is the
search for evidence of clustering in space and|or time in data sets where none
is known to exist beforehand, but where the investigator may have some prior
hypothesis about its existence. Post hoc clusters are observed groupings of events
in neighbourhoods, schools, occupational units, households or families, that are
considered by someone to be unusual. In both cases, the existence of a point source,
responsible for the observed excess, may be suspected.

There are some important considerations in all cluster investigations. The
boundaries or units of investigation need to be clearly defined, without refer-
ence to the actual observations. The definition should include the disease entity
studied, including the diagnostic criteria of a case, the age and sex groups of sub-
jects to be included, and the geographic and temporal boundaries within which
the disease event will be counted. Ideally, these are based on biological criteria,
or on the a priori hypothesis that is being tested. The boundaries should not be
defined by the nature of the observations themselves. Demonstrating a clustering
effect means that the observed spatial|temporal patterns of disease are significantly
different from the expected result, based on an appropriate reference area. Any
diligent investigator should be able to achieve this, if sufficient sub-analyses are
performed, on varying combinations of diseases, areas, and timescales. Less ide-
ally, post hoc clusters are, by definition, combinations of place, time, and disease
that accidentally appeared to be significantly unusual.

A large number of methodological approaches are available for examining
datasets for evidence of clustering (see Smith 1982; Marshall 1991; Alexander and
Cuzick 1992; Bithell 1992; Alexander and Boyle 1996). Guidelines have been pre-
pared to aid epidemiologists working in public health departments to investigate
local post hoc clusters brought to their attention (Centers for Disease Control 1990;
Leukaemia Research Fund 1997).
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Migrant Studies
Migrant studies provide a useful insight into the relative importance of environ-
ment and genetic make-up in disease aetiology. Disease risk is compared between
populations of similar genetic background living in different physical and social
environments. Figure 3.16 illustrates the principles; comparison is usually between
the rate of disease in migrants (Rm1), and the population from which they orig-
inated (R0), or between the rates in migrants and those of the new host country
in which they have settled (Rm1 vs. Rh). The most informative migrant studies are
those that permit study of the rate of change of risk following migration. This may
be by partitioning migrant rates (Rm1) according to age at migration or duration
of residence, or by comparison of risk in first generation migrants (Rm1) and their
offspring (Rm2).

Figure 3.16. Principles of migrant studies (McMichael and Giles 1988)

Studies of disease risk in migrants may involve interview|examination of sub-
jects, in which case information is available not only on the variables of place
of origin|place of residence- the focus of migrant studies- but also on covari-
ates. Descriptive studies rely upon data from routine sources (Sect. 3.1.2), and all
environmental exposures are subsumed by the variables birthplace and place of
residence. Although these may be highly reproducible and subject to little misclas-
sification, in an aetiological sense they are themselves related to numerous more
proximate unmeasured ‘exposures’, not only in the external environment (air, soil,
water), but also through socio-cultural factors (diet, fertility, smoking, etc.), as well
as genetic predispositions to them. Adjustment for confounding factors related to
birthplace is generally limited, since the variables available are usually few (sex,
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age, place of residence, occupation etc.). Nevertheless, as well as the simplicity
and convenience that characterise descriptive studies in general, such studies are
population based and often of large size, (for example, 120,000 subjects in one
study of migrants to Israel; Steinitz et al. 1989). The prospective (cohort) design of
most permits risk for several different diseases to be examined.

Migrant studies can only provide useful information when there is a difference
in risk between the country of origin (specifically, the population from which the
migrants came) and the host population. In the particular instance of the host
population comprising the offspring of earlier migrants, there might well be less
difference than were it genotypically quite different. Migrants from Spain and Italy
might have considerable genetic similarity to the inhabitants of Argentina and
Uruguay, for example, countries with populations largely of southern European
descent.

Descriptive studies in which “exposure” is investigated in terms of birthplace
and residence are not very useful for diseases for which there are obvious causes,
with a high population attributable fraction. For example, tobacco smoking is
responsible for such a large proportion of cases of lung cancer that risk in migrants
will be almost entirely determined by past smoking habits, and the contributions
of other environmental factors, for example air pollution, will be quite impossible
to evaluate in the absence of detailed knowledge of exposure to tobacco smoke.
Conversely, the changes of risk experienced by migrants for cancers of the breast,
large bowel, pancreas and prostate have been far more useful pointers to the relative
importanceof environmental factors inaetiology, and to the stageof carcinogenesis
at which they may act.

The definition of migrant status is dependent upon the data sources used in
a particular study. The most common classification is by place of birth, a rel-
atively well-defined, unchanging attribute, likely to be comparable between the
data sources being used (census, vital statistics, registration). Place of birth can
also be used in the study of migrants within one country (internal migration).
Citizenship or nationality is often recorded on death certificates; it is less useful
than place of birth, since migrants will become naturalised to varying degrees,
and there are more problems of definition (e.g. dual nationality, stateless per-
sons). Other variables, particularly ethnic group (but also language or religion),
have been widely used in comparative studies of populations of different genetic
background living in similar environments (or vice versa), in a manner analogous
to studies of risk by birthplace (Sect. 3.5.1). Studies that employ a combination
of ethnic group and birthplace to distinguish first-generation migrants and their
offspring are much more informative than either one alone.

The term “environment” embraces, of course, more than the physical surround-
ings of an individual; it also encompasses all elements of lifestyle that influence
disease risk. Thus, while certain aspects of the physical environment (e.g. air and
its pollutants, water and trace elements, irradiation-solar and other forms) change
abruptly on migration, other aspects of lifestyle which are related to socio-cultural
norms will be retained to a greater or lesser degree in the new place of residence.
Examples are patterns of diet, childbearing, alcohol and tobacco consumption, sex-
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ual habits, and so on. Socio-cultural factors also influence the degree of exposure
to external environmental agents; thus, given that potential exposure to ultraviolet
radiation from the sun is determined by geographical locality, the actual exposures
will be modified by culturally defined behaviour. As a result, although migrants to
countries with sunny climates, such as Israel or Australia, clearly have the same
potential for exposure to ultraviolet radiation as the local population, they may be
culturally more or less inclined to avoid the sun than the locally born.

The study of disease risk in relation to duration of residence in the new country,
or, alternatively, according to the age at the time of migration, is feasible when
information is available on the date of migration of the individuals. Provided
migrants settle permanently in the host country, age at diagnosis or death is the
summation of age at arrival and duration of stay, and it is not possible to evaluate
the effect of one of these variables independently of the other. As age is such
a strong determinant of risk, and an essential component of any analysis, there is
no variability left in duration of stay after controlling for age at arrival, or vice versa;
these two variables are therefore inextricably linked. This problem constitutes an
extension of the non-identifiability property of age|period|cohort models in the
study of time trends (see Sect. 3.5.3). A pragmatic solution is to examine each
variable in turn (age|duration of residence, or age|age at arrival) to see which
provides the most plausible pattern of change of risk. “Duration of residence” can
be interpreted in terms of dose, i.e. assuming that longer periods spent in the new
location imply a greater change in cumulative exposure to the relevant aetiological
factors. It might equally be interpreted in terms of the stage of the disease process
at which particular environmental exposures may act. Thus, a rapid change in risk
following migration implies change in exposure to a relevant factor, and a short
period between exposure and disease. Alternatively, the pattern of change may
suggest that prolonged exposure is needed before risk is altered, or that the agent
is only important with respect to exposures early in life. Analysis of risk by “age at
migration” may show a clear distinction, in this case, between migrants arriving
as children or as adults.

The importance of genetic susceptibility in determining risk is suggested by
the persistence of characteristic rates between generations, since the offspring of
migrants have been exposed to the environment of the host country for their entire
lifespan. However, it is quite likely that they retain some aspects of their parents’
lifestyle (as well as their genetic makeup). Some insight into the effect of this can be
gained if the rates in the second generation (Rm2) can be partitioned according to
birthplace of parents (neither, one, or both in the country of origin). These studies
require that the data source used contains information on birthplace of parent(s),
or ethnicity (if the migrants comprise a distinct ethnic group), or both.

Descriptive studies using routine sources for disease incidence, mortality or
prevalence will have no information on levels of exposure (diet, tobacco, fertility,
etc.). However, other data sources may be able to provide population-level data
on prevalence or intensity of exposures, and permit ecological analyses of risk
versus exposure according to birthplace (see Sect. 3.4.2). The opportunities for
such studies are, unfortunately, limited. Although population surveys may be
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available, based on interviews (smoking, drinking, dietary habits, reproductive
history) or physical examinations (height|weight, blood pressure, blood sugar,
etc.), either place of birth is not recorded or, if it is, the samples are usually too
small for meaningful results to emerge for any particular group of migrants, who
usually comprise only a small fraction of the general population. Occasionally,
there have been special ad hoc surveys of migrant populations-and sometimes
data from control groups in case-control studies where ethnicity or place of birth
has been a major variable of interest (e.g., in studies of diet and cancer in Hawaii
(Kolonel et al. 1980; Hankin et al. 1983)). These may provide information on, for
example, dietary habits in different migrant groups for comparison with those of
the locally-born population.

Biases in Migrant Studies.
Use of mortality data
Mortality data are normally used as a proxy for incidence (risk of disease),
a perfectly valid procedure providing the ratio between mortality and inci-
dence is constant for the groups being compared. This may not be true for
international comparisons, since there are known differences in survival be-
tween countries (Berrino et al. 1999; Sankaranarayanan et al. 1998). It is less
clear whether there are differences in survival by birthplace within a country,
although ethnic-specific differences are well documented in the USA (Miller
et al. 1996).
Data quality
Variation in the quality of data from different sources is particularly trouble-
some when mortality rates in one country (locally-born and migrants) are
compared with those from another (country of origin). International varia-
tion in completeness and accuracy of death certificate data has been discussed
above (Sect. 3.2.4). It may introduce spurious differences in mortality rates.
Thus, if the migrant population under study moves from a country with poor
certification (of all causes, or a specific cause of death) to one with more accu-
rate recording, there will be an apparent increase in the observed rate. Better
ascertainment of cause of death, especially for diseases that present diagnostic
difficulties, may account for some of the examples of “overshoot” (rates in mi-
grants higher than host country, but country of origin rates lower), reported in
several studies (Lilienfeld et al. 1972; McMichael et al. 1980).
Incidence rates from cancer registries are probably more comparable between
countries than mortality data. Nevertheless, incidence can be influenced by the
detection of asymptomatic cancers during screening, surgery, or autopsy, and
is thus related to the extent and nature of such practices. Systematic histological
examination of material removed at transurethral prostectomy was responsible
for thedetectionofmany ‘incidental’ (non-symptomatic) cancersof theprostate
in the USA, and it has been suggested (Shimizu et al. 1991) that the incidence in
Japan would have been three to four times higher in the same circumstances.
This would explain the apparent rapid increase in the risk of prostate cancer in
Japanese migrants to the USA.
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Mismatching numerator|denominator
In descriptive studies, person-years at risk are estimated from census data (or
from population registers), typically broken down by rather few variables in-
cluding, in addition to birthplace, age, sex and place of residence. It is essential
that the definition of migrant status is the same in the census and case|death
data, but even with the same definition, individuals may be classified in a dif-
ferent way in the two sources. Lilienfeld et al. (1972) present unpublished data
on differences between country-of-birth statements on death certificates and
census returns for the USA in 1960 – this varied from a 10.8% deficit on death
certificates for UK birth to 16.7% excess for Ireland. A source of bias more diffi-
cult to detect results from migration that is related to the disease event itself-for
example, when migrants return to their country of origin soon before death
(so that mortality rates of migrants in the host country are underestimated).
A more practical difficulty in using population-at-risk data results from the
fact that censuses are rather infrequent, and interpolations are needed to derive
person-years at risk. This can be quite prone to error when several variables
are involved, and active migration is still occurring during the study period.
Selection bias
Migrant populations are a non-random (self-selected) sample of the population
of their country of origin. Very often they come from quite limited geographical
areas. For example, migrants to the United States of Italian origin come mainly
from the south of that country (Geddes et al. 1993) and a large proportion of US
Chineseoriginate fromGuangdongprovince (Kinget al. 1985).Alternatively, the
migrants may be special social or religious groups with quite distinctive disease
patterns. For example, Jews comprised a large proportion of the migrants
from Central Europe in the late 1930 s and 1940 s. Whenever possible, disease
rates appropriate to the source population of the migrants should be used for
comparisons, rather than the national country of origin rates.
Migrants are often assumed to be healthier than the average population (the
‘healthy migrant effect’); this may be because the fact of seeking a new life
overseas implies a population that is resourceful and energetic (or at least not
chronically ill), or because the sick and disabled are excluded by the immigra-
tion authorities of the host country. Conversely, it has been suggested (Steinitz
et al. 1989) that permission for Jews to migrate to Israel from countries of the
Soviet block was more easily obtained for those in ill health, giving rise to
an ‘unhealthy migrant effect’. It is possible to check for the ‘healthy|unhealthy
migrant effect’ if risk according to duration of stay in the new country can be
estimated. A significant change in rates from those in the host country in recent
migrants should suggest this form of bias. Swerdlow (1991) found no sign of
any such effect in Vietnamese refugees to England and Wales, and Steinitz et al.
(1989) found that exclusion of cancer cases diagnosed within a year of arrival
in Israel made no difference to relative risks for short stay (less than 10 years)
migrants.
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Confounding
Several demographic variables recorded in the sources of disease information
(death certificates, disease registers, etc.) can be considered as confounders –
influencing disease risk and associated with exposure (migrant status) – in
a study aiming to investigate the effect of birthplace on disease risk. These
include date of diagnosis|death, marital status, place of residence, and possibly
ethnic group, occupation, socio-economic status (such as employment status,
income, educational level, etc.).
Migrants are in the first place rarely distributed homogeneously in their new
host country: they tend to settle in certain areas, generally in urban areas, and
the establishment of a migrant ‘colony’ in a place tends to attract later migrants
to settle there. It may well be inappropriate therefore to compare disease rates
in migrants with the entire population of the host country. Table 3.6 illustrates
an example of confounding by place of residence. Polish migrants to Argentina
live mainly in Buenos Aires (81.2%, compared with 48% of the local-born),
where mortality rates from colon and breast cancer are higher than elsewhere.
Adjustment for place of residence reduces the relative risk of both cancers, and
for colon cancer the difference from the local-born is no longer statistically
significant.

Table 3.6. Confounding by place of residence in a study of cancer mortality in Polish migrants to

Argentina (95% confidence intervals in brackets)

Cancer mortality and place of residence Buenos Aires Elsewhere in Argentina

Relative risk of colon cancer (M) 1.9 1.0

Relative risk of breast cancer (F) 1.4 1.0

Place of residence and birthplace Buenos Aires Elsewhere in Argentina

Born in Poland 81.2% 18.8%
Born in Argentina 47.9% 52.1%

Cancer mortality and birthplace Crude Adjusted for place
[Relative risk in Poland-born vs. of residence

Argentina-born (1.0)]
Colon cancer (M) 1.34 (1.06–1.68) 1.16 (0.95–1.43)
Breast cancer (F) 0.90 (0.75–1.08) 0.82 (0.63–1.05)

Social class and occupation are also known to be strong determinants of disease
risk, and it is often clear from census data that migrants are over-represented
in specific occupational categories, and are atypical of the general population
in their socio-economic profile. Meaningful comparisons should therefore take
the social dimension into account.
Temporal trends in incidence or mortality of disease may also be differ-
ent in the migrant population and in the host country. When data from
a long time period are used, the relative risk between them may differ ac-
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cording to time period. This is particularly troublesome when the effect
of duration of stay is being studied, since, in general, data from more re-
cent time periods will contain more migrants with long periods of resi-
dence than those from earlier years: an adjustment for time period is thus
necessary.

Examples of Migrant Studies
Single-comparison studies are the least informative, showing differences in risk
between migrants and the locally born, but providing no information on the
populations from which the migrants came. This may be the consequence
of absence of appropriate sources of data (for example, no accurate mortality
statistics), or that rates of disease are unavailable for the appropriate population
subgroups from which the migrants came.
Figure 3.17 (Marmot et al. 1984) shows data on mortality from hypertensive
disease (ICD-8 A82) and from coronary heart disease (A83) in men of different
migrant groups in England and Wales. There is very large variation in the
former (five fold), and a rather poor correlation of death rates from these two
causes between the populations. For most of the countries of origin of the
migrants there are no available data on mortality.

Figure 3.17. Mortality in migrants to England and Wales, age 20+, 1970–1972 SMR (relative to England

and Wales = 100) (Marmot et al. 1984)

Two-comparison studies are the most common type of study reported. They aim
to demonstrate the degree to which the risk of a given disease changes in the
migrant population away from that in the country of origin and towards that of
natives in the new host country. Examples are the several studies that examine
mortality rates in populations of pre-dominantly European origin moving to
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the United States (Haenszel 1961; Lillienfeld et al. 1972), Australia (Armstrong
et al. 1983; McCredie 1998), England & Wales (Marmot et al. 1984; Grulich et al.
1992) and South America (Matos et al. 1991; de Stefani et al. 1990). The fact that
the data for the two comparisons came from different sources must always be
borne in mind, and bias in the first (country of origin) probably explains some
of the findings in published studies.
Figure 3.18 shows results from a study of migrant mortality in the United States
(Lilienfeld et al. 1972), comparing age-specific rates in migrants, with those in
US born whites, and in the countries of origin of the migrants. One of the most
impressive differences between migrants and country of origin is for Italians.
It is probably in part the result of selection bias: Italian migrants originated
mainly from southern Italy, where stomach cancer rates are much lower than
in the north (or for the country as a whole) (Geddes et al. 1993).

Figure 3.18. Mortality from cancer of stomach (rate per 105) in migrants to United States (Lilienfeld

et al. 1972)

Studies with a time dimension are studies of the effect of duration of residence
or age at migration. Relatively few published studies have been able to study
cancer rates in first-generation migrants by duration of stay (or age at arrival) in
the host country. The routine recording in Australian death certificates of date
of migration has permitted several studies of mortality in relation to duration
of residence in Australia; the findings in relation to gastro-intestinal cancers
(McMichael et al. 1980) and to malignant melanoma (Khlat et al. 1992) are of
particular interest. Figure 3.19 (Khlat et al. 1992) shows the risk of death from
melanoma of six migrant populations in relation to either duration of stay or
age at arrival, using the Australia-born as the reference group. Since these two
variables are completely interdependent (long durations of stay are associated
with early ages at arrival), it is impossible to separate their effects. The figure
gives the impression that arrival in childhood is associated with relatively high
risks, but that in age groups 15–24 years, and 25 years and above, risk remains
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significantly lower than that of the Australia-born. The irregular increase in
risk with duration of stay, with a relatively sharp increase after 30 years for
many of the groups makes little biological sense, and could well reflect the
excess of childhood immigrants in the long stay category.

Figure 3.19. Estimated relative risks of melanoma in male immigrants to Australia, by region of birth

and according to duration of stay and age at arrival (both in years), compared with the

Australian-born and adjusted for age, period, cohort, and state: Australia, 1964–1985 (Khlat et al.

1992)

The Israel Cancer Registry records date of migration for all cases of cancer.
This has allowed the risk of cancer to be examined for different populations
of migrants in relation to their duration of residence in Israel (Steinitz et al.
1989; Parkin and Iscovich 1997). Figure 3.20 illustrates the risk of cervical
cancer in migrants to Israel, relative to the local-born, in relation to duration
of stay. The data derive from a long time period (1961–1981) during which there
were marked temporal trends in the risk of cervical cancer, and in particular
a striking increase in incidence (2.5 times) in the Israel-born,but little changeor
even slight declines in risk for the migrant groups. Because most migration took
place before the data collection period, duration of stay is strongly confounded
by time period (short duration-of-stay cases come mainly from earlier periods,
and vice versa), and adjustment for time period has a very striking effect on
relative risks (Fig. 3.20). These observations may be explicable in terms of
cumulative exposure to Pap smear testing following migration, since the high
risk of cervical cancer in these populations is well known to clinicians.
Studies of second and subsequent generations of migrants.Thebestknownstud-
ies are those of Japanese in the USA (Haenszel & Kurihara, 1968; Locke & King,
1980) and Hawaii (Kolonel et al. 1980; Hankin et al. 1983), and of Chinese in



Descriptive Studies 217

AFRICA ASIA EUROPE

10

1

0.1

10

1

0.1

10

1

0.1

0 -9 10 -19 20 -29 30+ 0 -9 10 -19 20 -29 30+ 0 -9 10 -19 20 -29 30+

10*
8.6*

6.4*

4.6*3.8*

2.8*

1.9*

1.4

4.3*

2.9*
2.5* 2.4

1.8*

1.2

0.9
0.8

2.5*

1.9 1.8

1.11.2
0.9

0.8

0.53*

Duration of stay (years)

R
e

la
ti

v
e

ri
s

k

Adjusted for age only
Adjusted for age + period

Figure 3.20. Risk of cervix cancer in migrants (relative to local born) (Parkin et al. 1990)

the USA (King et al. 1985), distinguishing the foreign-born (first-generation
migrants) from the USA-born (their offspring).
Figure 3.21 shows incidence rates of stomach cancer in two ethnic groups
in Hawaii-Japanese and Caucasian (white) in relation to place of birth, and
provides rates for the populations of the countries of origin, Japan and USA.
Incidence rates in Japanese migrants to Hawaii are lower than in Japan, and
in Hawaii-born Japanese they are lower still, but still higher than in the white
population. Conversely, in the white population of Hawaii, there is an increase
in stomach cancer risk in the locally born compared to US whites (or migrants
from the USA).
Birthplace of parents, which is sometimes recorded on death certificates or
cancer registries, has been little used to study cancer risk in offspring of mi-
grants. Balzi et al. (1995) used mortality data from Canada to study cancer risks
in Italian migrants and Canadian-born individuals of Italian parentage. The
latter group was separated into either those with two parents born in Italy, or
only one. Figure 3.22 shows results for the two most common cancers, stomach
and lung. The risk of stomach cancer, which in migrants is 2–3 times that in the
reference population (Canada-born of Canadian parents), is no longer signifi-
cantly raised in their offspring, while trends in the opposite direction are seen
for lung cancer. Parkin and Iscovich (1997), using data from the Israel Cancer
Registry, presented odds ratios for migrants and the Israel-born population
according to parents’ birthplace. Individuals with parents from North Africa
retained the increased risk of nasopharynx cancer seen in migrants from that
area, while the risk of melanoma remained low in migrants from this area and
their offspring.
Studies that include information on exposures at population-level data for the
migrants and the population of the host country, and sometimes for country
of origin, are examples of ecological studies (Sect. 3.4.2).
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McMichael and colleagues (1980) related mortality rates from gastro-intestinal
cancers in European migrants to Australia with per capita food consumption
data from a period 10 years earlier in Australia and the countries of origin;
results from a national dietary survey were included later (McMichael and
Giles 1988).
For the Japanese population of Hawaii, the dietary intake of a range of nutrients
can be estimated from the control subjects in case-control studies and from
special surveys (Kolonel et al. 1980; Hankin et al. 1983), and the Japanese popu-
lation (as well as Hawaii whites) can be separated into those born in Hawaii or
elsewhere. The Japan-Hawaii heart study also provides a large amount of infor-
mation on dietary patterns in Japan and Hawaii (Kagan et al. 1974). These data
have been used to help in the interpretation of the changes in risk of stomach
cancer in Japanese migrant populations (Fig. 3.21). Thus, second-generation
Japanese eat less pickled vegetables and dried salted fish than Japanese mi-
grants (born in Japan), whereas the whites who were born in Hawaii seem
to eat these foods more frequently than whites born elsewhere. Both of these
items have been associated with an increase in the risk of stomach cancer in
case-control studies. The observations were similar for consumption of rice
(and total carbohydrate intake), also suggested as aetiologically important in
some studies.

Conclusions 3.6

Studies of disease patterns using registers of vital events are often cited as the foun-
dations of modern epidemiology – the work of Graunt on “Bills of Mortality”
(Graunt 1662) foreshadowing the enormous contribution of Farr, as statistician to
the Registrar General, in analyzing the material on cause of death, provided by the
routine registration of vital events in England and Wales. Descriptive epidemiol-
ogy is a continuation of this theme. The increasing availability of databases related
to the health of individuals, or to their possible exposure to causes of disease, has
enormously increased the scope for investigations providing clues to aetiological
associations. As we describe in this chapter, the information on individuals that is
contained in personalized databases is rarely closely related to pathogenetic mech-
anisms, so that observed associations will generally be suggestive only of causative
pathways, and a stimulus to more focused investigations. Thus, differences in the
risk of disease according to locality (place of residence, or of birth, or both) may
be quite suggestive of an underlying cause (for example, in contaminants of wa-
ter, background radiation, soil mineral deficiencies, etc.), but the hypotheses will
require testing, if possible, by studies that involve collection of information from
individual subjects, on variables that are related to the hypothesized more proximal
causes.
This chapter provides some background on the tools available in descriptive epi-
demiology: The sources of routine data on health status, and the basics of measure-
ment and comparison. It illustrates how these can be applied in the study designs
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familiar to epidemiologists. The second section provides a series of examples,
illustrating the principles of descriptive studies.

In an era of genomics, proteomics, metabolomics, etc., the study of disease
risk according to demographic characteristics of individuals, or their place of
birth, or residence, and the evolution of risk over time, may seem mundane, with
little relevance to unraveling the secrets of life. However, the relative simplicity
of descriptive studies, in which large populations can be investigated, at relatively
little expense, means that they will continue to be widely used. The ecological study,
for all its defects, is probably the most popular study design in epidemiology (and
much beloved of other disciplines too, for example in economics). Even within the
framework of aetiological research, some of the most basic observations remain
a challenge to biological explanation (the striking sex ratios for some cancers, for
example).

Descriptive epidemiology has, of course, a wide application beyond the realm
of the academic epidemiologist focused on investigating the causation of disease.
Epidemiology, is, after all, concerned with “The application of this study [of the
distributionanddeterminantsofhealth-related statesor events in specifiedpopula-
tions] to control of health problems” (Sect. 3.1.1). Planning and evaluation of health
care requires a knowledge of the magnitude of different problems – their distri-
bution in subgroups within the community, their past and likely future evolution,
their amenability to different interventions – and monitoring of the effectiveness
of interventions, be they in prevention, early diagnosis, or therapy. Epidemiology
is the keystone of Public Health, and attention to the well-being of the health of the
populace requires a sound knowledge of the principles of descriptive epidemiol-
ogy, rather than a detailed knowledge of the proteomics of gene interactions. It is
the basic toolkit of the community orientated health specialist.
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Introduction4.1

Routine data are data collected continuously or at least repeatedly with some time
intervals. They could be collected in various ways, e.g. registration by the health
services or by interviews with patients or population groups. For epidemiological
purposes, it is necessary that the disease cases collected can be related to a specified
population base, thus providing the ability to calculate different epidemiological
measures as incidence, prevalence etc. The data could then be stored and admin-
istered in registers. Health data or disease registers are restricted to persons with
diseases or health-related events. The coverage can vary from a total registration to
a sample of the population and from national to regional coverage. Data can be rou-
tinely collected for various reasons, from economic and administrative purposes
to more strict epidemiological purposes.

We have mainly limited our review to registers with data on individuals, i.e.
where each individual can be followed-up. The reason is that anonymous data and
statistics in registers have limited value for epidemiological purposes. With anony-
mous data it is, for example, not possible to know whether one individual has been
treated 10 times or if ten individuals have been treated once. It is also impossible
to add data for follow up without data on individuals to observe the sequence of
events. However, some comments on the usefulness of routine anonymous data
for descriptive epidemiology will be made.

This chapter is outlined in the following way. First, a presentation of regis-
ters will be made including types of registers, organisation, contents and vari-
ables in the registers as well as the quality of registers. Second, analytical op-
tions for register-based studies will be presented followed by examples of the
usefulness and discussions on potentials and limitations of different designs.
The ethical questions of autonomy and confidentiality will also briefly be dis-
cussed.

Types of Registers4.2

The most widespread and well-known registers are the cause of death- and cancer
registers. Most countries in the world have cause of death registers, mostly based
on total registration and in some cases on a sample of deaths. The coverage of cause
of death is usually very high since it is usually not allowed to bury a person before
you have a death certificate. Cancer registers are also frequently used around the
world. In several countries it is mandatory for the physician to report all patients
they have diagnosed with malignant neoplasms.

Medical birth registers are also disease registers common in many countries,
though not as widespread as the cause of death and cancer registers. This kind
of registers usually has medical data on the new-born child and sometimes also
information on the mother. In some countries, registers on congenital malforma-
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tions are in operation. Several of these registers started as a consequence of the
thalidomide catastrophe in the 1960s (Ericson et al. 1977).

A fourth type of register is the hospital discharge register with data on hos-
pitalised patients. Mainly they contain data on diagnoses and treatments of the
patient. Hospital discharge registers are not always population-based or nation-
wide and data are, from an epidemiological point of view, more difficult to interpret
since they do not cover the whole chain of care. Different care strategies can heav-
ily affect whether patients with the same disease are hospitalised or treated in
out-patient settings.

These four types of registers are the most common ones. There are also a lot
of local research registers covering other disease groups like cardiovascular and
psychiatric diseases. They usually follow a cohort for a long time and are adminis-
tered by research groups. However, we have excluded research registers since they
cannot usually be considered as routinely collected. In countries where disease
registers are lacking, data from health insurance systems can be a basis for epi-
demiological research. They can be routinely collected data on sickness absence
of employees or health outcomes of the insured population. One problem is that
insurance systems and insured populations usually vary in many aspects, which
may create biases and lack of comparability. Validity may also be impaired due
to the fact that these data are generated for administrative purposes. Diagnoses
and treatments may be influenced by aspects related to payments and accounting.
Another problem is that the insurance registers are not always accessible because
of confidentiality.

A more recent phenomenon is the development of quality registers. In Sweden,
thereareabout 50nationalquality registers covering treatmentproceduresandout-
comes for different disease groups or medical interventions (NBHW 2000). There
are quality registers for hip replacement, hernia operations, diabetes, cataract,
cardiac intensive care etc. New data sets or registers have also been created by
record-linkages, the most common ones being linkages between the population
censuses and the cause of death and cancer registers. The purposes and epidemi-
ological applications for these linkages will be presented later on in this section.
In a few countries like Denmark there are individual-based registers for drugs and
abortions. In the following, we have restricted our presentation to the four most
common registers, i.e. cause of death, cancer, medical birth and hospital discharge
registers.

Organisation of Registries 4.3

According to the IEA dictionary of epidemiology (Last 1988) the term “register”
is applied to the file of data that can be related to a population base, i.e. the
actual document, while the registry is the system of ongoing registrations. The
organisation of registries and collection of data differ from country to country,
but they have always some basic governmental or other public funding. In most
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countries, the registries are organised within a governmental body like national
statistical offices or national boards of health and welfare. Many cancer registries
have more or less close links to cancer societies from where they also typically get
their funding.

The Nordic countries have a long tradition of collecting data on deaths and dis-
eases. They employ epidemiological registers of high quality covering the whole
population. The cause of death has been registered in Sweden since 1751 (com-
puterised from 1952) onwards while the oldest cancer register is the Danish one
dating back to 1943. The register of congenital malformations was established
in Sweden in 1964 as an early warning system and as a direct response to the
thalidomide catastrophe. The medical birth register founded in the 1970s includes
information on mothers and children, e.g. diagnoses, birth weight and height,
operations, maternal tobacco and drug use during pregnancy etc. In Denmark
in-patient care is recorded since 1977 and ambulatory care since 1995. The National
Hospital Discharge Register covers all publicly run in-patient care in Sweden from
1987, including information on diagnoses, surgical procedures etc. From 2001, the
Government has empowered the National Board also to collect information on
hospital out-patient care. The value of these registers grows continuously as time
passes.

The routine registers may not always be in an optimal shape for reliable statistics
and research. It has proven useful to dedicate scientifically qualified staff to run
the register (Jensen and Whelan 1991). This personnel has a research interest in the
data. When the register data are good enough for scientific research they normally
also are guaranteed to be very good for routine statistics production. Moreover, the
dedicated personnel is very useful in helping other researchers with the data use
by knowing the strengths and weaknesses and the most relevant method issues. Of
course, there is a risk that researchers give priority to their own research instead
of giving service to outside researchers. This potential problem is best dealt with
by careful instruction and legislation concerning equal access to data.

Inmanycountries, e.g. inFinland, the existenceof suchpersonnelhasbeenguar-
anteed by creating a cancer registry (Finnish Cancer Registry 2002). The Finnish
Cancer Registry is a research organisation specialised in statistics and studies mak-
ing use of the nation-wide cancer register in Finland. In Sweden, the Centre for
Epidemiology is an organisation responsible for several other diseases and health
registers in addition to the cancer register in Sweden (EpC 2003a; www.sos.se|epc).
These research organisations have a multidisciplinary scientific staff consisting of
epidemiologists, statisticians, physicians, social scientists, computer scientists etc.

It is necessary to have legislation on the registration and its supporting scientific
organisation. Both in Finland and in Sweden, the existence of the health registers
and the way they are run with responsibilities, rights and obligations is based on
laws. It is also important to have secured funding and the core scientific staff, in
addition to the clerical staff, on permanent funding. The knowledge required can-
not possibly be maintained by scientists on short-term project funding contracts
only.
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Contents and Variables in the Registers 4.4

A necessity in registers with data on individuals is a unique identity, usually in
forms of a person identification number (PIN) or a social security number. In some
countries it is necessary to rely on names and addresses as the identifier which
creates some biases and practical problems as for follow-up.

Using the unique personal identification number, it is possible to link data
from other sources about exposure or treatment to outcomes in these health data
registers. This Nordic system has created large data banks that are invaluable to the
researchcommunity, sincedatadonothave tobecollected fromscratch.Thousands
of scientific articles have been published based on data from these registers.

Variables usually collected in all these registers are PIN, sex, age and residential
area of the individual (Table 4.1). The cause of death register usually includes
data on underlying and contributory causes of death, place and date of death and
basis of cause certification. For the cancer registers, data on tumours, date of diag-
nosis, histological type, reporting department, hospital and pathology|cytology
department etc. are available. Medical birth registers generally include data on
sex, weight, length, size of head, analgesia, birth conditions and operations of the
children, but also data on the mother’s previous gestation, smoking habits and in
Sweden also drugs taken during pregnancy. Hospital discharge registers include
data on main and secondary diagnoses, external cause of injury and poisoning,
surgical procedures, date of admittance and discharge, length of stay, hospital and
clinical department. Except operations, there are in general few or no data on type
of interventions during hospital stay.

Table 4.1. Common variables in health data registers in the Nordic countries

Register Variables

Cause of death register PIN (personal identification number), age, sex, place of
residence, date and place of death, underlying cause of
death, nature of the injury, contributing causes of death,
autopsy (clinical or forensic), place of death

Cancer register Name, PIN, age, sex, place of residence, site of tumour,
histological type, basis of diagnosis, date of diagno-
sis, reporting hospital and department and reporting
pathology|cytology department

Medical birth register Infants date of birth (PIN), sex, weight, length, head cir-
cumference, gestational age and diagnoses. Mothers PIN,
age, smoking habits, medication, diagnoses, place of res-
idence, operations, type of analgesia, type of delivery, re-
porting hospital

Hospital discharge register|
patient register

PIN, sex, age, place of residence, date of admission, date of
discharge, acute|planned admission, main and secondary
diagnoses, external cause of injury and poisoning, surgical
procedures andhospital|departmentThese registers are in
some countries enlarged to also include out-patient visits
at hospitals.
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The Quality of Data in Registers4.5

The quality and validity of routinely collected data can hardly be as consistent as
for those obtained in clinical trials where pre-defined criteria for diagnosis have
been chosen. However, many studies have been conducted showing relatively good
quality and validity of diagnoses in these registers. In general, cancer diagnoses
have good quality as well as causes of death based on autopsies. The quality
is in general better for younger than for older people who often have several
diseases.

Cancer registration in the Nordic countries is based on compulsory reports from
all physicians and all pathologists, in both public and private administration. One
Swedish study from the 1980s estimated the deficit in cancer registration to be 4.5%
and less than 2% when the diagnosis had been histologically verified (Mattsson
1984). A Finnish study showed good coverage for solid tumours, but a roughly 10%
underregistration for benign neoplasms of the central nervous system, chronic
lymphatic leukaemia and multiple myeloma (Teppo et al. 1994). Technical quality
control procedures are usually applied by cancer registries, e.g. the computers are
programmed to detect invalid codes, inconsistent combinations of codes, duplicate
registrationsand illogical timesequences.Examplesof inconsistent combinationof
codes are testis cancer in a female and distant metastasis associated with carcinoma
in situ. This kind of quality control reduces some types of errors, but cannot deal
with missing data or false primary diagnoses. In the Finnish Cancer Register,
some 2% of all cancers are coded to “primary site unknown” (Teppo et al. 1994).
Some cancers will never be diagnosed during the life-time of individuals, but may
occur on the death certificate after an autopsy. Thus, changes and differences in
autopsy rates between time periods and regions may affect the validity of cancer
registration. The increase in incidence of prostate cancer during the last decade is
to a large extent due to extensive PSA tests rather than a real increase in incidence
(Tretli et al. 1996; Walsh 2002).

The quality of cause of death registers varies considerable depending on the age
of the deceased, underlying and contributing diseases and depending on practise
variations among physicians and coders. In general, fatal diseases where the de-
ceased has been treated for some time before death have good quality, e.g. most
cancers and ischaemic heart disease. The autopsy rates are usually higher for
younger people and accidents, which makes this group of diagnoses quite reliable.
Diabetes is a more troublesome diagnosis and is usually underreported, mainly as
a contributing cause of death. In one quality study, the hospital discharge records
were compared with death certificates (Johansson and Westerling 2002). The con-
clusion was that most differences between underlying cause of death and final
main diagnosis in hospitals can be explained by differences in ICD (International
Classification of Diseases) selection procedures. An international death certificate
study showed variations in classification procedures by country (Percy and Muir
1989) and also regional variations within a country should be interpreted with
caution due to potential practise variations.
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A general problem in many cause of death registers are the declining autopsy
rates (Lindström et al. 1997). In Sweden the overall autopsy rate was about 41% in
1980 and about 15% in 2000.

The quality of data in hospital discharge registers varies considerably mainly
due to type of diagnosis and age of the patients. In the Swedish hospital register,
estimations of underreporting are hard to make for psychiatric and geriatric care,
but the underreporting has been estimated to be less than 2% for somatic short-
termcare. In2001,personal identificationnumbersweremissing in 0.4%ofnumber
of stays and the main diagnosis was missing in 0.9% of the stays reported from
Swedish hospitals. Two types of diagnostic errors can occur, false positives and
false negatives. In a Swedish validity study of acute myocardial infarction in the
hospital discharge register, about 6% of those with an infarction in the register were
considered false while 3% of those with other diagnoses in the hospital discharge
register ought to have had an acute myocardial infarction as the main diagnosis
(Rosén et al. 2000). This bias must be considered minor in epidemiological studies,
especially considering the high coverage and large number of cases. At present the
register contains more than 500,000 cases of acute myocardial infarction. Another
validity study of 875 discharges in the hospital patient register in 1990 showed
inconsistencies in main diagnoses of about 3% for ICD-chapters, 12% for 3-digit
codes and 14% for 4-digit codes (www.sos.se|epc|par).

The Swedish Medical Birth Register completely misses about 0.5%–3.9% of all
records for infants (EpC 2003b). Single items of information may also be missing to
a varying degree. Missing data significantly affect estimates of incidence, but has
only a slight effect on risk estimates. In most cases, variables are fairly valid, but for
studies of extreme outcomes caution must be exercised. Omissions with regard to
severely ill neonatals are selective due to several reasons including referals of babies
between hospitals. However, since only 1%–2% of those records are missing, the
problem is manageable. With regard to exposure data, information on smoking
in early pregnancy is good, while information on maternal drug use is incomplete
(EpC 2003b). For some drugs, it is likely that the woman or the reporting midwife
does not regard them as significant and therefore does not record them. However,
since all exposure data are obtained prospectively, this will have little effect on risk
estimates.

Study Designs in Register-based Studies 4.6

Disease and mortality registers could be used to measure incidence, prevalence,
mortality and survival of different diseases over time and for different geographical
areas and population groups. This is an important task for descriptive epidemi-
ology (cf. Chap. I.3 of this handbook), but the main advantage of registers for
analytical purposes is that data from other sources can be connected to the out-
come data in registers. Record linkage of two or more national registers is one
option. An early application of record linkage conducted already in the 1960s was
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to link the population censuses with the cancer and cause of death registers. The
primary aim was to identify occupational groups with excess risks in order to
prevent occupational hazards. Record linkage of the cancer and cause of death
register facilitates survival analysis of cancer patients.

One common application is that researchers use their own collected cohort
as a baseline and then make follow-up in the national health data registers. The
“Study of men born in 1913” is one such example of a cohort study where subjects
with local registration of risk factors for cardiovascular disease were followed-up
for decades in health data registers like the cause of death register (Tibblin et al.
1975).

In case-control studies, you identify cases in the disease registers and choose
a control group from the general population or from a group of patients with
other diseases and then add information on exposure to some risk factors or to
treatment.

In the Nordic tradition it is from a practical point of view quite easy to make
record-linkage by using the personal identification number. Of course, you have to
consider confidentiality and national legislation.

Potentials and Limitations
of Register-based Studies4.7

In general, the advantages of routine collected and register-based studies are
that data are already collected and in an objective way with regard to specific
studies, the number of observations is large and data are often nation-wide and
cover a whole population. Register-based studies have the limitations of having
a restricted number of variables collected, which are not specified in advance for
the research question in focus. Quality of data can differ, but as described above,
they are usually manageable for epidemiological research.

For analytical purposes, the big difference is whether data are individual-based
or aggregated. Due to concerns about integrity, some routine collected data include
aggregated data only and do not have observations on individual subjects. Analyses
restricted to studies of aggregated data are usually called ecological studies. Thus,
the group rather than the individual is the unit of observation and analysis. The
groupsmaybedefinedaccording tooccupation,placeof residence, socio-economic
positions etc.

The limitation of ecological studies is that causal inference on individuals is
not possible to conduct. In 1950, Robinson showed that data describing group
level conditions cannot be inferred to the behaviour of individuals, a problem he
called “ecological fallacy” (Robinson 1950). Ecological fallacy can be illustrated in
different ways. One such often quoted example is the high correlation in trends
between a decreasing number of breeding storks and a similar decrease in birth-
rate among the Danish population. The problem of ecological fallacy has also
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Figure 4.1. An example of ecological correlation (Rosén et al. 1985)

been illustrated in an article (Rosén et al. 1985) by imaging three groups: A, B
and C (Fig. 4.1). These may denote counties, municipalities or occupations. Group
A consists of 5 individuals, one of whom wears a hat and one has lung cancer
(black figure). This means that one out of 5 – i.e. 20% – wear hat and 20% have
lung cancer in group A. Group B and C are then computed accordingly. Simple
correlation analysis will give a correlation coefficient (r) of 1.0 on the group level.
However, if each individual is studied separately, those who wear hats and those
who develop lung cancer are generally not one and the same.

In spite of this limitation, high correlation coefficients between group data are
indications of associations and have been frequently used to generate valuable
hypotheses. High correlation between fat intake and ischaemic heart disease (Keys
1953) or between fibre intake and colorectal cancer (Bingham et al. 1979) have
generated dietary hypotheses followed up by studies with analytical designs.

Without doubt, accessibility to individual-based data in register research has
a tremendous advantage when it comes to causal inferences. In the following some
examples of the usefulness of register-based studies will be demonstrated, mainly
when individual data are a necessity.

Examples of the Usefulness 4.8

Many registers in the Nordic countries are nation-wide and cover the whole pop-
ulation. It may, however, be questioned, particularly in larger countries, whether
it is not sufficient to do periodic surveys or registration in geographically limited
areas for the assessment of the occurrence of disease in a country. The answer may
depend on the disease and on the desired goals of the registration or study. For
rare diseases, it is important to have large samples in order to come to conclusive
answers. In environmental studies, it is an advantage to have data covering many
different areas of a country. This will be illustrated later in this chapter. If epidemi-
ological data are used for planning purposes like identifying needs of preventive
actions, studies of equity in access to care or allocating health care resources, it is
also important to have data from all parts of a country.
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Many thousands of scientific articles have been published based on data from
national registers around the world and particularly from the Nordic countries. In
many cases the studies have added a piece of knowledge to the existing state of the
art or later been replicated with other kinds of epidemiological studies, in others
it has been nearly impossible for economic reasons to conduct studies without the
use of registers. In general, register-based studies are very cost-effective due to
the fact that data have already been collected for a long time period. Illustrations
of the usefulness of register-based studies will be presented under four headings,
environmental studies, occupational studies and social epidemiology, survival
analysis and surveillance of drug effects.

Environmental Studies4.8.1

If the goal is to give answers related to environmental exposures, it is useful to
have the registration in the whole country and over a longer period of time. In
Finland, the Chernobyl accident in 1986 resulted in a radioactive fallout with rain
(Auvinen et al. 1994). The exposure level varied strongly between areas that were
quite irregular in shape and did not coincide with health districts. The cancer
registry had been in existence by that date for 33 years. Thus, it was possible to
reconstruct historical trends in childhood leukaemia incidence in each of these
different irregular areas and to study whether any changes in these trends could be
related to the exposure level in the area. The answer was negative for the periods
of 1986–1988 and 1989–1992 (Auvinen et al. 1994).

More than 500,000 cleanup workers from the former Soviet Union were forced
to clean the accident site in Chernobyl and its environment. The number from
Estonia was almost 5000 (Rahu et al. 1997). Since there had been a reliable cancer
registration in Estonia since 1978 that continued also after the accident and the
return of the cleanup workers it was possible to estimate whether or not the cancer
risk of the workers had been affected. The result has been negative for the period
of 1986–1993 (Rahu et al. 1997). However, in the former workers an increased risk
of dying through suicide has been shown by the Cause of Death Register. Biologic
dosimetry done on the workers has also indicted that the range of doses the workers
received was not likely to cause markedly increased cancer risks (Bigbee et al. 1997).

On the other hand, the majority of the 500,000 cleanup workers came from areas
in the former USSR where there was no reliable cancer registration (IPHECA 1996).
Had there been a reliable cancer registration it would have been possible to give
much more accurate estimates of possible excess risks.

Cancer registration also revealed excess cancer risks related to the Chernobyl
accident: children having lived in the nearby areas of Chernobyl experienced an
epidemic of thyroid cancer (Kazakov et al. 1992). This was totally unexpected given
the scientific knowledge available at the time of the accident.

Another example on routine register use is provided by a much smaller local
exposure. In 1987, increased concentrations of chlorophenol were detected in the
drinking water source of Järvelä, the center of Kärkölä municipality in Southern
Finland (Lampi et al. 1992). According to the International Agency for Research
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on Cancer, exposure was related to possible increased risks at eight sites of cancer.
The cancer registration in Finland covered Kärkölä, the other municipalities in
the same local health care district and all the municipalities in the corresponding
cancer control region. It was therefore very easy to quantify whether the population
in the exposed municipality had faced any increased risks since 1953 related to the
suspected eight forms of cancer or related to any other cancer. The results showed
an increased risk of non-Hodgkin lymphoma and of soft-tissue tumours during
the most recent 15 years but not before that time. Subsequent case-control studies
in the local health care district based on the material from the cancer registry
confirmed that only these two cancers were concerned and the excess risk could
be related to chloropherol exposure. The exposure had come from a sawmill in
Järvelä and was related to anti-fungal treatment of timber. Subsequent sediment
analyses revealed that the exposure had been there for decades.

The cancer registry receives very often concerns about possible local increases
in cancer risk. Then it is necessary to count the expected numbers of cases on
the basis of suitable reference populations (e.g. neighbours or the cancer control
region) and to evaluate the historical development in the area itself and in the other
comparable areas. Moreover, it is useful to evaluate the development with all the
other cancers, as well. All these evaluations can be done really quickly when the
historical database and the software are in an appropriate condition. In Finland, it
is indeed easy to follow the guidelines in this situation (Centers for Disease Control
1990).

The cancer register has been an important source e.g. for analysing the associ-
ation between residential radon exposure and lung cancer in Sweden (Pershagen
et al. 1994) and thepotential effectsofmagneticfields (FeychtingandAhlbom1993).
The Swedish medical birth register was used to show that there was no significant
adverse pregnancy outcome in Sweden after the Chernobyl accident (Ericson and
Källén 1994). For a more detailed discussion of environmental epidemiology in
general we refer to Chap. III.3 of this handbook.

Occupational Studies and Social Epidemiology 4.8.2

Occupations at high risk for cancer and premature mortality have been followed
and analysed using record linkages of population censuses with the cancer register
or thecauseofdeath register (Andersenet al. 1999;EpC1999;PollánandGustavsson
1999). By linking two population censuses, 1960 and 1970, with the cancer register,
risks of long-term occupational exposure could be studied. Based on analysis of
this data set, some research results were confirmed, while other hypotheses were
rejected (EpC 1999). Excess risks for lip cancers among farmers and fishermen,
and excess lung cancer risks among miners and chimneysweeps were confirmed.
On the other hand, earlier found associations between bladder cancer and dental
techniciansorbetweenbrain tumoursandengine-drivers couldnotbe found in this
study of long-term occupational exposure. Overall, work environment nowadays
plays a less important role in causing cancer. Rather psycho-social factors are
in the focus of occupational research and one study based on a record-linkage
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between a population census and the Swedish hospital discharge register showed
an increased risk of myocardial infarction among men and women working in
a stressful and monotonous environment (Alfredsson et al.1985) (for more details
on occupational epidemiology see Chap. III.2 of this handbook).

The national registers have been used continuously to study social inequalities
in health by record-linking health data registers with population censuses (Persson
et al.(eds) 2001; Hallqvist et al. 1998) and disease risks for vulnerable groups, e.g.
psychiatric patients, immigrants and single mothers (Ringbäck et al. 1998, 2000).
In these cases national registers have been the only source. Other aspects related
to social epidemiology are discussed in Chap. III.1 of this handbook.

Many studies of the health and social outcomes of single parents and their
children have been conducted by linking several registers, i.e. population census,
total enumeration income survey, hospital discharge register and the cause of death
register. The studies show increased premature mortality and morbidity both for
single parents and their children even after adjustments for socio-economic factors
andprevious somatic andpsychiatric inpatienthistory (Ringbäcket al. 2000, 2003).
Socio-economic factors, especially a lack of economic resources explained some of
the disadvantages. Still, the results indicated an independent excess risk for single
parents irrespective of socio-economic factors and health selection into single
parenthood. The credibility of the studies was considered to be very high, mainly
due to the complete coverage and long follow up. These studies covered more than
90,000 lone mothers, more than 622,000 cohabitant mothers, about 65,000 children
with single parents and more than 921,000 children with two parents.

Survival Analysis4.8.3

Survival analysis of cancer patients is a common application where registers have
been used as extensive sources. Linking date of cancer incidence in cancer registers
to date of death in the cause of death register create opportunities for survival
analysis. Many large survival analyses have been published based on registers
(Berrino et al. (eds) 1995, 1999; Stenbeck and Rosén (eds) 1995; Dickman et al.
1999; Adami et al. 1989). The EUROCARE-2 Study included follow-up of nearly
1.3 million cancer cases (Berrino et al. 1999). One methodological problem in
survival analysis is that survival analysis by definition must be based on historical
data, thus, assessing theeffectsofold treatment strategies.Thisproblemisuniversal
irrespective if the study is based on registers or not. However, one way to reduce
this problem is to conduct period analysis using the latest information available
(Brenner and Hakulinen 2002). Further methodological aspects are discussed in
Chap. II.4 of this handbook. The social dimension of cancer survival has also been
investigated in some studies by linking population census and cancer register
(Vågerö and Persson 1987; Dickman et al. 1997).

It has also been possible to create databases of the incidence of acute myocar-
dial infarction (AMI) in Sweden, Denmark and Finland by linking the hospital
discharge register and the cause of death register (Rosén et al. 2000; Abildström
et al. 2003; Salomaa et al. 1992). The validity of this AMI register is, as presented
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in an earlier section, quite high. The Swedish database was established in 1995
and includes in 2003 more than 500,000 patients with acute myocardial infarction.
The register is used for many research purposes and for following trends in the
incidence, mortality and case fatality of myocardial infarction. In 1987, 47% of
those with an AMI died within 28 days. In 2000 less than 37% died within 28 days.
Sex differences in case fatality after AMI have been analysed by using this type of
database (Rosengren et al. 2001; Rosén et al. 1999).

Surveillance of Drug Effects 4.8.4

The study of vitamin K and childhood cancer well illustrates the advantages of
large national health registers. A case-control study by Golding et al. (1992) pub-
lished in the BMJ indicated that intramuscular vitamin K administration doubled
the risk of childhood cancer compared to oral administration. Since intramus-
cular administration was recommended by the National Board of Health and
Welfare, this result created much concern in Sweden, but also in other countries.
In Sweden, a study based on the medical birth and cancer registers was initi-
ated. However, the Swedish study, also published in the BMJ, showed no increased
risk of childhood cancer (Ekelund et al. 1993). Later studies have confirmed the
Swedish results. There were several differences between the British case-control
study and the Swedish register-based study. One was sample size: the case-control
study included 195 cases and 558 controls while the register-based study included
more than 2300 childhood cancers and 1.3 million controls. In the register-based
study, data were already available in the registers and data from the medical birth
and cancer register were record-linked. Supplemented with data on maternity
hospital routines for vitamin K administration, the study was complete within
a few months. This example well illustrates both the reliability advantages of using
large national registers as well as the cost-effectiveness of such an approach. For
more details on pharmacoepidemiologic studies please refer to Chap. III.9 of this
handbook.

Since 1994, data on drug use during pregnancy have been collected in the
Swedish medical birth register to monitor potential side-effects of drugs. To our
knowledge, this is the only register in the world prospectively collecting data both
on drug use during pregnancy and on perinatal outcomes. Several studies have
already been published (Ericson et al. 1999; Källén 1998; Källén et al. 1999; Källén
and Otterblad Olausson 2003; Gerhardsson de Verdier and Norjavaara 2001). Two
studies showed no excess risk of using inhaled budesonide during pregnancy
(Källén et al. 1999; Gerhardsson de Verdier and Norjavaara 2001). The Food and
Drug Administration in the United States changed their safety classification based
on these studies. Data from the Swedish medical birth register have been used in
one study to find an association between maternal use of the anti-allergic drug
loratadine and congenital hypospadias (Källén and Otterblad Olausson 2002).
A biological mechanism explaining the association is still unknown. The study
was first discussed with the Swedish Medical Products Agency and is now followed
by the European Agency for the Evaluation of Medical Products (EMEA).
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Other Examples of Etiological Research4.8.5

Epidemiological registers have often been used in etiological research, i.e. search-
ing for risk factors to different diseases and health outcomes. The study of men
born 1913 in Gothenburg is one such study displaying risk factors for cardiovascular
disease.

The medical birth register has been used extensively, e.g. to analyse the risk of
smoking during pregnancy (Ericson et al. 1991; Cnattingius and Haglund 1997),
teenage pregnancy outcomes (Otterblad Olausson et al. 1999) and effects on chil-
dren born after in-vitro fertilisation (Bergh et al. 1999).

A family-cancer database has been constructed in Sweden by linking population
registers and the national cancer register in order to study familial cancer risks
(Hemminki and Vaittinen 1998). The database includes approximately 6 million
persons and more than 30,000 cancers in offspring diagnosed at ages 15–51 years
and their parents. Numerous studies have been published based only on this
database (Hemminki and Vaittinen 1998; Hemminki and Li 2001).

Risk factors for breast cancer have been studied with cancer registers as the
main data base (Lambe et al. 1994, 1996). The long-term effects of oestrogen and
oestrogen-progestin-replacement therapies on breast cancer and hip fracture have
been analysed by register data (Magnusson et al. 1999, Naessén et al. 1990). Most of
the randomised controlled studies of mammography screening for breast cancer
have been conducted in Sweden (Nyström et al. 2002). Also the effects of service
screening have been extensively followed (Duffy et al. 2002, Jonsson et al. 2001).
In all these assessments, the cause of death register has been the main source for
follow-up of mortality.

This short summary of conducted studies shows clearly both the present and
the future benefits of register-based epidemiological research.

Quality Control in Medical Care Using Registers4.8.6

There is a general trend world-wide to improve systems for quality control in
medical care (OECD 2002). Outcomes of care have often been assessed by mortality
analysis. One famous example is the coronary bypass mortality study in New York
State (Hannan et al. 1994, 1995) where they gathered clinical data whereby results
could be adjusted for risks or patient mix. Frequent discussions and analyses
of mortality after bypass surgery took place. During the study period mortality
declined by 41% while it went down by only 18% in the rest of the country. The
improvement was claimed to partly be due to the fact that less successful teams
abandoned the market and partly to quality improvements by the other teams
(OECD 2002).

Another approach is to routinely collect data on treatment procedures and
outcomes of care in clinical or quality registers. An early example is the registry
for total hip replacement surgery in Sweden which started in 1979 (NBHW 2000).
Serious complications have served as a measure of the quality improvement of
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prosthetic techniques over time. Nowadays more than 50 quality registers are
in operation in Sweden (NBHW 2000). Besides many orthopaedic and surgical
registers, there are quality registers for cardiac intensive care, stroke, cataract,
several cancer sites etc. The Federation of County Councils and the National
Board of Health and Welfare collaborate at the national level in providing financial
and other kinds of support for creation and development of the national quality
registers. Similar developments can be seen internationally, both in the Nordic and
in other European countries. The Hip Fracture Register in Sweden started in 1988,
but has now expanded to a European Commission Concerted Action Project where
data are compared and analysed between almost all EU’s Member States (Parker
et al. 1998).

Ethics, Confidentiality and Legislation 4.9

The principles of autonomy, doing good, doing no harm, justice and solidarity
must guide decisions on how to administer national registers. The decision is
a trade-off between benefits and risks (Allebeck 2002). The registers and their use
are governed by national legislation.

There is one main difference between research based on these types of disease
registers and other research projects where it is necessary to collect data on in-
dividuals. In the latter there is a need for informed consent from all participants.
This is not possible for routinely collected national disease registers. For this kind
of routinely collected national data bank it would be practically and economically
impossible to apply the informed-consent rule. To do so would substantially ham-
per clinical work and take resources from other important health service tasks.
One may say that parliament and the government have given informed consent
on behalf of the population by national legislation. This exception from the rule
of informed consent is based on the judgement that the benefits far outweigh the
negative consequences. Here principles of doing good and justice or solidarity
outweigh that of autonomy.

Another important topic is the risk of violating individual integrity. This risk
of doing harm may be twofold: the risk of unlawful trespass|encroachment of
data on individual diseases, and the perceived uneasiness|discomfort at just being
registered. No system could guarantee 100% security, but after more than four
decades of administer health data registers in the Nordic countries, there is no
known case of misuse or data leakage to unauthorised persons. The risk of data
trespass is very small.

That some people feel discomfort at just being registered is a negative aspect
we must consider seriously. Public confidence in health data registers is influenced
by mass media debate and knowledge of how the registers are being handled. This
confidence could vary from country to country. In surveys, about 9% of the Swedish
population feel registration is a threat to personal integrity. Dissemination of the
purposes and the usefulness, and the careful administration, of these registers
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are therefore important and never-ending responsibilities for administrators and
users.

It may well be concluded that it is worth having routine registers and registries
also for giving a good basis for scientific research. Thus, scientific research should
not primarily be seen as a utilizer of registers created mainly for other purposes.
The only justification of registration is that the registered data are used. The use
has to be guaranteed by securing the manpower and resources and by finding
a correct balance between the individual’s right to privacy protection and the right
of the individual and the mankind to benefit from research knowledge based on
data registers (International Association of Cancer Registries 1992). For a broad
discussion of ethical aspects in epidemiologic research please refer to Chap. IV.7
of this handbook.

Conclusions4.10

The quality of health data registers is crucial for their usefulness for research.
Many validity studies of the registers have been conducted, indicating variations
in diagnostic procedures. However, the studies indicate mostly good data quality
provided the registers are run by scientific staff and the data is analysed with care.

Many studies, not least in the field of cardiovascular epidemiology, are criticised
for focusing on men, or on a limited age-group or a specific geographical area,
etc. This kind of limitation can be disregarded when using national registers, since
they include both sexes, all age groups and all parts of a country: an important
advantage when assessing health services.

The small selection of studies using routine data and disease registers presented
here could also have been conducted by collecting new data sets. In that case,
however, one would have to accept the use of much greater resources and more
time before answers to the research questions were available. In some cases, it is
not even feasible to conduct a study without national registers.

There are, of course, also disadvantages with national health data registers.
For example, data are collected without specifying diagnostic criteria in advance.
Focus is on outcomes and the number of variables collected is also strictly limited.
Consequently, it is harder to control for confounders and patient characteristics.
Some of these disadvantages can be handled in cohort and case-control studies by
combining data collection from specific research projects with national health data
registers. Many of the examples presented in this chapter have used this approach.

In the next couple of years, it is important that hospital discharge registers
will be transformed to hospital patient registers where all visits to hospitals are
included. Otherwise, the value of such registers will diminish as more and more
patients are treated in out-patient settings.

In a future perspective, the most promising development would be if nation-
wide drug registers to monitor negative side effects could be in operation for
research. In Denmark, a national drug register is already in operation, but has so
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far not been used extensively for research. In Sweden, a governmental investigation
has made a proposal for a nation-wide drug register for research purposes. Today,
we know very little about the long-range benefits and risks of taking medication for
chronic diseases. By linking drug data to outcome data in the hospital discharge,
the cancer and the cause of death register tremendous opportunities would arise,
all for the benefit of public health.
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Introduction5.1

This chapter summarises our basic understanding of cohort studies, a type of
observational epidemiology study that some have also called longitudinal, or
prospective. A cohort study evaluates the risk of disease or disease-related outcome
in a population that is characterised in terms of relevant risk factors or exposures,
placed under observation, and followed for some time until disease develops or
not. In contrast to its classical counterpart, the case-control study (cf. Chap. I.6
of this handbook), cohort studies can relate multiple diseases to the exposure or
exposures identified. On the other hand, cohort studies are frequently restricted
to a limited number of exposures and potential confounders that can be included
in the study, if historical data is used.

The chapter is organised as follows: First, a brief historical perspective on cohort
studies is given, showing the importance of this study design by giving examples
from the past and from today. Second, conceptual features of cohort studies are
presented, where the two basic types of cohort studies, concurrent and non-
concurrenthistorical cohort studies are summarised, and thebasic concepts of data
analysis in cohort studies are described. These concepts include the description of
outcome events in the cohort, the comparison with external data and the analysis
of effects of exposure. The chapter then deals with key concerns of cohort studies,
like selection of the study population, and on the important question of how
to determine exposure and outcome events in the framework of a cohort study.
A review on ethical issues, mainly raised through the potential future use of
specimens, is given.

A Brief Historical Perspective
on Cohort Studies5.2

Cohort studies have been used for over a century to study determinants of disease.
Since the early days of epidemiology, they have been used as a powerful tool to
study a broad range of exposures like infections, nutritional factors, occupational
exposures, and lifestyle factors as the following examples illustrate.

The classical study on the London cholera epidemic of 1849 conducted by
John Snow is an example of a cohort study on infectious diseases (Snow 1855;
Sutherland2002). Previous reports fromtheRegistrarGeneral haddrawnattention
to the possibility that differences in water supply were associated with differences
in cholera rates across sections of London. Two different water companies (the
Lambeth and the Southwark & Vauxhall) supplied households within various
regions of London, and frequently these two water companies supplied adjacent
households. The companies differed in one important feature, the location of the
water intake. The Lambeth had moved their water intake upstream from the sewage
discharge point in 1849; whereas, the Southwark & Vauxhall continued to obtain
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water downstream of the sewage discharge point. Dr. Snow classified households
according to their exposure to the two water sources and showed a substantial
difference in cholera mortality, 315 versus 37 cholera deaths per 10,000 households
served by the Lambeth and Southwark & Vauxhall companies, respectively.

Cohort studies continue to be an important tool in the investigation of infectious
diseases. For example, McCray (1986) used a cohort design to quantify the risk
of developing the acquired immunodeficiency disorder (AIDS) among healthcare
workers exposed to blood and body fluids of AIDS patients.

Joseph Goldberger employed a variety of epidemiological approaches, including
cohort methods, to study pellagra, a systemic disease endemic in the southeast
of the United States in the late 19th and early 20th century (Terris 1964). In one
investigation,Goldbergerexamined thedietaryexposuresofhouseholds in relation
to the occurrence of pellagra and demonstrated that a cornmeal subsistence diet
was associated with pellagra. Subsequent trials showed that pellagra could not be
transmitted from person to person, as might be expected for an infectious disease,
but could be prevented by the “pellagra preventive factor” later determined to be
niacin. More recently, Oomen and colleagues studied the association of trans-fatty
acids, a hydrogenation product of oils containing polyunsaturated fatty acids, and
heart disease among men in the Netherlands (Oomen et al. 2001). They found
a relative risk of 1.28 of heart disease for an increase of 2% of energy from trans-
fatty acids intake at baseline.

Occupational epidemiology is another classical field of application of cohort
studies. Typically workers exposed to a putative harmful substance are compared
to other workers in the industry or to the general population. Occupational cohorts
were used to study, for example, the association between exposure to dyes and
urinary bladder cancer (Case et al. 1954), exposure to mustard gas and respiratory
cancer (Wada et al. 1968), and exposure to benzene and leukaemia (Rinsky et al.
1987). The health effects for workers exposed to asbestos continue to be examined.
Ulvestad and colleagues (2004) conducted a cohort study of members of the
Norwegian Trade Union of Insulation Workers hired between 1930 and 1975 and
followed through 2002, demonstrating relative increases in risk of mesothelioma
and lung cancer when compared with the experience of the general population.

In addition to diet, other lifestyle exposures have attracted the attention of
epidemiologists, including physical activity, tobacco and alcohol use. Morris and
colleagues (1953a, b) demonstrated that British bus drivers had approximately
twice the risk of heart disease in comparison to the more active conductors (who
went up and down the stairs to collect tickets). This result was confirmed in a com-
parison of postmen with telephonists and clerks (Morris et al. 1953a,b). In 1951,
Doll and Hill (1954) initiated a cohort study of British physicians by collecting
data on tobacco use via questionnaire. By collecting death certificate data, they
were able to demonstrate a 10-fold increased risk of lung cancer death for smokers
compared to non-smokers (Doll and Peto 1976). Doll and colleagues also reported
on the association of alcohol consumption with mortality among British doctors
(Doll et al. 1994a) demonstrating a u-shaped relationship, with greater mortality
among abstainers and heavy drinkers and the lowest mortality among moderate
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drinkers, defined as 1–2 drinks per day on average. Concerns persist that the
increased risk described in abstainers may be falsely elevated by the experience
of former drinkers who may have quit drinking due to health decline. This con-
cern has been addressed by Eigenbrodt and colleagues using cohort methodology
within the Atherosclerosis Risk in Communities (ARIC) study (Eigenbrodt et al.
2001). Eigenbrodt and colleagues measured perceived health status and alcohol
consumption behaviour longitudinally and were able to identify changes in health
status that preceded changes in drinking behaviour. They demonstrated that per-
ceived health decline predicted cessation of drinking, thereby providing evidence
that the risk among abstainers may have been inflated in studies that failed to
distinguish between lifelong abstainers and former drinkers.

Despite disadvantages regarding cost and complexity, cohort studies remain
until today of substantial public health importance as indicated by several of the
previously cited examples and by such evidence as was recently provided by the
National Institutes of Health (NIH). The NIH is considering the establishment of
a 500,000-person cohort study to examine genetic and environmental influences
on common diseases in the United States (National Institutes of Health 2004). The
large sample size under consideration for this study would enable the examination
of gene-gene- and gene-environment interaction in the general population and in
subgroups of interest. Therefore, a sound understanding of cohort methodology
is of substantial importance to the modern epidemiologist.

Conceptual Foundations5.3

Types of Cohort Studies:
Concurrent and Non-concurrent Approaches5.3.1

The central feature of a cohort study is the collection of exposure data in a defined
population and the subsequent surveillance of possible outcome events regarding
health, morbidity, and mortality. For this purpose, healthy members of a defined
population (the cohort) are classified according to their exposure status (e.g.
exposed vs. unexposed) and followed over a longer period with respect to their
health status. Then, the question can be answered if incidence of outcome events
is associated with former presence or absence of exposure, which would indicate
a possible causal relationship.

Within this framework, cohort studies can be classified in two major categories
depending on the timing of follow-up period relative to the time of study con-
duct. In concurrent cohort studies, sometimes referred to as prospective cohorts
(Fig. 5.1), a defined population is assembled and possibly screened to eliminate
persons with disease. Then, information on exposure, possible confounders, and
other important factors is gathered. The cohort members are subsequently fol-
lowed for a specified period into the future recording outcome events of interest.
In non-concurrent or historical cohort studies (Fig. 5.1), a population is assembled



Cohort Studies 257

Figure 5.1. Design of a cohort study

from available data records, for example from company files. Exclusion of per-
sons with disease and assessment of exposure and other factors is based on the
available data from the past. Cohort members are monitored for outcome events
through existing documents and data systems (e.g. vital statistics files or disease
registries) to some point in the past. As in concurrent studies, outcome rates
may be compared across exposure categories within the cohort, or, if all mem-
bers of the cohort are assumed to be exposed, outcome rates may be compared
between the cohort and the general population, assumed to be unexposed. A com-
bined approach is also possible, with the cohort assembled and followed initially
through historical documents or other data sources such as data from registries
and subsequently followed using concurrent methods. The distinction between
these two major categories of cohort studies has important implications regarding
data collection.

In concurrent studies, the methods for cohort assembly and data collection
can more easily be controlled; whereas, in non-concurrent studies, the investiga-
tors must rely on data recorded in historical records almost always for reasons
other than medical research. This notable disadvantage of the non-concurrent
approach is compensated by the ability to study exposures, such as occupational
exposures, that meet one or more of the following key conditions: (1) the ex-
posure can be attributed to selected employed populations based on individual
records of job descriptions or other employment data, (2) the exposure is rela-
tively rare in the general population outside the occupations of interest, (3) the
induction period is long, and (4) the health concern is substantial, making the
continued exposure required for a concurrent study undesirable from a public
health perspective.

Because many of the non-infectious diseases tend to be multi-factorial in cau-
sation, a crucial point in the validity of cohort studies is the inclusion of data on
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possible confounders at baseline. This is a problem in historical cohort studies,
that will be discussed in the section on determining exposures below.

Two modern extensions of cohort studies that try to integrate the advantages of
cohort and case-control studies are designed to have nearly all the power of classic
cohort studies, but utilise relatively economically detailed exposure information
from questionnaires, biomarkers or other biological measurements determined
from the collection of biological specimens at the time the study is initiated.
These analytic designs, i.e. nested case-control studies and case-cohort studies,
are discussed in detail in Chap. I.7 of this handbook and will not further be
considered here.

Description of Outcome Events in the Cohort5.3.2

In contrast to case-control studies, cohort studies with their straightforward de-
sign allow direct comparisons of exposed and unexposed persons and can provide
measures of effects for various outcome events, like e.g. different endpoints (mor-
bidity, mortality, pre-morbidity) and|or different diseases. Nevertheless, analy-
sis of cohort data requires reasonable care especially in the steps of data pre-
processing for description and analysis. The often necessary change of perspective
from persons at risk to person-time at risk needs special attention to ensure
that unbiased results can be obtained. This subsection will refer mainly to dis-
ease incidence; however other measures can principally be treated in the same
manner.

The results from a cohort study can be presented as shown in Table 5.1.

Table 5.1. 2 × 2 table summarising the results of a cohort study

Second observe Total

Disease contracted No disease
First Exposed a b a + b = nE

select Non-exposed c d c + d = nE

Total a + c b + d a + b + c + d = N

Theeasiestway todescribeoutcomeevents ina cohort is by counting thenumber
of persons experiencing the event of interest and to relate this number to the crude
number of persons at risk in the cohort. Disease incidence, for example, can be
described by the cumulative incidence or risk, which is calculated by dividing the
number of incident cases by the number of persons at risk at baseline:

R̂isk = number of incident cases|number of persons at risk , (5.1)

that can be calculated as

R̂isk = (a + c)|N (5.2)
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and accordingly for the exposed and unexposed study populations as

R̂iskE = a|(a + b) = a|nE

R̂iskE = c|(c + d) = c|nE .

The cumulative incidence or risk is unit-free and represents an individual risk
of developing the disease. It is a proportion, not a rate and it does not account for
possible different periods of disease-free follow-up time of cohort members, but
assumes a fixed cohort. In cohort studies on acute diseases with short induction
periods and a short time of follow-up, like outbreaks, the risk of disease can be
estimated directly using the cumulative incidence, given a fixed cohort with fixed
period of follow-up and a low fraction of drop-outs. In cohort studies on chronic
diseases with their long follow-up periods, however, the use of the cumulative
incidence is not appropriate because usually disease-free follow-up periods dif-
fer strongly among cohort members. In this case, outcome events are preferably
described by rates, that represent the number of outcome events divided by the
cumulated duration of event-free follow-up periods of all cohort members at risk.
For further analysis, all rates presented in the following can be used to determine
rate ratios and rate differences as described in Chap. I.2 of this handbook. Disease
incidence can be expressed as incidence rate (I):

Î = number of incident cases|person-time at risk , (5.3)

where each cohort member is contributing the time from entry into the study
to either development of disease or end of follow-up to the denominator of the
incidence rate, thus accounting for different times at risk of the cohort members to
develop the disease. The incidence rate is sometimes called incidence density and
should not be confused with the above mentioned cumulative incidence. Assuming
total person-time of follow-up of t, with tE and tE follow-up of exposed (E) and
unexposed (E) populations, (5.3) results in

Î = (a + c)|(N × t) , (5.4)

where N × t denotes the person-time at risk. Calculating the incidence rates
separately for the exposed and unexposed study populations gives

ÎE = a| [(a + b) × tE] = a|(nE × tE)

ÎE = c| [(c + d) × tE] = c|(nE × tE) .

Measures of risk and incidence of disease may provide important information
regarding the public health burden of the outcome or disease of interest.

Since incidence rates often vary considerably by e.g. age, sex, calendar year, and
race, the calculation of specific incidence rates instead of crude incidence rates may
be desirable. For this purpose, different strata (for one group variable) or cells (for
two or more group variables) have to be defined over the group variables’ range.
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The individual contributions of the cohort members to numerator and denomina-
tor of the incidence rate have to be assigned to the respective stratum or cell. Usu-
ally, each cohort member will contribute to more than one stratum or cell as he|she
moves through the cohort during follow-up. Age- and calendar-specific incidence
rates can be approximated well enough on the base of calendar year data if more
precise informationonmonths anddays isnot available (seeBreslowandDay 1987).

A simple example demonstrates the principle steps for the calculation of specific
incidence rates for the age groups 30–39 years, 40–49 years, and 50–59 years.
Table 5.2 shows the data of a fictitious cohort, for which we will calculate age-
specific incidence rates. Since exact dates in terms of months and days are not
available in our example, age and follow-up time will be approximated by full and
half years. The contribution of the year at entry into the study and the year of
diagnosis is approximated as half a year (see Fig. 5.2).

The cohort consists of 10 persons who were followed for 20 years resulting in
a total of 155 person-years of follow-up, deaths and drop-outs accounted for the
lacking 45 person-years. Three cases of the disease of interest occurred in the
cohort during follow-up, resulting in a crude incidence rate of 3|135 = 0.022
cases/person-year. The difference between the total of 155 observed person-years
and the 135 person-years in the denominator of the incidence rate results from
20 years of cumulated follow-up time after diagnosis in the three cases. A useful
general way in which to think of cohort data is to separate person-time at risk and
person-time under observation.

A subject is “at risk” at a given moment if the event of interest can happen. Thus
if a subject gets a thyroid surgery, she|he is no longer at risk of getting a thyroid
cancer. If on the other hand the event of interest were a pregnancy, a woman
would not be “at risk” of becoming pregnant if she already is pregnant or during
spells of abstinence. In this case, however, the woman is “at risk” again from the
moment on she desires another child. In the example above, a subject is no longer

Table 5.2. Data from a fictitious cohort

No. Age at Years of Age at end Age at Person-years
entry follow-up of follow-up diagnosis at risk

1 34 15 49 15

2 39 20 59 54 15

3 31 12 43 12

4 36 17 53 41 5

5 38 9 47 9

6 38 16 54 51 13

7 41 11 52 11

8 32 20 52 20

9 39 18 57 18

10 42 17 59 17

Total 155 135
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considered “at risk”, after diagnosis of the disease. Of course no subject is “at risk”
from the moment of his|her death. Being at risk depends only on the endpoint
studied.

On the contrary, being under observation, (i.e. being followed up), depends
on the precise definition of the cohort and the method of follow-up considered
in the epidemiological study. A subject is under observation at a time t, if, were
the event of interest to occur at this moment, it would be recorded. Thus for
example if the cohort definition were “all subjects employed in a given factory
with at least one year of employment”, the follow-up would start only at the
moment the subject satisfies this criterion. In this case, all the person-time in
the first year must be ignored. If the event of interest occurred in this year, it
would not satisfy the inclusion category. Similarly a subject would be dropped
from the follow-up at a time t if no information as to his|her disease status could
be retrieved from time t on (e.g. the subject moves abroad), the subject is then
considered “lost to follow-up”. A subject contributes person-time to the study
at any moment t if and only if at this moment he|she is “at risk” and “under
observation”.

Coming back to the example, each incident case is assigned to the age group
he|she belonged to until diagnosis. In the same manner, the disease-free time of
follow-up of each cohort member is allocated to the three age groups yielding the
age-specific incidence rates presented in Table 5.3.

Incidence rates are commonly re-scaled e.g. to cases per 100,000 person-years
underlining their reference to populations rather than to individuals. The crude

Figure 5.2. Follow-up time of cohort member No. 4 of the fictitious cohort
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Table 5.3. Age-specific incidence rates for fictitious cohort data

Age Incident Disease-free follow-up time Age-specific
group cases incidence rate

30–39 0 5.5+0.5+8.5+3.5+1.5+1.5+0+7.5+0.5+0 = 29 0|29 = 0

40–49 1 9.5+10+3.5+1.5+7.5+10+8.5+10+10+7.5 = 78 1|78 = 0.013

50–59 2 0+4.5+0+0+0+1.5+2.5+2.5+7.5+9.5 = 28 2|28 = 0.071

incidence rate of 0.022 cases|person-year of the fictitious cohort, for example,
would then be expressed as 2222|100,000 person-years.

In Fig. 5.2 the follow-up time of cohort member No. 4 is depicted schematically
with respect to age. The first three and a half years, denoted with A, of the five years
of disease-free follow-up time (41 years at time of diagnosis – 36 years at entry into
the study) are contributing to the denominator of the incidence rate of the first age
group (30–39 years), the next one and a half year, denoted with B, contribute to
the numerator of the incidence rate of the second age group (40–49 years).

To quantify the frequency of exposure in the population under study the preva-
lence of exposure may be considered:

P̂E = (a + b)|N = nE|N . (5.5)

The various quantities presented here can be used to derive measures of asso-
ciation accordingly (see Sect. 5.3.4).

External Comparisons5.3.3

One important task in cohort studies is the comparison of the cohort with ex-
ternal data, preferably from the general population. Irrespective of the existence
of internal comparison groups, external comparisons always give valuable in-
sights by putting the cohort data in a broader context. For external comparisons
either age-, sex- and calendar year-specific incidence or mortality rates or cumu-
lative measures can be used. Standardised incidence rates can be calculated from
specific incidence rates by weighting them with the age-, sex- and calendar year-
distribution of the external comparison data (direct standardisation). However,
cumulative measures have to be interpreted cautiously since they can mask under-
lying differences in specific disease patterns, like e.g. an unusually high incidence
rate among younger persons in the cohort. With di denoting the number of cases
in the age group i, ni denoting the disease-free person-years accumulated in the
age group i and wi denoting the proportion of persons in the age group i in the
standard population, the directly age-standardised incidence rate ÎW calculates
as:

ÎW =
I∑

i=1

widi|ni , (5.6)
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Indirectly standardised measures requiring morbidity or mortality rates of the
standard population are the standardised morbidity or incidence ratio (SIR) and
the standardised mortality ratio (SMR). Since morbidity data is not routinely
available in most countries the standardised mortality ratio is used much more
frequently. The SMR compares the observed numbers of deaths in the cohort with
the expected numbers, given the age structure of the cohort and the age-specific
mortality rates λi of a reference population. With di denoting the number of deaths
in the age group and ni denoting the person-years accumulated in the age group,
the SMR is estimated as

ŜMR =
I∑

i=1

di|
I∑

i=1

niλi , (5.7)

where
I∑

i=1
di represents the total number of observed deaths in the cohort un-

der investigation and
I∑

i=1
niλi the expected number of deaths that are obtained

by applying age-specific incidence rates of the reference population to the co-
hort under investigation. A SMR above 1 indicates a larger mortality in the
cohort, a SMR below 1 a smaller mortality in the cohort compared to that of
the reference population. Statistical testing of a single SMR can be done with
a simple χ2-test (observed vs. expected) with one degree of freedom. Assum-

ing that the number of observed cases D =
I∑

i=1
di follows a Poisson distribu-

tion with expectation γ = E(D), confidence limits for the SMR (ŜMRL, ŜMRU )
can be obtained by finding confidence limits γ̂L, γ̂U for the number of observed
cases:

ŜMRL = γ̂L|
I∑

i=1

niλi and ŜMRU = γ̂U |
I∑

i=1

niλi . (5.8)

The confidence limits for γ can be determined as:

γ̂L = (1|2)χ2
2D,α|2 and γ̂U = (1|2)χ2

2(D+1),1−α|2 , (5.9)

where χ2
2D,α|2 denotes the 100(α|2)th percentile of the χ2-distribution with 2D

degrees of freedom, and χ2
2(D+1),1−α|2 denotes the 100(1 − α|2)th percentile of the

χ2-distribution with 2(D + 1) degrees of freedom (see e.g. Sahai and Khurshid
1996).

If the age-specific rates of the standard population are just estimations of the
exact rates, as is often the case with morbidity data, calculation of confidence
intervals for the SMR can be performed by the method described in Silcocks
(1994). A method for estimating the SMR where information on vital status is
complete but information on cause of death is partly missing as may be the case in
historical cohort studies can be found in Rittgen and Becker (2000).
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Comparison of rates by direct standardisation has poor statistical properties,
especially due to large variances of age-specific rates in small cohorts. Therefore,
indirect standardisation is usually preferred (see Chap. I.2 of this handbook).

Summary Effects of Exposure5.3.4

The main goal of cohort studies is to compare morbidity and/or mortality in
exposed and non-exposed subjects or between different exposure groups of the
cohort, and to investigate dose-effect relationships between exposure and disease.
If the exposure is constant and can be determined at entry into the cohort, internal
comparisons can be performed by calculating specific incidence rates for each
exposure category separately as if each group were a separate cohort. Cumula-
tive rates can be used, again provided the subgroups do not differ in important
determinants of disease, like e.g. age.

In the simple case of a single dichotomous exposure several measures of associ-
ation of exposure with disease can be estimated from results provided by a cohort
study (see Table 5.1). In the following, the most important ones will be briefly intro-
duced. A detailed discussion of their properties and examples for their calculation
can be found in Chap. I.2 of this handbook.

The perhaps most popular measure of association is the risk ratio (RR), also
known as relative risk, that compares the experience of exposed and unexposed
populations. With the notation given in Table 5.1 and the risks for the exposed and
unexposed subjects calculated according to (5.2) it can be estimated as

R̂R = R̂iskE|R̂iskE = [a|(a + b)] | [c|(c + d)] = (a|nE)|(c|nE) . (5.10)

The incidence ratio (IR) compares the incidence rates in the exposed and un-
exposed study populations. According to (5.4) its estimator is given as

ÎR = ÎE |̂IE =
{

a| [(a + b) × tE]
}

|
{

c| [(c + d) × tE]
}

= [a|(nE × tE)] |[c|(nE × tE)]
(5.11)

The RR and IR provide estimates of the relative strength of the association
between the exposure of interest and the outcome or disease of interest.

The absolute difference in risk (AR) between the exposed and unexposed groups
provides an estimate of the impact of the exposure on the risk of disease in absolute
terms. This measure is not to be confused with the absolute risk, which is the
absolute probability that a disease-free individual will develop a given disease over
a specific time-interval (Benichou 1998). Using the above formulas for the risks
among exposed and unexposed it can be obtained from a cohort study as

ÂR = R̂iskE − R̂iskE = [a|(a + b)] − [c|(c + d)] = a|nE − c|nE . (5.12)

Based on the attributable risk several other measures can be derived. The so-
called attributable fraction (AF) can be interpreted as the proportion of risk due
to exposure in exposed individuals. It may be useful for quantifying the degree to
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which risk can be reduced at the individual level if the exposure (and its effects) can
be eliminated. It may, therefore, be a sensible measure for counselling individuals:

ÂF = ÂR|R̂iskE =
{
[a|(a + b)] − [c|(c + d)]

}
| [a|(a + b)] =

(
a|nE − c|nE

)
|
(
a|nE

)
.

(5.13)

The population attributable risk (PAR) reflects the absolute level of risk of the
outcome in the population due to the exposure. It can be used to estimate the
public health impact, in absolute terms, of elimination of the exposure, at least
with respect to the outcome of interest. Based on the attributable risk and the
prevalence of exposure (see (5.5)) it is given as

P̂AR = ÂR|̂PE =
{
[a|(a + b)] − [c|(c + d)]

}
| [(a + b)|N] = (a|nE − c|nE)|(nE|N) .

(5.14)

The last measure to be mentioned here may be used to estimate the proportion of
all eventsof interest that couldbeprevented in theoverallpopulation if theexposure
(and its effects) can be eliminated. The population attributable fraction (PAF) is
defined as the proportion of all events of interest that occur in the population due
to the exposure:

P̂AF = P̂AR|R̂isk = (a|nE − c|nE)|
{

(nE|N) [(a + c)|N]
}

. (5.15)

Internal Modelling of the Effects of Exposure 5.3.5

The situation is more complicated, if cohort members continuously add exposure
over follow-up time. Simple categorisation on the basis of cumulative exposure
would lead to biased results. Person-years accumulated shortly after entry into
the study of cohort members with high cumulative exposure would wrongly be
allocated to a high exposure category, although the cumulative exposure at that
time-point was still low for these cohort members, resulting in underestimation of
high exposures and overestimation of low exposures. Therefore, the disease-free
person-time of each subject has to be subdivided and assigned to the respective
age- and sex-specific exposure category the cohort member belongs to as he or
she moves through the cohort, meaning that most cohort members contribute to
different age-exposure-categories. In the same manner, the incident cases have to
be assigned to the categories where they occurred.

In Fig. 5.3 the follow-up time of cohort member No. 4 is again depicted schemat-
ically, this time with respect to age and cumulative exposure assuming that the
exposure starts at the beginning of the follow-up and that it is constant over time.
For age- and exposure-specific incidence rates, the disease-free follow up time is
assigned to the groups according to the squares in the figure that are defined by the
categorisation of the group variables, resulting in a contribution of cohort member
No. 4 of two and a half year to the denominator of the incidence rate of category
A × C (30–39 years of age and < 3 units of cumulative exposure), one year to the
denominator of the incidence rate of category A × D (30–39 years of age and 3
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Figure 5.3. Follow-up time of cohort member No. 4 of the fictitious cohort

to smaller than 10 units of cumulative exposure), and one and a half year to the
denominator of the incidence rate of category B×D (40–49 years of age and 3–< 10
units of cumulative exposure). The case itself contributes to the nominator of the
incidence rate of category B × D, since this is the category in which he|she was
diagnosed.

This procedure can be extended in several ways. The exposure may have started
before beginning of follow-up or may start later. It can vary over time, it can
even vary from individual to individual or can be lagged to account for induc-
tion time. Several measures of exposure (e.g. time since first exposure and and/
or confounders) can be considered simultaneously and possible confounders can
be included in the analyses as additional variables. Figures 5.4, 5.5 and 5.6 illus-
trate some of these features. For simplicity no half-years are considered in these
examples.

In Fig. 5.4, a subject is followed up from age 23 but has been exposed from age 19
on, he|she is exposed until age 27 followed by an unexposed 5 year period. He|she
is again exposed until age 39 at which time his|her person-time at risk ceases either
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Figure 5.4. Person-time classification with varying duration of exposure

because of disease diagnosis or because of end of follow-up. This subject would
contribute 7 years (from age 23 to age 30) to the A1×B1 group (20–29 years of age,
0–10 years exposure) 4 years (from age 30 to 34) to the A2 × B1 (30–39 years of
age, 0–10 years of exposure), 5 years (from age 34 to 39) to A2 × B2 ((30–39 years
of age, 10–19 years of exposure).

Fig. 5.5 presents the same subject assuming that the first exposure spell was twice
as intensive (e.g. 20 ppm of a given chemical) than the second exposure (10 ppm).
The unit of cumulative exposure y-axis is now in ppm.years. The subject would
contribute 1 year to group A1×B1, (his cumulative exposure is then 100 ppm.years)
then 5 years to group A1×B2 (at age 30 his cumulative exposure is 160 ppm.years),
then 6 years (from age 30 to age 36 at which he reaches 200 ppm.years) in group
A2 × B2) and finally 3 years in group A2 × B3.

Fig. 5.6 considers the same subject again but this time the exposure is lagged by
10 years, say, to account for disease induction time. The first period would then be
a non-exposed period. The rationale is that, were the disease to occur in these first
10 years, it would not be attributable to exposure. Applying the same rationale as
before, the subject would contribute 6 years in group B0 × A1, then 1 year in group
B1 × A1, finally 9 years in group B1 × A2, the lagged cumulative exposure at end
of follow up (i.e. at age 39) is 160 ppm–years.

Another exposure can occur during the follow-up, e.g. the preceding subject
starts smoking at age 25. In this case a further splitting of the time periods would
be done separating periods in which the subject was a non-smoker and periods in
which he|she smoked.

This splitting of person-time into age and exposure groups must be done for
each subject of the cohort and gets more complex with a growing number of group
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Figure 5.5. Person-time classification with varying cumulative exposure

Figure 5.6. Person-time classification with varying lagged cumulative exposure
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variables. Specialised software packages exist (e.g. Coleman et al. 1986) to perform
these computations but they are usually limited in the complexity they can handle.
Interestingly, these restrictions do not apply to some more general packages as
Stata (version 7 or later – StataCorp. 2001) or Epicure (Preston et al. 1993) in which
the statistical modelling procedures of such data are furthermore included. The
end result of the calculations carried out in these packages can then be presented
as a data table with each line corresponding to a separate combination of age and
exposure classes (other classifications like calendarperiodsmight alsobe included)
and containing the following variables: the value of each age and exposure group,
the number of person-years ni accumulated in this category over the entire cohort
and the number di of events of interest falling in this category.

In epidemiological cohort studies the standard model for analysing such data
is the Poisson model which is a statistical model of the disease rates. Basically the
Poissonmodel assumes that thenumberof eventsdi ineachcategory i (combination
of age category j and the kth combination of exposure variables) follows a Poisson
distribution with parameter niλi. The standard (multiplicative) model would then
assume that

ln(λi) = αj + βk (5.16)

where λi are the unknown true disease rates, the αj are nuisance parameters spec-
ifying the effects of age and (possibly) other stratification variables like calendar
periods and βk the parameters that describe the effects of primary interest. As
usual in regression models β0 = 0 would be a baseline category. exp(βk) is then an
estimate, adjusted on the nuisance parameters, of the relative risk of the kth expo-
sure category vs. the baseline category assuming absence of interaction between
exposure. The full modelling strategy of the Poisson regression is beyond the scope
of this chapter but is not different from any regression modeling (see Chaps. II.3
and II.4 of this handbook). A comprehensive account of Poisson modeling is given
by Breslow and Day (1987, Chap. 4).

An alternative way of analysing event history data (another denomination of
cohort data focussed on events), is by using Cox’ proportional hazard model. This
model acknowledges that the categorisation of continuous data always implies
a loss of information and therefore a loss in statistical power. Moreover, there is no
need to explicitly estimate the effects of nuisance parameters if it can be avoided.

The first step in proportional hazard model is the choice of one of the time
variables considered. This basic time variable can either be age as was implicit
at the beginning of this chapter, but in some settings, this variable can be the
calendar time or even the time since the beginning of follow-up. Once this special
time variable has been fixed, its effects are estimated nonparametrically.

The key idea of Cox’s regression is that no information is lost when considering
only the time points ti at which an event of interest occurs. At each such time point
a “risk set” is set up including all members of the cohort contributing person-time
(at risk and under observation) at this time point. If one wants to use a Cox model,
the first step is thus to identify all risk sets. Then, one must obtain the value at
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each time ti of all variables to be included in the model for all members of the
corresponding risk set. The statistical analysis is then similar (in fact the same
software can be used) to a conditional logistic regression analysis, in which the
matching variable is the indicator of the risk set. As in the logistic regression, the
exposure at time ti of the case, i.e. the subject experiencing the event at time ti,
and the exposure at time ti of the other members of the risk set are compared.
Again, the full modelling strategy of the Cox proportional hazard model and its
various extensions are beyond the scope of this chapter (see Chaps. II.3 and II.4).
A comprehensive account of this model is given by Breslow and Day (1987, Chap. 5).
As for Poisson models, both Stata and Epicure provide easy to use software, but
once the risk sets and the corresponding exposure variables have been computed
for each risk set, any logistic regression package (e.g. Proc PHREG in SAS) can be
used.

Internal Versus External Comparisons5.3.6

In Sect. 5.3.3 the event rate (morbidity or mortality) of a cohort is compared
to the rates of an external population. This is done by comparing the observed
number of deaths in the cohort with the expected numbers, given the age struc-
ture of the cohort and the age-specific mortality rates λi of a reference pop-
ulation. The ratio of observed to expected (the SMR) is then interpreted as
a rate ratio between the cohort and the general population taken as a refer-
ence.

If the cohort is set up for investigating a specific risk factor, as would be the
case in an occupational cohort, one can be tempted to interpret the SMR as
a risk ratio due to the risk factor under investigation. However, this interpre-
tation would only be valid if the cohort were comparable to the general popu-
lation for all factors except for the risk factor under investigation. This is ob-
viously only rarely the case. The general population consists of all subjects in-
cluding the very ill and very poor, which would rarely be included in the same
proportion in a cohort. Thus the mortality in the general population is usu-
ally higher than in any (unexposed) cohort. In occupational cohorts, this phe-
nomenon has been termed the “Healthy Worker Effect” (see e.g. Li and Sung
1999; Goldberg and Luce 2001). Other factors, like regional differences, owing
to social, behavioural, nutritional and environmental factors, might cause the
mortality of a regionally based cohort to be different from a nationwide general
population. In summary, the SMR is a biased estimate of the effect of any risk
factor.

This bias can be reduced by choosing a reference population which is as com-
parable as possible (except for the risk factor of interest) to the cohort under
investigation. This implies to carefully select the reference population and in the
end to compare the cohort to another reference cohort. In this case, however,
the computation of the confidence interval of the SMR is no longer valid as it
assumes that, because of the large number of subjects in the reference population,
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the disease rates and hence the expected numbers are observed without any sam-
pling error. In this case, the only statistically valid methods are those presented in
the preceding section, although the confidence intervals of the risk ratio become
wider. The choice between an external comparison and an internal comparison
is thus the choice between accepting an (often small) bias and accepting a larger
variance, which implies a lower power. Such a choice can only be made in the
context of each study and, if possible, both approaches should be tried. Finally,
methods have been proposed including external reference rates to stabilise internal
comparisons (e.g. Breslow and Day 1987, p 151) that might be used as reasonable
compromise.

Key Concerns in Cohort Studies 5.4

Selection of the Study Population 5.4.1

Usually, vital statistics data of the general population, or data derived from national
disease registries are used as a reference for the calculation of expected cases.
However, they canonlybe regardedasvalid forderivinganexpectationofmortality
and disease rates if the cohort under investigation is a representative sample of the
general population. Indeed, many cohorts are convenience samples, derived from
a group that happens to be accessible. Representative cohorts can for example be
derived from national censuses, utilizing the data collected for the specific census.
Obtaining access to census data is generally not easy, since most censuses guarantee
confidentiality to participants. Exceptions to that rule are for example, a Swedish
occupational census-based sample or a 10% sample of the Canadian labour force,
derived from data collected from Canadian having a social insurance number that
is required for all who are employed in an active occupation (Howe and Lindsay
1983). These types of population samples are very valuable, because subsets among
them chosen for specific analysis can be regarded as comparable to the general
population apart from the characteristics that caused them to enter, or be selected
for, that subset.

Occupational cohorts (cf. Chap. III.2 of this handbook) are usually identified
by company files or sometimes by workers’ union files. Access to these cohorts
is usually granted, if the company or union is interested in determining whether
a suspected increase in disease rates has occurred, or there is concern that expo-
sure to a potential hazard bears an increased risk of disease. Many carcinogens
have been confirmed in humans, after first evidence from animal studies, by in-
vestigations of specific cohorts (Tomatis et al. 1990). This mechanism is still being
used, as exhibited by a tri-utility study of electrical and magnetic field exposures
(Theriault et al. 1994), and a study of Motorola employees on the potential risks
of exposure to radiofrequency fields (Morgan et al. 2000). It is very helpful, if
employment records indicate exposure to specific agents. This is the case when
routine measurements are taken for safety reasons, as for most workers exposed to
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radiation. In their absence estimation of exposures may be required, as discussed
further below.

So-called multi-purpose cohorts identified for study, however, have to be re-
cruited by some mechanism that provides the opportunity for potential subjects to
volunteer. For example, much has been learnt from an ongoing study of American
nurses, who were given the opportunity to volunteer for the study by completing
a questionnaire of dietary and other lifestyle factors (Willett et al. 1992). Similar
studies were initiated in Canada by providing self-administered questionnaires to
women already participating in a mammography screening trial (Howe et al. 1991)
and in Sweden by approaching women who participated in a routine mammog-
raphy screening programme (Wolk et al. 1998). In Europe, a large multi-centre
cohort study was initiated in 10 countries using different approaches (Riboli and
Kaaks 1997). Some used population registers as the basis for mailing invitations
to participate. The response proportions were good in most countries, but still
tended to include more health conscious and more highly educated people than
the general population as is often the case in volunteer studies (cf. Chap. I.10 of
this handbook).

Another recent feature of cohort studies has been the attempt to bring many
together and analyse them almost as a multicentre study to enable the investigators
to identify risks which none of them individually were capable of demonstrating.
The Pooling Project is a case in point, originally funded to evaluate further uncer-
tain associations between diet and breast cancer, it has proven a very useful source
of additional knowledge because of the ability of cohort studies to identify mul-
tiple endpoints. Thus it has already been extended to lung cancer (Smith-Warner
et al. 2003), with findings similar to the EPIC study (Miller et al. 2004), and other
diseases will follow.

When a truly representative cohort cannot be obtained, because the mechanism
used involves the opportunity to volunteer, and to refuse to participate, compar-
isons with the general population in terms of mortality and disease rates may not
be valid. Thus the cohort may lack external validity. However, provided that the
recruitment mechanism is unbiased with regard to the exposure of interest, and
the data obtained on exposure enables the investigators to stratify their population
into exposed and unexposed subgroups, the estimation of the association between
the exposure and the outcome will be valid (internal validity).

Tables 5.4 and 5.5 demonstrate the effects of different participation patterns
(selection) on estimates that can be obtained from cohort studies. In the presence
of a fair sample, all of the measures of disease occurrence and association will be
unbiased (Table 5.4). In the presence of over-representation of exposed persons
(Table 5.5), the prevalence of the exposure will be overestimated and the risk of
the outcome will be over- or under-estimated depending on whether the exposure
is positively or negatively associated with disease. Nevertheless, the estimates of
the relative risk and the attributable risk will be unbiased. Since the estimate of
the prevalence of exposure is biased, estimates of the public health impact will
be biased. Other participation patterns that can theoretically introduce selection
bias including over-representation of diseased individuals and participation rates
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Table 5.4. Effects of a fair sampling process on the measures of disease occurrence and association

Target Population                        Selection Weights                            Study Population

Disease Disease

A
t R

is
k

Target Population                                                                               Study Population

10%

20%

2.67

3.08

125 1000/

10%

20%

2.67

3.08

125 1000/

Prevalence of Disease

Prevalence of Risk Factor

Relative Risk

Odds Ratio

Attributable Risk

40

60

100

160

740

900

200

800

1000

20

30

50

80

370

450

100

400

500

50

50

50

50

Yes No

Yes

No

Yes No

Yes

NoA
t R

is
k

Table 5.5. Effects of oversampling of exposed individuals on the measure of disease occurence and

assiociation (positive association between exposure and outcome)

Target Population                        Selection Weights                            Study Population

Disease Disease

A
t R

is
k

Target Population                                                                               Study Population

10%

20%

2.67

3.08

125 1000/

16%

71%

2.67

3.08

125 1000/

Prevalence of Disease

Prevalence of Risk Factor

Relative Risk

Odds Ratio

Attributable Risk

40

60

100

160

740

900

200

800

1000

40

6

46

160

74

234

200

80

280

100

10

100

10

Yes No

Yes

No

Yes No

Yes

NoA
t R

is
k

that differ by both, exposure and disease status, are unlikely to affect cohort stud-
ies due to the customary exclusion of persons with the outcome of interest at
baseline. This assurance is only relative, relying on the degree to which persons
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with prevalent disease can be excluded from the cohort. In general, selection
bias can be minimized by avoiding the use of volunteers (or using volunteers
exclusively) and by minimizing non-participation. The potential for selection
bias can be assessed by evaluating non-participants for study characteristics, if
possible.

Exposure and Confounders in Cohort Studies5.4.2

As already indicated, some cohorts will have exposure data readily available, es-
pecially those derived from occupational groups where exposure was routinely
collected for safety monitoring purposes. It is the strength of such cohorts that
they offer the possibility to report the exposure before the disease occurs. However,
for population-based cohorts, the investigators will have to collect data specifically
for the study, or to refine existing data.

Because most cohorts will be very large, the collection of exposure data is
not a simple task. If exposure data is to be collected by questionnaires, the scale
of the effort required will generally mean that neither personal nor telephone
interviews are feasible, as would normally be planned for case-control studies.
This means that the exposure data will generally be collected by mailed self-
administered questionnaires, often linked to the recruitment mechanism of the
cohort,with response to thequestionnairequalifying the individual for inclusion in
the study. Inevitably, the amount of data that can be collected by self-administered
questionnaire is limited. The degree of detail for a given variable that can be
obtained by such instruments is also restricted (cf. Chap. I.11 of this handbook), so
that in addition to the problems of the ability of the respondent to recall accurately
the exposure he|she has experienced, the data will be potentially subjected to major
misclassification.

The extent of misclassification in cohort studies has only recently been appreci-
ated, probably explaining the fact that the results of many cohort studies, especially
when diet was the exposure of interest, have been negative (Day and Ferrari 2002).
Thus although many of the questionnaires used in cohort studies have been sub-
ject of validation studies, and correlation with other assessment methods seemed
reasonable, these validation studies have served to reassure the investigators, but
probably have not protected them from reporting negative, or very weak results.
Even for smoking, the information obtained in cohort studies cannot be regarded
as precise as investigators would have wished.

Misclassification of exposure can be differential or non-differential with respect
to the outcome of interest; that is, the degree of misclassification of the exposure
can differ, or not, by outcome status. In cohort studies, non-differential misclassifi-
cation is the more typical form of misclassification due to the customary exclusion
of persons with prevalent disease at baseline. It is unlikely that the measurement of
exposureatbaselinewill be influencedby thedevelopmentofanoutcomesometime
in the future. Differential misclassification is potentially a much greater problem in
case-control and cross-sectional studies. Non-differential misclassification always
introduces a bias toward a null finding (a finding of no association) if the exposure
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Table 5.6. Non-differential misclassification of exposure
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status is dichotomized; whereas, differential misclassification can introduce a less
predictable bias. Table 5.6 shows the impact of a 10% non-differential error rate in
classifying smokers. In this example, 90% of exposed individuals were correctly
classified regarding exposure and 100% of unexposed individuals were correctly
classified. Assuming a true relative risk of 2.0, the observed relative risk would
be 1.8. With greater degrees of misclassification, the bias towards the null would
increase. This bias can be minimized through the use of standardized and validated
procedures for exposure assessment.

Another issue that affects cohort studies differently than case-control studies
is the effect of change in exposure with time. In case-control studies detailed
exposure biographies that include changes in exposure patterns, e.g. change in
intensity of smoking, or cessation of smoking, or even measures taken to affect
dietary change, can be retrieved using just one survey, with the problem of uncer-
tainty, and possibly differential error, in recall. The concurrent cohort study with
its prospective data collecting does offer the possibility of assessing changes in
exposure while they happen. To assess changes in exposure patterns, a mechanism
has, however, to be set up specifically e.g. by re-administering the questionnaire on
a regular basis. This could be done as part of the follow-up mechanism adopted,
though some loss to follow-up will be inevitable. An alternative to incorporating
this new information into the analysis is shown in the Nurses Health Study (Willett
et al. 1992). The follow-up period with regard to the time from the first exposure
information to the second was used as a separate cohort from the follow-up period
subsequent to the second exposure information. This is justifiable as blocks of
person-time in different periods are statistically independent, regardless of the
extent they are derived from the same people (Rothman and Greenland 1998).
However, sometimes cohorts are analysed with regard to the exposure determined
at baseline, and although that may seem distant from the period when many
endpoints are determined, for those with a long induction period from exposure
to outcome, as for many cancers, this has not always been regarded as a major
disadvantage.
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Exposure assessment by questionnaires always depends on subjects’ accuracy
of recall and their willingness to participate, and many efforts have been made
to introduce more objective measures of exposure determination. For radiation
exposure, cohorts with occupations that require wearing film badges provide cu-
mulative, and in some instances, peak measurements of exposure. For uranium
and other hard rock miners, measures of the radiation exposure in mines were
often made for safety reasons to limit the length of exposure of those at risk and
these measurements can be assigned to the job history of the individual.

However, in many instances, exposure has to be estimated simply from the
type of occupation at a certain time since no further information is available,
and misclassification of exposure assessment cannot be avoided. In occupational
studies, attempts have been made to refine exposure assessment by developing
a job exposure matrix (cf. Chap. I.11). Often using data from hygiene assessments
performed in the past, a matrix can be constructed with the different job tasks
in the rows, and columns indicating the probability and|or intensity of exposure
within that job to the agents (chemical or physical) of interest. The approach
was for example used in a study of electrical and magnetic field exposures in
electric utility workers in Canada and France (Theriault et al. 1994). Extension
of the work upon a sample of workers wearing portable electric and magnetic
field exposure meters, and using historical data of electrical usage in the province
enabled the investigators to identify strong associations of leukaemia and non-
Hodgkin’s lymphoma risk with high electric field exposure (Miller et al. 1996;
Villeneuve et al. 1998).

Another source of exposure data collected in cohort studies is gained from
biological material of the cohort members. Historically, rather simple parameters
were under study, like blood pressure or cholesterol levels, derived from blood
samples that were collected in the framework of large cohort and intervention
studies on cardiovascular disease. Now, there is increasing interest in the study
of disease aetiology by biomarkers of exposure and|or of genetic factors, as e.g.
in the European Prospective Investigation of Diet and Cancer (EPIC) (Riboli and
Kaaks 1997).

The findings of cohort studies regarding the effects of exposure can be strength-
ened if it is possible to evaluate a dose-response relationship. This requires the
assessment of intensity of exposure that can be quantified as peak, average, or
cumulative exposure. Sometimes duration of exposure is used as a surrogate for
cumulative exposure. However, using duration in this way is problematic if the
exposure is associated with an early, perhaps toxic effect. Then it could be an-
ticipated that these workers would tend to change their employment and could
not cumulate long durations of exposure. If such workers represented a particu-
larly susceptible subgroup, perhaps for genetic reasons, it is possible that in this
subgroup a relatively brief exposure results in the same incidence of disease than
in subgroups with a longer duration of exposure that are less susceptible. The
absence of a dose-response relationship without appropriate statistical control for
the genetic background might then be incorrectly interpreted as indicator that the
exposure is not causal for the disease (Blair and Stewart 1992).
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The treatment of potential confounding factors is the major challenge of the
analysis of cohort studies. This is in part because the basic data set may not
contain information on all relevant confounders, particularly not in historical
cohort studies, but also because the data available on confounders may not be
assessed with sufficient precision to take account of their effect. An example is
the possible confounding effect of cigarette smoking with fruit and vegetable
consumption and lung cancer. Although two large cohort studies (one multicentre
and one the result of a pooled analysis) which fully adjusted for the effects of
cigarette smoking in the opinion of the investigators were available (Miller et al.
2004; Smith-Warner et al. 2003) a working group of the International Agency
for Research on Cancer (IARC) was not convinced that there was not residual
confounding of fruit consumption by smoking with lung cancer, and therefore
judged the evidence to be limited rather than sufficient (IARC 2003).

Determining Outcome Events 5.4.3

A limiting factor for cohort studies is that most diseases are relatively rare, with
rates determined in the population per 100,000 persons. Therefore to accrue suffi-
cient cases of the disease the size of the cohort has to be large, and|or the follow-up
time has to be long. Another factor affecting the length of follow-up relates to the
long induction period from the beginning of many exposures to the occurrence
of disease. For many cancers, for example, the induction period exceeds ten, often
20 years. One example for the importance of a long enough follow-up period is
the British Doctors’ Study that showed much higher lung cancer risks of cigarette
smoking after 40 years of follow-up than in the ten- and twenty-year reports of this
study (Doll et al. 1994b). The reason for this was a dominant effect of duration of
smoking compared to intensity of exposure on the risk of lung cancer (see also
Flanders et al. 2003). It seems probable that this is not the only example of this phe-
nomenon – it may particularly affect exposures with a long induction period from
initiation of exposure to effect. The possibility of such an effect should encourage
investigators to maintain the follow-up of well documented cohorts for as long as
proves feasible, and granting agencies will agree to provide the necessary funds.
If grants are limited it may be useful to store the necessary data and extend the
follow-up after a certain time lapse. It is unusual for cohort studies to start from the
first exposure and the possible initiation of disease, covering the whole spectrum
of exposure in a subject’s lifetime. Attempts have to be made to determine or to
estimate past exposure, with all the error and potential misclassification of such
inquiries. Nevertheless, a major advantage of cohort studies over case-control stud-
ies is that exposure is determined prior to the diagnosis of disease, thus avoiding
a major bias of concern in case-control studies, the recall bias.

As already indicated, the follow-up of cohorts enables multiple endpoints to be
determined, e.g. different types of cardiovascular disease and|or different cancer
sites. In determining endpoints in cohort studies, it is essential that ascertainment
bias is avoided. Ascertainment bias relates to the possibility that the surveillance of
cohort members, by virtue of the fact that they are in a study, may result in greater
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efforts to make a diagnosis than would occur in the general population. Special
surveillance mechanisms in a cohort study are valid if internal comparisons of
exposed versus unexposed within the cohort are planned, but would invalidate
external comparisons with general population data. Orencia and colleagues (1995)
provided an example of this bias in a non-concurrent cohort study examining
the association of mitral valve prolapse (MVP) with stroke. Using the database
of the Mayo Clinic, they assembled a cohort of persons with MVP, followed them
for the occurrence of stroke, and compared the rate of stroke with the rate in
the general population of Olmsted County, Minnesota. The overall standardized
mortality ratio was 2.1, indicating a risk of stroke twice of that of the general
population. However, Orencia noted that MVP can be diagnosed by ausculta-
tion or as a serendipitous finding during an echocardiogram conducted for other
medical reasons (e.g. following myocardial infarction, chronic heart failure, atrial
fibrillation) often associated with risk of stroke. When the cohort was further sub-
divided according to method of diagnosis, the auscultatory group demonstrated no
increase in risk. The increased risk was confined to the group identified serendipi-
tously during a cardiac evaluation motivated by other medical concerns associated
with risk of stroke.

In some cohort studies, annual or less frequent contact by mail, generally with
the cohort member directly, or sometimes with his or her designated physician,
will identify the probable occurrence of a study endpoint, or death from a cause
unrelated to the disease of interest. However, these processes are costly, and also
pose the risk of losing an increasing proportion of cohort members with time.
Further, if the participant has died, family members may not always be willing to
collaborate in providing the required information. Hence, in many studies, other
mechanisms are used for follow-up, and indeed may have to be used also for
subjects lost if the basic mechanism of follow-up is by mail. Losses to follow-up
lead to a loss of power due to the resultant loss of sample size and can introduce
bias in a manner similar to the selection processes described previously. Losses
that do not differ by either exposure or disease status result in a picture similar
to that shown in Table 5.4, that is, no bias, but a loss of power. Losses that differ
by exposure (but not outcome) status introduce the same bias as that described
in Table 5.5. More problematic are losses that differ by outcome status (Table 5.7)
and those that differ by both exposure and outcome status (Table 5.8). In these
situations, estimates of the relative risk may be biased in unpredictable directions.

Apart from special surveillance mechanisms, including screening for the dis-
ease of interest, there are many sources of routinely collected data for endpoints
in cohort studies. These include medical records of physicians, health mainte-
nance organizations and hospitals, vital statistics systems and disease registries.
The process to determine whether a particular record relates to a cohort mem-
ber involves some form of record linkage, determining whether the identify-
ing data in the study file of a cohort member corresponds with the identifying
data on the medical or other record of endpoint information. In the past, much
of this linkage used to be done manually. Increasingly some form of comput-
erised record linkage is performed. Although such linkages are easier if both
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sets of records contain the same (national) identifying number, computerised
record linkage can still be extremely efficient, and less costly than individual-
based follow-up. If record linkage is planned to determine endpoints in a co-
hort study, great care should be taken at the time of recruitment to collect suffi-
cient identifying information for record linkage purposes, this includes full name,
full date of birth, place of birth, mothers maiden name, social security num-
ber, other identifying number (if available), and current address. Further, the
name and address of friends or relatives of the cohort member should also be
collected, to facilitate tracing an individual if other means of tracing them have
failed, or if record linkage to another data source has resulted in an uncertain
linkage.

In many countries, in addition to disease registries, such as cancer registries,
there are other data sources that have been developed to facilitate record linkage
for cohort studies and large scale trials. These include the National Health Service
Central Register in the UK, the Canadian National Mortality Data Base, the Na-
tional Death Index in the USA, and similar national registers in the Scandinavian
countries. Relatively new in this context are the population-wide registries of ge-
netic data, like the registry already established in Iceland or the one planned in
Estonia. Record linkage using these national data bases overcomes many of the
issues regarding confidentiality of data, as confidentiality procedures are readily
available for such systems. In Canada, what is returned to the investigator is gen-
erally anonymous (i.e. stripped of personal identifiers), unless the subjects have
signed a prior consent form that specifically permitted record linkage. This was

Table 5.7. Effects of losses to follow-up that differ by outcome status on estimates of disease
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Table 5.8. Effects of losses to follow-up that differ by both exposure and outcome status on estimates

of disease occurence and assiociation
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the case, for example in a cohort study that was linked to a large multi-centre trial
of breast screening (Howe et al. 1991).

Ethical Issues5.5

It is now generally accepted that studies on humans should be carried out with
informed consent. This principle, originally developed in relation to controlled
clinical trials, has generally now been extended to observational epidemiology
studies, including cohort studies.

In the past, if a cohort was recruited that involved the subjects participation
in providing data, their agreement to supply the data (e.g. respond to a question-
naire) was generally regarded as implied consent. However, now, in addition to
providing information on questionnaires, for many cohorts, biological specimens
(e.g. blood, buccal cells) are requested, and then it becomes mandatory that the
respondent provide consent for the future use of such specimens for research
purposes. However, at the time the specimens are provided, it is impossible to
know the precise use the investigators may wish to apply to this material. An
example relates to the fact that the majority of participants in the sub-cohorts
of the European Prospective Investigation of Diet and Cancer (EPIC; Riboli and
Kaaks 1997) provided blood specimens in the early 1990s; a few without signing
a consent form, the majority did so. However, now that genetic studies are com-
monplace on such specimens, it has become apparent that some of the consent
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forms did not specifically mention genetic analyses as potential research usages.
This has led to difficulties in obtaining approval for such sub-studies from hu-
man experimentation committees, some of which wanted new consent forms to
be signed, specific to the genetically-associated sub-study planned. Obtaining new
consent, however, will become increasingly difficult as time goes on, and a num-
ber of subjects with the endpoint of interest may have died. In the United States,
potential restrictions upon studies such as these have caused difficulties. In Eu-
rope, especially Scandinavia, there has been a more relaxed view of the ethical
acceptability of studies on stored specimens, many such collections having been
originally made without a formal informed consent process, but for which stud-
ies conducted with full preservation of confidentiality have been deemed to be
ethically acceptable.

The issue as to whether respondents whose stored specimens have been tested
should be informed of the results of such tests is also controversial. The Euro-
pean view tends to be that as the testing is being conducted as part of research,
it may be impossible to interpret the results of tests for individuals, until this
particular research track reaches agreed conclusions. Thus, it is not necessary,
indeed possibly unethical, to inform the respondent of the results. Some con-
sent forms specifically state this as a policy. In the United States, however, the
opposite viewpoint tends to hold, say, it being regarded as ethically inappro-
priate for investigators to take a decision on whether or not a subject receives
information on themselves. The difficulty with a universal application of such
a principle is that for some, the test results may come too late for any possi-
bility of benefit, but, especially in the case of genetic-related information, this
may not preclude the test result having implications for the relatives of the sub-
ject, and such knowledge is not always a blessing. However, all would agree
that if a test reveals information of potential benefit to a subject, they should
be informed.

The question of consent for historical cohort studies in general does not arise,
though again, there may be issues on informing subjects of the findings of the
research. In general, as the research is unlikely to harm the individuals, and
providing confidentiality is maintained, human experimentation committees will
approve such studies.

One further ethical issue has already been mentioned in Sect. 5.4.3, and that
relates to the use of record linkage in obtaining outcome data. In general, providing
full confidentiality is maintained, this should not cause difficulties in obtaining
approval from human experimentation committees. For further discussions of
ethical aspects we refer to Chap. IV.7 of this handbook.

Conclusions 5.6

Cohort studies are a critical method for evaluating causality in epidemiology, and
may also be used in evaluating screening (see Chap. III.10 of this handbook).
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There are, however, several needs if they are to be valid. You need skilled inves-
tigators being familiar with the peculiarities of the planning and the conduct of
cohort studies, a sensible source for cohort recruitment, evaluable hypotheses to
consider, a validated questionnaire for use at enrolment, unbiased mechanisms to
administer the questionnaire as well as for follow-up, quality controlled procedures
to collect biological material if relevant for the question under research, facilities
for data entry and of course the expertise as well as the facilities for analysis and
interpretation.

Cohort studies are often rated at a higher level than case-control studies, largely
because the latter are susceptible to recall bias. However, both are usually regarded
as “level II” evidence (level I are randomised controlled trials) and there are po-
tential deficiencies in cohort studies that may be less intrusive than in case-control
studies, especially a greater propensity for measurement error. Both, however,
continue to have an important role in disease epidemiology.
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Introduction6.1

A Brief History6.1.1

The case-control study examines the association between disease and potential
risk factors by taking separate samples of diseased cases and of controls at risk of
developing disease. Information may be collected for both cases and controls on
genetic, social, behavioral, environmental or other determinants of disease risk.
The basic study design has a long history, extending back at least to Guy’s 1843
comparison of the occupations of men with pulmonary consumption to the occu-
pations of men having other diseases (Lilienfeld and Lilienfeld 1979). Beginning in
the 1920’s, it was used to link cancer to environmental and hormonal exposures.
Broders (1920) discovered an association between pipe smoking and lip cancer;
Lane-Claypon (1926), who selected matched hospital controls, investigated the
relationship between reproductive experience and female breast cancer; and Lom-
bard and Doering (1928) related pipe smoking to oral cancer. The publication
in 1950 of three reports on the association between cigarette smoking and lung
cancer generated enormous interest in case-control methodology as well as bitter
criticism (Levin et al. 1950; Wynder and Graham 1950; Doll and Hill 1950). The
landmark study of Doll and Hill (1950, 1952), in particular, inspired future gener-
ations of epidemiologists to use this methodology. It remains to this day a model
for the design and conduct of case-control studies, with excellent suggestions on
how to reduce or eliminate selection, interview and recall bias.

From the mid-1950’s to the mid-1970’s the number of case-control studies pub-
lished in selected medical journals increased four- to sevenfold (Cole 1979). Aird
et al. (1953) discovered the association between gastric cancer and the ABO blood
groups. The impact of hormonal factors on cancers of female organs was brought
to light, starting with confirmation of the association between late first pregnancy
and breast cancer (MacMahon et al. 1970). Herbst et al. (1971) investigated an
unusual outbreak of vaginal adenocarcinoma in young women, finding that moth-
ers of seven of eight cases had exposed their daughters in utero to the fertility
drug diethylstilbestrol (DES). None of 32 control mothers had a history of es-
trogen use during pregnancy. Treatment of menopausal women with exogenous
estrogens similarly increased the risk of endometrial cancer (Ziel and Finkle 1975;
Smith et al. 1975). Powerful joint effects of alcohol and tobacco consumption on
esophageal cancer were demonstrated (Tuyns et al. 1977), as was the strong as-
sociation between liver cancer and hepatitis B carrier status (Prince et al. 1975).
These successes encouraged more investigators to adopt the case-control study
as the method of choice for the study of rare chronic diseases, particularly can-
cer. A survey by Correa et al. (1994) identified 223 population-based case-control
studies published in the world literature in 1992. Recent discoveries obtained
using case-control methodology have included the role of salted fish in the etiol-
ogy of nasopharyngeal carcinoma in Chinese populations (Armstrong et al. 1983;
Yu et al. 1986), the hazards of prone sleeping position for sudden infant death syn-
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drome (SIDS) (Fleming et al. 1990) and the relationship between use of intrauterine
devices (IUDs) and tubal infertility (Daling et al. 1985).

This plethora of case-control studies, stimulated by their relatively low cost
and short duration, also had its drawbacks. Not all investigators were as careful
as Doll and Hill in following a protocol for selection of cases and controls, in
conducting the study to mitigate against bias and in thoughtfully analysing the
collected data. Nor did they have the good fortune to study associations as strong
as that between lung cancer and cigarette smoking. The increasing availability
of high speed computers made it possible to collect more and more data, and to
look for all manner of associations with putative risk factors. Investigators eager
for research funding were sometimes too quick to publish their findings and draw
mediaattention to them.The inevitable resultwas an increasinglynegative reaction
on the part of the public, and from segments of the scientific community, to the false
alarms and contradictory results (Taubes 1995). One goal of this chapter, and of
others in this handbook, is to describe basic scientific principles whose application
should help to improve public confidence in published findings of epidemiologic
studies.

Early Methodologic Developments 6.1.2

The sophisticated use and understanding of case-control studies is the most
outstanding methodologic development of modern epidemiology.
(Rothman 1986, p. 62)

The initial interpretation of the case-control study was the comparison of expo-
sure histories for a group of diseased cases with those for non-diseased controls.
Typical analyses involved two group comparisons of exposure distributions using
chi-squared and t-tests. The critics argued that such comparisons provided no
information about the quantities of true epidemiologic interest, namely the dis-
ease rates. Cornfield (1951) corrected this misconception by demonstrating that
the exposure odds ratio for cases vs. controls was equal to the disease odds ratio
for exposed vs. non-exposed. With D = 1 indicating disease, D = 0 disease-free
and X = 1|0 likewise denoting exposed or non-exposed, he showed using Bayes
theorem that

Pr(D = 1|X = 1)Pr(D = 0|X = 0)

Pr(D = 0|X = 1)Pr(D = 1|X = 0)
=

Pr(X = 1|D = 1)Pr(X = 0|D = 0)

Pr(X = 0|D = 1)Pr(X = 1|D = 0)
(6.1)

and noted that the disease odds ratio approximated the relative risk Pr(D = 1|
X = 1)|Pr(D = 1|X = 0) provided the disease was rare. He also pointed out
that, if the overall disease risk was known from other data sources, this could be
combined with the relative risk to estimate absolute disease risks for exposed and
non-exposed, respectively.

Disease risk as considered by Cornfield (1951) was prevalence, the probability
that a member of the population was ill at a given point in time. For studies
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of disease etiology, however, it is preferable to work with disease incidence, the
probability of developing disease during the study period among subjects who
are free of disease initially. Otherwise, one confuses the effect of exposure on
causation of disease with its effect on the case fatality rate (Neyman 1955). Controls
for a study of the cumulative risk of developing disease during a given period
would be persons who were free of disease during the entire period. Although it
laid the foundation forwhatwas to follow, this conceptualizationof the case-control
study in terms of cumulative disease risk was awkward, for two reasons. First, as
the study interval lengthened the risk of disease increased for both exposed and
non-exposed. The relative risk for a common disease could approach one. Even
if it did not, it was undesirable to have the basic effect measure so dependent
on study duration, which varies between studies. Second, for a study of long
duration, ensuring that the controls were disease-free throughout the study period
could be problematic in practice. The modern conception of a case-control study
involves sampling of controls who are disease-free at random times during the
study period (Sect. 6.2.1). Exposure odds ratios are used to estimate ratios of
incidence rates rather than ratios of risks. No rare disease assumption is needed
in this case.

Mantel and Haenszel (1959) clarified the status of the case-control (or retrospec-
tive) study in comparison with the cohort (forward or prospective) study in one of
the most highly cited papers in the scientific literature (Breslow 1996). They stated
emphatically:

A primary goal is to reach the same conclusions in a retrospective study as
would have been obtained from a forward study, if one had been done.
(Mantel and Haenszel 1959, p. 722)

This insight underlies the modern conception of the case-control study as in-
volving sampling, on the basis of outcome, from an ongoing real or imagined
cohort study that has been designed to provide the best possible answer to
the basic question. Mantel and Haenszel introduced a new test and a simple,
highly efficient estimator for the relative risk after stratification on control fac-
tors. Their methods required the epidemiologist to carefully examine the tab-
ular data, and thus to identify strata where there was a lack of information
or where there were discrepancies between summary and stratum specific rel-
ative risks. They remain valuable today as an adjunct to more elaborate model
fitting.

By the end of the 1950s, the case-control study was firmly established as the
method of choice for the chronic disease epidemiologist, certainly when the bud-
get was limited. The role of statisticians in bringing the study design to this place
of scientific respectability was widely acknowledged (Cole 1979; Armenian and
Lilienfeld 1994). Further methodological advances were made during the next two
decades, particularly in statistical modeling of case-control data. The develop-
ment of the proportional hazards regression model for life table data (Sheehe 1962;
Cox 1972) provided a sound mathematical basis for methods long used by epi-
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demiologists, and led to refinements and extensions of those methods (Breslow
et al. 1983). The nested case-control study, originally conceived as a method to
reduce the computational burden of fitting Cox’s model to data from large co-
horts (Liddell et al. 1977), was recognized as an efficient epidemiologic design
for the collection of expensive explanatory data (Langholz and Goldstein 1996).
It now serves as a paradigm for all case-control studies. Many of the method-
ological developments were described in texts by Breslow and Day (1980) and
Schlesselman (1982) that led to further appreciation and use of the case-control
study.

Chapter Outline 6.1.3

The remainder of this chapter discusses the modern conceptualization of the case-
control study, largely from a statistical perspective. Matching of controls to cases
at the design stage is viewed as a technique to be used in carefully limited contexts
to increase the statistical efficiency of a highly stratified analysis. The implications
of these theoretical developments for the practical selection of cases and controls
are explored. Major pitfalls include the unique susceptibility of the case-control
study to selection bias and, especially when exposures are assessed by interview, to
measurement error. The design of any particular study usually involves tradeoffs
between potential biases arising from these sources. Following established princi-
ples of sound statistical science, including the use of an appropriate protocol for
subject selection and exposure assessment, can help reduce the variability in study
results that has contributed to the low esteem accorded risk factor epidemiology
in some scientific circles (Breslow 2003).

Conceptual Foundations 6.2

Sampling from a Real or Fictitious Cohort 6.2.1

The Mantel and Haenszel (1959) goal, of reaching the same conclusions from
a case-control study as from a cohort study if one had been done, provides the
key to understanding of case-control methodology. Rather than start the planning
process by thinking about how to conduct a case-control study, it often is helpful
to first plan the ideal cohort study that would be conducted to investigate the
same hypothesis if unlimited resources were available. Planning would include
cohort identification, definition of the times of entry into and exit from the cohort,
ascertainment of the disease endpoint, measurement of the exposure histories,
consideration of potential confounders and methods of statistical analysis. The
corresponding case-control study would then be viewed as the random sampling
of subjects from this idealized cohort to achieve, so far as possible, the stated
goal.
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Cohort Definition. In concept the underlying cohort for a case-control study
consists of all subjects who, had they experienced the disease endpoint at a specific
time, would have been ascertained as a case at that time. When case-control sam-
pling is carried out in the context of an actual cohort study, to select individuals
for genotyping or other expensive measurements, for example, the cohort is com-
pletely enumerated by and known to the investigator. More typically, however, the
underlying cohort is not fully identified and is effectively defined by the method of
case ascertainment. When cases are ascertained from a particular hospital, for ex-
ample, one considers the cohort to consist of all subjects who, had they developed
the disease in question, would have been diagnosed in that hospital.

= control

= event (case)

Figure 6.1. Schematic of a (nested) case-control study

Figure 6.1 illustrates the basic idea of case-control sampling. Each of the 11
horizontal lines represents time on study for a member of the cohort. Subjects enter
follow-up at the left hand endpoint and exit at the right. They are considered to be
at risk of becoming a case throughout this period. It is even possible, though not
shown here, that a subject could enter the cohort, leave for awhile and then return.
Four of the 11 subjects are cases. Their follow-up ends at diagnosis since they are
no longer at risk of becoming an incident case thereafter. The vertical dotted lines,
plotted at each of the times that a case occurs, intersect the trajectories of those
who are at risk at that time, i.e., the trajectories of subjects in the corresponding
risk set.

Nested Case-Control Sampling. When the cohort study is a real one, so that times
of entry and exit are known for all members, the investigator may completely
enumerate each risk set. A nested case-control study is then possible in which
controls are selected by finite population random sampling, without replacement,
fromnon-cases in the risk set. Theusual assumption is that the samplingof controls
from each risk set is completely independent of sampling from all other risk sets.
Two consequences are that a subject sampled as a control at one point in time
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may later become a case, and that the same subject may be sampled more than
once as a control. Figure 6.1, which depicts the situation where exactly one control
is sampled from each risk set, illustrates each of these possibilities. Robins et al.
(1986) describe other sampling schemes, and corresponding methods of analysis,
for nested case-control studies.

Density Sampling. These ideas also may be applied, at least in principle, to
the more typical situation in which the cohort is not completely enumerated. An
essential assumption, which in fact well approximates the design of many studies, is
that the cohort is sampled throughout the study period. More specifically, controls
are selected at any given time at a rate proportional to the disease incidence rate at
that time (Sheehe 1962). Miettinen (1976) termed this incidence density sampling.
A second assumption is that each subject at risk at a given time has the same
probability of being sampled as a control. This implies that, from the standpoint of
an individual, the likelihood of being included in the study as a control increases
with increasing time on study. If the disease incidence rate is constant, someone
who is a member of the cohort for twice as long as someone else has twice the
chance of being selected as a control. In the statistical literature this is known
as length biased sampling. One important consequence, under the assumption of
constant disease incidence, is that the number of controls sampled is proportional
to the total time at risk.

Incidence Rate Ratios are Estimable from Odds Ratios 6.2.2

We consider here the simplest situation in which the disease incidence rate is
constant and there are two groups of subjects, exposed and non-exposed, that
are homogeneous apart from exposure. Confounding is therefore not an issue.
Denote by A the total number of incident cases ascertained from the cohort during
the study period (t0, t1) and suppose that A0 are determined to be non-exposed
whereas A1 = A − A0 are exposed. Similarly denote by T = T0 + T1 the total
person-time on study, decomposed into its non-exposed (T0) and exposed (T1)
components. While the numbers of cases A0 and A1 are known to the investigator,
T0 and T1 may not be unless the underlying cohort is a real one. Instead, the
case-control study provides information on how many of the total M = M0 + M1

of controls are non-exposed (M0) and how many are exposed (M1). Denoting
by M1|M0 the observed odds of exposure for controls and likewise by A1|A0 the
observed odds of exposure for cases, the corresponding exposure odds ratio is
(A1M0)|(A0M1).

Let πτ denote the probability that a subject who contributes τ person-years of
followup is sampled as a control. With T =

∑N
i=1 τi denoting the sum of the times-

on-study for N cohort members, i.e., the total time at risk, the expected number
of controls is E(M) = πT. In practice π is often selected by the investigator
to yield a fixed number of controls, at least as a target value. Its actual value
remains unknown unless information is available about T. Nonetheless, provided
π is constant for all subjects, both exposed and non-exposed, E(M0) = πT0 and
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E(M1) = πT1. Hence the control ratio M0|M1 estimates the corresponding ratio
T0|T1 of person-time. Since the exposure specific incidence rates are estimated by
λ̂0 = A0|T0 and λ̂1 = A1|T1, it follows (see Rothman and Greenland 1998, Chap. 10)
that the rate ratio may be estimated by the exposure odds ratio:

λ̂1

λ̂0

=
A1T0

A0T1
≈ A1M0

A0M1
. (6.2)

See Sect. 6.3.1 for a numerical example.

Time-dependent Rates and Exposures6.2.3

Section 6.2.2 assumes that the parameter of interest is the ratio of instantaneous
incidence rates, each assumed constant in time, for exposed and non-exposed
subjects. A more general conceptualization takes the interest parameter to be the
ratio ψ ≡ λ1(t)|λ0(t) of instantaneous rates where the ratio, but not necessarily
the underlying rates, is assumed constant in t. Let N(t) denote the total number
of subjects at risk at time t in the underlying cohort, of which a proportion p1(t)
are exposed and p0(t) are non-exposed. These proportions could vary with time
either because the exposure status for individual subjects changes, or because the
exposure composition of the cohort changes through entries and exits. Note that
the expected number of exposed cases is given by

∫
N(t)p1(t)λ1(t)dt and similarly

for thenon-exposedcases.The expectednumberof controls sampled in the interval
(t, t + dt) is therefore M(t)dt where M(t) = N(t)[p0(t)λ0(t) + p1(t)λ1(t)]. It follows
that the unadjusted exposure odds ratio under density sampling estimates

ψ∗ =
∫

N(t)p1(t)λ1(t)dt
∫

M(t)p0(t)dt∫
N(t)p0(t)λ0(t)dt

∫
M(t)p1(t)dt

= ψ
∫

N(t)p1(t)λ0(t)dt
∫

M(t)p0(t)dt∫
N(t)p0(t)λ0(t)dt

∫
M(t)p1(t)dt

(6.3)

(Greenland and Thomas 1982). Thus the exposure odds ratio estimates the inci-
dence rate ratio, i.e., ψ∗ = ψ, provided either that the exposure proportions are
constant in t or else that ψ = 1. Otherwise, time t acts as a confounder of the
exposure–disease association. In this case, a time-matched analysis using stan-
dard methods for matched case-control studies (Breslow and Day 1980, Chap. 7)
is needed to estimate ψ unbiasedly. The marginal (unmatched) odds ratio usually
provides a slightly conservative estimate of this parameter.

Cumulative Risk Ratios and Case-Cohort Sampling6.2.4

While it is generally agreed that case-control studies of chronic disease are best
designed using density sampling to estimate the incidence rate ratio, alternative
sampling designs may be superior for other purposes. Vaccine efficacy is usu-
ally defined as the proportional reduction, over the study period, in the num-
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ber of cases among subjects who are vaccinated compared to those who are
not. Equivalently, it is 1 minus the ratio of cumulative disease risks for vacci-
nated vs. non-vaccinated. Suppose the effect of vaccination is to render com-
pletely immune a proportion PI of subjects, while the remainder of those vac-
cinated have the same disease incidence rates λ0(t) as do non-vaccinated per-
sons (Smith et al. 1984). For simplicity assume that all subjects, both vacci-
nated and non-vaccinated, are followed from a common starting time t0 and
that there is no loss to follow-up. The cumulative risk of disease by time t1 for
those not vaccinated is P(t0, t1) = 1 − exp[−

∫ t1
t0

λ0(t)dt] and the vaccine efficacy is
thus

1 −
risk for vaccinated

risk for non-vaccinated
= 1 −

PI × 0 + (1 − PI) × P(t0, t1)

P(t0, t1)
= PI . (6.4)

Here the cumulative risk ratio, not the incidence rate ratio, is independent of
study duration t1 − t0 (Rodrigues and Kirkwood 1990). Suppose now a subcohort
of M subjects is drawn at random from the combined cohort of vaccinated and
non-vaccinated subjects such that each individual has the same probability π of
inclusion in it, regardless of duration of follow-up. If M0 and M1 denote the num-
bers of non-vaccinated and vaccinated in the subcohort, while A0 and A1 denote
the numbers of disease cases diagnosed by time t1, then vaccine efficacy is simply
estimated as

P̂I = 1 −
A1|M1

A0|M0
. (6.5)

More generally, the case-cohort design (Kupper et al. 1975; Miettinen 1982; Pren-
tice 1986) involves random sampling of a subcohort at study entry, without re-

*  = subcohort member

*

*

*

*

= control

= event (case)

Figure 6.2. Schematic of a case-cohort study
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gard to time on study. Figure 6.2 contrasts this design with nested case-control
sampling (Fig. 6.1). Incidence rate ratios may be estimated for dynamic (open)
cohorts, with staggered entry and loss to follow-up as pictured, just as they
are with nested case-control sampling (Prentice 1986; Lin and Ying 1993; Bar-
low 1994). Subcohort members under observation at the time of disease occur-
rence serve as the controls for each case in a time-matched analysis. Since the
subcohort is a simple random sample from the full cohort, it is suitable for es-
timation of population genotype or exposure frequencies, whereas the controls
from a nested study are not. Furthermore, the same subcohort may be used to
provide controls for two or more different types of disease cases. Because of this
flexibility, the case-cohort design is increasingly used for sampling from defined
cohorts.

Estimation of Absolute Risks6.2.5

The key feature of case-control sampling in the context of an actual cohort study,
where the underlying cohort is completely enumerated and entry and exit times
are known for all cohort members, is that the sampling probabilities for cases
and controls are known or can be estimated from the available data. The case-
control study provides supplementary information on explanatory variables for
a randomly selected group of cohort members. Analysis of the combined cohort
and case-control data may be approached using standard methods for incomplete
data (Little and Rubin 2002). The Horvitz and Thompson (1952) survey sampling
approach is often easiest to implement. Here the contribution to estimators or esti-
mating equations from each subject with complete data, i.e., each subject included
in the case-control sample, is weighted by (an estimate of) the inverse probabil-
ity of having been included. Any analysis that could have been carried out were
explanatory data available for the entire cohort can also be carried out using the
combined data from the cohort and the case-control sample. This principle applies
to estimation of absolute as well as relative risks.

Table 6.1. Numbers of lung cancer cases and controls in Greater London among males aged

45–64 years, by average amount smoked in preceding 10 years, with estimated death rates of lung

cancer per 1000 persons per year†

Ave. daily number of cigarettes
0 1–4 5–14 15–24 25–49 50+ Total

Controls (n0j) 38 87 397 279 119 12 n0+ = 932

Cases (n1j) 2 19 197 171 129 21 n1+ = 539

Rates (λ̂j) 0.14 0.59 1.35 1.67 2.95 4.76∗ 1.57

† Reconstructed from data of Doll and Hill (1952), p. 1278
∗ Doll and Hill give 4.74 for this entry

A demonstration that absolute risks can be estimated from case-control data
that are supplemented with information regarding the underlying population was
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provided by Doll and Hill (1952). They restricted the analysis to cases and con-
trols drawn from the Greater London area, for which the numbers of persons
and the numbers of deaths due to lung cancer were known from government
records for each category of age and sex. Table 6.1 shows numbers of male cases
n1j and controls n0j aged 45–64 years at the jth of 6 levels of average cigarette
consumption during the preceding 10 years (j = 1, … , 6). Assuming that the
smoking habits of the controls were representative of the habits of the general
population in each age-sex category, and likewise that the habits of the cases
were reasonably similar to those of persons who died of lung cancer, they were
able to estimate the numbers of persons Nj and of deaths Dj at each of the 6
smoking levels. Specifically, knowing that the total male population of Greater
London aged 45–64 was N+ = 937,000, they estimated the sub-population (in
thousands) at the jth smoking level as N̂j = (n0j|932) × 937. Similarly, knowing
that D+ = 1474 deaths from lung cancer occurred annually in this population,
they estimated the numbers of deaths at that level by D̂j = (n1j|539) × 1474. Thus
the absolute rates per 1000 persons per year at smoking level j were estimated
as

λ̂j =
D̂j

N̂j
=

n1j · n0+ · D+

n0j · n1+ · N+
.

See Table 6.1 and Doll and Hill (1952), Table XII. Neutra and Drolette (1978) for-
mally justified this commonly used procedure while Greenland (1987) provided an
extension for matched case-control studies.

Langholz and Borgan (1997) developed more specialized methodology for es-
timation of absolute risks from nested case-control studies under the Cox (1972)
model. The absolute risk of disease over the time period (t0, t1) for a subject with
explanatory variables x who is disease-free at its start is

P(t0, t1; x) =

t1∫
t0

S(t0, t; x)λ(t; x)dt , (6.6)

where S(t0, t; x) denotes the probability that the subject remains on study and
free of disease from t0 to t and λ(t; x) is the disease incidence rate. Increments in
the baseline cumulative incidence rate function at each time of disease diagnosis,
needed to estimate both S and λ, are obtained from the usual formula for the cohort
study applied to reduced risk sets consisting of the case and sampled control(s).
The denominator term, representing the sum of relative risks for all subjects in
the risk set, is weighted by n|m where n denotes the size of the risk set and m
the number of subjects, including the case, sampled from it. Benichou and Gail
(1995) studied similar methodology for unmatched case-control sampling from
an actual cohort when all explanatory variables are discrete. Econometricians also
have developed methods for incorporation of external information on background
rates into the analyses of data collected in “choice-based” sampling designs, the
social science analog of case-control studies (Hsieh et al. 1985).
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Matching and Stratification6.3

While the logical absurdity of attempting to measure an effect for a factor
controlled by matching must be obvious, it is surprising how often investigators
must be restrained from attempting this. (Mantel and Haenszel 1959, p. 729)

Investigatorsplanningcase-control studiesused to considermatchingof individual
controls to cases as a means of making the two groups as comparable as possible,
thereby increasing the perceived validity of study results. It is now recognized that
such matching, or stratified sampling of controls to make them more like the cases
– known as frequency matching, has a much more limited and specific role. This
is to improve the efficiency of rate ratio estimators (exposure odds ratios) that are
statistically adjusted to account for possible confounding effects. Inappropriate
matching may have the unintended effect of compromising design efficiency or
even of rendering the results completely uninterpretable. Furthermore, since the
sampling design must always be considered, matching usually complicates the
statistical analysis.

Consequences of Matching6.3.1

The goal of matching in case-control studies is to balance the numbers of cases
and controls within strata that will be used for statistical adjustment purposes.
If the factor(s) used for stratification are associated with exposure, the matched
control sample will generally have an exposure distribution more like that of the
cases than would an unmatched control sample.

Some interesting and important consequences of matching are illustrated by
the fictitious data shown in Table 6.2, which is adapted from Table 10-5 of Rothman
and Greenland (1998). In the underlying cohort the disease rates for exposed and
non-exposed are identical for males and females. Consequently, there is no effect
modification nor confounding by sex and the crude (marginal) rate ratio equals the
sex-specific ratios. The frequency matching of controls to cases by sex, however,
has induced apparent confounding in the case-control data. The sex specific rate
ratios are correctly estimated by the sex-specific odds ratios, in accordance with
Equation (6.2), but they are substantially under-estimated by the crude exposure
odds ratio. An analysis that accounts for the matching is essential to correctly
estimate the interest parameter.

Efficiency of Matching6.3.2

Theadvantagesof a frequencymatchedsamplebecomeevidentwhenoneconsiders
extreme situations. In the study of esophageal cancer of Tuyns et al. (1977), for
example, 775 controls were sampled at random from electoral rolls for comparison
with the 200 cases. Not surprisingly, the lowest age stratum contained only a single
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Table 6.2. Distribution of cases and person-years of observation in a fictitious cohort study, and

expected distribution of cases and frequency matched controls†

A. Results for underlying cohort study
Males Females

Exposed Non-exposed Exposed Non-exposed

Diseased 450 10 50 90

Person-years 90,000 10,000 10,000 90,000

Rate (×103) 5.0 1.0 5.0 1.0

Rate ratio ψE = 5 ψE = 5

Crude rate ratio = (450+50)|100,000
(10+90)|100,000 = 5

B. Expected results for the case-control study
Males Females

Exposed Non-exposed Exposed Non-exposed

Cases 450 10 50 90

Controls 414 46 14 126

Odds ratio ψ̂E = 5.0 ψ̂E = 5.0

Expected crude odds ratio ≈ ψ̂E = (450+50)×(46+126)
(10+90)×(414+14) = 2

† Adapted from Table 10-5 of Rothman and Greenland (1998)

case and 115 controls. Since they contributed very little to the age-stratified odds
ratio, the time spent interviewing the 115 youngest controls was largely wasted.
When the potential for imbalance is less extreme, however, the advantages of
matching are not so clear. Some insight is provided by considering the ratio
of asymptotic variances of crude and adjusted (stratified) odds ratio estimators
for frequency matched and random samples in the simplest of situations, that
involving a binary exposure factor, a binary confounding factor and a rare disease.
Assuming equal numbers of cases and controls, and that the exposure rate ratio ψE

is the same at both levels of the confounder, the variances are determined by five
quantities: ψE; pE, the population proportion exposed; pC, the proportion positive
for the confounder; ψC, the rate ratio for the confounder; and ψCE, the odds
ratio associating confounder and exposure in the population. Table 6.3, adapted
from Breslow (1982), shows ratios of variances and biases for different odds ratio
estimators when pC = 0.5 and pE = 0.3. Similar results were given by Thomas and
Greenland (1983) and by Smith and Day (1984).

A stratified analysis is not needed to control confounding when ψCE = 1 or
ψC = 1. For as shown in rows 1–5, 9 and 13 of Table 6.3, the bias BR of the pooled
estimator using a randomly selected control sample is then zero. Columns labeled
VM|V∗

R show the increase in variance, i.e., the loss in efficiency, if a matched
control sample and stratified analysis were used instead. There is no efficiency loss
through matching when ψCE = 1 but increasing loss for estimation of large rate
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Table 6.3. Variance ratios and biases, in percent, for estimators of ψE in case-control studies with matched and random samples†

ψE = 1 ψE = 2 ψE = 5 ψE = 10

ψCE ψC
VM
VR

VM
VR∗ BR BM

VM
VR

VM
VR∗ BR BM

VM
VR

VM
VR∗ BR BM

VM
VR

VM
VR∗ BR BM

1 1 100 100 0 0 100 100 0 0 100 100 0 0 100 100 0 0

2 97 100 0 0 97 100 0 0 97 100 0 0 97 100 0 0

5 88 100 0 0 87 100 0 0 87 100 0 0 88 100 0 0

10 80 100 0 0 79 100 0 0 80 100 0 0 81 100 0 0

2 1 100 103 0 0 100 103 0 −4 100 103 0 −4 101 104 0 −6

2 95 100 12 0 96 100 12 −4 97 101 12 −4 99 102 12 −5

5 85 97 24 0 86 97 24 −1 88 98 24 −2 91 99 24 −3

10 78 96 31 0 78 96 31 −1 81 97 31 −1 85 98 31 −2

5 1 100 113 0 0 99 113 0 −8 101 118 0 −18 105 122 0 −23

2 93 106 27 0 93 106 27 −7 97 110 27 −14 103 114 27 −18

5 82 99 58 0 83 99 58 −4 89 102 58 −8 95 105 58 −10

10 76 95 75 0 77 96 75 −2 82 98 75 −5 88 100 75 −6

10 1 100 126 0 0 98 126 0 −14 100 134 0 −29 107 144 0 −37

2 91 114 36 0 90 114 36 −11 96 120 36 −23 104 128 36 −28

5 80 102 82 0 81 102 82 −6 88 107 82 −13 96 111 82 −16

10 74 97 106 0 76 98 106 −4 82 101 106 −8 90 105 106 −9

† Adapted from Breslow (1982), Table 2 ψCE = Odds ratio associating exposure and confounder ψE = Rate ratio for exposure
ψC = Rate ratio for confounder BR = Bias of pooled estimate of ψE, random sample, as percent of ψE
BM = Bias of pooled estimate of ψE, matched sample, as percent of ψE VM = Variance of the stratified estimate in the matched sample
VR = Variance of the stratified estimate in the random sample VR∗ = Variance of the pooled estimate in the random sample
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ratios when the correlation between confounder and exposure is high. Since the
“confounder” is not a risk factor for disease (ψC = 1), it need not be controlled in
the analysis. By needlessly matching on it, the exposure distributions for cases and
controls have been made more alike, thus reducing the efficiency of estimation of
the exposure effect. The negative biases associated with the crude analysis of the
matched data reflect the same phenomenon as the example in Table 6.2. This is
a case of overmatching.

Stratification is needed to control confounding when both ψCE > 1 and ψC > 1.
Then, as shown in rows 6–8, 10–12 and 14–16 of the table, the bias BR using the
unadjusted design and analysis is non-zero and becomes increasingly serious
as the effect of the confounder and its correlation with the exposure increase.
The efficiency of the matched design to the standard design, using in both cases
the correct (stratified) analysis, may be read from columns labeled VM|VR. Values
under 100%indicategreater efficiency,meaninga smaller variance, for thematched
design. When the potential confounder increases disease risk but exposure does
not, matching is always more efficient and its efficiency increases with the degree
of confounding. Even in the most extreme situation (ψCE = ψC = 10), however,
no more than 26% of efficiency is lost by failure to match. A conclusion is that
confounder and disease must be strongly associated for matching to produce major
gains. Matching may actually lose efficiency when ψCE and ψE are both large.

Overmatching 6.3.3

Overmatching refers to matching on a factor that is not a confounder of the disease-
exposure association. There are three possibilities.

FactorRelatedOnly toExposure. This is the situation just considered in Tables 6.2
and 6.3 (rows 5, 9, 13). Matching is not needed to control confounding and leads to
a loss of efficiency.

Factor Related Only to Disease. This has been called “the case of futility” because
the matching is effectively at random with respect to exposure (Miettinen 1970).
Frequency matching has no effect on efficiency, as the variance ratios VM|VR∗ =
100 when ψCE = 1 suggest. Were one to “incorrectly” fail to account for the
matching in the analysis, however, there would be efficiency loss relative to the
frequency matched analysis; note the percentages below 100 in the column labeled
VM|VR. Individual pair matching in such circumstances could cause a loss of
efficiency because of the need to account for this in the analysis and the consequent
reduction in degrees of freedom for estimation of the main effect. With binary
exposure measurements, for example, only the discordant case-control pairs would
contribute to estimation of the exposure odds ratio, and these would become fewer
and fewer as the association between the matching factor and disease increased.

“Confounder” an Intermediate in the Causal Pathway. The most serious type
of overmatching occurs when one matches on a factor that is both affected by
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exposure and a cause of disease. If the effect of anti-hypertensive medication on
the risk of myocardial infarction was being investigated, for example, yet cases
and controls were matched on blood pressure measurements taken after treatment
commenced, the data would be completely useless for estimation of treatment
effect. Ignoring the matching in the analysis would only compound the error by
driving the odds ratio even closer towards unity.

When to Match6.3.4

In view of the drawbacks of overmatching, and the often modest efficiency gains
even when statistical adjustment is indicated, one may well ask whether matching
is ever justified. The administrative costs of locating matched controls, and the loss
of cases from analysis if none can be found, further argue for careful consideration
of matched designs. Individual case-control matching is most appealing when
needed to control the effects of a confounder that is not easily measured. The
paradigm is use of an identical co-twin to control for genotype (Jablon et al. 1967).
Otherwise, stratification of the control sample on gender and broad categories
of age to achieve rough comparability with the case distribution, provided that
this can be accomplished without great cost, is likely all that is advisable. Greater
attention to stratification of the control sample may be needed when the primary
goal is to evaluate statistical interaction, or effect modification, between exposure
and a covariate (Smith and Day 1984).

Selection of Subjects6.4

The two preceding sections outline the basic ideas of sampling of subjects for
a case-control study from a theoretical statistical perspective. While the theory is
an important guide to practice, implementation is usually imperfect and requires
some compromise to minimize the various types of bias to which case-control
studies are particularly susceptible (Sect. 6.5). In this section we consider some of
the choices available to the investigator for putting the theory into action.

Selection of Cases6.4.1

Disease Definition
Careful definition of the disease endpoint to conform to the goals of the study
is critical to success. Specific cancers are reasonably well defined by primary
site and histologic type. Studies of diabetes, rheumatoid arthritis or psychiatric
conditions should follow standard criteria for diagnosis established by professional
societies. In the typical study of disease etiology, the investigator may choose to
enhance efficiency by including only those cases of disease most likely a priori to
have been caused by the particular exposure. Thus, instead of “uterine cancer”,
studies of hormonal risk factors would best be restricted to adenocarcinoma of
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the endometrium whereas those investigating sexual practices or viral etiology
would focus on squamous cell cancer of the cervix. Of course, in the early stages of
an investigation, demonstration that the exposure effect is specific to a particular
disease subtype can be an important part of the evidence that the association is
causal (Hill 1965; Weiss 2002). For case-control studies of the public health impact
of exposure, furthermore, a broader definition of disease may be desirable.

As mentioned in Sect. 6.1.2, studies of disease etiology are best restricted to
incident cases. This may not always be possible, however. Congenital anomalies
are generally ascertained as those that are prevalent at birth, and consideration of
possible exposure effects on fetal loss formsan important part of the interpretation.
Cohort studies may be preferable for estimating the true effects of exposure on
reproductive outcomes (Weinberg and Wilcox 1998).

Sources of Cases

Population Registries. Population based disease registries, particularly of cancer
and birth defects, are often considered the ideal source of cases. This is because
the population at risk, whose identification is needed for control selection, is well
defined by geographic or administrative boundaries. Practical limitations on their
use include the speed with which cases can be identified and interviewed, to avoid
selection bias from exclusion of those who may have died, and the feasibility of
random sampling of controls.

Health Maintenance Organizations. Large health maintenance organizations
(HMOs) are advantageous as a source of cases, for several reasons. The source
population is enumerated and demographic data, as well as some exposure and
covariate data, may already be available for everyone. This permits judicious se-
lection of cases and controls using nested case-control, case-cohort or stratified
two-phase sampling designs (Sect. 6.6). Relatively objective and inexpensive ex-
posure assessments may be possible using routine medical or pharmacy records,
some of which may already exist in electronic form. Similarly, cases are usually
easily ascertained from reports of diagnoses within the organization. Of course,
some assurance is needed that members of the HMO are unlikely to go elsewhere
for diagnosis and treatment.

Hospitals and Clinics. Historically, many case-control studies have been con-
ducted using either a single or a small group of hospitals or clinics. This facilitates
timely access to cases and increases the likelihood of their cooperation, thus lim-
iting selection bias. On the other hand, definition of the source population from
which the cases arose may be problematic, not to mention the practicality of
obtaining random samples of controls from it.

Exclusion Criteria
In principle, any exclusion criteria may be used for cases so long as they are equally
applied to the controls, and vice-versa, since they serve simply to restrict the source



304 Norman E. Breslow

population. Thus subjects may be excluded who reside in areas difficult to reach or
who are not native speakers of the language of interview. Practical applications of
this rule can be more subtle, however. Wacholder (1995) argues, for example, that
exclusion of cancer cases who lacked a histologic diagnosis could inadvertently
tend to exclude those from smaller, rural hospitals who were more likely to have
exposures related to agriculture.

Exposure Opportunity. Case-control studies are most informative when there
is a substantial degree of exposure variability, so that the exposure is neither
rare nor ubiquitous (Chase and Klauber 1965). Subjects known a priori to have
no opportunity for exposure could be excluded on grounds of efficiency if the
exposure was rare, since they would contribute little additional information. Thus,
for example, women who were past reproductive age when oral contraceptives
became popular should be excluded from a study of OC use and breast cancer
(Wacholder et al. 1992a). On the other hand, since they provide valid information
on the non-exposed, there is no logical basis for insisting that subjects without
the opportunity for exposure should be routinely excluded from cohort and case-
control studies (Schlesselman and Stadel 1987; Poole 1987).

Selection of Controls6.4.2

Principles of Control Selection
Wacholder et al. (1992a) described three basic principles of control selection.
The first two correspond roughly to considerations already developed regarding
conceptual foundations and the use of matching. The third stems from the desire
to minimize the effects of measurement error to which case-control studies are
particularly susceptible.

The “study-base” Principle. This is the principle that controls be randomly se-
lected from disease-free members of the underlying cohort, also known as the
source population (Kelsey et al. 1996) or study-base (Miettinen 1985), at the times
that cases are being ascertained (Sect. 6.2). When controls are in fact selected later,
it sometimes mandates the random selection of a reference date for each control
so that the distributions of the case diagnosis dates and control reference dates are
comparable. Only exposures occurring prior to the reference|diagnosis date would
be taken into account. This principle also implies that whatever exclusion criteria
have been applied to the cases must also be applied equally to the controls.

The Deconfounding Principle. This principle underlies the stratified sampling
of controls to render possible, or improve the efficiency of, an adjusted analysis
designed to control confounding (Sect. 6.3).

The Comparable Accuracy Principle. This principle, controversial even in the
authors’ view, suggests that controls be selected so that the errors of measurement
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of their exposures and covariates are comparable to the measurement errors of the
cases. The suggestion that dead controls be selected for dead cases, for example, is
sometimes made on the basis of the comparable accuracy principle (Gordis 1982).
Unfortunately, there is no guarantee that adherence to the principle will eliminate
or even reduce bias (Greenland and Robins 1985). Unless the measurement error
can be completely controlled, for example by obtaining error free measurements
for a validation subsample of cases and controls and appropriately incorporating
these data in the analysis, it can seriously compromise study validity even if case
and control data are equally error prone (Sect. 6.5.3).

Sources of Controls
The appropriate source population for sampling of controls is determined by
the study-base principal. When cases arise from an enumerated source popula-
tion such as an HMO, controls may be sampled from this cohort using a nested
case-control or case-cohort design (Figs. 6.1 and 6.2). One principal advantage of
conducting epidemiologic studies in the Nordic countries is their maintenance
of national disease and population registers which may be exploited for case and
control selection, respectively (see Chap. I.4 of this handbook). Standard survey
sampling methods are often used to select controls for “population based” stud-
ies in countries that do not maintain population registers. The most difficult and
controversial problems of control selection arise with hospital based studies.

Survey Sampling. Methods for scientific sampling of populations have been de-
veloped by census bureaus and other government agencies throughout the world.
The particular method most advantageous for any given epidemiologic study
will likely depend on the local administrative infrastructure. Survey sampling of-
ten proceeds in stages, where one first samples a large administrative unit, then
a smaller one and finally arrives at an individual household or subject. Such
multi-stage “cluster” sampling introduces modest correlations in the responses of
individuals sampled from the same primary sampling unit, more marked ones for
individuals sampled from the same lower level cluster. Although often ignored by
epidemiologists, usually at the cost of some underestimation of the variability in
estimated relative risks, these correlations should be accounted for in a rigorous
statistical analysis (Graubard et al. 1989). Fortunately, simple methods to accomo-
date cluster sampling are now routinely incorporated in the standard statistical
packages.

Random Digit Dialing. In view of the high costs of census bureau techniques in
the United States, methods of survey sampling through the telephone exchanges
have been developed (Waksberg 1978; Harlow and Davis 1988). Random digit
dialing (RDD)hasbecome increasinglypopular for control selection inpopulations
that have high rates of telephone access. Some implementations start with the
telephone exchange of each case for sampling of controls that are thereby matched
on somewhat ill-defined neighborhood factors (Robison and Daigle 1984). RDD
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methods may be costly for ascertainment of controls from minority populations,
requiring dozens of calls to locate a suitable household (Wacholder et al. 1992b).
They are particularly susceptible to bias because of higher selection probabilities
for households that have more than one phone line or more than one eligible
control and because of high rates of nonresponse (Sect. 6.5.1). The latter problem
is likely to become increasingly serious in view of the persistent use of answering
machines to screen out unwanted calls. The popularity of cell phones, moreover,
eventually may make it infeasible to use RDD to draw a random control sample
from a source population defined by geographic or administrative boundaries.

Neighborhood and Friend Controls. Matched controls may also be selected from
neighbors or friends of each case. For the former method, a census is taken of all
households in the immediate geographic area of the case and these are approached
in a random order until a suitable control is found. Care must be taken to ensure
that the control was resident at the same time the case was diagnosed. Even with
these precautions, neighborhood sampling may yield biased controls for hospital
based studies since it will not be guaranteed that the control would have been
ascertained as a case if ill, thus violating the study-base principle (Wacholder
et al. 1992b). Neighborhood controls are also susceptible to overmatching due
to their similarity to the cases on factors associated with exposure that are not
risk factors for disease (Sect. 6.3.3). These same difficulties confront the use of
friend controls, whereby a random selection is taken from among a census of
friends provided by each case. There may be further selection on factors related to
popularity since the friend selected as control may well not have listed the case as
a friend had the friend become ill (Robins and Pike 1990). The primary advantage
of friend controls would be a low level of nonresponse.

Hospital Based Controls. Many studies that ascertain cases through hospitals
also select controls from these same hospitals, which is of obvious logistical conve-
nience. Such controls are likely to have the same high response levels as the cases.
The fact that they may be interviewed in a hospital setting, as the cases are, is
an advantage from the perspective of the comparable accuracy principle (Mantel
and Haenszel 1959). The major difficulties stem from the fact that the hypothetical
study-base, the catchment of persons who would report to the particular hospital
if they developed the disease under study, may be different from the catchment
population for other diseases. Furthermore, many of the disease categories from
which controls could be selected may themselves be associated with the exposure.
A large part of the planning of hospital based case-control studies is devoted to
the choice of disease categories thought to be independent of exposure and to have
a similar catchment. The hope is that controls with such diseases will effectively
constitute a random sample, vis-à-vis exposure, from the study-base. Since the in-
dependence of exposure and disease diagnosis is rarely known with great certainty,
a standard recommendation is to select controls having a variety of diagnoses so
that the failure of any one of them to meet the criterion does not compromise the
study (Wacholder et al. 1992b; Rothman and Greenland 1998, p. 101). If it is found
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later that a certain diagnosis is associated with exposure, those controls can be
excluded.

How Many Controls per Case?
How Many Control Groups? 6.4.3

Case-Control Ratios. For a fixed number of study subjects, statistical power for
testing the null hypothesis is optimized by having equal numbers of cases and
controls. When the disease is extremely rare or acquisition of cases particularly
expensive, however, it may be important and cost-effective to increase the numbers
of controls. In order to have the same statistical power (to reject the null hypothesis
of no exposure effect against local alternatives) as a design with equal numbers of
cases and controls, a design with M controls per case would need only (M + 1)|2M
as many cases. When M = 2, for example, this would imply the use of 3|4 as many
cases, but twice as many controls, to achieve the same power as a design with
equal numbers. For a fixed number of cases, the relative efficiency of a design with
M controls per case relative to one that uses an unlimited number of controls is
therefore only M|(M + 1). Since 80% of maximum efficiency can thus be obtained
with M = 4, it is often inadvisable to seek a higher ratio. Exceptions occur when
sampling and data collection for controls is substantially cheaper than for cases or
if accurate estimation of large rate ratios, rather than a test of the null hypothesis,
is the primary statistical objective (Breslow 1982; Breslow et al. 1983).

Multiple Control Groups. Early case-control investigations, including the classic
study of Doll and Hill (1952), often utilized two or more control groups. Indeed,
multiple control groups were recommended by Dorn (1959) to improve the case-
control study so that it would “provide a more valid basis for generalization”. As
explained by Hill (1971, pp 47–48) “If a whole series of control groups, e.g., of
patients with different diseases, gives much the same answer and only the one
affected group differs, the evidence is clearly much stronger than if the affected
group differs from merely one other group.” Similar informal arguments have
been put forward in favor of multiple control groups as a means of addressing the
possible biases that may be associated with the use of any one of them (Ibrahim
and Spitzer 1979). Working from a more formal perspective, Rosenbaum (1987)
concluded that a second or third control group was useful only if supplemen-
tal information was available on whether such use addressed a specific bias. If
controls sampled from separate sources have different exposure histories, even
after statistical adjustment for potential confounders, this indeed suggests that
similar adjustment of the case-control comparison may be inadequate to control
confounding. However, failure to detect a difference among control groups may
give a false sense of security unless they were deliberately selected to differ with
respect to unmeasured potential confounders. Implementation of this last crite-
rion would clearly require some guess as to what those unmeasured confounders
might be.
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Recent reviews of case-control methods have tended to shy away from the use
of multiple control groups (Rothman and Greenland 1998, p. 106; Wacholder
et al. 1992b). They argue that there is usually a single “best” control group, and that
since the discovery of an adjusted exposure difference with other control groups
will force these to be discarded, the effort involved will have been wasted. However,
there may not be a “best” control group, or its identification may be controversial.
Discovery of a difference between control groups should generally encourage the
investigator to seriously suspect that confounding may have compromised study
results.

Pitfalls6.5

Case-control studies are susceptible to the same biases and problems of interpreta-
tion that afflict all observational epidemiological studies. These include confound-
ing, selection or sampling bias, measurement error and missing data. Selection
bias can be considered an extreme version of bias due to missing data where the
entire observational record is missing for subjects who are in the source population
but fail to be included in the study. Each of these topics is considered in detail in
other chapters of this handbook. Many methods described there for dealing with
such issues apply to case-control studies as well as to cohort studies. Attention is
confined here to a few of the potential problems to which case-control studies are
particularly susceptible.

Selection Bias6.5.1

As elaborated at length in Sect. 6.2.1, the cases and controls in a case-control study
arebest viewedas resulting fromoutcomedependent sampling fromanunderlying,
often idealized cohort study. The goal is to estimate the degreee of association of
disease risk with exposure that would have been found had complete records
been available for the entire cohort. The sampling of controls and sometimes
even of cases may be stratified, for example by sex and broad categories of age,
but otherwise is supposed to be random within the subpopulations of diseased
and non-diseased subjects. Selection bias arises when the sampling is in fact not
random. It poses a major threat to the validity of case-control studies.

The effect of sampling bias is easy to demonstrate quantitatively for an exposure
variable with two levels. For simplicity, we consider the effect on the odds ratio
associating exposure with the cumulative risk of disease during a defined study
period. The first 2 × 2 subtable displayed in Table 6.4 contains the population
frequencies of subjects who are exposed and become diseased during the study
period (P11), who are not exposed and become diseased (P01) and likewise the
frequences of being exposed or non-exposed and remaining disease-free (P10 and
P00, respectively). The target parameter of interest is the odds ratio ψ based on
these population frequencies. As shown in the next two subtables, the odds ratio ψ∗



Case-Control Studies 309

Table 6.4. Effect of selection bias on odds ratio measures of association

Population Sampling Expected
frequencies fractions sample frequencies

Case Cont Case Cont Case Control

Exposed P11 P10 f11 f10 f11 × P11 f10 × P10

Non-exposed P01 P00 f01 f00 f01 × P01 f00 × P00

Odds ratios ψ = P11×P00
P10×P01

ψf = f11×f00
f10×f01

ψ∗ = ψf × ψ

expected from the case-control sample equals the product of the true odds ratio, ψ,
times the cross products ratio of the sampling frequencies, denoted ψf. Hence
ψ = ψ∗, i.e., there is no bias, provided that ψf = 1. This will occur when the
sampling fractions for cases and controls are all the same, depend only on the
disease outcome, i.e., f10 = f00 and f11 = f01, or depend only on exposure, i.e.,
f01 = f00 and f11 = f10. Often the sampling fractions for cases are both near 1
whereas those for the controls are much smaller. The fact that this does not matter,
provided that the sampling fractions for exposed cases and non-exposed cases are
the same and similarly for controls, is another way of understanding why case-
control studies provide estimates of the relative risk (disease odds ratio). Bias does
occur when the sampling fractions depend jointly on exposure and disease, usually
because exposed controls are more or less likely to be sampled than non-exposed
controls. In a study that ascertained all the cases, but sampled exposed persons as
controls with twice the frequency as non-exposed persons, the estimated relative
risk (odds ratio) would be twice the correct value. This is known as Berkson bias
(Berkson 1946).

Some of the factors that contribute to selection bias are as follows.

Patient Dies Before Interview. When cases are ascertained through a population
based disease registry, a significant interval of time may elapse between initial diag-
nosis and notification to the registry. Some patients whose disease course is rapidly
fatal may therefore not be interviewed in person, but are either excluded from the
study or represented by a proxy interview subject to increased measurement error.
This selection factor may affect both cases and controls in hospital based studies.
It constitutes a major problem in reproductive epidemiology (see Chap. III.5 of
this handbook).

Physician Refuses Consent. Committees charged with protection of human re-
search subjects may require that permission for participation be given by the
patient’s physician. This could affect control participation in hospital based stud-
ies or case participation in general.

Subject Refuses Participation. The most common reason for selection bias in
case-control studies is refusal of the subject to participate, either actively by refus-
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ing to sign a consent form or passively by failure to return a questionnaire or turn
up at the appointed hour for a laboratory examination. Cases with disease are often
highly motivated to participate, whereas controls selected from the population are
not. Unfortunately, control participation rates often depend on some correlate of
exposure. Refusal rates for telephone surveys, for example, are higher for people
who are older, have fewer social relationships, are less well educated and have lower
income (O’Neil 1979).

Subjects Ascertained Through Their Household. Selection bias can occur when
controls are ascertained by first contacting households to determine whether a con-
trol lives there who is suitable for matching to the case, and only a single control
is selected from each household. In studies of childhood disease, where controls
are matched on age within two years of the case, a child with a sibling in the
same age range is less likely to be selected than one who has no such siblings
(Greenberg 1990).

Random Digit Dialing. Some other problems of selection bias are associated with
the use of RDD for control ascertainment besides the fact that this method iden-
tifies households rather than individuals. Households without telephones stand
no chance of selection, for example, whereas those with multiple telephones will
be over-represented. The absence of a telephone may particularly affect minority
populations.

Adjustments for Selection Bias
in Study Design and Analysis6.5.2

The most important consideration regarding selection bias is to avoid it so far as
possible. At the design phase of the study, the exclusion criteria for both cases and
controls may be chosen to maximize the probability of their ascertainment and
participation. If RDD is used for control selection, this means taking the obvious
step of excluding cases from households that lack telephones. Demographic, ge-
ographic and linguistic factors may enter into the exclusion criteria for the same
reason.

If selection bias cannot be avoided, as much data as possible should be gathered
on potential case and control subjects to allow prediction of which of them go on
to participate and which refuse. When sampling from the general population, it
may be possible to use a recent survey of the same population for this purpose,
provided of course that the survey itself had nearly complete response. If cases and
controls are drawn from an enumerated population such as an HMO, data may
already exist in medical or other records that can be used for this purpose.

At the time of analysis, one may attempt to adjust for selection bias in the
same way that one adjusts for missing data. This is to use sampling weights for
each participating subject, i.e., those with “complete data”, equal to the inverse
predicted probability that the subject would have been selected given the data
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collected for this purpose at the design stage. This is only useful, of course, if there is
substantial variability in the predicted probabilities. Alternatively, or additionally,
one may statistically adjust the analysis for factors that are thought to be associated
with selection but for which data are only available for participating subjects.
Such adjustment would consist of stratification of the analysis on factor levels, or
inclusion of the factor in a regression model for disease given exposure, just as
one adjusts for confounders (Breslow and Day 1980, Sect. 3.8). However, if there is
a substantial degree of nonresponse, it is quite unlikely that any adjustment will
mitigate the serious biases that can result. There is simply no way to deal with
it if selection fractions within factor levels used for adjustment purposes depend
jointly on disease and exposure.

Measurement Error 6.5.3

A second major limitation of case-control studies is their susceptibility to mea-
surement error. Cases and controls are often ascertained long after the relevant
exposures have occurred. In spite of Dorn’s (1959) admonition to use objective
measures of exposure, most case-control studies of environmental risk factors
continue today to measure exposure by interview or questionnaire. The potential
for misclassification of exposure levels in such research is enormous. First, sub-
jects may have only a vague memory of past exposures. Second, those who are
diseased at the time of interview may recall these past events in a different way
than those who are healthy controls. This may be in part because the early stages
of their disease led to changes in behavior that made recollection of past practices
more difficult. Interviewers may solicit and record answers differently if they have
knowledge of the diagnosis or of the patient’s status as case or control.

Austin et al. (1994) reviewed published reports of nine case-control studies of
diet and cancer in which an attempt had been made to assess the accuracy of recall
of dietary histories separately for cases and controls. According to their authors,
three studies provided “weak” and four “moderate” evidence for recall bias. How-
ever, these results themselves were likely subject to measurement error and may
have been understated in consequence.

Measurement error, whether or not it is differential between cases and con-
trols, can compromise conclusions by seriously biasing the relative risk estimates
from case-control studies that use dietary self reports or similarly error-prone
measurements. Prentice (1996) developed a mathematical model for measurement
error that allowed for correlation of the error with the true exposure level and
for systematic underreporting of exposure for persons with high exposure lev-
els. He fitted the model to replicate measures of dietary fat intake, some taken
using a four day food record and others using a food-frequency questionnaire,
for control subjects enrolled in the Women’s Health Trial (Henderson et al. 1990).
Employing results from international geographic correlation studies to gener-
ate the “true model”, in which subjects at the 90th percentile of the distribu-
tion of dietary fat intake had 3 or 4 times the risk of disease as those at the
10th percentile, he showed that measurement error could plausibly reduce the



312 Norman E. Breslow

relative risks to 1.1. The obvious conclusion from these calculations was that
“dietary self-report instruments may be inadequate for analytic epidemiologic
studies of dietary fat and disease risk because of measurement error biases” (Pren-
tice 1996).

A substantial and concerted effort has been made by statisticians to develop
methods of data analysis that correct for the bias in relative risk estimates caused
by measurement error (see Chap. II.5 of this handbook and the text by Carroll
et al. 1995). Some require the availability of “gold standard”, i.e., error-free, mea-
surements on a fairly large number of subjects in the validation subsample. Others
assume that statistically independent true replicate measurements are available.
Unfortunately, data collected in case-control studies rarely meet these stringent re-
quirements, at least not in their entirety. It therefore behooves us to recall Bradford
Hill’s (1953, p. 995) sage advice:

One must go and seek more facts, paying less attention to techniques of handling
the data and far more to the development and perfection of the methods of
obtaining them.

Conclusions6.6

The case-control study played a major, successful role during the second half of the
twentieth century in identifying risk factors for chronic disease. It has also proven
helpful for evaluation of the efficacy of vaccination (Comstock 1994) and screening
(Weiss 1994) programs. The twenty-first century will witness its continued use
as a cost-effective study design, with increasing application in genetic epidemiol-
ogy (Khoury and Beaty 1994) and particularly in the study of gene-environment
interactions (Andrieu and Goldstein 1998). Statisticians and epidemiologists will
continue to develop more efficient study designs and methods of data analysis that
take full advantage of all available data. When a case-control study is conducted in
an HMO, for example, some data will likely be available on either the exposure or
the control variables for all subjects in the underlying cohort. Two-phase sampling
designs, whereby biased samples of cases and controls are selected using the data
available for all subjects, then offer the potential for much greater efficiency than
the standard case-control design (White 1982; Breslow and Cain 1988; Langholz and
Borgan 1995; Breslow and Chatterjee 1999). Chapter I.7 of this handbook discusses
these and other evolving study designs and analyses.

The advantages of case-control methodology in terms of speed and cost may
have also contributed, ironically, to a diminished stature for epidemiology and
biostatistics in the eyes both of the scientific community and of the general public
(Breslow 2003). Part of the problem is an inherent aversion to the “black box”
approach of risk factor epidemiology that associates cause and effect without the
need for any understanding of pathogenetic mechanisms. Epidemiologic findings
are most convincing when supported by relevant laboratory research. Another part
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of the problem is the saturation of the news media with conflicting reports based
on case-control and other studies that are too small, poorly designed, improperly
analyzed or overly interpreted. Taubes (1995) began his controversial and influ-
ential article on the limitations of epidemiology with the observation: “The news
about health risks comes thick and fast these days, and it seems almost constitu-
tionally contradictory.” The epidemiologists he interviewed for this article cited
the ability of confounding, selection bias and measurement error to overwhelm
smaller exposure effects. One even suggested that no single study, no matter how
well conducted, should be viewed as “persuasive” unless the lower limit of the
95% confidence interval for the rate ratio exceeded 3 or 4. Very few published
studies, even when reported by the press as “suggestive” of an association, meet
this stringent criterion.

Medical science and public health would be well served by fewer, larger case-
control studies designed to test specific hypotheses that are carefully articulated
in advance. Studies that can barely “detect” a relative risk of 2 may not provide
convincing evidence of a dose-response gradient and are unlikely to enable one
to determine whether an elevated relative risk in a particular disease subgroup,
even one specified in advance, is evidence for the specificity of association that
can be useful in causal interpretation (Weiss 2002). (There are of course excep-
tions, as when a unique exposure contributes to an outbreak of an extremely rare
disease. Recall the DES-adenocarcinoma of the vagina story mentioned in the
Introduction.) Investigators are also well advised to develop a strict protocol for
selection of cases and controls and for collection and analysis of the data. Doll
and Hill (1952) utilized such a protocol. They also had the advantage of working
during the punch card era that discouraged “data dredging” and the inclusion of
all but the most important variables in the analysis. A reasonable strategy might
be to perform a maximum of three carefully planned analyses of the association
between the primary exposure and disease: one without adjustment; one adjusted
for a short list of confounders known a priori to be associated with disease; and
the third adjusted for a specified list of known and suspected confounders. In
case of conflict, the major interpretation would be based on the second analysis
though the results of all three would be reported. Flexibility would be needed in
application, of course, especially to accommodate changes in the study protocol
after the study had commenced. Finally, investigators would be well advised to
exercise greater caution in advertising their findings to the press before confirma-
tion was forthcoming from other sources. By following basic principles of good
statistical and scientific practice, the case-control study can gain credibility within
the research community and enhance its standing as a basis for public health
action.
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Introduction7.1

A fundamental challenge pervasive to all experimental and nonexperimental (ob-
servational) research is valid inference of causal effects. Although actions (through
undefined mechanisms, but conventionally denoted by treatment, exposure, etc.)
and reactions (e.g., disease, remission, cure) must occur by definition in individ-
uals, the realm of epidemiology principally lies in the study of individuals in the
aggregate, such as patients enrolled in clinical trials, participants in cohorts, and
populations. Until recently, advancements in epidemiological methods developed
in the last half-century have hence largely fallen into the domain of the two major
observational study designs used: cohort and case-control studies (cf. Chap. I.5
and I.6 of this handbook).

The justification for these two designs has seemingly rested on their ability to
approximate – albeit observationally – the widely accepted paradigm of applied
biomedical research: the randomized trial. But thepotentially exquisite control that
study investigators can often exercise to approach comparability of groups, and
hence (in the absence of other biases) validity, cannot in general be commensurate-
ly achieved in nonexperimental research. To compensate, some epidemiologists
have invokedconventions suchas the“studybase”concept,whichhave intuitiveap-
peal and some practical value in study design, but ultimately do little to contribute
to an understanding of the theoretical underpinnings of observational studies.
Whether one accepts randomized trials as models for epidemiologic designs to
emulate, or envisions study bases as natural referents, however, is immaterial, be-
cause these concepts neither add to the transparency of causal inference nor do
they lend themselves to further advances in modern observational study design.
Clearly and by necessity, a different paradigm is required.

The premise underlying such a paradigm is that individuals potentially live in
a duality of exposure and nonexposure, with a corresponding duality of observable
and hypothetical outcomes. That individuals living under one exposure condition
should, in theory, be compared with themselves under other counterfactual (i.e.,
counter to fact) conditions leads in turn to the premise of “case-only” studies.
This chapter is thus predominantly concerned with those studies that juxtapose
a case series (i.e., individuals that have experienced a singular health event) with
a hypothetical comparison group. The legitimacy of such an approach, which
implicitly precludes the need for studying an observable comparison (e.g. control)
group, derives from the “potential outcomes” formulation of establishing causal
inferences (Little and Rubin 2000). We proceed to show its utility in recent, and
most probably future, developments in modern epidemiologic study design.

Nevertheless,notall settingsareconducive tocomparingcasesagainsthypothet-
ical distributions. When these circumstances arise, such as when exposure effects
are not intermittent and transient or when induction times are not transitory (en-
hancing the likelihood of carryover effects), traditional case-control studies and
their more modern variants take on a greater relevance. This chapter will therefore
also address two of these designs: case-cohort and nested case-control studies.
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They share in common a conceptual understanding of case-control studies that is
somewhat at odds with the more traditional viewof these designs, namely a de facto
comparison of cases to noncases. Such a viewpoint fails to account for the artificial
nature of this dichotomy: noncases can become cases, even during the course of
a study. The issue is resolved by recognizing that incidence case-control studies
are in reality cost and size-efficient modifications of cohort studies, in which cases
are not simply compared with noncases, but instead with a sample from a cohort
of individuals at risk, some of whom might become cases. So in reality, all case-
control studies are “nested” within a cohort (though the constituents of cohorts
are not always obvious, as in hospital-based case-control studies). Viewed in this
unifying light, the case-control studies discussed in this chapter assume a ratio-
nal connection (albeit with sometimes different validity assumptions) not only
to cohort studies, but in turn to case-only, experimental, and potential outcomes
research as well.

Case-Cohort Studies 7.2

To illustrate the relationship between case-control studies with differing control se-
lection strategies, consider a study period (t0, t1) within which cases occur and are
recruited. The traditional view of case-control studies has been to sample controls
from the population at risk at the termination of the study period (t1). Although
direct estimation of exposure-specific incidence proportions is not possible with-
out ancillary information, employment of such cumulative incidence sampling of
controls allows the use of the exposure odds ratio for estimation of the incidence
proportion ratio (IPR) under the rare disease assumption (Cornfield 1951; Chap. I.6
of this handbook). An alternative control sampling approach frequently employed
in nested case-control studies, incidence density sampling, allows odds ratio esti-
mation of the constant incidence rate ratio without invocation of the rare disease
assumption (Miettinen 1976; Greenland and Thomas 1982; Chap. I.6. Unless time
is known a priori to not be a confounder, this method typically relies on riskset
sampling, in which a case is matched on the basis of time of case occurrence (and
potentially other confounders) to one or more members of the cohort at risk,
followed by employment of an appropriate matched analysis (e.g., conditional lo-
gistic regression; cf. Chap. II.3 of this handbook). Under this design, individuals
serving as controls in one riskset are eligible to become cases to be later matched
with a different riskset from the remaining cohort-at-risk. Interestingly, when the
parameter of interest is the incidence proportion ratio, the matched odds ratio
under density sampling even generally outperforms the exposure odds ratio un-
der cumulative incidence sampling as a better estimator (Greenland and Thomas
1982).

Several authors (Kupper et al. 1975; Miettinen 1982; Prentice 1986) envisioned
yet another type of case-control study in which controls are sampled exclusively
from the cohort at risk at t0; i.e., prior to the onset of case occurrence in (t0, t1)
and without regard to their future outcome status. This design, hereafter referred



324 Philip H. Kass, Ellen B. Gold

to as a case-cohort study (but also known as a case-base study), is notable not
so much for its dissimilarity with other case-control design variants, but rather
for what it has in common. The key feature distinguishing a nested case-control
study from a case-cohort study is whether controls are matched to cases on time to
outcome of the case (Wacholder and Boivin 1987). Thus, a case-cohort study can be
likened to an unmatched nested case-control study, with controls sampled from the
population at risk at t0 (hence excluding prevalent cases) without regard to failure
times. Still, a matched nested case-control study requires control sampling from
the entire cohort at risk throughout (t0, t1), while the case-cohort study does not
because controls are selected prior to any occurrence of incident cases. Exposure
information, therefore, need only be obtained on those individuals sampled as
controls at t0 and any subsequent cases that may or may not be controls. This
reveals another advantage of the case-cohort study: the same subset of the cohort
can be employed as a control group for studies of multiple outcomes. In contrast,
a nested case-control study requires different matched risksets for each outcome
studied.

When an outcome is rare (i.e., most observations are censored), follow-up of
a full cohort, whether closed or dynamic, can be expensive and inefficient. In
contrast, by sampling only a subset of the cohort, the case-cohort study affords
advantages found in both cohort and case-control studies. Table 7.1 shows how
a hypothetical case-cohort study from a cohort of N individuals is implemented.
In this example, an individual in the cohort has probability p of being randomly
sampled (with sampling independent of exposure) and included in the subcohort
when cohort membership is fixed at t0. Thus the subcohort is comprised of pN
individuals on whom exposure information is ascertained (assuming no loss to
follow-up). This principle can be extended to a dynamic cohort, allowing entrance
at different times. Over the study period (t0, t1) a total of A exposed cases +
B unexposed cases occur, only some of whom (pA + pB) are members of the
subcohorts. The efficiency of the study is attributable to the economy of not
evaluating censored individuals outside the subcohort (e.g., (1−p)(N1+N0−A−B)).

Table 7.1. Expected distribution of cases and controls in a case-cohort study with sampling fraction p,

with sampling independent of exposure status

Exposed Nonexposed
Sampled Nonsampled Sampled Nonsampled

subcohort remainder subcohort remainder
of cohort of cohort Total

Cases pA (1 − p)A pB (1 − p)B M+

Censored p(N1 − A) (1 − p)(N1 − A) p(N0 − B) (1 − p)(N0 − B) N − M+

individuals

Individuals pN1 (1 − p)N1 pN0 (1 − p)N0 N
at risk at t0
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It is noteworthy that cases occur ((1 − p)(A + B)) that are not part of the subcohort
and thus are not eligible to be included in risksets for analysis prior to their
failure times, but nevertheless are retained as cases in the study. Although it is
advantageous to obtain a census of the cases, particularly when the outcome is
rare, cases can potentially be sampled as well.

When the cohort is fixed, direct estimation of the crude IPR is possible without
the rare disease assumption. Intuitively, with complete case ascertainment one
would expect the case-cohort odds ratio (A|B)|(pN1|pN0) to estimate the IPR.
However, Sato (1992a) developed a maximum likelihood estimator (MLE) that is
asymptotically more efficient:

ÎPRMLE =
A

[
BM1

M+
+ D

]
B

[
AM1

M+
+ C

] (7.1)

where A1 = pA, A0 = (1−p)A, B1 = pB, B0 = (1−p)B, C = p(N1 −A), D = p(N0 −B),
M1 = A1 + B1, and M+ = A + B (see Table 7.1). It is important to note that this
equation does not in general algebraically simplify further because, by design,
control exposure information is obtained only on the members of the subcohorts
N ′

1 and N ′
0, where N ′

1 = pN1 and N ′
0 = pN0, and not on the entire cohort N. The

key difference between the two IPR estimators lies in how the number of sampled
cases is employed. For the case-cohort odds ratio, the actual exposure-specific
number of sampled cases (A1 and B1) is used in the calculation of the size of
the cohort sample (i.e., N ′

1 = A1 + C, and N ′
0 = B1 + D). In contrast, the MLE

estimates the exposure-specific number of cases as substitutes for A1 and B1 by
multiplying the total number of cases in the exposed or unexposed subcohorts
(A or B) by the unconditional (on exposure) overall sampling fraction of cases
(M1|M+, the proportion of cases sampled as controls in the combined exposed and
unexposed subcohorts). When the exposure-specific sampling fractions are equal
to the overall sampling fraction, the two IPR estimators will be equal.

To illustrate these points, consider the data from a case-cohort study by Miet-
tinen (1982) and cited by Sato (1992a). The study included 10 individuals sampled
in the exposed subcohort (N ′

1), 5 of which became cases (A1), and an additional
5 exposed cases occurred that were not in the subcohort (A0). It also included
90 individuals sampled in the unexposed cohort (N ′

0), 15 of which became cases
(B1); an additional 35 unexposed cases occurred (B0). The intuitive estimator of the
IPR for these data is 1.8, while the MLE is 2.2. However, if for example the quantity
of 35 unexposed cases not in the sampled subcohort is changed to 15 unexposed
cases, then the ratio of sampled to unsampled cases is constant for both exposure
levels, and both IPR estimates equal 3.0.

When the outcome is not rare, random sampling of cases may be utilized. Sato
(1992a) provides further details about incorporating such sampling into the analy-
sis. When the outcome is rare, then few if any cases would be expected in the cohort
sample (M1 << M+), and (7.1) reduces to the case-control odds ratio (AD|BC).
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A large sample variance estimate of ln (ÎPRMLE) (Sato 1992a) is given by:

V̂ar[ln(ÎPRMLE)] =
1

A
+

1

B
+

⎡⎣1 − 2

(
M1

M+

)⎛⎝ 1
AM1
M+

+ C
+

1
BM1
M+

+ D

⎞⎠⎤⎦
−

N ′2A B(A0 + B0)(A1 + B1)

(A + B)3
(

A M1
M+

+ C
)2 (BM1

M+
+ D

)2 (7.2)

where N ′ = N ′
1 + N ′

0.
A (1 − α)% confidence interval for the crude IPR can be obtained from:

ÎPRMLE exp

{
±z1− α

2

(
var

[
ln
(
ÎPRMLE

)] )1|2
}

, (7.3)

where z1−α|2 denotes the (1 − α|2)-quantile of the standard normal distribution.
Calculation of the IPR estimator and its large-sample distribution can be ex-

tended to stratified analyses using a Mantel-Haenszel estimator (Sato 1992b). With
k strata, the estimator is given by

ÎPRMH =

∑
k

N ′
0kAk
Tk∑

k

N ′
1kBk
Tk

(7.4)

where Tk is the total number of distinct individuals in stratum k (Ak +Bk +Ck +Dk).
The variance estimator of ln(ÎPRMH), that applies to both large strata and when

data are sparse, is

V̂ar
[
ln
(
ÎPRMH

)]
=

∑
k

[(
B0k + Dk

)
AkN ′

1k +
(
A0k + Ck

)
BkN ′

0k + A0kDk + B0kCk

]
(Tk)2∑

k

N ′
1kBk
Tk

∑
k

N ′
0kAk
Tk

(7.5)

As before, confidence limits can be obtained by applying the following formula:

ÎPRMH exp

{
±z1− α

2

(
var

[
ln
(
ÎPRMH

)] )1|2
}

. (7.6)

When the parameter of interest is the incidence rate ratio, the analysis becomes
more complex. If all members of the cohort were followed and their exposure and
outcome status, i.e. failure times measured, a Cox proportional hazards regression
model could easily be employed. Instead, a modification of this model is required
for case-cohort data. For further discussion about analytic issues in case-cohort
studies, see Barlow et al. (1999).
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The choice between which hybrid case-control study to undertake – case-cohort
or nested case-control – ultimately rests less on study-specific efficiency consider-
ations than on what primary effect measure is required, and whether the study is
investigating one or multiple health outcomes. These issues are discussed in detail
in Langholz and Thomas (1990) and Wacholder (1991).

Nested Case-Control Studies 7.3

Design Features 7.3.1

Nested case-control studies have received increasing attention in the last few
decades, partly due to the increased number of large cohorts that have been estab-
lished and followed that have permitted selection of cases and controls for such
studies (Langholz and Thomas 1990). Nested case-control studies share a number
of design features and advantages with case-cohort designs, most notably selec-
tion of cases and controls from the same cohort. This feature provides a number
of important strengths, discussed in greater detail below, but fundamentally is
designed to sample the cases and controls from the same frame, the cohort, thus
minimizing the chance of lack of comparability of the cases and controls. The two
designs, however, also differ in one important respect. In the case-cohort design
(described in greater detail above), the controls are comprised of a random sample
of the cohort at baseline, whereas in a nested case-control study, the controls are
a random sample of those in the cohort at the time of diagnosis of each case, and
can in addition be matched to each case on various factors at the time of diagnosis
of the matched case (Szklo and Nieto 2000). Thus, as in a case-cohort design,
the cases and controls in a nested case-control study are participants in a cohort,
so that this design is also a form of a cohort study. The method of selection of
controls in a nested case-control study is equivalent to matching controls to cases
on duration of follow-up and thus on opportunity for disease occurrence, while
a case-cohort study could be considered an unmatched nested case-control study.
The method of control selection in a nested case-control study is thus incidence
density, also known as riskset sampling (Szklo and Nieto 2000). The controls in
a nested case-control study, therefore, might develop the disease of interest subse-
quent to the diagnosis of the cases but represent cohort members at risk of being
cases when each case occurs. If controls in a nested case-control design are a ran-
dom sample of the cohort at the time each case is diagnosed, then cases could have
been included as controls in previous risksets, and the estimated exposure odds
ratio is a statistically unbiased estimate of the constant incidence rate ratio (Green-
land and Thomas 1982). However, if controls are not eligible to become subsequent
cases, the analysis is that of a traditional cumulative incidence case-control study,
and the effect measure is the standard exposure odds ratio, which provides an
unbiased estimate of the disease risk ratio under the rare disease assumption.



328 Philip H. Kass, Ellen B. Gold

Strengths7.3.2

The nested case-control design has a number of advantages. It is more efficient
than a cohort design, i.e., it can detect differences as statistically significant with
a smaller sample size than that required foracohort analysis. It shareswith thecase-
cohort design the advantage of having measured exposures of interest at baseline
entry into the cohort, so that the temporal sequence of exposure preceding disease
is known and appropriate for deriving causal inferences. Exposure histories are not
subject to recall bias because they are determined before the cases are diagnosed.
This design also avoids the potential bias of not including fatal cases and may
minimize the potential bias of non-participation, since exposure data is collected
before diagnosis of disease. Both biases often occur in the traditional case-control
approach. Further, since cases and controls in this design comprise a sample of
the baseline cohort, and assessment of samples obtained at baseline need only
be performed for this subset and not for the entire cohort, even though the cost
of assembling the cohort still exists, the overall cost of the nested case-control
approach is less in terms of assessing the baseline samples (e.g., serum assays for
the subset in the nested case-control study) than an analysis of all the samples for
the entire cohort, as would be the case for a full cohort analysis (Kelsey et al. 1996).
This design also avoids the bias of the disease modifying biologic characteristics
and thus not reflecting cause but rather effect of disease, as may occur when
biologic samples are evaluated after diagnosis of disease in the traditional case-
control approach, given that samples were obtained before disease occurrence in
the nested case-control design. Finally, the nested case-control design minimizes
selection biases introduced when cases and controls are not selected from the
same populations, although differential losses of cases and controls from the same
cohort can still introduce selection bias, just as differential loss to follow-up in
a cohort study can introduce selection bias, for example, by socioeconomic status.

Limitations7.3.3

The nested case-control design shares with the cohort design several limitations.
First, dataonexposureand|or specimens for exposureanalysismustbecollectedon
the entire cohort at baseline. Thus, the costs of data collection are likely to be higher
than a traditional case-control study, although the costs of assaying specimens will
be lower than for a cohort study analysis in which all specimens would be assayed.
Further, investigators must have the foresight and resources to collect appropriate
exposure data and samples to assess exposure (once disease has occurred in cases)
to reap the benefits of avoiding the potential biases mentioned above. In addition,
the time required for a nested case-control study, if appropriately measured from
the baseline assembly of cohort information, is longer and thus less suitable for
very rare diseases or those with long latent periods, than for the traditional case-
control design. Just as in any observational study, exposure-disease associations
may be observed due to uncontrolled confounding if inadequate data on potential
covariates is collected, which may be a particular problem in nested case-control
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studies because the cohort study in which such a study is nested may not have
been designed to collect sufficiently detailed information needed on confounding
variables for the question under study in the nested case-control investigation.
While additional information may be collected on confounders during the nested
case-control study, it is subject to recall bias that is largely avoided by using
data collected at baseline for the cohort study in which the nested case-control
investigation is conducted. Finally, silent preclinical disease at baseline may affect
some baseline measurements and thus result in misleading findings, although
this limitation may be minimized by excluding cases diagnosed within a defined,
usually short, period after baseline.

Case-Crossover Studies 7.4

Under circumstances that could be described as both ideal and impossible, it
would become a trivial matter to evaluate causation within an individual, thus
obviating the need for observational studies at all. This ideal, which is assumed
in Table 7.2, reflects the counterfactual capacity to evaluate not only the health or
disease experience of a cohort of exposed individuals (column 1), but what the
experience of this cohort would have been had it been possible to evaluate these
same individuals during the same time frame as when they were actually exposed,
except that exposure would have been removed or its effect completely blocked
(column 2).

Such a comparison between these same individuals under two identical con-
ditions (save for the fact of exposure) could then lead not only to an individual-
by-individual assessment of the causal or preventive effect of exposure, but also
the average causal effect of exposure in the cohort (A|A∗). The value of the un-
exposed cohort (column 3) for comparison with the exposed cohort (column 1),
and hence effect estimation, lies in the validity of its exchangeability property; i.e.,
B|N0 = A∗|N1.

Table 7.2. Hypothetical incidence data from exposed (as well as counterfactually unexposed) and not

exposed cohorts. Note that A + C is constrained to equal A∗ + C∗

Exposed Exposed∗ Not exposed
(counterfactually

unexposed)

Diseased A A∗ B

Not diseased C C∗ D

Total person-time N1 N1 N0

at risk
Incidence A|N1 A∗|N1 B|N0

proportion
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Given the pragmatic limitations which epidemiologists operate under – point-
edly, the inability to have study participants and investigators travel backward
in time, rendering column 2 unobservable – it becomes a challenge, if not an
imperative, to come as close as possible to the ideal. In experimental research,
the crossover study, in which individuals crossover between periods of differ-
ent exposures (possibly including nonexposure, as in a control, placebo, or sham
treatment), affords the opportunity to observe different treatments within the
same individual, albeit at different (and potentially confounding) time periods.
The attractiveness of this experimental approach, underlying the ability to control
for individual-level confounders, is offset by the assumption that neither period
or carryover effects occur. Thus this design is optimally suited to exposures with
both a rapid onset of action as well as a brief effect period.

The case-crossover design (Maclure 1991) is the observational study analog
of the crossover study. A key distinguishing characteristic of the former is that
study participants – not investigators – determine their own exposure. A very
important feature of case-crossover studies, like crossover studies, is that they
are best suited to episodic exposures with short induction and transient effect
periods. Thus it is possible to envision, following an exposure that modifies risk
in individuals, a brief induction period during which risk does not change, fol-
lowed by a period subdivided into intervals characterized by varying degrees
of altered risk, and ultimately a return to baseline risk. The time interval of el-
evated or decreased risk following exposure is known as the effect period. In
practice, the effect period may not be known, but may be inferred from ancillary
information (e.g., pharmacokinetic properties of a drug, duration of effect of en-
dogenous catecholamine release following physical exertion, period of heightened
immune activity following vaccination, half-life of a chemical, incubation times
of a pathogen following infection, etc.). Sensitivity analyses postulating different
combinations of induction time and duration of exposure effects can provide in-
sights into periods of maximum influence. As noted by Maclure (1991), postulating
effect periods that are either too brief or too long leads to nondifferential mis-
classification of exposure, resulting in effect measures that are biased towards the
null. In the absence of other biases, the optimal choice of an effect period is that
which minimizes nondifferential misclassification, and hence maximizes the effect
measure.

Data from an individual i in a case-crossover study can be envisioned in Ta-
ble 7.3. When the distribution of exposure is stationary over the case and control
period, the Mantel–Haenszel incidence rate ratio (ÎRRMH) is approximately unbi-
ased (Vines and Farrington 2001). Each case occupies a unique stratum. ÎRRMH,
corresponding to the average proportionate change in the rate of the outcome
resulting from exposure, can be calculated from the following formula (note:
N1i + N0i = Ti):

ÎRRMH =

∑
i

aiN0i|Ti∑
i

biN1i|Ti
(7.7)
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Table 7.3. Representation of case-crossover data for a single individual developing an outcome event

either within or outside an exposure effect period

Time
within effect outside effect Total

period period

Case occurrence ai bi

Person-time N1i N0i Ti

The variance of ln(ÎRRMH) (Greenland and Robins 1985) can be estimated by:

V̂ar[ln(ÎRRMH)] =

∑
i

(ai + bi)N1iN0i|T2
i(∑

i
aiN0i|Ti

)(∑
i

biN1i|Ti

) . (7.8)

To illustrate, consider the hypothetical data in Table 7.4 (adapted from Table 4 of
Maclure 1991). The column of expected exposure odds is equivalent to Maclure’s
expected concurrence odds, and refers to the ratio of the expected amount of
time an individual spends in the effect period, based on the usual frequency of
exposure, to the expected amount of time an individual spends outside the effect
period (N1i:N0i from Table 7.3) over the duration of retrospective follow-up for
cerebrovascular accidents. In this example, the period of retrospective follow-
up was six months, or equivalently 4383 hours. To illustrate, for participant 1,
the usual frequency of aerobic exercise was three times per week. If the effect
period is assumed to be two hours beginning immediately after the cessation

Table 7.4. Data from a hypothetical case-crossover study evaluating the relationship between aerobic

exercise and the onset of cerebrovascular accident. The effect period is two hours. The period of

retrospective follow-up is six months or equivalently 4383 hours

Exposure odds
Individual Usual frequency Last exposure before Observed Expected

(i) of exposure cerebrovascular accident (ai : bi) (N1i : N0i)

1 3 /week 30 min 1 : 0 156 : 4227

2 1 /week 1 day 0 : 1 52 : 4331

3 1 /month 21 days 0 : 1 12 : 4371

4 0 /month 1 year 0 : 1 0 : 4383

5 5 /week 45 min 1 : 0 260 : 4123

6 0 /month 2 years 0 : 1 0 : 4383

7 2 /month 15 hours 0 : 1 24 : 4359

8 4 /week 3 hours 0 : 1 208 : 4175

9 1 /week 6 hours 0 : 1 52 : 4331

10 0 /month 4 years 0 : 1 0 : 4383
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of exercise, then the expected number of hours spent in the six-month effect
(exposure) period = 2 hours/day × 3 days/week × 26 weeks = 156 hours (N1i in
Table 7.3), leaving 4383 − 156 = 4227 hours unexposed (N0i in Table 7.3). Because
participant 1’s cerebrovascular accident occurred within the two hour effect period,
the observed exposure odds for this individual – the ratio of the ai and bi cells in
Table 7.3 – is 1 : 0. Using (7.7) and (7.8), the Mantel–Haenszel incidence rate ratio
for cerebrovascular accidents within two hours of aerobic activity in this sample of
individuals and its corresponding 95% confidence interval are 24.0 and 3.1 − 188.1,
respectively.

The preceding example derived the usual frequency of exposure by utilizing
a census of the information from the six months prior to the event onset. In
practice, retrospective follow-up time may be briefer or longer, depending on
the stability of the exposure distribution. The analysis presupposed no within-
individual confounding occurred over time, and that the effect of aerobic exercise
does not depend on time of day.

Mittleman et al. (1995) examined five different approaches to modeling case-
crossover data from the control period, including the “usual frequency” scheme of
obtaining expected exposure odds above. They also examined the relative sampling
efficiencies and restrictiveness of the assumptions inherent in each approach. Four
of the modeling approaches involved different methods of studying the control
period in the 25 one-hour periods immediately preceding myocardial infarction,
with exposure being heavy exertion. The first approach the authors evaluated
was called the “Pair-Matched Interval Approach”, in which the one-hour hazard
period immediately prior to the onset of myocardial infarction was contrasted
with the one-hour control period from the same time of day 24 hours earlier
within the same subject. These data, which are analyzed using standard methods
for matched-pair data (e.g., Mantel–Haenszel or conditional logistic regression
estimators), control for confounding by time of day, without the need for any
assumptions about baseline hazard in each of the 24 one-hour periods in the day.
The analysis can be made more statistically efficient by increasing the number of
control intervals sampled. However, this method is not well suited to evaluating
other exposures that occur at regular and predictable intervals during a 24 hour
period. For example, if an individual reliably self-administers a medication with
potential cardiovascular effects to be taken at 08:00 and 20:00 hours each day, then
by comparing exposure on the day of disease occurrence to the same time 24 hours
earlier this approach will ensure perfect concordance between hazard and control
periods, resulting in bias towards the null. A second strategy, the “Nonparametric
Multiple Intervals Approach”, involves explicitly modeling exposure information
on each of the 24 one-hour categorical intervals in the day prior to the myo-
cardial infarction. This model, besides controlling for confounding by time of day,
estimates a baseline hazard for each of the 24 one-hour intervals. Although this
categorical model, with indicator variables representing the one-hour intervals,
makesnoassumptionabout the functional relationshipbetween the timeofdayand
myocardial infarction incidence, a third model, the “Parametric Multiple Intervals
Approach” does exactly that. Instead of indicator variables, the authors employed
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sine and cosine functions, based on consistency with prior (external) information
on temporal patterns of myocardial infarction occurrence. Under the assumption
that the model is correctly specified, it provides a synoptic estimate of the effect
of exposure while controlling for confounding by time of day. A fourth strategy,
called the “Parsimonious Multiple Intervals Approach”, assumes the absence of
any confounding by time of day; this is equivalent to a crude analysis that is
incognizant of time of day. As noted above, the final scheme, the “Usual Frequency
Approach” utilizes a census of the exposure information from an extended period
of time prior to the myocardial infarction; it is, in essence, a series of distinct
cohort studies of each individual, who in turn constitutes a unique stratum for
analysis.

In all five of these models it was possible to estimate a single summary effect of
exposure under the assumption of no effect modification of the exposure-outcome
association by time of day. Each of the models could be analyzed using conditional
logistic regression (with the caveats noted below). The authors showed that while
the number of control periods sampled had little effect on the incidence rate
ratio estimate, as the periods sampled increased, the relative efficiency (marked
by a narrowing of the respective confidence intervals) concomitantly increased as
well, regardless of what underlying model assumptions were invoked. The “Usual
Frequency Approach” led to the smallest variance of the estimated logarithm
of the incidence rate ratio, and hence narrowest confidence interval, but at the
cost of assuming no within-individual confounding unless further information is
available on the complex conditional relationships among all determinants of risk
(Mittleman et al. 1995). Although the modeling approach by these authors may
not be appropriate in all circumstances, they do underscore the point that case-
crossover studies, like their case-control counterparts, can be conducted using
different control period sampling schemes and employing different exposure and
confounder|effect modifier assumptions.

However, it has been demonstrated by Vines and Farrington (2001) that when
exposures within individuals are correlated between different time intervals (i.e.,
are not independent), the conditional logistic regression model can lead to biased
effect estimates and is hence precarious to use. This might arise, for example,
in a study of anti-inflammatory drug use in individuals allowed to self-medicate:
during periods of elevated pain people would be more likely to take the medication,
while during periods of relief they would be less likely. Because self-medication in
one time interval is likely to provide some insight into self-medication in adjacent
time intervals, the exposure information cannot be considered independent. When
there is no true relationship between exposure and the outcome of interest, so long
as exposure is stationary over time, the conditional logistic regression model
should not erroneously suggest such a causal effect of exposure, although time of
day, if explicitly modeled, could still demonstrate an effect on disease incidence. In
contrast, the greater the true effect of exposure, the greater is the model’s potential
for bias, which can be either towards or away from the null.

It has been scarcely before the nineties of the last century since the formalization
of the case-crossover study, and a deeper appreciation for its limitations – and for
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subsequent modifications to enhance validity – continues to evolve. One threat
to validity, the lack of stationarity of exposure over time, is well-recognized and
the subject of considerable recent research (e.g., Greenland 1996; Suissa 1998; Na-
vidi 1998; Navidi and Weinhandl 2002). Likewise, information bias is particularly
problematic in case-crossover studies compared to unmatched case-control stud-
ies because matched sets, by virtue of their matching on correlates of exposure, are
particularly sensitive to misclassification of the study exposure (Greenland 1982,
1996). The customary sources of bias in traditional observational study designs,
including confounding, selection, information, censoring, and misspecification,
all have counterparts in case-crossover studies. These sources of bias are explored
in more detail in Redelmeier and Tibshirani (1997) and Maclure and Mittleman
(2000).

Case-Time-Control Studies7.5

One of the assumptions – and limitations – of the case-crossover design is that
of stationarity (stability) of the distribution of study exposure over time. Such an
assumption takes on a reasonable legitimacy for a transient exposure assessed over
a relatively short referent time interval. However, as the period of prior exposure
assessment lengthens, time trends in exposure from changing external factors may
become emergent and evident, precluding the measurement of “usual frequency”
of exposure. Period effects lead in turn to confounding.

Suissa (1995) recognized time trends as a threat to validity in case-crossover
studies, which led him to propose a modification of a case-crossover study, which
he called a “case-time-control” study. The premise behind this design is that
information about time trends in exposure can be obtained from individuals con-
ventionally sampled as controls in a classical case-control study. This information
can in turn be used to adjust the effect estimate from a case-crossover study,
yielding less biased results by removing the confounding introduced by period
effects.

To illustrate this bias practically, Suissa used as a central example in pharma-
coepidemiology (cf. Chap. III.9 of this handbook) the problem of assessing drug
effects in the face of confounding by indication. That is, prescription drug use is not
only more likely among patients with more serious manifestations of an illness, but
as disease severity progresses over time, the therapeutic indication for such drug
use is also likely to commensurately change as well. Because severity is typically
both an independent predictor of a health outcome and is an indication for treat-
ment, nor is it an expected sequelae of therapeutic drug use, it fulfills the necessary
criteria for confounding. Were severity an easily measurable host characteristic, it
would be trivial to control for its confounding effects. However, severity within and
between patients falls on a continuum that usually defies even imprecise measure-
ment, such that even attempts to control for it would lead inevitably to meaningful
residual confounding. Thus, neither conventional (i.e., case-control) nor case-only
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(e.g., case-crossover) studies would be capable of distinguishing drug (exposure)
effects from temporal (confounding) changes in exposure.

Suissa’s solution to this problem was to envision the odds of exposure (rec-
ognizing that sampling is based on outcome) in an individual as an exponential
function of the following elements (retaining his notation):

odds(Eijkl = 1) = exp(µ + sil + πj + θk) (7.9)

where E represents a binary exposure, i represents the outcome group status (case
or control), j represents a current or referent time period, k represents the outcome
event in a particular period, and l represents the individual in group i; exp(µ) is
the overall exposure odds, exp(sil) is the participant-specific odds ratio, exp(πj) is
the period odds, and exp(θk) is the odds corresponding to the outcome event. This
function can be expressed separately for cases and controls and for the current and
referent time periods. As will be seen shortly, this model is notable for its lack of
interactions among the different elements. It can be shown that the effect measure
of interest, exp(θk), is not distinguishable from the nuisance period effect, exp(πj),
in the cases alone, but that the addition of a control series renders the former
estimable.

This model, in which each individual’s current and referent period constitute
a matched pair, can be envisioned within the framework of conditional logistic
regression. Again, utilizing Suissa’s notation, let T denote the outcome variable
which is the respective timeperiod (1 = current, 0 = referent) for eachparticipant’s
component of the matched pair, E the exposure, and G the outcome group status
(case or control). The odds that the outcome T equals 1 is given by:

odds(T = 1) = exp
(
β0 + β1E + β2(E × G)

)
. (7.10)

The odds ratio corresponding to the effect of time period is exp(β1), while the odds
ratio corresponding to the effect of drug therapy on the outcome after removal of
the period effect is exp(β2).

The case-time-control study is not without its detractions, however. As Green-
land (1996) pointed out, in addition to the usual assumptions of a case-crossover
study (e.g., absence of carryover effects), the analysis can be confounded by the
presence of unmeasured – and hence uncontrollable – confounders. Strictly speak-
ing, for a case-time-control analysis to yield a valid point estimate of exposure,
it must be assumed that there exist no interactions among any of the elements
in (7.9). That is, the exposure-outcome association is unaffected by time period
(πjθk = 0), the exposure-outcome association is unaffected by unmeasured con-
founders (silθk = 0), and the exposure-time period association is unaffected by
unmeasured confounders (silπj = 0) (Suissa 1998). While the first assumption, that
the effect measure remains stable, may be reasonable, particularly over shorter
rather than longer time periods, the latter two assumptions are more problematic.
The presence of unmeasured confounders is invariably a concern, though hardly
unique to case-time-control studies. Those unmeasured variables may act on either
the exposure effect as effect modifiers or on the time period effect as confounders.
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The utility of this method, then, rests on the veracity of unverifiable assumptions
ofno-confoundingby indicatorsofdisease severity.Greenland(1996)pointsout the
problem of selecting between competing study designs to cope with the problem of
confounding by indication when it is unclear which design would yield a less biased
result. Without a recommendation that uniformly applies to all study settings, it
may ultimately be advisable when possible to employ a sensitivity analysis of two or
more designs within the same cohort in order to see how their different properties
and assumptions can affect conclusions.

Case-Specular Studies7.6

It has already been shown above that when studying intermittent exposure effects
with transient duration that a counterfactual paradigm is superior to a study
base paradigm in motivating the choice of a comparison series for cases. More
precisely, the proper conceptualization of causation as a fundamental comparison
between what occurred in exposed individuals and what would have happened
to the same exposed individuals had exposure been counterfactually removed or
blocked can lead to a far more refined – and potentially less biased – study design.
In the context of case-crossover studies, this practically meant comparing cases’
recent (relative to the incident outcome event) exposure history to the same cases’
customary distribution of exposure. Confounding by factors that were inherently
host-related and time invariant, such as genetic predisposition or prior nutritional
and environmental history, became irrelevant because each case, essentially being
matched to itself, occupied a unique stratum for analysis.

By adapting counterfactual reasoning to other settings, novel study designs
can emerge. An example of this is the residential case-specular method of study-
ing the hypothesized relationship between wire codes (as a surrogate for elec-
tromagnetic fields) and childhood cancer (Zaffanella et al. 1998). Because his-
torical information on household magnetic field exposure needed for observa-
tional studies is invariably absent, an alternative exposure metric is required.
Wertheimer and Leeper (1979) proposed power line wire code categories, which
are functions of wire thickness and distance from power line to residence, as
a temporally stable, if imprecise, alternative measure of magnetic field expo-
sure. However, this metric also suffers from the detraction that spatial prox-
imity of power lines to residences is not only a proxy for exposure, but also
a proxy for other unmeasured or unmeasurable characteristics of neighborhoods
(e.g., socioeconomic status, traffic congestion, air pollution) that marginally or
jointly may likewise be determinants of adverse health outcomes, including child-
hood cancer. Any residential study of the hypothesis, then, would require dis-
tinguishing two distinct, although not necessarily competing, effects: that of the
household electromagnetic field, and that intrinsic yet undefined to the neigh-
borhood. The case-specular design was proposed as one possible approach of
mitigating this problem by comparing wire code exposures of case residences
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to counterfactual wire code exposures of purely hypothetical (specular) resi-
dences.

A specular residence is an imaginary or virtual control created by symmetrically
(sagitally) reflecting a case residence across the center of its street (although other
speculars, including reflecting the power lines as opposed to the residences, are
possible), creating a matched case-counterfactual pair (Fig. 7.1). Specifically, the
distance from the case residence to the center of the street (LRC) is used for creating
a specular control residence with an identical, albeit hypothetical distance (LRC

∗).
What remains to be measured is the distance from the case residence to the
electrical lines (LRE) and what the distance from the specular control residence
would be, had it existed, to the electrical lines (LRE

∗). The wire code category
of the case residence can then be contrasted with the counterfactual wire code
of the specular residence. The matching of this pair of residences is so spatially
fine that, apart from potential discordance in wire code, it is plausible to assume
that most if not all other environmental or social determinants of outcome are
concordant between the pairs. If the wire code acts only as a surrogate for such
neighborhood risk factors, then no residual association should exist between the
higher current wire codes postulated to be related to cancer risk and case residence.
The statistical analysis for this design is typical of those for matched pair data,
with the polytomous exposures corresponding to wire code categories.

Figure 7.1. Example of construction of a specular residence on a street with case residence on the

same street side as electrical lines. Note that the distance from the residence to the center of the

street, LRC, is equal to the distance from the center of the street to the specular residence, LRC
∗. Also,

LRE = distance from the case residence to the electrical lines, while LRE
∗ = distance from the

specular residence to the electrical lines



338 Philip H. Kass, Ellen B. Gold

Zafanella et al. (1998) note, in contrast, that if the magnetic field hypothesis
is correct, a preponderance of case households should occur on the same side of
a street as power lines, and that case residences should have, on average, higher
wire codes than specular residences. Several assumptions are necessary for these
predictions, if actually found to exist in a study, to have causal value. The first,
which Zaffanella et al. called “symmetry of the residence-specular probability ma-
trix”, implies probabilistic independence between placement of power lines and
placement of residences on the sides of a street. The second assumption is an
implicit “randomization” of residences on both sides of a street with respect to
unmeasured, unmeasurable, or unknown confounders (the usual no-confounding
assumption underlying causal interpretation of all observational studies). The
third assumption is no systematic misclassification of wire codes by residence type
(case or specular), a problem that cannot be mitigated by blinding if only case res-
idences are evaluated in the field. Differential misclassification may be a particular
problem due to subjectivity in assigning wire codes to specular residences.

Thecase-specularmethodshares theadvantage foundwhenperforminganeigh-
bor-matched case-control study: the control of confounding attributable to intrin-
sic properties of the neighborhood. It also affords the economical advantage of
not requiring in-situ measurements from a control group. Yet it has certain disad-
vantages as well, including the requirement of specifying speculars in unrealistic
situations, high frequencies of concordant residence-specular pairs (particularly
when power lines are located behind homes and uniform wire classes are used),
and the inability to verify the assumption of symmetry of the residence-specular
probability matrix without a validation control series. For further issues related
to the analysis of case-specular studies, and the incorporation of controls into the
study (i.e., case-control-specular analysis), see Greenland (1999).

Genetic Epidemiology Case Only Designs7.7

Design Features7.7.1

The discipline of genetic epidemiology has grown significantly over the past 30
years, facilitated by advances and improvements in technology and in under-
standing mechanisms based on molecular biology (for more details on genetic
epidemiology see Chap. III.7 of this handbook). The identification of the relations
of genes to clinical and subclinical disease has the potential to enable accurate and
early detection of individuals at increased risk and to improve understanding of
the etiology and pathophysiology of disease, which may also lead to more effec-
tive approaches to treat and prevent disease and disease transmission (Ellsworth
and Manolio 1999). Traditional case-control and cohort designs have been and
appropriately continue to be employed to discern genetic components of disease
by detecting familial aggregation (including the special case of twin concordance)
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(see Table 7.5), time trends, changes in disease occurrence in migrants, linkage
of genetic markers to disease and gene-environment interactions. However, some
case series techniques have also proved valuable in assessing the relation of genetic
characteristics to disease, as well as gene-environment interactions. For these pur-
poses, the case series ideally consists of incident, population-based cases of the
disease of interest in which mutations of interest are assessed. In recent years,
methods have been published using log-linear methods to estimate relative risks
for mutant alleles, to analyze case-parental control series (Yang and Khoury 1997)
and case triads (mother, father and affected child) (Wilcox et al. 1998). These
methods distinguish the role of genes in parent and child in disease risk, based on
the asymmetric distribution of a variant allele among cases and their parents.

When investigating gene-environment interactions, if the cases are not popula-
tion-based, the assumption is made that case selection for gene mutation positive
or negative (negative meaning null or wild type) is not influenced by risk factors
of interest. A comparison is then made of cases positive for mutation to cases with
the null or wild type for the environmental risk factor of interest (see Table 7.6),
and a traditional Mantel–Haenszel or logistic regression approach is used for data
analyses to generate an odds ratio to test if the strength of association with the
environmental risk factor differs for the two case groups (positive and negative
for the mutant gene) to indicate gene-environment interaction (Begg and Zhang
1994). Gene-environment interaction can also be tested in traditional case-control
studies to evaluate associations with environmental risk factors in gene mutant

Table 7.5. Estimating concordance of a discrete variable in twin studies

Twin 1
Twin 2 Has disease Has no disease

Has disease A B

Has no disease C D

Disease Concordance = A
A+B+C = number of concordant twin pairs

number of twin pairs with at least one affected member

Table 7.6. Analytic design for case series

Environmental Cases only
exposure Have genetic marker Do not have genetic marker

Present A B

Absent C D

Odds Ratio = AD|BC for association of marker with exposure
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Table 7.7. Expansion∗ of case-control study for genetic studies

Risk Mutant Control Case Odds ratio
factor genotype

No No A B Reference
No Yes C D ORgenetic component = AD|BC

Yes No E F ORenvironmental component = AF|BE

Yes Yes G H ORgene-environment interaction = AH|BG

∗ When genetic marker can also be measured in the control group. Source: Khoury (1997)

Table 7.8a. Example of gene-environment interaction, with and without using controls

Environmental Cases
exposure Mutation positive Mutation negative Controls

Present 45 50 75

Absent 15 25 60

Table 7.8b. Example of gene-environment interaction, with and without using controls

Design Unadjusted cross products Unadjusted odds ratios

Case series (45 × 25)|(50 × 15) 1.5

Case-control
Mutation positive (45 × 60)|(15 × 75) 2.4

Mutation negative (50 × 60)|(25 × 75) 1.6

ORpositive|ORnegative 2.4|1.6 1.5

positive and negative cases and controls. In this approach, polychotomous logistic
regression may be used to model concurrently two separate logistic regression
functions to derive separate beta coefficients for marker positive and negative and
thus separate odds ratios for each relationship conditional on other risk factors.
To test that the two categories possess etiologic heterogeneity with the risk factors,
the equality of the two beta coefficients is tested by using the likelihood ratio tests
for the difference in beta coefficients (using the natural logarithm of the ratio of the
two adjusted odds ratios for the risk factors). Khoury (1997) has shown the relation
of the analysis of different components of case-control studies to identify genetic
and environmental components of gene-environment interactions (Table 7.7). The
odds ratio from the case series described above is the same parameter as the
ratio of the odds ratio from the polychotomous model in a case-control study
with unmatched controls and no adjustment for other confounding factors (see
Tables 7.8a and 7.8b). For example, the odds ratio in the case series in Table 7.8a for
the gene-environment interaction is the same as the ratio of the two odds ratios
obtained for cases and controls in Table 7.8b for mutation positive and exposure
relative to mutation negative and exposure.
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Strengths 7.7.2

The major advantages of the case series for use in genetic epidemiology and as-
sessment of gene-environment interaction are largely ease in assembling the study
population and collecting data, which reduce logistic efforts and thus cost. In
addition, the case-only design is more efficient than a case-control design for de-
tecting gene-environment interaction (assuming independence between exposure
and genotype in the population) (Yang et al. 1997), since the case-only design
produces more precise estimates of (due to introducing less variation since only
cases, and no controls are included, thus being likely to be more homogeneous) in-
teraction. Thus, for detecting a given odds ratio for interaction, a case-only design
requires fewer cases than a case-control design. Further, since controls are often
less motivated than cases to participate in studies, the case-only approach helps
to minimize potential participation bias. Finally, the data analysis in a case-only
design is somewhat more straightforward than in a case-control approach.

Limitations 7.7.3

Despite the relative ease of conducting case series studies, most are not population-
based but rather convenience samples with little detail provided on methods or
criteria for selection. Methods may be difficult to replicate, and misclassification
of cases may occur and impede identification of true relationships. Further, if
selection of cases is dependent on availability of a large enough tumor, in studies
of associations of genetic markers with cancer, bias could be introduced if tumor
size is related to exposure to risk factors or presence of genetic markers or both. In
addition, use of prevalent cases in studies of markers can lead to biased estimates
if the risk factors under study are associated with survival, just as with case-
control designs. Furthermore, if sample size estimates are computed based only
on main effects, but gene-environment interactions are of interest, the sample
size may be underestimated and statistical power thus overestimated. Differential
misclassification of environmental exposures also can modify the gene-disease
association, which may result in bias either toward or away from the null of the
stratum-specific odds ratios but toward the null when multiplicative interaction is
present (Garcia-Closas et al. 1998). Finally, many case series studies demonstrate
associations of disease with genetic markers, but, importantly, association does
not necessarily connote causality and may reflect an effect of disease occurrence
rather than disease causation.

Conclusions 7.8

The designs addressed in this chapter, all of relatively recent incarnation com-
pared to their progenitor observational counterparts, should be appreciated less
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for their differences and more for their common lineage. These more recent de-
signs are the evolutionary culmination of a long-held view that causal inference in
populations is not fundamentally a comparison of individuals to each other, but
is instead a collective comparison of single individuals to themselves. This view is
rendered practical via the use of empirically-derived or hypothetical exposure dis-
tributions, such as in case-crossover and case-specular studies, respectively, thus
supplanting the need for an external comparison group. It seems inevitable that
future advances in both design and analysis will build upon this conceptualization.
As epidemiologists employ these new designs and contrast them with older ones,
the designs will undoubtedly undergo even greater scrutiny with respect to their
assumptions and limitations. Such circumspection will particularly be necessary
when conflicts in findings resulting from use of the different designs arise. These
conflicts, however, should be regarded as the natural consequence of a progressive
series of improvements in epidemiologic methods that will inevitably lead to more
valid assessment of potential causal relations.
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Introduction8.1

Most human diseases have avoidable causes. This is true not only of infectious
diseases, but also a large proportion of cardio-vascular diseases and cancer (Doll
and Peto 1981). A major goal of epidemiology is therefore to find the causes of
disease in a population and then intervene to remove them.

As discussed by Doll (2002), an agent may be considered to be a cause of a disease
if increased exposure to the agent is followed by an increased risk of the disease,
and decreased exposure by a decreased risk. This is an empirical definition which
may be tested without reference to a specific mechanism. It is particularly useful
for chronic diseases, such as cancer, which may take decades to develop, and in
which the disease process may involve a variety of preclinical changes before the
disease manifests itself. Intervention to remove a cause of disease may then range
from behavioural changes, such as tobacco control (IARC 2003), to minimizing
consequences of accumulated damages by, for example, regression of precancerous
lesions using anti-oxidant vitamins (Stewart et al. 1996).

Descriptive and observational epidemiological studies have provided consider-
able evidence for causal relationships and have, in some instances, provided the
final answer (Doll 2002). However, observational studies are not always sufficient
to motivate large scale public health interventions as they have some important
limitations. Firstly, when relative risks of the order 2 or less are observed, it is
difficult to rule out bias and confounding as possible explanations for the associa-
tion. A second limitation of observational studies is that they rely on “experiments
of nature” – unplanned variation in exposure within and between populations –
and cannot therefore evaluate the effect of interventions that attempt to block the
disease process in a way that is not found in nature. Two examples are a cholesterol
lowering drug (Heart Protection Study Collaborative Group 2002b) or a prophy-
lactic vaccine against human papillomavirus (HPV) (Koutsky et al. 2002). Both
of these interventions are motivated by a large body of observational evidence as
well as understanding of the mechanism of disease. However, the magnitude of
the benefit from intervention cannot be evaluated from observational data. The
third limitation of observational studies is that it is very difficult to balance the
benefits of intervention against possible risks. Finally, observational data does not
always provide evidence that exposure to an agent preceded incidence, which is an
indispensable requirement for establishing causality. All of these limitations can
be overcome by a properly conducted intervention trial. An intervention trial is an
experiment to evaluate the efficacy of an intervention so that its more widespread
use can be justified.

Intervention trials ideally take the form of a randomized controlled trial (RCT)
in which the intervention is compared with a control (which may consist of no
intervention at all, or a placebo) and the allocation to treatment or control is ran-
domized. RCTs are often used for therapeutic trials in which different treatments
for a given disease are compared in a clinical setting. This application of RCTs
is beyond the scope of this chapter, which is concerned with trials on healthy,
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or apparently healthy individuals with the aim of preventing future morbidity or
mortality. We refer to such trials as preventive trials. An important subclass of
preventive trial is the community intervention trial in which the intervention is
applied to groups instead of individuals.

Since RCTs offer a unique opportunity to eliminate the problems that beset
observational studies, the results of such trials are generally considered to be
a “gold standard”, and are often taken to outweigh previous observational evidence
in the case of discordant results. However, the advantages of RCTs are easily lost
through poor conduct or analysis. Hence RCTs are held to much higher standards
of conduct and reporting (see Sect. 8.1.1). These standards are especially important
in view of the high cost of RCTs which makes them very difficult to reproduce.

Guidelines for Reporting of Clinical Trials:
The CONSORT Statement 8.1.1

The CONSORT (Consolidated Standards of Reporting Trials) statement is a set of
guidelines for reporting of randomized controlled trials (RCTs). These guidelines
take the form of a checklist of 22 items (see Table 8.1) which should be included
in a report of a randomized trial, and a model flow chart to show the flow of
participants through the trial (see Fig. 8.1).

The guidelines were created by an international group of clinical trialists, statis-
ticians, epidemiologists and biomedical journals in an effort to improve the quality
of reporting of RCTs, which several reviews had shown to be inadequate. Without
adequate reporting, it is not possible for a reader to judge the quality of a trial and
so trust its conclusions.

Table 8.1. Checklist of items to include when reporting a randomized trial

PAPER SECTION Item Description
And topic

TITLE AND ABSTRACT 1 How participants were allocated to interventions (e.g.,
“random allocation”, “randomized”, or “randomly
assigned”).

INTRODUCTION
Background 2 Scientific background and explanation of rationale.

METHODS
Participants 3 Eligibility criteria for participants and the settings

and locations where the data were collected.

Interventions 4 Precise details of the interventions intended for
each group and how and when they were actually
administered.

Objectives 5 Specific objectives and hypotheses.

table to be continued
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Table 8.1. (continued)

PAPER SECTION Item Description
And topic

Outcomes 6 Clearly defined primary and secondary outcome
measures and, when applicable, any methods used to
enhance the quality of measurements (e.g., multiple
observations, training of assessors).

Sample size 7 How sample size was determined and, when appli-
cable, explanation of any interim analyses and
stopping rules.

Randomization – 8 Method used to generate the random allocation
sequence sequence, including details of any restriction (e.g.,
generation blocking, stratification).

Randomization – 9 Method used to implement the random allocation
allocation sequence (e.g., numbered containers or central
concealment telephone), clarifying whether the sequence was

concealed until interventions were assigned.

Randomization – 10 Who generated the allocation sequence, who enrolled
implementation participants, and who assigned participants to their

groups.

Binding 11 Whether or not participants, those administering the
(masking) interventions, and those assessing the outcomes were

blinded to group assignment. When relevant, how the
success of blinding was evaluated.

Statistical 12 Statistical methods used to compare groups for
methods primary outcome(s); Methods for additional

analyses, such as subgroup analyses and adjusted
analyses.

Results
Participant flow 13 Flow of participants through each stage (a diagram is

strongly recommended). Specifically, for each group
report the numbers of participants randomly
assigned, receiving intended treatment, completing
the study protocol, and analyzed for the primary
outcome. Describe protocol deviations from study as
planned, together with reasons.

Recruitment 14 Dates defining the periods of recruitment and follow-
up.

table to be continued
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Table 8.1. (continued)

PAPER SECTION Item Description
And topic

Baseline data 15 Baseline demographic and clinical characteristics
of each group.

Numbers 16 Number of participants (denominator) in each group
analyzed included in each analysis and whether the analysis

was by “intention-to-treat”. State the results in
absolute numbers when feasible (e.g., 10|20, not 50%).

Outcomes 17 For each primary and secondary outcome, a sum-
and estimation mary of results for each group, and the estimated

effect size and its precision (e.g., 95% confidence
interval).

Ancillary 18 Address multiplicity by reporting any other ana-
analyses lyses performed, including subgroup analyses

and adjusted analyses, indicating those pre-specified
and those exploratory.

Adverse events 19 All important adverse events or side effects in each
intervention group.

DISCUSSION
Interpretation 20 Interpretation of the results, taking into account

study hypotheses, sources of potential bias or
imprecision and the dangers associated with
multiplicity of analyses and outcomes.

Generalizability 21 Generalizability (external validity) of the trial
findings.

Overall evidence 22 General interpretation of the results in the context of
current evidence.

(Source: http://www.consort-statement.org/)

The original CONSORT statement was published in 1996 (Begg et al. 1996). It was
revised in 2001 and is available in a short form (Moher et al. 2001) and a long form
with explanation and elaboration (Altman et al. 2001). The guidelines have been
adopted by a growing number of biomedical journals and editorial committees.

Further details can be seen at the website: http://www.consort-statement.org/
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(Source: http://www.consort-statement.org/)

Figure 8.1. Revised template of the CONSORT diagram showing the flow of participants through each

stage of a randomized trial

Therapeutic versus Preventive Trials8.2

The methodological considerations for therapeutic and preventive trials are very
similar. In particular, in the last two decades, therapeutic trials have grown in
size. Some therapeutic trials have been able to randomize many thousands of
individuals – as in breast and intestinal cancer – or even tens of thousands, as has
occasionally been possible in heart disease (ISIS-2 (Second International Study
of Infarct Survival) Collaborative Group 1988) and stroke (CAST (Chinese Acute
Stroke Trial) Collaborative Group 1997). In this chapter, we will rely heavily upon
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the experience gained in the performance of therapeutic trials. (For details on
prevention in general please refer to Chap. III.10 of this handbook.)

Although there is no clear dividing line between therapeutic and preventive tri-
als, a crucial factor distinguishing the two kinds of trial is the “exposure window”.
In a therapeutic trial, the timing of an intervention is determined by a disease
indication. In a prevention trial, the intervention may take place at any point
along a disease process that may last several decades. The appropriate timing of
the intervention is not always evident. Often the decision on when to intervene is
determined by the practical requirement to have a sufficient number of cases of
disease in the control group by the end of the trial. This limits interventions to in-
dividuals who are at an advanced stage of the preclinical disease process. Examples
of such trials are the prevention of recurrence of colorectal adenomas (Bonithon-
Kopp et al. 2000; Jacobs et al. 2002), and prevention of lung cancer in middle-aged
heavy smokers, or workers exposed to asbestos (Omenn et al. 1996a; ATBC Cancer
Prevention Study Group 1994). The paradox of such late interventions, however,
is that they may miss the “exposure window” within which the intervention may
possibly have a protective effect.

Surrogate Endpoints 8.2.1

Intervention may also take place at an early stage of the disease process. For
example, a prophylactic vaccine against human papillomavirus given during ado-
lescence (Koutsky et al. 2002) is intended to prevent occurrence of cervical cancer
in middle age. The success of such interventions may need to be judged in terms
of surrogate endpoints, since the time interval between intervention and disease
outcome may be prohibitively long.

It is difficult to conduct intervention trials using disease endpoints, such as can-
cer, that are rare or have a long latency. Such studies may require very large num-
bers, or long follow-up time, or both in order to yield a sufficient number of cases to
judge the efficacy of the intervention. One possible strategy to overcome this prob-
lem is to use a surrogate endpoint – a short term marker of the disease process – as
a substitute for a hard endpoint such as disease incidence or death. The use of sur-
rogate endpoints may also be necessary for ethical reasons if the hard endpoint is
preventable. For example, a vaccine against humanpapillomavirus (HPV)maypre-
vent cervical cancer, but this disease is already preventable by screening, in which
precursors of cervical cancer are identified and treated. A trial of an HPV vaccine
must therefore be based on these precursors rather than cervical cancer incidence.

The promise of surrogate endpoints is that they may make intervention trials
smaller, faster or cheaper. Despite the attractiveness of this promise, the use of
surrogate endpoints is fraught with difficulty. Schatzkin and colleagues have, in
a series of articles, reviewed the problems of using surrogate endpoints in cancer
research (Schatzkin et al. 1990, 1996; Schatzkin and Gail 2002). They suggest that
there are currently only two clear candidates for surrogate endpoints in cancer re-
search: prevention of HPV infection for subsequent cervical cancer, and prevention
of colorectal adenomas for subsequent colorectal cancer. Apart from these two ex-
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amples, they suggest that surrogate endpoints may have more use in phase II trials
than phase III trials (for a definition of phase II and phase III trials see Table 8.2).

Table 8.2. Phases of intervention trials

Phase Aims Comment

I Route of administration and dosage: Often on volunteers
maximally tolerated dose by using a dose
escalation scheme

II Evidence of “activity” of our intervention Better randomized than not
by means of “promising” outcome measures

III Efficacy of an intervention by means
of randomized comparisons and
a “definite” endpoint

IV Effectiveness of proven interventions Better randomized than not
in wide-scale use, sometimes through
post-marketing surveillance

The problem of statistical validation of surrogate endpoints is an area of active
research. In a seminal paper, Prentice (1989) suggested the following definition of
a valid surrogate: it must yield a valid test of the null hypothesis of no association
between treatment and the true response. In operational terms, this means that
the incidence rate of the true disease must be independent of the treatment history
given the current value of the surrogate endpoint. Prentice’s criterion is unlikely
to be satisfied in practice, and some attempts have been made to broaden the
definition of a surrogate endpoint by quantifying the proportion of treatment
effect explained by a surrogate (Freedman et al. 1992). This extension has not been
widely accepted, however. A summary of current research is given by the report of
an NIH (US National Institutes of Health) workshop on surrogate endpoints (de
Gruttola et al. 2001).

From Observation to Intervention8.2.2

Another particularity of preventive trials is that, whereas the choice of intervention
may be suggested by observational studies, the intervention may be a radical sim-
plification of those observations. This is especially true in nutritional epidemiology
(see Chap. III.4 of this handbook), where chemoprevention (e.g. administration
of specific vitamins) has often been used as a substitute for dietary modification.
This simplification involves an extra level of extrapolation – above issues of timing,
dose, and duration – which makes the results of such studies particularly hard to
interpret when they contradict observational studies.

Intervention studies can sometimes produce results suggesting that a treatment
is harmful, increasing the risk of disease instead of decreasing it. The most noto-
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rious example is the use of beta-carotene supplements to prevent lung cancer (see
Example 1).

Example 1. Beta-Carotene and Lung Cancer: An unexpected harmful effect of
treatment

One of the most consistent findings in nutritional epidemiology is the protective
effect of fresh fruit and vegetable consumption on cancer risk (World Cancer Re-
search Fund-American Institute for Cancer Research 1997). In 1981 Peto et al. (1981)
put forward the hypothesis that beta-carotene was the active agent responsible for
this protective effect, and subsequently a number of cancer chemoprevention trials
were conducted using supplementation with beta-carotene as an intervention. The
ATBC (Alpha-Tocopherol Beta-Carotene Cancer Prevention Study Group 1994) and
CARET (Omenn et al. 1996b) trials were two large chemoprevention trials using
beta-carotene, in a factorial design, in subjects at high risk of lung cancer, i.e.
long-term heavy smokers (ATBC|CARET) or asbestos exposed workers (CARET).
The ATBC trial showed a higher incidence of lung cancer among subjects receiving
beta-carotene compared with those who did not with a relative risk of 1.6 (95% CI
1.02–1.33). Subsequently, the intervention with beta-carotene in the CARET study
was stopped 21 months early, after a median of 3.7 years of follow-up because
of clear evidence of no benefit and substantial evidence of possible harm. The
actively treated group had a relative risk of lung cancer of 1.28 (95% CI 1.04–1.57)
compared with the group receiving placebo. The results of the Physicians Health
Study (PHS) were published at the same time (Hennekens et al. 1996), and showed
no effect of beta-carotene on lung cancer risk, with 82 cases of lung cancer in the
beta-carotene group and 88 in the placebo group. However the PHS had low power
to detect small changes in lung cancer risk due to the small number of cases.

The trials of beta-carotene relied on a number of extrapolations from obser-
vational data. The first extrapolation was that beta-carotene was the active agent
in the protective effect observed for fresh fruits and vegetables. Although direct
associations with plasma levels of beta-carotene have also been observed, it may be
that beta-carotene is acting as a marker for fresh fruit and vegetable consumption
and is not the active agent. The second extrapolation concerns the dose level. The
dose of beta-carotene given, and the median serum beta-carotene concentration
achieved in these studies exceeded by many times the level that could be achieved
by normal dietary intake (IARC 1998), and it is possible that beta-carotene be-
comes harmful at such high doses, while remaining protective at doses associated
with a healthy diet. Last, but not least, it was assumed that high-risk, middle-aged,
individuals, who probably harboured pre-malignant lesions in the lung, would
benefit from the same active substances that were believed to be beneficial in the
prevention of early stages of carcinogenesis.

When planning an intervention study, it may be a useful exercise to consider the
possible interpretations of adverse effects of treatment. This thought experiment
may reveal weaknesses in the motivation for, or design of, the intervention study.

�
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The Origin of Randomized Trials8.3

The technique of randomization was originally developed in agricultural exper-
iments in the 1920s when individual plots of land were randomized. Trials in
humans strictly controlled by random allocation date back to the mid-1940s. Many
of the earliest trials were carried out in Britain by the Medical Research Council
(Hill 1962). The first trial in which treatment was randomly allocated to indi-
viduals, although not the first to be reported (Doll 1998), was a prevention trial
designed to test the efficacy of immunization against whooping cough (Medical
Research Council Whooping-Cough Immunization Committee 1951). Parents of
children aged 6–18 months were asked to volunteer to have their children entered
into the trial. They were given a pamphlet describing the study, which included
the information that half the inoculations would not be against whooping cough
but would be “anti-catarrhal”. No child was entered until a consent form had been
received.

The spread of randomization, until it became an essential requirement for
the licensing of new drugs, was initially slow and not without opposition. Many
clinicians considered randomization to be less worthy than the use of criteria to
distinguish between individuals who will and will not respond to the intervention.
There is currently no competing methodology for randomized controlled trials,
although there are attempts to adapt the practice of randomization to special
contexts and difficulties (Lavori and Kelsey 2002).

Planning of Trials8.4

Trials are traditionally classified into four phases (Table 8.2). In this chapter we will
be dealing only with issues related to phase III and phase IV randomized trials. For
design issues of phase I and phase II trials readers are referred elsewhere (Simon
2001).

The organization of a trial requires careful advance planning. This is particu-
larly true for multi-centric trials, which have become increasingly common. The
aims and methods of the trial should be described in detail in a protocol doc-
ument. This will contain the scientific background of the problem under study.
In topics where a substantial amount of work has already been done, a system-
atic review (meta-analysis, see Chap. II.7 in this handbook) of the outcomes of
published randomized trials on the same type of intervention is highly prefer-
able to a narrative review. A meta-analysis will, in fact, greatly help to evaluate
the consistency of previous work, any avoidable pitfalls in study design, and the
most likely effectiveness of the intervention under study. The latter information
allows the trial size to be calculated (see Chap. II.1 of this handbook). The protocol
should also include clear statements about: (1) preventive measures to be used
(intervention); (2) types of individuals or groups to be admitted (participants);
(3) assessment of response (endpoints); (4) entry criteria and treatment allocation;
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(5) exclusions, withdrawals, and protocol departures; (6) size and|or duration of
the trial; (7) strategy for the statistical analysis; and (8) ethical aspects.

Definition of the Intervention 8.5

The effectiveness of interventions to be compared in randomized primary preven-
tion trials are usually known in broad terms from the outset. Many questions of
primary prevention have first been evaluated in trials of treatments or secondary
prevention. For example, when the Physicians’ Health Study (Steering Committee
of the Physicians’ Health Study Research Group 1989) was begun, the hypothesis
that aspirin could be effective in the primary prevention of cardiovascular dis-
ease was widely accepted, given the extensive evidence from secondary prevention
or treatment trials of those who had already experienced a cardiovascular event
(ISIS-2 (Second International Study of Infarct Survival) Collaborative Group 1988).
Similarly, the suggestion to use tamoxifen or the new selective estrogen receptor
modulators (e.g. raloxifene) in the primary prevention of breast cancer came from
the observation that tamoxifen reduced the incidence of contra-lateral breast can-
cer when used in the adjuvant setting (Early Breast Cancer Trialists’ Collaborative
Group 1998). Such previous experiences in “diseased” people have generally es-
tablished a “safety profile” and enabled exclusion or estimation of side effects
that occur once in thousands (if not necessarily in ten thousands) of recipients of
a certain type of drug. Other times, when the intervention consists in behavioral
changes, clues of the benefits of certain life-style modifications (e.g., smoking ces-
sation, dietary changes, adoption of safe sex behavior) have been brought about
by consistent knowledge on risk factors accumulated in a large variety of contexts
(e.g., ecological studies, studies of observational epidemiology or, as it is the case
for some infectious agents, clear knowledge on the routes of transmission of the
infections). Based on this background knowledge, two major questions need to be
addressed in order to identify unambiguously the type of intervention study.

The first question concerns what is being compared with what. The basic design
for primary prevention trials is a two-arm comparison. As discussed by Green
(2002), however, this simple structure can encompass a variety of different com-
parisons, as shown in Table 8.3.

Table 8.3. Possible types of comparison in intervention trials

Intervention versus No intervention
Placebo
Another intervention
Same intervention at a higher dose (or longer duration)
Same intervention, but later (only for participants who

experience a certain event)
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The feasibility and necessity to include a placebo arm depend on the nature of
the intervention and of the outcome measure. When two drugs are being compared
it is generally easy to create a placebo, provided that the route of administration
is an oral one. In therapeutic trials, the use of a non-active compound has caused
ethical concerns. A comparison of new treatment with old treatment is often more
appropriate. As noted by Temple and Ellenberg (2000), however, placebo con-
trols are ethical if there are no permanent adverse consequence of delaying or
omitting available treatment, and if the subjects are fully informed about their
alternatives. These favourable conditions typically apply to preventive trials. For
intra-muscular treatments (e.g., vaccines), the use of one or more “dummy injec-
tions” is hard to justify. It has, however, been advocated in special circumstances.
In a randomized trial of a prophylactic vaccine against HPV type 16, a sexually
transmitted virus which is now considered a necessary cause of cervical can-
cer, three injections of the aluminium adjuvant used in the active vaccine were
deemed justifiable in order to avoid possible imbalances in the sexual behavior
of the young female participants, and to evaluate side effects attributable to the
active agent (i.e. virus like particles) (Koutsky et al. 2002). Indeed, the percentage
of women who discontinued the study owing to an adverse effect of treatment
(0.4%), was the same in the vaccine arm and the placebo arm (Koutsky et al.
2002).

One way to avoid the use of placebo is to compare different doses or durations
of a specific intervention. This is typically feasible when some type of drug or
dietary supplement, whose minimal effective dose is unclear, is under evaluation.
More frequently, however, in prevention trials, it is the intensity of the intervention
that can be modulated. In behavioral intervention trials, it is often very useful to
comparea labour-intensiveandexpensivepackage for smokingcessationordietary
changes with some simple and inexpensive message at a community or individual
level (e.g., pamphlets, simple recommendations from one’s practitioner, etc.).

Finally, the timing of the intervention can be randomized into an early versus
delayed intervention trial. This approach is very often indicated in therapeu-
tic trials (e.g., chemo- or radio-therapy at primary cancer diagnosis versus the
same therapy at cancer recurrence), but is has some appeal in certain preven-
tion trials as well. An example is provided by cervical cancer screening, which
is currently based on use of the Papanicolaou (Pap) smear to detect abnor-
mal cells that may indicate pre-cancerous lesions on the cervix. The majority
of such lesions regress without intervention, but a few may progress to cervical
cancer over the course of several years. HPV testing is now considered a more
sensitive test than Pap smear in the detection of pre-cancerous lesions (Cuz-
ick et al. 2000). Its use is already approved in the triage of cytological abnor-
malities. Thus, an appropriate design for testing the efficacy of HPV testing in
cervical cancer screening would be to use Pap smear in both arms, and com-
pare the concurrent use of HPV testing and Pap smear in one arm with de-
layed HPV testing in the other arm among women with abnormal Pap smear
findings.
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Factorial Design 8.6

The factorial design represents an efficient alternative to two-arm comparisons.
The simplest design is the balanced 2 × 2 factorial but factorial designs can be
generalized to more than two dimensions (Table 8.4). In a factorial design, two or
more interventions are simultaneously tested in the same population. Allocation
of interventions is carried out in such a way that there is no association between
different interventions in the study population, and therefore no confounding,
under the assumption that there is no interaction between interventions. As noted
by Armitage and Berry (1987), this design contravenes a good principle of experi-
mentation, namely that only one factor should be changed at a time. The principal
advantage of the factorial design is its ability to answer two or more questions in
a single trial.

Table 8.4. Illustration of the factorial design with 8000 subjects and 3 possible treatments. As the

number of treatments simultaneously under test increases, the number of subjects receiving each

combination of treatment diminishes, but the number receiving any given treatment (e.g.

treatment A) is always 4000

Arm Number of Treatment
subjects A B C

Two arm trial of treatment A

1 4000 yes
2 4000 no

2 × 2 trial of treatments A and B

1 2000 yes yes
2 2000 yes no
3 2000 no yes
4 2000 no no

2 × 2 × 2 trial of treatments A, B and C

1 1000 yes yes yes
2 1000 yes yes no
3 1000 yes no yes
4 1000 yes no no
5 1000 no yes yes
6 1000 no yes no
7 1000 no no yes
8 1000 no no no

In a recent trial of 20,536 UK adults with occlusive arterial disease or diabetes
(Heart Protection Study Collaborative Group 2002a, b), participants were ran-
domly allocated in a factorial design to receive 40 mg of simvastatin (a cholesterol-
lowering agent) or placebo, and antioxidant vitamin supplementation or placebo.
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These two interventions seemed to be, at the time the study was started, equally
promising. It would have been possible to evaluate the two interventions separately
in two independent trials, but this would have required twice the sample size, or
over 40,000 participants. A highly significant 18% proportional reduction in the
coronary death rate was found among participants who had received simvastatin.
This beneficial effect was reflected also in an overall mortality reduction compared
to the placebo group. Conversely, antioxidant vitamins did not produce any signif-
icant reduction in the 5-year mortality from, or incidence of, any type of vascular
disease, cancer, or other major outcome. An asset of the factorial design is also the
opportunity to evaluate interactions, i.e., whether two interventions in combina-
tion differ, with respect to efficacy or side effects, from either intervention alone.
In the HPSCG trial, for instance, the efficacy of simvastatin was not modified by
antioxidant vitamins.

The factorial design, on account of the corresponding gain in cost efficiency,
is especially valuable in prevention trials that are, on average, much larger than
therapeutic trials. A factorial design is often excluded out of fear of complicating
trial operations. In fact, the randomization process can be easily adapted to allocate
participants to different combinations of interventions. As mentioned by Buring
(2002), it is, however, essential that none of the interventions under evaluation:
(1) complicates eligibility criteria by, for instance, important contraindications
for certain interventions; or (2) causes any side effect that could lead to poor
compliance or loss to follow-up.

Definition of Participants8.7

Eligibility criteria in intervention studies must aim at three things: (1) optimizing
thepotential benefit to theparticipantswhileminimizing the riskof adverse effects;
(2) enrolling participants who are likely to adhere to the intervention and follow-up
requirements; and most importantly (3) including a sufficiently large number of
participants to produce unambiguous results even if the benefit of the intervention
is small. In many types of trial, but especially in preventive trials, broad eligibility
criteria are desirable because they can simplify enrolling procedures and avoid the
need for complicated and expensive tests at study entry (See Box 1).

A “run-in” period can be implemented in order to allow potential participants
who have difficulties adhering the protocol to withdraw prior to actual randomiza-
tion. As discussed by Buring (2002), the actual format of the run-in period depends
on the nature of the trial. In trials of pill-taking regimens, as in the HPSCG (Heart
Protection Study Collaborative Group 2002a, 2002b) factorial trial of simvastatin
and antioxidant vitamins, the run-in period involved a few-week period of placebo,
to allow review of blood exams, followed by a few weeks of active treatment, to
allow a pre-randomization assessment of LDL (low density lipoprotein)-lowering
responsiveness of each individual and to exclude major adverse effects. In studies
of behavioral interventions, the run-in period may consist of attendance at visits
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Box 1. Large, Simple Randomized Trials

Many lives could be saved by moderate reductions in the common causes
of death.

In a series of articles, Peto and colleagues (Collins et al. 1987; Peto et al.
1995; Peto and Baigent 1998; Yusuf et al. 1984) have promoted the idea of
large, simple randomized trials to investigate the benefits of widely practica-
ble treatments for common conditions. The essence of their argument is that
only large, randomized trials can answer questions about moderate health
benefits in a way that is free of bias and the play of chance. Moderate reduc-
tions in mortality may correspond to a large number of deaths prevented if
the condition is common and the treatment is widely available. For example
100,000 deaths per year could be prevented or substantially delayed in de-
veloped countries by routine use of antiplatelet therapy in all patients with
clinical evidence of occlusive vascular disease. This reduction corresponds
to a 10% reduction in all vascular deaths in the age range 35–69 (Antiplatelet
Trialists’ Collaboration 1994).

Examples of the large randomized trials promoted by Peto and colleagues
include the ISIS (International Study of Infarct Survival) trials ISIS-1 (First
International Study of Infarct Survival) Collaborative Group 1986; ISIS-2
1988; ISIS-3 1992; ISIS-4 1995) in which tens of thousands of subjects were
randomized. The need to randomize such large numbers of subjects im-
poses some design constraints on the trial. In particular, the entry criteria,
treatment and data requirements must all be greatly simplified. In order to
simplify the entry criteria into large trials, Peto et al. (1995) have proposed
an “uncertainty principle”, which states that the sole eligibility criterion for
entry is that both patient and doctor should be substantially uncertain about
the appropriateness for this particular patient of each of the trial treatments
(A more complete statement is given by Peto and Baigent (1998)). Broad
eligibility criteria can simplify enrolling procedures and avoid the need for
complicated and expensive tests at study entry.

The principle of conducting large, simple randomized trials is not appro-
priate for the development of novel drugs. In this context, an extensive reg-
ulatory framework has developed, which is summarized by the guidelines of
the International Conference on Harmonization of Technical Requirements
for Registration of Pharmaceuticals for Human Use (http://www.ich.org).
Conversely, it should be noted that the regulatory framework for drug de-
velopment is not necessarily appropriate when conducting public health
interventions using existing treatments.

or laboratory procedures, including completion of forms similar to those that
would be used in the actual trial. Restricting a prevention trial to proven good
compliers may result in a subject pool that differs from the general population
with respect to outcomes. This problem may be perceived as a loss of external
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validity or generalizability of trial findings. As noted, however, by Hennekens and
Buring (1998), the primary requirement of a generalizable study is internal validity,
which may in fact be increased by the exclusion of poor compliers.

A more practical way to improve the generalizability of the results of a trial is to
broaden eligibility criteria as much as possible, thus allowing the benefits of trial
participation to be available more widely across populations. In the HPSCG study,
for instance, substantial benefit was demonstrated not only in those already known
to have had coronary disease, but also in those without diagnosed coronary disease
who had cerebrovascular disease, peripheral arterial disease, or diabetes, irrespec-
tive of the blood lipid concentrations when treatment was initiated. Widespread
implementation of these findings on the basis of some clinical diagnoses would
therefore be relatively straightforward, without the need for extensive screening
in the general population. Finally, broad eligibility criteria can also allow to enroll
a larger number of participants and, in some instances, some cautious subgroup
analysis.

An eligibility criterion which, however, allows substantial efficiency gain, and
which must therefore be seriously considered, is high risk for the disease meant to
beprevented.Age, sex, or familyorpersonal historymightbe considered to identify
such individuals. Since the power of the study is proportional to the number of
endpoints, not simply to the number of participants enrolled, an intervention study
which includes high-risk individuals will be small and of shorter duration (and,
as a consequence, cheaper and likelier to be accomplished) than a study which
includes lower risk participants. The demonstration of a benefit among those with
high-risk characteristics will have to be applied, however, with great caution to
a more heterogeneous population.

Enrollment8.8

Enrollment of thousands participants in prevention trials is a major challenge
and deserves to be monitored carefully. Since prevention studies do not require
diseased people, hospitals are not frequent sources of participants. Out-patient
clinics are, however, used in some secondary prevention studies.

A preliminary question in community-based enrollment is whether trial par-
ticipants can be volunteers, provided they meet the eligibility criteria and can be
recruited in the required number, or whether it is necessary to extend an invitation
to join the study to all eligible persons in a predefined area. If the former applies,
local media, pamphlet distribution, and direct contacts with special associations
can be used in order to invite as many participants as required. In the previously
mentioned trial of a vaccine against HPV 16, for instance, young women were re-
cruited in the United States through advertisements on college campuses and in the
surrounding communities (Koutsky et al. 2002). In order to diminish the probabil-
ity of enrolling women who were infected with HPV16, only women who reported
that they had no more than five male sex partners during their lifetime were eligi-
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ble for participation. Obviously, in such instances, it will be impossible to evaluate
accurately the fraction of the persons who eventually opted for participating in
the trial, let alone any difference between participants and non-participants. This
approach is, however, the only possibility when participants are defined accord-
ing to life-style characteristics (e.g., current smoking habit, overweight, sleeping
disorders, sexual habits, etc.) that cannot be derived from administrative records.

In other instances, however, it may be important to have access to the entire
list of the population of a pre-defined area, and to make an effort to achieve,
as much as possible, high participation or, at least, to estimate the participation
fraction. This is necessary when the results of the trial must be generalizable to the
whole of the host population, and in particular when the trial must include certain
subgroups. In developed countries, complete and fairly well up-dated population
lists can be found (e.g., censuses, electoral rolls, general practitioners’ lists, etc.).
In the latter, a direct involvement of general practitioners in the recruitment of
their own patients is known to improve the yield of participants (Knatterud 2002).

In most developing countries, especially in the many areas where substantial
migrations from rural to urban areas are ongoing, reliable population lists are
seldom available, and a door-to-door enumeration of the target population of
the trials is generally a prerequisite of the recruitment exercise. The complete
enumeration of the target population is especially important in the evaluation
of interventions such as immunization programs or screening programs, where
a good coverage is essential for the efficacy of the intervention. The participation
fraction (i.e., the acceptance of the intervention) becomes part of the evaluation of
the intervention under study. A high participation rate is also especially important
in cluster-randomized trials (see below).

Randomization 8.9

An eligible participant should be admitted formally to the trial, by entry of his
or her name into a register and the allocation of a serial number. The random
allocation of the intervention should be determined after entry or a run-in period.
The fundamental reason for random allocation is to maximize the likelihood
that each type of patient will be allocated in similar proportions to the different
interventions being investigated. The decision to enter a participant must be made
irreversibly regardless of which trial arm the participants will be allocated. This
precludes systematic allocation systems and discourages easily guessable coding
systems, suchasone inwhichanactive intervention is codedasAand theplaceboas
B, which may lead to unblinding of the study. The bias inherent in non-randomized
studies may be more severe in therapeutic trials (where diseased patients can differ
substantially according to prognostic factors, at least in the clinician’s opinion) but
is not negligible in preventive trials as well.

A common allocation technique, discussed by Knatterud (2002), is to generate
a separate randomization schedule for each of the trial sites and, within each
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site, to have some blocking so that, after a fixed number of participants enrolled,
there will be equal numbers assigned to each trial arm. It is advisable to make
smaller blocks at the beginning, when the enrollment capacity of trial sites is
unknown. Ideally, there should be a central office where the randomization is
carried out. This ensures good record keeping and adherence to the protocol.
A telephone call to the randomization office can include some verification of the
patients eligibility before randomization. With current technology, it is possible to
implement an automated menu-driven telephone system that is available 24 hours
a day, 7 days a week (Heart Protection Study Collaborative Group 2002b). Elaborate
“stratification” schemes in which a separate randomization block is made for
participants with different characteristics are not encouraged in large trials (Peto
et al. 1976). Proper statistical methods (see Chap. II.3 of this handbook) can make
due allowance, when comparing interventions, for what was initially known about
each participant.

Cluster Randomization8.10

Interventions in communities or other groups have frequently been investigated
without using randomization. Longitudinal studies of the health consequences of
water fluoridation (Horowitz 1996), and initial cardiovascular disease prevention
studies such as the North Karelia Project (Puska et al. 1976) provided early evidence
that community-level health interventions could benefit large groups of individu-
als. However, non-randomized community intervention trials may be confounded
by secular trends. For example, in the two studies cited above, the incidence of
dental caries and cardiovascular disease may have diminished due to widespread
use of fluoridated toothpaste and improvements in the treatment of hypertension,
respectively.

The use of randomization is, therefore, just as important for community trials
as for individual-level studies, but it is not appropriate to randomize individuals
when the intervention is defined at the group level. Instead, groups of individu-
als or “clusters” are randomized. A cluster may be defined geographically (e.g.,
cities, countries, villages) or otherwise (e.g., workplaces, schools, clinical prac-
tices) (Atienza and King 2002). Cluster randomization can also avoid the potential
for contamination between interventions. Furthermore, cluster randomization by
village improves the chances of long duration follow-up in developing countries
where personal identifiers, such as name and date of birth, are unreliable (Gambia
Hepatitis Study Group 1987), but strong community links exist.

The main consequence of randomizing clusters is that the outcomes for trial
participants in the same cluster are no longer independent. This lack of indepen-
dence has implications for both analysis and design. The analysis of the study
must take into account the presence of the clusters. Various techniques for doing
so are reviewed by Donner (1998). If the clustering effect is ignored, as in 70% of
cluster trials reviewed by Divine et al. (1992), p-values will be artificially small,
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and confidence intervals will be over-narrow. Even if a correct statistical analysis is
used, the power of a cluster-randomized trial is reduced compared to an individ-
ually randomized trial. When the outcome of the trial is the mean of a continuous
variable (e.g. serum cholesterol level) the increase in sample size needed to main-
tain the same power as an individually randomized study is given by the formula
1 + (m − 1)r, where m is the number of subjects per cluster and r is the intra-cluster
correlation coefficient (Kerry and Bland 1998), which measures the proportion of
variation of the outcome in the study population that is due to differences between
clusters. Typical values of r are very close to zero, but when the number of subjects
per cluster (m) is large, there may be a serious loss of efficiency compared with an
individually randomized study.

A large number of clusters also increases the possibility that the randomization
will produce balanced intervention groups compared to trials where a small num-
ber of clusters has been allocated. “Restricted randomization” after matching or
stratifying communities according to selected factors has been attempted. In the
Community Intervention Trial for Smoking Cessation (COMMIT Research Group
1991), for instance, investigators examined eleven pairs of communities that were
matched on socio-demographic factors. Matching is only justified for variables
that are strongly related to the outcome of interest (Klar and Donner 1997). The
same principle applies to case-control studies (see Chap. I.6 of this handbook).

Notwithstanding unsolved issues, cluster design can greatly contribute to the
evaluation of preventive strategies and methodological advances should be
pursued.

Trial Outcome(s) 8.11

Prevention trial design generally distinguishes between primary and secondary
outcomes (Anderson and Prentice 1999). The primary outcome is typically the
clinical disease to be prevented or controlled that provides the central justification
for the trial, and determines the study size. Secondary outcomes are disease events
that also motivated the trial, but that by themselves would be unlikely to justify
a full-scale intervention.

The outcome measurements could be influenced by a knowledge of which
intervention was used, thus producing serious bias. In a single-blinded trial, the
identity of the allocated treatment is concealed from the participants. A double-
blinded trial is one in which the doctor, or other technical expert, who assesses
response also is unaware of the intervention identities. As discussed by Green
(2002), it may not be desirable to extend blinding to the independent data and
safety monitoring board (DSMB). The DSMB, as often stated in the participant’s
consent form, is the watcher of accumulating data and need, therefore, to be aware
of the allocation.

Unlike therapeutic trials, large prevention trials cannot rely on outcomes that
require frequent clinical visits for specialized tests or potential adverse reactions.
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Indeed, the safety of any intervention has to be documented before the planning
of any large preventive trial. Furthermore, even if participants in preventive trials
are selected on the basis of elevated risk for the diseases that are targeted for the
prevention, primary outcome events may constitute a small minority of the disease
events experienced by study subjects during the course of the trial, and perhaps
even a small minority of disease events that may in some way be affected by
intervention activities. Hence, there is an obligation to define sets of outcomes to
be fully ascertained, including often overall mortality, that provide an opportunity
to assess the overall risks and benefits in the target population.

The International Breast Cancer Intervention Study (IBIS-I), for instance, was
a double-blind placebo-controlled randomized trial of tamoxifen, 20 m/day for
5 years, in 7152 women at increased risk of breast cancer (IBIS Investigators 2002).
Theprimaryoutcomemeasurewas the frequencyof thebreast cancer,butoutcomes
other than breast cancer were found to be very important, too. A 32% reduction
(95% confidence interval, CI: 8–50%) in the primary outcome was found. It was
accompanied, however, by a 2.5-fold increase (95% CI: 1.5–4.4) in thromboembolic
events. Eventually, there was a significant excess of deaths from all causes in the
tamoxifen group (25 versus 11, p = 0.028). The conclusions of IBIS-I were that the
overall risk to benefit ratio for the use of tamoxifen in prevention was still unclear,
and continued follow-up of the trial was essential.

Although sample size determination is dealt with elsewhere in this volume
(Chap. II.1 , the dangers of an inadequate statistical power on intervention studies
cannot be overemphasized. More than therapeutic trials, preventive trials cannot
be easily replicated, for economical and logistic reasons, and collaborative re-
analyses can seldom remedy at the lack of definitive answer from a specific trial.
As discussed by Buring (2002), every effort should be made during the planning
phase of the trial to choose an adequate size and length of follow-up. Secular
declines in disease rates within the general population, and the failure to achieve
a sufficient sample size or to accrue sufficient endpoints are frequent in prevention
trials. Extending the duration of the trial is often a good option to achieve a more
definite result for a relatively small increase in total cost.

Follow-up, Exclusions and Withdrawal8.12

Various aspects of the statistical analysis of follow-up data from intervention trials
are dealt with elsewhere in this volume (Chaps. II.2, II.3, II.4 and II.6).

The series of articles by Peto et al. (1976, 1977) gives a clear and comprehensive
overview of the analysis of long-term follow-up in randomized controlled trials.
Survival analysis is the standard method of analyzing time-to-event data because it
makes use of the full information and can take into account right censoring, which
occurs when the study ends or when subjects are lost to follow-up. Interval censor-
ing can also occur when the events under study are only known to have occurred in
some interval in time. For example, if the event is not death but some measurement
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that requires a clinical examination (e.g., the appearance or the disappearance of
HPV infection, which is asymptomatic and requires a specimen of exfoliated cer-
vical cells for detection), the exact time of the event is unknown, except that it
occurred between two subsequent visits. Appropriate statistical methods can take
this uncertainty into account.

Censoring resulting from losses and dropouts are problematic if the censor-
ing is “informative” (i.e., related to outcome), a situation that is difficult to rule
out. As noted by Peto et al. (1977), “rigorous entry criteria are not necessary for
a randomized trial, but rigorous follow-up is. Even patients who do not get the
proper intervention must not be withdrawn from the analysis”. Often referred to
as analysis by intention to treat, this approach is the only one that provides a valid
answer to a real question. It tests the “policy” (or intention) to be evaluated at the
time of randomization. Every possible effort must therefore be made, at the level
of trial design and implementation, to identify and, as much as possible, avoid any
cause of non-adherence. This entails a run-in period and a simplified follow-up
protocol.

A special problem, different from the one of losses at follow-up, is represented
by participants who may be discovered to contravene the eligibility criteria after
randomization. In a double-blind trial of a prophylactic vaccine against HPV 16,
2392 young women were randomized (Koutsky et al. 2002). Since the tested vac-
cine was not supposed to work among women who were already infected with
HPV 16, 36% of the randomized trial participants were subsequently excluded,
mainly because HPV tests revealed that they were already infected at enrollment.
In principle, no bias should have been introduced, since the results of HPV tests
became available only after the randomization. An alternative would have been
to postpone the randomization, but this was considered impractical. The trial by
Koutsky et al. (2002), however, was the first test of a vaccine against HPV. It was not
meant to test a “policy” of vaccination in the general population, but the efficacy of
a new vaccine under optimal conditions (i.e. among women unexposed to HPV).
A larger, population-based trial of HPV vaccine would be necessary to evaluate
the effectiveness of HPV vaccine as a tool for cervical cancer control (Plummer
and Franceschi 2002). Analysis of such a trial by intention to treat would give
the programmatic efficacy of the vaccine programme, which is distinct from the
efficacy of the vaccine itself.

Finally, a special challenge is represented by the follow-up of community-based
health interventions. As discussed by Atienza and King (2002) and Koepsell et al.
(1992), it is typically not possible to assess all individuals of interest in the selected
communities. Two main approaches to obtaining these longitudinal individual-
level data are: (1) to follow-up groups of individuals over time and (2) to assess
different cross-sections in each time period. Several large-scale community-based
interventions (e.g., COMMIT) haveutilizedboth approaches, cognizant of different
strengths and weaknesses (Koepsell et al. 1992).
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Conclusions8.13

The randomized controlled trial is one of the most powerful tools available in
epidemiology. It allows the evaluation of a disease risk factor that is free from the
playofbias andchanceandmayalso,withanappropriatedesign, give aquantitative
estimate of the public health benefit that may be expected from an intervention.

Even well conducted randomized controlled trials have problems of interpreta-
tion. These problems centre on the generalizability of the findings and concern not
only the selection of the study participants, but also the timing, dose and duration
of the intervention and the length of time over which a beneficial effect was ob-
served. If there are no such problems, the results of randomized controlled trials
may be taken to provide a definitive answer and, in particular, overrule the results
from observational studies when these disagree. In general, however, the results of
intervention trials must be considered as part of the spectrum of available evidence
that includes observational studies in humans and experimental data that provide
mechanistic evidence.
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Introduction9.1

All epidemiologic studiesare (or shouldbe)basedonaparticular source population
followed over a particular risk period. The goal is usually to estimate the effect of
one or more exposures on one or more health outcomes. When we are estimating
the effect of a specific exposure on a specific health outcome, confounding can
be thought of as a mixing of the effects of the exposure being studied with the
effect(s) of other factor(s) on the risk of the health outcome of interest. Interaction
can be thought of as a modification, by other factors, of the effects of the exposure
being studied on the health outcome of interest, and can be subclassified into
two major concepts: biological dependence of effects, also known as synergism;
and effect-measure modification, also known as heterogeneity of a measure. Both
confounding and interaction can be assessed by stratification on these other factors
(i.e. the potential confounders or effect modifiers). The present chapter covers the
basic concepts of confounding and interaction and provides a brief overview of
analytic approaches to these phenomena. Because these concepts and methods
involve far more topics than we can cover in detail, we provide many references
to further discussion beyond that in the present handbook, especially to relevant
chapters in Modern Epidemiology by Rothman and Greenland (1998).

Confounding9.2

Basic Concepts9.2.1

Confounding occurs when the exposed and non-exposed subpopulations of the
source population have different background disease risks, which is to say: these
subpopulations would have different disease risks even if exposure had been absent
from both subpopulations (Greenland and Robins 1986; Rothman and Greenland
1998 Chap. 4; Greenland et al. 1999a,b). When we estimate the effect of exposure
on the exposed by comparing the frequency of disease in the exposed and non-
exposed groups, we assume that the disease frequency in the non-exposed group
provides a valid estimate of what the disease frequency would have been in the
exposed group if it had not been exposed. If this assumption is incorrect, i.e. if the
exposed and non-exposed groups would have had different disease frequencies in
the counterfactual situation in which the exposed group had not been exposed,
then we say that the comparison of the exposed group to the non-exposed group
is confounded.

More generally, confounding can arise when the exposed and non-exposed
group are not completely comparable or “exchangeable” with respect to their
exposure response; that is, for at least one level of exposure, the exposed and
unexposed groups would exhibit different risks even if they both had experienced
that exposure level (Greenland and Robins 1986). Note that the earlier definition
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takes this level to be that of non-exposure because it is presumed there that the
effect of exposure on the exposed is the effect of interest. If instead we were
interested in the effect of non-exposure on the non-exposed (as might be the case
in a study of a preventive factor), we would have confounding if the exposed group
failed to exhibit the risk that the non-exposed would have had if they had been
exposed.

Thisproblemofnon-comparability (non-exchangeability) canalsooccur in ran-
domized trials because randomization may fail, leaving the treatment groups with
different characteristics (and different baseline disease risk) at the time that they
enter the study, or becauseofdifferential loss andnon-compliance across treatment
groups. However, there is more concern about non-comparability in observational
epidemiology studies because of the absence of randomization. Randomization
prevents certain sources of confounding (e.g., confounding due to physician selec-
tion of treatment based on patient characteristics, also known as “confounding by
indication”); also, bias due to differential loss and non-compliance can be at least
partially controlled by using the randomization indicator (the “intent-to-treat”
variable) as an instrumental variable (Sommer and Zeger 1991; Greenland 2000a).
These benefits of randomization are not available in observational studies, and
in fact confounding should be expected to occur as a by-product of ordinary life
events and choices.

As an example, if we compare the risk of lung cancer in people with a low dietary
beta carotene intake comparedwithpeoplewithahighdietarybeta carotene intake,
it is very likely that these two groups will differ with respect to other risk factors for
lung cancer such as tobacco smoking, because people who are less health conscious
are more likely to smoke as well as to neglect dietary recommendations. If this is
the case (e.g. if a greater percentage of people smoke in the low beta carotene intake
group than in the high beta carotene intake group), then smoking will confound
the association between beta carotene intake and lung cancer: The higher smoking
prevalence among those with a low beta carotene diet will lead to a higher lung-
cancer risk among them compared to those with a high beta carotene diet, even if
beta carotene intake itself has no effect on lung cancer risk.

Any variable that affects disease in the absence of exposure has the potential to
confound the exposure-disease relationship. It will confound that relationship if,
in the absence of exposure, it would have a distribution that is sufficiently different
across exposure groups to produce a difference in risk across those groups even if
exposure were absent. This was the case for smoking in the beta carotene example.
Aconfounder, if not adequately controlled,will bias theestimatedeffectof exposure
on disease. The bias will be upward if the higher-risk levels of the confounder occur
more frequently among the exposed; conversely, the bias will be downward if the
higher-risk levels of the confounder occur more frequently among the unexposed.
Confounding may even reverse the apparent direction of an effect in extreme
situations. Confounding may also occur when the main exposure under study has
no effect on the risk of disease – a spurious association may be observed which is
entirely due to confounding. Factors associated with confounders can also act like
confounders and serve as surrogates for confounders, provided that they are not
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affected by exposure or disease. For example, socioeconomic status may serve as
a surrogate measure of causal factors (living conditions, lifestyle, lack of preventive
care, etc.) that are potential confounders.

Three conditions are traditionally given as necessary (but not sufficient) for
a factor to be a confounder (Rothman and Greenland 1998, Chap. 8). First, to
produce confounding, a factor has to be predictive of disease in the absence of
the exposure under study. Note that a confounder need not be a genuine cause
of the disease under study, but merely “predictive” within exposure levels apart
from chance relations. Hence, surrogates for causal factors (e.g., ethnicity, gender,
socioeconomic status) may be regarded as potential confounders, even if they
are not direct causal factors. It is not always clear from the data whether an
observed relation between the factor and disease represents a genuine (replicable)
predictive quality, as opposed to (say) chance. In making such a determination,
prior information as opposed to statistical testing should play a dominant role
(Greenland and Neutra 1980; Miettinen and Cook 1981; Robins and Morgenstern
1987). This is why one almost always sees adjustment made for age and sex: these
factors are known to be predictive of risk of most diseases. When prior information
is not available one must of course turn to the data collected for the study as a guide
as to whether the factor is predictive of disease in the source population; even in
these cases, however, there are better strategies for confounder selection than those
based on statistical testing. We will return to this topic below.

Second, a confounder has to be associated with the study exposure in the source
population. It may occur that when participants in a case-control study are selected
from the source population, then due to chance a factor may be associated with
exposure in the study, even though itwasnot associatedwith exposure in the source
population. In this situation, the factor is not a confounder (Miettinen and Cook
1981; Robins and Morgenstern 1987). Although in practice it is common to use the
data actually collected to decide whether a factor is associated with exposure, more
commonly the data are used to decide whether adjustment for the factor makes an
important difference in the estimated exposure effect, a practice we will discuss
below. In a case-control study, one should expect a confounder to be associated
with exposure among the controls (at least if the controls are selected with no
bias). If the factor is not associated with exposure among controls, an association
may still occur among the cases simply because the study factor and a potential
confounder are both risk factors for the disease, but this is a consequence of those
effects and so does not cause confounding. A factor-exposure association will
only indicate confounding by the factor if it reflects the association in the source
population.

Third, a variable that is affected by the exposure or by the disease, e.g., an inter-
mediate in the causal pathway between exposure and disease, or conditions that
are caused by the health outcome of interest, should not be treated as a confounder
because to do so could introduce serious bias into the results (Greenland and
Neutra 1980; Robins and Morgenstern 1987; Robins and Greenland 1992; Weinberg
1993; Rothman and Greenland 1998, Chap. 8; Cole and Hernan 2002). For example,
in a study of obesity and death from coronary heart disease, it would be inap-



Confounding and Interaction 375

propriate to control for hypertension if it was considered that hypertension was
a consequence of obesity, and hence a part of the causal chain leading from obesity
to death from coronary heart disease. On the other hand, if hypertension itself
was of primary interest, then this would be studied directly, and obesity would be
regarded as a potential confounder if it also involved exposure to other risk factors
for death from coronary heart disease.

Similarly, we should avoid controlling for health outcomes that may be part of
the pathogenic disease process, such as reduced pulmonary function following
exposure to a respiratory hazard in a study of chronic obstructive lung disease
(Checkoway et al. 2004). We would, however, be justified in controlling for baseline
(i.e. pre-exposure) lung function if there were reasons to believe that baseline
lung function was associated with subsequent exposure level. Evaluating whether
certain factors are exposure or health outcome intermediates in causal pathways
requires information external to the study. Intermediate variables can sometimes
be included in the analysis, although special techniques are then required to avoid
adding bias (Robins 1989; Robins and Greenland 1994; Robins et al. 1992, 2000).
In no case would control of a variable affected by the disease be valid, however
(Greenland et al. 1999a; Pearl 2000).

Thus, an assessment of confounding by a factor that is not an intermediate
involves consideration of whether the exposed and non-exposed groups are “com-
parable” in the source population with respect to their disease risk in the absence of
exposure. In practice, we often focus on specific potential confounders – variables
that are risk predictive of disease in the absence of exposure (such as age and sex)
and assess whether they are associated with exposure in the source population on
which the study was based. If such an association is present, it is evidence that the
two groups are not comparable or exchangeable with respect to baseline risk. If
such an association is absent, however, it does not mean that the groups are com-
parable, because there may be other uncontrolled risk factors that confound the
observed association, or the association may have been obscured by measurement
error.

Because it involves judgments about causal as well as temporal ordering, the
property of being a confounder cannot be determined from data alone (Miettinen
and Cook 1981; Greenland and Robins 1986; Greenland et al. 1999a; Pearl 2000;
Robins 2001; Hernan et al. 2002). Once that ordering is established, however, it is
common to assess confounding by seeing whether the main effect estimate changes
when the potential confounder is controlled in the analysis. In this approach, near-
equality of the crude and adjusted effect estimates is taken as evidence that there
is no confounding by the factor, and conversely, an important difference is taken
as evidence of confounding by the factor. Many epidemiologists prefer to make
a decision based on the basis of this “collapsibility” or “change-in-estimate” crite-
rion (rather than the criterion of “exchangeability”), although this approach can
be misleading, particularly if (as usual) there is misclassification of the adjustment
factors or the exposure (Greenland 1980; Greenland and Robins 1985; Savitz and
Baron 1989; Marshall and Hastrup 1996, 1999) or if the outcome is common and the
measure is an odds ratio or rate ratio (Miettinen and Cook 1981; Greenland 1996;
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Greenland et al. 1999b); also, this criterion does not exhibit good statistical prop-
erties, although it is no worse than significance-testing procedures (Maldonado
and Greenland 1993).

The decision to control for a presumed confounder can be made with more
confidence if there is supporting prior knowledge that the factor is predictive of
disease, independent of its association with exposure. Such prior knowledge is
usually available for well-studied factors such as age, sex, and tobacco smoking.
At the very least, it is usually known if the factor is affected by exposure (in which
case it is not a potential confounder and should not be controlled, at least not by
conventional methods). If even this much is uncertain, the decision to control or
not control a variable may be controversial, in which case analyses both with and
without its control may be presented (Greenland and Neutra 1980).

As a final caution, in studies involving aggregate-level effect (such ecologic
and multilevel studies), a factor at one level may, if not controlled, confound
effect estimates at another level, and a factor may modify and confound effects
differently at different levels of aggregation. For example, both the income of an
individual and the income of his or her neighbourhood may separately predict
risk of an outcome, possibly in opposite directions. Robbery rates are often higher
in low-income neighbourhoods, yet within neighbourhoods it could still be that
an individual’s risk of robbery went up as his or her income went up. In that case
both neighbourhood income and individual income could be confounders, but
would confound effect estimates in opposite directions if both were positively and
separately associated with the exposure under study. Thus, regardless of level of
interest (e.g., country, neighbourhood, individual), it is often essential to measure
and adjust for variables on other levels (Greenland 2001a).

Example of Confounding9.2.2

Table 9.1 presents a hypothetical example of confounding in a cross-sectional study
of asthma. Overall, one-half of the study participants are smokers and one-half are
not. However, two-thirds of the exposed group are smokers compared with one-

Table 9.1. Hypothetical example of confounding by tobacco smoking in a study of occupational

asthma

Smokers Non-smokers Total

Non- Non- Non-
Exposed exposed Exposed exposed Exposed exposed

Asthma cases 800 400 200 400 1000 800
Non-cases 1200 600 800 1600 2000 2200

Total 2000 1000 1000 2000 3000 3000

Prevalence (%) 40 40 20 20 33.3 26.7

Prevalence ratio 1.0 1.0 1.25
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third of the non-exposed workers. Thus, although exposure is not associated with
asthma either among smokers (the prevalence of asthma is 40% in the exposed
and 40% in the non-exposed, PR = 1.0) or in non-smokers (the prevalence of
asthma is 20% in the exposed and 20% in the non-exposed, PR = 1.0), it is
associated with asthma (PR = 1.25) when the two subgroups are combined. This
occurs because smoking is associated with the exposure in the source population,
and is an independent risk factor for asthma. In this hypothetical example, the two
stratum-specific estimates are each 1.00, thus the adjusted estimate will also be 1.00
(or very close to 1.00) whatever weights are used. Thus, the crude prevalence ratio
is 1.25, whereas the adjusted prevalence ratio is 1.00, indicating that confounding
has occurred (provided that there has not been biased selection of the study
participants from the source population).

Control in the Study Design 9.2.3

Confounding can be controlled in the study design, in the analysis, or both. There
are three commonmethods for control at thedesign stage (RothmanandGreenland
1998). The first is randomization – random allocation of participants to exposure
categories. However, this is usually only an option for potentially beneficial expo-
sures, e.g. it would be impractical and unethical to conduct a randomized trial of
the health effects of smoking, and as mentioned earlier randomization may fail to
prevent all confounding.

A second method of control at the design stage is to restrict the study to narrow
ranges of values of the potential confounders, e.g., by restricting the study to white
males aged 35–54. This approach has a number of conceptual and computational
advantages, but may severely restrict the number of potential study subjects and
ultimately limit the generalizability of the study.

A third method of control involves matching study subjects on potential con-
founders. For example, in a cohort study one could match a white male non-
exposed subject aged 35–39 with an exposed white male aged 35–39. This will
prevent age-gender-ethnicity confounding in a cohort study, but is seldom done
because it is expensive and time-consuming. In case-control studies, matching
does not prevent confounding, but does facilitate its control in the analysis in
that matching on a strong confounder will usually increase the precision of effect
estimates. However, matching may reduce precision in a case-control study if it
is done on a factor which is associated with exposure, but is not a risk factor
for the disease of interest. The matching process effectively turns such a factor
into a confounder, which must then be controlled in the analysis, thus reducing
precision and increasing analytical complexity. For example, in a case-control
study of power-frequency electromagnetic field (EMF) exposure and childhood
cancer, choosing sibling controls (i.e. for each case choosing a sibling as a control)
would mean that in almost every instance, the case and control would have lived
in the same house and would have similar EMF exposure, resulting in almost no
exposure-discordant pairs and almost no precision in the resulting matched-pair
estimates.
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As already mentioned, matching may be expensive and time-consuming. Find-
ing suitable controls becomes increasingly difficult as the number of matching
factors increases beyond two or three. Moreover, when it occurs the increase in
precision from matching is often modest, typically involving a 5 to 15 percent
reduction in the variance of the effect estimate (Schlesselman 1982; Thomas and
Greenland 1983). Therefore, although many discussions of matching stress issues
of statistical efficiency, practical considerations (such as ease of finding controls)
are often more important (Rothman and Greenland 1998, Chap. 10).

Control in the Analysis9.2.4

Confounding can also be controlled in the analysis by adjusting simultaneously
for all confounding factors or a sufficient subset of them. This presumes, of course,
that a sufficient subset has been accurately measured, which is often not the
case. Methods for controlling confounding in the analysis are discussed in more
depth in the chapters on specific study designs (Chaps. I.5, I.6 and I.8 of this
handbook), in Part II of this handbook and in many textbooks (e.g. Rothman and
Greenland 1998, Chaps. 15–21). In the simplest situation, control of confounding in
theanalysis involves stratifying thedataaccording to the levelsof the confounder(s)
and calculating an effect estimate that summarizes the association across strata of
the confounder(s). As an example, controlling for age (grouped into 5 categories)
and gender (with 2 categories) might involve grouping the data into the 10 (= 5×2)
confounder strata and calculating a summary effect estimate, which is a weighted
average of the stratum-specific effect estimates. It is usually not possible to control
simultaneously for more than 2 or 3 confounders in a stratified analysis, since
finer stratification will often lead to many strata containing no exposed or no
non-exposed persons. Such strata are uninformative; thus, too fine stratification
is wasteful of information. This problem can be mitigated to some extent by
the use of regression modeling (cf. Chap. II.3 of this handbook), which allows
for simultaneous control of more confounders by “smoothing” the data across
confounder strata.

Assessment of Confounding9.2.5

When one lacks data on a suspected confounder, and thus cannot control con-
founding directly, it is still desirable to assess the likely direction and magnitude
of the confounding. In particular, it may be possible to obtain information on
a surrogate for the confounder of interest. For example, social class is associated
with many lifestyle factors such as smoking, and may therefore be a useful sur-
rogate for some lifestyle-related confounders. Even though confounder control
will be imperfect in this situation, it is still possible to examine whether the ex-
posure effect estimate changes when the surrogate is controlled in the analysis,
and to assess the strength and direction of the change. For example, suppose
the relative risk relating low dietary beta carotene intake to lung cancer actu-
ally increases (e.g. from 2.0 to 2.3) or remains stable (e.g., at 2.0) when social
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class is controlled. This might be taken as evidence that the observed excess risk
is not entirely due to smoking, because social class is correlated with smoking
(Kogevinas et al. 1997), and control for social class involves partial control for
smoking. The strength of this evidence depends of course on what exposure is
being studied and what sort of classification errors or other sources of bias are
present.

Even if it is not possible to obtain confounder information for any study par-
ticipants, it may still be possible to estimate how strong confounding is likely
to be for particular risk factors. For example, this is often done in occupational
studies, where tobacco smoking is a potential confounder, but smoking infor-
mation is rarely available. In fact, although smoking is the strongest risk factor
for lung cancer, with relative risks of 10-fold or more, it appears that smoking
rarely exerts a confounding effect of greater than 1.5 times in studies of occu-
pational disease (Axelson 1978, 1989; Siemiatycki et al. 1988; Kriebel et al. 2004)
(although this degree of confounding may still be important in some contexts).
There are several approaches to the assessment of potential confounding by fac-
tors such as cigarette smoking when data are lacking or incomplete. One approach
is to conduct an analysis of smoking-related diseases other than the disease of
primary interest (Steenland et al. 1984). If mortality from such diseases (e.g., non-
malignant respiratory disease) is not elevated, this may suggest that any excess
for the disease of interest is unlikely to be due to smoking. Similarly, one might
be less inclined to attribute an excess of an alcohol-related cancer to unusually
high drinking prevalence among the exposed if liver cirrhosis mortality is not
elevated.

When detailed individual risk factor information is not available on a potential
confounder, it may be possible to assess the impact of this factor on risk estimates
by conducting a type of sensitivity analysis that estimates the potential direction
and extent of confounding (Cornfield et al. 1959; Bross 1967; Axelson 1978, 1989;
Schlesselman 1978; Checkoway and Waldman 1985; Axelson and Steenland 1988;
Flanders and Khoury 1990; Rothman and Greenland 1998, Chap. 19). In this sen-
sitivity analysis, the magnitude of the effect of the potential confounder on the
disease should be known with some confidence, and the prevalence of the poten-
tial confounder among the exposed and comparison groups should be estimable,
within reasonable bounds. Then, a range of confounding effects, including a “worst
case scenario,” can be calculated (Checkoway et al. 2004).

Consider the incidence rate, I, of disease in a population as consisting of two
components: one being the incidence among those without the confounder, and
the other the incidence among those with the confounder (assume in this simple
case that the confounder is dichotomous) (Axelson 1978). Then:

I = I0

(
1 − pc

)
+ RRc

(
I0

) (
pc
)

where: I = incidence rate overall, RRc = relative risk due to the confounder, I0 =
incidence rate among those who are confounder negative, and pc = prevalence of
the confounder in the source population from which the cases arose.
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This expression can be expanded to include several levels of a confounder, for
example: light, moderate, and heavy smoking. By applying the equation to two (or
more) study groups (e.g., exposed and non-exposed subgroups) for which pc is
assumed to differ, one can calculate a confounding bias factor Bc comparing these
two exposed groups and due to confounding alone. If there is no effect of exposure,
then Bc is the magnitude of effect one would observe due to differences in pc alone.
Then, if RRObs is the observed relative risk comparing exposed to non-exposed,

RRAdj = RRObs|Bc is the adjusted relative risk, controlling for confounding.

To illustrate, suppose that one is concerned about smoking confounding a finding
that RRObs = 3.2 for lung cancer and some dichotomous occupational exposure.
Individual smoking data are not known. We might assume that smoking habits
in the non-exposed approximate those of other typical blue-collar workers whose
smoking habits have been studied. To estimate the most extreme confounding
that might reasonably be expected, we might assume that the exposed were heav-
ier smokers, with habits more like the 90th percentile of blue-collar workers.
These assumptions would imply that the non-exposed might have been 50% non-
smokers, 40% moderate smokers, and 10% heavy smokers, whereas the exposed
were 20% non-smokers, 55% moderate smokers, and 25% heavy smokers. Assum-
ing that moderate smoking confers a relative risk of smoking of 10 compared to
non-smokers, and heavy smoking a relative risk of 20, the confounding due to
smoking is Bc = 1.65. Thus, one would observe a relative risk of 1.65 comparing
exposed to unexposed due to these smoking differences alone. One can then cal-
culate that RRAdj = 3.2|1.65 = 1.9 as a hypothetically “adjusted” exposure effect
under a plausible, but unlikely scenario for smoking differences among exposed
groups. If RRAdj is elevated, one might conclude that confounding is unlikely to be
the entire explanation for the elevated risk (Checkoway et al. 2004).

This method allows one to place limits on the degree of confounding that can
result from failure to adjust for an unmeasured risk factor that is associated with
the exposure under study. Its application is restricted however to control for fac-
tors whose risks are well established quantitatively, and for which the confounder
prevalence in the population can be estimated fairly reliably. Cornfield et al. (1959)
andothers (Bross 1967; Flanders andKhoury 1990) showed that the relative risk that
would result from differences in the prevalence of a covariate, such as smoking or
alcohol consumption, may be quite limited, even in the absence of complete knowl-
edge about the covariate. In particular, Flanders and Khoury (1990) showed that:

1 < Bc < min
{
OR, RRc, 1|pc, RRc|

(
qc + RRc ∗ pc

)
, OR|

(
qc + RRc ∗ pc

)}
where Bc,RRc and pc areasabove, qc = 1−pc, andORis theodds ratiomeasuring the
association between exposure and the covariate (both measured dichotomously
in this example). Using this equation, rather severe limits can be placed on the
range of possible values of Bc with information about pc and RRc alone, making
no assumption about OR at all. For example, if pc = 0.5, and RRc for esophageal
cancer from 1 pack|day smoking = 5, then Bc = 1.7. That is, given RRc = 5 an
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observed RRobs for an exposure effect is unlikely to be confounded by more than
1.7 times. With a reasonable assumption about the likely values of OR and RRc,
the association between exposure and the confounder, the maximum value for Bc

could be lower or higher. This method can be extended for the situation in which
there are multiple levels of exposure and multiple levels of covariates (Schlessel-
man 1978; Flanders and Khoury 1990), and to other measures of association such
as odds ratios (Yanagawa 1984).

A more sophisticated version of sensitivity analysis places uncertainty distri-
butions (priors) on the unknown quantities in the sensitivity formula, repeatedly
draws values from these distributions and corrects the data or estimates based on
the drawn values, adds in a random-error correction, and presents the resulting
distribution of corrected estimates. Such Monte-Carlo sensitivity analysis has long
been a staple of risk analysis and is now finding application in epidemiology (e.g.,
see Greenland 2003, 2004a, 2005; Phillips 2003; Lash and Fink 2003).

Sensitivity analysis can also be useful in certain situations in which confounder
information has been collected, but the validity or precision of those data are
weak. Sometimes smoking data are available on only a subset of the members of
a cohort. One option is to conduct an analysis that controls for smoking directly
on the subset with smoking data. However, the precision of this analysis and the
generalizability of findings to the entire cohort may be questionable. Instead, one
might apply the data relating the confounder to exposure among this subset in
a sensitivity analysis for the entire cohort (Fingerhut et al. 1991). A third option
is to adjust the entire cohort based on the data from the subset, using two-stage
methods or missing-data methods (Rothman and Greenland 1998, Chap. 15).

Relationship Between Confounding and Other Biases 9.2.6

In this chapterconfoundinghasbeendefinedasnon-comparability (non-exchange-
ability) of the exposed and non-exposed subgroups in the source population with
respect to their risk of the disease outcome in the absence of exposure. Confound-
ing is thus a property of the source population rather than of the specific group of
study participants.

Selection bias involves biases arising from the procedures by which the study
participants are selected (or select themselves) from the source population. Thus,
selection bias is not an issue in a cohort study (or cross-sectional study) involv-
ing complete recruitment and follow-up because in this instance the study group
comprises the entire source population. However, selection bias can occur if par-
ticipation in the study or follow-up is incomplete. Selection bias is usually more of
an issue in case-control studies in that selection bias may occur if the case group
does not include (or is not representative of) all cases in the source population, or
if the control group is not representative of the population-at-risk that the cases
came from.

If control selection involves only sampling at random from the entire source
population with complete cooperation, selection bias is a minor concern. More
realistically, however, selection bias is likely if response rates differ according
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to exposure level and disease status. When controls are selected from among
persons with other diseases, considerable care must be taken in specifying the
diseases that form the control group. In particular, a specific disease may not
correctly reflect the exposure pattern in the source population, especially if it is
caused by the study exposure. One strategy is to include only diseases that are
thought to be unrelated to the exposure(s) of interest (Miettinen 1985; Rothman
and Greenland 1998, Chap. 7), but this requirement may be difficult to satisfy in
practice because adequate evidence for the absence of exposure effects on many
diseases is frequently not available (Axelson et al. 1982). An alternative method is
to select as controls a sample of all other diseases. This approach is reliable if one
can be sure the factor under study does not markedly increase risk of numerous
or the most common diseases. It has become common practice to exclude diseases
known to be related to exposure from the pool of potential controls; however, even
this restriction will not always eliminate bias (Pearce and Checkoway 1988).

Selection bias and confounding are not always clearly demarcated. In particular,
selection bias in the form of non-response at baseline of a cohort can be viewed
as a source of confounding, since it may produce associations of exposure with
other risk factors in the study cohort and thus turn those factors into confounders
(Hernan et al. 2004). A similar phenomenon occurs in case-control studies when
selection is affected by a factor that itself affects exposure. An example occurs when
matching on a factor that is associated with exposure in the source population; even
if the factor is not a risk factor for disease in the absence of exposure, matching may
turn it into a confounder which must be controlled in the data analysis, because
matching will create the necessary factor-disease association if exposure affects
disease (Rothman and Greenland 1998, Chap. 10). Unfortunately, as discussed
earlier, if selection is affected by exposure and associated with case-control status
(e.g. selection bias due to inappropriate selection of controls from persons with
other diseases, or selection on factors affected by exposure), stratification on the
selection-related factors will rarely produce valid estimates, and hence this type of
selection bias should not be viewed as confounding.

Information bias is the result of misclassification of study participants with re-
spect to disease or exposure status. Thus, the concept of information bias refers
to those people actually included in the study, whereas selection bias refers to the
selection of the study participants from the source population, and confounding
generally refers to non-comparability of subgroups within the source population.
There are many methods to adjust for misclassification (e.g. Copeland et al. 1977;
Greenland and Kleinbaum 1983; Espeland and Hui 1987; Greenland 1988; Arm-
strong et al. 1992; Thomas et al. 1993; Armstrong 1998). These require estimates
of sensitivity and specificity, or the reliability of the measurement, based on prior
information or validation data. Estimates based on prior information are often
only best guesses that may not apply to the population under study. However, it
is an informative exercise to conduct sensitivity analyses that explore the range of
results that might have occurred under various scenarios (Rothman and Greenland
1998, Chap. 19), and again, Monte-Carlo sensitivity analyses may be applied (Lash
and Fink 2003; Phillips 2003; Greenland 2004a, 2005).
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Some consider any bias that can be controlled in the analysis as confounding,
but this definition is too general because any bias control requires background
information for proper execution, and any bias can be controlled in the analysis
given enough background information. Confounding is distinguished in that it
represents a mixing or confusion of the effects of other factors with the effects
of the study exposure, a concept that goes back at least as far as the writings of
John Stuart Mill (Greenland et al. 1999b). Other biases are then be categorized
according to whether they arise from the selection of study subjects (selection
bias), or their classification (information bias). Most observational studies suffer
from more than one form of bias, and the effects of multiple biases may compound
error. Perhaps the best-appreciated situation is when there is misclassification
of a confounder, in which case attempts to control for the confounder will not
fully control that confounder and may actually increase bias (Greenland 1980;
Greenland and Robins 1985; Savitz and Baron 1989; Marshall and Hastrup 1996,
1999). When (as is often the case) multiple biases are present, many complex and
counterintuitive phenomena can occur, and a clear picture of the net effects of bias
will require analyses that account for these bias interactions (Lash and Fink 2003;
Phillips 2003; Greenland 2005).

Interaction 9.3

Basic Concepts 9.3.1

The concept of interaction (effect modification), also known as effect heterogeneity
and effect variation, refers to a condition where the effect of exposure on the
outcome under study varies by some other factor. In other words, in order to
estimate the effect of exposure on an outcome (such as a disease time, a disease
risk, or a disease rate), we must first know whether or not another factor is present
(or what the level of this other factor is). This concept can be subclassified into
two major concepts: biological dependence of effects, also known as synergism;
and effect-measure modification, also known as heterogeneity of a measure. With
regard to the latter, all secondary risk factors modify either the rate ratio or the
rate difference, and uniformity over one measure implies non-uniformity over
the other (Steenland and Thun 1986; Rothman and Greenland 1998, Chap. 4),
e.g., an apparent additive joint effect implies a departure from a multiplicative
model. A further source of ambiguity is that the term “effect modification” implies
that one factor in some way biologically “modifies” the effect of the other factor
but this is not necessarily the case. For this reason, the term “effect-measure
modification” and “effect-measure variation” are more accurate terms, and are
logically equivalent to the definition of “interaction” used in most statistics books
and computer programs (Rothman and Greenland 1998, Chaps. 4 and 18).

The concepts of interaction and confounding are quite distinct. An effect-
measure modifier may or may not be a confounder and a confounder may or
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may not be an effect-measure modifier (Miettinen 1974; Rothman and Greenland
1998, Chap. 4). For example, if we are comparing exposed and non-exposed sub-
groups of a population, and the percentage of people who smoke (and the intensity
of smoking, and the length of time that each person has been smoking) is the same
in both groups, then smoking is not a confounder. However, the rate ratio for the
exposure effect may still vary by smoking status, e.g. the exposure may double the
risk of disease in smokers but have no effect in non-smokers. In this situation,
smoking would not be a confounder, but would be an effect-measure modifier.

Example of Effect-measure Modification9.3.2

Table 9.2presents ahypothetical exampleof effect-measuremodification ina cross-
sectional study of asthma. The overall findings are the same as for the study
presented in Table 9.1, but the stratum-specific findings are different. Now there is
no confounding by smoking because the percentage of smokers is the same in the
exposed and non-exposed groups. However, there is effect modification since the
prevalence ratio (for the association of exposure with disease) is 1.5 in smokers
and 1.0 in non-smokers. Thus, whereas the assessment of confounding involved
the comparison of the crude and adjusted effect estimates, the assessment of effect
modification involves the comparison of the stratum-specific effect estimates with
each other.

Table 9.2. Hypothetical example of effect modification by tobacco smoking in a study of asthma

prevalence

Smokers Non-smokers Total

Non- Non- Non-
Exposed exposed Exposed exposed Exposed exposed

Asthma cases 600 400 400 400 1000 800
Non-cases 900 1100 1100 1100 2000 2200

Total 1500 1500 1500 1500 3000 3000

Prevalence (%) 40 26.7 26.7 26.7 33.3 26.7

Prevalence ratio 1.5 1.0 1.25

Concepts of Interaction9.3.3

Although at first glance, the assessment of interaction is relatively straightforward,
there are considerable hidden complexities. Some of the analytic issues in studying
effect-measure modification will be illustrated with data (Table 9.3) from a study
by Selikoff et al. (1980) of lung cancer death rates per 100,000 person-years at
risk in relation to exposure to cigarette smoke and asbestos (Steenland and Thun
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Table 9.3. Example of joint effects: lung cancer mortality rates per 100,000 person-years at risk in

a cohort of asbestos workers compared to those in other blue collar occupations. Source: (Steenland

and Thun 1986)

Rate in smokers (RR) Rate in non-smokers Rate ratio

Asbestos 935.8 (RR11 = 32.7) 500.5 (RR01 = 17.5) 1.9
Non-asbestos 199.5 (RR10 = 7.0) 28.6 (RR00 = 1.0) 7.0
Rate ratio 4.7 17.5
Rate difference 736.3 471.9

1986). The rate difference due to asbestos exposure is 472 per 100,000 person-
years in non-smokers and 736 per 100,000 person-years in smokers. Thus, the rate
difference for the effect of asbestos exposure on lung cancer mortality is lower in
non-smokers than in smokers. On the other hand, the rate ratio for the same effect
is higher in non-smokers (asbestos rate ratio = 17.5) than in smokers (asbestos
rate ratio = 4.7). Thus, both the rate difference and the rate ratio are subject to
effect-measure modification in that the effect estimate depends on the presence
or absence (or more generally, the level) of another factor (i.e. smoking), but the
dependencies are in opposite directions: the rate difference is larger in smokers
and the rate ratio is larger for non-smokers.

Several authors (Kupper and Hogan 1978; Walter and Holford 1978) have taken
this dependence of interaction on the underlying effect measure to imply that the
assessment of interaction is “model-dependent”. Thus the authors equate all uses
of the term “interaction” with effect-measure modification. In contrast to these
statistically-based definitions, other authors (e.g. (Rothman and Greenland 1998,
Chaps. 2 and 18)) adopt a definition of interaction in which two factors are said to
exhibit interdependent effects or “biologic interaction”or “synergism” if they are
component causes in the same sufficient cause (Rothman 1976; cf. Chap. I.1 of this
handbook), or if individual patterns of response (the potential or counterfactual
outcomes) to exposure change when the other “interacting” factor is changed
(Greenland and Poole 1988; Rothman and Greenland 1998, Chap. 18). This concept
of dependence of effects implies that additivity of risks will arise when no biologic
interaction ispresent.With this concept inhand,onecanshowthat thepresenceand
degree of effect-measure modification depend to a large extent on the prevalence
of causal cofactors of exposure, as well as the actual biologic mechanisms at work
(Rothman 1976; see Chap. I.1 of this handbook for further explanation).

There was originally some confusion about the relation of biologic interaction
to nonadditivity (Koopman 1977). If two factors (A and B) belong to different
sufficient causes, but a third factor (C) belongs to both sufficient causes, then A and
B are competing for a single pool of susceptible individuals (those who have C).
Consequently the joint effect of A and B will be less than additive. Miettinen (1982)
reaches a similar conclusion based on a model of individual outcomes. However,
this phenomenon can be incorporated directly into the sufficient-cause model by
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clarifying a previous ambiguity in the description of antagonism in the model’s
terms. Specifically, the absence of B before A can be included in the sufficient
cause involving A, and vice versa. Then, two factors would exhibit interaction,
specifically antagonism, if the presence of one factor and absence of the other
factor were component causes in the same sufficient cause (Greenland and Poole
1988; Rothman and Greenland 1998, Chap. 18).

Under a potential-outcomes (counterfactual) model of causation, two factors are
said to exhibit interaction if the response schedule (response type) of any individual
to one of the factors depended on the level of the other factor (Greenland and Poole
1988; Rothman and Greenland 1998, Chap. 18). This definition leads to the same
operational (statistical) criterion for identifying the presence of interaction as that
derived from the sufficient cause model, namely, departure from risk additivity.

It should be stressed that this concept of independent effects is distinct from
from certain other biological concepts of no interaction. For example, Siemiatycki
and Thomas (1981) give a definition in which two factors have biologically inde-
pendent effects “if the qualitative nature of the mechanism of action of each is not
affected by the presence of absence of the other”; this concept does not lead to an
unambiguous definition of dependent effects, however (Siemiatycki and Thomas
1981), and thus does not produce clear analytic implications. In contrast, under
the sufficient-cause and potential-outcome (counterfactual) models, a particular
biologic model, rather than being accepted as the “baseline”, is itself evaluated in
terms of the co-participation of factors in a sufficient cause, or in modification
of individual response. For example, two factors which act at different stages of
a multistage process have dependent effects because they are joint components
of at least one sufficient cause. This occurs irrespective of whether they affect
each other’s qualitative mechanism of action (the ambiguity in Siemiatycki and
Thomas’ formulation stems from the ambiguity of this concept).

Additive and Multiplicative Models9.3.4

The sufficient-component and potential-outcome definitions of interaction (co-
participation in a sufficient cause, or change in response schedule) are attractive
because they are based on an explicit causal model that leads to an unambiguous
definition of independence of effects, and because they lead to the additive model
as the baseline for assessing interactions, just as obtained through public health
(cost-benefit) considerations (Rothman et al. 1980; Rothman and Greenland 1998,
Chap. 18). However, the analytic implications of these concepts are not straight-
forward, since assessing independence of effects is usually only one of the analytic
goals of an epidemiological study. There are several other considerations which
often favor the use of multiplicative models.

One is that multiplicative models have convenient statistical properties. Es-
timation in non-multiplicative models may have problems of convergence, and
inference based on the asymptotic standard errors may be flawed unless the study
size is very large (Moolgavkar and Venzon 1987). Another is that, if it is desired to
keep interaction (effect-measure modification, corresponding to product terms in
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a regression model) to a minimum, then a multiplicative model is often most effec-
tive. It is not uncommon for joint effects to appear closer to multiplicative than to
additive (Saracci 1987). In this situation there may be less masking of heterogeneity
in calculating an overall rate ratio than in calculating an overall rate difference.
Although there are also many instances of non-multiplicative departures from
additivity (Selikoff et al. 1980; Saracci 1987), even in these cases multiplicative-
model summaries are more often closer to a population-average (standardized)
measure than are additive-model summaries (Greenland and Maldonado 1994). Fi-
nally, additive-risk models are not identical to additive relative-risk models when
the model includes terms for confounder adjustment; unfortunately, in typical
case-control studies only the latter models can be fit, thus rendering it difficult
or impossible to make unconfounded assessments of risk additivity (Greenland
1993a,b). In contrast, departures from multiplicativity can be assessed in the same
fashion from cohort and case-control data.

Detecting Interactions 9.4

Determining whether or not a factor is an effect-measure modifier is often done
by estimating an effect measure (e.g., relative risk) for the exposure of interest
separately for each level of the presumed effect modifier and testing for equality of
these measures across the modifier strata (Rothman and Greenland 1998, Chap. 15).
This approach lacks power, however, and so it can be quite misleading to conclude
modification is absent just because the test yields a large P-value. Because of such
power problems and other problems due to sample size limitations, when there are
multiple possible effect-measure modifiers, such as age, ethnicity, gender, or previ-
ous employment in a hazardous industry, effect modification is usually examined
for each potential modifying variable separately, or else through use of model-
ing methods that allow continuous modification by quantitative variables such as
age. Prior selection of potential effect modifiers of greatest interest can simplify
the task. Then, assessing effect-measure modification for a subset of modifying
variables might be carried out, with adjustment made for other variables.

A major obstacle to interaction as well as confounding assessment is misclas-
sification. Misclassification of any of the variables in the analysis (whether the
exposure, disease, confounder, or modifier) can make a measure appear to vary
across strata when in reality it does not, or make it appear nearly constant when
in reality it does vary (Greenland 1980). Similarly, measurement errors can spu-
riously create or mask the need for product terms (interactions) in a statistical
model (Greenland 1993b; cf. Chap. II.3 of this handbook). In an analogous fash-
ion, variation in a measure across strata may be spuriously created or masked by
differences in other biases (such as residual confounding or selection bias) across
strata. Again, such problems can be explored using sensitivity analysis.

Conventional statistical analysis strategies often assume it is not appropriate
to calculate an overall effect estimate if interaction is present. However, this prin-
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ciple is commonly ignored if the difference in stratum-specific effect estimates
is not too great. In fact standardized rate ratios have been developed for pre-
cisely this situation, and will consistently estimate meaningful epidemiological
parameters even under heterogeneity (Rothman and Greenland 1998, Chap. 15;
Greenland 2004b). Furthermore, as mentioned earlier, rate ratios estimated from
multiplicative models often approximate these standardized ratios (Greenland and
Maldonado 1994).

As mentioned above, concluding that there is no interaction because the P-value
is high can be misleading. Most studies are not designed to examine interaction,
and as such, may have inadequate study sizes within strata of an effect-measure
modifier to permit a useful statistical interpretation. Presentation of stratum-
specific effect estimates and their confidence intervals can help to give a picture of
whether the data allow any inference about effect-measure modification. Formal
statistical tests may be most useful in situations where prior information suggests
likely forms of effect modification (e.g., a harmful effect would only be anticipated
among smokers) and the study is intentionally designed to accommodate an anal-
ysis of effect modification (e.g., sufficient numbers of smokers and non-smokers
are selected).

Some authors (e.g. Kleinbaum et al. 1982) have developed modeling strategies
in which the first step of an analysis involves testing for statistical interactions,
where the latter are represented by product terms in the model. In the most
extreme application this involves including all possible two-factor (and even three-
factor) product terms in a preliminary model and retaining in subsequent analyses
all products (and related lower-order terms) that meet the inclusion criterion
(which might be having a p-value below a certain cut-off, such as 0.10, or having
a point estimate larger than a particular magnitude). This approach often results
in complex models with numerous product terms, which may lead to problems of
convergence, bias in the parameter estimates, and difficulties in interpretation.

In fact, there is no logical necessity for the assessment of interaction to occur as
the first step in an analysis, and there are several reasons why it can be preferable to
evaluate confounding before considering interaction. One reason is that the initial
aim of most analyses is to determine if there is any overall effect of exposure. It
is necessary to control confounding to do this, but it is not essential to evaluate
interaction when doing so (Rothman 1978). Although harmful effects in one stra-
tum and protective effects in another stratum may yield an overall null effect, this
phenomenon is presumably rare. A routine search may yield a high percentage of
false positives; on the other hand, if there were a relevant a priori hypothesis then
it would be appropriate to calculate stratum specific effect estimates irrespective
of the value of the summary effect estimate.

Another reason to begin an analysis with confounding evaluation is that in-
clusion of extra stratification variables or extra product terms involving the main
exposure complicates confounder assessment. With extra strata or terms, changes
in either stratum-specific or in summary fitted measures must be examined; the
stratum-specific measures may be numerous and unstable, and the summary of
these measures can be difficult to construct from a fitted model that has product
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terms involving the exposure, see Rothman and Greenland (1998, pp 413–416) and
Greenland (2004b) for example formulas. Measures constructed from models that
omit exposure product terms are often a reasonable approximation to the formally
correct and more complicated measures that allow for interactions, and so can be
adequate for confounding evaluation (Greenland and Maldonado 1994).

Even if subsequent analyses concentrate on specific subgroups, it may be prefer-
able to evaluate confounding in the whole data set, since this provides the greatest
precision. If a factor is a confounder overall, then it is a risk factor, and is also
associated with exposure. Thus it is necessarily a confounder in some specific sub-
groups, and there may be little loss of precision from control in any subgroups in
which it is not a confounder (although this cannot be guaranteed). Hence, it may be
preferable to evaluate confounding first, and then adjust for the same confounders
in each subgroup analysis.

Somequalifications shouldbenoted. First, confoundingmaybeevaluatedpurely
on a priori considerations, and as mentioned earlier has an inescapable a priori
(causal) component in observational studies. Because of this causal component,
purely statistical selectionprocedures suchas stepwise regressioncanbeevenmore
misleading for confounder selection than they are in pure prediction problems
(Greenland 1980). Second, the entire selection process and the attendant problems
can be avoided by switching to hierarchical regression methods (Rothman and
Greenland 1998, Chap. 21), which we discuss further below. For general principles
of data analysis we refer to Chapter II.2 of this handbook and Chaps. 12 and 13 of
Rothman and Greenland (1998).

Assessment of Joint Effects 9.4.1

The above considerations imply an apparent dilemma. How can an analysis be
conducted that combines the advantages of ratio measures of effect with the as-
sessment of interaction in terms of a departure from additivity? If an excess risk is
found (and assumed to be causal) then attention shifts to elaborating the nature of
the effect. This naturally comes toward the end of the formal presentation of the
findings. Typically, the last few tables of a manuscript might examine the joint ef-
fects of the main exposure with other factors of interest, and the discussion might
relate these findings to current etiologic knowledge. As noted above, it is often
sufficient to evaluate only those joint effects for which there is an a priori reason
for interest.

As an example, when studying asbestos and lung cancer, interaction with smok-
ing might be expected given the powerful effects of smoking. To examine the latter
interaction, relative risks might be presented for smoking (in non-asbestos work-
ers), asbestos exposure (in non-smokers) and exposure to both factors, relative
to persons exposed to neither factor. These relative risks would be adjusted for
all other factors (e.g. age) that are potential confounders, but not of immediate
interest as effect modifiers. The relevant table (e.g. Table 9.3) can be derived from
any form of model, including the statistically convenient multiplicative models, by
including product (interaction) terms as appropriate.
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The estimation of separate and joint effects may be difficult when the factors of
interest are closely correlated. However, when it is feasible, this approach combines
the best features of multiplicative models and additive interaction assessment; it
also permits readers with other concepts of independence to draw their own
conclusions. It can be illustrated with the data presented above (Table 9.3) on
asbestos exposure, cigarette smoking, and lung cancer. In this example, the relative
risk estimates (adjusted for age and calendar period) are 7.0 for asbestos exposure
alone, 17.5 for smoking alone, and 32.7 for the joint effect of both exposures.
Thus, the joint effect of asbestos and smoking is more than additive (the joint
effect is 32.7 times, whereas it would be 1 + (7.0 − 1) + (17.5 − 1) = 23.5 if it were
additive). This is consistent with the hypothesis that asbestos and smoking are
joint components in at least one sufficient cause (it might be argued that non-
additivity refutes the hypothesis that asbestos and smoking never biologically
interact, assuming as usual that there is no residual confounding or bias). If their
joint effect were the sum of their separate effects, the result would have favored
the hypothesis that they are not joint components of a sufficient cause and do not
compete for a common pool of susceptibles. However, the latter interpretation is
more restricted, since additivity could arise if two factors were components of
the same sufficient cause, but also had antagonistic or competitive effects that
balanced their synergistic effects. Thus, even in ideal circumstances, additivity
does not refute the hypothesis that asbestos and smoking interact biologically in
some people (Greenland and Poole 1988; Rothman and Greenland 1998, Chap. 18).

If it is provisionally accepted that smoking and asbestos do act together in
a sufficient cause of lung cancer, then attention may shift to elaborating the effect
with mathematical models deduced from biologic models of the interaction. For
example, Doll and Peto (1978) have suggested that smoking acts at both an early
stage (probably the 2nd) and the penultimate (5th) stage of a 6-stage carcinogenic
process. Asbestos appears to act at one of the later stages, probably the 4th or 5th
(Pearce 1988). If asbestos acted at the same late stage as smoking, then it could
be expected that its effect would add onto the late stage effect of smoking, and
multiply the early stage effect of smoking. The resulting joint effect would be
intermediate between additive and multiplicative. This pattern has been observed
in several studies (Selikoff et al. 1980) although there are, of course, other models
which predict the same result (Saracci 1987).

When interaction evaluation occurs as the last stage of an analysis, the routine
evaluation (screening) of a large number of joint effects increases the number of ta-
bles, but does not necessarily complicate other aspects of the presentation (Pearce
1989). It does however raise a number of statistical problems which have been the
subject of much controversy and research. The first, lesser known problem is that
exposure effect estimates may be biased away from the null when too many terms
(such as product terms) are entered into a risk or rate regression (Greenland et al.
2000). The second is the multiple-comparisons problem. Although many epidemi-
ologists have denied that such problems exist (e.g. Rothman 1990), their focus
concerned situations in which despite many comparisons, the investigator was
interested in just one or a few exposure-disease relations. Nonetheless, screening
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a large number of effects (whether main effects or interactions) implies interest
in many relations, and raises the issues of how one deals with the instability of
the estimates and the high probability that some of the estimates are large simply
because of large random errors (Greenland and Robins 1991). Classical multiple-
comparisons procedures can be quite misleading, however, because they make no
attempt to account for false negative error (in fact they inflate it tremendously),
and are arguably inferior to making no adjustment at all if one is more concerned
about false-negatives than false-positives.

An analytic solution to both problems is to employ hierarchical modeling meth-
ods (also known as multilevel methods, penalized estimation, random-coefficient
regression, shrinkage estimation, Stein estimation, empirical-Bayes regression,
and semi-Bayes regression) (Greenland and Robins 1991; Rothman and Greenland
1998, pp 427–432; Greenland 2000b,c; Steenland et al. 2000). Such methods are
demonstrably superior to either extreme (of no adjustment versus classical ad-
justment) in these situations, as shown by theory, simulations, and performance
in real epidemiologic examples (Efron and Morris 1977; Greenland 1993c, 2000b,c,
2001b; Steenland et al. 2000; Witte et al. 2000). Furthermore, these methods can
also be applied to control of multiple confounders in place of confounder selection
methods (Greenland 2000c), and can be carried out with standard software (Witte
et al. 2000; Greenland 2001b).

Conclusions 9.5

Confounding occurs when the exposed and non-exposed subpopulations of the
source population have different background disease risks. When we make a com-
parison of the frequency of disease in the exposed and non-exposed groups, we
would ideally wish to be able to assume that the disease frequency in the non-
exposed group provides a valid estimate of what the disease frequency would have
been in the exposed group if it had not been exposed. If this assumption is incor-
rect, i.e. if the exposed and non-exposed groups would have had different disease
frequencies in the counterfactual situation in which the exposed group had not
been exposed, then we say that the comparison of the exposed and unexposed
groups is confounded. A related concept is that the exposed and non-exposed
group are not “exchangeable”, in that the estimated effects would have been dif-
ferent if the exposed group had not been exposed and the non-exposed group had
been exposed (i.e. if the exposure status of the subjects had been exchanged).

Interaction usually means that the exposure effect on disease risk varies by some
other factor. In other words, in order to estimate the effect of exposure, we must
first know whether or not another factor is present (or what the level of this other
factor is). This idea turns out to subsume two separate concepts: effect-measure
modification (statistical interaction) and biologic interaction. When considering
an exposure that has an effect, all other causal factors will modify either the
rate ratio or the rate difference, and uniformity over one measure implies non-
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uniformity over the other, e.g., an apparent additive joint effect implies a departure
from a multiplicative model. Effect-measure modification is logically equivalent
to the definition of “interaction” used in most statistics books and programs, and
refers to a population measure of effect. In contrast, biologic interaction refers
to effects in individuals although its absence implies absence of risk-difference
modification.

In the simple case of a dichotomous main exposure (e.g. asbestos exposure),
a dichotomous health outcome (e.g. lung cancer) and another categorized exposure
(e.g. smoking vs. non-smoking), assessment of confounding involves stratifying
on the potential confounder and assessing whether the stratum-specific effect
estimates are similar to the (crude) overall effect estimate, e.g. how close are
the relative risks in smokers and non-smokers (or a summary of these stratum-
specific effect estimates) to the relative risk estimated when smoking is ignored?
Assessment of effect-measure modification involves assessment of how the stratum
specific effect estimates compare with each other, e.g. how does the relative risk
in smokers compare with the relative risk in non-smokers? The two concepts are
therefore often confused, because in this simple situation they are both assessed
by stratification. However, confounding and interaction are completely different
concepts. A factor may be a source of confounding, or effect-measure modification,
or both, or neither.
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Introduction 10.1

Field work in epidemiological studies consists of collecting data in natural and
experimental settings to answer research questions or test hypotheses about the
origins, distribution, and control of disease in populations. Field data can be col-
lected directly and indirectly. Although direct data collection traditionally includes
collecting biological samples such as blood and saliva, epidemiologists also collect
data about the health of populations by contacting respondents through the tele-
phone, mail, or online. To study a community‘s use of preventative health services
(such as influenza vaccinations), for example, a team of epidemiologists can con-
duct in-person or telephone interviews or administer written, computer-assisted
or online surveys. Indirect data collection includes reviewing written, oral, and
visual records of respondents’ thoughts and actions and observing them in their
natural or experimental environment. To study the extent to which a health care
system’s medical providers adhere to recommended guidelines for preventative
health care, for instance, a team of epidemiologists might review a sample of med-
ical records to identify which preventative services were used and by whom. If the
team were interested in understanding why preventative services were (or were
not) used, it might review transcripts of audio or videotapes of selected physician
and patient encounters.

This chapter focuses on providing practical tips on the spectrum of techniques
epidemiologists canuse indesigningandadministeringreliableandnon-biological
field measures. Although the chapter focuses on direct data collection, many of the
principles apply also to indirect data collection.

Asking for Information: What Are the
Characteristics of Straightforward
Questions and Responses? 10.2

Learning how to ask questions in written and spoken form is essential when col-
lecting field data. A straightforward question asks for information in unambiguous
way and extracts accurate and consistent data. Straightforward questions are pur-
poseful, use correct grammar and syntax, and call for one thought at a time with
mutually exclusive questions (Sudman and Bradburn 1982; Fink 2002).

Types of Questions 10.2.1

Purposeful Questions. Questions are purposeful when the respondent can read-
ily identify the relationship between the intention of the question and the ob-
jectives of the study. If the objectives are to find out about the uses of health
services, for instance, and some of the study’s questions ask about education
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or place of birth, an explanation is needed of the relationship between ques-
tions and objectives. For instance, the introduction, can say something like:
“We plan to compare people with differing backgrounds in their use of health
services.”

Concrete Questions. A concrete question is precise and unambiguous. Adding
a dimension of time can help make the question more concrete. For instance, rather
than ask: “Has a physician ever told you that you have hypertension?” ask, “In the
past 12 months has a physician told you that you have hypertension?”

Complete Sentences. Questions should always be stated as complete sentences.
Complete sentences express one entire thought, as in Example 1.

Example 1. Complete Sentences
Poor: Place of birth?

Comment: Place of birth means different things to different people. I might give
the city in which I was born, but you might tell the name of the country or hospital.
Better: Name the country in which you were born. �

Make sure that experts and a sample of potential respondents review all ques-
tions even if you are using an already existing and validated instruments. Respon-
dents’ reading levels and attention spans may vary across studies.

Open and Closed Questions. Questions can take two primary forms. When they
require respondents to use their own words, they are called open or open-ended.
When the answers or responses are preselected for the respondent, the question is
termed closed. Both types of questions have advantages and limitations.

An open question is useful when the intricacies of an issue are still unknown,
in getting unanticipated answers, and for describing the world as the respondent
sees it – rather than as the questioner does. Also, some respondents prefer to
state their views in their own words and may resent the questioner’s preselected
choices. Sometimes, when left to their own devices, respondents provide quotable
material. Thedisadvantage is that unless the team includes a trainedanthropologist
or qualitative researcher, responses to open questions are often difficult to interpret
and compare.

Some respondents prefer closed questions because they are either unwilling or
unable to express themselves. Closed questions are more difficult to write than
open ones, however, because the answers or response choices must be known
in advance. But the results lend themselves more readily to statistical analysis
and interpretation. This feature is particularly important in most epidemiological
studies which often rely on relatively large numbers of responses and respondents.
Also, because the respondent’s expectations are more clearly spelled out in closed
questions, the answers have a better chance of being more reliable or consistent
over time. Example 2 shows a closed question.
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Example 2. A Closed Question
How often during the past week were you irritable? Circle one.

Please Circle One

Always or nearly always 1
Sometimes 2
Rarely or never 3 �

Types of Responses 10.2.2

The choices given to respondents for their answers may take three forms (Fink
and Kosecoff 1998; McDowell and Newell 1996; Stewart and Ware 1992). The first
is called nominal or categorical. (The two terms are sometimes used interchange-
ably.) Categorical or nominal choices have no numerical or preferential values.
For example, asking respondents if they are male or female is the same as ask-
ing them to “name” themselves as belonging to one of two categories: male or
female.

The second form of response choice is called ordinal. When respondents are
asked to rate or order choices, say, from very positive to very negative, they are
given ordinal choices. The third form of response choice results in numerical data
such as when a respondent is asked to give his or her height or age at the last
birthday.

A hypothetical study finding that uses nominal data results in numbers or
percentages, as follows:

Five hundred respondents were interviewed in a study of preventative health.
All were asked to indicate whether or not they perform four health-related activ-
ities: (1) exercise at least 30 minutes most days of the week; (2) eat 5 or 6 servings
of fruits or vegetables daily; (3) smoke; (4) drink no more than 1 to 2 alcoholic
drinks daily. Of the 500 respondents, 25% reported that they smoked; only 10%
stated that they drank no more than 1 to 2 drinks daily. None of the respondents
reported exercising at least 30 minutes per day or eating 5 or 6 servings of fruits
or vegetables.

Ordinal responses are made to fit on a scale that is ordered from positive (def-
initely or probably important) to negative (definitely or probably not important).
Ordinal data thus are often characterized by counts of the numbers and percent-
ages of people who select each point on a graded scale.

Of 500 respondents completing the question, 250 (50.0%) rated each preventive
health behavior as definitely or probably important.

Field studies often ask for numerical data as when respondents are asked for
their birth date. From the date, you can calculate each respondent’s age. Age is
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considered a numerical and continuous measure, starting with zero and ending
with the age of the oldest person in the study. Numerical data lend themselves to
many statistical operations. Typical findings might appear as follows: The average
age of the respondents was 43 years. The oldest person was 79 years of age, and the
youngest was 23.

How Are Field Study Measures
and Questions Organized?10.3

Length10.3.1

The length of a measure depends upon what you need to know and how many
questions you need to ask to get credible answers (Bourque and Fielder 2003a;
Bourque and Fielder 2003b). Another consideration is the respondents. How much
time do they have available, and will they pay attention? Relatively young children,
for example,mayonly stay still fora fewminutes, so shorter interviews, for example,
may be better. You must also consider your resources: Longer measures may be
more costly to design, validate and administer.

Question Order10.3.2

All field measures should be preceded by an introduction, and the first set of
questions should be related to the topic described in it. This is illustrated in
Box 1.

Note that the interviewer starts off by saying that questions will be asked about
satisfaction with the Health Clinic, and the first question calls for a rating of
satisfaction.

In general, questions should proceed from easiest to answer and the most
familiar to most difficult and least familiar. In a survey of needs for health services,
items can first be asked about the respondent’s own needs for services, then their
family’s, community’s, and so on.

Questions of recall should also be organized according to their natural sequence.
Do not ask very general questions: “When did you first start feeling dizzy?” Instead,
prompt the respondent and ask: “In the past three months, how often did you felt
dizzy? Think about the last time you felt dizzy. Was it in the morning, afternoon
or evening?”

Sometimes the answer to one question will affect the content of another. When
this happens, the value of the measure may be diminished (Example 3).
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Box 1. An Introduction to a Telephone Interview and Its First Question

Hello. I am calling from the Health Clinic. We are surveying people who use
the Health Clinic to find out whether it provides satisfactory services. Your
name was selected at random from the Clinic’s database. Our questionnaire
will take no more than four minutes. You can interrupt me at any time. May
I ask you the questions? [If yes, continue. If no, say: Thank you and hang
up.]
Continue here:

The first question asks you about your overall satisfaction with the Health
Clinic. Do you consider it [read choices]
a. Definitely satisfactory
b. Probably satisfactory
c. Probably not satisfactory
d. Definitely not satisfactory

[do not say]
e. No opinion or don’t know|wrong answer

Example 3. Ordering Questions
Which question should come first?

a. How efficient is the nursing staff?
Or

b. Which improvements in nursing do you recommend?

Answer: Question b should come before Question a. If it does not, then the respon-
dent might offer suggestions for the improvement of the nursing staff ’s efficiency
of the nursing merely because it has been suggested. �

Place relatively easy-to-answer questions at the end of the measure. When ques-
tionnaires, for instance, are long or difficult, respondents may get tired and answer
the last questions carelessly or not answer them at all. You can place demographic
questions (age, income, gender, and other background characteristics) at the end
because these can be answered quickly.

Avoid many items that look alike. Twenty items, all of which ask the respondent
to agree or disagree with statements, may lead to fatigue or boredom, and the
respondent may give up. To minimize loss of interest, group the questions and
provide transitions that describe the format or topic. For instance, say or print
something like: “The next set of questions ask about your use of health services.”

Questions that are relatively sensitive should be placed toward the end. Topics
such as grooming habits, religious views, and positions on controversial subjects
such as abortion and assisted suicide must be placed far enough along so there is
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reason to believe the respondent is willing to pay attention, but not so far that he
or she is too fatigued to answer properly.

Finally, questions should appear to reasonable people to be in a logical order. Do
not switch from one topic to another unless you provide a transitional statement
to help the respondent make sense of the order.

Here is a checklist of points to consider in selecting the order for the questions
in your field measure:

Checklist to Guide Question-Order
For any given topic, ask relatively objective questions before the subjective
ones.
Move from the most familiar topics to the least.
Follow the natural sequence of time.
See to it that all questions are independent.
Avoid many items that look alike.
Ask sensitive questions well after the beginning.
Place questions in a logical order.

Aesthetics and Other Concerns10.3.3

A measure’s appearance is important. A self-administered questionnaire that is
hard to read can confuse or irritate respondents who may not answer accurately or
at all, reducing the reliability of the responses. A poorly designed interview form
with inadequate space for recording answers will reduce the efficiency of even the
most skilled interviewers.

Branching Questions or Skip Patterns10.3.4

What happens when you are concerned with getting answers to questions that
you know are only appropriate for part of your group? Suppose you were inter-
viewing older adults in a general practice to learn about their medication-use.
You know that many of these patients are likely to be taking certain kinds of
mediations such as antihypertensives, NSAIDs, and aspirin. However, some peo-
ple will be taking all of these medications each day, while others will be taking
none.

If you want to ask about a topic that you know in advance is not relevant to
everyone in the study, you might design a form such as the one in Example 4.

Example 4. Skip Patterns or Branching Questions

Do you take any of the following medications (a list is provided)
a. No (Go to question 4)
b. Yes
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[If yes] How often do you take your usual dose (choices are given such as once
a day; only when needed)?

OR

Do you take any of the following medications?
a. Yes (Complete Section A)
b. No (Go to Section B) �

Skip patterns may be confusing to people and should be avoided in self-
administered printed questionnaires. Interviewers must be trained to follow the
branches. Computer-assisted and online questionnaires are effective vehicles for
branching because you can design the software to guide the respondent. For in-
stance, if the questionnaire tells the respondent, “If no, go to question 6,” the
respondent who answers “no” will automatically be sent to question 6.

What Does It Take to Ensure Proper
Administration of Field Instruments? 10.4

Self-Administered Questionnaires 10.4.1

Self-administered questionnaires take the form of written, computer-assisted, and
online surveys. They require a great deal of advance preparation and subsequent
monitoring to get a reasonable response rate. These questionnaires are given
or sent directly to people for completion. Advance preparation, in the form of
careful editing and tryouts, is necessary in helping to produce a clear, readable
self-administered questionnaire (Bourque and Fielder 2003a). You should always
review the returns. Are you getting the response rate you expected? Are all ques-
tions being answered? The following is a checklist for using self-administered
questionnaires:

Checklist for Using Self-Administered Questionnaires
Mail respondents a letter or email them in advance telling them the purpose of
your study. The letter should inform people to expect a questionnaire, explain
the importance of the study and the respondent’s role, list study supporters and
sources of funding, and describe procedures to ensure confidentiality.
Prepare a short, formal letter to accompany the questionnaire form. If you have
already sent an advance letter, this one should be very concise.
Offer to send respondents a summary of the findings so they can see just how
the data are used. (If you promise this, allocate resources for it.)
If you ask questions that may be construed as personal – such as gender, age,
or income – explain why the questions are necessary.
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Keep the questionnaire procedures simple. Provide stamped self-addressed
envelopes for written, mailed questionnaires. Make sure no special software is
needed for online surveys (e.g., to download graphics). If special software is
necessary, set up a system for ensuring that all respondents who are eligible for
the survey have access to the software.
Keep questionnaires as short as you can. Ask only questions you are sure you
need and do not crowd them together. Give respondents enough room to write
or check boxes and be sure each question is set apart from the next.
Consider incentives. This may encourage people to respond. Incentives may
range from certificates of appreciation and money and stamps to pens, fuel and
food.
Be prepared to follow up or send reminders. These should be brief and to the
point. For mailed and online surveys, it often helps to send another copy of the
questionnaire to non-respondents. Do not forget to budget money and time for
these additional mailings.

Interviews10.4.2

Finding Interviewers. Interviewers should fit in as well as possible with respon-
dents. They should avoid flamboyant clothes, haircuts, and so on. Sometimes it is
a good idea to select interviewers who are similar to respondents in gender, age or
other demographic characteristics.

It is also important that the interviewersbeable to speak clearly andunderstand-
ably. Unusual speech patterns or accents may provoke unnecessarily favorable or
unfavorable reactions. The interviewer’s way of talking is of course an extremely
important consideration in the telephone interview. The interviewer’s attitude to-
ward the study and the respondent will influence the results. If the interviewer
does not expect much from the interview and sends this message, the response
rate and reliability of responses will probably suffer. To make sure you are getting
the most accurate data possible, you should systematically and frequently monitor
the interviewers’ progress (Bourque and Fielder 2003b).

Training Interviewers. The key to a good telephone or face-to-face interview is
training (Frey 1989). The overall goal of training should be to produce interviewers
who know what is expected of them and how to answer questions and also know
where to turn if problems arise unexpectedly in the field.

Whether you are training two interviewers or twenty, it is important to find
a time to meet together. The advantage of meetings is that everyone can develop
a standard vocabulary and share problems encountered in the field.

Once at the training site, trainees must have enough space to sit and write or
perform any other activities you will require of them. If you want them to interview
one another as practice for their real task, be sure the room is large enough so that
two or more groups can speak without disturbing the others. You may even need
several rooms.
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Trainees should be taken step by step through their tasks and given an oppor-
tunity to ask questions. It is also essential to tell them some of the reasons for
their tasks so they can anticipate problems and be prepared to solve them. The
most efficient way to make sure the trainees have all the information they need to
perform their job is to prepare a manual. Here you can explain what they are to do
and when, where, why, and how they are to do it.

Conducting Interviews. The following are suggested guidelines for conducting
interviews.

Make a brief introductory statement that will describe who is conducting the
interview (“Dr. Mary Doe for Armstrong Memorial Medical Center”), tell why
the interview is being conducted (“to find out how satisfied you are with our
after-surgery program”), explain why the respondent is being called (“We’re
asking a random sample of people who were discharged from the hospital in the
last two months”), and indicate whether or not answers will be kept confidential
(“Your name will not be used without your written permission”).
Try to impress the person being interviewed with the importance of the inter-
view and of the answers. People are more likely to cooperate if they appreciate
the importance of the subject matter. Do not try to deal with every complaint
or criticism, but suggest that all answers will receive equal attention.
Check the hearing and “literacy” of the respondent. Although it is impor-
tant to stay on schedule and ask all the questions, a few people may have
trouble hearing and understanding some of the questions. If that happens,
reappraise the eligibility of the respondent (perhaps an interview is not the
best method of obtaining reliable data from this respondent; other meth-
ods may be more appropriate). Another option is to speak more clearly and
slowly.
Ask questions as they appear in the interview schedule. It is important to
ask everyone the same questions in the same way or the results will not be
comparable.

Monitoring Interview Quality. To make sure you are getting the most accu-
rate data possible, you should monitor the quality of the interviews. This might
mean something as informal as having the interviewer call you once a week, or
something as formal as having them submit to you a standardized checklist of
activities they perform each day. If possible, you may actually want to go with
an interviewer (if it is a face-to-face interview) or spend time with telephone in-
terviewers to make sure that what they are doing is appropriate for the study’s
purposes. To prevent problems, you might want to take some or all of the following
steps:

Tips for Ensuring Quality
Establish a hot line. This means having someone available to answer any ques-
tions that might occur immediately, even at the time of an interview. Consider
obtaining a toll-free number.
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Provide written scripts. If interviewers are to introduce themselves or the study,
give them a script or set of topics to cover. The script may have to be approved
by an Institutional Review Board.
Make sure you give out extra copies of all supplementary materials. If data
collectors are to mail completed interviews back to you, for example, make
sure to give them extra forms and envelopes.
Provide an easy-to-read handout describing the purpose of the interview and
the content of the questions.
Provide a schedule and calendar so that interviewers can keep track of their
progress.
Consider providing the interviewer with visual aids. Visual aids may be ex-
tremely important when interviewing people in-person whose ability to speak
or read may be limited. The preparation of audiovisual aids for use in an in-
terview is relatively expensive and requires that the interviewers be specially
trained in using them.
Consider the possibility that some interviewers may need to be retrained and
make plans to do so.

Computer-Assisted Telephone Interviews or CATI. Computer-assisted interview-
ing is becoming increasingly accepted as a useful field work tool. With CATI, the
interviewer reads instructions and questions to the respondent directly from the
computer monitor and enters the responses directly into the computer (Bourque
and Fielder 2003b). The computer, not the interviewer, controls the progression
of the interview questions. No paper copies of the interview are produced, thus
eliminating the need to find secure storage place for completed questionnaires.

CATI software programs enable the researcher to enter all telephone numbers
andcall schedules into the computer.When the interviewer logson,heor shewill be
prompted with a list of phone numbers to call, including new scheduled interviews
and callbacks. For example, suppose the interviewer calls someone at 8 AM, but
receives no answer. The CATI program can automatically reschedule the call for
some other time. CATI programs are also available that enable specially trained
interviewers to contact respondents with unique needs. For instance, suppose your
study sample consists of people who speak different languages. CATI will allow
multi-lingual interviewers to log on with certain keywords; the computer will then
direct them to their unique set of respondents.

The major advantage of CATI is that once the data are collected they are imme-
diately available for analysis. However, having easy access to data may not always
be a blessing. Some researchers may be tempted to analyze the data before the
completion of data collection, and the preliminary results may be misleading.
A main value of easy access to data, certainly in the early stages of data collection,
lies in having the means to check on the characteristics of the respondents and to
monitor the quality of the CATI interviewers in obtaining complete data.

Intensive interviewer training is crucial when using CATI in field studies. In-
terviewers must first learn how to use the CATI software and handle computer
problems should they arise during the course of the interview. For instance, what
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will the interviewer do if the computer “freezes”? Further, the interviewer needs
to practice answering questions invariably posed by respondents regarding the
study’s objectives, methods, human subjects’ protections and incentives. In fact,
given the complexity of CATI, training may take up to a week. Thus, at the present
time, use of CATI should probably be considered primarily when a study is well
funded because it is a relatively expensive and specialized form of data collection.

CATI takes two forms. The first, which is most commonly used, consists of
a lab or a facility furnished with banks of telephone calling stations that are
equipped with computers linked to a central server. The costs of building the lab
are extremely high and include assembling soundproof cubicles and having either
a master computer that stores the data from the individual computers or linkage
to a server. Additional resources are needed to cover the cost of leasing CATI
software and hiring a programmer to install it. Training for this type of CATI is
expensive, requiring a great deal of practice. There are also numerous incidental
costs including those for headsets, seats and desks, instructional manuals and
service contracts for the hardware.

A second type of computer-assisted telephone interviewing system consists of
CATI software programs that are run on laptops. With this type of CATI, the
researcher only needs a laptop and access to a telephone connected to the Internet.
In time, we can expect that the telephone will be superseded by wireless access
to the Internet, making this type of telephone interviewing a desirable method
for collecting data in the field and sending them to a central server. Moreover,
this second type of CATI is appropriate for studies with a variety of funding
levels because it is portable and relatively inexpensive. The portability of laptops,
however, raises concerns about patient privacy. Laptops are sometimes shared or
stolen, providing easy access to confidential respondent data. In anticipation of
these concerns, laptops that are used for CATI should be dedicated to a single study,
strict privacy safeguards must be enforced, and interviewers must receive special
training to ensure proper CATI implementation and respondent protection. In the
U.S., patient privacy rules have become increasingly strict (e.g., through the Health
Insurance Portability and Accountability Act or HIPAA), with costly penalties for
violation.

How Can You Assure a Reliable
and Valid Field Measure? 10.5

Pilot Testing 10.5.1

Once a field measure has been assembled, it should be tested to determine the ease
with which it can be administered and to estimate the accuracy of the data. Pilot
testing includes evaluating the logistics of administration as well as the ease of use
of the form itself. The purpose of the pilot test is to answer these questions:
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Questions Answered by Pilot Testing
Will the measure provide the needed information? Are certain words or ques-
tions redundant or misleading?
Are the questions appropriate for the respondents?
Will information collectors be able to use the forms properly? Can they admin-
ister, collect, and report information using any written directions or special
coding forms?
Are the procedures standardized? Can everyone collect information in the same
way?
How consistent or reliable is the information?

Reliability and Validity: The Quality of the Measure10.5.2

A ruler is considered to be a reliable instrument if it yields the same results every
time it is used to measure the same object, assuming the object itself has not
changed. A yardstick showing that you are 6 feet 1 inch tall today and 6 feet 1 inch
six months from today is reliable.

People change over time. You may be more tired, angry, and tense today than
you were yesterday. People also change because of their experiences or because
they learned something new, but meaningful changes are not subject to random
fluctuations. A reliable instrument will provide a consistent measure of important
characteristics despite background fluctuations. It reflects the “true” score – one
that is free from random errors.

A ruler is considered to be a valid instrument if it provides an accurate measure
(free from error) of a person’s height. But even if the ruler says you are 6 feet 1 inch
tall today and six months from now (meaning it is reliable), it may be incorrect,
that is, invalid. This would occur if the ruler were not calibrated accurately, and
you are really 5 feet 6 inches tall.

If youdevelopan instrument that consists ofnothingmore thanaskingahospital
administrator how many beds are in a given ward, and you get the same answer
on at least two occasions, you would have an instrument that is reliable. But if
you claim that the same instrument reflects the quality of medical care, you have
a reliable measure of questionable validity. A valid measure is always a reliable
one, but a reliable one is not always valid (Bernard 2000; Dawson and Trapp
2001).

Ensuring Quality: Selecting Ready-to-Use Measures10.5.3

One way to make sure that you have a reliable and valid measure is to use one
that someone else has prepared and demonstrated to be reliable and valid through
careful testing. This is particularly important to remember if you want to survey
attitudes, emotions, health status, quality of life, and health beliefs (Stewart and
Ware 1992; McDowell and Newell 1996). These factors, and others like them, are
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elusive and difficult to measure. To produce a truly satisfactory measure of health,
quality of life, and human emotions and preferences thus requires a large-scale
and truly scientific experimental study.

Reliability 10.5.4

In reviewing a published field instrument (also, in assessing the quality of a home-
made form) you should ask the following questions about four types of reliability:
test-retest, equivalence, internal consistency, and interobserver reliability.

Test-Retest Reliability. Does the instrument have test-retest reliability? One way
to estimate reliability is to determine if someone taking the measure answers
about the same on more than one occasion. Test-retest reliability is computed
by administering the measure to the same group on two different occasions and
then correlating the scores from one time to the next to obtain a correlation
coefficient (r value). Usually, to be considered reliable, an instrument should obtain
a correlation coefficient of at least 0.70 (Stewart and Ware 1992).

You can calculate test-retest reliability for single questions, subsets, or entire
measures.Forexample, supposeyouarestudying theuseofmedications inasample
of older adults. The instrument you are using asks this question, “How many
prescription medications do you usually take each day?” In order to assess the
consistency of the respondents’ answers, you would ask the same question twice:
at baseline and then a second time, say 2–4 weeks later. Assuming medication-use
rates in your sample tend to be stable over short periods of time, any differences
in responses to the question can be assumed to reflect measurement error and not
changes in the use of medications. To calculate test-retest reliability for an entire
measure, you would administer its entire set of questions at two different points in
time, score it, and then calculate the correlation coefficient for the two scores.

Equivalence. Are alternative forms equivalent? If two different forms of a ques-
tionnaire are supposed to measure the same attitude, for example, you should make
sure that people are likely to obtain the same score regardless of which one they
take. If you want to use Form A of the instrument as a premeasure, for example,
and Form B as a postmeasure, check the equivalence of the two forms to make sure
one is not different from the other.

Equivalence reliability can be computed by giving different forms of the in-
strument to two or more groups that have been randomly selected. The forms
are created either by using differently worded questions to measure the same at-
tributes or by reordering the questions. To test for equivalence, you can administer
the different forms (reordered or reworded) at separate time points to the same
population, or if the sample is large enough, you can divide it in half and admin-
ister each of the two alternate forms to half of the group. In either case, you would
first compute mean scores and standard deviations on each of the forms and then
correlate the two sets of scores to obtain estimates of equivalence. Equivalence
reliability coefficients should be at least 0.70.
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Internal Consistency. Another measure of reliability is how internally consistent
the questions are in measuring the characteristics, attitudes, or qualities that they
are supposed to measure. To test for internal consistency, you calculate a statis-
tic called coefficient alpha, or Cronbach’s alpha, named for the person who first
reported the statistic.(Anastasi 1982; Bernard 2000). Coefficient alpha describes
how well different items complement each other in their measurement of the same
quality or dimension.
Many researchers are not at all concerned with internal consistency because they
are not going to be using several items to measure one attitude or characteristic.
Instead, they are interested in the responses to each item. Decide if your instrument
needs to consider internal consistency.

Example 5. Internal consistency
Internal consistency is important

A ten-item interview is conducted to find out patients’ satisfaction with medical
care in hospitals. High scores mean much satisfaction; low scores mean little
satisfaction. To what extent do the ten items each measure the same dimension of
satisfaction with hospital care?

Internal consistency is not important
A ten-item interview is conducted with patients as part of a study to find out
how hospitals can improve. Eight items ask about potential changes in different
services such as the type of food that might be served, the availability of doctors,
nurses, or other health professionals, and so on. One item asks patients for their
age, and one asks about education. Since this interview is concerned with views
on improving eight very different services and with providing data on age and
education of respondents, each item is independent of the others. �

Interobserver Reliability: Kappa. Kappa is a statistic used to measure interrater
(or intrarater) agreement for nominal measures (Cohen 1960). Suppose two re-
searchers are asked to independently review a sample of 100 medical records to
determine health services utilization among a sample of diabetic patients. Suppose
also that the reviewers are required to use a standardized form containing ques-
tions about utilization. One of the questions asks the reviewer to indicate whether
or not each patient has visited the emergency department (ED) within the past
month. Here are the reviewers’ responses to that question (Table 10.1).

This is shown in the following formula in which O is the observed agreement
and C is the chance agreement.

Measuring Agreement Between Two Coders: The Kappa (κ) Statistic

κ =
O − C(Agreement beyond chance)

1 − C(Agreement possible beyond chance)
.
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Table 10.1. Reviewers’ response

Reviewer 1
Reviewer 2 No, Did not Visit ED Yes, Did Visit ED

No 20C 15 35B

Yes 10 55D 65
30A 70

Reviewer 1 says that 30 (A) of the 100 patients did not visit the ED, while
Reviewer 2 says that 35 (B) did not. The two reviewers agree that 20 (C)
patients did not visit the ED.
What is the best way to describe the extent of agreement between the
reviewers? 20 of 100 or 20% (C) is probably too low because the reviewers
also agree that 55% (D) of patients did visit the ED. The total agreement:
55% + 20% is an overestimate because with only two categories (yes and
no), some agreement may occur by chance.

Here is how the formula works with the above example.
1. Calculate how many records the reviewers may agree by chance indicate that

patents did not visit the ED. This is done by multiplying the number of no’s
and dividing by 100 because there are 100 interviews: 30 × 35|100 = 10.5

2. Calculate how many interviews they may agree by chance indicate that patients
do visit the ED. This is done by multiplying the number of yes’s and dividing
by 100 : 70 × 65|100 = 40.5

3. Add the two numbers obtained in steps 1 and 2 and divide by 100 to get
a proportion for chance agreement: (10.5 + 45.5)|100 = 0.56.

The observed agreement is 20% + 55% = 75% or 0.75. Therefore the agreement
beyond chance is 0.75 − 0.56 = 0.19: the numerator.

The agreement possible beyond chance is 100% minus the chance agreement of
56% or 1 − 0.56 = 0.44: the denominator

κ =
0.19

0.44
= 0.43 .

What is a “high” kappa? Some experts have attached the following qualitative
terms to kappas: 0.0–0.2 = slight; 0.2–0.4 = fair; 0.4–0.6 = moderate; 0.6–0.8 =
substantial, and 0.8–0.10 = almost perfect.

Here are some questions to ask about a published field instrument’s validity:

Questions to Ask
About a Published Instrument’s Validity 10.5.5

1. Does the instrument have predictive validity? You can validate an instru-
ment by proving that it predicts an individual’s ability to perform a given
task or behave in a certain way. For example, a medical school entrance ex-
amination has predictive validity if it accurately forecasts performance in
medical school. One way of establishing predictive validity is to administer
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the instrument to all students who want to enter medical school and com-
pare these scores with their performance in school. If the two sets of scores
show a high positive or negative correlation, the instrument has predictive
validity.

2. Does the instrument have concurrent validity? You can validate an instru-
ment by comparing it against a known and accepted measure. To establish
the concurrent validity of a new measure of quality of care, you could ad-
minister the new instrument and an already established, validated instru-
ment to the same group and compare the scores from both instruments. You
can also administer just the new instrument to the respondents and com-
pare their scores on it to experts’ judgment of the respondents’ attitudes.
A high correlation between the new instrument and the criterion measure
(the established instrument or expert judgment) means concurrent valid-
ity. A concurrent validity study is only valuable if the criterion measure is
convincing.

3. Does the instrument have content validity? An instrument can be validated by
proving that its questions accurately represent the characteristics or attitudes
that they are intended to measure. An instrument that is designed to mea-
sure health beliefs has content validity, for example, if it contains a reasonable
sample of facts, words, ideas, and theories commonly used when discussing
or reading about the formation of beliefs about disease or health. Content va-
lidity is usually established by consulting the literature and by asking experts
and prospective respondents whether the questions represent the knowledge,
attitudes and behaviors you want to measure.

4. Does the instrument have construct validity? Construct validity means that
the instrument measures what it purports to and not something else. Be-
cause of the difficulty of obtaining a true measure of the concepts and ideas
that characterize epidemiological studies, construct validity must be estab-
lished experimentally. One method of doing this is to administer the instru-
ment to people whom selected experts say exhibit the behavior associated
with the construct. Usually, the experts based their judgments on theories
that have empirical support and on clinical experience. If the people cho-
sen by the experts to be exemplars of the behavior also obtain a high score
(i.e., a higher score means greater evidence of the behavior), then the in-
strument is considered to have construct validity. This form of validity is
usually established after years of experimentation and experience with the
measure.

Suggested Guidelines For Pilot Testing10.5.6

Try to anticipate the actual circumstances in which the instrument will be
conducted and make plans to handle them. For interviews, this means re-
producing the training manual and all forms; for online surveys and mailed
questionnaires, you have to produce any cover letters, return envelopes, and so
on. Needless to say, this requires planning and time and can be costly.
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You can start by trying out selected portions of the instrument in a very in-
formal fashion. Just the directions on a self-administered questionnaire might
be tested first, for example, or the wording of several questions in an interview
might be tested. This is sometimes called a “cognitive” pretest.
Choose respondents for the pilot who are similar to the ones who will eventu-
ally complete the measure. They should be approximately the same age, with
similar education, and so on.
Enlist as many people in the trial as seems reasonable without wasting your re-
sources. Probably fewer people will be needed to test a five-item questionnaire
than a twenty-item one.
For reliability, focus on the clarity of the questions and the general format of
the instrument. Look for:

failure to answer questions
giving several answers to the same question
writing comments in the margins.

Any one of these is a signal that the measure may be unreliable and needs
revision. Are the choices in forced-choice questions mutually exclusive? Have you
provided all possible alternatives? Is the questionnaire or interview language clear
and unbiased? Do the directions and transitions make sense? Have you chosen the
proper order for the questions? Is the questionnaire too long or hard to read? Does
the interview take too long? For instance, you planned for a ten-minute interview,
but your pilot version takes twenty.

Consider this: In a pilot of a self-administered survey of children’s health be-
haviors, respondents were asked how often they washed their hands after eat-
ing. All six children between 8 and 10 years of age answered “always” after be-
ing given the choices “always,” “never,” and “I don’t know.” The choices were
changed to “almost always,” “usually,” and “almost never.” With the new cate-
gories, the same six children changed their answers to two “almost always” and
four “usually.”

Field Work Language and Culture 10.6

If you plan on translating an existing data collection instrument or measure, do not
assume that you can automatically reword each question into the new language.
Between the original language and the next language often lie cultural gaps. You
may need to reword each question.

To avoid confusing people and even insulting them because you misunderstand
their language or culture, you should follow a few simple guidelines. These involve
enlisting the assistance of people who are fluent in the language (and its dialects)
and pilot testing the measure with typical respondents. Suggested guidelines for
translation always include the following.
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Suggested Guidelines for Translation10.6.1

Use fluent speakers to do the first translation. If you can, use native speakers.
If you can afford it, find a professional translator. The art of translation is in
the subtleties – words and phrases that take years and cultural immersion to
learn. If you use fluent speakers, you will minimize the time needed to revise
question wording and response choices.
Tryout the translated measure with 3 to 5 native speakers. Ask: What is this
question asking you? Can you think of a better way to ask this question?
Revise the measure with the help of the original translator.
Translate the measure back into the original language. Use a different translator
for this task. Does this “back translated” instrument match the original version?
If not, the two translators should work together to make them match.
Try the resulting measure on a small group (5–10) of target respondents. If the
two translators could not agree on wording, let the group decide.
Revise the measure.
Pilot test the measure.
Produce a final version.

Managing the Data10.7

Data management consists of the methods used to store and organize information
so that it can be analyzed. Data management starts with an analysis plan and ends
with the final analytic operation. The analysis plan describes the hypotheses to be
tested or research questions that will be answered. The plan is a guide to the data
that will be collected, entered and subsequently analyzed (Example 6).

Example 6. A Portion of an Analysis Plan for an Interview on Health and Alco-
hol Use in the Elderly

Hypothesis: More men than women will exceed drinking limits.

Variables: gender; drinking limits

Planned Analysis: Chi square to test for differences between numbers of men and
women who exceed limits �

Modifications to the original analysis plan can be expected, especially in large
studies with a great deal of data.

A second data management activity is the creation of a code book. The contents
of a code book may vary among researchers. Some researchers include in their
definition only a description of study’s variables (such as [DRINK]) and how they
are categorized or labeled (such as 1 = 1 to 2 drinks daily; 2 = 3 or more drinks
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daily; 9 = no data). Increasingly, many investigators are promulgating the view
that code books should include all the information needed to reproduce the study.
For example (Example 7), the Field Survey, a large California polling survey group
posts information like the following on its web site (http://field.com/fieldpoll/).

Example 7. Table of Contents for A Code Book

I. Methods
A. Sampling

1. Sampling design to include eligibility criteria (e.g., 65 years of age and
older; have had at least one drink in the past month)

2. Sampling strategies (e.g., stratified random sampling; convenience or
opportunistic sampling; etc.)

3. Sample size and justification
4. Recruitment and enrollment
5. Sampling statistics to include weight and sampling error calculations

B. Human subjects: Informed consent
C. Research design or how participants were assigned to groups (if appropri-

ate); number and timing of instrument administration

II. Data Collection
A. A copy of the instrument

6. The origins of the questions (e.g., adapted from a published instrume-
ment; created for this one)

7. Description of how each response is coded (e.g., 1 = yes; 2 = no; 9 = no
data)

B. Training of data collectors; quality control
C. Information on reliability and validity

III. A Data File Description
The variable names [DRINK], Labels (quantity and frequency) and values and
value labels (1 = 1 to 2 drinks daily; 2 = 3 or more drinks daily; 9 = no
data) �

A major problem in data management is how to handle missing data. Say, you
mail 100 questionnaires and get 95 back. Is this a 95% response rate? Suppose that
upon close examination, you discover that half the respondents did not answer
question 5, and that none of the questions was answered by all respondents. With
all that missing information, you cannot claim to have a 95% response rate.

What should be done about missing responses? In some situations, you may
be able to go back to the respondents and ask them to answer the questions
they omitted. In small studies, where the respondents are known, the respondents
may be easily re-contacted. But collecting information a second time is usually
impractical, if not impossible, in most studies. Some studies are anonymous,
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and you do not even know who the respondents are. In institutional settings,
you may have to go back to the Institutional Review Board to get permission to
contact the respondents a second time. This may take too much time for your
purposes.

Computerized questionnaires can be programmed so that the respondent must
answer one question before proceeding to the next. Some respondents may find
this approach frustrating, however, and refuse to complete the questionnaire.
Although compelling respondents to answer all questions is touted as a major ad-
vantage of computer-assisted data collection, some researchers believe that forcing
respondents to answer every question is coercive and unethical.

A key management activity is data entry, that is, the process of getting data
into the computer. It usually takes three forms. In the first, someone enters data
from a coded instrument into a database management program or spreadsheet.
The data are then saved in as text or ASCII files, so that they can be exported
into a statistical program like SPSS, SAS, or Stata. A second type of data en-
try involves entering data directly into a statistical program like SPSS, SAS, or
Stata. In the third form of data entry, the respondent or interviewer enters re-
sponses directly into the computer. Data entry of this type is associated with
computer-based measures including CATI and online surveys. The responses
are automatically entered into database management systems or statistical pro-
grams (usually through special translation software). Programs are also available
that will automatically convert one file format into another (say from SAS to
Stata).

Database management programs, statistical programs and computer-assisted
data collection with automatic data entry can facilitate accuracy by being pro-
grammed to allow the entry of only legal codes. For instance, if the codes should
be entered as 001–010, then you can write rules so that an entry of 01 or 10 is
not permitted. If you try to enter 01 or 10, you will get an error message. With
minimum programming, the program can also check each entry to ensure that
it is consistent with previously entered data and that skip patterns are respected.
That is, the program can make sure that the fields for questions that are to be
skipped by some respondents are coded as skips and not as missing data. Design-
ing a computer-assisted protocol requires skill and time. No protocol should be
regarded as error-free until it has been tested and retested in the field.

Once the data are entered, they need to be cleaned. A clean data set can be
used by anyone to get the same results as you do when you run the analysis. Data
become “dirty” for a number of reasons including miscoding, incorrect data entry
and missing responses.

To avoid dirty data, make sure that coders or data entrers are experienced,
well trained, and supervised. Check variable values against preset maximum and
minimum levels, so that if someone enters 50 instead of 5, the maximum, you know
there is an error. You can also minimize errors by making sure your coding scheme
distinguishes among truly missing (no response or no data), from don’t know and
not applicable.
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Run frequencies on your data as soon as you have about 10% of the responses in.
Run them again and again until you are sure that the fieldwork is running smoothly.
Frequencies are tabulations of the responses to each question. If your data set is
relatively small, you can visually scan the frequencies for errors. For large databases
with many records, variables, skip patterns, and open-ended text responses, you
may need to do a systematic computerized check. All leading statistical programs
provide for cleaning specifications that can be used during data entry and later as
a separate cleaning process.

Several other problems may require you to clean up the data. These include
having to deal with the complete absence of data because some questionnaires have
not been returned, for instance, with missing data from questionnaire that have
been returned, and with questionnaires that contain data that are very different
form the average respondents.

What Are Reasonable Resources? 10.8

Fieldwork resources are reasonable if they adequately cover the financial costs
of and time needed to conduct all activities in the time planned. This includes
the costs of, and time for, hiring and training staff, preparing and validating
forms, administering the instrument or measure, and analyzing, interpreting, and
reporting the findings.

How much does it cost to conduct fieldwork? This question can be answered by
obtaining the answers to seven other questions.
1. What are the major tasks?
2. What skills are needed to complete each task?
3. How much time do I have?
4. How much time does each task take?
5. Whom can I hire to perform each task?
6. What are the costs of each task?
7. What additional resources are needed?

Here is a checklist of typical field work tasks:

Field Work Task Checklist
Prepare the instrument for use in the field.

Identify existing and appropriate instruments.
Conduct a literature review.
Contact other researchers.
Adapt some or all questions from existing instruments.
Prepare a new instrument.

Identify, enroll and recruit subjects.
Determine eligibility criteria (who should be included and excluded).
Determine sample size.
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Identify sources for identifying respondents (e.g., existing data bases; pa-
tients in a waiting room; patients with appointments).
Devise plans for coordinating respondents’ willingness to participate and
the study’s field work needs. For instance, you may have to provide trans-
portation for interviewers or participants.

Prepare documents for the IRB (Institutional Review Board).
Develop procedures for insuring ethical principles of research. Such princi-
ples include respect for people and their autonomy; protecting people from
harm and taking active steps to protect them; and balance potential risks
with benefit from participation in the study.
Devise methods for ensuring the protection of the people who participate
in field studies, including the preparation of fliers, recruitment letters, and
informed consent forms.
Make provisions for protection against research misconduct including ex-
aggerating findings or releasing them without permission.

Pretest the Instrument.
Identify a relatively small sample for the pretest.
Conduct a “cognitive” pretest by going over the instrument question by
question with each respondent.

Pilot test the instrument.
Identify the sample for the pilot test.
Obtain permission for the pilot test.
Analyze the pilot-test data.
Revise the instrument to make it final.

Administer the instrument.
Hire staff.
Train staff.
Monitor the quality of administration.
Retrain staff.
Send out mail, supervise the questionnaire, conduct interview.
Follow up.

Manage the data.
Code responses.
Prepare code book.
Consult with programmer.
Train data enterers.
Enter the data.
Run a preliminary analysis.
Clean the data.
Prepare a final codebook.



Epidemiological Field Work in Population-Based Studies 423

Analyze the data.
Prepare an analysis plan.
Analyze the reliability and validity of the instrument.
Analyze the results of the study.

Report the results.
Write the report.
Have the report reviewed.
Modify the report based on the reviews.
Prepare presentation.
Present the report orally.

Who Will Do It, and What Resources Are Needed?
Personnel, Time, And Money 10.8.1

Fieldwork happens because one or more persons are responsible for completing
the required tasks. In a very small study, one or two persons may be in charge of de-
veloping field instruments, administering them, analyzing the data, and reporting
the results. In larger studies, teams of individuals with differing skills are involved.
Sometimes, a study is planned and conducted by the staff with the assistance of
consultants who are called in for advice or to complete very specific activities.

First, you need to plan the activities and tasks that need to be completed. Once
this is accomplished, you then decide on the skills required for each task. Next,
you decide on the specific personnel or job descriptions that are likely to get you
as many of the skills you need as efficiently as possible. For example, suppose
your study design requires someone with experience in training interviewers and
writing questions. You may just happen to know someone who needs a job and
has both skills, but if you do not know the right person, knowing the skills needed
will help you target your employment search.

The specific resources that are needed for each study will vary according to its
size and scope and the number of skills and personnel needed to accomplish each
task.Example8 illustrates the typesof skills andresources fora“typical”field study.

Example 8. Tasks, Skills, and Resources: An Explanation

1. Prepare the instrument for use in the field.
If an instrument is to be adapted from an already existing instrument, exper-
tise is needed in conducting literature reviews to find out if any potentially
useful instruments are available. Sometimes, a reasonably good instrument
is available: Why spend time and money to prepare an instrument if a valid
one exists? It helps to have experience in the subject matter being addressed
and to know who is working in the field and might either have instruments or
questions or know where and how to get them.
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Selecting items or rewording them to fit into a new measure requires special
skills. You must be knowledgeable regarding the respondents’ reading levels
and motivation and have experience writing questions.
Preparing an entirely new instrument is daunting. A job description for an
instrument writer would call for excellent writing skills and knowledge of all
topics being assessed.

2. Prepare Materials for the Institutional Review Board (IRB).
U.S. researchers cannot perform research with funds from the U.S. government
without approval from an Institutional Review Board or IRB – an independent
group of people whose job is to evaluate if proposed research conforms to
ethical principles (Brett and Grodin 1991). The IRB typically require a written
explanation of the study plans (including rationale, purposes, and methods);
the field forms and one or more informed consent forms. The following in-
formed consent form has been approved by an IRB. As you can see, it provides
potential respondents with descriptions of the study’s purposes, the nature
and characteristics of the tasks that will be required and describes procedures
for ensuring confidentiality.

Box 2. Sample Consent Form
The Prostate Cancer Network (PROCANE)

You are asked to take part in three telephone interviews and three self-administered
questionnaires on your general health, your quality of life since being diagnosed with
prostate cancer, and the quality of healthcare you have received while in the PROCANE
Program. XXX MD, MPH is directing the PROCANE research study. Dr. XXX works
in the Department of Urology at the University of YYYY. You are being asked to take
part in the interviews and questionnaires because you are enrolled in the PROCANE
program. You can choose to take part in this study or not. If you volunteer to take
part in this study, you may stop taking part in the study at any time. This will have
no effect of any kind on the health care you receive through the PROCANE program.

Disclosure Statement

Your health care provider may be an investigator in this research protocol. As an
investigator he|she is interested in both your clinical welfare and your responses to
the interview questions. Before entering this study or at any time during the study,
you may ask for a second opinion about your care from another doctor who is in no
way associated with the PROCANE program. You are not under any agreement to
take part in any research project offered by your physician.

Reason for the Telephone Interviews and Self-Administered Questionnaires

The interviews and the questionnaires are being done for the following reason: To
find out if the PROCANE program is meeting the needs of the patients enrolled in the
program. During the telephone interview, a trained member of the PROCANE staff
will ask you a series of questions about:

Your health
Your quality of life since being diagnosed with prostate cancer, and
The quality of the healthcare you have received while in the PROCANE program.
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The self-administered questions will cover the same topics. But, you will be able to
answer them on your own.

The PROCANE program will use your answers and the answers from other pro-
gram participants to find out if the program is providing the right services to its
participants and to find out if any changes need to be made to the program.

What You Will Be Asked to Do

If you agree to take part in this study, you will be asked to do the following things:
1. Answer three short (20 minutes) telephone interviews. The telephone interviews

will ask you general questions about your health, your quality of life since being
diagnosed with prostate cancer, and the quality of healthcare you have received
while in the PROCANE program. You will be called to complete an interview
when you first enroll in PROCANE, 6 months after your enrollment, and when
you leave the PROCANE program. The interviews will be completed at whatever
time is best for you.

Sample questions:
How confident are you in your ability to know what questions to ask a doctor?

During the PAST 4 WEEKS, how much did pain interfere with your normal
work (including both work outside the home and housework)? Would you
say not at all, a little bit, moderately, quite a bit, or extremely?

How much of the time during the LAST 4 WEEKS have you wished that you
could change your mind about the kind of treatment you chose for prostate
cancer?

2. Answer three short (20 minutes) self-administered questionnaires. The self-
administered questionnaires will ask you general questions about your health,
your quality of life since being diagnosed with prostate cancer, and the qual-
ity of healthcare you have received while in the PROCANE program. The self-
administered questionnaires will be mailed to you when you first enroll in PRO-
CANE, 6 months after your enrollment, and when you leave the PROCANE
program. The self-administered questionnaires can be completed at whatever
time is best for you. A pre-paid envelope will be provided to you in which to
return each questionnaire.

Sample questions:
Over the PAST 4 WEEKS, how often have you leaked urine?

Overall, how big a problem have your bowel habits been for you during the
LAST 4 WEEKS?

Overall, how would you rate your ability to function sexually during the LAST
4 WEEKS?

3. If you do not understand a question or have a problem with a self-administered
questionnaire, you will be asked to call Ms. AAA at the PROCANE office at
1-800-000-000. She will be able to assist you.

Possible Risks and Discomforts

You may be sensitive about answering questions that ask about your physical and
emotional health or your experiences with the PROCANE program. However, you do
not have to answer any question with which you are uncomfortable.
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Potential Benefits to Subjects and/or to Society

The purpose of the telephone interviews and self-administered questionnaires is to
improve the services that PROCANE provides to the men enrolled in the program.
Your responses might lead to changes in the program that would improve the services
that PROCANE provides.

Payment for Taking Part

No payment will be given to you for completing the telephone interviews or self-
administered questionnaires.

Confidentiality

Any information that is collected from you and that can be identified with you will
remain confidential. Your identity will not be revealed to anyone outside the research
team unless we have your permission or as required by law. You will not be identified
in any reports or presentations. Confidentiality will be maintained in the following
ways:

All interviews and questionnaires will be coded with a number that identifies you.
Your name will not be on any of these materials.
A master list of names and code numbers will be kept in a completely separate,
confidential, password-protected computer database.
All copies of the self-administered questionnaires will be kept in a locked file
cabinet in a locked research office.
All telephone interviews will be recorded in a confidential computer database.
When analysis of the data is conducted, your name will not be associated with
your data in any way.
Only research staff will have access to these files.

Taking Part and Choosing Not to Take Part in Telephone Interviews and Self-
Administered Questionnaires

Youcanchoosewhether to takepart in this studyornot. If youdecide to takepart in the
telephone interviews and self-administered questionnaires you may stop taking part
at any time. This will have no effect of any kind on the health care you receive through
the PROCANE program. The investigator may withdraw you from this research if
circumstances arise which warrant doing so.

Identification of Investigators

If you have concerns or questions about this study, please contact XXX, M.D., MPH,
by mailing inquires to Box 000, Los Angeles, CA 900000-9990. He can be also reached
at 1-800-000-000.

Rights of Participants

You may choose to end your agreement to take part in the telephone interviews
and self-administered questionnaires at any time. You may stop taking part without
penalty. You are not giving up any legal claims, rights or remedies because you take
part in the telephone interviews and self-administered questionnaires. If you have
questions about your rights as a research subject, contact the Office for Protection
of Research Subjects, 2107 QQQ Building,, Box 951694, Los Angeles, CA 90095-1694,
(310) 999-9999.
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I understand the events described above. My questions have been answered to my
satisfaction, and I agree to take part in this study. I have been given a copy of this
form.

Name of Subject (Please Print)

Signature of Subject Date

Many IRB’s also require detailed explanations of why each question on an
instrument was chosen, how the study’s participants were selected, and how you
plan to ensure privacy for the respondent.
3. Identify, recruit, and enroll patients

Participants in field studies can be identified from existing databases (e.g.,
Medicare data base; physician specialty membership lists; patient appointment
logs), and they can be approached in the field (e.g., a clinic’s waiting room).
To obtain a valid sample, the research must establish eligibility criteria that
describe who will be included and excluded into the study. Effective procedures
mustbedevised toapproachpotentialparticipants, screen for eligibility, inform
eligible respondents about their role in the study, and enlist their cooperation.
Often, these procedures need to be tested and retested until they achieve their
desired goals. In the U.S., any contact with research subjects, including letters
informing potential participants about a study or “scripts” to screen or enroll
participants must be approved by an IRB.
Recruitment letters are often sent in advance of a study to inform respondents
of the study and its purposes. The following is an example of a recruitment
letter for a study of staffing and clinical policies regarding labor and delivery in
all hospitals in a single U.S. state. The letter was approved by an IRB and sent to
the appropriate nurse manager at all hospitals in the state that delivered babies
in a given year.

Box 3. Recruitment letter
<Letterhead and Logos>

Address

Date

Dear Colleague (use name)

We are writing to invite you to participate in an exciting federally funded study of
the range of clinical policies on Labor and Delivery (L&D) units in this state. Your
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participation includes taking part in a structured interview regarding policies and
procedures on your (L&D) unit.
As you are well aware, much interest has been placed on nurse staffing policies in
general, but to date most studies have centered on medical and surgical units. This
will be the first study that is specifically designed to identify staffing patterns used on
Labor and Delivery units, and to associate these staffing patterns with clinical policies
and patient outcomes.

Likewise, there have been numerous isolated studies regarding the role of nursing
support in labor, the effectiveness of doulas, nurse midwives, and various techniques
of labor management (e.g. active management, “walking epidurals,” hydrotherapy,
etc). To date, however, there has been no systematic attempt to describe what is really
happening on L&D units in the “real world.” At the completion of our study, we hope
to be able to answer the following types of questions:

What does “active management” mean to you?
How prevalent is hydrotherapy?
What types of clinicians are trained in “teaching” hospitals?
When do physicians need to be “in house”?
How are L&D units staffing in the current environment of a nursing shortage?
What strategies are being used to monitor cesarean rates?
How are staffing and clinical policies related to maternal and neonatal outcome?

If you agree to participate, we will send you an advance copy of the L&D Clinical Policy
Survey, and call to arrange a convenient interview time for you. You will be compen-
sated $60.00 for your participation, which will take about 45 minutes to one hour.
Responses will be collated and serve as the first comprehensive overview of staffing
and clinical policies on L&D units in this state. This project has been reviewed and
approved by the Medical Center Institutional Review Board, and an information letter
has been included for your review.

This project, has been funded by the Agency for Health, and has been widely en-
dorsed by representatives of agencies promoting a better understanding of healthcare
practices, healthcare quality, and healthcare outcomes including, but not limited to
the following:

Mary Smith, Administrative Director of the Association of this State’s Nurse
Leaders
Tom Rodriquez, CEO Medical Center, Current Board of the Hospital Association,
and Past President of the State Hospital Association
Robert Johnson MD, MPH, Center for Disease Control Director Division of Birth
Defects and Developmental Disabilities
William Roberts, MD, College of Obstetricians and Gynecologists, Chair District
XXX

If you have any questions regarding this project, please feel free to contact us at 310
666-789. We thank you in advance for your participation in this exciting project.

Sincerely,

Yvonne Bree, RN, DrPH
Vice President & Chief Nursing Officer
YYY Medical Center

Mathilde Grun, MD, MPH Director Maternal Fetal Medicine & Women’s Health Ser-
vices Research
YYYY Medical Center
Department Obstetrics & Gynecology
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Recruitment letters tend to be most effective if they follow these suggestions:
1. Write the letter on letterhead. If possible place one or more logos on the

stationery. The logos may be of the university or agency at which the study
takes place and one or more of its supporters.

2. Personalize the letter, if appropriate. In the U.S., “Dear John,” is often hand-
written over the “Dear Dr. Jones” to express collegiality.

3. Describe the purpose of the study. In this case, examples of study questions
are included.

4. Describe the role each participant will play. This letter informs the respondent
that joining the study means participation in an interview that may last up to
60 minutes.

5. Describe the incentives you are prepared to offer the respondent. In this case,
the incentive is financial.

6. Inform the respondent about confidentiality. According to the letter, the Medi-
calCenter’s InstitutionalReviewBoardhas approved the study.An information
sheet is to be included with this letter describing how confidentiality is to be
ensured. If in doubt, or you do not have an information sheet, the letter should
include a statement about protection of privacy.

7. Describe the source of funding for the study.
8. Give the names of any agencies or organizations that endorse or co-sponsor

the study.

Sometimes, recruitment is done by telephone. As seen below, recruitment also
means collecting data on refusers. Such data are used to determine if the recruit-
ment approach is effective and to provide information on the similarity between
persons who agree to participate and those who do not. If differences exist between
participants and refusers, the external validity of the study may be compromised.

Box 4. Parent and Child Telephone Recruitment Script
Hello, my name is [FIRST AND LAST NAME] and I am calling on behalf of the
LAUSD/UCLA study, Finding Solutions Together. May I speak to [NAME OF PAR-
ENT]?

1. If someone other than respondent asks why you are calling, say:
I’m calling about a research study being conducted by the school district.

(Check one answer)
a. No one by that name is at this number → Ask Q2
b. R not available → Skip to Q3
c. I am speaking to the parent or the parent comes to the phone → Skip to Q9
d. Refusal → Skip to Q8

2. Confirm you have dialed correctly. Ask if the respondent was ever at
this number and if they have a new number for the person you are
trying to reach. If your informant cannot give you a new number, try
directory assistance for a new listing. If no new number is listed, note
as not located.
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3. Say: Is there a more convenient time to reach R?
a. Yes → Continue
b. No → Go to Q5

4. Set call back appointment
Date:
Time:

Say: Okay. We will try back at that time. Thank you. End call.

5. Say: Is this the best number to reach R or do you have a better number for him/her?
a. Yes → Continue with Q7
b. No → Go to Q6

6. Record new number: → Say: Okay, we will try him/her at this
number. Thank you for your help. End call.

7. Say: Okay, thank you. We will try again another time. May I leave you my name
and toll free number in case R wants to call me back?
a. Yes → Provide name and toll free number. End call.
b. No → Thank the informant and end call.

8. Say: Thank you very much for your time. End call. Fill out information
below:

Refusal information

Who did you speak to?

Reason for refusal?

Hello, my name is [NAME] (if not already introduced) and I am calling from
[NAME OF SCHOOL]. I am calling you today because your child participated in
the first part of our study and [NAME OF CHILD] reported on the questionnaire
that [HE|SHE] has had difficulties related to stressful experiences that may benefit
from our program. I am calling to see if you and your child are interested in
participating in a program that can help children learn ways of coping with
stressful experiences.

9. Say: Are you interested in hearing more about this study?
a. Yes → Continue
b. No → End the call → Skip to Q13

We are conducting a study of youth in middle school who have experienced a very
stressful event. The goal of the study is to find out ways that young people react
to stressful life events, and whether a new program might help them feel better.
If you and your child volunteer to be in this study, we would ask you to do the
following things:

Your child would be given the opportunity to attend a group at school for
children who have had stressful experiences and who could benefit from
learning ways to improve the way that they feel and act. These groups will
have 5–10 students and a group leader and will meet once a week at school
for 10 weeks. The group sessions will be audio taped for research purposes
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only. There will also be one meeting between your child and the counselor
alone, about halfway through the program and four optional parent meetings
for parents to learn more about how to help their child at home.
Not all children who qualify for this program will be in the program right
away. Children will be chosen at random, like a flip of a coin, to start
right away in the program or to receive the program in about 3 months.
Those children who do not get into the program right away will also be
offered other services to help them while they wait to start this school pro-
gram.
In addition to the groups, we will ask that you and your child meet with
an interviewer to answer questions about background about your child and
family and how your child has been feeling recently. The parent interview
will take about one hour and will be set up at a time and place that is con-
venient for you. (Fill in description of questions) The child interview
will take about 30 minutes at school (fill in descrip). We will ask you
and your child to complete this interview before the program starts, and
again at 3 months and at 6 months after starting the program, for a total of
3 times.
We will ask your child’s teacher to complete a short checklist about your
child’s behavior at school before the program, at 3 months, and at 6 months.

10. Say: Are you willing to meet with me to discuss your child’s participation in this
study in more detail, and if interested, complete the first parent interview?
a. Yes → Go to Q11
b. No → Go to Q13

11. Say: Would you prefer to meet at the school or at your home?
Check one answer:
a. School
b. Home (if home, obtain address):

Say: What is a good day and time for [you and|or your child] to do the interview?

Date:

Time:

If necessary, otherwise, Go to Q13: Say: Do you think you and your child are
able to understand and speak English well enough to participate in this program
in English?
a. Yes → Go to Q13
b. No, cannot speak English well enough to participate→Say: I’msorry tobother

you. Thank you for your interest in participating in this study. Unfortunately,
at this time we can only do this program in English. I would be happy to talk
to you about other resources where your child can get help. Thank you for
your time. End call.

Say: We would like to call you the day before the interview to remind you. Is it
OK to call you at this number?
a. Yes → Go to Q13
b. No → Record different number → Go to Q12
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12. Record new number

New number: ( ) - → Go to Q16

Say: Thank you for taking the time to speak with me today. End call.

13. Say: Okay, thank you for taking the time to speak with me today. End call. Fill
out information below:

Refusal information

Who did you speak to?

Reason for refusal?

4. Pretest the field instrument
Pretesting means identifying a relatively small sample of people who are willing
to go through each question with you and tell you what it means to them.
(This method is called “cognitive pretesting”.) Do the participants agree with
your interpretation of each question and response? Usually pretests are done
using early versions of the study, and so glitches should be expected. You will
need to find a secluded place to conduct the pretest, which is almost always an
interview. A trained interviewer is needed. Strict rules are needed for recording
participants’ answers. Experienced personnel are needed to interpret pretest
results and translate them into improvements.

5. Pilot-test the instrument
Pilot testing means having access to a group of potential respondents that is
willing to try out an instrument that may be difficult to understand or complete.
Expertise is needed in analyzing the data from the pilot test, and experience
in interpreting respondents’ responses is essential. Additional knowledge is
needed in how to feasibly incorporate the findings of the pilot test into a more
final version of the instrument.

6. Administer the instrument
Face-to-face and telephone or computer-assisted interviews require skilled and
trained personnel. Interviewers must be able to elicit the information called
for by the interview questionnaire and record or code the answers in the
appropriate way. Interviewers must be able to talk to people in a courteous
manner and listen carefully. Also, they must talk and listen efficiently. If the
interview is to last no longer than 10 minutes, the interviewer must adhere to
that schedule. Interviews become increasingly costly and even unreliable when
they exceed their allotted time.
Among the types of expertise required to put together a mail questionnaire
is the ability to prepare a mailing that is user friendly (e.g., includes a self-
addressed envelope) and the skill to monitor returns and conduct follow-
ups with those not responding. Email surveys also require similar skills. The
instrument used to collect data must be user-friendly, and you need the skills
to keep track of responses and then follow-up non-respondents.
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If you plan to conduct online studies, you should consider becoming familiar
with commercial software packages that guide survey preparation and analysis.
Training in their use may be necessary for projects that do not have a specialist.
If the study is being done at a local site (hospital, clinic), then privacy concerns
associated with the Web may be especially daunting.
Expertise is needed in defining the skills and abilities needed to administer
the study’s field measures and in selecting people who are likely to succeed
in getting reliable and valid data. Training is the key a. For example, a poorly
trained telephone interviewer is likely to get fewer responses than a well-
trained interviewer. Because of the importance of training, many large studies
use educational experts to assist them in designing instructional materials and
programs for training.
In large and long-term studies, quality must be monitored regularly. Are in-
terviewers continuing to follow instructions? Who is forgetting to return com-
pleted interviews at the conclusion of each 2-day session? If deficiencies in the
process are noted, then retraining may be necessary.

7. Manage the data
Managing data means programming, coding, and data entry. It also means
setting up a database. Programming requires relatively high-level computer
skills. Coding can be very complicated, too, especially if response categories
are not precoded. Training and computer skills are needed to ensure that data
enterers are expert in their tasks. Finally, data cleaning can be a highly skilled
task involving decisions regarding what to do about missing data, for example.

8. Analyze the data
Appropriate and justifiable data analysis is dependent on statistical and com-
puter skills. Some studies are very small and require only the computation
of frequencies (number and percentages) or averages. Most, however, require
comparisons among groups or predictions and explanations of findings. Fur-
thermore, measures of attitudes, values, beliefs, and social and psychological
functioning also require knowledge of the statistical methods for ascertaining
reliability and validity.

9. Report the results
Writing the report requires communication skills, including the ability to write
and present results in tables and figures. Oral presentations require ability to
speak in public and to prepare presentations. It helps to have outside reviewers
critique the report; time must be spent on the critique and any subsequent
revisions. Expenses for reports can mount if many are to be printed and dis-
seminated. �

Use the following checklist as a guide in calculating costs and preparing field
study budgets.

Costs of Field Work: A Checklist
Learn about direct costs. These are all the expenses you will incurbecause of the
fieldwork. These include all salaries and benefits, supplies, travel, equipment,
and so on.
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Decide on the number of days (or hours) that constitute a working year. Com-
monly used numbers in the U.S. are 230 days (1840 hours) and 260 days
(2080 hours). You use these numbers to show the proportion of time or “level
of effort” given by each staff member. Obviously these numbers will vary from
country to country.
Example: A person who spends 20% time on the study (assuming 260 days per
year) is spending 0.20 × 260, or 52 days or 416 hours.
Formulate fieldwork tasks or activities in terms of months-to-complete each.
Example: Prepare instrument during Months 5 and 6.
Estimate the number of days (or hours) you need each person to complete
each task.
Example: Jones, 10 days; Smith, 8 days. If required, convert the days into hours
and compute an hourly rate (e.g., Jones: 10 days, or 80 hours).
Learn each person’s daily (and hourly) rate.
Example: Jones, US $ 320 per day, or US $ 40 per hour; Smith, US $ 200 per day,
or US $ 25 per hour.
Learn the costs of “benefits” (e.g., vacation, pension, and health) – usually
a percentage of salarie.
Example: Benefits are 25% of Jones’s salary. For example, the cost of benefits
for 10 days of Jones’s time is 10 × 320 per day ×0.25, or US $ 800.
Learn the costs of other expenses that are incurred specifically for this study.
Example: One 2-hour focus group with 10 participants costs US $ 650. Each
participant gets a US $ 25 honorarium for a total of US $ 250; refreshments
cost US $ 50; a focus group expert facilitator costs US $ 300; the materials costs
US $ 50 for reproduction, notebooks, nametags, and so on.
Learn the indirect costs, or the costs that are incurred to keep the study team
going. Every individual and institution has indirect costs. Indirect costs are
sometimes a prescribed percentage of the total cost of the field work (e.g., 10%).
Example: All routine costs of doing “business,” such as workers’ compensation
and other insurance; attorney’s and license fees; lights, rent, and supplies, such
as paper and computer disks.
If the fieldwork lasts more than 1 year, build in cost-of-living increases.
Be prepared to justify all costs in writing.
Example: The purchases include US $ 200 for 2000 labels (2 per student inter-
viewed) at US $ 0.10 per label and US $ 486 for one copy of MIRACLE software
for the data management program.

Conclusions10.9

Fieldwork in epidemiological studies involves collecting information to describe,
compare, or explainknowledge, attitudes, andbehavior about thehealth andhealth
care of populations. To assure reliable information, field work depends upon ask-
ing straightforward questions. Straightforward questions are purposeful, concrete
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and expressed as complete questions. Responses may be considered as nominal or
categorical, ordinal and numerical. Open questions allow the respondent to give
answers in his or her own words. Coding open responses may be difficult. Closed
questions provide the respondent with choices. They are easier to interpret and
analyze than open questions but may not provide in-depth information. An instru-
ment’s length is dependent upon the resources available to develop and validate
a questionnaire. Keep in mind that very long instruments may tire some respon-
dents, thereby reducing the reliability and validity of the results. Questions should
be ordered logically and each such be related to the expressed purposes of the
study. Relatively simple questions should go first, hardest second. Demographic
information is often called for in last place.

Make certain that respondents understand the purposes of the study and each
question you plan to ask. If questionnaires are to be completed by mail, include
self-addressed envelopes. Try to keep questionnaires as short as possible. For
online surveys, avoid the need for the respondent to follow many steps: keep
the questionnaire short and easy to use. For all self-administered questionnaires,
make sure they are pre tested and pilot tested; when possible look at prelim-
inary data to check that all questions are being answered. Interviewing only
succeeds with trained interviewers and a method for monitoring the quality of
the process. Consider incentives to compensate respondents for their time. Pi-
lot testing is essential to ensure the collection of reliable data. Reliability refers
to the consistent with which questions are answered, while validity refers to the
accuracy of the answers. Common types of reliability to consider include test-
retest and internal consistency. Common types of validity are content, concur-
rent, predictive, and construct. To improve reliability and validity, check to see
that the language and cultural assumptions of the field study are consistent with
those associated with the population being studied. Consider using advance let-
ters and incentives to encourage participation and improve response rates. Make
certain all measures and the study’s logistics are pre tested and pilot tested. Re-
gardless of the methods used to collect data in the field, be ever mindful of the
need to ensure confidentiality of responses. Field work tends to be costly because
of its dependence upon human capital including trained field workers and data
managers.
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Introduction11.1

Accurate exposure assessment is a prerequisite for an efficient study design, more
than ever before, because of the increasing challenges that epidemiology has to face
to demonstrate low increases in risk, to disentangle mixed potential risk factors
in disease causation, and to provide exposure-response relationships for policy
makers.

Exposure assessment is the process that leads to establishing a dichotomy be-
tween exposed and non-exposed subjects, and|or introducing a level of classifica-
tion between subjects. A prerequisite for any epidemiologic study is that there is
variability of exposure to the agent of interest within a population and that this
variability between subjects (inter-individual variability) will overcome individual
variation of exposure (intra-individual variability).

This chapter will describe what choices have to be made for a proper exposure
assessment depending on the pathological process under study, give an overview of
the different instruments available for this assessment and highlight some specific
difficulties in this process (retrospective assessment, ecological measurement or
multiple exposures). Finally, measurement errors and ways for controlling them
will be described.

Definition of Exposure
and Exposure Assessment11.2

Exposure can be defined as a contact of an individual with an agent through
any medium or environment. An agent can also be thought of as a suscep-
tibility characteristic. The agent is not necessarily considered to be harmful
(e.g., exercise or fiber in the diet). Exposure assessment aims to identify whether
a person is exposed or not (a dichotomous classification) to a particular agent
and if the individual is exposed, to develop a ranking of subjects by exposure
level.

Types of Exposure11.2.1

An exposure may be to a chemical, a biologic, a physical, or a societal agent
in the external environment (e.g., cadmium, endotoxin, ionizing radiation, and
the existence of a support system, respectively). It may be a characteristic of an
individual (e.g., weight or physical activity) or a perception of an individual (e.g.,
lack of control in the workplace). Finally, it may be a biologic agent in the body (e.g.,
herpesvirus), ametaboliteofanexternalagent (e.g., 1-hydroxypyrene, ametabolite
of polycyclic aromatic hydrocarbons), a substance representing a pathway of action
(e.g., DNA-PAH adducts), or the presence of a polymorphism (e.g., NAT wildtype).
In this chapter we use the term exposure to apply to all of these, rather than
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separating external agents from internal agents. The concept of dose is discussed
later in this chapter.

True Risk Factor or Surrogate 11.2.2

Ideally, an exposure assessment should focus on the true risk factor. When true
risk factors have been confirmed, protective measures and monitoring of exposure
can then be implemented. Medical surveillance in the work place, which usu-
ally includes some kind of biological monitoring of compounds known for their
toxicity (e.g.: urinary cadmium), may be required. In many situations, however,
a surrogate must be evaluated because the true risk factor has not yet been identi-
fied or only a surrogate can be measured. For example, the causal role of inhaled
benzo[a]pyrene in the carcinogenicity of cigarette smoking for the lung may never
be formally proven because the true risk factor (i.e., the total amount of inhaled
benzo[a]pyrene over a period covering many decades) is impossible to measure
(Rothman and Greenland 1998). The International Agency for Research on Can-
cer (IARC) has classified certain work environments as probably carcinogenic to
humans, without identifying the specific compound(s) responsible for this health
effect (e.g., the process of refining nickel). Thus, although the true risk factor(s)
linked to a health effect may not yet be identified or quantified (e.g., nickel refining,
tobacco smoking), measurement of a surrogate remains very useful for research
and public health purpose. A surrogate is useful for identifying factors of variation
for the exposure, establishing presumptive causal associations and dose-response
relationships, and narrowing the search for the true risk factor(s).

Dose versus Exposure 11.2.3

The term exposure usually refers to contact with an agent in the external environ-
ment. (As indicated above, common nomenclature also may include agents in the
body). Measuring an external agent should, but may not, take into account all the
exposure sources (e.g., at home, at work, and leisure time), the time spent in each
(i.e., activity patterns), and the individual susceptibility to this agent (e.g., due to
physical exercise, diet, and physiological and genetic characteristics). These vari-
ables will affect the internal dose measured in human tissue or fluid. A biological
marker of internal dose therefore comes closer to the relevant measure of exposure
in some circumstances than an external exposure. This will be discussed more in
Sect. 11.3.1. In the rest of the text, the term exposure will be used to describe agents
that are being estimated for use in exposure- (or dose-) response relationships in
an epidemiologic study. Dose will be used to describe the level of the true risk
factor at the target organ.

Selection of Metric 11.2.4

Once the agent or a scenario to be investigated in the epidemiologic study has
been selected, the relevant dimensions to quantify this exposure need to be de-
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termined. The appropriate quantification of exposure (metric) should reflect the
toxic mechanism of action for the agent and disease of interest. The choice of this
metric depends on the knowledge about the supposed biological mechanism in-
ducing the health effect. Chronic diseases such as cancer, for example, are thought
to be a result of lifetime exposure, so that the exposure metric often studied is
cumulative exposure; whereas acute diseases such as asthma are thought to be due
to recent high exposures, so that the metric often studied is peak exposures.

If there is a biological level above which detoxification processes of the organism
are impaired (threshold), the dose-rate (average) of an exposure or a peak exposure
may be more relevant than cumulative exposure, because exposures below such
a threshold would not cause any deleterious effect.

Oftentimes, however, the biological mechanism of the disease process is not
known. In such cases, it is useful to explore multiple metrics such as cumulative
(life-time), highest, average (dose-rate), highest short-term (peak) exposure, and
components of these (e.g., cumulative exposure level or time above a particular
exposure level). For example, the induction of carcinogenesis by a mutagenic com-
pound is, theoretically, initiated at any dose, but the mechanism necessitates a long
(sometimes several decades) induction period (latency). In this case, recent expo-
sure (immediately preceding diagnosis) is not pertinent, and often measurement
of past exposure is “lagged”, i.e. exposure occurring in years just before diagnosis
of the disease is not taken into account. The exposure metric, then, may incorporate
a lagged latency. When an adverse effect is expected to occur only above a certain
dose (threshold), for instance in acute toxicity, a metric representing a quantitative
level above the threshold would be more appropriate than a metric estimating the
total exposure.

Often, the total exposure to a given compound received over a particular time
period (cumulative exposure) is the relevant parameter in a pathological process.
There are, however, several ways to receive the same cumulative exposure: a high
intensity for a short period of time or a lower intensity over a longer period. For
instance, the history of tobacco smoking is often summarized by a cumulative
index (pack-years), i.e., the number of years of smoking times the average number
of packs of cigarettes smoked every day during the smoking period. This index, or
any equivalent based on the product of duration of exposure by an intensity level,
does not distinguish between the roles of duration of exposure, irrespective of the
rate of exposure, and intensity of exposure at every instant.

Selection of an exposure parameter that does not appropriately describe the
pattern of exposure to the agent being investigated as it relates to the disease of
interest will result in misclassification and loss of statistical power (see Sect. 11.5).

Exposure Data11.3

Because exposures can have different natures, the sources of data used in exposure
assessments differ. Exposure data can be thought to be of two types: measurement
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data (direct) and indirect information (e.g., questionnaire information, diaries,
and records of surrogate information).

Measurement Data 11.3.1

Measurement data are generally considered the most accurate type of exposure
data because they are objective measures of exposure. Measurement data include
measurementsof chemicalhazardson theskinandchemicalor radiationhazards in
the food, air, or water in the general environment or in the workplace. They may be
measures of quality of life, such as levels of stress. They also include measurements
of human health, such as physical activity levels, physiologic measurements, such
as blood pressure or weight, or measurements of agents in biologic tissues, such
as drugs or nutrients. They also include measures of internal exposure or effect,
such as blood lead levels and DNA adducts, respectively. For more examples of
biological markers please refer to Chap. III.6 of this handbook.

Measurements may be taken for purposes of an epidemiologic study or may
be available from existing records. Although individual measurement data are
often thought to be the gold standard, they can be subject to substantial biases.
Measurements may not represent the intensity of exposure during the relevant
time window, e.g., current levels of physical activity may not reflect earlier levels
of physical activity. The number of measurements on any individual is generally
small, and because the variability of some exposures is large (e.g., in air and in
water), one or a few measurements may not reflect the metric of interest, such as
long-term exposure levels.

In addition, historical measurement data in records may not represent the true
exposure level, because the purpose of the data collection was taken for reasons
other than to obtain an estimate of the exposure metric of interest to the study
investigator. For example, measurements of agents in the workplace often have
been taken to evaluate compliance with exposure regulations, and it has been
speculated that such data may reflect higher exposures than the true long-term
exposure level. Moreover, the analytical method may not have measured the true
risk factor (e.g., historicalmeasurementsof cholesterol didnotdistinguishbetween
high and low density cholesterol, and many historical measurements of dust in the
air did not distinguish respirable dust from inhalable dust).

Biological measurements of exposure (e.g., carbon monoxide in the breath) or of
effect (e.g., cholinesterase levels in the blood) are generally thought to be the gold
standard, because they most closely reflect the dose received by the target organ.
(Note that biologic measurements can be both exposure data and the outcome,
dependingon the studydesign.Here, onlybiologicmeasurementsusedas exposure
data are discussed.) There are many limitations to this type of measurement,
however. The variability of the concentration of an agent in the body is often
greater than that seen in the external environment, so that if the number of
measurements is limited, a mean of those measurements may not accurately reflect
the average exposure. Some biologic measurements may not reflect the dose at
the target organ. Instead, they may reflect the amount of agent that was not
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received by the target organ (e.g., if the agent was measured in the urine) or
the amount that was metabolized in the body (including by organs other than
the target organ). In such cases it is assumed that the amount measured and the
amount in the target organ are highly correlated, but this correlation is likely to
vary by agent or by organ and may vary considerably by individual. There are,
in addition, no long-term biomarkers for most agents, and current levels may
not reflect long-term exposure levels. Moreover, biologic measurements reflect
the body burden at one point in time. Even if the agent has a long half-life, the
measurement may not be an accurate reflection of the total amount received due
to metabolism and elimination over time (e.g., McGrail, Stewart and Schwartz
1995).

Biological measurements are often invasive and costly. For some known risk
factors, only invasive techniques are available for biomonitoring, and exposure
assessment, therefore, still relies on more traditional instruments. For exam-
ple, asbestos is a recognized potent carcinogen. One way to evaluate asbestos
exposure would be to measure the asbestos in broncho-alveolar lavage spec-
imens. This invasive and expensive technique, however, is not routinely fea-
sible, nor is it appropriate, because it does not reflect past exposure, which
is the most relevant for cancer induction. In this example, exposure assess-
ment must rely on indirect methods of measurement such as questionnaires or
records.

If the measurement data were taken after the onset of disease (which is very
difficult to determine because the onset may not be detectable), the measurements
may be an effect of the disease, rather than a precursor. An example of such
a measurement is serum levels of androgens and prostate cancer (Hsing 2001).

Because of their cost, biologic measurements are used more often in case-
control or cross-sectional studies or in a sample of a cohort, rather than for an
entire cohort. In spite of these limitations, biologic measurements can provide
key insights into the toxicologic mechanisms of the agent and can be useful in
estimating exposure levels if used judiciously. They can be useful in estimating
recent or chronic exposure levels that have low variability over time. In addition,
they represent concentrations received from all sources of exposure, so that the
total amount of exposure received is better estimated. This advantage is especially
important when individual work practices, such as hand washing before eating,
can affect internal concentrations.

Measurements of the external environment are thought to be a lower gold stan-
dard than biologic measurements because they do not measure the internal dose
received. They too represent only one point in time. This type of measurement
often reflects only one source of exposure when several sources may be con-
tributing to a study subject’s overall exposure (e.g., pesticide exposures can oc-
cur from application at work, in the house and garden, from contamination of
the soil from nearby farming operations and from consumption of pesticide-
contaminated food and water). Thus, measurement of only one source may cause
other important sources to be missed. Measuring exposures from a single source,
therefore, without considering other sources, can result in lower estimates of
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exposure and an overestimation of disease risk. In addition, external environ-
mental measurements do not provide an estimate of internal dose. There are
several advantages of this type of measurement over biological measurements,
however. External environmental measurements are non-invasive and less expen-
sive and the number of agents for which there are analytical methods is larger.
The variability of the concentration of an agent in the external environment usu-
ally is lower than the intra-individual variability in the body, meaning that when
a small number of measurements is available, a small number of environmen-
tal measurements on a group of similarly exposed workers is likely to result
in a better estimate of the true exposure level than a small number of biologic
measurements.

Finally, when measurements are taken for the purpose of an epidemiologic
study, investigators should ensure that the data are collected in a way to reflect the
metric being investigated. The sampling strategy should be developed to reflect the
goals of the study (e.g., randomly or randomly within strata). Strict quality control
methods should be followed. When records of measurements are being used,
investigators should review the collection, analytic, and quality control methods
to determine the accuracy of the data and how the measurements compare to the
metric being assessed in the epidemiologic study.

Indirect Exposure Data 11.3.2

The second type of exposure information, indirect data, is derived from question-
naires, diaries, or records identifying measurements of exposure surrogates. Ques-
tionnaires may describe measurement data, e.g., cigarettes consumed per week or
more subjective measures, such as the perception of control at the workplace. Ex-
amples of indirect data from diaries or records of surrogates are the amount of
milk products consumed or distance of a residence from a hazardous waste site,
respectively. As with measurement data, information from questionnaires, diaries
or records may be problematic.

Questionnairesaredevelopedbystudy investigators toensure that information is
collected in a structured, standardized approach to reduce differential questioning
of cases and controls and to ensure that the data are as complete as possible.

The circumstances under which the questionnaire is administered (in person,
telephone, mail, at home or in a hospital) may reflect the level of response. Devel-
opment and administration of the questionnaire and data entry and clean up is
costly and time-consuming. Computer-assisted personal and telephone interviews
(CAPI and CATI, respectively) have substantially reduced data entry and cleanup
costs, but their development is more expensive than using a paper copy. They can,
however, include logic checks within the questionnaire to catch errors immedi-
ately, rather than long after the interview has taken place (cf. Chap. I.10 of this
handbook). Questionnaires are usually administered by professional interviewers
rather than by scientists knowledgeable of the areas being investigated, so that if
a respondent asks for clarification or provides a response that is unclear or inappro-
priate, the interviewer may not be able to respond in a way to increase the quality
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of the data. Interviewer training and inclusion of probing questions are means to
reduce this problem. In spite of these limitations, oftentimes questionnaires are
the only way to collect information on exposures.

Designing a questionnaire consists of establishing a list of questions in a pre-
defined order, aimed at eliciting the presence of and often the amount of a given
exposure. A questionnaire is defined by its content, the time span it covers in
a subject’s life, and its format and wording. Common sense principles should
guide the construction of a questionnaire. Thus, each question and the flow of the
questionnaire should be clear and subject to minimal misinterpretation. Adminis-
tration of the question should not be a substantial burden to the subject, either in
regards to the amount of time spent answering the questionnaire, the complexity
of the information being collected, or the sensitivity of the questions. One hour is
usually considered the maximum amount of time that respondents retain interest,
but it may be much less. Aids can be used to help the respondent accurately recall
information, such as lists of pesticides, logos, trademarks of products used, and
pictures of medication bottles.

The list of questions in the questionnaire should include only those that the
respondent can answer and that will ensure an accurate assessment of exposures.
As the questions are developed, an analytical strategy also should be developed
on how the responses will be used. A minimum set of questions should be asked
that ensure maximum efficiency, but a small number of additional questions may
be included for cross checking data. A few “red herring” questions (i.e., questions
that are included to determine the accuracy of the responses, such as inserting in
a list of real products, a product with a fake name) are often useful to evaluate the
responses. More details on conducting interviews can be found in Chap. I.10 of this
handbook.

The time span of the questionnaire is important. Respondents can more easily
report on current exposures than historical ones. Past exposures, however, may
be more important than current exposures in the etiology of chronic diseases, but
collecting varying information over many years is problematic. Recollection of
important life events at the earlier age can improve recall.

The format of the questions will determine the response rate to the question
and the accuracy of the response. Open-ended questions (e.g., “What type of exer-
cise did you do when you were in your twenties?”) often gather more information
than closed-ended questions because respondents can identify important expo-
sures that are not anticipated by the investigator. Open-ended questions, however,
require extensive coding, and some information collected is likely to be useless.
Furthermore, important exposures may not be recalled. Close-ended questions
(e.g., “Did you do any of the following in your twenties: walk? jog? play tennis?
etc.”) take more time, but the respondent is less likely to forget one of the identified
exposures, making the information collected generally more accurate. If, however,
the respondent had an important exposure to an agent not on the list, it may not
be reported. Open-ended questions may be used in pilot studies to develop more
standardized closed formats. Wording should be geared to the educational level of
the respondents. In the US, the reading level of a 14-year old is generally consid-
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ered appropriate for general population studies. When developing questionnaires,
the investigator should consult one of the many references on questionnaire de-
sign (Sudman and Bradburn 1982; Armstrong et al. 1994; cf. Chap. I.10 of this
handbook).

Screening questions are useful to minimize the time spent on answering inap-
plicable questions. Screening questions may require a simple yes or no (e.g., “Did
you ever take birth control pills?”), or they may be formatted to screen out the
lower exposed individuals (e.g., “Did you ever take birth control pills for at least
one year?”).

Diaries are another source of exposure information and have been used most
frequently for diet and to a lesser extent, physical activity. In a diary, the respondent
reports the amount of exposure (e.g., red meat consumption) at some identified
frequency (e.g., daily). Diaries are best used when exposure occurs frequently,
because if the frequency is too low, the respondent is likely to forget to complete
the diary. Time spent recording the information should be minimal (e.g., less
than one minute) and the time covered by the diary should be short (e.g., one
to two weeks) to maximize compliance. Diaries should be formatted in a way to
ease data entry as much as possible (e.g., check boxes rather than open-ended
questions).

Records are often needed for retrospective exposure assessment (see Sect. 11.4.3).
Records of surrogate information (including geographic information systems
(GIS)) are often used in ecologic studies of the environment. Thus, amount of
corn grown in various counties may be used to rank individuals with presumed
exposure to herbicides. The data in such records may or may not have been ac-
curately collected, but even if the data were accurately collected, the design of the
data collection may impact the usefulness of the data in an epidemiologic study.
For example, the Toxic Release Inventory of the US Environmental Protection
Agency collects emissions data from private businesses. These data can be used
to identify geographic areas with significant releases of agents into the air, water,
and ground. However, there is a minimum amount of contaminant that must be
released into the environment before reporting is required. Companies releasing
smaller amounts of agents into the environment are not identified. Thus, if there
are many small companies of one type in an area, the emissions reported in the
database may suggest very low levels that may not, in fact, be low at all. In such
cases, there may be no better data available for use in a study, but the protocol and
quality control measures for the data collection should be carefully evaluated prior
to use of such data, so that the investigator is aware of the strengths and limitations
of the data. It may be useful to compare such data to other records systems as well.
For example, a study of farmers’ responses on pesticide use found reasonably good
agreement with suppliers’ information on pesticides bought by the farmer (Blair
and Zahm 1993).

In summary, the choice of a measurement instrument is determined by knowl-
edge of the disease (what is the true risk factor?), the feasibility of the measurement
(its invasiveness and the ease of use in the exposure assessment), the cost, and its
validity and reproducibility characteristics (see Sect. 11.5).
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The Process of Exposure Assessment11.4

The process of exposure assessment aims at the construction of an individual
exposure estimate, from exposure data available, in order to produce a valid and
efficient classification of subjects. Exposure data are usually imperfect, however,
and there is a need for exposure assessment (rather than measurement), in order
to approach the relevant dose.

The main steps for building exposure estimates and classification of subjects are
described below. The specific problems resulting from the retrospective character
of exposureassessment, theuseof ecological estimates and thehandlingofmultiple
correlated exposures will also be presented, where ecological estimate refers to
estimating an exposure level for a group of individuals, rather than for each
individual separately.

The process of exposure assessment can be straightforward to relatively compli-
cated, depending on the level of detail and the accuracy of the exposure data (e.g.,
surrogates of exposure may warrant less-intensive exposure assessment efforts
than accurate and detailed exposure information on the true risk factor), the goal
of the study (e.g., hypothesis-generating or hypothesis-testing), and the resources
of the investigator.

Creating an Exposure Estimate11.4.1

Some exposure data need little processing such as information obtained directly
from answers to a questionnaire, for example smoking habits or intake of some
kind of nutrients. In other investigations, some type of processing is needed. In
the case of diet, for example, food composition tables allow the computation of the
amount of nutrients across food groups (e.g., total vitamin A from various fruits,
vegetables, meats, etc.). These tables take into account the mode of preparation
and of preservation of the food. They are usually country-specific and need regular
updating for an accurate translation from food groups into nutrients. For more
details on assessment of micronutrients we refer to Chap. III.4 of this handbook.

Similarly, exercise can be measured using an accelerometer that measures move-
ment, so that the total amount of energy expended can be estimated for an indi-
vidual getting several types of exercise (Ainsworth et al. 1999).

In environmental studies (cf. Chap. III.3 of this handbook), the estimation pro-
cess often is more complicated. These types of studies often make use of recognized
pollutant dispersion models using exposure data reported by the subjects as well
as exposure data from other records systems. Investigators of a study of respira-
tory symptoms developed exposure estimates from a model using type of vehicle,
mean traffic density, emission exhaust rates, local topography, and meteorologic
conditions to estimate airborne nitrogen dioxide levels (Oosterlee et al. 1996).
Estimates of tricholoroethylene were developed for a municipal water system in
a study of neurobehavioral effects using information on piping, flow input, water
demand, and other variables, and a geographic information system (GIS) on the
water distribution systems (Reif et al. 2003).
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Occupational epidemiology (cf. Chap. III.2 of this handbook) also tends to
estimate exposure from multiple pieces of exposure information, but to date, there
are no recognized methods. In the past, experts have based their estimates on
job titles and industry with little documentation as to how these estimates were
derived. Recently, more attention has been paid to identifying determinants of
exposure (e.g., factors that affect exposure) (Vermeulen et al. 2002). Examples of
determinants include the presence of ventilation, the use of protective equipment,
and the quantity of the contaminant in the workplace. Models to estimate an
exposure score can be developed by simply assigning weights to the values of the
determinants. For example, for a studyofman-mademineralfibre, typeof emission
(active, passive), handling of fibres, presence of controls, protective equipment,
and other variables were identified as affecting exposures (Cherrie et al. 1996).
Variations in these variables across jobs resulted in the assignment of different
scores. Use of these determinants in statistical models allows for a more rigorous
and transparent estimation process, however, such as for a study of paving workers
where measurement data and determinants such as the type of paving (oil, mastic)
and the use of tar were used to develop a estimation model for benzo(a)pyrene
exposures (Burstyn et al. 2000).

Establishing a Level of Classification 11.4.2

In deciding on a classification, a decision must be made as to whether it will be
qualitative (yes|no or ever|never), semi-quantitative or ordinal (e.g., low, medium,
or high, or scores of say, 1–3, with or without the quantitative levels associated
with the categories identified) or quantitative (with units of measurements). This
decision is usually based on the quality of the exposure data.

Continuous data (i.e., quantitative) have greater statistical power to find an
association than categorical data. Continuous data, however, also provide an im-
pression of higher quality of exposure data than categorical data do, so that if the
exposure data are poor, it may be better to describe the exposures categorically.

Oftentimes, investigators believe that categorical data are more accurate than
continuous data. In one sense, this may be true. It generally is easier to assign
a study subject to one of three categories than to estimate a quantitative level. The
use of categories, however, does not reduce the error of the exposure assessment
because all individualswithin the category are assigned the samevalue.To illustrate
this point, when categories are used, either a score is assigned to the category or
the median of the range the category represents is used. It would be rare, however,
that all individuals within an exposure category actually have the same exposure
level. There are likely to be some individuals exposed at the median level of the
category who are therefore appropriately assigned. There are also likely to be
some individuals on both the low and the high ends of the category who will be
assigned the same value as those individuals at the median level. Moreover, the
individuals on the edges of adjacent exposure categories (e.g., the individuals on
the high end of the low exposure category and the individuals on the low end
of the adjacent higher category) are assigned to different exposure categories and



448 Sylvaine Cordier, Patricia A. Stewart

therefore to different median values, although they may be very similar in exposure
levels. Thus, within any category of exposure, there is variability in exposure levels,
and this variability will reduce the ability of the investigator to identify exposure
response-relationships.

Another consideration in selecting the level of classification is the underlying
assumption of the exposure-response relationship (cf. Chap. II.2 of this hand-
book). Using a continuous measurement of exposure in regression modelling (cf.
Chap. II.3 of this handbook) assumes a linear increase of disease risk (or a trans-
formed scale such as logit) for one unit of exposure. Use of categories of exposure,
at least as a first approach, will, instead, fit observed values more closely without
requiring any hypothesis about the shape of the exposure-response relationship.
Categories must be developed, however, keeping in mind the limitations described
above.

Grouping Strategies
Exposure groups are subsets of the population being studied that are viewed as
being similarly exposed and therefore assigned the same exposure level. Exposure
groups may be defined during questionnaire development, the exposure assess-
ment process, or the analytical stage. When developing questionnaires, exposure
groups are defined when responses to the questions are provided in categories.
For example, if the possible responses to “At what age did you get your first men-
strual period?” are < 10, 10–12, 13–14, ≥ 15 years of age, these categories result
in four exposure groups. In some studies, exposure groups are developed during
the exposure assessment process. Thus, in an environmental study a question may
be asked, “How far did you live from the ABC waste site?” The exposure data that
will be used in the exposure assessment may be described in three categories, e.g.,
concentrations of an agent within a mile, 2–5 miles, and ≥ 5 miles. The investi-
gator, then, may develop three exposure groups: one of subjects who report living
≤ 1 mile, one of subjects living 2–5 miles, and one of subjects living ≥ 5 miles.
Alternatively, the exposure data may be continuous (e.g., concentrations at various
distances). In this case, the investigator may leave the question open-ended. Alter-
natively, he|she may prefer to use the same three response categories as indicated
above because the investigator may believe that the subjects can more accurately
identify the correct category than estimate a continuously measured distance. Fi-
nally, during the analytical stage, investigators may decide to group individuals
into quartiles or other arbitrary or ad hoc categories. An advantage of this strategy
is that categories can be developed using differing cutpoints to allow comparisons
with other studies.

The definition of exposure groups is important in an epidemiologic study be-
cause the variability of exposure level within and across groups affects the power
to observe an exposure-response relationship (see also Sect. 11.5). There are three
types of variability in epidemiologic studies. The first is intra-individual or day-
to-day variability. For example, a subject with a mean alcohol consumption of
two glasses a day may have no drinks some days and four drinks other days. The
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epidemiologist has no control over this variability, but it is important to appreciate
that there is variability of most exposures of individuals, which could be important
when investigating threshold effects.

Intragroup variability is the variability that occurs within the exposure group.
Thus, within an exposure group consuming 2–4 drinks|day, there will be some
individuals who average two, some who average three and some who average four
drinks|day. Intergroup variability is the variability across the groups (for example,
with categories of 0, ≤ 1–2, 3–4, 5–6 and ≥ 6, the range is 0 → 6 drinks|day).
The more intragroup variability there is compared to the intergroup variability,
the more likely that an exposure-response relationship will be missed. The goal,
therefore, is to have narrow ranges of exposure levels within the groups (with little
to no overlap across other groups due to misreporting) and as wide a range across
groups as possible. For example, in a study investigating coal dust and change in
lung function (forced expiratory ventilation in one second (FEV1)), four different
exposure groups were evaluated for intragroup and intergroup variability and the
effect of variability on the FEV1. The intragroup variance ranged from 0.18–0.35
and the intergroup variance ranged from 0.20–0.23 (Heederik and Attfield 2000).
The FEV1 coefficient (in ml per mg/m3 of coal dust) ranged from −2.0 to −5.9.
The exposure group with the lowest intragroup variance (0.18) and the highest
intergroup variance (0.23) was associated with the highest loss of FEV1per unit of
dust exposure (−5.9 ml/mg/m3 of dust). Intragroup and intergroup variability can
be evaluated using analysis of variance techniques (e.g., Burstyn et al. 2000).

Retrospective Exposure Assessment 11.4.3

The challenges of using instruments to measure current (i.e., recent) exposures are
compoundedwhen investigatingchronicdisease.Becausehistoricalmeasurements
are often lacking, investigators may collect current measurements and assume
that historic levels were similar or extrapolate historic level from the current
measurements. Similarly, exposure information is often asked in questionnaires
in reference to a single point in time (e.g., 20 years ago or when the subject was
at a certain age), which is equivalent to having only one historical measurement.
For example, in the area of nutrition, questionnaires used to investigate chronic
disease have traditionally collected only information on current diet. Because diets
have changed over time, current diet is not necessarily highly correlated to diets
of 20 to 30 years ago.

In contrast, in the occupational investigations, however, complete work histories
are often collected, which is likely to result in more accurately historical exposure
estimates than using only current job. There is a whole body of literature relative
to retrospective exposure assessment using job exposure matrices (JEM) or expert
assessment from a panel of experts (Benke et al. 2001). A JEM is a cross tabulation of
jobs (or job|industry combinations) and agents by time that automatically assigns
the same exposure level to all individuals having the same job. Used in association
with a subject’s complete work history, JEMs or expert evaluation provide an
individual probability of exposure to a given agent.
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Ecological versus Individual Exposure Assessment11.4.4

Measurement data may not be available on the actual study subject, but rather on
individuals thought to be similarly exposed as the individual under study. These
types of measurements are called ecologic assessments. In contrast, assessment
of individual exposures takes into account the personal characteristics of the in-
dividual. An example of an ecologic assessment is assigning the same level of
trihalomethanes in a public water supply system to all individuals on that water
supply, in spite of the recognition that the concentration of trihalomethanes can
vary within a system. Assigning the same exposure level to individuals with differ-
ent exposure levels will result in misclassification of study subjects, because in the
same (macro) environment, subjects are likely, in fact, to have different exposure
levels. For example, subjects living in an area with a polluted public water supply
will be exposed differently to a pollutant in the water depending on whether their
water resources come from a public supply or from a private well, the amount of
tap water they drink, their use of tap water for cooking, etc.

An ecological evaluation is used when exposure data or resources are lim-
ited. Ecological estimates are the rule in areas such as air pollution epidemiology,
where individual exposures are often defined by atmospheric measurements at
the sampling location nearest to the individual’s residence, or more broadly, at
the city level. Ecological estimates are also popular in occupational epidemiol-
ogy, where job exposure matrices have been developed. In these examples, in-
vestigators of air pollution or workplace exposures usually do not have measure-
ment data on the individuals or individual-specific parameters such as individual
work practices and protective equipment. The ecologic evaluation, therefore, as-
signs the same exposure value to a group of subjects sharing the same (macro)
environment.

Ecologic evaluations can result in substantial misclassification of exposure lev-
els. In the field of occupation, even among individuals thought by occupational
health professionals to have similar exposure levels, the exposure level can be up
to three to six times larger or smaller than estimated, as indicated by geometric
standard deviations often found (van der Woord et al. 1999). It seems reasonable
to assume that similar degrees of misclassification occur among other types of
environmental exposures. Extrapolation of measurement data from one individ-
ual to another or from a system to an individual therefore must be done with
caution.

Ecological measurements are often derived from existing records (air quality
monitoring records, occupational measurement surveys) and are much cheaper
to obtain and estimate than individual measurements. Using ecological measure-
ment instead of individual measurements makes sense if the contrast of exposure
between the groups (e.g., cities or jobs) is greater than variability of exposures
among individuals in the same group. Studies based on ecologic measurements
may also be useful for hypothesis-generation.

Individual assessment generally requires a greater assessment effort but is likely
to result in less misclassification. Considerations for selecting one approach over
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the other include: time and financial resources, availability of exposure data and
its quality and quantity, and the purpose of the study (e.g., hypothesis-generating
or -testing, and investigation of an exposure-response relationship).

Dealing with Multiple Exposures 11.4.5

In many situations, exposures to various potential risk factors in human popula-
tions tend to aggregate for an individual, due to individual behaviour. An example
is the correlated habits of smoking, alcohol and coffee drinking among some indi-
viduals. Similarly, in the outdoors environment, humans are exposed to mixtures
of compounds originating from the same source (e.g., mercury, polychlorinated
bi-phenyls (PCBs), and other organochlorines from eating fish) or from various
sources (e.g., carbon monoxide from automobile and truck exhaust).

Epidemiological studies have proved to be informative about many complex
mixtures such as cigarette smoke or air pollution. However, identification of
the component(s) responsible for the health effects (and their joint effects) ob-
served is still required for a better understanding of disease causation, cost-
effective monitoring of the hazard, and an efficient strategy of prevention of
disease.

The situation of the mixed exposures cannot be treated as a classical prob-
lem of confounding because the exposures are highly correlated. Stratified anal-
ysis or multivariate modelling is, in general, inefficient because such analytical
approaches do not allow the presence of a high colinearity among different ex-
posures. In addition, the presence of one or several agents “representative” of
mixed exposures or the occurrence of interaction among exposures is not merely
a statistical problem. It also requires a strategy that recognizes the different un-
derlying biological hypotheses of the various components of the mixtures. Much
of the insight about multiple exposures comes from epidemiology (for instance
tobacco smoke or outdoor air pollution) because toxicological experiments often
cannot replicate complex mixtures to which people are exposed across time, and
such experiments are usually limited to single components or suitably chosen
combinations.

To illustrate the problem of complex mixtures, we describe as an example envi-
ronmental exposure to PCBs. Similar examples, however, are found in many other
areas of study, including diet and occupational exposures. PCBs are a persistent
type of industrial compound that includes 209 different chemical members re-
ferred to as congeners. The commercial product always is a mixture of correlated
congeners, so that studying the toxicity of these compounds is not easy. For exam-
ple, some PCBs act like dioxins by binding to the aryl hydrocarbon AhR receptor,
and may result in cancer (Longnecker et al. 1997). Experimental work has shown
the highest dioxin-like activity occurs for congeners with no chlorine in the ortho
position. It has been speculated that neurologic effects of PCBs, on the other hand,
may be caused by congeners with chlorine in the ortho position.

Samet (1995) has proposed five general strategies for studying such complex
mixtures efficiently: (1) treating the mixture as a single agent; (2) selecting an indi-
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cator component; (3) creating a summary index; (4) identifying the separate effects
of the mixture’s individual components; and (5) characterizing the independent
and joint effects of the components. We review these strategies with application to
the problem of the toxicity of PCBs.

(1) Treating the Mixture as a Single Agent. The early studies in Japan and Tai-
wan that recognized the neurotoxicity of PCBs, and the later studies in Michi-
gan, relied on total PCBs. At that time congener-specific data were not avail-
able (Schantz et al. 2003). The exposure measurements taken in these studies
were powerful enough to strongly suggest the neurotoxic potential of PCBs.
There is still, however, a debate about discrepancies in health effects among
studies in different countries. These discrepancies may be due to different an-
alytical procedures, different patterns of congeners, or different co-exposures to
other organochlorines, such as dioxins or furans, which have similar environ-
mental pathways (Longnecker et al. 1997). In summary, treating the mixture of
PCBs as a single agent has proved efficient for hazard identification in early
work, but exposure misclassification limits the interpretation of the discrepant
findings.

(2) Selecting an Indicator Component. Several recent large studies have focussed
on a small number of congeners present in relatively high concentrations (e.g.:
PCB 153). The congeners present in high concentrations, however, are not nec-
essarily the most toxic. As a rule, “a single component of a mixture may be
an appropriate index of toxicity if the component mirrors the dosimetry and
toxicity of other components relevant to the health effects of concern” (Samet
1995).

(3) Creating a Summary Index. Creating a summary index implies the attribution
of some type of weighting to the individual concentrations of the different compo-
nents of a mixture. The weight assigned to each congener is defined according to
an underlying hypothesis about the biological activity of each component. If one
assumes that endocrine disruption is a relevant biological mechanism of toxicity
for PCBs, a measurement of the total estrogenic xenobiotic burden in adipose
tissue could provide an integrated biomarker of xeno-hormonal activity result-
ing from exposure to a given mixture of compounds (Soto et al. 1997). Another
example of biological activity, the dioxin-like activity of a PCB congener, can be
calculated using a toxic equivalency factor (TEF) (Ahlborg et al. 1994), which is
assigned relative to the toxicity of the dioxin 2, 3, 7, 8 TCDD. The total toxic equiv-
alency (TEQ) of a mixture of PCBs can then be estimated by summing across all
compounds, the product of the concentration and TEF for each compound. It is
likely, however, that the weighting is dependent on the state of knowledge about
the relative potency of the different components at the time of calculation, and that
over time it would be necessary to modify the summary index as more information
becomes available.
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(4) Separating Effects of the Mixture’s Components. Creating one summary in-
dex does not reflect the heterogeneity of the mixture. There is a trade-off be-
tween measuring concentrations of the individual compounds in the mixture
(which is usually time-consuming and expensive) and summarizing the mixture
of highly correlated congeners. Analyzing concentrations of 38 PCBs congeners
from 497 human milk samples from Canada in 1992, Gladen et al. (2003) distin-
guished three groups of congeners: one group of the congeners, including most
of the major congeners, that were highly correlated, meaning that their indi-
vidual biologic effects realistically could not be separated in an epidemiologic
study; another group of congeners quantifiable in only a small fraction of the
population by the assay methods used and therefore an epidemiologic analysis
would be uninformative; and a third group quantifiable in a reasonable fraction
of samples and not correlated with the bulk of major congeners. The authors
concluded the components of this last group are worth studying separately and
are good candidates for individual determination and inclusion in epidemiologic
studies.

(5) Characterizing the Independent and Joint Effects of Components. Measure-
ments of selected congeners allow the evaluation of health effects related to single
or joint exposures. Correlations, however, exist not only between concentrations
of PCBs congeners, but also with other common organochlorines, metals, and
pesticides and there are strong suspicions of possible interactions among these
compounds at the molecular level that affect neurobehavioral function in particu-
lar (Carpenter et al. 2002). The strategies presented earlier provide some guidelines
for studying these joint effects in epidemiological studies.

Two other points regarding mixtures are appropriate. It should be recognized
that while some agents within a mixture may cause a disease, it is possible that
other agents in that same mixture reduce the likelihood of the disease by deac-
tivating the active compound. For instance there is an active discussion around
the beneficial impact on birthweight of seafood consumption during pregnancy,
which brings high amounts of fatty acids and selenium, relative to the potential
toxicity of seafood from contaminants such as mercury (Grandjean et al. 2001).
This situation complicates the determination of causality in epidemiologic studies.
Also, individual characteristics of the study subjects (e.g., polymorphisms) may
intensify or reduce the effect of the agent. Currently, our ability to tease out these
situations is limited, but investigators should at least recognize that they may be
possible.

Multiple exposures can be evaluated using interaction analysis, but can also
be grouped using hierarchical cluster analysis (e.g., see Hines et al. 1995 for an
example). In this study fabrication workers in a semi-conductor company were
exposed to multiple chemicals. Hierarchical analysis allowed the investigators to
identify groups of workers exposed to the same pattern of exposures (e.g., various
glycol ethers).
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Measurement Errors11.5

All types of exposure assessment in every area of investigation will have some
error. Chapter II.5 of this handbook describes statistical methods to cope with
measurement errors. Appreciation of the types and degree of error allows for
a more appropriate interpretation of the study results. Knowing the sources of
error can also provide areas for methodologic investigation within the study to
allow quantification of the error. This, in turn, can allow the investigator to estimate
the effect of the error on the epidemiologic findings.

Types of Measurement Errors11.5.1

There are two types of errors that arise from measurements: random and system-
atic. Random error will result in the measurements being randomly distributed
around the mean. Systematic error, or bias, will result in an overall mean that
is erroneously high or low compared to the true mean. Both types of error are
of concern in exposure assessment and they are described in terms of precision
and validity. Precision measures random error and refers to the reproducibility
or reliability of the measure. Validity measures systematic error and refers to the
distance between the exposure measured and the target variable (ideally, the true
risk factor, but practically, the surrogate).

A measurement instrument must be reproducible. Under ideal conditions this
means that if the instrument is administered under the varying conditions, it
should provide the same response within a reasonable level of variation. Gener-
ally, however, reproducibility more practically is defined as providing the same
response within a reasonable level of variation under the same circumstances.
Reproducibility is a necessary condition to accurately evaluate intraindividual and
intragroup variability, but somewhat less necessary to accurately evaluate inter-
group variability. In addition, to be useful, the measurement instrument must also
be valid (i.e. it should measure the exposure it is supposed to measure and identify
the true quantity present).

Historically, measurement error more often has been associated with cate-
gorical assessments than quantitative, probably because quantitative assessments
have been limited in the past. Measurement error in either type of assessment
will result in misclassification error when estimating the exposure levels of study
subjects. For example, if a subject was assigned to a high fruit intake category,
rather than a medium fruit intake category, the subject is misclassified. Mis-
classification of confounders can be also a serious problem since it will usually
reduce the degree to which confounding can be controlled. For instance in many
studies it is essential to obtain a complete smoking history including detailed
periods of smoking or quitting, and quantity smoked during each period, be-
cause tobacco smoking is a risk factor, and therefore a potential confounder, for
many diseases. When studying lifestyle factors associated with smoking, such
as alcohol consumption, misclassification of smoking habits will result in in-
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complete adjustment and residual confounding. In the context of an epidemi-
ologic study misclassification is characterized as nondifferential or differential,
depending on whether it affects the comparison groups (i.e., the diseased and
non-diseased subjects) similarly. Differential misclassification, which results from
there being a different amount of error for the diseased compared to the non-
diseased, can lead to underestimation or overestimation of the association be-
tween the exposure and disease. In the latter situation, misclassification can in-
duce spurious statistically significant results. Nondifferential misclassification of
exposure usually will bias estimates of relative risks towards the null. There are
examples, however, occurring in extreme conditions, where nondifferential mis-
classification of exposure can produce bias away from the null (Rothman and
Greenland 1998). Thus, both types of misclassification can result in incorrect
conclusions.

Sources of Measurement Errors 11.5.2

Armstrong et al. (1994) classified sources of measurement error in five categories:
faulty design of the instrument, errors or omissions in the protocol regarding
the use of the instrument, poor execution of the protocol during data collection,
limitations due to subject characteristics (e.g. poor memory of past exposures or
day-to-day variability in biological characteristics), and errors during data entry
and analysis. They have provided an extensive list of circumstances in which these
errors may occur and these sources should be carefully evaluated before attempting
to use any type of instrument.

Measurement instruments and analytical methods (such as for an air or bi-
ological measurement, blood pressure, etc.) generally are designed to be as ac-
curate and reproducible as possible when used under similar conditions, i.e.,
with the same protocol. Two possible sources of systematic differences that can
occur are from the measurement|analytical method itself and from the inter-
ference of other substances present in the measured environment. Reduction of
these errors in the investigation of disease risks can be made by following the
manufacturer’s|laboratory recommendations, calibrating the instrument under
the conditions being measured, using spiked and blank samples, and following
other quality control procedures (cf. Chap. I.13). Random error can arise from
a lack of technical precision of the instrumentation, variation introduced by the
laboratory technicians, and the analytical procedures themselves. This inherent
limitation of the instrument and analytical methods, however, explains only part
of the variability. Other sources of variation include weather conditions, presence
of other exposures, the actual concentration being out of the range of the instru-
ment’s measurement range, and the timing of the instrument’s response in the
relation to a change in concentration. The sources of error need to be identified in
order to decrease, or at least, recognize and quantify the variability.

Questionnaires, because they also can suffer from the two types of misclassifi-
cation, systematic and random, can be viewed similarly. Systematic differences can
result from incorrect phrasing of questions (such that all respondents misinterpret
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the question similarly) or from inappropriate or misleading response categories.
Random sources of misclassification can result from poor phrasing (such that dif-
ferent respondents interpret a question differently) and lack of interest on the part
of the respondent. To collect quality data, questionnaires should be standardized,
so as to ensure that all study subjects are asked the same questions. Questions
must be clearly phrased, without ambiguity and use terms that are understandable
to respondents. Respondents must be able to remember the events being asked
about and be able to correctly respond to the questions. Thus, reporting of events
that took place many years ago or that require mathematical calculations (e.g.,
estimating “average” amount of foods eaten on a seasonal basis) is likely to be
subject to more random error than reporting of more recent events or events that
do not require calculations (e.g., Bradburn et al. 1987 and Subar et al. 1995). Pilot
testing of questions should be conducted on a group of individuals with the char-
acteristics of the group who will be receiving the questions because respondents
often interpret questions very differently from investigators, even if the questions
were carefully developed. Questions should also be tested under the conditions
that the questionnaire will be administered (e.g., in the home). Following these
procedures should decrease bias and increase precision.

Diaries are prone to both systematic and random errors from the same sources
as questionnaires. Records, in contrast, may have systematic and random error
similar to measurement data or questionnaire data, depending on the type of
record.

Both systematic and random errors may result from limited data. For example,
systematic error could result in missing information from asking about sensitive
issues, such as the number of sexual partners (Lindzey and Aronson 1985). Subjects
may be more inclined to respond with a “don’t know” if the number of partners
exceeds what they consider to be acceptable. Cases with workplace-induced cancer
may be so sick that proxies are used as the respondents. Proxies generally know
little about workplaces of the subject. In contrast, many of the control subjects
would be able to provide detailed information about the workplace.

Having limited exposure information can result in misclassification of subjects
by exposure level. In the environmental area, Brunekreef et al. (1987) illustrated
the effect of limited data on misclassification in a study of the relationship between
environmental exposure to lead and blood lead levels in children. He found that
averaging four measurements of lead on home floors increased the regression co-
efficient explaining blood lead levels by 69%, compared to the model using a single
home floor measurement. Having only one measurement, therefore, would have
increased the misclassification of subjects. Generally non-differential misclassifi-
cation due to limited data will result in random error.

The problem of limited data also is evident in the use of questionnaires. For
example, often investigators restrict the workplace exposure information collected
to jobs, industries and dates. From these limited data, they apply job exposure
matrices to assign occupational exposure estimates. When applying the matrix,
individuals holdinga jobare considerednon-exposed if the exposureoccursonly in
a small proportion of workers in the job. This procedure will, however, inevitably
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result in classifying among the “unexposed” individuals, a small proportion of
workers who are, in reality, exposed. Similarly, individuals having jobs entailing
a high probability of exposure will be considered exposed, even if they belong to
the small proportion of nonexposed workers on this job. Detailed descriptions
of tasks and work conditions of the jobs held by individual study subjects and
evaluation of these data on the individual subject level are necessary for a better
assessment. Thus, limited exposure data can contribute to misclassification, in that
the availabledata (fromwhichexposure is characterized)maynotbe representative
of the individual’s actual exposure level. This problem is more related to selection
bias, is a general problem in epidemiology, and is not unique to exposure variables.
The concept of bias is treated in Chap. I.12 of this handbook.

One can often recognize the circumstances in which differential misclassifica-
tion may occur. Diseased subjects may have reflected more on their past exposures
than the nondiseased (recall bias) or may take more care in providing correct re-
sponses. Differential bias will potentially occur when the exposure measurement
instrument uses a human intermediary (e.g., the subject himself and|or an inter-
viewer) aware of (or thinks he|she is aware of) the disease status. Thus, face-to-face
interviews involve a substantial risk of producing interviewer effects. If a bias re-
sults from a different attitude of the interviewer toward the diseased compared
with the non-diseased subjects, it is called interviewer bias. Self-administered
questionnaires are generally believed to be less vulnerable to influences of re-
sponse bias; however, the appearance of the questionnaire, the introductory letter,
and the research group may all have an impact on response. The likelihood of
bias from telephone interviews falls between these two data collection methods.
Computer-assisted telephone interviewing has become the method of choice in
many studies, and often has a high response rate and few missing data (Nybo
Andersen and Olsen 2002).

Quantification of Measurement Errors –
Reproducibility Studies 11.5.3

Evaluation of the reproducibility of measurement instruments can be done by com-
paring the same instrument under the same conditions over time or by comparing
various instruments under the same conditions at the same time. An example of
the first type of study evaluated the reproducibility of a self-administered lifetime
physical activity questionnaire (Chasan-Taber et al. 2002). Subjects reconstructed
physical activity at four ages, starting at menarche, twice in the same mail ques-
tionnaire administered one year apart. All intraclass correlation coefficients used
to measure reproducibility ranged from 0.78 to 0.87, with a value of 0.83 for total
lifetime estimate of exposure.

The area of nutritional epidemiology (cf. Chap. III.4 of this handbook) is one
in which the design of proper questionnaire instruments has been extensively in-
vestigated. Subar et al. (2001) compared a new food frequency questionnaire and
two widely used dietary questionnaires using telephone 24-hour recalls. Despite
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substantial differences in the length and the design of the questionnaires, correla-
tions obtained for dietary composition (i.e., total energy intake and 26 nutrients)
were very similar. This comparison provides evidence that carefully designed self-
administered food frequency questionnaires can provide reasonably reproducible
measures of current nutrient intakes in epidemiologic applications. There are still,
however, questions about the validity of these instruments, and probably only the
comparison of questionnaires with a truly uncorrelated error, such as a biochem-
ical indicator of diet, will resolve these validity issues.

Quantification of Measurement Errors –
Validation Studies11.5.4

Ideally, an instrument should be evaluated by comparing it to a standard under the
conditions the instrument isused. Inevaluating thevalidityof anymeasurement in-
strument, the choice of the gold standard is a critical issue. Biochemical indicators
of internal exposure provide an independent assessment for which measurement
errors are not likely to be correlated with errors in air or water measurements or
questionnaires. Biologic measurements may represent historical exposures only if
the chemical of interest has a sufficiently long biological half-life and may represent
recent exposures only if the chemical has a relatively short half-life. In both cases,
for the biologic measure to be useful, the body burden cannot be affected by the dis-
ease or its treatment. In other situations, the biomarker may not measure the target
agent of interest. Other challengesof biologic monitoring canbe found in Sect. 11.3.1
of this chapter. Biochemical indicators of dietary intake have a great appeal as the
gold standard to assess the validity of dietary questionnaires (Willett 1990). There
are limitations, however, in that the indicators may not reflect only dietary intake,
and there are many dietary factors of interest for which there is no biomarker.

Practically, however, a gold standard often does not exist, especially when ex-
posure has to be assessed retrospectively (e.g., historical tobacco consumption of
individuals). For some exposures, however, a partial validation may be possible,
by comparing questionnaire results to pre-existing records. For example, reported
jobs can be compared to employers’ records, and smoking consumption can be
compared to past medical records. Identification of gold standards that are “al-
loyed”, and how to account for this error has been discussed (Wacholder et al.
1995). The validation of the instrument is also often measured by its ability to
predict disease risk in prospective studies (Willett 1998). This approach is some-
what problematic, however, in that the epidemiologic outcome is used to test the
instrument. Nonetheless, a good instrument should produce better risk estimates
than a poor one (Tielemans et al. 1998).

Methods for Correcting Measurement Errors11.5.5

The effect of a systematic difference between the actual concentration and the
concentration measured can be reduced or minimized simply by applying a cor-
rection factor reflecting the difference to the exposure estimate if the difference
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is known. Internal validation studies have been proposed to reduce the impact
of measurement error. In one approach, exposure is measured, although im-
perfectly, from everyone in the study, and, simultaneously, a more accurate but
more expensive measurement is collected on only a small subset of cases and
controls selected randomly. Sophisticated statistical methods can then be ap-
plied in order to infer the corrected odds ratio from measurement error mod-
els fitted to the parallel exposure measurements from the validation sample
(Stürmer et al. 2002). These so-called two-phase designs are among others in-
vestigated by Schill et al. (1993, 1997) and have been applied by Pohlabeln et
al. (2002). This method, however, has not yet been routinely implemented, and
further research is needed to establish the robustness of the procedures in real-
istic settings and to determine optimal designs for selecting a validation sam-
ple. As quoted by Chatterjee and Wacholder (2002) in a recent commentary,
“the best way to reduce bias from measurement error is to improve tools for
measuring exposures including biological markers, environmental samples and
questionnaires”.

A second approach that is gaining popularity is to conduct an uncertainty
analysis (or sensitivity analysis; Rothman and Greenland 1998). In this approach,
investigators identify the uncertainty around a point estimate (e.g.,2 drinks of wine
a day). For example, if a question asked “How many glasses of wine do you drink?”
and the responses were < 1|day, 1–3|day, 4–5|day, > 5|day, the uncertainty ranges
of these responses could be 0–0.9, 1–3, 4–5 and 6–10, respectively. Monte Carlo
or other statistical simulations allow a better understanding of the uncertainty
around the disease risk estimates.

Conclusions 11.6

The demand for accurate exposure assessment implies the need for development
of validated and reliable tools in parallel with reduced costs and increased ap-
plicability in field studies. Sophisticated techniques are now available for direct
measurement of chemicals in most mediums with excellent sensitivity and re-
producibility. Similarly, questionnaires are being developed in various fields with
considerable effort being put into their validation.

In some areas, such as occupational or environmental epidemiology, improve-
ment is dependent upon additional knowledge on exposure determinants both
at the personal and population levels, and on objective comparisons of the qual-
ity of various available methods for exposure assessment (Liljelind et al. 2003).
Quantitative estimates of exposure using statistical modelling are currently being
developed, mainly for risk assessment purposes, but their applicability to epidemi-
ological studies has not been fully explored.

To solve the problem of mixed exposures, the trend is towards building exposure
indices summarizing several exposures according to biological hypotheses about
their joint mechanisms of action. In the near future, new biotechnologies (e.g.,
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genomics, proteomics) will contribute to the development of biomarkers of gene
expression, intermediate between markers of exposure and markers of early effects
that will summarize the joint action of mixed exposures at the molecular level
(Henry et al. 2002, cf. Chap. III.6 of this handbook). The applicability of these
techniques in epidemiological studies opens a whole new area of research.
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Introduction 12.1

This chapter deals with practical issues in designing and planning analytical epi-
demiological studies. Although most of the practical issues are consequences of the
theoretical principles of epidemiology as presented in standard textbooks (Bres-
low and Day 1981, 1987; Rothman and Greenland 1998; Miettinen 1985) and in
Chaps. I.1, I.5, I.6, I.9, II.1, II.5, and II.6 of this handbook, the emphasis here is on
how to proceed practically when planning a study.

This chapter is based on our experience in conducting epidemiological studies
andona seriesof references inwhichmanyof the concerns in thepractical planning
of studies have been described at length. Among the key sources we used are the
books by Hernberg (1992) and Armstrong et al. (1994). The series of papers by
Wacholder et al. (1992a,b,c) have also inspired much of our writing. It will start with
a section on early planning in which the general setting of any study is described
as well as the key planning document, i.e. the study protocol. The second section
is devoted to the choice and implementation of an actual design where we focus
on cohort and case-control studies. The next section focuses on data collection,
both, with respect to the exposure and the disease outcome. The final section
is devoted to practical issues and gives a list of topics arising in all studies that
may not always get the appropriate attention while planning an epidemiological
study.

Early Planning 12.2

Objectives – the Concept of the Study 12.2.1

The first step in the planning of an epidemiological study is the definition of the
problem. Researchers must ensure that they have a clear view of the problem at the
abstract-general level. At this conceptual level a problem takes the form “does X
cause Y?” or “how much will a certain amount of exposure to X affect Y?” (Hern-
berg 1992, Chap. 4). It should be stressed that in analytical studies, researchers
are interested in the relationship between exposure and disease which would be
valid in other circumstances. They are only interested in the particular morbid-
ity experience of the study population as far as it can be extrapolated to other
populations.

The general interest of the investigator first has to be translated into precisely
formulated, written objectives. A limited number of study objectives should be
defined. These objectives may be of two kinds.

A first case is when the study is focused on specific analytical questions with
a predefined hypothesis. For instance “does exposure to extremely low frequency
(ELF) electromagnetic fields cause childhood leukemia?”. Here the hypothesis
should be formulated as a series of operational questions. One can specify the
ELF fields in a variety of ways both qualitative (yes|no or low|medium|high) or
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quantitative (e.g. present intensity, mean intensity over the last years or cumula-
tive exposure). Other pre-defined operational hypotheses may include subgroup
analyses based on the disease subtype. These operational hypotheses will have to
be clarified by confirmatory tests. Additional results based on the observed data
will then be clearly identified as such.

A second study type focuses on broader hypotheses generating questions that
will be investigated by exploratory analyses such as “what occupations are associ-
ated with an increased risk of laryngeal cancer?”. Even in this case a predefined list
of questions is useful. In the present example, this would consist in a list of occu-
pations considered. Again an unsuspected excess in an occupation not considered
a priori should be identified as such.

Scientific Background12.2.2

It is of crucial importance to undertake a thorough literature search and to know
the literature in detail before planning any new project. Occasionally, the literature
review may show that the answer to the study question is already available and that
further data collection is not needed.

Evaluating epidemiological evidence from the literature is often challenging
even for experienced researchers. Because a single positive finding may be a chance
finding, a complete literature search, including negative results, should be con-
ducted. One should consider systematic errors (biases) and confounders that may
have led to a particular result in previous studies. Several independent studies
using the same design and the same procedure of data collection may have sim-
ilar results due to common biases or confounding. It is therefore important that
the sources of spurious results are identified and controlled in subsequent in-
vestigations. It would be ineffective to simply replicate previous studies, without
consideration of new research questions raised by previous studies, that could not
be addressed because the information was not collected. A large literature body
on how to perform a systematic literature synthesis is available, see Chap. II.7 of
this handbook and references therein.

The literature search should, however, not be restricted to epidemiological
studies, but may encompass a large range of topics from biological mechanisms
or biomarkers related to the hypothesis under study to techniques of exposure
measurement.

The Study Protocol12.2.3

An epidemiological study is generally a complex undertaking of long duration,
requiring time from study investigators and technicians, large resources in per-
sonnel and funding. The success of a study depends on a careful preparation. It
is self-evident that such an undertaking cannot be done without a written study
protocol.

A study protocol (study plan) should cover all aspects of the planned study.
It should first state the precise objective of the study and describe the scientific
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rationale for undertaking a new study, based on a literature search of the relevant
publications (scientific rationale: study background and objectives). It should then
define the study design including the precise study base and an estimate of the
corresponding statistical power to achieve the objectives. Finally it should give
a detailed account of what the epidemiologists intend to do and how they intend to
do it. This entails for instance procedures for identifying the outcome parameter,
measuring of exposure and confounders, data management and all steps taken
for quality assurance. These aspects could be contained in a separate operations
manual. It should also address the strategy for statistical analysis, ethical consider-
ations and data protection procedures, project organization, quality control, time
schedule and study diary, publication, and budget.

According to Miettinen (1985) a study protocol should have five purposes:
Crystallize the project to the researchers themselves
Give referees the possibility to review the project (especially for funding)
Inform and educate all those taking part in the project
Ensure the main researchers do not forget any details of the plan in the course
of the study
Document the procedures of the project for the future.

In summary, a protocol must be so detailed that an independent researcher could
carry out the study based on it. The planning of each epidemiological study needs
explicit and operationalized hypotheses that have to be formulated as specific and
precise as possible. The selection of the population under study has to be justified
in light of the research question.

An outline of the issues to be covered in the study protocol is given in Box 1.
Most of these issues will be discussed in what follows. For further details we refer
to Chap. I.13 of this handbook.

Box 1. Overview of a study plan and corresponding key problems to be
addressed in the planning phase

1. Research question and working hypotheses
Relevance|previous findings
Choice of an appropriate target population
Problem: Operationalizing, i.e translation of items into variables that
can be quantified
Precise definition of endpoint
Precise definition of independent variables and confounders
Choice of statistical measures (proportions, means, risks)
Translation into a hypothesis that can be tested statistically
Confirmatory testing of hypothesis|exploratory analyses

box to be continued



468 Pascal Wild

2. Study design
Optimal design (theoretical)
Practical limitations|feasibility

3. Study base (target population) & study population
Often limited access to subjects
Problem: Generalization from study sample to target population

4. Size of study & its justification
Sample size determination depends on precise definition of hypothesis
Size of acceptable type II error to be considered (power!)
Often: Power calculations based on fixed sample size

5. Selection and recruitment of study subjects
Problem: Selection bias (survival bias, referral bias)
How to assure representativeness
Means to maximize response
Sampling procedure|
Data source
Potential problem: Finding appropriate reference groups
Matching, if applicable

6. Definition of procedures for measurement & data collection of variables
Problem: Information bias (recall bias, measurement bias)
Instruments (postal, face-to-face, telephone)
Structure? Comprehensible? Answerable? Length?
Sensitive issues?
“Objective” sources of data? Measurements?
Guidelines for measurements
Usefulness in the analysis
Coding

7. Exposures|risk factors|potential confounders & effect modifiers
Problem: Assess confounders!
Precise definition
Valid assessment
Quantification: What information is needed?
Chronological reference

box to be continued
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8. Concept for data entry and data storage
Data base
Ergonomic layout of data entry screen
Validation of data entry
Validation of coding
Plausibility checks|data corrections (concurrent to data collection)
Documentation: Always keep raw data!
Merging of data

9. Strategy for analysis including statistical models
Compliance with a priori hypotheses
Mark and report ad hoc hypotheses accordingly
Problem: Adequate consideration of confounders

10. Measures for quality assurance
Guidelines for data collection, measurement, interview (interviewer and
operations manual)
Training of staff
Minimal information on non-responders
Validation of data
Comparison with reference data external to the study
Description of changes of original study plan
Project diary

11. Measures to guarantee confidentiality & ethical principles
Obtain informed consent by participants
Anonymize data, keep names separate

12. Time line & responsibilities
Chronological sequence
Scientific councils
Agreement on publication rules

Design 12.3

The study design governs all procedures for selecting and recruiting individuals
in the study sample. A design may be chosen depending on the study objectives,
but may also rely on practical issues such as costs, or data availability. Most epi-
demiological studies, with the exception of clinical trials and intervention studies,
are purely observational, in that the investigator cannot assign the exposure to
the study subjects as in experimental settings. The definition of a study design in-
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cludes both a definition of the study base and of the study type. The main types of
observational studies are the cohort study and the case-control study (sometimes
called case-referent study). Although their theoretical background is the same, as
in theory every case-control study takes place within a cohort (Breslow and Day
1987, p 3), the practical implications of conducting a cohort or a case-control study
are quite different. A number of other designs have been used or proposed and are
mostly variations of these basic types.

Study Base12.3.1

Once the general objective of the study has been defined (at the conceptual level),
and before the study type can be described, the investigator should identify the
actual setting, or study base, in which the particular scientific problem can be
studied. The study base should not only be a population (a number of individuals),
but the morbidity experience of this population during a certain period of time
(Hernberg 1992, Chap. 4).

The definition of the study base may depend on the study aims (testing a specific
hypothesis or generating hypotheses). For example, the study base may be the 10-
year follow-upofworkers employed for at least oneyear inaparticular industry and
exposed to a specific chemical (hypothesis testing). Another example of a study
base would be the one-year incidence of a disease among individuals living in
a certain geographical area and having a wide range of exposures (hypothesis
generating).

The study base should be defined in terms of eligibility (“employed at least one
year” – “living in a particular area”), of its size, and of distribution of exposure,
confounders and modifiers (as identified from the literature review). One should
also define the time period during which information on morbidity has accrued
(“10-year follow-up” – “one-year incidence data”).

Ideally, a study base should make possible the scientific generalization of study
results (the relation between exposure and disease). This can be achieved if ex-
posure conditions, as well as potential confounders and effect modifiers can be
measured within the study base. If not, the particular morbidity experience of
the study population would be mostly descriptive and would apply only to the
empirical population under study.

Cohort Studies12.3.2

The design and analysis of cohort studies is described in detail in Chap. I.5 of this
handbook. In cohort studies the study sample to be included is either the whole
study base or a sample of it based on some existing exposure information. Thus
unlike in a case-control framework, the complete assessment of the evolution of
the morbidity in the course of the follow-up time is one of the challenges of this
type of studies. This can be based either on a passive follow-up by matching the
cohort with routine records of mortality or incidence coming from registries or
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administrative sources (cf. Chap. I.4 of this handbook) or on an active follow-up
by which the health status of every subject in the cohort is determined at sev-
eral time points during the study period. On the contrary, at least in principle,
the assessment of the exposure is less problematic than in case-control studies
as it is determined before the disease arises. Conceptually, all cohort studies are
prospective in the sense that one measures the exposure before disease occur-
rence. In practice this approach is often not realistic when the outcome of interest
is a disease with a long induction period like cancer, so that a purely prospec-
tive observation of the morbidity would either imply a study duration of several
decades or very large numbers of participants. One way to shorten this study
time is to define the population historically, i.e. at a given time in the past and
to mimic the prospective follow-up of the cohort until the present time. This
design is called a historical cohort design in contrast to the prospective cohort
design.

In cohort designs the main issue is the presence of study drop-outs or subjects
lost to follow-up. When a drop-out occurs, its influence can only be controlled
in the analysis assuming that the drop-out is only determined by recorded fac-
tors. In other terms, this means that we know for each missing subject, why
she|he is missing and in particular that the drop-out does not depend on the un-
measured health outcome. In technically terms this is the MAR hypothesis (cf.
Chap. II.6 of this handbook). This hypothesis can, however, not be tested from
the data as – per definition of drop-out – we do not know the study outcome.
An example of this would be a study in which the outcome of interest is smok-
ing cessation comparing different cessation strategies. If the study participants
fail to show up at later interviews aimed at investigating whether the subjects
are still abstinent, this may be because they have relapsed and are ashamed of
this fact or because smoking is no longer a problem as they have been absti-
nent for a long period. The effect of study drop-outs can then only be assessed
through sensitivity studies by which one would simulate reasonable data for the
missing study outcome. In the smoking cessation example one could for instance
assume that all drop-outs relapsed, or a 90%, 70%, … random proportion of
the drop-outs. Preventing study drop-outs is thus the main challenge in cohort
studies.

Historical Cohorts
As mentioned earlier, the historical cohort design mimics a prospective follow-up
of a historically defined population. This entails that at any point in the past, it is
possible to check whether a subject satisfies the cohort-inclusion criteria as defined
in the protocol or not. Furthermore if a subject from this cohort developed the
outcome of interest, one must be sure to detect it and to be able to determine at what
time point this event of interest occurred. In historical cohorts, the operational
definition of loss to follow-up is the following: if the event of interest occurs at
a given time-point for a given subject one must be sure to know it. If this cannot
be assured from a certain point in time ownards, the subject must be considered
as lost to follow-up.
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The historical cohort design has been the design of choice for industry-based
epidemiology of chronic diseases especially cancer (cf. Chap. III.2 of this hand-
book) and we shall discuss the relevant issues in this context.

Cohort Recruitment. In a historical cohort, the first step in planning is to deter-
mine whether information exists by which one can be assured that the population
satisfying the theoretical cohort definition can be collected. Completeness with
respect to the cohort definition is paramount. For instance if the cohort definition
is “all subjects having worked on a given industrial site since 1970”, a document
dated from 1970 listing all those subjects must be available as well as yearly lists
of all subsequently hired subjects. Computerized files can rarely be trusted as they
were usually created for administrative purposes and are often at least partially
overwritten or may exclude some categories of employees. Individual files are also
to be dismissed as a single source of data. Neglect, lack of place for archives or
floods and fire may have led to the selective destruction of files. It cannot be
assumed that these lacking data are independent from either exposure or health
outcome. In order to reliably identify a historical cohort, at least two data sources
which can be considered independent should be available. One example would
be separate lists from the pension scheme and from the personnel department.
An alternative would be an enumerated list from whatever origin and historical
documents in which yearly counts of employed subjects are given.

Case Ascertainment and Loss to Follow-up. In historical cohorts the main prob-
lem is to be sure to that any case that occurred in the follow-up period was detected.
As an active follow-up is impossible retrospectively, the tracing procedure of sub-
jects must rely on the matching of the cohort data with routine records. These
routine records have usually a limited recruitment area. Disease or mortality
registries are regional in most countries (with the notable exception of the Scandi-
navian countries) and sometimes related to the place of birth or residence. When
either information is incomplete or missing for some subjects or if some subjects
moved out of recruitment area, these subjects are lost to follow-up i.e. from that
moment on, if the event of interest had taken place, it will no longer have been
recorded with certainty. In the statistical analysis henceforth the subject should
no longer contribute any person-time (cf. Chap. I.5 of this handbook). Therefore
it is important to set up procedures by which one can determine whether and
when a subject is lost to follow-up, for instance by trying to trace the addresses
of the subjects through the pension schemes. Setting up such procedures can be
difficult or even impossible for selected groups. For example historical cohorts
may include foreign-born subjects who may have returned to their country of
origin. If a subgroup is identified, for which such loss of follow-up is likely but no
individual tracing can be set up, the only solution might be to drop all members
of this subgroup from the study at the time of last contact. Thus in a historical
occupational cohort study without active follow-up, one may need to consider as
lost to follow-up all foreign-born employees from the date of last employment.
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Recording individual diseases or medical causes of death may be restricted by
data protection laws in absence of an informed consent. Strategies must then be
set up, often involving third parties, by which the epidemiologists will have access
to anonymous but individual data (e.g. Wild et al. 1995a).

Prospective Cohorts
As mentioned, the major advantage of prospective cohorts is that the exposure
information is determined before the disease occurs, which allows to precisely
measure the exposure and confounders of interest. In historical cohorts the expo-
sure is estimated retrospectively although it relies as much as possible on historical
exposure data. But these data were usually not collected for this purpose with the
possible consequences with respect to their validity. This leads often to missing
or imprecisely measured exposure data. In the worst case, such a retrospective
exposure assessment may lead to an information bias not unlike that potentially
occurring in case-control studies. In prospective cohorts, the information bias is
theoretically impossible.

Another advantage is that as informed consent can be obtained for each study
participant, there are no legal problems with respect to access to data.

Although in some very large studies as the American Cancer Prevention Studies
(Garfinkel 1985), it is possible to study long latency chronic diseases, i.e. in general
diseases with long induction periods, most prospective cohorts are primarily
targeted at subclinical disorders assessed by questionnaires and functional or
biological measurements.

An inherent drawback of prospective studies is their practical difficulty. Such
prospective follow-ups of populations require repeated contacts with each subject
of the cohort and are very cost-intensive.

A first problem is that the participation proportion is often rather low, es-
pecially if that participation entails repeated contacts which might discourage
taking part. For instance, participation varied between 22% and 38% in the Ger-
man centres of the European Prospective Investigation into Cancer and Nutrition
(EPIC) study (Boeing et al. 1999). Limited information exists (Goldberg et al.
2001) which tends to show that participants are generally in better health than
non-participants. Most prospective cohorts therefore rely on voluntaries. Thus
prospective cohorts are only exceptionally representative of their target popula-
tions. Fortunately, representativeness is not a key issue in analytical studies as
long as the loss to follow-up is limited. In prospective cohorts, loss to follow-
up occurs either due to actual loss of contact or more often due to the re-
fusal of continued participation. An unpublished survey by Moulin (personal
communication) of all large ongoing prospective cohorts in France suggested
that reasonable numbers of subjects lost to follow-up can only be obtained by
regular contacts, regular feedback of the results of the studies to the partici-
pants and, if possible, presence in the media. When planning prospective stud-
ies, enough resources should therefore be allocated not only to the actual con-
tacts with the subjects (i.e. mailing of questionnaires and reminders) but also
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to the communication budget, both with regard to the media and the study
participants.

Case-Control Studies12.3.3

In a case-control study, incident cases of a given disease are gathered from the study
base andare contrasted to a sampleof controls drawn fromthe samebase. Exposure
histories are then collected from the cases and the controls. The theoretical foun-
dations of the design of a case-control study (also called a case-referent approach
as in Miettinen (1985)) are the same as for a cohort study (see also Chap. I.6 of
this handbook). But instead of comparing the disease incidence between exposure
groups, it compares the exposure between cases and controls.

According to the most frequent definitions, a case-control study conducted
within a dynamic population may be population-based or hospital-based depend-
ing on the selection procedures of cases and controls. When the base population
is an enumerated cohort, the case-control study is often called nested within the
cohort. A case-control study designed for etiological research will belong to one of
these three categories. Each of them has different practical implications which we
detail below.

Population-based Case-Control Study (Primary Base)
In a population-based case-control study, the cases are all patients diagnosed with
the disease during the study period among those who live within a country or
a region. The controls are sampled from this population. In this design, the study
base, i.e. the population living in this country or region during the study period,
is precisely defined a priori before the start of the study. Another example of
a primary-base case-control study would be to include all members of a given
health care insurance system where all cases are also members.

Case Recruitment. A researcher may choose a population-based case-control
design if all new cases of the disease (or at least a representative sample of all
cases) can be identified in the study base. As it is essential to ensure completeness
of case-finding, a disease registry may be helpful for identifying the cases. The
existence of a disease registry may also constitute a motivation for conducting
a study in a given area. However, the value of a registry may be limited if there is
a substantial time lag between diagnosis and registration, particularly if collection
of data from the respondent is necessary and if the disease is rapidly fatal. Thus,
a specific procedure for case identification has to be set up in most studies by the
research team. For example, a case-finding network may be organized including
all hospitals, clinics, and pathology departments in the study area to identify
and interview the cases. This should also be extended to nearby areas as some
of the diseased persons in the source population defined by residence in a given
geographic area may be diagnosed and hospitalized elsewhere. It is also strongly
recommended to perform an active search of the patients, by organizing periodic
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visits to all centres, rather than to rely on a passive notification of the cases by the
medical staff of the clinics or the hospitals.

Selection of Controls. Principles. The controls should be selected at random from
the same base population as the cases. In addition, the probability of selecting
a particular control subject should be proportional to the amount of time that he
contributes to the study period, or to person-time at risk (Rothman and Greenland
1998). For example, if a subject moved out of the source population at half the
study period, he|she should have only half the probability of being selected as
a control than a subject who stayed in the source population during the entire
study period. To be eligible, a control subject should belong to the study base at the
date of diagnosis of the index case. Controls who recently moved into the source
population and are chosen to match cases diagnosed several years earlier should
be excluded since they are outside the study base. Excluding controls who have
recently moved in the base reduces the problem, but does not solve it, since people
who have moved out of the base will still be missed.

A density sampling of the base population should be used. Density sampling
can be achieved, for example, by selecting the controls at a steady rate throughout
the study period proportional to the number of cases. In practice, the protocol may
define several points in time, e.g., once a month or once a year, where controls will
be selected from the population present in the study base at that time. In a design
where the cases and the controls are matched individually, it is also possible to use
sampling sets of possible controls, one per case, composed of all persons present
in the source population at the time of case’s diagnosis. The desired number of
matched controls is then selected at random within each of these risk sets.

Selection of Population Controls Based on a Listing of Individuals. To be feasible,
these procedures of control selection necessitate not only a fully enumerated source
population, but also regular updates of this population, to take emigration and
immigration during the study period into account. In Scandinavian countries,
study investigators may rely on central population registers to select controls using
a simple random sampling at regular intervals during the study period (see also
Chap. I.4 of this handbook). More often, however, a complete population register,
including the identification of individual members by name and address, as well
as stratification variables such as gender and date of birth, will not be available
and other methods of control selection must be used.

In the absence of a population register, the researcher may use other lists of
individuals, such as lists of municipality residents, electoral lists, telephone books,
listings of health insurance members, and so forth. Using these lists for control
selection, however, may introduce bias if the probability for an individual in the
source population to be listed is related to the exposure of interest. Telephone
books would not be suitable for a study on cancer in relation to an occupational
chemical, for example if phone numbers of highly educated and less exposed in-
dividuals are less frequently published in the directory than phone numbers of
subjects of other socio-economic categories. Persons not registered in electoral
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rosters may also differ from those listed, and may not include immigrant workers
from foreign countries. Municipal lists may not be updated regularly. The decision
to use such lists for control selection must be done carefully. Beside completeness
of the list, the possibility of tracing individuals based on the information pro-
vided (name, address, phone number, etc.) must also be considered. One should
also check that the cases are listed on the roster. The analysis should then ex-
clude the unlisted cases, such as those who are not citizens when using electoral
lists.

Selection of Population Controls Without a Listing of Individuals. Other sam-
pling schemes may be used for selecting the controls when no list of individuals
is available. Multistage random samplings starting with sampling of dwellings or
based on random digit dialing procedures are commonly used. The controls can
then be selected within each household.
Neighbourhood controls. Thismethod implies a two-stage sampling,with a random
sampling of households followed by the selection of an eligible individual within
the selected residence. Households sampling may be conducted from a roster of
residences, obtained for example from census data. When a roster of households is
not available, controls may still be selected from residences in the case’s neighbour-
hood. Starting from the case’s residence, the interviewer may follow a predefined
procedure for selecting a household, by means of a map, aerial pictures, or by a sys-
tematic walk algorithm starting at the index household (Wacholder et al. 1992b).
This sampling method implies that the controls are individually matched to cases
on place of residence. To avoid bias, the interviewer should not be given the flex-
ibility to choose which house to select but a simple and unambiguous algorithm
for selecting households should be developed to remove the possibility of inter-
viewers avoiding certain areas. A potential problem of neighbourhood controls
is overmatching on the exposure, due to similarities between cases and controls
living in the same neighbourhood.
Random digit dialling. Random digit dialling can be used to select population
controls when no roster exists and when almost every household has a telephone.
Random digit dialling generates telephone numbers, and it does not rely on a tele-
phone book where new or unpublished phone numbers are not listed. Several
variants of the standard method exist (Waksberg 1978). Briefly, a phone number is
created using the first numbers, including area code, of working telephone num-
bers provided by the telephone company, which are then completed with random
numbers. The number is dialled a predetermined number of times. The first con-
tact with a household member is used for screening and to obtain a census of
the household. Based on the responses, and a predetermined sampling scheme,
eligible subjects are selected to be controls. These individuals can be interviewed
by telephone directly, or they can be contacted afterwards for an in-person or
a telephone interview.

Random digit dialling is not appropriate if the telephone coverage is low, but
this should not be a problem in most developed countries. Other problems as-
sociated with random digit dialling include residences that can be reached by
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more than one phone number, or if more than one person in the household is
eligible to be a control, since it may lead to different selection probability of
the controls. It should also be realized that random digit dialling is an expen-
sive and time-consuming procedure, particularly when targeting subgroups of
the population, since a large number of phone calls may be necessary before
the desired number of eligible controls are found. Non-response and refusal is
an additional problem and it may not be possible to have an exact estimate
of the participation rate. It is recommended that the distribution of the final
sample according to key variables such as age, sex or socio-economic status is
compared to an expected distribution obtained for example from the last cen-
sus. The random digit dialling has been used successfully in a large number
of studies, but new technology, such as the widespread and sometimes exclu-
sive use of mobile phones, may cause this method to be obsolete in the near
future.

Hospital-based Case-Control (Secondary Base)
In hospital-based case-control studies, the cases are the patients diagnosed with
the disease in a given hospital or clinic during the study period. The controls
have to be selected from the population from which the cases arose, i.e. the group
of individuals who would be treated in this hospital if they had developed the
disease. Because the source population is not easily identified, a random sample of
controls can hardly be selected directly from this population. Instead, it is usually
more practical to select controls among patients with other diseases diagnosed
in the same hospital, representing a non-random subset of the study base. An
appropriate group of control patients should have the same referral patterns to
that hospital than the cases, so that the controls would have been admitted to this
hospital if they had the case disease. The possibility of selecting hospital controls
rests on the assumption that they are representative of the exposure distribution
in the source population. This assumption is reasonable if the control disease is
not causally related to exposure, and if exposure is not related to admission to that
hospital.

Case-Control Study Nested Within a Cohort
When the study base is a real enumerated cohort with available entry and exit
times a case-control study may be conducted by drawing cases and controls from
this cohort as the source population. It is called a “case-control study nested
within a cohort”. Using this design implies that the cohort has been constituted
so that the controls can be selected adequately from the cohort. As this design
relies on an enumerated source population, a control group can easily be iden-
tified. In a matched design for example, a set of possible controls can be con-
stituted with all non-diseased individuals in the cohort at the time of the cases’
diagnosis. One or several controls may then be selected at random from each
set.
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The Study Base Principle:
Selection, Exclusion and Resulting Bias12.3.4

The study base principle, the first of three principles Wacholder et al. (1992a)
developed for the selection of controls in case-control studies, that also applies
to the design of cohort studies, simply states that “cases and controls should be
representative of the same base experience.” (see also Chap. I.6 of this handbook).
Representativeness for the general population is not needed in analytical studies
of the relation between an exposure and a disease. In a representative population,
an association that is limited to one group may be obscured because the effect is
weaker in other groups.

Thus for the aim of scientific inference of the relation between an exposure and
disease, any exclusion or inclusion criteria are valid as long as they apply equally
to cases and controls.

Wacholder et al. (1992a) identified the following reasons for which exclusion
criteria can be applied:

Inconvenience: Subjects of a given subgroup might be hard to reach. Failure
to exclude a priori such a group may lead to a very poor response rate and an
a posteriori exclusion, with the corresponding waste of resources.
Anticipated low or inaccurate responses, e.g. of subjects who do not speak
the language of the interview sufficiently well. Failure to exclude a priori such
a group may yield non-interpretable data.
Lack of variability of the exposure: If one intends to set up a cohort investigating
the dose-response effect of a potential occupational carcinogen like cobalt salts,
inclusion of a large number of workers from industries which do not use these
chemicalsdoesmake little sensealthough includinga small group for stabilising
the baseline category may still be justified.
Subjects at increased risk of disease due to other causes: In a prospective study
targeted on environmental effects on asthma, subjects at high asthma risk due
to their occupational exposure (e.g. bakers) should be excluded because cases
are likely to be attributable to the occupational exposure and therefore may not
contribute to the understanding of other risk factors.
Combination of the above: In a historical occupational cohort study based on
a factory, short-time employees may be difficult to track, their exposure is likely
to be determined much more by previous or subsequent work, their cumulative
exposure within the company is bound to be low and they may be at increased
risk for many diseases as they constitute a group of socially unstable workers
who are likely to have other risk factors. It is thus standard in such settings to
exclude short-time workers. This has, however, the consequence that any given
subject of the study base contributes person-time only from the date on when
he|she has reached the minimum employment duration.

On the other hand, if a study base is restricted the comparison with the general
population is biased. The so-called Healthy Worker Effect, by which is meant
that a series of extraneous factors usually lower the observed mortality among
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employed workers, is an example of a selection bias. A simple comparison of the
mortality of a cohort with population mortality rates as expressed for instance
through the standardized mortality ratio is thus of limited validity. Of course, as
discussed above, internal comparisons of exposure groups are still valid but may
lack the necessary power for useful scientific inference except in very large cohorts.

Another consequence of severely restricting the study base of a (cohort or case-
control) study is that it can lead to reduced detection of variability of the strength
of association (effect modification). If the effect of smoking were to amplify the
effect of an environmental exposure, restricting the study base to non-smokers
may lead to a spurious absence of effects.

In some settings representativeness is an issue. If the study is focused on at-
tributable or absolute risks, the study must be either exhaustive or representative,
or external information must be available with respect to the sampling fractions
of the strata of the study population within the general population.

Choosing Between Epidemiological Designs 12.3.5

Many other etiological designs like case-cohort designs, case-only designs, two-
phase sampling, counter-matched designs to cite just a few, have been proposed in
the epidemiological literature (Wacholder et al. 1992c; Chap. I.7 of this handbook).
These designs usually combine elements of the case-control and the cohort designs
often either by making additional hypotheses (case-only design) or by making use
of additional data like in two-phase designs (see e.g. Breslow and Chatterjee 1999).

Another design is the so-called ecologic design, in which the units are groups
of people rather than individual subjects. The groups may be classes in a school,
factories, cities or administrative areas within a country. The only requirement is
that a measure of the exposure and disease distributions is available for in each
group. Because the data in ecologic studies are measurements averaged over indi-
viduals, the degree of association does not reflect the association between exposure
and disease among individuals (so-called ecologic bias, see Greenland and Robins
(1994)). Thus, while ecologic studies can be useful for detecting associations of
exposure distributions with disease occurrence, such a design should not be used
for etiologic investigation.

Another possible design consists in selecting a cross-section of the study base
with no time dimension (cross-sectional study). Here both exposure and disease
status are collected simultaneously at one point in time. It is therefore not the
incidence but rather the prevalence of the disease that is investigated, so that it is
usually impossible to assess whether the exposure actually preceded its presumed
effect on health. Moreover, cross-sectional studies are particularly prone to selec-
tion bias as diseased subjects may have left the study-population. A longitudinal
observation of exposure and disease in a study that is the paradigm of both the
cohort and the case-control design is better suited for solving etiologic problems
than a cross-section of it (a prevalence study). Possible exceptions are diseases
with short induction periods or exposures that cannot change such as blood type
or other invariable personal characteristics (see Rothman and Greenland 1998,
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p 75). If, however, a prospective cohort design is not feasible for financial reasons
or simply because it is impossible to follow up a large enough group of subjects, the
cross-sectional design can, despite its above mentioned limitations, provide im-
portant information especially if targeted on several (non-fatal) health outcomes
(see Wild et al. 1995b) or if a number of different exposures coexist.

The main study types remain the cohort and the case-control designs. Choosing
one or the other design depends on a number of issues among which the incidence
rate of the disease of interest and the prevalence of the exposure of interest are
prominent.

If the disease is very rare (for instance a rare cancer as testicular or brain
cancer), a cohort approach would necessitate huge numbers of participants and
a long follow-up to identify enough cases to make useful inference. A case-control
study is the more reasonable approach for rare diseases. Another situation where
the case-control is the preferred approach is if the aim is to generate hypotheses
concerning various exposures in relation to a given disease. Determining possible
occupational origins of laryngeal cancer is such an example.

On the other hand, if the exposure is rare and restricted to easily identified
subpopulations or if one is interested in all possible disease outcomes of a given
exposure, a cohort study, either historical or prospective, is the most efficient
choice. An example for the former reasons would be a study of the carcinogenic
effects of hard metal dusts (Moulin et al. 1998b) which occurs mostly in the factories
producing hard metal tools. An example of the latter would be if one were to study
the health consequence of the occupational stress in call-centres.

Another aspect that can influence the choice of a design is the induction time of
the disease (although it may depend on the exposure). For long induction periods,
a prospective cohort study is clearly not the design of choice as this would imply
waiting a long time for a sufficient number of events to occur. This problem can be
circumvented by the historical cohort design. Most historical cohorts are focused
on cancer, a long induction disease per se. The choice between a case-control and
a historical cohort study is then dependent on whether (or not) a historical cohort
can provide an answer to the research question.

Other issues which might influence the choice of a given design include the
precise scientific aim of the study. Direct estimation of the population incidence
would require enrolment of the target population that ideally needs a cohort design
or at least a population-based case-control approach. If, on the other hand, one
is interested in the precise temporal sequence, as for instance in the study of the
evolution of CD4+ cell numbers in HIV infected patients (Kaslow et al. 1987),
cohort studies are virtually the only available design which may, however, be
supplemented by a nested case-control study.

The final choice, once a theoretically optimal design has been determined,
depends on the actual feasibility of each study as well as on the practical terms of
access to the data and the costs involved.

Table 12.1 summarizes strengths and weaknesses of the above study types.
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Table 12.1. Strengths and limitations of different observational study designs

Study design
Investigation of … Cross-sectional Case-control Cohort

Rare diseases − +++++ −

Rare causes − − +++++

Multiple endpoints ++ − +++++

Multiple exposures including confounders +++ ++++ (+++)a

Temporal sequence of exposure and disease − (+)b +++++

Direct measurement of incidence − (+)c +++++

Long induction periods + ++++ (+++)d

Suitability of study design: +++++ highly suitable; ++++ very suitable; +++ suitable;
++ moderately suitable; + limited suitability; − not suitable
a If prospective (multi-purpose cohorts)
b If nested in a cohort
c If population-based, combined with an incidence study
d If historical

Statistical Power 12.3.6

As mentioned in the first section any study protocol should include an evaluation of
the statistical power to detect a predefined effect of the exposure with a given study
base. When computing the statistical power, the need for subgrouping, based either
on exposure classes or confounder classes, is important. In practice the choice of
the sample size (or to be exact the size of the study base) is a compromise between
what one would ideally be able to detect and the practical limits of the study.
These limits are of two kinds. A first limitation occurs when there simply do not
exist enough subjects in the envisaged study with either a rare disease of interest
e.g. rare cancers, or with a rare exposure. An example of this would be if we
were to study the interaction between a rare gene (prevalence < 0.01) and a rare
environmental exposure. If the latter has a prevalence of 5%, less than 5|10,000 of
controls would show both features so that the minimum sample size to investigate
such an interaction would be in the tens of thousands. A second limitation is when
the needed funding is not reasonable.

In general, a statistical power of 80% is considered a reasonable power to achieve
objectives and any power below this arbitrary figure may be considered too low. If
methods of prior assessment, either formal or intuitive, suggest that the study will
be too small to be informative, there are several options:

One can lower the level of ambition. For instance instead of computing a sta-
tistical power to detect a 1.2 odds ratio, this value can be put at a 1.3 level. The
drawback of this strategy is of course that if no effect of the exposure can be de-
tected, lower risks cannot be excluded. Thus if the main interest lies in effects of
low doses of exposures with expected low magnitude effects such a strategy is not
recommended.
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One can set-up a system with an extended follow-up time. This means that the
study base is enlarged in its time dimension. This usually entails that the results
will be available later.

One can try to organize a multi-centre study. This means that the study base
is enlarged in its number of subject dimension. When organizing multi-centre
studies, one should be reasonably sure that the gain in sample size is not offset by
between-centre differences in exposure circumstances and assessment, or differ-
ences in case ascertainment. Another issue in this case is that the harmonization
of centres has its costs, too.

One can abandon the project. It can be considered unethical to undertake a study
which would not add to the general knowledge but costs money which could benefit
other research.

Statistical power can, however, not be the only criteria by which to judge the
appropriateness of a study. Other reasons like public concern or scientific back-
ground knowledge for instance based on positive animal studies are sometimes
even more important.

Measures of Disease Outcome
and Exposure Parameters12.4

Measurement and Classification of Exposure12.4.1

Introduction
Epidemiological studies are designed to assess the impact of exposure on the
development of a disease. The sources of error and the ways in which exposure and
disease are assessed are quite different, and thus the mechanisms by which errors
arise are different as well.

The range of exposures of interest in epidemiology is broad (Savitz 2003). Ex-
posure include exogenous agents such as drugs, diet, and chemical or physical
hazards present in the environment; genetic attributes that affect ability to me-
tabolize specific compounds; stable characteristics such as height or eye colour;
physiologic attributes such as blood pressure; life habits such as physical exer-
cise or tobacco smoking; mental states such as depression; social environment,
and so forth. To this wide range of exposures of interest correspond many dif-
ferent methods for measuring exposure (Armstrong et al. 1994; Chap. I.11 of this
handbook).

The method chosen to collect data depends on the particular exposure to study,
the precision of data required, availability of existing records, sensitivity of subject
to questioning about the exposure, cost of various methods, etc. The study protocol
should describe the operational approach chosen for exposure ascertainment. The
accuracy of an operational approach is best described in relation to the ideal
measure which is always impractical or impossible to obtain.
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The ultimate goal of exposure assessment is to measure the exposure that con-
tributes to the etiologic process under investigation. Ideally, an exposure assess-
ment should take this biologically effective exposure, and only this exposure, into
consideration. Most often, however, this goal cannot be reached by an operational
exposure indicator. One reason is that the biological mechanism by which exposure
might cause disease is often not clearly identified. For example, in studies on the
potential cancer risks associated with exposure to ELF magnetic fields, it was not
clear whether the most relevant exposure indicator with respect to aetiology should
be an average exposure over the entire life or over the most recent period before
cancer diagnosis, or if it should be a measure of peak exposures over a certain
threshold, or in a particular exposure windows. This problem could be partially
overcome if a detailed exposure profile over time can be estimated, to calculate dif-
ferent exposure indices, each of them being related to cancer risk. Another reason
is that it is often impossible to obtain the data that would reflect perfectly the bio-
logically effective exposure. For example, the persistent organochlorine pesticide
DDT and its metabolite DDE were suspected to be causally related to breast cancer
risk (Wolff et al. 1993). Assume also that the biologically effective exposure is the
level of DDT|DDE present in breast tissue in the time window 5–15 years before
cancer diagnosis. Different exposure measures among cases and controls could
be used to study the relationship between DDT|DDE exposure and breast cancer
(Savitz 2003), including environmental levels measured in the area of residence at
the time of diagnosis or taking into account the residential changes of the subject,
present-day blood levels, or blood levels measured in the etiologically relevant
period using serum specimens drawn in the past and kept in a bank. Clearly, these
exposure measures are not equivalent as they correlate differently with the biolog-
ically effective exposure. Using environmental exposures as a surrogate exposure
indicator is probably ineffective, since the association on breast cancer risk may
fall below what can be detected. However, if blood levels are strongly correlated
with breast tissue concentrations, an association with breast cancer risk can still
be observed, although blood levels are not the right measure. Nevertheless, certain
metabolites measured in blood may be a good indicator of past exposure if the
half life of the agent is sufficiently long (Flesch-Janys et al. 1998). The choice of an
operational indicator of exposure should be done in the context of a hypothesis
on biological process, and a comparison of the operational and ideal exposure
indicators should be provided.

All laboratory data are subject to error due to imprecise measurement. However,
the conceptual error by which the measure obtained does not reflect the exposure
of interest is often of much greater importance. In a study focused on effects of
microbiological contamination, measurement of viable colonies may be only of
marginal interest if these bacteria are not the pathogenic ones. Bacterial endotoxin
has been shown to be the more relevant exposure with respect to lung diseases
(Rylander 2002).

Another challenge in exposure assessment is that often different types of expo-
sure coexist and their individual effect can only be considered in combination. The
level of exposure aggregation that is chosen must, however, reflect scientific hy-
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potheses.For instanceanutritionalepidemiologystudy focusedontheroleofcoffee
in miscarriages could consider two relevant categorizations. The role of caffeine it-
selfwouldbe investigatedbygroupingall sources including tea, caffeine-containing
medications, etc., whereas the role of constituents of the coffee other than caffeine
would be investigated by grouping caffeinated and decaffeinated coffee.

Temporal Aspects
Some exposures are constant over time, such as genetic constitution, but all ex-
ogenous exposures such as diet and chemical pollutants vary substantially over
time. In addition to the identification of a biologically relevant exposure, it is nec-
essary to identify an etiologically relevant time window during which the exposure
may be related to disease occurrence so that the data collection concentrates on
etiologically relevant time-windows.

It has been long recognized that many diseases such as cancer appear a long
time after they have been induced. The time between the beginning of the exposure
and the first manifestation of the disease of interest is called the induction period.
It serves as a surrogate for the biological induction period in epidemiological
studies although the onset of exposure does not necessarily result in immediate
induction. Epidemiological studies should allow for the fact that diseases with long
induction periods that appear immediately after the exposure are not attributable
to this exposure. In the statistical analysis of such data, the usual practice is to
shift the exposure by a given lag time which is typically about half the usual
induction period. This has the consequence to ignore the exposure of recent years.
The consequences for planning is that whenever the anticipated induction period
is long, the investigator must select a study base including a sufficient number
of subjects for whom the exposure is ancient enough. On the other hand, if the
expected effects of exposure are of a short-term nature as for instance a reversible
genotoxic effect as assessed by a comet assay, it is important to precisely measure
the relevant short-term exposure.

Other time-related issues may concern the temporal pattern of the exposure
itself and its presupposed effects. If the exposure effect occurs through the action of
peak exposure, its effects are likely to be much more important when the exposure
is highly variable than in circumstances in which the exposure is virtually constant.
For such presupposed effects, the exposure measurement of most interest may be
an estimated number of peak exposures. On the other hand if we assume that
the exposure acts through a cumulative damage, the total cumulative exposure
is the adequate way to express its effects. If the disease of interest is reversible,
the cumulative exposure may also be inadequate as a measure of exposure and
exposure assessment in different time windows may be more relevant.

Sources of Exposure Data
The different possible sources of exposure data and their characteristics are de-
scribed in Armstrong et al. (1994). The following section is mostly a summary of
the issues covered in this book (see also Chap. I.11 of this handbook).
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Questionnaires. A prominent and often the only way to assess an individual expo-
sure is by an exposure questionnaire. The three main types of exposure question-
naires are self-administered questionnaires, telephone administered interviews
and interviewer-administered questionnaires, also called structured personal in-
terviews. The last two methods are the commonest methods of collecting data
on exposure in epidemiological studies. Using them allows the number of errors
and missing items to be reduced and more complex information to be obtained.
For instance, there is a possibility of branching, i.e. specific questionnaires can
be inserted after some trigger information has been recorded. This possibility
has been used in occupational exposure questionnaires in which job histories are
obtained and specific questionnaires are used for a limited number of jobs and|or
tasks (Ahrens et al. 1993). On the other hand, the interviewer may increase er-
ror if he or she exerts a qualitative influence on the subject’s responses by his or
her appearance, manner, method of administration, etc. Intensive training and
standardization of the interviewers is therefore very important in the planning
and conduct of a study. If a series of prerequisites are fulfilled as the stressing
of interview neutrality in training, the standardization of questionnaire wording
and its administration, the likelihood that the interviewer’s personal attitudes will
affect the responses is much reduced. The main advantage of a self-administered
questionnaire is its reduced cost. Armstrong et al. (1994, p 44) conclude that “there
appears to be little difference between these methods (subjective recall of expo-
sure collected through face-to-face, telephone or self-administered questionnaires)
with respect to the validity of the data obtained. (…) Face-to-face interviews are
the dominant approach and are clearly best for the collection of large amounts
of complex data. However, where subjects are widely dispersed and the ques-
tionnaire can be kept comparatively brief, telephone interviews can be favoured.
Self-administered questionnaires should be considered for low budget studies for
which small amounts of reasonably simple data are required.”
In settingup aquestionnairemany sometimes contradictory issues arise. While ob-
viously more details can theoretically be assessed if it is longer, long questionnaires
take more time and (especially among diseased subjects) may be more difficult to
apply. A questionnaire should have a clear structure and should be understand-
able. Questions like: “Have you been exposed to bischloromethylether?” should be
avoided. Sensitive issues (religion, sexual habits, alcohol consumption, etc.) should
be avoided if they are not central to the study and should be given careful consider-
ation if necessary in order to avoid withdrawal of the interviewee. A questionnaire
should always be tested before use. The use of validated instruments is of course
desirable. Correspondingly, a large number of publications exists on validating ex-
isting questionnaires (see for instance Rouch et al. (2003) or Bogers et al. (2004)).
It is probably a good strategy to choose, whenever possible, an already existing
questionnaire that has been validated in circumstances close to its intended use.
If one decides, nevertheless, to adapt a questionnaire for a given study, a pre-test
should be carried out to investigate its properties, notably feasibility, clarity, and
reproducibility, so that necessary adaptations can be made before applying it. If
a completely new instrument has to be designed a validation study should be taken
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into consideration to investigate its properties as e.g. validity and responsiveness
to change, i.e. its ability to reflect changes in behaviour or subjective symptoms
(Bogers et al. 2004).

Diaries. Diaries refer to detailed prospective records of exposure by the subject.
As such they can neither be used in case-control studies nor in historical cohort
studies. This method has been used in many contexts among which their use in
nutritional epidemiology for measuring dietary intake is prominent (cf. Ander-
sen et al. 2004; Chap. III.4 of this handbook). Ongoing monitoring of symptoms
of a disease is another application of diaries (cf. Goebel et al. 2002). Armstrong
et al. (1994, p 219) conclude “The use of diaries may be highly accurate method of
measuring present common behaviours. The limitations of diaries, in comparison
with interview methods, are the greater burden on subjects, which may lead to
poorer response rate and the greater cost for subject training and for coding the
data. The accuracy of diary information can be enhanced by use of multiple diary
days spread over a sufficient time period, and by careful training of subjects and
coders.”

Records of Exposures. Historical records of pre-existing data may be a valuable
and sometimes the single source of early exposure data. Two types of records can be
useful for exposure assessment. A first type of records contains information on the
individual study subjects, for instance medical, behavioural (smoking), or physical
characteristics (weight) contained in medical records but also social or occupa-
tional data contained in population registries. A second type of records contains
information relevant to the exposure of groups like descriptions or measurements
of environmental exposure or descriptions of histories of industrial processes in
occupational epidemiology. The primary advantage of records is that they can pro-
vide prospectively recorded information, collected on information in the past. For
example, use of pharmacy records in a case-control study of prescription drug use
could overcome lack of recall. Exposure assessment based on historical records is
immune to information or recall bias. Most important in this context is the use of
data from earlier cross-sectional surveys. The main drawback is the lack of control
over the availability of records for each subject and their standardized recording
and the difficulty to assess the validity of the existing data.

Biological Measurements and Measurements in the Environment. In principle,
measurements made directly in the human body represent the ideal approach
to measuring exposure for etiological studies. In practice a number of problems
exists. A first problem is to determine the measurement in terms of the correct
metabolite and the appropriate point in time that is relevant for the presumed
biologically effective dose. A second problem is the often large within-person
variability which can be of the same size or larger than between-person variation.
This has been observed repeatedly in industrial exposures (see Kromhout et al.
1994), but it is often also true for biological measurements. Liu et al. (1978) reported
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a ratio of within-person to between-person variances as high as 3.20 for 24-hour
urinary sodium, a marker of sodium intake.
The current fast development of methods of measurement of exposures in biologi-
cal materials may, however, give rise to many useful indicators. The epidemiologist
should be aware of the developments in this area. Methods whose validity have
been assessed should always be preferred and the operations manual should in-
cludeGoodLaboratory Practices. Inplanning laboratory work, it may be important
to keep track of the internal quality control procedures and provision should be
made that these informations are recorded.

Objectivity of measurements in the environment are best achieved by personal
sampling over extended periods of time. Relying on samples collected over rela-
tively short periods of time without clear sampling design may induce substantial
error in the exposure assessment. While sensitivity of measurements can be very
high, the measurement error is often only a small part of exposure variance which
is usually dominated by the intrinsic variability in exposure. Planning exposure
measurements for an epidemiological study should therefore rely on factors likely
to influence the exposure (Sauleau et al. 2003). The methods for exposure mea-
surement have to be included in the operations manual. Reliable past exposure
measurements rarely exist in sufficient numbers. Moreover, their validity is in
general doubtful as they were usually obtained for purposes other than an epi-
demiological study, typically environment control. In such cases an attempt may
be made to estimate exposure by use of conversion tables such as job-exposures
matrices and food tables linked to data derived from records, questionnaires or
expert assessment. Moulin et al. (1998b) show an example where existing past
measurements were highly variable and only scarcely related to the exposure as-
sessed by experts. Nevertheless, using the latter, they were able to demonstrate
a dose-dependent carcinogenic effect of hard-metal dusts.

Finally the use one intends to make of the exposure measurements in the
analysis of the data has to be stated in the protocol. This is required in order
to assess whether a certain number of measurements with a given precision and
a presumed variability of exposure will be sufficient to achieve statistically valid
results with respect to the association of exposure and outcome.

Measurement and Classification of Health Outcomes 12.4.2

The main distinction to be made concerning measurement and classification of
health outcomes is between diseases for which a clear diagnosis can be made at
a precisely defined time and health outcomes which are defined by a measurement
either by questionnaire or a functional or laboratory test.

The latter case includes health outcomes like obesity or hypertension where the
health outcome is better expressed on a continuous scale rather than as a classifi-
cation into diseased|non diseased categories and for which no clear-cut incidence
date can be obtained. This feature implies that the prospective cohort design is
the only design in which it is possible to be sure that the exposure precedes the
disease. In such cases determination of the point in time when to measure the
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health outcome is crucial. If one is interested in acute effects of an exposure, e.g.
the immediate effect of the chlorine in a swimming pool on genotoxicity using the
Comet assay, the health effect must be measured immediately after the exposure.
If one is interested in chronic effects of an exposure, e.g. of organic solvents on
chronic neurotoxicity, care must be taken to measure the health outcomes after
a period of washout as for instance after the weekend in the example of a study
of chronic neurotoxic effects of solvents, as the acute effects of the exposure may
confuse the chronic effects. Such considerations may have serious implications on
the planning, cost or even feasibility of such studies.

In the case of a well-defined disease with a defined incidence date, both historical
cohorts and case-control designs can be used. Still the precise definition of the
disease is one of the challenges of a clear design. The main issue is whether to group
or to separate disease subtypes. Different subtypes of a same disease may have
different risk factors even within a cancer site. The recent rise in adenocarcinoma
of the lung has for instance been related to the increased use of “light” cigarettes.
However, a too narrow definition of a disease may lead to smaller number of cases.
This is even more an issue when the diagnosis is obtained from registry data
or death certificates as is usually the case in historical cohorts. The precision of
such data may well be fictitious and grouping of diseases thought to have similar
etiologies may be the only reasonable choice.

An intermediate case would be a well-defined disease like COPD (chronic ob-
structive pulmonary disease) for which no systematic recording of patients is
possible. For such a disease only hospital-based case-control studies with the chal-
lenge of estimating the time of onset of the disease in order to ignore all posterior
irrelevant exposure, or prospective cohorts with the problem of potentially low
power seem to be realistic designs.

Information Bias12.4.3

A major bias related to data collection is the information bias that occurs if the
exposure assessment is different for cases and controls or the health outcome is
measured differently for exposed and non-exposed subjects. The first situation
arises mainly in case-control studies when the cases know of the possible determi-
nants of their disease (e.g. smoking or asbestos exposure among lung cancer cases)
and therefore report more of their past exposure. It is possible to minimize this
type of bias by standardized questionnaires and, if possible, by a data collection
blinded with respect to the case-control status. The latter approach, although an
option in hospital-based case-control studies, is, however, virtually impossible in
population-based case-control studies. The same type of information bias is pos-
sible with historical cohorts if information is obtained a posteriori from proxies.

An information bias can also be due to the unavoidable measurement error in
retrospectively measuring the exposure. The comparable accuracy principle (Wa-
cholder et al. 1992a) states that the degree of accuracy in measuring the exposure
of interest for the cases should be equivalent to the degree of accuracy for the
controls unless the effect of the inaccuracy can be controlled in the analysis, as for
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instance by using appropriate validation data. Although adherence to this principle
does not eliminate the corresponding misclassification, its rationale is to avoid that
a positive finding is induced simply by differences in the accuracy of information
about cases and controls (see also Chap. I.6 of this handbook).

Confounding 12.5

The deconfounding principle, another principle given in Wacholder et al. (1992a),
states that confounding should not be allowed to distort the estimation of an
effect. Confounders are per definition factors that are determinants of the disease
and that are related to the exposure of interest. Setting up a list of confounders
is therefore a primary task in the exploration of the scientific knowledge related
to the research question of the planned study. This identification of confounders
cannot only be based on statistical associations but must be thought in terms of
potential causal pathways. For instance, if one were to study the effect of nutrition
on coronary heart diseases (CHD), a factor that might be considered a potential
confounder is obesity as it is related both to nutrition and CHD. On the other hand
one might consider that obesity is on the causal pathway between nutrition and
CHD in which case controlling for obesity would bias the estimation of the effect
of nutrition (overadjustment). Careful thought should therefore be given to each
factor that has to be included as a confounder. An operational result of this first
step would be a list of three groups of confounders.
1. Established confounders that are known to determine disease and to be related

to the exposure of interest but which are not on the causal pathways. Sex and
age are virtually always included in this group.

2. Probable confounders that are established risk factors and for which there are
reasons to believe that they might be related to the exposure.

3. Possible confounders including other risk factors of the disease that might be
or not related to the exposure. If a given risk factor is a strong determinant of
the disease (e.g. smoking for lung cancer), it might confound the association
of a potential risk factor although the confounder is only weakly associated
with the other risk factor in the study sample.

At thedesignstage, controlling for confounderscanbedoneeitherby restricting the
data base to certain values of the confounder (e.g. a lung cancer case-control study
among non-smokers) or by matching. The latter ranges from broad frequency
matching on age and sex to the individual matching on factors thought to be
related to non-measurable factors (e.g. neighbourhood matching). It must be
stressed at this point that controlling for confounders in the design may well be
counterproductive as it is irreversible and may forbid to explore interesting post
hoc hypotheses (see also Sect. 12.3 on matching in Chap. I.6 of this handbook).
A last strategy is to collect the relevant data on confounders in order to be able to
control them later in the analysis.
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Details of how to deal with confounding using any of these methods can only
be decided within the context of a given study. The main pitfall in controlling for
confounders at the design stage is overmatching. Restricting the variability of the
confounding variable will also reduce the variability of the exposure of interest
within each matched case-control pair and will thus reduce the power of the study.
This would occur if cases and controls were matched on age, sex and tight socio-
economic categories. It is very likely that other variables like smoking or dietary
factors would also be more similar.

Statistical Analysis12.6

The statistical analysis of a study is an important step in the overall quality of
a study and enough time and human resources should be planned from the start.
Many large-scale studies we know of, are underreported because of lack of funding
for the statistical analysis. It is impossible to detail all statistical analyses to be
done at the planning stage. However, as already mentioned, the main research
questions should be formulated in the protocol and these questions should be
operationalized already at this stage, i.e. translated in a statistical hypothesis to be
tested.

It is helpful at this stage to draw hypothetical causal graphs in order to formulate
a priori models to be confronted with the data of the study (see Pearl 2000, Cox
and Wermuth 1996). Figure 12.1 shows a very simple graph formulating a series of
hypotheses on the effect of shiftwork and age on cognitive performances which
may be mediated by sleep problems.

Figure 12.1. Causal hypotheses of effects of shift work and age on cognitive performances

Such a conceptual framework helps to set up a list of statistical analyses based
on a priori hypotheses and additional ad hoc analyses which are more or less
data driven. The minimum statistical content to be defined at the planning stage
are the endpoint variable(s), the exposure variables of interest and the variables
to be adjusted for (i.e. the potential confounders). The statistical measures (pro-
portions, odds, means, standard deviations, etc.) and models (mostly regression
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models) to be calculated should also be enumerated including the residual and
influence statistics to be applied to check the robustness of the results. Finally, all
the subgroups of intrinsic interest for which separate analyses will be done should
be identified.

The fact that the a priori formulated hypotheses are operationalized, means
that for instance the main endpoint(s) of interest should be identified as certain
values of given variables. This is relatively straightforward in case-control studies
for which the endpoint is the case status whatever its definition. For cohort studies
focused on the mortality or incidence of given diseases, the list of diseases possibly
related to the exposure of interest should be identified. For prospective cohorts or
cross-sectional studies the endpoint of interest may be less straightforward and
can possibly imply a prior data transformation, e.g. a score of depression obtained
from a mental health questionnaire.

The variables characterising the exposure should also be specified. These can
include (possibly lagged) cumulative, peak or mean exposure. Although for power
computations this exposure may have to be considered as a yes|no variable, the
main message cannot be that simple. Established risk factors have to be included
in the final model in any case, as long as an association of it with the exposure
of interest has to be assumed. On the other hand, although all measured con-
founders must be tested, the list of presumed confounders to be included in the
main model cannot be finalized at the planning stage as they depend to a certain
extent on the data themselves. E.g. a presumed confounder may not be associ-
ated with either disease or exposure of interest, in which case its inclusion is
wasteful.

Practical Issues 12.7

Fund Raising 12.7.1

Technically, the expenses must be specified as regular salaries (paid by the parent
organization), salaries for temporary staff, durable equipment, travel expenses,
consumables (mailing, telecommunication, office material, laboratory), fees, con-
sultants.

It is also important to adjust the flow of payment to fit the respective stages
of the project. If funding comes from a number of different sources, the tentative
share of each one must be specified. Experience has shown that the situation is
easier to handle if only one funding agency is involved, but very large projects may
require more than one source of funding (Hernberg 1992, pp 189f).

If all real costs are considered, it can be shocking to realize how expensive the
project turns out to be. At this stage, the researcher must learn how to set priorities
and to lower the level of ambition.
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Data Management12.7.2

Data management is a crucial step in planning a study especially with multi-centre
studies. A first task in planning the data management is to identify the different
data tables which are to be set up and to plan their structure and their linkage.
Added complications in this context occur if the ethical requirements imply that all
names (and all direct identifiers except an anonymous study identifier) are to be
kept separately from some or all data tables or even have to be completely erased.

If a protocol implies merging with an external file, be it an administrative file
or a file containing causes of death or diseases as is often done in historical cohort
studies, a data table must be set up containing only the minimal information for
merging.

The data management of prospective cohorts and other studies where subjects
have to be recruited individually is especially challenging as there are several
dimensions in the data. It is nearly unavoidable in such studies to keep a separate
data table for the management of all contacts. In this file for every study subject
all letters sent and received, all telephone contacts, all data sets or information
received should be traced. Only with such a (complex) data management structure
one can quickly identify non-responders and follow them up. If a subject has
moved for instance, it is easier to get the new address if this change is recent. It is
also important to avoid sending repeated letters to deceased subjects. On the other
hand, it is important to know at each moment if a given subject is due for another
contact and whether she|he has reacted to the last mailing. This implies also that
this file must be able to generate the correct letter for mailing dependent on the
subject’s status (questionnaire to be sent, questionnaire received, lost to follow-up,
pending questionnaire, etc.). The actual data received must be kept separately from
this first data base.

It is also important when planning a longitudinal study to clearly identify and
label the variables containing the same information collected at different time
points. If these variables have the same names, they are at risk to be overwritten.
Careful a priori structuring of the data base makes life much easier when creating
a data file for statistical analysis. Owing to the longer time scale of such studies,
the documentation is particularly important as it is not guaranteed that the same
data managers will handle the data throughout the study.

Other issues to be planned carefully are data entry and coding. Three main
options exist for data entry. A first option is to input data directly when interview-
ing the study participants. This is mainly an option with telephone interviews;
using laptops in face-to-face interview may disturb the interviewee. An important
aspect with direct input is the layout of the screen; the interviewer must follow
the questions she|he has to ask without being disturbed by computer problems.
Issues like skip patterns, the ability to easily correct already entered data, toggling
between keyboard and mouse, online detection of invalid codes or inconsistencies
between different data items and so on are to be programmed carefully and to be
tested in real settings. A widely used computer program is the freeware Epi-Info
available from the division of public health surveillance and informatics of the
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Centers of Disease Control, Atlanta (http:||www.cdc.gov|epiinfo). However, it has
some limitations making it unsuitable for complex large-scale studies. A large
range of commercial software exists, each with its own advantages. A second op-
tion is to obtain data through paper questionnaires and input the data later. In
this situation a double entry is to be recommended whenever possible, especially
if the questionnaires were self-administered. The data should be entered as they
are, but the data problems (errors, inconsistencies) should be documented in
a log-file to be treated as soon as possible. A final option is to obtain machine-
readable questionnaires and apply an automated data entry based on scanning
the documents and a character recognition software. Such an approach is difficult
and requires careful preparation. It has been implemented in actual large-scale
studies, notably in the French part of the EPIC study (e.g. Clavel-Chapelon et al.
2002). Data coding, i.e. transforming textual information (examples are places
of residence, jobs, tasks or food) in a closed list of items is also an aspect to
be planned and tested. It relies often on specialized knowledge. The closed list
of items and coding rules must be set up before starting the data collection.
Details on the construction of instruments are given in Chap. I.10 of this hand-
book.

A type of data that deserves a specific discussion with respect to its management
are exposure measurements since they often pertain to exposure groups rather
than individuals, i.e. they characterize specific circumstances (cf. Chap. I.10 of
this handbook). These circumstances include e.g. measurements of air pollution
in certain areas, households or occupational tasks. The main problem with these
data is to be able to link them to the subject data. It is important to include the
same items (i.e. labels of the exposure group) in the exposure measurement data
base as in the subjects’ data base. A further complication arises when some of
these exposure measurements are on individuals (e.g. exposure measurement at
the workplace or in households), including subjects from the epidemiological data
base. These measurements characterize both the exposure group and the specific
individual. Both links must then be clearly identified from the start.

Finally a log-book of all data management tasks and files should be kept. This
can be part of the overall study diary.

Quality Assurance 12.7.3

Industrial standards for quality assurance and quality management are set down
in the ISO 9000 series of standards (http:||www.iso.ch). Their application to epi-
demiological studies is not straightforward given that these standards (see Moulin
et al. 1998a) are geared towards customer satisfaction and that the customers of
epidemiology are not easily defined. The main ideas behind these standards are
however useful.

The main principles as they apply to epidemiology are the following (although
a quality assurance specialist might disagree). Write up in detail what you intend
to do and document what you did. Try to be proactive in thinking of what can go
wrong and plan accordingly. Set up means by which you can detect any problem
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as early as possible and by which you can correct your procedures accordingly.
Document all changes in procedures. See also Chap. I.13 of this handbook.

We already insisted on the necessity of a detailed protocol. A protocol may
furthermore be complemented by one or several standard operating procedures
compiled in an mannual of operations (see below) describing the actual work to do
(cook book). One main point in being proactive is to prepare the data collection
in as much detail as possible. Details with respect to material conditions, e.g.
hardware, software, office and storage room need to be considered in advance.
Training of the data collection staff is a key to good quality data. This training
should be done using the tools to be used and if possible in the setting in which
the actual data collection will be conducted. It is also an important point to
acknowledge that there will be non-responders and to plan how to get minimal
information on those subjects from the beginning. In order to monitor errors as
they arise and to be able to correct the procedures accordingly, data entry should
be concurrent to the data collection and the data control and validation be done
as early as possible.

Finally all changes in the protocol and in the operations manual after the start
of the study must be clearly documented.

Study Conduct: Manual of Operations12.7.4

As mentioned in the section on the study protocol, the collection of material and
data as well as the methods and procedures must be described in detail. This can
be done in a separate document: the manual of operations (cf. Chap. I.13 of this
handbook).

The eligibility criteria must be defined in cohort studies in terms of minimum
exposure, calendar time of exposure, whether or not other exposures are allowed,
and so forth. If a case-control design is adopted, the eligibility criteria for both cases
and controls must be well defined. For example, what histological type of cancer
will be included, how will the diagnosis be confirmed? Are the controls indeed
representative of the study base? Is the study a hospital-based study or a register
linkage study? Who will collect the data? These questions are only examples of
how detailed the description of the methods have to be. Each project has its own
list of questions, so the illustration of all problems that may arise is not possible
here.

The measurement methods and procedures should be described in detail. Will
the indicators of disease or exposure be good measures? For example, is today’s
blood level of DDT a good measure of long-term exposure? Is a specially designed
symptom questionnaire specific and sensitive enough to measure the neurotoxic
effects of solvents? How will the interviewers be trained? Will there be a panel
of radiologists for reading and interpreting the radiographs? The control and
measurement of confounding should also be discussed and presented in the light
of the scientific and technical background.
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Time Line 12.7.5

The time schedule concerns the sequence and interdependency of different oper-
ational tasks and resources. It is good practice to outline the tasks and subtasks
at the design stage and to plan their time flow, as well as the necessary resources
required for each. Once it has been decided how many subjects will be included
and what methods of examination will be used, the time needed can be estimated
rather accurately. At the planning stage, one should make sure that statistical and
computerizing assistance will be available when needed. The researcher must also
stick to his|her original schedule, to avoid disrupting the consultants’ time scheme.
One should realize that the first data analysis will usually result in further analy-
ses. Writing a manuscript takes time. Unexpected practical matters almost always
disrupt the original time schedule. Enough time must be reserved for all these
considerations. Hernberg (1992) recommends to make an allowance of half a year
or more for unexpected complications.

The organisation of the time-line and the corresponding resources are best
planned using project management tools like Gantt (after the method developed
by Charles Gantt in 1917) and PERT (Program Evaluation and Review Technique)
charts (see Figs. 12.2 and 12.3 for a simple fictitious example). Basically these
tools decompose a project in elementary tasks with certain (possibly varying)
durations and the corresponding needed human resources and the precedence of
these tasks. Figure 12.2 presents the different tasks with arrows indicating which
tasks must be terminated before the next task can start (e.g. the data collection
can only start when the study has been approved by the ethics committee and
when the staff has been trained). From this information, critical tasks (dark bars
in Fig. 12.3) are identified, which if delayed will delay the whole study. Non-critical
tasks such as preparation of data entry that may depend on completion of other
tasks as for instance preparation of questionnaire can be delayed. However, non-
critical tasks must be completed by the start of other work packages (here: data
entry). This is indicated by the light bars in Fig. 12.3. For details of such tools see
for instance Modell (1996). A number of sharewares easily available through the
internet provides the software to draw these charts.

Project Diary 12.7.6

A project diary is a necessary component and should trace all aspects of the project.
These aspects include the possible changes in the protocol, the data collection, and
the data processing. Such a diary not only helps the investigators to keep track
of the scientific realization of the operational plan of the project, but also of its
administrative and economic aspects.

Changes in the original protocol may either be dictated by external circum-
stances but also possibly by scientific reasons, e.g. if evidence arises during the
study concerning a potentially important confounder.

Documentation of data collection should not only monitor its advancement
but all potentially important events. It is a particularly important issue to docu-
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Figure 12.2. Simple fictitious example of a PERT chart for planning a study

Figure 12.3. Gantt chart for planning a study

ment when and why some data could not be collected, as for instance the number
of controls contacted before a control accepted to participate. It should also be
documented if some technicians are on sick leave and are replaced, if some mea-
surement instrument or computer fails and is replaced or if, at some stage, the
data collection is less than optimal because of human failure. Dates and results of
instrument calibration should be recorded. If some highly unlikely measurement
is observed and it is redone, this information should be consigned in the diary.
When some issues arise from the quality control steps (see Chap. I.13) this should
also be mentioned.

Electronic data handling e.g. names of raw data files, computer transfers, merg-
ing of files, recoding, and finally all statistical data processing should all be docu-
mented including analyses which proved to be dead ends.

The project diary along with the protocol and the raw data are the central pieces
of evidence with which the study can be replicated and be re-analysed, if needed.
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Ethical Aspects 12.7.7

The ethical aspects are diverse and have been well covered in Chap. IV.7 of this
handbook. General ethical rules for all biomedical research have been set down
in the Helsinki declaration of the World Medical Organization (1996). Table 12.2
shows its central principles.

Table 12.2. General ethical principles as laid out in the declaration of Helsinki

1. Doing good (beneficience)
2. Not harming (nonmaleficience)
3. Respecting persons (autonomy)
4. Distributing goods and evils fairly (justice)

The following aspects are more specific to epidemiological research. The first
ethical requirement is the respect of the data protection laws that are specific to
each country. This may even require to erase part of the data, usually the per-
sonal identifiers, after a certain lapse of time. The second is the requirement that
all study participants be informed of the objectives of the study, what precise
medical examinations will be done and what is their purpose. The full informed
consent of the participants is obligatory, at least if invasive procedures are in-
volved. The results of each individual investigation should be made available to
each study participant as well as a summary of the overall results of the study.
On the contrary, confidentiality must always be adhered to and no individual
results can be revealed to outsiders unless otherwise specified by law. A medi-
cal examination which might detect a hidden disease (e.g. an X-ray or a scanner
might detect a lung tumor although the study was focused on pneumoconiosis)
must always be medically screened before the final processing of the data in order
to take the necessary medical steps. Similarly, if in the course of a prospective
study it becomes evident that individual exposure levels exceed safe limits, the
researcher must take the initiative to try to remove the subject from the hazardous
exposure. Sensitive items in questionnaires should only be included if they are
absolutely necessary. A final aspect is that the results of the study must always be
made available to the community. Failing to publish the results means that the
examinees have been abused and the funding has been wasted. In doing so, the
interpretation of the results must be objective including a discussion of all relevant
literature and all possible validity problems as well as alternative explanations of
the findings.

Scientific Collaborations and Multi-centre Studies 12.7.8

An epidemiological study usually requires collaborations of the principal re-
searcher with scientists from several fields which of course include epidemiology
and usually a specialized medical field and statistics but may also include, depend-
ing on the study, genetics, molecular biology, microbiology, chemistry, industrial
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hygiene, psychology, sociology. Another type of collaboration occurs if a multi-
centre study is set up in which several epidemiologists combine resources. Advan-
tages and possible pitfalls have already been mentioned and the standardization
of the data collection is then a major issue. The data analysis may be centralized or
decentralized. For instance in multi-centre studies organized by the International
Agency for Research on Cancer (IARC), the national centres may usually publish
their data and|or they are in charge of a pre-defined specific analysis of a particular
topic.

In any type of collaboration the respective responsibility and role of each col-
laborator or collaborating centre as well as the resources allocated to the project
should be clear from the start so that no false expectations arise. Provisions should
be made for possibly divergent interests between study partners.

Publication12.7.9

Epidemiological research is of interest not only to epidemiologists, but also to
decision makers, funding agencies, and also to the general public. The results
should be published in a form and language that they are understandable to
the different target groups. This often requires two or more levels of reporting,
one scientific, one popular and maybe even one press release. It is worthwhile
to plan responsibilities for each aspect in advance and how the information will
be dispersed. Those taking part in a study have the right to know not only their
personal results but also, at least in general terms, the outcome of the whole study,
especially when medical examinations are involved. The correct timing of the
sequence of information delivery is important. First, those examined should be
informed of their own results, then summary results should be given to funding
agencies, and only afterwards to the news media. Ideally, a peer-reviewed scientific
article should have appeared or at least have been accepted for publication before
informing the news media. However, the scientific publishing procedure is so slow
that it sometimes may be unethical to withhold urgent results from the public that
long.

A large project usually gives rise to several scientific publications, and it may
be useful to outline their topics in advance. At the planning stage, it is advisable to
agree within the team on who will be responsible, i.e., the first author, of what, and
whose names should be listed as co-authors. It is usually not possible to decide the
order of names at this stage, because each team member’s input to the intellectual
process can be judged only after the project has been successfully completed.
Guidelines as to who should be considered author of a publication are included
in the Vancouver guidelines (International Committee of Medical Journal Editors
2004).
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Conclusions 12.8

Careful planning is a key in the successful completion of an epidemiological study.
This planning should be based on up to date scientific knowledge and awareness
of all possible pitfalls inherent in epidemiological studies. It should cover all
aspects from study base definition, precise design used, statistical power, control
of confounding, precise data collection and exposure measurement methods to
quality control, statistical methods, collaborations, dissemination of study results,
and ethical issues. All these issues should be written down in a study protocol
which is then a “study-bible” from which the quality of the study can be assessed.
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Introduction13.1

The use of data is fundamental in epidemiology. Epidemiologic research on causa-
tion uses data in a search for the true nature of the relationship between exposure
and disease. Similarly, research on the consequences of interventions seeks an
unbiased characterization of the effects of independently varying factors on the
outcome measure(s). One of the most rewarding moments for a researcher is ob-
taining the preliminary results from his or her study. However, the question “do I
believe what I see?” should immediately come to mind. The answer to this question
is determined in large part by the more mundane but critical question of how good
is the quality of the data, rather than by the elegance of the scientific method.
Errors that occur during study population selection or in the measurement of
study exposures, outcomes, or covariates can lead to a biased estimate of the effect
of exposure on risk for the disease of interest. Misclassification of exposure or
disease that occurs randomly between all study participants decreases the power
of the study to detect an association where it exists. Data collection that is differ-
entially biased may have more severe consequences, and can lead to an incorrect
assessment of the relationship between exposure and disease.

The inherently important issue of study quality is becoming of even greater
consequence as the findings of epidemiological studies gain in impact, and the
field of epidemiology gains wider acceptance as an essential element of biomedical
research (Samet 2000; Samet and Lee 2001). Results of epidemiological studies
are routinely reported in the media, receiving widespread attention because the
findings have evident relevance to the populace. Epidemiologic evidence is also
used to inform regulatory and legislative policy making (Goldman 2001). The
decision to set airborne standards for particulate matter in the United States, for
example, was largely fueled by evidence from epidemiological studies (Greenbaum
et al. 2001). Epidemiology often figures prominently in litigation, where the study
methodology can become a point of debate (Bryant and Reinert 2001; Goldman
2001). Given the significance of epidemiologic evidence for decision-making, the
results of epidemiological studies often face close scrutiny and questions may
be raised about every aspect ranging across data quality, study methods, study
conduct, data analysis and interpretation of findings.

Even if external questioning and auditing are not anticipated, the researcher
nonetheless faces the responsibility of assuring the quality of the study and pre-
venting the widespread dissemination of misleading or incorrect information. For
example, findings from several cohort studies on air pollution and mortality fig-
ured prominently in a 1997 decision by the U.S. Environmental Protection Agency
(EPA) to promulgate a new standard for airborne particulate matter. The great
weight given to the data by the EPA led to a call for access so that others could
check and analyze the data. An extensive re-analysis of the data was carried out,
including validation of elements of the original data as well as replication and
extension of the original analyses by an independent group (Krewski et al. 2000;
Samet et al. 1997). The controversy surrounding the use of data from the air pol-
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lution cohort studies eventually led to a Congressionally-mandated requirement
for sharing data with policy implications that have been collected with federal
funds.

Many hypotheses of current interest in epidemiological studies call for the in-
corporation of data from multiple centers and involve collection of data from
large populations according to centrally standardized protocols. Data sharing
has also become more common, and approaches to doing so for larger grants
in the United States have been mandated by the National Institutes of Health.
In order to enhance statistical power, data from individual studies are often
pooled, or summary results are combined using meta-analysis. These approaches
to data utilization place a further demand for meticulous study documentation
so that data from a study are readily usable by persons other than the original
investigators.

General methods have long been available for assuring the quality of data. The
idea of creating a high quality end-product using process improvement initially
emerged in the context of industrial business models. Early efforts at delivering
quality products to customers were based on inspecting products at the end of
a factory line and eliminating those products that did not meet standards (“qual-
ity control”). The idea of improving all procedures that affect the quality of the
manufactured products (“quality assurance”) represented a fundamental shift in
paradigm for industrial manufacture. Incorporating quality considerations into
the process rather than the product has since gained widespread acceptance in the
business and engineering communities (International Organization for Standard-
ization 2003).

Although there is a vast literature on quality control in general, the issue has not
received much formal attention in the epidemiological setting. Within epidemi-
ology, much of the writing on data quality and good epidemiological practice is
focused on the conduct of clinical trials (Canner et al. 1983; Cooper 1986; Dischinger
and DuChene 1986; DuChene et al. 1986; Gassman et al. 1995; Hilner et al. 1992;
Knatterud et al. 1998; Meinert and Tonascia 1986; Neaton et al. 1990; Vantonge-
len et al. 1989). While clinical and laboratory guidelines can easily be modified
to make them more applicable to observational studies, few sources specifically
address quality issues for the most common epidemiological study designs. In an
early attempt to bridge this gap, the Epidemiology Task Group of the Chemical
Manufacturers Association (CMA) compiled a set of guidelines for good epidemi-
ology practice for occupational and environmental epidemiologic research (Cook
1991; The Chemical Manufacturers Association’s Epidemiology Task Group 1991).
An overview of data quality issues for epidemiological studies is also provided
by Szklo and Nieto (2000) and by Whitney and colleagues (Whitney et al. 1998).
Methods to improve data quality in medical registries are reviewed by Arts et al.
(2002).

This chapter provides a general overview of data quality and guidelines for good
practice in epidemiological research. The fundamental premise is that quality
considerations should be integrated into every phase of the study from initial
hypothesis formulation to the final publication of findings and archiving of data.
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Obtaining data completely free from error clearly would be prohibitively expensive,
and often impossible. The goal is therefore not error-free data, but rather planning
and implementing cost-effective procedures that guarantee the validity of the
primary results toanacceptabledegree.Theepidemiological researcherneeds tobe
able togauge theextentofanyerrors, andassess theconsequences for interpretation
of data analyses. The idea of “quality control” versus “quality assurance” is carried
over from the industrial management literature into the epidemiological literature,
with a distinction made between activities that take place prior to data collection
(quality assurance), and activities that occur during and after data collection to
correct data errors (quality control).

The ubiquitous nature of quality issues, both in terms of where these issues can
arise and how they affect study results can be captured by an extended metaphor.
In an article describing the causation of bias, Maclure and Schneeweiss present the
idea of an “Episcope” through which an epidemiologist views a putative associa-
tion between a causal agent and morbidity. Just as a user of a large telescope would
be skeptical about whether and how image degradation exists, an epidemiologist
should think about how and why an observed association between exposure and
disease might be biased (Maclure and Schneeweiss 2001). A similar idea can be
applied to data quality. As published study results are viewed through a “Data-
scope,” a discerning epidemiologist should be wary of how the final image (the
published results) may have been distorted by quality considerations during the
design, conduct and dissemination of the study. Working backwards, the observer
might ask a string of questions, such as “Were the observed results more likely
to be published because they were positive findings? Based on the analysis, were
published inferences appropriate? Were the methods of analysis suitable? Were
data keyed in correctly? Has the data been collected appropriately? Was an appro-
priate population defined?” Each of these questions points to one or more study
quality issues. Using the metaphor of the datascope, we will highlight the main
issues regarding study design and conduct, and present ways in which to improve
epidemiologic practice and data quality.

The Datascope13.2

Imagine, for a moment, that published study results can be viewed only through
a large telescope. As you peer into the lens, the initial picture is barely discernible.
On your right is a panel with focusing controls. The first dial allows you to adjust
out any distortion caused by publication bias. When you optimize this dial, the
image becomes slightly clearer. The next control allows you to tune out faulty
inferences. Again, you turn this knob to make the image somewhat clearer. The
process continues until the results are finally sharply focused. Although we do not
literally look through a telescope every time we view the results of a study, we
are in fact looking at an association that may well be “out of focus” depending
on how well the study was designed, conducted and interpreted. Errors in the
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measurement of the exposure, outcome, or other covariates can be thought of as
unfocused datascope controls that contribute to degradation of the final image.

Let us consider, in some more detail, the datascope controls that manipulate
sources of measurement error. The farthest dials from the observer are located
in the planning phase of a study and influence purely “quality assurance” activ-
ities. For a more in-depth discussion of the planning stage see Chap. I.12 of this
handbook. Errors occurring at the study planning stage are summarized below.

Errors in study conception
If the study rationale and design are not carefully formulated, the rest of the
study could be rendered completely irrelevant. Errors in study conception
include inadequate literature review, consideration of an inappropriate study
design, and failure to plan the validation of exposure or outcome variables.
Errors in the selection, design, or procedures for use of instruments measuring
exposure
The instrument selected for study exposure measurement might not cover
all sources of the active agent. Conversely, the measurement instrument might
include sourcesof exposures that arenotbiologically relevant, ormeasure expo-
sure for a time period that is etiologically unimportant. In survey instruments,
the phrasing of questions or instructions could lead to misunderstanding or
bias (cf. Chap. I.10 of this handbook). Insufficient detail in the protocol for in-
strument use or inadequate consideration of a standardized method for dealing
with unusual situations can lead to collection of poor quality data.
Inadequate training of study personnel
Even if study procedures are very well defined, inadequate training of data
collection staff in the application of these procedures can introduce errors in
the data (cf. Chap. I.10 of this handbook).

The next set of controls is activated during the conduct of a study and includes
activities that generally fall under the categories of quality assurance as well as
quality control. For instance, validation studies of instruments and equipment
ensure that collected data will be accurate (quality assurance), but can also be used
to correct errors in data (quality control). Sources of exposure measurement error
that can occur during data collection are described in detail elsewhere (Armstrong
and White 1992) and summarized below.

Improper execution of the study protocol
Errors related to study protocol execution include the misinterpretation of, or
deviation from, standard operating procedures by study technicians. Mistakes
in interpretation of the study protocol often arise from poor clarity of the
manual of operations or inadequate training of study personnel. For example,
if the standard operating procedure states that a fasting blood glucose level
should be measured but does not specify the time required to have elapsed
after the last meal, the interpretation of “fasting” may differ from technician to
technician. Errors in data can also result from improper handling of biologic
specimens, or the failure of subjects to read or understand instructions in
self-administered questionnaires.
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Errors related to study participants and intra-individual variability
Subjects may have poor recall of past exposures, or allow recent exposure
to influence their memory of past exposure. Individuals also tend to over-
report socially desirable behaviors such as exercise, and underreport socially
undesirable habits such as smoking. Additionally, short-term variability in the
biological characteristicsof a subject can lead tounrepresentativemeasurement
of exposure or outcome. For example, differences in the level of an exposure
biomarker measured at a specified time after exposure are likely to be due
partially to individual differences in metabolizing the agent of interest.
Changes in the accuracy of measurements over time
Failing to standardize and recalibrate laboratory equipment is likely to intro-
duce data drift as calendar time progresses. In long-term studies, the instru-
ment used for measurement may change over time, and the agent of interest
in biological specimens may be subject to degradation. Also, as the study per-
sonnel get more experienced through the course of the study, changes in the
handling of procedures and instruments may occur.
Mistakes in data processing
Data that are recorded inaccurately, illegibly, or incompletely are very difficult
to correct after the fact. Transcription of the data to electronic files introduces
more chances for error, both within a study site, and between field sites and the
data coordinating center. At the coordinating center, programming or proce-
dural errors may corrupt the database or modify data inappropriately. Errors
can also be introduced by undocumented changes or modifications to a local
or central database.

The final panel of controls on the datascope, closest to the observer, consists of
purely “quality control” dials, which influence study quality after the data have
been collected. Examples of these errors are presented below.

Inappropriate data analysis
If data analysis is not preceded by familiarization with the nature of the data,
the chosen analyses may not be appropriate. Specifying the wrong model for
analysis, for instance, can lead to completely erroneous results and inference.
Poor reporting of data
Omitting the results of important data analyses, or presenting unnecessary
information can obfuscate the study results. Lengthy, verbose explanations
and poorly labeled graphs and figures add to the confusion. Inappropriate
inference given the study results can also be misleading.

In order to achieve the highest quality data possible, each of the sources of error
described in the planning, design, conduct, and conclusion of a study should
be minimized. Conceptually, this can be thought of as turning the appropriate
datascope dial to obtain the best image possible.

A review of the different sources of error that can occur during study planning,
design and conduct informs the datascope user as to where he or she can affect
final data quality. The ultimate goal is to optimize the datascope dials in order to
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minimize error and achieve the clearest possible picture of the study results. In the
rest of this chapter, we present aspects of quality control and good epidemiological
practice that can reduce data error. The chapter will follow the same organization as
the datascope control panels, beginning with the planning phase of a study, moving
onto quality considerations during study conduct, and finally describing activities
that occur after data collection. Where applicable, the working of the datascope
will be illustrated using the example of measuring blood pressure in a hypothetical
study whose main research question is whether elevated blood pressure leads to
increased risk of coronary disease.

Quality Considerations
in the Planning Phase 13.3

Protocol 13.3.1

The development of a comprehensive study protocol is essential to good epidemio-
logical practice. The study protocol is a narrative document that describes the gen-
eral design and procedures used in the study. It can be distinguished from the study
manual of operations (Sect. 13.3.3) by its generality and absence of specific details
for day-to-day study conduct. The study protocol assists the staff in understanding
the context in which their specific activities occur. A well-designed study protocol
can, and should, guide all aspects of the study. In general, a protocol would include
the following sections: a short descriptive title; a description of performance sites
andpersonnel; adescriptionofbackgroundandsignificance; results of preliminary
studies; study design and methods; a time line for completion of major tasks; ethi-
cal considerations, and references. Quality assurance and quality control should be
addressed in each relevant section of the protocol, and also summarized in a sepa-
rate section. Although restrictions or recommendations provided in the guidelines
for research grants applications for the U.S. National Institutes of Health may not
be applicable to grants funded through other mechanisms, these guidelines never-
theless provide useful suggestions for creating study protocols (U.S. Department
of Health and Human Services 2001). Recommendations for protocol write-up are
also included in the Guidelines for Good Epidemiology Practices for Occupational
and Environmental Epidemiologic Research (The Chemical Manufacturers Asso-
ciation’s Epidemiology Task Force 1991). The typical sections of a study protocol
are summarized in Table 13.1 (see also Chap. I.12 of this handbook).

Improving the Datascope Image by Choosing Appropriate Measures of Hy-
pertension

In the planning phase of the study, investigators should make provision
for collection appropriate measures of hypertension. While clinicians favor
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the diagnosis and treatment of hypertension in terms of diastolic blood pres-
sure elevation, data from the Framingham Study in Massachusetts indicate
that systolic blood pressure is a better predictor of disease outcome (Kannel
2000). Additionally, ambulatory blood pressure can be measured with an au-
tomated device so that multiple measurements can be made across the course
of typical activities. Studies show that such recordings provide information
predictive of disease risk beyond that obtained with measurements made at
a single assessment (Clement et al. 2003).

Table 13.1. Guidelines for preparation of a study protocol∗

Section Guidelines for good epidemiological practice

Title Descriptive and to the point.

Names, titles, degrees, addresses and
affiliations of the study director, principal
investigator, and all co-investigators

Possible conflict of interest should be
identified and resolved.

Name(s) and address(es) of the sponsor(s) Possible conflict of interest should be
identified and resolved.

Proposal abstract Informative and succinct.

Proposed study tasks and milestones Timetable should be realistic and identify
possible sources of delay.

Statement of research objectives, rationale,
and specific aims

Clearly state the purpose of the investiga-
tion, describe whether the study will be
hypothesis-generating or hypothesis-testing,
and whether the study will confirm previous
findings or result in new findings.

Critical review of the relevant literature Include animal, clinical, and epidemiologi-
cal studies. Do not restrict search to elec-
tronic databases (e.g. PUBMED, TOXLINE),
older articles might be missed. Describe the
occurrence of exposure and outcome vari-
ables. Identify potential confounders and
effect modifiers. Identify gaps in current
knowledge.

Description of the research methods Describe the overall research design, and why
it was chosen. Consider alternative designs.
Define exposure and outcome variables, and
identify data sources for these and other vari-
ables of interest. Check whether the measure
of exposure represents the biologically active
agent and etiologically important time
period.
Calculate the projected study size and statis-
tical power (if appropriate).
Describe procedures for collecting data.

table to be continued
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Table 13.1. (continued)

Section Guidelines for good epidemiological practice

Provide a detailed description of the
methods of analysis.
Define how exposure and outcome variables
will be categorized for analysis.
State how confounders and effect modifiers
will be treated in the analysis.
Outline the major strengths and limitations
of the study design.
Provide criteria for interpreting the study re-
sults, including ways of assessing statistical,
clinical, and biological significance.

Description of plans for protecting human
subjects

Describe risks and benefits of participating
in the study.
If appropriate, provide plans for obtaining
informed consent.
Describe procedures for maintaining
confidentiality of subjects and data.

Description of quality assurance and control Describe for all phases of the study.

Resources required to conduct the study Detail the expected time, personnel, and
equipment required for the study.

Bibliographic references Include all relevant references.

Addenda, as appropriate Examples of useful addenda include copies
of collaborative agreements, institutional
approvals, informed consent forms, and
questionnaires.

Dated protocol review and approval sign-off
sheet

Document dated amendments to the proto-
col.

∗ adapted from the Guidelines for Good Epidemiology Practices, Epidemiology Task Group (The
Chemical Manufacturers Association’s Epidemiology Task Force 1991).

Documentation of Operations and Procedures 13.3.2

The consistency and validity of study data are greatly enhanced by the establish-
ment and application of standard operating procedures for routine data collection
tasks (a standard operating procedure is defined here as a standardized method
or process for conducting a routine research procedure). If standard procedures
have been well described, variability is likely to be much lower across study sites,
interviewers, or technicians. Uncorrected variability introduced by interviewers
or technicians can decrease study power.

Standard procedures should be clearly described for all study procedures, in-
cluding (but not limited to) raw data collection, coding of death certificates, assess-
ment of error rates, and management of archived data. Each standard operating
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procedure should state the purpose of the procedure, provide a detailed descrip-
tion of the procedure including forms and equipment to be used, and either
designate the person responsible for the procedure, or explain what training will
be needed (The Chemical Manufacturers Association’s Epidemiology Task Force
1991). Detailed quality control and quality assurance guidelines for the collection of
laboratory samples are provided in the U.S. Toxic Substances Control Act (TSCA)
standard for Good Laboratory Practices (US Environmental Protection Agency
(EPA) 1989).

Once the various standard operating procedures are established, they should
be integrated and summarized in the form of a study manual of operations. The
manual of operations is a document or collection of documents that completely
describes the procedures used in a study center. Developing a study handbook,
which contains a series of tables, charts, figures, and specification pages that out-
line the main design and operating features of a study (largely without the use
of a written narrative) is a useful first step in the development of the manual of
operations, and can also act as a quick reference for study personnel. The study
protocol, handbook, and manual of operations should be reviewed for clarity and
completeness.

Since the initial version of the manual of operations is almost certain to contain
some errors, pre-testing of the manual prior to finalization is essential. All aspects
of the study protocol should be tested on a population similar to the one that will
be studied, including the administration of surveys, sending of samples to labora-
tories, and the generation of and response to quality control reports. Refinements
to the protocol that are identified from the pilot study can be incorporated into the
final study manual of operations.

Improving the Datascope Image Using Standard Operating Procedures

Inter- and intra-technicianvariation inbloodpressure readingsviewedunder
the datascope can be reduced by clear and detailed descriptions of the method
of measurement. Application of a standard operating procedure can also
reducevariability inbloodpressuremeasurementwithinasubject. Specifying
details such as how the study participant should be seated, which arm the
cuff should be applied to, and how long the study participant should remain
quiet before the reading is taken can reduce the influence on the study
measurement of factors that affect an individual’s blood pressure.

Personnel, Training and Certification13.3.3

Integral to study conduct is the availability of personnel with the necessary educa-
tion, experience and training to perform assigned functions. The planning stage of
the study is the appropriate time to consider personnel requirements, what kind of
training will be necessary, and how often training should occur. Job descriptions
should be written for each individual who will be supervising or engaging in the
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conduct of the study. For jobs that require training, procedures for initial and
re-training of personnel should be established. Re-training may be necessary if
substantial time has elapsed since the initial training, if a technician is found to
be introducing a systematic error into the data, or if the study protocol changes.
For each of the study personnel, a summary of relevant training and experience,
including study certification and recertification, should be maintained and kept
up-to-date.

Consistency in the training of personnel across sites improves comparability
of data collection across different study sites. This training can be centralized, or
site-specific. Often, a combination of both approaches is used (see Sect. 13.4.1 for
more detail). Study personnel should be required to follow standard operating
procedure. If training will be difficult or time-consuming, it is prudent to train
at least two individuals for each task in case one of the trained technicians leaves
the study. Certification standards should be set, and might include completion of
a specified number of tests for key procedures, including some under observation.

Aside from the obvious benefit of consistency in data collection, training study
personnel also increases the interviewers’ or technicians’ perceived value of the
data that are being collected. This may influence the amount of care taken in
following the protocol. Some studies use computer instruction, video cassettes,
or teleconferencing to reduce the costs associated with training. While the use of
computer or video training is convenient, these methods lack some of the benefits
of face-to-face training, such as the opportunity for staff members to share ideas,
and the opportunity for scientific presentations that remind personnel of the
importance of their work (Whitney et al. 1998).

Improving the Datascope Image by Training and Certification

Some of the variation in blood pressure measurements viewed under the
datascope could arise if a technician measured blood pressure in a different
way each time he or she took a measurement, or if different technicians
had different ways of reading the same measurement. One way to minimize
these sources of error and improve the datascope image is to train and
certify study technicians. In the MRFIT (Multiple Risk Factor Intervention
Trial), technicians were trained in taking blood pressure measurements using
training tapes and a double stethoscope (Dischinger and DuChene 1986). The
training tapes consisted of two recordings of the Korotkoff sounds for twelve
subjects. The first tape of Korotkoff sounds was used for training, and the
second for testing. A video training film that presented twelve blood pressure
readings, with sufficient time to determine and record systolic and diastolic
blood pressure after each reading, was also used. Finally, supervisors and
trainees took simultaneous measurements of three subjects using a double
stethoscope. The differences in the readings of the trainer and technician
had to fall below a certain criterion for the trainee to pass. Technicians
were certified after completing the training tapes, passing a written test



514 Preetha Rajaraman, Jonathan M. Samet

on procedures for taking blood pressure measurement, and passing the dou-
ble stethoscope test. Recertification was required at regular intervals, or if
examination of collected data indicated that a technician had a bias with
respect to other technicians in a clinic.

Data Collection Forms and Instruments13.3.4

Exposure and outcome measures for epidemiologic studies can be collected in
a variety of ways. Methods of data collection include mailed self-administered
questionnaires, interviewer-administered questionnaires, measures of blood or
other tissues, physical measures, medical tests, use of medical or exposure records,
or sampling for environmental contaminants (White et al. 1998). Most studies use
more than one method of data collection.

The use of data that have been collected already (“secondary data”) has the key
advantage that the data already exist. Studies using secondary data are thus likely to
be more cost and time-efficient than studies with primary data collection. Sources
of secondarydata, suchaspopulation-basedregistries,oftenallowforamuch larger
sample size, and can be more representative of the general population (Hearst and
Hulley 1988). A substantial disadvantage of using existing data, however, is that
the collected data may not adequately address the particular research question of
interest. An additional drawback is that the method of collection and the quality
of the secondary data are not under the researcher’s control. For this reason,
researchers using secondary data should carefully review data documentation and
evaluate the quality and validity of these data to the extent possible (Clive et al.
1995; Gissler et al. 1995; Goldberg et al. 1980; Horbar and Leahy 1995; Maudsley and
Williams 1999; Sorensen et al. 1996; Wyatt 1995). For details on the use of secondary
data see Chap. I.4 of this handbook.

Most epidemiological studies collect some or all of their data using phone, mail,
or self|interviewer-administered questionnaires. Data from such questionnaires,
however, can be subject to various sources of bias. For instance, study participants
fillingout a self-administeredquestionnairemight report socially acceptable rather
than strictly accurate results. Moreover, ways of responding to the survey may
differ between participants in the study, depending on factors such as the age,
gender, or racial|ethnic group of the participant. Conversely, participants may
respond differently to interviewers of different age, gender or ethnic background.
For further details see Chap. I.10 of this handbook. Multi-center studies encounter
the additional problem of differences in data collection between study centers. In
long term studies, these biases can change over time. Smoking, for example, is
generally less socially acceptable today than it was 20 years ago in the United States
and consequently more likely to be underreported (Ling and Glantz 2002). The
acceptability of smoking also varies by ethnic groups, which may in part explain
the fact that African-American high school seniors are far less likely to smoke
than are white seniors (Wallace, Jr. et al. 2002). Measurement error that occurs



Quality Control and Good Epidemiological Practice 515

because of the use of a survey instrument can be minimized by careful design
and pre-testing of the survey, and the application of standardized interviewing
techniques.

The main objective of survey design is to allow the efficient collection of data that
are valid, reliable, and complete. Standardizing forms within a study is important
for internal validity. Consistency of forms across studies allows more meaningful
comparison with other studies, and also makes the study results more general-
izable. Both internal and external form standardization can be achieved by the
use of pre-existing validated study instruments. Examples of validated question-
naire instruments include the American Thoracic Society questionnaire to assess
respiratory symptoms (Comstock et al. 1979), and the Willett food frequency
questionnaire (Willett et al. 1985). If a validated instrument is not readily available,
several sources in the literature provide guidelines for questionnaire design to
maximize clarity and ease of administration. These include recommendations for
physical format, as well as instructions on how to word the text of instructions
and questions (Dillman 1978; Hosking et al. 1995; Knatterud et al. 1998; Meinert
and Tonascia 1986; Wright and Haybittle 1979a, b, c). Studies that enroll partic-
ipants of different ethnic groups may need to accommodate different languages
by using interpreters, or by having translated versions of the questionnaire. How-
ever, a question might change subtly upon translation, and data generated from
different languages may not be entirely comparable. For this reason, independent
back-translation of questions to the original language is strongly recommended.
An example of the need for back-translation is provided by data from a health
survey which showed lower data reliability of data for Hispanics interviewed in
Spanish than for Hispanics interviewed in English when no back-translation was
done. An independent back-translation aimed at creating a linguistically equiva-
lent version to the Spanish version indicated several instances in which the two
versions were idiomatically different and appeared to have affected the serious-
ness with which the interview situation was perceived, in turn leading to response
discrepancies (Berkanovic 1980).

Pre-testing of the survey instrument on a population similar to the study pop-
ulation allows the detection of flaws in the survey design and instrument before
full-scale data collection begins. Separate analysis of pre-test data by language
version, for example, might identify problems in translation. In the Hypertension
Prevention Trial, which was designed to test the effectiveness of changes in dietary
intake of calories, sodium, and potassium, a test cohort of 78 participants was
enrolled, and used for the testing of forms and procedures. Data that were gen-
erated from the test cohort were used to identify problems in survey design and
collection, and were not analyzed with results from the main study (Prud’homme
et al. 1989).

Accuracy and consistency are also important for laboratory or clinical equip-
ment. The study should be planned so that all study personnel and sites begin
by using identical equipment. In anticipation of measurement drift over time,
procedures to maintain and recalibrate equipment should be established. In the
Sleep Heart Health Study (Quan et al. 1997), overnight sleep data were collected
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from subjects using a portable monitor. Sites were notified to have the monitor
evaluated and procedures assessed when less than 85% of results scored by the
monitor were of “good” or better quality (Whitney et al. 1998). Standard and ran-
dom zero sphygmomanometers for blood pressure measurement in the MRFIT
study (Kjelsberg et al. 1997) were maintained and calibrated according to a regular
schedule, and subject to standard checks at least every other month in the case of
the standard sphygmomanometer, and every week in the case of the random zero
instrument (Dischinger and DuChene 1986).

As more advanced technology becomes available to measure an exposure or
outcome, there may be justification to update study equipment. In such cases, data
should initially be collected using both the old and new equipment to establish
the comparability of the two instruments, since a change may introduce subtle
differences that are only apparent as substantial data are collected using the new
approach.

Planning Response Rate13.3.5

In order to curtail the possibility of bias and increase the generalizability of study
results, it is important to achieve the highest response rate possible (Gordis 2000;
Wacholder et al. 1992). A recent systematic review of 292 trials found that factors
which more than doubled the odds of response to surveys were: the inclusion
of a monetary incentive with the questionnaire, designing surveys to be of more
interest to participants, and the use of registered mail (Edwards et al. 2002).
Other factors which have been reported to increase response rate are shorter
questionnaire length (Dillman 1978; Eaker et al. 1998; Hoffman et al. 1998; Kalantar
and Talley 1999; Kellerman and Herold 2001; Little and Davis 1984; Martinson
et al. 2000; Spry et al. 1989), personalizing questionnaires (Maheux et al. 1989),
using colored ink (Edwards et al. 2002), contacting participants before sending
questionnaires, providing stamped return envelopes (Choi et al. 1990), and using
written or telephone reminders (Asch et al. 1997). Questionnaires originating from
universities are more likely to be returned than questionnaires from other sources,
whereas surveys eliciting information of a sensitive nature are less likely to be
returned.

While the use of a monetary incentive is probably the factor that has been
shown most consistently to increase response rates (Gibson et al. 1999; Gilbart
and Kreiger 1998; Hoffman et al. 1998; Kellerman and Herold 2001; Martinson et
al. 2000; Parkes et al. 2000; Perneger et al. 1993), increasing the amount of the
incentive results in diminishing returns of questionnaires after a certain point
(Halpern et al. 2002; James and Bolstein 1992; Spry et al. 1989). In the United
States, the $2.00 bill seems to be a cost-effective monetaryincentive (Asch et al.
1998; Doody et al. 2003; Shaw et al. 2001). Making a pre-payment of the incentive
appears to be more cost-effective than promising payment on completion of the
questionnaire (Schweitzer and Asch 1995). Including the monetary incentive in the
first mailing rather than in subsequent mailings has resulted in higher response
rates (John and Savitz 1994). Non-monetary incentives, while reported to increase
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response rates over having no incentive, do not appear as effective as monetary
incentives (Kellerman and Herold 2001; Martinson et al. 2000).

Contact rates generally tend to be lower for individuals who are young, male,
black, of lower socio-economic status, or employed full-time (Collins et al. 2000;
Cottler et al. 1987; Moorman et al. 1999). In the context of a case-control study,
response rates are often lower for controls (Moorman et al. 1999). Even within
control groups, different types of controls have different response rates. For exam-
ple, in the United States, controls chosen from Health Management Organizations
have been shown to have a higher response rate than controls drawn from lists of
licensed drivers (Slattery et al. 1995).

Long term cohort studies, in addition to having to address response rates to
study questionnaires, also face the issue of loss to follow-up. The loss of cohort
members to follow-up is conceptually similar to response rate, in that loss to
follow-up can constitute an important source of selection bias and also limit
external validity. Participants may be lost to follow up either because they drop
out of the study of their own volition, or because the study investigators lose
track of them. As with other types of epidemiological studies, loss to follow-
up can lead to reduced study power and may result in biased estimates of risk.
Strategies for minimizing loss to follow up include pre-enrollment screening of
participants for willingness to participate in a long-term study, collecting names
of personal contacts and proxies for participants, maintaining regular contact with
study participants, using incentives for remaining participants, and maintaining
tracking systems to follow participants (Hunt and White 1998). One must keep in
mind, however, that populations comprised of volunteers are usually different from
the population as a whole. In general, measures of relative risk are less affected
by the lack of external generalizability than measures of absolute or attributable
risk.

Validity and Reliability 13.3.6

The absence of bias in data measurement is called validity, or accuracy. The
precision, or reproducibility, of collected data is known as reliability.

Validity Studies
The capacity of a measure to capture the true value of the exposure, outcome,
confounder, or modifier of interest in the study population is known as its validity.
While it is desirable toobtain themost accuratemeasurementspossible of exposure
or outcome, such measurements usually come at the price of increased cost, inva-
siveness, or time involvement. When faced with these constraints, epidemiologists
often choose to collect less accurate measures of exposure.

The accuracy of the study’s main method of exposure measurement can be
assessed using validation studies which compare the study exposure measure to
a more accurate measure of exposure (“gold standard”), either in a sub-sample of
study participants or in a different population. For instance, evidence of validity
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Figure 13.1. Graphs of hypothetical test results illustrating the distinction between validity and

reliability

can be provided by comparing study estimates of an environmental exposure to
industrial hygiene measurements or biomarkers of exposure (Cherrie and Schnei-
der 1998; Cherrie et al. 1987; Dosemeci et al. 1997; Hawkins and Evans 1989; Kipen
et al. 1989; Kromhout et al. 1987; Tielemans et al. 1999). The comparison of re-
ported nutrient intake on a questionnaire with a biochemical indicator provides
another example of this approach (Ascherio et al. 1992; Johnstone et al. 1981; Post
and Kromhout 1991; Sacks et al. 1986; Willett et al. 1983).

The establishment of a serum pool can facilitate validation of biological sam-
ple processing in the study. Study measurements can be compared with re-
sults from a “gold standard” external laboratory. If study measurements devi-
ate randomly from the gold standard, the study result would be attenuated to-
wards the null hypothesis. However, if deviations from the gold standard are
found to vary according to the presence and level of important variables such as
follow-up time, or the exposure or outcome of interest, the study results may be
biased.

Data from validation studies can, additionally, be used to account for uncer-
tainty in the data analysis. Measurement error correction models can be developed
that use validation study data to adjust the full data for measurement error (Holford
and Stack 1995; Rosner et al. 1992; Spiegelman et al. 1997; Stram et al. 1999; Thomp-
son 1990). In the Framingham Study (Dawber et al. 1951), for example, a small
validation study was conducted to estimate the relationship between the surrogate
measurement (food frequency) and the “true” measurement (diet record). Based
on information from the main study relating the surrogate to disease outcome,
and information from the validation study relating true and surrogate exposure,
corrected point estimates of risk were calculated (Spiegelman et al. 1997). For
a general discussion of statistical methods to account for measurement errors see
Chap. II.5 of this handbook.

While validation studies may help form a clearer picture of the true relationship
between exposure and outcome, such studies are not without their own limitations.
For one, the gold standard used for comparison may itself be subject to error,
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thus the term “alloyed” gold standard (Wacholder et al. 1993). While calibration
methods for such alloyed gold standards have been described, these complex
models cannot be applied in all situations (Kaaks et al. 2002; Spiegelman et al.
1997). A second limitation of validity studies is that participants in these studies
are not always representative of all participants. Subjects who volunteer to take
part in a validity study are likely to be more compliant than non-volunteers would
have been. Additionally, feasibility constraints often limit validity studies to small
sample sizes, which can lead to statistical imprecision.

Reliability Studies
Data variation can arise within study participants (biological variability), or due
to variation in exposure assessment or physiological measurements introduced
by study technicians. Blood pressure within an individual, for example, experi-
ences short-term changes due to factors such as activity and mood. Different
blood pressure measurements taken on the same individual are thus likely to vary
for physiological reasons regardless of how accurately these measurements are
made. Study technicians can add an extra component of variation to the measure-
ments, either because a given technician reads a measurement in slightly different
ways each time (intra-observer variation), or because different technicians read
a measurement in different ways (inter-observer variation). Variability can also be
introduced as samples degrade over time.

As illustrated in the paragraph above, variability in data can arise due to true
change, measurement error, or random biological variation. The component of
variability in which the researcher is most interested is the true change in study
exposure that might influence the outcome under consideration. The separation
of desired variability in the data (true change) from undesirable variability due
to measurement error or random (biological) variation can be partially assessed
by incorporating into the main study a series of sub-studies that are designed to
assess the reliability of the study data (cf. Chap. I.11 of this handbook).

Reliability studies can be used to assess various components of variability, such
as the comparability of measurements taken by: the same technician at a given
visit; different technicians at a given visit; the same|different technician at different
points of time, or the same|different technician using different instruments. Inter-
observer and intra-observer variability can be assessed using a set of calibration
samples that are read several times by each technician, and processed by multiple
technicians. Biological variability can be assessed by having a single technician
perform repeat studies on a subset of participants, although some amount of
variability assessed in this way would be due to technician variability (Whitney
et al. 1998). For durable data, such as X-ray films or dietary recall records, variation
over time can be assessed by comparing evaluation of the same samples at different
times in the study. In instances where samples are limited or perishable (e.g. blood
or urine), a pre-selected set of “quality control” specimens should be set aside at the
beginningof the study so that small amountsof these specimens canbeperiodically
submitted for processing. Technicians handling quality control samples should be
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unaware that the samples are different from other study samples being processed,
in order to prevent differential handling.

Reliability studies which collect replicate measurements at the same point of
time are useful in the identification of possible data errors, as well as in the
calculation of more accurate measures of exposure. Averaging repeated measures
has been recommended as an effective method of decreasing the measurement
error associated with a single measurement (Armstrong and White 1992; Canner
et al. 1991; Holford and Stack 1995; White et al. 1998).

When validity is reported, the number of samples that are deemed unaccept-
able for analysis should be stated, since this may indicate a bias in the remain-
ing samples. The examination of whether reliability estimates differ according
to relevant characteristics such as exposure, confounding factors, or outcome al-
lows some assessment of whether differential misclassification is occurring in the
data.

Improving the Datascope Image by Obtaining a More Valid Exposure Mea-
sure

Using the average of three blood pressure measurements taken on a study
visit could result in a clearer picture of the individual’s blood pressure than
would a single blood pressure measurement.

Measures of Agreement
Quantifying the agreement between two different methods of measurement re-
quires the use of some measure of agreement. The choice of statistic depends on
the type of variables being compared, and the purpose of the comparison (Ta-
ble 13.2). The calculation of different measures of agreement, and advantages and
disadvantages of each measure have been reviewed by Szklo and Nieto (2000).

The basic measures of validity for binary categorical variables are sensitivity
and specificity, for which the study value of the exposure or outcome is compared to
the “true” value, measured by a more accurate method (Example 1). The sensitivity
of a test is the ability to correctly identify those individuals who have the disease
or exposure characteristic of interest. The test specificity is the ability to correctly
identify those individuals who do not have the disease or exposure characteristic
of interest. A limitation of the use of sensitivity and specificity is that very few
diagnostic tests are inherently dichotomous. Most diagnostic tests are based on
the characterization of individuals based on one or more underlying traits, such
as blood pressure or serum glucose level. Values for the sensitivity and specificity
would vary according to the cut-off level used to separate “diseased” (or exposed)
from “undiseased” (or unexposed) individuals. In addition, if measurement error
occurs, individuals with true levels of the underlying trait close to the test point
are more likely to be misclassified. Since the distribution of underlying traits also
determines disease prevalence, sensitivity and specificity can vary from population
to population (Brenner and Gefeller 1997).
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Example 1. Calculation of Sensitivity and Specificity

Gold Standard Results
Positive Negative Total

Positive a b a + b
Study Results

Negative c d c + d

a + c b + d

Sensitivity = a|(a + c)

Specificity = d|(b + d)

Agreement for categorical variables (e.g., X-ray readings by radiologists) is gen-
erally reported using variations of the percent agreement and kappa statistics.
While overall percent agreement is intuitive and easy to calculate (Example 2), it
can make agreement look artificially high, since there is likely to be considerable
agreement between two observers reading negative, or normal, results. An alter-
native approach is to disregard subjects labeled as negative by both readers, to
calculate the percent positive agreement (Cicchetti and Feinstein 1990).

Example 2. Calculation of Percent Agreement

Technician 2
Positive Negative

Positive a b
Technician 1

Negative c d

Percent agreement = (a + d)|(a + b + c + d) × 100

Percent positive agreement = a|(a + b + c) × 100

Neither overall nor percent positive agreement takes into account the fact that
some amount of agreement between two observers will be due to chance alone.
The extent of agreement between two readers beyond that due to chance alone
can be estimated by the kappa statistic (Example 3) (Agresti 1990; Fleiss 1981;
Landis and Koch 1977). In comparisons of more than two categories, a weighted
kappa approach allows consideration of the fact that disagreement between some
categories may be more serious than disagreement between other categories (Co-
hen 1968). Like the sensitivity and specificity, variations of the kappa statistic
are limited by the fact that most underlying traits are not dichotomous, and
different cut-off levels can affect the value of kappa (Maclure and Willett 1987).
Interpretation of the kappa statistic should also take into account the fact that
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kappa can be affected by the prevalence of the condition: for a fixed sensitivity
and specificity, kappa tends towards zero as the prevalence of the condition ap-
proaches either zero or one (Thompson and Walter 1988). Additionally, high values
of kappa can be obtained if the marginal totals of the contingency table are not
balanced (Feinstein and Cicchetti 1990; Maclure and Willett 1987; Thompson and
Walter 1988).

Example 3. Calculation of Kappa for a binary measurement variable

Technician 2
Positive Negative Totals by Technician 1

Positive 45 5 50 (61.0%)
Technician 1

Negative 2 30 32 (39.0%)

Totals by Technician 2 47 (57.3%) 35 (42.7%) 82 (100%)

Kappa = (Proportion Observed Agreement − Proportion Expected Agreement due to Chance)
(1.0 − Proportion Expected Agreement due to Chance)

Proportion Observed Agreement, Po = (45 + 30)|(45 + 5 + 2 + 30) = 0.91

Proportion Expected Agreement due to chance, Pe = (50×47)|82+(32×35)|82
82 = 0.52

Kappa = Po − Pe
(1.0 − Pe) = (0.91 − 0.52)

(1.0 − 0.52) = 0.81

Common measures of agreement used to assess reliability for continuous mea-
surements (such as blood pressure readings) are the correlation coefficient, the
intra-class coefficient, the average error, and the coefficient of variation. Linear
regression techniques can also be used to check for systematic differences (cf.
Chap. II.3 of this handbook).

Although the Pearson’s correlation coefficient, r, is one of the most frequently
used measures of agreement in the medical literature, its use is often not appro-
priate (Altman and Bland 1983; Szklo and Nieto 2000). For one, the correlation
coefficient is equally high when both observers read the exact same value, and
when a systematic difference (bias) exists between observers but the readings vary
simultaneously. The value of r is also very sensitive to extreme values and the range
of values, with a broader distribution of values yielding a higher r. While the Spear-
man correlation coefficient rs may be more appropriate to assess the comparability
of the rankings of readings, and would moreover be less sensitive to outliers, it
does not address the main problem of the inability to detect systemic differences
between observers.

The intra-class coefficient (ICC), or the reliability coefficient, estimates the pro-
portion of the total measurement variability due to the variation between individ-
uals (Fleiss 1981). The ICC is analogous to the kappa statistic used for categorical
variables, and the value can be interpreted in a similar manner. The ICC is a true
measure of agreement in that it combines information on both the correlation,
and the systemic differences between readings (Deyo et al. 1991). As with the cor-
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relation coefficient, however, the ICC is affected by the range of values in the study
population.

Other commonly used measures of variability are the average error, and the
coefficient of variation (CV). The average error is the ratio of the mean abso-
lute difference of pairs of measurements to the overall mean value of the mea-
surements. The coefficient of variation is the standard deviation expressed as
a percentage of the mean value of sets of replicate observations. In a reliabil-
ity assessment, the CV would be calculated for each pair of observations, and
then averaged over all pairs of original and replicate measures. A limitation of
the CV and average error is that both measures may reflect the magnitude of
the mean value more than the magnitude of the measurement error (Canner
et al. 1983). An alternative measure that has been suggested for assessing vari-
ability is the increase in the among-participant standard deviation, the IAPSD

(Canner et al. 1991). This measure can directly determine the impact of mea-
surement error on the overall among-participant variability for a variable of
interest.

Linear regression techniques can estimate systematic differences between read-
ers which are reflected in the slope and intercept of the regression model. One
drawback of using regression to assess reliability, however, is that measurement
error occurs in both the dependent and independent variables, violating the as-
sumption of an error-free independent variable required for regression (Altman
and Bland 1983). However, only under unusual circumstances would measurement
error lead to confusing or uninformative results.

Planning Data Management 13.3.7

The management of data in a large epidemiological study can be a formidable task.
The sheer volume of data for a sizeable study with extended follow-up can become
quite overwhelming, as illustrated by the following example. If 100 data elements
are to be collected for each participant in a cohort study with 100,000 participants,
the data collected at the end of each data collection cycle are comprised of 106

distinct data elements. Let us say that in order to update exposure and outcome
information, data are to be collected yearly for each participant for ten years. This
increases the amount of data being collected by an order of magnitude, to 107

distinct pieces of data. Superimposing on this volume of data the errors that can
occur during data recording, transcription, and transfer of data to an electronic
medium, it is easy to see how data quality can be compromised without careful
planning of how data are to be managed. The potential magnitude of the task of
data correction is also clear.

The first step in planning a data management system is to define what data
will be collected and how often data will be collected, keeping in mind that as
the volume of data increases, ensuring data accuracy becomes more difficult. In
order to further minimize the amount of unnecessary data collected, the cho-
sen data variables should be prioritized, and a “tolerance” of error established
for each data field. For example, it might be decided that all values of crucial
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Table 13.2. Common Measures of Agreement, interpreted in the context of two separate technicians reading the same data

Statistic Range Type of Data Interpretation

Sensitivity and Specificity 0 to 100% Categorical Sensitivity: ability to correctly identify
individuals who have the disease or
exposure characteristic of interest.
Specificity: the ability to correctly identify
individuals who do not have the disease
or exposure characteristic of interest.

Overall percent agreement 0 to 100% Paired categorical variables The proportion of all readings that are
categorized in the same way by two different
observers.
Higher value means better agreement.

Percent positive agreement 0 to 100% Paired categorical variables The proportion of all non-negative readings
that are categorized in the same way by two
different observers.

Kappa statistic, κ −1 to 1 Paired categorical variables The extent of agreement between two readers
(rarely below 0) beyond that due to chance alone.

Higher value of kappa means better
agreement.

Weighted Kappa −1 to 1 Paired categorical variables The extent of agreement between two readers
(rarely below 0) beyond that due to chance alone, allowing for

consideration of partial agreement.

Pearson’s correlation , r −1 to 1 Continuous ordinal variables The degree to which a set of paired
observations in a scatter diagram approaches
the situation in which every point falls
exactly on a straight line.
−1 is perfect negative correlation,
1 is perfect positive correlation.
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Table 13.2. (continued)

Statistic Range Type of Data Interpretation

Spearman’s correlation, rs −1 to 1 Non-parametric ordinal variables The degree to which ranking of measure-
ments is consistent between two readers.

Intraclass Correlation Coefficient, ICC −1 to 1 Continuous variables The proportion of the total measurement
(rarely below 0) variability due to variation among

individuals.
Analogous to the kappa statistic, but for
continuous variables.
Higher ICC means better agreement.

Linear regression, β, c Continuous variables Yields a measure of the intercept c and
slope β of the regression function.

Coefficient of variability, CV 0 to 100% Continuous variables The standard deviation expressed as
a percentage of the mean value of two sets
of paired observations.
Lower CV means better agreement.

Average error 0 to 100% Continuous variables The ratio of the mean absolute difference of
pairs of measurements to the overall mean
value of the measurements.
Lower average error means better agreement.

IAPSD 0 to ∞ Continuous variables The percentage increase in among-
participant standard deviation due to
intra-observer measurement error.
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data variables (e.g. disease outcome) should be checked against written ques-
tionnaires, but auditing a random sample of questionnaires is sufficient for other
fields.

The next key step in data management planning is to define essential identifying
information for the study data. Identifiers, generally known as key, header, or ID
fields, are fields that allow each form to be uniquely identified and correctly related
to other forms (Hosking et al. 1995; Hosking and Rochon 1982). Study identifiers
are usually located in a standard header section of the form. Entry of an incorrect
number into one of these fields can cause the entire data record to be processed
incorrectly.

Most studies require at least four types of identifiers: study identifiers, par-
ticipant identifiers, form-type identifiers, and time-point identifiers. Depending
on the study, other identifiers (e.g., family identifiers) might also be necessary.
Study identifiers designate the sponsor, study, protocol, or sub-study. Participant
identifiers uniquely identify the study participant. In general, a study-created par-
ticipant identifier is preferable to a natural identifier such as participant name or
social security number, especially in a climate increasingly concerned with partic-
ipant confidentiality. Encode information about participant characteristics (such
as a field site code) into the participant identifier is useful, since this allows later
classification of participants by their identifiers alone. Form identifiers identify
a particular questionnaire, and often take the format of a two- or three-character
abbreviation. Form identifiers in longitudinal studies should be planned so that
multiple versions of each form can be accommodated. Adding a −1 at the end of
the form identifier, for example, allows for future versions to end with the suf-
fix −2 or higher. Item identifiers are assigned to each question on a form. While
item identifiers bearing a one-to-one relationship to database fields might be use-
ful for data analysis, this can become confusing if the study forms or database
are revised. Data management systems that track the relationship between each
database field and a corresponding item number in each form version provide
a useful alternative.

Once data identifiers have been selected, general data management consider-
ations that need to be addressed including identifying how data will be entered
(electronically versus manually), who will do the data entry, what software will be
used, what types of edits will occur during data entry, how queries will be gener-
ated, communicated and resolved, how suspicious values will be treated, and how
corrections will be implemented and documented. The remainder of this section
will be devoted to these considerations.

Design of a Data Management System
In a multi-center study, data are typically collected at various field centers and
then sent to a coordinating center for processing, storage and analysis. Table 13.3
provides an overview of the steps involved in data management. While newer ap-
proaches to data management exist (e.g., web-based systems), these approaches
rely heavily on specialized automated systems for data collection, entry and audit-
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ing. Since logistical barriers of cost, lack of expertise and low computer literacy
currently render these systems impractical for many investigators, this chapter fo-
cuses on a more traditional approach to data management. Many of the underlying
principles remain relevant to the newer data management approaches, which are
addressed at the end of the section.

Table 13.3. Overview of the Traditional Data Management Process∗

Steps in data processing

Data collection and mailing Complete forms at clinic|in field.
Visually review form while participant is in
clinic (visual editing).
Mail original copy to coordinating center,
keep copy at clinic.
Create standard packing list for mailing

Receipt and conversion to electronic format Receive forms at coordinating center.
Acknowledge receipt of forms from clinic
using postcard or electronic mail.
Logreceiptof forms intocomputer (including
form number, ID code, date completed, date
received, and unique log number).
Key the form. Verify keying.

Forms processing, posting and backup Process form through an edit program that
checks type and range of each field, as well as
internal consistency of form.
Generate computer edit report.
Check edit report and initiate appropriate
error correction procedures.
Back-up edited forms.
Post forms to master file. Back up master file.
File form.

Clearance and archiving Run further checks on data to ensure that
posted data are consistent with other data on
file.
Review edit reports that result from checks
and initiate appropriate error correction
procedures.
Document master file contents and prepare
file for archiving.

∗ adapted from DuChene et al. (1986)

Data Recording and Visual Editing
The measurement and recording of data from study participants usually occurs
at the field center, and initial data checks are generally conducted by field staff
personnel. Field center interviewers or technicians should check data for consis-
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tency as it is being collected, while the study participant is available to clarify any
immediate discrepancies, errors, or out-of-range characteristics.

For technical measurements, an independent review of samples by two or more
readers should be performed on all, or a subset of samples. This allows later
assessment of validity, and enables investigators to track down sources of error.
On completion of the data form, field center staff should perform a routine review
of forms to establish that the questionnaire is complete, that skip patterns have
been followed, and that the data values appear reasonable. If routine review of
the form does not identify any unusual data, the form can be processed further.
Including an indication of who reviewed the form will facilitate later examination
of the editing process.

Data Entry
Almost universally, epidemiological data are entered into electronic databases for
storage and analysis. The processing, storage, and analysis of study data usually
occurs at the data coordinating center. Errors that can occur during the processing
and storage of data include keying errors, inaccurate data transcription, and pro-
gramming errors (Arts et al. 2002). In the Hypertension Prevention Trial, key error
was found to be the major source of data entry error, with 5.2|1000 errors out of an
overall error rate of 6.9 errors per 1000 data items being key errors (Prud’homme
et al. 1989).

Most automated data entry systems allow a variety of mechanisms for check-
ing data. As data entry is initiated, form identifiers are checked for validity and
consistency. Range checks during data entry can be used to electronically limit the
data type, or the range of possible values at entry. For example, date fields can be
programmed to accept only valid dates, or table look-up systems can restrict the
values of categorical data to a limited number of possible values. For continuous
data, many studies use normal population ranges of a variable to flag outliers.
While programmed range checks are a useful tool, retaining some flexibility to
correct errors at the time of data entry is important, since too many restrictions on
modifying data at entry can lead to a higher error rate (Crombie and Irving 1986).

Data accuracy can also be improved by the use of double data-entry. The inde-
pendent keying of data twice, however, does not prevent all types of error. Examples
of errors that would not be reduced by the double entry of data include errors in
transcription, or misinterpretation of data in the same way by two data-entry
operators.

If the data are to be manually entered, personnel should be masked regarding
exposure or outcome status (depending on the study design), to prevent the possi-
bility of observer bias. Additionally, the electronic database should have a provision
to indicate who entered the data to allow for later reviewof data-entry performance.

The use of electronic technology for data entry as an alternative to manual data
entry is gaining in popularity. Software is available for scanning forms directly into
an electronic database using optical character recognition (OCR). The accuracy
of scanning software is quite variable, however, and a process to check scanned
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data should be in place. In general, OCR is better suited to numeric or check-box
responses than to hand-printed characters. Another method of electronic data
entry is computer-assisted data collection (CADC), whereby interviewers directly
enter participant responses into a computer file. This technology completely cir-
cumvents the need for transferring data from paper to an electronic medium, thus
eliminating errors associated with this process. A CADC system can automatically
enforce skip rules, require completion of required fields, and flag suspicious val-
ues for correction while the study subject is still present. Since errors in CADC
data cannot be compared later with a paper form, however, these systems need to
include as many ways of checking data accuracy at entry as possible. One way to
allow for examination of inconsistent values is to tape record interviews while data
collection is occurring.

In a pilot study of CADC, five study staff members with no prior experience
using a CADC system were trained and asked to administer both CADC and paper-
based interviewers to sixteen study participants. All five staff members preferred
the CADC system, indicating faster and more accurate data entry and less likeli-
hood of erroneously skipping an item. Ten of the sixteen pilot study participants
had no preference between paper and CADC, and six preferred CADC. Although
the median time for data collection at the reception, examination and interview
stations was slightly longer for CADC than for paper interviews, the CADC data
are already partially edited and in machine readable format, whereas data from
the paper forms still had to be edited and keyed. The percentage of suspicious data
values was similar for each method, but 21 of the 25 suspicious data values were
identified and corrected at the time of collection using CADC, compared to 1 out
of 23 suspicious values corrected with the paper system (Christiansen et al. 1990).

Other recent methods of data collection for epidemiological studies include the
use of electronic-mail (“e-mail”) (Kiesler and Sproull 1986; Paolo et al. 2000) or
internet-based surveys (Baer et al. 2002; Blackmore et al. 2003; Rhodes et al. 2003;
Silver et al. 2002; Turpin et al. 2003). E-mail questionnaires have been reported to
have a faster rate of return and more thorough completion of returned question-
naires, but response rates have generally been lower than for mail questionnaires.

The basic process for internet-based, or web-based, data collection is the trans-
lation of the study questionnaire into an internet language (HTML, or hypertext
markup language) and posting of the questionnaire onto the World Wide Web. Re-
spondents then complete the survey using a point and click interface. The survey
is generally visually and functionally similar to traditional surveys.

Web-based data collection provides several advantages over paper form data
collection. For one, researchers can reach populations that previously might have
been inaccesible due to geographical or cultural boundaries. Use of the web may
also speed up the time of data collection, since no testing site or appointment
scheduling is necessary, and the need for data entry by study personnel is elim-
inated. Web-based systems can also minimize the variation due to differences in
survey administration, interviewer interpretation and entry of data. Since compli-
cated branch and skip patterns can be programmed into the survey, the amount of
interviewer or respondent attention necessary is reduced. Costs can drop dramat-
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ically with the use of web-based data collection, as there is no need for printing,
mailing, and data collection personnel. Web-based surveys also provide a greater
degree of anonymity for the collection of sensitive personal information (Baer
et al. 2002).

It is important to realize, however, that depending on the situation, some ad-
vantages of web-based systems can become disadvantages. In certain populations
or countries, for example, the cost of printing, mailing and administering a paper
questionnaire might be considerably less than the cost of setting up a web-based
system and providing training and access to study participants. Other disadvan-
tages of web-based data collection include the possibility of selection bias when
choosing a study population, and security problems during data transmission.
The issue of computer users being unrepresentative of the general population can
be overcome to some extent by providing internet access to a randomly sampled
study population (Silver et al. 2002). Literacy or language barriers, however, may
still prove to be an issue.

Incorporating strict security measures in an electronic data entry system is
crucial to maintaining data confidentiality, and can require considerable time and
monetary resources. In some instances, it might be possible to provide a quick
solution to this problem by linking the survey security to an existing high-security
system, such as a university network.

While the use of web-based systems is a promising avenue of data collection for
studies, such systems require considerable expertise for adequate set-up. Often,
initial versions of web-based questionnaires present frustrating technical problems
to users, and may require several iterations before a working system is in place.
Web-based systems may be inappropriate for populations that are not computer-
literate. It may be more difficult to adress ethical concerns which arise during
the course of a study in the context of web-based data collection. For example,
the investigators still bear responsibility for verifying informed consent, or for
providing local targeted support in case the respondent needs a referral as a result
of the research. Additionally, data entry errors by users can still occur. For these
reasons, the pre-testing of data instruments, post-entry error-checking, and other
forms of data quality control described in this chapter are as crucial for more
technologically advanced data collection as they are for more traditional forms of
data collection.

Data Audits
Once data have been entered, they must be submitted to further accuracy checks.
One method of assessing data accuracy is to perform a series of consistency checks,
such as ensuring that the date of birth and age of a participant are in agreement.
Reviewing samples that fall outside some number of standard deviations of the
mean is a sensible alternative way to check data. More formal statistical methods
for detecting outliers can also be used (Barnett and Lewis 1994; Vardeman and
Jobe 1999). The importance of using range checks is illustrated by a simulation
in which different rates of entry error were introduced into a constructed dataset,
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and simple range checks were used to identify and correct outliers. Even with
a random entry error rate as high as 20%, population means remained very similar
after the correction of unusual values, regardless of study sample size (Day et al.
1998). Error rates similar to those achieved with double data entry were achievable
when extensive logic checking of fields was incorporated (Mullooly 1990; Neaton
et al. 1990).

In instances where an unusual value is detected, a data quality query should be
generated either manually or automatically. A system for reporting and responding
to such queries needs be conceptualized during study planning, along with the
designation of individuals responsible for checking and responding to questions.
The automatic generation of regular quality control reports including summary
statistics such as the number of queries by form and data field, or the percentage
of error-free forms, can aid the systematic processing of data. Section 13.4 of this
chapter addresses the processing and resolution of error queries in more detail.

Comparing the number of forms that are edited using automated checks at
the data processing center to the number of forms recorded in the batch sent
by the field center allows the identification of forms that are lost during keying.
Additionally, a random sample of data forms should be compared to the electronic
data submitted to check accuracy of data entry.

Once routine edits have been completed, the data form can be posted directly
to a master file for smaller studies, or to a distributor file, for larger studies. In the
Multiple Risk Factor Intervention Trial (Mr Fit), the edited form was transferred to
a distributor file, which held all the forms that were edited in a day. At the end of the
day, forms held in the distributor file were transferred to one or more transaction
files, which served as temporary storage until the next scheduled update of the
master file. The use of transaction files allowed investigators the flexibility to
resolve discrepancies before the data were added to the master file. Transaction
files were generally copied to daily backup tapes so that data could be retrieved to
the time of the last back-up in case of processing errors, machine failure, or other
accidents (DuChene et al. 1986).

Forms Posting
In general, it is best to keep the interval between data collection and entry as short
as possible. If it is possible to process forms as they are generated, this is preferable
(Meinert and Tonascia 1986). However, if batch processing is found to be more
convenient, the scheduled time between subsequent postings of information from
the study transaction files (raw data) to the master file should not be longer than
two weeks. During forms posting, data fields from the transaction files are copied
to the location in the master file(s) specified in the data dictionary (a database of
information used to edit, document and control the processing of forms through
the computer system). The data management system should be programmed to
reject the form if errors are detected in the data identifiers, or if data are found to
already exist in the master file (unless the form to be entered is a correction form).
Personnel at thedata coordinating center can then reviewand resolvediscrepancies
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in rejected forms. If fields need to be modified in the master file, changes should
be explained and documented in the electronic file as well as on paper.

Backup of Raw Data
Once the forms have been posted to the master file, all transaction files containing
the posted forms should be copied on to a tape or other electronic medium such as
compact disc (CD) or digital video display (DVD), and stored offsite. In the event
of a major system failure or destruction of the master file (in a building fire, for
instance), the offsite copy will allow recreation of the master file.

Clearance
After the data are posted to a master file, computer edits of the master file allow
consistency checks between fields on different forms. For example, an individual’s
height should remain constant over forms. It is informative to flag inadmissible
values, as well as unlikely values. Additional within form checks can also be
performed at this time.

Archiving
When within-form verification and across-form clearance are complete, and data
on the master file are finalized, the master file should be copied on to at least
two tapes and stored off-site. These tapes should be read regularly to check for
deterioration. If a back-up tape cannot be read, a new copy should be made.

Quality Assurance Committee13.3.8

The most carefully designed quality assurance program cannot function efficiently
without the assignation of responsibilities for various quality monitoring tasks to
specific individuals, and the existence of effective communication channels be-
tween study personnel. In many large studies, a quality assurance committee is
formed to oversee the quality of data collection (Knatterud et al. 1998; The Chemi-
cal Manufacturers Association’s Epidemiology Task Force 1991; US Environmental
Protection Agency (EPA) 1989). The quality assurance committee addresses quality
issues throughout the life of the study, from protocol development to the respon-
sible archiving of data. The quality assurance committee is also responsible for
reviewing study compliance with written quality assurance|control procedures,
and for evaluating interim analyses. For large studies, a data monitoring com-
mittee made up of external quality assurance auditors supportive of the protocol
objectives and study design might be warranted (Fleming 1993).

Communications13.3.9

The effective resolution of study quality issues is highly dependent on the quality
of communications between study personnel. Many of the quality assurance mech-
anisms already described in the chapter contribute directly to improved communi-
cation. Examples include the training of personnel, and the definition of standard
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operating procedures. Other quality assurance mechanisms depend critically on
communication for their implementation. In order for queries to be resolved ef-
fectively, study personnel need to know who to submit queries to, and how these
queries should be submitted. Structures for transmitting resolved data queries
back to data entry personnel are also needed. The scheduling of regular meetings
between study personnel is crucial for maintaining study communications. Em-
phasizing the rationale for quality control and the need for wholehearted support
for quality control measures is important, since quality control measures will fail
if they are perceived as nit-picky and burdensome (Cooper 1986). One or more
individuals should be designated responsible for preparing and disseminating the
minutes of study meetings. More generally, communication structures should be in
place to communicate the intent, conduct, results and interpretations of the study
to study personnel, study participants, and the scientific community. In certain
situations, other parties that might need to be informed of study results include
health care providers, policy makers, or the media.

Cost of Quality Assurance 13.3.10

Clearly, the implementation of quality assurance and quality control measures
add to the cost of a study. While some expenses, such as the cost of routine data
editing, or the re-checking of statistical analyses may be impossible to estimate,
cost information can be projected for other aspects of quality assurance, such as
training, site visits, and external quality control programs (Knatterud et al. 1998).
Considering the cost of various quality control measures early in the planning
process allows for development of a realistic and feasible program that is more
likely to be executed. Priorities for data quality should be set at this time. While
certain aspects of data quality should not be sacrificed regardless of the expense,
a compromise might be possible in other instances. For example, a costly, time-
consuming measure of exposure might be collected for a sub-sample of study
participants and this information can be used to validate a cheaper exposure
measurement used for all study participants.

Ethical Considerations 13.3.11

Ethical considerations are perhaps the most important set of considerations in
a study (for a general discussion see Chap. IV.7 of this handbook). Epidemiological
research shouldnever lose sightof the fact thatdataarederived fromhumanbeings.
Studies such as the Tuskegee Syphilis Trial (US Department of Health Education
and Welfare (DHEW) 1973) which followed the progress of untreated syphilis in
black men even after effective treatment was available may now seem shocking,
but it is well to keep in mind that throughout most of the trial, the investigators did
not find their research particularly objectionable. The thorough consideration of
ethical issues raised by a study (mandated by law in most countries) will hopefully
prevent a future generation of scientists from looking back at present-day trials
with regret.
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The human subjects section of the protocol must describe whether the study
protocol imposes any physical or psychological risk to the participants. Poten-
tial benefits of the study should also be noted, with an explanation of whether
benefits will be accrued by study participants themselves, or whether the study
is expected to benefit others in the future. The cost-to-benefit ratio should be
weighed and discussed. Studies that involve primary data collection generally
need to obtain informed consent from study participants. Consent forms should
include, at a minimum: contact information for personnel available to answer
questions about the research; the purpose of the study; eligibility requirements;
the expected duration of participation; possible harm that the subjects could incur;
expected benefits to subjects or to others; information on the voluntary nature of
participation, and a statement indicating the right to withdraw from the study
at any time (The Chemical Manufacturers Association’s Epidemiology Task Force
1991). The study eligibility criteria are also subject to ethical considerations, both
in terms of inclusions (different racial|ethnic groups and both genders should be
adequately represented) and exclusions (special justification is needed for study
of vulnerable groups, such as pregnant women, children, or incarcerated individ-
uals). Adequate provisions for maintaining data confidentiality and the privacy of
individuals should be described. For example, investigators might plan to store
hard copies of sensitive data in locked cabinets with limited access and remove
personal identifiers from datasets used for analysis. Automated data management
systems should have password control, users should be logged out after a period
of inactivity, and the copying of data should be discouraged (Wyatt 1995).

Quality Considerations
During Study Conduct13.4

Before data collection is initiated, all data collection procedures should be reviewed
and approved by the lead investigators. Data forms and equipment should have
been tested, and certified ready for use.

If rigorous quality assurance procedures have been planned prior to study
initiation, quality control activities during study conduct mainly consist of the
implementation of these procedures. The study protocol should be followed, per-
sonnel should be trained according to established standard procedures, and data
collection should proceed with all quality assurances in place. Any deviation from
standard operating procedure should be authorized by the Steering Committee.

The importance of periodic examination of data by study investigators, data
coordinators, and data entry personnel while the data are being collected cannot
be overstated. Examination of data trends by center, over time, or by technician
(for example), can identify flaws in data collection early on. Even simple plots and
graphs of data can identify sources of error. When data errors are identified, steps
should be taken to correct the data in a timely manner. In some cases, statistical
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adjustment can be used to correct data drift. When this is not possible, data might
have to be thrown out, or completely reprocessed. In order to generate a written
audit trail of data, any changes made in the data should be documented.

Training and Certification 13.4.1

The importance of training and certifying all study personnel has already been
underlined in Sect. 13.3.3. While many study investigators are aware of the need
for standardized operating procedures, information regarding these procedures is
often lacking in study descriptions. While 244 original research articles in three
emergency medical journals (1989–1993) described data collection by means of
chart review, only 18% mentioned training of abstractors, and periodic abstracter
monitoring was reported in a mere 3% of these articles (Gilbert et al. 1996).

Detailed practical guidelines for training and quality control management for
study interviewers, data abstractors, and biomedical technicians are available in
the literature (Edwards et al. 1994; Fowler and Mangione 1986, 1990; Reisch et al.
2003). This section summarizes some of the main considerations.

Training
Training procedures should ideally involve all staff and procedures. While cen-
tralized training of all study personnel might be desirable in terms of increasing
the comparability of data collection between sites and allowing study personnel
from different sites to interact with each other, the expense of bringing personnel
to a central training site for all their training can be considerable. Additionally,
site-specific questions might arise that cannot be adequately addressed during
centralized training. An optimum strategy might be to use both types of training.
Table 13.4 provides an overview of the training process.

Certification
Following initial training, study personnel should be certified to perform spe-
cific procedures. Regular re-training is desirable to prevent data drift. Re-training
might also be necessary if a specific study technician is found to be introducing
a systematic error into the data, or if the study protocol changes. Any re-training
should be accompanied by recertification.

While the interval between re-training and certification varies from study to
study, the Atherosclerosis Risk in Communities study (ARIC) used a 90-day inter-
val, since a six-month interval was found to allow too much drift to recognize and
correct digit preference. More timely feedback was also needed in the Cardiovas-
cular Health Study (CHS) (Hill 2003).

Maintenance and Calibration of Equipment 13.4.2

Study equipment should be inspected and calibrated at regular intervals in accor-
dance with the study protocol. In the event of equipment breakdown, equipment



536 Preetha Rajaraman, Jonathan M. Samet

Table 13.4. Overview of Training∗

Steps in data processing

Training manual Educational trainingmanual is sent toall sites
for review.
The training manual consists of some or all
of the following: a study overview, informa-
tionon the relevantprocedure, quality assess-
ment procedures, data forms with instruc-
tions (e.g. for abstraction or interview), quick
reference sheet for all variables, glossary of
terms, standardized training examples, and
relevant articles from the literature.

Standardized training examples Training examples shouldbeprepared for key
study variables. For instance, study person-
nel might be asked to note blood pressure
measurements from a training tape.

Individual orientation Two or more individual orientation sessions
should be arranged with the onsite data col-
lection team, and with the lead study co-
ordinator and|or study investigator. Addi-
tional sessions can be scheduled at the dis-
cretion of the site co-ordinators.

Double-review of initial data The first few examples of data collected (by
chart abstraction, interview, or a biomedi-
cal procedure) should be repeated by a more
experienced member of the data collection
team. Discrepancies can then be reviewed.
Queries should be entered into an audit form
and sent to the lead study co-ordinator to as-
sist with later tracking of problematic data.

Regular double-review Performing regular double review for a small
sample of data (e.g. once a month) can pre-
vent data drift over time. Review of data at a
later time is facilitated by audio or video tap-
ing of interviews or biomedical procedures.

Regular conference calls|meetings
of field staff

Regular study conference calls can include a
training component if examples of data col-
lection problems are brought up for discus-
sion during each call. An updated decision
log containing a summary of discussions held
and decisions made during these conference
calls can be distributed among study person-
nel.

Regular site visits Review of data collection procedures dur-
ing site visits by the lead study coordinator
and|or lead investigator.

Retraining Retraining of study personnel might be nec-
essary if substantial time has passed since
initial training, a systematic bias in data is
detected, or the study protocol changes.

∗ adapted from Reisch et al. (2003)
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may need to be replaced. If the new equipment is similar to the equipment already
being used, then calibration before use is sufficient. When replacement of existing
equipment is desirable because a new model or instrument is more accurate or
efficient than the existing equipment, data should be collected using both the old
and the new instrument for a defined period of time, so that comparability of
measurements can be established.

Implementing Data Management 13.4.3

The data management process has already been described in detail in Sect. 13.3.7.
During study conduct, the planned data management system is implemented, and
refined as necessary.

Tracking and Monitoring of Data
The effective tracking and monitoring of data as data collection is in progress is
essential to the timely detection and correction of errors. Monitoring should occur
for subject accrual, data acquisition, and data quality. Automated tracking systems
can greatly assist this process, and have been used successfully in epidemiological
studies as early as 1981 (McQuade et al. 1983). Data that are collected by hand
should be recorded directly, promptly, and legibly in ink. Four different types
of monitoring are recommended: pro-active efforts to improve data, observation
of data collection, review of computer-generated checks and summary reports, and
examination of data.

Whenpossible,dataquality shouldbe improvedbypro-active efforts.Automated
reminders of when patients are due for study visits for time-dependent variables
(e.g. levels of an exposure biomarker) can prevent the collection of data that is
later deemed of poor quality or unusable. Target dates for follow-up visits can be
defined by the participant’s entry date rather than the date of the last visit, in order
to prevent scheduling deviations from carrying over to future visits.

Direct or indirect observation of data collection can also identify errors in
a timely manner. An unobtrusive way to monitor interviewers for delivery and
adherence to protocol is to audio-tape interviews. Measurement techniques for
biomedical or laboratory technicians can either be videotaped, or directly ob-
served by senior technicians or other qualified study personnel.

Regular review of computer-generated queries and summary reports of data
quality can alert the investigators to a variety of data errors, including participant
ineligibility, data outside the expected range, and variation in data quality by data
field, site, or technician. Active examination of data during collection is crucial.
Summary statistics and plots of data by technician, site or time can identify unusual
trends. For example, an examination of data from the Hypertension Prevention
Trial revealed that nearly 29% of the baseline systolic blood pressure readings
from one clinic ended in the digit 2. This could be traced to measurements made
by one technician, who recorded a number ending in the digit 2 for over 60%
measurements (Canner et al. 1991). When a data collection flaw is identified,
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further error should be prevented by tracking down the source of the problem,
and taking corrective action.

Keying errors may be identified by periodic audits of the database against source
documents. Rather than check all the data, a random sample of data fields can be
selected to check for keying errors. When creating the test sample, it is important to
ensure that a broad cross-section of data is included (for example, both numerical
and character fields should be checked). One method for sampling a variety of
fields is to choose a random sub-sample of forms, and look at all fields within
those forms.

Corrective Actions
Moving back to the datascope for a moment, we recall that the identification of
data errors is only the first step in data quality management. In order to reach
the ultimate goal of valid data, these errors need to be corrected. The process for
revising data should be as systemized and well documented as the process for
locating errors. While the routine correction of careless mistakes while data entry
is in progress need not be reported, data errors that are identified after initial data
entry should not be changed by data entry staff until the query has been checked.
A paper trail should be initiated for each problem, with the initial query describing
the problem, and the date it was detected (Fig. 13.2). The individual(s) responsible
for query resolution should then investigate the query, and provide a response
explaining why the problem occurred. Finally, the query documentation should
indicate how and when the problem was resolved. If data from a form are found
to be incorrect, they should be identified as incorrect rather than erased, and the
correct values should be inserted (Knatterud et al. 1998). In some cases, unusual
values will be confirmed to be correct, in which case they should be retained in the
database with documentation.

Occasionally, errors identified during study conduct may lead to changes in the
survey instrument or other study equipment. In such cases, it is crucial that the
version of the form or equipment used to collect data is recorded in the database.
If a new data check is added, either as a result of a query or as an additional
precaution, old values in the database should be edited using the new rules in
order to keep data consistent.

Tracking the time taken for corrective actions allows areas of delay to be identi-
fied and resolved for future queries. In most longitudinal studies, data are analyzed
while data collection is still in progress. In such instances, one might want to ex-
clude data that are under query from the master database until the problem is
resolved. The inclusion of a “status” field for data would allow investigators to
check whether values were acceptable or unacceptable (Gassman et al. 1995).

Site Visits13.4.4

For multi-center studies, site visits to observe operations allow greater understand-
ing of site-specific data collection issues, and provide an opportunity to recognize
and correct faulty systems (Gassman et al. 1995; Knatterud et al. 1998; Prud’homme
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Query

Subject ID: 111770

Form: 121 Item Questioned: 5, 6a

Date of Visit: 08|28|02 Visit Number: 2

Description: Subject claims to be a former smoker (ev_smok = 2), but
reports currently smoking five cigarettes a day (cur_cig = 5).

Date: 12|6|02

Initials: PR

Response

Form to correct: 121 Item to correct: 6a

Old value: 5

Correct value: 0

Explanation: Checked subject’s medical record and past questionnaire.
Subject is a former smoker.

Date: 12|11|02

Initials: DR

Documentation

Correction: Value of cur_cig has been changed from 5 to 0.

Date: 12|20|02

Initials: TN

Figure 13.2. Example of a Data Query Form

et al. 1989). Scheduling a site visit is recommended shortly after initiation of pa-
tient recruitment, and when the data collection at the site is drawing to a close.
Additional site visits should be scheduled for long-term studies.

The size of the site visit team can vary, and is dictated by the nature and
purpose of the visit. A typical site visit team might include the study princi-
pal investigator (or representative), the director of another field site, the data
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coordinating center director, the study project officer, and selected resource per-
sonnel. During the site visit, the site visit team would meet with the director
and staff of the unit, and hold private conversations with key support person-
nel. The site visit should include a thorough review of staffing requirements,
recruiting, training and certification, and communication structures. Site visi-
tors also have a chance to observe data collection, check data management, and
review data quality monitoring. Specific activities might include observation of
whether field technicians follow the study protocol, inspection of study records
and documents storage, and review of the operation and maintenance of local
data systems. Following the site visit, the leader of the site visit team should
prepare a written report of the visit based on input from the entire team. The
site visit report should describe any systematic errors that were identified in
data collection, and provide recommendations on how to rectify the situation.
A formal response to the report should be prepared by the staff at the study
site.

Quality Considerations
After Data Collection13.5

Oncedatacollection for the study is complete, the taskof analyzingand interpreting
the data begins. The study investigator should yet again consult the datascope to
check for possible biases and errors that need to be resolved in order to form a clear
picture of the relationship under study.

Reporting Response Rate13.5.1

If individuals who agreed to participate in the study were different in some impor-
tantway fromnon-respondents, the study results couldwell bebiased. For example,
non-respondents to questionnaires might be of poorer health or more likely to be
smokers than respondents (Shahar et al. 1996). Studies that have followed respon-
dents and non-respondents to questionnaires have reported that non-respondents
have a significantly higher risk of myocardial infarction, cancer mortality, and
all-cause mortality (Bisgard et al. 1994; Heilbrun et al. 1991).

Calculating the study response rate gives a first indication of whether the inves-
tigator should be concerned about possible bias in the results. Generally, the higher
the study response rate, the less need to worry about selection bias affecting the
results. The simplest approach to response rate calculation is to divide the number
of surveys received by the number of surveys sent. However, this does not account
for factors that can affect the response rate such as undelivered questionnaires,
ineligibility of subjects who completed questionnaires, or substitution of the in-
tended recipient with another subject. Typically, the numerator and denominator
of the response rate are adjusted to reflect such factors. Standard definitions and
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methods to calculate survey response rates are provided by the American Asso-
ciation for Public Opinion Research (2000), or the Council of American Survey
Research Organizations (CASRO).

For cohort studies, the simplest way to estimate the follow-up rate is to the divide
the number of participants seen at the last visit by the number of participants
initially enrolled. Again, different assumptions about individuals lost to follow-up
yield different numbers for the follow-up rate.

Since different methods of calculating the response rate might be appropri-
ate for different studies, the choice of the response rate formula is less critical
than the identification and reporting of all the elements that enter the calculation
(Table 13.5).

In general, response rates to questionnaires have been decreasing in the United
States, and perhaps elsewhere (Kessler et al. 1995; Steeh 1981). Data from a nation-
wide survey in the United States (the Behavioral Risk Factor Surveillance System,
BRFSS) indicate that response rates from random digit dialing have declined from
a median of 68.4% in 1995 to a median of 55.2% in 1999 (Centers for Disease Con-
trol and Prevention (CDC) 1999). A review of 82 case-control studies published in
the American Journal of Epidemiology (1988–1990), Epidemiology (1997–1999) and
Cancer Epidemiology, Biomarkers and Prevention (1997–1999) reporteda0.2%and
0.44% decrease in reported response per year for cases and controls, respectively
(Olson 2001). The same article reported an average response rate of 76.1% for
cases and 71.5% for controls. A review of 321 distinct mail surveys published in
a broader spectrum of United States journals in 1991 reported an average survey
response rate of 62% (Asch et al. 1997).

Regardless of the exact value of the response rate, the characterization of non-
respondents is crucial in order to assess whether a bias is present, and if it is,
how the results of the analysis might be affected. Clearly, describing the non-
respondents becomes more important when a study has a low response rate.
Whenever possible, a brief survey should be administered to non-respondents
to collect limited data for comparison with respondents. Otherwise, assessing
available data on demographics, exposure or outcome will allow some assessment
of possible bias.

Analysis 13.5.2

Before proceeding to analysis, the study data should be tested rigorously to check
for residual errors that remain after all data processing and routine quality assur-
ance activities are complete. Range checks provide one way to examine whether
the data seem reasonable. Simple queries such as checking that the recorded age
in years is consistent with the date of interview minus the recorded date of birth,
can also help to detect errors.

Once the investigator feels confident that there are no obvious flaws in the
data, the next step is to understand the data by conducting exploratory data
analysis using univariate and bivariate summaries, as well as plots and graphs
of the data. More complex exploratory analysis of the data should be guided by
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Table 13.5. Reporting outcomes of recruiting respondents in case-control studies in a study of thyroid

cancer in western Washington∗

Units selected from sampling frame Number

Random digit dialing screening phase

Total 6741

Ineligible sampling unit

Total 3589

Business, fax, government 1937

Nonworking numbers 1436

Institution, group quarters, dataline 216

Unable to determine eligibility

Total 431

Unknown if residential 274

Residential, unknown if individual eligible 157

Answering machine on all attempts 56

Refusal to answer questions on eligibility 76

Other (language barrier) 25

Respondent not eligible

Total 1983

Age 1749

County 216

Language 18

Respondent screened and eligible, total 738

In-Person interviews of eligible women

Total 738

Unable to determine eligibility 0

Respondent not eligible

Total 1

Prior thyroid cancer 1

Respondent screened and eligible

Total 737

Not interviewed (refused) 163

Interviewed 574

∗ adapted from Olson et al. (2002)

the data. If assumptions implicit in the planned analysis methods are violated,
alternative statistical methods must be considered. Appropriate and careful sta-
tistical analysis is integral to good epidemiological practice. A description of
basic methods of analysis for epidemiological study designs can be found in
Part II of this handbook “Statistical Methods in Epidemiology,” and in most
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intermediate textbooks of epidemiology (Rothman and Greenland 1998; Szklo
and Nieto 2000). Some of the key issues underlying the analysis of cohort and
case-control studies are summarized in Chaps. I.5 and I.6 of this handbook
and in a two-volume series published by the International Agency for Can-
cer Research (Breslow and Day 1980, 1987). The finer points of analysis, how-
ever, are study-specific. For this reason, it is crucial that data analysis be con-
ducted by personnel with the necessary training and experience in statistical
methods.

Once data analysis is complete, ways to check the analysis include independently
reproducing the tabulations and statistical calculations from the original data, and
checking different tables for consistency of the denominators. All data reduction
and statistical procedures should be documented to facilitate review at a later date.

The results of any study are associated with some degree of uncertainty. To
the extent possible, these uncertainties should be quantified and accounted for,
or, at the minimum, characterized quantitatively. In an analysis of risk factors
for coronary disease in the Framingham Heart Study, estimates of risk increased
for factors measured with substantial error after correction for uncertainty (e.g.
serum cholesterol), whereas risk estimates tended to remain unchanged for risk
factors with little or no error, such as body mass index (Rosner et al. 1992).

The analysis of study data is followed by the task of interpreting the study
results. An observed association might be due to statistical artifact, due to bias
or confounding, or be truly causal. The use of statistical significance alone to
guide inference is not recommended (Goodman 1999a; Goodman 1999b). If one
hundred truly null associations were tested at the α = 0.05 level, five of these
associations would be significant due to chance alone. Moreover, an association
might be confounded by one or more variables, or could be biased due to systematic
flaws in the design or conduct of the study.

Following adequate consideration of chance, confounding and bias (cf. Chap. I.9
of this handbook), the determination of whether an association is causal will also
depend on temporality, the strength of the association, the presence or absence of
a dose-response relationship, consistency with prior literature, and biological plau-
sibility (Gordis 2000; US Department of Health Education and Welfare (DHEW)
1964).

If an exposure is believed to cause the disease in question, this exposure must
occur before the disease develops. Temporality is easier to establish for prospective
cohort studies for which exposure information prior to disease outcome is avail-
able. For cross-sectional or case-control studies, exposure information is usually
collected concurrently with disease information or has to be recreated from his-
torical records of exposure, making the assessment of temporality more difficult.

In general, the larger the magnitude of the association, the more likely it is
that the relationship between the exposure and disease is causal. In epidemiologic
studies, the strength of the association is usually measured by the relative risk or
odds ratio.

If it can be demonstrated that increasing the dose of an agent is associated with
increased occurrence of disease in a well-defined relationship, this provides more
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evidence for causality. The absence of a dose-response relationship, however, does
not preclude a causal relationship; since it is possible that no disease develops
until a certain exposure level is reached, after which disease can occur (“threshold
effect”).

Consistent replication of a finding in different study populations provides fur-
ther evidence for a causal relationship. However, it is possible that an association
only occurs in certain population sub-groups, in which case it might be seen in
some populations but not others.

Before concluding that an association is causal, it is important to consider
biological plausibility. While it is possible that epidemiological studies can detect
associations which are not yet understood on a biological level, attempting to
understand how the exposure might cause the disease in question is nonetheless
worthwhile.

Once the results of a study have been finalized, the investigators should consider
how they plan to communicate the results, and to whom. Groups that should be
informed, in general, are the study personnel, study participants, and scientific
community. If the resultsof a studywarrant immediateaction,healthcareproviders
and policy makers should also be alerted. While it is important that the media is
informed of the results of studies that have relevance to the general public, it is
generally prudent to wait until the study is published in a peer-reviewed journal,
since the process of critical review of a study allows for the identification and
correction of key flaws.

A typical study report consists of the following sections: introduction, methods,
results, and discussion (Table 13.6).

Regardless of the audience for the report, results should always be placed in
context of the uncertainties and limitations associated with the findings. Describ-
ing results in terms of adjectives such as “definitive” or “conclusive” should be
avoided. Too often, associations that receive much publicity to begin with have to
be rescinded in light of further research.

Concise, simple language aids clarity of presentation. For written reports, ade-
quately labeled tables and figures should be used to summarize information when
possible. Information presented in tables should not be merely repeated in the text
without additional interpretation.

It is important that results of well-designed studies are reported regardless
of whether findings are negative or positive. The tendency for positive findings
to be highlighted, both in terms of submission and final publication, biases the
perceptionof the trueassociationbetweenexposureandoutcome.This is especially
problematic in the context of meta-analyses (cf. Chap. II.7 of this handbook) that
attempt to quantitatively summarize published studies. A bias towards publishing
positive findings results in a biased estimation of overall risk (Easterbrook et al.
1991; Egger and Smith 1998; Ioannidis 1998; Thornton and Lee 2000).

Studies with substantive findings on a research question may have implications
for policies related to public health. Researchers may appropriately highlight such
findings in their reports, often at the conclusion of the discussion, commenting
on the extent to which new knowledge has been generated with policy implica-
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Table 13.6. Guidelines for preparation of a study report∗

Introduction
Review study rationale Describe importance of problem.

Biological plausibility.
Howdoes this studyadd toexisting literature?

State hypotheses Specify interactions of a priori interest.

Methods
Describe study population Methods of recruitment.

Inclusion and exclusion criteria.

Describe data collection Include accuracy and reliability of proce-
dures, and quality control measures.

State criteria for identification
of confounders

Describe statistical methods Justify categorization of study variables.
State assumptions of selected model.

Results
Describe rates of participation or response

Provide descriptive data Frequency distributions, means, unadjusted
differences.
Stratify by variables of interest e.g. age, sex.
Quality control measures.

Present results of model Use most parsimonious model.
Additive and multiplicative interactions, if
present.

Tables and figures Should be self-explanatory.
Use informative labels, and units.

Discussion
Review main study results Compare and contrast with published

literature.

Describe strengths and limitations of study

Assess bias and confounding How much would study results be affected by
bias|confounding?

Address uncertainty How precise are the study estimates, given
misclassification?

Clinical, public health policy implications. If strength and impact of study results
warrants.

Future directions How to improve on study, build on findings.

∗ adapted from Szklo and Nieto (2000)
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tions. There has been substantial debate among epidemiologic researchers as to
whether publications should also make policy recommendations (Samet 2000).
In general, policy recommendations should not be made in publications provid-
ing research findings, particularly within the constraints of the policy expertise
of most researchers and the space that can be devoted to such discussion in an
article.

Storage and Retrieval of Data13.5.3

Commitment to an epidemiological study does not end with the publication of
the final papers. After the study is completed, sufficient material should be stored
to allow future sharing of the data or auditing of the study. An index of all stored
study materials should be created, along with a description of where they can
be located. Materials that should be considered for archiving include source data
and specimens, laboratory or research notebooks, and the study protocol. Also
included should be the final study report, computer data files, copies of com-
puter programs and statistical procedures that were used in analysis, and any
printouts of analyses that formed the basis of results included in the final report
(Freedland and Carney 1992; The Chemical Manufacturers Association’s Epidemi-
ology Task Force 1991; US Environmental Protection Agency (EPA) 1989). If ap-
plicable, study forms and related forms should be destroyed in accordance with
local statutes and medical records. In order to ensure safety and confidentiality
of study materials, storage should be in a physically secure place with limited
access.

Periodic checking of stored material is recommended, to ensure that necessary
updates have been made and to avoid unnecessary clutter. Original records can
be transferred to microfilm for storage purposes, to conserve space. If microfilm
is used, the original records should be retained until the microfilm is checked for
proper identification and legibility. For very large studies, electronic storage of
study data might make sense given space and cost limitations.

Conclusions13.6

The field of epidemiology has been growing rapidly, with a vast number of epidemi-
ologic studies published every year. A search for “Epidemiology” in the PUBMED
database yielded 287 references for the year 1964. A similar search for the year 2002
yielded 46,658 references (Fig. 13.3). The results of many of these studies, however,
are inconsistent. These inconsistencies are sometimes due to chance, but often
can be ascribed to the variable quality of studies with respect to design, conduct,
analysis or dissemination.

As a consequence of the inconsistent results reported by epidemiological stud-
ies, many consumers of epidemiological research including clinicians, policy-
makers, and the general public, are dismissive of new findings. The importance of



Quality Control and Good Epidemiological Practice 547

Figure 13.3. Number of references to “Epidemiology” in the PUBMED database, 1964–2002 (no

delimiters)

a widespread effort to follow good epidemiologic practice and implement rigorous
quality assurance and quality control procedures cannot be overstated.

Even as this chapter is being written, the methods of data collection, pro-
cessing and storage are changing rapidly as technological innovations emerge.
However, the basic principles of good epidemiologic practice, data quality as-
surance and control will not change. The increasing use of e-mail or web-based
questionnaires may reduce data error due to data transfer from paper to elec-
tronic files, for example, but errors due to poor questionnaire design or data
entry (to name just a few sources of error) will still exist. Similarly, electronic
processing and storage of data might be helpful in identifying unusual values,
but study investigators will still need to review, interpret, and correct these
errors.

In this chapter, we have reviewed quality assurance and quality control activ-
ities pertinent to the planning, conduct and reporting of a study. The mental
exercise of “optimizing” the dials on the datascope can be useful while con-
ducting epidemiological studies, and when considering the results of already
published studies. As high quality research becomes the norm, the field of epi-
demiology will gain more respect among fellow scientists, policy-makers, and the
public.
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Introduction 1.1

When planning a research project an epidemiologist must consider how many
subjects should be studied. While factors such as available budget certainly present
constraints on the maximum number of subjects that might actually be included in
astudy, statistical considerationsareextremely important.Toaddress the statistical
questions about appropriate sample size, the researcher must first specify the study
design, the nature of the outcome variable, the aims of the study, the planned
analysis method, and the expected results of the study. Is the goal of the study
to distinguish between hypotheses about the value of a parameter or function of
parameters, or is the goal to provide a confidence interval estimate of a parameter
such as the odds ratio or relative risk?

This chapter is organized as follows. We introduce the issue of how to choose
sample size for estimation of a parameter or for a hypothesis test regarding a pa-
rameter in the context of one-sample studies in which it is desired to estimate
or test a population proportion. We continue on to two-sample studies involving
comparisons between two proportions, and one and two-sample studies involving
estimation or testing of population means. We conclude with a section on sample
size for logistic regression.

In this chapter we will provide a brief introduction to power and sample size
computation and only address sample size issues for a few of the procedures that
are most commonly used in epidemiologic research. However, we do hope that
the reader will gain a sense for what one can accomplish by planning a study with
appropriate attention to sample size considerations.

A focus on sample size considerations when the study is first being planned is
critical for the ultimate likelihood that a study proposal is accepted for funding
and that the final manuscript will be accepted for publication. To ignore the issue
of sample size would greatly increase the likelihood of embarking on a costly and
time-consuming epidemiologic study with little likelihood of finding any definitive
results.

One Group Designs,
Inferences About Proportions 1.2

The simplest study design is one in which interest focuses on results for a single
group. One is often interested in making inferences about the value of a population
proportion. In this section we will illustrate how to choose sample size for the
following examples:

Example 1 . A district medical officer seeks to estimate the proportion of chil-
dren in the district receiving appropriate childhood vaccinations.

Assuming a simple random sample is to be selected from a community, how many
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children must be studied if the resulting estimate is to fall within 10 percentage
points of the true proportion with 95% confidence? �

Example 2 . Consider the information given in Example 1, only this time we
will determine the sample size necessary to estimate the proportion

vaccinated in the population to within 10% (not 10 percentage points) of the true
value. �

Example 3 . During a virulent outbreak of neonatal tetanus, health workers wish
to determine whether the rate is decreasing after a period during

which it had risen to a level of 150 cases per thousand live births. What sample
size is necessary to test the null hypothesis that the population proportion is 0.15
at the 0.05 level if it is desired to have a 90% probability of detecting a decrease to
a rate of 100 per thousand if that were the true proportion? �

The first two examples involve estimation and confidence intervals while the
third involves a statistical hypothesis test.

The usual model underlying testing or estimation of a population proportion
assumes that the design involves a simple independent random sample from a pop-
ulation in which the probability of a “success” is constant. The distribution of the
number of successes in a sample of size n with a true underlying proportion of
successes denoted by π is given by the binomial distribution. However, formulas
are simplified when power and sample size determinations are made on the basis
of using the normal approximation to the binomial.

The samplingdistributionof the sampleproportion“p” is approximatelynormal
with mean of π (the expected value of p, E(p) = π) and variance of p, Var (p) =
π(1 − π)|n; the standard deviation is

√
π(1 − π)|n.

Webeginbydiscussingsamplesizedetermination forestimation(theconfidence
interval approach) and then turn to sample size determination for hypothesis
testing problems.

Confidence Intervals for a Single Population Proportion1.2.1

Two-sided 100(1 − α)% confidence intervals for a parameter, θ, based on using the
normal approximation can be stated in general as:

θ̂ ± z1−α|2ŜE
(̂
θ
)

, (1.1)

where z1−α|2 is the100(1−α|2)thpercentileof thenormal (orGaussian)distribution.
For the commonly used two-sided 95% confidence interval, z1−α|2 = 1.96. The
100(1 − α)% confidence interval for π based on the estimated proportion, p, is
given by
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p ± z1−α|2

√
p(1 − p)

n
. (1.2)

Letting, ω be the half-width of the confidence interval for the expected true value π,
we have

ω = z1−α|2

√
π(1 − π)

n
. (1.3)

The sample size necessary to achieve a confidence interval of width ω is given by

n =
(z1−α|2

ω

)2
[π(1 − π)] . (1.4)

Returning to Example 1, we begin by assuming that the rate of vaccinated children is
expected to be about 75%. We would then set π = 0.75, ω = 0.10 and z1−α|2 = 1.96.
From (1.4) we find that n = 72.03. Note that for sample size calculations we round
up. We conclude that to estimate the expected population proportion to within
±0.10, a sample of 73 children would be required.

If we don’t really know what rate to expect we can make use of the fact that n will
be largest for π = 0.50 and use this value to solve for n. For Example 1 we require
a sample size of 97 to be sure that the confidence interval width will be no wider
than plus or minus 10 percentage points no matter what the observed proportion
is.

Table 1.1 presents the required sample sizes for selected values of π and ω.

Table 1.1. Sample size for 95% two-sided confidence interval for a proportion (using the normal

approximation) to have expected width, ω

ω
π ±0.05 ±0.10

0.50 385 97

0.25 289 73

0.10 139 35

Proceeding to Example 2, we consider the information given in Example 1, only
this time we will determine the sample size necessary to estimate the proportion
vaccinated in the population to within 10% (not 10 percentage points) of the true
value.

Let θ be the unknown population parameter as before and let θ̂ be the estimate
of θ. Let ε, the desired precision, be defined as:

ε =

∣∣̂θ − θ
∣∣

θ
.



564 Janet D. Elashoff, Stanley Lemeshow

In the present example, based on the confidence limits using the normal approxi-
mation to the distribution of p, it follows that∣∣p − π

∣∣ = z1−α|2

√
π(1 − π)√

n

and, dividing both sides by π, an expression similar to the one presented above for
ε is obtained. That is,

ε =

∣∣p − π
∣∣

π
= z1−α|2

√
1 − π√

nπ

and squaring both sides and solving for n gives:

n = z2
1−α|2

1 − π
ε2π

. (1.5)

Assuming π = 0.75, we would find that a sample size of 129 would be required to
assure that the 95% confidence interval would be within 10% of the true value.

Hypothesis Testing for a Single Population Proportion1.2.2

Suppose we would like to test a null hypothesis about the value of the population
proportion

H0 : π = π0

versus the one-sided alternative hypothesis

Ha : π > π0 .

Statistical hypothesis testing involves balancing the two types of errors that can be
made. Type I error is defined as the error of rejecting the null hypothesis when it is
in fact true. We denote the probability of making a Type I error as “α”; a commonly
used choice for α is 0.05. The critical value of the test statistic is then chosen so
that the probability of rejecting the null hypothesis when it is true will be α.

To choose the necessary sample size, we need to address Type II error as well.
A Type II error is the error of failing to reject the null hypothesis when it is in fact
false. To determine the probability of a Type II error (denoted by “β”), we must
specify a particular value of interest for the alternative hypothesis, say, πa. The
probability of rejecting the null hypothesis when it is false is defined as the power
of the test, 1 − β. Typically, we require the power at the alternative of interest to be
80% or 90%.

Based on the normal approximation to the binomial, the test statistic for a test
of the null hypothesis is given by

z =
p − π0√

π0(1 − π0)|n
.
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To set the probability of a Type I error equal to α, we plan to reject the null
hypothesis if z > z1−α. To choose n, we fix the probability that z > z1−α if the
population proportion equals πa to be 1 − β. This may be represented graphically
as shown in Fig. 1.1:

Figure 1.1. Sampling distributions for one-sample hypothesis test

In this figure the point “c” represents the upper 100 αth percent point of the
distribution of p for the sampling distribution centered at π0 (i.e., the distribution
which would result if the null hypothesis were true):

c = π0 + z1−α

√
π0

(
1 − π0

)
|n .

For the sampling distribution centered at πa (i.e., the distribution which would
result if the alternatehypothesiswere true), “c” represents the lower 100 βthpercent
point of the distribution of p:

c = πa + zβ

√
πa
(
1 − πa

)
|n .

In order to find n we set the two expressions equal to each other. From this, it
follows that:

π0 + z1−α

√
π0

(
1 − π0

)
|n = πa + zβ

√
πa
(
1 − πa

)
|n .

Noting that z1−β = −zβ, we find

πa − π0 =

{
z1−α

√
π0

(
1 − π0

)
+ z1−β

√
πa
(
1 − πa

) }
√

n
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and, solving for n, we find that the necessary sample size, for this single sample
hypothesis testing situation, is given by the formula:

n =

{
z1−α

√
π0

(
1 − π0

)
+ z1−β

√
πa
(
1 − πa

) }2

(
πa − π0

)2 . (1.6)

Notice that as πa gets further and further away from π0, the necessary sample size
decreases.

To illustrate, we return to Example 3 in which we wish to test the null hypothesis
that π = 0.15 at the one-sided 5% level and have 90% power to detect a decrease
to a rate of 0.10. Using (1.6), it follows that

n =

{
1.645

√
0.15(0.85) + 1.282

√
0.10(0.90)

}2

(0.05)2
= 377.90 .

Hence we see that a total sample size of 378 live births would be necessary.
To plan sample size for a two-sided test, we need only substitute z1−α|2 for z1−α

in (1.6) to obtain:

n =

{
z1−α|2

√
π0

(
1 − π0

)
+ z1−β

√
πa
(
1 − πa

)}2

(
πa − π0

)2 . (1.7)

To have 90% power for a two-sided 5% level test for Example 3 would require a total
of 471 subjects to detect the difference between the null hypothesis proportion, π0,
of 0.15 and the alternative proportion, πa, of 0.10. Note that the sample size
required to achieve 90% power for the specified alternative is larger when a two-
sided 5% level test is planned than when a one-sided 5% level test is planned,
so that the investigator needs to be clear as to whether the planned test is to be
one-sided or two-sided when making sample size computations.

Table 1.2. Sample size for 0.05-level, two-sided test that the proportion equals π0 versus the

alternative πa for specified levels of power (based on normal approximation)

Power
π0 πa 80% 90%

0.50 0.40 194 259

0.50 0.30 47 62

0.20 0.10 108 137

0.15 0.10 363 471

0.10 0.05 239 301

Table 1.2 presents the required sample sizes for selected values of π0, πa and
power. For a two-sided test, unless the null hypothesis proportion equals 0.5,
computed sample sizes for alternative proportions given by πaL = π0 − δ and
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πaU = π0 + δ will differ; the larger estimate of sample size will be obtained for the
alternative proportion closer to 0.5.

Additional Considerations and References 1.2.3

Good introductions to sample size computations for tests and confidence intervals
for a single proportion can be found in Dixon and Massey (1983), Lemeshow et
al. (1990), Fleiss (1981) and Lachin (1981). Books containing sample size tables
are available (e.g. Machin and Campbell 1987; Machin et al. 1997; Lemeshow et al.
1990).Commercially available sample size software suchasnQueryAdvisorRelease
5 (Elashoff 2002) can be used to compute sample size for confidence intervals or
hypothesis tests (based on either the normal approximation or an exact binomial
test) for a single proportion as well as for a wide variety of other sample size
problems.

For values of π near 0 or 1 (or for small sample sizes), sample size methods
involving a continuity correction (Fleiss et al. 1980), methods designed for rare
events (e.g. Korn 1986; Louis 1981), or methods based on exact tests (Chernick and
Liu 2002) may be preferable.

Note that an actual field survey is unlikely to be based on a simple random
sample. As a result, the required sample size would go up by the amount of the
“design effect” which is determined by the details of the actual sampling plan.
The “design effect” is the ratio of the standard error of the estimated parameter
under the study design to the standard error of the estimate under simple random
sampling; a text on sample surveys should be consulted for details (see Levy and
Lemeshow (1999)). For example, if a cluster sampling plan with a design effect of 2
were to be employed, the sample size computed using the above formulas would
need to be doubled.

Comparison
of Two Independent Proportions 1.3

Study Designs, Parameters, Analysis Methods 1.3.1

More sample size literature exists for the problem of comparing two independent
proportions than for any other sample size problem. This has come about because
there are several basic sampling schemes leading to problems of this type. There
are different parameterizations of interest and a variety of test and estimation
procedures that have been developed. Sample size formulations depend on the
parameter of interest for testing or estimation as well as the specifics of the test or
estimation procedure.

The basic study designs relevant to epidemiological studies are experimental
trials, cohort studies, and case-control studies. We describe each study type briefly
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and give an example. The examples will be addressed in more detail in subsequent
sections.

Experimental Trial. 2n subjects are recruited for a study; n are randomly assigned
to group 1 and n to group 2. The intervention is applied according to the design.
Subjects are followed for a fixed time and success-failure status is recorded. Exper-
imental trials are usually randomized, often double blind, and always prospective.
For example, patients with intestinal parasites are randomly assigned to receive
either the standard drug or a new drug and followed to determine whether they
respond favorably. The observed proportion responding favorably in group i is
denoted by pi and the true population proportion in group i by πi.
Experimental trials are typically analyzed in terms of the difference in proportions,
or the risk difference.

Population risk difference = π1 − π2 (1.8)

Estimated risk difference = p1 − p2 (1.9)

Cohort Study. n subjects are recruited from group 1 and n from group 2; subjects
are followed for a fixed time and success-failure status is recorded. Cohort studies
are typically prospective studies. For example, workers with asbestos exposure
and workers in the same industry without asbestos exposure are followed for the
development of lung disease.
Cohort studies may be analyzed in terms of the risk difference or in terms of the
relative risk.

Population relative risk = RR = π2|π1 (1.10)

Estimated relative risk = rr = p2|p1 (1.11)

Referring to the example, π1 denotes the true proportion of diseased workers in
the unexposed group while π2 denotes the true proportion of diseased workers in
the exposed group, and p1 and p2 are the corresponding observed proportions.

Case-Control Studies. n subjects (cases) are recruited from among those who
have developed a disease and n subjects (controls) are recruited from a similar
group without the disease. Subjects from both groups are studied for the presence
of a relevant exposure in their background. For example, tuberculosis (TB) cases
and controls are assessed for whether they had been vaccinated with BCG (Bacil-
lus Calmette-Guérin vaccine). Case-control studies are inherently retrospective
studies and interest is focused on the odds ratio.

Population odds ratio = OR = π2

(
1 − π1

)
|
(
1 − π2

)
π1 (1.12)

Estimated odds ratio = or = p2

(
1 − p1

)
|
(
1 − p2

)
p1 (1.13)
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Referring to the example, π1 denotes the true proportion of vaccinated subjects
among the controls while π2 denotes the true proportion of vaccinated subjects
among the TB cases, and p1 and p2 are the corresponding observed proportions.

Webeginbydiscussingsamplesizedetermination forestimation(theconfidence
interval approach) and then turn to sample size determination for hypothesis
testing problems.

Confidence Intervals for the Risk Difference 1.3.2

Example 4 . A pilot study with 20 subjects randomized to receive the standard
drug to control intestinal parasites and 20 to receive a new drug found

that 13 subjects (65%) receiving the standard drug responded favorably while 17
(85%) of the subjects receiving the new drug responded favorably.

Question 4a: Do these data establish that the new drug is better (lower limit of
confidence interval is greater than zero) and, if not, might it still be enough better
to warrant a larger clinical trial? We address this question with a confidence interval
below.

Question 4b: What sample size would be required for the larger clinical trial? We
address this question in the context of a confidence interval later in this section,
and in the context of a hypothesis test in the following section. �

The estimated value of the risk difference, π1 − π2, is given by p1 − p2, the observed
difference in proportions. The variance of p1 − p2 for independent proportions
when the sample sizes, n, in each group are equal is:

Var (p1 − p2) =
π1(1 − π1) + π2(1 − π2)

n
. (1.14)

This formula is based on the assumption that the data come from independent
random samples from the populations of interest. In population i, the probability
of a success is a constant, πi, and therefore the number of successes observed for
each group has a binomial distribution with parameters n and πi.

The standard error of this estimate, p1 − p2, is estimated by substituting the
observed proportions for the true proportions and is given by

SE(p1 − p2) =

√
p1(1 − p1) + p2(1 − p2)√

n
. (1.15)

Referring to the basic formula for a confidence interval based on the normal
approximation given in (1.1), a two-sided 95% confidence interval for the difference
in the proportions responding favorably to the new drug in comparison to the old
drug is given by

0.85 − 0.65 ± 1.96

√
0.85(1 − 0.85) + 0.65(1 − 0.65)√

20
.
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The limits are 0.20 ± 0.209 or −0.009 to 0.409, suggesting that although we cannot
rule out a difference of zero the data indicate that the new drug might work
markedly better than the standard.

The investigator wants to plan a definitive study to assess how much the success
rates really do differ. What sample size would be necessary to obtain a confidence
interval whose width is less than or equal to ±0.05?

We require that the confidence interval for π1 − π2, be p1 − p2 ± ω, where
for Example 4, ω ≤ 0.05. To obtain a confidence interval width satisfying these
conditions, we must have

z1−α|2

√
π1(1 − π1) + π2(1 − π2)√

n
≤ ω .

Solving this equation for n, the sample size in each group, we obtain (1.16).

n =
z2

1−α|2 [π1(1 − π1) + π2(1 − π2)]

ω2
. (1.16)

For Example 4, an n per group of 546 would be required to obtain an expected
95% two-sided confidence interval width of approximately ±0.05 if we expect to
see about the same proportions as we did in the pilot study.

Table 1.3 presents the sample size in each group necessary to obtain specified
confidence interval widths for a few selected examples. This table should provide
investigators with a quick idea of the order of magnitude of required sample
sizes. Note that since the confidence interval width depends on the postulated
proportions only through the terms πi

(
1 − πi

)
, this table can also be used for

proportions greater than 0.5.
If an investigator is a bit uncertain about what proportions to expect and wants

to ensure that the confidence interval width is less than some specified amount ±ω
no matter what proportions are observed, we can use the fact that the confidence
interval is widest when π1 = π2 = 0.5. In this case the sample size required for
each group is

n ≤ z2
1−α|2

2ω2
. (1.17)

Table 1.3. Sample size per group for 95% two-sided confidence interval (using normal approximation)

for risk difference to have expected width, ω

ω
π1 π2 ±0.05 ±0.10

0.50 0.50 769 193

0.50 0.25 673 169

0.50 0.10 523 131

0.25 0.25 577 145

0.25 0.10 427 107

0.10 0.10 277 70
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For a two-sided 95% confidence interval this becomes approximately 2|ω2. For
Example 4, the maximum sample size per group required for a confidence interval
width of no more than ±0.05 is 769.

Confidence Interval for Relative Risk (Ratio) 1.3.3

Example 5 . Workers with asbestos exposure and workers in the same industry
without asbestos exposure are followed for the development of lung

disease. Suppose that disease occurs in 20% of the unexposed group, how large
a sample would be needed in each of the exposed and unexposed study groups
to estimate the relative risk to within 10% of the true value with 95% confidence
assuming that the relative risk is approximately 1.75? �

For this purpose we define group 1 as the unexposed group and group 2 as the
exposed group. The estimate of the relative risk (cf. Chap. I.2 of this handbook) is

R̂R = rr = p2|p1 .

Since we are dealing with a ratio, which can be expected to have a skewed distri-
bution with a log-normal shape, we need to take logs to normalize the distribu-
tion so that the normal approximation can be used to construct the confidence
interval.

We obtain the standard deviation for the estimate for the case where the sample
sizes in the two groups are equal by using the approximation

Var
(
ln(rr)

) ≈ 1 − π1

nπ1
+

1 − π2

nπ2
. (1.18)

The estimated standard deviation is obtained by substituting the estimated pro-
portions for the population proportions and taking the square root.

The 100(1 − α)% confidence limits for ln(RR) are given by ln(rr) ± ω where

ω = z1−α|2ŜE
(
ln(rr)

)
= z1−α|2

√
1 − π1

nπ1
+

1 − π2

nπ2
.

Then the confidence limits for RR are given by exp
(
ln
(
rrL
))

and exp
(
ln
(
rrU
))

where ln
(
rrL
)

and ln
(
rrU
)

are the lower and upper confidence limits for ln(RR).
To choose the sample size necessary to obtain a confidence interval of a desired

width for ln(RR), we could simply specify ω and solve for n.

m =
z2

1−α|2 [(1 − π1)|π1 + (1 − π2)|π2]

ω2
. (1.19)

Alternatively, an investigator may wish to specify the width in terms of how close
the limits are to RR. For example, suppose that we are thinking in terms of values of
RR > 1, and that we want the difference between RR and RRL to be no greater than
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εRR; that is, we set RR − RRL = εRR which we rearrange to get RR(1 − ε) = RRL.
Then, taking logs, we have

ln(RR) + ln(1 − ε) = ln
(
RRL

)
and

ln(RR) − ln
(
RRL

)
= − ln(1 − ε) = ω

so

ω = z1−α|2

√
1 − π1

nπ1
+

1 − π2

nπ2
= − ln(1 − ε) .

Then to find the necessary sample size for each group, we solve for n to obtain

n =
z2

1−α|2 [(1 − π1)|π1 + (1 − π2)|π2]

[ln(1 − ε)]2
. (1.20)

A version of this, which substitutes the expected RR for π2, is

n =
z2

1−α|2 [(1 + RR)|(RRπ1) − 2]

[ln(1 − ε)]2
. (1.21)

Returning to Example 5, the expected RR = 1.75, π1 = 0.20, and we have requested
that the lower limit of the confidence interval for RR be within 10% of the true
value of RR. Therefore ε = 0.1, 1 − ε = 0.9 and the required sample size would be
2027 per group or 4054 total.

Table 1.4 presents the sample size in each group necessary to obtain specified
confidence interval widths for a few selected examples.

Table 1.4. Sample size per group for 95% two-sided confidence interval for the relative risk to have

lower limit (1 − ε)RR

ε
RR π1 0.10 0.20

1.25 0.20 2423 540

1.50 0.20 2192 489

1.75 0.20 2027 452

2.00 0.20 1904 424

1.25 0.40 866 193

Confidence Intervals for the Odds Ratio1.3.4

Example 6 . The efficacy of BCG vaccine in preventing childhood tuberculosis
is in doubt and a study is designed to compare the immunization

coverage rates in a group of tuberculosis cases compared to a group of controls.
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Available information indicated that roughly 30% of controls are not vaccinated
and we wish to estimate the odds ratio to within 20% of the true value. It is believed
that the odds ratio is likely to be about 2.0. �

For problems involving estimation of the odds ratio (cf. Chap. I.2 of this handbook)
we let group 1 denote the controls and group 2 denote the cases. Our estimate of
the odds ratio is

or =
p2

(
1 − p1

)(
1 − p2

)
p1

.

Since we are dealing with a ratio we need to take logs so that the normal approxi-
mation can be used to construct the confidence interval.

We obtain the standard deviation for the estimate for the case where the sample
sizes in the two groups are equal by using the approximation

Var
(
ln(or)

) ≈ 1

nπ1(1 − π1)
+

1

nπ2(1 − π2)
. (1.22)

The estimated standard deviation is obtained by substituting the estimated pro-
portions for the population proportions and taking the square root.

To obtain a 100(1 − α)% confidence interval for ln(OR) of width ω where
ω = z1−α|2SE

(
ln(or)

)
when the sample sizes in the two groups are equal we require

a sample size per group of

n =
z2

1−α|2

[
1|
(
π2(1 − π2)

)
+ 1|

(
π1(1 − π1)

)]
ω2

. (1.23)

In situations where we assume that the odds ratio is greater than 1.0, to specify
that the lower limit of the confidence interval be no less than (1 − ε)OR, we would
set ω = − ln(1 − ε) as we did in the previous section for the relative risk. We then
obtain

n =
z2

1−α|2

[
1|
(
π2(1 − π2)

)
+ 1|

(
π1(1 − π1)

)]
[ln(1 − ε)]2

. (1.24)

Solving for π2 using (1.12), we have

π2 =
ORπ1

ORπ1 + (1 − π1)

and we can obtain sample size expressed in terms of π1 and OR.

n = z2
1−α|2

[
OR + (1 − π1 + ORπ1)2

π1(1 − π1)OR[ln(1 − ε)]2

]
. (1.25)

For Example 6, we have OR = 2, π1 = 0.30, (π2 = 0.462) and (1 − ε) = 0.8, so we
need 678 subjects per group.

Table 1.5 presents the sample size in each group necessary to obtain specified
confidence interval widths for OR for a few selected examples.
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Table 1.5. Sample size per group for 95% two-sided confidence interval for OR to have lower limit

(1 − ε)OR

ε
OR π1 0.10 0.20

1.25 0.30 3171 708

1.50 0.30 3101 692

1.75 0.30 3061 683

2.00 0.30 3040 678

1.25 0.50 2786 621

Testing the Difference Between Two Proportions1.3.5

The goal is to test

H0 : π1 = π2 versus H1 : π1 ≠ π2 .

If it can be assumed that the samples of size n from both groups arise from
independent binomial distributions, the test for H0 can be performed using the
normal approximation to the binomial.

The test statistic is

z =
√

n
(
p1 − p2

)√
2p̄
(
1 − p̄

) , (1.26)

where z ∼ N(0, 1), i.e. z is normally distributed with mean 0 and variance 1, and
where, in the general case with unequal sample sizes in the two groups,

p̄ =
n1p1 + n2p2

n1 + n2
,

whereas for equal sample sizes

p̄ =
p1 + p2

2
.

(Note that the two-sided z test given by (1.26) is algebraically equivalent to the
standard χ2 test.)

The sample size in each group required for a two-sided 100(1 − α)% test to have
power 1 − β is

n =

[
z1−α|2

√
2π̄(1 − π̄) + z1−β

√
π1(1 − π1) + π2(1 − π2)

]2

(
π1 − π2

)2 (1.27)

and π̄ is defined by analogy with p̄.
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Example 7 . Typically, the outcome measure for placebo controlled double-blind
trials for acute duodenal ulcer healing is the proportion of patients

whose ulcer has healed by four weeks as ascertained by endoscopy. The heal-
ing rate for the placebo group is typically about 40%. H2-blocking active drugs
usually result in 70% healed. The investigator wishes to evaluate a new drug
with the expectation of seeking FDA (US Food and Drug Administration) ap-
proval; the results will be assessed by comparing observed proportions healed
using the χ2 test at the two-sided 5% significance level. Such trials are expen-
sive to mount so that if the new drug is as effective as those currently ap-
proved, the investigator wants a 90% chance that the trial will yield a significant
result. �

Using (1.27) for a two-sided 5% test, a sample size of 56 patients per group or
a total sample size of 112 patients would be required to achieve 90% power.

Table 1.6 presents the sample size in each group necessary for a 5% two-sided
χ2 test comparing two independent proportions to have specified power for a few
selected examples.

Table 1.6. Sample size per group for 5% two-sided χ2 test for the difference between two independent

proportions to have specified power

Power
π1 π2 80% 90%

0.10 0.05 435 582

0.25 0.10 100 133

0.50 0.25 58 77

0.50 0.10 20 26

Testing the Relative Risk 1.3.6

In a cohort study, where we want to focus attention on a test of the relative risk

H0 : RR =
π2

π1
= 1 ,

the large sample test for this null hypothesis is the same as for the null hypothesis
that the difference in proportions is zero and therefore the sample size formulas
are the same. If we substitute RR into (1.27) we obtain

n =

[
z1−α|2

√
(1 + RR)[1 − π1(1 + RR)|2] + z1−β

√
[1 + RR − π1(1 + RR2)]

]2

π1(1 − RR)2
.

(1.28)
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Example 8 . Two competing therapies for a particular cancer are to be evaluated
by the cohort study strategy in a multi-center clinical trial. Patients

are randomized to either treatment A or B and are followed for recurrence of
disease for five years following treatment. How many patients should be studied in
each of the two arms of the trial in order to have 90% power to reject H0 : RR = 1
in favor of the alternative RR = 0.5, if the test is to be performed at the two-sided
α = 0.05 level and it is assumed that π1 = 0.35? �

For Example 8, we substitute π1 = 0.35 and RR = 0.5 into (1.28) and find that
the required sample size per group would be 131 or 262 total. Or we could have
noted that π2 = 0.175 and used (1.27).

Table 1.7 presents the sample size in each group necessary for a 5% two-sided
normal approximation test of the null hypothesis that the relative risk is 1.0 to have
specified power for a few selected examples.

Table 1.7. Sample size per group for 5% two-sided test that the relative risk equals 1 to have specified

power

Power
RR π1 80% 90%

1.25 0.20 1094 1464

1.50 0.20 294 392

1.75 0.20 138 185

2.00 0.20 82 109

1.25 0.40 388 519

Testing the Odds Ratio1.3.7

The null hypothesis that the odds ratio equals 1.0 can be tested using (1.26) as
for the test of difference in proportions. Sample size formulas can be modified
to be based on π2 and OR by algebraic substitution in (1.27) if desired, however
formulas are simpler if we use (1.12) to solve for the other proportion and use (1.27)
directly.

Example 9 . The efficacy of BCG vaccine in preventing childhood tuberculosis
is in doubt and a study is designed to compare the immunization

coverage rates in a group of tuberculosis cases compared to a group of controls.
Available information indicates that roughly 30% of the controls are not vacci-
nated, and we wish to have an 80% chance of detecting whether the odds ratio
is significantly different from 1 at the 5% level. If an odds ratio of 2 would be
considered an important difference between the two groups, how large a sample
should be included in each study group? �
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For Example 9, π1 = 0.3 and OR = 2 and thus π2 = 0.462; so using (1.27) we find
that to obtain 80% power for a two-sided 5% level test would require 141 subjects
per group or 282 total.

Table 1.8 presents the sample size in each group necessary to obtain specified
power for tests of OR = 1 for a few selected examples.

Table 1.8. Sample size per group for 5% two-sided test of OR = 1 to have specified power

Power
OR π1 80% 90%

1.25 0.30 1442 1930

1.50 0.30 425 569

1.75 0.30 219 293

2.00 0.30 141 188

1.25 0.50 1267 1695

Additional Considerations and References 1.3.8

Good introductions to sample size computations for tests and confidence intervals
for comparing two independent proportions can be found in Dixon and Massey
(1983), Lemeshow et al. (1990), Fleiss (1981) and Lachin (1981). Books containing
sample size tables are available (e.g. Machin and Campbell 1987; Machin et al.
1997; Lemeshow et al. 1990). Commercially available sample size software such as
nQuery Advisor Release 5 (Elashoff 2002) can be used to compute sample size (or
width) for confidence intervals and sample size (or power) for hypothesis tests for
the two proportion case (based on either the normal approximation, continuity
corrected normal approximation or Fisher’s exact test) as well as for a wide variety
of other sample size problems.

For values of π near 0 or 1 (or for small sample sizes), sample size methods
involving a continuity correction (Fleiss et al. 1980), or methods based on exact
tests (Chernick and Liu 2002) may be preferable.

When plans call for the sample sizes in the two groups to be unequal, the
formulas for sample size and power must incorporate the expected ratio of the
sample sizes, see references above. Generally for the same total sample size, power
will tend to be higher and confidence interval widths narrower when sample sizes
are equal; for comparisons of proportions, total sample size will depend on whether
the proportion closer to 0.5 has the larger or the smaller sample size.

Note that the sample size methods discussed above do not apply to correlation|
agreement|repeated measures (or pair-matched case-control) studies in which
N subjects are recruited and each subject is measured by two different raters, or
is studied under two different treatments in a cross-over design. These designs
cannot be analyzed using the methods described for independent proportions;
for example, sample size computations for the difference between two correlated
proportions are based on the McNemar test (Lachin 1992).
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One Group Designs,
Inferences About a Single Mean1.4

We turn to consideration of continuous outcomes and to inferences about the
populationmean.Wedenote the truebutunknownmean in thepopulationby µand
assume that the standard deviation for the population is given by σ. For a random
sample of size n from a population with a normal (Gaussian) distribution, the
distribution of the observed sample mean, x̄, will also be normal with mean µ and
standard deviation (also referred to as the standard error) given by SE(x̄) = σ|

√
n.

By the central limit theorem, the sampling distribution of the sample mean can
usually be expected to be approximately normal for sample sizes of 30 or above
even when the underlying population distribution is not normal.

Confidence Intervals for a Single Mean1.4.1

Example 10 . Suppose an estimate is desired of the average retail price of twenty
tablets of a commonly used tranquilizer. A random sample of retail

pharmacies is to be selected. The estimate is required to be within 10 cents of the
true average price with 95% confidence. Based on a small pilot study, the standard
deviation in price, σ, can be estimated as 85 cents. How many pharmacies should
be randomly selected? �

Using the normal approximation, the two-sided 100(1 − α)% confidence interval
for the true mean, µ, for the case where the standard deviation is known, is given
by

x̄ ± z1−α|2σ|
√

n . (1.29)

So the sample size required to obtain a confidence interval of width ω is

n =
z2

1−α|2σ2

ω2
. (1.30)

For Example 10, expressing costs in dollars,

n =
(1.96)2(0.85)2

(0.10)2
= 277.6 .

Therefore a sample size of 278 pharmacies should be selected.
We should note however that usually the standard deviation must be estimated

from the sample. Then, the actual confidence interval for a sample mean would be
given by

x̄ ± tn−1,1−α|2s|
√

n , (1.31)

where s is the observed standard deviation and tn−1,1−α|2 denotes the 100
(
1 − α|2

)
th

percentile of the t distributionwith n−1 degreesof freedom. Thevalueof tn−1,1−α|2 is



Sample Size Determinationin Epidemiologic Studies 579

always greater than z1−α|2; the values are close for large n, but t may be considerably
larger than z for very small samples.

The required sample size would need to be larger than given by (1.30) simply
to reflect the fact that tn−1,1−α|2 > z1−α|2. In addition, the value of the standard
deviation estimated from the sample will differ from the true standard deviation.
The observed value of s may be either smaller or larger than the true value of the
standard deviation, σ, and it can be expected to be larger than σ in about half of
samples. So, even for large n, the observed confidence interval width will be greater
than the specified ω in about half of planned studies.

To ensure that the observed confidence width will be shorter than ω more than
half the time, we must take the distribution of s into account in the sample size
computations. To solve for the required sample size for a confidence interval whose
width has a specified probability, 1−γ, of being narrower than ω requires the use of
sample size software since an iterative solution based on the F and χ2 distributions
must be used (Kupper and Hafner 1989).

Returning to Example 10, specifying in nQuery Advisor that the observed con-
fidence interval width needs to be shorter than 0.1 with a probability of 50%
(1 − γ = 0.5) yields a required sample size of 280, only slightly larger than that
given by (1.30). However, to increase the likelihood that the observed confidence
interval width will be shorter than ω from 50% to 90% would require an increase
in sample size from 280 to 309 (see Table 1.9).

Table 1.10 shows the required sample sizes for two-sided 95% confidence inter-
vals to have specified widths (expressed in terms of ω|σ).

Table 1.9. Confidence interval for mean based on t (with coverage probability)

1 2

Confidence level, 1 − α 0.950 0.950

1 or 2 sided interval? 2 2

Coverage probability, 1 − γ 0.500 0.900

Standard deviation, σ 0.850 0.850

Distance from mean to limit, ω 0.100 0.100

n 280 309

Table 1.10. Sample size for 95% two-sided confidence interval for a single mean to have width less

than or equal to ω with probability

100
(
1 − γ

)
ω|σ 50% 90%

0.05 1539 1609

0.10 386 421

0.20 98 116

0.30 45 56

0.50 18 24
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Note that nQuery Advisor has been used to compute the sample sizes displayed
in all the rest of the tables in this chapter.

Hypothesis Testing for a Single Population Mean1.4.2

Suppose we would like to test the hypothesis

H0 : µ = µ0

versus the alternative hypothesis

Ha : µ > µ0

and we would like to fix the level of the Type I error to equal α and the Type II error
to equal β. That is, we want the power of the test to equal 1−β. We denote the actual
value of the population mean under the alternative hypothesis as µa. Following the
same development as for hypothesis testing about the population proportion (with
the additional assumption that the variance of x̄ is equal to σ2|n under both H0

and Ha), the necessary sample size for this hypothesis testing situation is given by:

n =
σ2
[
z1−α + z1−β

]2

[µ0 − µa]
2 . (1.32)

Alternatively, defining the effect size as

δ =
µ0 − µa

σ
, (1.33)

we have

n =

[
z1−α + z1−β

]2

δ2
. (1.34)

Example 11 . Pre and post studies with placebo in a variety of studies indicated
that the standard deviation of blood pressure change was about

6 mm Hg and that the mean reduction in the placebo group was typically close
to 5 mm Hg. To make a preliminary estimate of the value of a new interven-
tion designed to lower blood pressure it was planned to enroll subjects and test
the null hypothesis that mean reduction was 5 mm Hg. The new intervention
would be of interest if the mean reduction was 10 or greater. How large a sample
would be necessary to test, at the 5% level of significance with a power of 90%,
whether the average blood pressure reduction is 5 mm Hg versus the alternative
that the reduction is 10 mm Hg when it is assumed that the standard deviation is
6 mm Hg? �

Using (1.32) we have

n =
62(1.645 + 1.282)2

(10 − 5)2
= 12.33 .

Therefore, a sample of 13 patients with high blood pressure would be required.
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A similar approach is followed when the alternative is two-sided. That is, when
we wish to test

H0 : µ = µ0

versus

Ha : µ ≠ µ0 .

In this situation, the null hypothesis is rejected if x̄ is too large or too small.
We assign area α|2 to each tail of the sampling distribution under H0. The only
adjustment to (1.32) is that z1−α|2 is used in place of z1−α resulting in

n =
σ2
[
z1−α|2 + z1−β

]2

[µ0 − µa]
2 . (1.35)

Returning to Example 11, a two-sided test could be used to test the hypothesis
that the average reduction in blood pressure is 5 mm Hg versus the alternative
that the average reduction in blood pressure has increased, and that a reduction
of 10 mm Hg would be considered important. Using (1.35) with z1−α|2 = 1.960,
z1−β = 1.282 and σ = 6,

n =
62(1.960 + 1.282)2

(10 − 5)2
= 15.1 .

Thus, 16 patientswouldbe required for the sample if the alternativewere two-sided.
Since usually the true standard deviation is unknown, a more accurate solution

for the necessary sample size would require use of sample size software (com-
putations are based on the central and non-central t distributions). Unlike the
situation for confidence intervals, the normal approximation formula works well
for computing sample size for a test; its accuracy can be improved by adding the
correction factor

z2
1−α|2

2
(1.36)

before rounding up. For Example 11 this would lead to a sample size estimate of 18
(which agrees with the result given by nQuery Advisor).

Table 1.11 presents the sample sizes necessary for 80% or 90% power for two-
sided 5% level tests for specified effect sizes, δ.

Table 1.11. Sample size for two-sided 5% level t test to detect effect size δ = µ1 − µ2|σ

δ 80% power 90% power

0.2 199 265

0.4 52 68

0.6 24 32

0.8 15 19

1.0 10 13

1.2 8 10
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Comparison of Two Independent Means1.5

Confidence Intervals
for the Difference Between Two Means1.5.1

The difference between two population means is represented by a new parameter,
µ1 − µ2. An estimate of this parameter is given by the difference in the sample
means, x̄1 − x̄2. The mean of the sampling distribution of x̄1 − x̄2 is

E
(
x̄1 − x̄2

)
= µ1 − µ2

and the variance of this distribution when the two samples are independent is

Var
(
x̄1 − x̄2

)
= Var

(
x̄1

)
+ Var

(
x̄2

)
=

σ2
1

n1
+

σ2
2

n2
,

where n1 and n2 are the sample sizes in the two groups.
In order for the distribution of the difference in sample means, x̄1 − x̄2 to have

a t distribution, we must assume that σ2
1 = σ2

2 = σ2. When the variances are equal
and both sample sizes are equal to n, the formula for the variance of the difference
can be simplified to

Var
(
x̄1 − x̄2

)
=

2σ2

n
.

The value σ2 is an unknown population parameter, which can be estimated from
sample data by pooling the individual sample variances, s2

1 and s2
2 to form the

pooled variance, s2
p, where, in the general case,

s2
p =

(
n1 − 1

)
s2
1 +

(
n2 − 1

)
s2
2(

n1 − 1
)

+
(
n2 − 1

) .

Example 12 . Nutritionists wish to estimate the difference in caloric intake at
lunch between children in a school offering a hot school lunch

program and children in a school that does not. From other nutrition studies, they
estimate that the standard deviation in caloric intake among elementary school
children is 75 calories, and they wish to make their estimate to within 20 calories
of the true difference with 95% confidence. �

Using the normal approximation, the two-sided 100
(
1 − α|2

)
% confidence in-

terval for the true mean, µ1 − µ2, is given by

x̄1 − x̄2 ± z1−α|22σ|
√

n . (1.37)
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So the sample size in each group required to obtain a confidence interval of width ω
is

n =
z2

1−α|22σ2

ω2
. (1.38)

For Example 12,

n =
(1.96)2(2)(75)2

(20)2
= 108.05 .

Thus, a sample size of 109 children from each school should be selected.
We note, however, that the actual confidence interval for the difference in sample

means would be given by

x̄1 − x̄2 ± t2n−2,1−α|2sp

√
2|

√
n , (1.39)

where sp is the observed pooled standard deviation and t2n−2,1−α|2 denotes the
100

(
1 − α|2

)
percentile of the t distribution with 2(n − 1) degrees of freedom.

So, as explained in the section on confidence intervals for a single mean, to solve
for the required sample size for a confidence interval whose width has a specified
probability, 1−γ, of being narrower than ω requires the use of sample size software.

For Example 12, we show in Table 1.12 (pasted from nQuery Advisor) that
a sample of 109 per group provides a 50% probability that the observed 95%
confidence intervalwill havehalf-width less than20,while tohavea 90%probability
that the confidence interval half-width will be less than 20 would require a sample
of 123 children per school.

Table 1.12. Confidence interval for difference of two means (coverage probability) (equal n’s)

1 2

Confidence level, 1 − α 0.950 0.950

1 or 2 sided interval? 2 2

Coverage probability, 1 − γ 0.500 0.900

Common standard deviation, σ 75.000 75.000

Distance from difference to limit, ω 20.000 20.000

n per group 109 123

Table 1.13. Sample size per group for 95% two-sided confidence interval for the difference in means to

have width less than or equal to ±ω with probability
(
1 − γ

)
100

(
1 − γ

)
ω|σ 50% 90%

0.05 3075 3145

0.10 770 805

0.20 193 211

0.30 87 98

0.50 36 39
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Table 1.13 presents the sample sizes in each group required so that the two-sided
95% confidence interval for the difference in two independent means will be no
wider than ±ω with probability

(
1 − γ

)
.

Testing the Difference Between Two Means
(Two-Sample t Test)1.5.2

The two-sample t test is used to test hypotheses about the population means in two
independent groups of subjects. It is based on the assumptions that the underlying
population distributions have equal standard deviations, and that the population
distributions are Gaussian (normal) in shape or that the sample sizes in each group
are large. (In most cases, the distribution of the sample mean will be approximately
Gaussian for sample sizes greater than 30.)

We consider tests of the null hypothesis:

H0 : µ1 = µ2 or

H0 : µ1 − µ2 = 0

versus either

Ha : µ1 ≠ µ2 for a two-sided test, or

H′
a : µ1 > µ2 or H′′

a : µ1 < µ2 for one-sided tests .

To avoid repetitions of formulas with minor changes, we write formulas only in
terms of a two-sided test.

The sample size required in each group, to achieve a power of 1 − β is

n =
2σ2(z1−α|2 + z1−β)2(

µ1 − µ2

)2 . (1.40)

Setting

δ =
µ1 − µ2

σ
, (1.41)

where δ is the effect size, we have a simpler version

n =
2(z1−α|2 + z1−β)2

δ2
. (1.42)

To improve the approximation, the correction factor in (1.43) may be added to (1.42)
before rounding up.

z2
1−α|2

4
. (1.43)
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Example 13 . A two-group, randomized, parallel, double-blind study is planned
in elderly females after hip fracture. Patients will be studied for

two weeks; each patient will be randomly assigned to receive either new drug or
placebo three times per week. The sample sizes in the two groups will be equal.
Plans call for a 5% level two-sided t test. The outcome variable will be change in
hematocrit level during the study. Prior pilot data from several studies suggests that
the standard deviation for change will be about 2.0% and it would be of interest to
detect a difference of 2.2% in the changes observed in placebo and treated groups.
What sample size in each group would be required to achieve a power of 90%? �

For Example 13, the effect size is 2.2|2 = 1.1. Using (1.42) we find

n =
2(1.96 + 1.28)2

(1.1)2
= 17.4 .

Adding the correction factor of 0.96 and rounding up, we have a required sample
size of 19 per group, which is the solution given using nQuery Advisor (computa-
tions are based on iterative methods and the central and non-central t, see Dixon
and Massey 1983 or O’Brien and Muller 1983).

Table 1.14 shows the sample size needed in each group for a two-sided 5% level
t test to achieve 80% or 90% power for the specified alternative, δ.

Table 1.14. Sample size in each group for two-sided 5% level t test to have specified power

δ 80% power 90% power

0.2 394 527

0.4 100 133

0.6 45 60

0.8 26 34

1.0 17 23

1.2 12 16

Additional Considerations and References 1.5.3

Good introductions to sample size computations for tests and confidence intervals
for a single mean or for comparing two independent means can be found in Dixon
and Massey (1983), O’Brien and Muller (1983), Lemeshow et al. (1990), Lachin
(1981), and Rosner (2000). Books containing sample size tables are available (e.g.
Machin and Campbell 1987; Machin et al. 1997). Commercially available sample
size software such as nQuery Advisor Release 5 (Elashoff 2002) can be used to
compute sample size (or width) for confidence intervals and sample size or power
for hypothesis tests for means for either the single group or two group designs, as
well as for a wide variety of other sample size problems.
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When plans call for the sample sizes in the two groups to be unequal, the
formulas for sample size and power must incorporate the expected ratio of the
sample sizes, see references above. For the two-sample t test, for any given total
sample size, N, power will be highest when both groups have the same sample
size. For this reason we generally prefer to plan equal sample sizes for a two-
group study. However, sometimes investigators wish to plan a study with un-
equal n’s; perhaps one type of subject is easier to accrue, or perhaps the in-
vestigator wants to maximize the number of subjects receiving the presumably
superior treatment, or to accumulate extra safety information for the new treat-
ment.

When the standard deviations in the two groups are markedly unequal, the
usual t test with pooled variances is no longer the appropriate test. In many sit-
uations, the standard deviations show a patterned lack of homogeneity in which
groups with higher means have higher standard deviations. In such cases, it is fre-
quently advisable that sample size predictions (and later analysis) should be done
on a transformed version of the variable. If the relationship between variance and
mean is linear, this suggests using the square root of the variable. Such a transfor-
mation is likely to be desirable if the data represent counts or areas (note that the
variable cannot be less than zero). If the relationship between standard deviation
and mean is linear, this suggests using the log of the variable. This transformation
is likely to be desirable for biological measures like viral load, triglyceride level, or
variables ranging over several orders of magnitude (note that the variable cannot
be negative or zero). If transformation does not seem to provide a solution to
the problem of inequality of variances, it is possible that comparison of means
is no longer the most appropriate method of analysis to address the question of
interest. Assuming that transformation is not useful and comparison of means
using a two-sample t test is still deemed appropriate, a modification of the t test
may be planned; see for example, Moser et al. (1989) and sample size tables for the
Satterthwaite t in nQuery Advisor.

If non-normality is an issue, planning a large study or considering transforma-
tions as above may be helpful; another possibility is to plan to use a non-parametric
procedure instead, such as the two-sample Mann-Whitney|Wilcoxon rank test. For
a description of this test, see Rosner (2000), and for methods to determine sample
size and power see Hettmansperger (1984), Noether (1987), or sample size tables
in nQuery Advisor.

Note that the sample size methods for comparisons of two independent means
discussed above do not apply to correlation|agreement|repeated measures (or
pair-matched case-control) studies in which N subjects are recruited and each
subject is measured by two different raters, or is studied under two different
treatments in a cross-over design. These designs cannot be analyzed using the
methods described for independent means but must be analyzed using the paired
t test or a repeated measures analysis of variance; see Rosner (2000) for infor-
mation on the paired t test, and Muller and Barton (1989) or sample size tables
in nQuery Advisor for information about sample size and power for repeated
measures tests.
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Logistic Regression Models 1.6

In prior sections of this chapter, we discussed sample size problems for estimation
or testing of a proportion in one or two groups. In this section, we consider study
designs in which it is planned to evaluate several predictor variables for a binary
outcome variable. Specifically we consider studies in which we plan to fit a logistic
regressionmodel.Readersneedingan introduction to the logistic regressionmodel
and test procedures should consult Hosmer and Lemeshow (2000).

In our experience there are two sample size questions, prospective and retro-
spective. The prospective question is: How many subjects do I need to observe to
test the significance of a specific predictor variable or set of variables? The retro-
spective question is: Do I have enough data to fit this model? In this section we
consider methods for choosing a sample size first and then discuss the importance
of having an adequate number of events per covariate.

With respect to planning sample size for logistic regression, we distinguish two
situations: (1) only a single covariate is of interest, (2) the addition of one covariate
to a model already containing k covariates is of interest. In addition, we must
distinguish whether the covariate of interest is dichotomous or continuous.

The basic sample size question is as follows: What sample size does one need
to test the null hypothesis that a particular slope coefficient, say for covariate 1, is
equal to zero versus the alternative that it is equal to some specified value.

Single Dichotomous Covariate 1.6.1

If the logistic regression model is to contain a single dichotomous covariate, then
one may use conventional sample size formulas based on testing for the equality
of two proportions. Hsieh et al. (1998) recommend using the following method to
obtain sample sizes for logistic regression with a dichotomous covariate. (Although
Whitemore 1981 provides a sample size formula for a logistic regression model
containing a single dichotomous covariate, this formula, based on the sampling
distribution of the log of the odds ratio, was derived under the assumption that
the logistic probabilities are small and may be less accurate than the method we
outline.)

Let the covariate X define two groups; group 1 contains those subjects for which
x = 0 and the probability that the outcome of interest y = 1 for the subjects in
this group is π1, while group 2 contains those subjects for which x = 1 and the
probability that y = 1 for these subjects is π2.

Example 14 . Suppose that about 1% of the population is expected to have a par-
ticular adverse reaction to a certain drug used to treat a severe

illness. It is thought that those with a specific pre-existing condition (expected to
be about 20% of the population) will be much more likely to have such a reaction;
it will be important to detect an odds ratio of two for the likelihood of a reaction
in this group using a 5% two-sided likelihood ratio test. �
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Table 1.15. Two group χ2 test of equal proportions (odds ratio = 1) (unequal n’s)

Test significance level, α 0.050 0.050 0.050

1 or 2 sided test? 2 2 2

No condition proportion, π1 0.010 0.010 0.010

Pre-existing proportion, π2 0.020 0.029 0.039

Odds ratio, ψ = π2(1 − π1)|[π1(1 − π2)] 2.000 3.000 4.000

Power (%) 90 90 90

n1 7620 2468 1345

n2 1905 617 337

Ratio: n2|n1 0.250 0.250 0.250

N = n1 + n2 9525 3085 1681

To compute the required sample size for Example 14 by hand would require
using a modification of (1.27) for comparison of two proportions with unequal
sample sizes, see references given in that section. Table 1.15 shows the table of
results pasted from nQuery Advisor. (In this table, the symbol ψ is used to denote
the odds ratio.) Defining group 1 as those without the pre-existing condition and
group 2 as those with, the ratio of the sample size in group 2 to the sample size
in group 1 will be 20|80 = 0.25. Using π1 = 0.01 for group 1 (no pre-existing
condition), and OR = 2, we find π2 = 2(0.01)|

(
2(0.01) + 0.99

)
= 0.02. Table 1.15

shows that to detect an odds ratio of 2 with 90% power for this example would
require a sample size of 9525. Consequently, the investigator may be interested in
looking at the sample sizes required to detect odds ratios of 3 or of 4 (3085 and
1681 respectively).

Single Continuous Covariate1.6.2

If the single covariate we plan to include in the model is continuous, approximate
formulas for this setting have been derived by Hsieh (1989) and implemented in
sample size software packages such as nQuery Advisor. However, Hsieh et al. (1998)
demonstrate that this approximate formula gives larger than required sample sizes
and recommend using the following method to obtain sample sizes for logistic
regression with a continuous covariate.

Let the response Y define two groups; group 1 contains cases in which Y = 1
with Nπ1 cases expected, while group 2 contains cases in which Y = 0 with
N
(
1 − π1

)
cases expected. The ratio of the expected sample size in group 2 to

the expected sample size in group 1, r, is
(
1 − π1

)
|π1. The natural log of the

odds ratio, the coefficient β of the covariate, x, is equal to the difference between
the mean of the covariate in group 1 and the mean of the covariate in group 2
divided by the within-group standard deviation of x (denote this by δ). There-
fore, a sample size formula or table for the two group t test with unequal n’s
can be used to estimate sample size for logistic regression with one continuous
covariate.
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Example 15 . Patients with blocked or narrowed coronary arteries may undergo
interventions designed to increase blood flow. Typically, about 30%

of patients followed for a year will have renewed blockage, called “restenosis”, of
the artery. A study is to be planned to use logistic regression to assess factors related
to the likelihood of restenosis. One such factor is serum cholesterol level. Based on
the results of a large screening trial, mean serum cholesterol in middle-aged males
is about 210 mg/dL; one standard deviation above the mean (which corresponds to
about the 85th percentile) is approximately 250 mg/dL. In the screening study, the
odds ratio for the six-year death rate for these two cholesterol levels was about 1.5.
The study should be large enough to detect an effect of serum cholesterol on
arterial restenosis of a size similar to that seen for death rate. We plan to conduct
the test of the predictive effect of cholesterol level on the probability of restenosis
using a 5% two-sided test and want to have 90% power to detect an odds ratio of
1.5 for values of cholesterol of 250 mg/dL versus 210 mg/dL. We set the effect size,
δ =

(
µ1 − µ2

)
|σ = 0.405, which is the value of the natural log of the odds ratio, 1.5.

The ratio of sample sizes expected to be in the no-restenosis versus the restenosis
groups, r, equals 0.7|0.3 = 2.333. �

The required sample size could be computed using a version of (1.42) modified
for unequal sample sizes, see references in the preceding section. In Table 1.16 we
show the table of results pasted from the software nQuery Advisor.

Table 1.16. Two group t-test of equal means (unequal n’s)

Test significance level, α 0.050

1 or 2 sided test? 2

Effect size, δ =
∣∣µ1 − µ2

∣∣ |σ 0.405

Power (%) 90

n1 93

n2 217

Ratio: n2|n1 2.333

N = n1 + n2 310

To obtain a power of 90% to detect an odds ratio of 1.5 using the covariate
cholesterol to predict restenosis at one-year, we find that a total sample size of 310
is required.

Adjusting Sample Size for Inclusion of k Prior Covariates
(Variance Inflation Factor) 1.6.3

It is rare in practice to have final inferences based on a univariate logistic regression
model. However, the only sample size results currently available for the multivari-
able situation are based on very specific assumptions about the distributions of the
covariates. We can however, use a “variance inflation factor” to adjust the sample
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size results obtained for a single covariate for the situation in which k covariates
have already been added to the model before the new covariate is considered.

The sample size, Nk, required to test for the significance of a covariate after
inclusion of k prior covariates in the model, is given by

Nk = N

(
1

1 − ρ2

)
, (1.44)

where the factor 1|
(
1 − ρ2

)
is called the “variance inflation factor”,

VIF =
(

1

1 − ρ2

)
, (1.45)

and ρ2 is the squared multiple correlation of the covariate of interest with the
covariates already included in the model. This can be estimated using any multiple
regression software.

For Example 14, the total sample size was computed as N = 1681 for testing the
significance of one dichotomous covariate. Now assume that four patient demo-
graphic variables will be entered into the logistic regression model prior to testing
the covariate indicating presence or absence of the pre-existing condition (x1 say),
and that these demographic variables have a squared multiple correlation with x1

of 0.2. Then a total sample size of at least 2100 patients would be required,

N4 = 1681

(
1

1 − 0.2

)
= 2101 .

In Example 15 if two other covariates with a squared multiple correlation with
cholesterol of 0.15 are to be entered into the logistic regression first, multiply the
sample size obtained for a single covariate by the variance inflation factor, (1.44),
1|
(
1 − ρ2

)
= 1.18, to increase the required sample size to 365.

Assessing the Adequacy of Data Already Collected1.6.4

So far we have discussed planning what sample size should be obtained to fit
specific logistic regression models. A second consideration, and one relevant to
any model being fit, is the issue of what is the maximum number of covariates
it is reasonable to enter into the model and still obtain reliable estimates of the
regression coefficients and avoid excessive shrinkage when the model is assessed
for new cases. An ad hoc rule of thumb is to require that there be 10 “events” per
variable included in the model. Here the “event” of relevance is the least frequent
of the outcomes. For example, suppose the study discussed in Example 15 was
planned with 365 cases. Further suppose that complete one-year follow-up was
only obtained for 351 cases of which 81 had restenosis at one year. There are 81
cases with restenosis and 270 without, so the least frequent “event” is restenosis.
Based on these 81 cases, only 8 variables should be fit; this means that no more
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than 8 covariates (or covariates plus covariate interaction terms) should be entered
into the model.

This rule of thumb was evaluated and found to be reasonable by Peduzzi et al.
(1996) using only discrete covariates. However, as is the case with any overly simple
solution to a complex problem, the rule of 10 should only be used as a guideline and
a final determination must consider the context of the total problem. This includes
the actual number of events, the total sample size and, most importantly, the mix
of discrete, continuous and interaction terms in the model. The “ten events per
parameter” rule may work well for continuous covariates and discrete covariates
with a balanced distribution. However, its applicability is less clear in settings
where the distributions of discrete covariates are weighted heavily to one value.

Practical Issues in Sample Size Choice 1.7

Inearlier sections,weoutlined formulas for sample sizecomputation forestimation
and testing in simple designs for proportions and for means. We have shown only
formulas to compute sample size from specifications of confidence interval width
or desired power, but it is also possible to compute the confidence interval width
or power which would be obtainable with a specified sample size. Sample size
methods exist for many more complex designs and for other parameters. Software
such as nQuery Advisor (Elashoff 2002) can be helpful.

For complex study designs or complex statistical methods, however, there may
be no easily applied formulas or available software solutions. In such cases, sample
size choices may be based on simplifications of the design or statistical methods (as
we illustrated in the section on logistic regression), or in some cases a simulation
study may be warranted.

For studies involving complex survey designs, sample size computations might
be based on one of several approaches: (1) regarding the cluster itself as the study
“subject” and using intraclass correlation values to estimate the appropriate vari-
ance to use in making computations, (2) multiplying sample sizes for a simpler
design by a computed “design effect” (2 may be a sensible ad hoc choice), or
(3) using simulation methods.

Although study sample sizes are usually chosen to assure desired precision or
power for the primary outcome variable, investigators may also need to investigate
whether that sample size choice will be adequate for evaluations of secondary
outcomes, or for analyses of pre-defined subsets.

Sample size values obtained from formulas or software will generally need to
be inflated to allow for expected dropout or loss to followup of study subjects or
other sources of missing data (cf. Chap. II.6 of this handbook). It is important
to remember however, that subjects who drop out may not be similar to those
remaining in the study. This consideration may affect the parameter values which
should be used for sample size computations; and even analyses using missing
data techniques may not remove biases due to dropout.
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Another issue of great concern to epidemiologists is that exposure or response
may be misclassified. Such misclassification might have a dramatic impact on the
actual power of a planned study unless sample sizes are computed based on mod-
eling the expected type and extent of misclassification using simulation methods.

For brevity, our examples used only one set of parameter values to compute
required sample sizes. In practice, investigators need to keep in mind that the
estimated parameter values used in computations are only estimates and perhaps
not very accurate ones. It is a good idea to compute necessary sample size for
several different sets of parameter choices to evaluate sample size sensitivity to
varying realistic possibilities for the true parameter values. Tables and plots can
be helpful in these evaluations.

Finally, sample size justification statements in protocols, grant proposals, and
manuscripts need to be complete. Details of the outcome variable, the study design,
the planned analysis method, confidence level or power, one or two-sided, and all
the relevant distributional parameters (proportions, means, standard deviations)
need to be included in the statement. For Example 13 a minimal sample size justifi-
cation might read as follows: A sample size of 19 in each group will have 90%
power to detect a difference in means of 2.2 (the difference between an active
drug mean change in hematocrit of 2.2% and a placebo mean change of 0.0)
assuming that the common standard deviation is 2.0 and using a two group
t test with a 0.05 two-sided significance level. The planned enrollment will be
25 subjects per group (50 total) to allow for 20% dropout. It is also desirable to pro-
vide information about sample size for other parameter choices and details about
how these parameter values were selected, including references to previous studies
which were consulted in selecting the values.

Conclusions1.8

An important part of planning any research study is to assess what sample size is
needed to assure that meaningful conclusions can be drawn about the primary out-
come. To do this, the investigator must detail the study design, define the primary
outcome variable, choose an analysis method, and specify desired or expected
results of the study. Then formulas, tables, and sample size software of the sort
outlined in this chapter can assist with computations. The most essential part of the
process, though, is to make a thorough investigation of other information and re-
search results concerning the outcome variable to support reasonable specification
of hypothesized values for use in making computations. Beginning investigators
often protest: “But this study has never been done before; how do I know what the
results will be?” In most cases, however much information about rates, means, and
standard deviations can be gleaned from other contexts and used to infer what
kinds of outcomes would be important to detect or likely to occur. Sample size com-
putations are not just a pro forma requirement from funding agencies but provide
the basis for deciding whether a planned study is likely to be worth the expense.
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Introduction 2.1

When analysing data from an epidemiological study, some features are rather spe-
cific for a particular study design. Those are dealt with among others in Chaps. I.3,
I.5 to I.7 and II.4. Other features are generally relevant, see Chaps. I.2 and I.9.
This chapter deals with one of these, namely the analysis of continuous covari-
ables. After a short introduction in which relevant measures used for continuous
covariables are listed, we present classical methods based on categorisation and
subsequent contingency table analysis. The major part of the chapter deals with the
analysis of such variables in the context of regression models commonly used in
epidemiology (see also Chap. II.3 ). These methods are then illustrated by real data
examples. The chapter ends with practical recommendations and conclusions.

The sequence of action in epidemiologic research is similar to any other empir-
ical research area and involves the following major steps:

study planning
data collection, data entry and data cleaning
data analysis
interpretation and publication.

The data analysis can often be divided into
descriptive analysis
analytical statistical methods (modelling).

This sequence should be followed: a good, thorough and careful descriptive
analysis of the data can save enormous time. The methods to be used are the same
in all areas where data analysis is part of the game. This involves univariate analysis
of all variables of interest, by graphical or other methods as described in textbooks
on descriptive statistics (e.g. Bernstein and Bernstein 1998).

In practice, however, this sequence is often reversed, or the second part of the
analysis step is started before the first is finished. This is sometimes driven by
unpatient clinicians who would like to know immediately whether “the study is
significant”, i.e. directly after data collection is finished and before plausibility
checks of the data have been performed. However, in only very rare cases the first
p-value generated in the analysis step is later found in the publication. Instead,
some peculiarities in the data are found such that one has to go back to the
descriptive analysis. Then we have a recursive process which fortunately in most
cases converges.

Many of the descriptive methods used in the analysis of epidemiological data
are independent of the area of application. The mean of a continuous variable, for
example, has general importance. The aim of this chapter is therefore not to give
a detailed overview of measures for location of dispersion or to describe measures
for dependencies between two variables. Table 2.1 summarises the most relevant of
these measures. For a good introduction to descriptive methods we refer to other
textbooks (Bernstein and Bernstein 1998).
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Table 2.1. Some relevant measures for location and dispersion of one continuous variable, and for

dependencies between two continuous variables

Measure Definition

Arithmetic mean of n
observations x1, x2, … , xn x̄ =

1

n

(
x1 + x2 + x3 + … + xn

)
=

1

n

n∑
i=1

xi

Median calculated from the
ordered sequence of xmed =

⎧⎪⎨⎪⎩
x( n+1

2

) if n odd

1

2

(
x( n

2

) + x( n
2 +1

)) if n evenobservations x(1), x(2), … , x(n), i.e.
for all i < j it holds: x(i) ≤ x(j)

(Sample) variance s2 =
1

n − 1

∑(
xi − x̄

)2

(Sample) standard deviation s =
√

s2

Standard error s.e. = s|
√

n

Pearson correlation coefficient

between variables X and Z with rXY =

n∑
i=1

(xi − x̄)(zi − z̄)√√√√ n∑
i=1

(xi − x̄)2 ·
n∑

i=1

(zi − z̄)2pairs of observations (x1, z1),
(x2, z2), … , (xn, zn)

Spearman (rank) correlation
coefficient between variables X

and Z with ranked pairs of rXY (Spearman) = 1 −

6
n∑

i=1

(
R(xi) − R(yi)

)2

n(n2 − 1)
observations (R(x1), R(z1)),
(R(x2), R(z2)), … , (R(xn), R(zn))

Instead, in this chapter we give an overview of methods to analyse continuous
covariables in epidemiological studies. For a long time it has been common to
categorise them into K ≥ 2 groups and to estimate appropriate parameters (e.g.
odds ratio or relative risk) that describe the effect of a certain level of the variable
relative to an arbitrarily defined baseline level or to perform trend tests based on
this categorisation. This procedure was exclusively used in the past because clas-
sical methods to analyse epidemiological data, for example the Mantel–Haenszel
estimator were mostly based on some form of contingency table analysis and re-
quire a categorisation of continuous variables (cf. Chap. I.2 of this handbook). In
the last decades they have been replaced by regression models that allow, but do
not require a categorisation. With increasing computer power and availability of
standard software these methods are now in common use.

We will describe and compare different methods with regard to the adequacy
for the analysis of continuous covariables in classical epidemiological studies (such
as case-control or cohort studies) and on the analysis of morbidity and mortality
data. The aim is either (1) to analyse the relation between the outcome variable Y
and the covariable X or (2) to appropriately adjust for X if one wishes to analyse the
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relation between Y and Z, where Z is another covariable which may be confounded
by X (see also Chaps. I.1 and I.9 of this handbook). For (1), this is commonly done
in epidemiology by estimating a relative risk or odds ratio function R(·), where (·)
denotes dependence on an arbitrary argument. For (2), one has additionally the
possibility to condition on X. Particular emphasis will also be given to the question
of whether and how a trend test can be performed.

Classical Methods to Analyse Continuous
Covariables Based on Contingency Tables 2.2

Before the theory of generalized linear models (Nelder and Wedderburn 1972)
has been developed, which had a major influence for epidemiologic research,
contingency table analysis was the common tool in our field. The famous paper by
Mantel and Haenszel (1959) is still well known, mainly because the ideas developed
herein facilitate the path for understanding of the modern techniques. In this
section, we will therefore outline odds ratio estimation, test for trend and simple
confounder adjustment basedon these classicalmethods.Although lessused today,
these methods are still helpful for a general understanding of epidemiologic data
analysis. It should be emphasised, however, that the methods presented here have
been replaced by modern regression methods which are now the state of the art.

General Aspects 2.2.1

We assume that a continuous covariable X has been collected and that Y is a binary
variable that denotes the disease or the event of interest. The classical methods
first require a categorisation of X which can formally be described by the function

f (x) = xkIx∈Ik (x) ,

where I is the indicator function and Ik are disjoint exposure categories with
k = 1, … , K covering the whole set M of possible values of X, i.e.

Ik ∩ Ik′ = ∅ for k ≠ k′ and ∪
k

Ik = M .

The most common method is to choose xk as k < K, but it is also possible to
assign xk the mean exposure level in category k.

The practical questions are
1. how to choose the number of categories K and
2. how to choose the intervals Ik.

For both questions a unique or optimal answer does not exist. Since categorisation
is a relevant method also in regression modelling as described later, the final result
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obtained from the same dataset will most likely differ, if two statisticians analyse
the same dataset.

Some general rules, however, may help as a guideline for this decision:
choose the limits and the number of categories such that a comparison with
earlier studies is possible
if a natural baseline exists (for example “0” for nonexposed), and a low exposure
is a priori regarded as hazardeous (e.g. smoking), choose the natural baseline
(in the example: the nonsmokers) as a separate category
K should not be larger than 10, but for small datasets fewer categories are to be
preferred. Three to six categories are most frequently used in practice
Choose the limits and number of categories a priori, i.e. do not base this choice
on the resulting risk estimates.

A categorisation according to quartiles or quintiles of the distribution of the
variable is often done. This is statistically correct, but then comparison with
other studies is somewhat hampered since the limits follow the exact observed
distribution of the covariable. It is perhaps better to report “Individuals whose
diastolic blood pressure is above 90 mm Hg have a risk of … to get disease D” than
to say “Individuals in the upper quartile of the diastolic blood pressure have a risk
of … to get disease D.”

Odds Ratio Estimation2.2.2

Assume now a categorisation has been performed yielding a 2 × K table. This may
be denoted as follows:

Table 2.2. A 2 × K table

Cases Controls Total

Exposure level x1 a1 c1 m1

x2 a2 c2 m2

… … … …
xK aK cK mK

Total n1 n0 N

Crude odds ratio estimation by exposure level is done by

ÔRk =
akc1

cka1
, k = 2, … , K ,

and asymptotic 95% confidence intervals are given as(
exp

(
ln
(
ÔRk

)
− 1.96

√
v̂ar

(
ÔRk

))
, exp

(
ln
(
ÔRk

)
+ 1.96

√
v̂ar

(
ÔRk

)))
with variance

v̂ar
(
ln
(
ÔRk

))
=

1

ak
+

1

c1
+

1

a1
+

1

ck
.
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The odds ratios can be displayed graphically such that the dose group or the
average intake within each group is on the x-axis, and the odds ratio on the y-axis.
This is a useful first presentation of the data.

As an example, we consider data from a laryngeal cancer case-control study
(Dietz et al. 2004) where the variable X is categorised into four groups. These are
of the form as depicted in Table 2.3.

Table 2.3. Alcohol consumption in males; laryngeal cancer case-control study; Germany

Cases Controls
ak (%) ck (%) OR

Alcohol intake ≤ 25 57 24.2 303 43.2 1.0

(g ethanol|day) 25–≤ 50 51 21.6 169 24.1 1.60

50–≤ 75 39 16.5 113 16.1 1.83

75+ 89 37.7 117 16.7 4.04

Total 236 100.0 702 100.0

In this study, average alcohol intake ten years before interview was assessed
by asking for consumption of different alcoholic beverages (beer, wine, liqueur,
spirits). Average alcohol content of these beverages yielded the estimated daily
ethanol intake.

The last column gives the unadjusted (i.e. not adjusted for confounders, such
as smoking) odds ratio in comparison with the baseline category (see Chap. I.2 of
this handbook for an introduction of the Mantel–Haenszel estimate of the adjusted
odds ratio). We observe an increasing odds ratio with increasing dose.

In the recent literature, the classical methods to analyse continuous covariables
based on contingency tables have become less and less common. This is because
1. a categorisation necessarily means a loss of information
2. the classical analysis is embedded in regression models as a special case
3. the possibility to adjust for multiple confounders is limited
4. there are only limited options for a dose-response analysis.

Confounder Adjustment 2.2.3

One of the big challenges in epidemiologic data analysis is a correct adjustment for
confounder. Several other chapters deal with this issue in the context of particular
study designs (see especially Chaps. I.1, I.9 and I.12 of this handbook).

Suppose X is a continuous confounder and Z is the variable of main interest, i.e.
one is interested in an adjusted estimate of the effect of Z with a suitable measure,
for example the odds ratio. For ease of presentation we assume in the following
that Z is a binary variable. In the context of classical methods, the adjustment of
a continuous confounder is done through categorization of the confounder X and
a stratified analysis as described below.
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Suppose further that X has been categorized into K levels according to the
methods described in Sect. 2.2.2 yielding K 2 × 2 tables of the form depicted in
Table 2.4.

Table 2.4. A 2 × 2 table for the binary factor Z in the k-th stratum of a categorised confounder X

Cases Controls Total

Z Non-exposed a1k c1k m1k

Exposed a2k c2k m2k

Total n1k n0k Nk

The stratum-specific odds ratio estimate for the k-th stratum is

ÔRk =
a2kc1k

c2ka1k
, k = 1, … , K .

Among the several methods for adjusted odds exist for adjustment (see Breslow
and Day 1980), the Mantel–Haenszel estimate is most commonly used. It is defined
as:

ÔRMH =

K∑
k=1

a2kc1k|Nk

K∑
k=1

c2ka1k|Nk

, k = 1, … , K ,

this estimate is easily computed, as well as the variance for its logarithm through

v̂ar
(
ÔRMH

)
=

K∑
k=1

(
a1kc2k|Nk

)2
vk

K∑
k=1

(
a1kc2k|Nk

)2
, k = 1, … , K ,

with

vk =
1

a1k
+

1

c1k
+

1

a2k
+

1

c2k

(Dos Santos Silva 1999, p 327ff). Again, the question arises how many categories K
should be used. If too few categories (e.g. K = 2) are used, the control of confound-
ing is incomplete, and some “residual confounding” remains. A measure for this is
described in Breslow and Day (1980, p 99ff). Five categories are usually sufficient
to control for confounding. However, since in practice more than one confounder
is common, a full stratified analysis would require K1 × K2 × … Kκ strata, where κ
denotes the number of confounders. This is usually not feasible, since this number
becomes too large, and the single tables too sparse. The analysis based on classical
methods has its limitation in this respect. Therefore, the Mantel–Haenszel method
has been replaced by regression methods as described later in this chapter and in
Chap. II.3.
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Test for Trend 2.2.4

Instead of presenting an effect measure for separate categories, one is often in-
terested in the general question whether the effect increases (or decreases) with
increasing dose. Very often the presentation of the results goes with the presen-
tation of a “test for trend”. Although this is sometimes more specifically referred
to as “test for linear trend”, this is not sufficient, since there is no unique “test for
(linear) trend”, and it often remains unclear what the authors of a paper actually
have done. Moreover, such a statistical test may yield a significant result indicating
a trend even if the single risk estimates are only increased in the lower dose range
but approach baseline risk at higher doses (Maclure and Greenland 1992). Also, if
there is a non-monotonous relation between exposure and disease (see Example 4),
does this mean “no trend”? As will become clear later in this chapter, a thorough
dose-response analysis should replace the commonly used trend tests.

Based on Table 2.2, a χ2-statistic for testing trend is

χ2 =
N2(N − 1)

[
K∑

k=1
xk(ak − ek)

]2

n1n0

[
N

K∑
k=1

x2
kmk −

(
K∑

k=1
xkmk

)2
] ,

where ek = E(ak) = mkn1|N is the expected number of cases in category k.
Under the null hypothesis of no trend this test statistic has an asymptotic

χ2-distribution with one degree of freedom. This test is called Mantel–Haenszel
χ2-test for linear trend. As typical for χ2-test statistics it compares the observed
number in each category with the one expected under the null hypothesis where
the xk serve as weights. To achieve an asymptotic χ2-distribution the resulting
squared sum of weighted differences in the nominator has to be appropriately
standardised by accounting for the weighted sample sizes for each exposure level
xkmk, the numbers of cases n1 and controls n0 as well as the total number of
subjects N. This test has been frequently used in the past. In practice, the val-
ues xk are often chosen as k. This is appropriate when the differences of the
mean levels between two adjacent categories are similar, which is for instance
fulfilled if the categories are equidistant. If this is not the case, the result of
a trend test can highly differ whether xk (e.g. defined as the midpoint of the
exposure category) or simply k is used in the formula above. For the last, open-
ended category there is no unique best solution to assign a value xk. Given that
the rank k is not used as weight, the best solution would be to investigate the
distribution of the variable and to use as xk the expected value given the obser-
vations are larger than the lower limit of this category. Since this may be difficult,
a quick and pragmatic solution is to take the lower limit of this category mul-
tiplied by 1.5. If few observations are in this category, the value used for xk is
not crucial. In any case, however, an exact description of the method used is
important.
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In the example presented in Table 2.3, we have χ2 = 48.51 with xk = k which is
highly significant (p < 0.001). Thus, our observation of an increasing odds ratio
with increasing dose could be confirmed by the above statistical test.

The underlying principle is identical for contingency table analysis and for
regression models, but for the latter there exists a larger variety of methods to
perform a trend test.

Concluding Remarks on Classical Methods2.2.5

In summary, the above described methods, which have mainly been developed
before 1980, have served in the analysis of epidemiological studies for a long
time. For a more detailed treatment of classical methods of data analysis with
contingency tables we refer to classical textbooks like Breslow and Day (1980). It
has become apparent, however, that these methods have their limits, as best seen
in the analysis of continuous covariables. The major drawbacks are:

need to categorize continues covariables, leading to a loss of information
limited possibilities to derive a dose-response-curve
ambiguous interpretation
limited options for confounder adjustment.

Nevertheless, these methods have one general advantage which should not be
underestimated: They are simple and some can easily be calculated with a small
pocket calculator. As a first step, following a descriptive analysis of the data, they
are still useful although these results will rarely find their way into good journals
today.

In the following themost relevant regressionmodels inepidemiological research
are briefly introduced (see also Chap. II.3 of this handbook) before several methods
to analyse continuous covariables are presented.

Regression Models and Risk Functions2.3

It has been mentioned at several places that regression modelling is the method
of choice for the analysis of epidemiological data. The advantages of these are
particularly apparent when continuous covariables are to be analysed. For the
classical methods a categorisation cannot be avoided, which automatically leads to
a loss of information. Regression methods, on the other hand, allow the analysis
of the data as measured. In this section, we introduce relevant regression models
and a notation which is useful for the subsequent presentation of the methods.

Let Y be the outcome variable, and let X and Z be two covariables (X continuous,
Z unspecified). In this paper we consider (a) the logistic regression model, where
the outcome variable Y is dichotomous, Y = 1 – (diseased), Y = 0 – (not diseased);
(b) the Poisson regression model, where µ = D|PY is the outcome variable with D
the observed number of events, e.g. deaths, and PY (person-years) the observation
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time for all individuals; and (c) the Cox regression model, where, λ(t) is the hazard
function and one observes the individual survival time t and a censoring indicator
(for a general discussion of regression models see Chap. II.3 of this handbook; for
models of the latter type we also refer to Chap. II.4 ).

The classical (log-linear) form of the logistic, Poisson or Cox model reads as
follows for the logistic regression model:

P(Y = 1|x, z) =
exp

(
β0 + β1x + β2z

)
1 + exp

(
β0 + β1x + β2z

) ,

the Poisson regression model:

µ = exp
(
β0 + β1x + β2z

)
,

and for the proportional hazards (Cox) regression model:

λ(t) = λ0(t) exp
(
β1x + β2z

)
,

where β1 and β2 are the regression coefficients for X and Z, respectively, and β0

is an intercept parameter. This standard form is not very flexible since a specific
functional relation between the covariables and the outcome is fixed (see Sect. 2.4
for details). A more general form of these models allow transformations of X
and Z with functions f and g, and the exponential function exp is replaced by R.
The general form then becomes for the logistic regression model:

P(Y = 1|x, z) =
exp

(
β0

)
RX

(
f (x), β1

)
RZ

(
g(z), β2

)
1 + exp

(
β0

)
RX

(
f (x), β1

)
RZ

(
g(z), β2

) ,

Poisson regression model:

µ = exp
(
β0

)
RX

(
f (x), β1

)
RZ

(
g(z), β2

)
,

and for the Cox regression model:

λ(t) = λ0(t)RX

(
f (x), β1

)
RZ

(
g(z), β2

)
,

where RX and RZ are risk functions.
For illustration, let us consider the logistic model first. In the classical form

as given above, a dose-response function for the variable X, given as OR(X=x
vs. X = 0) is given by

OR(X = x vs. X = 0) =
P(Y = 1|x, z)P(Y = 0|0, z)

P(Y = 1|0, z)P(Y = 1|x, z)
= exp(βx) ,

thus automatically yielding a specific (exponential) form of the dose-response-
curve. This is not sufficient for most analyses, and the more general form is given
as

OR(X = x vs. X = 0) =
P(Y = 1|x, z)P(Y = 0|0, z)

P(Y = 1|0, z)P(Y = 1|x, z)
= R(βf (x)) .
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In the history of the development, the function R has been modified first, leading
to the additive relative risk model (see method (iv) in the next section). Trans-
formations of the covariable X before entering the regression model have also
been common for quite a while, but only after the development of the method of
fractional polynomials this has been investigated in a more systematic way (Roys-
ton and Altman 1994). The correct functional form of the relative risk function is
commonly unknown, and unless biological knowledge can be added to support
a specific shape, one has to base the decision on statistical grounds. For assessing
the dose-response-curve associated with X, different approaches are used in the
literature which is dealt with in the next section.

It is possible in some cases to analytically derive the appropriate model if the dis-
tribution of the covariables is known. If, for instance, X is normally distributed in
cases and controls with equal variance and (possibly) different mean, then the clas-
sical form R(·) = exp(·) and f = id (where id denotes identity, i.e. f (x) = x) is the
correct one. In practice, however, it is more complex and it is necessary to find a sta-
tistical procedure for building the model and for discriminating between models.

It is noteworthy at this point that R(·) = exp(·) describes the odds ratio (or
relative risk or rate ratio) for the value of X relative to a reference level. For
example if X denotes the number of cigarettes smoked, then R(10) describes the
odds ratio for smoking 10 cigarettes compared to smoking zero, but likewise the
odds ratio for smoking 20 cigarettes compared to 10. This is the reason why the
odds ratio function often does not fit to the categorised estimates, in which the
odds ratio for each exposure category in comparison to the same baseline category
is estimated, a fact that is nicely described in Breslow and Day (1980, pp 220f). Here,
the risk for oesophageal cancer is estimated for tobacco consumption. Compared
to the baseline (non-smoker), even moderate smokers have a considerable risk
(odds ratio about 4.3). The increase in risk with increasing dose, as given in four
different levels of tobacco consumption, is clearly not log-linear. When estimating
the risk with the classical logistic model, the odds ratio function is, however, forced
to be log-linear with ln(OR(X = x vs. X = x0)) = β(x − x0) which does not fit the
data well. Method (vii) below takes specific account of this problem.

The risk function R may be embedded in a similar way in the Poisson regression.
However, there is one principal difference when applying this regression model.
Here, a rate is modelled which results from the observed number of events in
a category divided by the corresponding observed person-time (see Chap. I.5 of this
handbook). Therefore, a categorisation of a continuous covariable is necessary for
the allocation of person-time (see Breslow and Day 1987, pp 85–86). For example,
if the effect of average daily alcohol consumption X (in g ethanol per day) on
a particular disease is analysed from a cohort study with Poisson regression,
then X has to be categorized first, e.g. in categories 0, > 0–10, > 10–20, > 20–40,
> 40–80, 80+ g|day. Then the observed number of cases and corresponding person-
years are calculated for each exposure category, and finally the Poisson regression
can be performed using one of the methods as described later. The dose-response
analysis is then based on an average level within an exposure category for which
the mean from all individuals falling in the respective category can be used.
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Methods to Analyse Continuous
Covariables in Regression Models 2.4

In this section several methods will be described to deal with continuous co-
variables within regression models. For an introduction to regression models in
general see Chap. II.3 of this handbook.

Categorisation of X into K Levels (Method i) 2.4.1

Here, we use

f (x) =
(
Ix∈I1 (x), … , Ix∈IK (x)

)
; R(·) = exp(·) ,

where I is the indicator function and IK are the exposure categories 1, … , K with

Ik ∩ Ik′ = ∅ for k ≠ k′ and ∪
k

Ik = M ,

where M is the set of possible values of X.
This method is still most commonly used in epidemiology. It is the natural

transformation of classical methods for the analysis of grouped data. In contrast
to the classical methods, the covariable is split into K binary variables which then
enter the regression model. These are also called “dummy variables”. The category
which shall be the baseline, usually the not or low exposed, is left out of the model.
The aspects of how to choose the number of categories and the limits are the same
as in the classical methods described in Sect. 2.2.

The method has the advantage that it has an easy interpretation. It is therefore
popular among non-statisticians and it is “model-free” in the sense that no shape of
the dose-response relationship is implicitly assumed. It is a useful step in the analy-
sis sequence,however, it alsohas someseriousdrawbacks.Among theseareanarbi-
trary choice of the baseline level, cutpoints and number of levels. The full informa-
tion from the data is not used and the risk function is by definition a step function:

R(x) = exp

(
K∑

k=1

β1kIx∈Ik (x)

)
.

If X is a confounder for Z a high residual confounding may result if K is small (e.g.
K = 2). On the other hand a high number of parameters is to be estimated if K is
large which may not be feasible if the sample size is small. A frequent practice found
in the literature is to choose a categorisation (dichotomisation) of X that minimizes
the p-value. This procedure, however, yields incorrect p-values and must therefore
not be used without p-value adjustment (Altman et al. 1994; Schulgen et al. 1994).

A “test for linear trend” which parallels the classical test introduced in Sect. 2.2.2
is given by assigning the K categories of X the values 1, 2, 3, … , K as in Sect. 2.2
and entering this variable into the regression model. The advantage here is the
possibility to simultaneously adjust for other covariables which is only possible
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to a limited degree using the classical methods. The disadvantage, namely the
restriction to a specific functional form of the dose-response function, however, is
the same as before, and therefore it is not recommended for general use.

Leaving X Untransformed (Method ii)2.4.2

Here, f is chosen as identity, i.e.

f (x) = x ; R(·) = exp(·) , yielding R = exp(βx) .

This is the standard method which uses the full information of the variable,
however, it has the serious drawback that it assumes the exponential function as
thedose-response-curve.This is validonly in special situations, for example if X has
anormaldistribution in cases andcontrolswith equal variance. Inmanypapersone
finds statements like “odds ratio estimates are adjusted for age” which often simply
means that this method has been employed to adjust for X (age). The method can
easily yield false results. Example 5 in Sect. 2.5 gives data from a case-control study
for which this method is not appropriate. If in this example the method is used
for confounder adjustment for a second covariable Z, then residual confounding
would result (Becher 1993). The simple reason is that this is an unmatched study
with a special age distribution of cases and controls (see Example 5).

There are theoretical examples for which the correct form for adjustment can be
derived. For example, if X is normally distributed in cases and controls with differ-
ent means and variances, an additional quadratic term is required, which is a frac-
tional polynomial of degree two (see (iv)). The risk R(X = x vs. X = x0) depends
on the difference x − x0 only and yields exp(β(x − x0)) (compare with method (v)).

The p-value for β̂ as obtained from the model fit may be regarded as the result
of a “test for linear trend”. In that context, “linear” means that the log odds ratio
increases linearly with dose.

Transformation of X via a Monotonous Function
(Method iii)2.4.3

Here, X undergoes a monotonous transformation with common functions, such
as the logarithm or square root before it enters the regression model. This is
a common ‘ad hoc’ method and directly possible with all software packages which
allow the respective regression model. For choosing a particular model, one has
the problem that a comparison is not easily possible through a χ2-statistic.

Figure 2.1 shows the shape of the dose-response curve for three common trans-
formations

f1(x) =
√

x , f2(x) = x2 , f3(x) = ln(x + 1) ,

for which the regression coefficient is chosen such that R(1) = exp(1). It is seen
that f1 generates an almost linear dose-response within the given dose range, f2
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Figure 2.1. Possible shapes of dose-response curves as obtained from the transformations f1(x) =
√

x,

f2(x) = x2, f3(x) = ln(x + 1)

generates a strongly increasing curve, and f3 a concave dose-response (see also
method (vi) for comparison).

For f3 a specific feature must be noted: If the covariable X can take the value 0,
which is often the case (smoking, alcohol), then the simple log transformation is
not possible, and instead of ln(x), ln(x + k) must be used. In order to force the
dose-response to be 1 for x = 0 which is of course reasonable, one has to use k = 1
as in the function f3 above.

Different approaches have been proposed to discriminate between such models
which are called “non-nested models” (e.g. Royston and Thompson 1995; Mizon
and Richard 1986) which are beyond the scope of this chapter. It is also possible
to use a higher dimensional transformation, e.g. f (x) = (x, x2). Then, inclusion
of X into the model is followed by adding X2. A formal test on whether the second
component significantly improves the goodness-of-fit is readily available as the dif-
ference of deviances which is asymptotically χ2-distributed. A non-monotonous
dose-response function may result from this approach. Method (vi) below is a for-
malized version of this method.

Use of Additive (Linear) Risk Function (Method iv) 2.4.4

Similarly to (ii), we choose f as identity, but an additive risk function instead of an
exponential one

f (x) = x ; R(x) = 1 + βx .
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This method, though often described in literature and available in some software
packages, is not very often used in practise. A comparison of linear and exponential
relative risk function, i.e.

R1(x) = exp(βx) vs. R2(x) = 1 + βx ,

based on some goodness-of-fit statistic is desirable. However, a simple test for the
hypothesis H0: “Both models fit the data equally well” vs. H1: “One model fits
the data better than the other” is not available because the models are not nested
and the difference of the deviances has an unknown distribution under the null
hypothesis. The restriction f (x) = x can easily be relaxed, i.e. by a transformation
of X with a function as given in (iii), but this has also rarely been done in practice.

In this model, the risk when comparing two covariable values x1 and x2, 0 ≤
x1 < x2, does not only depend on x2 − x1 as in method (ii):

R
(
X = x2 vs. X = x1

)
=

1 + x2β
1 + x1β

< 1 + (x2 − x1)β .

For example, assume β = 1. Then,

R(X = 1 vs. X = 0) =
1 + 1

1 + 0
= 2 ,

whereas

R(X = 2 vs. X = 1) =
1 + 2

1 + 1
= 1.5 ,

although the difference of the arguments is the same in both cases.

Additional Dichotomous Variable (Method v)2.4.5

Adding a dichotomous variable (exposed|not exposed) to the quantitative variable
(levelof exposure)X into themodel, f (x) = (I(X>0)(x), h(x));R(x) = exp(β0+β1h(x))
if compared to level zero or R(x) = exp(β1h(x)) if comparing different positive
levels of exposure; h(x) arbitrary. For a better understanding of this method we
recommend to first read Example 1.

This method was motivated by the fact that there are covariables whose distri-
bution has a discrete and a continuous component. The most prominent example
is smoking where a certain proportion of the population are non-smokers referred
to as X = 0, i.e. P(X = 0) > 0, and the distribution of smoking dose within the
smokers is continuous. In practice this distribution is of course also discrete since
the answer options are usually integer numbers, however the underlying distribu-
tion can well be regarded as continuous. The relative risk for smoking k cigarettes
daily compared to 0 may not be the same as smoking 2k cigarettes compared to k.
To account for this fact, the above method has been applied in Jedrychowski et al.
(1992) (see examples). It was more formally described in Robertson et al. (1994).
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Fractional Polynomials (FP) (Method vi) 2.4.6

Here, we transform X via a fractional polynomial and use the exponential relative
risk function

f (x) = H(x) (see below) ; R(·) = exp(·) .

This method (Royston and Altman 1994) may be thought of as a formalized version
of combining methods (iii) and (iv). The idea of fractional polynomials is to
allow the variable to enter the model after it underwent transformations from
a predefined class of eight different functions. This class is defined as H1(x) = xp

with p ∈ {−2, −1, −0.5, 0, 0.5, 1, 2, 3} and x0 is here defined as ln(x). In a FP of degree
one the variable is entered successively with these eight transformations. In a FP
of degree two the variable enters the model a second time with H2(x) = xq with
q ∈ {−2, −1, −0.5, 0, 0.5, 1, 2, 3} and with H2(x) = xp ln(x) for q = p. Royston and
Altman (1994) show that the degree two fractional polynomials cover a very rich
family of dose-response curves. This means, that a huge variety of dose-response
curves canbefitted.More formally,wehave R(·) = exp(·) andas the linearpredictor

β0 +
J∑

j=1

βjHj(x) ,

where for a first order FP we have J = 1, H1(x) = xp as defined above. For a second
order FP we have J = 2, and the models are of the form β0 + β1xp + β2xq. FPs of
order larger than two rarely occur in practice.

Decision rules for a particular FP are suggested in Royston and Altman (1994)
via the deviance comparison of different models. They note that often different FP’s
yield very similar fits with very similar dose-response curves. If X is an exposure
variable which can take values smaller or equal zero, they recommend to add
a constant to X in order to make the log transformation possible. A FP of degree 1
yields monotonous, a FP of degree two allows for non-monotonous dose-response
functions (see Examples 3 and 4).

A Special Logarithmic Transformation (Method vii) 2.4.7

Using again the exponential relative risk function, we now perform a special
logarithmic transformation of X, i.e.

fk(x) = ln(1 + κx) ; R(·) = exp(·) ,

which generally yields a monotonous dose-response curve of the form

R(x) = exp(β ln(1 + κx)) = (1 + κx)β .
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It has the advantage that (a) it includes the additive and approximates the ex-
ponential relative risk function, (b) it can be applied to all regression models
which are common in epidemiology, (c) monotonous concave and convex dose-
response curves are possible, (d) it can be fitted with common software pack-
ages. To see (a), choose κ such that β = 1. Then we get R(x) = 1 + kx as
exp(ln(1 + κx)) = 1 + κx. Since in this case β is fixed and k is the parameter
to be estimated, inference on k is made by calculating the deviance difference of
the models with and without X which is under the null hypothesis asymptotically
χ2-distributed with one degree of freedom. For decreasing k, we get R(·) ≈ exp(·).
Figure 2.2 shows that this transformation allows concave, linear and convex dose-
response curves.

The best fitting model within that class is obtained with an iterative search for k
which results in minimal deviance (see Example 2).

Figure 2.2. Possible shapes of dose-response curves as obtained from the transformation (vii)

Conditioning (Method viii)2.4.8

The method appears to be useful if X is a confounder of the variable Z. If Z is
the variable of primary interest, and the main focus lies on correct and complete
confounder adjustment. There is no interest in assessing the relation between X
and Y . All previous methods may be applied as well, however, all these methods
cannot exclude possible residual confounding. We therefore suggest to eliminate
the effect of the confounder X by conditioning with fine strata. This method can
readily be applied to case-control studies. It means that the regression coefficients
of the logistic model are estimated by maximizing the conditional likelihood,
where the conditioning is done on the observations in the matched sets which are
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formedpost-hocwithfine strata according to X.Detailsmaybe found inNeuhäuser
and Becher (1997). This method performs rather well in simulation studies with
respect to bias and precision of the estimates in comparison to traditional methods
to adjust for confounder through inclusion in the model as a covariable.

To further illustrate the method, consider the unconditional likelihood function
of the logistic model with covariables X and Z which takes the form

Luncond =
n0∏
i=1

1

1 + exp
(
β0 + β′f (x) + γz

) n0+n1∏
i=n0+1

exp
(
β0 + β′f (x) + γz

)
1 + exp

(
β0 + β′f (x) + γz

) ,

where γ is the regression coefficient associated with z. Here we have n0 controls
and n1 cases. To adjust for the confounding effect of X, it is common practice to
include X into the model untransformed (method (ii)), or as categorical variables
(method (i)), or after some other transformation (method (iii)). Instead, it is
proposed to adjust for X via the conditional likelihood as

Lcond =
H∏

h=1

n1i∏
j=1

exp
(
γzhj

)
∑

lj

n1h∏
j=1

exp
(
γzhlj

) .

Here, we have defined H strata according to an appropriate grouping of X. Each
stratum consists of n1i cases and n0i controls. The sum in the denominator ranges

over the lj =

(
n1h + n0h

n1h

)
choices to select n1h observations from among the total

observations in stratum h. It is possible to extend the method to many covariables,
for example sex and age. In that case, all individuals with the same sex and the
same age group form a set. Since the likelihood is conditioned on the observations
of the confounder X, the variable cancels out from the likelihood (Breslow and Day
1980).

This post-hoc stratification method has a practical limitation. On one hand, one
aims at defining fine strata to avoid residual confounding. On the other hand, if
these strata are too fine, several of these may contain no cases or no controls. For
example, if strata are defined through “year and month of birth”, then in a medium
sized study many will be uninformative since either cases or controls are missing.
In that case they do not contribute to the estimation since they cancel out from the
likelihood function above. This, in turn, yields a loss of power. See Example 5 for
a practical application of the method.

For an individually matched case-control study this method can only be used
to control for another confounder if the original matching is relaxed and new
strata are formed according to the previous matching factors and the additional
confounder. Properties of that procedure have not yet been investigated. Again,
strata may become too sparse which limits the application.
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Generalized Additive Models (GAM’s) (Method ix)2.4.9

The class of generalized additive models (GAM’s) proposed by Hastie and Tib-
shirani (1986, 1990) is a method to model an unspecified relation between a set
of covariables X and a response variable Y . Using the previous notation, we have
two covariables (X, Z). Here, the linear predictor β1x + β2z is replaced by an ad-
ditive predictor s1(x) + s2(z), where si are unspecified smooth functions which are
estimated by local scoring algorithms further described in Hastie and Tibshirani
(1986, 1990). This method has been used in several epidemiological studies on air
pollution and health effects (e.g. Stieb et al. 2000; Rossi et al. 1999). The method is
intuitively appealing since it provides a flexible method for identifying non-linear
covariate effects. However, this approach is more data-driven than the previous
techniques described in this paper and it is not directly possible to take biologi-
cal knowledge of the shape of the dose-response curve into account. In addition,
since the method is rather complex, software is not commonly available and less
user-friendly.

Spline Regression (Method x)2.4.10

The last approach is also based on an exponential relative risk function, but with f
chosen as a polynomial:

f (x) polynomial (see below) ; R(·) = exp(·) .

Greenland (1995) has proposed spline regression within the logistic model (see also
Chap. II.3 of this handbook). Boucher et al. (1998) use this method for analysing
a case-control study on colon cancer and indicate several advantages of the method
in comparison to the categorical analysis (method (i)). While in method (i) the
risk is assumed to be constant within a category and jumps from category to
category, with spline regression the sudden jumps of the dose-reponse function
are avoided such that the fitted risk changes in a continuous manner within and
across categories. The method can also be applied to the other regression models
considered here. The method is formally described as follows: Let X be divided
into K categories indexed by k = 1, … , K with K−1 internal boundaries c1, … , cK−1.
In the so-called linear spline regression we have f (x) = α + β1x + β2s2 + … + βKsK ,
where sk = 0 if x ≤ ck and sk = x − ck if x > ck and R(·) = exp(·). With this
model one gets a continuous dose-response function with slopes changing at each
cutpoint.

A more general spline regression avoids the biologically implausible fact that the
first derivative of the dose-response function is not continuous. Here, a quadratic
term for X is added and the sk enter the model as squared such that f (x) =
α + β1x + γ1x2 + β2s2

2 + … + βKs2
K . More details can be found in Greenland

(1995).
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Examples 2.5

In this section we demonstrate some of these methods with real data examples.

Example 1. Smoking and lung cancer in a case-control study
In a case-control study with 1432 lung cancer cases and 1343 controls

(Jedrychowski et al. 1992) we used method (v) (adding a dichotomous variable
(exposed|not exposed) in addition to the quantitative variable) for analysis. Few
individuals reported a very low dose – most individuals were either non-smokers
or smoked 10 or more cigarettes per day. This means that the effect of smoking
few cigarettes cannot be estimated with sufficient precision from the data. The
model had the form logit P(Y = 1|x) = (β0 + β1IX>0 + β2 ln(x + 1)) and the
risk function is R(x) = exp(β1 + β2 ln(x + 1)) when compared to dose zero and
R(x) = exp(β2[ln(x1 + 1) − ln(x0 + 1)]) when estimating the odds ratio for dose x1

compared to dose x0. Since there were no individuals who reported smoking a very
low dose (say, 0.5 cigarettes per day), it is not possible to estimate the risk for
such doses. We obtained for Kreyberg type I tumors the dose-response function
R(x) = exp(−0.85 + 1.09 ln(x + 1)), x in number of cigarettes smoked per day
(Fig. 2.3). Note that this model does not allow meaningful OR estimation for low
doses compared todosezero.This isbecauseof the following: It canbeassumed that
the “true” risk function is continuous over the full range of valid arguments, i.e. for
all positive numbers larger than or equal to zero. However, we have R(0) = 1, and
for small doses, say x = 0.5, we get R(0.5) = exp(−0.85 + 1.09 ln(0.5 + 1)) = 0.665
which is not meaningful since it would give a protective effect for a very small
dose. The advantage of the model is that the dose-response curve agreed very well

Figure 2.3. Dose-response analysis for tobacco dose and lung cancer from a Polish case-control study

(Jedrychowski et al. 1992). Point estimates indicated by dots were calculated using dummy variables;

the dose-response function was fitted as R(x) = exp(−0.85 + 1.09 ln(x + 1))
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with the categorical estimates as obtained with method (i) in the observed dose
range. �

Example 2. Dioxin exposure and cancer mortality in a cohort study
We used method (vii) fk(x) = ln(kx + 1); R(·) = exp(·) within a co-

hort study analysis with Cox regression to investigate the relation between dioxin
exposure and cancer risk. This method was chosen because monotonicity of
the dose-response curve could be assumed on biological grounds. Data from
1189 workers occupationally exposed to dioxin were analysed using the Cox
regression model given by λ(x) = λ0(x) exp(β ln(kx + 1)). Here, X denotes the
cumulative dioxin (toxic equivalencies, TEQ) exposure ranging from 0 to about
150,000 ng/kg blood fat × years which enters the model as a time-dependent co-
variable. Other covariables were also considered, however, they are omitted here
for ease of presentation. Previous analyses showed that dioxin exposure was sig-
nificantly associated with cancer risk, and the aim was to derive the most appro-
priate dose-response function (Becher et al. 1998). Figure 2.4 shows the resulting
dose-response curves for the linear, exponential and best fitting model under the
above model class. In that particular example, the best model is obtained for
β = 0.78 and k = 0.023 yielding RR(x) = (1 + 0.023x)0.78 with a difference of
deviances to the null model of 30.49. The additive model is obtained for k = 0.015

Figure 2.4. Estimated dose-response curves and categorical risk estimates for cumulative dioxin

(TEQ) – exposure and total cancer risk, cohort study on dioxin exposure and cancer mortality (from

Becher et al. 1998). The point estimates give the risk estimates with corresponding 95% confidence

intervals for the exposure groups categorised in quintiles of cumulative dioxin exposure in the

exposed workers
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which gives the risk ratio function RR(x) = exp(ln(1 + 0.015x))1.0 = 1 + 0.015x
with a difference of deviances to the null model of 30.47. The exponential model
gives RR(x) = exp(0.085x) with a difference of deviances as 30.18. The model
without the TEQ value gives a deviance of 26.935. This model includes dummy
variables for age at start of employment (four categories), calendar year at start
of employment (three categories) and duration of employment (four categories).
Since the difference in the goodness of fit is small, it cannot be shown that one
model is superior to the other. The point estimates included in the figure give
the risk estimates with corresponding 95% confidence intervals for the exposure
groups categorised in quintiles of cumulative dioxin exposure in the exposed
workers. �

Example 3. Modelling mortality by age using demographic surveillance system
data

The aim of this study was to analyse mortality data from a demographic surveil-
lance system in Burkina Faso, West Africa (Sankoh et al. 2001). Based on a follow-up
period from 1993 to 1999 in a population of about 30,000 inhabitants, vital events
such as births, deaths, in and out migration were continuously monitored and
age-specific mortality rates were estimated. We used Poisson regression to model
the rates as a continuous function of age and employed the method of fractional
polynomials. We identified the 2nd degree FP µ(t) = exp(−2.66+0.001t +0.646t0.5)
to be the FP with the best fit according to the deviances of the respective mod-
els of degree 2. Figure 2.5 shows that the model fits the age-specific rates very
well. �

Figure 2.5. Mortality rates (all causes of death) by age, continuous and categorical, males and females,

DSS population of about 30,000 inhabitants, Burkina Faso, West Africa, with a follow-up from 1993

to 1998; age-specific mortality rates fitted by µ(t) = exp(−2.66 + 0.001t + 0.646t0.5)
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Example 4. Alcohol consumption and breast cancer
In a case-control study on premenopausal breast cancer (Kropp et al.

2001) the effect of alcohol consumption was investigated. First, an analysis with
the categorized variable coded as dummies was performed. Compared to abstinent
women, the data indicate a decrease in risk of about 30% for consumption levels
of 1–5 grams (OR 0.71, 95% CI: 0.54–0.91), 6–11 grams (OR 0.67, 95% confidence
interval (95% CI): 0.50–0.91), and 12–18 grams (OR 0.73, 95% CI: 0.51–1.05) of
alcohol per day. For 19–30 grams the odds ratio was 1.1 (95% CI: 0.73–1.65) and
for 31 grams the OR was 1.94 (95% CI: 1.18–3.20). A dose-response-analysis was
then done with fractional polynomials. This seemed particularly appropriate since
a non-monotonous dose-response function was suggested by categorical analysis.
The second degree polynomial ln(x + 1) +

√
x was found as the best model. The

resulting function OR(x) = exp(−1.26 ln(x + 1) + 0.83
√

x) is displayed in Fig. 2.6.
The difference of deviances of this model compared to the model without alcohol
was 33.1 (p < 0.001). �

Figure 2.6. Alcohol consumption and breast cancer risk; case-control study in southwest Germany.

Dose-response-analysis fitted with OR(x) = exp(−1.26 ln(x + 1) + 0.83
√

x) and categorized estimates

with 95% confidence intervals calculated for dummy variables (Kropp et al. 2001)

Example 5. Adjustment for the confounder “age” through conditioning
This is an unmatched case-control study on laryngeal cancer risk fac-

tors (Zatonski et al. 1991). Here, age is the continuous covariable X and Z, smoking,
is the variable of main interest. We were interested in an optimal adjustment of the
confounding effect of X, not in a dose-response-analysis. The age distribution in
cases and controls (Table 2.5) was extremely different. Methods (ii) and (iii) do not
give satisfactory results because of a non-monotonous relation between age and
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Table 2.5. Age distribution in cases and controls, Polish laryngeal cancer case-control study (Zatonski

et al. 1991)

Age group Controls Cases
(years) N % N %

25–34 275 28.5 7 2.8

35–39 163 16.9 7 2.8

40–44 96 10.0 19 7.6

45–49 90 9.3 27 10.9

50–54 110 11.4 71 28.5

55–59 123 12.7 62 24.9

60–65 108 11.2 56 22.5

Total 965 100.0 249 100.0

case-control status.Method(i)wasused in theoriginalpaperwith sixagecategories
within an unconditional logistic regression model, however, this method may not
be fully satisfactory as some residual confounding may remain with that method.
Here, method (viii) ,,conditioning“ is be advisable but the fractional polynomials
also yield a good result. Table 2.6 shows the estimated regression coefficients for
cigarette consumption, given as ln(no. of cigarettes smoked + 1), and standard
errors, for different adjustment methods. Due to the confounding between smok-
ing and age, the regression coefficients for smoking become smaller, the better
the adjustment by age for smoking is. Method (i) with six age categories reduces
the estimate for smoking from 1.732 to 1.236. The best fractional polynomials of
degrees 1 and 2 yield an estimate of 1.193 and 1.185, respectively. Conditioning
on age using 1-year intervals further reduces the estimate to 1.161. The difference
between these latter estimates do not have practical relevance, however it confirms
the simulated results by Neuhäuser and Becher (1997) that conditioning is a very
appropriate method to control the confounding effect of X since (1) the confound-
ing effect of age appears to be adjusted best and (2) the standard error of the
estimate is virtually identical to that of the other models. �

Table 2.6. Selected regression coefficients for smoking by adjustment method, Polish laryngeal cancer

case-control study (Zatonski et al. 1991)

Method of adjustment for age Deviance β̂smoking s.e.

no adjustment 960.4 1.732 0.153

(i) categorical (2 age groups) 946.0 1.440 0.162

(i) categorical (6 age groups) 919.7 1.236 0.163

(vi) Fractional polynomial degree 1 (age−2) 931.6 1.193 0.160

(vi) Fractional polynomial degree 2 (age3, 918.7 1.185 0.159

ln(age) × age3)
(viii) 41 age strata (1-year intervals) – 1.161 0.159
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Conclusions2.6

After a descriptive analysis, which may include some of the methods described in
Sect. 2.2 – some of these are automatically produced by some software packages
when contingency tables are generated – more elaborate methods come into play.
However, it is difficult to provide recommendations in a general form of how to
proceed such that each possible case is sufficiently handled.

Figure 2.7 provides a possible decision tree which is further described below.

Figure 2.7. Suggested decision tree for analysing continuous covariables
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The investigator is usually aware of whether X is a variable of primary interest
or not. If not, conditioning is the recommended method in case-control studies
to control the confounding effect of X on any other covariable since residual
confounding is thus maximally reduced. Some care must be taken to define the
strata appropriately. For example, if an adjustment of age is done by defining strata
as “year of birth”, this will result in large strata for the most frequent age groups
and small strata for the extreme ages. In Neuhäuser and Becher (1997) an adaptive
method which depends on the study size and distribution of X is further discussed.
For other regression models, this method for control of confounding has not yet
been investigated.

If X is the variable of primary interest, the situation is more complex. Biological
plausibility should be taken into account. If the risk function is assumed to be
non-monotonous, as in the Examples 3 and 4, fractional polynomials are a good
choice. Another option would be GAM’s or spline regression, however, as Royston
et al. (2000) point out, the latter may exhibit artefacts which can make their
interpretation difficult.

In many cases a monotonous relation can be assumed (Examples 1 and 2)
and the interest is to investigate whether the dose-dependent increase in risk is
linear, concave or convex (in the observed dose range). Here we have to distin-
guish between two cases: In Example 1 an effect is observed for which smoking
is a prominent example. If the distribution of X is a mixture of a discrete and
a continuous distribution, it can be shown theoretically that the correct model
requires the inclusion of an exposure indicator variable. Therefore, method (v)
is recommended. Of course, this method can be compared to other methods for
determining the best choice of the function h.

If X is continuous and if it can be assumed on biological grounds that the relation
with the disease is monotonous, method (vii) is recommended since it provides full
flexibility under the constraint of monotonicity. A further feature is that the first
derivative is also monotonous which does not seem to be a severe restriction. This
method provides the possibility to fit a linear dose-response which is often used
for regulatory risk assessment. Another option is to use fractional polynomials
of degree one. Sauerbrei and Royston (1999) additionally recommend a previous
transformation of the variable to guarantee a monotonous dose-response.

These recommendations give some guidance with respect to the estimation of
a dose-response curve. Regarding the test of trend, these are similar. A test of linear
trend within regression modelling is given by method (ii). Since this particular
dose-response curve (linearity in the logarithm of the risk function) may not be
the correct one, a rejection of the null hypothesis based on that test must not be
interpreted as “the risk does not significantly increase (or decrease) with dose”.
One should rather base such a statement on the result from the most appropriate
method. In the Examples 3 and 4 a trend test would not be meaningful, whereas in
Example 1 a statement on increasing risk by dose should be based on the p-value
for β̂2.

Many of the methods presented above can yield very similar results although
they may look very different at first sight. The models are often very closely related,
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and obviously the power to detect model misspecification is very small. While
a categorisation into two levels (high|low exposure) is generally not recommended,
a categorisation into four or more categories is, although not the optimal method,
a useful first step during the analysis process because it gives a first impression on
the effect of the variable for different dose levels. This is especially true if a natural
baseline dose exists as for smoking where non-smokers are the natural baseline.
For nutritional variables like “fat consumption” it is more difficult to define an
appropriate baseline. Among the common methods are the construction of tertiles,
quartiles, etc., or to use the same cutpoints as in previous studies in order to allow
a comparison of the results.

The availability of software is an important aspect for practical work since
statistical research is not always incorporated or intended when data are analysed
for a study.

Bothmethods, (ix)GAM’s and (x) spline regression, havedrawbacks.AsRoyston
et al. (2000) point out, “there are artefacts in the curve shapes, and possible
overinterpretation of the data that may accompany them.”. Royston et al. (1999)
write, “we do not think that [GAM’s and spline regression] are suitable as definitive
models in epidemiology for the following reasons. The mathematical expressions
for the curves are often very complex, so reporting of results must be by graphs
or by extensive tabulation. The situation is unsatisfactory when similar studies
are to be compared, and impossible if meta-analysis is intended. Data-dependence
of the final model is more marked than for parametric models and the curves
may be more difficult to interpret”. We also think that the suggested parametric
models provide sufficient flexibility on one hand, and allow inclusion of a priori
assumptions on the shape of the dose-response curve (monotonous, U-shaped) on
the other hand.

If a complex epidemiological study is analysed independently by different statis-
ticians, the results will typically not be identical. This is particular true when
continuous covariables are among the variables to be considered (not to men-
tion other issues that make the analysis of epidemiological studies non-standard,
such as the treatment of missing values, variable selection procedures, model
building and others). Readers can be reassured, however, that if an analysis is
performed with sufficient care the results and their interpretation will not differ
very much.
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Introduction 3.1

Basic tabular and graphical methods are an essential component of epidemiologic
analysis and are often sufficient, especially when one need consider only a few
variables at a time. They are, however, limited in the number of variables that
they can examine simultaneously. Even sparse-strata methods (such as Mantel–
Haenszel) require that some strata have two or more subjects; yet, as more and
more variables or categories are added to a stratification, the number of subjects
in each stratum may eventually drop to 0 or 1.

Regression analysis encompasses a vast array of techniques designed to over-
come the numerical limitations of simpler methods. This advantage is purchased
at a cost of stronger assumptions, which are compactly represented by a regression
model. Such models (and hence the assumptions they represent) have the advan-
tage of being explicit; a disadvantage is that the models may not be well understood
by the intended audience or even the user. Regression models can and should be
tailored by the analyst to suit the topic at hand; the latter process is sometimes
called model specification. This process is part of the broader task of regression
modeling.

To ensure that the assumptions underlying the regression analysis are reason-
able approximations, it is essential that the modeling process be actively guided
by the scientists involved in the research, rather than be left solely to mechanical
algorithms. Such active guidance requires familiarity with the variety and inter-
pretation of models. Hence, the present chapter will focus primarily on forms
of models and their interpretation, rather than on the more technical issues of
model fitting and testing. Because this chapter provides only outlines of key topics,
it should be supplemented by readings in more detailed treatments of regres-
sion analysis, as can be found in Breslow and Day (1980, 1987), McCullagh and
Nelder (1989), Clayton and Hills (1993), and Hosmer and Lemeshow (2000). For
an in-depth treatment of the difficulties and limitations of regression analysis in
nonexperimental studies, see Leamer (1978) or Berk (2004).

Achieving working competence in regression analysis requires comfort with
basic geometry and algebra. While the ensuing discussion attempts to be self-
contained, readers who feel lacking or weak in mathematical skills would do
well to review a textbook in high school mathematics or college algebra (focusing
especiallyon functions, graphs, andnatural logarithms)before studying regression
methods.

Regression Functions 3.2

A regression function is distinct from a model for that function. A regression model
is another, simpler function used to approximate or estimate the true regression
function. This distinction is often obscured and even unrecognized in elementary
treatments of regression, which in turn has generated much misunderstanding
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of regression modeling. Therefore, this chapter provides separate discussions of
regression functions and regression models.

There are two primary interpretations of regression functions, frequentist and
Bayesian, which correspond to two different interpretations of probability (see
Rothman and Greenland 1998, Chap. 12). The present chapter uses the frequentist
interpretation, but briefly discusses the Bayesian interpretation at the end of this
section. In both interpretations, the term regression is often used to refer to the
regression function.

Frequentist Regression3.2.1

In the frequentist view, the regression of a variable Y on another variable X is
the function that describes how the average (mean) value of Y changes across
population subgroups defined by levels of X. This function is often written as
E(Y |X = x), which should be read as “the average of Y when the variable X takes
on the specific value x.” The “E” part of the notation stands for “expectation”,
which here is just another word for “population mean”.

As an example, suppose Y stands for “height” to the nearest centimeter at some
time t, X stands for “weight” to the nearest kilogram at time t, and the population
of interest is that of Denmark at time t. If we subclassify the Danish population
at t into categories of weight X, compute the average height in each category, and
tabulate or graph these average heights against the weight categories, the result
displays the regression, E(Y |X = x), of height Y on weight X in Denmark at time t.
Several important points should be emphasized:
1. The concept of regression involves no modeling. Some would describe this fact

by saying that the concept of regression is essentially “nonparametric”. The
regression of Y on X is just a graphical property of the physical world, like the
orbital path of the earth around the sun.

2. There is nothing mathematically sophisticated about the regression function.
Each point on a regression curve could be computed by taking the average
of Y within a subpopulation defined as having a particular value of X. In the
example, the value of the regression function at X = 50 kg, E(Y |X = 50), is just
average height at time t among Danes who weigh 50 kg at time t.

3. A regression function cannot be unambiguously computed until we carefully
define X, Y , and the population over which the averages are to be taken. We
will call the latter population the target population of the regression. This
population is all too often left out of regression definitions, often resulting in
confusion.

Some ambiguity is unavoidable in practice. In our example, is time t measured
to the nearest year, day, minute, or millisecond? Is the Danish population all
citizens, all residents, or all persons present in Denmark at t? We may decide that
leaving these questions unanswered is tolerable, because varying the definitions
over a modest range would not change the result to an important extent. But if we
left time completely out of the definition, the regression would become hopelessly
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ambiguous, for now we would not have a good idea of who to include or exclude
from our average: Should we include people living in Denmark in prehistoric
times, or in the time of King Canute (a thousand years ago), or in the distant future
(a thousand years from now)? The choice could have a strong effect on our answer,
because of the large changes in height-to-weight relations that have occurred over
time.

Other Concepts of Population 3.2.2

It is important to distinguish between a “target population” and a “source pop-
ulation”. The target population of regression is defined without regard to our
observations; for example, the regression of diastolic blood pressure on cigarette
usage in China is defined whether or not we conduct a study in China (the target for
this regression). A source population is a source of subjects for a particular study
and is defined by the selection methods of the study; for example, a random-sample
survey of all residents of Beijing would have Beijing as its source population. The
concepts of target and source populations connect only insofar as inferences about
a regression function drawn from a study are most easily justified when the source
population of the study is identical to the target population of the regression. Oth-
erwise, issues of generalization from the source to the target have to be addressed
(see Rothman and Greenland 1998, Chap. 8).

In some literature, regression functions (and many other concepts) are defined
in terms of averages within a “superpopulation” or “hypothetical universe”. A su-
perpopulation is an abstraction of a target population, sometimes said to represent
the distribution (with respect to all variables of interest) of all possible persons
that ever were or ever could be targets of inference for the analysis at hand. Be-
cause the superpopulation approach focuses on purely hypothetical distributions,
it has encouraged substitution of mathematical theory for the more prosaic task
of connecting study results to populations of immediate public-health concern.
Thus, the present chapter defines regression functions in terms of averages within
real (target) populations.

Binary Regression 3.2.3

The concept of regression applies to variables measured on any scale: The re-
gressand and the regressor may be continuous or discrete, or even binary. For
example, Y could be an indicator of diabetes (Y = 1 for present, Y = 0 for ab-
sent), and X could be an indicator for sex (X = 1 for female, X = 0 for male).
Then E(Y |X = 1) would represent the average of the diabetes indicator Y among
females, and E(Y |X = 0) would represent the average of Y among males.

When the regressand Y is a binary indicator (0, 1) variable, E(Y |X = x) is
called a binary regression, and this regression simplifies in a very useful manner.
Specifically,when Y canbeonly 0 or 1, theaverageE(Y |X = x) equals theproportion
of population members who have Y = 1 among those who have X = x. For example,
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if Y is the diabetes indicator, E(Y |X = x) is the proportion with diabetes (i.e., with
Y = 1) among thosewith X = x. To see this, let Nyx denote thenumberofpopulation
members who have Y = y and X = x. Then the number of population members
with X = x is N1x + N0x = N+x, and the average of Y among these members,
E(Y |X = x), is

N1x × 1 + N0x × 0

N1x + N0x
=

N1x

N+x
,

which is just the proportion with Y = 1 among those with X = x.
The epidemiologic ramifications of the preceding relation are important. Let

Pr(Y = y|X = x) stand for “the proportion (of population members) with Y = y
among those with X = x” (which is often interpreted as the probability of Y = y in
the subpopulation with X = x). If Y is a binary indicator, we have just seen that

E(Y |X = x) = Pr(Y = 1|X = x) ,

that is, the average of Y when X = x equals the proportion with Y = 1 when X = x.
Thus, if Y is an indicatorof disease presence at a given time, the regressionof Y on X,
E(Y |X = x), provides the proportion with the disease at that time, or prevalence
proportion, given X = x. For example, if Y = 1 indicates diabetes presence on
January 1, 2010and X isweighton thatday, E(Y |X = x) providesdiabetesprevalence
as a function of weight on that day. If Y is instead an indicator of disease incidence
over a time interval (cf. Chap. I.2 of this handbook and Chap. 3 of Rothman
and Greenland, 1998), the regression of Y on X provides the proportion getting
disease over that interval, or incidence proportion, given X = x. For example, if
Y = 1 indicates stroke occurrence in 2010 and X is weight at the start of the year,
E(Y |X = x) provides the stroke incidence (proportion) in 2010 as a function of
initial weight.

Multiple Regression3.2.4

The concept of multiple regression is a simple extension of the ideas discussed
above to situations in which there are multiple (two or more) regressors. To illus-
trate, suppose Y is a diabetes indicator, X1 stands for “sex” (coded 1 for females,
0 for males), and X2 stands for “weight” (in kilograms). Then the regression of Y on
X1 and X2, written E(Y |X1 = x1, X2 = x2), provides the average of Y among popula-
tion members of a given sex X1 and weight X2. For example, E(Y |X1 = 1, X2 = 70) is
the average diabetes indicator (and, hence, the diabetes prevalence) among women
who weigh 70 kg.

We can use as many regressors as we want. For example, we could include age
(in years) in the last regression. Let X3 stand for “age”. Then E(Y |X1 = x1, X2 = x2,
X3 = x3) would provide the diabetes prevalence among population members of
a given sex, weight, and age. Continuing to include regressors produces a very
clumsy notation, however, and so we adopt a simple convention: We will let X rep-
resent theordered list of all the regressorswewant to consider.Thus, inourdiabetes
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example, X will stand for the horizontal list (X1, X2, X3) of “sex”, “weight”, and
“age”. Similarly,wewill let x stand for thehorizontalordered listof values (x1, x2, x3)
for X = (X1, X2, X3). Thus, if we write E(Y |X = x), it is merely a shorthand for

E
(
Y |X1 = x1, X2 = x2, X3 = x3

)
,

when there are three regressors under consideration.
Moregenerally, if thereare n regressors X1, … , Xn,wewillwrite X for theordered

list (X1, … , Xn) and x for the ordered list of values (x1, … , xn). The horizontal
ordered list of variables X is called a row vector of regressors, and the horizontal
ordered list of values x is called a row vector of values. Above, the vector X is
composed of the n = 3 items “sex”, “weight”, and “age”, and the list x is composed
of specific values for sex (0 or 1), weight (kilograms), and age (years). The number
of items n in X is called the length or dimension of X.

The term multivariate regression is usually reserved for regressions in which
there are multiple regressands. To illustrate, suppose Y1 is an indicator of diabetes
presence, Y2 is diastolic blood pressure, and Y is the list (Y1, Y2) composed of these
two variables. Also, let X be the list (X1, X2, X3) composed of the sex indicator,
weight, and age, as before. The multivariate regression of diabetes and blood
pressure on sex, weight, and age provides the average diabetes indicator and
average blood pressure for each combination of sex, weight, and age:

E
(
Y1, Y2|X1 = x1, X2 = x2, X3 = x3

)
= E(Y |X = x) .

In general, there may be any number of regressands in the list Y and regressors in
the list X of a multivariate regression. Multivariate regression notation allows one
to express the separate regressions for each regressand in one equation.

Regression and Causation 3.2.5

When considering a regression function E(Y |X = x), the variable Y is termed the
dependent variable, outcome variable, or regressand, and the variable X is termed
the independent variable, predictor, covariate, or regressor. The “dependent|inde-
pendent” terminology is common but also problematic because it invites confusion
of distinct probabilistic and causal concepts of dependence and independence. For
example, if Y is age and X is blood pressure, E(Y |X = x) represents the average
age of persons given blood pressure, X. But it is blood pressure X that causally
depends on age Y , not the other way around.

More generally, for any pair of variables X and Y , we can consider either the
regression of Y on X, E(Y |X = x), or the regression of X on Y , E(X|Y = y). Thus,
the concept of regression does not necessarily imply any causal or even temporal
relation between the regressor and the regressand. For example, Y could be blood
pressure at the start of follow-up of a cohort, and X could be blood pressure after
1 year of follow-up; then E(Y |X = x) would represent the average initial blood
pressure among cohort members whose blood pressure after 1 year of follow-up
is x. This is an example of a noncausal regression.
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Because regression functions do not involve any assumptions of time order or
causal relations, regression coefficients and quantities derived from them repre-
sent measures of association, not measures of effect. To interpret the coefficients
as measures of causal effects, it is important that the regression function being
modeled provide a representation of the effects of interest that is approximately
unconfounded (for a general discussion of the concept of confounding see Chap. I.9
of this handbook and Chap. 4 of Rothman and Greenland, 1998).

To make this no-confounding assumption more precise, suppose X contains the
exposures of interest and Z contains the other regressors. Following Pearl (1995),
we may then write

E [Y | Set(X = x), Z = z]

for the average value Y would have if everyone in the target population with
Z = z had their X value set to x. This potentially counterfactual average can be
very different from E(Y |X = x, Z = z). The latter refers only to those population
members with X = x and Z = z, whereas the former refers to all population
members with Z = z, including those who actually had X equal to values other
than x.

As an example, suppose the target population is all persons born during 1901–
1950 surviving to age 50, Y is an indicator of death by age 80, X contains only
X1 = pack-years of cigarettes smoked by age 50, and Z = (Z1, Z0) where Z1 = 1 if
female, 0 if male and Z2 = year of birth. Then

E [Y |X1 = 20, Z = (1, 1940)]

would be the average risk of dying by age 80 (mortality proportion) among women
born in 1940 and surviving to age 50 who smoked 20 pack-years by age 50. In
contrast,

E [Y | Set(X1 = 20), Z = (1, 1940)]

would be the average risk of dying by age 80 among all women born in 1940 and
surviving to age 50 if all such women had smoked 20 pack-years by age 50.

In regression analysis, we may define effect measures as contrasts of aver-
age outcomes (such as incidence) in the same population under different con-
ditions. Consider the ratio effect measure contrasting the average of Y in the
subpopulation with Z = z when X is set to x∗ versus that average when X is set
to x:

E [Y | Set(X = x∗), Z = z]

E [Y | Set(X = x), Z = z]
.

In the example,

E [Y | Set(X1 = 20), Z = (1, 1940)]

E [Y | Set(X1 = 0), Z = (1, 1940)]
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represents the effect of smoking 20 pack-years by age 50 versus no smoking on the
risk of dying by age 80 among women born in 1940. On the other hand, the ratio
measure

E [Y | Set(X1 = 20), Z = (1, 1940)]

E [Y | Set(X1 = 0), Z = (1, 1940)]

represents only the association of smoking 20 pack-years by age 50 versus no smok-
ing with the risk among women born in 1940, because it contrasts two different
subpopulations (one with X1 = 20, the other with X1 = 0).

To infer that all associational measures estimated from our analysis equal their
corresponding effect measures, we would have to make the following assumption
of no confounding given Z (which is sometimes expressed by stating that there is
no residual confounding):

E
(
Y |X = x, Z = z

)
= E [Y | Set(X = x), Z = z] .

This assumption states that the average we observe or estimate in the subpop-
ulation with both X = x and Z = z is equal to what the average in the larger
subpopulation with Z = z would have been if everyone had X set to x. It is im-
portant to appreciate the strength of the assumption. In the above example, the
no-confounding assumption would entail

E [Y |X1 = 20, Z = (1, 1940)] = E [Y | Set(X1 = 20), Z = (1, 1940)] ,

which states that the risk we will observe among women born in 1940 who smoked
20 pack-years by age 50 equals the risk we would have observed in all women
born in 1940 if they all had smoked 20 pack-years by age 50. The social variables
associated with both smoking and death should lead us to doubt that the two
quantities are even approximately equal.

If only a single summary measure of effect is desired, the covariate-specific
no-confounding assumption can be replaced by a less restrictive assumption tai-
lored to that measure. To illustrate, suppose in the above example we are only
interested in what the effect of smoking 20 versus zero pack-years would be on
everyone in the target, regardless of sex or birth year, as measured by the causal
risk ratio

E [Y | Set(X1 = 20)] /E [Y | Set(X1 = 0)] .

The corresponding measure of association is the risk ratio for 20 versus 0 pack-
years, standardized to the total population:∑

z
E
(
Y |X1 = 20, Z = z

)
Pr(Z = z)∑

z
E
(
Y |X1 = 0, Z = z

)
Pr(Z = z)

,

where Pr(Z = z) is the proportion with Z = z in the target. The no-confounding
assumption we need here is that the standardized ratio equals the causal ra-
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tio. This summary assumption could hold even if there was confounding within
levels of sex and birth year (although it would still be implausible in this exam-
ple).

The dubiousness of no-confounding assumptions is often the chief limitation in
using epidemiologic data for causal inference. This limitation applies to both tab-
ular and regression methods. Randomization of persons to levels of X can largely
overcome this limitation because it ensures that effect estimates follow a quantifi-
able probability distribution centered around the true effect. Randomization is not
an option in most settings, however.

The default strategy is to ensure there are enough well-measured confounders
in Z so that the no-confounding assumption is at least plausible. This strategy
often leads to few subjects at each level x of X and z of Z, which in turn lead to the
sparse-data problems that regression modeling attempts to address (Robins and
Greenland 1986; Greenland 2000a, b; Greenland et al. 2000). A major limitation of
this strategy is that, often, key confounders are poorly measured or unmeasured,
and so cannot be used in ordinary modeling; prior distributions for the missing
confounders must be used instead (Greenland 2003a).

Frequentist versus Bayesian Regression3.2.6

In frequentist theory, an expectation is interpreted as an average in a specific
subgroup of a specific population. The regression E(Y |X = x) thus represents
an objective functional relation among theoretically measurable variables (the
average of Y as a function of the variables listed in X). It may be that this relation
has not been observed, perhaps because it exists but we are unable to measure it, or
because it does not yet exist. Examples of the former and latter are the regressions
of blood pressure on weight in Spain 10 years ago and 10 years from now. In either
situation, the regression is an external relation that one tries to estimate, perhaps
by projecting (extrapolating) from current knowledge about presumably similar
relations. For example, one might use whatever survey data one can find on blood
pressure and weight to estimate what the regression of blood pressure on weight
would look like in Spain 10 years ago or 10 years from now. In this approach, one
tries to produce an estimate Ê(Y |X = x) of the true regression E(Y |X = x).

In subjective Bayesian theory, an expectation is what we would or should expect
to see in a given target population. This notion of expectation corresponds roughly
to a prediction of what we would see if we could observe the target in question. The
regression E(Y |X = x) does not represent an objective relation to be estimated, but
instead represents a subjective (personal) expectation about how the average of Y
varies across levels of X in the target population. Like the frequentist regression
estimate, however, it is something one constructs from whatever data one may find
that seems informative about this variation.

Both frequentist and Bayesian authors have noted that the two approaches
often yield similar interval estimates (Cox and Hinkley 1974; Good 1983). It is
increasingly recognized that divergences are usually due to differences in the
criteria for a “good” point estimate: Frequentists traditionally prefer criteria of
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unbiasedprediction (e.g., havinganaverage errorof zero),whereasBayesiansmore
often prefer criteria of closeness (e.g., having the smallest average squared error
possible). When analogous criteria are adopted in both approaches, Bayesian and
frequentist methods can yield similar numeric results in standard epidemiologic
applications.

Nonetheless, Bayesians and frequentists interpret their results differently. The
Bayesian presents a prediction, denoted by E(Y |X = x), which he or she interprets
as his or her “best bet” about the average of Y when X = x, according to some
criteria for “best bet”. The frequentist presents aprediction, denotedby Ê(Y |X = x)
(or, more commonly, ŶX=x), which he or she interprets as “the” best estimate of
the average of Y when X = x, according to some criteria for “best estimate” (such
as minimum variance among statistically unbiased estimators). Too often, the
latter criteria are presumed to be universally shared, but are not really shared or
even properly understood by epidemiologists; one could and would reach different
conclusionsusingotherdefensible criteria (suchasminimummeansquarederror).
For these reasons, when conducting regression analyses we find it valuable to
consider both frequentist and Bayesian interpretations of methods and results.

Basic Regression Models 3.3

In any given instance, the true regression of Y on X, E(Y |X = x), is an extremely
complicated function of the regressors X. Thus, even if we observe this function
without error, we may wish to formulate simplified pictures of reality that yield
models for this regression. These models, while inevitably incorrect, can be very
useful. A classic example is the representation of the distance from the earth to the
sun, Y , as a function of day of the year T. To the nearest kilometer, this distance
is a complex function of T because of the gravitational effects of the moon and of
the other planets in the solar system. If we represent the orbit of the earth around
the sun as a circle with the sun at the center, our regression model will predict the
distance E(Y |T = t) by a single number (about 150 million kilometers) that does
not change with t. This model is adequate if we need only predict the distances
to 2% accuracy. If we represent the orbit of the earth as an ellipse, our regression
model will predict the earth-sun distance as smoothly and cyclically varying over
the course of a year (within a range of about 147 to 153 million kilometers).
Although it is not perfectly accurate, this model is adequate if we need to predict
the distances to within 0.2% accuracy.

Model Specification and Model Fitting 3.3.1

Our description of the above models must be refined by distinguishing between
the form of a model and a fitted model. “Circle” and “ellipse” refer to forms, that
is, general classes of shapes. The circular model form corresponds to assuming
a constant earth-sun distance over time; the elliptical model form allows this
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distance to vary over a temporal cycle. The process of deciding between these two
forms is a simple example of model specification.

If we decide to use the circular form, we must also select a value for the radius
(which is the earth-sun distance in the model). This radius specifies which circle
(out of the many possible circles) to use as a representation of the earth’s orbit
and is an example of a model parameter. The process of selecting the “best” radius
is an example of model fitting, and the circle that results is sometimes called the
fitted model (although the latter term is sometimes used to refer to the model form
instead). There are two important relations between a set of data and a model fit
to those data. First, there is “distance” from the fitted model to the data; second,
there is “resistance” or “stability” of the fitted model, which is the degree to which
the parameter estimates change when the data themselves are changed.

Depending on our accuracy requirements, we may have on hand several sim-
plified pictures of reality and hence several candidate models. At best, our choice
might require a trade-off between simplicity and accuracy, as in the preceding
example. There is an old dictum (often referred to as “Occam’s razor”) that one
should not introduce needless complexity. According to this dictum, if we need
only two percent accuracy in predicting the earth’s distance from the sun, then we
should not bother with the ellipse model and instead use the constant distance
derived from the circle model.

There is a more subtle benefit from this advice than avoiding needless mental
exertion. Suppose we are given two models, one (the more complex) containing the
other (the more simple) as a special case, and some data with which to fit the two
models. Then the more complex model will be able to fit the available data more
closely than the simpler model, in the sense that the predictions from the more
complex model will (on average) be closer to what was seen in the data than will
the predictions from the simpler model. This is so in the above example because
the ellipse contains the circle as a special case. Nonetheless, there is a penalty for
this closeness to the data: The predictions obtained from the more complex model
tend to be less stable than those obtained from the simpler model.

Consider now the use of the two different model forms to predict events outside
of the data set to which the models were fit. An example would be forecasting the
earth’s distance from the sun; another would be predicting the incidence of AIDS
five years in the future. Intuitively, we might expect that if one model is both closer
to the data and more stable than the other, that model will give more accurate
predictions. The problem is that the choice among models is rarely so clear-cut:
Usually, one model will be closer to the data, while the other will be more stable,
and it will be difficult to tell which will be more accurate. This is one dilemma we
often face in a choice between a more complex and simpler model.

To summarize, model specification is the process of selecting a model form,
while model fitting is the process of using data to estimate the parameters in
a model form. There are many methods of model fitting, and the topic is so vast
and technical that we will only superficially outline a few key elements. Nearly all
commercial computer programs are based on one of just a few fitting methods, so
that nearly all users (statisticians as well as epidemiologists) are forced to base their
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analyses on the assumptions of these methods. We will briefly discuss specification
and fitting methods below.

Background Example 3.3.2

The following epidemiologic example will be used at various points to illustrate
specific models. At the time of this writing, there is a controversy over whether
women with no history of breast cancer but thought to be of high risk (due to
family history and perhaps other factors) should be given the drug tamoxifen as
a prophylactic regimen. Current evidence suggests that tamoxifen might prevent
breast cancer but also cause or promote endometrial and liver cancer.

One measure of the net impact of tamoxifen prophylaxis up to a given age is
the change in risk of death by that age. Suppose the regressand Y is an indicator of
death by age 70 (Y = 1 for dead, 0 for alive). The regressors X include

X1 = years of tamoxifen therapy,

X2 = age (in years) at start of tamoxifen therapy,

X3 = age at menarche,

X4 = age at menopause,

X5 = parity.

The target population is American women born during 1945–1950 who survive to
age 50 and do not use tamoxifen before that age. If tamoxifen is not taken during
follow-up, we set age at tamoxifen start (X2) to 70 because women who start at
70 or later and women who never take tamoxifen have the same exposure history
during the age interval under study.

In this example, the regression E(Y |X = x) is just the average risk, or incidence
proportion, of death by age 70 among women in the target population who have
X = x. Therefore, we will write R(x) as a shorthand for E(Y |X = x). We will
also write R for the crude (overall) average risk E(Y), R(x1) for the average risk
E(Y |X1 = x1) in the subpopulation defined by having X1 = x1 (without regard to
the other variables), and so on.

Vacuous Models 3.3.3

A model so general that implies nothing at all, but simply re-expresses the overall
average risk R in a different notation, is

E(Y) = R = α , 0 < α < 1 . (3.1)

(this model does exclude R = 0 or 1, but it allows R to be arbitrarily close to 0
or 1, so this exclusion is of no practical consequence). There is only one regression
parameter (or coefficient) α in this model, and it corresponds to the average risk
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in the target population. A model such as model (3.1) that has no implication (i.e.,
that imposes no restriction or constraint) is said to be vacuous.

Two models are said to be equivalent if they have identical implications for the
regression. A model equivalent to model (3.1) is

E(Y) = R = exp(α) , α < 0 . (3.2)

This model has no implication. In this model, α is the natural logarithm of the
overall average risk:

α = ln(R) .

Another model equivalent to models (3.1) and (3.2) is

E(Y) = R = expit(α) , (3.3)

where expit(α) is the logistic transform of α, defined as

expit(α) =
exp(α)

1 + exp(α)
.

Again,model (3.3)hasno implication.Now,however, theparameterα inmodel (3.3)
is the logit (log odds) of the overall average risk:

α = ln

(
R

1 − R

)
= logit(R) .

For an introduction of risk measures in general see Chap. I.2 of this handbook and
Chap. 3 of Rothman and Greenland (1998).

Constant Models3.3.4

In comparing the complexity and implications of two models A and B, we say that
model A is more general, more flexible, or more complex than model B, or that
A contains B, if all the implications of model A are also implications of model B,
but not vice-versa (that is, if B imposes some restrictions beyond those imposed
by A). Other ways of stating this relation are that B is simpler, stronger, or stricter
than A, B is contained or nested within A, or B is a special case of A. The following
model is superficially similar to model (3.1), but is in fact much more strict:

E
(
Y |X1 = x1

)
= R(x1) = α (3.4)

for all x1. This model implies that the average risks of the subpopulations defined
by years of tamoxifen use are identical. The parameter α represents the common
value of these risks. This model is called a constant regression because it allows no
variation in average risks across levels of the regressor. To see that it is a special
case of model (3.1), note that E(Y), the overall average, is just an average of all the
X1-specific averages E(Y |X1 = x1). Hence, if all the X1-specific averages equal α, as
in model (3.4), then the overall average must equal α as well, as in model (3.1).
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The following two models are equivalent to model (3.4):

R(x1) = exp(α) , (3.5)

which can be rewritten

ln [R(x1)] = α ,

and

R(x1) = expit(α) = eα|(1 + eα) , (3.6)

which can be rewritten

logit [R(x1)] = α .

In model (3.5), α is the common value of the log risks ln[R(x1)], while in model (3.6),
a is the common value of the logits, logit[R(x1)]. Each of the equivalent models
(3.4)–(3.6) is a special case of the more general models (3.1)–(3.3).

A constant regression is of course implausible in most situations. For example,
age is related to most health outcomes. In the above example, we should expect
the average death risk to vary across the subgroups defined by age at start (X2).
There is an infinitude of ways to model these variations. The problem of selecting
a useful model from among the many choices is discussed below. For now, we
only describe some of the more common choices, focusing on models for average
risks (incidence proportions), incidence odds, and person-time incidence rates.
The models for risks and odds can also be used to model prevalence proportions
and prevalence odds.

Linear Risk Models 3.3.5

Consider the model

R(x1) = α + β1x1 . (3.7)

This model allows the average risk to vary across subpopulations with different
values for X1, but only in a linear fashion. The model implies that subtracting the
average risk in the subpopulation with X1 = x1 from that in the subpopulation
with X1 = x1 + 1 will always yield β1, regardless of what x1 is. Under model (3.7),

R(x1 + 1) = a + β1(x1 + 1)

and

R(x1) = α + β1x1 ,

so

R(x1 + 1) − R(x1) = β1 .



640 Sander Greenland

Thus, in our example, β1 represents the difference in risk between the subpopula-
tion defined by having X1 = x1 + 1 and that defined by having X1 = x1. The model
implies that this difference does not depend on the reference level x1 for X1, used
for the comparison.

Model (3.7) is an example of a linear risk model. It is a special case of model (3.1);
it also contains model (3.4) as a special case (model (3.4) is the special case
of model (3.7) in which β1 = 0 and so average risks do not vary across levels
of X1). Linear risk models (such as model (3.7)) are easy to understand, but have
a severe technical problem that makes them difficult to fit in practice: There are
combinations of α and β1 that would produce impossible values (less than 0 or
greater than 1) for one or more of the risks R(x1). Several models partially or wholly
address this problem by transforming the linear term α + β1x1 before equating it
to the risk. We will study two of these models below.

Recentering3.3.6

Under model (3.7),

R(0) = α + β × 0 = α ,

so α represents the average risk for the subpopulation with X1 = 0. In the present
example, 0 is a possible value for X1 (tamoxifen) and so this interpretation of α
presents no problem. Suppose, however, we modeled X3 (age at menarche) instead
of X1:

R(x3) = α + β3x3 .

Because age at menarche cannot equal zero, α would have no meaningful inter-
pretation in this model. In order to avoid such interpretational problems, it is
a useful practice to recenter a variable for which zero is impossible (such as X3)
by subtracting some frequently observed value from it before putting it in the
model. For example, age 13 is a frequently observed value for age at menarche. We
can redefine X3 to be “age at menarche minus 13 years”. With this redefinition,
R(x3) = α + β3x3 refers to a different model, one in which R(0) = α represents the
average risk for women who were age 13 at menarche. We will later see that such
recentering is advisable when using any model, and is especially important when
product terms (“interactions”) are used in a model.

Rescaling3.3.7

A simple way of describing β1 in model (3.7) is that it is the difference in risk
per unit increase in X1. Often the units used to measure X1 are small relative
to exposure increases of substantive interest. Suppose, for example, that X1 was
diastolic blood pressure (DBP) measured in mm Hg; β1 would then be the risk
difference per mm increase in DBP. A 1 mm Hg increase would, however, be of
no clinical interest; instead, we would want to consider increases of at least 5 and
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possibly 10 or 20 mm Hg. Under model (3.7), the difference in risk per 10 mm Hg
increase would be 10β1. If we wanted to have β1 represent the difference in risk per
10 mm Hg, we need only redefine X1 as DBP divided by 10; X1 would then be DBP
in cm Hg.

Division of a variable by a constant, as just described, is sometimes called
rescaling of the variable. Such rescaling is advisable whenever it changes the mea-
surement unit to a more meaningful value. Unfortunately, rescaling is often done
in a way that makes the measurement unit less meaningful, by dividing the variable
by its sample standard deviation (SD). The sample SD is an irregular unit unique to
the study data, and depends heavily on how subjects were selected into the analysis.
For example, the SD of DBP might be 12.7 mm Hg in one study and 15.3 mm Hg in
another study. Suppose each study divided DBP by its SD entering it in model (3.7).
In the first study β1 would refer to the change in risk per 12.7 mm Hg increase
in DBP, whereas in the second study β1 would refer to the change in risk per
15.3 mm Hg. The rescaling would thus have rendered the coefficients interpretable
only in peculiar and different units, so that they could not be compared directly to
one another or to coefficients from other studies.

We will later see that rescaling is even more important when product terms are
used in a model. We thus recommend that rescaling be done using simple and easily
interpreted constants for the divisions. Methods that involve division by sample
SDs (such as transformations of variables to Z-scores), however, should be avoided.

Exponential Risk Models 3.3.8

Consider the following model:

R(x1) = exp
(
α + β1x1

)
. (3.8)

Since the exponential function (exp) is always positive, model (3.8) will produce
positive R(x1) for any combination of α + β1. Model (3.8) is sometimes called
an exponential risk model. It is a special case of the vacuous model (3.2); it also
contains the constant model (3.5) as the special case in which β1 = 0.

To understand the implications of the exponential risk model, we can recast it
in an equivalent form by taking the natural logarithm of both sides:

ln
[
R
(
x1

)]
= ln

[
exp

(
α + β1x1

)]
= α + β1x1 . (3.9)

Model (3.9) is often called a log-linear risk model. The exponential|log-linear
model allows risk to vary across subpopulations defined by X1, but only in an
exponential fashion. To interpret the coefficients, we may compare the log risks
under model (3.9) for the two subpopulations defined by X1 = x1 + 1 and X1 = x1:

ln
[
R
(
x1 + 1

)]
= α + β1

(
x1 + 1

)
and

ln
[
R
(
x1

)]
= α + β1x1 ,
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so

ln
[
R
(
x1 + 1

)]
− ln

[
R
(
x1

)]
= ln

[
R
(
x1 + 1

)
/R
(
x1

)]
= β1 .

Thus, under models (3.8) and (3.9), β1 represents the log risk ratio comparing the
subpopulation defined by having X1 = x1 +1 and that defined by X1 = x1, regardless
of the chosen reference level x1. Also, ln[R(0)] = α + β × 0 = α if X1 = 0; thus,
α represents the log risk for the subpopulation with X1 = 0 (and so is meaningful
only if X1 can be zero).

We can derive another (equivalent) interpretation of the parameters in the
exponential risk model by noting that

R
(
x1 + 1

)
= exp

[
α + β1

(
x1 + 1

)]
and

R
(
x1

)
= exp

(
α + β1x1

)
so

R
(
x1 + 1

)/
R
(
x1

)
= exp

[
α + β1

(
x1 + 1

)
−
(
α + β1x1

)]
= exp

(
β1

)
.

Thus, under models (3.8) and (3.9), β1 represents the ratio of risks between the
sub-populations defined by X1 = x1 +1 and X1 = x1, and this ratio does not depend
on the reference level x1 (because x1 does not appear in the final expression for the
risk ratio). Also, R(0) = exp(α + β × 0) = eα, so eα represents the average risk for
the subpopulation with X1 = 0.

As with linear risk models, exponential risk models have the technical problem
that some combinations of α and β1 will yield risk values greater than 1, which are
impossible. This will not be a practical concern, however, if all the fitted risks and
their confidence limits fall well below 1.

Logistic Models3.3.9

Neither linear nor exponential risk models can be used to analyze case-control data
if no external information is available to allow estimation of risks in the source
population, whereas the following model can be used without such information:

R
(
x1

)
= expit

(
α + β1x1

)
=

exp
(
α + β1x1

)
1 + exp

(
α + β1x1

) . (3.10)

This model is called a logistic risk model, after the logistic function (expit) in
the core of its definition. Because the range of the logistic function is between 0
and 1, the model will only produce risks between 0 and 1, regardless of the values
for α, β1, and x1. The logistic model is perhaps the most commonly used model
in epidemiology, so we examine it in some detail. Model (3.10) is a special case
of model (3.3), but unlike model (3.3) it is not vacuous because it constrains the
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X1-specific risks to follow a particular (logistic) pattern. The constant model (3.6)
is the special case of the logistic model in which β1 = 0.

To understand the implications of the logistic model, it is helpful to recast it as
a model for the odds. First, note that, under the logistic model (3.10),

1 − R
(
x1

)
= 1 −

exp
(
α + β1x1

)
1 + exp

(
α + β1x1

) =
1

1 + exp
(
α + β1x1

) .

Since R(x1)|[1 − R(x1)] is the odds, we divide each side of (3.10) by the last term
and find that, under the logistic model, the odds of disease O(x1) when X1 = x1 is

O
(
x1

)
=

R
(
x1

)
1 − R

(
x1

) =

exp
(
α + β1x1

)
1 + exp

(
α + β1x1

)
1

1 + exp
(
α + β1x1

) = exp
(
α + β1x1

)
. (3.11)

This equation shows that the logistic risk model is equivalent to an exponential
odds model.

Taking logarithms of both sides of (3.11), we see that the logistic model is also
equivalent to the log-linear odds model

ln
[
O
(
x1

)]
= α + β1x1 . (3.12)

Recall that the logit of risk is defined as the log odds:

logit
[
R
(
x1

)]
= ln

[
R
(
x1

)
/
(
1 − R(x1)

)]
= ln

[
O
(
x1

)]
.

Hence, from (3.12), the logistic model can be rewritten in one more equivalent form,

logit
[
R
(
x1

)]
= α + β1x1 . (3.13)

This equivalent of the logistic model is often called the logit-linear risk model, or
logit model.

As a general caution regarding terms, note that “log-linear model” can refer
to any of several different models, depending on the context: In addition to the
log-linear risk model (3.9) and the log-linear odds model (3.12) given above, there
are also log-linear rate models and log-linear incidence-time models, which will
be described below.

We can derive two equivalent interpretations of the logistic model parameters.
First,

ln
[
O
(
x1 + 1

)]
= α + β

(
x1 + 1

)
,

ln
[
O
(
x1

)]
= α + β1x1 ,

so

ln
[
O
(
x1 + 1

)]
− ln

[
O
(
x1

)]
= ln

[
O
(
x1 + 1

)
/O

(
x1

)]
= β1 .
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Thus, under the logistic model (3.10), β1 represents the log odds ratio comparing
the subpopulations with X1 = x1 + 1 and X1 = x1. Also, ln[O(0)] = α + β1 × 0 = α;
thus, α is the log odds (logit) for the subpopulation with X1 = 0 (and so is
meaningful only if X1 can be zero). Equivalently, we have

O
(
x1 + 1

)/
O
(
x1

)
= exp

(
β1

)
and

O(0) = exp(α) ,

so that exp(β1) is the odds ratio comparing the subpopulations with X1 = x1 + 1
and X1 = x1, and exp(α) is the odds for the subpopulation with X1 = 0.

Logistic models may be applied to case-control studies by re-interpreting the
odds O(x) as the case-control ratio in the study; see Breslow and Day (1980, Chap. 6)
or Rothman and Greenland (1998, pp 416–422) for details. For an introduction to
case-control studies we refer to Chap. I.6 of this handbook and Chap. 7 of Rothman
and Greenland (1998).

A Graphical Example3.3.10

Suppose a particular cohort has a 1-year risk of a cardiovascular event that is 0.02 at
age 50 rising to 0.32 at age 80, an absolute risk increase of 0.30, a ratio risk increase
of 0.32|0.02 = 16-fold, and a ratio odds increase of (0.32|0.68)|(0.02|0.98) = 23.06.
The average annual absolute risk increase is 0.30|30 = 0.01, but the way this
increase is distributed over ages could be quite different under different models.

If the risk increase is linear in age and x is age, the linear model for the risk from
age 51 to 80 would be R(x) = α1 +β1(x−50). Solving R(50) = 0.02 and R(80) = 0.32
we get α1 = 0.02 and β1 = 0.30|30 year = 0.01| year, a constant absolute increase in
risk of 0.01 for each of age.

Now suppose the increase is exponential rather than linear. The loglinear form
of the exponential model would be ln[R(x)] = α1 +β1(x −50). Solving R(50) = 0.02
and R(80) = 0.32 we now get α1 = ln(0.02) = −3.912 and β1 = ln(16)|30 year =
0.09242| year, corresponding to a constant proportionate risk increase of e0.09242 =
1.097 or about 9.7% for each year of age. This corresponds to an absolute risk
increase of only about 0.002 going from age 50 to 51, but of about 0.03 (15 times
more) going from age 79 to 80.

Finally, suppose the increase is logistic. The logit version of the logistic model
would be logit[R(x)] = α1 + β1(x − 50). Solving R(50) = 0.02 and R(80) = 0.32
we now get α1 = logit(0.02) = −3.892 and β1 = ln(23.06)|30 years = 0.1046| years,
corresponding to a constant proportionate odds increase of e0.1046 = 1.11 or about
11% for each year of age. This corresponds to an absolute risk increase of only
about 0.002 going from age 50 to 51, but of about 0.022 (11 times more) going from
age 79 to 80.

Figure 3.1a gives plots of the risks from the above three models from age 50 to 80.
The linear model produces a straight line, whereas the exponential model produces
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Figure 3.1. (a) Risks from linear, exponential and logistic model from age 50 to age 80 with a 1-year

risk of 0.02 at age 50 and 0.32 at age 80; (b) risks from linear, exponential and logistic model

extrapolated to age 110 with a 1-year risk of 0.02 at age 50 and 0.32 at age 80

an exponential curve; these shapes will always hold when x is not transformed. The
logistic curve is between the two, but is much closer in shape to the exponential for
risks below 0.25, and almost the same as the exponential for risks below 10%. As
shown in Fig. 3.1b as a projection of the above example, the logistic curve gradually
straightens out and is close to linear for risks between 40% and 60%; above that
point it begins to level off, becoming nearly flat (horizontal) as it approaches 1.
In contrast, the linear and exponential curves will eventually continue on above 1,
and so produce impossible values for risks (which is a problem if the actual risks
could get large). For negative β1 the curves would instead go downward from left
to right.

Other Risk and Odds Models 3.3.11

In addition to those given above, several other risk models are occasionally men-
tioned but rarely used in epidemiology. The linear odds model is obtained by
replacing the average risk by the odds in the linear risk model:

O(x1) = α + β1x1 . (3.14)

Here, β1 is the odds difference between subpopulations with X1 = x1 + 1 and
X1 = x1, and α is the odds for the subpopulation with X1 = 0. Like risk, the odds
cannot be negative; unfortunately, some combinations of α and β1 in model (3.14)
will produce negative odds. As a result, this model (like the linear risk model) is
difficult to fit and gives unsatisfactory results in many settings.

Another model replaces the logistic transform (expit) in the logistic model
(3.10) by the inverse of the standard normal distribution, which also has a range
between 0 and 1. The resulting model, called a probit model, has seen much use in
bioassay. Its absence from epidemiologic use may stem from the fact that (unlike
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the logistic) its parameters have no simple epidemiologic interpretation, and the
model appears to have no general advantage over the logistic in epidemiologic
applications.

Finally, several attempts have been made to use models that are mixtures of
different basic models, especially for multiple regressions (discussed below). These
mixtures have various drawbacks, including difficulties in fitting the models and
interpreting the parameters (Moolgavkar and Venzon 1987). We thus do not discuss
them here.

Rate Models3.3.12

Instead of modeling average risks, we could model person-time incidence rates. If
we let Y denote the rateobserved ina study subpopulation (so that Y is theobserved
number of cases per unit of observed person-time), the regression E(Y |X = x)
represents the average number of cases per unit of person-time in the target
subpopulation defined by X = x. We will denote this expected rate or “average
rate” by I(x).

Most rate models are analogues of risk and odds models. For example, the
model

I(x1) = E(Y |X1 = x1) = α + β1x1 (3.15)

is a linear rate model, analogous to (but different from) the linear risk and odds
models (3.7), (3.14). This rate model implies that the difference in average rates
between subpopulations with X1 = x1 + 1 and X1 = x1 is β1, regardless of x1.
Also, α is the average rate for the subpopulation with X1 = 0. This model can
be problematic, because some combinations of α and β1 in model (3.15) would
produce negative rate values, which are impossible.

To prevent the latter problem, most rate modeling begins with an exponential
rate model such as

I(x1) = exp(α + β1x1) . (3.16)

Because the exponential (exp) can never be negative, this model will not produce
negative rates, regardless of α, β1, or x1. The model is equivalent to the log-linear
rate model

ln [I(x1)] = α + β1x1 . (3.17)

The parameter β1 in models (3.16) and (3.17) is the log of the rate ratio com-
paring the subpopulation with X1 = x1 + 1 to the subpopulation with X1 = x1,
regardless of x1; hence, exp(β1) is the corresponding rate ratio I(x1 + 1)|I(x1). Also,
α is the log of the rate for the subpopulation with X1 = 0; hence, exp(α) is the
average rate I(0) when X1 = 0. The exponential rate model (3.16) is analogous
to, but different from, the exponential risk model (3.8) and the exponential odds
model (3.11).
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Incidence-Time and Hazard Models 3.3.13

We can also model the average time to occurrence of an event, starting from some
designated zero time such as birth (in which case “time” is age), start of treatment,
or some calendar date. These are called incidence-time, waiting-time, failure-time,
or survival-time models (cf. Chap II.4 of this handbook). Let T stand for time of
the event measured from zero. One approach to incidence time regression is to use
a linear model for log incidence time, such as

E[ln(T)|X1 = x1] = α − β1x1 . (3.18)

Because T is always positive, ln(T) is always defined. In this model, α is the
average log incidence time in the subpopulation with X1 = 0, and −β1 is the
difference in average log incidence times when comparing the subpopulation with
X1 = x1 + 1 to the subpopulation with X1 = x1 (regardless of the value x1).
Model (3.18) is a generalization of the basic accelerated-life model (Cox and Oakes
1984).

Note that the sign of β1 in the model is reversed from its sign in earlier models.
This reversal is done so that, if the outcome event at T is undesirable, then as in
earlier models positive values of β1 will correspond to harmful effects from in-
creasing X1, and negative values will correspond to beneficial effects. For example,
under the model, if T is death time and β1 is positive, an increase in X1 will be
associated with earlier death.

Another generalization of the basic accelerated-life model, similar but not iden-
tical to model (3.18), is the log-linear model for expected incidence time

ln[E(T|X1 = x1)] = α − β1x1 . (3.19)

Model (3.19) differs from model (3.18) because the log of an average is greater
than the average of the logs (unless T does not vary). Model (3.19) can be rewritten

E(T|X1 = x1) = exp(α − β1x1) = exp(−β1x1)eα ,

= exp(−β1x1)T0 ,

where T0 = E(T|X1 = 0) = eα. Under model (3.19) eα is the average incidence time
in the subpopulation with X1 = 0, and e−β1 is the ratio of average incidence times
in the subpopulation with X1 = x1 + 1 and the subpopulation with X1 = x1. As with
model (3.18) the sign of β1 is negative so that positive values of β1 will correspond
to harmful effects.

More common approaches to modeling incidence times impose a model for
the risk of the event up to each point in time, or for the rate of the event at each
point in time. The most famous such model is the Cox model, also known as the
proportional hazards model. We can give an approximate description of this model
as follows: Suppose we specify a time span ∆t that is small enough so that the risk
of having the event in any interval t to t + ∆t among those who survive to t without
the event is very small. The Cox model then implies that the rates in any such short
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interval will follow an exponential model like (3.16) with α but not β1 allowed to
vary with time t.

If we write I(t; x1) for the average rate in the interval t to t + ∆t among persons
who survive to t and have X1 = x1, the Cox model implies that

I(t; x1) ≈ exp(αt + β1x1) . (3.20)

Under the model, the approximation (≈) improves as ∆t gets smaller. Note
that the intercept at may vary with time, but in this simple Cox model the X1-
coefficient β1 is assumed to remain constant. This means that, at any time t, the
rate ratio comparing subpopulations with X1 = x1 + 1 and X1 = x1 will be

I(t; x1 + 1)|I(t; x1) ≈ exp[αt + β1(x1 + 1)]| exp(αt + β1x1) = exp(β1) ,

so that β1 is the log rate ratio per unit of X1, regardless of either the reference
level x1 or the time t at which it is computed.

Under the Cox model (3.20) the rate at time t for the subpopulation with X1 = 0
is given by I(t; 0) = exp(αt). If we denote this “baseline” rate by λ0(t) instead of
exp(αt), we have

I(t; x1) ≈ exp(αt + β1x1) = exp(αt + β1x1) = λ0(t) exp(β1x1) = exp(β1x1)λ0(t) .

The last expression is the standard form of the model given in most textbooks.
The term “Cox model” has become fairly standard, although a special case of the
model was proposed by Sheehe (1962) some 10 years before Cox (1972).

The approximate form of the Cox model (3.20) may be seen as an extension
of the exponential rate model (3.16) in which the rates may vary over time. In
statistical theory, the assumption is made that, at each time t, the rate I(t; x1)
approaches a limit λ(t; x1) as ∆t goes to zero. This limit is usually called the hazard
or intensity of the outcome at time t. The Cox model is then defined as a model for
these hazards,

λ(t; x1) = exp(β1x1)λ0(t) .

In epidemiologic studies, these hazards are purely theoretical quantities; thus,
it is important to understand the approximate forms of the model given above and
what those forms imply about observable rates.

The Cox model may be extended to allow X1 to vary over time. Let us write X1(t)
as an abbreviation for “the exposure as of time t” and x1(t) for the actual numerical
valueof X1(t) at time t. Then theCox model with time-dependent covariates implies
that the incidence rate at time t in the subpopulation that has exposure level x1(t)
at time t is

I[t; x1(t)] ≈ exp[β1x1(t)]λ0(t) . (3.21)

This model may be the most widely used model for time-dependent expo-
sures. Usually, a time-dependent exposure X1(t) is not defined as the actual
amount at time t, but instead is some cumulative and lagged index of expo-
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sure up to t. For example, if time is measured in months and exposure is cu-
mulative tamoxifen lagged 3 months, X1(t) would mean “cumulative amount
of tamoxifen taken up to month t − 3” and x1(t) would be a value for this
variable.

There are biases that can arise in use of Cox models to estimate effects of time-
dependent exposures. These biases and alternative models are described in Robins
et al. (1992) and Robins and Greenland (1994).

Trend Models: Univariate Exposure Transforms 3.3.14

Consider again the linear risk model (3.7). If this model were correct, a plot
of average risk across the subpopulations defined by X1 (that is, a plot of risk
against X1) would yield a line. Ordinarily, however, there is no compelling reason
to think the model is correct, and we might wish to entertain other possible models
for the trend in risk across exposure levels. We can generate an unlimited variety
of such models by transforming exposure, that is, by replacing X1 in the model by
some function of X1.

To illustrate, we could replace years exposed in model (3.7) by its logarithm, to
get

R(x1) = α + β1 ln(x1) . (3.22)

This is still called a linear risk model, because a plot of average risk against
the new regressor ln(X1) would yield a line. But it is a very different model from
model (3.7) because if model (3.22) were correct, a plot of average risk against
years exposed (X1) would yield a logarithmic curve rather than a line. Such a curve
starts off very steep for X1 < 1, but levels off rapidly beyond X1 > 1. One technical
problem can arise in using the logarithmic transform: It is not defined if X1 is
negative or zero. If the original exposure measurement can be negative or zero, it
is common practice to add a number c to X1 that is big enough to insure X1 + c is
always positive. The resulting model is

R(x1) = α + β1 ln(x1 + c) . (3.23)

The shape of the curve represented by this model (and hence results derived
using the model) can be very sensitive to the value chosen for c, especially when
the values of X1 may be less than 1. Frequently, c is set equal to 1, although there is
usually no compelling reason for this choice.

Among other possibilities for exposure transforms are simple power curves of
the form

R(x1) = α + β1x
p
1 , (3.24)



650 Sander Greenland

where p is some number (typically 1|2 or 2) chosen in advance according to some
desired property. For example, with X1 as years exposed, use of p = 1|2 yields the
square-root model

R(x1) = α + β1x1
1|2 ,

which produces a trend curve that levels off as X1 increases above zero. In contrast,
use of p = 2 yields the simple quadratic model

R(x1) = α + β1x2
1 ,

which produces a trend that rises more and more steeply as X1 increases above
zero. One technical problem can arise when using the power model (3.24). It is not
defined if p is fractional and X1 can be negative. To get around this limitation, we
may add some number c to X1 that is big enough to insure X1 + c is never negative,
and then use (X1 + c)p in the model; again, however, the result may be sensitive to
choice of c.

The trend implications of linear and exponential models are vastly different, and
hence the implications of exposure transforms are also different. Consider again
the exponential risk model (3.8). If this model were correct, a plot of average risk
against X1 would yield an exponential curve, rather than a line. If β1 is positive, this
curve starts out slowly but rises more and more rapidly as X1 increases; it eventually
rises more rapidly than does any power curve (3.24). Such rapid increase is often
implausible and we might wish to use a slower-rising curve to model risk.

One means of moderating the trend implied by an exponential model is to
replace x1 by a fixed power x

p
1 with 0 < p < 1, for example

R(x1) = exp
(
α + β1x

1|2
1

)
.

Another approach is to take the logarithm of exposure. This transform produces
a new model:

R(x1) = exp[α + β1 ln(x1)] = exp(α) exp[β1 ln(x1)]

= eα exp[ln(x1)]β1 = eαx
β1
1 . (3.25)

A graph of risk against exposure under this model produces a power curve, but
now (unlike (3.24)), the power is the unspecified (unknown) coefficient β1 instead
of a prespecified value p, and the multiplier of the exposure power is eα (which must
be positive) instead of β1. Model (3.25) might thus appear more appropriate than
model (3.24) when we want the power of X1 to appear as an unknown coefficient β1

in the model, rather than as a pre-specified value p. As earlier, however, X1 must
always be positive in order to use model (3.25) otherwise, one must add a constant c
to it such that X1 + c is always positive.

When β1 is negative in model (3.25) risk declines more and more gradually
across increasingly exposed subpopulations. For example, if β1 = −1, then under
model (3.25) R(x1) = eαx−1

1 = eα|x1, which would imply risk declines 50% (from
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eα|1 to eα|2) when going from X1 = 1 to X1 = 2, but declines less than 10% (from
eα|10 to eα|11) when going from X1 = 10 to X1 = 11.

The exposure transforms and implications just discussed carry over to the
analogous models for odds and rates. For example, we can modify the logistic
model (which is an exponential odds model) by substituting the odds O(x1) for
the risk R(x1) in models (3.22) to (3.25). Similarly, we can modify the rate models
by substituting the rate I(x1) for R(x1). Each model will have implications for the
odds or rates analogous to those described above for the risk; because the risks,
odds, and rates are functions of one another (see Rothman and Greenland 1998,
Chap. 3), each model will have implications for other measures as well.

Any trend in the odds will appear more gradual when transformed into a risk
trend. To see this, note that

R(x1) = O(x1)|[1 + O(x1)] < O(x1) ,

and hence

O(x1)|R(x1) = 1 + O(x1) .

This ratio of odds to risk grows as the odds (and the risks) get larger. Thus,
the logistic risk model, which is an exponential odds model, implies a less-than-
exponential trend in the risk. Conversely, any trend in the risks will appear steeper
when transformed into an odds trend. Thus, the exponential risk model implies
a greater-than-exponential trend in the odds, although when risks are uniformly
low (under 10% for all possible X1 values), the risks and odds will be close and
so there will be little difference between the shape of the curves produced by
analogous risk and odds models.

The relation of risk and odds trends to rate trends is more complex in general,
but in typical applications follows the simple rule that rate trends tend to fall
between the less steep riskandmore steepodds trends. For example, anexponential
rate model typically implies a less than exponential risk trend but more than
exponential odds trend. To see why these relations can be reasonable to expect,
recall that, if incidence is measured over a span of time ∆t in a closed cohort,
then R(x1) < I(x1)∆t < O(x1). When the risks are uniformly low, we obtain
R(x1)

.= I(x1)∆t
.= O(x1) (see Rothman and Greenland 1998, Chap. 3), and so there

will be little difference in the curves produced by analogous risk, rate, and odds
models.

Interpreting Models After Transformation 3.3.15

One drawback of models with transformed regressors is that the interpretation
of the coefficients depends on the transformation. As an example, consider the
model (3.25) which has ln(x1) in place of x1. Under this model, the risk ratio for
a one-unit increase in X1 is

R(x1 + 1)|R(x1) = eα(x1 + 1)β1 |eα(x1)β1 = [(x1 + 1)|x1]
β1 .
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which will depend on the value x1 used as the reference level: If β1 equals 1 and
x1 is 1, the risk ratio is 2, but if β1 equals 1 and x1 is 2, the ratio is 1.5. Here,
β1 is the power to which x1 is raised, and so determines the shape of the trend.
The interpretation of the intercept α is also altered by the transformation. Under
model (3.25), R(1) = eα1β1 = eα, thus, α is the log risk when X1 = 1, rather than
when X1 = 0, and so is meaningful only if 1 is a possible value for X1.

As a contrast, consider again the model R(x1) = exp
(
α + β1x

1|2
1

)
. Use of x

1|2
1

rather than x1 moderates the rapid increase in the slope of the exponential dose-
response curve, but also leads to difficulties in coefficient interpretation. Under
the model, the risk ratio for a one-unit increase in X1 is

exp
[
α + β1(x1 + 1)1|2

]/
exp

(
α + β1x

1|2
1

)
= exp

{
β1

[
(x1 + 1)1|2 − x

1|2
1

]}
.

Here, β1 is the log risk ratio per unit increase in the square root of X1, which is
rather obscure in meaning. Interpretation may better proceed by considering the
shape of the curve implied by the model, for example, by plotting exp

(
α + β1x

1|2
1

)
against possible values of X1 for several values of β1. (The intercept α is less
important in this model, because it only determines the vertical scale of the curve,
rather than its shape.) Such plotting is often needed to understand and compare
different transforms.

Multiple Regression Models3.4

Suppose now we wish to model the full multiple regression E(Y |X = x). Each of
the previous models for the single regression E(Y |X1 = x1) can be extended to
handle this more general situation by using the following device: In any model for
the single regression, replace β1x1 by

β1x1 + β2x2 + … + βnxn . (3.26)

To illustrate the idea, suppose we wish to model average risk of death by age 70
across female subpopulations defined by

X1 = years of tamoxifen therapy,

X2 = age at start of tamoxifen use, and

X3 = age at menarche,

with X = (X1, X2, X3). Then the multiple linear risk model for R(x) is

R(x) = α + β1x1 + β2x2 + β3x3 ,
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while the multiple logistic risk model is

R(x) = expit(α + β1x1 + β2x2 + β3x3) .

If instead we wished to model the death rate, we could use the multiple linear
rate model

I(x) = α + β1x1 + β2x2 + β3x3

or a multiple exponential rate model

I(x) = exp(α + β1x1 + β2x2 + β3x3) .

Because (3.26) canbeclumsy towriteoutwhen thereare threeormore regressors
(n ≥ 3), several shorthand notations are in use. Let us write β for the vertical list
(column vector) of coefficients β1, … , βn. Recall that x stands for the horizontal
list (row vector) of values x1, … , xn. We will let xβ stand for β1x1 + … + βnxn. We
can then represent the multiple linear risk model by

R(x) = α + xβ = α + β1x1 + … + βnxn , (3.27)

the multiple logistic model by

R(x) = expit(α + xβ) , (3.28)

the multiple exponential rate model by

I(x) = exp(α + xβ) , (3.29)

and so on for all the models discussed earlier.

Relations Among Multiple-Regression Models 3.4.1

The multiple-regression models (3.27)–(3.29) are not more general than the single-
regression models given earlier, nor do they contain those models as special cases.
This is because they refer to entirely different subclassifications of the target popu-
lation: The single-regression models refer to variations in averages across subpop-
ulations defined by levels of just one variable; in contrast, the multiple-regression
models refer to variations across the much finer subdivisions defined by the levels
of several variables. For example, it is possible for R(x1) to follow the single-logistic
model (3.10) without R(x) following the multiple-logistic model (3.28) conversely,
it is possible for R(x) to follow the multiple-logistic model without R(x1) following
the single-logistic model.

The preceding point is often overlooked because the single-regression models
are often confused with multiple-regression models in which all regressor coef-
ficients but one are zero. The difference is, however, analogous to the differences
discussed earlier between the vacuous models (3.1)–(3.3) (which are so general as
to imply nothing) and the constant regression models (3.4)–(3.6) (which are so
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restrictive as to be unbelievable in typical situations). To see this, consider the
multiple-logistic model

R(x) = expit(α + β1x1) . (3.30)

The right side of this equation is the same as in the single-logistic model (3.10)
but the left side is crucially different: It is the multiple-risk regression R(x), instead
of the single-regression R(x1). Unlike model (3.10) model (3.30) is a special case of
the multiple-logistic model (3.28) the one in which β2 = β3 = … = βn = 0. Unlike
model (3.10) model (3.30) asserts that risk does not vary across subpopulations
defined by X1, X2, … , Xn except to the extent that X1 varies. This is far more strict
than model (3.28) which allows risk to vary with X2, … , Xn as well as X1 (albeit
only in a logistic fashion). It is also far more strict than model (3.10) which says
absolutely nothing about whether or how risk varies across subpopulations defined
by X2, … , Xn within specific levels of X1.

More generally, we must be careful to distinguish between models that refer
to different multiple regressions. For example, compare the two exponential rate
models:

I(x1, x2) = exp(α + β1x1 + β2x2) (3.31)

and

I(x1, x2, x3) = exp(α + β1x1 + β2x2) . (3.32)

These are different models. The first is a model for the regression of rates on X1

and X2 only, while the second is a model for the regression of rates on X1, X2, and
X3. The first model in no way refers to X3, while the second asserts that rates do
not vary across levels of X3 if one looks within levels of X1 and X2. Model (3.32) is
the special case of

I(x1, x2, x3) = exp(α + β1x1 + β2x2 + β3x3)

(the case in which β3 = 0), while model (3.31) is not, and this special case implies
model (3.31).

Many textbooks and software manuals fail to distinguish between models such
as models (3.31) and (3.32), and instead focus only on the appearance of the right-
hand side of the models. Most software fits the model that ignores other covariates
((3.31) in the above example) rather than the more restrictive model (3.32) when
requested to fit a model with only X1 and X2 as regressors. Note that if the less
restrictive model is inadequate, then the more restrictive model must also be
inadequate.

Unfortunately, if the less restrictive model appears adequate, it does not follow
that the more restrictive model is also adequate. For example, it is possible for
the model form exp(α + β1x1 + β2x2) to describe adequately the double regression
I(x1, x2) (which means it describes adequately rate variation across X1 and X2

when X3 is ignored), and yet at the same time describe poorly the triple regression
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I(x1, x2, x3) (which means that it describes inadequately rate variation across X1,
X2, and X3). That is, a model may describe poorly the rate variation across X1, X2,
and X3 even if it describes adequately the rate variation across X1 and X2 when X3

is ignored. The decision as to whether the model is acceptable should depend on
whether rate variation across X3 is relevant to the analysis objectives. For example,
if the objective is to estimate the effect of changes in X1 on the death rate, and X2

and X3 are both potential confounders (as in the tamoxifen example), we would
want the model to describe adequately rate variation across all three variables. But
if X3 is instead affected by the study exposure X1 (as when X1 is past estrogen
exposure and X3 is an indicator of current uterine bleeding), we would ordinarily
not want to include X3 in the regression model (because we would not want to
adjust our exposure effect estimate for X3).

Product Terms (Statistical Interactions) 3.4.2

Each model form described above has differing implications for measures of asso-
ciation derived from the models. Consider again the linear risk model with three
regressors X1, X2, and X3, and let x∗

1 and x1 be any two values for X1. Under the
model, the risks at X1 = x∗

1 and X1 = x1 and their difference RD when X2 = x2 and
X3 = x3 are

R
(
x∗

1 , x2, x3

)
= α + β1x∗

1 + β2x2 + β3x3 ,

R
(
x1, x2, x3

)
= α + β1x1 + β2x2 + β3x3 ,

RD = β1

(
x∗

1 − x1

)
.

Thus, the model implies that the risk difference between two subpopulations with
the same X2 and X3 levels depends only on the difference in their X1 levels. In other
words, the model implies that the risk differences for X1 within levels of X2 and X3

will not vary across levels of X2 and X3. Such an implication may be unacceptable,
in which case we can either modify the linear model or switch to another model.
A simple way to modify a model is to add product terms. For example, suppose we
want to allow the risk differences for X1 to vary across levels of X2. We then may
add the product of X1 and X2 to the model as a fourth variable. The risks and their
differences will then be

R
(
x∗

1 , x2, x3

)
= α + β1x∗

1 + β2x2 + β3x3 + γ12x∗
1x2 ,

R(x1, x2, x3) = α + β1x1 + β2x2 + β3x3 + γ12x1x2 , (3.33)

RD = β1(x∗
1 − x1) + γ12(x∗

1 − x1)x2 = (β1 + γ12x2)(x∗
1 − x1) . (3.34)

Under model (3.33), the risk difference for X1 = x∗
1 versus X1 = x1 is given

by (3.34), which depends on X2.
A model (e.g., (3.33)), that allows variation of the risk difference for X1 across

levels of X2 will also allow variation in the risk difference for X2 across levels of X1.
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As an example, let x∗
2 and x2 be any two possible values for X2. Under model (3.33)

the risks at X2 = x∗
2 and X2 = x2 and their difference RD when X1 = x1, X3 = x3

are

R
(
x1, x∗

2 , x3

)
= α + β1x1 + β2x∗

2 + β3x3 + γ12x1x∗
2 ,

R(x1, x2, x3) = α + β1x1 + β2x2 + β3x3 + γ12x1x2 ,

RD = β2

(
x∗

2 − x2

)
+ γ12x1

(
x∗

2 − x2

)
= (β2 + γ12x1)

(
x∗

2 − x2

)
. (3.35)

Thus, under the model, the risk difference for X2 = x∗
2 versus X2 = x2 is given

by (3.35), which depends on X1. (3.34) and (3.35) illustrate how product terms
modify a model in a symmetric way. The term γ12x1x2 allows the risk differences
for X1 to vary with X2 and the risk differences for X2 to vary with X1.

If we have three regressors in a model, we have three unique two-way regressor
products (x1x2, x1x3, x2x3) that we can put in the model. More generally, with n re-

gressors, there are
(

n

2

)
pairs and hence

(
n

2

)
two-way products we can use. It is also

possible to add triple products (e.g., x1x2x3) or even more complex combinations
to the model, but such additions are rare in practice; notable exceptions are body
mass indices, such as kg|m2 (Michels et al. 1998). A model without product terms
is sometimes called a “main-effects only” model, and can be viewed as the special
case of a model with product terms (the special case in which all the product
coefficients γij are zero).

Consider next an exponential-risk model with the above three variables. Under
this model, the risks at X1 = x∗

1 and X1 = x1 and their ratio RR when X2 = x2,
X3 = x3 are

R
(
x∗

1 , x2, x3

)
= exp

(
α + β1x∗

1 + β2x2 + β3x3

)
,

R(x1, x2, x3) = exp(α + β1x1 + β2x2 + β3x3) ,

RR = exp
[
β1

(
x∗

1 − x1

)]
. (3.36)

Thus, the model implies that the risk ratio comparing two subpopulations with
the same X2 and X3 levels depends only on the difference in their X1 levels. In other
words, the model implies that the risk ratios for X1 will be constant across levels
of X2 and X3. If this implication is unacceptable, product terms can be inserted, as
with the linear model. These terms allow the risk ratios to vary in a limited fashion
across levels of other variables. The preceding discussion of product terms can be
applied to linear and exponential models in which the odds or rate replace the
risk. For example, without product terms, the logistic model implies that the odds
ratios for each regressor are constant across levels of the other regressors (because
the logistic model is an exponential odds model); we can add product terms to
allow the odds ratios to vary. Likewise, without product terms, the exponential
rate model implies that the rate ratios for each regressor are constant across levels
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of the other regressors; we can add product terms to allow the rate ratios to
vary.

Although product terms can greatly increase the flexibility of a model, the
type of variation allowed by product terms can be very limited. For example,
model (3.33) implies that raising X2 by one unit (i.e., comparing subpopulations
that have X2 = x2 + 1 instead of X2 = x2) will yield a risk difference for X1 of

[β1 + γ12(x2 + 1)](x∗
1 − x1) = (β1 + γ12x2)(x∗

1 − x1) + γ12(x∗
1 − x1) .

In other words, the model implies that shifting our comparison to subpopula-
tions that are one unit higher in X2 will change the risk difference for X1 in a linear
fashion, by an amount γ12(x∗

1 − x1), regardless of the reference values x1, x2, x3 of
X1, X2, X3.

Trends and Product Terms 3.4.3

Each of the above models forces or assumes a particular shape for the graph
obtained when average outcome (regression) is plotted against the regressors.
Consider again the tamoxifen example. Suppose we wished to plot how the risk
varies across subpopulations with different number of years exposed but with the
same age at start of exposure and the same age at menarche. Under the linear risk
model, this would involve plotting the average risk

R(x1, x2, x3) = α + βx1 + β2x2 + β3x3

against X1, while keeping X2 and X3 fixed at some values x2 and x3. In doing so, we
would obtain a line with an intercept equal to α+β2x2 +β3x3 and a slope equal to β1.
Whenever we changed X2 and X3 and replotted R(x) against X1, the intercept would
change (unless β2 = β3 = 0), but the slope would remain β1. Because lines with the
same slope are parallel, we can say that the linear risk model given above implies
parallel linear trends in risk with increasing tamoxifen (X1) as one moves across
subpopulations of different starting age (X2) and menarche age (X3). This means
that each change in X2 and X3 adds some constant (possibly negative) amount to
the X1 curve. For this reason, the linear risk model is sometimes called an additive
risk model.

If we next plotted risks against X2, we would get analogous results: The linear
risk model given above implies parallel linear relations between average risk and
X2 as one moves across levels of X1 and X3. Likewise, the model implies parallel
linear relations between average risk and X3 across levels of X1 and X2. Thus, the
linear model implies additive (parallel) relations among all the variables.

If we are unsatisfied with the linearity assumption but we wish to retain the
additivity (parallel-trend) assumption, we could transform the regressors. If we
are unsatisfied with the parallel-trend assumption, we can allow the trends to vary
across levels of other regressors by adding product terms to the model. For
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example, adding the product of X1 and X2 to the model yields model (3.33), which
can be rewritten

R(x1, x2, x3) = α + (β1 + γ12x2)x1 + β2x2 + β3x3 .

From this reformulation, we see that the slope for the line obtained by plotting
average risk against X1 while keeping X2, X3 fixed at x2, x3 would be β1 + γ12x2.
Thus, the slope of the trend in risk across X1 would vary across levels of X2 (if
γ12 ≠ 0), and so the trend lines for X1 would not be parallel. We also see that
γ12 is the difference in the X1-trend slopes between subpopulations with the same
X3-value but one unit apart in their X2-value.

An entirely different approach to producing nonparallel trends begins with an
exponential model. For example, under the exponential risk model (3.36) a plot of
average risk against X1 while keeping X2 and X3 fixed at x2 and x3 would produce an
exponential curve rather than a line. This exponential curve would have intercept
exp(α + β2x2 + β3x3). If, however, we changed the value of X2 or X3 and replotted
risk against X1, we would not obtain a parallel risk curve. Instead, the new curve
would be proportional to the old: A change in X2 or X3 multiplies the entire X1

curve by some amount. For this reason, the exponential model is sometimes called
a multiplicative risk model. If we were unsatisfied with this proportionality-of-
trends assumption, we could insert product terms into the model, which would
allow for certain types of nonproportional trends. Proportional trends in risk
appear parallel when plotted on a logarithmic vertical scale; when product terms
with nonzero coefficients are present, logarithmic trends appear nonparallel.

Analogous comments and definitions apply if we substitute odds or rates for
risks in the above arguments. For example, consider the multiple-logistic model
in the exponential-odds form:

O(x) = exp(α + β1x1 + β2x2 + β3x3) .

A plot of the disease odds O(x) against X1 while keeping X2 and X3 fixed would
produce an exponential curve; a plot of the log odds (logit) against X1 while
keeping X2 and X3 fixed would produce a line. If we changed the value of X2 or
X3 and replotted the odds against X1, we would obtain a new curve proportional
to the old; that is, the new odds curve would equal the old multiplied by some
constant amount. Thus, the logistic model is sometimes called a multiplicative-
odds model. For analogous reasons, the exponential rate model is sometimes called
a multiplicative-rate model. In both these models, inserting product terms into the
model allows certain types of departures from proportional trends.

Interpreting Product-Term Models3.4.4

Several important cautions should be highlighted when attempting to build models
with product terms and interpret coefficients in models with product terms. First,
the so-called “main-effect” coefficient βj will be meaningless when considered
alone if its regressor Xj appears in a product with another variable Xk that cannot
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be zero. In the tamoxifen example, X1 is years of exposure, which can be zero, while
X3 is age at menarche (in years), which is always above zero. Consider the model

R(x1, x2, x3) = α + β1x1 + β2x2 + β3x3 + γ13x1x3

= α + β1x1 + β2x2 + (β3 + γ13x1)x3

= α + (β1 + γ13x3)x1 + β2x2 + β3x3 . (3.37)

Under this model, β1 + γ13x3 is the slope for the trend in risks across X1 given
X2 = x2 and X3 = x3. Thus, if X3 was 0, this slope would be β1 +

(
γ13 × 0

)
= β1,

and so β1 could be interpreted as the slope for X1 in subpopulations of a given X2

and with X3 = 0. But X3 is age at menarche and so cannot be zero; thus, β1 has no
simple epidemiologic interpretation. In contrast, because X1 is years exposed and
so can be zero, β3 does have a simple interpretation: Under model (3.37) β3 + γ13x1

is the slope for X3 given X1 = x1; hence, β3 + γ13 × 0 = β3 is the slope for X3 in
subpopulations with no tamoxifen exposure (X1 = 0).

As mentioned earlier, if a regressor Xj cannot be zero, one can insure a simple
interpretation of the intercept α by recentering the regressor, that is, by subtracting
a reference value from the regressor before entering it in the model. Such recenter-
ing also helps provide a simple interpretation for the coefficients of variables that
appear with Xj in product terms. In the example, we could recenter by redefining
X3 to be age at menarche minus 13 years. With this change, β1 in model (3.37)
would now be the slope for X1 (years of tamoxifen) in subpopulations of a given
X2 (age at start of tamoxifen) in which this new X3 was 0 (that is, in which the age
at menarche was 13).

Rescaling can also be important for interpretation of product-term coefficients.
As an example, suppose X1 is serum cholesterol in mg/dl and X2 is diastolic blood
pressure (DBP) in mm Hg, and that the product of X1 and X2 is entered into
the model without rescaling, say as γ12x1x2 in an exponential rate model. Then
γ12 would represent the difference in the log rate ratio for a 1 mg/dl increase in
cholesterol when comparing sub-populations 1 mm Hg apart in DBP. Even if this
term was important, it would appear very small in magnitude because of the small
units used to measure cholesterol and DBP. To avoid such deceptive appearances,
we could rescale X1 and X2 so that their units now represented important increases
in cholesterol and DBP. For example, we could redefine X1 as cholesterol divided
by 20 and X2 as DBP divided by 10. With this rescaling, γl2 would represent the
difference in the log rate ratio fora 20 mg/dl increase incholesterolwhencomparing
subpopulations 10 mm Hg apart in DBP.

Another caution is that, in most situations, a product term in a model should
be accompanied by terms for all variables and products contained within that
product. For example, if one enters γ12x1x2 in a model, β1x1 and β2x2 should
also be included in that model; and if one enters δl23x1x2x3 in a model, all of
β1x1, β2x2, β3x3, γ12x1x2, γ13x1x3, and γ23x2x3 should be included in that model.
This rule, sometimes called the “hierarchy principle” (Bishop et al. 1975), is useful
in avoiding models with bizarre implications. As an example, suppose X1 is serum-
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lead concentration and X2 is age minus 50 years. If γ12 > 0, the 1-year mortality-risk
model

R(x1, x2) = exp(α + β2x2 + γ12x1x2)

implies that serum-lead is positively related to risk among persons above age
50 (X2 > 0), is unrelated to risk among persons of age 50 (X2 = 0), and is
negatively related to risk among persons below age 50 (X2 < 0); if γ12 < 0, it
implies a negative relation over 50 and a positive relation below 50. Rarely (if ever)
would we have grounds for assuming such unusual relations hold. To prevent use of
absurd models, many regression programs automatically enter all terms contained
within a product when the user instructs the program to enter the product into
the model.

Models violating the hierarchy principle often arise when one variable is not de-
fined for all subjects. As an example, suppose in a study of breast cancer in women
that X1 is age at first birth (AFB) and X2 is parity. Because X1 is undefined for
nulliparous women (X2 = 0), one sometimes sees the breast-cancer rate modeled
by a function in which age at first birth appears only in a product term with parity,
such as exp(α + β2x2 + γ1x1x2). The rationale for this model is that the rate will
remain defined even when age at first birth (X1) is undefined, because x1x2 will be
zero when parity (X2) is zero.

One can sometimes avoid violating the hierarchy principle if there is a rea-
sonable way to extend variable definitions to all subjects. Thus, in the tamoxifen
example, age at start of tamoxifen was extended to the untreated by setting it to
age 70 (end of follow-up) for those subjects, and for those subjects who started
at age 70 or later. The rationale for this extension is that, within the age interval
under study, untreated subjects and subjects starting tamoxifen at age 70 or later
would have identical exposures.

Our final caution is that product terms are commonly labeled “interaction
terms” or “statistical interactions”. We avoid these labels because they may inap-
propriately suggest the presence of biologic (mechanical) interactions between the
variables in a product term. In practice, regression models are applied in many
situations in which there is no effect of the regressors on the regressand (outcome).
Even in causal analyses, the connections between product terms and biologic in-
teractions can be very indirect, and can depend on many biologic assumptions.
For descriptions of these connections see Greenland (1993) and Rothman and
Greenland (1998, pp 386–387).

Categorical Regressors3.4.5

Consider a regressor whose possible values are discrete and few, and perhaps
purely nominal (that is, with no natural ordering or quantitative meaning). An
example is marital status (never married, currently married, formerly married).
Such regressors may be entered into a multiple-regression model using category
indicator variables. To use this approach, we first choose one level of the regressor
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as the reference level, against which we want to compare risks or rates. For each of
the remaining levels (the index levels), we create a binary variable that indicates
whether a person is at that level (1 if at the level, 0 if not). We then enter these
indicators into the regression model.

The entire set of indicators is called the coding of the original regressor. To code
marital status, we could take “currently married” as the reference level and define

X1 = 1 if formerly married, 0 if currently or never married,

X2 = 1 if never married, 0 if ever married

(i.e., currently or formerly married) .

There are 2 × 2 = 4 possible numerical combinations of values for X1 and X2,
but only three of them are logically possible. The impossible combination is X1 = 1
(formerly married) and X2 = 1 (never married). Note, however, that we need two
indicators to distinguish the three levels of marital status, because one indicator
can only distinguish two levels.

In general, we need J − 1 indicators to code a variable with J levels. Although
these indicators will have 2J−1 possible numerical combinations, only J of these
combinations will be logically possible. For example, we will need four indi-
cators to code a variable with five levels. These indicators will have 24 = 16
numerical combinations, but only five of the 16 combinations will be logically
possible.

Interpretation of the indicator coefficients depends on the model form and the
chosen coding. For example, in the logistic model

R(x1, x2) = expit(α + β1x1 + β2x2) , (3.38)

exp(β2) is the odds ratio comparing X2 = 1 persons (never married) to X2 = 0
persons (ever married) within levels of X1. Because one cannot have X2 = 1 (never
married) and X1 = 1 (formerly married), the only level of X1 within which we can
compare X2 = 1 to X2 = 0 is the zero level (never or currently married). Thus,
exp(β2) is the odds ratio comparing never married (X2 = 1) to currently married
(X2 = 0) people among those never or currently married (X1 = 0). In a simi-
lar fashion, exp(β1) compares those formerly married to those currently married
among those ever married.

In general, the type of indicator coding described above, called disjoint category
coding, results in coefficients that compare each index category to the reference
category. With this coding, for a given person no more than one indicator in the
set can equal 1; all the indicators are zero for persons in the reference category.
Another kind of coding is nested indicator coding. In this coding, levels of the
regressor are grouped, and then codes are created to facilitate comparisons both
within and across groups. For example, suppose we wish to compare those not
currently married (never or formerly married) to those currently married, and
also compare those never married to those formerly married. We can then use the
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indicators

Z1 = 1 if never or formerly married (i.e., not currently married),

0 otherwise (currently married);

Z2 = 1 if never married, 0 if ever married.

Z2 is the same as the X2 used above, but Z1 is different from X1. The combination
Z1 = 0 (currently married), Z2 = 1 (never married) is impossible; Z1 = Z2 = 1 for
people who never married. In the logistic model

R(z1, z2) = expit(α + β1z1 + β2z2) , (3.39)

exp(β2) is now the odds ratio comparing those never married (Z2 = 1) to those
ever married (Z2 = 0) within levels of Z1. Note that the only level of Z1 in which
this comparison can be made is Z1 = 1 (never or formerly married). Similarly,
exp(β1) is now the odds ratio comparing those formerly married (Z1 = 1) among
those never married (Z2 = 0).

There can be quite a large number of options for coding category indicators. The
choice among these options may be dictated by which comparisons are of most
interest. As long as each level of the regressor can be uniquely represented by the
indicator coding, the choice of coding will not alter the assumptions represented
by the model. There is, however, one technical point to consider in choosing codes.
The precision of the estimated coefficient for an indicator will directly depend
on the numbers of subjects at each indicator level. For example, suppose in the
data there were 1000 currently married subjects, 200 formerly married subjects,
and only 10 never married subjects. Then any indicator that had “never married”
as one of its levels (0 or 1) would have a much less precise coefficient estimate
than other indicators. If “never married” were chosen as the reference level for
a disjoint coding scheme, all the indicators would have that level as its zero level,
and so all would have very imprecise coefficient estimates. To maximize precision,
many analysts prefer to use disjoint coding in which the largest category (currently
married in the above example) is taken as the reference level.

In choosing a coding scheme, one need not let precision concerns dominate if
they get in the way of interesting comparisons. Coding schemes that distinguish
among the same categories produce equivalent models. Therefore, one may fit
a model repeatedly using different but equivalent coding schemes, in order to
easily examine all comparisons of interest. For example, one could fit model (3.38)
to compare those never or formerly married with those currently married, then fit
model (3.39) to compare the never with formerly married.

Although indicator coding is essential for purely nominal regressors, it can
also be used to study quantitative regressors as well, especially when one expects
qualitative differences between persons at different levels. Consider number of
marriages as a regressor. We might suspect that people of a given age who have had
one marriage tend to be qualitatively distinct from people of the same age who have
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had no marriage or two marriages, and that people who have had several marriages
are even more distinctive. We thus might want to code number of marriages in
a manner that allowed qualitative distinctions among its levels. If “one marriage”
was the most common level, we might take it as the reference level and use

X1 = 1 if never married, 0 otherwise;

X2 = 1 if two marriages, 0 otherwise;

X3 = 1 if three or more marriages, 0 otherwise.

We use one variable to represent “three or more” because there might be too few
subjects with three or more marriages to produce acceptably precise coefficients
for a finer division of levels. The coding just given would provide comparisons of
those never married, twice married, and more-than-twice married to those once
married. Other codings could be used to make other comparisons.

Trend Models in Multiple Regression 3.5

Multiple regression models can be extended to produce much more flexible trend
models than those provided by simple transformations. The latter restrict trends
to follow basic shapes, such as quadratic or logarithmic curves. The use of mul-
tiple terms for each exposure and confounder allows more detailed assessment
of trends and more complete control of confounding than possible with simple
transformations.

Categorical Trends 3.5.1

One way to extend trend models is to categorize the regressor and then use
a category-indicator coding such as discussed above. The resulting analysis may
then parallel the categorical (tabular) trend methods discussed for example in
Chap 17 of Rothman and Greenland (1998). Much of the advice given there also ap-
plies here. To the extent allowed by the data numbers and background information,
the categories should represent scientifically meaningful constructs within which
risk is not expected to change dramatically. Purely mathematical categorization
methods such as percentiles (quantiles) can do very poorly in this regard and so
are best avoided when such information is available. On the other hand, the choices
of categories should not be dictated by the results produced; for example, manip-
ulation of category boundaries to maximize the effect estimate will produce an
estimate biased away from the null, while manipulation of boundaries to minimize
a P-value will produce a downwardly biased P-value. Similarly, manipulation to
minimize the estimate or maximize the P-value will produce a null-biased estimate
or an upwardly biased P-value.
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There are two common types of category codes used in trend models. Disjoint
coding produces estimates that compare each index category (level) to the reference
level. Consider coding weekly servings of fruits and vegetables with

X1 = 1 for < 15, 0 otherwise;

X2 = 1 for 36–42, 0 otherwise;

X3 = 1 for > 42, 0 otherwise.

In the rate model

ln[I(x1, x2, x3)] = α + β1x1 + β2x2 + β3x3 , (3.40)

exp(β1) is the rate ratio comparing the “< 15” category with the “15–35” category
(which is the referent), and so on, while exp(α) is the rate in the “15–35” category
(the category for which all the Xj are zero). When model (3.40) is fit, we can plot
the fitted rates on a graph as a step function. This plot provides a crude impression
of the trends across (but not within) categories.

Confounders may be added to the model in order to control confounding,
and these too may be coded using multiple indicators or any of the methods
described below. We may plot the model-adjusted trends by fixing each confounder
at a reference level and allowing the exposure level to vary.

Incremental coding (nested coding) can be useful when one wishes to compare
each category against its immediate predecessor (Maclure and Greenland 1992).
For “Number of servings per week”, we could use

Z1 = 1 for > 14, 0 otherwise;

Z2 = 1 for > 35, 0 otherwise;

Z3 = 1 for > 42, 0 otherwise.

Note that if Z2 = 1, then Z1 = 1, and if Z3 = 1, then Z1 = Z2 = 1. In the model

ln[I(z1, z2, z3)] = α + β1z1 + β2z2 + β3z3 , (3.41)

exp(β1) is the rate ratio comparing the 15–35 category (Z1 = 1 and Z2 = Z3 = 0) to
the < 15 category (Z1 = Z2 = Z3 = 0). Similarly, exp(β2) is the rate ratio comparing
the 36–42 category (Z1 = Z2 = 1 and Z3 = 0) to the 15–35 category (Z1 = 1 and
Z2 = Z3 = 0). Finally, exp(β3) compares the > 42 category (Z1 = Z2 = Z3 = 1)
to the 36–42 category (Z1 = Z2 = 1 and Z3 = 0). Thus, exp(β1), exp(β2), and
exp(β3) are the incremental rate ratios across adjacent categories. Again, we may
add confounders to the model and plot adjusted trends.

Regression with Category Scores3.5.2

A common practice in epidemiology is to divide each covariate into categories,
assign a score to each category, and enter scores into the model instead of the
original variable values. Ordinal scores or codes (e.g., 1, 2, 3, 4, 5 for a series of five
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categories) should be avoided, as they can yield quantitatively meaningless dose-
response curves and harm the power and precision of the results (Lagakos 1988;
Greenland 1995b, c; Rothman and Greenland 1998, pp 311–312). Category midpoints
can be much less distortive but are not defined for open-ended categories; category
means or medians can be even less distortive and are defined for open-ended
categories.Unfortunately, if thereare importantnonlineareffectswithincategories,
no simple scoring method will yield an undistorted dose-response curve, nor
will it achieve the power and precision obtainable by entering the uncategorized
covariates into the model (Greenland 1995b, c). We thus recommend that categories
be kept narrow and that scores be derived from category means or medians,
rather than category scores. We further recommend that one examine models with
uncategorized covariates whenever effects are clearly present.

Power Models 3.5.3

Another approach to trend analysis and confounder control is to use multiple
power terms for each regressor. Such an approach does not require categorization,
but does require care in selection of terms. Traditionally, the powers used are
positive integers (e.g., x1, x2

1, x3
1), but fractional powers may also be used (Royston

and Altman 1994). As an illustration, suppose X1 represents the actual number of
servings per week (instead of an indicator). We could model trends across this
regressor by using X1 in the model along with the following powers of X1:

X2 = X
1|2
1 = square root of X1 ,

X3 = X2
1 = square of X1 .

The multiple-regression model

ln[I(x1, x2, x3)] = α + β1x1 + β2x2 + β3x3 ,

is now just another way of writing the power model

ln[I(x1)] = α + β1x1 + β2x
1|2
1 + β3x2

1 . (3.42)

We can plot fitted rates from this model using very fine spacings to produce
a smooth curve as an estimate of rate trends across X1. As always, we may also
include confounders in the model and plot model-adjusted trends.

Power models have several advantages over categorical models. Most impor-
tantly, they make use of information about differences within categories, which
is ignored by categorical models and categorical analyses (Greenland 1995a, b, c).
Thus, they can provide a more complete picture of trends across exposure and
more thorough control of confounders. They also provide a smoother picture of
trends. One disadvantage of power models is a potentially greater sensitivity of es-
timates to outliers, that is, persons with unusual values or unusual combinations of
values for the regressors. This problem can be addressed by performing delta-beta
analysis, as discussed below.
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Regression Splines3.5.4

Often it is possible to combine the advantages of categorical and power models
through the use of spline models. Such models can be defined in a number of equiv-
alent ways, and we present only the simplest. In all approaches, one first categorizes
the regressor, as in categorical analysis (although fewer, broader categories may be
sufficient in a spline model). The boundaries between these categories are called
the knots or join points of the spline. Next, one chooses the power (or order) of the
spline, according to the flexibility one desires within the categories (higher powers
allow more flexibility).

Use of category indicators corresponds to a zero-power spline, in which the
trend is flat within categories but may jump suddenly at the knots; thus, category-
indicator models are just special and unrealistic types of spline models. In a first-
power or linear spline, the trend is modeled by a series of connected line segments.
The trend within each category corresponds to a line segment; the slope of the
trend may change only at the knots, and no sudden jump in risk (discontinuity in
trend) can occur.

To illustrate how a linear spline may be represented, let X1 again be “Number of
servings per week” but now define

X2 = X1 − 14 if X1 > 14, 0 otherwise;

X3 = X1 − 35 if X1 > 35, 0 otherwise.

Then the log-linear rate model

ln[I(x1, x2, x3)] = α + β1x1 + β2x2 + β3x3 (3.43)

will producea log-rate trend that is a seriesof three line segments that are connected
at the knots (category boundaries) of 14 and 35. To see this, note that when X1 is
less than 14, X2 and X3 are zero, so the model simplifies to a line with slope β1:

ln[I(x1, x2, x3)] = α + β1x1

in this range. When X1 is greater than 14 but less than 35, the model simplifies to
a line with slope β1 + β2:

ln[I(x1, x2, x3)] = α + β1x1 + β2x2 = α + β1x1 + β2(x1 − 14)

= α − 14β2 + (β1 + β2)x1 .

Finally, when X1 is greater than 35, the model becomes a line with slope β1 +
β2 + β3:

ln[I(x1, x2, x3)] = α + β1x1 + β2x2 + β3x3

= α + β1x1 + β2(x1 − 14) + β3(x1 − 35)

= a − 14β2 − 35β3 + (β1 + β2 + β3)x1 .
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Thus, β1 is the slope of the spline in the first category, β2 is the change in slope
in going from the first to second category, and β3 is the change in slope in going
from the second to third category.

The trend produced by a linear spline is generally more realistic than a cate-
gorical trend, but can suddenly change its slope at the knots. To smooth out such
sudden changes, we may increase the order of the spline. Increasing the power
to 2 produces a second-power or quadratic spline, which comprises a series of
parabolic curve segments smoothly joined together at the knots. To illustrate how
such a trend may be represented, let X1, X2, and X3 be as just defined. Then the
model

ln[I(x1, x2, x3)] = α + β1x1 + γ1x2
1 + γ2x2

2 + γ3x2
3 (3.44)

will produce a log-rate trend that is a series of three parabolic segments smoothly
connected at the knots of 14 and 35. The coefficient γ1 corresponds to the curvature
of the trend in the first category, while γ2 and γ3 correspond to the changes
in curvature when going from the first to second and second to third category.
A still smoother curve could be fit by using a third-power or cubic spline, but for
epidemiologic purposes the quadratic spline is often smooth and flexible enough.

One disadvantage of quadratic and cubic splines is that the curves in the end
categories (tails) may become very unstable, especially if the category is open-
ended. This instability may be reduced by restricting one or both of the end
categories to be a line segment rather than a curve. To restrict the lower category to
be linear in a quadratic spline, we need only drop the first quadratic term γ1x2

1 from
the model; to restrict the upper category, we must subtract the last quadratic term
from all the quadratic terms, and drop the last term out of the model. To illustrate
an upper category restriction, suppose we wish to restrict the above quadratic
spline model for log rates (3.44) so that it is linear in the upper category only.
Define

Z1 = X1 = number of servings per week,

Z2 = X2
1 − X2

3 ,

Z3 = X2
2 − X2

3 .

Then the model

ln[I(z1, z2, z3)] = α + β1z1 + β2z2 + β3z3 (3.45)

will produce a log-rate trend that comprises smoothly connected parabolic seg-
ments in the first two categories (“< 14” and “15–35”), and a line segment in the
last category (“> 35”) that is smoothly connected to the parabolic segment in the
second category. (If we also wanted to force the log-rate curve in the first category
to follow a line, we would drop Z2 from the model.)

To plot or tabulate a spline curve from a given spline model, we select a set
of X1 values spaced across the range of interest, compute the set of spline terms
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for each X1 value, combine these terms with the coefficients in the model to get
the model-predicted outcomes, and plot these predictions. To illustrate, suppose
X1 is servings per week and we wish to plot model (3.45) with α = −6.00, β1 =
−0.010, β2 = −0.001, and β3 = 0.001 over the range 0–50 servings per week in
5-serving increments. We then compute Z1, Z2, Z3 at 0, 5, 10, … , 50 servings per
week, and compute the predicted rate

exp(−6.00 − 0.010z1 − 0.001z2 + 0.001z3)

at each set of Z1, Z2, Z3 values and plot these predictions against the corresponding
X1 values 0, 5, 10, … , 50. For example, at X1 = 40 we get Z1 = 40, Z2 = 402 − (40 −
35)2 = 1575, and Z3 = (40 − 14)2 − (40 − 35)2 = 651, for a predicted rate of

exp[−6.00 − 0.010(40) − 0.001(1575) + 0.001(651)] = 2|1000 year .

As with other trend models, we may obtain model-adjusted trends by adding
confounder terms to our spline models. The confounder terms may be splines
or any other form we prefer; spline plotting will be simplified, however, if the
confounders are centered before they are entered into the analysis, for then the
above plotting method may be used without modification. For further discussion
of splines and their application, as well as more general nonparametric regression
techniques, see Hastie and Tibshirani (1990), Green and Silverman (1994), and
Greenland (1995a).

Models for Trend Variation3.5.5

We may allow trends to vary across regressor levels by entering products among
regressor terms. For example, suppose X1, X2, X3 are power terms for fruit and
vegetable intake, while W1, W2, W3, W4 are spline terms for age. To allow the fruit-
vegetable trend in log rates to vary with age, we could enter into the model all
3×4 = 12 products of the Xj and Wk, along with the Xj and Wk. If in addition there
was an indicator Z1 = 1 for female, 0 for males, the resulting model would be

ln[R(x1, x2, x3, w1, w2, w3, w4, z1)]

= α + β1x1 + β2x2 + β3x3 + β4w1 + β5w2 + β6w3 + β7w4 + β8z1

+ γ11x1w1 + γ12x1w2 + … + γ33x3w3 + γ34x3w4 .

The same model form may be used if X1, X2, X3 and W1, W2, W3, W4 represent
category indicators or other terms for fruit-vegetable intake and age.

Models with products among multiple trend terms can be difficult to fit and
may yield quite unstable results unless large numbers of cases are observed. Given
enough data, however, such models can provide more realistic pictures of dose-
response relations than can simpler models. Results from such models may be
easily interpreted by plotting or tabulating the fitted trends for the key exposures
of interest at various levelsof the“modifying” regressors. In theaboveexample, this
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process would involve plotting the model-fitted rates against fruit and vegetable
intake for each of several ages (e.g., for ages evenly spaced within the range of case
ages).

Extensions of Logistic Models 3.6

Outcomes that are polytomous or continuous are often analyzed by reducing
them to just two categories and applying a logistic model. For example, CD4

counts might be reduced to the dichotomy ≤ 200, > 200; cancer outcomes might
be reduced to cancer and no cancer. Alternatively, multiple categories may be
created with one designated as a referent, and the other categories compared one
at a time to the referent using separate logistic models for each comparison. While
not necessarily invalid, these approaches disregard the information contained
in differences within categories, in differences between non-reference categories,
and in ordering among the categories. As a result, models specifically designed
for polytomous or continuous outcomes can yield more precision and power than
simple dichotomous-outcome analyses.

This section briefly describes several extensions of the multiple logistic model
(3.28) to polytomous and ordinal outcomes. Analogous extensions of other models
are possible.

Polytomous Logistic Models 3.6.1

Suppose an outcome variable Y has I + 1 mutually exclusive outcome categories
or levels y0, … , yI , where category y0 is considered the reference category. For
example, in a case-control study of relations of exposures to types of cancer, Y is
a disease outcome variable, with y0 = all control as the reference category, and
I other categories y1, … , yI , which correspond to the cancer outcomes (leukemia,
lymphoma, lung cancer, etc.). Let Ri(x) denote the average risk of falling in outcome
category Yi(i = 1, … , I) given that the regressors X equal x; that is, let

Ri(x) = Pr(Y = yi|X = x) .

The polytomous logistic model for this risk is then

Ri(x) =
exp

(
α1 + xβ1

)
1 +

I∑
j=1

exp(αj + xβj)

(3.46)

This is a model for the risk of falling in cancer category yi. When Y has only two
levels, I equals 1, and so formula (3.46) simplifies to the binary multiple logistic
model (3.28).

Model (3.46) represents I separate risk equations, one for each nonreference
outcome level y1, … , yI . Each equation has its own intercept αi and vector of
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coefficients βi = (βi1, … , βin), so that there is a distinct coefficient βik correspond-
ing to every combination of a regressor Xk and nonreference outcome level yi

(i = 1, … , I). Thus, with n regressors in X, the polytomous logistic model involves
I intercepts and I × n regressor coefficients. For example, with seven nonreference
outcome levels and three regressors, the model would involve seven intercepts and
7 × 3 = 21 regressor coefficients, for a total of 28 model parameters.

The polytomous logistic model can be written more simply as a model for the
odds. To see this, note that the risk of falling in the reference category must equal
one minus the sum of the risks of falling in the nonreference categories:

R0(x) = Pr(Y = y0|X = x) = 1 −

I∑
i=1

exp
(
αi + xβi

)
1 +

I∑
j=1

exp
(
αj + xβj

)

= 1

/⎡⎣1 +
I∑

j=1

exp
(
αj + xβj

)⎤⎦ . (3.47)

Dividing (3.47) into (3.46), we get a model for Oi(x) = Ri(x)|R0(x) = the odds
of falling in outcome category yi versus category y0:

Oi(x) =
exp(αi + xβi)|[1 +

∑
j exp(αj + xβj)]

1|[1 +
∑

j exp(αj + xβj)]
= exp(αi + xβi) . (3.48)

This form of the model provides a familiar interpretation for the coefficients.
Suppose x1 and x0 are two different vectors of values for the regressors X. Then
the ratio of the odds of falling in category yi versus y0 when X = x1 and X = x0 is

Oi(x1)

Oi(x0)
=

exp(αi + x1βi)

exp(αi + x0βi)
= exp [(x1 − x0)βi] .

From this equation, we see that the antilog exp(βik) of a coefficient βik corre-
sponds to the proportionate change in the odds of outcome i when the regressor
Xk increases by one unit.

The polytomous logistic model is most useful when the levels of Y have no
meaningful order, as with the cancer types. For further reading about the model,
see McCullagh and Nelder (1989) and Hosmer and Lemeshow (2000).

Ordinal Logistic Models3.6.2

Suppose that the levels y0, … , yI of Y follow a natural order. Order arises, for
example, when Y is a clinical scale, such as y0 = normal, y1 = dysplasia, y2 =
neoplasia, rather than just a cancer indicator; Y is a count, such as number of
malformations found in an individual; or the Y levels represent categories of
a physical quantity, such as CD4 count (e.g., > 500, 200–500, < 200). There are at
least four different ways to extend the logistic model to such outcomes.
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Recall that the logistic model is equivalent to an exponential odds model. The
first extensionusesanexponentialmodel to represent theoddsof falling inoutcome
category yi versus falling in category yi−1 (the next lowest category):

Ri(x)

Ri−1(x)
=

Pr(Y = yi|X = x)

Pr(Y = yi−1|X = x)
= exp(α∗

i + xβ∗) (3.49)

for i = 1, … , I. This may be called the adjacent-category logistic model, because
taking logarithms of both sides yields the equivalent adjacent-category logit model
(Agresti 2002). It is a special case of the polytomous logistic model: From (3.48),
the polytomous logistic model implies that

Ri(x)

Ri−1(x)
=

Ri(x)|R0(x)

Ri−1(x)|R0(x)
=

exp
(
αi + xβi

)
exp

(
αi−1 + xβi−1

) = exp[(αi − αi−1) + x(βi − βi−1)] .

The adjacent-category logistic model sets α∗
i = αi − αi−1, and forces the I

coefficient differences βi − βi−1(i = 1, … I) to equal a common value β∗. If there is
a natural distance di between adjacent outcome categories yi and yi−1 (such as the
difference between the category means), the model can be modified to use these
distances as follows:

Ri(x)|Ri−1(x) = exp(α∗
i + xβ∗di) (3.50)

for i = 1, … , I. This model allows the coefficient differences βi−βi−1 to vary with the
distances di between categories. Further information on adjacent-category models
may be found in Greenland (1994) and Agresti (2002).

The second extension uses an exponential model to represent the odds of falling
above category yi versus falling in or below category yi:

Pr(Y > yi|X = x)

Pr(Y ≤ yi|X = x)
= exp(α∗

i + xβ∗) , (3.51)

where i = 0, … , I. This is called the cumulative-odds or proportional-odds model.
It can be derived by assuming that Y was obtained by categorizing a special type
of continuous variable; for more details about this and other aspects of the model,
see McCullagh and Nelder (1989).

The third extension uses an exponential model to represent the odds of falling
above outcome category yi versus in category yi:

Pr(Y > yi|X = x)

Pr(Y = yi|X = x)
= exp(α∗

i + xβ∗) , (3.52)

where i = 0, … , I. This is called the continuation-ratio model. The fourth extension
uses an exponential model to represent the odds of falling in category yi versus
falling below yi:

Pr(Y = yi|X = x)

Pr(Y < yi|X = x)
= exp(α∗

i + xβ∗) , (3.53)
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where i = 1, … , I. This model may be called the reverse continuation-ratio model.
It can be derived by reversing the order of the Y levels in model (3.52) but in any
given application it is not equivalent to model (3.52) (Greenland 1994).

How does one choose from the above variety of ordinal models? Certain guide-
lines may be of use, although none is compelling. First, the adjacent-category and
cumulative-odds models are reversible, in that only the signs of the coefficients
change if theorderof the Y levels is reversed. In contrast, the twocontinuation-ratio
models are not reversible. This observation suggests that the continuation-ratio
models may be more appropriate for modeling irreversible disease stages (e.g., os-
teoarthritic severity), whereas the adjacent-category and cumulative-odds models
may be more appropriate for potentially reversible outcomes (e.g., blood pressure,
cell counts) (Greenland 1994). Second,because the coefficientsof adjacent-category
models contrast pairs of categories, the model appears best suited for discrete out-
comes with few levels (e.g., cell types along a normal-dysplastic-neoplastic scale).
Third, because the cumulative-odds model can be derived from categorizing cer-
tain special types of continuous outcomes, it is often considered most appropriate
when the outcome under study is derived by categorizing a single underlying con-
tinuum (e.g., blood pressure) (McCullagh and Nelder 1989). For a more detailed
comparative discussion of ordinal logistic models and guidelines for their use, see
Greenland (1994).

All the above ordinal models simplify to the ordinary logistic model when there
are only two outcome categories (I = 2). One advantage of the continuation-ratio
models over their competitors is of special importance: Estimation of the coeffi-
cients β∗ in those models can be carried out if the levels of Y are numerous and
sparse; Y may even be continuous. Thus, one can apply the continuation-ratio
models without any categorization of Y . This advantage can be important because
results from all the above models (including the cumulative-odds model) may be
affected by the choice of the Y categories (Greenland 1994; Strömberg 1996). The
only caution is that conditional (as opposed to unconditional) maximum likeli-
hood must be used to fit the continuation-ratio model if the observed outcomes
are sparsely scattered across the levels of Y (as would be inevitable if Y were con-
tinuous). See Greenland (1994) for further details, and Cole and Ananth (2001) for
futher extensions of the model.

Generalized Linear Models3.7

Consider again the general form of the exponential risk and rate models, R(x) =
exp(α+xβ) and I(x) = exp(α+xβ) and the logistic risk model R(x) = expit(α+xβ).
There is no reason why we cannot replace the “exp” in the exponential models or
the “expit” in the logistic model by some other reasonable function. In fact, each
of these models is of the general form

E(Y |x) = f (α + xβ), (3.54)
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where f is some function that is smooth and strictly increasing (i.e., as α + xβ gets
larger, f (α + xβ) gets larger, but never jumps or bends suddenly).

For any such function f , there is always an inverse function g that “undoes”
f , in the sense that g[f (u)] = u whenever f (u) is defined. Hence, a general form
equivalent to (3.54) is

g[E(Y |x)] = α + xβ . (3.55)

A model of the form (3.55) is called a generalized linear model. The function g is
called the link function for the model; thus, the link function is ln for the log-linear
model and logit for the logit-linear model. The term α + xβ in it is called the linear
predictor for the model and is often abbreviated η; that is, η = α + xβ by definition.

All the models we have discussed are generalized linear models. Ordinary linear
models (such as the linear risk model) are the simplest examples, in which f and
g are both the identity function f (u) = g(u) = u, so that

E(Y |x) = α + xβ .

The inverse of the exponential function exp is the natural log function ln(u).
Hence, the generalized-linear forms of the exponential risk and rate models are
the log-linear risk and rate models

ln[R(x)] = α + xβ and ln[I(x)] = α + xβ ;

that is, the exponential risk and rate models correspond to a natural-log link func-
tion, because ln[exp(u)] = u. Similarly, the inverse of expit, the logistic function, is
the logit function logit(u). Hence, the generalized-linear form of the logistic-risk
model is the logit-linear risk model

logit[R(x)] = α + xβ ;

that is, the logistic model corresponds to the logit link function, because
logit[expit(u)] = u.

The choices for f and g are virtually unlimited. In epidemiology, however, only
the logit link g(u) = logit(u) is in common use for risks, and only the log link
g(u) = ln(u) is in common use for rates. In practice, these link functions are
almost always the default, and are sometimes the only options in commercial soft-
ware for risk and rate modeling. Some packages, however, allow easy selection of
linear risk, rate, and odds models, which use the identity link. Some software (e.g.,
GLIM) allows the user to define their own link function.

The choice of link function can have a profound impact on the shape of the
trend or dose-response surface allowed by the model, especially if exposure is
represented by only one or two terms. For example, if exposure is represented
by a single term β1x1 in a risk model, use of the identity link results in a linear
risk model and a linear trend for risk; use of the log link results in an expo-
nential (log-linear) risk model and an exponential trend for risk; and use of
a logit link results in a logistic model and an exponential trend for the odds. Gen-
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eralized linear models encompass a broader range than the linear, log-linear,
and logistic forms, however. One example is the complementary log-log risk
model,

R(x) = 1 − exp[− exp(α + xβ)] ,

which translates to the generalized-linear form

ln[− ln(1 − R(x))] = α + xβ .

This model corresponds to the link function ln[− ln(l − u)] and arises naturally
in certain biology experiments. For further reading on this and other generalized
linear models, see McCullagh and Nelder (1989).

Model Searching3.8

How do we find a model or set of models acceptable for our purposes? There
are far too many model forms to allow us to examine most or even much of the
total realm of possibilities. There are several systematic, mechanical, and tradi-
tional algorithms for finding models (such as stepwise and best-subset regression)
that lack logical or statistical justification and that perform poorly in theoretical
and simulation studies; see Sclove et al. (1972), Bancroft and Han (1977), Freed-
man (1983), Flack and Chang (1987), Hurvich and Tsai (1990), and Weiss (1995).
For example, the P-values and standard-error (SE) estimates obtained when vari-
ables are selected using significance-testing criteria (such as “F-to-enter” and
“F-to-remove”) will be downwardly biased. In particular, the SE estimates ob-
tained from the selected model underestimate the standard deviations (SDs) of
the point estimates obtained by applying the algorithms across different random
samples. As a result, the algorithms will tend to yield P-values that are too small
and confidence intervals that are too narrow (and hence fail to cover the true
coefficient values with the stated frequency). Unfortunately, significance-testing
criteria are the basis for most variable-selection procedures in standard packaged
software.

Other criteria for selecting variables, such as “change-in-point-estimate” crite-
ria, do not necessarily perform better than significance testing (Maldonado and
Greenland 1993a). Viable alternatives to significance testing in model selection
have emerged only gradually with recent advances in computing and with deeper
insights into the problem of model selection. We first outline the traditional ap-
proaches after reinforcing one of the most essential and neglected starting points
for good modeling: laying out existing information in a manner that can help the
search avoid models in conflict with established facts. A powerful alternative to
model selection is provided by hierarchical regression, also known as multilevel,
mixed-model, or random-coefficient regression (Rothman and Greenland 1998,
pp 427–432; Greenland 2000a, b).
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Role of Prior Information 3.8.1

The dependence of regression results on the chosen model can be either an ad-
vantage or a drawback. The advantage comes from the fact that use of a model
structure capable of reasonably approximating reality can elevate the accuracy of
the estimates over those from the corresponding tabular analysis. The drawback
comes from the fact that use of a model incapable of even approximating reality
can decrease estimation accuracy below that of tabular analysis.

This duality underscores the desirability of using flexible (and possibly com-
plex) models. One should take care to avoid models that are entirely unsupported
by background knowledge. For example, in a cohort study of lung cancer, it is
reasonable to restrict rates to increase with age, because there is enormous back-
ground literature documenting that this trend is found in all human populations.
In contrast, one would want to avoid restricting cardiovascular disease (CVD) rates
to strictly increase with alcohol consumption, because there are considerable data
to suggest the alcohol-CVD relation is not strictly increasing (Maclure 1993).

Prior knowledge about most epidemiologic relations is usually too limited to
provide much guidance in model selection. A natural response might be to use
models as flexible as possible (a flexible model can reproduce a wide variety of
curves and surfaces). Unfortunately, flexible models have limitations. The more
flexible the model, the larger the sample needed for the usual estimation methods
(such as maximum likelihood) to provide approximately unbiased coefficient esti-
mates. Also, after a certain point, increasing flexibility may increase variability of
estimates so much that the accuracy of the estimates is decreased relative to esti-
mates from simpler models, despite the greater faithfulness of the flexible model to
reality. As a result, it is usual practice to employ models that are severely restrictive
in arbitrary ways, such as models without product terms (Robins and Greenland
1986). Hierarchical methods can help alleviate some of these problems by allowing
one to fit larger models than one can with ordinary methods (Greenland 2000b).

Fortunately, estimates obtained from the most common epidemiologic regres-
sion models, exponential (log-linear) and logistic models, retain some inter-
pretability even when the underlying (true) regression function is not particularly
close to those forms (Maldonado and Greenland 1993b, 1994). For example, under
reasonably common conditions, rate-ratio or risk-ratio estimates obtained from
those models can be interpreted as approximate estimates of standardized rate
or risk ratios, using the total source population as the standard (Greenland and
Maldonado 1994). To ensure such interpretations are reasonable, the model used
should at least be able to replicate qualitative features of the underlying regression
function. For example, if the underlying regression may have a reversal in the
slope of the exposure-response curve, we should want to use a model capable of
exhibiting such reversal (even if it cannot replicate the exact shape of the true
curve).

A major problem for epidemiology is that key variables may be unmeasured
or poorly measured. No conventional method can account for these problems.
Unmeasured variables may be modeled using prior information on their relation to
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measured variables, but the results will be entirely dependent on that information
(Leamer 1978; Greenland 2003a). Occasionally, measurement-error information
may be in the form of data that can be used in special correction techniques
(Carroll et al. 1995; Chap. II.5 of this handbook); otherwise, sensitivity analyses
will be needed (Rothman and Greenland 1998, Chap. 19; Lash and Fink 2003).

Selection Strategies3.8.2

Even with ample prior information, there will always be an overwhelming number
of model choices, and so model search strategies will be needed. Many strategies
have been proposed, although none has been fully justified.

Some strategies begin by specifying a minimal model form that is among the
most simple credible forms. Here “credible” means “compatible with available
information”. Thus, we start with a model of minimal computational or conceptual
complexity that does not conflict with background information. There may be
many such models; in order to help insure that our analysis is credible to the
intended audience, however, the starting model form should be one that most
researchers would view as a reasonable possibility.

To specify a simple yet credible model form, one needs some knowledge of
the background scientific literature on the relations under study. This knowledge
would include information about relations of potential confounders to the study
exposures and study diseases, as well as relations of study exposures to the study
diseases. Thus, specification of a simple yet credible model can demand much
more initial effort than is routinely used in model specification.

Once we have specified our minimal starting model, we can add complexities
that seem necessary (by some criteria) in light of the data. Such a search process
is sometimes called an expanding search (Leamer 1978). Its chief drawback is that
often thereare toomanypossible expansions toconsiderwithina reasonable length
of time. If, however, one neglects to consider any possible expansion, one risks
missingan important shortcomingof the initialmodel. For example, if ourminimal
model involves only single “first-order” terms (“main effects”) for 12 variables,

we would have
(

12

2

)
= 66 possible two-way products among these variables to

consider, aswell as 12 quadratic terms, for a total of 78 possible expansionswith just
one second-order term. An analyst may not have the time, patience, or resources
to examine all the possibilities in detail; this predicament usually leads to use of
automatic significance-testing procedures to select additional terms, which (as
referenced above) can lead to distorted statistics.

Some strategies begin by specifying an initial model form that is flexible enough
to approximate any credible model form. A flexible starting point can be less
demanding than a simple one in terms of need for background information. For
example, rather than concern ourselves with what the literature suggests about
the shape of a dose-response curve, we can employ a starting model form that
can approximate a wide range of curves. Similarly, rather than concern ourselves
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with what the literature suggests about joint effects, we can employ a form that
can approximate a wide range of joint effects. We can then search for a simpler
but adequate model by removing from the flexible model any complexities that
appear unnecessary in light of the data. Such a search process, based on simplifying
a complex model, is sometimes called a contracting or simplifying search (Leamer
1978).

The chief drawback of a purely contracting search is that a sufficiently flexible
prior model may be too complex to fit to the available data. This is because more
complex models generally involve more parameters; with more parameters in
a model, more data are needed to produce trustworthy point and interval estimates.
Standard model-fitting methods may yield biased estimates or may completely fail
to yield any estimates (e.g., not converge) if the fitted model is too complex. For
example, if our flexible model for 12 variables contains all first and second-order
terms, there will be 12 first-order plus 12 quadratic plus 66 product terms, for
a total of 90 coefficients. Fitting this model may be well beyond what our data or
computing resources can support.

Because of potential fitting problems, contracting searches begin with some-
thing much less than a fully flexible model. Some begin with a model as flexible
as can be fit, or maximal model. As with minimal models, maximal models are
not unique. In order to produce a model that can be fit, one may have to limit
flexibility of dose-response, flexibility of joint effects, or both. It is also possible
to start a model search anywhere in between the extremes of minimal and max-
imal models, and proceed by expanding as seems necessary and contracting as
seems reasonable based on the data (although again, resource limitations usually
lead to mechanical use of significance tests for this process). Unsurprisingly, such
stepwise searches share some advantages and disadvantages with purely expand-
ing and purely contracting searches. Like other searches, care should be taken to
insure that the starting and ending points do not conflict with prior information.

The results obtained from a model search can be very sensitive to the choice of
starting model. One may check for this problem by conducting several searches,
starting at different models. However, there are always too many possible starting
models to check them all. Thus, if one has many variables (and hence many
possible models) to consider, model search strategies will always risk producing
a misleading conclusion.

Model Fitting 3.9

Residual Distributions 3.9.1

Different fitting methods can lead to different estimates; thus, in presenting results
one should specify the method used to derive the estimates. The vast majority of
programs for risk and rate modeling use maximum-likelihood (ML) estimation,
which is based on very specific assumptions about how the observed values of Y
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tend to distribute (vary) when the vector of regressors X is fixed at a given value x.
This distribution is called the error distribution or residual distribution of Y .

If Y is the person-time rate observed at a given level x of X, and T is the cor-
responding observed person-time, it is conventionally assumed that the number
of cases observed, A = YT, would tend to vary according to a Poisson distribu-
tion if the person-time were fixed at its observed value. Hence, conventional ML
regression analysis of person-time rates is usually called Poisson regression. If, on
the other hand, Y is the proportion of cases observed at a given level x of X out
of a person-count total N, it is conventionally assumed that the number of cases
observed, A = YN, would tend to vary according to a binomial distribution if the
number of persons (person count) N was fixed at its observed value. Hence, con-
ventional ML regression analysis of prevalence or incidence proportions (average
risks) is sometimes called binomial regression. Note that if N = 1, the proportion
diseased Y can be only 0 or 1; in this situation, A = YN can be only 0 or 14
and is said to have a Bernoulli distribution (which is just a binomial distribution
with N = 1). The binomial distribution can be deduced from the homogeneity
and independence assumptions discussed for example in Rothman and Greenland
(1998, pp 232–233). As noted there, its use is inadvisable if there are important
violations of either assumption, e.g., if the disease is contagious over the study
period.

If Y is the number of exposed cases in a 2 × 2 table, the conventionally assumed
distribution for Y is the hypergeometric; ML fitting in this situation is usually
referred to as conditional maximum likelihood (CML). CML fitting is closely
related to partial-likelihood methods, which are used for fitting Cox models in
survival analysis.

More details on maximum-likelihood model fitting in epidemiology can be
found in Breslow and Day (1980, 1987), Hosmer and Lemeshow (2000), and Clayton
and Hills (1993). More general and advanced treatments of maximum likelihood
can be found in many books, including Cox and Hinkley (1974) and McCullagh
and Nelder (1989).

Overdispersion3.9.2

What if the residual distribution of the observed Y does not follow the conven-
tionally assumed residual distribution? Under a broad range of conditions, it can
be shown that the resulting ML fitted values (ML estimates) will remain approx-
imately unbiased if no other source of bias is present (White 1994). Nonethe-
less, the estimated SDs obtained from the program will be biased. In particular,
if the actual variance of Y given X = x (the residual variance) is larger than
that implied by the conventional distribution, Y is said to suffer from overdis-
persion or extravariation, and the estimated standard deviations and P-values
obtained from an ordinary maximum-likelihood regression program will be too
small.

In Poisson regression, overdispersion is sometimes called “extra-Poisson varia-
tion”; in binomial regression, overdispersion is sometimes called “extra-binomial
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variation”. Typically, such overdispersion arises when there is dependence among
the recorded outcomes, as when the outcome Y is the number infected in a group,
or Y is the number of times a person gets a disease. As an example, suppose Y is
the number of eyes affected by glaucoma in an individual. In a natural population,
Y = 0 for most people and Y = 2 for most of the remainder, with Y = 1 very
infrequently. In other words, the Y values would be largely limited to the extremes
of 0 and 2. In contrast, a binomially distributed variable with the same possible
values (0, 1, or 2) and the same mean as Y would have a higher probability of 1
than 2, and hence a smaller variance than Y .

Two major approaches have been developed to cope with potential overdisper-
sion, both of which are based on modeling the residual distribution. One approach
is to use maximum likelihood, but with a residual distribution that allows a broader
range of variation for Y , such as the negative binomial in place of the Poisson or
the beta-binomial in place of the binomial (McCullagh and Nelder 1989). Such
approaches can be computationally intensive, but have been implemented in some
software. The second and simpler approach is to model only the residual variance
of Y , rather than completely specify the residual distribution. Fitting methods
that employ this approach are discussed by various authors under the topics of
quasi-likelihood, pseudo-likelihood, and generalized estimating-equation (GEE)
methods; see McCullagh and Nelder (1989), McCullagh (1991), and Diggle et al.
(2002) for descriptions of these methods. GEE methods are often used for logitu-
dinal data analysis (Diggle et al. 2002), but have some serious limitations in that
role (Robins et al. 1999).

Sample-Size Considerations 3.9.3

One drawback of all the above fitting methods is that they depend on “large-
sample” (asymptotic) approximations, which usually require that the number of
parameters in the model is much less than (roughly, not more than 10% of) the
number of cases observed. Methods that do not use large-sample approximations
(exact methods) can also be used to fit certain models. These methods require
the same strong distributional assumptions as maximum-likelihood methods. An
example is exact logistic regression (Cytel 2003).

Unfortunately, exact fitting methods for incidence and prevalence models are
so computationally demanding that, at the time of this writing, they can be used
to fit only a narrow range of models, and do not address all the problems aris-
ing from coefficient instability in small samples (Greenland et al. 2000). Penal-
ized likelihood estimation and the related methods of Stein estimation and ridge
regression address these problems and permit fitting of incidence and preva-
lence models while retaining acceptably (though still only approximately) valid
small-sample results (Efron and Morris 1975; Copas 1983; Titterington 1985; Le
Cessie and van Houwelingen 1992; Greenland 1997; Rothman and Greenland
1998, pp 429–430; Greenland 2001, Greenland 2003b, Greenland and Christensen
2001).
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Model Checking3.10

It is important to check a fitted model against the data. The extent of these checks
may depend on what purpose we wish the model to serve. At one extreme, we may
only wish the fitted model to provide approximately valid summary estimates or
trends for a few key relationships. For example, we might wish only to estimate the
average increment in risk produced by a unit increase in exposure. At the other
extreme, we may want the model to provide approximately valid regressor-specific
predictions of outcomes, such as exposure-specific risks by age, sex, and ethnicity.
The latter goal is more demanding and requires more detailed scrutiny of results,
sometimes on a subject-by-subject basis.

Model diagnostics can detect discrepancies between data and a model only
within the range of the data, and then only where there are enough observations
to provide adequate diagnostic power. For example, there is much controversy
concerning the health effects of low-dose radiation exposure (exposures that are
only modestly in excess of natural background levels). This controversy arises
because the natural incidence of key outcomes (such as leukemia) is low, and
few cases have been observed in low-dose cohorts. As a result, several proposed
dose-response models “fit the data adequately” in the low-dose region, in that each
model passes the standard battery of diagnostic checks. Nonetheless, the health
effects predicted by these models conflict to an important extent.

More generally, one should bear in mind that a good-fitting model is not the
same as a correct model. In particular, a model may appear correct in the central
range of the data, but produce grossly misleading predictions for combinations of
covariate values that are poorly represented or absent in the data.

Tabular Checks3.10.1

Both tabular methods (such as Mantel–Haenszel, Mantel and Haenszel (1959)) and
regression methods produce estimates by merging assumptions about population
structure (such as that of a common odds ratio or of an explicit regression model)
with observed data. When an estimate is derived using a regression model, espe-
cially one with many regressors, it may become difficult to judge how much the
estimate reflects the data and how much it reflects the model.

To investigate the source of results, we recommend one compare model-based
results to the corresponding tabular (categorical-analysis) results. As an illustra-
tion, suppose we wish to check a logistic model in which X1 is the exposure under
study, and four other regressors X2, X3, X4, X5 appear in the model, with X1, X2, X3

continuous, X4, X5 binary, and products among X1, X2, and X4 in the model. Any
regressor in a model must appear in the corresponding tabular analysis. Because X2

and X4 appear in products with X1 and the model is logistic, they should be treated
as modifiers of the X1 odds ratio in the corresponding tabular analysis. X3 and X5

do not appear in products with X1 and so should be treated as pure confounders
(adjustment variables) in the corresponding tabular analysis. Because X1, X2, X3
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are continuous in the model, they must have at least three levels in the tabular
analysis, so that the results can at least crudely reflect trends seen with the model.
If all three of these regressors were categorized into four levels, the resulting table
of disease (two levels) by all regressors would have 2 × 43 × 22 = 512 cells, and
perhaps many zero cells.

From this table, we would attempt to compute 3 (for exposure strata 1, 2, 3,
versus 0) adjusted odds ratios (e.g., Mantel–Haenszel) for each of the 4 × 2 = 8
combinations of X2 and X4, adjusting all 3 × 8 = 24 odds ratios for the 4 × 2 = 8
pure-confounder levels. Some of these 24 adjusted odds ratios might be infinite
or undefined due to small numbers, which would indicate that the corresponding
regression estimates are largely model projections. Similarly, the tabular estimates
might not exhibit a pattern seen in the regression estimates, which would suggest
that the pattern was induced by the regression model rather than the data. For
example, the regression estimates might exhibit a monotone trend with increasing
exposure even if the tabular estimates did not. Interpretation of such a conflict
would depend on the context: If we were certain that dose-response was mono-
tone (e.g., smoking and esophageal cancer), the monotonicity of the regression
estimates would favor their use over the tabular results; in contrast, doubts about
monotonicity (e.g., as with alcohol and coronary heart disease) would lead us to
use the tabular results or search for a model that did not impose monotonicity.

Tests of Regression and R2 3.10.2

Most programs supply a “test of regression” or “test of model”, which is a test of
the hypothesis that all the regression coefficients (except the intercept α) are zero.
For instance, in the exponential rate model

I(x) = exp(α + xβ) ,

the “test of regression” provides a P-value for the null hypothesis that all the
components of β are zero, that is, that β1 = … = βn = 0. Similarly, the “test of
R2” provided by linear regression programs is just a test that all the regressor
coefficients are zero. A small P-value from these tests suggests that the variation
in outcomes observed across regressor values appears improbably large under the
hypothesis that the regressors are unrelated to the outcome. Such a result suggests
that at least one of the regressors is related to the outcome. It does not, however,
imply that the model fits well or is adequate in any way.

To understand the latter point, suppose that X comprises the single indicator
X1 = 1 for smokers,0 fornonsmokers, and theoutcomeY is averageyear riskof lung
cancer. In most any study of reasonable size and validity, “the test of regression”
(which here is just a test of β1 = 0) would yield a small P-value. Nonetheless,
the model would be inadequate to describe variation in risk, because it neglects
amount smoked, age at start, and sex. More generally, a small P-value from the test
of regression only tells us that at least one of the regressors in the model should be
included in some form or another; it does not tell us which regressor or what form
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to use, nor does it tell us anything about what was left out of the model. Conversely,
a large P-value from the “test of regression” does not imply that all the regressors
in the model are unimportant or that the model fits well. It is always possible that
transformations of those regressors would result in a small P-value, or that their
importance cannot be discerned given the random error in the data.

A closely related mistake is interpreting the squared multiple-correlation co-
efficient R2 for a regression as a goodness-of-fit measure. R2 only indicates the
proportion of Y variance that is attributable to variation in the fitted mean of Y .
While R2 = 1 (the largest possible value)does correspond toaperfectfit, R2 canalso
be close to zero under a correct model if the residual variance of Y (i.e., the variance
of Y around the true regression curve) is always close to the total variance of Y .

The preceding limitations of R2 apply in general. Correlational measures such as
R2 can become patently absurd measures of fit or association when the regressors
and regressand are discrete or bounded (Rosenthal and Rubin 1979; Greenland
et al. 1986; Cox and Wermuth 1992; Greenland 1996). As an example, consider
Table 3.1 showing a large association of a factor with a rare disease. The logistic
model R(x) = expit(α + βx) fits these data perfectly because it uses two parameters
to describe only two proportions. Furthermore, X = 1 is associated with a 19-fold
increase in risk. Yet the correlation coefficient for X and Y (derived using standard
formulas) is only 0.09, and the R2 for the regression is only 0.008.

Correlation coefficients and R2 can give even more distorted impressions when
multiple regressors are present (Greenland et al. 1986, 1991). For this reason, we
strongly recommend against their use as measures of association or effect when
modeling incidence or prevalence.

Tests of Fit3.10.3

Tests of model fit check for nonrandom incompatibilities between the fitted re-
gression model and the data. To do so, however, these tests must assume that the
fitting method used was appropriate; in particular, test validity may be sensitive to
assumptions about the residual distribution that were used in fitting. Conversely,
it is possible to test assumptions about the residual distribution, but these tests
usually have little power to detect violations unless a parametric regression model
is assumed. Thus, useful model tests cannot be performed without making some
assumptions.

Many tests of regression models are relative, in that they test the fit of an index
model by assuming the validity of a more elaborate reference model that contains

Table 3.1. Hypothetical cohort data illustrating inappropriateness of R2 for binary outcomes (see text)

X = 1 X = 0

Y = 1 1900 100

Total 100,000 100,000

Risk ratio = 19, R2 = 0.008.
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it. A test that assumes a relatively simple reference model (i.e., one that has only
a few more coefficients than the index model) will tend to have better power than
a test that assumes a more complex reference model, although it will be valid only
under narrower conditions.

When models are fit by maximum likelihood (ML), a standard method for
testing the fit of a simpler model against a more complex model is the deviance
test, also known as the likelihood-ratio test. Suppose that X1 represents cumulative
dose of an exposure, and that the index model we wish to test is

R(x1) = expit(α + β1x1) ,

a simple linear-logistic model. When we fit this model, an ML program should
supply either a “residual deviance statistic” D(α̃, β̃1), or a “model log-likelihood”
L(α̃, β̃1), where α̃, β̃1 are the ML estimates for this simple model. Suppose we wish
to test the fit of the index model taking as the reference the fractional-polynomial
logistic model

R(x1) = expit
(
α + β1x1 + β2x

1|2
1 + β3x2

1

)
.

We then fit this model and get either the residual deviance D(α̂, β̂1, β̂2, β̂3) or
the log-likelihood L(α̂, β̂1, β̂2, β̂3) for the model, where α̂, β̂1, β̂2, β̂3 are the ML es-
timates for this power model. The deviance statistic for testing the linear-logistic
model against the power-logistic model (that is, for testing β2 = β3 = 0) is
then

∆D(β2, β3) = D
(
α̃, β̃1

)
− D

(
α̂, β̂1, β̂2, β̂3

)
.

This statistic is related to the model log-likelihoods by the equation

∆D(β2, β3) = −2
[
L
(
α̃, β̃1

)
− L

(
α̂, β̂1, β̂2, β̂3

)]
(McCullagh and Nelder 1989; Clayton and Hills 1993). If the linear-logistic model
is correct (so that β2 = β3 = 0) and the sample is large enough, this statistic has an
approximate χ2 distribution with 2 degrees of freedom, which is the difference in
the number of parameters in the two models.

A small P-value from this statistic suggests that the linear-logistic model is
inadequate or fits poorly; in some way, either or both the terms β2x

1|2
1 and β3x2

1
capture deviations of the true regression from the linear-logistic model. A large
P-value does not, however, imply that the linear-logistic model is adequate or
fits well; it means only that no need for the terms β2x

1|2
1 and β3x2

1 was de-
tected by the test. In particular, a large P-value from this test leaves open the
possibility that β2x

1|2
1 and β3x2

1 are important for describing the true regression
function, but the test failed to detect this condition; it also leaves open the pos-
sibility that some other terms not present in the reference model may be im-
portant in the same sense. These unexamined terms may involve X1 or other
regressors.
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Now consider a more general description. Suppose that we wish to test an
index model against a reference model in which it is nested (contained) and
that this reference model contains p more unknown parameters (coefficients)
than the index model. We fit both models and obtain either residual deviances
of Di and Dr for the index and reference models, or log-likelihoods Li and
Lr. If the sample is large enough and the index model is correct, the deviance
statistic

∆D = Di − Dr = −2(Li − Lr) (3.56)

will have an approximate χ2 distribution with p degrees of freedom. Again,
a small P-value suggests that the index model does not fit well, but a large
P-value does not mean the index model fits well, except in the very narrow
sense that the test did not detect a need for the extra terms in the reference
model.

Whatever the size of the deviance P-value, its validity depends on three as-
sumptions (in addition to absence of the usual biases). First, it assumes that ML
fitting of the models is appropriate; in particular, there must be enough subjects
to justify use of ML to fit the reference model, and the assumed residual distri-
bution must be correct. Second, it assumes that the reference regression model
is approximately correct. Third, it assumes that the index model being tested is
nested within the reference model. The third is the only assumption that is easy
to check: In the previous example, we can see that the linear-logistic model is just
the special case of the power-logistic model in which β2 = β3 = 0. In contrast,
if we used the linear-logistic model as the index model (as above) but used the
power-linear model

R(x1) = α + β1x1 + β2x
1|2
1 + β3x2

1

as the reference model, the resulting deviance difference would be meaningless,
because the latter model does not contain the linear-logistic model as a special
case.

Comparison of non-nested models is a more difficult task unless the compared
models have the same number of parameters. In the latter case, it has been sug-
gested that (absent other considerations) one should choose the model with the
highest loglikelihood (Walker and Rothman 1982).

Global Tests of Fit3.10.4

One special type of deviance test of fit can be performed when Y is a proportion
or rate. Suppose that, for every distinct regressor level x, at least four cases would
be expected if the index model were correct; also, if Y is a proportion, suppose
at least four noncases would be expected if the index model were correct. (This
criterion, while somewhat arbitrary, originated because it ensures that the chance
of a cell count being zero is less than 2% if the cell variation is Poisson and the
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index model is correct.) We can then test our index model against the saturated
regression model

E(Y |X = x) = αx ,

where αx is a distinct parameter for every distinct observed level x of X; that is, αx

may represent a different number for every level of X and may vary in any fashion
as X varies. This model is so general that it contains all other regression models as
special cases.

The degrees of freedom for the test of the index model against the saturated
model is the number of distinct X-levels (which is the number of parameters in
the saturated model) minus the number of parameters in the index model, and is
often called the residual degrees of freedom for the model. This residual deviance
test is sometimes called a “global test of fit” because it has some power to detect
any systematic incompatibility between the index model and the data. Another
well-known global test of fit is the Pearson χ2 test, which has the same degrees of
freedom and sample-size requirements as the saturated-model deviance test.

Suppose we observe K distinct regressor values and we list them in some order,
x1, … , xK . The statistic used for the Pearson test has the form of a residual sum-
of-squares:

RSSPearson =
∑

k

(
Yk − Ŷ k

)2
|V̂ k =

∑
k

[(
Yk − Ŷ k

)
|Ŝk

]2
,

where the sum is over all observed values 1, … , K, Yk is the rate or risk observed
at level xk, Ŷ k is the rate or risk predicted (fitted) at xk by the model, V̂ k is the
estimated variance of Ŷ k when X = xk, and Ŝk = V̂ k

1|2 is the estimated standard
deviation of Yk under the model. In Poisson regression, Ŷ k = exp(α̂ + xkβ̂) and
V̂ k = Ŷ k|Tk, where Tk is the person-time observed at xk; in binomial regression,
Ŷ k = expit(α̂ + xkβ̂) and V̂ k = Ŷ k(1 − Ŷ k)|Nk, where Nk is the number of persons
observed at xk. The quantity (Yk − Ŷ k)|Ŝk is sometimes called the standardized
residual at level xk; it is the distance between Yk and Ŷ k expressed in units of the
estimated standard deviation of Yk under the model.

Other global tests have been proposed that have fewer degrees of freedom
and less restrictive sample-size requirements than the deviance and Pearson tests
(Hosmer and Lemeshow 2000). A major drawback of all global tests of fit, however,
is their low power to detect model problems (Hosmer et al. 1997). If any of the tests
yields a low P-value, we can be confident the tested (index) model is unsatisfactory
and needs modification or replacement (albeit the tests provide no clue as to
how to proceed). If, however, they all yield a high P-value, it does not mean the
model is satisfactory. In fact, the tests are unlikely to detect any but the most gross
conflicts between the fitted model and the data. Therefore, global tests should be
regarded as crude preliminary screening tests only, to allow quick rejection of
grossly unsatisfactory models.

The deviance and Pearson statistics are sometimes used directly as measures
of distance between the data and the model. Such use is most easily seen for the
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Pearson statistic. The second form of the Pearson statistic shows that it is the sum
of squared standardized residuals; in other words, it is a sum of squared distances
between data values and model-fitted values of Y . The deviance and Pearson global
test statistics can also be transformed into measures of prediction error under the
model; for example, see McCullagh and Nelder (1989) and Hosmer and Lemeshow
(2000).

Model Diagnostics3.10.5

Suppose now we have found a model that has passed preliminary checks such as
tests for additional terms and global tests of fit. Before adopting this model as
a source of estimates, it is wise to further check the model against the basic data,
and assess the trustworthiness of any model-based inferences we wish to draw.
Such activity is subsumed under the topic of model diagnostics, and its subsidiary
topics of residual analysis, influence analysis, and model-sensitivity analysis. These
topics are vast, and we can only mention a few approaches here. In particular, we
neglect the classical topic of residual analysis, largely because its proper usage
involves a number of technical complexities when dealing with the censored data
and nonlinear models predominant in epidemiology (McCullagh and Nelder 1989).
Detailed treatments of diagnostics for such models can be found in Breslow and
Day (1987), Hosmer and Lemeshow (2000), and McCullagh and Nelder (1989).

Delta-Beta Analysis3.10.6

One important and simple diagnostic tool available in some packaged software is
delta-beta (∆β) analysis. For a data set with N subjects total, estimated model
coefficients (or approximations to them) are recomputed N times over, each
time deleting exactly one of the subjects from the model fitting. Alternatively,
for individually-matched data comprising N matched sets, the delta-beta analysis
may be done deleting one set at a time. In either approach, the output is N different
sets of coefficients estimates: These sets are then examined to see if anyone subject
or matched set influences the resulting estimates to an unusual extent.

To illustrate, suppose our objective is to estimate the rate-ratio per unit in-
crease in an exposure X1, to be measured by exp(β̂1), where β̂1 is the estimated
exposure coefficient in an exponential-rate model. For each subject, the entire
model (confounders included) is re-fit without that subject. Let β̂1(−i) be the es-
timate of β̂1 obtained when subject i is excluded from the data. The difference
β̂1(−i) − β̂1 ≡ ∆β̂1(−i) is called the delta-beta for β1 for subject i. The influence of
subject i on the results can be assessed in several ways. One way is to examine the
impact on the rate-ratio estimate. The proportionate change in the estimate from
dropping subject i is

exp
(
β̂1(−i)

)
| exp

(
β̂1

)
= exp

(
β̂1(−i) − β̂1

)
= exp

(
∆β̂1(−i)

)
,

for which a value of 1.30 indicates dropping subject i increases the estimate by 30%,
and a value of 0.90 indicates dropping subject i decreases the estimate by 10%. One
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can also assess the impact of dropping the subject on confidence limits, P-values,
or any other quantity of interest.

Some packages compute “standardized” delta-betas, ∆β̂1(−i)|ŝ1 where ŝ1 is the
estimated standard deviation for β̂1. By analogy with Z-statistics, any standardized
delta-beta below −1.96 or above 1.96 is sometimes interpreted as being unusual.
This interpretation can be misleading, however, because the standard deviation
used in the denominator is not that of the delta-beta. A standardized delta-beta is
only a measure of the influence of an observation expressed in SE units.

It is possible that one or a few subjects or matched sets are so influential that
deleting them alters the conclusions of the study, even when N is in the hundreds
(Pregibon 1981). In such situations, comparison of the records of those subjects to
others may reveal unusual combinations of regressor values among those subjects.
Such unusual combinations may arise from previously undetected data errors, and
should at least lead to enhanced caution in interpretation. For instance, it may
be only mildly unusual to see a woman who reports having had a child at age 45
or a woman who reports natural menopause at age 45. The combination in one
subject, however, may arouse suspicion of a data error in one or both regressors,
a suspicion worth the labor of further data scrutiny if that woman or her matched
set disproportionately influences the results.

Delta-beta analysis must be replaced by a more complex analysis if the exposure
of interest appears in multiple model terms, such as indicator terms, power terms,
product terms, or spline terms. In that situation, one must focus on changes in
estimates of specific effects or summaries, for example, changes in estimated risk
ratios.

Conclusions 3.11

This chapter has reviewed basic principles and forms of parametric regression
models and model fitting. Regression analysis is a vast subject, however, and many
topics and details have been omitted. For further reading on fundamentals of
parametric modeling a standard text is McCullagh and Nelder (1989). A standard
introduction to nonparametric regression is Hastie and Tibshirani (1990). Non-
parametric methods are connected to algorithmic modeling (machine learning)
methods; for a comparison of parametric and algorithmic approaches see Breiman
(2001). For an integrated coverage of parametric, nonparametric, and algorithmic
methods see Hastie et al. (2001).
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Introduction4.1

The term survival analysis originally referred to statistical study of the time to
death of a group of individuals. From a mathematical perspective it is irrelevant
whether one is studying time until death or time to any other event and so the
term has come to be applied to methods for analysing “time to event data”.
Although often not explicitly stated, we are always interested in the time between
two events. For instance one might be studying the age of death (the time from
birth until death), survival of cancer patients (the time from diagnosis until death),
or the incubation time of a virus (time from infection until the development of
symptomatic disease). Survival analysis is more complicated than the analysis of
other measurements because one often has only partial information regarding the
survival time for some individuals. The most common form of partial information
arises when a study is stopped before all participants have died. At that point we
might know that Mrs Patel survived for at least 3.7 years, but have no idea whether
she will die a week later or 25 years later. The observation on Mrs Patel is said to
be (right) censored at 3.7 years.

The goal of a survival analysis might be to describe the survival distribution
for a group of individuals. One might wish to present the median age at onset of
a particular disease and add that 90% of cases occur before a certain age. More
often epidemiologists might be interested in factors that influence survival. In such
instances, the aim of survival analysis is to estimate the effect of the factors on
survival times.

Occasionally, survival times may vary little between individuals: the vast ma-
jority of humans is born at the end of 36 to 42 weeks of gestation. More frequently,
survival times can vary hugely: the duration of a detectable viral infection could
be anything from a few days to many years. In such circumstances, it is convenient
to describe the rate at which the event (clearance of the virus) occurs. Using rates
is particularly appealing when the event will never be observed in the majority of
individuals being studied. It makes sense to talk about the average rate of breast
cancer in a population even though the majority of the population will never get
breast cancer. Studying disease rates and the factors that influence them is indeed
central to much of epidemiology.

In this chapter we consider three major objectives of survival analysis:
The description of the survival experience of a group of individuals;
Comparison of the survival between two or more groups;
Regression analysis of variables that influence survival.

We describe analyses appropriate for the most common study designs in epidemi-
ology and briefly discuss methods that can be used in more complicated settings.
The chapter is intended to give the reader a broad overview of the main techniques
in survival analysis and to provide examples of the sorts of epidemiological prob-
lems that are amenable to survival analysis. There is now a number of texts on
survival analysis written for a non-mathematical audience. Most are written either
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from the perspective of clinical trials or engineering. The book by Marubini and
Valsecchi (1995) is written for a clinical audience and provides detailed worked
examples. The book by Breslow and Day (1987) is written specifically for cancer
epidemiologists, but focuses on design and analysis of cohort studies rather than
specifically on survival analysis. Two recent books on survival analysis written
primarily for medical statisticians are Hosmer and Lemshow (1999) and Therneau
and Grambsch (2000).

Basic Concepts 4.2

Walking Backwards Through Time 4.2.1

A key feature, perhaps the key feature, of survival analysis, is that it relates to
events that occur in time. In Western cultures, we tend to think in terms of looking
forward into the future or backwards into the past. When thinking about survival
analysis it is useful to have the opposite picture. Imagine that you are walking
backwards through time so that the past is in front of you. You can look down to
see things in the present and up to view things in the distant past. In order to look
into the future you would need to turn your head around, which is impossible.
Rather the future is revealed as you walk backwards into it. Recalling that survival
analysis is the study of the time from an initiating event to a terminating event, this
picture of time is useful for deciding what is an acceptable definition of an event.
For instance, clinicians are fond of defining a patient as being in remission if he has
been free of symptoms for a certain number of months (3 say). This is fine. What
is not permissible from a probabilistic perspective is to then claim that remission
started at the beginning of the three-month period. As we walk backwards through
time we need to be able to see whether or not a patient is in remission without
turning around to look into the future. The difficulty is that if someone has been
symptom free for two months we don’t know whether or not he is in remission –
that depends on what happens in the future.

Another example, this time of a poorly defined initiating event is given by the
duration of pregnancy. It is impossible to be just one week pregnant! Since the
duration of pregnancy is measured from a woman’s last period but conception
cannot occur until after ovulation (which is generally about 14 days after the
previous period), one day after conception a woman is said to be 15 days pregnant.

Describing and Estimating the Distribution
of Survival Times 4.2.2

In her first year, a gynaeco-oncologist treated eight women with newly diagnosed
cervical cancer. One died within six months, two more died over the next three
years, and one died from a stroke four years later. Six years after she started, four
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of the patients were still alive. How should one summarise the survival times of
the eight patients? Even with 800 patients and 20 years of follow-up the problem is
not trivial and there is no optimal solution. In this section we assume that survival
times are observed exactly and consider various ways of describing the variety of
those times. More details on these topics can be found in any book on survival
analysis. Although some of this material may seem to be rather abstract and of
little direct relevance to epidemiologists it is necessary to have a rudimentary
understanding of the different concepts in order to be able to critically assess
studies analysed using survival methods.

Kaplan–Meier Estimator
There are several equivalent ways of describing a distribution. Outside of survival
analysis, one might define the distribution through its density or distribution
function, or choose to describe only certain features such as the mean and variance.
With time to event data, it is more usual to define the distribution in terms of
either the survival function S(t) or the hazard or event rate function λ(t). If T is the
random survival time, then the survival function is the probability that an event
did not occur before t, i.e. T is greater or equal to t, and the hazard function is the
probability of an event occurring in a small unit of time just after t, given that it
has not yet happened by t. In symbols,

S(t) = Pr(T ≥ t) and λ(t) = Pr(T < t + ∆|T ≥ t)|∆ for small ∆ .

They are related through the equation S(t) = exp{−Λ(t)}, where Λ(t) is the cu-
mulative hazard defined as the integral of λ from 0 to t. There is another formula
that is used when estimating the survival function. Note that the probability of an
event not occurring by time t is the product of the probability of it not occurring
by time s (less than t) times the probability of the event not occurring between
times s and t given that it has not occurred by time s. If s is close to t, we can
approximate the probability of an event occurring between s and t given that it has
not occurred before s by λ(s)(t − s) or by {Λ(t) − Λ(s)}. In symbols we have S(t) is
approximately S(s){1 − [Λ(t) − Λ(s)]} for s < t. More generally, for a series of times
0 = s0 < s1 < … < sn = t, the survival function at t is given by the product of the
probability that the event does not occur in the interval si−1 to si given that it did
not occur prior to si−1:

S(t) =
n∏

i=1

{1 − [Λ(si) − Λ(si−1)]} .

This formula leads naturally to the definition of the product limit or Kaplan–Meier
(1958) estimator of the survival function (see also Example 9).

Let t1 < t2 < … < tn be distinct ordered event times observed in a cohort. Let dj

be the number of events at tj, and nj the number in the cohort “at risk” of having
an event observed at tj. Then dj|nj will be a rough estimate of the probability of an
event between tj−1 and tj amongst those at risk at tj−1. When the event of interest
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is death, once an individual has had an event he is no longer at risk for further
events. Similarly if an individual is only followed for two-years, he is not at risk
for an observed event beyond two-years. More formally, the cumulative hazard
between tj−1 and tj is estimated by dj|nj, and (nj − dj)|nj estimates the probability
of an individual at risk at tj−1 not dying by tj. The Kaplan–Meier estimate of S(t) is
then the product over all tj less than or equal to t of (nj − dj)|nj. So, in particular,
the estimate at tj is given by (nj − dj)|nj times the estimate at tj−1.

Censoring and Late-Entry
One of the advantages of working in terms of the hazard function is that it can easily
be estimated even in the presence of right-censored data (provided the censoring is
independent of the event of interest). Right-censoring is the term used to describe
the situation in which some individuals are known to have survived for a particular
length of time, but it is unknown when beyond that time they died (or will die).
Formally, we can consider a death time and a censoring time for each individual.
We observe only the smaller of the two times and the knowledge of which came
first. In order to be able to interpret analyses of censored data one usually needs
to assume that the censoring time imparts no information regarding the timing
of the event of interest other than the fact that the event of interest had not
happened by the censoring time. Censoring individuals because they become too
ill to attend follow-up clinic, for instance, would create problems because censored
individuals will probably have greater mortality in the short-term than uncensored
individuals.

An extreme example of censoring is given by the study of disease incidence
from a disease registry. The annual hazard or incidence rate is estimated by the
number of events during the year divided by the number of individuals (half
way through the year) at risk of getting the disease. Ideally, the incidence rate
should be calculated for a cohort identified at the beginning of the year, but this
is rarely done by population registries. By using the number at risk, one is able to
deal not only with individuals who die without getting the disease, but also those
healthy individuals who immigrate into the area covered by the disease registry.
The latter are termed left-truncated individuals because it is assumed that had they
got the disease before immigrating they would never have been recorded in the
registry.

In the presence of censoring, or when not everyone will experience the second
event, the mean survival time may be impossible to estimate. Instead it is useful
to quote either certain percentiles of the survival distribution such as the median
survival time, or the value of the survival function at certain fixed times: one-
and five-year survival are popular choices in some fields such as in the survival of
cancer patients.

Describing Registry Data – Standardised Rates 4.2.3

Since the rates of many diseases are highly age-dependent, it may be misleading
to compare the crude disease rates in two populations. For comparison purposes
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it is necessary to make some adjustment for the age-distribution in the two pop-
ulations. The traditional approach to comparing data from two disease registries
is to use age-standardised rates (cf. Chap. I.3 of this handbook). That is, one uses
a weighted average of the age-specific rates λi, with weights chosen to be propor-
tional to the numbers p0i in each age group in a standard population. This estimate
(
∑

λip0i|
∑

p0i) is known as the directly standardised rate. Indirect standardisa-
tion is introduced in Sect. 4.3.1. Two frequently quoted reference populations are
the “world standard population” and the “European standard population”. An-
other approach is to use the cumulative rate up to some age such as 74 (Day 1976).
This has the advantage of dispensing with the selection of a standard population
and it is straightforward to convert from the cumulative rate to the cumulative
risk. If the cumulative rate is 1 in x, then, to a very close approximation, the cu-
mulative risk is 1 in x + 0.5. A third, less used, approach is to take a weighted sum
of the age-specific rates using standard weights (corresponding to the probabil-
ity of living to that age) so that the cumulative rate has the interpretation of the
lifetime risk in a population with standard mortality rates (Sasieni and Adams
1999).

Example 1. Comparing rates of cervical cancer
Table 4.1 extracted from Sasieni and Adams (1999) compares three

measures of cervical cancer rates from various cancer registries for the years 1982–
1989. The lifetime risk is calculated using all cause mortality rates from England
and Wales in 1992 as the standard. It is seen that the numerical difference between
the various measures is not great, but the lifetime risk has perhaps the most natural
interpretation.

The age-standardised rate is an average rate for the population. It will not cor-
respond to the crude rate unless the age-distribution of the population is identical
to that of the standard population. The cumulative rate to age 74 is more easily
interpreted, but most people will think of it as a probability and this is not quite
correct – the difference will be particularly great when the cumulative rate is large
(or in the presence of competing risks – see Sect. 4.4). The lifetime risk can be
directly interpreted as the probability of being diagnosed with cervix cancer. It
uses the hazard of all cause mortality from a standard population and assumes
that cervical cancer incidence rates are independent of mortality rates from other
causes (see competing risks). �

Exponential Distribution4.2.4

In many applications in epidemiology, it is reasonable to assume that the hazard
function is constant over short intervals. The number of person-years at risk in an
interval is calculated by adding up the length of time that each individual was at
risk within the interval. For instance, cancer incidence data are often given in five-
year age-bands, or survival data might be given in terms of the number of whole
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Table 4.1. Cervical cancer rates in various populations around the world

Age-standardised rate Cumulative rate (from Lifetime risk
per 1000 (World birth) to age 74 per per 1000

standard) 1000

Cali, Columbia 49 50 71

Trujilli, Peru 55 58 77

USA (SEER)
White 7 7 8

Black 12 12 15

Israel
Jews 4 4 5

Non-Jews 3 3 3

Denmark 16 16 17

Finland 4 5 6

England and Wales 12 12 13

New Zealand
Maori 30 31 34

Non-Maori 12 12 13

years from diagnosis. The family of distributions with a constant hazard rate is
known as the exponential distribution and a distribution with a hazard function
that is constant on intervals is known as a piecewise constant exponential distri-
bution. The likelihood for such piecewise exponential models can be written quite
simply and should be the basis for statistical analysis. If one has a large number
of individuals all of whom are at risk in an interval with a constant hazard λ per
year, then the likelihood looks like a Poisson likelihood: the number of events ob-
served will (to a close approximation) follow a Poisson distribution with mean λn,
where n is the number of person-years at risk in the interval. The approximation
will be good provided the number of individuals at risk in the interval is at least 10
times λn.

Cohort Studies 4.3

In cohort studies, one typically follows a group of individuals and records the
incidence of various diseases and death (cf. Chap. I.5 of this handbook). These are
often studied as a function of the age of the individuals. Here we consider three
statistical problems related to studies with such a design. The first is to compare the
cohort to the general public. The second is to compare two or more groups within
the cohort. Finally, we consider how to take account of various factors in a re-
gression model. All these approaches assume the existence of standard rates that
can be used to calibrate the exposure in the study cohort. In many countries there
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are good population-based records on disease incidence rates and cause-specific
mortality rates as a function of age.

Standardised Mortality Ratio4.3.1

The method of expected number of deaths has a history of over 200 years (Kei-
ding 1987) having first been described by English actuaries in the 1780s. Groups
are defined by age and sex and possibly the year of risk. For each group i, let λ0i

and p0i denote the mortality rate and the number of person-years at risk in the
reference population and λi and pi be the corresponding quantities in the study co-
hort. The standardised mortality ratio (SMR) is defined as SMR =

∑
λipi|

∑
λ0ipi

and is equal to observed number of deaths in the study cohort divided by the
expected number under the assumption that the reference population rates apply
(cf. Chap. I.3 of this handbook). Corresponding to the SMR, the indirectly stan-
dardised rate is the SMR times the standardised rate in the reference population:
SMR ∗∑ λ0ip0i|

∑
p0i. Please note that the reference population does not serve as

a “standard” population for the calculation of an SMR, i.e. for the indirect stan-
dardisation. Rather, the mortality rate of the reference population is standardised
by the age distribution of the study cohort. This should be contrasted with the
directly standardised rate:

∑
λip0i|

∑
p0i. The latter is more widely used when the

study cohort is very large, but requires reasonable estimates of all the individual λi

and should be avoided unless all the pi are reasonably large.

Example 2. Cohort of individual exposed to medicinal arsenic (1)
A cohort of 478 patients treated with Fowler’s solution (potassium

arsenite) between 1945 and 1965 were followed until the end of 1990 during which
period 188 patients died (Cuzick et al. 1992). Completeness of follow-up was
achieved through flagging the cohort with the national population register. Cause
of death was determined from the death certificates. A comparison was made
between the observed number of deaths from various causes (before the age of 85)
and the expected number using age-, sex and calendar year-adjusted rates from
England and Wales. Treating the cohort as a whole, SMRs were calculated for
various causes of death (Table 4.2). There was a slight (and non-significant) deficit
of death overall (suggesting that the cohort is slightly healthier than the population
as a whole). The observed number of five deaths from bladder cancer was three
times greater than expected and represented a significant increase compared to
the general population. �

Conditional Inference Within a Cohort4.3.2

In cohort studies one often wants to compare the number of events in two groups
within a cohort. This is done by considering the observed number of events and
the “expected” number of events in each group. The expected number is calculated
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Table 4.2. Mortality in a cohort of 478 individuals exposed to medicinal arsenic. SMR = standardised

mortality ratio. CI = confidence interval

Observed number Expected number SMR 95% CI

All Causes 188 209.1 0.90 0.77–1.03

All cancers 47 49.3 0.95 0.70–1.3

All circulatory diseases 97 106.5 0.91 0.74–1.1

Bladder cancer 5 1.6 3.07 1.01–7.3

as in the SMR by
∑

λ0ipi. Statistical inference is usually based on the assumption
of proportional hazards. That is, it is assumed that in each group λi = kλ0i for
all i. Suppose the observed and expected number of events are O1 and E1 in
group 1, and O2 and E2 in group 2, respectively. Then, under the null hypothesis
of equal proportional hazards in the two groups, O1 is distributed as a binomial
sample from a population of size O1 + O2 with probability of E1|(E1 + E2). Hence in
particular, under the assumption of proportional hazards within each group, the
null hypothesis of no difference between the groups can be tested using an exact
binomial test.

Example 3. Cohort of individual exposed to medicinal arsenic (2)
Of the five bladder cancer deaths, four were in individuals with a cu-

mulative dose of over 500 mg. The expected numbers were 0.83 for those exposed
to less than 500 mg and 0.80 for those exposed to over 500 mg. Thus to test whether
the risk was greater at the higher dose, one calculates the binomial probability of
four or more “successes” out of five with a probability of 0.49 (= 0.80|(0.80 + 0.83))
each. The binomial probability is 0.18. Hence although the tendency was for the
individuals who died from bladder cancer to have been exposed to a greater dose
of arsenic, the association was not statistically significant. �

Regression Models for Rare Events 4.3.3

Regression models are important when there are several factors upon which the
disease rates may depend. For a general introduction of regression models see
Chap. II.3 of this handbook. The popular log-linear or Poisson regression model
assumes that the observed number of events follows a Poisson distribution with
a particular mean given by the number of person-years at risk multiplied by the
modelled disease rates. For mathematical simplicity, the usual regression model is
multiplicative, i.e., it is assumed that the logarithm of the hazard follows a linear
regression model: ln(λi) =

∑
j xijβj. Such models can be fit in many software

packages. The observed numbers of events, Oi, are the values of the outcome
variable, the xij’s are the covariate values, and the logarithms of person-years at
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risk pi are given as offsets – their regression coefficient is forced to be one. In
symbols: E(Oi) = exp{ln(pi) +

∑
j xijβj}.

In practice, it is often the case that the Poisson assumption is not appropri-
ate. For whatever reasons, mortality and disease registry data often show greater
variability than implied by the Poisson model. Various sophisticated solutions to
the problem of “extra-Poisson variation” have been put forwarded, but simple
solutions usually suffice. One approach assumes that the variance of Oi is directly
proportional to (but not necessarily equal to) the expected value of Oi. Under that
assumption, one can estimate the dispersion factor (the coefficient of proportion-
ality), by dividing the Pearson chi-squared statistic for the “saturated model” (that
is the model with the most terms in it, or the one including all the explanatory
variables) by the number of degrees of freedom (McCullagh and Nelder 1989). In-
ference proceeds by multiplying the model based standard errors by the dispersion
factor. Although this quasi-likelihood approach often works well, it lacks a sound
theoretical justification and in practice it may be difficult to define the saturated
model. Another simple approach to dealing with extra-Poisson variation is to use
the sandwich estimator of the variance instead of the model-based estimator (Hu-
ber 1967). The sandwich estimator, also known as the Huber estimator or even
the robust estimator, is available in many statistical packages and provides valid
asymptotic inference no matter what the true variance model (hence the name
robust), provided the mean model is correct.

The basic observation for Poisson regression consists of numbers of events
and numbers of person years at risk together with a number of covariates. An
observation could relate to a single individual (in which case the number of events
would usually be 0 or 1) or it could be the sum of the observations from a number
of individuals with common covariate values.

Example 4. Age, period cohort modelling of cervical cancer rates
Cervical cancer mortality rates changed considerably during the sec-

ond half of the 20th century. It is well known that the rates vary with age, being
essentially zero until the age of 20 then increasing slowly at first and rapidly in the
30sbefore reachingaplateauat aboutage 55.Oneexplanation for thechanging rates
of cervical cancer over time is the cohort effect, whereby women’s exposure to the
human papillomavirus during their teens and 20s largely determines their risk of
cervical cancer throughout the rest of their lives. Thus cervical cancer rates may be
seen to vary as a function of the year of birth. Additionally changes in calendar time
may affect the mortality rate from cervical cancer regardless of a woman’s underly-
ing risk of the disease. For example, improvements in treatment might reduce the
mortality fromcervical cancer at all ages.Hereweestimate theageandbirth-cohort
effects and investigate the secular trends that may be attributed to screening using
data from England and Wales (Sasieni and Adams 2000). Since screening is only of-
fered towomenaged 20–64, itwill havehad little effect onmortality inolder women
except possibly in recent times in which older women may have been screened sev-
eral years earlier whilst still aged under 65 (cf. Chap. III.10 of this handbook).
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The model that we used was:

ln(rate) = f1(age) + f2(cohort) + f3a(year if age 20–49)

+ f3b(year if age 50–69) + f3c(age if age 70+) .

Here the f ’s are functions that we estimate using cubic splines (f1 and f2) or step-
functions (f3a, f3b, and f3c). Estimates of these functions are plotted in Fig. 4.1.
Results summarising the goodness of fit of this model compared to various sub-
models are given in Table 4.3. The scaled deviance is the deviance divided by
the dispersion factor from the full model. The dispersion factor is the Pearson
chi-squared statistic divided by the degrees of freedom.

The model of a constant rate at all ages and at all times gives a hopelessly bad
fit with a scaled deviance of over 40,000 on 671 degrees of freedom. Over 80% of
the deviance can be explained simply by allowing the rates to vary with age, but
the model still does not fit the data well. Nearly 80% of the remaining deviance
(all but 1194 of 5789) can be explained by allowing the age-standardised rate to

Figure 4.1. Age, cohort and age-specific period effects for cervical cancer mortality. The age effect is

given as the absolute rate for a cohort born in 1905, the cohort and period effects are expressed as

relative risks
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Table 4.3. Age-period cohort modelling of cervical cancer mortality data from England and Wales

Model Scaled Degrees Chi- Change in Change
deviance of freedom square|df sc. deviance in df

Null 41,288 671 95.66
f1(age) 5789 665 14.71 35,499 6
f1(age) + f3(period) 2629 658 7.02 3160 7
f1(age) + f2(cohort) 1194 656 3.10 4595 9
f1(age) + f2(cohort) + f3(period) 880 649 2.32 314 7
Full 648 635 1.74 232 14

vary with birth cohort; and adding a main effect for period (year of death) leads
only to a more modest improvement in the fit. The full model, with interactions
between age and period, provides further improvements in the fit suggesting that
the dominant factors are age and year of birth, but that there have been significant
changes over time and that these have not been the same across age groups. The
usual explanation for these age-specific period effects is the widespread use of
screening in women age 20–64 from the mid 1980s (see Sasieni and Adams 1999).
Finally, note that even the “full” model (with 36 explanatory variables) still had
considerable extra-Poisson variation – the dispersion factor was 1.74. �

Example 5. Converting survival data into Poisson regression data
A common problem is converting data on individuals including date

of entry into the study, date of birth, date of exit and reason for exit (cause specific
death or censoring) into data suitable for Poisson regression: length of time at
risk and number of events in a number of risk groups. The situation can best be
illustrated using a Lexis diagram (Keiding 1990; Chap. I.3 of this handbook). The
horizontal axis is calendar time, the vertical axis is age and individuals in the study
can be represented by diagonal lines with slope 1. For instance, an individual could
enter a study at age 62.5 in May 1986 and be followed until death in August 1997.
Suppose population mortality rates are available in five-year age bands (60–64, 65–
69, 70–74, 75–79) for each calendar year. Then the individual’s contributions to the
various age-groups and calendar years are as given in Table 4.4 (see also Fig. 4.2).

The conversion of individual data to age and calendar-year data is often referred
to as person-years analysis and is fundamental to the analysis of large cohort
studies. Programs exist in many software packages to facilitate the conversion of
individual level data (one record per person) to a format with a separate record for
each individual in each risk stratum. �

Example 6. Estimating the expected number of cancer deaths in an initially can-
cer free cohort

In most applications of the person-years method, it is simply a case of multiplying
the number of years at risk by the population risk (mortality rate of a particular
disease) and adding these to get an expected number of events (disease-specific
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Figure 4.2. Lexis diagram illustrating the experience of one patient

Table 4.4. Example of how an individual is present in a number age-period strata

Age group Calendar year Months at risk Events

60–64 1986 7.5 0

60–64 1987 12 0

60–64 1988 10.5 0

65–69 1988 1.5 0

65–69 1989 12 0

65–69 1990 12 0

65–69 1991 12 0

65–69 1992 12 0

65–69 1993 10.5 0

70–74 1993 1.5 0

70–74 1994 12 0

70–74 1995 12 0

70–74 1996 12 0

70–74 1997 7.5 1

deaths). Such estimates often overestimate the true mortality in a given study
cohort because of what is known as “the healthy worker effect”. Cohorts of indi-
viduals working in a particular occupation will often have low mortality rates for
the first few years of follow-up simply because if they are working then they are
probably healthy. A particular problem arises in cancer screening studies in which
one excludes anyone who already has cancer from the study. For such a cohort
it is not appropriate to simply apply the cancer specific mortality rates because
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individuals are all cancer-free at entry. Instead one should explicitly model the
probability of first getting cancer (using population incidence rates) and then dy-
ing from cancer (using cancer survival rates). Explicit formulae are given in Sasieni
et al. (2002). �

Life-Tables4.3.4

We have seen that a survival function can be estimated by the product-limit or
Kaplan–Meier estimate. Such an approach is standard for small and moderate
cohorts. For larger cohorts, it is more usual to estimate the hazard for a year
at a time and to use the hazard function to estimate survival. Sometimes people
calculate the person years at risk in a given time-period exactly and then use that as
the denominator for calculating the rate. Often however, the person-years at risk is
approximated by multiplying the length of the interval by the mean of the number
of people at risk at the beginning of the interval and the number at risk at the
end of the interval. Formally one is assuming that on average anyone who “drops
out” or “enters” during the interval will have been at risk for half of the interval.
Dividing the number of events in an interval by this estimate of the person-years
leads to the life-table estimate of survival. The probability of surviving a long
period is computed by multiplying the conditional probabilities of surviving each
of the intervals constituting it. Suppose the conditional probabilities have been
estimated in intervals of width one and that we wish to estimate the survival at
time t such that j is the largest interval that is less that or equal to t. Then the S(t) is
estimated by the product of (1 − pi) for i < j multiplied by (1 − pj)t−j. This method
has an extremely long history being first devised in the seventeenth century by
Edmund Halley to describe the mortality of the people of Breslau (Halley 1693). The
probabilities pi are calculated by the formula di|(ni − ci|2) where ni is the number
at risk at the start of the i’th interval, di is the number dying and ci is the number
censoring during i’th interval.

Whereas in clinical studies, it would be standard to base life tables on a group of
patients followed from diagnosis to death, actuarial life tables are not constructed
by observing a cohort of newborns until the last survivor dies. Rather they are
based on estimates of probabilities of death, given survival to various ages, derived
from the mortality experienced by the entire population over a few consecutive
years. In that case there is little point in noting the numbers censored in each
interval, rather one needs to keep track of the size of the risk set. The following
fictitious example is provided to show the calculations involved (Table 4.5). Initially
2456 patients are followed. In the first year 543 (22%) die leaving 1913 patients at
the beginning of the second year. In the second year 265 patients die and 22 are
censored. In the third year 934 new patients enter the study. (This could be due
to transfer from another hospital and we assume that there is no information on
the numbers treated from diagnosis in that hospital, but that 934 who were diag-
nosed between 2 and 3 years earlier were transferred). The conditional probability
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Table 4.5. Fictitious life table

Years from No. at start No. No. new Deaths Conditional Cumulative
diagnosis of interval censored patients in probability probability

interval of death of survival
j nj cj dj pj Sj

0 2456 0 0 543 0.2211 1.0000
1 1913 22 0 265 0.1393 0.7789
2 1626 130 934 302 0.1489 0.6704
3 2128 219 0 321 0.1590 0.5706
4 1588 336 971 317 0.1664 0.4798
5 1906 447 0 278 0.1652 0.4000

of dying in the third year is calculated as 302|(1626 − 130|2 + 934|2) = 0.1489.
Thus the estimated probability of surviving until the beginning of year four is
(1 − 0.2211) ∗ (1 − 0.1393) ∗ (1 − 0.1489) = 0.5706.

Estimating Survival from Population Registries 4.3.5

There is an issue as to what parts of the Lexis diagram should be used when
estimating survival from population registries. In order to estimate the survival
curve of colorectal cancer patients for 20 years (S(t), t ≤ 20), one might consider
three approaches (see Fig. 4.3).
1. Pooled. Estimate the survival using the Kaplan–Meier or life-table approach

using all patients who have been diagnosed with colorectal cancer over the
last 20 years.

2. Cohort. Estimate the survival function from the cohort of patients diagnosed
20 years ago.

3. Period. Estimate the survival function from patients dying in a particular (re-
cent) period. Specifically, estimate the hazard function x years from diagnosis
using all patients diagnosed x years ago. Calculate the survival function from
the estimated hazard function.

Approach 1 uses all available data, but if survival has improved over calendar
time, the survival function will have been estimated from a mixture of patients
given old and new treatments. Approach 2 has the clearest interpretation since
it describes the survival experience of a particular cohort. However, using it to
estimate 5-year survival will yield outdated estimates if survival has changed over
the 20-years since members of the cohort were diagnosed. Approach 3 will in
many circumstances provide the best prediction of the current survival experience
without explicitly modelling changes in survival over time (year of diagnosis).
It is possible that the estimated survival might be inappropriate, if for instance
a new treatment increases the hazard of dying in the first year, but increases
the proportion cured of the disease. More often the use of the most recent data to
estimate the relevant hazard will mean that approach 3 will be favoured. The period
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Figure 4.3. Survival experience contributing to the pooled, cohort and period estimates of survival.

To estimate the survival curve up to 26 years based on follow-up until the end of 1999, one could

pool all events in the shaded part of the diagram; or one could consider the cohort diagnosed in

1973 who have a full 26 years of follow-up (gray strip along the bottom of the diagram); or one could

use the deaths from a recent period, such as all deaths in 1999 (represented by the light-gray

diagonal strip)

method has always been favoured by demographers. It was explicitly introduced
into epidemiology by Brenner and Gefeller (1996) and has been used by Brenner
(2002) and by Sasieni et al. (2002) to study the long-term survival of cancer
patients. Applying the period approach to data from the United States of America,
Brenner (2002) estimated the 20-year relative survival for all types of cancer to be
51% compared to 40% using the cohort-based survival. The difference reflects the
substantial improvement in survival over the past two decades.

Competing Risks4.4

In previous sections, we have assumed that there is only a single, possibly censored,
event of interest. In practice study participants might die of a variety of causes or
become lost to follow-up and the assumption of independent censoring may be
unrealistic. When looking at cause-specific mortality one needs to think carefully
about the interaction between different causes of death. The interaction may be
structural as in the case when one considers the effect of coding rules on the
mortality rates from pneumonia (immediate cause) and cancer (underlying cause),
or on cancer of the uterus (site not otherwise specified) and cancer of the cervix
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uterus. In these examples an increase in one may be linked to a decrease in the
other. In other examples certain causes of death will be related due to a common
underlying risk factor. Smokers are at substantially increased risk of lung cancer,
cardiovascular disease and respiratory disease, but at slightly reduced risk of
endometrial cancer. Similarly, obesity can lead to death from a variety of causes.
Despite these examples, many researchers treat different causes of death as if they
are independent; they concentrate on a particular cause of death and treat all
other deaths as independent censoring events. Such an approach is particularly
tempting when one is interested in an event other than death: in estimating the
age at natural menopause one would probably treat death as an independent
source of censoring. In general however the assumption of independence may not
hold and it is meaningless to ask what would happen in the absence of all other
causes of death. The key is to concentrate on observable quantities and not to
make unsubstantiated guesses at what might happen in the absence of a particular
cause.

In many examples the issue of competing risks is at most of theoretical im-
portance, but there are other situations in which it is impossible to ignore. The
classic example is a three state model in which patients start in remission and can
either relapse or die whilst in remission (Fig. 4.4). One would certainly not wish
to consider death as a source of independent censoring. Kalbfleisch and Prentice
(2002) identify three distinct problems in the analysis of competing risks data:
1. The estimation of the dependence of the rate of cause-specific death on a set

of covariates.
2. The study of the relationship between different causes of death.
3. The estimation of mortality rates given the “removal” of competing risks.

Problem 3 is not really statistical. The solution will depend on the model, which
in turn will depend on ones knowledge of the underlying biology. In general it is
difficult if not impossible to conjecture about what might happen in the absence
of a competing risk.

Figure 4.4. Three state model

Whenever it is not possible to ignore the competing risk problem, it is usual
to estimate the cause-specific hazard and from that the crude cause-specific cu-
mulative incidence. Suppose individuals can die from one of K causes and that in
addition follow-up may be censored. We assume that the censoring is indepen-
dent of mortality. The observed data on the i’th individual consist of a survival
time Ti and a cause indicator Li with Li = 0 if Ti is a censoring time. For cause
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l ∈ {0, 1, …, K}, define the cause-specific hazard λl as one over ∆ times the condi-
tional probability of dying from cause l in the small interval between t and t + ∆
conditional on surviving until time t: λl = Pr{T < t + ∆, L = l|T ≥ t}|∆. The
all-cause survival function S is defined in the usual way. The crude cumulative
incidence function Il for failures of type l is the probability that an individual will
die from cause l (despite the possibility of dying from other causes) by time t:
Il(t) = Pr{T < t, L = l}. Let Ŝ denote the Kaplan–Meier estimator and dlj and nj the
number of deaths of type l, and the number at risk at time Tj, respectively. Note
that Ŝ(Tj−1)dlj|nj estimates probability of being alive at Tj times the conditional
probability of dying from cause l between Tj and Tj+1 given survival until Tj. Thus
Il(t) can be estimated by

∑
{j:Tj<t} Ŝ(Tj−1)dlj|nj.

Consider the problem of survival in patients with a particular form of cancer
(breast cancer, for example). One could consider all cause-mortality, but that
would dilute treatment effects by including death from causes that are not related
to the cancer of interest. The temptation then is to consider deaths from breast
cancer, but that could give misleading results – for instance, meta-analysis of the
early trials of radiotherapy and breast cancer showed that women treated with
radiotherapy had lower rates of death from breast cancer, but higher rates of
death from cardiovascular disease (Cuzick et al. 1994). Later analyses showed that
radiotherapy (particularly of the left breast) caused damage to the major blood
vessels surrounding the heart.

A popular approach in epidemiology is to consider the excess hazard or cor-
respondingly the relative survival function. Given a standard hazard λ0 from
a reference population, the excess hazard λe is the difference between the observed
hazard λ and the standard hazard: λe = λ − λ0. Similarly the relative survival func-
tion Sr is defined as Sr = S|S0, where S0 is the survival function from the reference
population. It is useful to contrast the relative survival for patients with a particular
type of cancer to the cause-specific survival. If the cause of death is well determined,
one might expect the two quantities to be similar. The cause-specific survival (i.e.,
the survival treating death from other causes as independent censoring) might be
bigger than the relative survival if patients who die with cancer are incorrectly
recorded as having died from cancer. Differences will also exist if the population
is heterogeneous and those who get (and survive) cancer are not representative
of the whole population. For instance, breast cancer patients (particularly those
that survive) tend to be of higher social class and therefore have lower rates of
mortality from other causes; by contrast, lung cancer patients tend to be smokers
and have higher rates of mortality form other causes.

Example 7. Relative survival
Ederer et al. (1961) proposed two methods of describing the relative

survival of a group of cancer patients to that of a standard population. The idea is
to divide the observed survival (as estimated by the Kaplan–Meier estimate) in one
group of patients by their expected survival based on the experience of a reference
group.Akeyquestion ishow toestimate the expected survival. TheEderer Imethod
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simply uses the mean expected survival function: Se(t) =
∑

{i=1,…,n} Si(t)|n. Here
the mean is calculated based on all individuals in the cohort and does not take into
account the different make-up of the cohort as individuals die (or are censored).
By contrast the Ederer II method takes the average hazard among those still at risk
and converts that to a survival function (via the formula S(t) = exp[−Λ(t)]). The
expected or conditional cumulative hazard function is estimated by

Λc(t) =

t∫
0

{∑
Yi(s)λi(s)

/∑
Yi(s)

}
ds

where λi(s) is the hazard function appropriate for the i’th individual calculated
from the reference population and Yi(s) is an indicator of whether the i’th indi-
vidual was at risk at time s. In the Ederer II method the survival function does
not correspond to the survival of an actual population, but is a measure of the
excess risk in a competing-risks model. Suppose the hazard in the study popula-
tion is equal to the hazard in the reference population plus some excess, then the
difference between the observed cumulative hazard and the conditional expected
cumulative hazard will be equal to the cumulative excess hazard.

The difference between the two methods can best be illustrated by reference
to a group of cancer patients some of whom are aged 40–49 and some of whom
are aged 80–89. In the Ederer I method, the 80–89 year old patients will still have
an impact on the relative survival after 10 years. In the Ederer II method, the
older patients will have less and less impact on the relative survival as they die.
So that, if after 6 years, there are no older patients still at risk, the hazards (both
observed and expected) for 7–10 years will be based exclusively on the younger
patients.

A slight variation on the Ederer II method was proposed by Hakulinen (1982).
Instead of using an indicator of whether the i’th individual was still at risk, he
suggested using an estimate of whether the i’th individual would still be at risk
if she were subject to the survival of the reference population and the censoring
from the study. That is Yi(s) is replaced by Si(s)Ci(s) where Ci(s) is an indicator
of whether the i’th individual would still have been under follow-up at time s.
A problem with this approach is that it requires knowledge of the censoring times
even of those individuals who are not censored. That is not a real problem if there
is no loss to follow-up and the maximal follow-up time for an individual can be
calculated, for instance, from their date of entry into the study. An advantage of
Hakulinen’s method over Ederer II is that the expected survival function can truly
be interpreted as a survival function. �

Example 8. Mortality from other causes in cancer patients
Sasieni et al. (2002) considered the probability of not dying prema-

turely as a measure of the proportion cured of a particular cancer. They com-
pared (1) the probability of not dying from the excess hazard before dying from
background mortality; (2) the probability of not dying from the cause-specific
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hazard before dying from background mortality; and (3) the probability of not
dying from the excess mortality of other causes before dying from background
mortality. For breast cancer these three probabilities (given as percentages) were
67%, 76% and 98%, respectively. Thus women with breast cancer are more likely
to die of something other than breast cancer than are women without breast
cancer, but the excess mortality due to other causes is small. By contrast, the
three percentages for women with lung cancer were: 11%, 16% and 60%. So,
84% of women with lung cancer die of it, and 40% of those who don’t still die
prematurely. �

Comparing Survival Times
Between Groups4.5

We have already discussed how to compare the survival experience of different
groups after adjusting for their expected mortality. In this section we consider the
problem of comparing survival without the use of a reference population. This
approach will be most relevant when the mortality of all groups in the study is
substantially greater than that of the general population so that one can almost
ignore the “background mortality”.

A graphical solution is achieved by plotting the estimated survival function
(using the Kaplan–Meier or the life table approach) on a common set of axes. Com-
parison of survival at a fixed time (e.g., 3 years) can be made using Greenwood’s
formula for the variance of the survival estimate (Greenwood 1926). Greenwood’s
estimate is widely available in software packages and a formula for calculating the
estimated variance can be found in any text on survival analysis. More sophisti-
cated confidence bands, for the whole survival function, have been proposed by
Hall and Wellner (1980).

Another useful summary of the survival in each group is the average event rate,
which is estimated by dividing the number of events by the total person-years
at risk. For instance, 12 deaths in a group of 100 patients who were followed for
a total of 482 person-years would yield a rate of 12|482 or 2.5% per year. This
simple approach is also amenable to hypothesis testing. Formally one is assuming
a constant rate or exponential model and the problem of testing between two
groups is equivalent to testing for the equally of rate parameters in an exponential
regression model.

The test statistic most often used in medical statistics is a variant of the log-
rank test first proposed by Mantel (1966). This is a test that is intended for use with
censored survival data (including right-censoring and left-truncation) and which
is most powerful when the proportional hazards model holds. The proportional
hazards model is that the hazard in each group g is given by λg(t) = θgλ0(t).
In other words the ratio of the hazard functions is constant over time. Readers,
who are familiar with the Mantel–Haenszel test for a series of 2 × 2 tables, might
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Table 4.6. 2 × 2 table formed at time Tj

Die at Tj Survive Tj At risk at Tj

Group 1 d1j n1j–d1j n1j

Group 2 d2j n2j–d2j n2j

like to know that the log-rank test for two groups is equivalent to the Mantel–
Haenszel test. Consider the situation at each event time. Let dij be the number
of events in group i at time Tj and nij the number at risk as illustrated in Ta-
ble 4.6.

Although these 2 × 2 tables are not independent, they are conditionally in-
dependent (given the marginals) and the usual formula for the variance of the
Mantel–Haenszel test statistic holds.

In epidemiology, it is often useful to be able to stratify the log-rank test so
that a valid test can be obtained after adjusting for some other factor. Formally,
the test assumes that within each stratum proportional hazards holds with the
same constants of proportionality: λgs(t) = θgλ0s(t) for each stratum s and each
group g.

Example 9. Kaplan–Meier estimates and log-rank test in a clinical trial
This example is based on the “cancer” dataset provided by Stata.

There are 48 patients who received one of three different drugs: 31 patients died
during follow-up (see Fig. 4.5 and Table 4.7).

The log-rank statistic (which, under the null hypothesis of no differences in
effect on survival between the three drugs, is asymptotically distributed as chi-
squared with 2 degrees of freedom) was 30.2 (p < 0.0001). Just comparing drugs 2

Figure 4.5. Kaplan–Meier estimates of the survival of cancer patients over 3 years. The three estimates

correspond to patients on different drugs
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Table 4.7. Descriptive survival in the three treatment arms

Survival Survival Median survival Mean mortality
at 1 year at 2 years (years) rate

Placebo (n = 20) 0.23 0 0.67 1.27

Drug 2 (n = 14) 0.85 0.21 1.83 0.34

Drug 3 (n = 14) 0.86 0.77 2.75 0.21

and 3, gave a log-rank of 3.4 (1 df, p = 0.065). However, it was noted that older
patients fared worse – the log-rank test for age under 55 versus age over 55,
stratified for treatment, had p = 0.007 – after stratifying on age, the difference
between drugs 2 and 3 became more significant (p = 0.03). �

Regression Models for Survival Data4.6

We have already discussed the Poisson regression model, which is particularly
useful when the mortality in the study population is of the same order of mag-
nitude as that of a standard reference population. When considering a cohort of
patients with a life threatening disease, the background rate of mortality is often
of little interest. Additionally, when studying events other than death, there may
be no reference data available. Two sorts of regression model are useful in these
circumstances: ones that model the survival time itself, and ones that model the
hazard or rate function.

Accelerated Failure Time Models4.6.1

Most of the literature applying regression models to a function of the survival
time assumes that the regression model is applied to the logarithm of the time.
Such models are called “accelerated failure time models” because the effect of
a covariate is to multiply the time-scale on which events occur. It is as if the clock is
made to run either slower or faster than usual. The simplest accelerated failure time
model assumes that the survival times are Exponential random variables, but other
parametric models such as Weibull, Gamma, and Log-normal can also be used.
For modelling all-cause adult mortality as a function of age, other distributions
such as Gompertz or Makeham with hazards increasing exponentially with time
are more appropriate. The book by Kalbfleisch and Prentice (2002) provides details
of all these parametric distributions. All these regression models can be written
as

ln(T) = β0 + β1Z1 + … + βpZp + ε , (4.1)
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where Z1, … , Zp are covariates, β0, … , βp are regression parameters to be esti-
mated, and ε is the random component distributed according to some model. (It
should be noted that in this formulation it is not ε but exp(ε) that has the named
distribution). A semi-parametric variant of this model uses the same formula (4.1),
but does not specify a parametric family for the distribution of ε. Parametric ac-
celerated failure time models can be fitted using maximum likelihood estimation
in a number of statistical packages. The semi-parametric model requires more
advanced algorithms.

When using dummy covariates (i.e., Zi is equal to 0 or 1), the regression pa-
rameters are easily interpreted: exp(βi) is a multiplicative factor by which the
“underlying” survival time is multiplied. If exp(βi) = 3, then on average individu-
als with Zi = 1 take three times as long as individuals with Zi = 0 to have the event
of interest.

The Cox Model 4.6.2

Cox (1972) proposed modelling the conditional hazard as the product of an arbi-
trary baseline hazard λ0(t) and an exponential form that is linear in the covariates:

λ(t|Z1, … , Zp) = λ0(t) exp
(
β1Z1 + … + βpZp

)
. (4.2)

The restriction λ0(t) = λ0 leads to the exponential regression model (which is
also an accelerated failure time model). Such a restriction will not generally be
appropriate in epidemiology where the underlying mortality rate will generally be
far from constant in time. Taking λ0(t) to be the hazard from a reference population
leads to the Poisson regression model (Breslow et al. 1983). Such modelling is
particularly useful in epidemiology in which the goal may be to compare the
survival of a study population to that of a reference population and to consider
variables that affect the relative mortality. Alternatively, Andersen et al. (1985)
proposed a Cox-type model for the relative mortality replacing λ0(t) by the product
of the individual-specific population mortality at time t, λ∗

i (t), and an underlying
relative mortality function, ν0(t). They applied this model to patients with diabetes
mellitus. Such a model may seem reasonable when studying a cohort at increased
(or decreased) mortality from a number of causes, but the proportional excess
mortality model (see Sect. 4.6.3) may seem more appropriate when the cohort are
at particular risk of certain causes of death and when that risk is unrelated to their
underlying risk of death from other causes.

In the proportional hazards model, λ0(t) is the hazard for an individual with
Zi = 0, i = 1, … , p and the hazard ratio between two individuals is constant over
time. If one individual has covariates Z and other has covariates Z∗ then their
hazard ratio is given by λ0(t|Z)|λ0(t|Z∗) = exp{β(Z − Z∗)}. Recalling that the
hazard is a measure of the instantaneous risk, one can also think of the hazard
ratio as the relative risk. Such an approximation will be reasonable as long as the
event of interest is rare. Consider a hazard ratio of 2.0, then when the survival in
one group is S, the relative risk of death in the other group will be 1 + S. Thus for
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instance, when the survival is 99% in one group it will be 98.01% in the other group
yielding a relative risk of 1.99, but when the survival in one group is 20% it will be
just 4% in the other group, yielding a relative risk of death of 0.96|0.80 or 1.2.

Some epidemiologists like to use other link functions such as λ(t|Z1, … , Zp) =
λ0(t)(1 + β1Z1 + … + βpZp). This is still a proportional hazards model, but the
effect of different covariates is additive rather than multiplicative. For example if
in model (4.2), being male infers a hazard ratio of 2 and being black infers a hazard
ratio of 3, then being a black male infers a hazard ratio of 6 (= 2 × 3) relative
to white females. With the additive link, the hazard ratio for black males will be
1 + (2 − 1) + (3 − 1) = 4.

The basic model, (4.2), has been generalized in various directions. A simple
generalization is to permit different baseline hazard functions in each of a number
of strata. The stratified Cox model assumes that, within each stratum, the propor-
tional hazards assumption is justified and that the effect of the variable Z is the
same in all strata:

λ(t|Z1, … , Zp, stratum j) = λj(t) exp
(
β1Z1 + … + βpZp

)
. (4.3)

By incorporating constructed variables that are constant in some strata, the strati-
fied model, (4.3), can be used to model interactions between explanatory variables
and strata. Suppose, for example, that one is stratifying by sex and including age
as an explanatory variable. Let Z1 = (age − 50) for men, = 0 for women; and let
Z2 = (age − 50) for women, = 0 for men. Then a model stratified on sex that
includes Z1, Z2, and a treatment indicator Z3 permits interactions between age and
sex, but assumes that the treatment acts proportionately on the hazards for any
age–sex combination.

In the Cox model, there are three components to the data on each individual: the
possibly censored failure time T; an indicator δ equal to 1 if T is a true failure time,
0 if it is censored; and Z, the vector of explanatory variables. The model is flexible
enough to incorporate explanatory variables that change value over the course of
the study. The key censoring assumption is that the observation (T = t, δ = 0) tells
us nothing more than that the true failure time is greater than t. When a study
ends some individuals will still be alive and will be censored. In such situations, it
is necessary for survival to be independent of entry time for the above condition
to be satisfied. Suppose for instance that early on after the introduction of a new
type of surgery only extremely sick patients are offered the new treatment, but
that once the hospital has two years experience in the technique they offer it to
relatively healthy patients too. If the results of all treated patients are studied four
years after the introduction of the new technique, then patients censored in under
two years may have been healthier at entry, thus if follow-up were continued for
a further year, their survival in the third year might be better than that of patients
entered in the first two years who survived two years. Thus the censoring time
tells us something about the likely survival beyond the censoring time. In such
circumstances, it is necessary to include “year of treatment” as an explanatory
variable in the model.
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We have already discussed the effect of survival improving over calendar time
when estimating survival rates, but when the duration of recruitment is short
compared to the length of follow-up such administrative censoring can usually be
taken to be independent of survival. Other forms of censoring are more problem-
atic. For instance, a patient who fails to attend a follow-up clinic might be too sick
to get out of bed. So the fact that she was censored at t tells us more than simply
that she was alive at t.

Example 10. Cox model fitted to clinical trial data
Table 4.8 presents the results of fitting a Cox model to data from

216 patients with primary biliary cirrhosis in a clinical trial of azathioprine vs.
placebo (Christensen et al. 1985). The six variables were selected from an initial
set of 25 partly using forward stepwise selection. An additional 32 patients were
excluded because they had missing values of one or more of the six variables.
Recruitment was over 6 years and follow-up a further 6 years. Of the 216 patients,
113 had censored survival times. The regression coefficients may be combined with
their standard errors to obtain confidence intervals that rely on the asymptotic
normality of the estimates. The positive coefficient associated with treatment
implies that patients on the placebo (Z = 1) had poorer prognosis than those on
azathioprine (Z = 0): the hazard of those on placebo is about 1.7 times greater than
that of those on active treatment. Similarly, older patients had poorer prognosis.
The hazard ratio associated with two patients aged 50 and 30 is exp[0.007{exp(3) −
exp(1)}] = 1.13. Notice, however, that the effect on survival is not fully described
by the information in Table 4.8 because, without estimating the baseline hazard,
one cannot translate the regression coefficients into effects on 5-years survival nor
on median survival. Most statistical software for Cox regression will also estimate
the cumulative baseline hazard function Λ0(t) which is equal to the integral from 0
to t of λ0(u) and from this one can calculate the estimated survival function for
a given vector of covariates using the formula

Ŝ(t|z) = exp{−Λ̂0(t) exp(0.007Age − 0.05Albumin + 2.51Bilirubin

+ 0.68Cholestasi + 0.88Cirrhosis + 0.52Therapy)} ,

where Λ̂ is the estimate of Λ0. �

Cox Model for Excess Risk 4.6.3

When studying a cohort diagnosed with a particular disease or defined by exposure
to a potential risk factor, it is often natural to model the excess mortality (or the
excess cause-specific mortality). The reason is that, we may assume that members
of the cohort are subject to all the usual causes of death and that their “exposure”
adds an independent route of death. For instance, patients with lymphoma might
die from something unrelated or they might die of their lymphoma, the former
will primarily be a function of age (mortality rises steeply with age), the latter
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Table 4.8. Cox model fitted to data from a clinical trial comparing the effects of azathioprine and

placebo on the survival of 216 patients with primary biliary cirrhosis (se=standard error)

Variable Coding β̂ se(̂β) exp(̂β)

Age exp[(age in years − 20)|10] 0.007 0.0016 1.0

Albumin serum value in g/l −0.05 0.018 0.95

Bilirubin log10 (serum concentration in µmol/l) 2.51 0.32 12.3

Cholestasis 0 = No central cholestasis; 1 = Yes 0.68 0.28 2.0

Cirrhosis 0 = No; 1 = Yes 0.88 0.22 2.4

Therapy 0 = azathioprine; 1 = placebo 0.52 0.20 1.7

will largely depend on the time since their diagnosis. Gore et al. (1984) considered
a variety of models for the analysis of survival in breast cancer patients. Sasieni
(1996) showed how the Cox model could be applied to the excess mortality. The
model was applied to nearly 1000 patients with non-Hodgkins lymphoma. As one
might have expected the effect of prognostic factors such as histology and stage
were greater in the proportional excess model than in the usual Cox model (because
these factors will not influence mortality from other causes). The model was also
useful in showing that although there was still a deleterious effect of increasing
age on the excess mortality, it was less than the effect estimated applying the Cox
model to all cause mortality.

Sampling from the Risk Set4.6.4

Large cohort studies with long-term follow-up are extremely expensive. Studies
requiring detailed analysis of food diaries or complicated analysis of blood, urine
or tissue can be prohibitively expensive. For this reason, many epidemiologists
have set up cohort studies collecting questionnaires, sera or urine and storing
them for later use. The idea is to nest a case-control study within the cohort
study (Langholz and Goldstein 1996; cf. Chap. I.7 of this handbook). As is well
known, in a matched case-control study it is rarely efficient to collect more than
about 4 controls per case (Breslow and Day 1980). So in a cohort study, one might
wish to select a few “controls” from the cohort each time an event (case) occurs.
Another approach is to select a small sub-cohort at the beginning and to sup-
plement it with all the cases that develop during follow-up of the main cohort.
There are a number of complications related to whether one can use controls
selected for one case as controls for later cases (assuming that they are still at
risk) and what happens if a control later becomes a case, but such nested case-
control and case-cohort designs are extremely important in very large cohort
studies looking at diet, genetics, or molecular measures of exposure. The idea
of the nested case-control design was first put forward by Thomas (1977) and
was considered at length by Prentice (1986a) and Borgan and Langholz (1993).
The case-cohort design was proposed by Prentice (1986b) and has been studied
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by Self and Prentice (1988) and by Chen and Lo (1999). More recent research
has focused on how best to select controls (Langholz and Borgan 1995; Borgan
and Olsen 1999). Chen (2002) discussed how to fit a Cox model to a study in
which crude covariate information is available on the entire cohort and complete
covariate information is available on a sample, but he assumed that the valida-
tion sample is chosen at random and it is not applicable to nested case-control
designs.

Aalen Model 4.6.5

Aalen (1980, 1989, 1993) proposed an additive model for the conditional hazard
function.Hismodel ismoregeneral than theCoxmodel in that it has anunspecified
function associated with each covariate. Although, with two or more covariates,
the Cox model is not a special case of the Aalen model. The Aalen model is that

λ(t|Z1, … , Zp) = λ0(t) + λ1(t)Z1 + … + λp(t)Zp , (4.4)

where the functions λ0(t), … , λp(t) are all unspecified and λ0(t) is the baseline
hazard corresponding to an individual with Zi = 0, i = 1, … , p. It should be noted
that if {Z1, … , Zp} is a set of dummy covariates for some factor, then the Aalen
model is simply the non-parametric model allowing a different hazard function
for each level of the factor. Biologically, the additive model may be interpreted
in terms of excess risk. Such a model would be appropriate if each covariate
contributed to a different route of death and these routes were independent of each
other.

The fact that the Aalen model is so big (i.e., it has relative few constraints
compared to a completely non-parametric model) is both to its advantage and its
disadvantage. With no restriction on the relation between hazards over time, the
model provides a description of the temporal influence of covariates. The Aalen
model may be viewed as a one-step Taylor series approximation (i.e. a linear ap-
proximation) of an arbitrary λ(t|Z1, … , Zp) and will therefore provide a reasonable
fit to any data provided the covariates have been centered and their effect is not too
strong. For this reason, some suggest the use of the Aalen model as a diagnostic
check in conjunction with the Cox model (Mau 1986; Henderson and Milner 1991).
A disadvantage of the model is that the results cannot be presented in tabular form,
but require graphing of the estimated functions. It should also be noted that there
is no restriction to prevent λ0(t) + λ1(t)Z1 + … + λp(t)Zp being negative (for some
combination of covariate values), but a hazard function must be non-negative, so
the model should not be applied to such covariate values.

The Aalen model has been used to model the excess mortality of cancer pa-
tients compared to that in the general population by Zahl (1996). He studied
the long-term survival of men with colon-cancer in Norway. A restriction of
the Aalen model has been proposed by McKeague and Sasieni (1994). They sug-
gested that some of the regression functions λi(t) could be forced to be con-
stant or a simple parametric function of time. Such a model allows parametric
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estimates of the constant additive effect of certain covariates. The special case
λ0(t) +β1Z1 + …+βpZp, like the Cox model has just one (baseline) hazard function
to be estimated.

Adjusted Survival Curves4.6.6

In studying mortality in a healthy cohort it is usual to compare their survival to
that of the general population. When studying a cohort of very sick individuals, or
healthy individuals for an event that is not routinely registered, it may be desirable
to compare their survival to a more relevant control group. For instance, suppose
one wanted to see whether schizophrenic patients in a special residential environ-
ment were less likely to attempt suicide than patients cared for in the community. It
might be impossible to set up a randomised study to carry out such a comparison.
Instead one would like to compare the rate of attempted suicide in the two groups
of patients after adjusting for known confounders – factors that would influence
how likely it is that a particular patient will attempt suicide. Statistically the ques-
tion is how to adjust the survival curve in patients cared for in the community
so as to better reflect what one might have expected from the patients receiving
residential care had they received usual care. One approach is to produce directly
adjusted survival curves (Makuch 1982; Gail and Byar 1986). The idea is to estimate
the survival of each individual in the residential cohort using a model fitted to the
standard cohort and to take the average of these survival estimates. For instance,
if a Cox model is applied to the standard data with covariates Z1 and Z2 and yields
estimates Λ̂(t) for the cumulate baseline hazard, β̂1 and β̂2, then the estimated
survival curve for an individual with covariates z1i and z2i is

Ŝ(t) = exp{−Λ̂(t) exp(̂β1z1i + β̂2z2i)} .

Example 11. Assessment of survival following liver transplantation
Keidinget al., (1990) compared the survival experienceof 38 primary

biliary cirrhosis patients treated with liver transplantation in the Nordic countries
with the directly standardised survival of 82 patients receiving transplants in Eng-
land. They applied a Cox model to the English data with three covariates: ln(urea),
ln(bilirubin) and an indicator for diuretic-responsive ascites. About 25% of the
transplanted patients died within two months of transplant, but few patients died
thereafter (the median follow-up was 6 months, the maximum was 3.5 years). This
was quite similar to the “expected” survival based on the English data: the expected
survival at 2 months was about 75% falling to about 60% by 6 months. The authors
also compared the survival of their patients to that of primary biliary cirrhosis
patients without transplant from an international trial of medical treatment. Once
again the expected survival was based on the results of fitting a Cox model. The
expected survival based on the medically treated patients is similarly poor during
the first two months, but continues to decrease at a rapid rate so that the expected
survival at two years is less than 20% compared to about 60% observed in the
transplanted patients. �
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Another method for obtaining a comparable survival curve is to use matching
to identify patients from the standard cohort. With one-to-one matching, one
could simply compare the two Kaplan–Meier curves. If a variable number of
“controls” are selected for each patient in the “special cohort”, one needs to
produce a weighted Kaplan–Meier curve. Here one simply weights each control by
the inverse of the number of controls in the matched set so that each matched set
of controls has weight one. Estimation of the survival curve is straightforward, but
estimation of its variance is more complicated (Winnett and Sasieni 2002).

Example 12. Assessing the benefit of bone marrow transplant in childhood
leukaemia

Galimberti et al. (2002) considered the disease-free survival of 30 children with
acute lymphoblastic leukaemia (ALL) who were treated with allogenic bone mar-
row transplants whilst in first remission. Controls were selected from 397 ALL
patients treated with chemotherapy. Matching was done on white blood cell count
at diagnosis (0–10,000; 10,000–50,000; 50,000–100,000; >100,000|mm3), age at di-
agnosis (< 1, 1–10; > 10 years), immunophenotype (T-lineage; B-lineage) as well
as clinical centre and front-line chemotherapy protocol. Additionally, controls had
to survive in remission at least as long as the time from remission to transplant
in the patient that they matched. Each of the 30 transplant patients was matched
to between one and seven controls. In all there were 130 controls and no con-
trol was matched to more than one transplanted patient. Potential controls not
matching to any transplanted patients tended to have better survival, although
they also included patients who died before there was time for a transplant. Sim-
ilarly, when there were multiple matching controls, their survival tended to be
better. Thus, compared to all 397 controls, the matched sample of 130 controls had
excellent survival for the first six months, but the survival curves crossed within
12 months of remission and thereafter the smaller group had worse survival. After
taking account of the variable number of controls, the weighted Kaplan–Meier
showed that the expected survival of the transplanted patients was worse still
(Fig. 4.6). �

Censoring and Truncation 4.7

Until now we have considered only right-censoring. The name coming from pictur-
ing a time line that runs left to right. The actual event time lies somewhere to the
right of the censoring time and information regarding what happens to the right of
this time is censored. We have also discussed late-entry whereby some individuals
do not join the study cohort at (their individual) time zero. Late entry is also some-
times called left-truncation. An example would arise in an epidemiological study
of people living in a retirement community in which one was interested in factors
influencing the age of death. In such a study, individuals only become eligible once
they have moved to the retirement community. Some may move in at age 60, others
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Figure 4.6. Estimates of the cumulative hazard for the bone marrow transplant (BMT) patients and

the conventionally treated (CT) patients. (a) Standard estimates based on 30 BMT and a matched

group of 130 CT patients. (b) Standard estimate for the 30 BMT patients and weighted estimate for

the 130 matched CT patients. In both cases, the CT patients have higher cumulative hazard beyond

2 years

may not move there until they reach 80 (possibly following the death of a spouse).
We observe how old individuals are when they join the community, but we do
not know anything about individuals who die before they would have joined the
community. If a woman joins at age 78, the fact that she lived to age 78 tells us
nothing useful about events to the left of age 78 – had the individual died at age 76
she would not have been in the study. Both right-censoring and left-truncation
can easily be accommodated by all the techniques that we have discussed thus
far.

In epidemiology one also has data that are subject to more extreme forms of
censoring. The most extreme form arises from data on prevalence rates. In a cross-
sectional study one could survey whether individuals at different ages have or have
not had some event in the past. For instance one might be interested in age at
menarche (and survey adolescent girls as to whether or not they have had their
first period), or age at infection of a particular pathogen (and test for antibodies in
blood). The assumption in such studies is that the event is not reversible and that
the yes|no question will reduce the recall bias associated with asking people how
long ago the event occurred. Such current status data are also referred to as (case I)
interval-censored data. Here the age of the individual is the censoring time and
every individual is either left- or right-censored. Those who have not had the event
are right-censored. But those who have are left-censored: i.e., we know that their
true event time lies somewhere to the left of the censoring time. Methods exist
for analysing prevalence data as reviewed by Keiding (1991). The classical problem
is the non-parametric estimation of the survival function. The non-parametric
maximum likelihood estimator is an extremely good estimator and it can be
estimated efficiently using the “pool adjacent violators algorithm” (Barlow et al.
1972). Testing for differences in survival based on interval-censored data was first
discussed by Peto and Peto (1972). More recently, several authors have considered
regression models for prevalence data. Technically, fitting parametric regression
models with prevalence data by maximum likelihood estimation presents no new
problems (Odell et al. 1992). Semi-parametric models present more challenges
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(Huang 1996). The most widely studied are the Cox (proportional hazards) model
and the proportional odds model. Essentially one can alternate between estimating
the baseline hazard (or odds) for fixed values of the regression parameters and
estimating the regression parameters for fixed value of the baseline function. More
recently, Lin et al. (1998) proposed using the additive hazards model: λ0(t|Z) =
λ0(t) +β1Z1(t) + … +βpZp(t) for current status data. They showed that the additive
hazard model for current status data was equivalent to the usual Cox model for the
event “observation made and observed to have died” with the covariate equal to
minus the cumulative covariate from the additive hazard model (i.e., the integral
from 0 to t of −Z(s)). The simple approach proposed by Lin et al. is not efficient
and breaks down if the observation times are not independent of the covariates.
Martinussen and Scheike (2002) showed how the additive hazard model could be
fit efficiently even in the presence of dependent observation times. Their method
cannot simply be applied using standard Cox model software, but it is considerably
simpler than efficient approaches to fitting the proportional hazards model to
current status data.

In other studies, individuals are screened or questioned periodically. In such
studies, event times can be left (the event happened before the first screen) or right-
censored (the event happened after the last screen) or interval-censored (the event
happened between two screens). This sort of data is sometimes called interval-
censoring case 2 (Groeneboom and Wellner 1992) and sometimes panel count data.
Anaddedcomplication that is rarely considered is that the screening testmaybe less
than 100%sensitive. In suchcircumstances, oneshould take intoaccount the timing
of all previous negative screens, not just the one immediately prior to the one that
led to the detection of the event. For case 2 interval-censoring, the non-parametric
maximum likelihood estimator of the survival function is harder to compute, but
efficient algorithms exist (Groeneboom and Wellner 1992). Once again, testing has
been considered (Zhang et al. 2001), and adaptation of the Cox model is possible
(Kooperberg and Clarkson 1997; Goetghebeur and Ryan 2000). A simple solution is
to use conditional logistic regression to fit a proportional odds model (Rabinowitz
et al. 2000). More recently, rank estimation of a log-linear regression model has
been proposed (Li and Pu 2003). Practical issues such as how to deal with left-
truncation in addition to interval-censoring and the effect of changes in disease
incidence on the analysis are considered by Williamson et al. (2001).

A further complication arises when the initiating time is also possibly censored.
For instance, one might be interested in the distribution of time from an infection
to the development of symptomatic disease. It is likely that the time of infection will
not be observed directly, but will be interval-censored and the time of symptomatic
disease may be right-censored. Such data are called doubly-censored (De Gruttola
and Lagakos 1989).

Example 13. Doubly censored data on AIDS
De Gruttola and Lagakos (1989) studied a group of haemophiliacs

who received blood transfusions after 1978 and before blood was screened for
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HIV infection. Approximately three-quarters of patients were infected with HIV
and nearly one in six developed AIDS during follow-up. The data were only avail-
able in six-month intervals. Additionally, the time of HIV infection was interval-
censored. �

Example 14. Doubly censored data on metastases
Leung and Elashoff (1996) considered data on 1548 patients with

melanoma. The patients were followed periodically to detect changes in disease
stage. The authors were primarily interested in the time from metastasis to death,
but they also wanted to investigate whether this was dependent on the time from
stage II disease to metastasis. The time of metastasis was interval-censored and the
time of death was right-censored. The authors used a Weibull model and looked at
the effect of treatment, Breslow thickness, sex, site of the metastasis, and the time
with stage II disease on survival post metastasis. �

Conclusions4.8

Survival analysis is more closely associated with clinical medical research than
with epidemiology, but there are a number of situations in which survival analysis
is needed in epidemiological research. Some form of survival analysis will be
required in any cohort study and many of the more complicated designs used in
modern epidemiology require quite sophisticated analytical techniques. In this
chapter, we have presented a range of survival analysis tools covering a range of
study designs. Before using these techniques the reader is advised to consult an
expert or to read a more complete text, but it is hoped that this chapter will help
epidemiologists who come across survival analysis in the writing of others and
those who think that they may need survival analysis in their own research.

The notions that events occur in time and that causes precede their effects are
central to epidemiological research and the objective of understanding the causes
of disease. Longitudinal studies are essential to epidemiology and the complex evo-
lution of risk factors, disease markers and disease over time requires sophisticate
statistical techniques.
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Introduction5.1

Factors contributing to the presence or absence of disease are not always easily
determined or accurately measured. Consequently epidemiologists are often faced
with the task of inferring disease patterns using noisy or indirect measurements
of risk factors or covariates. Problems of measurement arise for a number of
reasons, including for example: reliance on self-reported information; the use of
records of suspect quality; intrinsic biological variability; sampling variability;
and laboratory analysis error. Although the reasons for imprecise measurement
are diverse, the inference problems they create share in common the structure
that statistical models must be fit to data formulated in terms of well-defined but
unobservable variables X, using information on measurements W that are less
than perfectly correlated with X. Problems of this nature are called measurement
error problems and the statistical models and methods for analyzing such data are
called measurement error models.

This chapter focuses on statistical issues related to the problems of fitting
models relating a disease response variable Y to true predictors X and error-free
predictors Z, given values of measurements W , in addition to Y and Z. Although
disease status may also be subject to measurement error, attention is limited to
measurement error in predictor variables. We further restrict attention to mea-
surement error in continuous predictor variables. Categorical predictors are not
immune from problems of ascertainment, but misclassification is a particular form
of measurement error. Consequently misclassification error is generally studied
separately from measurement error, although there is clearly much overlap.

A case-control study exhibiting measurement error was described in Karagas et
al. (2000, 2001, 2002) and is briefly mentioned here to exemplify the notation. The
purpose of the study was to assess the risk of bladder cancer and two forms of non-
melanoma skin cancer (Y ’s) to ‘true’ arsenic exposure (X), adjusting for patient
age (Z). True arsenic exposure was measured imprecisely through concentrations
of arsenic in toenails (W).

This chapter is organized in three main sections. Section 5.2 defines basic
concepts and models of measurement error and outlines the effects of ignoring
measurement error on the results of standard statistical analyses. An important
aspect of most measurement error problems is the inability to estimate parameters
of interest given only the information contained in a sample of (Y , Z, W) values.
Some features of the joint distribution of (Y , Z, X, W) must be known or estimated
in order to estimate parameters of interest. Thus additional data, depending on
the type of error model, must often be collected. Consequently it is important to
include measurement error considerations when planning a study, both to enable
application of a measurement error analysis of the data and to ensure validity of
conclusions. Planning studies in the presence of measurement error is the topic
of Sect. 5.3. Methods for the analysis of data measured with error differ accord-
ing to the nature of the measurement error, the additional parameter-identifying
information that is available, and the strength of the modeling assumptions ap-
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propriate for a particular problem. Section 5.4 describes a number of common
approaches to the analysis of data measured with error, including simple, generally
applicable, bias-adjustment approaches, conditional likelihood, and full likelihood
approaches.

This chapter is intended as an introduction to the topic. In depth coverage of
linear measurement error models is provided by Fuller (1987). Carroll et al. (1995)
provide detailed coverage of nonlinear models as well as density estimation. Other
review articles addressing measurement error in epidemiology include Carroll
(1998), Thomas et al. (1993), and Armstrong et al. (1992). Prior to the book by Fuller
(1987) the literature on measurement error models was largely concerned with
linear measurement error models and went under the name errors-in-variables.
Chap. II.3 of this handbook presents additional topics in regression modelling.

Measurement Error and Its Effects 5.2

This section presents the basic concepts and definitions used in the literature on
nonlinear measurement error models. The important distinction between differ-
ential and nondifferential error is discussed first, and is followed by a description
of two important models for measurement error. The major effects of measure-
ment error are described and illustrated in terms of multivariate normal regression
models.

Differential and Nondifferential Error,
and Surrogate Variables 5.2.1

The error in W as a measurement of X is nondifferential if the conditional distribu-
tion of Y given (Z, X, W) is the same as that of Y given (Z, X), that is, fY |ZXW = fY |ZX .
When fY |ZXW ≠ fY |ZX the error is differential. The key feature of a nondifferential
measurement is that it contains no information for predicting Y in addition to the
information already contained in Z and X. When fY |ZXW = fY |ZX , W is said to be
a surrogate for X.

Many statistical methods in the literature on measurement error modeling are
based on the assumption that W is a surrogate. It is important to understand
this concept and to recognize when it is or is not an appropriate assumption.
Nondifferential error is plausible in many cases, but there are situations where it
should not be assumed without careful consideration.

If measurement error is due solely to instrument or laboratory-analysis error,
then it can often be argued that the error is nondifferential. However, in epi-
demiologic applications measurement error commonly has multiple sources and
instrument and laboratory-analysis error are often minor components of the total
measurement error. In these cases it is not always clear whether measurement
error is nondifferential.
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The potential for nondifferential error is greater in case-control studies because
covariate information ascertainment and exposure measurement follow disease
response determination. In such studies selective recall, or a tendency for cases
to overestimate exposure, can induce dependencies between the response and the
true exposure even after conditioning on true exposure.

A useful exercise for thinking about the plausibility of the assumption that W is
a surrogate, is to consider whether W would have been measured (or included in
a regression model) had X been available. For example, suppose that the natural
predictor X is defined as the temporal or spatial average value of a time-varying
risk factor or spatially-varying exposure (e.g., blood pressure, cholesterol, lead
exposure, particulate matter exposure), and the observed W is a measurement at
a single point in time or space. In such cases, it might be convincingly argued that
the single measurement contributes little or no information in addition to that
contained in the long-term average.

However, this line of reasoning is not foolproof. The surrogate status of W can
depend on the particular model being fit to the data. For example, consider models
where Z has two components, Z = (Z1, Z2). It is possible to have fY |Z1Z2XW = fY |Z1Z2X

and fY |Z1XW ≠ fY |Z1X . Thus W is a surrogate in the full model including Z1 and Z2

but not in the reduced model including only Z1. In other words, whether a variable
is a surrogate or not depends on other variables in the model. A simple exam-
ple illustrates this feature. Let X ∼ N(µx, σ2

x). Assume that ε1, ε2, U1 and U2 are
mean zero normal random variables such that X, ε1, ε2, U1, U2 are mutually inde-
pendent. Let Z = X + ε1 + U1, Y = β1 + βzZ + βzX + ε2, and W = X + ε1 + U2.
Then E(Y |X) ≠ E(Y |X, W) but E(Y |Z, X, W) = E(Y |Z, X). The essential feature
of this example is that the measurement error W − X is correlated with the co-
variate Z. The presence or absence of Z in the model determines whether W is
a surrogate or not. Such situations have the potential of arising in applications.
For example, consider air pollution health effects studies. Suppose that X is the
spatial-average value of an air pollutant, W is the value measured at a single lo-
cation, the components of Z include meteorological variables, and Y is a spatially
aggregated measure of morbidity or mortality (all variables recorded daily, with
X, W and Z suitably lagged). If weather conditions influence both health and
the measurement process (e.g., by influencing the spatial distribution of the pol-
lutant), then it is possible that W would be a surrogate only for the full model
containing Z.

With nondifferential measurement error, it is possible to estimate parameters in
the model relating the response to the true predictor using the measured predictor
only, with minimal additional information on the error distribution, i.e., it is not
necessary to observe the true predictor. However, this is not generally possible
with differential measurement error. In this case it is necessary to have a validation
subsample in which both the measured value and the true value are recorded.
Data requirements are discussed more fully in Sect. 5.3. Much of the literature on
measurement error models deals with nondifferential error, and hence that is the
focus of this chapter. Problems with differential error are often better analyzed via
techniques for missing data.
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Error Models 5.2.2

The number of ways a surrogate W and predictor X can be related are countless.
However, in practice it is often possible to reduce most problems to one of two
simple error structures. For understanding the effects of measurement error and
the statistical methods for analyzing data measured with error an understanding
of the two simple error structures is generally sufficient.

Classical Error Model
The standard statistical model for the case in which W is a measurement of X in
the usual sense is W = X + U , where U has mean zero and is independent of X.
As explained in the preceding section whether W is a surrogate or not depends
on more than just the joint distribution of X and W . However, in the sometimes
plausible case that the error U is independent of all other variables in a model,
then it is nondifferential and W is a surrogate. This is often called the classical
error model. More precisely, it is an independent, unbiased, additive measure-
ment error model. Because E(W |X) = X, W is said to be unbiased measurement
of X.

Not all measuring methods produce unbiased measurements. However, it is
often possible to calibrate a biased measurement resulting in an unbiased mea-
surement. Error calibration is discussed later in greater detail.

Berkson Error Model
For the case of Berkson error, X varies around W and the accepted statistical model
is X = W + U where U has mean zero and is independent of W . For this model,
E(X|W) = W , and W is called an unbiased Berkson predictor of X, or simply
an unbiased predictor of X. The terminology results from the fact that the best
squared-error predictor of X given W is E(X|W) = W .

Berkson (1950) describes a measurement error model which is superficially
similar to the classical error model, but with very different statistical properties.
He describes the error model for experimental situations in which the observed
variable was controlled, hence the alternative name controlled variable model, and
the error-free variable, X, varied around W . For example, suppose that an experi-
mental design called for curing a material in a kiln at a specified temperature W ,
determined by thermostat setting. Although the thermostat is set to W , the actual
temperature in the kiln, X, often varies randomly from W due to less-than-perfect
thermostat control. For a properly calibrated thermostat a reasonable assump-
tion is that E(X|W) = W , which is the salient feature of a Berkson measurement
(compare to an unbiased measurement for which E(W |X) = X).

Apart fromexperimental situations, inwhichW is trulyacontrolledvariable, the
unbiased Berkson error model seldom arises as a consequence of sampling design
or direct measurement. However, like the classical error model, it is possible
to calibrate a biased surrogate so that the calibrated measurement satisfies the
assumptions of the Berkson error model.
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Reduction to Unbiased Error Model
The utility of the classical and Berkson error structures is due to the fact that
many error structures can be transformed to one or the other. Suppose that W∗
is a surrogate for X. For the case that a linear model for the dependence of W∗
on X is reasonable, that is, W∗ = γ1 + γxX + U∗, where U∗ is independent of
X, the transformed variable W = (W∗ − γ1)|γx satisfies the classical error model
W = X + U , where U = U∗|γx. In other words W∗ can be transformed into an
independent, unbiased, additive measurement.

Alternatively, for the transformation W = E(X|W∗) it follows that X = W + U ,
where U = X − E(X|W∗) is uncorrelated with W . Thus apart from the distinction
between independence and zero correlation of the error U , any surrogate W∗ can
be transformed to an unbiased additive Berkson error structure.

Both types of calibration are useful. The transformation that maps an uncal-
ibrated surrogate W∗ into a classical error model is called error calibration. The
transformation that maps W∗ into a Berkson error model is called regression cali-
bration (Carroll et al. 1995); see Tosteson et al. (1989) for an interesting application
of regression calibration.

In theory, calibration reduces an arbitrary surrogate to a classical error mea-
surement or a Berkson error measurement, explaining the attention given to
these two unbiased error models. In practice, things are not so simple. Sel-
dom are the parameters in the regression of W on X (error calibration) or in
the regression of X on W (regression calibration) known, and these parame-
ters have to be estimated, which is generally possible only if supplementary data
are available for doing so. In these cases there is yet another source of vari-
ability introduced by the estimation of the parameters in the chosen calibra-
tion function. This is estimator variability and should be accounted for in the
estimation of standard errors of the estimators calculated from the calibrated
data.

Measurement Error in the Normal Linear Model5.2.3

We now consider the effects of measurement error in a simple linear regres-
sion model with normal variation. This model has limited use in epidemiol-
ogy, but it is one of the few models in which the effects of measurement er-
ror can be explicitly derived and explained. Measurement error affects relative
risk coefficients in much the same way as regression coefficients, so that the in-
sights gained from this simple model carry over to more useful epidemiologic
models.

Consider the multivariate normal formulation of the simple linear regression
model, (

Y

X

)
∼ N

{(
β1 + βxµx

µx

)
,

(
β2

xσ2
x + σ2

ε βxσ2
x

βxσ2
x σ2

x

)}
. (5.1)
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If, as is assumed here, the substitute variable W is jointly normally distributed
with (Y , X), then in the absence of additional assumptions on the relationship
between W and (Y , X) the multivariate normal model for (Y , X, W) is⎛⎜⎝Y

X

W

⎞⎟⎠ ∼ N

⎧⎪⎨⎪⎩
⎛⎜⎝β1 + βxµx

µx

µw

⎞⎟⎠ ,

⎛⎜⎝ β2
xσ2

x + σ2
ε βxσ2

x βxσxw + σεw

βxσ2
x σ2

x σxw

βxσxw + σεw σxw σ2
w

⎞⎟⎠
⎫⎪⎬⎪⎭ , (5.2)

where σxw = Cov(X, W) and σεw = Cov(ε, W). In measurement error modeling the
available data consist of observations (Y , W) so that the relevant sampling model
is the marginal distribution of (Y , W).

We now describe biases that arise from the so-called naive analysis of the data,
that is, the analysis of the observed data using the usual methods for error-free
data. In this case the naive analysis is least squares analysis of {(Wi , Yi), i = 1, … , n},
so that the naive analysis results in unbiased estimates of the parameters in the
regression model for Y on W , or what we refer to as the naive model. Naive-model
parameters are given in Table 5.1 for some particular error models.

Differential Error
For the case of a general measurement with possibly differential error the naive
estimator of slope is an unbiased estimator of (βxσxw + σεw)|σ2

w rather than βx.
Depending on the covariances between ε and W , and X and W , and the variance of
W , the naive-model slope could be less than or greater than βx, so that no general
conclusions about bias are possible. Similarly the residual variance of the naive
regression could be either greater or less than the true model residual variance.
It follows that for a general measurement W , the coefficient of determination for
the naive analysis could be greater or less than for the true model. These results
indicate the futility of trying to make generalizations about the effects of using
a general measurement for X in a naive analysis.

Surrogate
For the multivariate normal model with 0 < Š2

xw < 1, W is a surrogate if and only
if σεw = 0. With an arbitrary surrogate measurement the naive estimator of slope
unbiasedly estimates βxσxw|σ2

w.Dependingon the covariancebetween X and W and
the variance of W , the naive-model slope could be less or greater than βx, so that
again no general statements about bias in the regression parameters are possible.
For an uncalibrated measurement, E(W |X) = γ0 + γxX, σxw = cov(X, W) = γxσ2

x
and Var(X) = γ2

x σ2
x + σ2

u. In this case the relative bias, σxw|σ2
w = γxσ2

x |(γ2
x σ2

x + σ2
u),

is bounded in absolute value by 1||γx|. For an uncalibrated Berkson measurement,
E(X|W) = α1+αwW , σxw = αwσ2

w, and the relativebias is αw.When W is a surrogate
the residual variance from the naive analysis is never less than the true-model
residual variance, and is strictly greater except in the extreme case that X and
W are perfectly correlated, Š2

xw = 1. It follows that for an arbitrary surrogate the
coefficient of determination for the naive model is always less than or equal to that
for the true model. The use of a surrogate always entails a loss of predictive power.
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The naive-model slope indicates that in order to recover βx from an analysis
of the observed data, only σxw would have to be known. A validation study in
which bivariate observations (X, W) were obtained, would provide the necessary
information for estimating σxw.

Classical Error
If the surrogate, W , is an unbiased measurement, E(W |X) = X, and the classi-
cal error model holds, then µw = µx, σxw = σ2

x , and σ2
w = σ2

x + σ2
u. In this case

the naive slope estimator unbiasedly estimates βxσ2
x |(σ2

x + σ2
u). For this case the

sign (±) of βxσ2
x |(σ2

x + σ2
u) is always the same as the sign of βx, and the inequality

σ2
x |(σ2

x + σ2
u)|βx| ≤ |βx| shows that the naive estimator of slope is always biased

toward 0. This type of bias is called attenuation or attenuation toward the null.
The attenuation factor λ = σ2

x |(σ2
x + σ2

u) is called the reliability ratio and its in-
verse is called the linear correction for attenuation. In this case the coefficient of
determination is also attenuated toward zero and the term attenuation is often
used to describe both attenuation in the slope coefficient and the attenuation in
the coefficient of determination. Regression dilution has also been used in the epi-
demiology literature to describe attenuation (MacMahon et al. 1990; Hughes 1993).
In order to recover βx from an analysis of the observed data it would be sufficient
to know σ2

u. Either replicate measurements or validation data provide information
for estimating the measurement error variance σ2

u.

Berkson Error
With W a surrogate, the Berkson error model is embedded in the multivariate
normal model by imposing the condition E(X|W) = W . In this case µx = µw,
σxw = σ2

w and σ2
x = σ2

w + σ2
u. When W and X satisfy the unbiased Berkson er-

ror model, X = W + U , the naive estimator of slope is an unbiased estimator of
βx, i.e., there is no bias. Thus there is no bias in the naive regression parameter
estimators, but there is an increase in the residual variance and a corresponding
decrease in the model coefficient of determination. Even though no bias is intro-
duced there is still a penalty incurred with the use of Berkson predictors. However,
with respect to valid inference on regression coefficients the linear model is ro-
bust to Berkson errors. The practical importance of this robustness property is
limited because the unbiased Berkson error model seldom is appropriate with-
out regression calibration except in certain experimental settings as described
previously.

Discussion
Measurement error is generally associated with attenuation, and as Table 5.1 shows,
attenuation in the coefficient of determination occurs with any surrogate measure-
ment. However, attenuation in the regression slope is, in general, specific only to
the classical error model. The fact that measurement-error-induced bias depends
critically on the type of measurement error, underlies the importance of correct
identification of the measurement error in applications. Incorrect specification of
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the measurement error component of a model can create problems as great as
those caused by ignoring measurement error.

The increase in residual variance associated with surrogate measurements (in-
cluding classical and Berkson) gives rise not only to a decrease in predictive power,
but also contributes to reduced power for testing. The noncentrality parameter for
testingH0 : βx = 0withsurrogatemeasurements is nβ2

xσ2
xŠ2

xw|
{
σ2

ε + β2
xσ2

x

(
1 − Š2

xw

)}
which is less than the true-data noncentrality parameter, nβ2

xσ2
x |σ2

ε , whenever
Š2

xw < 1. These expressions give rise to the equivalent-power sample size formula

nw = nx

[{
σ2

ε + β2
xσ2

x

(
1 − Š2

xw

)}
|
{
σ2

ε Š2
xw

}] ≈ nx|Š2
xw , (5.3)

where nw is the number of (W , Y) pairs required to give the same power as a sample
of size nx of (X, Y) pairs. The latter approximation is reasonable near the null value
βx = 0 (or more precisely, when β2

xσ2
x

(
1 − Š2

xw

)
is small).

The loss of power for testing is not always due to an increase in variability of
the parameter estimates. For the classical error model the variance of the naive
estimator is less than the variance of the true-data estimator asymptotically if and
only if β2

xσ2
x |(σ2

x + σ2
u) < σ2

ε |σ2
x , which is possible when σ2

ε is large, or σ2
u is large, or

|βx| is small. So relative to the case of no measurement error, classical errors can
result in more precise estimates of the wrong (i.e., biased) quantity. This cannot
occur with Berkson errors, for which asymptotically the variance of the naive
estimator is never less than the variance of the true-data estimator.

The normal linear model also illustrates the need for additional information
in measurement error models. For example, for the case of an arbitrary sur-
rogate the joint distribution of Y and W contains eight unknown parameters
(β1, βx, µx, µw, σ2

x , σ2
ε , σxw, σ2

w), whereas a bivariate normal distribution is
completely determined by only five parameters. This means that not all eight
parameters can be estimated with data on (Y , W) alone. In particular, βx is not
estimable. However, from Table 5.1 it is apparent that if a consistent estimator of
σxw can be constructed, say from validation data, then the method-of-moments

Table 5.1. Table entries are slopes and residual variances of the linear model relating Y to W for the

cases in which W is a differential measurement, a surrogate, an unbiased classical-error

measurement, an unbiased Berkson predictor, and the case of no error (W = X)

Error Slope Residual
model variance

Differential βx
(
σxw|σ2

w

)
+
(
σεw|σ2

w

)
σ2

ε + β2
xσ2

x − (σxwβx+σεw)2

σ2
w

Surrogate βx
(
σxw|σ2

w

)
σ2

ε + β2
xσ2

x (1 − Š2
xw)

Classical βx
σ2

x
σ2

x +σ2
u

σ2
ε + β2

xσ2
x

σ2
u

σ2
x +σ2

u

Berkson βx σ2
ε + β2

xσ2
x

(
σ2

u|σ2
x

)
No error βx σ2

ε
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estimator β̂x =
(
s2
w |̂σxw

)
β̂w, is a consistent estimator of βx, where β̂w is the least

squares estimator of slope in the linear regression of Y on W , s2
w is the sample

variance of W , and σ̂xw is the validation-data estimator of σxw.
For the case of additive, unbiased, measurement error the joint distribution

of Y and W contains six unknown parameters (β1, βx, µx, σ2
x , σ2

ε , σ2
u), so that

again not all of the parameters are identified. Once again βx is not estimable.
However, if a consistent estimatorof σ2

u canbeconstructed, say fromeither replicate
measurements or validation data, then the method-of-moments estimator β̂x ={

s2
w|
(
s2
w − σ̂2

u

)}
β̂w, is a consistent estimator of βx, where σ̂2

u is the estimator of σ2
u.

For the Berkson error model there are also six unknown parameters in the
joint distribution of Y and W , (β1, βx, µx, σ2

x , σ2
ε , σ2

w), so that again not all of
the parameters are identified. The regression parameters β1 and βx are estimated
unbiasedly by the intercept and slope estimators from the least squares regression
of Y and W . However, without additional data it is not possible to estimate σ2

ε .

Multiple Linear Regression5.2.4

The entries in Table 5.1 and the qualitative conclusions based on them generalize
to the case of multiple linear regression with multiple predictors measured with
error. For the Berkson error model it remains the case that no bias in the regression
parameter estimators results from the substitution of W for X, and the major effects
of measurement error are those resulting from an increase in the residual variation.

For the classical measurement error model there are important aspects of the
problem that are not present in the simple linear regression model. When the
model includes both covariates measured with error X and without error Z, it is
possible for measurement error to bias the naive estimator of βz as well as the naive
estimator of βx. Furthermore, attenuation in the coefficient of a variable measured
with error is no longer a simple function of the variance of that variable and
the measurement error variance. When there are multiple predictors measured
with error, the bias in regression coefficients is a nonintuitive function of the
measurement error covariance matrix and the true-predictor covariance matrix.

Suppose that the multiple linear regression model for Y given Z and X is
Y = β1 + βT

z Z + βT
x X + ε. For the additive error model W = X + U , the naive

estimator of the regression coefficients is estimating(
βz∗
βx∗

)
=

(
σzz σzx

σxz σxx + σuu

)−1 (
σzz σzx

σxz σxx

)(
βz

βx

)
(5.4)

and not (βT
z , βT

x )T . For the case of multiple predictors measured with error with
no restrictions on the covariance matrices of the predictors or the measurement
errors, bias in individual coefficients can take almost any form. Coefficients can
be attenuated toward the null, or inflated away from zero. The bias is not always
multiplicative.Thesignof coefficients canchange, andzerocoefficients canbecome
nonzero (i.e., null predictors can appear to be significant). There is very little that
can be said in general and individual cases must be analyzed separately.
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However, in the case of one variable measured with error, i.e., X is a scalar, the
attenuation factor in βx∗ is λ1 = σ2

x|z|(σ2
x|z + σ2

u) where σ2
x|z is the residual variance

from the regression of X on Z, that is, βx∗ = λ1βx. Because σ2
x|z ≤ σ2

x , attenuation is
accentuated relative to the case of no covariates when the covariates in the model
are correlated with X, i.e., λ1 ≤ λ with strict inequality when σ2

x|z < σ2
x . Also, in the

case of a single variable measured with error, βz∗ = βz + (1 − λ1)βxΓz, where Γz is
the coefficient vector of Z in the regression of X on Z, that is, E(X|Z) = Γ1 + ΓT

z Z.
Thus measurement error in X can induce bias in the regression coefficients of Z.
This has important implications for analysis of covariance models in which the
continuous predictor is measured with error (Carroll 1989; Carroll et al. 1985).

The effects of measurement error on naive tests of hypotheses can be un-
derstood by exploiting the fact that in the classical error model W is a surro-
gate. In this case E(Y |Z, W) = E{E(Y |Z, X, W)|Z, W} = E{E(Y |Z, X)|Z, W} =
β1 + βT

z Z + βT
x E(X|Z, W). With multivariate normality E(X|Z, W) is linear, say

E(X|Z, W) = α0 + αT
z Z + αwW , and thus

E(Y |Z, W) = β0 + βT
x α0 +

(
βT

z + βT
x αT

z

)
Z + βT

x αT
wW . (5.5)

This expression holds for any surrogate W . Our summary of hypothesis testing
in the presence of measurement error is appropriate for any surrogate variable
model provided αT

w is an invertible matrix, as it is for the classical error model.
Suppose that the naive model is parameterized

E(Y |Z, W) = γ0 + γT
z Z + γT

w W . (5.6)

A comparison of (5.5) and (5.6) reveals the main effects of measurement error
on hypothesis testing.

First note that (βT
z , βT

x )T = 0 if and only if (γT
z , γT

x )T = 0. This implies that the
naive-model test that none of the predictors are useful for explaining variation in Y
is valid in the sense of having the desired Type I error rate. Further examination of
(5.5) and (5.6) shows that γz = 0 is equivalent to βz = 0, only if αzβx = 0. It follows
that the naive test of H0 : βz = 0 is valid only if X is unrelated to Y (βx = 0) or if
Z is unrelated to X (αz = 0). Finally, the fact that βx = 0 is equivalent to αwβx = 0
implies that the naive test of H0 : βx = 0 is valid. The naive tests that are valid, i.e.,
those that maintain the Type I error rate, will still suffer reduced power relative to
the test based on the true data.

Nonlinear Regression 5.2.5

The effects of measurement error in nonlinear models are much the same qualita-
tively as in the normal linear model. The use of a surrogate measurement generally
results in reduced power for testing associations, produces parameter bias, and
results in a model with less predictive power. However, the nature of the bias de-
pends on the model, the type of parameter, and the error model. Generally, the
more nonlinear the model is, the less relevant are the results for the linear model.
Parameters other than linear regression coefficients (e.g., polynomial coefficients,
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transformation parameters, and variance function parameters) have no counter-
part in the normal linear model and the effect of measurement errors on such
parameters must be studied on a case-by-case basis.

Regression coefficients in generalized linear models, including models of par-
ticular interest in epidemiology such as logistic regression and Poisson regression,
are affected by measurement error in much the same manner as are linear model
regression coefficients. This means that relative risks and odds ratios derived from
logistic regressions models are affected by measurement error much the same
as linear model regression coefficients (Rosner et al. 1989, 1990; Stefanski 1985;
Stefanski and Carroll 1985). However, unlike the linear model, unbiased Berkson
measurements generally produce biases in nonlinear models, although they are
often much less severe than biases resulting from classical measurement errors
(for comparable Šxw). This fact forms the basis for the method known as regression
calibration in which an unbiased Berkson predictor is estimated by a preliminary
calibration analysis, and then the usual (naive) analysis is performed with E(X̂|W)
replacing X. This fact also explains why more attention is paid to the classical error
model than to the Berkson error model.

The effects of classical measurement error on flexible regression models, e.g.,
nonparametric regression, is not easily quantified, but there are general tenden-
cies worth noting. Measurement error generally smooths out regression functions.
Nonlinear features of E(Y |X) such as curvature of local extremes, points of non-
differentiability, and discontinuities will generally be less pronounced or absent in
E(Y |W). For normal measurement error, E(Y |W) is smooth whether E(Y |X) is or is
not, and local maxima and minima will be less extreme – measurement error tends
to wear off the peaks and fill in the valleys. This can be seen in a simple parametric
model. If E(Y |X) = β0 + β1X + β2X2 and (X, W) are jointly normal with µx = 0,
then E(Y |W) is also quadratic with the quadratic coefficient attenuated by Š4

xw.
The local extremes of the two regressions differ by β2σ2

x(1 − Š2
xw) which is positive

(negative) when E(Y |X) is convex (concave). Finally we note that monotonicity
of regression functions can sometimes be affected by heavy-tailed measurement
error (Hwang and Stefanski 1994).

The effects of classical measurement error on density estimation is qualitatively
similar to that of nonparametric regressions. Modes are attenuated and regions of
low density are inflated. Measurement error can mask multimodality in the true
density and will inflate the tails of the distribution. Naive estimates of tail quantiles
are generally more extreme than the corresponding true-data estimates.

Logistic Regression Example5.2.6

This section closes with an empirical example illustrating the effects of measure-
ment error in logistic regression and the utility of the multivariate normal linear
regression model results for approximating the effects of measurement error. The
data used are a subset of the Framingham Heart Study data and are described in
detail in Carroll et al. (1995). For these data X is long-term average systolic blood
pressure after transformation via ln(SBP-50), denoted TSBP. There are replicate
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measurements (W1, W2) for each of n = 1615 subjects in the study. The true-data
model is logistic regression of coronary heart disease (0, 1) on X and covariates (Z)
including age, smoking status (0, 1), and cholesterol level.

Assuming theclassical errormodel for the replicatemeasurements,Wj = X + Uj,
analysis of variance produces the estimate σ̂2

u = 0.0126. The average W =(
W1 + W2

)
|2 provides the best measurement of X with an error variance of σ2

U |2
(with estimate 0.0063).

The three measurements, W1, W2 and W , can be used to empirically demon-
strate attenuation due to measurement error. The measurement error variances
of W1 and W2 are equal and are twice as large the measurement error variance
of W . Thus the attenuation in the regressions using W1 and W2 should be equal;
whereas the regression using W should be less attenuated. Three naive logistic
models,

logit{Pr(CHD = 1)} = β0 + βz1AGE + βz2SMOKE + βz3CHOL + βxTSBP

were fit using each of the three measurements W1, W2 and W . The estimates of the
TSBP coefficient from the logistic regressions using W1 and W2 are both 1.5 (to one
decimal place). The coefficient estimate from the fit using W is 1.7. The relative
magnitudes of the coefficients (1.5 < 1.7) are consistent with the anticipated effects
of measurement error – greater attenuation associated with larger error variance.
The multiple linear regression attenuation coefficient for a measurement with er-
ror variance σ2 is λ1 = σ2

x|z|(σ2
x|z + σ2). Assuming that this applies approximately

to the logistic model suggests that

1.7 ≈ σ2
x|z

σ2
x|z + σ2

u|2
βx and 1.5 ≈ σ2

x|z
σ2

x|z + σ2
u

βx .

Because βx is unknown these approximations cannot be checked directly.
However, a check on their consistency is obtained by taking ratios leading to
1.13 = 1.7|1.5 ≈ (σ2

x|z + σ2
u)|(σ2

x|z + σ2
u|2). Using the ANOVA estimate, σ̂2

u = 0.0126,
and the mean squared error from the linear regression of W on AGE, SMOKE
and CHOL as an estimate of σ2

w|z, produces the estimate σ̂2
x|z = σ̂2

w|z − σ̂2
u|2 =

0.0423 − 0.0063 = 0.0360. Thus (σ2
x|z + σ2

u)|(σ2
x|z + σ2

u|2) is estimated to be (0.0360 +
0.0126)|(0.0360 + 0.0063) = 1.15. In other words, the attenuation in the logistic
regression coefficients is consistent (1.13 ≈ 1.15) with the attenuation predicted
by the normal linear regression model result.

These basic statistics can also be used to calculate a simple bias-adjusted esti-
mator as β̂x = 1.7(̂σ2

x|z + σ̂2
u|2)| σ̂2

x|z = 1.7(0.0360 + 0.0063)|0.0360 = 2.0, which is
consistent with estimates reported by Carroll et al. (1995) obtained using a variety
of measurement error estimation techniques. We do not recommend using linear
model corrections for the logistic model because there are number of methods
more suited to the task as described in Sect. 5.4. Our intent with this example is
to demonstrate the general relevance of the easily-derived theoretical results for
linear regression to other generalized linear models.
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The odds ratio for a ∆ change in transformed systolic blood pressure is exp(βx∆).
With the naive analysis this is estimated to be exp(1.7∆); the bias-corrected analysis
produces the estimate exp(2.0∆). Therefore the naive odds ratio is attenuated by
approximately exp(−0.3∆). More generally, the naive (ORN) and true (ORT) odd
ratios are related via ORN |ORT = ORλ1−1

T , where λ1 is the attenuation factor in the
naive estimate of βx. The naive and true relative risks have approximately the same
relationship under the same conditions (small risks) that justify approximating
relative risks by odds ratios.

Planning Epidemiologic Studies
with Measurement Error5.3

As the previous sections have established, exposure measurement error is common
in epidemiologic studies and, under certain assumptions, can be shown to have
dramatic effects on the properties of relative risk estimates or other types of
coefficients derived from epidemiologic regression models. It is wise therefore
to include measurement error considerations in the planning of a study, both to
enable the application of a measurement error analysis at the conclusion of the
study and to assure scientific validity.

In developing a useful plan, one must consider a number of important questions.
To begin with, what are the scientific objectives of the study? Is the goal to identify
a new risk factor for disease, perhaps for the first time, or is this a study to provide
improved estimates of the quantitative impact of a known risk factor? Is prediction
of future risks the ultimate goal? The answers to these questions will determine
the possible responses to dealing with the measurement error in the design and
analysis of the study, including the choice of a criterion for statistical optimality.
It is even possible that no measurement error correction is needed to achieve
the purposes of the study, and in certain instances, absent other considerations
suchas cost, that the most scientifically valid design would eliminate measurement
error entirely.

The nature of the measurement error should be carefully considered. For in-
stance, is the measurement error nondifferential? What is the evidence to support
this conclusion? Especially in the study of complex phenomena such as nutritional
factors in disease, the nondifferential assumption deserves scrutiny. For exam-
ple, much has been made of the diet “record” as the gold standard of nutritional
intakes, but recent analyses have cast doubt on the nondifferential measurement
error associated with substituting monthly food frequency questionnaires (Kipnis
et al. 1999). On the other hand, measurement errors due to validated scientific
instrument errors may be more easily justified as nondifferential.

Another thing to consider is the possible time dependency of exposure errors,
and how this may affect the use of nondifferential models. This often arises in case-
control studies where exposures must be assessed retrospectively (cf. Chap. I.6 of
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this handbook). An interesting example occurs in a recent study of arsenic ex-
posure where both drinking water and toenail measurements are available as
personal exposure measures in a cancer case-control study (Karagas et al. 1998).
Toenail concentrations give a biologically time-averaged measure of exposure,
but the time scale is limited and the nail concentrations are influenced by in-
dividual metabolic processes. Drinking water concentrations may be free from
possible confounding due to unrelated factors affecting metabolic pathways, but
could be less representative of average exposures over the time interval of inter-
est. This kind of ambiguity is common in many epidemiologic modelling situa-
tions, and should indicate caution in the rote application of measurement error
methods.

Depending on the type of nondifferential error, different study plans may
be required to identify the desired relative risk parameters. For instance, repli-
cate measurements of an exposure variable may adequately identify the neces-
sary variance parameters in a classical measurement error model. Under certain
circumstances, an “instrumental” variable may provide the information needed
to correct for measurement error. This type of reliability|validity data leads to
identifiable relative risk regression parameters in classical or Berkson case er-
ror.

In more complex “surrogate” variable situations with nondifferential error, an
internal or external validation study may be necessary, where the “true” expo-
sure is measured without error is available for a subset or independent sample of
subjects. These designs are also useful and appropriate for classical measurement
error models, but are essential in the case of surrogates which cannot be consid-
ered “unbiased”. Internal validation studies have the capability of checking the
nondifferential assumption, and thus are potentially more valuable. With external
validation studies, there may be doubt as to whether the populations characterized
by the validation and main study samples are comparable in the sense that the
measurement error model is equivalent or “transportable” between the popula-
tions. The issue of whether an error model is transportable or not can arise with
any type of measurement error.

The considerations described above are summarized in the following table
(Table 5.2) for some of the options that should be considered when planning
a study in the presence of measurement error.

Based on validity concerns alone, internal validation studies may have the
greatest advantage. However, this neglects the important issue of the costs of
obtaining the true exposures, which may be considerably larger than those for
a more readily available surrogate. For instance, it may be the case that a classical
additive error model applies and that replicate measures are easier or cheaper to get
than true values. Depending on the relative impact on the optimality criterion used,
the replicate design might be more cost-effective, although the internal validation
study would still be valid.

A number of approaches have been suggested and used for the design of epi-
demiologic studies based on variables measured with error. These may be char-
acterized broadly as sample size calculation methods, where the design decision
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Table 5.2. Sampling plan options for collecting validation data in epidemiologic studies with

measurement error of different types or properties

Validation Data

Measurement error Replicates Instrumental External Internal
type|property variables study study

Classical yes yes yes yes
Berkson no yes yes yes
General surrogate no no yes yes
Differential no no no yes
Non-transportable yes yes no yes

to be made has to do mainly with the size of the main study in studies where the
measurement error is known or can be ignored; and design approaches for studies
using internal or external validation data where both the size of the main study
and the validation sample must be chosen. In the sections that follow, we review
both of these approaches.

Methods for Sample Size Calculations5.3.1

Methods for sample size calculations are typically based on the operating char-
acteristics of a simple hypothesis test. In the case of measurement error in a risk
factor included in an epidemiologic regression model, the null hypothesis is that
the regression coefficient for the risk factor equals zero, implying no association
between the exposure and the health outcome. For a specific alternative one might
calculate the power for a given sample size or, alternatively, the sample size required
to achieve a given power.

It hasbeenknown for some time that the effect ofmeasurement error is to reduce
the power of the test for no association both in linear models (Cochran 1968) and
2×2 tables with nondifferential misclassification (Fleiss 1981). This result has been
extended to survival models (Prentice 1982) and to generalized linear models with
nondifferential exposure measurement error (Tosteson and Tsiatis 1988), including
linear regression, logistic regression, and tests for association in 2×2 contingency
tables. Using small relative risk approximations, it is possible to show that for all of
these common models for epidemiologic data, the ratio of the sample size required
using the data measured without error to the sample size required using the
error prone exposure is approximately nx|nw ≈ Š2

xw, the square of the correlation
between X and W ; see also (5.3), Sect. 5.2.3. This relation provides a handy method
for determining sample size requirements in the presence of measurement error
as

nw = nx|Š2
xw . (5.7)
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If additional covariates Z are included in the calculation, a partial correlation
can be used instead. The same formula has been used for sample size calculations
based on regression models for prospective studies with log-linear risk functions
and normal distributions for exposures and measurement error (McKeown-Eyssen
and Tibshirani 1994) and case-control studies with conditionally normal exposures
within the case and control groups (White et al. 1994). Recent developments have
improved this approximation (Tosteson et al. 2003), but (5.7) remains a useful tool
for checking sample size requirements in studies with measurement error.

For generalized linear models (Tosteson and Tsiatis 1988) and survival models
(Prentice 1982), it has been shown that optimal score test can be computed by
replacing the error prone exposure variable W with E[X|W], a technique that was
later termed regression calibration (Carroll et al. 1995). Subsequent work extended
these results to a more general form of the score test incorporating a nonparametric
estimate of the measurement error distribution (Stefanski and Carroll 1990a). One
implication of this result is that in common measurement error models, including
normally distributed exposure errors and nondifferential misclassification errors,
the optimal test is computed simply by ignoring the measurement error and using
the usual test based on W rather than X, the true exposure. However, the test will
still suffer the loss of power implicit in (5.7).

It is interesting to consider the effects of Berkson case errors on sample size
calculations. The implication for analysis are somewhat different, in as much
as regression coefficients are unbiased by Berkson case errors for linear models
and to the first order for all generalized linear models. However, as applied to
epidemiologic research, there isnodistinctionwith respect to theeffectsof this type
of nondifferential sample size calculations for simple regression models without
confounders, and (5.7) applies directly.

Planning for Reliability|Validation Data 5.3.2

In most epidemiologic applications, a measurement error correction will be
planned, although this may be deemed unnecessary in some situations where the
investigators only wish to demonstrate an association or where the measurement
error is known. Information on the measurement error parameters can come from
a number of possible designs, including replicate measurements, instrumental
variables, external validation studies measuring the true and surrogate exposures
(i.e. just X and W), or internal validation studies. A variety of statistical criteria
can be used to optimize aspects of the design, most commonly the variance of
the unbiased estimate of the relative risk for the exposure measured with error.
Other criteria have included the power of tests of association, as in the previous
section, and criteria based on the power of tests for null hypotheses other than no
association (Spiegelman and Gray 1991).

Tochooseadesign, it isusuallynecessary tohaveanestimateof themeasurement
error variance or other parameters. This may be difficult, since validation data are
needed to derive these estimates, and will not yet have been collected at the time
when the study isbeingplanned.However, thisdilemma ispresent inmostpractical
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design settings and can be overcome in a number of informal ways by deriving
estimates from previous publications, pilot data, or theoretical considerations of
the measurement error process. Certain sequential designs can be useful in this
regard, and some suggestions are discussed here in the context of the design of
internal validation studies.

In studies where a correction is planned for classical measurement error using
replicates, the simple approach to sample size calculations may provide a guideline
for choosing an appropriate number of replicates and a sample size by replacing
Š2

xw with Š2
xw , where w is the mean of the nr replicates. Depending on the relative

costs of replication and obtaining a study participant, these expressions may be
used to find an optimal value for the overall sample size, n, and the number of
replicates, nr. For instrumental variables, a similar calculation can be made using
a variation on the regression calibration procedure as applied to the score test for
no association. In this case, the inflation in sample size for (5.7) is based on Š2

x̂x ,
where x̂ = E[X|W , T], the predicted value of the true exposure given the unbiased
surrogate W and the instrumental variable T.

External and internal validation studies both involve a main study, with a sam-
ple size of n1 and a validation study, with sample size of n2. The external val-
idation study involves a independent set of measurements of the true and sur-
rogate exposures, whereas the internal validation study is based on a subset of
the subjects in the main study. Both the size of the main study and the val-
idation study must be specified. In the internal validation study, n2 is by ne-
cessity less than or equal to n1, with equality implying a fully-validated design.
In the external validation study, n2 is not limited, but the impact of increas-
ing the amount of validation data is more limited than in the internal vali-
dation study. This is because the fully validated internal validation study has
no loss of power versus a study that has no measurement error, whereas the
external validation study can only improve the power to the same as that of
a study with measurement error where the measurement error parameters are
known.

For common nonlinear epidemiologic regression analyses such as logistic re-
gression, calculations to determine optimal values of n1 and n2 have typically
involved specialized calculations (Spiegelman and Gray 1991; Stram et al. 1995).
Less intractable expressions are available for linear discriminant models, not in-
volving numerical integrations (Buonaccorsi 1988). The actual analysis of the data
from the studies may be possible using approximations such as the regression
calibration method requiring less sophisticated software (Spiegelman et al. 2001).

A variant on the internal validation study are designs which use surrogate expo-
sures and outcomes as stratification variables to select a highly efficient validation
sample. Cain and Breslow (1988) develop methods for case control studies where
surrogate variables were available during the design phase for cases and controls.
Tosteson and Ware (1990) develop methods for studies where surrogates were
available for both exposures and a binary outcome. These designs can be analyzed
with ordinary logistic regression if that model is appropriate for the population
data. Methods for improving the analysis of the designs and adapting them to
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other regression models have been proposed (Tosteson et al. 1994; Holcroft et al.
1997; Reilly 1996).

Examples and Applications 5.3.3

Much of the research on methods for planning studies with measurement error
has been stimulated by applications from environmental, nutritional, and occu-
pational epidemiology. Nevertheless, it is fair to say that published examples of
studies designed with measurement error in mind are relatively rare and the best
source of case studies may be methods papers such as those cited in this review.
This may reflect a lack of convenient statistical software other than what individual
researchers have been able to make available. However, some useful calculations
can be quite simple, as shown above, and a more important factor in future appli-
cations of these methods will be proper education to raise the awareness among
statisticians and epidemiologists of the importance of addressing the problem of
measurement error in the planning phases of health research.

Measurement Error Models and Methods 5.4

Overview 5.4.1

This section describes some common methods for correcting biases induced by
non-differential covariate measurement error. The focus is on nonlinear regression
models, and the logistic model in particular, though all the methods apply to the
linear model. The intent is to familiarize the reader with the central themes and
key ideas that underlie the proposals, and provide a contrast of the assumptions
and types of data required to implement the procedures.

The starting point for all measurement error analyses is the disease model of
interest relating the disease outcome Y to the true exposure(s) X and covariates Z,
and a measurement error model relating the mismeasured exposure W to (Z, X).
Measurement error methods can be grouped according to whether they employ
functional or structural modeling. Functional models make no assumptions on X,
beyond what are made in the absence of measurement error, e.g.,

∑n
i=1(Xi −X)2 > 0

for simple linear regression. Functionalmodeling is compellingbecauseoften there
is little information in the data on the distribution of X. For this reason, much of the
initial research in measurement error methods focused on functional modeling.
Methods based on functional modeling can be divided into approximately consis-
tent (remove most bias) and fully consistent methods (remove all bias as n → ∞).
Fully consistent methods for nonlinear regression models typically require as-
sumptions on the distribution of the measurement error. Regression calibration
and SIMEX are examples of approximately consistent methods while corrected
scores, conditional scores and some instrumental variable (IV) methods are fully
consistent for large classes of models. Each of these approaches is described below.
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Structural models assume X is random and require an exposure model for
X, with the normal distribution as the default exposure model. Likelihood based
methods are used with structural models.

Note that the terms functional and structural refer to assumptions on X, not
on the measurement error model. The advantage of functional modeling is it
provides valid inference regardless of the distribution of X. On the other hand,
structural modeling can result in large gains in efficiency and allows construction
of likelihood ratio based confidence intervals that often have coverage probabilities
closer to the nominal level than large sample normal theory intervals used with
functional models. The choice between functional or structural modeling depends
both on the assumptions one is willing to make and, in a few cases, the form of
the model relating Y to (Z, X). The type and amount of data available also plays
a role. For example, validation data provides information on the distribution of X,
and may make structural modeling more palatable. The remainder of the chapter
describes methods for correcting for measurement error. Functional methods are
described first.

Regression Calibration5.4.2

Regressioncalibration is a conceptually straightforwardapproach tobias reduction
and has been successfully applied to a broad range of regression models. It is the
default approach for the linear model. The method is fully consistent in linear
models and log-linear models when the conditional variance of X given (Z, W) is
constant. Regression calibration is approximately consistent in non-linear models.
The method was first studied in the context of proportional hazards regression
(Prentice 1982). Extensions to logistic regression and a general class of regression
models are studied in Rosner et al. (1989, 1990) and Carroll and Stefanski (1990),
respectively. A detailed and comprehensive discussion of regression calibration
can be found in Carroll et al. (1995).

When the measurement error is non-differential, the induced disease model,
or regression model, relating Y to the observed exposure W and covariates Z is
E[Y |Z, W] = E[E[Y |Z, X]|Z, W], i.e. the induced disease model is obtained by
regressing the true disease model on (Z, W). A consequence of the identity is that
the form of the observed disease model depends on the conditional distribution
of X given (Z, W). This distribution is typically not known, and even when known
evaluating the right hand side of the identity can be difficult. For example, if the
true disease model is logistic and the distribution of X conditional on (Z, W) is
normal, there is no closed form expression for E[Y |Z, W].

Regression calibration circumvents these problems by approximating the dis-
ease model relating Y to the observed covariates (Z, W). The approximation is
obtained by replacing X with E[X|Z, W] in the model relating Y to (Z, X). Because
regression calibration provides a model for Y on (Z, W), the observed data can be
used to assess the adequacy of the model.

To describe how to implement the method, it is useful to think of the approach
as a method for imputing values for X. The idea is to estimate unobserved X
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with X∗ ≡ predicted value of X from the regression of X on (Z, W), see the dis-
cussion of Berkson error calibration in Sect. 5.2.2. Modeling and estimating the
regression of X on (Z, W) requires additional data in the form of internal|external
replicate observations, instrumental variables or validation data, see the exam-
ple below. The regression parameters in the true disease model are estimated
by regressing Y on (Z, X∗). Note that X∗ is the best estimate of X using the
observed predictors (Z, W); best in the sense of minimizing mean square pre-
diction error. To summarize, regression calibration estimation consists of two
steps:
1. Model and estimate the regression of X on (Z, W) to obtain X∗;
2. Regress Y on (Z, X∗) to obtain regression parameter estimates.

A convenient feature of regression calibration is that standard software can often
be used for estimation. However, standard errors for parameter estimates in Step 2
must account for the fact thatX∗ is estimated inStep 1, something standard software
doesnotdo.Bootstraporasymptoticmethodsbasedonestimatingequation theory
are typically used, see Carroll et al. (1995) for details.

When (Z, X, W) is approximately jointly normal, or when X is strongly corre-
lated with (Z, W), the regression of X on (Z, W) is approximately linear:

E[X|Z, W] ≈ µx + σx|zwσ−1
zw

(
Z − µz

W − µw

)
,

where σx|zw is the covariance of X with (Z, W) and σzw is the variance matrix
of (Z, W). Implementing regression calibration using the linear approximation
requires estimation of the calibration parameters µx, σx|zw, σzw, µw, and µz.

Example 1. We illustrate estimation of the calibration function when two repli-
cate observations of X are available in the primary study (inter-

nal reliability data) and the error model is W = X + σU . For ease of illus-
tration, we assume there are no additional covariates Z. Let {Wi1, Wi2}n

i=1 de-
note the replication data and suppose that E[Xi|W̄i] ≈ µx + σx|w̄σ−1

w̄ (W̄i − µw) =
µw +

((
σ2

w̄ − σ2|2
)

|σ2
w̄

)
(W̄i − µw) where W̄i = (Wi1 + Wi2)|2, and the last equal-

ity follows from the form of the error model. Note that
(
σ2

w̄ − σ2|2
)

|
(
σ2

w̄

)
is the

attenuation factor introduced in Sect. 5.2.3. The method-of-moments calibration
parameter estimators are µ̂w =

∑n
i=1 W̄i|n, σ̂2

w̄ =
∑n

i=1(W̄i − µ̂w)2|(n − 1) and

σ̂2 =
∑n

i=1

∑2
j=1(Wij − W̄i)2|n =

∑n
i=1(Wi1 − Wi2)2|2n. The imputed value for Xi is

X∗
i = µ̂w +

((̂
σ2

w̄ − σ̂2|2
)

|̂σ2
w̄

)
(W̄i − µ̂w).

For the Framingham data described in Sect. 5.2.6, recall that {Wi1, Wi2}1615
i=1 rep-

resented transformed systolic blood pressure measured for each subject at two
separate exams. For these data, σ̂2 = 0.0126, σ̂2

w̄ = 0.0454 and µ̂w = 4.36 so that the
imputed measurement is X∗

i = 4.36 + 0.86(W̄i − 4.36).
If the model relating Y to X is the simple linear regression model, (Y = β1 +βxX+ε),
regressing Y on X∗ results in β̂x =

(̂
σ2

w̄

)
|
(̂
σ2

w̄ − σ̂2|2
)

β̂w̄ where β̂w̄ is the naive esti-
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mator obtained from regressing Y on W̄ . Note for the linear model the regression
calibration estimator coincides with the method-of-moments estimator given in
Sect. 5.2 of this chapter.
Our illustration of calibration parameter estimation assumed exactly two repli-
cates were available for each Xi. This estimation scheme can be easily extended to
an arbitrary number of replicates for each Xi (Carroll et al. 1995).
Regression calibration is not as effective in reducing bias in nonlinear models
when: (1) the effect of X on Y is large, for example large odds ratios in logistic
regression; (2) the measurement error variance is large; and (3) the model relating
Y to (Z, X) is not smooth. It is difficult to quantify what is meant by large in (1)
and (2) because all three factors (1)–(3) can act together. In logistic regression, the
method has been found to be effective in a number of applications (Rosner et al.
1989, 1990; Carroll et al. 1995). Segmented regression is an example of a model
where regression calibration fails due to lack of model smoothness (Küchenhoff
and Carroll 1997). Segmented models relate Y to X using separate regression mod-
els on different segments along the range of X. Extensions of regression calibration
that address the potential pitfalls listed in (1)–(3) are given in Carroll and Stefanski
(1990). �

SIMEX5.4.3

Simulation-extrapolation (SIMEX) can correct for bias in a very broad range of
settings and is the only method that provides a visual display of the effects of mea-
surement error on regression parameter estimation. SIMEX is fully consistent for
linear disease models and approximate for nonlinear models. SIMEX is founded on
the observation that bias in parameter estimation varies in a systematic way with
the magnitude of the measurement error. Essentially, the method is to incremen-
tally add measurement error to W using computer simulated random errors and
compute the corresponding regression parameter estimate (simulation step). The
extrapolation step models the relation between the parameter estimates and the
magnitude of the measurement errors. The SIMEX estimate is the extrapolation of
this relation to the case of zero measurement error.

The method was developed in a series of papers (Cook and Stefanski 1995;
Stefanski and Cook 1995; Carroll et al. 1996) and is summarized in detail in Carroll
et al. (1995). Further refinements and application of the SIMEX method appear in
a number of papers (Stefanski and Bay 1996; Lin and Carroll 1999; Wang et al. 1998;
Li and Lin 2003; Kim and Gleser 2000; Kim et al. 2000; Holcomb 1999; Marcus and
Elais 1998).

Details of the method are best understood in the context of the classical ad-
ditive measurement error model. However, the method is not limited to this
model. To describe the method, suppose Wi = Xi + σUi for i = 1, … , n and
for s = 1, … , B, define Wis(λ) = Wi +

√
λσUis where λ > 0, and {Uis}B

s=1 are
i.i.d. computer simulated standard normal variates. Note that the variance of the
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measurement error for the constructed measurement Wis(λ) is (1 + λ)σ2, indicat-
ing that λ regulates the magnitude of the measurement error. Let β̂s(λj) denote
the vector of regression parameter estimators obtained by regression of Y on
{Z, Ws(λj)} for 0 = λ1 < λ2 < · · · < λM . The value λM = 2 is recommended
(Carroll et al. 1995). The notation explicitly indicates the dependence of the es-
timator on λj. Let β̂(λj) = B−1

∑B
s=1 β̂s(λj). Here we are averaging over the B

simulated samples to eliminate variability due to simulation, and empirical evi-
dence suggests B = 100 is sufficient. Each component of the vector β̂(λ) is then
modeled as a function of λ and the SIMEX estimator is the extrapolation of each
model to λ = −1. Note that λ = −1 represents a measurement error variance of
zero.

Consider, for example, estimation of βx. The ‘observations’ produced by the
simulation {̂βx(λj), λj}M

j=1 are plotted and used to develop and fit an extrapolation
model relating the dependent variable β̂x(λ) to the independent variable λ. In most
applications, an adequate extrapolation model is provided by either the nonlin-
ear extrapolant function, β̂x(λj) ≈ γ1 +

(
γ2|
(
γ3 + λ

))
, or a quadratic extrapolant

function, β̂x(λj) ≈ γ1 + γ2λ + γ3λ2. The appropriate extrapolant function is fit to
{̂βx(λj), λj}M

j=1 using ordinary least squares. It is worth noting that the nonlinear
extrapolant function can be difficult to fit numerically and details for doing so are
given in Carroll et al. (1995).

Analytic Example
SIMEX was developed to understand and correct for the effects of covariate mea-
surement error in nonlinear disease models. However, it is instructive to consider
the simple linear regression model to illustrate analytically the relation between
β̂(λ) and λ. In Sect. 5.2 the bias of the naive estimator was studied and it follows that
β̂x(λ) =

(
βxσ2

x |
(
σ2

x + σ2(1 + λ)
))

+Op(n−(1|2)) where the symbol Op(n−(1|2)) denotes
terms that are negligible for n large. Therefore, the nonlinear extrapolant will result
in a fully consistent estimator; β̂x(−1) =

(
βxσ2

x

)
|
(
σ2

x + σ2(1 + [−1])
)
+Op(n−(1|2)) =

βx + Op(n−(1|2)).

Graphic Example
The Framingham data described in Sect. 5.2.6 are used here to graphically il-
lustrate the SIMEX method. In that section a logistic model was defined relat-
ing the probability of developing coronary heart disease to age, smoking status,
cholesterol level and a transformation of systolic blood pressure. Figure 5.1 de-
picts the effect of increasing amounts of measurement error on parameter esti-
mates (log odds ratios), and the SIMEX extrapolation to the case of no measure-
ment error. Note that the nonlinear and quadratic extrapolants result in similar
estimates.

Refinements and further details for the SIMEX method, including calculation
of standard errors, have been developed, see Carroll et al. (1995).
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Figure 5.1. SIMEX Extrapolation Plots for the Framingham data. Vertical axis scaling is ± two

standard errors of the naive estimates
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Estimating Equations and Corrected Scores 5.4.4

Regressionparameterestimatorsinnonlinearmodelsaredefinedimplicitlythrough
estimating equations. Estimating equations are often based on the likelihood score,
i.e. the derivative of the log-likelihood, or quasi-likelihood scores that only require
assumptionson thefirst and secondconditionalmomentsof thediseasemodel.The
criterion of least squares also leads to parameter estimation based on estimating
equations.

Corrected scores, conditional scores and certain instrumental variable methods
have been developed starting with the estimating equations that define regression
parameter estimates in the absence of measurement error. An estimating score is
unbiased if it has expectation zero. Measurement error induces bias in estimating
equations, which translates into bias in the parameter estimator. Modifying the
estimating equations to remove bias produces estimators without bias. This is
readily seen in the no-intercept simple linear regression model with classical
measurement error; Y = βxX + ε, W = X + σU and where X, ε and U have mean
zero. In the absence of measurement error, the least squares estimator for βx solves∑n

i=1 ψ(Yi, Xi; βx) = 0 where ψ(Yi, Xi; βx) = (Yi − βxXi)Xi is the least squares score.
The score is unbiased: E[ψ(Yi, Xi; βx)] = βxσ2

x − βxσ2
x = 0. The score is no longer

unbiased when W replaces X; E[ψ(Yi, Wi; βx)] = βxσ2
x − βx(σ2

x + σ2) ≠ 0 whenever
σ2 > 0 and βx ≠ 0.

Corrected scores are unbiased estimators of the score that would be used in the
absence of measurement error. A corrected score ψ∗(Yi, Wi; βx) satisfies
E[ψ∗(Yi, Wi; βx)] = ψ(Yi, Xi; βx) where the expectation is with respect to the mea-
surementerrordistribution.Correctedscoreswerefirstdefined inStefanski (1989a)
and Nakamura (1990). Note that corrected scores are unbiased whenever the orig-
inal score is unbiased. This means that estimators obtained from corrected scores
are fully consistent.

The corrected score for the simple linear no-intercept regression model is easily
seen to be ψ∗(Yi, Wi; βx) = ψ(Yi, Wi; βx) + σ2βx resulting in the estimator β̂x =∑n

i=1 YiWi|(
∑n

i=1 W2
i − σ2). In applications an estimate of the measurement error

variance replaces σ2. Note that the corrected score estimator for the linear model
is also the method-of-moments estimator.

For the linear model, the corrected score was identified without making an
assumption on the distribution of the measurement error. For nonlinear regres-
sion models, obtaining a corrected score generally requires specification of the
measurement error distribution, and typically the normal distribution is used.

Consider Poisson regression with no intercept. The likelihood score in the
absenceofmeasurementerror isψ(Yi, Xi; βx) = (Yi−exp{βxXi})Xi. Ifweassumethat
the measurement error satisfies U ∼ N(0, 1), then ψ∗(Yi, Wi; βx) = (Yi − exp{βxWi

− β2
xσ2|2})Wi + βxσ2 exp{βxWi − β2

xσ2|2}) is the corrected score. Using results for
the moment generating function of a normal random variable, one can verify that
E[ψ∗(Yi, Wi; βx)] = (Yi − exp{βxXi})Xi where the expectation is with respect to the
measurement error. The corrected score estimator solves

∑n
i=1 ψ∗(Yi, Wi; βx) = 0,

and the solution must be obtained numerically for Poisson regression.
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It is not always possible to obtain a corrected score (Stefanski 1989a). For
example, the likelihood score for logistic regression does not admit a corrected
score, except under certain restrictions (Buzas and Stefanski 1996c). Methods
for obtaining corrected scores and approximately corrected scores via computer
simulation have been recently studied (Novick and Stefanski 2002; Devanarayan
and Stefanski 2002).

Conditional Scores5.4.5

Conditional score estimation is the default method for logistic regression when the
classical additive error model holds. The statistical theory of sufficient statistics
and maximum likelihood underlie the derivation of conditional scores, and condi-
tional scoreestimatorsretaincertainoptimalitypropertiesof likelihoodestimators.
Thoughwefocuson logistic regressionhere, themethodapplies toabroaderclassof
regression models, including Poisson and gamma regression. The method was de-
rivedinStefanskiandCarroll(1987).Constructionoftheconditionalscoreestimator
requiresthatthemeasurementerrorisnormallydistributed.However, theestimator
remainseffective inreducingbiasandissurprisinglyefficient formodestdepartures
from the normality assumption (Huang and Wang 2001). Computing conditional
score estimators requires an estimate of the measurement error variance.

Theconditional scoreestimator isdefined implicitly as the solution toestimating
equations that are closely related to the logistic regression maximum likelihood
estimating equations used in the absence of measurement error. In the absence
of measurement error, the maximum likelihood estimator of (β1, βz, βx) is defined
implicitly as the solution to

n∑
i=1

{
Yi − F(β1 + βzZi + βxXi)

}⎛⎜⎝ 1

Zi

Xi

⎞⎟⎠ = 0 ,

where F(v) = {1 + exp(−v)}−1 is the logistic distribution function. The conditional
score estimator is defined as the solution to the equations

n∑
i=1

{
Yi − F(β1 + βzZi + βx∆i)

}⎛⎜⎝ 1

Zi

∆i

⎞⎟⎠ = 0 ,

where ∆i = Wi + (Yi − (1|2))̂σ2βx and σ̂2 is an estimate of the measurement
error variance. Conditional score estimation for logistic regression replaces the
unobserved Xi with ∆i. It can be shown that E[Y |Z, ∆] = F(β1 + βzZ + βx∆) and it
follows that the conditional score is unbiased. Because ∆i depends on the parameter
βx, it is not possible to estimate (β1, βz, βx) using standard software by replacing X
with ∆. Standard errors are computed using the sandwich estimator or bootstrap.

For models other than the logistic, the simple scheme of replacing X with ∆
is not true generally, and conditional score estimating equations for Poisson and
gamma regression are much more complicated.
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The conditional score estimator for the logistic model compares favorably in
terms of efficiency to the full maximum likelihood estimator that requires specifi-
cation of an exposure model (Stefanski and Carroll 1990b).

Instrumental Variables 5.4.6

Themethodsdescribedso far require additional data that allow estimation of the
measurement error variance. Replicate observations and internal|external val-
idation data are two sources of such additional information. Another source
of additional information are instrumental variables. Instrumental variables,
denoted T, are additional measurements of X that satisfy three requirements;
(1) T is non-differential, i.e. fY |Z,X,T = fY |Z,X , (2) T is correlated with X and
(3) T is independent of W − X. Note that a replicate observation is an in-
strumental variable but an instrumental variable is not necessarily a replicate.
It is possible to use an instrumental variable to estimate the measurement
error variance and then use one of the above methods. Doing so can be in-
efficient, and IV methods typically do not directly estimate the measurement
error variance.

Considerthecancercase-controlstudyofarsenicexposurementionedinSect.5.3.
Two measurements of arsenic exposure are available for each case|control in the
form of drinking water and toenail concentrations. Neither measure is an exact
measure of long-term arsenic exposure (X). Taking toenail concentration to be
an unbiased measurement of X, the drinking water concentration can serve as an
instrumental variable.

Instrumental variable methods have been used in linear measurement error
models since the 1940s, see Fuller (1987) for a good introduction. Instrumen-
tal variable methods for nonlinear models were first studied in Amemiya (1985,
1990a,b). Extensions of regression calibration and conditional score methodology
to instrumental variables are given in Carroll and Stefanski (1994), Stefanski and
Buzas (1995), Buzas and Stefanski (1996a,b).

The essential idea underlying instrumental variable estimation can be under-
stood by studying the simple linear model without intercept: Y = βxX + ε and
W = X + σU . Then Y = βxW + ε̃ where ε̃ = ε − βxσU and it appears that Y
and W follow a simple linear regression model. However, W and ε̃ are corre-
lated, violating a standard assumption in linear regression, and the least squares
estimator for βx is biased, see Sect. 5.2. The least squares estimating equation∑n

i=1{Yi − βxWi}Wi = 0 is biased because Wi and Yi − βxWi are correlated. This
suggests an unbiased equation can be constructed by replacing Wi outside the
brackets with a measurement uncorrelated with Yi − βxWi. An IV T satisfies the
requirement and the IV estimating equation

∑n
i=1{Yi − βxWi}Ti = 0 results in

the consistent estimator β̂x =
∑n

i=1 YiTi|
∑n

i=1 WiTi. Non-zero correlation between
X and T is required so that the denominator is not estimating zero. The key
idea is that the score factors into two components where the first component
{Yi − βxWi} has expectation zero and the second component Ti is uncorrelated
with the first.
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The method must be modified for nonlinear problems. Logistic regression
will be used to illustrate the modification. If we ignore measurement error, the
estimating equations for logistic regression are

n∑
i=1

{
Yi − F(β1 + βzZi + βxWi)

}⎛⎜⎝ 1

Zi

Wi

⎞⎟⎠ = 0 .

Unlike the linear case, for the logistic model and nonlinear models generally,
the first term in the estimating score, {Yi − F(β1 + βzZi + βxWi)}, does not have
expectation zero, so that replacing Wi with Ti outside the brackets in the above
equation does not result in an estimator that reduces bias.

Define the logistic regression instrumental variable estimating equations

n∑
i=1

h(Zi, Wi, Ti)
{

Yi − F(β1 + βzZi + βxWi)
}⎛⎜⎝ 1

Zi

Ti

⎞⎟⎠ = 0 ,

where h(Zi, Wi, Ti) =
√

F′(β1+βzZi+βxTi)
F′(β1+βzZi+βxWi)

is a scalar valued weight function and F′

denotes the derivative of F. It can be shown that the estimating equation is unbiased
provided the distribution of the measurement error is symmetric, implying the
estimator obtained from the equations is fully consistent. See Buzas (1997) for
extensions to other disease models, including the Poisson and gamma models.
Huang and Wang (2001) provide an alternative approach for the logistic model.

Likelihood Methods5.4.7

Likelihood methods for estimation and inference are appealing because of optimal-
ity properties of maximum likelihood estimates and dependability of likelihood
ratio confidence intervals. In the context of measurement error problems, the ad-
vantages of likelihood methods relative to functional methods have been studied
in Schafer and Purdy (1996) and Küchenhoff and Carroll (1997). However, the
advantageous properties are contingent on correct specification of the likelihood.
As discussed below, this is often a difficult task in measurement error problems.

The likelihood for an observed data point (Y , W) conditional on Z is

fYW |Z =
∫

fY |Z,X,W fW |Z,XfX|Zdx =
∫

fY |Z,XfW |Z,XfX|Zdx ,

where the second equality follows from the assumption of non-differential mea-
surement error. The integral is replaced by a sum if X is a discrete random variable.
The likelihood for the observed data is

∏N
i=1 fYi,Wi|Zi , and maximum likelihood esti-

mates are obtained by maximizing the likelihood over all the unknown parameters
in each of the three component distributions comprising the likelihood. In princi-
ple, the procedure is straightforward. However, there are several important points
to be made.
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1. The likelihood for the observed data requires complete distributional specifi-
cation for the disease model (fY |Z,X), the error model (fW |Z,X) and an exposure
model (fX|Z).

2. As was the case for functional models, estimation of parameters in the disease
model generally requires, for all intents and purposes, observations that allow
estimation of parameters in the error model, for example replicate measure-
ments.

3. When the exposure is modeled as a continuous random variable, for example
the normal distribution, the likelihood requires evaluation of an integral. For
many applications the integral cannot be evaluated analytically and numerical
methodsmustbeused, typicallyGaussianquadratureorMonteCarlomethods.

4. Finding the maximum of the likelihood is not always straightforward.

While the last two points must be addressed to implement the method, they
are technical points and will not be discussed in detail. In principle, numerical
integration followed by a maximization routine can be used, but this approach
is often difficult to implement in practice, see Schafer (2002). Algorithms for
computation and maximization of the likelihood in general regression models with
exposure measurement error are given in Higdon and Schafer (2001) and Schafer
(2002). Alternatively, a Bayesian formulation can be used to circumvent some of
the computational difficulties, see Carroll et al. (1999). For the normal theory linear
model and probit regression with normal distribution for the exposure model, the
likelihood can be obtained analytically (Fuller 1987; Carroll et al. 1984; Schafer
1993). The analytic form of the likelihood for the probit model often provides an
adequate approximation to the likelihood for the logistic model.

The first point above deserves discussion. None of the preceding methods re-
quired specification of an exposure model (functional methods). Here an exposure
model is required. It is common to assume X|Z ∼ N(α1 + αxZ, σ2

x|z), but, unless
there are validation data, it is not possible to assess the adequacy of the expo-
sure model using the data. Some models are robust to the normality assumption.
For example, in the normal theory linear model, i.e. when (Y , Z, X, W) is jointly
normal, maximum likelihood estimators are fully consistent regardless of the dis-
tribution of X. The literature is currently lacking results as to the robustness of
other disease models to assumptions on X. In a Bayesian framework, Richardson
and Leblond (1997) show mis-specification of the exposure model can seriously
affect estimation for logistic disease models.

Semi-parametric andflexibleparametricmodelingare twoapproaches thathave
been explored to address potential robustness issues in specifying an exposure
model. Semi-parametric methods leave the exposure model unspecified, and the
exposure model is essentially considered as another parameter that needs to be
estimated. These models have the advantage of model robustness but may lack
efficiency relative to the full likelihood. See Roeder et al. (1996), Schafer (2001) and
Taupin (2001).

Flexible parametric exposure models typically use a mixture of normal random
variables to model the exposure distribution, as normal mixtures are capable



758 Jeffrey S. Buzas, Leonard A. Stefanski, Tor D. Tosteson

of capturing moderately diversified features of distributions. Flexible parametric
approaches have been studied in Küchenhoff and Carroll (1997), Carroll et al.
(1999) and Schafer (2002).

The likelihood can also be obtained conditional on both W and Z. In this case
the likelihood is

fY |Z,W =
∫

fY |Z,XfX|Z,Wdx

necessitating an exposure model relating X to W and Z. This form of the likelihood
is natural for Berkson error models. In general, the choice of which likelihood to
use is a matter of modeling convenience.

Survival Analysis5.4.8

Analysis of survival data with exposure measurement error using proportional
hazards models presents some new issues (see also Chap. II.4 of this handbook).
Of the methods presented, only SIMEX can be applied without modification in the
proportional hazards setting.

Many of the proposed methods for measurement error correction in propor-
tional hazards models fall into one of two general strategies. The first strategy is
to approximate the induced hazard and then use the approximated hazard in the
partial likelihood equations. This strategy is analogous to the regression calibra-
tion approximation discussed earlier. The second strategy is to modify the partial
likelihood estimating equations. Methods based on this strategy stem from the
corrected and conditional score paradigms.

In the absence of measurement error, the proportional hazards model postulates
a hazard function of the form λ(t|Z, X) = λ0(t) exp (βT

z Z + βxX) where λ0(t) is an
unspecified baseline hazard function. Estimation and inference for (βx, βz) are
carried out through the partial likelihood function, as it does not depend on λ0(t).

Prentice (1982) has shown that when (Z, W) is observed, the induced hazard
is λ(t|Z, W) = λ0(t)E[exp (βT

z Z + βxX)|T ≥ t, Z, W]. The induced hazard requires
a model for X conditional on (T ≥ t, Z, W). This is problematic because the
distribution of T is left unspecified in proportional hazards models. However, when
the disease is rare λ(t|Z, W) ≈ λ0(t)E[exp (βT

z Z + βxX)|Z, W] (Prentice 1982) and
if we further assume that X|Z, W is approximately normal with constant variance
then the induced hazard is proportional to exp (βT

z Z + βxE[X|Z, W]). In other
words, regression calibration is appropriate in the proportional hazards setting
when the disease is rare and X|Z, W is approximately normal.

Modifications to the regression calibration algorithm have been developed for
applications where the rare disease assumption is untenable, see Clayton (1991),
Tsiatis et al. (1995), Wang et al. (1997), and Xie et al. (2001). Conditioning on T ≥ t
cannot be ignored when the disease is not rare. The idea is to re-estimate the
calibration function E[X|Z, W] in each risk set, that is the set of individuals known
to be at risk at time t. Clayton’s proposal assumes the calibration functions across
risk sets have a common slope and his method can be applied provided one has
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an estimate of the measurement error variance. Xie et al. (2001) extend the idea to
varying slopes across the risk sets and require replication (reliability data). Tsiatis
et al. (1995) consider time varying covariates and also allow for varying slopes
across the risk sets.

When a validation subsample is available it is possible to estimate the induced
hazard nonparametrically, that is without specifying a distribution for X|(T ≥
t, Z, W), see Zhou and Pepe (1995) and Zhou and Wang (2000) for cases when the
exposure is discrete and continuous, respectively.

The second strategy avoids modeling the induced hazard and instead modi-
fies the partial likelihood estimating equations. Methods based on the corrected
score concept are explored in Nakamura (1992), Buzas (1998) and Huang and
Wang (2000). The methods in Nakamura (1992) and Buzas (1998) assume the
measurement error is normally distributed and only require an estimate of the
measurement error variance. In contrast, the approach in Huang and Wang (2000)
does not require assumptions on the measurement error distribution but replicate
observations on the mismeasured exposure are needed to compute the estimator.
Each of the methods has been shown to be effective in reducing bias in parameter
estimators. Tsiatis and Davidian (2001) extend conditional score methodology to
the proportional hazards setting with covariates possibly time dependent.

Conclusions 5.5

Epidemiologists have long recognized the importance of addressing problems of
measurement and ascertainment in the statistical analysis of epidemiologic data.
Much of the research in measurement error models has its origins in specific
epidemiologic applications, and this is reflected by many of the research papers
cited in this review article. The importance of measurement error modeling to
epidemiologic research is on the rise, and that trend is likely to continue for the
foreseeable future.

As the understanding of the etiology of disease increases, so too will the sophis-
tication of the statistical models used to extract information from epidemiologic
data. Success in these modeling endeavors will depend on the ability to accurately
model ever finer sources of variability in data, and measurement error is frequently
one such nonnegligible source of variation.

This chapter provides an introduction to, and a review of the literature on the
problem of statistical inference in the presence of measurement error. Section 5.2
discussed the effects of measurement error in common epidemiologic models.
With the inevitable increase in the sophistication of models for epidemiologic
data, there will be a need to understand the effects of measurement error on
parameter estimation in biologically-based and physiologically-based models of
disease. The increasing ability to collect very detailed and precise information
on subjects in validation samples (e.g., via continuous monitoring of biological
processes, or genetic screening, etc.) means that consideration of measurement
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error at the design stage of a study will take on greater importance. Hence the
timely relevance of the issues and methods discussed in Sect. 5.3. More elaborate
modeling places greater demands on methods of estimation. Section 5.4 provided
a summary and review of common approaches to estimation in the presence of
measurement.Future researchwillnecessarilyhave toaccommodatemorecomplex
models and and possibly multiple variates measured with error.
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Introduction 6.1

The problem of dealing with missing values is common throughout statistical
work and is present whenever human subjects are enrolled. Respondents may
refuseparticipationormaybeunreachable.Patients inclinical andepidemiological
studies may withdraw their initial consent without further explanation. Early work
on missing values was largely concerned with algorithmic and computational
solutions to the induced lack of balance or deviations from the intended study
design (Afifi and Elashoff 1966; Hartley and Hocking 1971). More recently general
algorithms such as the Expectation-Maximisation (EM) (Dempster et al. 1977), and
data imputationandaugmentationprocedures (Rubin 1987;TannerandWong1987)
combined with powerful computing resources have largely provided a solution
to this aspect of the problem. There remains the very difficult and important
questionof assessing the impactofmissingdataonsubsequent statistical inference.
Conditions can be formulated, under which an analysis that proceeds as if the
missing data are missing by design, that is, ignoring the missing value process,
can provide valid answers to study questions. While such an approach is attractive
from a pragmatic point of view, the difficulty is that such conditions can rarely
be assumed to hold with full certainty. Indeed, assumptions will be required
that cannot be assessed from the data under analysis. Hence in this setting there
cannot be anything that could be termed a definitive analysis, and hence any
analysis of preference is ideally to be supplemented with a so-called sensitivity
analysis.

In Sect. 6.2 two key illustrative cases are introduced. Simple methods that are of-
ten used but carry quite a bit of danger in them are discussed in Sect. 6.3. Section 6.4
is devoted to a longitudinal data modeling framework for continuous outcomes,
useful to further develop and illustrate practical strategies to deal with incomplete
data. A general framework within which missing data ideas can be developed is
presented in Sect. 6.6. Also, the concept of ignorability will be introduced within
this context.

In Sects. 6.7 and 6.9 two approaches to modeling data with non-random dropout
are considered: the selection model framework and the pattern-mixture modeling
family.

A longitudinal data modeling framework for discrete outcomes is given in
Sect. 6.11. Section 6.12 introduces weighted estimating equations, an important
adaptation of generalized estimating equations to the incomplete data setting.

A perspective on the position of the various modeling strategies is provided in
Sect. 6.14, summarizing important points about preceding sections, and setting
the scenes for sensitivity analysis, two forms of which are described in Sects. 6.15,
in the selection model context, and 6.16, using pattern mixtures.

The two case studies that were introduced in Sect. 6.2 are analysed and discussed
throughout the chapter, by way of running examples.
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Case Studies6.2

In this section, two case studies are introduced, which will be analysed later in
this chapter. The first one is the Vorozole study, which focuses on quality of life
in breast cancer patients. The second case study is of a psychiatric type, where
emphasis is on different therapies for patients with depression.

The Vorozole Study6.2.1

This study was an open-label, multicenter, parallel group design conducted at
67 North American centers. Patients were randomized to either vorozole (2.5 mg
taken once daily) or megestrol acetate (40 mg four times daily). The patient popula-
tion consisted of postmenopausal patients with histologically confirmed estrogen-
receptor positive metastatic breast carcinoma. All 452 randomized patients were
followed until disease progression or death. The main objective was to compare the
treatment groups with respect to response rate while secondary objectives included
a comparison relative to duration of response, time to progression, survival, safety,
pain relief, performance status and quality of life. We focus on overall quality of
life, measured by the total Functional Living Index: Cancer (FLIC) (Schipper et al.
1984). Precisely, a higher FLIC score is the more desirable outcome. We analyse the
change from baseline in FLIC score over time. For simplicity, we will still refer to
this endpoint as ‘FLIC score’. The treatment effect on this change in FLIC score will
be investigated. Full details of the Vorozole study are reported in Goss et al. (1999).

Patients underwent screening and for those deemed eligible a detailed exami-
nation at baseline (occasion 0) took place. Further measurement occasions were
month 1, then from month 2 at bi-monthly intervals until month 44.

Let us now graphically explore these data. The average evolution describes how
the profile for a number of relevant subpopulations (or the population as a whole)
evolves over time. The individual profiles are displayed in Fig. 6.1, while the mean
profiles of the change in FLIC scores per treatment arm, as well as their 95%
confidence intervals, areplotted inFig. 6.2.Theaverageprofiles indicate an increase
over time which is slightly stronger for the vorozole group until month 14, and
afterwards, the megestrol acetate group shows a slightly higher FLIC score. As can
be seen from the confidence intervals, these differences are clearly not significant.

The individual profiles augment the averaged plot with a suggestion of the
variability seen within the data. The thinning of the data towards the later study
times suggests that trends at later times should be treated with caution. Indeed,
an extra level of complexity is added whenever not all planned measurements
are observed. This results in incompleteness or missingness. Another frequently
encountered term is dropout, which refers to the case where all observations on
a subject are obtained until a certain point in time, after which all measurements
are missing. Therefore, we decided to restrict attention to the first 2 years only.
This leads to a maximum of 13 observations per subject (month 1, 2, 4, 6, … , 24).
While these plots also give us some indications about the variability at given times
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Figure 6.1. Vorozole Study. Individual profiles, raw residuals, and standardized residuals
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Figure 6.2. Vorozole Study. Mean profiles and 95% confidence intervals

and even about the correlation between measurements of the same individual, it is
easier to base such considerations on residual profiles and standardized residual
profiles.

To simplify matters, we will largely focus on dropout, but a lot of the develop-
ments made are valid also for general types of missingness.
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The first issue, resulting from dropout, is evidently a depletion of the study
subjects. Of course, a decreasing sample size increases variability which, in turn,
decreases precision. In this respect, the Vorozole study is a dramatic example, as
can be seen from Fig. 6.3 and Table 6.1, which graphically and numerically present

Table 6.1. Vorozole Study. Evolution of dropout

Standard Vorozole
Month # (%) # (%)

0 226 (100) 220 (100)
1 221 (98) 216 (98)
2 203 (90) 198 (90)
4 161 (71) 146 (66)
6 123 (54) 106 (48)
8 90 (40) 90 (41)

10 73 (32) 77 (35)
12 51 (23) 64 (29)
14 39 (17) 51 (23)
16 27 (12) 44 (20)
18 19 (8) 33 (15)
20 14 (6) 27 (12)
22 6 (3) 22 (10)
24 5 (2) 17 (8)
26 4 (2) 9 (4)
28 3 (1) 7 (3)
30 3 (1) 3 (1)
32 2 (1) 1 (0)
34 2 (1) 1 (0)
36 1 (0) 1 (0)
38 1 (0) 0 (0)
40 1 (0) 0 (0)
42 1 (0) 0 (0)
44 1 (0) 0 (0)

Figure 6.3. Vorozole Study. Representation of dropout
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dropout in both treatment arms. Clearly, the dropout rate is high and there is
a hint of a differential rate between the two arms. This means we have identified
one potential factor that could influence a patient’s probability of dropping out.
Although a large part of the study scientist’s interest will typically focus on the
treatment effect, we should be aware that it is still a covariate and hence a design
factor. Another question that will arise is whether dropout depends on observed
or unobserved responses.

A different way of displaying several structural aspects is using a scatter plot
matrix, such as in Fig. 6.4. The off-diagonal elements picture scatter plots of
standardized residuals obtained from pairs of measurement occasions. The decay
of correlation with time is studied by considering the evolution of the scatters

Figure 6.4. Vorozole Study. Scatter plot matrix for selected time points
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with increasing distance to the main diagonal. Stationarity, on the other hand,
implies that the scatter plots remain similar within diagonal bands if measurement
occasions are approximately equally spaced. In addition to the scatter plots, we
place histograms on the diagonal, capturing the variance structure. Features such
as skewness, multimodality, and so forth, can then be graphically detected.

Further, the variance function is displayed in Fig. 6.5. The variance function
seems to be relatively stable, except for a sharp decline near the end (at which
point there are large dropout rates in both treatment groups), and hence a constant
variance model is a plausible starting point.
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Figure 6.5. Vorozole Study. Variance function

Another aspect of the impact of dropout is also seen if we consider the aver-
age profile in each treatment arm, now with pointwise confidence limits added
(Fig. 6.6). Indeed, near the end of the study, these intervals become extremely
wide, as opposed to the relatively narrow intervals at the start of the experiment.
Thus, it is clear that dropout leads to efficiency loss. Of course, this effect can be
due in part to increasing variability over time. Modeling is needed to obtain more
insight into this effect.

Figure 6.6. Vorozole Study. Mean profiles, with 95% pointwise confidence intervals added

To gain further insight into the impact of dropout, it is useful to construct
dropout-pattern-specific plots. Figures 6.7 and 6.8 display the individual and av-
eraged profiles per pattern.



M
issin

g
D

ata
775

Figure
6.7.V

orozole
Study.Individualprofiles,per

dropoutpattern



776
G

eertM
olenberghs

etal.

Figure
6.7.(continued)



Missing Data 777

Megestrol Acetate Vorozole

Months in Study Months in Study

C
ha

ng
e 

in
 F

LI
C

C
ha

ng
e 

in
 F

LI
C

Figure 6.8. Vorozole Study. Mean profiles, per dropout pattern, grouped per treatment arm

This plot will be useful as a graphical start to a so-called pattern-mixture
analysis, as described later in Sect. 6.16. The individual profiles plot, by definition
displaying all available data, has some intrinsic limitations. As is the case with any
individual data plot, it tends to be fairly busy. Since there is a lot of early dropout,
there are many short sequences and since we decided to use the same time axis
for all profiles, also for those that drop out early, very little information can be
extracted. Indeed, the evolution over the first few sequences is not clear at all. In
addition, the eye assigns more weight to the longer profiles, even though they are
considerably less frequent.

Some of these limitations are removed in Fig. 6.8, where the pattern-specific
average profiles are displayed per treatment arm. Still, care has to be taken
for not overinterpreting the longer profiles and neglecting the shorter pro-
files. Indeed, for this study the latter represent more subjects than the longer
profiles.

Several observations can be made. Most profiles clearly show a quadratic trend,
which seems to be in contrast with the relatively flat nature of the average profiles
in Fig. 6.6. This implies that the impression from all patterns together may differ
radically from a pattern-specific look. These conclusions seem to be consistent
across treatment arms.

Another important observation is that those who drop out rather early seem
to decrease from the start, whereas those who remain relatively long in the study
exhibit, on average and in turn, a rise, a plateau, and then a decrease. Looked upon
from the standpoint of dropout, we suggest that there are at least two important
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characteristics that make dropout increase: (1) a low value of change versus baseline
and (2) an unfavorable (downward) evolution.

Arguably, careful modeling of these data, irrespective of the approach chosen,
should reflect these features. We will consider the most important routes typically
taken, starting from simple ad hoc methods, and then going to more principled
methods, for which we first need to develop a formal but intuitively appealing
framework.

The Psychiatric Study6.2.2

The second case study is a clinical trial, including 342 patients with post-baseline
data. The Hamilton Depression Rating Scale (HAMD17) is used to measure the

Figure 6.9. Psychiatric Study. Individual profiles

Figure 6.10. Psychiatric Study. Mean profiles per treatment arm
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Figure 6.11. Psychiatric Study. Evolution of dropout per treatment arm. Treatment arms 1 (A1)

and 4 (C), being the ones of primary interest, are shown in bolder typeface

depression status of the patients. The binary outcome of interest is 1 if the HAMD17

score is larger than 7, and 0 otherwise. For each patient, a baseline assessment is
available. Post-baseline visits are from visit 4 to 8.

For blinding purposes, therapies are recoded as A1 for primary dose of ex-
perimental drug, A2 for secondary dose of experimental drug, and B and C for
non-experimental drugs. Individual profiles and mean profiles per treatment arm
are shown in Figs. 6.9 and 6.10 respectively. The primary contrast is between
A1 and C. Emphasis is on the difference between arms at the end of the study.
A graphical representation of the dropout, per treatment arm, is given in Fig. 6.11.

Simple Ad Hoc Methods 6.3

We will briefly review a number of relatively simple methods that have been and
still are in extensive use. A number of them are valid when the measurement and
missing data processes are independent and their parameters are separated, which
is called the missing completely at random or MCAR assumption, while for other
methods this assumption is necessary but not sufficient. It is important to realize
thatmanyof thesemethodsareusedalso in situationswhere theMCARassumption
is not tenable. This should be seen as bad practice since it will often lead to biased
estimates and invalid tests and hence to erroneous conclusions. Ample detail and
illustrations of several problems are provided in Verbeke and Molenberghs (1997,
Chap. 5). The focus will be on the complete case method, where data are removed,
on the one hand and on imputation strategies, where data are filled in on the
other hand. Regarding imputation, one distinguishes between single and multiple
imputation. In the first case, a single value is substituted for every “hole” in the
data set and the resulting data set is analysed as if it represented the true complete
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data. Multiple imputation properly acknowledges the uncertainty stemming from
filling in missing values rather than observing them (Rubin 1987; Schafer 1997).
Last observation carried forward (LOCF) will be discussed within the context of
imputation strategies, although not every author classifies the method as belonging
to the imputation family. Other imputation techniques that will be described are
unconditional and conditional mean imputation.

An often quoted advantage of the methods described below and related ones
is that complete data software can be used. With the availability of such soft-
ware like the SAS procedures GENMOD, MIXED, and NLMIXED, it is however
no longer necessary to restrict oneself to complete data software, since they allow
a likelihood-based ignorable analysis, using the data as they are, without deletion
or imputation.

Complete Case Analysis6.3.1

A complete case (CC) analysis includes only those cases for analysis, for which
all measurements were recorded. This method has obvious advantages. It is very
simple to describe and since the data structure is as would have resulted from
a complete experiment, standard statistical software can be used. Further, since
the entire estimation is done on the same subset of completers, there is a com-
mon basis for inference, unlike for the available case methods. Unfortunately, the
method suffers from severe drawbacks. First, there is nearly always a substantial
loss of information. For example, suppose there are 20 measurements, with 10% of
missing data on each measurement. Suppose, further, that missingness on the dif-
ferent measurements is independent; then, the estimated percentage of incomplete
observations is as high as 87%. The impact on precision and power is dramatic.
Even though the reduction of the number of complete cases will be less dramatic
in realistic settings where the missingness indicators are correlated, the effect just
sketched will often undermine a complete case analysis. In addition, severe bias
can result when the missingness mechanism is not MCAR. Indeed, should an esti-
mator be consistent in the complete data problem, then the derived complete case
analysis is consistent only if the missingness process is MCAR.

A simple partial check on the MCAR assumption is as follows (Little and Ru-
bin 1987). Divide the observations on measurement j into two groups: (1) those
subjects that are also observed on another measurement or set of measurements
and (2) those missing on the other measurement(s). Should MCAR hold, then
both groups should be random samples of the same population. Failure to reject
equality of the distributional parameters of both samples increases the evidence
for MCAR, but does not prove it.

Simple Forms of Imputation6.3.2

An alternative way to obtain a data set on which complete data methods can be
used is based on filling in rather then deletion. Commonly, the observed values
are used to impute values for the missing observations. There are several ways to
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use the observed information. First, one can use information on the same subject
(e.g., last observation carried forward). Second, information can be borrowed
from other subjects (e.g., mean imputation). Finally, both within and between
subject information can be used (e.g., conditional mean imputation, hot deck
imputation). Before discussing some of these, we will point to common pitfalls.
A standard reference is Little and Rubin (1987).

Indeed, great care has to be taken with these imputation strategies such as LOCF.
Dempster and Rubin (1983) write: “The idea of imputation is both seductive and
dangerous. It is seductive because it can lull the user into the pleasurable state
of believing that the data are complete after all, and it is dangerous because it
lumps together situations where the problem is sufficiently minor that it can be
legitimately handled in this way and situations where standard estimators applied
to the real and imputed data have substantial biases.” For example, Little and
Rubin (1987) show that imputation could work for a linear model with one fixed
effect and one error term, but that it generally does not for hierarchical models,
split-plot designs, and repeated measures (with a complicated error structure),
random-effects, and mixed-effects models. For a general discussion of regression
models we refer to Chap. II.3 of this handbook.

Thus, the user of imputation strategies faces several dangers. First, the impu-
tation model could be wrong and, hence, the point estimates would be biased.
Second, even for a correct imputation model, the uncertainty resulting from miss-
ingness is masked. Indeed, even when one is reasonably sure about the mean
value the unknown observation would have had, the actual stochastic realization,
depending on both the mean and error structures, is still unknown. In addition,
most methods require the MCAR assumption to hold while some even require
additional and often unrealistically strong assumptions.

Last Observation Carried Forward
A method that has received a lot of attention (Siddiqui and Ali 1998; Mallinckrodt
et al. 2003a,b) is last observation carried forward (LOCF). In the LOCF method,
whenever a value is missing, the last observed value is substituted. The technique
can be applied to both monotone and nonmonotone missing data. It is typically
applied to settings where incompleteness is due to attrition.

Very strong and often unrealistic assumptions have to be made to ensure validity
of this method. First, one has to believe that a subjects’ measurement stays at the
same level from the moment of dropout onward (or during the period they are
unobserved in the case of intermittent missingness). In a clinical trial setting,
one might believe that the response profile changes as soon as a patient goes off
treatment and even that it would flatten. However, the constant profile assumption
is even stronger. Further, this method shares with other single imputation methods
that it overestimates the precision by treating imputed and actually observed values
on equal footing.

However, LOCF does not need to be seen as an imputation strategy. The situation
in which the scientific question is in terms of the last observed measurement, is
often considered to be the real motivation for LOCF. Though in some cases, the
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question defined as such, may be perceived as having an unrealistic and ad-hoc
flavor. Clearly, measurements at (self-selected) dropout times are lumped together
with measurements made at the (investigator defined) end of the study.

Imputing Unconditional Means
The idea behind unconditional mean imputation (Little and Rubin 1987) is to
replace a missing value with the average of the observed values on the same
variable over the other subjects. Thus, the term unconditional refers to the fact
that one does not use (i.e., condition on) information on the subject for which an
imputation is generated.

Buck’s Method: Conditional Mean Imputation
This approach was suggested by Buck (1960) and reviewed by Little and Rubin
(1987). The method is technically hardly more complex than mean imputation.
Let us describe it first for a single multivariate normal sample. The first step is to
estimate the mean vector µ and the covariance matrix Σ from the complete cases.
This step builds on the assumption that Y ∼ N(µ, Σ). For a subject with missing
components, the regression of the missing components (Ym

i ) on the observed ones
(yo

i ) is

Ym
i |yo

i ∼ N
(
µm + Σmo(Σoo)−1(yo

i − µo
i ), Σmm − Σmo(Σoo)−1Σom

)
.

Superscripts o and m refer to “observed” and “missing” components, respectively.
The second step calculates the conditional mean from this regression and substi-
tutes it for the missing values. In this way, “vertical” information (estimates for µ
and Σ) is combined with “horizontal” information (yo

i ).
Buck (1960) showed that under mild regularity conditions, the method is valid

for MCAR mechanisms. Little and Rubin (1987) added that the method is valid un-
der certain types of missing at random (MAR) mechanism (i.e. when conditional
on the observed data, the dropout is independent of the unobserved measure-
ments). Even though the distribution of the observed components is allowed to
differ between complete and incomplete observations, it is very important that
the regression of the missing components on the observed ones is constant across
missingness patterns.

Again, this method shares with other single imputation strategies that, although
point estimation may be consistent, the precision will be overestimated. Little
and Rubin (1987, p. 46) indicated ways to correct the precision estimation for
unconditional mean imputation.

Discussion of Imputation Techniques6.3.3

The imputation methods reviewed here are clearly not the only ones. Little and
Rubin (1987) and Rubin (1987) mention several others. Several methods, such as hot
deck imputation, are based on filling in missing values from “matching” subjects,
where an appropriate matching criterion is used.
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Almost all imputation techniques suffer from the following limitations:
1. The performance of imputation techniques is unreliable. Situations where they

do work are difficult to distinguish from situations were they prove misleading.
2. Imputation often requires ad hoc adjustments to yield satisfactory point esti-

mates.
3. The methods fail to provide simple correct precision estimators.

In addition, most methods require the MCAR assumption to hold. Methods such
as the last observation carried forward require additional and often unrealistically
strong assumptions.

A Classic Model
for Continuous Longitudinal Data 6.4

Having introduced a number of simple methods in the previous section, we would
like to apply them to the Vorozole Study in the next section. To this end, we will
introduce the linear mixed model (Verbeke and Molenberghs 2000) since this is
undoubtedly the most commonly used model for Gaussian longitudinal data.

Assume that for subject i = 1, … , N in the study a sequence of responses Yij is
designed to be measured at occasions j = 1, … , n. The outcomes are grouped into
a vector Y i = (Yi1, … , Yin)′.

For continuous outcomes, one typically assumes a linear mixed-effects model,
perhaps with serial correlation:

Y i = Xiβ + Zibi + W i + εi , (6.1)

(Verbeke and Molenberghs 2000) where Y i is the n dimensional response vector
for subject i, 1 ≤ i ≤ N, N is the number of subjects, Xi and Zi are (n × p) and
(n × q) known design matrices, β is the p dimensional vector containing the fixed
effects, bi ∼ N(0, D) is the q dimensional vector containing the random effects,
εi ∼ N(0, σ2Ini ) is a n dimensional vector of measurement error components, and
b1, … , bN , ε1, … , εN are assumed to be independent. Serial correlation is captured
by the realization of a Gaussian stochastic process, W i, which is assumed to follow
a N(0, τ2Hi) law. The serial covariance matrix Hi only depends on i through the
number n of observations and through the time points tij at which measurements
are taken. The structure of the matrix Hi is determined through the autocorrelation
function ρ(tij − tik). This function decreases such that ρ(0) = 1 and ρ(+∞) = 0.
Finally, D is a general (q×q) covariance matrix with (i, j) element dij = dji. Inference
is based on the marginal distribution of the response Y i which, after integrating
over random effects, can be expressed as

Y i ∼ N
(
Xiβ, ZiDZ′

i + Σi

)
. (6.2)

Here, Σi = σ2Ini + τ2Hi is a (n × n) covariance matrix grouping the measurement
error and serial components.
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Two popular choices to capture serial correlation is by means of exponential
or Gaussian decay. An exponential process is based on writing the correlation
between two residuals at times tij and tik as

Corr
(
tij, tik

)
= exp

(
−

|tij − tik|
φ

)
= ρ|tij−tik| , (6.3)

(φ > 0), where ρ = exp(−1|φ). The Gaussian counterpart is

Corr
(
tij, tik

)
= exp

(
−

(
tij − tik

)2

φ2

)
= ρ

(
tij−tik

)2
, (6.4)

(φ > 0), ρ = exp(−1|φ2). It follows from (6.1) that, conditional on the random
effect bi, Y i is normally distributed with mean vector Xiβ+Zibi and with covariance
matrix Σi. Define Vi = ZiGZ′

i + Σi, then the marginal distribution of Y i is Y i ∼
N(Xiβ, Vi).

In a clinical-trial setting and in some epidemiological settings one often has
balanced data in the sense that the measurement occasions are common to all
patients. In such a case, one often considers the random effects as nuisance pa-
rameters. The focus is then, for example, on the marginal compound-symmetry
model rather than on the hierarchical random-intercepts model. Or, more gen-
erally, one considers Σi = Σ to be unstructured and then no random effects are
explicitly included. Especially when the number of patients is much larger than
the number of measurement occasions within a patient, such an approach is use-
ful. In an epidemiological setting however, one is often confronted with longer
measurement sequences, perhaps also unequally spaced and|or of unequal length.

Simple Methods Applied
to the Vorozole Study6.5

Let us now apply the most often used simple methods, complete case analysis and
last observation carried forward, to the Vorozole study. Each method is considered
twice. First, we restrict attention to the first 2 years, in line with our choice in
Sect. 6.2.1, and second we only use the first year for the analyses. The linear mixed
model is used to perform the analyses. As covariates we include time in months,
the treatment-by-time and baseline-by-time interaction, as well as a quadratic
time trend and its interaction with baseline. For the covariance structure, we
consider a random intercept, together with a spatial Gaussian process and mea-
surement error. The model selection that leads to this choice is explained in detail
in Sect. 6.8.

In Tables 6.2 and 6.3, we compare the results obtained with the simple methods,
CC and LOCF, with the results of a direct-likelihood analysis, which is valid under
the MAR assumptions and uses all available data.



Missing Data 785

Considering the first two years, Table 6.2 shows several differences between the
estimates and standard errors of the CC and LOCF analyses versus the direct-
likelihood analysis. Since only few patients complete the study until the 24th
month, a lot of information is excluded for the CC analysis. In the Vorozole study,
many patients drop out early in the study, thus a lot of values have to be filled
in. All effects become non-significant in the CC analysis, while there is not much
difference between the p-values of the LOCF and direct-likelihood analyses.

Table 6.2. Vorozole Study. Estimates (Est.), standard errors (S.E.) and p-values for the fixed effect

parameters, using CC, LOCF and direct-likelihood MAR analysis on data of first two years

(t represents time)

CC (2 years) LOCF (2 years) MAR (2 years)

Est. (S.E.) p Est. (S.E.) p Est. (S.E.) p

t 4.11 (3.71) 0.27 0.90 (0.22) < 0.0001 7.29 (0.95) < 0.0001

t× base −0.031 (0.028) 0.27 −0.0094 (0.0018) < 0.0001 −0.061 (0.0078) < 0.0001

t× treat 0.20 (0.26) 0.45 −0.0064 (0.023) 0.78 0.12 (0.14) 0.39

t × t −0.073 (0.15) 0.63 −0.015 (0.0047) 0.0012 −0.28 (0.054) < 0.0001

t × t× base 0.00053 (0.0011) 0.64 0.00016 (0.00004) < 0.0001 0.0023 (0.00044) < 0.0001

Table 6.3. Vorozole Study. Estimates (Est.), standard errors (S.E.) and p-values for the fixed effect

parameters, using CC, LOCF and direct-likelihood MAR analysis on data of the first year

(t represents time)

CC (1 years) LOCF (1 years) MAR (1 years)

Est. (S.E.) p Est. (S.E.) p Est. (S.E.) p

t 9.86 (2.35) < 0.0001 3.51 (0.96) 0.0002 8.22 (1.50) < 0.0001

t× base −0.073 (0.019) 0.0002 −0.032 (0.0081) < 0.0001 −0.070 (0.012) < 0.0001

t× treat 0.41 (0.25) 0.10 0.037 (0.12) 0.75 0.17 (0.18) 0.35

t × t −0.47 (0.19) 0.012 −0.13 (0.072) 0.063 −0.37 (0.14) 0.0062

t × t× base 0.0031 (0.0015) 0.044 0.0011 (0.00061) 0.064 0.0032 (0.0011) 0.0049

On the other hand, when performing the analyses on the data of the first
year only, the results of CC analysis and direct-likelihood analysis are reasonably
similar. There is no change in significance, while there still is a great difference
between the LOCF and direct-likelihood analyses. Two effects become significant
when switching from LOCF to a direct-likelihood analysis.

A Framework for Handling Missing Values 6.6

We assume that our aim is to make inferences about means, time evolutions,
treatment differences, etc. That is, some adjustment or allowance may need to be
made to recover the underlying responses that would have been observed if all
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the observations were available, irrespective of the occurrence of dropout. Or, in
a sensitivity analysis sense, we would like to learn what range of inferences about
the marginal response are plausible given the setting, observed data and pattern
of missing values. An attempt is made to achieve this by jointly modeling both the
response and the missing value, or dropout, mechanism.

Rubin’s taxonomy (Rubin 1976; Little and Rubin 1987) of missing value processes
is fundamental to modeling incomplete data. Before describing this we introduce
some basic notation. Let the random vector Y correspond to the, possibly notional,
complete set of measurements on a subject whether observed or not and suppose
that its distribution depends on a vector of parameters θ. Let R be the associated
missing value indicator, with distribution depending on parameter vector ψ. In
case missingness is restricted to dropout, we define D to be the occasion of dropout.
For a particular realization of this pair (y, r) the elements of r take the values 1
and 0 indicating respectively whether the corresponding values of y are observed
or not. When we are dealing with dropout the information in r can be summarised
in a single variable: the first time at which a value is missing. Let (yo, ym) denote the
partition of y into the respective sets of observed and missing data. In what follows
we will be attempting to fit and make inferences about models constructed for the
pair (y, r) using only the observed data: (yo, r). If f (y, r) is the joint distribution
of the complete data, then the marginal distribution of the observed data, which
forms the basis for model fitting, is

f (yo, r) =
∫

f (y, r)dym . (6.5)

Rubin’s classification essentially distinguishes settings in which important simpli-
fications of this process are possible.

MissingCompletely atRandom(MCAR). Under an MCAR mechanism the proba-
bility of an observation being missing is independent of the responses:
P(R = r | y) = P(R = r). The joint distribution of the observed data parti-
tions as follows: f (yo, r) = f (yo; θ)P(r; ψ). Under MCAR the observed data can be
analysed as though the pattern of missing values were predetermined, as they are
in the example just given. In whatever way the data are analysed, whether using
a frequentist or likelihood procedure, the process(es) generating the missing values
can be ignored. For example, in this situation simple averages of the observed data
at different times provide unbiased estimates of the underlying marginal profiles.

Missing at Random (MAR). Under an MAR mechanism, the probability of an
observation being missing is conditionally independent of the unobserved data,
given the values of the observed data: P(R = r | y) = P(r | yo), and again the joint
distribution of the observed data can be partitioned:

f (yo, r) = f (yo; θ)P(r | yo; ψ) . (6.6)

An example of random dropout occurs in a trial in which subjects are removed
when their observed response drifts outside prescribed limits, Murray and Find-
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lay (1988) describe an instance of this. We note that the handling of the MAR
assumption is much easier with dropout than with more general missing value
patterns.

No mention has been made of covariates and the dependence of missing value
probabilities on these. According to Little (1995), the original intention was that
MCAR should refer to the case in which the probability of a value being missing
does not depend on the response or covariates, and suggests the term “covariate-
dependent” missing value mechanism for the case where it depends on the latter.
This avoids the problem of having the class of mechanisms potentially changing
with the addition and removal of covariates.

One can see the importance of the MAR assumption from an intuitive viewpoint.
Essentially it states thatonceappropriate account is takenofwhatwehaveobserved,
there remains no dependence on unobservables, at least in terms of the probability
model. We should as a consequence expect much of the missing value problem
to disappear under the MAR mechanism and this is in fact the case. This can be
shown more formally through consideration of the likelihood. The result (6.6)
implies that the joint log-likelihood for θ and ψ partitions:

�(θ, ψ; yo, r) = �(θ; yo) + �(ψ; r) .

Provided that θ and ψ are not interdependent, information about the response
model parameter θ is contained wholly in �(θ; yo), the log-likelihood of the ob-
served response data. This is the log-likelihood function that is used when no
account is taken of the missing value mechanism, hence for a likelihood analysis
under the MAR assumption, the missing value mechanism is said to be ignorable.
It should be noted that although the correct maximum likelihood estimates and
likelihood ratio statistics will be generated by the use of �(θ; yo), some care needs
to be taken with the choice of appropriate sampling distribution in a frequentist
analysis. For this the missing value mechanism is not ignorable, even under MAR
(Kenward and Molenberghs 1998). In practice though there is little reason for
worry since this just means that estimates of precision should be based on the
observed rather than the expected information matrix. More recently it has been
shown how non-likelihood approaches can be developed for the MAR case (Robins
et al. 1995, 1998; Fitzmaurice et al. 1995).

While the MAR assumption is particularly convenient in that it leads to consid-
erable simplification in the issues surrounding the analysis of incomplete longitu-
dinal data, it is rare in practice to be able to justify its adoption, and so in many
situations the final class of missing value mechanisms applies.

MissingNotatRandom(MNAR). In this caseneitherMCARnorMARhold.Under
MNAR the probability of a measurement being missing depends on unobserved
data. No simplification of the joint distribution is possible and inferences can only
be made by making further assumptions, about which the observed data alone
carry no information. Ideally the choice of such assumptions should be guided by
external information, but the degree to which this is possible in practice varies
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greatly. In attempting to formulate models for the joint distribution of the response
and dropout process, f (y, r), two main types of model have been used and these are
defined by two possible factorizations of this distribution. The first, the selection
model, is based on

f (y, r) = f (y)P(r | y) . (6.7)

The second, the pattern mixture model (PMM), uses

f (y, r) = f (y | r)P(r) . (6.8)

The differences are important in the MNAR case, and lead to quite different,
but complementary, views of the missing value problem. Little (1995) and Hogan
and Laird (1997) provide detailed reviews. The term selection model originates
from the econometric literature (Heckman 1976) and it can be seen that a sub-
ject’s missing values are “selected” through the probability model, given their
measurements, whether observed or not. Rubin’s classification is defined in the
selection framework, and imposition of conditions on P(r | y) determines to
which of the three classes the model belongs in the frequentist sense. On the
other hand the pattern mixture model allows a different response model for each
pattern of missing values, the observed data being a mixture of these weighted
by the probability of each missing value or dropout pattern. At first sight such
a model is less appealing in terms of probability mechanisms for generating
the data, but it has other important advantages. Recently it has been shown,
for dropout, how the Rubin classification can be applied in the pattern-mixture
framework as well (Molenberghs et al. 1998; Kenward et al. 2003). We will consider
these two approaches to modeling data with non-random dropout in Sects. 6.7
and 6.9.

Continuous Data and Ignorability6.6.1

Let us now describe the missingness model, and then formally introduce and com-
ment on ignorability. The measurement model will depend on whether or not a full
longitudinal analysis is done. In case focus is on the last observed measurement
or on the last measurement occasion only, one typically opts for classical two- or
multi-group comparisons (t test, Wilcoxon, etc.). In case a longitudinal analysis
is deemed necessary, the choice made depends on the nature of the outcome. For
continuous outcomes, one typically assumes a linear mixed-effects model, perhaps
with serial correlation as described in Sect. 6.4. Models for categorical date will be
described later in this chapter.

Recall that for subject i = 1, … , N in the study a sequence of responses Yij is
designed to be measured at occasions j = 1, … , n and the outcomes are grouped
into a vector Y i = (Yi1, … , Yin)′. In addition, define a dropout indicator Di for the
occasion at which dropout occurs and make the convention that Di = n + 1 for
a complete sequence.
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Assume that incompleteness is due to dropout only, and that the first measure-
ment Yi1 is obtained for everyone. The model for the dropout process is based on,
for example, a logistic regression for the probability of dropout at occasion j, given
the subject is still in the study. We denote this probability by g(hij, yij) in which hij

is a vector containing all responses observed up to but not including occasion j, as
well as relevant covariates. We then assume that g(hij, yij) satisfies

logit
[
g(hij, yij)

]
= logit

[
pr
(
Di = j|Di ≥ j, yi

)]
= hijψ + ωyij . (6.9)

When ω equals zero, the dropout model is MAR, and all parameters can be
estimated using standard software since the measurement model for which we
use a linear mixed model and the dropout model, assumed to follow a logistic
regression, can then be fitted separately. If ω ≠ 0, the posited dropout process is
MNAR.Model (6.9)provides thebuildingblocks for thedropoutprocess f (di|yi, ψ).
This model is often referred to as Diggle and Kenward’s (1994) model.

Rubin (1976) and Little and Rubin (1987) have shown that, under MAR and
mild regularity conditions (parameters θ and ψ are functionally independent),
likelihood-based inference is valid when the missing data mechanism is ignored
(see also Verbeke and Molenberghs 2000). Practically speaking, the likelihood
of interest is then based upon the factor f (yo

i |θ). This is called ignorability. The
practical implication is that a software module with likelihood estimation facil-
ities and with the ability to handle incompletely observed subjects manipulates
the correct likelihood, providing valid parameter estimates and likelihood ratio
values.

A few cautionary remarks are in place. First, when at least part of the scientific
interest is directed towards the nonresponse process, obviously both processes
need to be considered. Still, under MAR, both processes can be modeled and
parameters estimated separately. Second, likelihood inference is often surrounded
with references to the sampling distribution (e.g., to construct precision estimators
and for statistical hypothesis tests; Kenward and Molenberghs 1998). However, the
practical implication is that standard errors and associated tests, when based on the
observed rather than the expected information matrix and given the parametric
assumptions are correct, are valid. Third, it may be hard to fully rule out the
operation of an MNAR mechanism. This point was brought up in the introduction
and will be discussed further in Sect. 6.14. Fourth, an analysis can proceed only
when a full longitudinal analysis is necessary, even when interest lies, for example,
in a comparison between the two treatment groups at the last occasion. In the
latter case, the fitted model can be used as the basis for inference at the last
occasion.

A common criticism is that a model needs to be considered. However, it should
be noted that in many clinical trial settings the repeated measures are balanced
in the sense that a common (and often limited) set of measurement times is con-
sidered for all subjects, allowing the a priori specification of a saturated model
(e.g., full group by time interaction model for the fixed effects and unstructured
variance-covariance matrix). Such an ignorable linear mixed model specifica-
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tion is termed MMRM (mixed-model random missingness) by Mallinckrodt et
al. (2001a,b). Thus, MMRM is a particular form of a linear mixed model, rele-
vant for not only the clinical trials context, but also more generally for reasonably
balanced studies with human subjects, and fitting within the ignorable likeli-
hood paradigm. Such an approach is a very promising alternative for the often
used simple methods described in Sect. 6.3 such as complete-case analysis or
LOCF.

Selection Models6.7

Much of the early development of, and debate about, selection models appeared in
the econometrics literature in which the tobit model (Heckman 1976) played a cen-
tral role. This combines a marginal Gaussian regression model for the response,
as might be used in the absence of missing data, with a Gaussian based threshold
model for the probability of a value being missing. For simplicity consider a single
Gaussian distributed response variable Z ∼ N(µ, σ2). The probability of Z being
missing is assumed to depend on a second Gaussian variable Zm ∼ N(µm, σ2

m)
where P(R = 0) = P(Zm < 0). Dependence of missingness on the response Z is
induced by introducing a correlation between Z and Zm. To avoid some of the
complications of direct likelihood maximization, a two-stage estimation proce-
dure was proposed by Heckman (1976) for this type of model. The use of the tobit
model and associated two-stage procedure was the subject of considerable debate
in the econometrics literature, much of it focusing on the issues of identifiability
and sensitivity (Amemiya 1984; Little 1986). We shall see the same issues arising in
developments of these ideas in the biometric and epidemiologic setting.

At first sight the tobit model does not appear to have the selection model
structure specified in (6.7) in that there is no conditional partition of f (y, r).
However, it is simple to show from the joint Gaussian distribution of Z and Zm,
that in the tobit model P(R = 0 | Z = z) equals Φ(β0 + β1z) for suitably chosen
parameters β0 and β1, with Φ(·) the Gaussian distribution function. This can be
seen as a probit regression model for the (binary) missing value process. This basic
structure underlies the simplest form of selection model that has been proposed for
longitudinal data in the biometric and epidemiologic setting. A suitable response
model, such as the multivariate Gaussian, is combined with a binary regression
model for dropout. At each time point the occurrence of dropout can be regressed
on previous and current values of the response as well as covariates. We now
explore such models in more detail.

Although modeling a continuous response is generally more straightforward
than a categorical response, we begin by considering the latter case. By reducing
the problem to a very simple setting, that of two repeated binary responses, we are
able to illustrate some key points in a very explicit way. With both measurements
(Y1, Y2) observed, a subject will generate one of four responses, with associated
probabilities πij:
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Time 2

Time 1 0 1 Total

0 π00 π01 π0·
1 π10 π11 π1·

Total π·0 π·1 1

Theseprobabilities canbeparameterized inmanydifferentways, for example using
marginal or Markov representations. For the moment we are not concerned with
the particular parameterization chosen and will work with the joint probabilities,
noting that three of these determine the fourth. It is assumed at first that missing
values are restricted to dropout and in the most general form the probability of
dropout may depend on the outcome at either time, so we write for R = 1, the
event of being observed on the second occasion:

P
(
R = 1 | Y1 = s1, Y2 = s2

)
= φs1s2 , s1 = 0, 1 ; s2 = 0, 1 .

There are four probabilities, making a total of seven degrees of freedom for the
model that combines the response and dropout components. If we could observe
the data from those who drop out, the full data could be represented as a 2 × 2 × 2
contingency table, classified by the time 1 and 2 outcomes and dropout status. The
model described saturates the degrees of freedom in this table. In practice, two
tables of data are observed; a 2 × 2 table from the completers and a 2 × 1 table
of time 1 outcomes from the dropouts, making a total of five degrees of freedom.
Clearly some parameters in the full model cannot be identified, and if a model is to
beestimated fromtheobserveddata someconstraintsmustbeapplied.This reflects
the information lost with the dropouts. The MCAR and MAR cases correspond to
the simple constraints. Indeed, MCAR: φs1s2 = φ and MAR: φs1s2 = φs1 . Allowing
φs1s2 to depend on s2 makes the dropout non-random. We can relate this dropout
model in a simple way to the logistic regression models that have often been used
in the selection model (Diggle and Kenward 1994; Baker 1995; Fitzmaurice et al.
1996a,b; Molenberghs et al. 1997) as follows:

logit
(
φij

)
= β0 + β1Y1 + β2Y2 . (6.10)

Note that this does not saturate the dropout model; the introduction of the inter-
action term in Y1Y2 would be required for this.

Selection Models Applied
to the Vorozole Study 6.8

Let us consider Diggle and Kenward’s (1994) selection model as introduced in
Sect. 6.6.1. For the measurement model, we start by ignoring the dropout mecha-
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nism. This choice will turn out to be justified at the end of this section. Since we
are modeling change versus baseline, all models are forced to pass through the
origin. This is done by allowing the main covariate effects, but only through their
interactions with time. The following covariates were considered for the measure-
ment model: baseline value, treatment, dominant site, and time in months (up
to a cubic time trend). Second order interactions were considered as well. Then,
a backwards selection procedure was performed. For design reasons, treatment
was kept in the model in spite of its non-significance. An F test for treatment
effect produces a p value of 0.5822. Apart from baseline, no other time-stationary
covariates were kept. A quadratic time effect provided an adequate description of
the time trend. Based on the variogram, we confined the random-effects structure
to random intercepts, and supplemented this with a spatial Gaussian process and
measurement error. The final model is presented in Table 6.4. The total correlation
between two measurements, one month apart, equals 0.696. The residual correla-
tion, which remains after accounting for the random effects, is still equal to 0.491.
The serial correlation, obtained by further ignoring the measurement error, equals
ρ = exp(−1|7.222) = 0.981.

Table 6.4. Vorozole Study. Selection Model

Effect Estimate (s.e.)

Fixed-Effect Parameters:
Time 7.78 (1.05)
Time × baseline −0.065 (0.009)
Time × treatment 0.086 (0.157)
Time × time −0.30 (0.06)
Time × time × baseline 0.0024 (0.0005)

Variance Parameters:
Random intercept (δ2) 105.42

Serial variance (τ2) 77.96

Serial association (φ) 7.22

Measurement error (σ2) 77.83

Fitted profiles are displayed in Figs. 6.12 and 6.13. In Fig. 6.13, empirical Bayes es-
timates of the random effects are included whereas in Fig. 6.12 the purely marginal
mean is used. For each treatment group, we obtain three sets of profiles. The fitted
complete profile is the average curve that would be obtained, had all individuals
been completely observed. If we use only those predicted values that correspond to
occasions at which an observation was made, then the fitted incomplete profiles are
obtained. The latter are somewhat above the former when the random effects are
included, and somewhat below when they are not, suggesting that individuals with
lower measurements are more likely to disappear from the study. In addition, while
the fitted complete curves are very close (the treatment effect was not significant),
the fitted incomplete curves are not, suggesting that there is more dropout in the
standard arm than in the treatment arm. This is in agreement with the observed
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Figure 6.12. Vorozole Study. Fitted profiles (averaging the predicted means for the incomplete and

complete measurement sequences, without the random effects)
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Figure 6.13. Vorozole Study. Fitted profiles (averaging the predicted means for the incomplete and

complete measurement sequences, including the random effects)

dropout rate and should not be seen as evidence of a bad fit. Finally, the observed
curves, based on the measurements available at each time point, are displayed.
These are higher than the fitted ones, but this should be viewed with the standard
errors of the observed means in mind (see Fig. 6.2).

Next, we will study factors which influence dropout. A logistic regression model,
described by (6.9) and (6.29) is used. To start, we restrict attention to MAR pro-
cesses, whence ψd = 0. The first model includes treatment, dominant site, base-
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line value, and the previous measurement but only the last two are significant,
producing

logit
[
g(hij)

]
= 0.080(0.341) − 0.014(0.003)basei − 0.033(0.004)yi,j−1 . (6.11)

Diggle and Kenward (1994) and Molenberghs et al. (1997) considered non-random
versions of this model by including the current, possible unobserved measurement,
such as in (6.9). This requires more elaborate fitting algorithms, since the missing
data process is then non-ignorable, and hence (6.5) needs to be used. Diggle and
Kenward used the simplex algorithm (Nelder and Mead 1965), while Molenberghs
et al. (1997) fitted their models with the EM algorithm. The algorithm of Diggle
and Kenward is implemented in Oswald (Smith et al. 1996). With larger datasets
such as this one, convergence can be painstakingly difficult and one has to worry
about apparent convergence. Therefore, we first proceed in an alternative way. Both
Diggle and Kenward, and Molenberghs et al. observed that in informative models,
dropout tends to depend on the increment, i.e., the difference between the current
and previous measurements Yij − Yi,j−1. Clearly, a very similar quantity is obtained
as Yi,j−1 − Yi,j−2, but a major advantage of such a model is that it fits within the MAR
framework. In our case, we obtain

logit
[
g(hij)

]
= 0.033(0.401) − 0.013(0.003)basei

+ 0.012(0.006)yi,j−2 − 0.035(0.005)yi,j−1

= 0.033(0.401) − 0.013(0.003)basei

− 0.023(0.005)
yi,j−2 + yi,j−1

2

− 0.047(0.010)
yi,j−1 − yi,j−2

2
(6.12)

indicating that both size and increment are significant predictors for dropout. We
conclude that dropout increases with a decrease in baseline, in overall level of the
outcome variable, as well as with a decreasing evolution in the outcome.

Both dropout models (6.11) and (6.12) can be compared with their non-random
counterparts, where yij is added to the linear predictor. The first one becomes

logit
[
g
(
hij, yij

)]
= 0.53 − 0.015basei − 0.076yi,j−1 + 0.057yij (6.13)

while the second one becomes

logit
[
g
(
hij, yij

)]
= 1.38 − 0.021basei − 0.0027yi,j−2 − 0.064yi,j−1 + 0.035yij . (6.14)

Formal testing of dropout models (6.13) versus (6.11) and for (6.14) versus (6.12) are
possible inprinciple, butwill notbecarriedout for tworeasons. First, the likelihood
function tends to be very flat for non-random dropout models and therefore the
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determination of the likelihood ratio is often computationally non-trivial. More
fundamentally, Rubin (1994), Little (1994), Laird (1994), and Molenberghs et al.
(1997) pointed out that formal testing for non-random dropout faces philosophical
objections. Indeed, non-random dropout models are identified only due to strong
but unverifiable assumptions. Hogan and Laird (1997) suggested pattern-mixture
models as a viable alternative.

Pattern-Mixture Models 6.9

Recall that the pattern-mixture decomposition is given by (6.8). As a simple il-
lustration consider a continuous response at three times of measurement which
will be modeled using a trivariate Gaussian distribution. Assume that there may
be dropout at time 2 or 3, and let the dropout indicator R take the values 1 and 2
to indicate that the last observation occurred at these times and 3 to indicate no
dropout. Then, in the first instance, the model implies a different distribution for
each time of dropout. We can write:

y | r ∼ N
(
µ(r); Σ(r)

)
, (6.15)

where

µ(r) =

⎡⎢⎢⎣
µ(r)

1

µ(r)
2

µ(r)
3

⎤⎥⎥⎦ and Σ(r) =

⎡⎢⎢⎣
σ(r)

11 σ(r)
21 σ(r)

31

σ(r)
21 σ(r)

22 σ(r)
32

σ(r)
31 σ(r)

32 σ(r)
33

⎤⎥⎥⎦ ,

for r = 1, 2, 3. Let P(r) = πr, then the marginal distribution of the response is
a mixture of normals with, for example, mean

µ =
3∑

r=1

πrµ(r) .

However, although the πr can be simply estimated from the observed proportions
in each dropout group, only 16 of the 27 response parameters can be identified
from the data without making further assumptions. These 16 comprise all the
parameters from the completers plus those from the following two submodels. For
r = 2

N

([
µ(2)

1

µ(2)
2

]
;

[
σ(2)

11 σ(2)
21

σ(3)
31 σ(3)

32

])
,

and for r = 1: N
(
µ(2)

1 ; σ(1)
11

)
. This is a saturated pattern-mixture model and the

representation makes it very clear what information each dropout group provides,
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and consequently the assumptions that need to be made if we are to predict the
behaviour of the unobserved responses, and so obtain marginal models for the
response. If the three sets of parameters µ(r) are simply equated, this implies MCAR.
Progress can be made with less stringent restrictions however. These identifying
restrictions are considered in Sect. 6.16.1. In practice, choice of restrictions will
need to be guided by the context. In addition, the form of the data will typically be
more complex, requiring, for example, a more structured model for the response
with the incorporation of covariates. Hence such models can be constructed in
many ways.

Pattern-Mixture Models Applied
to the Vorozole Study6.10

First, we analyse the data using basic pattern-mixture models. Later in this chapter
we will apply pattern-mixture models based on identifying restrictions.

Initial Pattern-Mixture Models
The dropout process simplifies to f (di|ψ) which is a, possibly covariate-corrected,
model for the probability to belong to a particular pattern. Its components describe
the dropout rate at each occasion.

The measurement model has to reflect dependence on dropout. In its most
general form, this implies that (6.1) is replaced by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Y i = Xiβ(di) + Zibi + εi ,

bi ∼ N(0, D(di)) ,

εi ∼ N(0, Σi(di)) .

(6.16)

Thus, the fixed effects as well as the covariance parameters are allowed to change
with dropout pattern and a priori no restrictions are placed on the structure of
this change.

As discussed in Sect. 6.9, model family (6.16) contains underidentified members
since it describes the full set of measurements in pattern di, even though there are
not measurements after occasion di − 1. To avoid this problem, simplified (identi-
fied) models can be considered. The advantage is that the number of parameters
decreases, which is generally an issue with pattern-mixture models. Hogan and
Laird (1997) noted that in order to estimate the large number of parameters in gen-
eral models, one has to make the awkward requirement that each dropout pattern
is sufficiently “filled”, in other words one has to require large numbers of dropouts.

In Sect. 6.2.1, we explored the data from a pattern-mixture point of view. Fig-
ure 6.8 displays the individual and averaged profiles per pattern and clearly shows
that pattern-specific profiles are of a quadratic nature with in most cases a sharp
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decline prior to dropout. Note that this is in line with the fitted dropout mech-
anism (6.12). Therefore, this feature needs to be reflected in the pattern-mixture
model. In analogy with our selection model, the profiles are forced to pass through
the origin. This is done by allowing only time main effect and interactions of other
covariates with time in the model.

The most complex pattern-mixture model we consider includes a different pa-
rameter vector for each of the observed patterns. This is done by including the
interaction of all effects in the model with pattern, a factor variable calculated as 2
plus the number of observations after baseline. We then proceed by backward se-
lection in order to simplify the model. First, we found that the covariance structure
is common to all patterns, encompassing random intercept, a serial exponential
process, and measurement error.

For the fixed effects we proceeded as follows. A backward selection procedure,
starting from a model that includes a main effect of time and time × time, as
well as interactions of time with baseline value, treatment effect, dominant site
and pattern, and the interaction of pattern with time×time. This procedure re-
vealed significant effects for nearly all included factors. The only exception was
treatment effect as was the case with the selection model in Table 6.4. Indeed,
a single degree of freedom F test yields a p value of 0.6868. Note that such a test
is possible since treatment effect does not interact with pattern, in contrast to the
model which we will describe later. The fitted profiles are displayed in Fig. 6.14.
We observe that the profiles for both arms are very similar. This is due to the
fact that treatment effect is not significant but perhaps also because we did not
allow a more complex treatment effect. For example, we might consider an inter-
action of treatment with the square of time and, more importantly, a treatment
effect which is pattern-specific. Some evidence for such an interaction is seen
in Fig. 6.8. Our second, expanded model, allowed for up to cubic time effects,
the interaction of time with dropout pattern, dominant site, baseline value and
treatment, as well as their two- and three-way interactions. After a backward
selection procedure, the effects included are time and time × time, the two-way
interaction of time and dropout pattern, as well as three factor interactions of time
and dropout pattern with (1) baseline, (2) group, and (3) dominant site. Finally,
time × time interacts with dropout pattern and with the interaction of baseline
and dropout pattern. No cubic time effects were necessary, which is in agreement
with the observed profiles in Fig. 6.8. The model is graphically represented in
Fig. 6.15.

Because a pattern-specific parameter has been included, we have several options
for the assessment of treatment. Since there are 13 patterns (remember we cut off
the patterns at 2 years), one can test the global hypothesis, based on 13 degrees
of freedom, of no treatment effect. We obtain F = 1.25, producing p = 0.2403,
indicating that there is no evidence for an overall treatment effect. Each of the
treatment effects separately is at a non-significant level. Alternatively, the marginal
effect of treatment can be calculated, which is the weighted average of the pattern-
specific treatment effects, with weights given by the probability of occurrence
of the various patterns. Its standard error is calculated using a straightforward
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Figure 6.14. Vorozole Study. Fitted selection and first pattern-mixture model
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application of the delta method. This effect is equal to −0.286(0.288) producing
a p value of 0.3206, which is even more non-significant.

In summary, we obtain a non-significant treatment effect from all our different
models, which gives more weight to this conclusion. Further, the pattern-mixture
model formulation has lead to important additional insight, which in a selection
model would go unnoticed.

Non-Gaussian Repeated Measures 6.11

Marginal and random-effects models are two important sub-families of models
for repeated measures. Several authors, such as Diggle et al. (2002) and Aerts et
al. (2002) distinguish between three such families. Still focusing on continuous
outcomes, a marginal model is characterized by the specification of a marginal
mean function

E
(
Yij|xij

)
= x′

ijβ , (6.17)

whereas in a random-effects model we focus on the expectation, conditional upon
the random-effects vector:

E
(
Yij|bi, xij

)
= x′

ijβ + z′
ijbi . (6.18)

Finally, a third family of models conditions a particular outcome on the other re-
sponses or a subset thereof. In particular, a simple first-order stationary transition
model focuses on expectations of the form

E
(
Yij|Yi,j−1, … , Yi1, xij

)
= x′

ijβ + αYi,j−1 . (6.19)

In the linear mixed model case, random-effects models imply a simple marginal
model. This is due to the elegant properties of the multivariate normal distribution.
In particular, the expectation (6.17) follows from (6.18) by either (1) marginalizing
over the random effects or by (2) conditioning upon the random-effects vector
bi = 0. Hence, the fixed-effects parameters β have both a marginal as well as
a hierarchical model interpretation. Finally, when a conditional model is expressed
in terms of residuals rather than outcomes directly, it also leads to particular forms
of the general linear mixed effects model.

Such a close connection between the model families does not exist when out-
comes are of a non-normal type, such as binary, categorical, or discrete. We will
consider each of the model families in turn and then point to some particular
issues arising within them or when comparisons are made between them.

Marginal Models 6.11.1

In marginal models, the parameters characterize the marginal probabilities of
a subset of the outcomes, without conditioning on the other outcomes. Advantages
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and disadvantages of conditional and marginal modeling have been discussed in
Diggle et al. (2002), and Fahrmeir and Tutz (2001). The specific context of clustered
binary data has received treatment in Aerts et al. (2002). Apart from full likelihood
approaches, non-likelihood approaches, such as generalized estimating equations
(Liang and Zeger 1986) or pseudo-likelihood (le Cessie and van Houwelingen 1994;
Geys et al. 1998) have been considered.

Bahadur (1961) proposed a marginal model, accounting for the association via
marginal correlations. Ekholm (1991) proposed a so-called success probabilities
approach. George and Bowman (1995) proposed a model for the particular case of
exchangeable binary data. Ashford and Sowden (1970) considered the multivariate
probit model, for repeated ordinal data, thereby extending univariate probit regres-
sion. Molenberghs and Lesaffre (1994) and Lang and Agresti (1994) have proposed
models which parameterize the association in terms of marginal odds ratios. Dale
(1986) defined the bivariate global odds ratio model, based on a bivariate Plackett
distribution (Plackett 1965). Molenberghs and Lesaffre (1994, 1999) extended this
model to multivariate ordinal outcomes. They generalize the bivariate Plackett dis-
tribution in order to establish the multivariate cell probabilities. Their 1994 method
involves solving polynomials of high degree and computing the derivatives thereof,
while in 1999 generalized linear models theory is exploited, together with the use
of an adaption of the iterative proportional fitting algorithm. Lang and Agresti
(1994) exploit the equivalence between direct modeling and imposing restrictions
on the multinomial probabilities, using undetermined Lagrange multipliers. Al-
ternatively, the cell probabilities can be fitted using a Newton iteration scheme,
as suggested by Glonek and McCullagh (1995). We will now consider generalized
estimating equations (GEE), while a particular extension, suitable for incomplete
data where missingness is other than MCAR, is discussed in Sect. 6.12.

Generalized Estimating Equations
The main issue with full likelihood approaches is the computational complexity
they entail. When we are mainly interested in first-order marginal mean param-
eters and pairwise interactions, a full likelihood procedure can be replaced by
quasi-likelihood methods (McCullagh and Nelder 1989). In quasi-likelihood, the
mean response is expressed as a parametric function of covariates; the variance is
assumed to be a function of the mean up to possibly unknown scale parameters.
Wedderburn (1974) first noted that likelihood and quasi-likelihood theories coin-
cide for exponential families and that the quasi-likelihood “estimating equations”
provide consistent estimates of the regression parameters β in any generalized lin-
ear model, even for choices of link and variance functions that do not correspond
to exponential families.

For clustered and repeated data, Liang and Zeger (1986) proposed so-called
generalized estimating equations (GEE or GEE1) which require only the correct
specification of the univariate marginal distributions provided one is willing to
adopt “working” assumptions about the association structure. They estimate the
parameters associated with the expected value of an individual’s vector of binary
responsesandphrase theworkingassumptionsabout theassociationbetweenpairs
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of outcomes in terms of marginal correlations. The method combines estimating
equations for the regression parameters β with moment-based estimating for the
correlation parameters entering the working assumptions.

Prentice (1988) extended their results to allow joint estimation of probabilities
and pairwise correlations. Lipsitz et al. (1991) modified the estimating equations
of Prentice (1988) to allow modeling of the association through marginal odds
ratios rather than marginal correlations. When adopting GEE1 one does not use
information of the association structure to estimate the main effect parameters. As
a result, it can be shown that GEE1 yields consistent main effect estimators, even
when the association structure is misspecified. However, severe misspecification
may seriously affect the efficiency of the GEE1 estimators. In addition, GEE1 should
be avoided when some scientific interest is placed on the association parameters.

A second order extension of these estimating equations (GEE2) that include the
marginal pairwise association as well has been studied by Liang et al. (1992). They
note that GEE2 is nearly fully efficient though bias may occur in the estimation of
the main effect parameters when the association structure is misspecified.

After this short overview of the GEE approach, the GEE methodology, which is
based on two perceptions, will now be explained a little further. First, the score
equations to be solved when computing maximum likelihood estimates under
a marginal normal model yi ∼ N(Xiβ, Vi) are given by

N∑
i=1

X′
i

(
A1|2

i RiA
1|2
i

)−1 (
yi − Xiβ

)
= 0 , (6.20)

in which the marginal covariance matrix Vi has been decomposed in the form
A

1|2
i RiA

1|2
i , with Ai the matrix with the marginal variances on the main diagonal

and zeros elsewhere, and with Ri equal to the marginal correlation matrix. Second,
the score equations to be solved when computing maximum likelihood estimates
under a marginal generalized linear model (6.17), assuming independence of the
responses within units (i.e., ignoring the repeated measures structure), are given
by

N∑
i=1

∂µi

∂β′
(

A1|2
i Ini A

1|2
i

)−1 (
yi − µi

)
= 0 , (6.21)

where Ai is again the diagonal matrix with the marginal variances on the main
diagonal.

Note that expression (6.20) is of the form(6.21) butwith the correlationsbetween
repeated measures taken into account. A straightforward extension of (6.21) that
accounts for the correlation structure is

S(β) =
N∑

i=1

∂µi

∂β′
(

A1|2
i RiA

1|2
i

)−1 (
yi − µi

)
= 0 , (6.22)

that is obtained from replacing the identity matrix Ini by a correlation matrix Ri =
Ri(α), often referred to as the working correlation matrix. Usually, the marginal
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covariance matrix Vi = A
1|2
i RiA

1|2
i contains a vector α of unknown parameters

which is replaced for practical purposes by a consistent estimate.
Assuming that the marginal mean µi has been correctly specified as h(µi) = Xiβ,

it can be shown that, under mild regularity conditions, the estimator β̂ obtained
from solving (6.22) is asymptotically normally distributed with mean β and with
covariance matrix

I−1
0 I1I−1

0 , (6.23)

where

I0 =

(
N∑

i=1

∂µ′
i

∂β
V−1

i

∂µi

∂β′

)
,

I1 =

(
N∑

i=1

∂µ′
i

∂β
V−1

i Var
(
yi

)
V−1

i

∂µi

∂β′

)
.

In practice, Var(yi) in (6.23) is replaced by (yi − µi)(yi − µi)′, which is unbiased on
the sole condition that the mean was again correctly specified.

Note that valid inferences can now be obtained for the mean structure, only
assuming that the model assumptions with respect to the first-order moments
are correct. Note also that, although arising from a likelihood approach, the GEE
equations in (6.22) cannot be interpreted as score equations corresponding to some
full likelihood for the data vector yi.

Liang and Zeger (1986) proposed moment-based estimates for the working
correlation.

Random-Effects Models6.11.2

Models with subject-specific parameters are differentiated from population-aver-
aged models by the inclusion of parameters which are specific to the cluster. Un-
like for correlated Gaussian outcomes, the parameters of the random effects and
population-averaged models for correlated binary data describe different types of
effects of the covariates on the response probabilities (Neuhaus 1992). The choice
between population-averaged and random effects strategies should heavily de-
pend on the scientific goals. Population-averaged models evaluate the overall risk
as a function of covariates. With a subject-specific approach, the response rates
are modeled as a function of covariates and parameters, specific to a subject. In
such models, interpretation of fixed-effect parameters is conditional on a constant
level of the random-effects parameter. Population-averaged comparisons, on the
other hand, make no use of within cluster comparisons for cluster varying covari-
ates and are therefore not useful to assess within-subject effects (Neuhaus et al.
1991).

Whereas the linear mixed model is unequivocally the most popular choice in
the case of normally distributed response variables, there are more options in
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the case of non-normal outcomes. Stiratelli et al. (1984) assume the parameter
vector to be normally distributed. This idea has been carried further in the work
on so-called generalized linear mixed models (Breslow and Clayton 1993) which
is closely related to linear and non-linear mixed models. Alternatively, Skellam
(1948) introduced the beta-binomial model, in which the response probability of
any response of a particular subject comes from a beta distribution. Hence, this
model can also be viewed as a random-effects model. We will consider generalized
linear mixed models in the following subsection.

Generalized Linear Mixed Models
Perhaps the most commonly encountered subject-specific (or random effects
model) is the generalized linear mixed model. A general framework for mixed-
effects models can be expressed as follows. Assume that Y i (possibly appropriately
transformed) satisfies

Y i|bi ∼ Fi(θ, bi) , (6.24)

i.e., conditional on bi, Y i follows a pre-specified distribution Fi, possibly depend-
ing on covariates, and parameterized through a vector θ of unknown parameters,
common to all subjects. Further, bi is a q-dimensional vector of subject-specific
parameters, called random effects, assumed to follow a so-called mixing distribu-
tion G which may depend on a vector ψ of unknown parameters, i.e., bi ∼ G(ψ).
The bi reflect the between-unit heterogeneity in the population with respect to the
distribution of Y i. In the presence of random effects, conditional independence is
often assumed, under which the components Yij in Y i are independent, conditional
on bi. The distribution function Fi in (6.24) then becomes a product over the ni

independent elements in Y i.
In general, unless a fully Bayesian approach is followed, inference is based on the

marginal model for Y i which is obtained from integrating out the random effects,
over their distribution G(ψ). Let fi(yi|bi) and g(bi) denote the density functions
corresponding to the distributions Fi and G, respectively, then the marginal density
function of Y i equals

fi(yi) =
∫

fi

(
yi|bi

)
g(bi)dbi , (6.25)

which depends on the unknown parameters θ and ψ. Assuming independence
of the units, estimates of θ̂ and ψ̂ can be obtained from maximizing the likeli-
hood function built from (6.25), and inferences immediately follow from classical
maximum likelihood theory.

It is important to realize that the random-effects distribution G is crucial in the
calculation of the marginal model (6.25). One approach is to leave G completely
unspecified and to use non-parametric maximum likelihood (NPML) estimation,
which maximizes the likelihood over all possible distributions G. The resulting
estimate Ĝ is then always discrete with finite support. Depending on the context,
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this may or may not be a realistic reflection of the true heterogeneity between
units. One therefore often assumes G to be of a specific parametric form, such as
a (multivariate) normal. Depending on Fi and G, the integration in (6.25) may or
may not be possible analytically. Proposed solutions are based on Taylor series
expansions of fi(yi|bi), or on numerical approximations of the integral, such as
(adaptive) Gaussian quadrature.

Although in practice one is usually primarily interested in estimating the pa-
rameters in the marginal model, it is often useful to calculate estimates for the
random effects bi as well. They reflect between-subject variability, which makes
them helpful for detecting special profiles (i.e., outlying individuals) or groups
of individuals evolving differently in time. Also, estimates for the random effects
are needed whenever interest is in prediction of subject-specific evolutions. Infer-
ence for the random effects is often based on their so-called posterior distribution
fi(bi|yi), given by

fi(bi|yi) =
fi(yi|bi)g(bi)∫

fi(yi|bi)g(bi)dbi
, (6.26)

in which the unknown parameters θ and ψ are replaced by their estimates obtained
earlier from maximizing the marginal likelihood. The mean or mode correspond-
ing to (6.26) can be used as point estimates for bi, yielding empirical Bayes (EB)
estimates.

There are at least two major differences in comparison to the linear mixed
model discussed in the previous section. First, the marginal distribution of Y i can
no longer be calculated analytically, such that numerical approximations to the
marginal density come into play, seriously complicating the computation of the
maximum likelihood estimates of the parameters in the marginal model, i.e., β,
D, and the parameters in all Σi. A consequence is that the marginal covariance
structure does not immediately follow from the model formulation, such that it is
not always clear in practice what assumptions a specific model implies with respect
to the underlying variance function and the underlying correlation structure in
the data.

A second important difference is with respect to the interpretation of the fixed
effects β. Under the linear model (6.1), E(Y i) equals Xiβ, such that the fixed effects
have a subject-specific as well as a population-averaged interpretation. Indeed, the
elements in β reflect the effect of specific covariates, conditionally on the random
effects bi, as well as marginalized over these random effects. Under non-linear
mixed models, however, this does no longer hold in general. The fixed effects now
only reflect the conditional effect of covariates, and the marginal effect is not easily
obtained anymore as E(Y i) which is given by

E(Y i) =
∫

yi

∫
fi(yi|bi)g(bi)dbi dyi ,

which, in general, is not of the form h(Xi, Zi, β, 0), where h is the conditional mean
function evaluated in the zero random effects vector.
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The generalized linear mixed model (GLMM) is the most frequently used
random-effects model for discrete outcomes. A general formulation is as fol-
lows. Conditionally on random effects bi, it assumes that the elements Yij of Y i are
independent, with density function of the form

f
(
y|θi, φ

)
= exp

{
φ−1 [yθi − ψ(θi)] + c(y, φ)

}
,

with mean E(Yij|bi) = a′(ηij) = µij(bi) and variance Var(Yij|bi) = φa′′(ηij), and
where, apart from a link function h, a linear regression model with parameters
β and bi is used for the mean, i.e., h(µi(bi)) = Xiβ + Zibi. Note that the linear
mixed model is a special case, with identity link function. The random effects bi

are again assumed to be sampled from a (multivariate) normal distribution with
mean 0 and covariance matrix D. Usually, the canonical link function is used, i.e.,
h = a′−1, such that ηi = Xiβ + Zibi. When the link function is chosen to be of the
logit form and the random effects are assumed to be normally distributed, the
familiar logistic-linear GLMM follows.

The non-linear nature of the model again implies that the marginal distribution
of yi is, in general, not easily obtained, such that model fitting requires approx-
imation of the marginal density function. An exception to this occurs when the
probit link is used. Further, as was also the case for non-linear mixed models, the
parameters β have no marginal interpretation, except for some very particular
models. An example where the marginal interpretation does hold is the Poisson
model for count data, for which the logarithm is the canonical link function. In
case the model only includes random intercepts, it follows that the only element in
β which has no marginal interpretation is the intercept.

As an important example, consider the binomial model for binary data, with the
logit canonical link function, and where the only random effects are intercepts bi.
It can then be shown that the marginal mean µi = E(Yij) satisfies h(µi) ≈ Xiβ∗ with

β∗ =
[
c2Var(bi) + 1

]−1|2 β , (6.27)

in which c equals 16
√

3|15π. Hence, although the parameters β in the generalized
linear mixed model have no marginal interpretation, they do show a strong relation
to their marginal counterparts. Note that, as a consequence of this relation, larger
covariate effects are obtained under the random-effects model in comparison to
the marginal model.

Weighted Generalized Estimating
Equations 6.12

As Liang and Zeger (1986) pointed out, inferences under GEE are valid only under
the strong assumption that the data are missing completely at random (MCAR).
This is because GEE is frequentist rather than likelihood-based in nature. In such
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cases, it is not automatic for MCAR to imply ignorability. Hence, to allow the data
to be missing at random (MAR), Robins et al. (1995) proposed a class of weighted
estimating equations. They can be viewed as an extension of generalized estimating
equations.

In simple terms, the idea is to weight each subject’s contribution in the GEEs by
the inverse probability that a subject drops out at the time he dropped out. This
can be calculated as

νidi ≡ P[Di = di] =
di−1∏
k=2

(
1 − P [Rik = 0|Ri2 = … = Ri,k−1 = 1]

)
× P [Ridi = 0|Ri2 = … = Ri,di−1 = 1]I{di≤T} .

Recall that we partitioned Y i into the unobserved components Y m
i and the observed

components Yo
i . Similarly, we can make the same partition of µi into µm

i and µo
i .

In the weighted GEE approach, which is proposed to reduce possible bias of β̂, the
score equations to be solved when taking into account the correlation structure
are:

S(β) =
N∑

i=1

1

νid

∂µi

∂β′
(

A1|2
i RiA

1|2
i

)−1 (
yi − µi

)
= 0 . (6.28)

GLMM and WGEE
Applied to the Psychiatric Study6.13

Let us now analyse the clinical trial, introduced in Sect. 6.2.2. The primary null
hypothesis (zero difference between the treatments and placebo in mean change
of the HAMD17 total score at endpoint) will be tested using both marginal models
(GEE and WGEE) and random-effect models (GLMM). According to the study
protocol, the models will include the fixed categorical effects of treatment, visit,
and treatment-by-visit interaction, as well as the continuous, fixed covariates of
baseline score and baseline score-by-visit interaction. A random intercept will be
included when considering the random-effect models. Analyses are done using
the SAS procedures GENMOD and NLMIXED. Apart from MAR-based analyses,
complete case and LOCF analyses are considered. At the same time, three different
approaches are considered, namely a full longitudinal analysis, an analysis with
focus on the last planned occasion and one with focus on the last measured
occasion.

We fit a generalized estimating equations model, first naively using CC and
LOCF, and then using the profiles “as is” but without weighting. Finally, a weighted
analysis is conducted. Results are summarized in Table 6.5.
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Further, we consider generalized linear mixed effects models, again under CC,
LOCF, and likelihood-based ignorable scenarios. The results are summarized in
Table 6.6. Adaptive Gaussian quadrature with 50 quadrature points is used.

A few observations need to be made. First, the weighted estimating equations
results, being the most general ones, are somewhat different from the others (CC,
LOCF, and ‘naive’ MAR). This underscores that using WGEE is well in place.
Further, the generalized linear mixed model parameters are quite a bit larger in
absolute value than the marginal (GEE) counterparts. This is in line with theory,
given ‘conversion factor’ (6.27) between the marginal and random-effects models,
and given the estimated value for the variance of the random effects.

In terms of conclusions, we can, apart from comparing the results presented in
Tables 6.5 and 6.6, also consider treatment when interest lies in the last planned
occasion and when interest focuses on the last obtained measurements). The
assessment of treatment effect at the last occasion is given in Table 6.7.

We reach the following conclusions. The mixed models lead to a small differ-
ence between CC and MAR, both with non-significant results. The mixed model for
LOCF clearly gives a non-significant result. An endpoint analysis leads to a com-
pletely different picture, with results that are strongly different (significant) as
opposed to the mixed models.

From MAR to Sensitivity Analysis 6.14

In summary, we have seen that likelihood-based inference is valid under MAR,
provided a few mild regularity conditions hold. For example, a linear mixed model
or a generalized linear mixed model fitted to incomplete data is valid, and it is
as simple to conduct as it would be in contexts where data are complete. The
situation is a little different with generalized estimating equations. However, the
mild extension of GEE to weighted GEE comes to the rescue. Indeed, fitting WGEE
only necessitates the construction of a model for the dropout probabilities, given
covariates and previous, observed measurements. This can routinely be done using
logistic regression. Thus, a number of frequently used tools for correlated data are
valid in the important MAR setting. One conclusion from this is that there is little
or no need for the simple methods such as complete case analysis or LOCF. On the
other hand though, one can almost never rule out the possibility of missing data
to be MNAR. This implies that the need may exist to consider MNAR models.

A sensible compromise between blindly shifting to MNAR models or ignoring
them altogether, is to make them a component of a sensitivity analysis. In that
sense, it is important to consider the effect on key parameters. One such route is
to consider a selection model of the Diggle and Kenward (1994) type, and to build
in devices to explore the effect of (small) changes from the posited MAR model.
A further route for sensitivity analysis is to consider pattern-mixture models as
a complement to selection models (Thijs et al. 2002; Michiels et al. 2002). We will
consider those routes in Sects. 6.15 and 6.16.
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Table 6.5. Psychiatric Study. (Weighted) Generalized Estimating Equations: parameter estimates, standard errors (model-based, empirical corrected) and p-values

(model-based, empirical corrected) for each approach

CC (GEE) LOCF (GEE) MAR (GEE) MAR (WGEE)

Est.(S.E.) p-value Est.(S.E.) p-value Est.(S.E.) p-value Est.(S.E.) p-value

intercept 2.11 (1.87; 1.09) (0.260; 0.0528) 2.15 (1.90; 1.17) (0.258; 0.0659) 2.04 (1.89; 1.10) (0.281; 0.0638) 3.75 (1.33; 1.84) (0.0048; 0.0413)

trt A1 −0.36 (1.19; 1.28) (0.762; 0.779) −0.39 (1.18; 1.32) (0.743; 0.770) −0.46 (1.19; 1.30) (0.701; 0.727) −0.12 (0.70; 1.31) (0.870; 0.930)

trt B −0.059 (1.26; 1.44) (0.963; 0.967) −0.16 (1.24; 1.43) (0.899; 0.912) −0.20 (1.25; 1.42) (0.874; 0.889) 0.17 (0.75; 1.35) (0.823; 0.901)

visit 5 −2.43 (1.86; 1.27) (0.190; 0.0558) −3.20 (1.82; 1.31) (0.0791; 0.0145) −3.16 (1.84; 1.30) (0.0856; 0.0150) −4.94 (1.29; 2.07) (0.0001; 0.0168)

visit 6 −4.30 (1.84; 1.45) (0.0194; 0.0031) −4.80 (1.83; 1.48) (0.0086; 0.0012) −4.66 (1.85; 1.49) (0.0119; 0.0018) −5.98 (1.30; 2.20) (< 0.0001; 0.0066)

visit 7 −3.84 (1.80; 1.29) (0.0327; 0.0029) −4.25 (1.78; 1.31) (0.0171; 0.0012) −4.05 (1.81; 1.31) (0.0247; 0.0019) −4.99 (1.28; 1.77) (< 0.0001; 0.0049)

visit 8 −4.64 (1.80; 1.40) (0.0100; 0.0009) −5.15 (1.79; 1.42) (0.0040; 0.0003) −4.98 (1.82; 1.44) (0.0060; 0.0005) −5.90 (1.28; 2.13) (< 0.0001; 0.0056)

visit 9 −4.28 (1.79; 1.44) (0.0167; 0.0029) −4.55 (1.78; 1.47) (0.0103; 0.0019) −4.33 (1.80; 1.50) (0.0165; 0.0038) −4.72 (1.28; 2.28) (0.0002; 0.0389)

visit 10 −4.92 (1.79; 1.29) (0.0059; 0.0001) −4.71 (1.77; 1.31) (0.0077; 0.0003) −4.58 (1.80; 1.33) (0.0108; 0.0006) −4.87 (1.27; 1.99) (0.0001; 0.0141)

visit 11 −4.74 (1.79; 1.41) (0.0080; 0.0008) −4.58 (1.77; 1.40) (0.0095; 0.0011) −4.75 (1.82; 1.46) (0.0091; 0.0012) −5.79 (1.28; 2.03) (< 0.0001; 0.0043)

visit 5 * trt A1 −0.55 (1.19; 0.85) (0.643; 0.517) −0.11 (1.12; 0.96) (0.921; 0.908) −0.15 (1.14; 0.97) (0.899; 0.881) −0.84 (0.68; 1.00) (0.218; 0.402)

visit 5 * trt B −0.27 (1.26; 0.94) (0.829; 0.773) −0.012 (1.18; 1.04) (0.992; 0.991) −0.020 (1.20; 1.06) (0.987; 0.985) −1.37 (0.72; 1.19) (0.0574; 0.248)

visit 6 * trt A1 0.29 (1.15; 1.31) (0.801; 0.825) 0.51 (1.11; 1.31) (0.644; 0.695) 0.54 (1.14; 1.36) (0.634; 0.690) 0.27 (0.67; 1.40) (0.691; 0.848)

visit 6 * trt B 0.15 (1.21; 1.40) (0.902; 0.915) 0.26 (1.16; 1.36) (0.821; 0.847) 0.38 (1.19; 1.42) (0.751; 0.790) −0.11 (0.72; 1.46) (0.874; 0.938)

visit 7 * trt A1 0.47 (1.13; 1.15) (0.680; 0.685) 0.48 (1.10; 1.17) (0.662; 0.682) 0.52 (1.12; 1.22) (0.646; 0.672) −0.14 (0.67; 1.26) (0.831; 0.910)

visit 7 * trt B 0.39 (1.19; 1.23) (0.745; 0.753) 0.41 (1.15; 1.23) (0.724; 0.742) 0.53 (1.18; 1.28) (0.656; 0.681) −0.14 (0.72; 1.29) (0.844; 0.913)

visit 8 * trt A1 0.24 (1.13; 1.32) (0.834; 0.857) 0.57 (1.10; 1.30) (0.601; 0.660) 0.59 (1.13; 1.37) (0.602; 0.670) 0.03 (0.67; 1.38) (0.962; 0.982)

visit 8 * trt B 0.24 (1.19; 1.51) (0.841; 0.874) 0.48 (1.15; 1.45) (0.677; 0.741) 0.57 (1.18; 1.54) (0.627; 0.709) −0.28 (0.72; 1.49) (0.692; 0.849)

visit 9 * trt A1 0.37 (1.13; 1.34) (0.742; 0.783) 0.47 (1.09; 1.32) (0.668; 0.722) 0.46 (1.12; 1.40) (0.684; 0.744) −0.12 (0.67; 1.42) (0.859; 0.934)

visit 9 * trt B 0.21 (1.19; 1.48) (0.861; 0.888) 0.23 (1.15; 1.42) (0.842; 0.873) 0.26 (1.18; 1.51) (0.825; 0.863) −0.51 (0.72; 1.52) (0.478; 0.737)

visit 10 * trt A1 0.11 (1.12; 1.19) (0.922; 0.926) 0.30 (1.09; 1.21) (0.783; 0.804) 0.31 (1.13; 1.29) (0.783; 0.810) −0.49 (0.67; 1.35) (0.462; 0.715)

visit 10 * trt B 0.28 (1.18; 1.32) (0.811; 0.830) 0.32 (1.15; 1.31) (0.782; 0.810) 0.43 (1.18; 1.39) (0.718; 0.759) −0.50 (0.72; 1.42) (0.486; 0.724)

visit 11 * trt A1 −0.70 (1.13; 1.17) (0.535; 0.549) −0.27 (1.09; 1.21) (0.801; 0.820) −0.53 (1.14; 1.27) (0.639; 0.674) −1.31 (0.67; 1.35) (0.0528; 0.334)

visit 11 * trt B −0.052 (1.18; 1.35) (0.965; 0.969) 0.071 (1.14; 1.34) (0.951; 0.958) 0.089 (1.19; 1.43) (0.941; 0.950) −0.76 (0.72; 1.43) (0.291; 0.593)

baseline 0.054 (0.096; 0.10) (0.575; 0.598) 0.077 (0.097; 0.11) (0.427; 0.472) 0.085 (0.097; 0.10) (0.380; 0.407) 0.039 (0.069; 0.15) (0.579; 0.795)

baseline * visit 5 0.10 (0.096; 0.076) (0.284; 0.176) 0.12 (0.095; 0.082) (0.193; 0.133) 0.12 (0.096; 0.082) (0.210; 0.142) 0.24 (0.068; 0.13) (0.0006; 0.073)

baseline * visit 6 0.17 (0.096; 0.11) (0.0830; 0.129) 0.18 (0.095; 0.11) (0.0537; 0.104) 0.17 (0.097; 0.12) (0.0815; 0.149) 0.24 (0.070; 0.17) (0.0005; 0.145)

baseline * visit 7 0.10 (0.092; 0.089) (0.268; 0.249) 0.12 (0.092; 0.093) (0.183; 0.188) 0.10 (0.093; 0.095) (0.281; 0.287) 0.16 (0.067; 0.13) (0.0159; 0.221)

baseline * visit 8 0.15 (0.093; 0.11) (0.105; 0.179) 0.16 (0.092; 0.12) (0.0749; 0.154) 0.14 (0.094; 0.12) (0.127; 0.234) 0.21 (0.068; 0.17) (0.0022; 0.217)

baseline * visit 9 0.11 (0.092; 0.12) (0.213; 0.325) 0.13 (0.091; 0.12) (0.158; 0.275) 0.10 (0.093; 0.13) (0.263; 0.404) 0.13 (0.067; 0.18) (0.0575; 0.476)

baseline * visit 10 0.13 (0.091; 0.096) (0.169; 0.189) 0.11 (0.090; 0.10) (0.228; 0.280) 0.083 (0.093; 0.11) (0.371; 0.434) 0.10 (0.067; 0.15) (0.122; 0.504)

baseline * visit 11 0.13 (0.092; 0.099) (0.163; 0.197) 0.11 (0.090; 0.10) (0.222; 0.288) 0.11 (0.094; 0.11) (0.253; 0.318) 0.16 (0.067; 0.15) (0.0181; 0.293)

� −423.1 −533.0 −465.4 −2042.0
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Table 6.6. Psychiatric Study. Generalized linear mixed effects models under LOCF, CC, and MAR

assumptions

CC LOCF MAR

Est.(S.E.) p-value Est.(S.E.) p-value Est.(S.E.) p-value

Intercept 3.56 (2.77) 0.202 3.68 (2.90) 0.207 3.39 (2.65) 0.203

Trt A1 −0.60 (1.61) 0.711 −0.71 (1.64) 0.664 −0.58 (1.51) 0.699

Trt B −0.13 (1.68) 0.937 −0.27 (1.72) 0.876 −0.16 (1.59) 0.920

Visit 5 −3.69 (2.93) 0.211 −4.96 (2.97) 0.0975 −4.65 (2.85) 0.105

Visit 6 −6.91 (3.00) 0.0232 −7.93 (3.06) 0.0104 −7.26 (2.94) 0.0145

Visit 7 −6.30 (2.92) 0.0332 −7.26 (2.98) 0.0158 −6.52 (2.84) 0.0232

Visit 8 −8.02 (3.00) 0.0086 −9.33 (3.06) 0.0027 −8.46 (2.93) 0.0044

Visit 9 −7.42 (2.95) 0.0135 −8.19 (3.00) 0.0070 −7.29 (2.87) 0.0119

Visit 10 −9.03 (3.01) 0.0034 −9.11 (3.02) 0.0030 −8.18 (2.89) 0.0053

Visit 11 −8.61 (3.01) 0.0050 −8.84 (3.01) 0.0038 −8.47 (2.97) 0.0049

Visit 5 × trt A1 0.052 (1.77) 0.977 0.099 (1.76) 0.955 0.26 (1.70) 0.877

Visit 5 × trt B −0.47 (1.82) 0.798 −0.19 (1.78) 0.914 −0.21 (1.71) 0.902

Visit 6 × trt A1 0.23 (1.74) 0.897 0.54 (1.74) 0.758 0.63 (1.68) 0.707

Visit 6 × trt B 0.46 (1.73) 0.791 0.35 (1.73) 0.838 0.50 (1.67) 0.763

Visit 7 × trt A1 0.45 (1.74) 0.796 0.37 (1.74) 0.832 0.50 (1.69) 0.769

Visit 7 × trt B 0.18 (1.73) 0.918 0.008 (1.73) 0.996 0.064 (1.67) 0.969

Visit 8 × trt A1 −1.16 (1.74) 0.505 −0.62 (1.68) 0.712 −0.63 (1.62) 0.698

Visit 8 × trt B −0.24 (1.74) 0.893 −0.23 (1.73) 0.895 −0.15 (1.71) 0.928

Visit 9 × trt A1 0.38 (1.65) 0.819 0.29 (1.64) 0.861 0.30 (1.58) 0.850

Visit 9 × trt B 0.10 (1.69) 0.952 0.38 (1.67) 0.819 0.38 (1.61) 0.813

Visit 10 × trt A1 0.25 (1.66) 0.882 0.30 (1.64) 0.854 0.23 (1.59) 0.887

Visit 10 × trt B 0.006 (1.67) 0.997 0.54 (1.65) 0.742 0.48 (1.59) 0.762

Visit 11 × trt A1 −1.63 (1.68) 0.333 −1.14 (1.65) 0.491 −1.53 (1.64) 0.354

Visit 11 × trt B −0.092 (1.67) 0.956 0.15 (1.65) 0.929 0.096 (1.61) 0.953

Baseline 0.098 (0.13) 0.469 0.17 (0.14) 0.231 0.14 (0.13) 0.295

Baseline × visit 5 0.16 (0.15) 0.269 0.20 (0.15) 0.180 0.19 (0.14) 0.194

Baseline × visit 6 0.28 (0.15) 0.0628 0.32 (0.15) 0.0386 0.28 (0.15) 0.0596

Baseline × visit 7 0.18 (0.14) 0.201 0.23 (0.15) 0.122 0.19 (0.14) 0.190

Baseline × visit 8 0.28 (0.15) 0.0559 0.32 (0.15) 0.0329 0.28 (0.15) 0.0594

Baseline × visit 9 0.22 (0.14) 0.127 0.26 (0.15) 0.0805 0.21 (0.14) 0.145

Baseline × visit 10 0.26 (0.14) 0.0781 0.24 (0.15) 0.101 0.19 (0.14) 0.192

Baseline × visit 11 0.26 (0.15) 0.0755 0.25 (0.15) 0.0912 0.23 (0.15) 0.112

σ 2.54 (0.32) < 0.0001 3.12 (0.37) < 0.0001 2.52 (0.30) < 0.0001

−2� 654.8 769.7 720.9

Selection Models and Local Influence 6.15

Let us return to the Diggle and Kenward (1994) selection model, as described in
Sect. 6.6.1 and consider dropout model (6.9). When ω equals zero, the dropout
model is random, and all parameters can be estimated using standard software
since the measurement model for which we use a linear mixed model and the
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Table 6.7. Psychiatric Study. Analysis at endpoint. p-values are reported (‘mixed’ refers to the

assessment of treatment at the last visit based on a generalized linear mixed model)

Method Model p-value

CC mixed 0.0614

Pearson’s Chi-squared Test 0.0350

Fisher’s Exact Test 0.0350

LOCF mixed 0.1067

Pearson’s Chi-squared Test 0.0384

Fisher’s Exact Test 0.0405

MAR mixed 0.0677

dropout model, assumed to follow a logistic regression, can then be fitted sepa-
rately. If ω ≠ 0, the dropout process is assumed to be non-random.

Model (6.9) is now used to construct the dropout process:

f (di|yi, ψ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ni∏
j=2

[
1 − g

(
hij, yij

)]
for a complete sequence

d−1∏
j=2

[
1 − g

(
hij, yij

)]
g
(
hid, yid

)
for a dropout .

(6.29)

Let us now shift attention to sensitivity and influence analysis issues. Whereas
a global influence approach is based on case-deletion, a local influence based
sensitivity assessment of the relevant quantities, such as treatment effect or time
evolution parameters, with respect to assumptions about the dropout model is
based on the following perturbed version of (6.9):

logit
(
g
(
hij, yij

))
= logit

[
pr
(
Di = j|Di ≥ j, yi

)]
= hijψ + ωiyij , (6.30)

(i = 1, … , N), in which different subjects give different weights to the response
at time tij to predict dropout at time tij. If all ωi equal zero, the model reduces to
a MAR model. Hence (6.30) can be seen as an extension of the MAR model, which
allows some individuals to drop out in a “less random” way (|ωi| large) than others
(|ωi| small). It has to be noted that, even when ωi is large, we still cannot conclude
that the dropout model for these subjects is non-random. Rather, it is a way of
pointing to subjects which, due to their strong influence, are able to distort the
model parameters such that they can produce, for example, a dropout mechanism
which is seemingly non-random. In reality, many different characteristics of such
an individual’s profile might be responsible for this effect. As mentioned earlier,
such sensitivity has been alluded to by many authors, such as Laird (1994) and
Rubin (1994).

Cook (1986) suggests that more confidence can be put in a model which is
relatively stable under small modifications. The best known perturbation schemes
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are based on case-deletion (Cook and Weisberg 1982; Chatterjee and Hadi 1988) in
which the effect is studied of completely removing cases from the analysis. They
were introduced by Cook (1977, 1979) for the linear regression context. Denote the
log-likelihood function, corresponding to measurement model (6.2) and dropout
model (6.9) by

�(γ) =
N∑

i=1

�i(γ) , (6.31)

in which �i(γ) is the contribution of the ith individual to the log-likelihood, and
where γ = (θ, ψ, ω) is the s-dimensional vector, grouping the parameters of the
measurement model and the dropout model. Further, we denote by

�(−i)(γ) (6.32)

the log-likelihood function, where the contribution of the ith subject has been
removed. Cook’s distances are based on measuring the discrepancy between either
the maximized likelihoods (6.31) and (6.32) or (subsets of) the estimated parameter
vectors γ̂ and γ̂ (−i), with obvious notation. Precisely, we will consider both

CD1i = 2
(
�̂ − �̂(−i)

)
(6.33)

as well as

CD2i(γ) = 2
(̂
γ − γ̂ (−i)

)′
L̈−1

(̂
γ − γ̂ (−i)

)
, (6.34)

in which L̈ is the matrix of all second-order derivatives of �(γ) with respect to γ ,
evaluated at γ = γ̂ . Formulation (6.34) easily allows to consider the global influ-
ence in a subvector of γ , such as the dropout parameters ψ, or the non-random
parameter ω. This will be indicated using notation of the form CD2i(ψ), CD2i(ω),
etc.

In linear regression, global influence is conceptually simple, computationally
straightforward and well studied. The latter two of these features do not carry over
to more general settings. To overcome these limitations, local influence methods
have been suggested. The principle is to investigate how the results of an analysis
are changed under infinitesimal perturbations of the model. In the framework
of the linear mixed model Beckman et al. (1987) used local influence to assess
the effect of perturbing the error variances, the random-effects variances and the
response vector. In the same context, Lesaffre and Verbeke (1998) have shown that
the local influence approach is also useful for the detection of influential subjects
in a longitudinal data analysis. Moreover, since the resulting influence diagnostics
can be expressed analytically, they often can be decomposed in interpretable
components, which yield additional insights in the reasons why some subjects are
more influential than others.

Verbekeet al. (2001) studied the influence thenon-randomnessofdropout exerts
on the model parameters. Let us briefly sketch the principles of local influence and
then apply them to our MNAR problem.
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We denote the log-likelihood function corresponding to model (6.30) by

�(γ|ω) =
N∑

i=1

�i(γ|ωi) , (6.35)

in which �i(γ|ωi) is the contribution of the ith individual to the log-likelihood,
and where γ = (θ, ψ) is the s-dimensional vector, grouping the parameters of
the measurement model and the dropout model, not including the N × 1 vector
ω = (ω1, ω2, … , ωN )′ ofweightsdefining theperturbationof theMARmodel.Let γ̂
be the maximum likelihood estimator for γ , obtained by maximizing �(γ|ω0), and
let γ̂ω denote the maximum likelihood estimator for γ under �(γ|ω). Cook (1986)
proposed to measure the distance between γ̂ω and γ̂ by the so-called likelihood
displacement, defined by LD(ω) = 2

(
�(̂γ|ω0) − �(̂γω|ω)

)
. Since this quantity can

only be depicted when N = 2, Cook (1986) proposed to look at local influence, i.e.,
at the normal curvatures Ch of ξ(ω) in ω0, in the direction of some N dimensional
vector h of unit length. It can be shown that a general form is given by

Ch(θ) = −2h′
[

∂2�iω

∂θ∂ωi

∣∣∣∣
ωi=0

]′
L̈−1(θ)

[
∂2�iω

∂θ∂ωi

∣∣∣∣
ωi=0

]
h

Ch(ψ) = −2h′
[

∂2�iω

∂ψ∂ωi

∣∣∣∣
ωi=0

]′
L̈−1(ψ)

[
∂2�iω

∂ψ∂ωi

∣∣∣∣
ωi=0

]
h ,

evaluated at γ = γ̂ , where indeed the influence for the measurement and dropout
modelparameters split, since the secondderivativematrixof the log-likelihood, L̈ is
block-diagonal with blocks L̈(θ) and L̈(ψ). Verbeke et al. (2001) have decomposed
local influence into meaningful and interpretable components.

Pattern-Mixture Modeling Approach6.16

Fitting pattern-mixture models (PMM) can be approached in several ways. It
is important to decide whether pattern-mixture and selection modeling are to
be contrasted with one another or rather the pattern-mixture modeling is the
central focus. In the latter case, it is natural to conduct an analysis, and preferably
a sensitivity analysis, within the pattern-mixture family. We will explicitly consider
three strategies to deal with under-identification.

Strategy 1. Little (1993, 1994) advocated the use of identifying restrictions and
presented a number of examples. One of those, ACMV (available case missing
values), is the natural counterpart of MAR in the PMM framework.

Strategy 2. As opposed to identifying restrictions, model simplification can be
done to identify the parameters. Thijs et al. (2002) discussed several sub-strategies
in detail.
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While the second strategy is computationally simple, it is important to note that
there is a price to pay. Indeed, simplified models, qualified as “assumption rich”
by Sheiner et al. (1997), are also making untestable assumptions, just as in the
selection model case. In the identifying restrictions setting on the other hand, the
assumptions are clear from the start.

Pattern-mixture models do not always automatically provide estimates and
standarderrorsofmarginalquantitiesof interest, suchasoverall treatment effect or
overall time trend.HoganandLaird (1997)providedaway toderive selectionmodel
quantities from the pattern-mixture model. An example of such a marginalization
is given in Sect. 6.17.

Identifying Restriction Strategies 6.16.1

In line with the results obtained by Molenberghs et al. (1998), we restrict attention
to monotone patterns. In general, let us assume we have t = 1, … , T dropout
patterns where the dropout indicator, introduced earlier, is d = t + 1. For pattern t,
the complete data density is given by

ft(y1, … , yT) = ft(y1, … , yt)ft(yt+1, … , yT |y1, … , yt) . (6.36)

The first factor is clearly identified from the observed data, while the second factor
is not. It is assumed that the first factor is known or, more realistically, modeled
using the observed data. Then, identifying restrictions are applied in order to
identify the second component.

While, in principle, completely arbitrary restrictions can be used by means
of any valid density function over the appropriate support, strategies which relate
back to theobserveddatadeserveprivileged interest.Onecanbase identificationon
all patterns for which a given component, ys say, is identified. A general expression
for this is

ft(ys|y1, … , ys−1) =
T∑

j=s

ωsjfj(ys|y1, … , ys−1) , s = t + 1, … , T . (6.37)

We will use ωs as shorthand for the set of ωsj’s used. Every ωs which sums up to
one provides a valid identification scheme.

Let us incorporate (6.37) into (6.36):

ft(y1, … , yT) = ft(y1, … , yt)
T−t−1∏

s=0

⎡⎣ T∑
j=T−s

ωT−s,jfj(yT−s|y1, … , yT−s−1)

⎤⎦ . (6.38)

Three special but important cases are complete case missing values (CCMV), neigh-
boring case missing values (NCMV) and available case missing values (ACMV).
Little (1993) introduced CCMV, in which case unavailable information is always
borrowed from the completers. NCMV uses the nearest identified pattern. ACMV
is the counterpart of MAR in the pattern-mixture context and uses all available
patterns. More details are given in Appendix 6.A.1. It is further of interest to con-
sider specific sub-families of the MNAR family. In the selection model context,
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(6.9) restricts attention to a class of mechanisms where dropout may depend on
the current, possibly unobserved, measurement, but not on future measurements.
The entire class of such models will be termed non-future dependent (MNFD).
While they are natural and easy to consider in a selection model context, there
exist important examples of mechanisms that do not satisfy MNFD, such as shared-
parameter models (Wu and Bailey 1989; Little 1995).

Kenward et al. (2003) have shown there is a counterpart to MNFD in the pattern-
mixture context: non-future dependent missing value restrictions (NFMV). NFMV
is not a single set of restrictions, but rather leaves one conditional distribution per
incomplete pattern unidentified. Kenward et al. (2003) have shown that, for longi-
tudinal data with dropouts, MNFD and NFMV are equivalent. See Appendix 6.A.1
for further details.

How to Use Restrictions?6.16.2

We will briefly outline a general strategy. Several points which require further
specification will be discussed in what follows. (1) Fit a model to the pattern-
specific identifiable densities: ft(y1, … , yt). This results in a parameter estimate, γ̂ t .
(2) Select an identification method of choice. (3) Using this identification method,
determine the conditional distributions of the unobserved outcomes, given the
observed ones:

ft(yt+1, … , yT |y1, … , yt) . (6.39)

(4) Using standard multiple imputation methodology (Rubin 1987; Schafer 1997;
Verbeke and Molenberghs 2000), draw multiple imputations for the unobserved
components, given the observed outcomes and the correct pattern-specific den-
sity (6.39). (5) Analyse the multiply-imputed sets of data using the method of
choice. This can be another pattern-mixture model, but also a selection model or
any other desired model. (6) Inferences can be conducted in the standard multiple
imputation way (Rubin 1987; Schafer 1997; Verbeke and Molenberghs 2000).

We have seen how general identifying restrictions (6.37), with CCMV, NCMV,
and ACMV as special cases, lead to the conditional densities for the unobserved
components, given the observed ones. This came down to deriving expressions
for ω, such as in (6.42) for ACMV (see Appendix 6.A.1). In addition, we need to
draw imputations from the conditional densities.

Let us proceed by studying the special case of three measurements first. To
this end, we consider an identification scheme and we start off by avoiding the
specification of a parametric form for these densities. The following steps are re-
quired: (1) Estimate the parameters of the identifiable densities: from pattern 3,
f3(y1, y2, y3); from pattern 2, f2(y1, y2); and from pattern 1, f1(y1). (2) To properly
account for the uncertainty with which the parameters are estimated, we need to
draw from them as is customarily done in multiple imputation. It will be assumed
that in all densities from which we draw, this parameter vector is used. (3) For
pattern 2. Given an observation in this pattern, with observed values (y1, y2), cal-
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culate the conditional density f3(y3|y1, y2) and draw from it. (4) For pattern 1. We
now have to distinguish three substeps.
1. There is now only one ω involved: for pattern 1, in order to determine f1(y2|y1),

as a combination of f2(y2|y1) and f3(y2|y1). Every ω in the unit interval is valid.
Specific cases are: for NCMV, ω = 1; for CCMV, ω = 0; for ACMV, ω identifies
a linear combination across patterns. Note that, given y1, this is a constant,
depending on α2 and α3.
In order to pick one of the two components f2 or f3, we need to generate
a random uniform variate, U say, except in the boundary NCMV and CCMV
cases.

2. If U ≤ ω, calculate f2(y2|y1) and draw from it. Otherwise, do the same based
on f3(y2|y1).

3. Given the observed y1 and given y2 which has just been drawn, calculate the
conditional density f3(y3|y1, y2) and draw from it.

All steps but the first one have to be repeated M times, to obtain the same number
of imputed datasets. Inference then proceeds as outlined by Rubin (1987), Schafer
(1997) and Verbeke and Molenberghs (2000).

In case the observed densities are assumed to be normal, the corresponding
conditional densities are particularly straightforward.

In several cases, the conditional density is a mixture of normal densities. Then
an additional and straightforward draw from the components of the mixture is
necessary.

Pattern-Mixture Sensitivity Analysis
for the Vorozole Study 6.17

Models Based on Identifying Restrictions 6.17.1

Consider those subjectswith1,2, and3 followupmeasurements, respectively.Thus,
190 subjects are included into the analysis, with subsample sizes 35, 86, and 69, re-
spectively. The corresponding pattern probabilities are π̂ = (0.184, 0.453, 0.363)′.
The asymptotic variance-covariance matrix can be derived without difficulty. We
will now apply each of the three strategies of Sect. 6.16. We recognize a full analysis,
using all patterns, is both interesting and feasible.

The patients in this study drop out mainly because they relapse or die. This in
itself poses specific challenges that can be addressed within the pattern-mixture
framework much easier than in the selection model framework. Indeed, if one
is prepared to make the assumption that a patient who dies is representative of
a slice of the population with the same characteristics, and with a certain prob-
ability to die, then identifying restrictions (i.e., extrapolation beyond the time
of death) is meaningful. In case one does not want to extrapolate beyond the
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moment of death, one can restrict modeling to the observed data only. An in-
termediate approach would be to allow for extrapolation beyond relapse and not
beyond death. (For the current dataset, the information needed in order to do so
is unavailable.) Note that, while this may seem a disadvantage of pattern-mixture
models, we believe it is an asset, because this framework not only forces one to
think about such issues, it also provides a modeling solution, no matter which
point of view is adopted. This contrasts with selection models where extrapo-
lation is always done, be it explicitly by modeling the profile, averaged over all
patterns.

In order to apply the identifying restriction in Strategy 1, one first needs to fit
a model to the observed data. We will opt for a simple model, with parameters
specific to each pattern. Such a model can be seen as belonging to the second
modeling strategy.

We include time and time × time effects, as well as their interactions with
treatment. Further, time by baseline value interaction is included as well. While
we agree such a choice may seem controversial, it is consistent with the analysis
plan and therefore we have opted to leave this term in. Alternatively, one could
either remove this term or model raw scores rather than change scores. All effects
interact with time, in order to force profiles to pass through the origin, since we
are studying change versus baseline. An unstructured 3 × 3 covariance matrix is
assumed for each pattern.

Parameter estimates are presented in Table 6.8, in the column denoted with
“initial”. Of course, not all parameters are estimable. This holds for the variance
components, where in patterns 1 and 2 the upper 1 × 1 block and the upper 2 × 2
block are identified, respectively. In the first pattern, the effects in time × time
are unidentified. The linear effects are identified by virtue of the absence of an
intercept term.

Let us present this and later models graphically. Since there is one binary
(treatmentarm)andonecontinuouscovariate (baseline levelofFLICscore), insight
can be obtained by plotting the models for selected values of baseline. Precisely,
we chose the average value (Fig. 6.16). Bold line type is used for the range over
which data are obtained for a particular pattern and extrapolation is indicated
using thinner line type. Note that the extrapolation can have surprising and even
questionable effects, even with these relatively simple models.

The initial model and its graphical representation motivate to consider iden-
tifying restriction models. Using the methodology detailed in Sect. 4, a GAUSS
macro and a SAS macro, were written to conduct the multiple imputation, to fit the
model to the imputed datasets, and to combine the results into a single inference.
Results are presented in Table 6.8, for each of the three types of restrictions (CCMV,
NCMV, ACMV). For patterns 1 and 2 there is some variability in the parameter
estimates across the three strategies, although this is often consistent with random
variation (see the standard errors). Since the data in pattern 3 are complete, there
is of course no difference between the initial model parameters and those obtained
with each of the identifying restriction techniques.
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Table 6.8. Vorozole Study. Multiple imputation estimates and standard errors for CCMV, NCMV, and

ACMV restrictions

Effect initial CCMV NCMV ACMV

Pattern 1:

Time 3.40(13.94) 13.21(15.91) 7.56(16.45) 4.43(18.78)
Time×base −0.11(0.13) −0.16(0.16) −0.14(0.16) −0.11(0.17)
Time×treat 0.33(3.91) −2.09(2.19) −1.20(1.93) −0.41(2.52)
Time×time −0.84(4.21) −2.12(4.24) −0.70(4.22)
Time×time×treat 0.01(0.04) 0.03(0.04) 0.02(0.04)
σ11 131.09(31.34) 151.91(42.34) 134.54(32.85) 137.33(34.18)
σ12 59.84(40.46) 119.76(40.38) 97.86(38.65)
σ22 201.54(65.38) 257.07(86.05) 201.87(80.02)
σ13 55.12(58.03) 49.88(44.16) 61.87(43.22)
σ23 84.99(48.54) 99.97(57.47) 110.42(87.95)
σ33 245.06(75.56) 241.99(79.79) 286.16(117.90)

Pattern 2:

Time 53.85(14.12) 29.78(10.43) 33.74(11.11) 28.69(11.37)
Time×base −0.46(0.12) −0.29(0.09) −0.33(0.10) −0.29(0.10)
Time×treat −0.95(1.86) −1.68(1.21) −1.56(2.47) −2.12(1.36)
Time×time −18.91(6.36) −4.45(2.87) −7.00(3.80) −4.22(4.20)
Time×time×treat 0.15(0.05) 0.04(0.02) 0.07(0.03) 0.05(0.04)
σ11 170.77(26.14) 175.59(27.53) 176.49(27.65) 177.86(28.19)
σ12 151.84(29.19) 147.14(29.39) 149.05(29.77) 146.98(29.63)
σ22 292.32(44.61) 297.38(46.04) 299.40(47.22) 297.39(46.04)
σ13 57.22(37.96) 89.10(34.07) 99.18(35.07)
σ23 71.58(36.73) 107.62(47.59) 166.64(66.45)
σ33 212.68(101.31) 264.57(76.73) 300.78(77.97)

Pattern 3:

Time 29.91(9.08) 29.91(9.08) 29.91(9.08) 29.91(9.08)
Time×base −0.26(0.08) −0.26(0.08) −0.26(0.08) −0.26(0.08)
Time×treat 0.82(0.95) 0.82(0.95) 0.82(0.95) 0.82(0.95)
Time×time −6.42(2.23) −6.42(2.23) −6.42(2.23) −6.42(2.23)
Time×time×treat 0.05(0.02) 0.05(0.02) 0.05(0.02) 0.05(0.02)
σ11 206.73(35.86) 206.73(35.86) 206.73(35.86) 206.73(35.86)
σ12 96.97(26.57) 96.97(26.57) 96.97(26.57) 96.97(26.57)
σ22 174.12(31.10) 174.12(31.10) 174.12(31.10) 174.12(31.10)
σ13 87.38(30.66) 87.38(30.66) 87.38(30.66) 87.38(30.66)
σ23 91.66(28.86) 91.66(28.86) 91.66(28.86) 91.66(28.86)
σ33 262.16(44.70) 262.16(44.70) 262.16(44.70) 262.16(44.70)
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Figure 6.16. Vorozole Study. For average level of baseline value 113.57, strategies 1 (ACMV), 2a, and

2b are shown. The bold portion of the curves runs from baseline until the last obtained meas-

urement, and the extrapolated piece is shown in thin type. The dashed line refers to megestrol

acetate; the solid line is the Vorozole arm

In all of the plots, the same mean response scale was retained, illustrating that
the identifying restriction strategies extrapolate much closer to the observed data
mean responses. There are some differences among the identifying restriction
methods, but this is not graphically represented here. This conclusion needs to
be considered carefully. Since these patients drop out mainly because they relapse
or die, it seems unlikely to expect a rise in quality of life. This consideration is
evidence against CCMV, where missing information is always borrowed from the
complete group, i.e., the one with the best prognosis. ACMV, which compromises
between all strategies may be more realistic, but here NCMV is likely to be better
since information is borrowed from the nearest pattern.

Nevertheless, the NCMV prediction looks more plausible since the worst base-
line value shows declining profiles, whereas the best one leaves room for improve-
ment. Should one want to explore the effect of assumptions beyond the range
of (6.37), one can allow ωs to include components outside of the unit interval. In
that situation, one has to ensure that the resulting density is still non-negative over
its entire support.

Strategy 2. As opposed to identifying restrictions, model simplification can be
done in order to identify the parameters. The advantage is that the number of
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parameters decreases, which is desirable since the length of the parameter vector
is a general issue with pattern-mixture models. Indeed, Hogan and Laird (1997)
noted that in order to estimate the large number of parameters in general pattern-
mixture models, one has to make the awkward requirement that each dropout
pattern occurs sufficiently often. Broadly, we distinguish between two types of
simplifications.

Strategy 2a. Trends can be restricted to functional forms supported by the infor-
mation available within a pattern. For example, a linear or quadratic time trend
is easily extrapolated beyond the last obtained measurement. One only needs to
provide an ad hoc solution for the first or the first few patterns. In order to fit such
models, one simply has to carry out a model building exercise within each of the
patterns separately.

Strategy 2b. Next, one can let the parameters vary across patterns in a con-
trolled parametric way. Thus, rather than estimating a separate time trend within
each pattern, one could for example assume that the time evolution within a pat-
tern is unstructured, but parallel across patterns. This is effectuated by treating
pattern as a covariate. The available data can be used to assess whether such
simplifications are supported within the time ranges for which there is informa-
tion. An initial model is considered with the following effects: time, the interac-
tion between time and treatment, baseline value, pattern, treatment × baseline,
treatment × pattern, and baseline × pattern. Further time × time is included, as
well as its interaction with baseline, treatment, and pattern. No interactions be-
yond the third order are included, and unstructured covariance matrix is com-
mon to all three patterns. This implies that the current model is not equiva-
lent to a Strategy 1 model, where all parameters are pattern-specific. In order
to achieve this goal, every effect would have to be made pattern-dependent.
A graphical representation is given in Fig. 6.16. Early dropouts decline imme-
diately, whereas those who stay longer in the study first show a rise and then
decline thereafter. However, this is less pronounced for higher baseline values. On
the other hand, the extrapolation based on the fitted model is very unrealistic,
in the sense that for the early dropout sharp rises are predicted, which is totally
implausible.
These findings suggest, again, that a more careful reflection on the extrapolation
method is required. This is very well possible in a pattern-mixture context, but
then the first strategy, rather than strategy 2a and 2b, has to be used.

In order to test for treatment effect, one can follow two strategies. In the
first one, the focus is on the marginal treatment effect, i.e., one calculates the
marginal treatment effect from the pattern-specific effects. Delta method ar-
guments complete the procedure. We obtain p values of 0.801 (CCMV), 0.900
(NCMV), and 0.828 (ACMV). Alternatively, one can consider a 3 d.f. test, stratified
for pattern. The resulting p values are 0.988 (CCMV), 0.995 (NCMV), and 0.993
(ACMV).
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Conclusions6.18

In the Vorozole study, we have concentrated on total FLIC (i.e., change of the score
versus baseline), a quality of life score measured in a multi-centric two arm study
in postmenopausal women suffering from metastatic breast cancer. Since virtually
all patients were followed up until disease progression or death, the amount of
dropout is large. A very large group of patients drops out after just a couple of
months.

It has been shown that the use of simple methods, such as complete case analysis
or last observation carried forward, while historically very popular, carry major
drawbacks and can and ought to be replaced with more advanced methods. One
such method is a likelihood-based ignorable analysis. It has a broad basis in the
sense that it is valid under MAR and compatible with general strategies such as
linear or generalized linear mixed models. In the case of generalized estimating
equations, a reasonably straightforward modification is needed in order to make
the method suitable for the MAR setting.

While classically typical selection models are fitted, pattern-mixture models
can be seen as a viable alternative. We analysed the data using both, leading to
a sensitivity analysis. More confidence in the results can be gained if both models
lead to similar conclusions. This is useful, since more general mechanisms than
MAR are hard to exclude with certainty.

In the Vorozole study, the average profile in the selection model depends on
the baseline value, as well as on time. The latter effect is mildly quadratic. There
is no evidence for a treatment difference. However, it should be noted that the
average profile found is the one that would have been observed, had no subjects
dropped out, and under the additional assumption that the MAR assumption is
correct. Fitting non-random dropout models, in the sense of Diggle and Kenward
(1994) is possible, but computationally difficult for a fairly large trial like this
one. A separate study of the dropout mechanism revealed that dropout increases
with three elements: (1) an unfavourable baseline score, (2) an unfavourable value
at the previous month, as well as (3) an unfavourable change in value from the
penultimate to the last obtained value.

A pattern-mixture model is fitted by allowing at first a completely separate
parameter vector for each observed dropout pattern, which is then simplified by
using standard model selection procedures, by considering whether effects are
common to all patterns. A first pattern-mixture model features a common treat-
ment effect, of which the assessment is then straightforward. A second model
includes a separate treatment effect for each dropout pattern. This leads to two
distinct tests. The first one tests for the whole treatment vector to be zero. The
second one first calculates the marginal treatment effect from the vector of ef-
fects, by composing a weighted sum, where the weights are the multinomially
estimated probabilities of the various patterns. In all cases, there is no treat-
ment effect. However, a graphical display of the fitted profiles per pattern is
enlightening, since it clearly confirms the trend detected in the selection mod-
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els, that patients tend to drop out when their quality of life score is declining.
Since this feature is usually coupled to an imminent progression of the disease or
to death, it should not come as a surprise. An important advantage of pattern-
mixture models is that fitting them is more straightforward than non-random
selection models. The additional calculations needed for the marginal treatment
effect and its associated precision can be done straightforwardly using the delta
method.

Further, we have illustrated three distinct strategies to fit pattern-mixture mod-
els. In this way, we have brought together several existing practices. Little (1993,
1994) has proposed identifying restrictions, which we here formalized using the
connection with MAR and multiple imputation. Strategies 2a and 2b refer to fitting
a model per pattern and using pattern as a covariate.

By contrasting these strategies on a single set of data, one obtains a range of
conclusions rather than a single one, which provides insight into the sensitivity
to the assumptions made. Especially with the identifying restrictions, one has to
be very explicit about the assumptions and moreover this approach offers the
possibility to consider several forms of restrictions. Special attention should go to
the ACMV restrictions, since they are the MAR counterpart within the pattern-
mixture context.

In addition, a comparison between the selection and pattern-mixture modeling
approaches is useful to obtain additional insight into the data and|or to assess
sensitivity.

The identifying restrictions strategy provides further opportunity for sensi-
tivity analysis. Indeed, since CCMV and NCMV are extremes for the ωs vec-
tor in (6.37), it is very natural to consider the idea of ranges in the allowable
space of ωs. Clearly, any ωs which consists of non-negative elements that sum
to one is allowable, but also the idea of extrapolation could be useful, where
negative components are allowed, given they provide valid conditional densi-
ties.

Webelieve that our approach canplay auseful role, as amemberof a collectionof
sensitivity tools. Of course, a sensitivity analysis can be conducted within different
frameworks, and there are timeswhere the settingwill determinewhich framework
is the more appropriate one (for example Bayesian or frequentist), in conjunction
with technical and computational considerations. Draper (1995) has considered
ways of dealing with uncertainty in the very natural Bayesian framework and
developments in the missing value setting are ongoing. A thorough comparison
between the various frameworks will be interesting and worth undertaking in the
future.
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Appendix

Pattern-Mixture Modelling6.A

Identifying Restriction Strategies6.A.1

Let us consider three special but important cases. Little (1993) proposes CCMV
(complete case missing values) which uses the following identification:

ft(ys|y1, … , ys−1) = fT(ys|y1, … , ys−1) , s = t + 1, … , T . (6.40)

In other words, information which is unavailable is always borrowed from the
completers. Alternatively, the nearest identified pattern can be used:

ft(ys|y1, … , ys−1) = fs(ys|y1, … , ys−1) , s = t + 1, … , T . (6.41)

We will refer to these restrictions as neighboring case missing values or NCMV.
The third special case of (6.37) will be ACMV. Thus, ACMV is reserved for the

counterpart of MAR in the PMM context. The corresponding ωs vectors can be
shown to have components:

ωsj =
αjfj(y1, … , ys−1)∑T
�=s α�f�(y1, … , ys−1)

, (6.42)

where αj is the fraction of observations in pattern j (Molenberghs et al. 1998).
This MAR–ACMV link connects the selection and pattern-mixture families.

It is further of interest to consider specific sub-families of the MNAR family. In
the selection model context, (6.9) restricts attention to a class of mechanisms
where dropout may depend on the current, possibly unobserved, measurement,
but not on future measurements. The entire class of such models will be termed
non-future dependent (MNFD). While they are natural and easy to consider in
a selection model context, there exist important examples of mechanisms that do
not satisfy MNFD, such as shared-parameter models (Wu and Bailey 1989; Little
1995).

Kenward et al. (2003) have shown there is a counterpart to MNFD in the pattern-
mixture context. The MNFD selection models obviously satisfy

f (r = t|y1, … , yT) = f (r = t|y1, … , yt+1) . (6.43)

Within the PMM framework, we define non-future dependent missing value re-
strictions (NFMV) as follows:

∀t ≥ 2 , ∀j < t − 1 : f (yt |y1, … , yt−1, r = j) = f (yt |y1, … , yt−1, r ≥ t − 1) . (6.44)
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NFMV is not a single set of restrictions, but rather leaves one conditional distri-
bution per incomplete pattern unidentified:

f (yt+1|y1, … , yt , r = t) . (6.45)

In other words, the distribution of the “current” unobserved measurement, given
the previous ones, is unconstrained. Note that (6.44) excludes such mechanisms
as CCMV and NCMV. Kenward et al. (2003) have shown that, for longitudinal data
with dropouts, MNFD and NFMV are equivalent.

For pattern t, the complete data density is given by

ft(y1, … , yT)

= ft(y1, … , yt)ft(yt+1|y1, … , yt)ft(yt+2, … , yT |y1, … , yt+1) . (6.46)

It is assumed that the first factor is known or, more realistically, modelled using the
observed data. Then, identifying restrictions are applied in order to identify the
second and third components. First, from the data, estimate ft(y1, … , yt). Second,
the user has full freedom to choose

ft(yt+1|y1, … , yt) . (6.47)

Substantive considerations can be used to identify this density. Or a family of
densities can be considered by way of sensitivity analysis. Third, using (6.44), the
densities ft(yj|y1, … , yj−1), (j ≥ t + 2) are identified. This identification involves not
only the patterns for which yj is observed, but also the pattern for which yj is the
current, the first unobserved measurement.

Two obvious mechanisms, within the MNFD family but outside MAR, are FD1,
i.e., choose (6.47) according to CCMV, and FD2, i.e., choose (6.47) according to
NCMV. FD1 and FD2 are strictly different from CCMV and NCMV.
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Introduction7.1

The use of meta-analyses in order to synthesise the evidence from epidemiolog-
ical studies has become more and more popular recently. It has been estimated
by Egger et al. (1998) that from articles retrieved by MEDLINE with the medi-
cal subject heading (MeSH) term “meta-analysis” some 33% reported results of
a meta-analysis from randomised clinical trials and nearly the same proportion
(27%) were from observational studies, including 12% papers in which the aetiol-
ogy of a disease was investigated. The remaining papers include methodological
publications or review articles. Reasons for the popularity of meta-analyses are the
growing information in the scientific literature and the need of timely decisions
for risk assessment or in public health. While methods for meta-analyses in order
to summarise or synthesise evidence from randomised controlled clinical trials
have been continuously developed during the last years, and methods are now
summarised in several text books for example Sutton et al. (2000), Whitehead
(2002) and in a handbook by Egger et al. (2001), Dickersin (2002) argued that
statistical methods for meta-analyses of epidemiological studies are still behind
in comparison to the progress that has been made for randomised clinical trials.
The use of meta-analyses for epidemiological research caused many controversial
discussions, see for example Blettner et al. (1999), Berlin (1995), Greenland (1994),
Feinstein (1995), Olkin (1994), Shapiro (1994a,b) or Weed (1997) for a detailed
overview of the arguments. The most prominent arguments against meta-analyses
are the fundamental issues of confounding, selection bias, as well as the large
variety and heterogeneity of study designs and data collection procedures in epi-
demiological research. Despite these controversies, results from meta-analyses are
often cited and used for decisions. They are often seen as the fundamentals for risk
assessment. They are also performed to summarise the current state of knowledge
often prior to designing new studies.

This chapter will first describe reasons for meta-analyses in epidemiological
research and then illustrate how to perform a meta-analysis with the focus on
meta-analysis of published data.

Different Types of Overviews7.2

Approaches for summarising evidence include four different types of overviews:
first, traditional narrative reviews that provide a qualitative but not a quantitative
assessment of published results. Methods and guidelines for reviews have been
recently published by Weed (1997).

Second, meta-analyses from literature (MAL) which are generally performed
from freely available publications without the need of co-operation and without
agreement of the authors from the original studies. They are comparable to a nar-
rative review in many respects but include quantitative estimate(s) of the effect of
interest. One recent example is a meta-analysis by Zeeger et al. (2003) of studies
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investigating some familial clustering of prostate cancer. Another meta-analysis
has been recently published by Allam et al. (2003) on the association between
Parkinson disease, smoking and family history.

Third, meta-analyses with individual patient data (MAP) in which individual
data from published and sometimes also unpublished studies are re-analysed.
Often, there is a close co-operation between the researcher performing the meta-
analysis and the investigators of the individual studies. The new analysis may
include specific inclusion criteria for patients and controls, new definition of the
exposure and confounder variables and new statistical modeling. This re-analysis
may overcome some but not all of the problems of meta-analyses of published data
(Blettner et al. 1999). They have been performed in epidemiological research for
many years. One of the largest investigations of this form was a recent investigation
onbreast cancerandoral contraceptiveuse,wheredata from54case-control studies
werepooledandre-analysed(CGHFBC1996).A further international collaboration
led by Lubin and colleagues were set up to re-analyse data from eleven large cohort
studies on lung cancer and radon among uranium miners. The re-analysis allowed
a refined dose-response analysis and provided data for radiation protection issues.
Pooled re-analyses are mostly performed by combining data from studies of the
same type only. For example Hung et al. (2003) re-analysed data from all case-
control studies in which the role of genetic polymorphisms for lung cancer in non-
smokers were investigated. The role of diet for lung cancer was recently reviewed
by Smith-Warner et al. (2002) in a qualitative and quantitative way by combining
cohort studies. An overview of methodologic aspects for a pooled analysis of data
from cohort studies was recently published by Bennett (2003).

Fourth, prospectively planned pooled meta-analyses of several studies in which
pooling is already a part of the protocol. Data collection procedures, definitions
of variables are as far as possible standardised for the individual studies. The sta-
tistical analysis has many similarities with the meta-analysis based on individual
data. A major difference, however, is that joint planning of the data collection
and analysis increase the homogeneity of the included data sets. However, in con-
trast to multicentre randomised clinical trials, important heterogeneity between
the study centres still may exist. This heterogeneity may arise from differences in
populations, in the relevant confounding variables (e.g. race may only be a con-
founder in some centres) and potentially differences in ascertainment of controls.
For example complete listings of population controls are available in some but not
all countries. In the latter siutation sometimes neighbourhood controls are used.
Mainly in occupational epidemiology those studies are rather common, many
of them were initiated by international bodies such as the International Agency
for Research on Cancer (IARC) as the international pooled analysis by Boffetta
et al. (1997) of cancer mortality among persons exposed to man-made mineral
fiber. Another example for a prospectively planned pooled meta-analysis is given
by a large brain tumour study initiated by the IARC including data from eight
different countries (see Schlehofer et al. 1999).

Steinberg et al. (1997) compared the effort required and the results obtained of
MAL and MAP with an application to ovarian cancer. Certainly, MAL are easier to
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perform, cheaper and faster than MAP. Their credibility may be more questionable
as discussed by many authors, see for example Blettner et al. (1999) or Egger
et al. (1998). Statistical issues of pooling data from case-control studies have been
investigated by Stukel et al. (2001) recently. The authors proposed a two step
approach and showed conditions under which the two step approach gives similar
results in comparison to the pooled analysis including all data. Here the two step
approach implies to estimate first the odds ratio for each study in the usual way.
Then in the second step a combined estimator using either a fixed or random
effects model is calculated (cf. Chap. III.8 of this handbook).

Reasons for Meta-Analysis
in Epidemiology7.3

One major issue in assessing causality in epidemiology is “consistency” as pointed
out by Hill in 1965. The extent to which an observed association is similar in
different studies, with different designs, using different methods of data collec-
tion and exposure assessment, by different investigators and in different regions or
countries is an essential criterion for causality. If different studies with inconsistent
results are known there is a need for understanding the differences. Reasons may be
small sample sizes of individual studies (chance), different methods of exposure
assessment (measurement errors), different statistical analyses (e.g. adjustment
for confounding), or the use of different study populations (selection bias). Also,
Thompson et al. (1997) showed that different baseline risks may cause heterogene-
ity. The goal of a meta-analysis is then to investigate, whether the available evidence
is consistent and|or to which degree inconsistent results can be explained by ran-
dom variation or by systematic differences between design, setting or analysis of
the study as has been pointed out by Weed (2000).

Meta-analyses are often performed to obtain a combined estimator of the quan-
titative effect of the risk factor such as the relative risk (RR) or the odds ratio (OR).
As single studies are often far too small to obtain reliable risk estimates, the com-
bination of data of several studies may lead to more precise effect estimates and
increased statistical power. This is mainly true if the exposure leads only to a small
increase (or decrease) in risk or if the disease or the exposure of interest is rare.
One example is the risk of developing lung cancer after the exposure to passive
smoking where relative risk estimates in the order of 1.2 have been observed, see
Boffetta (2002) for a summary of the epidemiological evidence. Another typical
example is the association between childhood leukaemia and exposure to elec-
tromagnetic fields. Meinert and Michaelis (1996) have performed a meta-analysis
of the available case-control studies as the results of the investigations were in-
consistent. Although many huge case-control studies have been performed in the
last decade, in each single study only a few children were categorised as “highly
exposed”. In most publications, a small but non-significant increase in risk was
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found but no single study had enough power to exclude that there is no association
between EMF-exposure and childhood leukaemia.

Sometimes, meta-analyses are also used to investigate more complex dose-
response functions. For example, Tweedie and Mengersen (1995) investigated
the dose-response relationship of exposure to passive smoking and lung cancer.
A meta-analysis was also undertaken by Longnecker et al. (1988) to study the dose-
response of alcohol consumption and breast cancer risk. However, results were
limited as not enough data were present in several of the included publications. In-
terestingly, a large group of investigators led by Hamajima et al. (2002) has recently
used individual patient data from 53 studies including nearly 60,000 cases for a re-
analysis. It has been shown by Sauerbrei et al. (2001) in a critique that meta-analysis
from aggregated data may be too limited to perform a dose-response analysis.
A major limitation is that different categories are used in different publications.
Thus dose-response analyses are restricted to published values. Meta-analyses of
published data have their main merits for exploring heterogeneity between stud-
ies and to provide crude quantitative estimates but probably less for investigating
complex dose-response relationships.

Steps in Performing a Meta-Analysis 7.4

Each type of overview needs a clear study protocol that describes the research
question and the design, including how studies are identified and selected, the
statistical methods to use and how the results will be reported. This protocol
should also include the exact definition of the disease of interest, the risk factors
and the potential confounding variables that have to be considered. In accordance
with Friedenreich (1993) and Jones (1992), the following steps are needed for
a meta-analysis|pooled analysis (cf. Chap. III.8 of this handbook).

Step 1. Define a clear and focused topic for the review: As for any other investi-
gation, a clear protocol in which the research hypothesis, i.e. the objectives of the
meta-analysis are described, is mandatory. This protocol should include the exact
definition of the disease of interest, the risk factors and the potential confounding
variables that have to be considered. The protocol should also include details on the
steps that are described below, including specification of techniques for location
of the studies, the statistical analysis and the proposed publications.

Step 2. Establish inclusion and exclusion: It is important to define in advance
which studies should be included into the meta-analysis. These criteria may in-
clude restrictions on the publication year as older studies may not be comparable
to newer ones, on the design of the investigation, e.g. to exclude ecological stud-
ies. Friedenreich et al. (1994) has also proposed quality criteria to evaluate each
study. Whether these criteria, however, should be used as inclusion criteria is dis-
cussed controversially. Another decision is whether studies that are only published
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as abstracts or internal communications should be included (Cook et al. 1993).
A rule for the inclusion or exclusion of papers with repeated publication of the
data is required. For example, for cohort studies, often several publications with
different follow-up periods can be found. As one out of many examples, a Ger-
man study among rubber workers by Straif et al. (1999, 2000) can be mentioned.
In one paper, 11,633 workers were included, while the second paper is based on
a subcohort of only 8933 persons. Which results are more appropriate for the
meta-analysis?

Step 3. Locate all studies (published and unpublished) that are relevant to the
topic: Since the existence of electronic databases, retrieval of published studies
has become much easier. Mainly systems like MEDLINE or CANCERLIT from the
National Library of Medicine are valuable sources to locate publications. However,
as Dickersin et al. (1994) showed for some examples as little as 50% of the publi-
cations were found by electronic searches. Therefore there is a need to extend the
search by manual checks of the reference lists of retrieved papers, monographs,
books and if possible by personal communications with researchers in the field.
A clear goal of the search has to be to identify all relevant studies on the topic that
meet the inclusion criteria. Egger et al. (2003) have pointed out that the complete-
ness of the literature search is an important feature of the meta-analysis to avoid
publication bias or selection bias. Of course, the publication should include the
search strategies as well as the key-words and the databases used for electronic
searches.

Step 4. Abstract information from the publications: The data collection step in
a meta-analysis needs as much care as in other studies. In the meta-analysis the
unit of observation is the publication and defined variables have to be abstracted
from the publication (Stock 1995). In epidemiological studies, the key parameter
is often the relative risk or odds ratio. Additionally, standard error, sample size,
treatment of confounders and other characteristics of the study design and data
collection procedure need to be abstracted to assess the quality of the study. This
is also important for subgroup analyses or for a sensitivity analysis. An abstract
form has to be created before abstracting data. This form should be tested like
other instruments in a pilot phase. Unfortunately, it may not always be possible to
abstract the required estimates directly, e.g. standard errors are not presented and
have to be calculated based on confidence intervals (Greenland 1987). It may be
necessary tocontact the investigators toobtain further information if results arenot
published in sufficient detail. Abstracting and classification of study characteristics
is the most time consuming part of the meta-analysis. It has been recommended
to blind the data abstractors although some authors argue that blinding may not
have a major influence on the results, for further discussion see Berlin et al. (1997).
Additionally, the rater may be acquainted with some of the studies and blinding
can not be performed. Another requirement is that two persons should perform
the abstraction in parallel. When a meta-analysis with original data is performed
the major task is to obtain data from all project managers in a compatible way.
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Our experience shows that this is possible in principle but time consuming as data
may not be available on modern electronic devices and often adaptations between
database systems are required.

Step 5. Descriptive analysis: A first step in summarising the results should be
an extensive description of the single papers, including tabulation of relevant
elements of each study, such as sample size, data collection procedures, confounder
variables, means of statistical analysis, study design, publication year, performing
year, geographical setting etc. This request is also included in the guidelines for
publications of meta-analysis that were published by Stroup et al. (2000).

Step 6. Statistical analysis: This includes the analysis of the heterogeneity of
the study-specific effects, the calculation of a pooled estimate and the confidence
interval as well as a sensitivity analysis. Details are given in the next section on
statistical methods.

Step 7. Interpretation of the results: The importance of the sources and magni-
tude of different biases should be taken into account when interpreting the results.
Combining several studies will often give small confidence intervals and suggest
a false precision (Egger et al. 1998) but estimates may be biased. For clinical stud-
ies, Thompson (1994) has pointed out that the investigation of the heterogeneity
between studies will generally give more insight than inspecting the confidence
intervals of the pooled estimate. This is even more true for a meta-analysis from
epidemiological studies. Additionally, the possible effects of publication bias (see
below) need to be considered carefully (Copas and Shi 2001).

Step 8. Publication: Guidelines for reporting meta-analyses of observational stud-
ies have been published by Stroup et al. (2000). These guidelines are quite useful
for preparing the publication and are also supported by most editors of major
medical journals. Especially the detailed description of methods is required so
that the analysis could be replicated by others.

Statistical Analysis 7.5

The statistical analysis of aggregated data from published studies was first devel-
oped in the fields of psychology and education (Glass 1977; Smith and Glass 1977).
These methods have been adopted since the mid-1980s in medicine primarily for
randomized clinical trials and are also used for epidemiologic data. We will give
a brief outline of some issues of the analysis using an example based on a meta-
analysis performed by Sillero-Arenas et al. (1992). This study was one of the first
meta-analyses which tried to summarise quantitatively the association between
hormone replacement therapy (HRT) and breast cancer in women. Sillero-Arenas
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et al. based their meta-analysis on 23 case control and 13 cohort studies. The data
extracted from their paper are given in the appendix.

The statistical analysis of MAP is more complex and not covered here.

Single Study Results. A first step of the statistical analysis is the description of
the characteristics and the results of each study. Tabulations and simple graphical
methods should be employed to visualize the results of the single studies. Plotting
the odds ratios and their confidence intervals (so called forest plot) is a simple way
to spot obvious differences between the study results.
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Figure 7.1. Confidence interval plot of the breast cancer data

Figure 7.1 shows a forest plot of 36 studies investigating the association of HRT
and breast cancer in women. Obviously there is a high variability of effects between
studies present. Later we will describe how to account for heterogeneity of studies
quantitatively.
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Publication Bias. An important problem of meta-analysis is publication bias.
This bias has received a lot of attention particularly in the area of clinical trials.
Publication bias occurs when studies that have non-significant or negative results
are published less frequently than positive studies. For randomised clinical trials,
it has been shown that even with a computer-aided literature search not all of
the relevant studies will be identified (Dickersin et al. 1994). For epidemiologic
observational studies additional problems exist, because often a large number of
variables will be collected in questionnaires as potential confounders. If one or
several of these potential confounders yield significant or important results, they
may be published in additional papers, which have often not been planned in
advance. In general, publication bias yields a non-negligible overestimation of the
risk estimate. As a result prior to further statistical analyses publication bias should
be investigated.
A simple graphical tool to detect publication bias is the so called funnel plot.
The basic idea is that studies which do not show an effect and which are not
statistically significant are less likely to published. If the sample size or alternatively
the precision (i.e. the inverse of the variance) is plotted against the effect a hole in
lower left quadrant is expected.
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Figure 7.2. Examples of funnel plots based on simulated data with (right figure) and without

publication bias present (left figure). The dotted line shows the true effect

Figure 7.2 shows examples of funnel plots. The left subplot of Fig. 7.2 shows
a funnel plot with no indication of publication bias. The right subplot shows a so
called apparent hole in the lower left corner. In the case of the right subplot of
Fig. 7.2 the presence of publication bias would be assumed.
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Figure 7.3. Funnel plot of the breast cancer data

Figure 7.3 shows a funnel plot for the breast cancer data. No apparent hole in the
lower left corner is present. Thus based on this figure no publication bias would
be assumed.

Foraquantitative investigationofpublicationbias severalmethodsareavailable.
This may be based on statistical tests, see for example Begg and Mazumdar (1994)
or Schwarzer et al. (2002). A recent simulation study performed by Macaskil et al.
(2001) favoured the use of regression methods. The basic idea is to regress the
estimated effect sizes θ̂i directly on the sample size or the inverse variance σ−2

i as
predictor.

θ̂i = α + β
1

σ2
i

+ εi , i = 1, … , k , εi ∼ N
(
0, σ2

i

)
. (7.1)

Here the number of studies to be pooled is denoted by k. In this setting it is assumed
that the estimated treatment effects are independently normally distributed. With
no publication bias present the regression line should be parallel to the x axis, i.e.
the slope should be zero. A non zero slope would suggest an association between
sample size or inverse variance, possibly due to publication bias. The estimated
regression line in Fig. 7.4 shows no apparent slope. Likewise the model output (not
shown) does not indicate the presence of publication bias for the data at hand.

Estimation of a Summary Effect. Frequently, one of the aims of a meta-analysis
is to provide an estimate of the overall effect of all studies combined. Methods
for pooling depend on the data available. In general, a two-step procedure has
to be applied. First, the risk estimates and variances from each study have to be
abstracted from publications or calculated if data are available. Then, a combined
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Figure 7.4. Funnel regression plot of the breast cancer data

estimate is obtained as a (variance based) weighted average of the individual
estimates. The methods for pooling based on the 2×2 table include the approaches
by Mantel–Haenszel and Peto (see Pettiti 1994 for details). If data are not available
in a 2×2 table, but as an estimate from a more complex model (such as an adjusted
relative risk estimate), the Woolf approach can be adopted using the estimates and
their (published or calculated) variance resulting from the regression model. This
results inaweightedaverageof the log-odds ratios θ̂i of the individual studieswhere
the weights wi are given by the inverse of the study specific variance estimates σ̂2

i .
For a discussion of risk measures see Chap. I.2 of this handbook. Please note
that the study specific variance is assumed to be fixed and known although they
are based on estimates of the study specific variances. As a result the uncertainty
associated with the estimation of σ2

i is ignored. Thus in the following the σi are
treated as constants and the ‘hat’ notation is omitted. The estimate of the summary
effect of all studies is then given by

θ̂ =
∑k

i=1 wiθ̂i∑k
i=1 wi

, (7.2)

wi =
1

σ2
i

. (7.3)

The variance is given by

var
(
θ̂
)

=
1∑k

i=1 1|σ2
i

. (7.4)
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Applying this approach to the HRT data leads to a pooled risk estimate of 0.05598
with an estimated variance equal to 0.00051. Transforming this back to the original
scale leads to an odds ratio of 1.058 with a 95 percent confidence interval of (1.012,
1.11). Thus we would conclude combining all studies that there is a small harmful
effect of hormone replacement therapy.
The major assumption here is that of a fixed model, i.e. it is assumed that the
underlying true exposure effect in each study is the same. The overall variation
and, therefore, the confidence intervals will reflect only the random variation
within each study but not any potential heterogeneity between the studies.

Figure 7.5 displays this idea. Whether pooling of the data is appropriate should
be decided after investigating the heterogeneity of the study results. If the results
vary substantially, no pooled estimator should be presented or only estimators for
selected subgroups should be calculated (e.g. combining results from case-control
studies only).

Heterogeneity. The investigation of heterogeneity between the different studies is
a main task in each review or meta-analysis (Thompson 1994). For the quantitative
assessment of heterogeneity, several statistical tests are available (Petitti 1994; Paul
and Donner 1989). A simple test for heterogeneity is based on the following test
statistic:

χ2
het =

k∑
i=1

(θ̂ − θ̂i)2

σ2
i

∼ χ2
k−1 , (7.5)

which under the null hypothesis of heterogeneity follows a χ2 distribution with
k − 1 degrees of freedom. Hence the null hypothesis is rejected if χ2

het exceeds the
1 − α quantile of χ2

k−1 denoted as χ2
k−1,1−α. For the data at hand we clearly conclude

that there is heterogeneity present (χ2
het = 116.076, df = 35, p-value: 0.00000).

Thus using a combined estimate is at least questionable. Pooling the individual
studies and performing this test can be done with any statistical package capable
of weighted least squares regression. The first part of the appendix shows a SAS-
program which provides the results obtained so far. A major limitation of formal
heterogeneity tests like the one presented before is, however, their low statistical
power to detect any heterogeneity present.
A more powerful method is given by model based approaches. A model based
approach has the advantage that it can be used to test specific alternatives and
thus has a higher power to detect heterogeneity. So far we considered the following
simple fixed effects model

θi = θ + εi , i = 1, … , k , εi ∼ N
(
0, σ2

i

)
. (7.6)

Obviously this model is not able to account for any heterogeneity, since deviations
from θi and θ are assumed to be explained only by random error.

Thus alternatively a random effects model should be considered. This model
incorporates variation between studies. It is assumed that each study has its own



Meta-Analysis in Epidemiology 841

-6 -4 -2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

Fixed effects model

log(OR)

Figure 7.5. Fixed effects model: Common effect with different study variances

(true) exposure effect and that there is a randomdistributionof these true exposure
effects around a central effect. This idea is presented in Fig. 7.6. Frequently it is
assumed that the individual study effects follow a normal distribution with mean θi

and variance σ2
i and the random distribution of the true effects is again a normal

distribution with variance τ2. In other words, the random effects model allows non-
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Figure 7.6. Random effects model: Variable effects drawn from a population of study effects

homogeneity between the effects of different studies. This leads to the following
model:

θi = θ + bi + εi , i = 1, … , k , bi ∼ N
(
0, τ2

)
, εi ∼ N

(
0, σ2

i

)
. (7.7)

The observed effects from the different studies are used to estimate the parameters
describing the fixed and random effects. This may be done using maximum-
likelihood procedures. The widely used approach by DerSimonian and Laird (1986)
applies a method of moments to obtain an estimate of τ2.
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Taking the expectation of (7.7) leads to E(θi) = θ and calculating the vari-
ance leads to var(θi) = var(bi) + var(εi) = τ2 + σ2

i = σ∗2

i assuming that bi and
εi are independent. The heterogeneity variance τ2 is unknown and has to be
estimated from the data. The method by DerSimonian and Laird equates the
heterogeneity test statistic (7.5) to its expected value. This expectation is cal-
culated under the assumption of a random effects model and given by E

(
χ2

het

)
=

k−1+τ2
(∑

wi − (
∑

w2
i )|(

∑
wi)
)
. The weights wi are those defined in (7.3). Equat-

ing χ2
het to its expectation and solving for τ2 gives:

τ̂2 =
[
χ2

het − (k − 1)
]/(∑

wi −

∑
w2

i∑
wi

)
. (7.8)

In case χ2
het < k − 1 the estimator τ̂2 is truncated to zero. Thus the pooled estima-

tor θ̂DL under heterogeneity can be obtained as weighted average:

θ̂DL =
∑k

i=1 w∗
i θ̂i∑k

i=1 w∗
i

, (7.9)

with w∗2

i =
1

σ∗2
i

=
1

τ̂2 + σ2
i

we obtain (7.10)

θ̂DL =
∑k

i=1 θ̂i|
(
τ̂2 + σ2

i

)∑k
i=1 1|

(
τ̂2 + σ2

i

) . (7.11)

The variance of this estimator is given by:

var(θ̂DL) =
1∑k

i=1 1|σ∗2
i

, (7.12)

=
1∑k

i=1 1|(τ̂2 + σ2
i )

. (7.13)

The between study variance τ2 can also be interpreted as a measure for the
heterogeneity between studies. It should be noted that in general random effects
methods yield larger variance and confidence intervals than fixed effects models
because a between study component τ2 is added to the variance. If the heterogeneity
between the studies is large, τ2 will dominate the weights and all studies will
be weighted more equally (in random effects model weight decreases for larger
studies compared to the fixed effects model). For our example we obtain a pooled
DerSimonian–Laird estimateof 0.0337 withheterogeneity variance equal to 0.0453.
The variance of the pooled estimator is given by 0.0024. Transformed back to the
original scale we obtain an odds ratio of OR = 1.034 with 95% CI (0.939, 1.139).
Based on this analysis we would conclude that after adjusting for heterogeneity
this meta-analysis does not provide evidence for an association between HRT
replacement therapy and breast cancer in women.
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However, two comments are in order. First, pooling in the presence of hetero-
geneity may be seriously misleading. Heterogeneity between studies should yield
careful investigation of the sources of the differences. If there is a sufficient number
of different studies available, further analyses, such as ‘meta-regression’, may be
used to examine the sources of heterogeneity (Greenland 1987, 1994). The second
is in terms of statistical methodology. Within this approach the study specific vari-
ances are assumed to be known constants. That is the reason why this approach can
lead to a considerable bias when pooling estimates using the DerSimonian–Laird
estimator as demonstrated by Böhning et al. (2002).

Besides the moment based method by DerSimonian and Laird estimates of
τ2 can be obtained using likelihood based methods. See for example the tuto-
rials by Normand (1999) and van Houwelingen et al. (2002) for more details.
The appendix gives a SAS code to estimate the fixed and random effects mod-
els based on likelihood methods with the SAS program proc mixed. Estimates
based on likelihood methods offer the advantage that they provide the option
to formally test which model is appropriate for the data by applying the likeli-
hood ratio test or penalized criteria such as the Bayesian Information Criterion
(BIC). The BIC is obtained by the formula BIC = −2 × log Likelihood + log(k) × q
where q is the number of parameters in the model and k denotes the number of
studies.

When using random effects models another topic of interest is the form of the
random effects’ distribution. Besides a parametric distribution for the random
effects a discrete distribution may be assumed. Here we suppose that the study
specific estimators θ̂1, θ̂2, … , θ̂k are coming from q subpopulations θj, j = 1, … , q.
Again assuming that the effect of each individual study follows a normal distribu-
tion

f
(
θ̂i, θj, σ2

i

)
=

1√
2πσ2

i

e−(θ̂i−θj)
2|(2σ2

i ) , j = 1, … , q . (7.14)

we obtain a finite mixture model

f (θ̂i, P) =
q∑

j=1

f
(
θ̂i, θj, σ2

i

)
pj . (7.15)

The parameters of the distribution P

P ≡
[

θ1 … θq

p1 … pq

]
with pj ≥ 0 j = 1, … , q , (7.16)

p1 + … + pq = 1 . (7.17)

need to be estimated from the data. The mixing weights pj denote the a priori
probability of an observation of belonging to a certain subpopulation with param-
eter θj. Please note that also the number of components q needs to be estimated
as well. Estimation may be done with the program C.A.MAN (Schlattmann and
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Böhning 1993; Böhning et al. 1998). For the HRT data we find a solution with three
components which gives an acceptable fit to the data

weight: 0.2804 parameter: -0.3365
weight: 0.5671 parameter: 0.0778
weight: 0.1524 parameter: 0.5446

Log-Likelihood at iterate: -17.6306

Here the weights correspond to the mixing weights pj and the parameter corre-
sponds to the subpopulation mean θj. These results imply that about 28% of the
studies show a protective effect of HRT, whereas the majority of the studies shows
a harmful effect. About 57% of the studies show an increased log(risk) of 0.08
and 15% of the studies show a log(odds ratio) of 0.54. Thus using a finite mix-
ture model (FM) we find again considerable heterogeneity where the majority of
studies finds a harmful effect of hormone replacement therapy. It is noteworthy
that a proportion of studies finds a beneficial effect. Of course this needs to be
investigated further. One way to do this would be to classify the individual stud-
ies using the finite mixture model. Doing so we find that for example study nine
from the data given in the appendix belongs to this category. This is a case-control
study for which no information about confounder adjustment is available. This
would be a starting point for a sensitivity analysis. Table 7.1 gives an overview
about the models fitted so far. These include the fixed effects model with a BIC
value of 70.0, the mixed effects model using a normal distribution for the ran-
dom effects with a BIC value of 44.4. The finite mixture model (FM) has a BIC
value of 53.2. Thus based on Table 7.1 it is quite obvious that a fixed effects model
does not fit the data very well and that a random effects model should be used.
Of course the question remains which random effects model to choose for the
analysis. Based on the BIC criterion given in Table 7.1 one would choose the para-
metric mixture model provided the assumption of a normal distribution of the
random effects is justifiable. This can be investigated for example by a normal
quantile-quantile plot of the estimated individual random effects given by the
parametric model. For the data at hand the assumption of normally distributed
random effects appears reasonable, thus we would choose the parametric mixture
model.

Table 7.1. Model comparison for the breast cancer data

Method Residual Estimates (SE) Het. log Lik. BIC
Hetero. Intercept (τ̂2)

Fixed None 0.056 (0.023) – −33.19 70.0

Mixed Additive 0.027 (0.061) 0.086 −18.65 44.4

FM Additive 0.079 −17.63 53.2
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Meta-Regression. An important method for investigating heterogeneity is sen-
sitivity analysis, e.g. to calculate pooled estimators only for subgroups of studies
(according to study type, quality of the study, period of publication, etc.) to investi-
gate variations of the odds ratio. An extension of this approach is meta-regression
as proposed by Greenland (1987), see also Thompson and Sharp (1999). The prin-
cipal idea of meta-regression is once heterogeneity is detected to identify sources
of heterogeneity by inclusion of known covariates.
For the breast cancer meta-analysis example a potential covariate is study type,
case-control studies may show different results than cohort studies due to different
exposure assessment. For our data case-control studies are coded as xi1 = 0 and
cohort studies are coded as xi1 = 1.

The fixed effect model is now:

θi = β0 + β1xi1 + εi , εi ∼ N
(
0, σ2

i

)
, i = 1, … , k . (7.18)

Here we find that cohort studies identify an association between HRT and breast
cancer based on the regression equation θ̂i = 0.0015 + 0.145 for a cohort study. Ob-
viously, cohort studies come to results different form case-control studies. Clearly,
after adjustment for covariates the question remains if there is still residual het-
erogeneity present. Again we can analyse the data using a random effects model
in this case with a random intercept.

θi = β0 + β1xi1 + bi + εi , bi ∼ N
(
0, τ2

)
, εi ∼ N

(
0, σ2

i

)
. (7.19)

For this model the regression equation for the fixed effects gives now for a co-
hort study θ̂i = −0.009 + 0.1080 and the corresponding heterogeneity variance is
estimated as τ̂2 = 0.079.

Table 7.2. Comparison of fixed and random effects models

Method Residual Estimates (SE) Het. -log Lik. BIC
Hetero. Intercept Slope (τ̂2)

Fixed None 0.056 (0.023) – – −33.85 70.0

Fixed None 0.0014 (0.029) 0.145 (0.046) – −28.36 63.9

Mixed Additive 0.027 (0.061) – 0.086 −18.65 44.4

Mixed Additive −0.009 (0.072) 0.108 (0.126) 0.079 −18.25 47.3

Table 7.2 compares fixed and random effects models for the HRT data. The
table shows models with and without an estimate for the slope. Model selection
can be based again on the BIC criterion. Apparently based on the BIC criterion
both fixed effects models do not fit the data very well since their BIC values are
considerably higher than those of the random effects models. Please note that if
only the fixed effects models would be considered this meta-analysis would show
that cohort studies show a harmful effect. Comparing the mixed effects models
in Table 7.2 the model with the covariate does not provide an improved fit of
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the data. The log-likelihood is only slighty larger and penalising the number of
parameters leads to a larger BIC value for the mixed effect model with the covariate.
Another interesting point is to compare the heterogeneity variance estimated by
both models. Here there is no substantial portion of heterogeneity explained by the
covariate, since the heterogeneity variance is reduced to 0.079 from 0.086. From
a statistical point of view further covariates need to be identified and included
into the model. From a public health point of view the conclusion is perhaps less
straightforward. Although inclusion of the covariate study type does not explain
the heterogeneity of the studies very well we find that cohort studies find a harmful
effect. One might argue that although these results are far from perfect they should
not be ignored as absence of evidence does not imply evidence of absence. Looking
back at these data in the light of the results from the woman health initiative
(WHI) study (Rossouw et al. 2002) it becomes clear that caution is required in the
analysis and interpretation of meta-analyses of observational studies. The major
finding of the WHI-study was that the group of subjects undergoing treatment
with combined HRT in the form of Prempro (0.625 mg/day conjugated equine
estrogens (CEE) +2.5 mg/day medroxyprogesterone acetate) was found to have
increased risk of breast cancer (hazard ratio = 1.26, 95% CI: 1.00–1.59) and no
apparent cardiac benefit. This is contradictory to the prior belief that HRT provides
cardiovascular benefit. As a result, although several benefits were considered, these
interim findings at 5 years were deemed sufficiently troubling to stop this arm of
the trial at 5.2 years.

Interpretation of the Results
of Meta-Analysis of Observational Studies 7.6

The example from above shows that the interpretation of the results of a meta-
analysis should not only discuss the pooled estimator and the confidence interval
but should focus on the examination of the heterogeneity between the results of
the studies. Strength and weaknesses as well as potential bias should be discussed.

Bias 7.6.1

Forepidemiological studies ingeneral, themainproblemisnot the lackofprecision
and the random error but the fact that results may be distorted by different sources
of bias or confounding, for an general overview of the problem of bias see Hill and
Kleinbaum (2000). That means that the standard error (or the size of the study)
may not be the best indicator for the weight of a study. If more or better data are
collected on a smaller amount of subjects, results may be more accurate than in
a large study with insufficient information on the risk factors or on confounders.
The assessment of bias in individual studies is therefore crucial for the overall
interpretation.
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The central problem of meta-analyses of clinical trials is publication bias that
has already been a topic in a paper by Berlin et al. as early as 1989 and is still a topic
of recent methodological investigations (see for example Copas and Shi (2001)).
This bias has received a lot of attention particularly in the area of clinical trials.
Publication bias occurs when studies that have non-significant or negative results
are published less frequently than positive studies. For randomized clinical trials,
it has been shown that even with a computer-aided literature search only some of
the relevant studies will be identified (Dickersin et al. 1994). For epidemiological
observational studies additional problems exist, because often a large number of
variables will be collected in questionnaires as potential confounders (Blettner
et al. 1999). If one or several of these potential confounders yield significant or
important results, they may be published in additional papers, which have often
not been planned in advance. In general, publication bias yields a non-negligible
overestimation of the risk estimate.

However, as Morris (1994) has pointed out, there exist little systematic inves-
tigations of the magnitude of the problem for epidemiological studies. A major
worry is that non-significant results are neither mentioned in the title nor in the
abstract and publications and may be lost in the retrieval process.

Confounding7.6.2

Another problem arises because different studies adjust for different confounding
factors. It is well known that the estimated effect of a factor of interest is (strongly)
influenced by the inclusion or exclusion of other factors, in the statistical model
if these factors have an influence on the outcome and if they are correlated with
the risk factor of interest. Combining estimates from several studies with different
ways of adjusting for confounders yields biased results. Using literature data only,
crude estimates may be available for some of the studies, model-based estimates
for others. However, as the adjustment for confounders is an important issue for
the assessment of an effect in each single study, it is obvious that combining
these different estimates in a meta-analysis may not give meaningful results. It is
necessary to use ‘similar’ confounders in each study to adjust the estimated effect
of interest in the single studies. In general that would require a re-analysis of the
single studies. Obviously, that requires the original data and a MAP is needed for
this purpose.

Heterogeneity7.6.3

In epidemiological research different study designs are in use and none of them
can be considered as a gold standard as the randomised clinical trial for therapy
studies. Therefore it is necessary to evaluate the comparability of the single designs
before summarising the results. Often, case-control studies, cohort studies and
cross-sectional studies are used to investigate the same questions and results
of those studies need to be combined. Egger et al. (2001) pointed out several
examples in which results from case-control studies differ from those of cohort
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studies. E.g. in a paper by Boyd et al. (1993), it was noted that cohort studies
show no association between breast cancer and saturated fat intake while the same
meta-analysis using results from case-control studies only revealed an increased,
statistically significant risk. Other reasons for heterogeneity may be different uses
of data collection methods, different control selection (e.g. hospital vs population
controls), and differences in case ascertaining. Differences could be explored in
a formal sensitivity analysis but also by graphical methods (funnel plot). However,
meta-analyses from published data provide only limited information if the reasons
for heterogeneity shall be investigated in depth.

The problem of heterogeneity can be well demonstrated with nearly any ex-
ample of published meta-analysis. For example Ursin et al. (1995) investigated the
influence of the Body-Mass-Index (BMI) on the development of pre-menopausal
breast cancer. They include 23 studies of which 19 are case-control studies and
4 are cohort studies. Some of these studies were designed to investigate BMI as
risk factor, others measured BMI as confounders in studies investigating other
risk factors. It can only be speculated that the number of unpublished studies in
which BMI was mainly considered as a confounder and did not show a strong
influence on pre-menopausal breast cancer is non-negligible and that this issue
may result in some bias. As is usual practice in epidemiological studies relative
risks were provided for several categories of BMI. To overcome this problem the
authors estimated a regression coefficient for the relative risk as a function of the
BMI, however, several critical assumptions are necessary for this type of approach.
The authors found severe heterogeneity across all studies combined (the p-value
of a corresponding test was almost zero). An influence of the type of study (co-
hort study or case-control study) was apparent. Therefore no overall summary
is presented for case-control and cohort studies combined. One reason for the
heterogeneity may be the variation in adjustment for confounders. Adjustment for
confounders other than age was used only in 10 out of the 23 studies.

Conclusions 7.7

Despite the many problems, there is an immense need to summarise current
knowledge, for example to assess the consequence of human exposure to environ-
mental exposure. For this task all available data and information will be needed
and meta-analysis is becoming increasingly influential. Particularly where the
previously conducted epidemiological studies have provided inconsistent results
a meta-analysis may give some insight. As discussed, a major impediment for
meta-analysis of epidemiological data is the heterogeneity across studies in their
design, data collection methods and analyses performed. The statistical combi-
nation of risk estimates should not be the central component of a meta-analysis
using published data. An expert group in co-operation with the U.S. Environmen-
tal Protection Agency was recently established to discuss the use of meta-analyses
in environmental health studies. One of the objectives of this group was also to



850 Maria Blettner, Peter Schlattmann

develop a consensus on “when meta-analysis should or should not be used” (Blair
et al. 1995). There is always a danger that meta-analysis of observational studies
produces precise looking estimates which are severely biased. This should be kept
in mind as more and more public health regulators and decision-makers may rely
on the results of a meta-analysis.

Appendix

Data and Computer Code and Output7.A

The listing shows the effect measure on the log-scale, the corresponding variance
and the study type of each of the 36 studies analysed in the meta-analysis by
Sillero-Arenas et al.

data sillar;
input study or est type;
cards;
1 0.10436 0.299111 0
2 -0.03046 0.121392 0
3 0.76547 0.319547 0
4 -0.19845 0.025400 0
5 -0.10536 0.025041 0
6 -0.11653 0.040469 0
7 0.09531 0.026399 0
8 0.26236 0.017918 0
9 -0.26136 0.020901 0
10 0.45742 0.035877 0
11 -0.59784 0.076356 0
12 -0.35667 0.186879 0
13 -0.10536 0.089935 0
14 -0.31471 0.013772 0
15 -0.10536 0.089935 0
16 0.02956 0.004738 0
17 0.60977 0.035781 0
18 -0.30111 0.036069 0
19 0.01980 0.024611 0
20 0.00000 0.002890 0
21 -0.04082 0.015863 0
22 0.02956 0.067069 0
23 0.18232 0.010677 0
24 0.26236 0.017918 1
25 0.32208 0.073896 1
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26 0.67803 0.489415 1
27 -0.96758 0.194768 1
28 0.91629 0.051846 1
29 0.32208 0.110179 1
30 -1.13943 0.086173 1
31 -0.47804 0.103522 1
32 0.16551 0.004152 1
33 0.46373 0.023150 1
34 -0.52763 0.050384 1
35 0.10436 0.003407 1
36 0.55389 0.054740 1
run;

Elementary Analysis with SAS 7.B

SAS code for the elementary analysis using weighted least squares:

/* calculation of weights */
data sillar;
set sillar;
weight =1./est;
run;

/* intercept only */
proc glm data=sillar;

/* use proc GLM with data set sillar */
model logor=/solution inverse;

/* Show solution */
/* Show inverse of weighted design matrix */

weight weight;
/* weights 1./variance */

run;

This gives the following shortened output:

The GLM Procedure
Dependent Variable: logor
Weight: weight

Sum of
Source DF Squares Mean Square F Value Pr > F
Model 1 6.1683128 6.1683128 1.86 0.1813
Error 35 116.0756869 3.3164482
Un.Total 36 122.2439997

Parameter df Estimate SE t Value Pr > |t|
Intercept 1 0.0559813731 0.04104847 1.36 0.1813

Please note that for performing a meta analysis the standard error given by the
program must be divided by the root mean square error in order the obtain the
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standard error of the pooled estimate. In order to avoid additional calculations
the SAS output giving the inverse of the weighted design matrix gives the desired
variance. The test of heterogeneity is given by the residual sum of squares as
indicated by formula (7.5). This result can also be obtained using the SAS code for
the fixed effect model based on maximum likelihood

proc mixed method=ml data=sillar;
/* Use proc mixed (ML estimation) */

class study;
/* Specifes study as ’classificaton variable’ */

model or=/ s cl;
/* Intercept only model, show solution and CI */

repeated /group =study;
/* Each trial has its own within trial variance */

parms /parmsdata=sillar
/* The parmsdata option reads in the variable

EST indicating the variances from the data set
sillar.sd2 */

eqcons=1 to 36;
/* The within study variances are known and fixed */

run;

SAS Code for the Random Effects Model7.C

The SAS procedure proc mixed requires the following manipulations of the data

data covvars; /* data set containing the variances */
set sillar;
keep est;
run;
data start; /* include the starting value for the */
input est; /* heterogeneity variance */
cards;
0.0
run;
data start; /* Combine both data sets */
set start covvars;
run;

Obtain the model with proc mixed

proc mixed method=ml cl data=sillar;
/* CL asks for confidence intervals */
/* of covariance parameters */
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class study;
/* Study is classification variable */

model or= / s cl;
/* Intercept only model, Fixed solution and CI */

random int /subject=study;
/* Study is specified as random effect */

repeated /group =study;
/* Each study has its own variable */

parms /parmsdata= start
/* start contains starting value a. trial vars. */

eqcons=2 to 37;
/* entries 2 to 37 are the fixed study vars. */

run;
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Introduction 8.1

The Nature of Geographical Epidemiology 8.1.1

Although, at first sight, geographical epidemiology may appear to differ sub-
stantially from other areas of epidemiology, it has many features in common. In
particular, a major objective of epidemiology – to infer aetiological relationships
from observed associations – applies also in geographical studies. The distinctive
characteristic is of course that geographical location is an important explanatory
variable, either because it reflects an environmentally determined element of risk
or because people with similar risk attributes live together, so that risk varies from
place to place. The two-dimensional nature of geographical location means that the
standard statistical techniques for handling sets of essentially univariate variables
need to be augmented by more sophisticated methods.

There are practical limitations to the scientific value of geographical studies.
The data quality tends to be low – not least because population censuses are
relatively infrequent – and any real effects may be attenuated by factors such as
mobility, often to the point where they may not be detectable. Consideration of
these difficulties may lead to the conclusion that a lot of geographical epidemiology
is, in scientific terms, of very limited value. Historically, however, there have been
some spectacular successes: to the famous observation of John Snow (1855) on the
source of cholera infection may be added a number of more recent and equally
dramatic observations, for example the identification of the cause of an outbreak of
asthma in Spain (Antó and Sunyer 1992) and the implication of erionite fibres in the
aetiology of mesothelioma from the very high localised rates in the Cappadocian
region of Turkey (Baris et al. 1992).

Scope of the Chapter 8.1.2

This chapter attempts to sketch the statistical principles of the subject, with an
indication of the kinds of analyses to which these principles lead quite naturally.
There is a large literature on the methodology of geographical epidemiology, much
of it employing a Bayesian standpoint and exploring hierarchical models analysed
by Markov Chain Monte Carlo methods. It would be impossible to give a compre-
hensive review of this field and we adopt the less ambitious objective of outlining
the fundamentals, in the hope that this will in any case provide insight into more
sophisticated analyses. Nevertheless we have attempted to provide some exam-
ples of the techniques discussed and, where possible, to make recommendations
for practitioners, though this latter goal is difficult in view of the large number
of different analyses that have been proposed but whose properties are relatively
unknown.

Our presentation will in fact be almost exclusively frequentist. To some extent,
the choice between Bayesian and frequentist methods in statistics is a matter of
philosophical standpoint. Frequentist arguments are undeniably limited in their
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scope and power and are frequently subject to misinterpretation. The limitations
may, however, be argued to be intrinsic to the problem of inductive inference under
uncertainty and such inference does not seem to this author to be more consis-
tently clear-cut when derived from a Bayesian analysis. The modelling approach is
admittedly more attractive than the mere detection of statistical significance, but
it is not without its difficulties. For one thing the amount of data in geographical
studies may often not permit the estimation of numerous parameters and, to the
extent that a model makes specific assumptions about underlying phenomena,
there is a risk that it may inject spurious information into the analysis, leading
to the over-interpretation of the data. The limitations of the hypothesis testing
approach have not prevented its widespread use in practice and an important
part of the epidemiologist’s role is to ensure that the tests that are carried out are
chosen with due regard to maximising their power against sensible alternatives.
This at least is the stand-point from which we approach this topic here; in any case
the statistical framework underpins the more sophisticated analyses and forms
a natural pre-requisite for their understanding.

Chapter Contents8.1.3

We start by considering (Sect. 8.2) the models that underlie statistical methods
in geographical epidemiology in order to give insight into the justification for the
methods that are discussed. A key feature is the duality that exists between the
two approaches to epidemiological investigations generally. To be specific, we can
elect to study either the occurrence of disease conditionally on case locations or
vice versa, i.e. to regard case location as a random variable to be compared in fixed
groups of affected and unaffected individuals. This duality precisely mirrors the
distinction between the cohort and case-control approaches to epidemiological
surveys. The case-control approach in geographical work has only recently been
recognised and is particularly relevant for the analysis of data at the individual, as
opposed to the areal, level. This important approach, though not yet fully exploited,
has led recently to a number of new and interesting methodological developments.

In Sect. 8.3 we develop the way in which risk may be modelled in relation to
geographically referenced data, distinguishing between the analysis of areal data
and data at the individual level, for which it is assumed that individual locations
are known. As with any statistical modelling exercise, the objective is to explain
as much of the variation as possible, up to the point where heterogeneity can be
attributed to chance. There are numerous ways of approaching this subject, even
within the compass of frequentist analyses, and some of the issues as to the best
analysis are unresolved.

Section 8.4 is concerned with mapping. From one point of view, mapping is
an end in itself and there are numerous methods available for producing maps.
However, there is much scope for misinterpretation of data represented in this way
and we would argue that a map should be seen as the end product of some kind of
modelling process, albeit a very primitive one: no disease map can be constructed
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without assumptions about the underlying distribution of the disease it purports
to represent.

Section 8.5 addresses the question of heterogeneity. To some extent this involves
issues bound up with the problems of modelling. But the simple question of
whether there is any non-uniformity of risk is a valid one that can be at least
partially answered without reference to underlying models or alternatives.

In Sect. 8.6 we address the problem of clustering. This may also be seen as
a violation of the twin assumptions of uniformity and independence discussed in
Sect. 8.2. However, we may well be more interested in detecting small clusters of
cases that are related to one another and to this extent it may be appropriate to use
different methods from those in Sect. 8.5.

Finally, Sect. 8.7 considers the rather more specific problem of detecting an
increase in risk near a putative point source of risk. It is argued that analyses
of this kind are essentially one-dimensional and, perhaps for this reason, it is
somewhat easier to determine good methods for doing so. This is in fact a problem
of considerable interest and many investigations of “clustering” are really of this
kind. The issue is illustrated by the incidence of childhood leukaemia around
nuclear installations in the UK using data introduced in Sect. 8.3.2.

The concluding section summarises the chapter and makes suggestions for
further reading.

Statistical Models 8.2

In this section we describe a statistical framework for the methods to be discussed.
We start by explaining the elements that underlie the analysis of classical surveys
and then show how the same starting point may be applied to geographical data.

A Statistical Framework
for Epidemiological Observations 8.2.1

To describe a modelling framework for epidemiology, we start by supposing that
the disease D in which we are interested is an essentially dichotomous entity, i.e. it
is the binary outcome – affected|not affected – of some biological process applied
to a finite set of individuals. Such a starting point will serve irrespective of the
temporal nature of the events we are studying, be they deaths or incident cases of
a disease D in a given time period, or the prevalence of D at a given epoch. We will
be primarily interested in the association between D and various covariates C.
Some of these may represent risk factors suspected of playing a causal role: we
will describe these as exposure variables and denote them by E . Others may be
of interest in their own right or because they are potential confounding variables
for E . We will treat E as a subset of C when this is convenient.
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To take a specific geographical example, we cite the famous study of cardio-
vascular disease D by Cook and Pocock (1983). The covariates C included water
hardness E , whose aetiological relationship to cardiovascular disease was of pri-
mary interest, and also various indicators of socio-economic status, which played
the role of a confounding factor: the gradients of mortality, water hardness and
socio-economic status are highly correlated with latitude in the UK. The data were
analysed for males and females together, but they could equally well have been
stratified by sex, which would be a covariate of interest in its own right, since one
might be interested in the mortality of males and females separately.

Next we assume that occurrences of D are independent. This does not preclude
the possibility that individuals have probabilities p of D that are related through
their proximity, for example. Rather the condition stipulates that, conditional on
the values of C and E , the occurrence of D in one individual is independent of that
in another, i.e. that the probability that individual A suffers from D is unaffected
by the fact (as opposed to the probability) that some other individual B also suffers
from it. In practice this is a reasonable mechanistic assumption for nearly all
chronic disease epidemiology. It clearly breaks down for infectious diseases, for
which more sophisticated models would be appropriate. In fact little theoretical
foundation for modelling the epidemiology of infectious diseases at the individual
level exists. This is partly because the theory is intractable, partly because it is
not necessary in setting up the null hypothesis of no contagion for the purposes
of testing. It is only for formulating alternative hypotheses in this situation that
statistical models for a contagious mechanism are necessary. Important though
this is, we will not consider the problem in this chapter.

Under this independence assumption, the individual outcomes of D are de-
scribed by the very simple Bernoulli distribution. If all the probabilities pi for
the individuals in a group of n are the same, the number of occurrences out of
the n will clearly follow the binomial distribution, while if all the pi are different
and supposed to depend on C, we can model them through a (binary) logistic
regression (Cox and Snell 1984).

Such analyses are becoming more common but they require detailed infor-
mation on individuals and are not without their technical difficulties. Much of
epidemiology is in practice still conducted by the more traditional approach of
grouping data according to disease status and to grouped values of C. In this
approach, the assumption is that the probabilities pi within a particular group
are indeed all the same, though in practice we know that this is unlikely to be
true. However, this assumption is far less troublesome than appears at first sight.
For one thing, as long as the pi are small, the difference between a binomial
distribution and that of a sum of slightly different Bernoulli variables will be
negligible.

A typical analysisof epidemiologicaldataproceedsby formingacross-tabulation
into a contingency table, whose rows, columns and layers are labelled by compo-
nents of D , E and C. The standard way of analysing such a table is through
a log-linear model, which implicitly assumes that the counts in the table are val-
ues of Poisson distributed variables, conditioned by the requirements that certain
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sub-totals in the table are deemed to be fixed. For details on log-linear regressions
please refer to Chap. II.3 of this handbook.

The logistic regression and log-linear modelling approaches thus described
have been constructed on the assumption that D is a random response and the
covariates C are fixed but we can also obtain useful analyses by conditioning on
the numbers of “cases” affected by D and unaffected or disease-free “controls”
in a suitable control group and regarding one or more of the covariates as a ran-
dom response. This leads to the so-called “case-control” study (formerly termed
a retrospective study), in distinction to a “cohort” (or prospective) study. Thus,
for example, it might be appropriate to use a normal linear regression to model
the exposure E of individuals to some risk factor – considered to be a continuous
variable – as a function of the other variables, one of which would be an indicator
for D , the membership of the case or control group. We would then regard E as
the factor of primary interest and the other covariates would be fitted in order to
control for their possible confounding effects.

Statistical Models for Geographical Data 8.2.2

Most of the ideas outlined above carry over quite naturally to data in which
geographical location plays a role. We will preserve the assumptions that D is
a binary variable and that disease occurrences are independent conditionally on C.
We need to extend our conceptual notation to include geographical location, which
we will denote by G. There is a distinction between situations where we think of
it as representing a pair of coordinates and those where it is an essentially two-
dimensional location in the space representing a geographical region studied.

If G is thought of as representing coordinates, such as Easting and Northing,
it may be meaningful to treat them like other quantitative variables, perhaps to
detect a trend with latitude, for example. Alternatively, it might be meaningful to
consider polar coordinates from a specified point S considered as a fixed origin,
analysing distance and direction from it. Typically S would be a point of some
aetiological significance, such as a putative source of pollution. We return to this
topic in Sect. 8.7 below.

However, this approach implicitly reduces our analyses to consideration of
essentially one-dimensional variables and it is useful to distinguish this from the
intrinsically spatial case in which we regard two-dimensional space as a single
entity. In this situation our main objective will be to depict the way in which risk
varies over a region R, usually by means of a map. It is unlikely that any kind of
analytically determined trend surface, such as a polynomial, will be useful, though
non-parametrically estimated surfaces might be. We return to the problems of
mapping in Sect. 8.4 below.

The distinctions we made in Sect. 8.2.1 above apply for geographical data. For
example, the majority of geographical analyses are effectively analyses of grouped
data, in which observations have been grouped into k sub-regions A1, A2, … , Ak of
R (which we shall refer to as “areas”). Within each area, we would hope to know
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the population to serve as a denominator and the number of occurrences Yi of the
disease D would then follow a binomial or approximately a Poisson distribution,
by the arguments outlined above. The areas may be regarded as analogous to the
bins of a histogram, though they will nearly always be based on administrative
areas with highly irregular boundaries, so that they do not share the attractive
regularity properties of the more familiar histograms formed from quantitative
variables. The identities of the areas themselves typically enter the analysis through
the coordinates of their population centroids and these may then be analysed by
incorporating them into the model as described above, though the analysis might
well take account of spatial autocorrelation.

If instead of binning or grouping the observed cases into areas we record the
exact locations of the occurrences of D , we need a rather different modelling
approach. The case-independence assumption implies that the cases are located
according to a non-homogenous Poisson process (Diggle 2000), which is the stan-
dard probability model for events happening at random in a continuum, though
not necessarily with a uniform pattern of risk. This model supposes that the prob-
ability of an event in a small area δA at the point (x, y) is λ(x, y)δA, where λ(x, y)
is the “intensity function” of the process giving the rate per unit area at (x, y); it
also incorporates the crucial assumption that the occurrence of such a point is
independent of occurrences outside δA.

It is well known, however, that when points occur according to a Poisson pro-
cess in such a way that the total number is fixed at a value n, say, the pattern of
points obtained is typically exactly the same as if we had sampled from a prob-
ability distribution with density function proportional to λ(x, y). This enables us
to describe the behaviour in geographical space of a fixed sample of cases, with
a view to estimating the risk at each point (x, y) or to compare the resulting risk
function with that for a sample of controls. Thus we have moved to the “dual”
or case-control approach, for we are effectively regarding the locations as realisa-
tions of a continuous bivariate random variable defined for our samples of cases
and controls. Methods of analysing data within this framework are discussed in
Sect. 8.3.4 below.

Modelling Disease Risk in Relation
to Geographically Referenced Factors8.3

Areal Data8.3.1

One of the commonest and most straightforward analyses of geographical data
consists of modelling the counts Yi of cases in areas Ai using a Poisson regression
or, equivalently, a generalised linear model (GLM) with Poisson error and log link
function; seeMcCullaghandNelder (1989)andChap. II.3of thishandbook.Westart
by assuming that we can calculate “null expectations” ei for the Yi. In the simplest
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form these could be obtained by multiplying some global reference estimate of
risk p by the population sizes in the Ai. In practice we will almost certainly wish to
standardise for the age distribution and other known demographic factors such as
socio-economic status. Part of our objective is of course to modify the assumption
that the risk is the same in every area, so we will incorporate a relative risk (RR)
θi, to give the model for the counts as:

Yi ∼ Poisson[θiei] .

We then model the θi in the usual manner for a GLM through

log θi =
p∑

j=1

xijβj ,

where the βj are coefficients in the log-linear model and xij is the value of the jth
covariate for the ith areal unit Ai.

Typical covariates in such an analysis might include intrinsically geographical
features, suchas altitude, geological compositionor levels of background radiation,
or essentially demographic features, such as the age or socio-economic composi-
tion of the population of each area. It should be emphasised that the units in the
latter kind of analysis are not the individuals with a disease D but the areas within
which they reside and the covariates are also necessarily attributes of these areas.
The analysis is implicitly imputing the properties of the area to all the individuals in
the area. To the extent that this is inappropriate, conclusions drawn are sometimes
described as being subject to the “ecological fallacy”. This is a matter of scientific
interpretation rather than statistical validity and it is arguable that this kind of
analysis involves no logical fallacy at all. For details on this ecological approach,
please refer to Chap. I.3 of this handbook.

An Example of the Log-Linear Model for Areal Data 8.3.2

An example of this use of the log-linear model is provided by the application to
childhood leukaemia data described by Bithell et al. (1995). The dataset analysed
was from the UK National Registry of Childhood Tumours (NRCT) maintained
by the Childhood Cancer Research Group in Oxford and related to 5359 children
diagnosed with leukaemia or non-Hodgkin lymphoma under the age of 15 years
between 1966 and 1987. Each of the cases was located in one of 9831 electoral wards,
which are administrative areas with an average population of around 5000.

The explanatory variables fitted were “Standard Region”, a classification into
ten regions, and the Townsend Index, an areal index of social deprivation which
is a function of unemployment, housing ownership and other socio-economic in-
dicators. As shown in Table 8.1, there was a significant reduction in the deviance
associated with each of these factors: the p-values shown in the first two lines are
based on the chi-square approximation to the deviance reductions. It is interest-
ing, incidentally, to note that the direction of the association is negative for the
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Table 8.1. Analysis of deviance of childhood leukaemia data

Variation due to d.f. Deviance P-value

Standard Region 9 23.1 0.0060

Townsend Index 1 23.6 10−6

Residual 9820 8610.6 0.025

Townsend index, i.e. the disease is slightly commoner in less deprived families. This
is a feature of childhood leukaemia that differentiates it from most other diseases.

The goodness of fit of the model can in principle be tested by the residual de-
viance, but because the expected numbers of cases per ward in this analysis were
small (less than half on average), the chi-square approximation is unreliable. How-
ever, the theoretical mean and variance of the deviance for Poisson observations
with a specified set of expectations can be calculated straightforwardly. We can
therefore obtain an approximate test of the residual deviance as follows:
1. compute the values for the expectations predicted by the model for each ward;
2. compute the mean µ and variance σ2 of the deviance statistic D as defined by

D = 2
∑

i

[Yi log(Yi|ei) − (Yi − ei)] (8.1)

as if the contributions to D were independent;
3. refer the statistic (D − µ)|σ to the standard normal distribution.

The assumption of independence should be approximately true in view of the
large number of degrees of freedom. Bithell et al. check the p-value by simulation
of data from the fitted model and found a very good degree of approximation to
the calculated value of 0.025. These results may be interpreted as meaning that
the model fits much better than if the explanatory factors had not been taken
into account (for which the equivalent p-value was 0.00042); though there is some
evidence of residual heterogeneity, it must be remembered that this is a large data
set and the level of significance observed is not indicative of a large degree of
variation. We return to the issue of testing residual variation in Sect. 8.5.

Calculating the Expectations8.3.3

The model described above involves the expectations ei, which appear as an “off-
set” term in the model, i.e. log(ei) is added to the linear function of the covariates
defining log θi. These may be calculated from externally calculated rates, for ex-
ample from national statistics. If such rates are not easily available, the data can be
internally standardised by supplying the sizes of the populations at risk; any factor
representing the overall risk will appear in the intercept term of the model. The ex-
pectations predicted by the model can then be used as expectations for subsequent
analyses and this is a useful by-product of the modelling process. The method can
be seen as an elegant and more consistent alternative to classical standardisation,
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permitting the flexible inclusion of covariates according to their importance, as
indicated by the modelling process.

Indeed, the analysis described by Bithell et al. is part of a larger one designed
to produce expected numbers of childhood leukaemias for the areal analysis of
incidence near nuclear installations; this is briefly described in Sect. 8.7.3.

Continuous Data 8.3.4

Following the discussion in Sect. 8.2.2 above, we suppose that we have a sample of
exact locations of cases of disease D and that we denote their density function over
R by ψ(x, y). We need an analogue of the denominators in an areal analysis to serve
as a measure of how many individuals there are at risk at each point (x, y) of R.
This is provided in principle by knowledge of the population density, which we will
consider to be continuous and which we will denote by π(x, y). Then our problem
becomes one of comparing the density function for the incident cases with that of
the population. For a rare disease, the population density (which strictly speaking
includes diseased as well as healthy individuals) will be very similar to that for all
non-diseased individuals, which can in turn be estimated by a suitable sample of
controls. The natural way to make this comparison is through the ratio and it is
easily seen that this is

θ(x, y) = ψ(x, y)|π(x, y)

which defines a relative risk function (RRF) giving the risk of being affected by D
at each point (x, y) of R relative to the mean for the whole of R (see Bithell 1990).

A natural estimate θ̂(x, y) of θ(x, y) is provided by the ratio of estimates of ψ(x, y)
and π(x, y). These may be obtained using one of the modern methods available for
estimating a density function (see the books by Scott (1992) and Silverman (1986),
for example). The process is not without difficulties but it can be used to provide
meaningful estimates of the RRF over R, in effect providing a map of it. We return
to the problem of mapping in Sect. 8.4 below.

A more ambitious objective than merely mapping the RRF is to model it as
a function of covariates x, say. These may be geographically defined at every point
of R or they may be attributes of the cases and controls in the samples. An elegant
modelling approach is due to Diggle and Rowlingson (1994) and proceeds by
analogy with classical case-control studies. We condition on the coordinates of the
n cases and m controls and consider the probability that, under random allocation
of the cases and controls to the m + n locations, an individual sampled at a given
location (x, y) is a case rather than a control. This probability can then be modelled
logistically as a function of x. If there appears to be unexplained variation in the
RRF, it can in principle be modelled by adding a non-parametric function of (x, y)
to the linear predictor. The numerical problems of the latter approach appear not
to be trivial.

The inclusion of attributes of the individuals in the analysis is particularly
attractive, since it provides the possibility of controlling for them within the geo-
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graphical analysis. In practice it is not always straightforward to obtain suitable
controls for analyses of this kind, partly because the current emphasis on data
protection makes it difficult to access individual records and partly because of
the number of combinations of categories with respect to which we may wish to
match. Nevertheless, this methodology, though still in its infancy, would seem to
have considerable potential.

Spatial Structure in the Residual Variation8.3.5

Theobjectoffittingamodelof thekinddiscussed is toobtainasatisfactoryexplana-
tion of the data, i.e. a residual deviance that is not statistically significant. This is not
always very easy, since the risk of disease may depend on factors that we have been
unable to measure. Large data sets – for example of national mortality rates – may
also demonstrate a significant deviance resulting from unobserved factors that are
scientifically unimportant simply because of the large numbers of cases involved.

Unfortunately, conclusions about the importanceof individual explanatory vari-
ables in a model are strictly valid only if the model fitted is correct. In practice
we will believe a model to be correct if it appears to fit reasonably well, i.e. if the
residual deviance is not statistically significant. This raises the question of how to
proceed if there is a degree of residual variation that we cannot explain.

In geographical studies it is quite likely that such variation will be due to
unobserved variables that are spatially autocorrelated and in this case we can
include appropriate terms in the model. Typically this is done for data in areal form
using a conditional autoregression (CAR) model (Wakefield et al. 2000) while, for
continuous data, Kelsall and Diggle (1998) use a generalised additive model (GAM)
which effectively gives an extra term in the model estimating residual variation
non-parametrically. These ideas are important but are somewhat beyond the scope
of this chapter; for a good overview see Diggle (2000). We only remark that the
issue may not always be as significant as some authors maintain. The deviances
of the terms that are fitted in a model will still be a reliable indication of their
importance unless they are confounded with the unobserved variables that are
inflating the deviance; in this case fitting a spatial model merely tells us that this
confounding has a spatial structure – it does not help us to identify the variable or
determine its scientific importance.

Mapping Disease Risk8.4

The mapping of disease risk is a central endeavour of geographical epidemiology:
a map is as convenient for portraying such location-specific information as it is for
indicating the geography of the land to which it relates. It is therefore no surprise to
discover that mapping has a long history pre-dating any systematic development
of the statistical principles that underlie it.
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As with other areas of geographical epidemiology, many methods have been
proposed. Broadly speaking, these can be divided into two classes, model-based
and non-parametric. Methods in each of these classes can be applied to data
in either areal or continuous form. It is important to appreciate, however, that,
whatever method is applied, there is inevitably a degree of smoothing involved
that is to some extent arbitrary and under the control of the investigator.

For example, the simplest form of map is the so-called chloropleth map, which
uses a grey or colour scale to depict the risk of D in each of a number of areas,
usually administratively defined so that denominators are easily available. Here
the degree of smoothing is determined by the size of the areas Ai, since the process
represents the risk as being the same for the whole of a given area. An example of
a chloropleth map is given in Chap. I.3 of this handbook.

Similarly, data in continuous point form can be mapped using the methods
described in Sect. 8.3.4 by plotting the RRF θ̂(x, y). Here the smoothing is deter-
mined by the degree of smoothing used in the estimation of the densities: it is
a commonplace of this methodology that some smoothing parameter always has
to be used, though there are data-driven methods for estimating the most appro-
priate smoothing parameter. For an early example of this method applied to small
numbers of cases and controls, see Bithell (1990).

It may be noted that the method can easily be adapted to areal data by suitably
modifying the customary density estimation methods (Bithell 1999).

Figure 8.1 depicts the incidence of childhood cancer in a 50 km square region
of Oxfordshire using data from the UK National Registry of Childhood Tumours
maintained by the NRCT in Oxford. They consist of 279 cases of childhood cancer
(other than leukaemia and non-Hodgkin lymphoma) registered under the age of
15 years between 1966 and 1987. Each case was located in one of 150 electoral wards
for which expected numbers of cases were calculated using similar methods to
those for the leukaemia data described in Sect. 8.3.2. The point observations for
the cases were used to construct a density estimate ψ̂(x, y) using the average shifted
histogram (ASH) method due to Scott (1992). For the controls the density estimate
π̂(x, y) was constructed by treating the centroids of the wards as point locations
weighted by the expectations and using a version of ASH modified accordingly.

Thebasisof theASHmethodis tocountthenumbersofcases inthecellsofasquare
grid; these are then smoothed by slightly shifting the grid a number of times and av-
eragingtheresultingcounts; thisprocesseffectivelysmoothesthesurfacebyspread-
ing out the contributions of the points through neighbouring grid squares.

The RRF was then obtained by dividing the density estimates for the cases and
controls to give θ̂(x, y) = ψ̂(x, y)| π̂(x, y). This is depicted in Fig. 8.1 as a contour
plot with a scale in km and an origin located in South-West Oxfordshire.

The methods sketched above may be regarded as empirical or non-parametric,
in that there is nothing underlying them that is more sophisticated than the
division of one number by another (specifically a count by a denominator or one
density estimate by another). In particular, it is generally very difficult to see how
to determine the appropriate degree of smoothing by any objective process, as
distinct from using intuitively plausible and aesthetically pleasing values.
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Figure 8.1. Relative Risk Function for childhood cancer in a region of Oxfordshire, estimated from

areal data. The three town centres are shown only approximately. The ASH smoothing parameter

used was 8 (see Bithell (1999) for details)

The need for a degree of smoothing can easily be seen by considering a chloro-
pleth map, for which we have areas Ai with small numbers of cases, either because
we have chosen small areas or because D has low incidence. In this case the esti-
mates of the risk in each Ai will be subject to large sampling error; our belief about
the true risk in Ai will be determined in part by the observed rate, but it will also
rely on information from the region as a whole, to the extent that we believe there
will be some comparability between the areas.

This idea has led to the development of model-based approaches using Bayesian
arguments to integrate area-specific information with information from the whole
region, using a statistical model for the underlying variation of the true risk. In
a classical treatment of this problem, Clayton and Kaldor (1987) suppose that the
true risk θi in Ai is distributed over the areas as a whole according to a gamma
distribution with mean µ and variance σ2. It can then be shown that the posterior
distribution of θi has mean

θ̃i =
yi + µ2|σ2

ei + µ|σ2
,

where yi is the observed value of the count Yi in Ai. This formula can be seen
to be a form of average of the maximum likelihood estimate θ̂i = yi|ei of each θi
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and the overall mean µ, which can be estimated by
∑

yi|
∑

ei. The value of σ2

can also be estimated from the data as a whole, though this requires an iterative
method.

This method and variants of it provide empirical Bayes estimates, in that the
prior distribution of the θi can be estimated from the data. The method is essen-
tially non-spatial, in the sense that the true θi are supposed to vary independently.
In practice, it is likely that rates in neighbouring areas will be consistently more
similar to one another than those in more separated areas. If this were not so,
it would be essentially fruitless to attempt to produce a smoothly varying map.
The Bayesian methodology has been extended to permit the prior distribution
of the θs to depend on the values in neighbouring areas. These more compli-
cated models involve a greater number of arbitrary assumptions, however. They
are gaining ground in popularity and appear to be used quite successfully. The
reader is referred for more details and references to Clayton and Bernardinelli
(1992).

Attractive though these ideas are, the maps they produce need careful inter-
pretation, since they have imposed a degree of spatial auto-correlation and this
process is capable of making adjacent areas look more similar than they really are.
In a sense this is true of all mapping methods and is a feature as intrinsic as the
implicit smoothing itself.

In a challenging paper, Gelman and Price (1999) discuss the issue and illus-
trate the phenomenon of induced spatial pattern by means of simple modelling
paradigms. They point out that the probability that a particular area rate θ̂i exceeds
a given value increases with the population size, ni, say. The effect of this is that
high observed rates of disease tend to be observed predominantly in low popula-
tion areas; since these tend to be spatially aggregated – i.e. low population areas
are more likely to occur next to other such areas – observed rates also appear to be
spatially related even when in fact no such relationship exists for the underlying
risk.

They further demonstrate that plotting the posterior means from a Bayesian
analysis produces observed rates that are likely to exceed a particular value with
probabilities that are decreasing functions of ni, so that such plots over-correct in
some sense. Although scores exist – at least for continuous observations – that are
not subject to these artefacts, they have no direct interpretation as estimates of
the θi.

One is driven to the conclusion that disease maps are potentially misleading
when used as anything except what Gelman and Price call “look-up tables”, i.e. as
a convenient way of depicting the rate in a given area without reference to neigh-
bouring areas. It is the temptation to use the map to generalise about the spatial
pattern of rates that can be misleading and it is probably better to formulate such
questions within the context of a statistical model rather than to attempt to portray
spatial relationship graphically. However, one suspects that this timely caution is
unlikely to diminish the enthusiasm for constructing and over-interpreting disease
maps.
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The Detection
of Generalised Heterogeneity8.5

The Assessment of Heterogeneity in Areal Data8.5.1

Heterogeneity is the key to epidemiology, in the sense that a uniform risk in
observed data gives no possibility for associating differences with factors that may
have aetiological significance. We have already touched on the issue of modelling
in Sect. 8.3.1 and our objective there is to find a model that appears to fit well in the
sense that the residual deviance is not statistically significant – i.e. it is consistent
with chance deviations from the predictions of the model.

As long as we have Poisson data with reasonably large means we can assess the
residual deviance as if it had a chi-square distribution with a number of degrees
of freedom (d.f.) determined by the model – specifically the number of units
minus the number of parameters fitted. It is important to remember, however,
that this is based on asymptotic theory which, roughly speaking, supposes that
the total number of cases is large compared with the number of units – areal or
otherwise – in the analysis. A rule of thumb suggests that the expectations of the
counts in a Poisson regression should mostly be in excess of 5. When the average
expectation falls below this, we should expect the distribution of the deviance in
a correct model to depart progressively from a chi-square distribution, which of
course means that a corresponding statistical test of goodness of fit of the model
based on the chi-square distribution would not be valid.

In this situation, we can obtain an approximate assessment of the value of the
deviance – and hence the goodness of fit of the model – by simulation. Typically
we would generate, say, s new samples of data from Poisson distributions with
means obtained from the model Mfitted fitted to the actual data. For each simulated
sample, we would re-fit the same model and compute the residual deviance. The s
values of the deviance thus obtained provide an estimate of the distribution of the
deviance. This in turn provides a means of calibrating the deviance observed for
our actual data. A formal test of goodness of fit would only be approximate since
we are simulating from Mfitted rather than the true model with the true (unknown)
parameter values. This situation is typical of “bootstrapping” and the theory of
this subject could in principle lead to better approximations. For an account of
bootstrapping see, for example, Efron and Tibshirani (1993).

Detecting Heterogeneity in Poisson Data8.5.2

A special case arises when we have expectations, provided, for example, by some
prior analysis or by simple calculation from population data and we merely wish
to detect whether the Poisson distribution fits well with the assumed ei, without
reference to any model fitting. This is sometimes seen as a problem of detecting
“clustering”, though there are qualifications to this interpretation that we discuss
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below: for the moment we prefer to regard this as the problem of assessing het-
erogeneity, i.e. variations in risk between areas without reference to a possible
geographical origin for the phenomenon.

Relating this to the deviance of a Poisson model suggests that the deviance of
the observations, defined in (8.1), Sect. 8.3.2, would be a sensible test statistic. The
fact that this test is a likelihood ratio test means that it is asymptotically fully
efficient – i.e. its power approaches that of the best possible test against a Poisson
alternative in which the relative risks are different from unity.

Popular alternative contenders include Pearson’s chi-square statistic

X2 =
∑

(Yi − ei)
2|ei ,

and the Potthoff–Whittinghill statistic (Potthoff and Whittinghill 1966)

PW =
∑

Yi(Yi − 1)|ei ,

which is regarded by some authors as a test of clustering. The former is, at least
in simple cases, asymptotically equivalent to the deviance but is easier to com-
pute and to study analytically. The asymptotic requirement, however, implies that
the expectations should be large and the theoretical properties give rather little
guidance on which test is best for small expectations.

Table 8.2 shows the results of a simulation study, designed to provide such guid-
ance, in which the expected significance level (ESL) of each test has been estimated
in each of three conditions. (The ESL is a convenient alternative criterion to power
(Dempster and Schatzoff 1965): a smaller ESL corresponds to a more powerful
test.) In each case the ESLs were estimated from 10,000 simulations performed
under varying conditions. These were chosen to produce values in a critical range
corresponding to situations where the test would be quite likely to lead to different
conclusions at conventional significance levels. In each case, a specific number k of
wards were supposed to have the same expectations e under the null hypothesis,
whileunder thealternativehypothesis theseexpectationsweremultipliedbyasetof
RR factors θi sampled from a gamma distribution with mean one and variance σ2.

Table 8.2. Expected significance levels (ESL) % and their standard errors for Pearson’s X2, the

deviance and the Potthoff–Whittinghill tests: k wards each with expectation e under H0 and an

alternative expectation dispersion with variance σ2

e σ2 k Pearson Deviance Potthoff

5.0 0.05 200 ESL 6.6 3.5 44.5

s.e. 0.22 0.18 0.50

1.0 0.2 500 ESL 3.5 2.7 6.3

s.e. 0.18 0.16 0.24

0.2 1.0 1000 ESL 14.2 23.8 3.3

s.e. 0.35 0.43 0.20
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In interpreting this table, we suppose that the key parameter is the size of the
expectation e. Because the test statistic will be roughly proportional to the number
of wards k, this latter parameter represents the amount of information and was
chosen to bring the ESLs into an interesting range; it would not be expected to
change the relative ordering of the three tests. The variance σ2 represents the
distance between the null and alternative hypotheses and the values were chosen
to be typical of the sort of discrepancy that one could reasonably expect to detect
in practical situations. It could conceivably affect the relative properties of the
different tests but is less likely to do so than e.

It will be seen that, with an expectation of e = 5, the deviance is indeed the
best test, while the Potthoff–Whittinghill test trails behind Pearson’s chi-square
test. The difference between X2 and D becomes marginal around e = 1 while, for
smaller expectations, the ordering is reversed and the Potthoff–Whittinghill test
appears to be superior. These results suggest that it would be wise to carry out
simulations in particular marginal cases to determine the best test to use. It should
also be emphasised that one should evaluate the significance of the chosen statistic
using simulation when the ei are small, since the Pearson and deviance statistics
are then likely to have distributions markedly different from the chi-square.

Spatial and Non-spatial Analyses8.5.3

Atestofheterogeneity inarealdataof thekinddescribedaboveprovidesonlyanon-
spatial test of the heterogeneity of our observations. Whether this is appropriate
depends on whether or not the areal units are defined by essentially geographical
criteria. If, for example, they are defined by simply dividing our region R into
urban and rural areas, then a factor associated with the degree of urbanisation
could be expected to induce heterogeneity into the areas irrespective of their spatial
positions.

More frequently, however, areas are merely convenient administrative sub-
divisions of R. In this case we might expect a factor that raises the incidence
in one area to do so in adjoining areas also. Then, a test that takes no account of
the spatial relationship of the areas will be less powerful than one that does.

To take a simple hypothetical example, suppose that R consists of two sub-
regions: R1 with n areas each having expectation ei = 9 and R2 with n areas each
having expectation ei = 11. A dispersion test based on Pearson’s chi-square statistic
would use the variance of the observations to test the null hypothesis H0 that all
the expectations are the same:

X2
2n−1 =

2n∑
i=1

(Yi − e)2|e ,

where e =
∑2n

1 Yi|n is the (estimated) expected count based on all 2n observations.
To a good approximation, this statistic would have a chi-square distribution with
2n − 1 degrees of freedom under H0. If, however, we knew which areas belonged to



Geographical Epidemiology 877

R1 and which to R2, we would base the test on the equivalent statistic for testing
the difference between the totals for the two sub-regions:

X2
1 =

(∑n
1 Yi − ne

)2
+
(∑2n

n+1 Yi − ne
)2

ne

and it is fairly obvious that this would be a much more powerful test of H0. This
idealised situation is analogous to isolating sources of variation in an analysis of
variance.

In practice, of course, we will almost certainly not be in a position to divide
R into high and low risk areas a priori, but this example does suggest that the
detection of non-uniformity of risk should take account of the spatial structure
of the data. A classical account of tests of spatial autocorrelation is given by
Cliff and Ord (1981), who establish some theoretical properties of their sampling
distributions, particularly in the case of normally distributed observations. In
one of the few comparative studies published, Walter (1993) examines the power
empirically for three of the most popular tests against a variety of geographically
plausible alternatives. The three considered were

the I statistic of Moran (1948), which is analogous to a correlation coefficient
and is defined by:

I =
n
∑

ij wij(xi − x̄)(xj − x̄)∑
ij wij

∑
i(xi − x̄)2

.

the c statistic of Geary (1954), which is similar to I and
a non-parametric test statistic which uses only the ranks of the observations.

The first two statistics used as observations xi = yi|ei, the standardised incidence
ratios for the different areas, and spatial weights wij chosen to be one if Ai and
Aj are adjacent and zero otherwise. Walter’s Table II shows that, in each of the
situations he considered, Moran’s I had the highest power of the three and it would
seem that this should be the method of choice, at least for detecting generalized
spatial relationship as opposed to isolated peaks in the risk. The question of
whether higher power could be achieved by using more sophisticated weighting
than a simple adjacency matrix, or by weighting the pairs of observations according
to the amount of information they contain (in terms of sample size, for example),
has not been much considered. Walter concludes that “the precise type of spatial
pattern involved may have a major impact on the spatial power of the analysis”
and that “more experience is needed to better understand the potential of these
methods, and their limitations”. Nevertheless this study was a useful contribution
and the use of Moran’s I to detect spatial autocorrelation is probably a good
choice.
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Heterogeneity Tests Based on the Risk Surface8.5.4

If we have continuous data – i.e. observations at the individual level – we can base
a test of uniformity on the RRF θ̂(x, y) as estimated by the methods described in
Sect. 8.3.4. We may regard a test statistic as being defined by a functional of θ̂(x, y)
and there are various possibilities.

A natural choice is the weighted variance of θ̂(x, y):

Tvar =
∫∫

R
π(x, y){̂θ(x, y) − 1}2dxdy .

In the absence of any reliable theory it is necessary to resort to Monte Carlo
methods to test the statistic. For case-control data, we use a permutation method
that is straightforward though laborious:
1. construct a map of the risk function θ(x, y) by a suitable method, using a degree

of smoothing which is determined as a function of the data;
2. evaluate the chosen test statistic for the observed data tobs;
3. choose a new sample of “cases” by choosing at random n points from the set

of m + n cases and controls combined;
4. compute the value of the statistic t1, say, for the simulated data, using the same

procedure as in Step 1;
5. repeat Steps 3 and 4 s − 1 times so that there are s simulated values altogether;
6. reject at level α = m|(s + 1) the null hypothesis of uniformity of cases if tobs is

greater than all but m − 1 of the simulated observations;
7. or alternatively estimate the p-value of the test as the number of {ti ≥ tobs}|s.

This general Monte Carlo procedure is applicable in very general circumstances
and it is especially useful in the analysis of spatial data, where construction of
suitable models is difficult. We must remember, however, that a hypothesis test
is, by itself, of very little inferential value without some idea of how probable the
observed results would be under a plausible alternative.

The method can easily be adapted to a test based on a risk surface constructed
from areal data as described in Sect. 8.4. The simulation would take the form
of sampling areal counts from Poisson distributions with expectations ei and
computing the variance over a square grid as before. In either the continuous
or areal data case the degree of smoothing used in the density estimation process
determines the scale of aggregation for which the test is most sensitive and is
analogous to the choice of weights wij in Moran’s statistics.

The use of tests of this sort is still in its infancy, but the underlying philosophy is
attractive and increasing computing power is making them more practicable even
for large data sets.



Geographical Epidemiology 879

Clustering 8.6

Closely related to the idea of heterogeneity is the concept of clustering, with which
much of geographical epidemiology is preoccupied. There is a large literature on
the subject, not all of which is very clear on the issue of what we actually mean
by the words “cluster” and “clustering”. We may conveniently define a cluster as
a localised aggregation of disease cases greater than can easily be explained by
chance. Clustering may be regarded as the tendency to form clusters or, more
generally, as any departure from the assumptions of uniform risk and indepen-
dence of case occurrences as discussed in Sect. 8.2.1. We will continue to use the
word heterogeneity to refer to a departure from uniformity and reserve the word
clustering as far as possible to refer to mechanisms in which case occurrences are
not independent. This kind of clustering may be supposed to act locally, whereas
heterogeneity is more likely to be observed throughout R and is sometimes re-
ferred to as “generalised clustering”. For further discussion of the issues the reader
is referred to a useful paper by Diggle (2000).

We can give here only the briefest of accounts. We will distinguish between
methods based on increased levels of risk and methods based on the proximity of
neighbours. First, however, we make two general points about clustering.

In the first place, it is a well accepted fact of spatial statistics that it is not
possible to distinguish on the basis of a single realisation of observed data from
a spatial process whether any non-uniformity of the distribution of points (relative
to an expected population distribution) is due to a variation of underlying risk,
with cases occurring independently (i.e. points generated by a non-homogeneous
Poisson process or its equivalent), or to a mechanism in which existing cases induce
others nearby, such as would happen in a contagious process. Secondly, we remark
that, from an abstract point of view, clustering may take place in any continuum
and, in the geographical context, we may observe clustering in space, time or the
“product-space” of time and geographical space. This mathematical commonality
means that tests can be adapted from one problem to another, with very fruitful
consequences.

Methods Based on the RRF 8.6.1

Clustering is likely to be observed as an increase in risk in some locality and it
follows that we can use the estimated risk surface θ̂(x, y) to provide an appropriate
test. What functional of θ̂(x, y) we use will depend on the alternative we have in
mind or, equivalently, the pattern we would most like to detect. If, for example, we
are content to demonstrate a single cluster or aggregation of cases we could choose
as our test statistic the maximum of the θ̂(x, y) over the whole region R:

Tmax = max
x,y∈R

{̂θ(x, y)} .
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This does not, of course, preclude the possibility that we would detect multiple
clusters, but it is likely that our test would be most powerful in the situation where
there are in fact very few. We could of course extend the statistic to consider, for
example, the mean of the r largest peaks in θ̂(x, y) but it is unlikely that we would
have good a priori grounds for fixing r. Tests based on peaks of incidence must
also be expected to be quite sensitive to the scale of the clustering phenomenon
and to the degree of smoothing we employ in constructing θ̂(x, y).

A statistic likely tohave similarproperties to Tmax is basedonascanningwindow,
typically a square that moves over R. At each point of a fine grid the observed
number of cases is compared with its expectation; the test statistic is defined as
the maximum discrepancy using a suitable criterion such as the incidence ratio.
Here the size of the window plays the role of a smoothing parameter; the main
difference from Tmax is that a peak incidence is weighted according to its radial
extent; it seems likely that it behaves in a similar manner to Tmax for suitably chosen
smoothing parameters. Anderson and Titterington (1995) describe a version of this
method that varies the window size to keep constant the expected number of cases
under the null hypothesis.

In fact the scanning window is a two-dimensional version of an approach
originally used for detecting clustering in time; even this one-dimensional version
is notoriously intractable analytically and simulations or other numerical methods
would seem to be unavoidable.

Knox’s Test8.6.2

The use of what we may call pairing methods is historically older than the methods
based on the risk surface discussed above; they have the attraction of being very
simple to describe and understand.

The earliest such test is due to Knox (1964), who counted the number, Z, of
pairs of children with leukaemia diagnosed within sixty days and one kilometre
of each other in Northumberland and Durham, two counties in the North-East of
England (see Table 8.3, taken from Knox (1964)). The study used local registration
and hospital records as well as death certificates to ascertain 185 children with an
onset of leukaemia under 15 years of age between the years 1951 to 1960 inclusive.
However, certain cases were excluded and Table 8.3 refers just to children under
the age of six, a restriction that needs to be borne in mind when interpreting the
results; in fact older children showed no effect.

Table 8.3. Pairs of cases of childhood leukaemia classified according their closeness in space and time

(see text)

Distance apart (km)
0–1 Over 1 Total

Time apart 0–59 5 147 152

(days) 60–3651 20 4388 4408
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The rationale for this test is explicitly related to the non-independence of the
cases, namely that a contagious mechanism passing a disease from one individual
to another would be likely to lead to cases that are closer to one another in space
and time than would be expected by chance. This in turn leads to the idea of
considering pairs of cases.

Knox refers this statistic to its expectation calculated on the assumption that
the spatial locations and times of occurrence of the disease are independent. This
is given by

E[Z] =
NTNS(

n

2

) ,

where NT , NS are the numbers of pairs of cases close in time and close in space
respectively and the denominator is the total number of pairs out of the n cases.

In effect this becomes a test of the independence of these two variables and it
uses their marginal distributions to determine the null distribution of Z. Knox
conjectures that Z should follow a Poisson distribution approximately; this is
shown to be true in certain circumstances in work reported by David and Barton
(1966), who give a formula for the variance of Z. It is wise to calculate this or to
use a Monte Carlo test in which the times of occurrence of the cases are randomly
permuted relative to the space coordinates and the statistic Z is re-computed
a large number of times. For Knox’s data, the value of E[Z] is 0.83, for which
Z = 5 has a p-value of 0.0017 when tested as a Poisson observation. David and
Barton report an early simulation experiment for Knox’s data carried out by
M.C. Pike; the latter finds Z ≥ 5 in 4 out of 2000 simulations. This leads to
an estimated significance level of 0.002 which is very close to that based on the
Poisson approximation.

The choice of the critical distance and time separation is of course crucial. It
determines the scale of clustering likely to be detected and it should ideally be
fixed in advance for the formal validity of the testing procedure. In particular,
it is certainly not formally valid to test at a large number of different critical
distances and times and then select the most significant result without allowance
for this selection. If we really have no idea of the time and distance scales that
would be appropriate, we need to use a data-driven method of identifying the
most promising values (see Sect. 8.6.6).

Other Space-Time Clustering Methods 8.6.3

An alternative test based on the proximity in space and time of pairs of cases
is proposed by Jacquez (1996). This is based on the number out of the l nearest
neighbours in space of a given case that are also among the l nearest neighbours in
time. Like the Knox test it can be adapted to provide a test of space-only clustering.
Jacquez claimed superior power to that of the Knox test, though in practice this is
likely to depend on the alternative being considered. Here the parameter l serves
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as a kind of scale parameter since it determines how far we look for association
between cases.

Knox’s very elegant idea permits us to dispense with the need to estimate
the marginal distributions, though only under the assumption that space and
time are in fact independently distributed in the population. This assumption
applies of course to Jacquez’ test also. It will clearly be violated by population
drift, i.e. a change of population distribution with time. Kulldorf and Hjalmars
(1999) examine the size of this effect and conclude that it can be “a considerable
problem”. They recommend that space-time clustering should be tested using the
joint space-time distribution of the population size but this is of course rather hard
to obtain with good accuracy and resolution. It seems likely that the use of the
interaction tests will remain popular.

Case-Only Clustering8.6.4

Knox’s idea of counting pairs has been very fruitful and has been adapted to
a number of related situations, including the use of a sample of controls to provide
a reference distribution when testing for space-only clustering (Pike and Smith
1974). The essential idea here is to regard the controls as being similar to the cases,
except that they are considered to have occurred at different “pseudo-times”, while
the cases are considered to have occurred simultaneously. The statistic computed is
then the number of pairs of cases that are close in space, and it is not hard to see that
this is formally equivalent to Z, with identical distributional statistical properties.

Population Distance8.6.5

A kind of dual approach is proposed, also for case-control data, by Cuzick and
Edwards (1990). This is based on the count of the number of individuals among
the l nearest neighbours of each case that are also cases (as opposed to controls).
The quantity l in the Cuzick–Edwards test serves as a determinant of the scale
of clustering to be detected in this method. It is given in terms of the number of
individuals likely to be within a region of contagion, rather than a distance.

This may be seen as more relevant for some, though not for all, mechanisms of
disease spread. Indeed, for any given pair we can think of closeness in terms of
distance or in terms of the number of other members of the population residing
between the two members of the pair. The choice between these two metrics is
crucial, though which is the more appropriate will presumably depend on the
supposed aetiology of the disease.

The idea of a population distance lies behind another method of testing, due to
Besag and Newell (1991), who consider each case in turn and aggregate the areas
around it that are necessary to include the rth nearest case. The expectation for
the aggregate of these areas is then compared with r in the usual way. This can be
regarded as a kind of inverse sampling and again the number of cases considered,
r, is a parameter that determines the scale of clustering to which the procedure is
sensitive.
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Choosing Scale Parameters 8.6.6

Every clustering phenomenon has an implied scale of the clustering effect and it is
clearly desirable to have some idea of this before attempting to detect it. When we
have no idea the temptation to perform multiple testing arises and it is important
to make allowance for this. A method for testing a range of distances and times
in the Knox test is proposed by Abe (1973); effectively this examines a multi-way
table for association between space and time, making due allowance for the non-
independence of the pairs. This statistic is sensitive to association over the whole
range of distances and times rather than attempting to identify the most interesting
scale. To identify the scale of maximal clustering effect we can use a general data
driven procedure that can be constructed along the following lines:
1. Test the data at each of a number of critical space and time distance pairs.
2. Form a single test statistic, either using some aggregate over different values

of the scale parameters or using some measure of the maximum degree of
clustering; call this statistic tobs.

3. Simulate further data sets under the null hypothesis: for Poisson data this will
probably involve sampling Poisson–distributed counts, while for case-control
data it may involve pooling all the cases and controls and randomly selecting
a subset to serve as simulated “cases”.

4. Rank the simulated values of the statistic t1, t2, … , ts and compare the ranked
values with tobs.

This Monte Carlo procedure is of general applicability and provides a way of
getting round the problem of unknown scale. It does of course sacrifice power by
comparison with a test that correctly focuses on the true degree of clustering, so
that the more carefully alternative hypotheses can be framed a priori the better.

Faced with this wide variety of tests it is difficult for the researcher to know
which to use. Each new test published typically is claimed to be more powerful than
previously existing tests, but there is a wide variety of alternatives to uniformity
of risk that could be considered and it is certain that no one test is uniformly
most powerful against all alternatives. In principle it is open to the researcher to
examine competing tests to see which would be best for the data and the alternative
hypothesis in question, but this can be an arduous exercise. This is an area where
we badly need more insight into which tests are preferable.

Pre-defined Sources of Risk 8.7

One of the epidemiological questions most often asked in a geographical context
is whether there appears to be an aggregation of cases around a putative source of
risk S such as an industrial plant. For example, there has been much interest in the
UK, as in other countries, in the possibility of elevated risk of childhood leukaemia
around nuclear power stations. This results in part from the finding of an unusually
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large aggregation of cases near the nuclear reprocessing plant at Sellafield, which
is situated on the coast of Cumbria in the North-West of England. In fact ordinary
nuclear generating stations have little in common with the reprocessing plant and
the experimental reactor at Sellafield; nor is there evidence of significant releases of
radioactivity into the environment from generating stations. Nevertheless, public
anxiety persists about the safety of the plants, partly perhaps because of the
difficulty in comprehending the nature of nuclear power and partly because of
sensational reporting in the news media. In fact, there is little evidence of a general
increase in risk (Bithell et al. 1994), but it is highly desirable that the best statistical
procedures are used to test the data that come under scrutiny. The public may not
have a very sophisticated understanding of statistics, but it is obvious even to the
uninitiated that some of the procedures used in the past have not been well-chosen
from the point of view of maximising the chance of detecting a real effect.

Aggregations around S are sometimes referred to as “clusters”, but it is not
generally supposed that the cases involved are related, only that the risk to indi-
viduals in the vicinity of S is elevated. Analyses could therefore proceed using the
methods described in Sect. 8.3.1, with the obvious qualification that geographical
variables clearly represent spatial relationship to S. In practice this nearly always
means using distance from S or some function of it, so that the analysis is implic-
itly one-dimensional. Moreover, analyses are often required in situations where
the number of cases is very small and in this situation the fitting of GLM’s tends
to be unstable and to lead to parameter estimates with large standard errors and
unknown distributional properties.

Tests for Concentration of Risk8.7.1

In this situation it is probably better to rely on a formal significance test and
the issue then becomes that of selecting the most powerful test against a suitable
hypothesis or range of hypotheses. The resulting analyses are likely not to be very
powerful in any case, but choosing the most powerful test at least increases the
chance that a significant result can be attributed to a genuine departure from the
null hypothesis of uniform risk.

The method of early investigators of simply comparing the risk in the area
around S with a reference or “control” rate outside the area defines a test procedure
that is in fact powerful only against an alternative hypothesis that prescribes
a uniform excess risk within the area which drops to zero on the boundary. This
is clearly implausible and critically dependent on the size of the area chosen; one
inevitably concludes that a better test would be one designed for some systematic
relationship between the risk and the distance from S. We may reasonably suppose
that this relationship is monotonic, but the rate of decay and the shape of the RRF
(expressed now as a function of distance) will determine the power of the test.

An ingenious class of tests designed to be powerful against general monotonic
alternatives was proposed by Stone (1988). His “MLR test” compares the ratio of
the maximum of the likelihood under the null hypothesis of uniform risk against
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the likelihood of the observations maximised subject to the restriction that the
risk is a non-increasing function of distance from S, i.e

H1 : θ1 ≥ θ2 ≥ … ≥ θk (≥ 1) , (8.2)

where θi is the relative risk in the ith area in order of increasing distance from S.
Stone’s test has become very popular in the UK epidemiological literature, though
it is now known that it is never the most powerful test against a specific hypothesis,
this being provided by a linear risk score (LRS) test of the form

T =
∑

j

ln
(
θ
(
dj

))
,

where dj is the distance of the jth case from S and θ(d) is the risk at a distance d
from S as specified by the alternative hypothesis (Bithell 1995).

Unfortunately, knowing the most powerful test against a specific alternative
hypothesisdoesnot greatlyhelp ifwedonotknowwhat that alternative is.However,
it provides a bench-mark against which we can judge other tests and, in particular
it enables us to determine the sensitivity of the power to variation in the alternative.
It turns out that statistics of the form

T =
∑

j

1|φ
(
dj

)
,

for monotonic functions φ(·) define a class of canonical tests which can come to
close to optimal power in many circumstances. In particular,

φ
(
dj

)
= rank

(
dj

)
and φ

(
dj

)
=
√

dj

behave well in areas with a reasonably uniform population distribution. However,
the latteraffectsquite stronglywhichof thecanonical tests actually ismostpowerful
and it is wise to check the performances of the competing tests in each different
area using a simulation study.

Because the LRS test statistics are sums, they should in principle have an ap-
proximately normal distribution and it is easy to compute their moments. In small
samples this asymptotic normal approximation will not necessarily apply and it
is advisable to use simulation also to carry out the tests, i.e. to carry out Monte
Carlo tests. In doing so, it is easy to see that the way the samples are drawn can be
either to fix the total number of cases and use the multinomial distribution or to
use unconstrained Poisson distributions to determine the counts in the areas Ai.
Which of these two sampling schemes is used is very important and will typically
affect the results quite substantially. The first method defines a conditional test
which might be appropriate if the expectations ei for the rates in the different areas
are unreliable in absolute terms (though possibly still all right relatively); it is
important to note though that, if the expectations are correct, the null hypothesis
could be rejected because of a deficit of cases near the boundary of the region
rather than an excess near S. The second, unconditional, test is appropriate if the
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rates are reliable and in this case the test statistic combines the evidence from the
overall relative risk in the area as well as from the spatial distribution. In this case,
the appropriate form of Stone’s test should also include the last inequality in (8.2)
above.

Summary of Recommendations8.7.2

In summary, this is an area of geographical epidemiology where some progress
has been made in identifying efficient procedures, perhaps because the problem
is essentially one-dimensional. Because data sets are usually small it is especially
important to use tests of maximum power and this criterion seems to be sensitive
to the population distribution as well as the precise alternative considered. It is
recommended that a study should be guided by the following considerations:
1. First and foremost, thought should be given to the patterns of risk that it is de-

sired to detect; these can be expressed in terms of the RRF and may reasonably
be supposed to be monotonic decreasing unless special circumstances prevail.
The more specifically this can be linked to a biological hypothesis, the more
convincing a positive result will be.

2. Next, a circular region of radius R around S should be chosen and the observed
and expected numbers of cases in the areas Ai obtained. There is no great
advantage for testingpurposes incalculating thenumberswithinfixeddistance
bands from S. The magnitude of R is important since, if it is much greater than
the distance of any conceivable risk, the analysis will inevitably lose power. As
a guideline, it would seem sensible to choose the radius R so that the excess
relative risk might reasonably be supposed to have declined to half its value at
distance R|2.

3. The choice between a conditional and an unconditional test should be made,
this depending largely on the perceived reliability of the expectations and
whether it is desired to detect an overall excess in the area as well as spatial
pattern.

4. One or more alternative hypotheses should be identified and the average power
or the ESL of each of a number of tests should estimated by simulation, using
the population data specific to the area being studied.

5. The analysis should then proceed using the test identified as best, using sim-
ulation to perform a Monte Carlo test unless the expectations are quite large.

Example: Childhood Leukaemia
Around UK Nuclear Installations8.7.3

The tests described above were developed partly in conjunction with analyses of
the distribution of childhood leukaemia around nuclear installations. An analysis
of all major sites in England and Wales is described by Bithell et al. (1994) using
the data on leukaemia and non-Hodgkin lymphoma described in Sect. 8.3.2. At
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Table 8.4. Average power of five tests and significance levels achieved for the 80 wards within 25 km of

Hinkley Point, in which there were 57 cases observed against 57.2 expected

Test MLR Pmax 1|rank 1|distance
√

1|distance

Power 0.359 0.204 0.421 0.649 0.630

p-value 0.150 0.020 0.108 0.357 0.341

the time of these analyses Stone’s test was popular and was used as the principal
test statistic in this study, with the LRS test based on distance rank calculated for
corroboration. As remarked above, the results were largely negative.

However, public interest in the possibility of a raised risk persists and updated
analyses are in progress. These have been carried out in line with the above
recommendations and in particular tests were selected individually to be most
powerful at each site. Experience of these analyses suggests that the power does
indeed depend on the population distribution, but it has been found that, for the
majority of test sites the most powerful test against the alternatives considered was
the LRS test based on 1|

√
distance.

Table 8.4 shows the average power averaged over 75 alternative hypotheses and
the significance levels achieved by each of five tests for one of the datasets from
the 1994 analysis. It will be noticed that the smallest p-value was the Poisson
maximum (often known as “Pmax”); this is in effect the maximum value of the
cumulative relative risk as we move out from S. The most powerful test, on the
other hand, gives a non-significant result. This analysis is a timely warning against
judging a test by the significance level achieved in a real dataset. More details and
discussion of this analysis are given in Bithell (2003).

Conclusions 8.8

In this chapter we have attempted to give a simple but unifying overview of the
statistical methods that underlie geographical epidemiology. We have been able
to refer to only a small proportion of the very large number of methods that have
been proposed for different aspects of the subject. For further reading we refer to
edited volumes by Elliott et al. (1992), Lawson et al. (1999) and Elliott et al. (2000)
and to the Encyclopedia of Biostatistics edited by Armitage and Colton (1998), for
example the review article by Bithell (1998).

It will be clear that the rational choice of method is not an easy matter. Al-
though the classical theory of statistics provides a number of principles leading
to optimal procedures, there are areas of geographical epidemiology where they
do not apply. In the first place, they apply essentially to the frequentist paradigm:
the increasingly popular Bayesian methods raise essentially new optimality is-
sues that are not easy to resolve. Secondly, many optimal results are asymptotic:
when observations are effectively widely distributed throughout two-dimensional
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space asymptotic results are less likely to be applicable even in moderately large
data-sets. Thirdly, many methods are essentially non-parametric and the classi-
cal optimality theory applies less directly to these. Lastly, the theoretical results
apply mostly to situations where there is a large degree of independence in the
structure of the data; they are therefore less applicable to models for the conta-
gious processes needed to model alternatives to the null hypotheses in studies on
clustering.

It follows that evaluating the relative merits of different methods has in prac-
tice to proceed by largely empirical methods, making extensive use of simula-
tion. This makes appraisal difficult because of the large number of parameters
that can be varied in the simulation experiments. It is important that any gen-
eral principles suggested by the underlying theory are used to direct the em-
pirical investigations, as for example, exemplified by the discussion of meth-
ods for pre-defined sources of risk in Sect. 8.7. We conclude that geographi-
cal epidemiology, despite its practical limitations, can in principle provide use-
ful pointers to the aetiology of disease, but that the methodology would be
much more convincing if we knew more about its behaviour in various plausi-
ble situations.
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Introduction1.1

Social epidemiology has been defined as the branch of epidemiology that studies
the social distribution and social determinants of health (Berkman and Kawachi
2000). As all aspects of human life are inextricably bound within the context of
social relations, every conceivable epidemiological exposure is related to social
factors. In this broad sense, all epidemiology is social epidemiology (Kaufman and
Cooper 1999) with perhaps the latter discipline making explicit the analysis of the
social determinants of health.

The idea that social conditions influence health is not new. Chadwick (Flinn
1965) wrote about the insanitary conditions of the working classes and how over-
crowding, damp and filth contributed to their lower life expectancy. Durkheim
(1966) wrote about how social norms and conditions affect risks of suicide in the
population. Social epidemiology builds and expands on this literature by posing
new research questions, utilising new research methods and influencing govern-
ment policy agenda. The rest of this chapter will discuss each of these three
developments in social epidemiology.

Research Questions1.2

The Social Determinants of Health1.2.1

If the social environment is an important cause of health, this is likely to be
manifested as social inequalities in health. People from better social environments
with greater access to socio-economic resources are likely to have better health.
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Supporting this view, social inequalities in health have been documented for most
countries, for most causes of deaths and diseases, and in most age-groups. People
from lower socio-economic backgrounds are more likely to be unhealthier and
have lower life expectancies, even in the richest countries. In Fig. 1.1, from the first
Whitehall study on the health of civil servants in the United Kingdom (Marmot and
Shipley 1996), men in the lowest, office support employment grades have mortality
rates four times that of men in the highest administrative grades in the youngest
age-group. This difference in mortality between hierarchies in the civil service
remains even after retirement among men in the oldest age group. What remains
unclear are the pathways leading from the social structure to health- or the social
determinants of health.

There have been a number of attempts to delineate the pathways underlying
the social determinants of health. One such example is illustrated in Fig. 1.2 (from
Marmot and Wilkinson 1999). Social structure, top left of Fig. 1.2, influences well-
being and health, at the bottom right. The influences of the social structure operate
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via three main pathways- material factors, work and the social environment. While
material factors such as poverty and unhygienic circumstances may be directly re-
lated to disease through infectious agents, the social and work environments may
affect health through psychological and behavioural pathways, which in turn have
biological consequences for well-being, morbidity and mortality. Work environ-
ments may also affect health through hazardous material working conditions such
as radiation or chemical|biological hazards. There has been relatively little testing
of the pathways between social structure and health, primarily because to date,
there have been few data available to test these pathways. However, a few studies
have examined some of these pathways and their contribution towards under-
standing social inequalities in health. The rest of this section of the book chapter
will highlight some of the research on the search for the social determinants of
health.

Health Behaviours1.2.2

People from lower socio-economic groups are more likely to smoke, drink alcohol
excessively, have less physical exercise and unhealthier diets. It is likely that such
unhealthy behaviours form part of the pathways underlying social inequalities in
health. Poor people in the UK are less likely than those who are well off to eat
a good diet, more likely to have a sedentary lifestyle, more likely to be obese,
and more likely to be regularly drunk (Fig. 1.3, from Colhoun and Prescott-Clarke
1996). Some studies have analysed the contribution of such health behaviours to
explaining the social gradient in health and have found that a substantial social
gradient in health still remains even after adjusting for such (un)healthy lifestyles
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(Marmot et al. 1978). So there may be other social determinants of health not
directly related to health behaviours, as suggested by the pathways through work
and material factors in Fig. 1.2. Some evidence of these other pathways is discussed
in Sects. 1.2.3 to 1.2.7.

Lynch et al. (1997) argue that we still need to understand why poor people behave
poorly. Without some understanding of how the social environment influences
behaviour (through, for example, social norms or environments which may be
health damaging or health promoting such as workplace restrictions on smoking
or stressful environments for which smoking may be an effective, albeit temporary
coping strategy), interventions to modify behavioural risk factors may not be
successful.

Material, Economic and Political Determinants of Health 1.2.3

The link between health and material or socio-economic circumstances has been
observed at least since mid 19th century Britain, if not earlier. Chadwick (Flinn
1965)wrote abouthowovercrowding, dampandfilthy living conditions contributed
to the lower life expectancy of working class men. In 1848, partly through fear
of cholera and partly through pressure from Chadwick, the British parliament
passed the first Public Health Act. This, in addition to the pioneering work of the
epidemiologist John Snow (1855), set in motion the public health movement in
19th century Britain which saw improvements in housing, sewage and drainage,
water supply and contagious diseases and provided Britain with the most extensive
public health system in the world.

It has also been argued that much of the decrease in the mortality rate in the
19th and early 20th century was primarily due to better nutrition in the popula-
tion which led to increased host resistance to opportunistic infections (McKeown
1979). The driver behind better diets in the general population can be traced to
economic growth which made nutritious foods more easily affordable by most of
the population. Others, like Szreter (1988), argue that the public health movement
of the mid 19th century in the UK also played an important role in combating
deaths due to infectious disease. It is likely that a combination of macro-economic
factors (economic growth) and public policies (public health measures) led to the
overall decreases in mortality rates due to infectious diseases and increases in life
expectancy.

In 20th century industrialised societies, infectious diseases played an increas-
ingly smaller role in causing deaths while chronic diseases such as heart disease and
cancers caused the majority of deaths. Although people from poorer social classes
are more susceptible to such chronic diseases (repeating the patterns of infectious
diseases like cholera in 19th century Britain), the mechanisms underlying this so-
cial patterning of chronic diseases are not easy to specify. A single infectious agent
such as a bacterial agent which thrives in unhygienic circumstances is unlikely to
account for why poorer, less advantaged people have more heart attacks.

Some authors argue that, even today, economic and political processes are the
fundamental determinants of health and disease (Coburn 2000; Navarro and Shi
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2001). Determinants of health can be analysed in terms of who benefits from
specific government policies and practices. Economic and political institutions
and decisions that create, enforce and perpetuate social inequality also create and
maintain social inequalities in health. For example, neo-liberal (market oriented)
policieswhich favour thedismantlingof thewelfare statemayhelp towidenexisting
social inequalities in health. Navarro and Shi (2001) found that countries with more
economic and social redistributive policies (Sweden, Finland, Norway, Denmark
and Austria) were more successful in improving the health of their populations
(reducing their infant mortality rate). In contrast, neo-liberal countries (Canada,
United States, United Kingdom, Ireland) where the market reigns supreme and
the welfare state is the weakest had the lowest rates of improvements in the infant
mortality rates. The substantial decline in life expectancy in Russia in the 1990s
has been linked to its transition to a neo-liberal economy (Walberg et al. 1998).

Life Course1.2.4

The idea that a person’s experiences over a life time can have cumulative effects on
their health is a central idea within social epidemiology. The study of long term
effects of physical and social exposures during gestation, childhood, adolescence,
young adulthood and later adult life on the risk of chronic disease has been defined
as a life course approach to chronic disease epidemiology (Ben-Shlomo and Kuh
2002). Such studies include biological, behavioural and psychosocial pathways
that operate over an individual’s life course, as well as across generations, to
influence the course of chronic disease. However, it is only in fairly recent years
that adequate data and appropriate statistical methods have been made available
to test the hypotheses associated with a developmental and life course perspective.

There are three different ways in which factors from early life might influence
subsequent disease risk (Power and Hertzman 1997). The first is a latency model
of early life experiences which hypothesises that experiences in utero and early
life affect cardiovascular disease in adulthood (Barker 1991, 1997). Barker found
evidence that birthweight and other indicators of fetal growth in the newborn
are related to fibrinogen and insulin resistance fifty years later. He also found
that birthweight is related to functioning of the hypothalamic-pituitary-adrenal
axis. Low birthweight is associated with poorer childhood health which some
researchers have linked to lower social position in adulthood (Illsley 1986). This
evidence suggests that a short term exposure in utero can have a long latency
period with adverse health and social consequences in adulthood.

Another theory of the life course suggests that the accumulation of social advan-
tage and disadvantage throughout the life course affects adult health (Ross and Wu
1995). Studies that have examined social circumstances in childhood and beyond
do show an effect of social advantage throughout the lifetime (in childhood, early
adulthood and later adulthood) on blood pressure, obesity (Wadsworth 1997) and
measures of health status. A third life-course pathway is one in which childhood
circumstances may not affect adult risk of ill health and disease directly. It is possi-
ble that parental social class and educational qualifications are important because
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they help to determine the social circumstances in which the offspring lives and
works in adult life, and it is these circumstances that give rise to social inequalities
in disease. Some studies have found the relationship of education on adult health
can be explained in terms of occupational class and income (Dahl 1994, Davey
Smith et al. 1998). Although other studies have found the relationship of education
to health remains strong even after controlling for occupational class and income
(Winkleby et al. 1992).

Social Biology 1.2.5

Human beings are both social and biological, and understanding the interaction
between the two is crucial to understanding the social determinants of health. The
biological processes that underlie the social determinants of health makes explicit
the pathways from psychosocial factors to biological responses. Psychosocial fac-
tors may affect health in two distinct ways – they may directly cause biological
changes which predispose to disease, or they may, indirectly, influence behaviours
such as smoking and diet, which in turn affects health (Brunner 2000).

The direct effect of psychosocial factors on biology may be through the experi-
ence of chronic stresses which in turn modify neuroendocrine and physiological
functioning (Selye 1956). Humans are adapated to meet the challenge of short-
term threats. However, frequent and prolonged activation of the fight-or-flight
response or defence reaction appears to be maladapted (Sapolsky 1993). The main
axes of the neuroendocrine response appears to be the sympatho-adrenal and
hypothalamic-pituitary-adrenal (HPA) systems (Brunner 2000). The former, the
sympatho-adrenal system is characterised by the rapid release of adrenaline from
the adrenal medulla and noradrenaline from the sympathetic nerve endings, which
produces among other things, cognitive arousal, raised blood pressure and glucose
mobilisation. There is evidence of wide variations between individuals in the size
and duration of these endocrine responses attributed to individual differences in
psychological coping resources (Grossman 1991). The HPA system involves cortisol
release from the adrenal cortex. Like the sympatho-adrenal system, functioning of
the HPA axis also appears to be conditioned by psychosocial factors (Hellhammer
et al. 1997). Lower social position is associated with prolonged elevations or cortisol
release or blunted responses from a raised baseline (Suomi 1997). These patterns
of cortisol secretion differ from the normal sharp response and rapid return to
a low baseline. A comparison of Swedish and Lithuanian men given a stress test
revealed higher morning cortisols and blunted reactivity among the low-income
group drawn from the higher coronary risk Lithuanian population (Kristenson
et al. 1998).

There is some evidence for the hypothesis that psychosocial factors directly
affect neuroendocrine mechanisms which result in social inequalities in coro-
nary heart disease. Hostility and anxiety have been linked with reduced heart rate
variability (HRV) which refers to the beat-to-beat alterations in heart rate (Hem-
ingway et al. 1998). HRV appears to be sensitive and responsive to acute stress as
well as a marker of cumulative wear and tear. HRV has been shown to decline with
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the aging process which has been attributed to a decrease in efferent vagal tone
and reduced beta-adrenergic responsiveness. By contrast, regular physical activity
(which slows down the aging process) has been shown to raise HRV, presumably
by increasing vagal tone.

The metabolic syndrome is a well-known precursor state to coronary heart dis-
ease (CHD) and is linked with increased risk of type-2 diabetes. The main compo-
nents of the metabolic syndrome are impaired glucose tolerance, insulin resistance,
and disturbances of lipoprotein metabolism characterised by raised serum triglyc-
erides and low HDL cholesterol (Folsom et al. 1989; Seidell et al. 1990). Although
the link between the metabolic syndrome and CHD is well-established, the asso-
ciation between psychosocial factors and the metabolic syndrome is less certain.
Central obesity and other components of the metabolic syndrome are consistently
related to low socio-economic position in industrialised countries (Brunner et al.
1993; Kaplan and Keil 1993) It is possible that chronic psychosocial stresses result
(directly) in the metabolic syndrome pattern of abnormalities through the activa-
tion of the HPA axis. Increased HPA activity results in redistribution of body fat
leading to central obesity, hypertension and type-2 diabetes as found in Cushing’s
syndrome (Howlet et al. 1985). The alternative explanation is that psychosocial
stresses lead to unhealthy behaviours (smoking, inappropriate diets). However, in
the Whitehall II cohort, adjusting for health behaviours did not change the social
gradient in the metabolic syndrome, suggesting a direct neuroendocrine effect
(Brunner et al. 1997).

Infectious disease may also contribute to social differences in morbidity. He-
licobater pylori infection, acquired in childhood, is linked with deprivation and
over-crowded housing, and may produce long-term low level systemic inflamma-
tory responses which enhance atherogenesis. In Whitehall II, employment grade
and chronic low control at work are linked to raised fibrinogen (Brunner et al.
1995) raising the possibility that inflammatory processes may mediate the effect of
psychosocial circumstances on CHD.

Ecological Perspectives1.2.6

In the UK and elsewhere, there are marked differences in health between areas.
People living in areas with higher levels of poverty have poorer health on average
and lower average life expectancy. However, explanations for these area differences
in health remain debatable. Some argue that excess mortality in deprived areas
can be wholly explained by the concentration of poorer people in those areas
(Slogett and Joshi 1994; Duncan et al. 1993). In other words, the compositional
or aggregate effect of poor individuals (each of whom has lower than average
life expectancy) in an area explains the lower average life expectancy for the
area. Others argue that such compositional effects cannot entirely explain area
differences inhealth (Diez-Rouxet al. 1997).Theypointout that evenafter adjusting
for the composition of individuals living in an area (such as their income and
wealth levels), significant area differences in health remain. They argue that there
may be contextual or ecological reasons for area differences in health. There may
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be particular characteristics of an area such as its pollution levels or its lack
of medical services which may have an impact on the health of everyone living
in that area (Macintyre et al. 1993). Research from the United States has found
that states with lower levels of trust have higher rates of violent crime, including
homicide (Kawachi et al. 1999a). Such contextual effects may also interact with an
individual’s characteristics and this combined interaction may alter their risk of
disease. For example, the lack of medical services may have a greater impact on
the health of poor people living in an area compared to richer people who may
have the resources to travel or access medical services outside their local area. Such
ecological or contextual characteristics clearly form part of the social determinants
of health and may play some role in explaining social inequalities in (individual)
health.

Ecological approaches were disfavoured for many years in social epidemiology
(Macintyre and Ellaway 2000). Although public health practioners in the 19th and
early 20th centuries focused on dealing with health damaging and promoting en-
vironments such as sewage, clean water, housing and physical working conditions,
the decline in infectious diseases led to less emphasis being placed on such eco-
logical factors. The rediscovery of social inequalities in health towards the end of
the 20th century focussed primarily on the role of individual health-risk factors
such as behaviours, low income, lack of employment and education and a relative
neglect of contextual or environmental determinants of health. This neglect has
been explicitly addressed in the most recent literature with multilevel analyses that
explicitly take into account compositional and contextual social factors that affect
health (Macintyre and Ellaway 2000).

General Susceptibility to Disease 1.2.7

According to the general susceptibility hypothesis (Syme and Berkman 1976), so-
cial factors influence disease by creating a vulnerability or susceptibility to disease
in general rather than to any specific disorder. This idea was built on the ob-
servation that many social conditions are linked to a broad range of diseases.
While behavioural, environmental, biological and genetic factors influence spe-
cific diseases, these factors may interact with socially stressful conditions in the
development of these diseases resulting in illness and early mortality.

As discussed above, research from social biology shows that some stressful
experiences activate multiple hormones, affecting multiple systems and poten-
tially producing wide-ranging organ damage. The cumulative experience of stress
may affect a variety of chronic and infectious diseases through neuroendocrine-
mediated biological pathways. There are a number of different sources of stressful
experiences, some of which are discussed below. The linking of such stressful
experiences (often measured using psychological concepts) to wider social cir-
cumstances has been called a psychosocial approach to understanding the social
determinants of health.
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Social Support
The effect of social support and social networks on health has been researched (at
least) since the late 19th century when Durkheim investigated the links between
social integration and suicide. He explained suicide in terms of social dynam-
ics, arguing that suicide is not an isolated individual tragedy but a reflection of
social conditions such as the lack of attachment and regulation in society. At-
tachment is also a core concept for Bowlby (1969) who argued that marriage is
the adult equivalent of childhood attachment between mother and child. Secure
attachment, whether in terms of parent-child or marital relationships, provides
for successful and healthy development. Men who have never married or have re-
cently divorced have a significantly greater risk of dying from both cardiovascular
and non-cardiovascular diseases than married men (Ebrahim et al. 1995). Married
women are generally healthier than unmarried women as well, although the health
benefits of marriage may not be particularly strong for employed women (Waldron
et al. 1996).

Throughout the 1970s and 1980s, a series of studies appeared which consis-
tently showed that the lack of social ties or social networks predicted mortality
from almost every cause of death (Berkman 1995). Social ties and networks were
measured in terms of numbers of close friends and relatives, marital status, and
membership in religious or voluntary associations. Since then, studies have gone
on to focus on the provision of social support rather than on the elaboration of the
structural aspects of social networks. Not all social ties or networks are supportive
and there is variation in the type, frequency and extent of support provided. Social
support, in theory, can be divided into emotional support (usually provided by
a confidant or intimate other), instrumental support (or help in kind, money or
labour), appraisal support (help in decision making) and informational support
(provision of advice or information). Lack of emotional support has been linked to
early cardiovascular disease mortality among both men and women, younger and
older people (Berkman et al. 1992). Other studies have found that social integra-
tion, particularly operating though emotional support, influence recovery from
strokes (Berkman and Glass 2000).

Social Disorganisation
Social scientists have puzzled over why some societies seem to prosper, possess
effective political institutions and have better health outcomes compared to other
societies. One of the hypotheses that has been proposed to explain this difference
between societies is the amount of social capital or cohesion (and its converse-
social disorganisation) inaparticular society (Coleman 1988,Putnam2000). Social
cohesion refers to the extent of connectedness and solidarity among groups in
society. A cohesive society has greater amounts of social capital (higher levels of
interpersonal trust, reciprocity and mutual aid) than a disorganised society. There
is emerging evidence that greater social capital is linked to lower mortality rates
as well as better self-rated health (Kawachi and Berkman 2000). As mentioned in
Sect. 1.2.6, states in the United States with lower levels of trust have higher homicide
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rates (Kawachi et al. 1999a). Even after adjusting for individual risk factors for poor
self-rated health (e.g. low income, low education, smoking, obesity, lack of access to
health care), individuals living in US states with low social capital were at increased
risk of poor self-rated health (Kawachi et al. 1999b). Such results suggest that there
are contextual explanations for area differences in health as discussed in the section
on ecological perspectives.

Social capital may be linked to health through a number of different mecha-
nisms. We have already discussed two types of explanations for understanding area
differences in health- compositional and contextual explanations. Socially isolated
individuals (not having contacts with friends or relatives, not belonging to any
groups) are more likely to be living in communities with lower social capital so
the association between social capital and health may be the compositional effect
of the aggregation of socially isolated individuals. However, there may be other
pathways by which social capital affects health (Kawachi and Berkman 2000):
1. Through health related behaviours. Social capital may influence the health

behaviours of neighbourhood residents by exerting social control over deviant
behaviours such as adolescent smoking, drinking and drug abuse.

2. Through access to services. Socially cohesive neighbourhoods are more suc-
cessful at organisation access to services such as transport, health services and
recreational facilities

3. Through psychosocial processes. Socially disorganised neighbourhoods with
low social capital could have higher levels of fear of crime and other stressors
which could negatively impact on the residents’ health.

Work Stress
One of the more established results in epidemiology has been the link between
physical working conditions and health. Reports on occupational health have
highlighted the link between emphysema and other lung disease with coal mining,
musculoskeletal disorders and accidents with certain types of manual work. In
recent years, there has been increased research on work related stress and how that
affects both physical and mental health.

There are two dominant models of work stress in the literature. The first, the job
strain model is based on the concepts of job control and demands (Karasek et al.
1981). Workers with low levels of job control and high levels of demand are said
to have high levels of job strain (or work stress). Job control (or decision latitude)
consists of whether or not workers are able to utilise and develop skills (skill
discretion) and their authority over decisions. Job demands consist of qualitative
emotional demands as well as quantitative demands specifying output per unit of
time. Prolonged and repeated exposure to job strain is hypothesised to increase
sympathadrenal arousal anddecrease thebody’s ability to restore and repair tissues
which in turn affects health. Civil servants in the UK with greater exposure to job
strain and lower job control have higher levels of fibrinogen (Brunner et al. 1996),
which may result in their higher risks of coronary heart disease (Bosma et al.
1997).
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The other model of work stress, the effort-reward imbalance model (Siegrist
1996), hypothesises that the degree to which workers are rewarded for their ef-
forts is crucial for their health. When a high degree of effort does not meet
a high degree of reward, emotional tensions arise and the risk of illness in-
creases. Effort is the individual’s response to their job demands and this re-
sponse may be extrinsic effort (referring to the individual’s effort to cope with
external job demands) and intrinsic effort (referring to the individual’s drive
to fulfil their goals). Reward can be measured through financial rewards, self-
esteem and social control. While there is some overlap between the job strain
and effort reward imbalance models, the former is entirely focussed on the or-
ganisation of the structure of work while the latter includes the individual’s
way or coping methods of handling difficulties (through the concept of intrin-
sic effort).

There is some evidence that both models of work stress contribute indepen-
dently of one another to predicting coronary heart disease events (Bosma et al.
1998). The cumulative adverse health impact of low job control and effort-reward
imbalance indicates that both job stress factors provide supplementary informa-
tion on the relevant stressors in the psychosocial work environment.

Unemployment and Job Loss
There has been considerable research into the effects of unemployment and job
loss on health. However, this is an area of research that is particularly sensitive to
the claims of “health selection”, that the reason why unemployment is associated
with ill health is because ill health selects people out of employment. The reverse
argument is that a disadvantaged socio-economic position has an effect on a stable
jobcareer (and theriskofunemployment)aswell ashealth. It is therefore important
to disentangle the causal narrative in studies about unemployment and health and
find out which comes first.

The evidence on unemployment and health supports both the social causa-
tion and health selection interpretations. In a review of the effect of unem-
ployment on health, Kasl and Jones (2000) summarised the evidence as fol-
lows:
1. Unemployment is associated with a 20%–30% excess in all cause mortality in

most studies
2. There is some evidence of the impact of unemployment on physical morbidity

but with results that are more difficult to interpret
3. Unemployment is linked to biological indicators of stress reactivity
4. Unemployment is associated with behavioural and lifestyle risk factors al-

though the direction of causality is hard to disentangle
5. Unemployment clearly increases psychological distress
6. Threatened job loss (job insecurity) is associated with physical and psycho-

logical morbidity and cardiovascular risk. The anticipation of job loss affects
health even before changes in employment status (Ferrie et al. 1995).
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Depression and Affective States
Depression is one of the most common psychiatric problems and is also common
in patients with chronic medical conditions. Some depressive episodes are brought
upon by physical illness, but many depressive patients have depressive episodes
long before they develop any physical symptoms of illness. Furthermore, depres-
sion may alter the course and outcome of physical illness (Carney and Feedland
2000).

Depression has been associated with immunological dysfunction. Patients with
major depression have been found to have blunted natural killer cell activity (Maes
et al. 1994) increasing their risk for many acute and chronic illnesses. There is also
some evidence that depression may play a causal role in the development of heart
disease.There is someevidenceof a social gradient indepression inahealthy,work-
ing population – it appears to be more common among those from poorer, more
disadvantaged social positions (Stansfeld et al. 1998) and may originate from their
lower control over aspects of their work andhomeenvironment (Griffinet al. 2002).

Another set of psychological pathways by which social conditions may affect
health is through emotions and the physiological, cognitive and behavioural re-
sponses they evoke. Emotions may be transitory states brought on by specific situ-
ations, or traits, i.e. stable and general dispositions to experience particular emo-
tions (Spielberger and Krasner 1988). Much of the research on emotion and health
has been carried out in relation to coronary heart disease. Much of this literature
has focussed on type A behaviour, (which includes a free-floating but well ratio-
nalised hostility, hyperaggressiveness and a sense of time urgency), chronic anger
and hostility, anxiety and a mixture of emotions associated with depression in-
cluding hopelessness, loneliness, guilt and shame (Kubzansky and Kawachi 2000).

There is some evidence of a social patterning of emotions (Bradburn 1969;
Mroczek and Kolarz 1998). Kemper (1993) suggests that many emotions are re-
sponses to power and status differentials embedded within social situations. Po-
tentially stressful events can be associated with a variety of different emotions.
Emotions can be considered as products of stress as well as mediators of its effects
thus representing a crucial link in the chain of causation from social stressors
to individual biological responses (Spielberger and Krasner 1988). Evidence from
animal studies suggest that additional to hypothalamic control of the stress re-
sponse, areas of the brain involved with emotional or affective responses such as
the limbic system also play a major role in stress responses (Menzhaghi et al. 1993)
and adaptation to the stress response (Sapolsky et al. 1986).

Research Methods 1.3

Applying a Population Perspective 1.3.1

Rose (1992) proposed that an individual’s risk of illness cannot be considered in
isolation from the risk of disease of the population to which they belong. For
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example, the distribution of cholesterol levels in the Finnish population is shifted
to the right of the Japanese distribution – on average, Finnish people have higher
cholesterol levels than Japanese people. The level of “normal” cholesterol for the
Finnish population would be “abnormal” for the Japanese population and would be
a risk factor for CHD in the latter population. Applying the population perspective
into epidemiological research means asking “why does this population have this
particular distribution of risk factors”, in addition to asking “why did a particular
individual get sick?” (BerkmanandKawachi 2000). Answering the secondquestion
has been the focus of clinical medicine while answering the first question is the key
to the largest improvements in the health of the population as it focuses attention
on the majority of cases of illness within the bulk of the population. Medical care
can prolong survival after some serious diseases, but the social and economic
conditions that affect whether people become ill are more important for health
gains in the population as a whole.

Better Measures of Exposures1.3.2

There is no simple relationship between social-structural conditions such as in-
comedistributionandwelfare state regimeson theonehandandhealth inequalities
in the population on the other. The different pathways by which different social
factors can have an effect on different health outcomes implies that there is no
single measure of social factors, health outcomes or single pathway between the
two that can adequately represent the complexity of the associations between the
social structure and health. One of the ways of advancing our knowledge of the
social determinants of health is by utilising better measures of the social structure,
the health outcomes as well as the pathways that link exposures and outcomes.
One of the defining characteristics of research in social epidemiology has been the
constant refinement of such measures and improvements in the methodology of
measuring complex concepts and associations.

In the UK, the standard epidemiological measure of social class since the start
of the 20th century has been the Registrar General’s social class (RGSC). However,
the RGSC as been heavily criticised by being atheoretical – the basis for classifying
people into different social classes has never been made explicit (Szreter 1984). The
changeover to a more theoretically based measure of social class – the National
Statistics Socio-Economic Classification – based on differences in employment
relations and conditions, was prompted in part by research in social epidemiology
which found that theRGSCwasnotuseful inunderstanding the social determinants
of health (Bartley et al. 1996). Other research (Chandola 2001) has similarly argued
that the standard epidemiological technique of controlling for social class does
not have much meaning, especially when the measure of social class does not
adequately represent the different dimensions of the social structure that affect
health (such as housing and neighbourhood conditions, labour market conditions,
employment relations, household income and social status). In attempting to
understand the social determinants of health, research into social epidemiology
has pioneered the use of better measures of the social structure.
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Better Measures of Health 1.3.3

The concept of health is multidimensional (the WHO definition states that health
is a state of complete physical, mental and social well-being), including hard to
measure concepts like quality of life. Research in social epidemiology does not just
focus on clinically measured disease outcomes because the absence of disease is
not sufficient for health. Rather, one of the main focuses of social epidemiological
research is the use of health related quality of life measures as valid measures of
health outcomes (Fitzpatrick et al. 1992). Population mortality statistics tell us
little about the health of general populations in developed countries. The use of
standardised health related quality of life measures in different countries (Ware
and Gandek 1998) enable international comparisons of physical, mental and social
well-being.

Subjective health status covers a wide variety of areas, including role function-
ing (e.g. the ability to perform domestic and work tasks), the degree of social and
community interaction, psychological well being, pain, tiredness and satisfaction
with life (Bowling 1997). Health related quality of life has come to mean a combina-
tion of subjectively assessed measures of health, including physical function, social
function, emotional or mental state, burden of symptoms and sense of well being
(Coulter 1995). The development and use of such subjective measures of health
status and health related quality of life, have been one of the defining aspects of
social epidemiology.

Better Measures of the Association
Between the Social Structure and Health 1.3.4

As different measures of the social structure may have different pathways to dif-
ferent health outcomes, the reduction of such differences into a single regression
model may obscure rather than elucidate the pathways underlying the social deter-
minants of health. Furthermore, different dimensions of the social structure may
influence people’s health at different time points of the life-course. For example, in
industrialised societies, the period of the life-course when compulsory education
is completed may be a crucial time for the health of the population, not because
young adults are at a particular high risk of disease or illness at that stage in life,
but because educational qualifications are a strong determinant of social position
in later adult life which in turn appear to be strongly linked to health outcomes
later on in life. It is important to take account of the temporal and causal ordering
of the various measures of social position and use methods that make explicit the
various underlying causal pathways between different measures of social position
and health. There are a number of such causal modelling methods being used in
social epidemiological research (Greenland and Brumback 2002). Failure to take
account of the different pathways between the social structure and health outcomes
could result in biased results (Singh-Manoux et al. 2002).
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Analysing Population Surveys, Birth Cohorts1.3.5

One of the defining characteristics of research methods in social epidemiology is
the use of population representative sample surveys in analysing the social deter-
minants of health. Research in social epidemiology tends to use non-experimental
observational studies, both cross sectional and longitudinal. All observational
studies suffer from problems of causality – it is hard to determine and separate
out cause from effect (cf. Chap. I.1 and I.9 of this handbook). This drawback has
necessitated the use and development of complex study designs and analytical
methods to disentangle the causal pathways underlying the social determinants of
health.

Studies with good methodological designs (for example, Ferri et al. 2003) in
social epidemiology tend to rely on data from large scale population representative
sample surveys because of the complexity of the social structure and the different
pathways to health. The representativeness of data is crucial in order to apply
a population perspective in social epidemiological research. Smaller scale samples
may not be representative of the broader population.

Birth cohort studies are a special type of such large scale population represen-
tative samples which incorporates a life course approach to epidemiology. The UK
has taken a prominent role in the development of such longitudinal studies. The
British Birth Cohort Studies of those born in one week of 1946, 1958 and 1970
link data from one part of the life course (from birth onwards) to another (child-
hood, adolescence, adulthood) for a large number of individuals. Comparisons
between different birth cohort studies enable the disentangling of age, period and
cohort effects, which could be problematic when analysing most cross-sectional
and even longitudinal sample surveys. For example, in the book, “Changing Lives,
Changing Britain” (Ferri et al. 2003), cohort effects that might be attributed to
socio-economic change impacting differentially on people born at different times,
can be differentiated from age differences reflecting the different changes between
the stages of life, which in turn can be differentiated from the prevailing socio-
economic context at the time of data collection – the period effect. Such analyses
of this unique set of longitudinal data, incorporating a life-course perspective, is
very promising for future research into social epidemiology.

Setting Government Policy Agenda1.4

One of the goals of epidemiology has always been to use what we learn to improve
public health. The science of social epidemiology has repeatedly shown evidence
that social conditions are a major determinant of health. However, the translation
of the research findings of social epidemiology into public policy has not been
straightforward. Unlike results from some branches of epidemiology which can
be more easily implemented into government guidelines (such as recommended
alcohol intake) or public policy (reduction in smoking prevalence), programs to
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implement findings from social epidemiology need to take into the account the
complexity of the pathways from the social structure to health.

Some authors argue that policy interventions are most effective when they are
closest to the root causes of disease (Rothmane et al. 1998). Interventions at the
upstream, social level may not be as efficient as interventions closer to disease
occurrence. So, for example, policy interventions on reducing the social gap in
smoking-related diseases, should focus on interventions on smoking cessation
rather than interventions on the social causes of smoking. Others argue (such
as Coburn (2000), mentioned in the Sect. 1.2.3) that interventions need to be
upstream, at the societal and macro-economic level, in order to successfully reduce
health inequalities.

The Black and Acheson Reports 1.4.1

The Black report (DHSS 1980) into inequalities in health in the UK had a number
of wide-ranging policy recommendations for reducing such inequalities. However,
the lack of implementation of these policies by the British government in the 1980s
and early 1990s was due, in part, to a lack of political will and the high cost of these
policy recommendations.

The change in government in Britain in 1996 (from Conservative to Labour)
paved the way for the publication of the Acheson Report (Acheson 1998) on in-
equalities in health in 1998 with another list of recommendations for reducing
health inequalities. What makes this publication unique is the acceptance by the
UK government that some action was needed to reduce inequalities in health.
For example, the UK government department of health has subsequently adopted
targets on reducing inequalities in health (such as closing the social class gap in
infant mortality rates). Here is some evidence that research in social epidemiology
is being translated into government policy.

However, the policies that have been developed to reduce such health inequal-
ities focus on reducing social inequalities in general (through income redistri-
bution policies for example). The very fact that social epidemiology deals with
the social structure necessitates policies aimed at changing the social structure.
Such policies are not always easy to specify and detail. Furthermore, the diffuse
ownership of such policies between government departments (such as education,
health and treasury departments) makes their implementation harder. In recog-
nition of the complexities of policies aimed at reducing health inequalities, the
UK government set up a cross cutting spending review (across various govern-
ment departments) on tackling health inequalities. This report (Department of
Health 2002) explicitly acknowledges that policies on reducing health inequal-
ities need to be co-ordinated across a wide range of government departments
and bodies (not just the national health service), including local government and
health organisations and sets in process the institutional framework for such
co-ordination.
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Collating Evidence for Policies Through Intervention
Studies and Cross National Comparative Studies1.4.2

One of the ways of ensuring appropriate policies for reducing inequalities in health
are implemented is by studying the results from intervention studies. However,
social epidemiological research does not easily lend itself to intervention studies,
mainly because the complexity of the social structure makes it hard to disentangle
the pathways to reductions in health inequalities. For example, it is hard to dis-
entangle changes from behavioural change interventions from secular trends in
society (Susser 1995). It is also difficult to separate out the influence of secondary
support (from support groups organised around behavioural interventions) from
the intended influence of the behavioural intervention (Spiegel et al. 1989). Social
support interventions have had mixed results partly because as relationships de-
velop and change slowly, the benefits of support interventions may be missed in
the short-term (Glass 2000).

Another method of analysing policy recommendations for health inequali-
ties is through international and longitudinal comparisons of health inequalities.
Changes in taxation and income redistribution policies within a country may
be hypothesised to have an effect on health inequalities. Furthermore, cross na-
tional longitudinal comparisons of different tax policies and their effect on health
inequalities may be another way of analysing the effect of policies on health in-
equalities (Navarro and Shi 2001). However, to date, there has been little research
in this area which means that current policies on reducing inequalities in health
may not be entirely appropriate or well targeted.

Conclusions1.5

Perhaps, the major contribution of social epidemiology to epidemiology in gen-
eral has been in rediscovering and analysing the role of social factors in producing
health and illness. This has primarily come about by the literature on social in-
equalities in health and consequently, research into the social determinants of
health. The search for the pathways between the social structure and health has led
to innovations in longitudinal research methodology. While social epidemiology
shares common epidemiological problems of reliance on observational studies and
problems in interpreting causality, the incorporation of a life-course perspective by
analysing and comparing birth-cohort studies holds great promise for future stud-
ies. Research into social epidemiology has influenced wide ranging government
social policies, because of the macro-societal level interventions that are needed
to reduce inequalities in health.

Although there is some debate over the usefulness of the specialisation of social
epidemiology within the medical sciences (Zielhus and Kiemeney 2001), others
have argued that the overall contribution of social epidemiology towards un-
derstanding current and changing distributions of population health have been
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striking (Krieger 2001, Muntaner 2001). The interdisciplinary nature of social epi-
demiology has led to the incorporation of research questions, methods and policy
agendas that have enriched our understanding of the social determinants of health.
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Introduction2.1

Occupational epidemiology has the same main goal as the broad field of epidemiol-
ogy: to identify the causes of disease in a population in order to intervene to remove
them. Occupational epidemiology is an exposure-oriented discipline; it is thus the
systematic study of illnesses and injuries related to the workplace environment
(Checkoway et al. 2004).

The first concern about occupational causes of disease may have been that of
Hippocrates, who wrote about the lifestyle habits and environment of populations
and patients. Nevertheless, it was the Italian physician Bernardino Ramazzini
who recommended that doctors add questions about occupation to those rec-
ommended by Hippocrates, and it was Ramazzini who made the first systematic
description of occupational diseases and their causes in his book De Morbis Arti-
ficum (Ramazzini 1713). His descriptions included different characteristics of skin
ulceration in freshwater and sea fishermen, silicosis among stonemasons, ocular
disorders among glass-blowers, and neurological toxicity among tradesmen ex-
posed to mercury. It is noteworthy that he not only described the diseases but was
also deeply concerned about the ethics of harmful work practices and the need for
preventive measures, such as good ventilation and protective clothing.

Classic historical reports, such as those about scurvy in sailors in 1753, scrotal
cancer in chimney sweeps in 1775, respiratory cancers inundergroundmetalminers
in 1879 and bladder cancer in dye workers in 1895, are clear examples of the
importance of reports of case series by clinicians and by the workers themselves
(Carter 2000). New occupational hazards came to light incidentally even in the
mid-1900s, when the methodological landmark of the historical cohort study
was designed (Doll 1952, 1955; Case et al. 1954) and occupational epidemiology
developed as a discipline. Indeed, Case and co-authors suspected that rubber
workers would have an elevated risk for bladder cancer while conducting a study on
thehigh incidenceof bladder tumours amongdyemanufacturers (Doll 1975).While
reviewing hospital records of bladder cancer patients in Birmingham, England,
chosen as a control area because it did not have a dye industry, they noticed that
many workers had been employed in a rubber factory. Subsequent investigation
confirmed the association with rubber production and showed that it resulted from
exposure to an anti-oxidant containing the carcinogen 2-naphthylamine (Case and
Hosker 1954; Coggon 2000).

Occupational epidemiology has contributed to the development of both study
designs (such as the historical cohort study) and analytical methods that are now
part of the broader field of epidemiology and of other exposure-oriented disci-
plines. For instance, quantitative and qualitative methods for assessing exposure,
such as job-exposure matrices and job-specific questionnaire modules for assess-
ment by experts, were developed by occupational epidemiologists and industrial
hygienists. They have now been adapted and used in other disciplines, such as nu-
tritional and environmental epidemiology, and are central to ensuring the validity
and informativeness of epidemiological research in general.
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Prevention is the final goal of all epidemiological research and findings. Oc-
cupational exposure was one of the first causes to be identified of diseases such
as cancer and pulmonary illness, and epidemiological study of such exposures
often led to the identification of specific causal agents. Occupational hazards are
known causes of disease that are amenable to regulatory control, and thus espe-
cially suitable for prevention. This is in contrast to aspects of lifestyle, such as
smoking and dietary habits, for which control requires modification of cultural
and personal behaviour patterns. Free choice may contribute to some diseases at-
tributable to environmental causes; for instance, the large majority of cases of lung
cancer are attributable to tobacco smoking and can be prevented by avoiding the
habit. The reason for interest in preventing occupational hazards is more subtle:
as personal choice plays little or no role in occupational exposure, the protec-
tion of workers warrants special attention. Furthermore, while industrial effluents
and products might cause illness in the general population, exposed workers are
likely to be the first and most severely affected. Prevention at the level of the
working environment will by the same token result in prevention in the general
population.

This chapter will address issues in study designs and epidemiological methods
as applied in the specific field of occupational epidemiology. They will include
dose-response analysis, healthy worker effect and exposure assessment. Finally,
how occupational epidemiology can help to evaluate the need and effectiveness of
primary prevention interventions and policies will be described using the example
of occupational cancer.

Study Designs 2.2

Classic epidemiological studies, such as cross-sectional (see Chap. I.3 of this hand-
book), case-control (seeChap. I.6) andcohort studies (seeChap. I.5), are commonly
carried out in occupational settings. The principles of study design and data anal-
ysis are derived from general epidemiological methods; however, some specific
aspects are worth addressing.

Cross-Sectional Studies 2.2.1

Cross-sectional studies are generally used to investigate non-fatal diseases, such
as muscoloskeletal disorders, and symptoms or physiological functions, such as
wheezing and forced expiratory volume in one second (FEV1). They measure
prevalences. Therefore, associations between exposure and disease are difficult to
interpret, as they could depend either on an increased incidence or on a longer
duration of disease among a subgroup of cases. For this reason and for problems of
reverse causality arising from measuring exposures and diseases at the same time,
the causal nature of an association can be weakly addressed using a cross-sectional
approach.
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Cross-sectional studies are vulnerable to the effect of non-response, particu-
larly when they are carried out with the main aim of estimating the prevalence
of diseases or their symptoms. Diseased workers may participate in the study
differently from those who are not diseased, and their willingness to participate
may depend on their exposure status. Occupational studies of fertility and sperm
quality are an example of studies in which non-response is a critical problem.
Since the observation of the toxic effects of 2,3-dibromo-3-chloropropane on tes-
ticular germ cells (Potashnik et al. 1978), the fertility of exposed male workers
has been investigated in several studies. In one study, groups of traditional and
organic farmers were selected randomly from the database of the Danish Ministry
of Agriculture in 1995–96 and invited to participate in a study on semen, including
total sperm count, sperm concentration, other indexes and serum concentra-
tions of sex hormones (Larsen et al. 1999). A questionnaire eliciting information
on previous exposure to pesticides was posted to 1124 farmers, of whom 86%
answered and 256 provided semen samples. This low participation proportion
was not unexpected, as the examination required by the study was somewhat
demanding.

A further limitation of cross-sectional studies, which is specific to occupational
epidemiology, is that only active workers are usually investigated, because the
study base is defined as workers employed in a specific industry or exposed to
a specific occupational factor. It follows that workers who have terminated their
employment cannot be included in the study.

Let us consider the example of the cross-sectional studies on the health effects
of exposure to diesel fumes (US Environmental Protection Agency 2002). Acute
respiratory effects were investigated in several studies by measuring FEV1 and
other indicators of pulmonary function twice, at the beginning and at the end of
a work shift, in workers employed in mines and garages. Chronic respiratory effects
were studied through a single survey and a medical examination in workers with
different levels of cumulative occupational exposure to diesel exhausts. Individuals
who are susceptible to diesel exhaust exposure tend to move from jobs with a high
level of exposure. Therefore, a cross-sectional study on the acute effects of exposure
is presumably carriedout amonga selectedgroupofworkers, resulting in apossible
underestimate of the effects. Regarding chronic effects, which are manifest a long
period after the exposure has occurred, there is an underestimate of the association
between exposure and disease, if the termination of employment is determined by
the disease or its early symptoms.

Cohort Studies2.2.2

The cohort study is a valid, but sometimes expensive and time-consuming design.
Nevertheless, the availability of employment records and trade union registries
often permits straightforward identification of past occupational cohorts. It is
therefore not surprising that historical cohort studies have long been the method
of choice in occupational epidemiology, and they have contributed significantly to
the identification of occupational hazards.
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Researchers usually identify a factory in which the exposure of interest occurs –
to specific chemicals and substances or specific working conditions and job tasks –
and select the members of the cohort from registries available at the factory.
Alternatively, a study population can be identified from similar departments in
different factories. Thus, when a single facility does not provide a sufficient number
of workers or the time of follow-up is not long enough, a collaborative study can
be conducted in similar factories in several centres. The cohort study of workers
employed in theman-madevitreousfibre (MMVF) industry inEurope, coordinated
by the International Agency for Research on Cancer (IARC) (Boffetta et al. 1997,
1999; Sali et al. 1999), is anexampleof suchcollaboration.Thecohortwasassembled
in 1977 andconsistedof approximately 22,000 workerswhohadeverbeenemployed
in 13 factories producing at least one of three types of MMVF, namely glass wool,
continuous filaments of glass fibre and rock- or slag-wool, at any time between the
year of starting production of MMVF and 1977. The follow-up ended between 1990
and 1995 in different factories, depending on subsequent updating.

Exposure was assessed on the basis of individual work histories, obtained from
employment registries in 1977. It was known that important technological changes
had taken place in the production of MMVF over the study period, so that the
period of MMVF production was divided into three ‘technological phases’: early,
intermediate and late. As the ambient levels of exposure to MMVF were estimated
to have decreased with evolving production processes, the year in which each
of the three phases began in each factory was assessed. Information on possible
concomitant exposure to other agents, such as asbestos and bitumen, was also
obtained for each factory. The researchers thus knew the duration of employment
for each worker, by factory, technological phase and job task.

National mortality rates were used to calculate standardized mortality ratios
(SMRs) (cf. Chaps. I.2 or I.3 of this handbook) for neoplastic and non-neoplastic
causes of death, and cancer-specific standardized incidence ratios (SIRs) were
estimated for the subcohorts in countries where cancer incidence rates are available
from cancer registries. The effect of duration of employment was estimated in
internal comparisons within the cohort, the reference group including workers
employed for less than 5 years. Data were also analysed according to type of
MMVF, job task, technological phase and time since first employment. Data on
workers who had been employed for less than 1 year were analysed separately,
as short-term workers might be high-risk individuals with particular lifestyles or
occupational exposure to agents other than MMVF (see also Sect. 2.4.2).

In general, MMVF production workers did not have an excess risk of mortality
or cancer incidence, although a small excess risk for lung cancer was found among
rock- and slag-wool workers and increased mortality from heart diseases and non-
malignant renal diseases was suggested. It is important to note that no information
on lifestyle factors was available, which is a limitation of almost all historical cohort
studies.

In countries where good, computerized population registries with a long history
of registration exist, large occupational cohort studies can be carried out by linkage
of information on occupational status from censuses with individual data on, e.g.,
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mortality, cancer incidence and hospital discharges. The strength of record-linkage
studies is the very large sample size. An occupational record linkage study of
cancer incidence was conducted in the Nordic countries among persons aged 25–
64 years who were listed in the 1970 censuses (Andersen et al. 1999). Overall, about
10 million persons were included in the study, and more than 500,000 incident
cases of cancer cases occurred during the follow-up period, which ended between
1987 and 1990, depending on the country. Occupational exposure was evaluated
for 54 occupational groups. Many cancer-specific associations were estimated, and
they cannot be discussed here; however, the general finding was that risk of cancer
is associated with occupation.

This record linkage study shows clearly that cohort studies can provide risk
estimates for many outcomes and some of the findings might be unexpected. For
instance, in a historical cohort study of 8226 workers employed in an aircraft
manufacturing factory in northern Italy between 1954 and 1981, an unexpected
excessofmelanomaswas found(6observed, 1.02 expectedcases) (Costaet al. 1989).
Whenanunexpectedassociation is found, thecharacteristicsof thecases, including
age, sex, period of employment, factory and job task, should be explored carefully,
in order to identify any clusters of jobs or operations that suggest a common
exposure. In the example of melanoma, the characteristics of the six cases were
described in detail but no cluster could be identified.

There are two major limitations to the use of data from existing records rather
then from ad-hoc questionnaires and environmental or biological measurements:
lack of detailed information on exposure and lack of information on possible
relevant confounders.

With regard to exposure, maximum cooperation between researchers and man-
agement, trade unions, occupational physicians and industrial hygienists is crucial
to obtain information on the nature of both industrial processes and working en-
vironments. Basic information on the exposure of each worker should include the
starting and ending dates of employment at the factory. Unfortunately, important
information, such as the job task of each worker and changes in industrial pro-
cesses over time, is often missing. Even when the job task is recorded, one would
like to evaluate also the variability of exposure levels among workers carrying out
the same job. The general lack of information may reduce the quality of the data on
exposure, whatever approach is used to assess exposure, and finally bias the results
of the study because of misclassification. Although it is theoretically possible to
measure factory-specific levels of exposure at the time a study is conceived, strong
assumptions should hold for a reliable imputation of past exposures.

In some studies, plant-specific ambient measurements had been recorded over
time and were available for assessing exposure. A historical cohort of more than
74,000 workers employed between 1972 and 1987 in 672 factories in jobs that en-
tailed exposure to benzene was assembled in China (Hayes et al. 1997). The cohort
was followed-up for death from all causes and for incidence of haematological tu-
mours, with an analogous cohort of approximately 36,000 unexposed workers for
comparison. For the purposes of assessing exposure, information on the factory
and department of employment and on the starting and ending dates of each job
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was obtained, for each worker, from employment records available at the facto-
ries (Dosemeci et al. 1994b). Moreover, information on production activities and
changes in processes over time was obtained at each factory and for each job type.
Importantly, the results of all past air monitoring (more than 8400 measurements)
for benzene and other solvents were also obtained. Therefore, whenever possible,
the exposure level was assigned to each worker on the basis of monitoring results
either for specific combinations of job task, department and calendar period, or
for adjacent calendar periods or similar job tasks.

Detailed information on exposure and confounders can obviously be obtained
in concurrent cohort studies, which can be efficiently carried out when the induc-
tion period between exposure and disease is short. If the cohort is followed-up
prospectively, temporal variations in exposure can be ascertained either at indi-
vidual level, from questionnaires, personal dosimetry data or use of biomarkers of
exposure, or at aggregate level, from environmental measurements and monitoring
of changes in industrial processes.

Case-Control Studies 2.2.3

Nested case-control studies (see Chap. I.7 of this handbook) might solve some
of the limitations inherent in the cohort design. As a nested case-control study
covers fewer persons than a cohort study, the nested approach is efficient when the
exposure assessment is not straightforward, as, for instance, when it is based on ex-
perts’ judgement. The nested approach is also more efficient when worker-specific
levels of exposure are estimated from biological samples or by direct interview
with the workers or their next-of-kin. Measurement of biomarkers can result in
accurate assessments of current exposure, but assumptions must be made about
past exposure. Conversely, interviews allow detailed reconstructions of working
histories and provide information on possible confounders. Information on actual
exposure levels may nevertheless be rather imprecise, and the subjects are difficult
to trace, especially when the follow-up period is long.

The historical cohort study of workers employed in MMVF production coor-
dinated by the IARC, described above, includes a clear example of a nested case-
control design (Boffetta et al. 1997). The analyses of the cohort revealed a small
excess risk for lung cancer among rock- and slag-wool production workers, but
no information was available on possible confounders; furthermore, occupational
histories were available up to 1977 only, and were limited to the information in
the employment registries. The researchers therefore conducted a case-control
study of 196 cases of lung cancer and 1715 matched controls nested in the co-
hort (Kjaerheim et al. 2002). The index subjects or their next-of-kin were traced
and interviewed to obtain information on lifetime smoking habits, residential
history and lifetime occupational history, both within and outside the MMVF
industry. As anticipated by the study design, the proportion of completed in-
terviews with the selected subjects was low: 68% for cases and 35% for con-
trols. Two industrial hygienists evaluated the individual occupational histories
for exposure to each of several occupational agents known or suspected to be
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associated with lung cancer. Moreover, an expert panel was formed to evalu-
ate individual cumulative exposure to MMVF on the basis of the new informa-
tion obtained at the interview. The smoking-adjusted estimates and the anal-
yses by quartiles of cumulative level of exposure in the nested study did not
support an association between exposure to rock- or slag-wool and lung cancer
risk.

Quite often, a nested case-control design increases the efficiency of the comput-
erization, cleaning and handling of data, even though information on exposure is
available. Grayson (1996), for example, conducted a case-control study on brain
cancer nested in a cohort of approximately 880,000 US Air Force members to eval-
uate the effect of occupational exposure to electromagnetic fields. The workers had
to have been employed between 1970 and 1989. At the end of the follow-up period,
230 incident cases of brain cancer were found, and four controls for each case
were randomly selected among cohort members. Information on past exposure to
electromagnetic fields was obtained from several sources, including employment
records, records of events exceeding existing limits and some personal dosimetry
data. The final analysis was based on 1150 persons instead of more than 800,000 in
the original cohort.

Population- or hospital-based case-control studies have frequently been used
to investigate the health effects of occupational exposures. In the early 1980s,
a multicentre case-control study was carried out to investigate the associations be-
tween laryngeal and hypopharyngeal cancer and smoking, alcohol, dietary habits
and occupational factors (Tuyns et al. 1988). The study, coordinated by IARC,
was population-based and included six centres in northern Italy, France, Spain
and Switzerland. Information on occupational history and lifestyle factors was
obtained by face-to-face interviews with cases and controls. Specifically, each per-
son was asked to report all jobs held for at least one year since 1945, specifying
their starting and ending years, a short description of specific tasks, the name
of the company, the company’s activity and the specific products of the depart-
ment in which the interviewed person had worked. The occupational histories of
1010 interviewed cases and 2176 interviewed controls were coded, without knowl-
edge of case or control status, according to standard international classifications
of occupations and industries. Then, smoking- and alcohol-adjusted odds ratios
for occupational factors were obtained by two approaches. First, an exploratory
analysis was carried out on 156 occupations and 70 industrial activities in which
at least nine individuals had been ever employed (Boffetta et al. 2003). Second,
a working group created a job-exposure matrix (JEM) to categorize each combi-
nation of job and activity in terms of levels of probability, intensity and frequency
of exposure to 16 occupational agents for which there was some a-priori evidence
of an association with laryngeal cancer risk (Berrino et al. 2003). The agents
investigated included asbestos, solvents, formaldehyde and polycyclic aromatic
hydrocarbons. The JEM was used and evaluated in ad-hoc studies (Merletti et al.
1991; Ahrens et al. 1993; Luce et al. 1993; Orlowski et al. 1993; Stengel et al. 1993;
Stucker et al. 1993). An account of its validation, based on a comparison between
the results of the JEM and the experts’ evaluation of the jobs as described in
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the questionnaires, is given in Table 2.1. Generally, the specificity and sensitivity
of the JEM was agent-specific. The first analytical approach, based on job titles
and industrial activities, provided risk estimates for several occupations, an ad-
vantage facilitated by the heterogeneity of the study subjects’ working histories
due to the multicentre design. Conversely, the second approach directly tested
aetiological hypotheses. In both instances, the case-control design made it pos-
sible to control for the confounding effects of smoking, alcohol drinking and
diet.

Table 2.1. Validation of the job exposure matrix (JEM) of the IARC case-control study on laryngeal

and hypopharyngeal cancer: proportion of jobs not entailing an exposure to specific agents

according to an expert’s assessment compared with the results from the JEM

Agenta JEM categories of intensity|probability of exposureb

No. of job 1 2 3a 3b 3c 4 5
periods

Asbestos 3220 96 83 79 73 68c

Solvents (1) 2712 96 92 89 70 47 58 16

Solvents (2) 929 87 83 62 67 35 37 9

Formaldehyde 884 75 90 59 47 50 29 –d

Wood dust 863 95 –d 50 50 –d 8 0

PAH 2571 98 68 88 85 98 74 39

a Agents were evaluated in the following studies: asbestos, Orlowski et al. (1993); solvents
(1 = bladder cancer study; 2 = glomerulonephritis study), Stengel et al. (1993); formaldehyde
and wood dust, Luce et al. (1993); PAH (polycyclic aromatic hydrocarbons), Stucker et al.
(1993)
b Categories: 1. Job-related exposure is not higher than for the general population; 2. Job entails
or may entail a cumulative exposure slightly higher than for the general population; 3. Job may
entail exposure definitely higher than for the general population, but the coded information is
not sufficient to discriminate between exposed and not exposed workers (3a: few workers are
thought to be exposed, 3b: some workers are thought to be exposed, 3c: the majority of workers
are thought to be exposed); 4. Job entails exposure to the specific agent at definitely higher level
than the general population; 5. Job entails exposure to the specific agent and there are instances
in which the exposure is known to be particularly high
c Categories 3c, 4, 5 were considered jointly
d Category with no jobs according to the JEM

Case-control studies can be used efficiently to investigate ubiquitous occupa-
tional exposures, which cannot be localized to a specific industry. This study design
also permits the researcher to focus on minorities and on subgroups of the popula-
tion that have often been poorly investigated. For example, at the first international
conference on occupational cancer in women, in 1993, it was recognized that most
of the information on occupational hazards had been obtained from studies on
men: a survey showed that less than 10% of published epidemiological studies
included and reported detailed results on women (Zahm et al. 1994). Although
this picture has changed, efforts to study the effects of occupational exposures on
women are still needed (Zahm and Blair 2003).
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A case-control approach is often used in occupational epidemiology for ex-
ploratory studies. As in the study on laryngeal and hypopharyngeal cancer de-
scribed above, an occupational history may be classified by several groups of job
titles and industrial activities. As multiple comparisons are made, a Bayesian ap-
proach with semi-Bayes or empirical-Bayes adjustments might help to decrease the
impact of false-positive results (Greenland and Poole 1994). For a formal explana-
tion and practical examples of Bayesian approaches in occupational epidemiology,
see Greenland and Poole (1994) and Steenland et al. (2000).

Mortalityodds ratio studieshavea case-control designandare avalid alternative
to proportionate mortality studies, which have been widely used in occupational
epidemiology (Miettinen and Wang 1981; Boyd et al. 1970). In proportionate mor-
tality studies, the frequency of death for the diseases under study among exposed
workers is compared with the corresponding figure calculated for a reference popu-
lation (proportionate mortality ratio, PMR). PMRs are limited by the fact that they
must add up to unity; therefore, elevated PMRs for some diseases are, by defini-
tion, counterbalanced by decreased PMRs for other diseases. Moreover, PMRs are
biased if ascertainment of deaths is incomplete in a different proportion among ex-
posed than unexposed subjects. These drawbacks are overcome in mortality odds
ratio studies where the case-control approach is applied. In such studies the cases
comprise deaths from the specific cause of interest, both exposed and unexposed,
while the controls are other deaths selected on the basis of a presumed lack of as-
sociation with the exposure. The principle of selecting the control causes of death
for inclusion in the study is therefore the same as selecting a control series for any
case-control study: controls are selected independently of exposure and with the
aim of representing the proportion of exposure in the study base (Rothman and
Greenland 1998).

Exposure Assessment2.3

Exposure assessment (see Chap. I.11 of this handbook), a critical step in any
epidemiological study, is central in occupational epidemiology. The most recent
developments in the design of both cohort and case-control studies of work-related
diseases rely on identification of exposure to specific agents, such as chemicals,
rather than on the use of surrogates of exposures, such as being employed in
a given industrial activity or holding a certain job. Furthermore, an attempt is
often made to compute some measure of dose, such as cumulative exposure or
average exposure, which in turn requires estimation of the level (intensity) of
exposure and its variation over time.

Statistical and Deterministic Modelling2.3.1

Two general strategies, statistical and deterministic modelling (Kauppinen et al.
1994), are available to assess exposure on the basis of the primary information col-
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lected in a study. Such information usually does not include satisfactory measures
of exposure to the agent(s) of interest, and is sometimes limited to a description
of the work setting, the operations performed by workers and the materials they
handled. More accurate methods of estimating exposure are based on stochastic
(statistical) modelling, in which missing data are calculated from a model fitted
to the results of past industrial hygiene measurements, that are assumed to follow
the log-normal distribution among groups of workers defined by plant, job title
and work area (Kauppinen et al. 1994). When statistical modelling is applied to
industry-based studies, such as cohort, cross-sectional and nested case-control
studies, workers are classified into ‘homogeneous’ groups on the basis of com-
binations of plant, work area, job title and period. Then, the available industrial
hygiene measurement series are broken down into the same groups.

The main limitations of the statistical approach are that: (1) any trends in
exposure over time are often unknown, either because measurements were not
made forpreviousprocessesandworkingconditionsorbecauseofdifficulties in the
interpretation of historical measurements; and (2) the inter-individual variation
of exposure within a homogeneous group can be wider than that between groups.
With respect to the latter, the difficulty of identifying groups with homogeneous
exposure, without extensive measurements based on carefully planned strategies,
has been documented (Kromhout et al. 1993).

In historical cohort studies, the availability and quality of industrial hygiene
data are often different for the various settings included in the work histories of
the study subjects; good data may exist for some periods and not for others. In
these circumstances, the maximum achievable goal is a semi-quantitative approach
in which jobs are compared according to materials handled and tasks performed.
The jobs are then ordered in terms of assessed exposure, which is placed onto
a semi-quantitative scale (e.g. high, intermediate, low).

Because comprehensive data on exposure are rarely available, less accurate
methods have thus to be used. If the factors that determine the level of exposure can
be identified, they can be used to construct a deterministic model (Kauppinen et al.
1994). In deterministic modelling in industry-based studies, the most significant
factors that affect exposure intensity, such as type of plant and machinery, presence
of local exhausts and workers proximity to sources, are identified. Their relative
importance is then assessed, on the basis of either available past industrial hygiene
data or, in their absence, a theoretical evaluation of how different tasks, operations
and procedures could have affected exposure. A further possibility is experimental
reconstitution of past working conditions and their measurement. It has been
shown that complex industry-specific exposure matrices can be built on the basis
of detailed knowledge of plant-, job-, and time-specific factors (Kauppinen and
Partanen 1988). Semi-quantitative exposure levels can then be established for each
study subject applying the matrix to the information on the jobs they held and the
tasks they performed.

The main limitations of the deterministic approach are that: (1) the relative im-
portance of the various determinants may prove difficult to assess, and agreement
among experts may be poor; and (2) the quality of information on the determi-
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nants may be highly variable across study subjects; for some, the tasks involved
in their job might have been recorded, while for others barely the job title is
known.

In some recent multi-centre or pooled industry-based studies, considerable
advances have been made in statistical modelling of exposure determinants,
building industry-specific exposure matrices and collecting and using individ-
ual job histories (Burstyn et al. 2000, 2003; Mannetje et al. 2002; Harber et al.
2003). Current standards of practice imply that when good industrial hygiene
data are available, at least for some historical periods, and the relative influ-
ences of changes in plant, process and activity can be evaluated, exposure can be
assessed quantitatively and extrapolated to periods or plants for which no orig-
inal quantitative information was available. With this method, quantitative data
on a given job, in a given industrial activity and during a given period provide
a baseline estimate of both the average exposure and its variation. Known differ-
ences in the presence and characteristics of determinants provide multiplicative
weighting factors to be applied to the baseline estimate. Few validation studies of
industry-specific exposure matrices are, however, available (Dosemeci et al. 1994a,
1996).

Job-exposure Matrices and Job-specific Modules2.3.2

In population- and hospital-based case-control studies, statistical modelling has
been used to set up job-exposure matrices (JEM) (Hoar et al. 1980; Macaluso et al.
1983). A JEM can be defined as a cross-classification of a list of job titles with a list
of agents to which the workers performing the jobs might be exposed (Kauppinen
and Partanen 1988). Deterministic modelling has been used in the interpretation
and assessment of job histories by industrial hygiene experts when occupational
questionnaires including job-specific modules (JSM) were developed to obtain the
detailed information necessary for the experts’ judgement (Siemiatycki et al. 1981;
Macaluso et al. 1983; Ahrens et al. 1993). Researchers at the US National Cancer
Institute showed that a deterministic approach can be used not only in expert- and
JSM-based assessment but also to create and use more detailed, improved JEMs
that might allow semi-quantitative or even quantitative exposure assessments
(Dosemeci et al. 1990a). More recently, the same group suggested that the JEM-
based assessment strategy should be abandoned in favour of the JSM-based expert
assessment (Stewart et al. 1996). Use of JEMs has been reported to result in loss
of both sensitivity and specificity in exposure assessment, in comparison with
the use of a JSM-based individual assessment (Rybicki et al. 1997). Simulation
studies suggested that use of JEMs may lead to loss of precision in odds ratio
estimates, whereas expert-based assessment resulted in relatively low levels of
misclassification (Bouyer et al. 1995).

Although it is somewhat difficult to assess the validity of expert-based exposure
assessment in the field, some studies suggest that the agreement within and be-
tween experts might be satisfactory when experienced teams of raters are available
(Siemiatycki et al. 1997; Fritschi et al. 2003). Two studies addressed the issue of
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expert-based exposure assessment validation by means of an objective index of
past exposure to asbestos.

The first study (Pairon et al. 1994) comprised 131 cases of mesothelioma. The
probability, level and frequency of exposure were assessed by using qualitative
ordinal classifications of the job in which each person had maximum exposure.
Combinations of assessed probability, level, and frequency were summarised in
four classes: (1) unexposed or possibly exposed, (2) probable or definite exposure at
low level, (3) probable or definite exposure at levels higher than low, with sporadic
frequency, (4) probable or definite exposure at levels higher than low, with more
than sporadic frequency. No attempt to build up a cumulative dose index was made.
A limited correlation between the exposure assessment and objective indices of
exposure to asbestos was observed, particularly with counts of asbestos bodies per
gram of dried tissue. This study suffered from some shortcomings. Intensity and
frequency were not used to compute a combined dose estimate, which prevented
the calculation of a cumulative dose index. Frequency was used to discriminate
between the third and the fourth summary class, but variations in frequency
might actually be less important than those in intensity to determine the average
exposure level. Only the highest exposure job was used in the assessment, so
that other possible exposures have not been taken into account. The sensitivity of
objective indexes of asbestos exposure in mesothelioma cases may be low.

In the second study (Takahashi et al. 1994), 42 cancer cases for whom necropsy
material was available were assessed for exposure from a JSM-based questionnaire
andbyanalysis of lung tissuefibres.Agoodcorrelationwas foundbetween the JSM-
based exposure assessment and asbestos fibre counts, although some cases were
found tohavehadexposurebuthadnoasbestos in the lung.Themain shortcomings
of this study are its rather limited dimension and a potential necropsy selection
bias; the heterogeneous nature of the cases as to their cancer site makes it difficult
to extrapolate its results to a mesothelioma series.

Expert-based assessment with deterministic modelling in the hands of expe-
rienced raters has resulted in quantitative assessments in some population- and
hospital-based case-control studies (Iwatsubo et al. 1998, Brüske-Hohlfeld et al.
2000, Rödelsperger et al. 2001).

Consequences of Errors in Exposure Assessment 2.3.3

The consequences of errors in exposure assessment are discussed extensively in the
chapters on exposure assessment (Chap. I.11) and measurement error (Chap. II.5)
in this handbook. When exposure is measured as a continuous variable at the indi-
vidual level, random, non-differential errors in assessment, such as those deriving
from errors in measurement, generally lead to attenuation of the exposure-disease
association and diminish the goodness-of-fit of regression models (Armstrong
1998). When measurements are constrained by a lower limit, such as a detection
limit, however, inflation of the exposure-response association can occur under cer-
tain circumstances (Richardson and Ciampi 2003). When exposure is measured
as a continuous variable, but at group level, a rather different situation occurs:
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The exposure level is the average for a sample of individuals in the group, and all
individuals are assigned this average exposure. This leads to what is referred to as
‘Berkson error’. In a ‘classical’ error, an individual is assigned a measured expo-
sure, affected by random variability. In Berkson error, the group average exposure
is affected by a considerably smaller random error, but the actual exposure of each
individual in the group will be different from the average. The exposure-response
association will not be biased by Berkson error (Armstrong 1998).

In many, probably most, study designs, exposure is scaled as a discrete vari-
able on a dichotomous or a polytomous scale. When the exposure variable is
dichotomised, non-differential misclassification will always bias the effect mea-
sure towards the null; however, when the exposure variable is polytomous, non-
differential misclassification will bias the effect measure towards the null only if
misclassification occurs between adjacent exposure categories. When it involves
non-adjacent categories, bias away from the null may also occur (Armstrong 1998;
Dosemeci et al 1990b).

Quantitatively, misclassification is a function of: (a) the sensitivity of the assess-
ment method, i.e. the proportion of all truly exposed subjects correctly classified
as exposed, and (b) its specificity, i.e. the proportion of all truly non-exposed
subjects correctly classified as non-exposed. The relative importance of sensitivity
and specificity in overall misclassification bias depends on exposure prevalence:
when exposures are rare, like most occupational exposures in population- and
hospital-based case-control studies, even small losses in specificity may strongly
bias the relative risk estimate toward the null. Such effect is clearly depicted in
Fig. 2.1, where a true relative risk of 4.0, sensitivity in exposure assessment of 0.9,
and a range of commonly found exposure prevalences (from 0.001 up to 0.2) are
assumed. The estimated relative risk is plotted against different specificities in
exposure assessment.

This consideration does not of course imply that sensitivity is not important:
When exposures are rare low sensitivity in exposure assessment causes loss in
power, and requires substantial increases in sample size to compensate for it.

Special Issues
in Occupational Epidemiology2.4

Confounding2.4.1

A general discussion of confounding is given in Chap. I.9 of this handbook. In-
formation on several known possible confounders and on other occupational and
non-occupational exposures of interest is almost always lacking for historical occu-
pational cohorts. Methods to deal with confounding in historical cohorts include
use of internal comparison groups, with general characteristics assumed to be
similar to those of the exposed subjects, and use of available statistics on the
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Figure 2.1. Bias toward the null of estimated relative risk due to loss in specificity in exposure

assessment. True relative risk = 4 and exposure assessment sensitivity 0.9 are assumed. Estimated

relative risk is plotted against different levels of specificity of exposure assessment, for exposure with

prevalences (Prev) ranging from 0.001 to 0.2 (modified from Ahrens 1999)

distribution of confounders in the population from which the cohort originated.
The first approach is commonplace in occupational epidemiology, although it is
seldom possible to verify whether the comparison group has the assumed charac-
teristics. Internal comparisons have the advantage of controlling part of the bias
introduced by the ‘healthy worker effect’, that is discussed below. In a historical
cohort study conducted in the Nordic countries to investigate the risks for cancer
among airplane pilots (Pukkala et al. 2002), national cancer registry data were
used to calculate standardized incidence ratios (SIRs). Since airplane pilots be-
long to a higher social class than the general population, however, the SIRs were
possibly biased. In this study, cosmic radiation was the main exposure of inter-
est; therefore, a cumulative dose of radiation experienced by each member of the
cohort was calculated. This made it possible to check the main findings from the
external comparison by analysing the effect of the exposure, using pilots with the
lowest cumulative dose as the reference group. Such a comparison is unlikely to be
confounded by social class.

The second approach, the use of available population statistics, was applied
in the Norwegian part of the occupational record-linkage study in the Nordic
countries, described in Sect. 2.2.2, with occupation-, sex- and birth cohort-specific
information on smoking habits in the population obtained from external surveys
(Haldorsen et al. 2004). The Norwegian study evaluated 42 occupational groups
for risk of lung cancer in comparison with 12 other occupational groups assumed
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to be without exposure to occupational lung carcinogens. The magnitude of the
associationsofproportionof current and former smokers, andamountof cigarettes
smoked with lung cancer risk was estimated among the 12 reference groups,
using data from the external surveys. Then, the smoking-adjusted SIRs for the
42 occupational groups were calculated, and compared with the non-adjusted
estimates. Limitations of this approach are that: (1) the quality of the information
on the confounder depends on the quality of the surveys, and (2) the magnitude
of the association between confounder and disease is not directly estimated at an
individual level. The magnitude of the association can be either obtained from the
best available studies, or from ad-hoc studies conducted in the same population,
or estimated, as in the Norwegian study, using aggregate data.

When a study is conducted to determine whether an occupational exposure is
associated with a disease, with no specific interest in the dose-response relation-
ship, and when the estimate of the association is large, adjusted and unadjusted
estimates are often similar. This has been shown in studies of occupational lung
cancer risk, for which smoking is a strong potential confounder. In particular,
using an indirect approach that is a type of sensitivity analysis, Axelson calculated
that the confounding effect of smoking can hardly explain relative risks greater
than 1.5 or below 0.7 when national rates are used for comparison (Axelson 1978;
Axelson and Steenland 1988). He made sound assumptions about the proportions
of moderate smokers (40%) and heavy smokers (10%) in the population used for
calculating the number of expected cases, and also about the effects of moderate
smoking (relative risk, 10) and of heavy smoking (relative risk, 20) on lung cancer
risk. Then, the adjusted relative risks were calculated for different scenarios of as-
sociation between smoking and being employed in specific occupations (Table 2.2).
Axelson’s suggestion that, under common circumstances, strong risk factors have
weak confounding effects was investigated further and supported (Gail et al. 1988;
Siemiatycki et al. 1988; Flanders and Khoury 1990).

In developing a protocol for a case-control study on the risk of female breast
cancerassociatedwithoccupational exposure tomagneticfields, a simulationstudy
was carried out to evaluate the potential confounding effects of several risk factors
(Goodman et al, 2002). Twelve potential confounders, including a family history
of breast cancer, country of birth, age at menopause and obesity, were selected on
the basis of recent reviews on breast cancer epidemiology and evaluated both in
univariable analyses and with combinations of two to five risk factors. Estimates
of the strength of the associations between the risk factors and breast cancer risk
and the prevalences of the risk factors in the general population were obtained
from the literature. The aim was to identify confounders that, under different
scenarios of their prevalence among cases, could increase a true odds ratio of 1 up
to a distorted value of 1.5. In the univariable analysis, no risk factor was a strong
confounder, unless an unrealistic increase in its prevalence among occupationally
exposed women was assumed. Interestingly, the scenario in which the prevalences
of several risk factors were increased also did not have a strong confounding
effect. For instance, a twofold increase among exposed women in the prevalence of
first-degree relatives with breast cancer, a history of cancer in one breast, benign
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Table 2.2. Risk ratios for lung cancer in relation to the fraction of smokers in various hypothetical

populations (source: Axelson 1978; Axelson and Steenland 1988)

Type of smokers in the population (percentages)
Non smokers Moderate smokers Heavy smokers Rate

(risk of 1) (risk of 10) (risk of 20) ratio

100 – – 0.15

80 20 – 0.43

70 30 – 0.57

60 35 5 0.78

50a 40a 10a 1.00a

40 45 15 1.22

30 50 20 1.43

20 55 25 1.65

10 60 30 1.86

– – 100 3.08

a Compared to reference population with 50% nonsmokers, 40% moderate smokers, and 10%
heavy smokers

proliferative breast disease, obesity and consumption of at least two drinks per day
inflated the odds ratio from unity to 1.38.

The similarity between adjusted and unadjusted estimates has also been shown
empirically, in both cohort and case-control studies. SMRs of cancers of the lung,
bladder and intestine, unadjusted for smoking, strongly correlated with smoking-
adjusted estimates in analyses of occupational factors in a cohort of US veterans
(Blair et al. 1985). Analogously, smoking was found to be a weak confounder in
a review of several occupational case-control studies on lung cancer (Simonato
et al. 1988). When selecting the final model for analysing a case-control study
on occupational factors and lung cancer risk in two areas of Italy in 1990–1992
(Richiardi et al. 2004), we evaluated several models for addressing smoking as
a confounder. Table 2.3 shows the results of an evaluation for two occupational cat-
egories,onepositivelyassociatedandtheothernegativelyassociatedwithsmoking.
The evaluation showed that a simple model in which smokers are classified as cur-
rent, former and never can accommodate for most of the potential confounding
effect.

Healthy Worker Effect 2.4.2

Workers are not a random sample of the general population as the employment
status is positively associated with the health status. First, relatively healthier peo-
ple are more likely to seek a job and to be hired. Second, as sick people tend to
leave their jobs, healthier workers remain employed longer. The two health-related
selection forces cause a well-known selection bias in occupational epidemiology,
known as the ‘healthy worker effect’ (Fox and Collier 1976; McMichael 1976). The
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Table 2.3. Odds ratio, and 95% confidence intervals, of lung cancer for two selected job titles,

obtained using seven different methods to model smoking in an Italian case-control study on lung

cancer (source of data: Richiardi et al. 2004)

Model Retail trade salesmen Mail distribution clerks
(54 exposed cases) (58 exposed cases)

OR (95% CI)b OR (95% CI)

1 1.56 (1.04–2.35) 1.47 (1.00–2.17)
2 1.41 (0.93–2.15) 1.62 (1.07–2.45)
3 1.30 (0.85–2.01) 1.65 (1.08–2.52)
4 1.30 (0.84–2.03) 1.63 (1.06–2.51)
5 1.26 (0.81–1.95) 1.70 (1.10–2.61)
6 1.28 (0.82–2.00) 1.70 (1.10–2.63)
7 1.26 (0.81–1.98) 1.70 (1.10–2.65)

a All models were adjusted for age and study area. Model 1: no smoking variables; Model 2:
smoking status categorized as ever|never smoker; Model 3: smoking status categorized as
current|former (since at least 2 years)|never smoker; Model 4: same as model 3 with three
levels for current smokers: 1–9, 10–19, 20+ packyears; Model 5: same as model 3 with number
of packyears introduced as a continuous variable; Model 6: same as model 5 with 4 levels for
time since cessation: 2–5, 6–10, 11–15, 16+ years; Model 7: same as model 6, using b-spline
cubic regression with knots at 10, 20, 30, and 40 packyears to model the cumulative number of
cigarettes smoked
b OR, odds ratio adjusted for age, study area; CI, confidence interval

first phenomenon is known as the ‘healthy hire effect’, whereas the second, as-
sociated with duration of employment, is known as the ‘healthy worker survivor
effect’ (Arrighi and Hertz-Picciotto 1994). The magnitude of the phenomena de-
pends on the type of work, general social conditions (e.g. unemployment rate), the
disease under study (e.g. studies of cancer are generally less biased than studies
of diseases with shorter induction period) and the study design (Choi 1992). The
healthy worker effect is also seen as a traditional confounding problem, as employ-
ment status is associated at the same time with the health status of workers and
disease risk (Checkoway et al. 2004). Because of the healthy worker effect, cohorts
of workers may have lower mortality rates than the general population. Negative
results in occupational epidemiological studies may therefore hide harmful ex-
posures. Moreover, an increase in risk of a disease may artificially plateau at the
highest level of cumulative exposure, at which workers have the longest duration
of employment (Stayner et al. 2003).

A logical approach for controlling, or at least decreasing, the bias introduced
by the healthy worker effect is to use an appropriate internal or external com-
parison group, namely a group of unexposed workers who possibly underwent
similar health-related selection at the time of employment. Use of such a com-
parison group does not, however, imply unbiased estimates, as the healthy worker
survivor effect may still persist. Indeed, as reviewed by Checkoway and colleagues
(Checkoway et al. 2004), four time-related factors should be considered: age at
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first employment, duration of employment, length of follow-up (members of a co-
hort can be followed-up also after they have left the job) and age at risk. Arrighi
and Hertz-Picciotto (1996) evaluated four suggested methods for controlling the
healthy worker effect: (1) restricting analyses to long-term survivors; (2) excluding
recent exposures, introducing a lag of 10–20 years; (3) introducing current em-
ployment status as a confounder in the models; and (4) modelling employment
status simultaneously as a confounder (the same as in the third approach), and as
an intermediate time-dependent variable (if the risk factor for the disease under
study is also a determinant of job termination, and, therefore, of change in em-
ployment status). The latter technique uses the so-called G-method as suggested
by Robins and colleagues (Robins 1986; Robins et al. 1992). This approach has
the strongest theoretical support and was considered the most appropriate after
empirical evaluation, although there are difficulties in its implementation. Lagging
exposure is a valid, straightforward alternative, that can be implemented when the
induction period between exposure and disease is not short.

Case-control and cross-sectional studies are not free from the healthy worker
effect. In case-control studies, it can result in differential sampling of controls from
the exposed and the unexposed population. For instance, if controls are selected
from hospitalised patients and individuals with a particular occupational expo-
sure tend to be healthier, then the proportion of exposed controls is artificially
decreased. The odds ratio would, therefore, be overestimated, a bias that reverses
the usual underestimation of SMRs introduced by the healthy worker effect in
cohort studies.

In a cross-sectional study, workers with higher exposure may have a para-
doxically lower prevalence of diseases or symptoms known to be associated with
exposure, becausediseasedworkerswould tend to leave jobsentailing theexposure.

Dose-Response Analysis 2.4.3

As discussed in Chap. I.11, the dose is the level of the risk factor at the target organ,
while exposure refers to the level of the risk factor in the external environment.
Although the dose is the biologically relevant measure, the amount of exposure, as
a surrogate of the dose, is usually the only available information in occupational
studies, so that a dose-response analysis is in fact an exposure-response analysis.
In some studies the actual dose can be estimated from measurements of exposure
and knowledge of the specific agent uptake and clearance (US Environmental
Protection Agency 2002).

Exposure can be measured using different metrics, namely duration, intensity
and cumulative level (cf. Chap. I.11). The selection of the metric should be based
on the – often unknown – mechanism of disease development and on the nature of
the exposure itself. Importantly, the choice of the metric influences the magnitude
of the estimates and the shape of the dose-response (Blair and Stewart 1992).
Cumulative exposure, i.e. the product of intensity and duration, is a correct metric
for several types of diseases where risk is directly proportional to dose. Duration
of employment is a valid surrogate for cumulative exposure when intensity of
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exposure has been relatively constant over time, through working areas of the
plant and across tenures (Checkoway 1986). Peak exposure is more important than
duration in the study of diseases for which a threshold exists, such as back pain or
acute toxicity.

A dose-response analysis is commonly carried out in occupational epidemiol-
ogy for at least three main reasons. First, occupational exposures are time- and
place-specific, implying that assessment of an association between an occupational
exposure and a disease necessarily takes the level of exposure into account. Second,
a dose-response relation is one of the well-known Bradford Hill’s criteria for es-
tablishing causality (Hill 1965). When the risk for a disease increases continuously
with increasing exposure, whatever the shape of the trend, the likelihood of a causal
association is higher. However, on the one hand, a dose-response relation does not
prove causality; on the other hand, the lack of such a relation does not imply lack
of a causal association, as clearly demonstrated by threshold phenomena. Third,
the dose-response analysis is one of the steps in risk assessment, which aims at
quantifying the health effects of environmental and occupational exposures that
can be modified by new policies and technologies. Risk assessment comprises:
(1) hazard identification, on the basis of evaluation of the available evidence on the
health effects of the agent; (2) exposure assessment, identifying the nature of the
exposure in the population, the characteristics of the exposed individuals and the
behaviour of the agent in humans; (3) identification of the exposure-risk model,
which implies a dose-response assessment; and (4) risk characterization, deter-
mining the exposure level-specific health effects in the population (Nurminem
et al. 1999; Checkoway et al. 2004).

Often, data on exposure in occupational epidemiology are summarized as qual-
itative, or semi-quantitative indices. For instance, JEMs usually produce indices
of intensity and probability of exposure on an ordinal scale. Such information
offers little basis for a dose-response analysis. In other instances, if quantitative
information is available, cumulative exposure can be estimated for each study sub-
ject; it must be born in mind, however, that quantitative estimates are affected by
measurement errors, falling in the two broad categories of classical and Berkson
error already discussed in Sect. 2.3.3. Among many possible examples, we cite
here the dose-response analysis carried out by Steenland and colleagues (1998)
on occupational exposure to diesel exhaust in the trucking industry and the risk
for lung cancer, which was used for quantitative risk assessment by the Health
Effects Institute (1999). Steenland and colleagues conducted a case-control study,
obtaining information on lifetime work histories from interviews with the study
subjects’ next-of-kin and from retirement registries. Then, for the purpose of ex-
posure assessment, workers were assigned to the category in which they had been
employed the longest. Contemporaneously, an industrial hygiene survey was con-
ducted to measure levels of exposure to elemental carbon ( a marker of exposure
to diesel exhaust, which is a complex mixture of gases and particulates) in the
main job categories within the trucking industry (Zaebst et al. 1991). Combining
the lifetime work histories with the results of the survey and making several as-
sumptions, in particular with regard to past exposure, the cumulative exposure of
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each worker was estimated. Although quantitative data were obtained, the level of
misclassification of exposure was still presumably high, albeit non-differential. In
particular, each subject’s true exposure in each job category was a random vari-
ation of the exposure level that was assigned to that job based on the industrial
hygiene survey.

There are several approaches to dose-response analysis, including simple para-
metric models, categorical analysis, biological-based models, polynomial regres-
sion, spline regression and nonparametric models, such as generalized additive
models (cf. Chaps. II.2 and II.3 of thishandbook).Wewill notdescribe andcompare
these techniques, but we highlight some aspects that are specific to occupational
epidemiology. Interested readers may refer to the above chapters or one of the
several available thematic textbooks (Härdle 1990; Hastie and Tibshirani 1990).

Categorical analysis, in which the exposure variable is subdivided into a certain
number of categories on the basis of cut-points chosen a priori, is usually the
startingpoint foradose-responseassessment, as it allowsresearchers toobserve the
shape of the dose-response relationship. The shape is obviously strongly influenced
by the choice and number of the cut-points, that can be decided upon according
to biological considerations, if available, or other criteria, including established
standards or the percentile method. Evidence that an association is limited to
the highest exposure levels should not lead to disregard causality without careful
consideration of the possibility of a threshold for the effect of interest.

When the exposure variable is continuous, the simplest approach consists in
fitting a regression model with a term for the exposure (e.g. cumulative exposure).
This implies assuming a priori a shape of the dose-response curve, that seldom
reflects biological knowledge, if any is available. When the exposure variable is not
transformed, the assumed shape is usually log-linear or logistic. In occupational
epidemiology, a levelling off in the increasing trend in risk for chronic diseases is
often observed at the highest levels of exposure (Stayner et al. 2003). The expla-
nations for this levelling off can be either biological (e.g. saturation phenomena,
depletion of susceptible individuals) or methodological (e.g. misclassification of
exposure, healthy worker effect), and a log transformation of the cumulative ex-
posure variable is an option to consider.

Among the more complex alternatives, spline regression and its variants (b-
splines and loess among the most popular) can be implemented quite easily with
common software packages. It is therefore being used increasingly in occupa-
tional and environmental epidemiology (Greenland et al. 2000; Steenland et al.
2001; Thurston et al. 2002; Steenland and Deddens 2004). Spline regression, that
is based on piecewise polynomials, has the advantage of providing a smoothed
dose–response curve, although it does not always produce easily interpretable
estimates (Harrell et al. 1988; Greenland 1995). Figure 2.2 shows an example of
a dose-response analysis of data from men included in a case-control study on
occupational factors and lung cancer risk that we carried out in two areas of north-
ern Italy in 1990–1992 (Richiardi et al. 2004). The odds ratio (plotted on the log
scale) of lung cancer increased with duration of employment until 10–15 years
and slightly decreased after that. Estimates for the durations of employment above
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30 years are not interpretable because of few observations and consequent large
confidence intervals. This shape in dose-response is not entirely unexpected when
duration of exposure is used in the analysis, as subjects with longer duration
of employment may be those with lower intensity of exposure and better health
status.

Figure 2.2. Association between duration of employment in occupations known to entail exposure to

lung carcinogens and risk of lung cancer modelled using a generalized additive model with cubic

b-splines (four degrees of freedom), adjusted for study area, age, and cigarette smoking

(current|former|never smokers) (source of data: Richiardi et al. 2004)

Primary Prevention2.5

How can occupational epidemiology help evaluate the need and effectiveness of
primary prevention interventions and policies?

Sound epidemiological studies are typically needed to produce evidence of
toxicity for occupational agents when long-term effects are present such as in
occupational cancer that we use here as an example (Merletti and Mirabelli 2004).
Complex mixtures entailing occupational exposures were among the first causes of
cancer to be identified and finally led to the identification of specific causal agents.
Thus the study of occupational cancers offered precious insights and paradigms
for occupational epidemiology at large.

Agents currently established as causes of occupational cancer and occupations
with sufficient evidence of increased cancer risk according to the International
Agency for Research on Cancer can be found in this textbook (see Chap. IV.3 of
this handbook; IARC 2004).

In appraising the body of evidence on occupational hazards and its relevance
for control of occupational exposures, consideration must be given to the prob-
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lem of who should bear the burden of proof, and what the proof should consist
of: whether evidence of benefit from intervention or evidence of harm from ex-
posure. Occupational exposures are imposed upon individuals who have little, if
any, personal choice, freedom, and responsibility in accepting or avoiding them.
Furthermore, they often lack the basic necessary knowledge. As consequence, the
burden of proof is on the employer, to demonstrate that the production process is
safe. Evidence that exposure may be harmful is sufficient to require intervention
to eliminate it.

Primary prevention, in the field of exposure to carcinogens as well as of other
chemical and physical hazards at work, is based on the application of basic indus-
trial hygiene strategies at the industry level: (1) substitution with agents intended
not to be as dangerous, (2) fully enclosed processing, (3) strict control of exposure
by reduction of amounts used, by local exhaust, by personal protection, by cleaning
practices, etc. This means to reduce the number of potentially exposed workers
and their exposure level. Exposure control is better implemented by embedding it
in the project of plants and processes, aiming to workers’ protection as well as to
that of neighbouring communities.

At the community and country level, primary prevention entails adopting regu-
lations intended to favour preventive measures or to enforce them. The first coun-
try to forbid the manufacture of certain chemicals because of their carcinogenicity
was the United Kingdom, with the Carcinogenic Substances Regulations in 1967,
prohibiting beta-naphtylamine, benzidine, 4-aminobiphenyl and 4-nitrobiphenyl
(UK 1967). The EC regulation on carcinogens at work has been developed starting
with the 90|394|EEC Directive, but still today the only carcinogenic agents whose
production and use is forbidden, apart from asbestos, are the same four as in
the UK Carcinogenic Substances Regulations. In the USA no formal ban has been
put on any carcinogenic agent, production, or process on grounds of workers’
protection. Permissible exposure levels (PELs) have been established by OSHA
largely on the basis of the 1987 list of the American Conference of Governmental
Industrial Hygienists (ACGIH) threshold limit values (TLVs), with the result that:
(1) the TLVs list has been updated and expanded by ACGIH, but the list of PELs
is unchanged, (2) certain agents are commonly recognized carcinogens but their
PELs were established without taking their cancer causing properties into account
(Smith and Mendeloff 1999).

Despite these limitations, OSHA and EPA in the USA, and the EC in its regulation
on classification, labelling and packaging of dangerous substances publish lists of
substances officially recognized as carcinogens. The availability of lists of carcino-
genic, and in general of toxic, chemicals is a useful tool for hazard identification,
even if limited to intentionally used agents.

Workers’ information on their exposures and on the risks entailed by them
is a fundamental issue. It is the first step in their empowerment to verify that
appropriate measures have been taken. The EC regulation requires that specific
information is given to exposed workers, including special instructions on how to
deal with accidents and emergencies.
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Provided local regulations have been adopted, like all EC Member States should
have done, law enforcement through technical public services specialized in in-
specting workplaces is another key issue. Further, workers should be able to stand
in courts not only when they are affected by work-related conditions, but just
because they are exposed, and their cases should be fairly settled, which does not
seem to occur currently even in large EC Member States (Editorial 2003).

It may be surprising that systematic reviews on the effectiveness of interventions
and|or implementation activities aimed at exposure control are generally lacking.
In the area of occupational cancer an exception may be the review by Kogevinas
and coworkers in 1998 on the rubber industry (Kogevinas et al. 1998), where some
changes in overall technology and chemistry were considered along with evidence
on the persistence of previously observed cancer risks. This review is useful to
point out the many and different difficulties we are confronted with while trying
to gather evidence of effectiveness in occupational cancer prevention:
1. The long induction period of most human cancers prevents driving conclu-

sions from early observations after changes are introduced, since workers first
employed after intervention are not yet at risk, or fully at risk, of developing
the disease.

2. Longer term observations, however, are difficult to carry out; they are also
difficult to interpret because of changing patterns of incidence|mortality in the
disease of interest, and of possible complex interactions with other exposures.

3. Often the exposure characteristics are not well understood and recorded,
so it may become impossible to assess the quantitative relationship between
exposure level and disease occurrence, which is precisely what is needed when
exposure levels are reduced but the agent is not completely eliminated.
a. Sometimes the nature of the relevant exposure is not understood, so

that a carcinogenic agent may be withdrawn but its substitutes may be as
dangerous, or almost as dangerous.

b. Both industry-based and community-based epidemiological studies have
major limits in exposure assessment, due to lack of suitable exposure
data, and this is the origin of major uncertainties and controversies in the
interpretation of epidemiological evidence.

This picture explains why it is difficult to obtain evidence of cancer risk reduction
following theadoptionofcontrolmeasures, andwhyreportsof thiskindofevidence
are rare.

Within the limits of the above mentioned uncertainties, some widespread oc-
cupational cancer risks (Cruickshank and Squire 1950) seem to have disappeared
from industrial and agricultural settings in Europe and in the USA. Furthermore,
some carcinogenic exposures also disappeared, or have been reduced to lower
levels. Results in terms of reduction of the fraction of cancers attributable to occu-
pation cannot be estimated currently and have to be the object of future scientific
investigations.

Some contradictory experiences occurred either: Agents have been substituted
with others now seemingly entailing the same risks, carcinogenic contaminants
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have been eliminated from agents used in certain industries only to be introduced
in agents used in other processes, only partial elimination of risk has been achieved
when relevant exposures were to complex mixtures rather than to simple chemicals
(Evanoff et al 1993). Therefore, workers’ exposure to carcinogens in industrialized
countries is still not controlled as completely as it should be, given our current
knowledge of the carcinogenic properties of chemical and physical agents. The
most critical point, however, is continuation of productions and processes entailing
exposure to carcinogens in developing countries, often lacking experience in the
management of industrial hazards and power to enforce sound control strategies
(Jeyaratnam 1994).

Conclusions 2.6

Attempts have been made to estimate the global burden of disease and injury due to
occupational factors (Leighet al. 1997, 1999;Ezzati et al. 2002).Althoughsuchglobal
statistics are of difficult interpretation given, the very large number of assumptions
underlying them, two major conclusions can be drawn: (1) the problem is still an
important one throughout the world, including developed regions; (2) the burden
is shifting to the developing world, which accounts to 70% of the world’s work-
force and where the globalization of industry is resulting in increased exposure to
occupational agents. The situation is exacerbated by unsafe technology, transfer
of hazardous industries and wastes from developed to developing countries, use
of agents banned or restricted elsewhere, poor health and nutritional status of the
work-force and ineffective legislation on occupational safety and health. Although
prevention of exposure to occupational hazards will come from political and
economic changes in the world, just as political and economic interests are the
determinants of the present situation, much can still achieved, even in the current
international situation (Pearce et al. 1994).

Theapplicationsofoccupational epidemiology inpublichealthdecision-making
are broadening, providing inputs to risk assessment, evaluation of occupational
guidelines and extrapolation of findings from occupational settings to communi-
ties with the aim of setting policies at population level. These multiple applications
mean increasing responsibility to ensure ethical scientific conduct and clear, thor-
ough communication of the assumptions, limitations and uncertainties of the
results of research and of risk assessment (Kriebel and Tickner 2001).

Recent discoveries in molecular biology and genetics have made it possible
for researchers to examine how genetic characteristics affect responses to oc-
cupational and environmental exposures. The use of genetic biomarkers in epi-
demiology has provided potential understanding of the underlying mechanisms
of disease and therefore ultimately contribute to Public Health. Despite the po-
tential benefits of genetic information, its collection in epidemiological studies,
particularly in occupational settings, presents ethical, legal and social challenges.
Clarifying gene-environment interactions will have implications for difficult reg-
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ulatory questions, such as protecting the most susceptible members of the pop-
ulation and its subgroups, but in the case of workers, genetic information could
be used to discriminate them (Christiani et al. 2001). The challenge of identifying
and applying genetic information in the study of human diseases in instances in
which it will make a difference to prevention and public health (Millikan 2002;
Merikangas and Risch 2003; Schulte 2004) may well also apply to occupational
epidemiology.
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Introduction3.1

Issues of Environmental Epidemiology3.1.1

The human environment – “the aggregate of surrounding things, conditions, or
influences especially as affecting theexistenceordevelopmentof someoneor some-
thing” (Webster’s Encyclopedic Unabridged Dictionary of the English Language
1989) – is a topic of ever increasing public awareness. Concern about the safety of
the environment has stimulated controversial debates both in the general public
as well as in the scientific community. Environmental safety has to meet defined
standards for the protection of public health and epidemiological knowledge has
to be gathered on the impact of risk factors on human health.

Environmental epidemiology may be defined as “the study of the effect on
human health of physical, biological, and chemical factors in the external envi-
ronment. By examining specific populations or communities exposed to different
ambient environments, environmental epidemiology seeks to clarify the relation
between physical, biological, and chemical factors and human health” (NRC 1991).

Although this is a modern definition of the relation between environmental
hazards and humans, the ideas of environmental epidemiology are linked to med-
ical history. Environmental hazards were observed in ancient times. For example,
Locher and Unschuld (1999) cite the antique scripts of Hippokrates “De aere aquis
locis” or Aristoteles, recommending that cities have to be located in a healthy
environment, and that air and water should be clean so as not to impair human
well-being.

Another example of an environmental issue is the radon problem, which was
first addressed in 1492 by Paulus Niavis in his essay, “Ludicium Iovis” oder “Das
Gericht der Götter über den Bergbau”:

“Wie man vom Schneeberge und von den Gruben zu sprechen hat: Die arbeiten
darin, und die Luft im Berge, die sehr ungesund ist, nimmt ihnen die natürliche
Farbe, sehr oft geschieht es auch, dass sie frühzeitig mit Tod abgehen.” (cited
by Schüttmann 1992).

More than 500 years ago, the very first observations were made of a possible
relationship between “the air within the mine” (die Luft im Berge) and symptoms
of disease and early mortality in the area of ancient ore mining around the village
of Schneeberg in Saxony, Germany. Writings by famous early modern physicians
likeAgricola,Bermannus oder über den Bergbau. (1555),De Re Metallica. (1556), or
Paracelsus, Von der Bergsucht und anderen Bergkrankheiten (1567), report cases of
a special disease and describe disease clusters in Schneeberg, Joachimstal, and in
other villages in this area. The disease was thus called Schneeberg’s Lung Disease
(Schneeberger Lungenkrankheit) (Schüttmann 1992).

Agricola and Paracelsus did not know the real cause of the disease; it was
more than 300 years until the Schneeberger Lungenkrankheit was identified as
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lung cancer in the year 1879. With this the occupational causality was stated,
but the real source of exposure was not known until the processes of radiation
were discovered at the beginning of the 20th century. In 1909 the mines around
Schneeberg were investigated and radioactivity was measured. Based on this,
a director of the mines formulated in 1913 the hypothesis of an exposure-effect
relationship between the “Radium Emanation” radon and lung cancer. Although
the real nature of the dose-effect relationship was not known, the Schneeberger
Lungenkrankheit was officially recognized in 1925 as an occupational disease in
Germany in cases of diseased workers that had been extensively exposed in the
mines. These observations led to the question of whether radon is a common risk.
Due to the ubiquitous presence of the gas it can extrapolated that radon constitutes
an environmental hazard in the general population (Schüttmann 1992).

Another classical example of environmental epidemiology is the famous risk
map of John Snow, who reported cases of cholera in Soho, London, in the middle
of the 19th century (Fig 3.1).

The increasing number of cholera cases in London in 1849 and 1853|54 caused
a great awareness of the real reasons for the epidemic. John Snow’s map can be
considered as one of the initial steps in spatial statistics and spatial epidemiology
(cf. Chap. II.8 of this handbook). It identified the source of the epidemic in the
contaminated water of the Broad Street Pump. Additional research was carried

Figure 3.1. John Snow’s map of cholera cases in Soho, London (figure modified from EpiInfoTM 2000)
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out and it was discovered that cholera incidence differed substantially in the water
supply areas of the Lambeth water company and the Southwark and Vauxhall water
companies. While in “Lambeth’s Area” 461 cases were observed in a population
of 173,748, 4093 cases occurred in a population of 266,516 in the “Southwark
and Vauxhall Area”. The risk ratio of 5.8 indicated a serious problem with water
contamination in the “Southwark and Vauxhall Area”.

These classical examples illustrate that the impact of the environment on human
health was realized very early and that this impact depends on the social and
political situation of a population. Nowadays there are different environmental
healthconcerns in thedevelopedandthedevelopingcountries.With the foundation
of modern epidemiology by Sir Richard Doll and others in the middle of the 20th
century, the general focus of public and scientific concern was first on risk factors
like smoking, occupation, and nutrition, and their association with cancer and
cardiovascular diseases. Many methods of modern epidemiology were developed
as applications on these associations. In the developed world, environmental issues
of public and scientific concern are ambient air pollution, environmental tobacco
smoke (ETS), or special agents known as hazardous from occupational exposures
like lead and mercury and their impact on human health. In contrast, in the
developing world the major concerns are pure air, sanitation, and clean water.
Infectious diseases (cf. Chap. IV.1 of this handbook) in particular are of major
interest, although severe exposures to chemical agents may occur in the developing
world, as well.

Incomplete understanding of causes of many common diseases in both de-
veloped and developing countries focuses interest on identifying environmental
hazards and incorporating this knowledge in strategies of risk management.

Concepts of Environmental Epidemiology
and Toxicology3.1.2

The concept of common risk analysis has been suggested as an approach to gain-
ing basic comprehension of all processes necessary to understand and manage
risks on human health (cf. e.g. Graham 1997). Risk analysis could be defined as
a three-stage process including risk assessment, risk management, and risk com-
munication. Risk assessment may be understood as a purely scientific process, in
which information is collected to describe risk factors and their impact on human
health, while risk management and risk communication describe the political and
social process to put this information into population-relevant actions, rules, and
laws.

The general principles of a scientific environmental risk assessment may be
described as a four-step process:

hazard identification, i.e.
does the agent have the potential to cause an adverse effect?
exposure assessment, i.e.
what exposures are experienced or anticipated under relevant conditions?
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exposure-outcome assessment, i.e.
what is the relation between exposure and outcome in humans?
risk characterization, i.e.
what is the estimated incidence and severity of an adverse effect in a given
population?

The basic scientific methodologies to deal with environmental risks and to answer
thequestionsof riskassessment are environmental epidemiologyandenvironmen-
tal toxicology. Both concepts should be recognized as partners within a common
risk assessment.

The risk assessment process in environmental toxicology usually comprises
several steps of in vitro and animal experiments over a broad range of exposure
intensities, leading toaNOEL(noobservedeffect level) ina sensitive animal species
and the ADI (acceptable daily intake) that incorporates an appropriate safety factor,
usually 100 or higher. This process of risk assessment to protect humans works
well for numerous compounds, but it also has a number of shortcomings.

First, many agents like cancerogenic, genotoxic, and allergenic chemicals are not
considered to have a threshold exposure level and may induce cancer or an allergic
reaction at extremely low exposures. Second, usually single compounds are tested,
although we are exposed to numerous agents simultaneously. The possibility of
both synergistic and antagonistic interactions between agents greatly complicates
the risk assessment process. Of particular importance are synergistic reactions that
have been demonstrated in vitro and in experimental animals in some instances.
Here, a single agent does not induce any – or only minor – adverse effects, while
the simultaneous administration of two agents elicits a strong toxicological effect.
Obviously, the NOEL-ADI approach using single agent administration does not
incorporate the possibility of agent interactions. Therefore, additional methods
must be developed to approach this problem. Third, the current concept does not
take previous exposure into account. That is of special relevance for persistent
bioaccumulative compounds like heavy metals. For these compounds the ADI
should be based on estimation of human body burdens and body burden-response
relationships.

Another problem is the difficulty of extrapolation to very low doses. The re-
striction in the number of animals per group that can be used and the paucity of
data on the mechanistic action of agents are the main reasons for these difficulties.
Much effort is being spent and more should be on the development of alternative
methods in risk assessment to reduce the use of experimental animals. A number
of cell and organ cultures of animal and human origin have been developed. The
relative simplicity of these systems in comparison to whole animal models can
be both advantageous and disadvantageous. However, few in vitro systems avail-
able at present are accepted as alternatives to whole animal models both in the
scientific community and in regulatory agencies. It is clear that in vitro systems
cannot reflect the entire organism and thus can reduce and refine, but not entirely
replace animal experiments. However, in vitro systems can be of enormous help
to understand the mechanisms of toxic action.
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These limitations of in vitro and animal experiments in toxicology call for hu-
man data from observational epidemiological studies. In general, epidemiological
investigations of environmental hazards have to be conducted with the same care
as in other fields, but in environmental studies some special features have to be
considered.

On the one hand, an environmental risk factor may cause severe diseases such
as cancer or strong respiratory symptoms; on the other hand, these outcomes
are also induced by many other risk factors; therefore the relative impact of the
environmental agent is small. This is true for many environmental problems,
as for example the effects of air pollution on respiratory health, the effects of
water contaminated with heavy metals and subsequent permanent damage to
children’s intellectual potential, or the effects of residues in food on human health.
Furthermore, there are only a few situations in which high concentrations of an
environmental agent affect a large part of the population. These cases may be
related to “special sources” and often result from an accident like the Chernobyl
disaster, or from exposure of a population within a restricted area as a consequence
of chronic pollution of the soil, e.g. by an industrial plant.

Investigation of small risks is one of the main characteristics of environmental
epidemiology.At thispoint it has tobenoted that a small relative riskdoesnotmean
that the risk is not important. Many environmental risk factors are ubiquitous, and
large proportions of a population can be exposed. This may cause population-
attributable risks that cannot be neglected, and results in an important task for
risk management.

“For example, the risk of death in males aged 45–74 years with a diastolic blood
pressure of 95 mm Hg in the Framingham study was only about 1.15 times the
risk in those with a diastolic blood pressure of 85 mm Hg, yet the amount of
disease that could be prevented in the population by reducing diastolic pressures
to 85 mm Hg would be substantial. Increased use of hypertension medication,
along with improvements in diet and exercise, is thought to be responsible
for some part of the substantial decline in cardiovascular mortality in the last
20 years” (NRC 1997).

But addressing small risks for multifactorial diseases leads to several problems in
conducting an epidemiological investigation. First, all possible risk factors linked
to a disease outcome should be incorporated into a study to avoid bias due to
confounding and to study the possible interactions among all risk factors. This in
turn requires that a large number of parameters be incorporated into a risk model.
Therefore, large sample sizes are necessary to provide sufficient statistical power.
Besides financial constraints, the logistic requirements are a major issue of the
field work in an environmental epidemiological investigation.

Second, the overall power of an investigation will be influenced by the definition
of exposure itself. For example “air pollution” is a mixture of hundreds of agents. If
for this purpose an exposure-disease relationship has to be detected, the definition
of exposure has to be clarified in advance. There are many different possibilities
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to assess the exposure and to conduct measurements, and each of them may
contribute to the real exposure-disease relationship. As a consequence, a proper
exposure assessment is of substantial importance and much effort has to be made
to conduct a powerful investigation.

Therefore special methodological issues have to be taken into account in en-
vironmental epidemiology. Before these are described, special research situations
need to be addressed in more detail as typical examples.

Examples of Research Fields
in Environmental Epidemiology 3.2

There are numerous exposures and disease outcomes in environmental epidemi-
ology, and there are many bibliographies, dictionaries and structured data bases
with detailed information on the risks of environmental exposures. Only a few of
them can be discussed further here.

Outdoor Air Pollution 3.2.1

From the earliest times, the impact of air pollution has been a major public health
issue of interest in environmental epidemiology. For example, as early as 1294, the
mayor of Venice is reported to have given orders to manufacturers of metals like
mercury or tin to change the company’s location to avoid exposing the population
to “un-healthy smoke” (Locher and Unschuld 1999).

Industrial air pollution, coal burnt in domestic hearths, and traffic in com-
bination with special weather conditions were the reasons for the London smog
episode in early December, 1952. Smoke and sulphur dioxide pollution increased
dramatically during this time. The visibility in central London dropped to a few
meters and there was an up to 10-fold increase of ambient air concentrations of
sulphur dioxide. Traffic and general public life were strongly restricted. More than
4000 deaths were attributed to the air pollution during that time, and mortality
increased upon the average even in the months after this environmental disaster.

The London smog episode may be considered the beginning of quantitative
risk assessment of the effects of air pollution on human health; it continues to
influence the ideas and methods of environmental epidemiology today, as is shown
for example by reanalysis of the 1952 data (e.g. Bell et al. 2004). As a political and
social consequence, the British government introduced its first “Clean Air Act”
in 1956 to reduce air pollution. As a scientific consequence air pollution was first
defined by the level of sulphur dioxide and the concentration of particulate matter.
Afterwards it was possible to make a more detailed analysis of the relationship
between air pollution and human health by looking more closely at the diameter
of particles, nitric (di)oxide, ozone, and other constituents.

The outcome of concern during the London smog was daily mortality, which
was approximately four times above the average daily mortality during December.
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The deaths attributed to the smog were primarily linked to pneumonia, bronchitis,
tuberculosis, and cardiovascular failures. This caused a controversy on whether
these deaths occurred only among people with previous severe illness or whether
the smog caused additional deaths. Another problem is the aggregation of cause-
specific mortality rates by day. In such aggregated data, there may be perfect
correlation between the exposure in question and other health risks like smoking
which might confound the association. Individual-based studies are better suited
for the investigation of multifactorial diseases, because perfect correlation between
variables is very unlikely and it is thus feasible to separate their effects.

Since then, many studies have been conducted to resolve this debate. One of the
most famous is the “Six City Study” conducted as follow-up study by the Harvard
School of Public Health in the U.S. cities Watertown, Massachusetts; Portage, Wis-
consin; Topeka, Kansas; Kingston|Harriman, Tennessee; St. Louis, Missouri; and
Steubenville, Ohio. In this concurrent cohort study with a 14-to-16-year mortality
follow-up, the effects of air pollution on mortality were estimated, and individual
risk factors were monitored for 8111 adults. The Harvard group found that higher
levels of fine particles and sulphate were associated with an increase in mortal-
ity by 26% (95% confidence interval: 8% to 47%), when the most polluted city
was compared to the least polluted city. A positive association of mortality with
concentrations of fine particles was found for cardiopulmonary disease. The au-
thors therefore concluded: “Although the effects of other, unmeasured risk factors
cannot be excluded with certainty, these results suggest that fine-particulate air
pollution, or a more complex pollution mixture associated with fine particulate
matter, contributes to excess mortality in certain U.S. cities” (Dockery et al. 1993).

Other studies corroborated the finding that long-term residence in cities with
elevated ambient levels of air pollution is associated with an increase in mortality
(e.g. Pope et al. 1995; Anderson et al. 1996; Katsouyanni et al. 1997; Samet et al. 2000;
Vedal et al. 2003), but many questions still remain open. For example, a re-analysis
of the “Six City Study” suggested that there is a modifying effect of education on
the relationship between air quality and mortality (Krewski et al. 2004).

The epidemiology of air pollution is a highly complex and grave public health
issue: On the one hand, mortality is only the endpoint of one possible health
outcome; respiratory and cardiovascular disease or cancer are other serious issues.
On the other hand, additional agents may be identified as characterizing parts of
air pollution. Not surprisingly, the number of epidemiological studies of the impact
of air pollution on human health is overwhelming (cf. WHO 2000; Brunekreef and
Holgate 2002).

Residential Radon3.2.2

A major issue of epidemiological research during the last 60 years has been the
development of exposure-risk functions between radiation and different (cancer)
outcomes. The main sources of the average annual radiation exposure in indus-
trialized countries are medical examinations and therapies, inhalation of radon
and its progeny, ingestion of natural radiation sources, and cosmic and terrestrial
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radiation (UNSCEAR 2000). Other sources, like the fallout from nuclear weapon
experiments, the Chernobyl disaster, or the occupational exposure of workers
in the nuclear industry, are low or affect only a very small part of the general
population.

Worldwide the average annual effective dose from radon and its decay products
is estimated at 1.15 mSv (UNSCEAR 2000). Therefore, natural radon seems to be an
environmental risk factor of great interest. Its harmful character was recognized
very soon after the discovery of radiation at the beginning of the 20th century
and its identification as the real cause of the Schneeberger Lungenkrankheit (cf.
Sect. 3.1.1).

In the history of radiation research many (animal) experiments and measure-
ments have been undertaken, with the usual uncertainties in extrapolating the
results to humans. However, in the middle of the 20th century, cohort studies in
(uranium) miners were started to investigate the true exposure-disease relation-
ship between radon and lung cancer. These studies confirmed that exposure to
the radioactive gas radon (222Rn) and its progeny increases the risk of lung cancer
among workers in the uranium and other mining industries (Lubin et al. 1994;
NRC 1999; IARC 2001; Table 3.1).

Table 3.1. Individual and pooled results of 11 cohort studies in miners on radon exposure and lung

cancer (Lubin et al. 1994)

Study # Cases (ERR|WLM)% CI

China 980 0.16 0.1–0.2
Czechoslovakia 661 0.34 0.2–0.6
Colorado 294 0.42 0.3–0.7
Ontario 291 0.89 0.5–1.5
Newfoundland 118 0.76 0.4–1.3
Sweden 79 0.95 0.1–4.1
New Mexico 69 1.72 0.6–6.7
Beaverlodge 65 2.21 0.9–5.6
Port Radium 57 0.19 0.1–0.6
Radium Hill 54 5.06 1.0–12.2
France 45 0.36 0.0–1.3
Pooled 2701 0.49 0.2–1.0

ERR = Excess Relative Risk
WLM = Working Level Month as a measure of cumulative radiation exposure
CI = 95% Confidence Interval

The study results in Table 3.1 are reported with exposures in Working Level
Month (WLM). This cumulative measure was developed historically with the idea
of there being a safe threshold for radiation exposure of workers. This was defined
as 1 Working Level (WL) and was stated as 100 pCi|l, which in today’s SI units is
equivalent to 3.7 kBq m−3 (1 Bq m−3 is 1 radioactive decay per second in 1 m3 air).
With an average time of occupation of 170 h per month this cumulates to 1 WLM.
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Overall a strong exposure-effect relationship was observed. When the occupa-
tional-related exposure scale is transformed from WLM in usual Bq m−3 (for details
on the assumptions and calculations of the transformation cf. e.g. NRC 1999), the
overall estimateof theexcess relative riskperWLMwasestimatedas 0.49 (Table 3.1).
As 1 WLM corresponds to 170 × 3.7 kBq m−3 we get an estimate of 0.49|(170 ×
3.7) = 0.08 per 100 Bq m−3, i.e. per additional average exposure of 100 Bq m−3 the
lung cancer risk will increase by 8%. This exposure-effect relationship is further
influenced by the time since exposure (TSE), the age at exposure, and by other
risk factors like the exposure to arsenic or other dusts, and the smoking habits
of the workers. These factors were not investigated deeply within the cohorts and
therefore uncertainties remain about the dose-response relationship.

The public health concern about major radioactive exposure, however, is the
long-term exposure of the general population to the much smaller concentrations
of radon in homes. When the exposure-effect relationship from the miner studies
is extrapolated to the level of radon exposure in homes, an average population-
attributable risk of lung cancer of 5 to 15% can be estimated in industrialized
countries (Lubin and Steindorf 1995; Steindorf et al. 1995; Darby et al. 2001). If this
extrapolation is true, exposure to residential radon is the most hazardous envi-
ronmental risk factor for cancer in the general population, and risk management
strategies need to be developed.

However, a direct transfer of the risk estimates derived from miner studies or
animal experiments to residential environments may not be appropriate due to
substantial differences in the levels of radon exposure; other physical factors such
as breathing rate; the distribution of aerosol particles size; the unattached frac-
tion of radon progeny; confounding factors such as smoking, asbestos and other
occupational risks; nutrition; leisure time activities; social conditions; genetic
susceptibility; and age, gender, and regional circumstances.

In the past decade a series of well-conducted epidemiological studies investi-
gated the risk of lung cancer in relation to indoor radon exposure in the general
population via case-control studies (Schoenberg et al. 1990; Blot et al. 1990; Persha-
gen et al. 1992, 1994; Létourneau et al. 1994; Alavanja et al. 1994, 1999; Ruosteenoja
et al. 1996; Auvinen et al. 1996; Darby et al. 1998; Field et al. 2000; Kreienbrock
et al. 2001; Lagarde et al. 2001; Tomášek et al. 2001; Oberaigner et al. 2002; Wang
et al. 2002; Barros-Dios et al. 2002; Kreuzer et al. 2003). Some of them found a sta-
tistically significant increased lung cancer risk, others not. It has been suggested
that detection of an underlying association of lung cancer and indoor radon ex-
posure, if present, has been impeded by uncertainty in assessment of exposure,
low statistical power, and a limited range of radon concentrations (Lubin et al.
1995).

Non-ionizing Radiation3.2.3

Exposure to electric and magnetic fields (EMF) in the occupational as well as in the
residential environment is a matter of major public concern in the developed world.
The debate on health consequences is widespread, and there is speculation on
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possible effects of exposure ranging from the development of cancer to headaches,
depressions, or general malaise.

A first investigation of Wertheimer and Leeper (1979) brought EMF and child-
hood leukemia to the special attention of the public. The authors conducted a case-
control study with 155 cases and the same number of controls, and found a risk
ratio of around three. So-called “wire-codes” of distances to electric power lines
were introduced as a measure of exposure to EMF.

Further studies followed. Greenland et al. (2000) and Ahlbom et al. (2000)
summarized the results of these studies by pooling them into two joint analyses in
the U.S. and in Europe (Fig. 3.2).

Figure 3.2. Leukemia risk in children due to EMF exposure: odds ratios and 95% confidence intervals

by EMF exposure in µT from pooling studies (a) in the U.S. (Greenland et al. 2000) and (b) in

Europe (Ahlbom et al. 2000)

Figure3.2 suggests a similar riskpattern in theU.S. and inEurope,withanoverall
statistical significance in the highest exposure group. However, the discussion on
EMF risks is ongoing, primarily due to limitations of exposure assessment for the
use of wire codes as well as for recent techniques of (personal) measurements and
exposure assessment.

Habash et al. (2003a) therefore stated: “Currently, the evidence in support of
an association between EMF and childhood cancer is limited, although this issue
warrants further investigation. Evidence of an association between EMF exposure
and adult cancers, derived largely from occupational settings, is inconsistent,
precluding clear conclusions. There is little evidence of an association between
EMF and noncancer health effects. … Further research is needed to clarify the
ambiguous findings from present studies and to determine if EMF exposure poses
a health risk.”
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Special Methodological Issues
in Environmental Epidemiology3.3

Although there is great variation in study designs and in measurement techniques,
methods of exposure assessment and statistical analyses used in environmental
epidemiology share common features that will be summarized in the following.

Principles of Study Design3.3.1

As mentioned above one of the major problems in studying an environmental risk
factor is often the low risk associated with it. Therefore the overall power of a study
has to be large to increase the chance of identifying health hazards. The proper
choice of the study design is thus a basic step in conducting an investigation in
environmental epidemiology.

Standardization of Study Designs
The power of an epidemiological study is related to two major components, namely
the sample size and the precision of all instruments. The number of available cases
and the financial budget are constraints that determine the limitations of every
investigation. Therefore, it is desirable to standardize study designs to increase the
precision of the results and to establish a basis for comparisons between different
studies.

For example, the designs of studies of the impact of residential radon developed
gradually over time. In a very first step ecologic studies were performed to in-
vestigate the numerical correlation between radon concentration and lung cancer
mortality with aggregated data, e.g. on the basis of administrative districts (Stid-
ley and Samet 1993). This type of study design is very popular in environmental
epidemiology, but is strongly influenced by different types of biases, especially
confounding bias (cf. Chap. I.3 of this handbook). Figure 3.3 shows an example of
an ecologic analysis for radon data in West Germany.

Figure 3.3 shows a typical problem which occurs in ecologic studies in environ-
mental epidemiology when the environmental risk factor is associated with a low
risk and the disease is influenced by a strong risk factor that is itself associated
with the risk factor under study. On the one hand, in Germany – as in other indus-
trialized countries – smoking is much more popular in cities and urban areas (e.g.
the major cities Berlin, Hamburg, Düsseldorf, Bremen) than in rural areas (e.g.
the rural districts Niederbayern, Oberpfalz, Tübingen in the south of Germany). In
addition, smoking prevalences decrease from north to south. On the other hand,
radon concentration is low in cities and urban areas, while higher measurements
are much more likely in rural areas. This pattern causes a “protective radon effect”
if the smoking habits are neglected.

This type of misleading findings in ecologic studies is known as the ecologic
fallacy and can be observed in many studies on radon (Cohen 1993, 1997) as well as
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Figure 3.3. Lung cancer and radon in West Germany; (a) lung cancer mortality in women by average

radon concentration in West German districts (Regierungsbezirke); (b) lung cancer mortality in

women by average smoking prevalence among females in West German districts (Kreienbrock and

Schach 2000, modified)

on other environmental risk factors. Therefore ecologic studies are only reasonable
as a starting point for discussion. Causal relationships could not be concluded from
this type of study design.

Study designs based on individuals are necessary to investigate the causal role
of environmental risk factors. For studies on the radon-related lung cancer risk
in the general population, Pershagen (1993; personal communication) described
three generations of studies following the ecologic studies (see Table 3.2).

The studies from the first and second generations were very small and there-
fore did not have the power to detect the radon-related lung cancer risk, which
is expected to be low. Thus in 1989, 1991, and 1993, workshops were organized

Table 3.2. Three generations of radon studies with individuals (Pershagen 1993; personal

communication)

Generation Characterization

I – conducted in the early 1980s
– small sample sizes
– no or crude Rn measurements
– no or only small control for confounding

II – conducted in the late 1980s
– small sample sizes
– Rn measurements in one house
– some control for confounding

III – conducted in the 1990s
– big sample sizes
– Rn measurements in all homes
– control for confounding
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with all principal investigators of ongoing studies during that time to develop
“Guidelines for Conducting Radon Studies” (Samet et al. 1991). These workshops
led to a standardization of study protocols and formed a basis for future pooling
of studies.

Although this process of standardization cannot be established as a general rule
in environmental epidemiology, it should be recognized as a strategy that may
enhance the overall power of investigations.

Because the risk ratio of an environmental risk factor is usually low and many
of the diseases under study are not frequent, a case-control study is the type of
study design that is most appropriate to investigate an environmental risk factor
within the common population. This is usually done for studies on radon and lung
cancer as well as for most of the studies investigating the impact of environmental
agents on cancer. For example, of the 20 studies on residential radon mentioned
in Sect. 3.2.2, only the Czech study was conducted as a cohort study in which
a case-control study is nested (Tomášek et al. 2001).

In contrast, at first glance cohort studies seem to be rare in environmental
epidemiology due to the extensive efforts they require. Nevertheless, there are well-
known examples of this study design, such as the “Six City Study” on indoor air
pollution and mortality (Dockery et al. 1993, cf. Sect.3.2.1), and other longitudinal
designs, studying long-term effects of the relation between air pollution exposure
and public health (Brunekreef 2003). Therefore the use of cohorts is increasing
in different fields of environmental interest. For example, cohorts are now being
used in investigations on the impact of nutrition on human health, like the EPIC
project (European Prospective Investigation into Cancer and Nutrition), which
studies more than 500,000 participants in ten European countries (Slimani et al.
2002).

Selection of Study Participants and Choice of the Study Area
The first step in planning an investigation in environmental epidemiology is the
choice of the study area. For this purpose, monitoring data of measurements is
very helpful to find out whether the risk factor is present within a defined region
and which variation it shows. This is necessary to distinguish between exposed
and non-exposed populations or to evaluate an exposure-effect relationship for
a common range of possible exposures.

However, areas with high average concentrations or with a greater proportion
of elevated values do not by definition guarantee a proper environmental study. If
the risk factor is distributed equally, cases and controls of the study region will be
exposed to a similar degree and no effect of the risk factor can be observed in the
study. This problem is known as “overmatching on the exposure factor”. It can be
avoided by separating areas with different levels of the risk factor. This problem is
commonly discussed in studies on the possible impact of outdoor air pollution as
a risk factor (e.g. Dockery et al. 1993; Pope et al. 1995; Heinrich et al. 2000; Hoek
et al. 2000).

A different problem occurs in studies on the indoor environment: The concen-
tration in homes is influenced by outdoor air, geology, or other factors related
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to the outside environment, but will be modified by the type of house and the
(ventilation) habits of the inhabitants. This may result in low measurements even
in areas with a great impact of outdoor air or geology on increased concentrations
of the agent under study. Taking into account the fact that measurements are only
one component of the exposure assessment (see below), it is possible that both
cases and controls will be exposed at a very low level. This effect was observed
for example in many radon studies, for instance in the study in Winnipeg, Canada
(Létourneau et al. 1994) or the study in West Germany (Kreienbrock et al. 2001),
where measurement programs showed areas with high radon concentrations on
average, while exposures of study participants were low. This was mainly due to
the mobility of the population that resulted in low average exposures of individuals
(Warner et al. 1996).

Therefore the choice of the study area has to be influenced both by the presence
of a monitoring program indicating areas with elevated concentrations of the
risk factor and by a population density that yields a sufficient number of study
participants.

The selection of cases within the study area is dependent on the health system
within this area. If national or regional registers are available, cases will usually
be recruited from these registers; if not, case recruitment from hospitals will be
the usual sampling strategy. The problem of a proper selection of a group of cases
is similar in all kinds of epidemiological applications, but if measurements on
environmental agents have to be conducted, this causes additional problems, espe-
cially if the cases are to be recruited in hospitals and the measurement campaign
is (technically) complicated. This will decrease the response proportion in the case
group and the rates may be differential by disease stage, and thus may cause a se-
lection bias. On the other hand even in studies with registers this type of problem
is present, especially if next-of-kin interviews have to be conducted instead of
interviews of cases.

Similar problems due to selection procedures and exposure assessment may be
present for the control group in environmental studies. As in any other epidemi-
ological study the different types of bias may occur, but these may be strongly
influenced by the type of measurement to be conducted. This problem can be
observed mainly in “special circumstances studies”, where recent environmental
problems of great public interest are studied. This may cause different response
proportions among subgroups within the general population, which may introduce
a severe selection bias and impair comparability between subgroups.

An example of a special circumstances situation was described by Oberaigner
et al. (2002) for radon epidemiology. In 1989, high lung cancer mortality rates were
reported for the District of Imst, Tyrol, Austria, in an alpine region without any
industry. First investigations in this district (Ennemoser et al. 1994a,b) identified
one village with extremely high radon concentrations; the highest concentrations
measured inresidenceswereabove100,000 Bq m−3. In themeantimedetailedcross-
sectional investigations have examined both the radon gas concentrations and the
geology. In fact, only half of the village was affected, and about 40 residences were
identified with concentrations above 1000 Bq m−3. There were only few and isolated
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high concentrations in the other villages of this region. In fact the scientific interest
in this area was linked to population’s interest and response. While in the beginning
the whole population was interested, in cross-sectional measurement programs
there was a gradual decrease in response proportions, linked, unfortunately, with
increasing exposure.

Decreasing response proportions were also observed during the 90s after the re-
unification of Germany, when many environmental measurement programs iden-
tified numerous areas with elevated levels of environmental agents of scientific
interest in the former German Democratic Republic (Heinrich et al. 2002; Frye
et al. 2001). One may call this effect a possible bias due to “over-examination”.

These examples indicate that selectionbias isof special interest in environmental
epidemiology and special efforts have to be undertaken during field work to avoid
possible selection effects. Besides an exact definition of inclusion and exclusion
criteria of study participants, selection effects are mainly dependent on a proper
documentation of the reasons for response and non-response combined with an
additional investigation on the non-responders. Moreover, it is necessary to make
corrections for selection bias.

Sampling Procedures and Correction for Non-response Bias
Usually the recruitment of study participants is described as a process of selecting
a study population from a target population by means of a defined sampling
scheme. If the study population is a representative sample of the target population,
the study results should be unbiased; otherwise a selection bias may occur which
will have to be discussed. For studies in environmental epidemiology these biases
may be described from two different perspectives.

On the one hand, different selection procedures for the exposed and the non-
exposed populations are possible, as observed in many environmental studies.
Heinrich et al. (2002) described studies on air pollution and respiratory health and
allergies in the former German Democratic Republic, where response proportion
decreased with increasing exposure. On the other hand, response proportions may
differ between cases and controls of a study. This effect is often due to the fact that
controls are less motivated so that their response proportions are lower than that
of the cases who want to know whether environmental hazards are responsible for
their disease.

Investigation of the non-response patterns seems to be necessary to investigate
these processes and to establish a basis for an adjustment for possible selection
effects caused by non-response. The general principle of a non-response investi-
gation was initially outlined by Hansen and Hurwitz (1946) and is illustrated in
Fig. 3.4. It may be assumed that study response is a characteristic of the members
of the target population that partitions the population in two strata, N1 responders
and N2 non-responders. An epidemiological study of study size n may be inter-
preted as a stratified random sample from the target population, i.e. a stratified
sample of real responders n1 and non-responders n2. This process can be inter-
preted as a first phase of a sampling plan. In a second phase a real sample of size n∗

2
is drawn from the n2 non-responders, and all efforts are made to get information
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Figure 3.4. Two-phase sampling scheme for collecting sampling information on non-responders

from this second-phase subsample of size n∗
2 , e.g. by conducting additional tele-

phone interviews etc. The final study population n∗ will be calculated as the sum
of these subsample sizes.

If a non-responder investigation is conducted, adjustment for non-response will
be possible in a straightforward way. For simple linear statistics like prevalences or
means (of exposures), an adjusted estimator can be computed as a simple weighted
mean of the two strata means of responders, denoted as y1, and non-responders,
say y2, i.e.

yadj =
n1

n∗ · y1 +
n∗

2

n∗ · y2 (3.1)

This type of adjustment (3.1) is useful in environmental epidemiology, especially if
diseases or exposures under study are rare and therefore prevalences are low. Fig-
ure 3.5 displays the impact of selection bias due to non-response on the estimation
of a prevalence of five percent by comparing the adjusted estimator from (3.1) with
the usual estimator, namely the average y1, that is calculated without adjustment
for non-response. This situation may occur for example in a cross-sectional study
investigating the impact of air pollution on respiratory symptoms like asthma in
boys. It can be shown that selection bias increases with increasing non-response,
depending on the magnitude of the difference of the exposure prevalences between
responders and non-responders.

A linear adjustment is not suitable for estimating ratios, and the strata of
responders and non-responders have to be split up into the exposed and the
non-exposed sub-populations. Kleinbaum et al. (1982) therefore introduced the
2 × 2 table of an epidemiological study as the selected outcome from the target
population that results in a 2 × 2 table of selection probabilities for subjects from
the entire target population (Table 3.3).

If selection of study participants is outlined as in Table 3.3 an epidemiological
study to estimate a population odds ratio is unbiased if the odds ratio of the
selection probabilities W =

(
WDEWD E

)
|
(
WDEWDE

)
is equal to unity. If W is
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Figure 3.5. Selection bias in % due to non-response for estimating a prevalence in the target

population of 5% for varying exposure prevalences among non-responders

Table 3.3. Realization of study subjects nij as sample with probability Wij from the members Nij of the

target population, i = D for diseased and D for non-diseased subjects, j = E for exposed and E for

exposed and non-exposed subjects

Exposed Non-exposed

Diseased nDE = WDENDE nDE = WDENDE

Non-diseased nDE = WDENDE nD E = WD END E

greater than unity, the study will be biased away from the null, else the bias is
towards the null.

Investigations in environmental epidemiology may be very sensitive to selec-
tion bias. The odds ratio of the selection probabilities W may be used both for
a quantitative and a qualitative assessment of the possible bias. If, based on the
study design and the sampling techniques applied, the sampling probabilities can
be computed, and a quantitative adjustment for selection bias will be possible by
multiplying the study odds ratio with the inverse W−1.

If sampling probabilities are not available, a qualification of the direction of
selection bias is possible. Examples for a qualitative assessment of the bias can be
adopted from cross-sectional studies of the impact of air pollution on respiratory
health. Here, the motivation of the study subjects may be influenced by the disease
and by the exposure situation. In contrast, subjects who are not ill and who are
not exposed may not be motivated to participate. This will decrease the selection
probability WD E, hence W < 1 and the study odds ratio will be biased towards the
null.

In contrast, if the same study is conducted in a “special circumstances area”,
the effect may be vice versa if the healthy exposed population is unwilling to
participate. This will decrease the selection probability WD E, hence W > 1 and the
study odds ratio will biased away from the null.
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Measurements and Exposure Assessment 3.3.2

The measurement of an environmental agent such as the risk factor under study
is the primary issue of an investigation in environmental epidemiology. Such
measurements can be used directly or as a basis of an exposure assessment. The
mainproblems tobeaddressed inany investigation inenvironmental epidemiology
are an appropriate choice of the measurement technique, the method of exposure
assessment, and the statistical evaluation tomodel theexposure-effect relationship.

Numerous types of exposures may be distinguished in environmental epidemi-
ology. One useful categorization is to distinguish between short-term and long-
term exposures and between short-term and long-term effects. The time interval
between exposure and effect is often called time since exposure (TSE). Table 3.4
shows typical examples that may occur in environmental epidemiology within
these categories.

Table 3.4. Examples of short-term and long-term exposure-effect relationships in environmental

epidemiology

Exposure-effect relationship Example

short-term exposure|short-term effect traffic-related agents – acute respiratory
symptoms
smog episodes – mortality

short-term exposure|long-term effect fallout from nuclear weapon tests – cancer
incidence
contaminated food – new variant of
Creutzfeldt-Jacob disease

long-term exposure|long-term effect environmental tobacco smoke – lung cancer
residential radon exposure – lung cancer

The relationship of short-term exposures to short-term effects as well as the
relationship of long-term exposures to long-term effects may be postulated as the
typical situations under study in environmental epidemiology, while the situation
in which a short-term (single) exposure causes a long-term effect seems to be
rare. It may be argued that it is much more complicated to assess long term-
exposures and that short-term exposures may be described by the measurement
itself. However, this is not a general rule.

For radon and for many other agents, residential exposure is a long-term ex-
posure starting at birth and ending with the study recruitment, e.g. by the index
date of diagnosis or the date of a standardized personal interview. The outcome
under study is lung cancer as a long-term effect. Taking into account the fact that
residential exposure is characteristic of the homes a study participant has lived in
during his or her life, the overall exposure can be outlined as in Fig. 3.6.

The exposure pattern depicted in Fig. 3.6 seems to be typical for a long-term
exposure to an environmental agent, i.e. that individuals are exposed to different
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Figure 3.6. Residential radon exposure during a participant’s life (fictitious participant’s biography)

(Wichmann et al. 1998, modified)

average levelswithvarying intensities around these levels indifferent timewindows
over their lifetimes. In the radon example, different levels of exposure are related
to different dwellings the study participants have lived in during their lives. Each
of the resulting time windows cover many years, a typical situation in many
studies where the exposure conditions are linked to locations and these exposures
are more or less constant over time. Additional examples for this situation are
found in all studies investigating the impact of indoor or outdoor residential
exposures on human health like the different agents responsible for air or soil
pollution.

Sometimes the time windows of different exposure levels may be subdivided if
there is additional knowledge about external circumstances and about the habits
of the participants. For the radon example these modifications of exposure can
be summarized as follows. It is known that radon concentrations in homes differ
due to temperature and air pressure, resulting in different concentrations over the
seasons (on average, the concentration in winter is twice as high as in summer) as
well as over the day (higher concentrations during the night than in the daytime).
From this point of view time windows on a monthly or even on a hourly basis
have to be considered. But the living habits of the participants will also influence
the exposure pattern. For example, the time spent indoors during the day as well
as during the year will be an important factor for an individual’s exposure. In
addition, exposure will be modified by living habits like ventilation behavior, by
the existence and pattern of utilization of different rooms within the homes, and
by other individual habits.

The combination of both dimensions of exposure windows due to the external
circumstances and to the habits of the participants may provide a sophisticated
structure of the exposure windows, which on the one hand will decrease the
variation of exposure around an average exposure within a time window. On the
other hand the process to obtain proper information and measurements within
these time windows will be much more complicated and difficult.
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Different strategies to model an exposure-disease relationship are suitable in
environmental epidemiology. As a very rough strategy the real exposure may be
extrapolated by means of a (categorical) variable that is used as a surrogate. Such
variables andscores arewidelyusedbecausenomeasurementshave tobemadeand
information can often be collected easily by means of a questionnaire or even by
simple observation. Thus, classical categorization into exposed and non-exposed
groups can be used, e.g. by definition of areas with high or low industrialization
or by geology. For example, early studies of the impact of radon on cancer tried to
assess the exposure by categorizing the type of house as a surrogate.

Such scores are insufficient to assess an exposure pattern as in Fig. 3.6, and mea-
surements of the agent under study should be carried out. Besides technical and
financial restrictions, for epidemiological purposes it has to be clarified whether
these measurements are suitable for a population-based study. Continuous mea-
surement of the agents under study for every study subject will be rare, and the
most frequently applied technique uses short-term or cumulative passive sam-
plers. For example, for radon exposure assessment, passive sampling techniques
were utilized by applying an information and measurement sampling scheme as
outlined in Fig. 3.7.

yes

yes

yes

new tenant

dwelling 2

Figure 3.7. Information and measurement sampling scheme for a residential radon exposure

(fictitious participant’s biography) (Wichmann et al. 1998, modified)

The information and measurement sampling scheme given in Fig. 3.7 was used
in modified versions in many studies investigating the impact of residential radon
on the general population. In a personal interview with trained interviewers the
following information was recorded using a standardized questionnaire for each
dwelling inhabited over a given period relevant for exposure assessment (e.g. 30
years before date of interview):

average time spent in each room per day, ascertained separately for each
dwelling inhabited during the exposure assessment period,
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average periods of regular absence from the residence in each residence period,
such as holiday, weekly absence due to occupation, etc.,
persistent characteristics such as type of house, year of construction, type of
construction, and type of basement,
changeablecharacteristics suchas insulationofbasementandwindows,heating
system, and ventilation habits,
calendar years of residence periods in each dwelling inhabited, and
calendar years of alterations of building characteristics within a residence
period.

This information was not collected in detail for dwellings outside the period rele-
vant for exposure assessment. Measurements of radon concentrations were carried
out by means of so-called alpha track detectors placed both in the living room and
in the bedroom of the present and former dwellings of the participants. The rel-
evant information gathered from the participants and the subsequent tenants of
the former dwellings were recorded according to their periods of residence.

These data provide the basis for different methods of exposure assessment.
The most popular one integrates the several measurements as a time-weighted
average exposure representative of the period of exposure assessment. In addition
the exposure assessment has to adjust the current measurements for alterations of
living habits and for occupancy times in the present and previous residences as
well as for seasonal effects if the measurement took place in a non-typical season.

In the first approach the exposure has to be calculated as a usual linear weighted
average in the same scale in which measurements are reported. For radon concen-
trations this is in Bq m−3. The second approach considers the cumulative exposure
for a defined period before the interview. This exposure window should be the
most relevant time interval with respect to the disease under study. For the lung
cancer risk due to radon, time windows from 5 to 15 up to 5 to 30 years prior to
diagnosis are under discussion (ICRP 1993; Lubin et al. 1994). Here, the measure-
ments in the present homes are supplemented by measurements in the previous
homes, corrected by changes due to reconstruction of the house or different ven-
tilation habits of the study subjects and the present inhabitants and by seasonal
adjustment. This cumulative exposure can be expressed in Bq m−3 per year.

To evaluate corrections of measurements due to changes between subjects and
present inhabitants in all rooms measured (e.g. living room and bedroom), a bi-
variate version of a multiplicative model of the following type can be assumed

rn = µ × β1 × β2 × β3 × … × βJ × exp(ε) , (3.2)

where rn denotes the observed radon concentration, µ is an overall baseline radon
concentrations, β1, β2, β3, … , βJ are J categorized effect parameters corresponding
to the factors of house characteristics, ventilation habits, reconstructions and so
on, and ε is an error term from a normal distribution with zero mean.

The univariate version of (3.2) is well established in the context of radon surveys
(Gunby et al. 1993; Kreienbrock and Siehl 1996). It is based both on the physical
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model that changing habits will lead to an exchange of a specific fraction of indoor
and outdoor air and on the usual figure that indoor radon concentrations have
been found to follow a log-normal distribution (Bäverstam and Swedjemark 1991;
Gunby et al. 1993; Miles 1994; Lubin et al. 1995).

The log transformation of (3.2) leads to a bivariate normal distribution of the
transformed radon measurements both in the living room and bedroom, which
is required for standard MANOVA (multivariate analysis of variance, Anderson
1984). An additive model can be computed which estimates final model effects β(i)

jk ,
for each category k of a factor j in room i, with k = 1, … , Kj, number of categories
of factor j, j = 1, … , J, factors in the model, and i = 1, 2 rooms.

With K = 1 as the reference category for each factor j, correction factors for the
measured radon concentrations of present inhabitants can be defined as

Correction(i)
j =

exp
(
β(i)

jkj

)
exp

(
β(i)

j�j

) , j = 1, … , J , i = 1, 2 , (3.3)

where the participant’s category is kj and present inhabitant’s category is �j relating
to factor j, j = 1, … , J (cf. Gerken et al. 2000). These factors may be estimated
from the above linear model by an ordinary least square algorithm, and are then
used for calculating the corrected average cumulative radon exposure per year and
individual.

A correction for all measurements has to be applied to evaluate adjustments
of measurements for seasonal effects. It can be assumed that the logarithm of
the radon concentration in a given house follows a sine-cosine curve over one
year. Then, the cumulative measurement obtained from the alpha track detector
involves a time integral over the sine-cosine curve, i.e.

ln
(
rni

)
= µi + 1

/(
ti2 − ti1

) ∫ ti2

ti1

stdt + εi (3.4)

with rni being the observed radon concentration, µi the mean radon concentration
in room i over the entire year, ti1 and ti2 the first and last day of measurement, εi

an error term, and st the sine-cosine curve given as

st = α1 · cos
(
2π|365 · t

)
+ α2 · sin

(
2π|365 · t

)
for t = 1, … , 365 , (3.5)

where α1 and α2 are parameters that can be estimated from the data within the
framework of a standard linear model (Pinel et al. 1994; Oberaigner et al. 2002;
Baysson et al. 2003). A result of an adjustment process like (3.4) and (3.5) is outlined
in Fig. 3.8 for a radon study in Austria, where the maximum radon concentration
was reached in mid-February (2.62 times the mean concentration), and the mini-
mum concentration in mid-August (0.38 times the mean concentration).

Overall the exposure assessment may be summarized as a weighted cumulation
of several stages of information based on measurements, questionnaire data and
modeling (see Fig. 3.9).
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Thisprocessof exposureassessment canbeconsideredasavery typical situation
in environmental and in other fields of epidemiology. Additional examples of the
calculation of cumulative exposures are the concept of working level month as
a cumulative measure of the exposure to ionizing radiation among workers in the
uraniummining industry (cf. Sect. 3.2.2;NRC1999), theconceptoffibreyears for the
cumulative exposure to asbestos (cf. Chap. III.3 of this handbook), or the packyear
concept that summarizes all cigarettes smokedduring lifetime (1 packyear = 1 pack
of 20 cigarettes a day for 1 year = 7300 cigarettes).

Although these concepts are very popular, and sophisticated solutions of in-
tegrating exposures are available, a cumulative exposure quantification may lead
to substantial problems in evaluating a risk model. These strategies need retro-
spective information and may therefore be influenced by information bias. This
is especially true if information is based on interviews and participants’ memory.
As a famous example, the British Doctors’ Study showed that there was a large gap
between the initial reporting of the smoking habits of study participants and the
same subjects’ answers’ to the same questions on his or her past habits some years
later (Doll and Peto 1976).

Besides this general problem the real nature of an exposure-risk relationship
may not be well described for an agent if integrated exposures are used. It is known
that the risk may differ in different exposure patterns even if cumulative exposure
is constant. These effects are sometimes addressed as the inverse dose-rate effect
that results in higher risks if the same cumulative exposure is reached with a low
dose-rate in contrast to the same cumulative exposure reached by a high dose-rate
over a shorter time interval. This effect was reported in cancer epidemiology for
smoking as well as for exposure to asbestos or ionizing radiation. To evaluate such
effects this has to be taken into account by the risk model used.

Figure 3.8. Seasonal correction of radon measurements (Oberaigner et al. 2002, modified)
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×

×

Figure 3.9. Assessment of residential radon exposure

Influenced by studies of the effect of a single exposure in a very short time
interval, studies of the impact of environmental agents make use of the concept
of time since exposure (TSE) that generally leads to the effect that risk decreases
or even disappears if TSE is increased. This effect is able to modify the response
to a cumulative exposure. If a single point in time is indicated when an exposure
occurs, TSE can be well defined. This is possible for several studies when a point
in time is well defined, e.g. studies of the health impact of the exposures to the
atomic bombs of Hiroshima and Nagasaki, for many occupational exposures, or
for exposure due to medical examinations.

However, for most of the exposures in environmental research, as for radon
exposure, the concept of a single point in time is not applicable, since continu-
ous exposures have to be taken into account (see Fig. 3.6). Therefore additional
strategies on modeling exposure have to be used.

Finkelstein’s approach makes direct use of the time window structure to better
understand the influence of a special risk factor over time (cf. Finkelstein 1991).
This exploratory method can be described as a series of risk models that include
total cumulative exposure and an additional covariate for exposure received during
a fixed time interval. Characteristics of the fitted models provide insight into the
influence of exposure increments on disease risk at different points in time.

Let Yi denote the disease status of individual i (i = 1, … , n), and let xi(t) denote
the exposure of the ith individual at time t before interview (t ∈ [0, T]), where
T depends on the length of collected exposure histories. Additional covariates
zi =

(
z1i, … , zmi

)
are used to adjust for confounding.

Then a time window approach sequentially fits models that include cumulative
exposure to attained age, A, and cumulative exposure received over a time interval
of fixed width k as covariates. Intervals of various width k can be considered. For
the time window centered at time c before interview, where c ∈ [k|2, T − k|2],
a model Mc of the form

logit Pr
(
Yi = 1|zi, ; xi(t), t ∈ [0; T]

)
= α0 + α′zi + β1

Ai∫
0

xi(t)dt + β2

c+k|2∫
c−k|2

xi(t)dt

(3.6)
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may be fitted, and the likelihood ratio test statistic can be computed as

LRc = −2 log
maxα,β L

(
Mc|β2 = 0

)
maxα,β L

(
Mc

) , (3.7)

which compares model (3.6) with the corresponding “null” model without the time
window exposure variable, i.e. β2 = 0. The value of c is then varied over its range.
For fixed c, the parameter β1 represents the increase in the log odds ratio per unit
exposure, while β2 represents the additive effect on a log scale of a unit exposure
that occurred during the specific time window of length k centered at time c. The
likelihood ratios between the models with and without the time window, LRc, can
be compared to assess the significance of the additional exposure variable. In this
way, a continuous weighting of the impact of the exposure over time is possible
(see Fig. 3.10; Hauptmann et al. 2000 a,b).
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Figure 3.10. Continuous time-weighting of exposure and its impact on risk (modified from

Hauptmann et al. 2000a)

Overall it may be stated that the process of sampling information and measure-
ments to conduct an exposure assessment is the major issue in an investigation of
the impact of an environmental agent on human health. Besides technical and fi-
nancial constraints several types of information bias and uncertainty influence this
process, and uncertainty of exposure measurements still remains, even if detailed
descriptions of the exposures are available. This should be considered during the
statistical analysis of a study.

Statistical Analysis3.3.3

As in all other fields of epidemiology classical concepts of risk models like the
categorical analyses of (stratified) contingency tables or modeling approaches like
logistic regression or Cox’ proportional hazards models are used in the study of
the risk of environmental agents on human health to describe the relationship
between exposure and disease (cf. Chap. II.3 of this handbook). In general, low
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risks, the problem of strong confounding with other major risk factors, the problem
of proper exposure assessment, and the basic assumption of the nature of the
exposure-disease relationship lead to additional strategies for statistical modeling
that are of special importance for environmental epidemiology.

Modeling the Exposure-Disease Function
One basic issue in the study of environmental risks is the choice of an exposure-
disease function to describe the real nature of the response of an environmental
hazard on human health. Two main strategies may be distinguished. If, based on
former studies, on animal experiments, or on general toxicological considerations,
a class of functions between exposure and disease can be specified, then a para-
metric version of a risk model will be suitable. This strategy may be appropriate if
exposure is measured on a continuous scale, as in studies on the risks of ionizing
or non-ionizing radiation, or in air pollution studies. The functional type specified
will be related to the preliminary considerations, but linear and log-linear param-
eterizations of the risk ratio are very popular in environmental studies, at least as
a starting point.

The linear (excess) relative risk model may be introduced as

p

1 − p
= µ · (1 + βx

)
, (3.8)

where p is the risk of an interesting disease under study, µ is a multiplicative
intercept, x specifies the exposure quantity, and β is the excess odds ratio, i.e. the
increase of the odds ratio in percent. In model (3.8) the true odds ratio equals
1 + βx.

In contrast the log-linear model may be stated as

ln

(
p

1 − p

)
= α + γ · x , (3.9)

where p is the risk, α is an intercept, γ is the log odds ratio and x the exposure.
Model (3.9) corresponds to the usual logistic regression model where the odds
ratio is given as exp (γ · x).

Both models (3.8) and (3.9) are very popular in environmental epidemiology
for reasons of easy interpretation as well as for an easy model fit in statistical and
epidemiological software packages. Likelihood-based confidence intervals as well
as tests on statistical hypotheses on the parameters can be computed straightfor-
wardly.

However, based on the range of possible exposures in the human environment,
both models have to be considered very carefully. For very small exposures x it
holds that exp(x) ≈ 1 + x and therefore (3.8) and (3.9) yield similar results for
large parts of a general population. The risk models (3.8) and (3.9) will differ
substantially for the part of a population which is exposed to a higher degree. This
is demonstrated in Fig. 3.11 for the risk of residential radon und lung cancer as an
example.
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Figure 3.11. Lung cancer risk due to residential radon; comparison of linear and log-linear risk

(modified from Oberaigner et al. 2002)

As an example let us come back to radon exposure. It can be assumed that the
exposure to radon is low for large parts of the population and that concentrations
above 500 Bq m−3 are unusual in the residential environment. Within this lower
range both models, the linear and the log-linear approaches, yield a similar mag-
nitude of risk. For exposures above 500 Bq m−3, the two models will give different
results that may lead to different consequences for risk management.

Therefore, nonparametric approaches are applied, namely risk models based
on categorical exposures using ordinary contingency tables, especially if the real
nature of relationship is not known. There are numerous examples of this strategy,
even in situations in which exposure assessment was conducted on a continu-
ous scale and categories of exposure were defined afterwards. Studies on EMF-
related risks are a typical example of the use of this type of model. Figure 3.12
shows the results of a study on this topic conducted in Germany (Schüz et al.
2001).

Studies on EMF risks are usually influenced by many factors, and exposure
assessment has to be conducted carefully. According to Fig. 3.12 the advantages
of a model fit using categories instead of a continuous exposure assessment are
obvious. While Fig. 3.12a suggests a strong increase in risk in the upper exposure
category, Fig. 3.12b shows a smoother increase from one exposure category to the
next. Thus, models using exposure categories increase the degrees of freedom,
and any kind of exposure-disease relationship may be estimated. But this strategy
is fully data-driven, and exposure-disease relationships may occur which are not
plausible in any situation. For example, Ahlbom et al. (2000) reported results
from a meta-analysis on EMF exposures with the same exposure categories as
in Fig. 3.12. Albom et al. (2000) reported odds ratios of 1.58, 0.79, and 2.13 for
the categories 0.1 to 0.2 µT, 0.2 to 0.4 µT, and more than 0.4 µT, respectively,
compared to the reference category of less than 0.1 µT. These results do not agree
with a monotonous exposure-disease relationship, and evidence for its true nature
will be hard to obtain. However, the general strategy of using nonparametric
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Figure 3.12. Leukemia risk due to EMF exposure in Germany; odds ratios and 95% confidence

intervals by EMF exposure in µT; (a) average exposure during 24h; (b) average exposure during the

night from 10 pm to 6 am (Schüz et al. 2001)

approaches is well established in all kinds of epidemiological studies and can
be considered as a basic tool for estimating risk coefficients in environmental
studies.

Confounding and Interaction and their Impact on Low Risks
Selecting the type of statistical model for investigations in environmental epidemi-
ology is also influenced by further risk factors that may confound or modify the
association under study. Given that most environmental risk factors will cause
a low risk, these potentially distorting influences need careful scrutiny to avoid
biases and misinterpretations of the results.

The influence of smoking in relation to the effects of environmental exposures
on respiratory health may be used as a classical example. The smoking-related
relative risk (RR) of lung cancer is reported to be in the order of ten or more, in
contrast to the RR of residential radon or indoor air pollution, with RRs of less than
two (Pershagen et al. 1994; Boffetta et al. 1998; Kreienbrock et al. 2001). The effect
of smoking on respiratory symptoms like strong cough or obstructive bronchitis is
in the range of around two to three, but only in the order of 1.3 for the comparison
of areas that are polluted differently (Dockery et al 1993; Pope et al. 1995; Wolf-
Ostermann et al. 1995). On the one hand, these examples suggest that it is necessary
to incorporate these strong risk factors into a common risk model. On the other
hand, these risk factors may dominate the model, requiring the development of
proper strategies for the process of model and variable selection.

Following Greenland (1989) the selection of variables in epidemiological studies
is based on two concepts: classical selection procedures such as backward or
forward selection in regression models (cf. Chap. II.3 of this handbook); and
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a sophisticated analysis of the associations and interacting mechanisms of the
variables under study made in advance.

These in-advance analyses have to be conducted carefully. Sensitivity analyses
can be considered as an appropriate way to deal with this problem. Here, sensitivity
analyses have to be carried out of both the disease variable as well as the different
risk factors under study.

Studies on respiratory health and air pollution may serve as a typical example.
First, respiratory health has to be defined precisely. Often very different definitions
are possible. The definition of asthma is a classical example: The U.S. National
Heart, Lung, and Blood Institute defines asthma as “a chronic inflammatory dis-
order of the airways [that] causes recurrent episodes of wheezing, breathlessness,
chest tightness and coughing, particularly at night or in the early morning, usually
associated with widespread but variable airflow obstruction that is often reversible,
either spontaneously or with treatment.” In contrast the American Lung Associa-
tiondefines asthmaas “a chronic diseaseof the lungs inwhich the airwaysoverreact
to certain factorsbybecoming inflamedorobstructed,making it difficult tobreathe
comfortably.” (JHSM 2004).

This shows that varying definitions of a disease may result in a large variety of
measures that will influence prevalence and incidence measures and also affect the
dependent variable under study in a regression model. Therefore it is helpful to
calculate the same risk models for different definitions of the outcome to compare
the patterns of the exposure-disease relationship.

If, as in most cancer studies, a symptom is defined in a clear and unequivocal
way, sensitivity analyses of (concurrent) risk factors are worthwhile. Risk models
can be calculated by systematically omitting one of the risk factors to assess the
influence of the omitted factor by comparing the reduced model with the full
model. This type of sensitivity analysis is a basic method in meta-analysis to assess
the impact of each single study (cf. Chap. II.7 of this handbook).

If a large number of risk factors and|or strong and weak risk factors are incor-
porated simultaneously into one model, this may yield cross-classifications with
only small numbers of observations, even if the overall sample size of the study is
large. This causes a reduced statistical power due to a loss of precision, as can be
demonstrated by studies on the interaction of smoking and residential radon, like
the Swedish nationwide study conducted by Pershagen et al. (1994) (Table 3.5).

This substantial study included 1281 cases and 2576 controls. Assigning these
subjects to the exposure categories and especially dividing them into sub-strata
related to both smoking and environmental exposure yield small sample sizes in
special sub-classes. For example, the number of subjects is small in the highest
exposure category (more than 400 Bq m−3). Stratifying this group into subgroups
by smoking status results in small numbers and leads to less precision in estimat-
ing the related effects, as is reflected by the wide confidence intervals shown in
Table 3.5.

Sensitivity analyses of all possible risk factors have to be a combination of an
exploratory process of exposure assessment and of the analyses of the association,
confounding, and interaction mechanisms between these factors. The etiology
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Table 3.5. Lung cancer risk due to smoking and residential radon in Sweden: number of cases and controls (subj.), odds ratios (OR) and 95% confidence intervals

(CI) (Pershagen et al. 1994)

Radon exposure in Bq m−3

Smoking status < 50 50–80 80–140 140–400 > 400

subj. OR (CI) subj. OR (CI) subj. OR (CI) subj. OR (CI) subj OR (CI)

Never smoked 64 1 36 1.1 35 1.0 38 1.5 5 1.2
443 – 240 (0.7–1.7) 252 (0.6–1.5) 198 (1.0–2.3) 31 (0.4–3.1)

Ex-smoker 35 2.6 21 2.4 24 3.2 27 4.5 1 1.1
105 (1.6–4.2) 69 (1.3–4.3) 63 (1.8–5.6) 48 (2.6–8.0) 8 (0.1–9.0)

Current 103 6.2 60 6.0 62 6.1 53 7.3 12 25.1
< 10 cig. a day 128 (4.2–9.2) 79 (3.8–9.4) 79 (3.9–9.5) 59 (4.5–11.7) 4 (7.7–82.4)

Current 168 12.6 85 11.6 94 11.8 83 15.0 16 32.5
> 10 cig. a day 102 (8.7–18.4) 63 (7.4–18.0) 71 (7.7–18.2) 42 (9.4–24.0) 4 (10.3–102.1)

Unknown 82 4.7 66 5.9 57 5.3 45 5.4 9 8.8
174 (2.9–7.7) 110 (3.5–10.0) 103 (3.1–9.2) 89 (3.1–9.5) 12 (3.3–23.7)
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of pediatric asthma may serve as a consolidated example of this processes as
summarized by Johnson et al. (2002) (see Fig. 3.13).

The outcome of persistent (pediatric) atopic asthma has to be recognized as
a complicated process involving different steps of development of the disease
and common and interacting influences by different risk factors. Environmental
agents may play a role as independent risk factors or as interacting and con-
founding variables. For example, most of the possible risk factors in the areas
“residence” and “environmental hygiene” in Fig 3.13 are more or less associ-
ated, and confounding bias may be present if this is not adequately described
or modeled in an epidemiological investigation. Some studies report such as-
sociations (Weiland et al. 1994; Ponsonby et al. 2000), although the majority of
studies do not support a strong relationship between air pollution and atopic
asthma.

The Committee on the Assessment of Asthma and Indoor Air, Division of Health
Promotion and Disease Prevention, Institute of Medicine concluded that there is
sufficient evidence for a causal relationship between exposure to allergens pro-
duced by cats, cockroaches, and house dust mites and exacerbations of asthma
in sensitized individuals; and between environmental tobacco smoke exposure
and exacerbations of asthma in pre-school-aged children. Besides these findings
it was suggested that there is sufficient evidence of associations between several
exposures and exacerbations of asthma, like the exposure to biological allergens
produced by dogs, fungi, molds, and rhinovirus, and to chemicals such as high
levels of NO2 and NOx. Limited evidence of an association was suggested for expo-
sures of children and adults to the biological allergens domestic birds, Chlamydia
pneumoniae, Mycoplasma pneumoniae, or Respiratory Syncytial Virus RSV, or to
the chemicals environmental tobacco smoke, formaldehyde, or fragrances (IOM
2000).

The evaluations of the Institute of Medicine are a synopsis of hundreds of
studies on this topic. But the overall evidence of a single risk factor is influenced
by a “network of associations of risk factors”, from which some are identified as
causal and some as associated. For example, allergens related to pets like cats and
dogs may be measured and separated as factors. However, strong associations of
behaviors in pet holding have to be taken into account, and it is difficult to separate
them from the exposure factors above, especially if there is a large association
between factors.

Therefore powerful studies are needed both in terms of sample sizes as well as
in terms of high quality in exposure assessment. Synopses like the asthma studies
mentioned above, systematic reviews, meta-analyses, and pooling of studies may
be useful to avoid biased conclusions about the effect of weak risk factors in
environmental epidemiology.

Correction for Errors in Exposure Assessment
As outlined in Sect. 3.3.2 one major problem of an investigation in environmental
epidemiology is the categorical or the continuous assessment of an environmental
exposure. The statistical inference on this risk factor is linked to the problem of



Environm
entalEpidem

iology
983

Figure 3.13. Factors and markers potentially associated with the development of persistent pediatric atopic asthma; TH, T-helper cell; Ig, immunoglobulin; IL,

interleukin; IFN-γ, interferon gamma; BHR, bronchial hyperactivity (modified from Johnson et al. 2002)
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information bias if misclassification (for categorical exposures) or uncertainty (for
continuous exposures) in the exposure assessment occurs.

There exist numerous examples for information biases due to misclassification
in exposure assessment. Misclassification is often due to recall bias, that is typical
in case-control studies. It may occur if cases report environmental exposures more
often than controls, who do not care so much about environmental exposures be-
cause they are not diseased. In this situation a bias away from the null is introduced
and variables may be erroneously identified as risk factors. The same direction of
bias may result if interviewers tend to ask more detailed questions on exposures
in cases than in controls.

Biases due to misclassification should be avoided by the design of a study
and during data collection, e.g. by standardization of interview techniques (cf.
Chap. I.10 of this handbook). Under certain assumptions they may be corrected by
appropriate methods of adjustment for misclassification. This is usually done by
estimating the sensitivity and the specificity of the categorical exposure assessment
and adjusting the observed measures of disease by these estimators (cf. Chap. II.5
of this handbook).

But even the continuous measurement of environmental exposures may lead to
uncertainty in the exposure assessment. The sources of error are numerous, like
the accuracy of the detectors, the laboratory procedures, the positioning of the
measurement devices, extrapolations to past exposure, or gaps in the exposure
history.

These errors have to be incorporated into the statistical models used to estimate
risk coefficients similar to the procedures of adjustment for misclassification.
Statistical models that take uncertainty in exposure assessment into account are
related to special computational efforts and therefore different techniques were
developed especially during the 90s thanks to the overall availability of high-
capacity computers (cf. also Tosteson et al. 1989; Armstrong 1990, 1998; Carroll
et al. 1995; Michels 2001). Often the development of these techniques was motivated
by examples from environmental epidemiology. Here, the exposure assessment is
based on measurements and the ordinary assumption of a continuous risk factor
with uncertainty is fulfilled. For example, Thomas et al. (1993) applied special
techniques for studies of the impact of EMF on childhood leukemia. Lagarde et al.
(1997), Reeves et al. (1998), and Heid et al. (2002) investigated models for proper
incorporation of the uncertainty of radon exposures, and its impact on lung cancer
risk. Zeger et al. (2000) and Dominici et al. (2000) examined the impact of errors
in the particulate matter on mortality.

These studies show that the impact of information bias tends to increase the
impact of usual random error. It is therefore of major importance to incorporate
the error in the exposure assessment into the risk model. Correction for errors in
exposure generally requires several models (cf. Chap. II.5): the model for the true
exposure, the true exposure-disease model linking true exposure and disease, and
the error model linking true exposure andmeasuredexposure. Given these models,
the exposure-disease model accounting for errors in exposure measurement can
be derived by linking measured exposure and disease (Fig. 3.14).
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Figure 3.14. True exposure Z and observed exposure X and their relationship to the disease

outcome Y

As a general strategy the variable X, which represents the observed result of an
exposure assessment (cf. Sect. 3.3.2) is not fixed, but has an error structure. The
variable X has to be contrasted with the true value Z of the exposure. Following
Heid (2002) in describing the deviation between X and Z, five classifying char-
acteristics of error models may be considered: (1) random vs. systematic error,
(2) non-differential vs. differential error, (3) homoscedastic vs. heteroscedastic
error, (4) additive vs. multiplicative error, and (5) classical vs. Berkson error.

A random error is generally considered as a measurement error. It is charac-
terized by an unsystematic deviations below or above the true value that average
to zero. Usually all laboratory devices used in environmental measurements are
prone to this error. In contrast, systematic errors lead to an overestimation or
an underestimation of all individual measurements and do not average to zero.
This problem may occur, if measurements were conducted on different technical
levels, which is a special problem in multi-center studies or in meta-analyses. Here,
intercomparison exercises of the different methods will give a deeper insight into
the problem (Hollander et al. 1990; Kreienbrock et al. 1999; Wellmann et al. 2001;
Bochicchio et al. 2002; Janssens 2004).

Similar to the effect of non-differential misclassification of categorical expo-
sures, it can be assumed that error in the exposure assessment will attenuate the
true exposure-disease relationship as long as this error is non-differential. A non-
differential misclassification of the exposure is present if the error has the same
magnitude and direction among diseased and non-diseased study participants.
Otherwise (differential error) the direction of bias is not obvious in advance and
any direction is possible (cf. Chap. II.5 of this handbook). Figure 3.15 shows the
effect on non-differential error for studies of lung cancer risk due to residential
radon in the UK and in Sweden, where the reported excess relative risk increases
by approximately 50% after adjustment for measurement error. This situation may
be considered as typical in environmental epidemiology.

The problem of homoscedastic vs. heteroscedastic errors as well as the prob-
lem of additive or multiplicative errors are related to the nature of the statistical
distributions which are stated for the measurements or for the exposure in gen-
eral. For an additive error, the spread of the true exposure given the measured
exposure is constant for the full range of the exposure. In this situation a normal
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Figure 3.15. Excess relative risk due to residential radon in the UK and in Sweden; results of classical

log-linear models and adjustment for measurement error (Darby et al. 1998; Lagarde et al. 1997)

distribution is often appropriate. In contrast, for a multiplicative error the spread
increases proportional to increasing exposure. Therefore multiplicative errors usu-
ally are assumed to be log-normal, which often is evaluated by measurement and
monitoring programmes on the population level. This is more or less true for
many environmental agents like radon (Bäverstam and Swedjemark 1991; Gunby
et al. 1993; Miles 1994; Lubin et al. 1995), classical pollutants of outdoor air (Ebelt
et al. 2001, Wallace et al. 2003), endotoxin levels (Park et al. 2000), and many
more.

Finally, errors of the classical type arise, if a quantity X is based on measure-
ments by some device and repeated measurements would vary around the true
value Z. This situation can be assumed for all kinds of laboratory devices, for which
a measurement error is reported.

In contrast, error of the Berkson type occurs if the exposure, which is assigned
to each individual, is derived from an overall group characteristic. The same
approximate exposure value (proxi) X is used for all members of the group, and
the true exposure Z varies randomly around this proxi with mean equal to it. This
type of error may occur in a study on the effects of air pollution on respiratory
health, if all study participants of a defined region are assigned to the same proxi X,
e.g. the result of a single measurement station. Thus, Berkson error may occur if
exposure is measured via (locally) fixed monitors instead of personal detectors, or
if exposures have to be approximated due to missing values in the measurements.
(cf. Chap. II.5 of this handbook; Lagarde et al. 1997; Armstrong 1998; Reeves et al.
1998).

An overwhelming variety of models exists to estimate the effects of uncertainty
of exposureassessment.Regressioncalibration isoneof these (cf.Chap. II.5;Rosner
et al. 1989; Carroll et al. 1995). The main advantage of regression calibration is that it



Environmental Epidemiology 987

canbeused in rather complicatedmeasurement errormodels.Themethod includes
threesteps:firstfindamean(calibration)model for the trueregressorsZ depending
on the exposure assessment X, and second fit the main model by plugging in the
estimates fromthecalibrationmodel.The thirdstep is thecorrectionof thevariance
estimation of the main model. Although this method was developed for multiple
logistic regression accounting for errors in more than one variable, application is
usually restricted to account for errors of the primary risk factor of interest. The
error model, i.e. the mathematical formulation of the deviation of the measured
exposure X from the true exposure Z, is the most important model assumption,
upon which all of the correction methods rely. In fact, assumptions about the error
model are a particular source of concern regarding correction of measurement
error (Michels 2001).

Therefore, substantial effort was devoted to evaluate these assumptions about
the different model characteristics as well as in the different fields of applications.
This was done by theoretical considerations, by simulation studies as well as by
applying different techniques on selected studies (Armstrong et al. 1990; Thomas
et al. 1993; Ibibarren et al. 1996; Lagarde et al. 1997; Reeves et al. 1998; Carrothers
and Evans 2000; Dominici et al. 2000; Zeger et al. 2000; Heid et al. 2002; Field et al.
2002; Heid et al. 2004).

In conclusion, a clear distinction between the components of classical and Berk-
son error is essential in the assessment of error sources and for establishing an
error model. This differentiation is crucial due to the different impact of these two
error types. The classical error is able to induce severe bias on the risk estimate;
multiplicative classical error may even distort the dose-response curve. This bias
can be reduced by using the mean of multiple measurements in the analysis that
require internal replicate measurements for each individual, or it can be corrected
for by using the information from (internal or external) replicate measurements
of a subgroup. Also the spuriously narrow confidence intervals for uncorrected
risk estimates in the presence of classical error can be adjusted. Therefore it can
be recommended that more internal repeated measurements in future epidemio-
logical studies should be conducted, for example by using more than one detector
per study participant.

At first glance, the Berkson error is less problematic in environmental epidemi-
ology, since usually it does not induce notable bias of the risk estimates. However,
Berkson error weakens the precision of the estimates, and therefore leads to a loss
of power that should be avoided, e.g. by a proper individual exposure assessment.
This will, however, introduce the classical error which may be reduced by replicate
measurements, but this does not hold for the Berkson error. Simplified, classi-
cal error is related to the measurement process, whereas Berkson error is often
a matter of defining the exposure groups. Using stationary monitors (e.g. using the
distance of a home to the next emitter of an environmental agent instead of indi-
vidual measurements), or using a person’s affiliation to a group in order to use the
exposure assigned to this group (e.g. using job-environment-exposure matrices
instead of personal monitors) is a question of how to define the exposure group;
this induces Berkson error.
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The general statement that non-differential, random and homoscedastic errors
attenuate regression coefficients applies only to the classical error. To assume
the sum of both error type’s sizes as known and to vary the percentage of the
Berkson error is one option (cf. Mallick et al. 2002). An additional option is a two-
dimensional view to the measurement error, i.e. a classical type dimension and
a Berkson type dimension, where the size of each dimension needs to be studied
separately. The full error is represented in the continuum of a two-dimensional
space (cf. Zeger et al. 2000). Exposure assessment should therefore not only aim
to be as accurate and precise as possible, but should also provide a model of the
measurement errors that unavoidably remain even with clear differentiation of
classical and Berkson components.

Conclusions3.4

By definition, environmental epidemiology focuses on health problems due to the
environmentwhere individuals live rather thandue to theirpersonal characteristics
or lifestyles. During the past centuries, there has been a remarkable discourse
on environmental health and environmental epidemiology, and a huge number
of individual studies as well as pooling of individual studies and meta-analyses
have contributed to a large overall knowledge base on environmental hazards.
As a consequence, many public health issues have been addressed by reducing
contamination of air, water, soil, and food to the benefit of many parts of the
world’s population.

However, many multifactorial diseases are not yet fully understood, and the sci-
entific focus has changed during the last decade, as developments in epidemiology
have kept up with those in molecular biology and genetics.

A typical example is the discussion on the health impact of air pollution on
respiratory diseases. One such issue is atopic asthma, and studies were conducted
to find a relationship between air pollution and the incidence of the disease. But
the studies failed, or observed only little environmental influence. Therefore, the
focus was shifted to the nature of allergic disease itself, and techniques of molecular
biology and genetics have now been widely used to deepen our knowledge on this
topic (cf. Johnson et al. 2002).

Therefore, the study of gene-environment interactions has been and will con-
tinue to be a major subject of epidemiological investigations, e.g. for asthma, for
cancer and for other diseases for which molecular and genetic markers and meth-
ods of molecular biology and genetics are available. A serious disadvantage of all
these studies is that investigations in molecular and genetic epidemiology tend to
be very expensive, so that study sizes have to be restricted. For example, Kalayci
et al. (2004) compared plasma levels of MCP-4 in 30 patients who presented for
emergent treatment of asthma with levels in 90 subjects with chronic-stable asthma
matched for age, gender, and ethnicity within an entire cohort of 596 subjects.

Thus, there is a contradiction between the original idea of an environmental
study with large sample sizes and a study in molecular and genetic epidemi-
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ology with small sample sizes. Small studies may fail to find interactions due
a lack of power. In addition the informativeness of studies on gene-environment
interactions is often limited because of their insufficient ability to account for
confounding.

This situation may be called the “small sample size problem” in the analysis
of gene-environment interactions. Two major ways may be identified for further
research on this topic. To increase power, all possible measures have to be taken to
improve the precision of molecular and genetic techniques and the assessment of
exposures (cf. Sects. 3.3.2 and 3.3.3, and Chaps. III.7 and III.8 of this handbook).
For example, first studies on the impact of environmental tobacco smoke (ETS) on
respiratory diseases used urinary cotinine concentrations as a biomarker (Ehrlich
et al. 1992). However, cotinine levels in the urine reflect only recent exposures and
can therefore not replace exposure histories from questionnaires that give a good
estimate of the long-term cumulative exposure.

The second approach to cope with the “small sample size problem” is directly
linked to the design and the statistical analysis of the investigation. In practice it is
often impossible to detect an effect of a single agent because the various exposures
are strongly correlatedand theexposure thathasbeenmeasuredmayactually act as
a surrogate the whole mixture of agents. Therefore it is necessary to find statistical
models which make use of the correlation of all possible independent risk factors,
as well as all modifying and confounding variables. For example, in a study on the
health impact of toxic substances ingested with food, strong correlations have to
be made explicit that are due to nutritional habits, like the consumption of special
types of seafood etc. Therefore this has to be addressed in detail during the phase
of constructing a final risk model, and by appropriate specification of statistical
methods (cf. Chap. II.3 of this handbook).

The development of these models, besides the molecular and genetic view on
a special health issue, is ordinarily linked to the personal exposures of an individual
recruited for the study. On the other hand, many environmental exposures act on
an aggregated level. For example, outdoor air pollution is the same, drinking water
is the same, or contaminated soil often is the same for major parts of a population,
e.g. all inhabitants of a particular area. From the statistical point of view this
yields a Berkson-type error, and a correlation of the exposures between the study
participants, or even more extremely, it yields sub-classes of participants exposed
in the exact same way. On the one hand, classes of hierarchical models may be used
to find a proper risk model in this situation. On the other hand, the extraordinarily
large number of possible environmental hazards may even force epidemiologists
to conduct ecological studies to find rough estimates of risk.

In regard to the complex nature of possible environmental hazards, Pekka-
nen and Pearce (2001) pointed out that increasing emphasis on individual ex-
posures, susceptibility and disease mechanisms, puts environmental epidemiol-
ogists in danger of losing their population perspective of disease causation and
prevention. To avoid this and to continue the successful work of environmental
epidemiology and public health, environmental health problems should be ap-
proached on four different levels: the molecular, the individual, the population,
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and the ecosystem level. Within and between these levels research and devel-
opment of new methods is needed, but it will be crucially important to choose
the most appropriate level of research for a particular environmental problem.
For example, the health impact of climate change will be one of the most im-
portant health problems of the future requiring research, but ordinary designs
and exposure assessments may not be adequate to give answers to the underlying
questions.

This may initiate new methodological concepts in study designs, in biological
and genetic markers, in exposure assessment, as well as in the statistical analysis of
studies in environmental epidemiology. In the past decade new analytical methods
in molecular biology and genetics have enriched designs and techniques in epi-
demiological investigations on environmental hazards. The challenge for further
work is to exploit these new areas of scientific cooperation.

Summarizing, it must be determined whether there is
sufficient evidence of an association,
limited or suggestive evidence of an association,
inadequate or insufficient evidence to determine whether or not an association
is present,
limited or suggestive evidence of no association, or
evidence of no association.

This judgment should be combined with an evaluation of the public health impact
of an environmental problem. For this purpose, assessment of the etiologic fraction
due to the exposure in question may give an important input.

Acknowledgements. The author likes to thank Michael Gerken, Michael Haupt-
mann, Iris Heid, Michaela Kreuzer, Wilhelm Oberaigner, Angelika Schaffrath
Rosario, H.-Erich Wichmann and Jürgen Wellmann for their substantial help in
preparing this manuscript, and Judith McAlister-Hermann for her work in review-
ing. A very special gratitude for their help and patience has to be offered to the
editors of this handbook, Wolfgang Ahrens and Iris Pigeot.

References
Ahlbom A, Day N, Feychting M, Roman E, Skinner J, Dockerty J, Linet M,

McBride M, Michaelis J, Olsen JH, Tynes T, Verkasalo PK (2000) A pooled
analysis of magnetic fields and childhood leukaemia. Br J Cancer 83:692–698

Alavanja MCR, Brownson RC, Lubin JH, Berger E, Chang J, Boice JD Jr (1994)
Residential radon exposure and lung cancer among nonsmoking women. J
Natl Cancer Inst 86:1829–1837

Alavanja MC, Lubin JH, Mahaffey JA, Brownson RC (1999) Residential radon ex-
posure and risk of lung cancer in Missouri. Am J Public Health 89:1042–1048

Anderson TW (1984) An introduction to multivariate statistical analysis, 2nd edn.
Wiley, New York



Environmental Epidemiology 991

Anderson HR, deLeon AP, Bland M, Bower JS, Strachan DP (1996) Air pollution
and daily mortality in London: 1987–1992. Br Med J 312:665–669

Armstrong BG (1990) The effects of measurement errors on relative risk regression.
Am J Epi 132:1176–1184

Armstrong BG (1998) Effect of measurement error on epidemiological studies
of environmental and occupational exposures. Occup Environ Med 55:651–
656

Auvinen A, Mäkeläinen I, Hakama M, Castrén O, Pukkala E, Reisbacka H, Rytö-
maa T (1996) Indoor radon exposure and risk of lung cancer: a nested case-
control study in Finland. J Natl Cancer Inst 88:966–972, Erratum. J Natl Cancer
Inst (1998) 90:401–402

Bäverstam U, Swedjemark G-A (1991) Where are the errors when we estimate
Radon exposure in retrospect? Radiation Protection Dosimetry 36:107–112

Barros-Dios JM, Barreiro MA, Ruano-Ravina A, Figueiras A (2002) Exposure to
residential radon and lung cancer in Spain: a population-based case-control
study. Am J Epi 156:548–555

Baysson H, Billon S, Laurier D, Rogel A, Tirmarche M (2003) Seasonal correc-
tion factors for estimating radon exposure in dwellings in France. Radiat Prot
Dosimetry 104:245–252

Bell ML, Davis DL, Fletcher T (2004) A retrospective assessment of mortality
from the London smog episode of 1952: The role of influenza and pollution.
Environ Health Perspect 112:6–8

Blot WJ, Xu Z-Y, Boice JD, Zhao D-Z, Stone BJ, Sun J, Jing LB, Fraumeni JF (1990)
Indoor radon and lung cancer in China. J Natl Cancer Inst 82:10–25

Bochicchio F, McLaughlin JP, Walsh C(2002) Comparison of radon exposure as-
sessment results: 210Po surface activity on glass objects vs contemporary air
radon concentration. Radiat Meas 36:211–215

Boffetta P, Agudo A, Ahrens W, Benhamou E, Benhamou S, Darby SC, Ferro G,
Fortes C, Gonzalez CA, Jöckel KH, Krauss M, Kreienbrock L, Kreuzer M,
Mendes A, Merletti F, Nyberg F, Pershagen G, Pohlabeln H, Riboli E, Schmid G,
Simonato L, Tredaniel J, Whitley E, Wichmann HE, Winck C, Zambon P,
Saracci R (1998) Multicenter case-control study of exposure to environ-
mental tobacco smoke and lung cancer in Europe. J Natl Cancer Inst 90:
1440–1450

Brunekreef B (2003) Design of cohort studies for air pollution health effects. J
Toxicol Environ Health A 66:1731–1734

Brunekreef B, Holgate ST (2002) Air pollution and health. Lancet 360:1233–1242
Carroll RJ, Ruppert D, Stefanski LA (1995) Measurement error in nonlinear models.

Chapman and Hall, London
Carrothers TJ, Evans JS (2000) Assessing the impact of differential measurement

error on estimates of fine particle mortality. J Air Waste Manag Assoc 50:65–74
Cohen BL (1993) Relationship between exposure to radon and various types of

cancer. Health Physics 65:529–531
CohenBL(1997)Problems in the radonvs lungcancer testof the linearno-threshold

theory and a procedure for resolving them. Health Physics 72:623–628



992 Lothar Kreienbrock

Darby SC, Whitley E, Silcocks P, Tharkar B, Green M, Lomas P, Miles J, Reeves G,
Fearn T, Doll R (1998) Risk of lung cancer associated with residential radon
exposure in south-west England: a case-control study. British Journal of Cancer
78:394–408

Darby SC, Hill D, Doll R (2001) Radon: A likely carcinogen at all exposures.
Ann Oncol 12:1341–1351

Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG, Speizer FE
(1993) An association between air pollution and mortality in six U.S. cities. N
Engl J Med 329:1753–1759

Doll R, Peto R (1976) Mortality in relation to smoking: 20 years’ observations on
male British doctors. BMJ 25:1525–1536

Dominici F, Zeger SL, Samet JM (2000) A measurement error model for time-series
studies of air pollution and mortality. Biostatistics 1:157–175

Ebelt S, Brauer M, Cyrys J, Tuch T, Kreyling WG, Wichmann HE, Heinrich J (2001)
Air Quality in Postunification Erfurt, East Germany: Associating Changes in
Pollutant Concentrations with Changes in Emissions. Environ Health Perspect
109:325–333

Ehrlich R, Kattan M, Godbold J, Saltzberg DS, Grimm KT, Landrigan PJ, Lilien-
feld DE (1992) Childhood asthma and passive smoking. Urinary cotinine as
a biomarker of exposure. Am Rev Respir Dis 145:594–599

Ennemoser O, Ambach W, Auer T, Brunner P, Schneider P, Oberaigner W
Purtscheller F, Sting V (1994a) High indoor radon concentrations in an alpine
region of western Tyrol. Health Physics 67:151–154

Ennemoser O, Ambach W, Brunner P, Schneider P, Oberaigner W, Purtscheller F,
Stingl V, Keller G (1994b) Unusually high indoor radon concentrations from
a giant rock slide. Sci Total Environ 151:235–240

EpiInfo™ (2000) A database and statistics program for public health professionals
using Windows® 95, 98, NT, and 2000 computers

Field RW, Steck DJ, Smith BJ, Brus CP, Fisher EL, Neuberger JS, Platz CE, Robin-
son RA, Woolson RF, Lynch CF (2000): Residential radon gas exposure and
lung cancer: the Iowa Radon Lung Cancer Study. Am J Epi 151:1091–1102

Field RW, Smith BJ, Steck DJ, Lynch CF (2002) Residential radon exposure and
lung cancer: variation in risk estimates using alternative exposure scenarios. J
Expo Anal Environ Epidemiol 12:197–203

Finkelstein MM (1991) Use of time windows to investigate lung cancer latency
intervals at an Ontario steel plant. American Journal of Industrial Medicine
19:229–235

Frye C, Heinrich J, Wjst M, Wichmann HE; Bitterfeld Study Group (2001) In-
creasing prevalence of bronchial hyperresponsiveness in three selected areas
in East Germany. Eur Respir J 18:451–458

Gerken M, Kreienbrock L, Wellmann J, Kreuzer M, Wichmann HE (2000) Mod-
els for retrospective quantification of indoor radon exposure in case-control
studies. Health Physics 78:268–278

Graham JD (1997) The role of epidemiology in regulatory risk assessment. Elsevier,
Amsterdam



Environmental Epidemiology 993

Greenland S (1989) Modeling and variable selection in epidemiologic analysis.
American Journal of Public Health 79:340–349

Greenland S, Sheppard AR, Kaune WT, Poole C, Kelsh MA (2000) A pooled analysis
of magnetic fields, wire codes, and childhood leukemia. Childhood Leukemia-
EMF Study Group. Epidemiology 11:624–634

Gunby JA, Darby, SC, Miles, JC, Green, BM, Cox DR (1993) Factors affecting indoor
radon concentration in the United Kingdom. Health Physics 64:2–12

Habash RW, Brodsky LM, Leiss W, Krewski D, Repacholi M (2003a) Health risks
of electromagnetic fields, part I: Evaluation and assessment of electric and
magnetic fields. Crit Rev Biomed Eng 31:141–195

Habash RW, Brodsky LM, Leiss W, Krewski D, Repacholi M (2003b) Health risks of
electromagnetic fields, part II: Evaluation and assessment of radio frequency
radiation. Crit Rev Biomed Eng. 31:197–254

Hansen MH, Hurwitz WN (1946) The problem of non-response in sample surveys.
JASA 41:517–529

Hauptmann M, Lubin JH, Rosenberg PS, Wellmann J, Kreienbrock L (2000a) The
use of sliding time windows for the exploratory analysis of temporal effects of
smoking histories on lung cancer risk. Stat Med 19:2185–2194

Hauptmann M, Wellmann J, Lubin JH, Rosenberg PS, Kreienbrock L (2000b) Anal-
ysis of exposure-time-response relationships using a spline weight function.
Biometrics 56:1105–1108

Heid IM (2002) Measurement error in exposure assessment: An error model and its
impact on studies on lung cancer and residential radon exposure in Germany.
Doctoral Thesis Ludwig-Maximilians-Universität München

Heid IM, Küchenhoff H, Wellmann J, Gerken M, Kreienbrock L, Wichmann HE
(2002)Onthepotential ofmeasurement error to inducedifferential biasonodds
ratio estimates: an example from radon epidemiology. Stat Med 21:3261–3278

Heid IM, Schaffrath Rosario A, Kreienbrock L, Küchenhoff H, Wichmann HE
(2004) The impact of measurement error on studies on lung cancer and resi-
dential radon exposure in Germany. J Tox Env Health, in press

Heinrich J, Hoelscher B, Wichmann HE (2000) Decline of ambient air pollution
and respiratory symptoms in children. Am J Respir Crit Care Med 161:1930–1936

Heinrich J, Hoelscher B, Frye C, Meyer I, Wjst M, Wichmann HE (2002) Trends
in prevalence of atopic diseases and allergic sensitization in children in East-
ern Germany. Eur Respir J 19:1040–1046

Hoek G, Brunekreef B, Verhoeff A, van Wijnen J, Fischer P (2000) Daily mortality
and air pollution in The Netherlands. J Air Waste Manag Assoc 50:1380–1389

Hollander W, Morawietz G, Bake D, Laskus L, van Elzakker BG, van der Meulen A,
Zierock KH (1990) A field intercomparison and fundamental characterization
of various dust samplers with a reference sampler. J Air Waste Manag Assoc
40:881–886

IARC, International Agency on Research on Cancer (2001) Ionizing radiation,
part 2: Some internally deposited radionuclides. IARC monographs on the
evaluation of carcinogenic risks to humans, vol 78. International Agency on
Research on Cancer, Lyon



994 Lothar Kreienbrock

Ibibarren C, Sharp D, Burchfield CM, Ping S, Dwyer JH (1996) Association of serum
total cholesterol with coronary disease and all-cause mortality: Multivariate
correction for bias due to measurement error. Am J Epi 143:463–471

ICRP, International Commission on Radiological Protection (1993) Protection
against radon 222 at home and at work. ICRP Publication 65. Annals of the
ICRP, vol 23, No 2. Didcot, Oxon

IOM, Institute of Medicine (2000) Clearing the Air: Asthma and Indoor Air Expo-
sures. National Academic Press, Washington D.C.

Janssens A (2004) Environmental radiation protection: philosophy, monitoring
and standards. J Environ Radioact 72:65–73

JHSM, Division of Pulmonary and Critical Care Medicine, Johns Hopkins
School of Medicine (2004) (http:||www.hopkins-lungs.org|programs|asthma|)
Accessed May 8, 2004

Johnson CC, Ownby DR, Zoratti EM, Hensley Alford S, Williams LK, Joseph CLM
(2002) Environmental epidemiology of pediatric asthma and allergy. Epidemi-
ologic Reviews 24:154–175

Kalayci O, Sonna LA, Woodruff PG, Camargo CA Jr, Luster AD, Lilly CM (2004)
Monocyte chemotactic protein-4 (MCP-4; CCL-13): a biomarker of asthma. J
Asthma 41:27–33

Katsouyanni K, Touloumi G, Spix C, Schwartz J, Balducci F, Medina S, Rossi G,
Wojtyniak B, Sunyer J, Bacharova L, Schouten JP, Ponka A, Anderson HR
(1997) Short-term effects of ambient sulphur dioxide and particulate matter on
mortality in 12 European cities: results from time series data from the APHEA
project. Air pollution and health: A European approach. Br Med J 314:1658–
1663

Kleinbaum DG, Kupper LL, Morgenstern H (1982) Epidemiologic research. Van
Nostrand Reinhold, New York

Kreienbrock L, Schach S (2000) Epidemiologische Methoden, 3rd ed. (in German).
Spektrum, Heidelberg

Kreienbrock L, Siehl A (1996) Multiple statistische Analyse von Radon-Erhebungs-
messungen in der Bundesrepublik Deutschland. In: Siehl A (ed). Umwelt-
radiaoaktivität –GeologieundÖkologie imKontext. Ernst&Sohn,VCH,Berlin,
pp 299–310

Kreienbrock L, Poffijn A, Tirmarche M, Feider M, Kies A, Darby SC (1999) Inter-
comparison of passive Rn-detectors under field conditions in epidemiological
studies. Health Physics 76:558–563

Kreienbrock L, Kreuzer M, Gerken M, Dingerkus G, Wellmann J, Keller G, Wich-
mann HE (2001) Case-control study on lung cancer and residential radon in
West Germany. Am J Epi 153:42–52

Kreuzer M, Heinrich J, Wölke G, Schaffrath Rosario A, Gerken M, Wellmann J,
Keller G, Kreienbrock L, Wichmann HE (2003) Residential radon and risk of
lung cancer in Eastern Germany. Epidemiology 14:1–10

Krewski D, Burnett RT, Goldberg MS, Hoover K, Siemiatycki J, Abrahamowicz M,
White WH (2004) Validation of the Harvard Six Cities Study of particulate air
pollution and mortality. N Engl J Med 350:198–199



Environmental Epidemiology 995

Lagarde F, Pershagen G, Akerblom G, Axelson O, Bäverstam U, Damber L, Enflo A,
Svartengren M, Swedjemark GA (1997) Residential radon and lung cancer in
Sweden: risk analysis accounting for random error in the exposure assessment.
Health Physics 72:269–276

Lagarde F, Axelsson G, Damber L, Mellander H, Nyberg F, Pershagen G (2001) Resi-
dential radon and lung cancer among never-smokers in Sweden. Epidemiology
12:396–404

LétourneauEG,KrewskiD,ChoiNW,GoddardMJ,McGregorRG,Zielinski JM,Du J
(1994) Case-control study of residential radon and lung cancer in Winnipeg,
Manitoba, Canada. Am J Epi 140:310–322

Locher W, Unschuld PU (1999) Geschichtliches zur Umweltmedizin. In: Wichmann
HE, Schlipköter HW, Fülgraff G (eds) Handbuch der Umweltmedizin. ecomed,
Landsberg|Lech, pp II-1.1–II-1.12

Lubin JH (1988) Models for the analysis of radon-exposed populations. Yale Journal
of Biology and Medicine 61:195–214

Lubin JH, Steindorf K (1995) Cigarette use and the estimation of lung cancer
attributable to radon in the United States. Radiat Res 141:79–85

Lubin JH, Samet JM, Weinberg C (1990) Design issues in epidemiologic studies of
indoor exposure to Rn and risk of lung cancer. Health Physics 59:807–817

Lubin JH, Boice JD, Edling CH, Hornung R, Howe G, Kunz E, Kusiak A, Morrison
HI, Radford EP, Samet JM, Tirmarche M, Woodward A, Xiang YS, Pierce DA
(1994) Radon and lung cancer risk: A joint analysis of 11 underground miners
studies. US National Institutes of Health. NIH publication No 94–3644

Lubin JH, Boice JD Jr, Samet JM (1995) Errors in exposure assessment, statistical
power and the interpretation of residential radon studies. Radiation Research
44:329–341

Mallick B, Hoffmann FO, Carroll RJ (2002) Semiparametric regression modeling
with mixtures of Berkson and classical error, with application to fallout from
the Nevada test site. Biometrics 58:13–20

Michels KB (2001) A renaissance for measurement error. Int J Epi 30:421–422
Miles JCH (1994) Mapping the proportion of the housing stock exceeding a radon

reference level. Radiation Protection Dosimetry 56:207–210
NRC,NationalResearchCouncil (1991)Environmental epidemiology:Publichealth

and hazardous wastes. National Academy Press, Washington D.C.
NRC, National Research Council (1997) Environmental epidemiology, vol 2: Use

of the gray literature and other data in environmental epidemiology. Na-
tional Academy Press, Washington D.C.

NRC, National Research Council (1999) Health effects of exposure to radon, BEIR
VI. Committee on health risks of exposure to radon. Board on Radiation Ef-
fects Research, Commission on Life Science. National Academy Press, Wash-
ington D.C.

Oberaigner W, Kreienbrock L, Schaffrath Rosario A, Kreuzer M, Wellmann J,
Keller G, Gerken M, Langer B, Wichmann HE (2002) Radon und Lungenkrebs
im Bezirk Imst|Österreich. Fortschritte in der Umweltmedizin. Ecomed Ver-
lagsgesellschaft, Landsberg am Lech



996 Lothar Kreienbrock

Park JH, Spiegelman DL, Burge HA, Gold DR, Chew GL, Milton DK (2000) Longi-
tudinal study of dust and airborne endotoxin in the home. Environ Health Per-
spect 108:1023–1028

Pekkanen J, Pearce N (2001) Environmental epidemiology: Challenges and oppor-
tunities. Environ Health Perspect 109:1–5

Pershagen G, Liang ZH, Hrubec Z, Svensson C, Boice JD (1992) Residen-
tial radon exposure and lung cancer in women. Health Physics 63:179–
186

Pershagen G, Akerblom G, Axelson O, Clavensjö B, Damber L, Desai G, En-
flo A, Lagarde F, Mellander H, Svartengren M, Swedjemark GA (1994) Res-
idential radon exposure and lung cancer in Sweden. N Engl J Med 330:159–
164

Pinel J, Fearn T, Darby SC, Miles JCH (1994) Seasonal correction factors for indoor
radon measurements in the United Kingdom. Radiation Protection Dosimetry
58:127–132

Ponsonby AL, Couper D, Dwyer T, Carmichael A, Kemp A, Cochrane J (2000) The
relation between infant indoor environment and subsequent asthma. Epidemi-
ology 11:128–135

Pope CA 3rd, Thun MJ, Namboodiri MM, Dockery DW, Evans JS, Speizer FE, Heath
CW Jr (1995) Particulate air pollution as a predictor of mortality in a prospective
study of U.S. adults. Am J Respir Crit Care Med 151:669–674

Reeves GK, Cox DR, Darby SC, Whitley E (1998) Some aspects of measurement
error in explanatory variables for continuous and binary regression models.
Stat Med 17:2157–2177

RosnerB,WillettWC,SpiegelmanD(1989)Correctionof logistic regression relative
risk estimates and confidence intervals for systematic within-person measure-
ment error. Stat Med 8:1051–1069

Ruosteenoja E, Mäkeläinen I, Rytömaa T, Hakulinen T, Hakama M (1996) Radon
and lung cancer in Finland. Health Physics 71:185–189

Samet JM, Stolwijk J, Rose S (1991) International workshop on residential radon-
epidemiology. Health Physics 60:223–227

Samet JM, Zeger SL, Dominici F, Curriero F, Coursac I, Dockery DW, Schwartz J,
Zanobetti A (2000) The national morbidity, mortality, and air pollution study,
part II: Morbidity and mortality from air pollution in the United States. Res Rep
Health Eff Inst 94:5–70; discussion 71–79

Schoenberg JB, Klotz JB, Wilcox HB, Nicholls GP, Gil-del-Real MT, Stemhagen A,
Mason TJ (1990) Case-control study of residential radon and lung cancer among
New Jersey women. Cancer Research 50:6250–6254

Schüttmann W (1992) Das Radonproblem im Bergbau und in Wohnungen –
Historische Aspekte. In: Reiners C, Streffer C, Messerschmidt O (eds)
Strahlenrisiko durch Radon. Gustac Fischer, Stuttgart, Jena, New York, pp 5–
24

Schüz, J, Grigat JP, Brinkmann K, Michaelis J (2001) Residential magnetic fields as
a risk factor for childhood acute leukemia: results from a German population
based case-control study. Int J Cancer 91:728–735



Environmental Epidemiology 997

Slimani N, Kaaks R, Ferrari P, Casagrande C, Clavel-Chapelon F, Lotze G, Kroke A,
Trichopoulos D, Trichopoulou A, Lauria C, Bellegotti M, Ocke MC, Peeters PH,
Engeset D, Lund E, Agudo A, Larranaga N, Mattisson I, Andren C, Johansson I,
Davey G, Welch AA, Overvad K, Tjonneland A, Van Staveren WA, Saracci R,
Riboli E (2002) European Prospective Investigation into Cancer and Nutri-
tion (EPIC) calibration study: rationale, design and population characteristics.
Public Health Nutr 5:1125–1145

Steindorf K, Lubin JH, Wichmann HE, Becher H (1995) Lung cancer deaths at-
tributable to indoor radon exposure in West Germany. Int J Epi 24:485–492

Stidley AC, Samet JM (1993) A review of ecologic studies of lung cancer and indoor
radon. Health Physics 65:234–251

Thomas D, Stram D, Dwyer J (1993) Exposure measurement error: Influence on
exposure-disease relationships and methods of correction. Annual Review of
Public Health 14:69–93

Tomášek L, Müller T, Kunz E, Heribanová A, Matzner J, Plaèek V, Burian I, Holeèek
J (2001) Study of lung cancer and residential radon in the Czech Republic.
Centr Eur J Publ Health 9:150–153

Tosteson TD, Stefanski LA, Schafer DW (1989) A measurement-error model for
binary and ordinal regression. Stat Med 8:1139–1147

UNSCEAR,UnitedNationsScientificCommitteeon theEffects ofAtomicRadiation
(2000) Sources and effects of ionizing radiation. UNSCEAR 2000 Report to the
General Assembly, with Scientific Annexes. Vol. I: Sources. United Nations,
New York

Vedal S, Brauer M, White R, Petkau J (2003) Air pollution and daily mortality in
a city with low levels of pollution. Environ Health Perspect 111:45–51

Wallace LA, Mitchell H, O’Connor GT, Neas L, Lippmann M, Kattan M, Koenig J,
Stout JW,VaughnBJ,WallaceD,WalterM,AdamsK,LiuLJS (2003)ParticleCon-
centrations in Inner-City Homes of Children with Asthma: The Effect of Smok-
ing, Cooking, and Outdoor Pollution.Environ Health Perspect 111:1265–1272

Wang Z, Lubin JH, Wang L, Zhang S, Boice JD Jr, Cui H, Zhang S, Conrath S,
Xia Y, Shang B, Brenner A, Lei S, Metayer C, Cao J, Chen KW, Lei S, Kleiner-
man RA (2002) Residential radon and lung cancer risk in a high-exposure area
of Gansu Province, China. Am J Epi 155:554–564

Warner KE, Mendez D, Courant PN (1996) Toward a more realistic appraisal of the
lung cancer risk from radon: The effects of residential mobility. American Jour-
nal of Public Health 86:1222–1227

Webster’s Encyclopedic Unabridged Dictionary of the English Language (1989)
Portland House, New York

Weiland SK, Mundt KA, Ruckmann A, Keil U (1994) Self-reported wheezing and
allergic rhinitis in children and traffic density on street of residence. Ann Epi-
demiol 4:243–247

Wellmann J, Miles J, Kreienbrock L (2001) Identification of outliers in an interna-
tional radon intercomparison exercise. In: Kunert J, Trenkler G (eds) Mathe-
matical statistics with applications in biometry. Festschrift in Honour of Prof.
Dr. Siegfried Schach. Josel Eul, Lohmar|Köln, pp 253–262



998 Lothar Kreienbrock

Wertheimer N, Leeper E (1979) Electric wiring configurations and childhood can-
cer. Am J Epi 109: 273–284

WHO, World Health Organisation (2000) Air quality guidelines for Europe, 2nd
edn. WHO Regional Publications, European Series No 91. WHO, Regional Office
for Europe, Copenhagen

Wichmann HE, Kreienbrock L, Kreuzer M, Gerken M, Dingerkus G, Well-
mann J, Keller G (1998) Lungenkrebsrisiko durch Radon in der Bundesrepublik
Deutschland (West). ecomed, Landsberg|Lech

Wolf-Ostermann K, Luttmann H, Treiber-Klötzer C, Kreienbrock L, Wichmann
HE (1995) Kohortenstudie zu Atemwegserkrankungen und Lungenfunktion
bei Schulkindern in Südwestdeutschland – Teil 3: Einfluß von Rauchen und
Passivrauchen. Zentralblatt für Hygiene und Umweltmedizin 197:459–488

Zeger SL, Thomas D, Dominici F, Samet JM, Schwartz J, Dockery D, Cohen A (2000)
Exposure measurement error in time-series studies of air pollution: Concepts
and consequences. Environ Health Perspect 108:419–426



III.4Nutritional Epidemiology
Dorothy Mackerras, Barrie M. Margetts

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000

4.2 Measurement and Definition of Nutritional Exposures . . . . . . . . . . . . . . . . . . 1001

Validation of the Measure of Exposure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1006
Measuring Nutritional Exposures in Different Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010
Defining Reference Categories and Cut-Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1011

4.3 Methods for Analysis:
Adjustment for Confounding by Energy Intake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1013

How Many Independent Variables? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1014
Macronutrients and Four Methods for Adjusting for Energy Intake . . . . . . . . . . . 1015
Macronutrients: Categorisation Affects the Range
of the Relative Risk Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1021
Micronutrients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022
Choosing a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022

4.4 Organisation and Presentation of Data:
Implications for Meta-Analysis and Reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026

Choice of Adjustment Model Affects Interpretation
of Results in Studies and Meta-Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027

4.5 Nutritional Epidemiology in Public Health Practice . . . . . . . . . . . . . . . . . . . . . . . . 1029

Assessing the Usual Intake of a Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030
References for Assessing Dietary Intake in Populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1032
Impact of Under-Reporting of Intake. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035
Consequences of Within-Person Variability in Other Areas
of Public Health Nutrition Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1037

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038



1000 Dorothy Mackerras, Barrie M. Margetts

Introduction4.1

The main objective of nutritional epidemiological research is to provide the best
possible scientific evidence to support an understanding of the role of nutrition
in the causes and prevention of ill-health.
Margetts and Nelson (1997)

The tools and methodology of nutritional epidemiology have developed mostly
over the last 20 years. Over that time a number of texts and recent papers have
described the broad area, and it is not necessary to repeat details that can easily
be found elsewhere (Margetts and Nelson 1997; Willett 1998; Margetts et al. 2003;
Nelson and Beresford 2004). Nutritional epidemiological studies follow the general
principles of all epidemiological studies. There are really only two issues that must
be considered in all studies: how to develop a clear and testable research question;
and how to provide an unbiased answer to that question. These general issues are
covered elsewhere in this handbook (cf. Chaps. I.11–I.13 of this handbook). The
concerns with assessing outcomes are not specific to nutritional studies, and will
not be discussed in any detail in this chapter.

Nutritional epidemiology seeks to describe the distribution and variation in the
nutritional behaviour of individuals and groups and, primarily but not exclusively,
to relate that behaviour to some health outcome, to explore the causal relationship
between exposure and outcome. Exposure is a generic term which we use here to
describe different aspects of dietary and nutritional behaviour. In the past, health
outcomes have generally been confined to lack of health, but here we consider
health as a wider concept than the absence of illness.

Nutritional epidemiological studies can also be used for the purposes of iden-
tifying groups at risk and for monitoring and surveillance. They can provide
an evidence base for deciding plans of action; what actions (interventions) to
take and in whom, based on a comparison of the target population nutritional
behaviour|measure with some reference measure (amount of fruit and vegetables
consumed in the poorest compared with a dietary guideline, or calcium intake
compared to a reference nutrient intake, or % of children above a weight for height
centile standard).

Our aim in this chapter is to focus on those issues that affect nutritional studies
in particular. The main focus has been on how to assess nutritional exposure in
large groups of people with sufficient accuracy to provide a valid estimate of the
impact of variation in diet on health outcomes. The need to develop methods to
assess diet, and to understand the sources of errors associated with these methods,
has arisen because of the recognised importance of diet in the aetiology of the
major causes of death and morbidity around the world.

Poor nutrition has direct effects on growth and normal development, as well as
on the process of healthy ageing. For cancer, it has been estimated that between
40 and 70% of deaths can be attributed to poor nutrition (Willett 1995). Every
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day about 15,000 children die from the effects of malnutrition. In resource poor
countries thepopulation is increasingly facing theburdenofhigh rates of infectious
diseases, as well as rising rates of chronic diseases. Prevention remains the only
strategy for long term improvements. In order to understand the best approach to
prevent nutrition related health problems it is necessary to understand the role of
nutrition in the causes of these health problems. It is essential to have an evidence-
based approach to decision making as to what are the most effective strategies
to improving nutrition related health. The role of poor nutrition in many of the
major causes of death is obvious, and the solution should be obvious. A lack, or
excess, of energy will lead to wasting or obesity; lack of specific micronutrients
will lead to specific clinical consequences, from impaired function to death. The
effects of poor diet on chronic diseases is more complex, such as, for example, the
role of micronutrients in maintaining optimal cell function and reducing the risk
of cancer and cardiovascular disease. Foods contain more than nutrients, and the
way foods are prepared may enhance or reduce their harmful or beneficial effects
on health. While it is possible to establish in animal experiments exactly how much
of a nutrient is required to avoid deficiency, it is more complex to assess how much
is required to maintain optimal function throughout life, against a background of
potentially changingdemands. It ispossible todefine the level of vitaminCrequired
to prevent scurvy, but it is more complex to define the optimal level of vitamin C
(and other micronutrients) that may improve health. The optimal supply of the
essential elements in foods is not static, but a function of the demands placed on the
individual (which may be wider environmental and social and economic factors
that affect the basic and underlying causes), to grow, to fight infections (or cope
with the wider environmental stresses such as poor sanitation and water quality),
to overcome the effects of smoking, and so on. It is because of this complexity
that expertise in nutritional epidemiology is required. There is not one measure
of nutritional exposure that will give the correct estimate of the relevant exposure
in all situations; it is important to establish which approach is optimal to answer
the particular research question being posed.

The following section of this chapter describes the measurement and definition
of nutritional exposures; the third section covers adjustment for confounding by
energy intake; the fourth section discusses the organisation and presentation of
data, with consideration of the implications for meta-analyses and reviews; the
fifth section discusses the role of nutritional epidemiology in public health, and
the final section draws some conclusions from the chapter.

Measurement and Definition
of Nutritional Exposures 4.2

It is important to be clear what is meant by the terms used: diet, food, nutrients,
nutritional status are often incorrectly used. Food describes the individual items
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that make up a diet (or dietary pattern), nutrients are derived from an analysis
of diet (occasionally nutrients are measured directly in foods, but most often are
estimated through the use of the composition of food tables). Anthropometric
measures are often incorrectly described as measures of nutritional status. Ideally
ameasureofnutritional status reflects thedynamicbalancebetweendietary supply,
body pools, and the metabolic demands. Simply measuring food intake does not
represent status; at the same level of dietary intake a subject may be able to
function well or poorly, depending on the demands being placed upon him|her. If
an individual is growing or fighting an infection (and has diarrhoea for example or
a fever) the dietary supply of a nutrient may or may not be adequate to enable and
maintain optimal function. From a biological perspective the available substrates
for function come from that which is eaten, plus body pools. Where there is
competition for thesemetabolic substrates, one functionmaybecompromisedover
another. In an epidemiological study, which can rarely measure true nutritional
status, it is often assumed that a reported measure of intake reflects the true
functional availability. Dietary intakes are used because they reflect what is eaten,
and it is the impact that food supply has on the overall dynamic that needs to be
understood if causal mechanisms, and preventive strategies can be understood.

Increasingly, epidemiological studies are exploring food intake to assess dietary|
food patterns, as well as the nutrient intakes derived from these dietary patterns.
There has been a growing interest in approaches to summarise dietary patterns,
either by using some sort of ‘healthy eating’ index, or to use a measure derived from
a mathematical summary of the variation in the data such as by using principal
components analysis. These food patterns, either derived from some a priori
understanding of the way in which people eat foods, or based on a mathematical
summary, should reflect the way foods are consumed and may provide a more
useful insight than studying individual foods or nutrients. The assumption is
that, for example, people who eat more of some foods will eat less of others, or
if people eat wholegrain cereals, they may also be more likely to eat more fruits
and vegetables, or grilled rather than fried meats etc. In terms of explaining health
outcomes these patterns may be more informative because they describe the overall
exposure and potential interaction between exposure that may enhance or reduce
risk. In deriving nutrients from food intake data, although it is possible directly
to analyse the nutrient content of foods, most often food composition tables are
used. These tables are usually developed from the analysis of a relatively limited
number of foods, either in their raw or cooked state. There is a great deal of
potential for error in deriving nutrient intakes using these food tables. However,
the most important source of error in assessing nutrient intakes comes from the
incorrect assessment of food intake; if a subject does not accurately report what
he|she eats or ate, it does not matter how accurate the food tables may be. A great
deal of effort has gone into improving the food tables, but surprisingly less in to
improving and understanding the errors associated with obtaining the original
intake data.

A benefit of using food patterns, rather than nutrients, is that the patterns are
not dependent on the accuracy of the food tables. Another benefit, of using food
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patterns is that people eat foods and foods contain a mix of nutrients (and other
substances, such as phytochemicals, additives, etc), and by describing the patterns
it may give a clearer insight into how these nutrients (or other substances) may
interact to enhance or adversely affect function.

Irrespective of what measure is used (diet, food, nutrients), there are a number
of considerations to deriving the relevant exposure in any study:
1. Study type. Ecological, cross-sectional, analytical and experimental studies re-

quire measurements made at different levels: national, community, household
or individual (see Table 4.1).

2. Time period. Nutritional exposures can be chronic or acute in their effects.
Deciding on the time at which to assess an exposure is critical to the purpose
of the study. A cohort study that characterises nutritional status in terms of
bothdietary intakes andbloodbiochemistrymayprovide information relevant
to the initiation of cancer but not necessarily to its progression.

3. Point of measurement. Relevant exposures can be measured in terms of food
consumption, nutrient intake, blood and tissue levels of nutrient, functional
consequences of nutrient action (including genetic interaction) and excretion.

4. Type of measurement. Examples of exposure measures that are direct (foods,
nutrients), functional or metabolic (physiology, biochemistry), cumulative
(anthropometry) or indirect (socio-demographic and cultural).

For nutritional studies the most complex issue is to be clear as to how to measure
the relevant exposure, based on a consideration of the above four aspects, with the
required level of accuracy. The study question and study design suitable to address
that question will have an effect on the choice of approach to the best way to
measure the relevant exposure. The skill is in balancing the theoretically optimal
approach with that which is practical, while maintaining validity and avoiding
bias.

Most, but not all, epidemiological studies are interested in exploring the causal
relationship between usual long term diet and risk of some health outcome in
individuals. In these studies, mostly cohort or case-control studies, the method
of choice for measuring exposure will depend on what is the relevant exposure.
Ideally exposure should be measured at the moment the exposure is believed to
cause the outcome; this may rarely be possible to identify. For case-control studies
the relevant exposure is recalled some time in the past, and it then must be assumed
that that recalled exposure reflects the relevant exposure. For cohort studies, even
though the exposure is measured before the outcome, it still may be measured
some time after the relevant time period where the exposure initiated the disease
process. In some case-control studies a measure of current diet is used as a proxy
for past diet, assuming that current and past diet are similar. Cohort studies can
measure diet in the present; the choices are most commonly either a food frequency
questionnaire or a food record or recall. There are pros and cons for each method.
The vast majority of cohort studies use a food frequency questionnaire, and ideally
after that method has been validated by comparison with a more accurate measure
of exposure.
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Table 4.1. Methods of dietary assessment by type of epidemiological study (modified from Margetts et al. 2003)

Epidemiological study Level of aggregation required; Method (comment)
expression of information (comment)

Population or household level
Aggregate population|ecological • Average per capita intake compared across Food disappearance

countries or regions or households Food balance sheets
• Trends over time within a country or region Household budget surveys

or household
Community experiment or intervention Group level of analysis: As above or

Compare outcomes for different exposures Sentinel assessment of representative
individuals

Individual level
Cross-sectional (Prevalence survey) Absolute level Food records or recalls (multiple days to

describe within-person variation;
number depends on measure required)
Biochemical (check dose response relationship
with diet)

Ranking Food records (usually single days)
24 hour recall (single or multiple days)
FFQ
Biochemical markers

Case-control Past exposure at time of initiation or as proxy for FFQ of present or past diet
past; usually categorised, but may use continuous Diet history
measure. (Absolute accuracy not required; assess
misclassification and take into account)

Cohort Subjects intake at start of study ranked and categor- Food records
ised (expressed as exposed, not exposed), but may 24 hour recall
use continuous measure. (Absolute accuracy not re- FFQ
quired; assess misclassification and take into account, Biochemical markers
unless absolute risk to be described) (does it relate to diet in sensitive manner?)

Experimental study Individual level (usually needs to be accurate at Food records (multiple days to assess within
absolute level) person variation)

24 hour recalls
FFQ (for patterns or group level comparison)
Diet quality indices
Biochemical markers

FFQ = Food frequency questionnaire
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When deriving a measure of exposure, the exposure will vary from the truth
for a number of reasons: all methods of measuring diet are associated with both
random and systematic errors, that operate both within, and between, subjects.
Errors arise because of the methods, but also because of the difficulty of capturing
true within subject variation in intake. Any measure of variance in a population
will be a mix of these errors, which are theoretically identifiable, but in practice
difficult to separate out. Random errors weaken our ability to identify the true
causal relationship between exposure and outcome, whereas systematic errors
may either exaggerate or diminish the apparent causal relationship. While we
should try to minimise random errors, we should avoid systematic errors where
known.

Here we will briefly summarise the key issues in assessing diet using a method
that assesses current intake (such as a diet record) and in one that assesses usual
intake (food frequency questionnaire). For any method it must be piloted before
being used to check that it gives the required information in the study population;
this should include assessing the validity of the measure in the population.

Food Frequency Questionnaire (FFQ)
The detail of the development of an FFQ can be found in Margetts and Nelson
(1997) and Willet (1998). In developing an FFQ a number of decisions need to be
made:

which foods to include in the list that are relevant for the study aims and
population (commonly now many studies assess all aspects of diet, even when
there is a specific hypothesis, to enable the researcher to explore the effects of
other aspects of diet).
whether to take account of food preparation techniques: for example, do you
need to differentiate between raw and cooked foods, or between different cook-
ing and processing methods; does it matter if the foods are cooked from fresh
or frozen? If you group similar foods (such as fruits, will you lose important
information about differences in levels of nutrients in different fruits?). If you
have a very long questionnaire, respondents may not complete it, but if you miss
or compress foods into too few groups you may lose important information.
over what period of time the ‘usual’ diet covers; this is often a month, but
sometimes a whole year.
whether to use usual portions of each food, or to give options as to number
and size of each portion used.
how to organise categories of consumption, ensuring that there are no gaps
(ranging from never consume to once or more a day).
whether the FFQ can be self-administered or whether it needs to be conducted
by interview (if the population is illiterate there may be no option); consider
the impact of the approach on response rate.

Once the data are collected what will be done with it? Is the aim to: describe the
frequency of consumption, or assess amount of food eaten, or to derive nutrient
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intakes? If the aim is to derive nutrient intakes, how will the foods be converted
to nutrients? Will food composition tables be used? If so, are these accurate and
appropriate for the foods and nutrients of interest?

Food Record
One important advantage of an open ended method such as a record, is that
the researcher does not have to make assumptions as to which foods to include.
A potential disadvantage is that if the day of recording diet is unusual, or affected
by the process of recording diet, what appears to be a more technically accurate
measure, may actually be less accurate in terms of reflecting what people would
eat if you could observe their behaviour unobtrusively. Another disadvantage of
records|recalls is that they take a lot of time to process by the researcher once they
have been collected. Most FFQs are self coded, some are even optically readable,
and thus have minimal burden on researcher time (although it is always important
to assess each questionnaire before coding to ensure that answers are clear and
consistent).

Depending on how the data are to be analysed, single or multiple days of
recording will be required. If the study aims to record group mean intake, and
assuming the errors in the study sample are randomly distributed, a one day
record will provide a reasonable estimate. Where the requirement is to measure an
individual’s dietary intake, thenmoredaysof recordingwill be required, depending
on the extent of the within person variability of the nutrient of interest. Micro-
nutrients that are found in large amounts in foods rarely eaten (vitamin A in organ
meats) will require more days (perhaps up to 30 days) of recording to capture
those days when the nutrient rich foods are eaten. Macro-nutrients are generally
supplied from a wide range of foods, and an individual’s usual intake can probably
be derived from 3–4 days of recording. Nelson and Bingham (1997) have discussed
these issues in more detail.

Validation of the Measure of Exposure4.2.1

A measure is valid if it measures the truth (Fig. 4.1). Absolute validity of a dietary
measure would imply that for every gram, for example, increase in true intake, the
measured intake would increase by one gram. The biggest problem is how to define
the truth as this cannot be known. The truth is usually estimated by reference to
another method, and many researchers prefer to describe this as relative validity.
Relative validity describes the agreement between a test measure (that being used
in the study) and some other measure thought to be more accurate (reference
measure). The assessment of validity should be under the same circumstances in
which the test method will be used in the main study. The studies undertaken to
assess this are often called comparison or calibration studies, in recognition of the
difficulty of establishing the truth. Ideally every method used for gathering data
should be validated before the main study begins. A great deal of research and effort
has gone into trying to establish the validity of the methods used in nutritional
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epidemiological studies (Table 4.1). Different study designs use different methods
to assess diet, often for reasons of cost, time and effort. Ideally, however, the best
method should be used to answer the question. As each compromise that is taken
moves the method away from the ideal, the researcher must be sure that this
does not undermine the validity (fit for purpose) of the measure derived from
the method. If a method has been validated for another purpose in a different
population, it can not be assumed that the method will give the same degree of
relative validity in the new study population.

Figure 4.1. Relationship between exposure and outcome, cause and effect. 1: This represents the true

relationship between relevant exposure and outcome. 2: This represents the observed relationship

between measured exposure and outcome. 3: This represents the true causal pathway. The cause

must precede the effect. 1 and 3 are the same if other variables6 (confounders) are either absent (no

residual confounding) or taken account of (by stratification or mathematical adjustment). 4: This

represents the relationship between relevant exposure and measured exposure. 5: This represents the

relationship between true outcome and measured outcome. 6: Variables that should be measured

and reported that may influence the relationship between exposure and outcome. The extent to

which the measured exposure and outcome vary from the true and relevant measures should be

described in a validation study that presents the measurement errors

It is important to establish a priori how the results of the validation study will
be interpreted and used in the main study. The main issue is to establish what
level of agreement is considered good enough to reduce measurement error to an
acceptable level (that is, so that in the way the measure is to be used in the analysis
of the main study data, the true underlying relationship between exposure and
outcome can be seen, or, if the measure is used for assessing compliance with
a quantitative target, how well the test method can identify whether people truly
are above or below the target). It is important to establish the sample size required
for a validation study; this will be a function of the level of agreement required and
the variability of the exposure in the population. If a sample is too small this will
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inevitably lead to wider confidence intervals around the measures of association.
As a result, differences between the reference and test measures which are large
enough to be important may not be statistically significant. Perhaps paradoxically,
a small validation study may lead to a falsely optimistic measure of the validity of
the measure, if, for example, the comparison between test and reference measure
is by comparing mean intakes and 95% confidence intervals. This can lead to
the erroneous conclusion that the test measure is valid, because the confidence
intervals overlap.

The purpose of the main study will determine the correct way to assess and
express the measure of validity. If the main study uses a continuous measure
of exposure then a continuous measure of exposure should be assessed in the
validation study. If the exposure measure is categorical in the main study, then
the validation study should assess how well the test measure can categorise the
exposure compared with the reference measure. If the study aim is to assess the
relative risk of one level of exposure with another, then the validation study should
assess how well the test measure can do this compared with the reference measure.
A particular concern is whether those who misreport their intake are different
in other important characteristics from those that do not. Most work has been
done on misreporting energy intake by level of body mass index and suggests
that overweight people tend to under-report their fat intake. Recent work also
suggests that fruit intake is over-reported by low consumers because they know
they should eat more fruit but do not, particularly amongst more educated subjects
(Amanatidis et al. 2001). If this tendency to differential over- or under-reporting is
known before the study begins then it may be possible to take this into account in
the design of the study; for example by excluding overweight people. This then, of
course means, that the study results can not be generalised to the whole population,
but if a study is not internally valid, it can never be externally valid. It is better to
be aware of the factors affecting internal validity and to design and interpret the
study accordingly.

Debate has centred on the best way to assess diet in large cohort studies. In
summary, most large cohort studies use food frequency questionnaires (FFQ)
where subjects describe their usual behaviour over a defined period of time (often
ayear, sometimesamonth).Most validationstudies compare the intakeofnutrients
(and, more recently, individual foods) derived from the FFQ (the test measure)
with a reference measure derived from multiple days of recording of dietary intake.
More recently biomarkers, or measures of energy expenditure (or proxies such as
estimated basal metabolic rate) have been used as a second reference measure
(Margetts and Nelson 1997), and described in more detail as the method of triads
by Kaaks (1995). The thinking behind using a second reference method is that
this gives a sense of how well the first reference measure may be measuring the
underlying truth, if the reference measure is wrong, the comparison between the
test and reference measure will be wrong. The problem, at present, is that there are
few relevant and accurate potential second reference measures.

The term gold standard is not used anymore, to describe any reference measure
as it gives false sense of accuracy. The nearest to a true gold standard is for the
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measurement of energy expenditure as a proxy for energy intake using doubly
labelled water (DLW). DLW provides an integrated measure of components of
energy expenditure, usually over 7–14 days. The technique involves ingestion of
a small amount of water with hydrogen replaced by deuterium, and the both, the
deuterium and the oxygen isotopically labelled. It is then possible to track these
labelled tags through the body. The rate of loss of these labelled elements can then
be used to provide an estimate of energy expenditure (Goran and Astrup 2002).
Apart from DLW and urinary nitrogen there are few other robust independent
measures that are relevant. If the aim is to validate a measure such as vitamin
A intake, it might be tempting to assume that a blood measure of vitamin A would
be the ideal reference measure. The assumption is that there is a clear linear
dose response relationship between level of dietary intake (which is the relevant
exposure) and blood level. Bates et al. (1997) have shown that this is rarely the
case. It may be particularly important when there is a curvilinear relationship and
where the study population distribution of intake is either at the lower or higher
end of the distribution. If this is the case, the comparison of the dietary measure
and the blood measure will show a poor agreement between the measures, and
the incorrect decision may be made that the dietary assessment is poor. Ideally
therefore before using any reference measure it is important to establish that it is
an appropriate measure of true relevant exposure, and that variation in the level
of the reference measure relates to true variation in the target population.

Evidence for the debate as to which is the best method to assess diet in cohort
studies comes from validation studies using DLW as the reference measure for
energy intake. These studies seem to suggest that there is no or little association
between energy intake derived from the FFQ and energy expenditure derived from
DLW, particularly in overweight or obese subjects. It seems that, based on DLW,
many people under-report their intake (Subar et al. 2003). A further refinement
is to express the energy intake as a function of the resting or basal metabolic rate
(BMR); if energy intake is less than the BMR it would seem reasonable that subjects
who are not losing weight are under-reporting as it would not be possible to survive
on less energy than the body needs simply to maintain organ function. Usually
a factor is added to the equation to allow for some level of physical activity (PAL),
where PAL multiples of BMR of 1.2 to 1.5 are often used. In the national diet and
nutrition surveys of British adults, using a seven day weighed record, about 40% of
subjects under-report their intake, allowing for some degree of moderate activity
(Black et al. 1991). However, under-reporting has been found across all levels of
PAL, and it is thus not safe simply to exclude people with an energy intake below
a certain BMR ∗ PAL level. Also, excluding 40% of subjects reduces the power of the
study and may cause selection bias, but may be essential to avoid information bias.

It is more statistically powerful to maintain the exposure as a continuous mea-
sure and assess risk of outcome per unit change of exposure. However, most cohort
studies convert continuous measures of exposure into categorical data, and express
risk of the outcome in say the upper fifth of intake compared with the lowest fifth.
Given that the point of assessing risk is so that the risk can be altered (to improve
health), it is important that the correct measure of risk is obtained. Table 4.2 shows
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the proportion of people who are classified into the correct fifth by reference (or
alternative) measures that have decreasing correlations with the reference (Walker
and Blettner 1985). For a measure with a correlation of 0.5, only 32.1% of sub-
jects are placed into the correct fifth, another 37.9% are only one fifth too high
or low, but the remainder are two to four fifths wrong. The impact of this on the
study is profound. Assuming a cohort study with a ‘true’ incidence of 2% in the
lowest fifth and 6% in the highest (i.e. a relative risk of 3.0), using an alternative
measure with a correlation of 0.5 with the reference exposure measure would lead
to incidences of 3.1% and 4.9% in the lowest and highest fifths, a relative risk
of 1.58. For these relative risks to be statistically significant, the cohort using the
reference measure requires a sample of 2496 individuals whereas the cohort using
the imperfect alternative requires a sample size of 12,192 individuals. Similar cal-
culations for the equivalent case-control studies required sample sizes of 430 or
2046 respectively (Walker and Blettner 1985). Even if a validity study has not been
done, the test-retest correlation (reliability) (Armstrong et al. 1994; cf. Chap. I.10
of this handbook) can provide a guide as to the minimum level for inflating the
sample size to allow for imperfect validity, because a measure cannot be more
highly associated with another measure than it is with itself. In other words, the
correlation between the test and reference measures can not be greater than the
correlation of repeat measures of the test measure (Walker and Blettner 1985).

Table 4.2. Probabilities of misclassification of a reference ranking in fifths using an imperfect

alternative that has various correlations with the reference (from Walker and Blettner (1985))

Absolute difference in correlation coefficient between the reference and alternative
quintile ranks 0.9 0.7 0.5 0.3

0 0.573 0.403 0.321 0.263

1 0.378 0.400 0.379 0.355

2 0.047 0.156 0.203 0.225

3 0.002 0.037 0.081 0.118

4 0.000 0.003 0.017 0.038

Measuring Nutritional Exposures in Different Groups4.2.2

The characteristics of the target population and the circumstances in which they
live influence the approach that has to be taken in gathering information about
nutritional exposures. It can not be assumed that an approach that works in one
community, or sector of society, will work in another sector of society. It is more
complex than whether the population is literate or not. We have found that people
from different cultures have different ways of conceptualising and expressing what
is important for themselves. For example, people who gather their food from the
wild will often have very detailed names for all the edible foods, but often have
only one name that describes all the other foods that they do not eat.
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Concepts of time and distance may be quite different between urban and rural
Indian women, who are illiterate. In a study assessing physical activity in rural
women we could not ask how long women spent doing tasks, and how far in miles
they walked; we had to develop an approach that used concepts that the women
understood (Rao et al. 2003). It is therefore very important to test the approach
that is believed to work in the target group before the study proper starts. Focus
group discussions and qualitative research methods are very valuable tools and
approaches that complement quantitative methods.

Defining Reference Categories and Cut-Points 4.2.3

In aetiological research into chronic diseases, nutrient or food intake data are
commonly used in a categorical form rather than a continuous form in models.
These are created by dividing the continuous data into thirds, fourths or fifths
based on the tertiles, quartiles or quintiles, respectively, of the study population
distribution.Thecategorical approachmakesnoassumptionsabout theunderlying
shape of the association between the nutrient and the outcome. Even if intakes are
used in a continuous form, analyses based on categories should be done to check
whether the assumptions assumed in the continuous approach is justified. For
example, in logistic regression the assumption of linearity in the logit can be
assessed by also examining the variable when entered in quantiles (Hosmer and
Lemeshow 1989; cf. Chaps. II.2 and II.3 of this handbook). The reason why dietary
data is more commonly entered in a categorical than a continuous form in studies
of diet-disease relationships is not clear. Authors usually do not report whether
they examined the association using both methods. One reason in favour of the
categorical approach is that it allows results fordietary factors tobe expressed in the
same way. For example, population average intake by adults of thiamin is usually
about 1.5–2 mg|day whereas the average calcium intake may be 600–1200 mg|day.
If both were entered as continuous variables, then the resulting odds ratio, for
example, would be the odds per mg increment. A 1 mg increment relates to quite
a different change at the population level for these two nutrients. However, the
odds ratio for the highest vs. lowest fifth can be directly compared to assess the
relative impact in the population.

For categorised data, one group is selected to be the referent category for cal-
culating odds ratios or relative risks for the other groups. If the study factor is
cigarette smoking or an industrial exposure, then it is clear that the referent is the
group with no exposure to the substance. However, in the area of nutrition, many
variables of interest have no group with a zero level (for example, no one has a body
weight of zero grams or could survive with a zero intake of any essential nutrient)
or there may be reason to think that those with a zero level differ from the general
population in too many respects to constitute the most appropriate referent group
(e.g. teetotallers, vegans). There are some exceptions when a true zero group does
exist, for example, when investigating food additives or accidental contaminants.
There is no clear cut way to choose the referent group in the nutritional area and
different authors make different decisions. Some choose the highest group, some
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the lowest group and some the intermediate group. If studies investigating the
same topic have used different referents, then the results might look contradictory
when in reality they are not.

Table 4.3 shows that the same data can be used to yield three different sets of
odds ratios, depending on which group is chosen as the referent. Although the
odds ratios are numerically different, the message given by the three sets is the
same. There is a 3-fold difference in risk between the high and low intake groups.
These results could be described in ways that would imply different findings. The
results when the referent is the high intake group could be described as ‘low intakes
increased the risk’ whereas when the referent is the low group the results could be
described as ‘high intakes reduce risk’. These two descriptions could be interpreted
differently by the public. In the second case, it may be interpreted as suggesting
that taking supplements would be beneficial. The general tendency in the literature
is to set lowest diet intake group as the referent, possibly due to some sense that
low is closest to unexposed. However in the case of diet, it could often be argued
that the low intake group are ‘exposed’ to a risk and that the higher intake group
is not exposed to risk. This thought leads some to set the referent at the end of
the distribution that ensures that most odds ratios or relative risks for the other
categories are above 1.0. This approach could lead to confusion if two nutrients
with opposing effects were studied in the same report, for example fat and fibre
intakes. Using the middle group as the referent category is not frequently done for
dietary data. However, it makes sense for a characteristic such as body mass index
or birthweight where both ends of the distributions have less favourable outcomes
than a middle group and emphasising this fact is desired.

Table 4.3. Comparison of the odds ratio when different groups are chosen as the referent

Intake Odds ratio when the referent group is the
category cases controls high medium low

High 100 200 1.0 0.5 0.33

Medium 200 200 2.0 1.0 0.67

Low 300 200 3.0 1.5 1.0

The most important thing is for the reader to be aware that different referents
can be chosen and to check approach each author has used. If a review is being con-
ducted, it may be useful to recalculate some results so that they can be interpreted
more easily.

Where data are collected and reported as continuous measures the risk is ex-
pressed in terms of per unit of exposure; if fruit intake is expressed in grams the
reduction in risk associated with increased consumption will be per gram. At one
level this is ideal, provided the reader knows what level of consumption is inferred.
The study should always indicate what the average level of consumption is in the
study population to give the reader a sense of whether the change in risk is re-
lating to changes in intake from 200 to 300 grams, or 120 to 130 grams. In most
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studies data are categorised and risk is assessed in relation to a referent group, as
described above. In interpreting and comparing results it is important to describe
the range of exposure covered by the referent group (and in the whole population),
as well as describing how the referent group was defined. The category boundaries
tend to be based on a within-study distribution. As the goal is to compare the
cases of disease with the underlying population, categorisation is generally, but
not always, based on the entire population at baseline in a cohort study and the
control distribution in a case-control study. However, this makes the comparison
of results between studies somewhat problematical because the quantile cutpoints
are different and the range of intake within each quantile and overall will generally
vary between studies. For example, data from various different cohort studies was
used to examine the effects of various foods on breast cancer (Missmer et al. 2002).
The authors chose to divide each study into fifths using the distribution from that
study. This meant that the relative risk for the top and bottom fifths for one study
related to a difference of 35 grams red meat and, in another study, to a difference
of 128 grams red meat. Clearly, if there were a continuous association between red
meat intake and risk, the relative risk for the second study should be nearly four
times as large as the relative risk in the first study. Despite this, the relative risks
were combined to derive an overall figure which does not relate to any particular
range of dietary intake and misses the opportunity of examining a much wider
range of intakes than in usually available (Friedenreich 2002).

Using an external cutpoint might be an alternative to basing categories on
the within-study distribution. For example, one might choose the level being
recommended to the public such as 30% of energy from fat or 30 grams fibre. Even
in this approach, one could define either the high or the low group as the referent.
The drawback is that using these levels may obscure important new findings
that should lead to changing the advice being given. In addition, this approach
would generally allow only two categories to be defined and so dose-response
relationships could not be defined unless each group was further divided and
this leads back to the problem of comparing across studies. By contrast, dividing
the study population evenly makes no assumptions about the ‘best’ intake and
avoids the potential problem of results in a group with small numbers being overly
influential. Ideally a number of different approaches should be explored before
deciding on any one approach, although when there is no clear guidance about
a critical level around which risk changes, it will be most efficient to divide the
population evenly into thirds or fourths.

Methods for Analysis: Adjustment
for Confounding by Energy Intake 4.3

People who eat a lot of food tend to have higher intakes of many or all nutrients.
Hence, the question arises as to whether risks associated with high or low intakes
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of a single nutrient are actually due to confounding by total energy intake (or the
intake of other nutrients). Persons may also have high energy intakes because they
are very active, or because they are overweight.

The term ‘energy adjustment’ is used to describe both adjustment to remove
the effects of confounding and also correction to remove the effects of under- or
over-reporting of total food intake. In this section, energy adjustment only refers
to control for confounding by energy intake. Some of these procedures have also
been proposed as methods to deal with reporting bias but this is not necessarily
successful in all circumstances, especially if there is differential reporting of food
groups between subgroups of the population (Bellach and Kohlmeier 1998).

One of the problems with controlling for confounding in nutritional epidemiol-
ogy studies arises because many nutrients travel together in foods resulting in high
correlations between their intakes. High correlations make models unstable. For
example, Slattery et al. (1988) noted that “because of the high correlation between
calories, fat, and protein (r = approximately 0.9), we were unable to simultane-
ously adjust for calories, fat, and protein in the logistic regression models”. The
size of the correlations is determined by the proportion that each macronutrient
contributes to energy and also the intercorrelations among the macronutrients
(Gordon et al. 1984). High correlations between variables inflate their variance.
This is quantified by 1|(1 − r2). For a correlation of 0.9 between two variables, the
variance inflation factor is 5.3 and the standard deviation of the coefficient for both
variables is increased by the square-root, 2.3-fold. Until about 20 years ago, the
problem of high correlations was managed by entering nutrients into the model as
nutrient density (for macronutrients, density is the energy from the macronutrient
expressed at the % of the total energy intake, for micronutrients, mg|1000 kJ or
other multiple) rather than as absolute intakes. For many years, it was thought
that calculating energy density would adjust for energy intake and so the term
for energy itself was usually left out of the model. However, nutrient density has
a low, but non-zero, correlation with energy and so residual confounding by energy
intake remains if the energy term is not included. The nutrient density often has
a correlation in the opposite direction from the parent nutrient. For example, Hol-
brook et al. (1988) reported that the correlation between calcium and energy was
+0.6 but that the correlation between calcium density and energy was −0.3. This
seems to be a general pattern for the vitamins and minerals but not necessarily
for fat (Gordon et al. 1984). Thus if calcium density is used, it does not completely
adjust for energy and reverses the direction of the confounding by energy, which
is not always obvious, and makes it difficult to interpret the results.

How Many Independent Variables?4.3.1

Datasets for investigating the relationship between macronutrients and chronic
disease would generally have five columns of data – protein, fat, carbohydrate,
alcohol and energy. Therefore it is tempting to think that there are five independent
variables that can be used in analysis but this is not correct. Energy is derived from
the macronutrients. There are only four independent variables because the fifth
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can be determined once any four are known. As a result, it is not possible to find
five independent parameters (cf. Dorfman et al. 1985).

Macronutrients
and Four Methods for Adjusting for Energy Intake 4.3.2

Many of the concepts in this section will be illustrated using data from a study in
which one twin from each of 196 pairs kept a 4-day food record (Mackerras 1996).

In 1986, Willett and Stampfer (1986) proposed that the technique of residualising
a variable should be applied to the nutrition area and this led to an extensive discus-
sion about the relative merits and interpretation of the four different methods – the
standard multiple, the residual, the partition and the density models – that could
be used to adjust for total energy intake. It should be noted that some of this dis-
cussion comparing the methods was not actually related to control of confounding
per se, but to the range of intake over which relative risks or odds ratios were
calculated as a result of applying various methods.

The following discussion will be simplified by grouping the macronutrients as
fat and non-fat (i.e. protein, carbohydrate and alcohol) and they will be expressed
as kJ energy such that total kJ = fat kJ + non-fat kJ. The same models can be run
entering fat and other macronutrients as grams but the different energy content of
the various macronutrients needs to be remembered if trying to equate the effects.
Dietary data collected using 4-day weighed food records from a study of adult
twins (Tables 4.4 and 4.5) described elsewhere (Mackerras 1996) will be used to
illustrate certain points. The general dietary patterns in this group are similar to
those reported in other studies.

Table 4.4. Characteristics of the twin selected from each of 196 pairs (from Mackerras (1996))

Variable Mean Standard Centile
Deviation 12.5th 87.5th

Quetelet Index [BMI] (kg|m2) 24.2 3.8 20.3 28.5

Energy (MJ) 8.7 2.8 5.7 11.9

EI|BMRa 1.4 0.5 0.9 2.0

Fat (g) 89.1 34.1 55.6 127.3

Fat residualb (g) 0.0 14.7 −13.9 13.6

Fat (% energy) 37.6 5.9 30.7 44.3

Vitamin C (mg) 86.8 56.4 30.8 141.2

Vitamin C residualb (mg) 0.0 54.7 −51.3 45.3

Vitamin C (mg|MJ) 10.8 8.0 4.0 18.0

a Ratio of the energy intake to the basal metabolic rate estimated using the age- and sex-specific
Schofield equations for weight and height (Schofield et al. 1985)
b Residuals from regression equations containing the nutrient as the outcome variable
and total energy intake as the predictor variable. For simplicity, logarithmic transformation
wasnotused.Thepopulationmeanhasnotbeenadded to the residuals, although this is oftendone
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Table 4.5. Correlations between nutrients and different modes of expressing nutrient, 196 twins

(Mackerras (1996))

Energy or Nutrient Pearson’s
nutrient (units) (units) correlation coefficient

Energy (kJ) fat (kJ or g) 0.90

fat (% energy) 0.14

fat (residual, kJ or g) 0.00

Non-fat (kJ) energy (kJ) 0.95

fat (kJ or g) 0.72

fat (% energy) −0.14

fat (residual, kJ) −0.31

Fat (% energy) fat (kJ or g) 0.52

fat (residual, kJ or g) 0.91

Fat (residual, kJ or g) fat (kJ or g) 0.43

non-fat (kJ) 1.00

Energy (kJ) vitamin C (mg) 0.25

vitamin C (mg|MJ) −0.32

vitamin C (residual, mg) 0.00

Vitamin C (mg|MJ) vitamin C (mg) 0.72

vitamin C (residual, mg) 0.82

Vitamin C (residual, mg) vitamin C (mg) 0.97

Fat (kJ or g) vitamin C (mg) 0.18

Fat (% energy) vitamin C (mg|MJ) −0.18

Fat (residual, kJ or g) vitamin C (residual, mg) −0.10

As found in most datasets, there is a strong correlation between fat and energy
intake in the twins (Fig. 4.2, Table 4.5). Although there is a range of fat intakes at
any energy intake, and vice versa, the strong correlation means that those with
low energy intakes are unlikely to have very high fat intakes. Assuming that energy
intake fulfils the other criteria for confounding, the usual way to deal with this
would be to enter both fat and energy into a model:

logit risk = α + β1(fat kJ) + γ1(total kJ) . (4.1)

Model (4.1) has become known as the standard multiple model and β1 is the
amount of risk associated with a 1 kJ increase in fat intake given that total energy
is held constant. This can only occur if there is a simultaneous decrease of 1 kJ in
non-fat energy sources. Therefore β1 is not the risk for changing fat intake alone, it
is the risk for the net effect of increasing fat intake and decreasing non-fat intake.
The size of this relative risk will depend on both whether fat is associated with risk
and whether any of the non-fat components are associated with risk (Brown et al.
1994).
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Figure 4.2. Scatterplot of average daily energy and fat intake; Twin study (Mackerras 1996)

By contrast, γ1 is the risk associated with a 1 kJ increase in total energy given
that fat is held constant. Thus γ1 is not the risk for increasing total energy from any
source; it is the risk for increasing non-fat kJ. Although total energy was entered
into this model, the regression coefficient associated with it is for non-fat energy,
not total energy. As described above, the variance of both these coefficients will be
inflated owing to their high correlation.

An alternative model, to enter non-fat energy rather than total energy, has
become known as the partition model:

logit risk = α + β2(fat kJ) + γ2(non-fat kJ) . (4.2)

It gives the relative risk for a change of 1 kJ in fat intake given that intake of the
other macronutrients is held constant and the relative risk for a change of 1 kJ in
non-fat kJ given that fat intake is held constant. This model has some surprising
results at first glance. Although different variables were entered into the models,
γ1 from Model (4.1) and γ2 from Model (4.2) have the same value (Pike et al. 1992)
because they represent the same thing – increasing energy from non-fat while
holding fat intake constant. However β1 from Model (4.1) and β2 from Model (4.2)
are not the same because in Model (4.2), fat kJ are added rather used to replace
some of the non-fat kJ. The effect associated with holding total energy constant
can be calculated from Model (4.2), but its standard error is less easy to calculate
(Kipnis et al. 1993).

The previous models have adjusted for energy in the risk model. An alternative
approach is to restructure the definition of fat intake to be energy-intake-specific
before it is used in the risk model. For example, in the twin group, the average fat
intake for those consuming 5 MJ and 8 MJ is 48.5 g and 81.5 g respectively. These
values canalsobe expressedas the residuals fromamodelwith fat kJ as theoutcome
variable and total energy the predictor variable. Thus individuals consuming 70 g
fat and 5 MJ or 8 MJ would have new values of +21.5 g and −11.5 g respectively
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Figure 4.3. Scatterplot of average daily energy intake and energy-adjusted (residual) fat intake, twin

study

(Table 4.4). By definition, this procedure removes the association between fat
intake and energy intake (Fig. 4.3). The units are kJ of fat if fat was entered into
the model as kJ. Next, each person’s residual is used in the logistic model instead
of the original measure of total fat intake:

logit risk = α + β3(fatres kJ) (4.3)

and β3 will have the same value as β1 from Model (4.1) providing that there is
no threshold in the effect of fat on disease. Even though the correlation between
fat and the fat residual is not high (Table 4.5), β1 and β3 are the same because
the scaling among those with the same total energy intake has been preserved.
Like in the standard multiple model, the risk for fat is the effect of a simultaneous
change in both fat and non-fat sources of energy and depends on whether either
or both of these substances have a risk. As there is a zero correlation between the
fat residual and energy, the energy term is not needed as it cannot confound this
relationship. However, if transformed nutrient data is being used, the correlation
with an untransformed energy should be checked.

Some authors recommend that the population mean should be added to the
residuals to remove the negative numbers. This does not affect the odds ratio or
relative risk calculated in the risk models. Doing this is potentially misleading as
it makes the residuals look like real population intakes and they are not – they are
relative intakes.

Thenutrientdensitymethod is analternativewayof expressing fat intake relative
to energy intake:

logit risk = α + β4(fat %) + γ4(total kJ) . (4.4)

The fat residual and the fat % will rank individuals in a similar way because they
are highly correlated (Table 4.5, Fig. 4.4) but the value of β4 will be different from β3

because their units are different. If the correlation between energy and nutrient



Nutritional Epidemiology 1019

density for fat is not zero (Table 4.5, Fig. 4.5) it should, technically, be included in
the model to control for any remaining confounding. The low correlation means
that the bias in the odds ratio for fat from omitting energy from the model may
not be very serious, especially in studies where the correlation between energy
and fat density is even lower than in the twin group (Shekelle et al. 1987; Willett
and Stampfer 1987). As γ4 is the effect of energy while holding relative fat con-
stant, it is the effect of increasing energy from all macronutrients in their relative
proportions.

Figure 4.4. Scatterplot of energy-adjusted (residual) fat intake and fat density, twin study

Figure 4.5. Scatterplot of average daily energy intake and fat density, twin study
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The odds ratios or relative risks for fat intake yielded in the above four models
are all adjusted for energy intake. However, at present in the literature, authors who
give a result for ‘energy-adjusted fat’ generally mean that they have residualised the
fat variable and different terms than ‘energy-adjusted’ are used if other methods
were done.

The above discussion has considered fat as the prime focus. However, it is also
possible to write an equivalent to Model (4.1) with carbohydrate, for example, as
the focus:

logit risk = α + δ(carbohydrate kJ) + γ5(total kJ) . (4.5)

In this model, δ is the amount of risk associated with a 1 kJ increase in carbohydrate
intakegiven that total energy is held constant. It isnot the relative risk for changing
carbohydrate alone but is the net effect of increasing carbohydrate intake and
decreasing non-carbohydrate intake. If protein and alcohol are neutral, then β1

from Model (4.1) will equal −δ from Model (4.5). In this event, the same changes in
diet are modelled even though two different models appear to have been run. One
wonders about the extent to which this explains results such as those of Francheschi
et al. (1996) who reported that the odds ratios for breast cancer were 1.3 and 0.81
for the lowest vs. highest fifth of energy-adjusted (i.e. residualised) fat and available
carbohydrate respectively.

In a similar vein, the following model could be considered:

logit risk = α + η(non-fat kJ) + γ6(total kJ) . (4.6)

In this model, η = −β1 from Model (4.1) for the reasons just explained and γ6

equals β2 from Model (4.2). The mathematical equivalences described in this
section may not hold exactly if the variables need to be transformed.

It is worth reiterating that, because there are five different columns of data
but only four independent variables, the same changes in diet will be modelled by
more than one variable (Table 4.6). Just because different nutrients are entered into
the model does not mean that the interpretation of the output will be different.
The meaning of any model involving macronutrients must be thought through
carefully and not interpreted at face value.

Table 4.6. Summary of the dietary changes modelled by various adjustment methods

Dietary change modelled Coefficient in model
(4.1) (4.2) (4.3) (4.4) (4.6)

Substituting fat for non-fat energy β1 β3 β4 η
Adding energy as fat β2 γ6

Adding energy as non-fat γ1 γ2

Adding energy from all macronutrients γ4

in current proportion
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Depending on the hypothesis being tested, similar models can be constructed
but their interpretation needs to be thought about. For example, Hu et al. (1999)
entered the various types of fat and protein and energy into models, and as they
noted, in this case total energy is only derived from carbohydrate. In this instance
the standard multiple model is essentially the same as the partition model.

Macronutrients: Categorisation Affects the Range
of the Relative Risk Estimate 4.3.3

When the nutrients are used as continuous variables in the model, the relative
risk estimate will be per gram or per kilojoule or per % of energy. When the
variables are categorised, the relative risk is for the comparison between quantiles.
As noted above, some of the earlier discussion about the methods for controlling
for confounding by energy related more to the range over which the risks were
estimated than to the actual estimation of the relative risk itself. This arises when
nutrient or food data are categorised because the results are generally described
as ‘for the highest vs. lowest fifth’. The results are especially cloudy if the authors
fail to describe the absolute intake relating to each fifth. By contrast, if the data
are used in a continuous form, tables of results are generally specific about the
difference that the odds ratios or relative risks pertain to.

In the twins, the difference between the median values of the top and bottom
fourths (i.e. the 12.5th and 87.5th percentiles), of fat intake is 71.7 g (Table 4.4) on
the absolute scale but only 27.5 g when residualised. The reason for this is shown in
Fig. 4.6. The horizontal lines show the quartile boundaries for fat on the absolute
scale and the diagonal lines show the quartile boundaries of the residuals. In the
twin group, a relative risk for the top vs. bottom fourth in the standard multiple
and partition models relates to a 71.7 g fat difference but to a 27.5 g difference in the
residual model. Although the standard multiple and residual models yield the same
coefficients when fat is entered as a continuous variable, they will yield different
results when fat intake is categorised. The much smaller range of the residualised
(adjusted) fat intake than the absolute fat variable is not unique to the twins and
would occur with any food component that is highly correlated with energy intake.
As shown in Table 4.7, the range between the top and bottom group is much smaller
for the energy-adjusted fat using the residual than the parent fat variable, but
calculating the energy-adjusted intake does not reduce the range to the same extent
fornutrientswhichhavea lowercorrelationwithenergysuchascholesterolorfibre.

Although the residual and density models both express fat intake relative to total
energy, they have different units and so, when used as continuous variables, the
change in risk per unit will also be different. However, these two ways of expressing
fat intake are highly correlated (Table 4.5, Fig. 4.4), they place virtually the same
individuals in the various fourths (Table 4.8) and therefore will yield virtually
identical relative risks when the fat intake data is categorised. Brown et al. (1994)
discuss the conditions under which the coefficient for fat from the partition model
will behigher or lower than the coefficient for fat fromthe standardmultiplemodel.
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Figure 4.6. Scatterplot of average daily energy and fat intake showing boundaries for fourths of

absolute fat intake (horizontal lines) and energy-adjusted (residual) fat intake (diagonal lines), twin

study

Micronutrients4.3.4

Only the standard multiple, residual and density models are relevant for non-
energy providing nutrients and food components. However, the partition model
may appear in a different context if micronutrients are subdivided. For example
many studies of vitamin A and lung cancer divided vitamin A intakes into that
derived from plants and preformed retinol to determine which of the two com-
ponents was important (Shekelle et al. 1981). This is clearly another version of the
partition model and it would be inappropriate to put total vitamin A intake into
the model in addition to the subcomponents.

Most of the micronutrients are not highly correlated with energy intake (Ta-
ble 4.5, Fig. 4.7). This means that the energy-specific range of intakes is similar
to the total population range and so converting vitamin C intake to a residual or
a density does not achieve much (Figs. 4.8 and 4.9). The difference between the
12.5th and 87.5th percentile for the absolute values and the residuals is 110.4 mg
and 96.6 mg respectively (Table 4.4). The same is true for any component that is
not highly correlated with energy intake. The fact that the range changes substan-
tially for cholesterol but not fibre in Table 4.7 shows that cholesterol has a stronger
correlation with energy intake than does fibre. When there is a low correlation with
energy, relative risks or odds ratios will be very similar for categorical analyses
from the standard multiple and residual models because the range over which they
are calculated is similar.

Choosing a Model4.3.5

In some respects, it would seem that there is little to choose among the models
for macronutrients because the same relative risks for a particular difference in fat
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Table 4.7. Data from other studies showing the range of intakes across fourths or fifths for different

ways of expressing nutrient intakes

Author Fifths
Nutrient and method Lowest 2 3 4 5

Willett et al. (1987) – data from 4 one-week diet records in 179 women
Total fat

Mean absolute (g) 47 59 68 75 98

Energy-adjusted (g)a 56 64 69 72 78

Mean % energy 32 36 39 41 44

Cholesterol
Mean absolute (mg) 204 262 325 345 436

Mean energy-adjusted (mg)a 216 268 301 337 423

Mean mg|1000 kcal 136 166 188 212 276

Brisson et al. (1989) – data from a food frequency questionnaire
Total fat

Median absolute (g) 56 78 97 132 –
Median energy-adjusted (g)a 78 88 96 106 –
Median % energy 33 36 38 40 –

Cholesterol
Median absolute (mg) 201 291 362 487 –
Median energy-adjusted (mg)a 249 312 357 442 –
Median mg|1000 kcal 127 144 157 181 –

Fibre
Median absolute (g) 4.3 6.5 8.2 11.1 –
Median energy-adjusted (g)a 4.8 6.7 8.2 10.4 –

a Each person’s residual has been added to the mean for the population for that nutrient

intake can be obtained, with more or less work, from Models (4.1), (4.2) and (4.3).
As regards micronutrients, most have such low correlations with energy that there
seems little reason to convert them to residuals or density. Clear, unambiguous
expression of the range of intake to which the cited relative risk relates is paramount
to allow others to use it.

As Kipnis et al. (1993) comment, the four models described in this section have
slightly different meanings and, although their coefficients can be converted into
each other, calculating the standard error is much easier if done in Model (4.1)
and so deciding on the main focus of interest should be a primary considera-
tion. There are several other factors that might influence the choice of model for
macronutrients. There is a trade-off between the two sets of models – on the one
hand, the standard multiple and partition models (set 1) examine a wider range
of intakes which increases the power of a study while on the other hand, reducing
the correlation between the variables in the model (as in set 2, the residual and
density models) also increases the power of the study. Brown et al. (1994) show
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Table 4.8. Cross classification of twins according to fourths of fat as % energy and fat as the residual,

twin study (from Mackerras (1996))

Residual
Density Low 2 3 High

High – – 1 48

3 – 2 46 1

2 6 41 2 –
Low 43 6 – –

Figure 4.7. Scatterplot of average daily energy and vitamin C intake, twin study

that the gain in power from reducing the correlation, and thus the standard error,
in the residual model is greater than the gain from the wider range of the standard
multiple model. Hence a nutrient may not be significant in a standard multiple
model when it is significant in the equivalent residual model both because the
residual model requires fewer parameters to be estimated and also because the
collinearity has been removed. The residual model is inconvenient, especially if
transformations are required to obtain the residuals. There is little to choose be-
tween the residual and density models from the variance inflation point of view
but they are on a different scale and this may be important. Although usually
discussed in the context of energy adjustment, the partition model is open to
misinterpretation as the relative risk for the primary nutrient variable is not en-
ergy independent but is the combined effect of increasing itself and energy on
risk.

There is an important assumption underlying both the relative intake methods
(residual anddensity). It is that there isno thresholdof effect in thenutrient-disease
risk relationship. If this cannot be assumed then both of these methods would be
poor choices. As mentioned above, the reason for controlling for energy intake is to
try to mimic the effects of an experiment when isoenergetic substitutions are made
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Figure 4.8. Scatterplot of average daily energy intake and energy-adjusted (residual) vitamin C intake,

twin study

Figure 4.9. Scatterplot of average daily energy intake and vitamin C density, twin study

in the diet and so change in weight is prevented. However, change in weight can
occur even when isoenergetic substitutions are made (Ballard-Barbash et al. 1999),
and given the likely correlations in the errors of dietary variables, it is interesting to
speculate on what other approaches to dealing with confounding from this source
may arise in future. In addition, the above discussion has assumed that there is
no error in the way that the nutrients are measured. Some studies indicate that
reported energy intakes do not agree well with objective measures (Subar et al.
2003) and so this may have important impacts on the results obtained. For a general
discussion of measurement errors see Chap. II.5 of this handbook.
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Organisation and Presentation of Data:
Implications for Meta-Analysis
and Reviews4.4

In a meta-analysis from literature (MAL), data that has been previously published
is combined to form a summary estimate whereas in a pooled analysis, i.e. in a meta
analysis with individual patient data (MAP), data are obtained from the authors
and reanalysed (cf. Chap. II.7 of this handbook). In a drug study, authors are gen-
erally very specific about the dosages used and so those doing meta-analysis can
easily determine if effects varied by dose and allow for this source of heterogeneity
in the analysis. Owing to the propensity of dietary studies to present relative risks
or odds ratios for categories rather than on a continuous scale, the difference in
‘dose’ is rarely apparent. This is an additional source of heterogeneity over and
beyond others that may arise from using dietary tools with different validity and re-
liability, variations in which important dietary and non-dietary confounders were
controlled for and other sources of bias that make meta-analysis of observational
studies less robust than meta-analysis of randomised controlled trials.

The problem of using different categorisations can be quite severe. For example,
Boyd et al. (1993) calculated a summary relative risk by combining the relative risk
or odds ratio of the top vs. bottom quantile from 23 case-control and cohort
studies of dietary fat and breast cancer. The categorisation in these studies was
halves (1 study), thirds (4 studies), fourths (11 studies), fifths (5 studies). One
study gave the odds ratio of the 90th vs. 10th centile, which are the medians of
the top vs. bottom fifth and the final study presented the odds ratio of a difference
of 24 g of fat. Even if the underlying dietary intakes and the association between
the nutrient and breast cancer were exactly the same in all 23 studies, there would

Table 4.9. Median point of fat and vitamin C intakes when divided into different quantile groups,

twin population data from 4-day weighed food records

Nutrient Category Midpoint of the category Range
division Lowest 2 3 4 5 lowest-top

category

Fat halves 69 103 – – – 34

(g|day) thirds 59 84 111 – – 52

fourths 56 75 94 127 – 71

fifths 54 72 84 99 132 78

Vitamin C halves 49 108 – – – 59

(mg|day) thirds 41 79 126 – – 85

fourths 31 64 90 140 – 109

fifths 29 55 80 99 154 125
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have been five different relative risks reported in these studies. To illustrate why,
Table 4.9 shows the medians for these categories for fat and vitamin C intake in the
twin group. (The means or medians show the range over which these five relative
risks were typically calculated, but the median is less influenced by extreme values
than the mean). The summary estimate in the meta-analysis would depend on the
number of studies that had used each categorisation method, and the number of
individuals in the study (if the inverse variance was used as the weighting factor in
the meta-analysis). However, if the underlying studies in the meta-analysis have
not reported the absolute intakes, then it is not possible to know what range of
intake the final result from the meta-analysis relates to. If they are all similar
populations, then it may be possible to make a guess from other information such
as national surveys in these populations.

Choice of Adjustment Model Affects Interpretation
of Results in Studies and Meta-Analyses 4.4.1

As there is no universal method to adjust for energy intake, and the most pop-
ular method has changed over time, reviews will inevitably include studies that
controlled for confounding by energy using a variety of methods.

Kushi et al. (1992) examined the relationshipbetween fat intakeandbreast cancer
in their cohort study and found that the increment in risk between the highest and
lowest fourth ranged from 13% to 38% depending on which energy adjustment
method was used, although none were statistically significant (Table 4.10). From
the foregoing discussion, it should be clear that these results are not surprising
but follow the pattern that would be predicted from understanding the models.
The range from the top and bottom fourths of absolute fat intake is about 70 g
(Tables 4.4 and 4.7) in a Western population and this is the range over which the
relative risks are calculated in the standard multiple model. However the range
of residual fourths is only 30 g and so it is expected that the relative risk is much
smaller in the residual model than the standard multiple model. As density and
residuals categorise individuals in virtually the same way, the almost identical
relative risks in these two models are expected. The fourths in the partition model
have the same range as the standard multiple model, but the relative risk for fat is
the combined effect of increasing energy and fat intakes whereas in the standard
multiple model, the relative risk for fat is the effect of replacing non-fat energy
with energy from fat. Whether these two relative risks would be different or the
same cannot be predicted ahead of time as it depends on the effects of the other
components of the diet.

Several different pooled analyses have been done examining the effect of fat on
breast cancer. The one combining case-control studies found a positive association
(Howe et al. 1990) and the one combining cohort studies found no association
(Hunter et al. 1996). This difference could be attributed to the intrinsic differences
in potential recall bias etc. between these two study designs, age groups included
or to differences in the non-dietary factors that were adjusted for. However, the two
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Table 4.10. Estimates of breast cancer risk for various nutrients and models for highest vs. lowest

group of intake in postmenopausal women (from Kushi et al. 1992) (RR = relative risk;

CI = confidence interval)

Method of adjusting fat intake RR for the highest 95% CI
For energy intake vs. lowest fourth of

total fat intake

Standard multiple 1.38 0.86–2.21

Partition 1.26 0.87–1.84

Residual 1.16 0.87–1.55

Density 1.13 0.84–1.51

overviews adjusted for energy differently and it is worth considering how much
this may have contributed to the difference in their findings.

Howeet al. (1990)used the standardmultiplemodelwith thenutrient intakedata
in a continuous form, but multiplied the odds ratios per gram|milligram by a factor
of 100 g representing the range between the 10–90th centiles in the Canadian study
in the analysis (Table 4.11). Therefore the odds ratio of 1.48 is for increasing fat
intake by 100 g regardless of whether this is from 100 g to 200 g per day or from
23 g to 123 g per day. However the odds ratio of 1.48 cannot yet be used to calculate
the benefit from a population-wide reduction in fat intake. First the likelihood of
achieving a reduction in 100 g must be determined. As shown in Tables 4.4 and 4.7,
it is impossible to reduce the population intake by an average of 100 g. The odds
ratio of 1.48 may be correct, but it is irrelevant for policy needs. Of more interest
would be the prevention perspective, e.g. an odds ratio relating to a 25 g reduction
in total fat intake. This can be easily calculated, as the meta-analysis used nutrient
data in a continuous form, and is 0.91 (from OR = 1.48 = e100x where x is the risk
associated with 1 g fat).

Table 4.11. Pooled analysis of 12 case-control studies investigating the risk of diet on breast cancer in

post-menopausal women (Howe et al. 1990) (OR = odds ratio)

Nutrient Unit for the OR OR p

Energy 8.4 MJa 1.4 < 0.001

Total fat, g 100 g 1.48 < 0.001

Dietary fibreb 20 g 0.83 0.002

Vitamin Cb 300 mg 0.63 < 0.001

a 8.4 MJ = 2000 kcal
b Controlled for total fat intake

If a 25 g decrease in average fat intake of women seems feasible in a population,
then a 9% reduction in breast cancer incidence would be predicted. Citing the 32%
reduction associated with the 100 g increment would be misleading if projecting
the effect of a health promotion campaign. Note that the results of Howe et al.
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(1990) can be quoted as showing that the odds ratio per 100 g increment is 1.48 or
that the odds ratio per 25 g increment is 1.10. Both statements are correct and are
consistent with each other. Apparent contradictions and confusions would arise if
the units of the calculations were omitted from the statement.

The pooled analysis of Hunter et al. (1996) used residualised fat intakes in the
analysis (Table 4.12) Although they do not report the fat intake data that relates
to their fifths, the relative risk of 1.05 for the top vs. bottom fifth probably relates
to a range of about 32 g (Tables 4.7 and 4.9). They also report the results from the
same data analysed as continuous variables: a relative risk of 1.02 for an increment
of 25 g fat intake. Thus it is clear that the difference between the results of the two
pooled analyses (Tables 4.11 and 4.12) is more apparent than real. When converted
to the same units – the relative risk for a difference of 25 g fat intake – much of the
discrepancy disappears. Similarly the odds ratio of 1.4 for a difference of 2000 kcal
(Howe et al. 1990, Table 4.11) reduces to 1.02 for a 100 kcal difference and this is
much closer to the result of Hunter et al. (1996, Table 4.12). When describing studies
for others, it is important to ensure that the range that a result relates to is clearly
expressed, and if policy makers are the audience, that the range is relevant given
the current intake of population.

Table 4.12. Pooled analysis of 7 cohort studies investigating the risk of diet on breast cancer (Hunter

et al. 1996) (CI = confidence interval)

Fat intake (residualised) Energy intake
Relative risk 95% CI Relative risk 95% CI

As quintiles
Lowest referent – referent –
2 1.01 0.89–1.14 1.01 0.91–1.12

3 1.12 1.01–1.25 1.13 1.02–1.25

4 1.07 0.96–1.19 1.04 0.92–1.17

Highest 1.05 0.94–1.16 1.11 0.99–1.25

Continuous data
Per 25 g 1.02 0.94–1.11 – –
Per 420 kJ (100 kcal) – – 1.01 0.99–1.02

Nutritional Epidemiology
in Public Health Practice 4.5

The foregoing sections have focused on methods and their applications to research
studies investigating the effects of dietary components on the risk of disease. In
this section, we make some comments on the consequences of within-person
variation in the context of using nutritional epidemiological methods for descrip-
tive epidemiology and public health nutrition practice rather than research. In
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particular, we focus on national dietary surveys and the assessment of popu-
lation intakes with respect to external references because there have been sev-
eral important changes in methodological approach and terminology in recent
years.

Assessing the Usual Intake of a Population4.5.1

With the notable exception of the United Kingdom, countries that have conducted
national surveys investigating dietary intake have generally collected one day of
intake from participants, usually as a 24-hour recall but occasionally as a 1-day
record. In the United Kingdom, 4–7 days of records have been collected in all
national diet and nutrition surveys (recent cycle began in 1986 with adults, and
has covered all age groups, up to repeating adults in 2002).

The external references (see below) used to assess diet are based on the as-
sumption that usual intake has been assessed in the individuals participating in
the survey. Hence, if national survey data which collected a single day of infor-
mation from each individual are compared to the reference, the wrong prevalence
will be obtained. If the interest is in describing the proportion of the population
with low intakes, then using single day data will overestimate the true preva-
lence when the population average lies above the cut-off (cut-off A in Fig. 4.10)
but will underestimate the true prevalence if the population average lies below
the cut-off (cut-off B in Fig. 4.10). Conversely, if the interest is in describing the
proportion with high intakes, then single day data will underestimate and over-
estimate the true prevalences respectively. The extent of the error will depend
on the location of the cut-off with respect to the population average and also
the ratio of the standard deviations of the single-day and usual intake distri-
butions. This ratio is lower for those nutrients found in a wide range of foods
which are eaten every day (e.g. macronutrients such as protein) and highest for
those nutrients which are found in a small range of foods where the alternatives
have different nutrient contents (e.g. the vitamin A content of vegetables varies
enormously).

There are two alternative ways of dealing with this problem. One is to take the
route used in the UK and obtain multiple days of intakes from all participants in
a survey. This clearly has large consequences for the cost, logistical complexity
and respondent burden associated with the survey. The second way is to obtain
an estimate of the ratio of the standard deviations of the two distributions and
to correct the distribution obtained on all participants using the ratio (Sempos
et al. 1991). As dietary intakes and patterns vary with age and sex, it would be
necessary to do this work on all important sub-groups in the population and not
to obtain one ratio, in for example adults, to apply to all other groups. This method
is obviously cheaper. Its main drawback is that it may limit some other uses of the
data if the survey has multiple purposes.

One-wayanalysis of varianceallowing for randomeffects and repeatedmeasures
can be used to separate the between-person variance (sb) from the total variance
(stotal) in the sub-sample with multiple measures (Mackerras 1998). Then the ratio
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Figure 4.10. The distribution of the usual intake of individuals has a narrower standard deviation

than the intake on a single day. When cut-offs (e.g. A or B) are based on the assumption that usual

intake has been measured, the incorrect prevalence will be obtained if single day data is used

can be used to adjust each individual’s single-day value (xi) in the main survey
relative to the sample mean (X) (Sempos et al. 1991; Rutishauser 2000):

adjusted value = X +
(
xi − X

) (
sb|stotal

)
.

Depending on the nutrient, the 10–90th centile range of the corrected distribu-
tion could be as little as 66% of the 10–90th centile range of the uncorrected
distribution. It is important to note that although the corrected population dis-
tribution was created by applying a factor to each individual’s datapoint, the
resulting values for each individual cannot be interpreted as each individual’s true
usual intake (Guenther et al. 1997; Murphy 2003). They are only correct on av-
erage and this is sufficient to generate the corrected population distribution. If
an estimate of usual intake is desired for each individual (for addressing other
purposes of the survey) then multiple days of intake data must be collected from
each individual.

Just as nutrient intake varies from day to day, so too does the intake of foods
and non-nutrient food components. Given various current recommendations to
increase intake of foods such as fruit and vegetables it is important for dietary
surveys that collected single-day data to correct the standard deviation of foods or
food groups using the same approaches. Although there are a number of studies
describing the extent of the variability of nutrient intakes (e.g. Beaton et al. 1979,
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1983; Nelson et al. 1989), there are few reports supplying the same information for
food intakes (Palaniappan et al. 2003).

References for Assessing Dietary Intake in Populations4.5.2

For many years, ‘recommended’ intakes of nutrients have been promulgated by
various national bodies. However, the correct use of these figures has never been
very clear. This situation is probably partly related to a more general problem that
diagnostic criteria for assessing individuals are often misinterpreted as indicators
for population surveillance, or vice versa, when they are based on the same under-
lying measurements or data. A typical use of national dietary surveys is to compare
the results to external references such as ‘recommended intakes’.

Firstly, it is important to realise that all committees agree that the ‘recommend-
ed’ figures they produce are expressed as daily amounts for convenience only. All
committees agree that it is long-term diet that is important and that the ‘recom-
mended’ figures should never be compared to a single day of intake for either
populations or individuals. As shown in Fig. 4.10, the incorrect prevalences will
be found if they are compared to single-day data. The following discussion of
the second problem assumes that usual intake distributions are available for the
population.

Until about 10 years ago, most countries set only one type of dietary reference
figure for each age-sex group for each nutrient. At present this figure is called
the Reference Nutrient Intake (RNI) in the UK, the Population Reference Intake
in the European Union, the Recommended Dietary Allowance in the USA and
Canada and the Recommended Dietary Intake in Australia (Department of Health
1991; The Scientific Committee for Food 1993; Food and Nutrition Board 2000;
Truswell et al. 1990) and will be referred to here as the RNI. The RNI is gener-
ally set well above the average requirement so that, if everyone ate this amount,
there would be a low probability of deficiency in the population. Sometimes there
was enough information to set the RNI at 2 standard deviations above the Es-
timated Average Requirement (EAR). Often the committees just added a large
safety margin. As the margin added varied by nutrient, it was not possible to
express the RNI amount as a constant multiple of the underlying average require-
ment.

The UK was the first country to set multiple values when it revised its dietary
references (Department of Health 1991) and specified the location of the EAR.
The European Union then followed suit, naming its equivalent figures Average
Requirements (The Scientific Committee for Food 1993) and more recently the
USA and Canada have also described the EAR that their recommended dietary
allowances were derived from (Food and Nutrition Board 2000).

Advising individuals to have intakes that meet the RNI is sensible because this
advice carries a low probability of suggesting inadequate intakes for that person.
However, could the RNI be used to assess the adequacy of population intakes?
In earlier times when the EAR was not specified, two methods were used quite
commonly. They were to determine whether the mean intake is equal to or above
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the RNI or to determine the proportion falling below the RNI. Neither of these is
satisfactory (Beaton 1999).

Because the standard deviation of the intake distribution is generally much
wider than the standard deviation of the requirement distribution (Beaton 1999),
many people might have intakes below their requirements when the median popu-
lation intake lies on theRNI (RNI(a) inScenario 1, Fig. 4.11). The extent towhich this
happens depends on how the RNIs were set in the past. If they were set by adding
a safety margin that was larger than twice the SDrequirement, then the greater margin,
the less the underestimation of the prevalence of inadequate intakes (RNI(b) in
Scenario 1, Fig. 4.11). It is true that, if everyone has an intake above the RNI, the
prevalence of inadequate intakes will be essentially 0 (Scenario 2, Fig. 4.11). How-
ever, many people will be consuming much more than their personal requirements.
It is clear that there could be some overlap between the two distributions that is still

Figure 4.11. Illustration of how the RNI has been used in the past to assess population intakes,

assuming two different RNIs that had been set in different ways (adapted from Beaton (1999))
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consistent with a low probability of inadequate intakes. A third method that has
been used in the past is to calculate the proportion of the population with intakes
below 70% of the RNI on the assumption that the requirement distribution had
a coefficient of variation of 20%. As this was rarely the case, this approach would
overestimate the true prevalence for some nutrients and underestimate the true
prevalence for other nutrients. Consequently, this approach would not necessarily
reveal which nutrient is in shortest supply in the population. So the question is
‘How much overlap can there be between the requirement and intake distributions
before the prevalence of inadequate intakes is unacceptably high?’. A method for
multiplying the two probability distributions was described in 1986 (Subcommittee
on Criteria for Dietary Evaluation 1986) and the more powerful computers of today
can do the calculations more easily. However, if the requirement distribution is
symmetrical, and the intake distribution is approximately normal, then a short-cut
method can be used: if the intake mean is at least EAR + 2 × SDintake (with 2 being
approximately the 97.5 quantile of a standard normal distribution) higher than
the EAR, then the prevalence of inadequate intakes will be 2.5% or less (Fig. 4.12).
In other words, if the assumptions are met, the proportion below the EAR is the
proportion with inadequate intakes, although no definite statements can be made
about which individuals have intakes below the EAR. Other multiples of the SDintake

could be used if other criteria are desired. Note that the standard deviation in this
formula is for the intake distribution, not the requirement distribution and the
reference point is the EAR and not the RNI. The details of this approach and fur-
ther information on other situations, such as when the requirement distribution
is asymmetrical, can be found elsewhere (Subcommittee on Criteria for Dietary
Evaluation 1986; Beaton 1999; Food and Nutrition Board 2000).

As a final note, the illustration above has assumed that intake distributions are
normal. If these must be transformed, then care needs to be taken to apply the

Figure 4.12. If the mean population intake is 2 × SDintake above the EAR then the prevalence of

inadequate intakes in the population is 2.5%
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correction factors appropriately. The above comments about the RNI do not apply
to energy, because the energy recommendations are set at the EAR and not at
two SD above the EAR. It is also important to examine how words are used in
each country, because the same word may be used to signify different concepts in
different locations, and to realise that definitions might vary within a document.
Values for the EAR and RNI may vary between countries, either because they have
been based on different indicators of nutritional status or based on a different
range of literature or because they have been determined as mg|kg and the mean
weight of the population varies.

Impact of Under-Reporting of Intake 4.5.3

Because people tend to underestimate their intakes by most dietary methods (Black
et al. 1991), the data collected in a national survey will tend to underestimate
total intake. For example, when the criteria of Goldberg et al. (1991) for assessing
a 24-hour intake were applied to the 1995 Australian survey, 11.9% of men and
20.6% of adult women had energy intakes that were implausible. Compared to the
total population surveyed, those with plausible intakes had higher intakes of all
nutrients (Table 4.13). Clearly leaving those with implausible intakes in the data
can affect the results of the analysis, especially for some of the minerals. Therefore
analyses of national surveys that have not excluded these individuals would tend to
overestimate theprevalenceof low intakesofmostnutrients.However, oneproblem
with simply excluding them is that people may underreport some foods differently
from others. If energy containing foods are under-reported to a greater extent
than low-energy foods such as fruit and vegetables, then excluding the implausible
reporters may incorrectly inflate intakes of nutrients such as vitamins A and C,
and to some extent folate and fibre. A further problem is that equivalent criteria
for defining those with implausibly high reports is not available.

Consequences of Within-Person Variability
in Other Areas of Public Health Nutrition Practice 4.5.4

As noted above, intra-individual variation in dietary measures is not due to the
subjective nature of the measure. The error related to reporting or measurement
occurs in addition to the underlying instability of the parameter being measured.
Many ‘objective’measuresalsovaryevery time theyaremeasured.Bloodpressure is
a notable example – it can vary from minute to minute. Even biochemical measures
also exhibit within-person variability. Some parameters have a regular variation
(e.g. diurnal variation) in addition to random variation. The particular problems
with dietary measures occur because the within-person variance is larger, generally
much larger, than the between-person variance. However, the observed prevalence
can be affected even for parameters where the within-person variance is smaller
than the between-person variance. Looker et al. (1990) found that the prevalence
of impaired iron status (based on mean corpuscular volume, transferrin saturation
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Table 4.13. Comparison of median nutrient intakes in the total survey sample and persons with

plausible EI|BMR ratios, adults 19 years and older, by sex. 1995 National Nutrition Survey, Australia

(ABS & HEALTH 1998)

Nutrient Men Women
Total Plausiblea Total Plausiblea

Energy (kJ) 10,377 10,997 7083 7824

Protein (g) 100.1 106.4 69.5 76.3

Total fat (g) 89.8 96.4 61.6 70.3

Dietary fibre (g) 23.8 25.1 18.9 20.5

Vitamin A (ug retinol equivalents) 941 1012.9 753.6 833.0

Thiamin (mg) 1.7 1.8 1.2 1.3

Riboflavin (mg) 2.0 2.2 1.6 1.7

Niacin equivalents (mg) 47.1 49.8 32.3 35.1

Folate (mg) 285.3 299.6 216.7 232.6

Vitamin C (mg) 102.9 110.2 85.4 92.2

Calcium (mg) 827.3 891.4 663.1 737.6

Magnesium (mg) 360.3 380.8 266.9 291.1

Iron (mg) 15.2 16.1 11.1 12.2

Zinc (mg) 12.8 13.6 8.7 9.6

a Plausible intakes: 24-hour intakes with an energy intake|basal metabolic rate ratio of 0.9 or
greater are above the lower bound of the 95% confidence interval in a weight stable individual
undertaking light activity (Goldberg et al. 1991)

and erythrocyte protoporphyrin) was 10% in a national survey using the single
measure data. This was reduced to 4% when corrected for within-person variation.

The within-person variation is why many parameters are measured more than
once before a diagnosis and treatment decision can be made in the clinical setting.
Irwig et al. (1991) show that the interpretation of a single measure of cholesterol
level in an client depends on knowing the underlying population distribution, and
that single measures cannot be used to assess whether the client’s true underlying
average has changed since the previous measurement. These observations can be
generalised to other characteristics as well.

Program evaluation is another area where taking a single measure may yield
misleading results because of within-person variability and measurement error.
People may be eligible to enter a program because their level of a characteristic
is below a cut-off. In this case, the mean level of the characteristic in the eligible
group will be higher when it is measured again than it was at baseline even if the
program has no effect. Similarly, if people are selected because their characteristic
is above a cut-off, then the group mean will be lower on the second occasion,
even if the program is ineffective. In both cases, the mean value of the second
measurement is closer to the mean in the total unselected population than was
the mean of the first measurement. This effect occurs because of a statistical
phenomenon called regression to the mean (Davis 1976; Newell and Simpson 1990;
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Bland and Altman 1994). If the evaluation uses a randomised control design, then
the effects of regression to the mean and other explanations such as seasonal
or secular trends occur in the control group and so they can be excluded by
comparing the follow-up level in the intervention group to the follow-up level in
the control group instead of comparing the follow-up to the baseline levels in the
intervention group. Because randomised studies are perceived as very complex,
it may be tempting to do a non-randomised study and use ineligible people (i.e.
those whose values did not meet the criterion for eligibility) as a control group
but this will not allow the regression to the mean effect to be detected. Sometimes
a specific sub-group is not selected at the outset but the total group may be divided
up in the analyses and authors may report that those with the most extreme
values at baseline benefited most from the intervention. If there is no randomised
control arm, this sort of finding is a warning that the results being reported may
be due to regression to the mean rather than the intervention (Vickers and Altman
2001).

Whether a national survey provides a useful source of information for studying
diet disease relationships depends on exactly how it is carried out. Even though
it may be possible to demonstrate associations, national surveys which assess
dietary intake and outcome markers such as blood pressure, haemoglobin levels
etc. are cross-sectional surveys, even if the information is collected over a few
days, and this inevitably limits causal inference. It is not possible to determine
the temporal direction between, for example, the concentration of blood fat or
blood pressure and consumption of fat type or sodium. Sometimes, a population
involved in a national survey may be followed up beyond the survey. Even though
this converts a cross-sectional survey into a cohort study, the extent of the analysis
would depend on the initial measurements obtained. If only a single 24-hour recall
was obtained, then correlation and regression coefficients will be attenuated (Liu
et al. 1978; Sempos et al. 1985) as previously described.

Conclusions 4.6

There are few health outcomes for which nutrition does not play either a direct
or indirect role in causation, and therefore in disease prevention. Increasingly
there are in all countries a complex mix of problems of over and undernutrition
occurring, often stratified by education or economic group. Some of these nutrition
related problems are clear, and simply require the political will and resources to be
dealt with. Others are more complex and the correct way to solve the problem may
not be known or obvious. This is where nutritional epidemiology has a critical
role to play. In order to improve and maintain public health, it is important to have
a strong evidence-base to guide action. This is particularly the case where there
are vested interests that may not want the dietary patterns to change. In order to
justify and support such changes it is essential that the evidence supports policy.
The methods of nutritional epidemiology guide that evidence-base.
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The major specific concerns in nutritional epidemiology are how to define and
measure with required accuracy the relevant measure of exposure, free from bias.
Because diet and other behaviours are complex and interrelated, it is important,
both in the design and interpretation of studies, to understand how this complexity
may affect the results of the study. These issues can not simply be resolved by
statistical adjustment, it is essential to have an understanding of the underlying
biology.

Because most studies are of limited statistical power there is a growing ten-
dency to undertake meta-analyses using pooled data. Before data are pooled it is
important to assess whether this is logical and a fair reflection of the underlying
differences between studies. This is more than assessing the heterogeneity using
a statistical technique. It is important to establish whether the differences in dietary
assessment methods and ways of presenting data allow such pooling. The range
of exposure in the referent category, the way data are sub-divided into thirds or
fourths, will all affect the size of the estimate of risk in each study.
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Introduction 5.1

Reproductive Epidemiology: Reading Instructions 5.1.1

In writing this chapter we assumed that the reader is familiar with the basic con-
cepts in epidemiology. You will not find any overview of different designs, measure
of disease occurrence, standardisations, other ways of adjusting for confounders,
or any general discussion on bias, confounding or on measuring effects. If you are
not familiar with these topics you should start by reading other parts of the book
or turn to one of the many fine available textbooks.

Our intent is to point out the problems and methods that are of particular
interest in reproductive epidemiology and the areas that are perhaps peculiar to
this field of epidemiology.

We focus upon methodology and, for the most part, we avoid reporting on any
‘state of the art’ overview on what is known about specific exposures or endpoints.
Such reviews are soon outdated and, furthermore, space does not permit them.

By focusing upon some of the aspects that set reproductive epidemiology some-
what apart from other areas of epidemiology, we hope to alert readers to the
problems and options that this field presents and to illustrate how important it is
to develop a highly critical outlook. Research in reproductive epidemiology, like
research in general, is not to prove or confirm anything, but rather to question and
make critical appraises.

We use references to illustrate specific problems of methodological interest. We
use more of our own work than could ever be justified on the basis of our modest
contribution to the field. Our excuse is that these references reflect our source
of information for learning about the many problems inherent to reproductive
epidemiology. We cannot rule out that they also reflect our inflated egos. Most of
the references we have selected present information of methodological relevance.
We also provide references to full textbooks in reproductive epidemiology.

We do not in any way claim to provide a complete list of problems, which you
should be aware of as a student of reproductive epidemiology. We do not know
all these problems ourselves: some are yet to be described and some have not yet
caught our attention. Even describing all the specific problems that we are aware
of would require more space than you, the reader, would like us to have. What we
have tried to do is to describe the most important problems as we see them. Our
choice is a subjective one, reflecting our experience.

Reproductive health was defined by the WHO at the Cairo conference in 1994
as:

… a state of complete physical, mental and social well-being and not merely
the absence of disease or infirmity, in all matters relating to the reproductive
system and its functions and processes.

Reproductive Health, therefore, implies that people are able to have a satis-
fying and safe sex life and that they have the capability to reproduce and the
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freedom to decide if, when, and how often to do so. It also includes sexual
health, the purpose of which is the enhancement of life and personal relation-
ships, and not merely counselling and care related to reproductive and sexually
transmitted diseases.

We do not intend to cover all the possible topics related to this definition,
nor do we intend to provide research methods for studying well-being or even
happiness. We will limit our focus to the more traditional domain of epidemiology,
namely to the studies of determinants of diseases directly related to reproduction,
as long as these studies can be applied to human populations. Although many
diseases will have an effect on procreation through biological, psychological or
social mechanisms, we will restrict ourselves to studies dealing with fecundity,
pregnancy, birth, and early markers of child health. Many of the diseases we
describe only manifest themselves in the time period of reproduction; such as
subfecundity, pre-eclampsia and, of course, all the diseases related to the child.

Our experience mainly stems from research in Europe and the USA, and we do
not cover research problems of particular relevance to developing countries. Since
reproductive health problems are usually larger in these countries, we are aware
that this is a major shortcoming, and our only excuse is our limited experience in
this field. We do want to stress, however, that research in developing parts of the
world should also be based upon sound methods. We do not believe in low quality
research anywhere, but we accept that circumstances may set limitations for what
can be done.

Many diseases of the reproductive organs, like cancer or infections, may have an
effect on reproduction if the diseases appear before or during reproductive age. In
most cases, studying the determinants of these diseases will be similar to studying
determinants of other diseases and, as such, they are not pertinent to the analysis
in this chapter.

Our aim is not to provide a cookbook for research in reproductive health. Our
aim is only to make the reader aware of the aspects he or she should be concerned
about. Associations come in many shapes, and they are not always what they
pretend to be. ‘Be careful’ is the main (and perhaps the only) message we want to
convey, and if you are happy with that you could stop here – if you want to know
why you should be careful, please go on reading. We expect you to disagree on
several occasions. Remember, you may be right and we may be wrong.

Reproductive Health –
Specific Epidemiologic Research Problems5.1.2

Unlike epidemiologists studying cancer and chronic diseases, reproductive epi-
demiologists deal with an area that has been shaped by evolution. Selective forces
operate before and during pregnancy, even in the highly medicalized industrialized
world; keeping this feature in mind when dealing with reproductive epidemiology
is important when trying to understand events that occur in pregnancy.
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Most epidemiologists deal with identifying determinants of diseases, which
might operate over time spans of varying length. The induction periods may
be very short (e.g. is a migraine attack triggered by a given nutritional compo-
nent?) or may span many years (e.g. does prenatal exposure to smoking affect
semen quality?) In reproductive health we study determinants of factors that
play a role for successful reproduction. Sometimes this involves studies that
span generations, and many studies address couples, or families, rather than
individuals. Unlike other fields of epidemiology, the individuals studied in re-
productive epidemiology are often not ill in the common meaning of the word.
Women who have repeated abortions or give birth to dead or severely malformed
children are usually healthy themselves, and so are their partners. Similarly,
even women who become severely ill during pregnancy, for instance with pre-
eclampsia, often fully recover if the pregnancy has been interrupted in time. Their
risk of experiencing pre-eclampsia in their next pregnancy is, however, relatively
high.

In many cases, reproductive epidemiology deals with hidden phenomena that
may represent serious disorders, which, however, may never come to light if
a woman does not become pregnant. Furthermore, many women experience sev-
eral pregnancies in their lifetime, so that a pregnancy rather than an individual
will be the unit of analysis. All these elements intrinsic to reproduction provide
interesting design options and challenging methodological problems, and they set
reproductive epidemiology somewhat apart from other areas of epidemiology.

Successful reproduction in evolutionary terms means that the parents’ genes
are transferred to viable offspring, who will, eventually, produce offspring of their
own. Part of this process is subject to epidemiologic observation. Although the
maternal and paternal evolutionary interests are similar as far as gene transmission
is concerned, the mother plays an additional role. She provides not only half of
the foetal genes, but also the environment in which the foetus develops and is
nourished over the duration of pregnancy and, in many cases, also for a period
of time after birth (through breastfeeding). Pregnancy can be life threatening for
the mother, and it is estimated that in Africa the lifetime risk for a woman to
die of pregnancy-related causes is 1 in 16, while in more developed countries this
figure is 1 in 1800 or even lower (AbouZahr 1998). Situations may thus occur when
a pregnancy, which is too costly, is interrupted for the sake of the mother’s chance
of reproducing again (Haig 1993). The uterine environment’s role is therefore of
great importance, but it is often difficult to disentangle its effects from those that
are genetically mediated by the mother. Sometimes it is the interaction between
foetal and maternal genes that may trigger adverse outcomes, such as recurrent
spontaneous abortions. Reproductive epidemiology has acquired a powerful tool
with the new genetic technologies. Using these tools will, hopefully, provide new
important clues on the complex events taking place from conception to birth and
onwards.

Most of the time, we can only obtain data on deliveries or abortions (and usually
only on abortions of clinically recognised pregnancies, thus missing the early ones)
and most of the processes leading to these events are hidden or altogether absent
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from the data we have access to. We thus have to take into consideration what
potentials for errors this entails.

The time period of reproduction is short within a life span in most countries,
and it is under intensive surveillance. What we are able to study is often the
causal links that remain after health care providers have tried to prevent negative
outcomes. Data on births and, sometimes, spontaneous abortions are routinely
collected in several countries at national levels following standardised procedures,
therefore allowing comparisons over time and place on some occasions. In some
countries, at least part of the data are computerised and thus of relatively easy
access to epidemiologists. Most countries produce reports of some indicators of
reproductive health at regular intervals.

Reproductive health, at least the part associated with pregnancy and childbirth,
covers events that are often frequent and serious, such as infertility, spontaneous
abortions, preterm birth, and pre-eclampsia. Events that we would rather prevent
than treat, and most are willing to accept that prevention must be based upon
research of good quality. We not only need to identify determinants of reproductive
failures connected to lifestyle, occupation, environment, diet, or medication, but
also to find out how antenatal care (ANC) can be best organized. Antenatal care is,
in many countries, the most expensive part of preventive care within the health care
system. At present, only a limited part of ANC is evidence-based and much more
research is still needed, especially in countries where resources are sparse. Much
of this documentation has to be time- and place-specific. Evidence on health care
technology cannot just be transferred from one country to another. But many of
the findings related to causation will apply to most populations. Treatment effects
may also be non-particularistic in some situations.

By developing more and more efficient contraceptive methods and, especially,
by producing more and more sophisticated methods for treating infertility, we are
increasingly interfering with the forces of evolution. We should make it one of the
priorities of reproductive epidemiology to study whether and to what extent these
factors will affect future generations. Reproduction is, in many ways, a playground
for new technologies that are being introduced without much concern for the long-
term consequences. Children of in vitro fertilization (IVF) are still too young for
us to study whether they may suffer any long-term health consequence associated
with the mode of their conception. Interventions like intracytoplasmic sperm
injection (ICSI) may undermine the very core of the natural selective forces behind
reproduction. At present we do not know if ICSI is a safe assisted reproductive
technology (Ludwig and Diedrich 2002), although early reports are reassuring to
some extent.

Trying to solve health problems for some may introduce health problems for
others, especially in reproductive health related to treatment of infertility. Some of
thosehealthproblemsmaynever come to theattentionof the treatingphysicianand
must be disentangled by research. In relation to this and many other technologies,
epidemiologists have an important role to play in monitoring disease data over
time in the population. Reproductive health should be an important part of any
health surveillance system.
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It is peculiar to reproduction that during pregnancy the mother provides most
of the exposures that may influence the future health of the unborn child. The
foetus is only partly protected by the placental barrier. Many toxic substances pass
this barrier and the developing foetus will often be less able than the mother to
metabolise these substances, especially early in pregnancy. This is e.g. the case
with alcohol, caffeine, and several drugs.

Thus, another important feature of reproductive epidemiology is that not just
one individual is involved in the process under study, but three: the mother, the
father (through foetal genes and, possibly, substances carried by semen) (Savitz et
al. 1994), and the foetus itself through its continuing interaction with the mother
during the pregnancy period. When studying reproductive outcomes it is, in many
cases, insufficient to focus only on the mother, although she usually represents the
most accessible player.

It is now known that during pregnancy and delivery there is a two-way traffic
of cells between the mother and the foetus, and that these cells can persist in
the bloodstream for decades (Bianchi et al. 1996). This phenomenon, called ‘mi-
crochimerism’, is a quickly developing area of research, as it is suspected that these
cells may interfere with the immune system and thus contribute to the aetiology of
several diseases, especially those of autoimmune origin (Bianchi 2000; Whitacre
et al. 1999). That pregnancy itself, or phenomena related to pregnancy, might have
something to do with the aetiology of these diseases is suggested by the fact that
females are more subject to autoimmune diseases than males, although these dif-
ferences may also depend on immunological, hormonal, or other factors that are
related to sex but not specifically to pregnancy (Whitacre et al. 1999; Whitacre
2001). Changes in physiological status during pregnancy may have health implica-
tions for the mother as well as for the child, and the growing foetus totally depends
upon maternal supply of nutrition and oxygen. Changes in this supply may ‘repro-
gramme’ organ development with possible long-term health consequences (Barker
1994).

Pregnancies as Repeated Events:
Problems and Design Options 5.1.3

Each pregnancy provides a new set of observations and, in populations with
a high fertility, a woman may be subject to repeated studies of exposures of
interest for the outcome of each pregnancy. A pregnancy is a new event that,
at the same time, is correlated with the previous pregnancy|ies. Most reproductive
failures (such as spontaneous abortions, preterm delivery, pre-eclampsia, etc.)
have a tendency to repeat themselves because time-stable causes (e.g. genes or
part of the maternal environment) are present during all events. However, it is
not clear how this aspect should be taken into consideration when analysing
data.

In animal studies, the variance within a litter and between litters is dealt with
separately, probably even successfully, in the statistical analysis, but the situation is
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different for humans. Human births are usually sequential, except for multifoetal
pregnancies, which, however, are relatively rare and often not comparable to single
pregnancies. Methods have been developed to take into account the statistical de-
pendence resulting from women contributing more than one pregnancy (Hoffman
et al. 2001), but we have limited confidence in these methods (Olsen and Andersen
1998).

Each new pregnancy has a number of features in common with the previous
pregnancy, and a number of features that are unique to it. In some situations,
each new pregnancy is an independent event and should be treated as such, but
the contrary argument can be made as well. However, even if the dependency
between pregnancies were to be modelled in the analysis, it is not clear whether
doing this would produce a different type of bias, because the statistical model
will not take selective change in behaviours related to pregnancy history into
consideration.Pregnancies are, inmanycases, plannedasa functionof theoutcome
of a previous pregnancy, and this aspect can hardly be addressed by methods aimed
at accounting for the statistical dependency between pregnancies. An unwanted
abortion or a stillbirth may be replaced very shortly with a new pregnancy in
order to have the desired child. A surviving child with severe handicaps may delay
or stop further childbearing, while parents of a child that dies with the same
handicap may attempt a new pregnancy soon. Some exposures will be avoided
as a result of how previous pregnancy ended. A mother who is a heavy smoker
and had a child with a very low birth weight may well give up smoking when
she becomes pregnant again, even in situations where smoking was not the only
or even the major cause of the low birth weight. If smoking was not the only
cause of low birth weight, she may then become a non-smoking pregnant woman
with a high a-priori risk of getting a child with a low birth weight. How should
that be addressed in the statistical analysis? Or how would we be able to design
a proper counterfactual comparison? This type of confounding by the risk that
triggers a change in exposure is very difficult to rule out, and it is a common
and often neglected problem. A valid analytical solution may be to study first
pregnancies only (Olsen 1994), but this approach may prove to be too conservative
in the sense that it removes available information and will thus reduce statistical
power. Furthermore, there is heterogeneity on outcomes depending on parity,
some of which may be due to selection (not all women will be able – or want –
to have a new pregnancy), others probably depend on physiology or on changes
in the uterine environment brought about by the previous pregnancy|ies. A first
pregnancy modifies the uterine arteries in such a way that placentation is facilitated
in the successive pregnancies.

When studying the effect of a given determinant on an adverse reproductive
outcome, one may be tempted to stratify on (or adjust for) a previous occurrence
of that outcome (e.g. spontaneous abortion). Such a temptation should be resisted
if the intent is to study aetiology, since adjustment for any factor that is caused in
part by the exposure under study and is also correlated with the outcome will likely
bias the estimate (Weinberg 1993). If the intent is purely descriptive, however, this
approach is acceptable.
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Beyond the difficulties and traps caused by the fact that women have more than
one pregnancy, however, this feature also provides reproductive epidemiologists
with a powerful tool that is unique to this discipline. Many reproductive outcomes
tend to recur in different pregnancies of the same woman, and this provides the op-
portunity to examine whether some putative factors play a role in the aetiology of
a given event by studying women who had the outcome in question in a pregnancy
and estimating whether their recurrence risk changes accordingly as a function of
a change in a given factor in between the two pregnancies (Olsen et al. 1997). This
design, which we called ‘the computerized square dance design’, makes it possible
to estimate whether the paternal genome plays a role by studying maternal half
siblings. It can be applied to reproductive failures as well as disorders occurring in
early childhood, such as febrile seizures (Vestergaard et al. 2002). One of the ad-
vantages of this approach is that a great deal of confounding is adjusted for by using
the woman as her own control. One aspect that has to be taken into consideration
is that time plays a role, and thus the interval between pregnancies may have to be
taken into account, especially when studying the effect of changing partners, since
women who change partner tend to have a much longer interpregnancy interval
(Basso et al. 2001; Skjaerven et al. 2002).

The Problem of Incomplete Denominators
Ideally, we would like to be able to study the outcome of all conceptions that take
place in a given population in a given time period, in order to be able to observe
how many end in very early losses, how was the karyotype of the lost foetuses,
their sex ratio, etc. Less ideally, we would like to be able to obtain information on
all conceptions surviving the first 8 weeks of gestation, because missing them may
lead to serious bias in studies examining specific exposures. In many instances,
reproductive epidemiologists work with incomplete denominators.

Spontaneous Abortions
A frequent outcome of a pregnancy, spontaneous abortion, is probably to a large
extent part of nature’s own quality control system (Quenby et al. 2002). Some spon-
taneous abortions are, however, man-made and could in principle be avoided if
their causes were identified. Some abortions occur in the pre-clinical phase, before
the pregnancy is recognised, while others occur after the pregnancy is recognised.
The timing of observation thus becomes of crucial importance.

The best approach would be to start observation before conception, but this re-
quires access to women who plan their pregnancies (Wilcox et al. 1988). Pregnancy
planners are likely to include an excess of subfecund women (women with a low
probability per cycle of conceiving), as women who become pregnant as a result of
contraceptive failures are less often subfecund. Participating women may thus be
at higher risk of a number of adverse outcomes, since subfecundity is correlated
with several reproductive failures (Basso et al. 2003).

Currently, few investigators have attempted to detect pregnancies by using
biomarkers (usually hCG, human chorionic gonadotropin). These studies (Wilcox
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et al. 1988; Bonde et al. 1998a, b) do not tell us how frequent abortions re-
ally are, but they suggest that at least 30% of conceptions end as spontaneous
abortions and that a little more than half of these occur in the pre-clinical
phase.

Anexposure that onlydelays abortionswithout increasing their incidencewould
appear as a risk factor in a study based exclusively upon recognised pregnancies.
Suchanexposuremaymoveanabortion fromthepreclinicalphase to thedetectable
phase. Exposures that advance the time of abortions would appear to prevent the
occurrence of abortions. Such an exposure would produce a low abortion rate
because abortions now would occur in the pre-clinical phase. For this reason, the
timing of pregnancy diagnosing is important. If women who take a long time to
become pregnant seek earlier confirmation of pregnancy (compared to women
who have not waited a long time), they will also be aware of early losses that would
not be detected by women who were not aware that they were pregnant. This
type of bias may be partly responsible for the association between subfecundity
and spontaneous abortion, where good quality data on early conceptions are
available (Baird et al. 1993). The use of early pregnancy tests may play a role in
analysing and interpreting data from studies based upon pregnancy planners. Such
studies are difficult and expensive to conduct and require a very cooperative study
population.

If you study environmental determinants of abortions, you may like to exclude
‘habitual aborters’ – women who will abort any pregnancy no matter what. Such
women will not provide information related to risk following the exposure (Gladen
1986; Weinberg et al. 1994b). The problem is that these habitual aborters can only
be identified by their abortion history and thus cannot be identified at all if they
have no pregnancy history at all. Stratifying results on pregnancy number can
distort associations, since only some of the women with many abortions will be
habitual aborters. Some will abort due to chance and some will abort due to the
exposure under study.

Measuring Infertility
When we are interested in measuring the biological component of fertility, called
fecundity, we are often able to ask pregnant couples how long it took them to
become pregnant. While doing that we also need to identify planned pregnancies,
which may be difficult since planning is often not a well defined concept. We also
need to find a way to deal with couples who had not planned their pregnancy as well
as with those who became pregnant despite using contraception. Their underlying
fecundity may differ from that of couples who plan a pregnancy. We would also like
to have information on all couples that conceived and had an early pregnancy loss
(Jensen et al. 1998) or failed to conceive because they were sterile or gave up trying
for any reason. When studying time to pregnancy in samples of pregnant women,
one must be reasonably confident that giving up a pregnancy attempt is completely
independent of the putative risk factors under study, a condition similar to what
we encounter when working with censored data in general (Basso et al. 2001).
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Congenital Malformations
Congenital malformations are relatively frequent and they constitute a major cause
of infant mortality and morbidity. They are also a very stressful event for the
involved families, making it difficult to get comparable information in a case-
control study addressing determinants of congenital malformation.

It is now well accepted that congenital malformations are usually measured as
a prevalence at the time of birth. The incidence of congenital malformations is
normally not available for study, given that it is a function of new events since time
of conception. Congenital malformations that occur in utero and end as abortions,
some as very early abortions, are usually not detected. Some exposures may si-
multaneously increase the incidence of some congenital malformations while at
the same time reducing the survival rate of the affected foetuses (or embryos) in
utero, thus decreasing the prevalence at birth. Monitoring systems of congenital
malformations with no data on spontaneous abortions could therefore miss im-
portant teratogens and even wrongly conclude that a given factor is protective.
Many of the established monitoring systems on the possible teratogenic effects of
medicines taken during pregnancy are based only on data on prevalence at birth.
When dealing with spontaneous abortions and congenital malformations, missing
early losses may lead us to biased effects measures. Many of the routine moni-
toring systems are furthermore of poor quality, partly because only some of the
congenital malformations are visible at birth. Heart defects may e.g. only produce
symptoms – and thus first surface to clinical detection – under extreme physical
strain late in life (Knox et al. 1984).

Time Matters
If you were a student of mortality you would know that the question is not if people
die, but when they die. Mortality rates (MR) reflect this time function, as 1|MR
is the life expectancy in the same time unit as the rate is measured, given that
a number of conditions are fulfilled. All estimates of risks come with a time tag.
The estimate depends upon the length of time it represents. Time is underlying all
occurrence research, even when it is not explicitly mentioned. All events happen
in time. If you do not wake up in the morning (or later), it is because you are dead.
You ran out of time.

In reproductive health, time is important from several points of view, not only
as the time from exposure to the endpoint of interest. The timing of exposure
itself is more important in this area than in most others. Specific windows of
vulnerability open and close over the time of gestation. The time of organogenesis
and organ development plays a crucial role. The time periods of interest may
even date back generations. Not only may malformations of genital organs impair
reproduction, but also the number of Sertoli cells is at least partly determined in
foetal life and this has implications for sperm production lasting decades into adult
life (Sharpe and Skakkebaek 1993; Wilcox et al. 1995). Organ development is under
the influence of hormonal factors that operate at certain time periods. Fetotoxic
exposures may have different outcomes as a function of the timing of exposure,
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and growth-determining factors may only play a role during a time period of rapid
foetal growth.

The time period of spermatogenesis and ovulation may be under the influence
of external exposures and genetic factors. Factors that reduce the sexual libido
affect quality of life at any time but have consequences for reproduction only if
present during the time window of procreation.

Soon after conception, the risk of abortion is high, but we know very little
about the determinants of early abortions. Avoidable abortions probably depend
to a great extent on the timing of the exposure that causes the abortion, but this
time period may be difficult to identify, partly because foetal death need not
coincide with the expulsion of foetal tissue. Fever could e.g. appear to be a cause
of spontaneous abortion (Andersen et al. 2002), because fever may be induced by
dead foetal tissue. In that case, the association would be from foetal death to fever
and not from fever to foetal death (reverse causation). However, Andersen et al.
did not find that fever was associated with spontaneous abortions.

It is a point of fact that the period at risk for teratogenic actions (usually
the second and third months of gestation) is almost over when antenatal care
(ANC) begins. All legal actions taken to reduce e.g. occupational exposures during
pregnancy are usually put into operation too late. Some types of prevention (like
the use of folic acid to prevent neural tube defects) need to be activated even before
the pregnancy is planned. If a given toxicant (such as lead) is stored in the maternal
tissue over a long period of time, its mobilization during pregnancy may affect the
mother or the embryo many years after the exposure took place (Rothenberg et al.
2002).

It is possible, perhaps even likely, that relevant exposure windows for specific
effects are only open during short time periods. Exposure to influenza virus has
e.g. been associated with schizophrenia in the offspring, but only for infections
during the second trimester of pregnancy (Mednick et al. 1994). On the other hand,
neurotoxic exposures may influence brain development, if they operate at the time
of the vulnerable structural changes that take place throughout foetal life and
in early childhood. It is possible that diseases like ADHD (Attention Deficit and
Hyperactive Disorders), autism or Tourette’s syndrome have a pre- or perinatal
aetiology (Linnet et al. 2004).

The nutritional demand of the foetus is at its maximum in late gestation, when
foetal growth is rapid. Smoking in this period is much more closely associated
with low birth weight than smoking early in pregnancy (Smoking or Health 1977).

The Dutch famine study indicated that the timing of under-nutrition during
gestation played an important role for later health outcomes (Susser and Stein
1994). Being exposed to undernutrition in the last trimester was associated with
obesity later in life (Ravelli et al. 1976).

Most side effects of drugs taken during pregnancy depend heavily on the timing
of the drug intake within the gestational period. This is true not only for teratogenic
effects. Drugs are particularly difficult to study as an exposure, because the effect
of the drugs may not always be easily discerned from the effect of the indication
for taking the drug in the first place (what is usually termed ‘confounding by
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indication’) (Olsen et al. 2002). If two or more drugs with the same indication
but different active molecules are available and are prescribed to pregnant women
independently of the severity of the indication, this may provide useful options for
better characterizing the effects related to one of these drugs.

The foetal alcohol syndrome (FAS) is characterised by specific facial characteris-
tics, low birth weight, and cognitive impairment. It is likely that these impairments
are the result of time specific exposures and, if so, binge drinking may be of con-
cern, even binge drinking among low or moderate alcohol drinkers. Still, no studies
in humans have shown that binge drinking alone causes cognitive impairments
or any other important FAS characteristics, perhaps because all studies have been
too small. If the exposure window is short, then only a small fraction of binge
drinkers will be at risk and small studies will thus have no power to detect an effect
unless all the study subjects are exposed at the right gestational time. FAS is seen
in children of some women, who drink large amounts of alcohol every day. A high
daily intake leads to exposure during the time periods of vulnerability, regardless
of their duration.

Exposure to mercury, determined on the basis of amounts found in umbili-
cal cord blood at birth, has been associated with impaired cognitive functions
(Grandjean et al. 1997). An umbilical cord measurement reflects an average expo-
sure throughout gestation and, as such, it does not indicate whether certain time
periods are more vulnerable than others.

Hormonal factors play a profound role in foetal life. Sexual hormones are e.g.
needed for a foetus to develop a male phenotype. It is furthermore believed that
hormonal factors influence the probability of developing some diseases in adult
life. For example, it has been suggested that a high intrauterine oestrogen level
may modify breast cancer risk (Trichopoulos 1990) and reduce the number of
Sertoli cells, thus subsequently reducing semen production and increase the risk
of undescended testis, hypospadia and testis cancer. This latter hypothesis is,
however, not corroborated by epidemiologic findings in general and it probably
has to be modified to fit existing data (Strohsnitter et al. 2001). There is, on the
other hand, clear evidence of an association between some of these diseases.
Patients with testis cancer have a higher frequency of undescended testis and
apparently a lower fecundity before the cancer is diagnosed (Jacobsen et al. 2000)
Macro-epidemiologic (ecologic) studies furthermore show that the geographical
variation in e.g. testis cancer is often followed by similar geographical variations
in low sperm counts and a high prevalence of malformations of the male genitalia.
The link between testis cancer and undescended testis is considered established,
although most studies have been based upon self-report of undescended testis,
often reported retrospectively. Many undescended testis descend spontaneously
shortly after birth or at puberty. More recent studies based upon recording at birth
show a weaker association between testis cancer and undescended testis (Stang
et al. 2001; Sabroe and Olsen 1998). It is possible that only persistent undescended
testis correlate with the risk of testis cancer. It is unclear whether descent through
treatment eliminates the risk or whether the risk is caused by the underlying
reasons of the displacement itself. If the risk is a function of underlying hormonal
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disturbances at the time period of organogenesis, treatment is not expected to
affect cancer risk.

Single peak exposures to drugs are seen in pregnant women who try to commit
suicide by taking an overdose of medicine. In principle, these studies provide
unique data for studying the fetotoxic effects of these drugs, since they often bypass
confounding by indication (unless the study concerns anti-depressant drugs).
Many of these studies, however, have not taken abortions (induced or spontaneous)
into consideration and have often been too small to detect teratogenic effects,
since such studies must focus upon suicide attempts in specific and short time
periods. Furthermore, many women terminate their pregnancy after a suicide
attempt because of fear of a fetotoxic effect or because of their inability to cope
with a pregnancy. Newborn children available for this type of study are thus few
and, to some extent, selected. Most of the findings from these studies have been
reassuring, indicating that healthy babies are often born after a single exposure to
some specific drug (Flint et al. 2002).

Although it is generally accepted that timing is of crucial importance for most
outcomes of pregnancy, many studies rely on exposures where the timing is not
specified. Many studies that make use of retrospective data from pregnancies and
exposures are thus difficult to place in time, when they took place months or years
before reporting. Large cohort studies have been started or are being planned in
order to provide researchers with prospective data on exposures (Olsen et al. 2001).

The Case-Parent-Triad Design5.2

There are several design options for studying genetic risk factors. Most of these
are described in Chaps. I.7, III.6 and III.7 of this handbook. One of these designs
is, however, of particular interest in reproductive epidemiology, namely the case-
parent-triad design. The idea is to use parents of affected children to serve as
genetic controls. Case-control studies may easily be confounded by genetic factors
when they are applied to populations with a mixture of different ethnic groups. The
parents are by definition ethnically matched to the case, and they are furthermore
usually motivated to take part in the study. The two non-transmitted parental
alleles can be compared to the two transmitted alleles, and since this Mendelian
transmission occurs at random the observed allele structure can be compared with
the expected values. If the parents e.g. both have the allele structure Aa, the children
will under Mendelian transmission be AA, Aa, Aa or aa with equal probabilities;
25% probability of AA and aa, respectively, and 50% of Aa.

If the genotype is associated with the disease under study, affected children
will have an allele distribution that deviates from these expected values. All this
may be analysed using well-known log-linear models (Weinberg et al. 1998). The
main limitation in using this design for diseases with an adult onset is that the
assumption of non-selective survival of the parents to the time of the study is
a strong assumption, at least for severe diseases. For diseases with an early onset
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the assumption will usually be fulfilled. Using this design in e.g. studying genetic
causes of congenital malformations is an attractive option. The parents will be
available, motivated, and present in a setting where a blood sample can easily be
taken at any time.

Infertility and Subfecundity 5.3

Measures Used to Describe Fertility 5.3.1

The fertility rate is defined as the number of live births a woman has during her
reproductive life. A fertility rate of 1.3 means that in a population of 100 women
there will be, on average, 130 liveborn children – not enough to replace their
parents. A fertility rate of more than 2.0 is needed to bring the population into
a steady state. How much more depends upon the life expectancy and the sex ratio
of the newborn children in the population. On average, one woman should produce
one girl who survives until her reproduction age in order to bring the population
to a steady state if life expectancy is stable over time.

Fertility is determined by both a biological capacity to reproduce (fecundity)
and the desire for a given family size, which may be under the influence of social
and cultural conditions broadly defined, and methods available for family planning
play, of course, a crucial role. Fertility is a term used by demographers to describe
the actual production of live children, whereas infertility is used by the medical
profession to describe a reduced biological capacity to reproduce. This dual use of
the same terminology is confusing.Thebestwouldbe to let fertility (and infertility)
be reserved for demographers to indicate de facto reproduction.

We suggest the term fecundity to be used as a broad term to describe the
biological capacity to reproduce, and fecundability (the probability of conceiving
within a given menstrual cycle) to be a quantitative estimate of fecundity. Unlike
Cramer and Goldman (1994), we propose to let the more specific details of the terms
be defined in the actual study in order not to have too many words describing
rather similar conditions. Reproduction, in its historical form, requires sexual
contact, fertilisation, implantation, and survival until the age of reproduction.
Now alternative methods exist.

Most studies use a recognised pregnancy (or birth) as the endpoint, and recog-
nition of pregnancy usually depends upon clinical or biochemical measures. Fe-
cundity could therefore, depending on the specific study, describe the ability to
obtain a biochemically detected pregnancy (by means of hCG), a clinically recog-
nised pregnancy, or a pregnancy that led to a liveborn child. Fecundity can thus
be used to describe the capacity to achieve any of these endpoints, which may be
confusing. On the other hand, having a specific term for each of these situations
would complicate communication to an even larger extent. The fact that we use
the term fecundity to refer to a variety of situations has to be kept in mind.
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Childlessness can be voluntary or involuntary, and the latter may be subject
to epidemiologic research. Subfecundity is a frequent problem, and treatment for
subfecundity is a rapidly growing sector of many health care systems. Research that
can potentially lead to prevention of subfecundity is therefore receiving increasing
attention, and epidemiology plays an important part in this research. Subfecundity
is a measure for a couple and is defined on the basis of unsuccessful attempts
for a given length of time (usually 6, 12, or 24 months). In many industrialised
countries, about 15% of all couples that try to become pregnant will experience
subfecundity, if this is defined as a waiting time of 12 months (Juul et al. 1999). The
term infertility usually describes an unsuccessful waiting time of 12 or 24 months.
Often the cut-point of 12 months is used in affluent societies and 24 months in
countries with limited health care resources.

Sterility is defined as an absent capacity to reproduce – a fecundability of 0.
Since most couples’ probability of conceiving is very rarely 0, many women will
eventually become pregnant, if they keep trying, even when on an ineffective
treatment.

Time to Pregnancy
If a normal fecundability is 0.25, then 3% of normal couples will not succeed
within 12 months of trying ((1–0.25)12) just because of bad luck. These couples
need no treatment, but may (and some will) be treated nonetheless, usually with an
‘excellent prognosis’ (25% success rate for each cycle). The remaining 12% would
be the proper candidates for treatment. If all couples who wait unsuccessfully for
12 months or more to become pregnant receive treatment, then any treatment will
to some degree be a success. Some couples will have normal fecundity, and some
will have subnormal fecundity without being sterile. An effective treatment has to
demonstrate better performance than chance alone would produce.

If a couple is defined as subfecund after an unsuccessful waiting time of
24 months, then only about 0.1% of ‘normal’ couples will meet the definition,
and those targeted for treatment will include 99.9% of actually subfecund couples.
For this reason, less affluent societies do not start infertility treatment until couples
have tried for at least 24 months.

Since fecundability is related to the duration of a waiting time to pregnancy
(TTP), TTP is a frequently used measure in subfecundity research. The measure
was first used by demographers when they examined the time from marriage to
the first liveborn child; in this context, TTP is a measure that only has biological
relevance in societies where procreation starts with marriage and contraception is
not practiced.

In societies with a higher degree of family planning, TTP (now defined as the
number of cycles that a couple take from the moment they first start trying to
when they actually conceive a clinically recognised pregnancy) becomes a useful
tool in the study of determinants of subfecundity. It has been used in epidemiology
since the early 1980s (Rachootin and Olsen 1982, 1983; Olsen et al. 1983; Baird et al.
1986). It appears that women are able to recall with sufficient accuracy how long
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they took to conceive, even after several years (Joffe et al. 1993; 1995). Time to
pregnancy is easy to use and, perhaps for this very reason, has undoubtedly been
used too frequently without proper concern for its shortcomings and pitfalls.

Design Options in Studies of TTP 5.3.2

The best option is to study TTP in a longitudinal design that starts when couples
stop using contraception in order to conceive (starting time). Exposures of interest
can then be recorded independently of the length of TTP and at the relevant point
in time. They can also be registered for attempts that do not lead to a pregnancy.
Studies that rely on exposures recorded at the time of pregnancy rather than the
starting time may produce biased results, especially for exposures suspected to
cause infertility. If smokers stop smoking after having tried in vain to become
pregnant for a certain time period, but not if they conceive quickly, smoking
recorded during pregnancy will correlate with a short waiting time, as if smoking
prevented subfecundity. In fact, almost all evidence points towards the opposite
assessment: smoking impairs fecundity, especially inwomen (Rachootin andOlsen
1983; Baird and Wilcox 1985; Bolumar et al. 1996; Alderete et al. 1995).

The proportion of couples that become pregnant during the 1st cycle is an esti-
mate of the fecundability rate in the population. The entire TTP distribution will,
however, normally be used in the analysis, e.g. in a discrete Cox model. Such a study
need not last 12 or 24 months. Even a study with a follow-up time of only one cycle
could provide evidence that smoking women have, on average, a fecundability that
is approximately 20% lower than that of non-smoking women. We would then e.g.
expect 30 out of 100 non-smoking women to be pregnant within the first cycle ver-
sus 24 out of 100 smoking women. Exclusion criteria may be used to get rid of non-
informative couples in the study of environmental causes of sub-fecundity. Sexual
activity could be recorded and taken into consideration in the analysis as well as
time of pregnancy detection. Such a study is straightforward to design and to anal-
yse, but extremely difficult and expensive to carry out, unless it is based upon cou-
ples that are seeking treatment for infertility, like IVF patients. Results from infer-
tility patients are, however, hampered by limited generalizability to the population
at large, partly because the couples are highly selected, partly because of the forces
of clinical selection that are being used. Spermatozoa, eggs, and fertilised eggs
are selected by the health personnel according to criteria quite different from the
‘natural’ selection. A longitudinal study on pregnancy planners may also provide
other related endpoints, such as information on early abortions or semen quality.

Epidemiologists have looked for less expensive designs than the concurrent
follow-upofpregnancyplanners.Thesedesignshavemainlybeenpopulationbased
cross-sectional studies or designs based upon samples from pregnant women, both
of which are prone to a number of problems.

Cross-sectional surveys rest upon the assumption that women recall their TTP
with some accuracy even a long time after the event. In a survey, the selected
women will try to record attempts to become pregnant, exposures of relevance –
often from the same time period – infertility treatment, and TTP (or time waited
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in unsuccessful pregnancy attempts). Population studies of this type are relatively
inexpensive and they usually rest on random sampling principles. The main prob-
lem is accurate recall, especially of exposures at the relevant point in time (the
starting time), and the ability to obtain response rates that do not introduce se-
lection bias. Analysing data may be simple, although TTPs usually have to be
recorded in quite broad categories, and often referring to months rather than to
cycles. Women may be able to recall if they had to wait for 6, 12 or more months
to become pregnant, but usually they will not be able to remember if they be-
came pregnant after 5, 6 or 7 months of waiting time when that waiting time took
place several years ago. (They will probably remember if they became pregnant
in the first month of trying.) Digit preference also has to be taken into consider-
ation, as clusters of reporting will be seen at specific waiting times (such as 6 or
12 months).

Using pregnant women in data collections has, for obvious reasons, been a con-
venientdesign. Inmostcountries,pregnantwomenareeasy to locateandtocontact.
They are usually more willing to take part in studies than other women, and they
are usually able to accurately report their TTP if the pregnancy was planned. They
usually remember when planning started, and may be able to recall the exposures
around the starting time, at least if the planning did not start too long ago, or if
the exposure refers to the occupation they held at the time, or whether they were
smoking or not. Since pregnancy is a condition for participation in the study, this
design is unable to pick up an all-or-none effect of an exposure. An exposure that
causes sterility will not be identified in a sample of pregnant women. Fortunately,
most exposures that we know of are not of this type, and the exposures that reduce
fecundability will show a longer TTP in a pregnancy-based study. The qualitative
effect measure that comes from a study of this kind is, however, not a measure
of fecundability in itself (Olsen and Andersen 1999), although it will correlate
with fecundability under a number of conditions. The most important, and often
neglected, of these conditions is the persistency in trying to become pregnant.
This persistency should not be related to the exposure under study, because, if so,
the exposure may falsely appear to increase fecundity (Basso et al. 2000b). The
timing of diagnosing a pregnancy also plays a role. If couples wait very long to
have a pregnancy verified, then an early abortion may count as waiting time. Had
they used a sensitive pregnancy test early, the event would have been recognized
as a TTP of a given length followed by an abortion. The length of the waiting time
may influence the timing of detecting, thus potentially producing bias (Baird et al.
1993). Since socio-cultural factors may influence the couples’ behaviour, this could
pose a problem, especially if the exposure of interest is an occupational one that
correlates with social and cultural conditions.

Exposures that cause irregular or long cycles may also interfere with the timing
of pregnancy recognition as well as with the ability to report the starting time on
the TTP.

The use of family planning methods should be taken into consideration. Couples
who use unsafe contraceptive methods without getting pregnant will, over time,
include an increasing fraction of couples with a low fecundability. Couples who
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know how to time sexual intercourse around the time of ovulation have shorter
waiting times than other couples, all other factors being equal. Couples who, in the
past, have experienced subfecundity may have modified their exposures or their
sexual behaviour in a way that may severely distort our ability to find a proper
reference group.

It has also been suggested to calculate a standardized fertility ratio (Starr and
Levine 1983). The idea is to compare the observed fertility with the expected
fertility for couples of the same age and from the same region. Such a standardized
fertility ratio can then be calculated before and after an exposure of interest – if
the exposure impairs fecundity the fertility ratio after start of exposure is less than
one, other things being equal. The observed number of liveborns before exposure
may be close to expected values based upon age and calendar time specific rates
in the population at large. The exposure may then reduce this observed|expected
ratio. Although this method was able to detect the fecundity reducing effect of
dibromochloropropane (DBCP), it rests upon strong assumptions, and it only
works when examining exposures that have a specific (and known) starting point
in time.

In addition to the problems mentioned, there are other sources of bias in time
to pregnancy studies (Weinberg et al. 1994a; Weinberg and Wilcox 1998; Baird et al.
1994). It is not an easy task to develop a monitoring design sensitive enough to pick
up subtle changes in fecundity over time (Olsen and Rachootin 2003). Studies that
aim at detecting determinants of fecundity are probably less vulnerable to bias.

Only about half or less of those who experience infertility seek medical help,
making treated patients a poor measure of the problem of subfecundity in the pop-
ulation (Olsen et al. 1998a, b). Infertile couples in infertility treatment are therefore
a selected part of all couples in the population, which should be considered when
using infertility patients in epidemiology studies.

If the forces of selection are correlated with the exposure under study, then
a case-control study with a population-based definition of the source population
is not a valid option for an analytic study. We expect these forces of selection to
treatment to be related to several factors, such as cultural background of the pop-
ulation, age, parity, education, social status, and availability of treatment facilities.
Some of these conditions may well correlate with life-style factors, dietary factors,
infections or other putative causes of subfecundity.

Given these conditions the source population has to be defined by the case
series. The source population could be defined by all those who would come to
our treatment centre if they had a similar infertility problem as our cases had in
the time period of study. The source population is then defined by all potential
cases (and, of course, by the enrolled cases as well). Had we known the source
population, we could have sampled controls from this group at the time the cases
came to be detected. Candidates for controls selection would then be couples
who have planned a pregnancy and who would be cases if they had a waiting
time of 12 months or longer. We could then compare exposures at starting time,
or before, and estimate the relative risk of being infertile as a function of the
exposures under study. The problem in this design is that we do not know the
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source population and it may be impossible, even in principle, to identify it along
with its exposure experience. A viable option may be to take advantage of the
fact that infertility is a couple phenomenon. Infertility is sometimes caused by
exposures mediated through female factors, sometimes through male factors, and
sometimes through both male and female factors. If we e.g. take an interest in
exposures to prenatal tobacco smoking as a cause of ‘male infertility’ we may
then compare the frequency of this exposure for males in couples that had a male
problem (e.g. poor sperm quality) with the exposure frequency in males for couples
where the female was identified as having the problem. Both sets of couples sought
help and therefore belong to the source population. Since couples where both
members have a fecundity problem belong to both the case and the control group,
they do not provide useful information for the question under study and can be
excluded.

If the exposure is more frequent in cases than in controls, it suggests that the
exposure is a risk factor for the disease, although it may be impossible to calculate
proper quantitative effect estimate from this type of a case|non-case study (Olsen
and Basso 2001). This type of design may furthermore produce estimates that are
too conservative if the studied exposures affect both male and female fecundity,
especially if the exposures cluster in couples, like some lifestyle and occupational
factors will.

Alternative design options for monitoring fecundity have been proposed like
using dizygotic twinning rates as a surrogate for fecundity (Tong et al. 1997), but
one of the problems is to exclude twins that are a result of infertility treatment.

Studies on semen quality may also be used as a surrogate measure of fecundity.
Muchof theconcern foradeclining fecundity stems fromstudiesonsemen(Carlsen
et al. 1992).

The main problems related to using measures of semen quality in epidemiologic
studies relate to low participation rates in most studies and difficulties with ob-
taining comparable conditions of the analyses. Time since last ejaculation has to be
taken into consideration, the conditions related to the ejaculation itself, time from
ejaculation to analysis, the technical conditions for the analysis, the season of sam-
pling (higher sperm counts in winter than summer periods in temperate climates)
as well as recording of potential confounders. Specific diseases may interfere with
sperm production, together with external exposures.

Twins5.4

Since twinning can be the result of infertility treatment, it is difficult to say
what the ‘natural’ incidence is. It also varies in different ethnic groups – but the
‘natural’ incidence in Caucasian populations is probably around 1 in 80 births.
Dizygotic twins may be seen as a sign of a high male and female fecundity,
since they require two eggs to be fertilised by two sperms within a short time
period.
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Twins may also be seen as an anomaly, since twinning is associated with a higher
risk of perinatal morbidity, including possibly congenital malformations. Twins,
however, may not only be seen as a gift to their parents, but to epidemiolo-
gists as well, since they provide a very interesting source of data concerning
the nature-nurture discussion in disease occurrence. Twin studies have been the
basic epidemiologic design to disentangle the effect of genes and the environ-
ment.

Genetic disorders are expected to have higher correlation (concordance) in
monozygotic (MZ) twins than in dizygotic (DZ) twins. MZ twins are genetically
identical (although some minor genetic differences have been found to exist and
have even been used to identify a genetic cause of a congenital malfunction (Kondo
et al. 2002)) and DZ twins share genes like ordinary sisters|brothers. Compared to
the latter, however, DZ twins share the same uterine environment as well as more
similar conditions in early childhood and these factors considerably reduce the
confounding that would arise by comparing ordinary siblings. Although the twin
model is definitely of interest, the situation is clearly more complicated. MZ twins
have the same gene map but need not have the same functional genetic expression.
Since females aremosaicswhere a randomXchromosome is inactivated in each cell
line, female twins are not functionally genetically identical, and genetic imprinting
may differ. Furthermore, MZ twins’ intrauterine conditions are not the same, as
inferred by the – often large – variation in foetal growth between babies in a pair.
Furthermore, both twins have to survive to be part of a twin study and twin
mortality is higher than what we see for singletons, most likely from the time of
conception.

It is well documented that some singletons started as twins but one foetus did
not survive, and it has been suggested that the surviving twin is at increased risk
of e.g. cerebral palsy (Pharoah and Adi 2000).

Twins are often excluded from epidemiologic studies on possible fetotoxic haz-
ards, since they often cannot be grouped together with singletons in a meaningful
analysis due to their higher risk of low birth weight, preterm birth, and congenital
abnormalities. In most studies, there are too few twins to provide an informative
subgroup for analysis, which is unfortunate. It would often be of interest to study
the effect of fetotoxic exposures on twins only.

Twin pregnancies have been used as a model to study the effect of hormone
exposure during pregnancy. The oestrogen level is high in all twin pregnancies and
twins of different sex also offer unique intrauterine exposure conditions (Storgaard
et al. 2002).

Measuring Reproductive Failures 5.5

Estimating the frequency of reproductive failures is, in many ways, similar to
estimating the frequency of any disease in populations. Frequencies are measured
by means of rates or proportions (and many proportions are unfortunately called
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rates). Measurements address new events over time as incident events or existing
states at a given point in time, prevalence.

Rates are used to present reproductive failures as a function of observation
time, e.g. the incidence of cervix cancer in Danish women in 1997 was 11.42 per
100,000 years of observation in women.

The cumulative risk is estimated by the proportion of people who contract the
disease over a given time span. The estimation can be done directly in a popu-
lation where follow-up is complete, e.g. the cumulative risk of stillbirth can be
estimated if a given number of pregnant women can be followed from their 24th
week of gestation until they give birth (if 24 weeks define the separation of abor-
tions and births for terminated pregnancies). If complete follow-up is not possible,
as for longer follow-up periods, the risk may be estimated by connecting inci-
dence rates (IR) to risk (CI) according to the formula CI = 1 − e−IR (cf. Chap. I.2
of this handbook). This calculation from rates to risk requires stable incidence
rates over the time period during which they are measured. Rates describe oc-
currence of events per time unit, like new respiratory syncytial virus (RSV) cases
per 1000 observation months in children less than 1 year in a given region and
a given time period. Rates are thus for populations. Risks indicate the probabil-
ity of a given event in a given time period and for an average member of the
population in question. In a population with complete follow-up, the risk of e.g.
2nd trimester abortions in 500 pregnant women who are followed until the start
of the 3rd trimester is estimated as 0.02 if 10 of the 500 women abort in these
3 months.

Incidence rates and cumulative risks are based upon data from a population at
risk, that is, apopulationat riskof getting thediseasebut without having thedisease
at the time when the observation starts. Prevalence proportions are estimated as
the number of people with the disease in question at a given point in time divided
by all in the population at that time, regardless of their disease status. If 500 women
are pregnant in a population of 50,000, the pregnancy prevalence proportion is
0.01 (500|50,000). Since prevalence (P) is a function of incidence (I) and duration
(D), the incidence of new pregnancies in a steady state population would be 500|8,
if the average duration of a pregnancy is set at 8 months, taking abortions into
consideration, that is 62.5 pregnant women per month in the population of 50,000,
or 750 per year.

Measuring reproductive failures during pregnancy is often complicated by the
fact that the time of conception is unknown. When the pregnancy is planned,
the time from the start of the pregnancy planning to a recognised pregnancy
and to the end of the pregnancy may be known. Estimating the incidence rate
of spontaneous abortions requires registration of time from conception to the
abortion in question or to gestational week 24. At best, the time of conception may
be identified by means of biochemical measures at a very early stage, but in most
cases a pregnancy diagnosis is not established until 3–4 weeks after conception at
the earliest, and then it is retrospectively estimated by means of last menstrual
period data (LMP) or – later – by using growth measures based upon ultrasound
examination. Observation time for calculating rates of spontaneous abortions,
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therefore, often starts at different time periods in gestation, and in studies we
have to take this delayed entry into consideration to obtain meaningful results
when we try e.g. to identify determinants of spontaneous abortions (Baird et al.
1993).

The Measures Used to Describe Mortality 5.5.1

The World Health Organization (WHO) defines live births, foetal deaths and in-
duced abortions in the following way:

The definition of a live birth is the complete expulsion or extraction from the
mother of a product of human conception, irrespective of the duration of preg-
nancy which, after such expulsion or extraction, breathes or shows any other
evidence of life, such as beating of the heart, pulsation of the umbilical cord, or
definite movement of voluntary muscles whether or not the umbilical cord has
been cut or the placenta is attached.

Foetal death is defined as death prior to the complete expulsion or extrac-
tion from the mother of a product of human conception, foetus and placenta,
irrespective of the duration of pregnancy: the death is indicated by the fact that,
after such expulsion or extraction, the foetus does not breathe or show any
other evidence of life, such as beating of the heart, pulsation of the umbilical
cord, or definite movement of voluntary muscles. Heartbeats are to be distin-
guished from transient cardiac contractions; respiration is to be distinguished
from fleeting respiratory efforts or gasps.

This definition excludes induced terminations of pregnancy.

Induced termination of pregnancy is defined as the purposeful interruption of
an intrauterine pregnancy with the intention other than to produce a liveborn
infant, and which does not result in a live birth. This definition excludes man-
agement of prolonged retention of productions of conception following foetal
death.

Induced Termination of Pregnancy Rate (Conceptions). This measure uses live
births, induced terminations of pregnancy, and foetal deaths in the denominator.

Induced Termination

of Pregnancy Rate

(conceptions)

=

Number of induced terminations occuring

during a specific time period

Number of induced terminations +

live births +

reported foetal deaths during the same

time period

× 1000
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Induced Termination of Pregnancy Rate (Population). This is the probability that
women of reproductive age will have an induced termination of pregnancy within
a given time period.

Induced Termination

of Pregnancy Rate

(population)

=

Number of induced terminations occurring

during a specific time period

Female population aged 15 through 44 years
× 1000

Foetal Death Rate =

Number of foetal deaths

during a specific time period

Number of foetal deaths + number of live births

during the same time period

× 1000

Foetal Death Ratio =

Number of foetal deaths

during a specific time period

Number of live births during the same time period
× 1000

Maternal mortality ratio is the number of deaths attributed to maternal con-
ditions in a given time period divided with a number of live births during the
same time period.

WHO recommends including maternal deaths that occur within 42 days of the
end of the pregnancy. Some countries use other time periods (i.e., within one
year).

Although international comparisons are difficult to make because of variable
reporting practices, we know that wide differences in maternal mortality exist
worldwide (AbouZahr 1998).

The perinatal mortality ratio is the number of foetal deaths (> 24 weeks of
gestation) and deaths during the first 7 days of life divided by the number of
stillbirths and liveborn children in the same period. Stillbirths are births of
foetus that show no sign of life at births that occur after 24 weeks of gesta-
tion.

Recent results indicate that this definition should be separated into stillbirths
and death during the first weeks of life. Stillbirths should furthermore be divided
into death before labour and death during labour. In the past, foetal death and
early death after birth often had asphyxia as the common cause. Congenital mal-
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formations are now a much more common cause of death around the time of birth
(Kramer et al. 2002).

Infant mortality is computed as the number of deaths, usually during the first
year of life, divided by the number of live births during the same time period.
Instant mortality rates vary between 5‰ to 10% in the poorest countries in the
world.

Many of these measures are difficult to record in a comparable way over time
and between countries. Live births are well registered in many countries, but that
is not the case with stillbirths, partly because the gestational age that separates
abortions from births differs between countries, partly because stillbirths do not
count in population statistics (Gourbin and Masuy-Stroobant 1995).

In some countries, the threshold of 24 weeks is used to distinguish birth from
an abortion. Other cut offs have been 28 weeks or 27 weeks. The complicating issue
is, however, that birth with a liveborn child is a birth, regardless of the time of
delivery. This may also be applied for children, who did not survive but showed
signs of life. Any study that makes use of routine registration systems to identify
births and where both live- and stillbirths are of interest, should make sure that
the time at risk for the outcome of interest is comparable (e.g. including in the
analysis only babies born from the 28th week onward, if that is the threshold for
defining a stillbirth). It is often very difficult to identify the cause of death for
stillbirths (Winbo et al. 1997) or the time of death, which may be of importance in
a monitoring system. It has e.g. been suggested that foetal death during labour is
a better indicator of the quality of obstetric care than foetal death before labour
(Kiely et al. 1985).

Foetal and Infant Death 5.6

When we study mortality we usually estimate mortality rates, the number of people
who die as a function of the size of the underlying population, and the period of
time during which this population was under observation. Since mortality rates
strongly depend upon age (and sex), we usually calculate age (and sex) specific
mortality rates. The mortality rate for people of 90 years of age will be the number
of 90-year-olds who die within a year divided by the number of observation years
we have for 90-year-olds in that population. We will count observation time from
their 90th birthday until they turn 91, die or leave the population for other reasons.

In perinatal epidemiology, age is even more important, but the problem is that
age may be counted from either the time of conception or the time of birth. We
expect mortality to be high shortly after conception and we also expect mortality
to be high when the foetus leaves the intrauterine environment. We would prefer
to present mortality as a function of observation time in the population at risk
from conception, which is difficult for early foetal deaths (abortions) because we
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usually do not know how many have conceived in the source population. We have
to start our observation when the pregnancy is diagnosed and that often varies.
Sometimes the pregnancy is first diagnosed by the occurrence of a spontaneous
abortion, and sometimes a conception ends in a spontaneous abortion without the
woman ever realizing that she was pregnant. Moreover, since some women bleed
early in pregnancy this may cause problems in the attribution of gestational age
(Gjessing et al. 1999).

An additional problem is that the timing of foetal death is often not known, and
only the time of expulsion is. In early gestation these two points in time may differ
by several days or even weeks (missed abortions), and some dead foetuses may
even be absorbed rather than aborted. Later in gestation we expect a stillbirth to
be closer to the time of death. When signs of life disappear most women in affluent
societies will seek medical assistance. The foetal death will be diagnosed and an
abortion induced. For multiple pregnancies where only one twin dies the situation
may be different.

Some studies on foetal death use survival methods that take delayed entry and
gestational age into consideration, or they use the ratio of all abortions to births
as the endpoint. In any case, caution is called for. If exposures cause very early
(pre-clinical) spontaneous abortions these will not be detected. Exposures that
move clinical abortions to the pre-clinical stage will appear as if they prevented
abortion for both measures, regardless of whether they are based upon rates or
cumulative risk.

The time in which a pregnancy is diagnosed depends upon a number of known
and unknown factors. It is reasonable to expect a planned pregnancy to be detected
earlier than an unplanned pregnancy. On average, women with regular menstrual
cycles probably become aware of the pregnancy earlier than women with irreg-
ular cycles. A woman who has been pregnant before may detect symptoms of
a pregnancy earlier than a woman who is pregnant for the first time. Availability
and sensitivity of pregnancy tests will also play a role for the starting point of
observation.

Assume that we base our study upon a cohort of pregnant women. Assume
furthermore thatwe takean interest in anexposure that, for somereason, correlates
with how early the pregnancy is recognized. The exposed women would then enter
the cohort at a later (or earlier) gestational age than the unexposed women. Since
the risk of abortion decreases with gestational age, their ratio of spontaneous
abortions to birth would be lower (or higher) than that of the unexposed group and
the results would thus be biased. Comparison of gestational age-specific abortion
rates should, however, be unbiased – provided that the exposure does not modify
the time period from foetal death to expulsion.

If an exposure changes only the timing of pregnancy detection, gestational week
specific abortion rates remainvalid. If the exposure changes the timingof abortions
around the threshold for their detection, all the possible abortion measures may
be biased.

Studying spontaneous abortions may also be complicated for other reasons.
Since the risk of spontaneous abortions varies largely with gestational age, it is
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important to use valid data for gestational age in the model that is left truncated
at the time of entry. Unfortunately, precise data on gestational ages are difficult
to obtain, even if ultrasound measures were done. A foetus with a poor survival
destiny may show early growth patterns that deviate from standard values, possibly
making ultrasound estimates invalid. Furthermore, the exposure of interest may
correlate with the validity of estimates of gestational age, which may make it
impossible to obtain unbiased comparisons even when doing the proper statistical
analyses. Furthermore, the start of observation time need not coincide with the
time of exposure. If the exposure causes abortion after a short exposure time, the
susceptible pregnancies may be removed from our study for those who had been
exposed before start of observation time, leaving a selected group available for
study. This selection could attenuate or eliminate an effect of the exposure on the
risk of spontaneous abortion.

Using a case-control approach to study causes of spontaneous abortions may be
prone to bias in some situations. Controls should (using the principles of incidence
density sampling, see Chap. I.6 of this handbook) be selected at the time of foetal
death (which is often unknown) and not at the time of abortion. Furthermore,
hormonal measures at the time of abortion that change over gestational time may
be poor indicators of the cause of foetal death, even in situations where they are
the cause of death, rather than a consequence of it.

Dietaryhabits (suchascoffeeconsumptionduringpregnancy)maychangewhen
nausea disappears, and since a foetal death would reduce nausea, cases may then
have a higher intake of coffee than controls, not because coffee killed the foetus,
but because nausea and aversion against coffee disappeared when the foetus died.
The exposure frequency is then high in the time from death to abortion, but was
not so at the time of death. The high coffee intake is a consequence of foetal death,
not a cause of death.

When the child is born, an entirely new time schedule starts. Preterm or very
preterm children will start this time clock before their foetal maturation has come
to its natural end. Babies born in week 35 will start their extrauterine life 5 weeks
before a baby born at term. Diseases that originated in utero with a fixed induction
time will have an onset that perhaps should have been counted from conception
time rather than the time of birth. Childhood colic is perhaps a disease that peaks
at a given time from conception, independently of the time of birth (Sondergaard
et al. 2000).

Measures that use births as the denominator rather than the population at risk
in the proper time intervals apply a practice that deviates from the practice that
normal age specific rates usually rest upon. Foetal death rates would, in normal
practice, be seen as death within a given gestational time period divided by the
observation time for foetuses at that gestational age, just as infant mortality is
estimated as death during the first year of life divided by observation time for
children less than 1 year of age in that population.

Rather than using survival principles in studying determinants of abortion,
many use the ratio of spontaneous abortions to birth, or spontaneous abortions|
(induced abortions + spontaneous abortions + births). The latter presents a pro-
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portion of spontaneous abortions among all who terminate their pregnancy with
either a birth or an abortion. The first measure will overestimate the cumulative
risk of spontaneous abortions, as it does not take induced abortions into consid-
eration (some of which would have ended in a spontaneous abortion). The latter
estimate will attenuate the cumulative risk since some of the induced abortions
would have contributed to the numerator had they not been induced. The fre-
quency of induced abortion and the timing of induced abortion thus becomes
a source of bias in these studies (Olsen 1984), unless data are analysed by means
of survival techniques.

The risk of ending a pregnancy with a spontaneous abortion is high, especially
if the mother is more than 35 years of age (Andersen et al. 2000). How high
abortion rates are from the time of conception is not known because we only
have data on conception for very specific in vitro fertilization (IVF) conceptions,
which do not represent the general population. Kline et al. (1989) estimated that
50% of all conceptions end as spontaneous abortions; 40% of pregnancies that
could be detected by hCG measures and 10%–15% among clinically recognized
pregnancies. These figures probably do not need much adjustment today, although
a new cohort study among pregnancy planners found a slightly lower abortion rate
in the pre-clinic, but detectable, phase of pregnancy of about 25%–30% (Hjollund
et al. 2000), close to what Wilcox found in his study of pregnancy planners (Wilcox
et al. 1988). No biological measure is at present able to pick up the very early foetal
life.

Many abortions have chromosomal aberrations, especially among the very early
losses (Macklon et al. 2002). Chromosomal aberrations, or more specific genetic
defects, may be used to perform more detailed analyses of cause-specific mor-
tality. If all spontaneous abortions were grouped together, the measure would
represent a general mortality endpoint and, since most exposures are expected
to be specific in their causal action, a general mortality measure may in many
situations be too imprecise for meaningful research. The problem is, however, that
obtaining and genotyping foetal tissue when an abortion occurs is neither easy
nor inexpensive in an epidemiologic study that often includes large numbers of
participants.

When studying a specific exposure that is not believed to cause chromosomal
aberrations, it would be wise to restrict the outcome to abortions without such
defects, if possible. Chromosomal analysis may, in some situations, be used to
distinguish between consequences of foetal death from causes of the death itself. If
e.g. coffee intake is a result of foetal death rather than the cause of it, one should ex-
pect to see coffee equally associated with abortion with and without chromosomal
aberrations. If coffee drinking is causally related to the foetal death, it will probably
operate either via chromosomal aberrations or through another fetotoxic mecha-
nism independently of the chromosomal aberrations. These analytical principles
were to some extent used in a study by Cnattingius et al. (2000).

Some reproductive failures correlate (Basso et al. 1998a) and they often have
a tendency to repeat themselves (Basso et al. 1999). It may be necessary to take this
into consideration when designing a study.
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Perinatal Mortality and Health Care 5.6.1

It is obviously desirable to reduce foetal and early childhood deaths as much as
possible, at best by removing or reducing the underlying causes of death, especially
if these causes also lead to long-term health problems for those who survive. Still,
the main investments in most affluent societies have been spent on improving
treatment. In some situations effective treatment will not only save the life of the
foetus but also lead to a better potential for a normal and healthy life. In other
situations, treatment may increase the incidence of diseases (by keeping alive
babies (often very preterm) that may be severely impaired).

A number of mortality measures, especially perinatal mortality rates, have been
used to monitor how part of the health care system performs. Perinatal mortality
has declined over time in most countries and is reaching very low values in many
affluent societies.

It has been suggested to stratify perinatal mortality by birth weight in order to
obtain a better monitoring instrument for the quality of treatment. The idea is that
advanced treatment would especially show its effect on children born with a low
birth weight; the babies having the highest risk of not surviving the early extra
uterine life.

When the method of stratifying mortality rates according to birth weight (and
sex) became widespread, a number of so-called paradoxes appeared. The offspring
of smoking mothers had lower mortality at low birth weights than the offspring of
non-smokingmotherswith the same lowbirth weight. The samewas seen for popu-
lations living at high altitudes and for African Americans compared with European
Americans in the US (Adams et al. 1991). These paradoxes could be seen as a result
of confounding by the underlying causes of impaired foetal growth. Smoking may,
for example, be a less harmful way of reducing foetal growth than whatever caused
the growth retardation among those not being exposed to intrauterine tobacco
smoke, although smoking in general increases perinatal mortality.

Another explanation of the paradoxes was given by Russell and Wilcox (1991)
and Wilcox (2001), who showed that the strongest predictor of perinatal mortal-
ity in a population is not the proportion of newborns with a low birth weight,
but the proportion of newborns with a birth weight that falls outside the pop-
ulation specific Gaussian birth weight distribution (the residual). Birth weight
usually follows a normal distribution with a small ‘bump’ in the left side tail,
mainly representing pre-term births. The size of the residual (usually reported
in percent of the total) is a stronger predictor of the perinatal mortality for the
population than the proportion of newborns with a low birth weight (< 2500 g),
which is the present indicator used in monitoring systems. If we follow Allen
Wilcox’s thinking, the aim should not be to change the birth weight distribution
for the population, but to reduce the residual portion of the distribution, i.e. the
proportion falling outside the Gaussian distribution. This translates mainly into
preventing pre-term birth rather than increasing birth weight. Most reproduc-
tive epidemiologists would probably agree on this strategy. The present obesity
epidemic in many countries is e.g. expected to increase birth weight in the com-
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ing years, but not to decrease perinatal mortality; in fact, we may observe the
opposite.

Stratifying perinatal mortality according to birth weight ranks (or a z-score) for
the particular distribution rather than the absolute birth weight also eliminates the
paradox of crossing mortality risk in most situations, indicating that birth weight
in itself may be an inappropriate indicator of mortality risk.

Birth weight has been used because it is available in most countries. Data on
gestational age are less often available and the quality may be poor. Still, uncritical
use of birth weights as an ‘exposure’ or endpoint in reproductive epidemiology is
not appropriate.

Foetal Growth and Birth Weight5.7

If a woman is exposed to agents that reduce foetal growth, growth may be reduced
proportionally or disproportionally. If mainly fat tissue is reduced, as seen in
smoking women, the newborn baby may have normal height but a reduced birth
weight. The ponderal index is a measure that attempts to distinguish between thin
and normal body proportions. The index is calculated as the newborn’s weight
divided by height raised to the third power. Readers, who are familiar with the
Body Mass Index (BMI), will know that the ponderal index deviates from BMI only
by raising height to the power of 3 rather than to the power of 2. The only reason
for this difference is to obtain a more symmetrical distribution of the ponderal
index in newborns. How well this index actually reflects body composition among
newborn children is, however, not well known.

There are of course other anthropometric measures of interest than birth weight
or birth length. Head circumference is one such measure. Abdominal circumfer-
ence may also be of interest. Most of these measures are probably measured with
less precision than birth weight, at least in countries that use standard weighing
conditions (like time since birth) and well-calibrated electronic weights. It is also
more difficult to measure the length of a baby, or a circumference. It is e.g. likely
that babies born vaginally will present a molding of the cranial plates that will
modify their head circumference compared to babies born with a caesarean sec-
tion. Also, it is possible that some of these additional measurements would not be
taken if a baby were ill at birth, so that excluding babies because not all measures
were taken may produce selection bias.

Since birth weight is a function of both pregnancy duration and foetal growth,
pregnancy duration is usually taken into consideration when analysing birth
weight. The simplest procedure is to stratify results on preterm and term birth,
but this may not fully adjust for confounding related to gestational age. Another
option is to estimate small for gestational age (SGA), which implies identifying
the, say, 10% with the lowest birth weight among children born during each given
gestational week. Since the birth weight distribution is population specific, it is
wise to use an internal reference rather than an external reference if the study is
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large enough. Using SGA measures has the disadvantage that they do not make
use of the birth weight distribution. The SGA term should furthermore not be
taken as a measure of intrauterine Growth Retardation (IUGR) since the term SGA
is purely descriptive. The term IUGR should be restricted to situations where it
is known that the foetus is growth retarded. Such a measure would in principle
require a documented deviance from the foetal natural growth curve.

Gestational age could also be included in the statistical model to adjust for ges-
tational age confounding. In order to account for non-linearity in confounding, it
may be preferred to include gestational age plus gestational age squared, or to in-
clude several categories of gestational age as dummy variables (for an introduction
to regression models see Chap. II.3 of this handbook).

The drawback of adjusting for gestational age one way or the other (or to use
SGA measures) is mainly related to the often poor quality of data for gestational
age. Birth weight is measured more accurately than gestational age and, by using
an endpoint like small for gestational age (SGA), good data may be turned into
bad data by making use of a composite measure that includes a variable that
is imprecise at best and possibly even biased. An exposure with no effect on
foetal growth that causes irregularities in the menstrual cycle could show a biased
effect on SGA, if gestational age was based upon LMP data, or a biased effect if
gestational age is measured by ultrasound and the exposure correlates with early
foetal growth.

The term ‘small for gestational age’ is misleading, since it is a purely descriptive
population concept: the baby is among the smallest in this particular population.
Usually, we would like to know if the baby is small because it is growth retarded.
A baby that has achieved its full genetic growth potential could be an SGA baby
just because it is genetically small. We expect such a baby to be at low risk for all
complications and diseases that may be related to poor foetal growth.

Our interest in birth weight from a health perspective should focus upon a de-
viation from the genetic growth potential rather than on the absolute birth weight.
The soundness of this approach was elegantly demonstrated by our Norwegian
colleagues, who compared observed birth weights with the expected birth weight
estimated from their sibling’s (and mother’s) birth weight. A birth weight lower
than expected was the most important risk factor for perinatal mortality all over
the birth weight distribution – not only for newborn children with a low birth
weight (Skjaerven et al. 2000).

Unfortunately, however, we do not know the genetic programming of the foe-
tus and we often have to rely upon indirect estimates that could lead to severe
misclassification.

Given the fact that birth weight has been used for convenience – too extensively
and during too long a period – a group of scientists (Adams et al. 2003) met in
June 2002 in Denmark to announce the so-called Sostrup Statement (named after
the residency where the meeting took place). These statements concluded that:
1. In population studies, ‘percent low birth weight’ (LBW) is a poor research tool

for detecting factors or conditions that damage perinatal health.
2. ‘Percent LBW’ is a poor index of population perinatal health.
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3. Adjustment for absolute birth weight is rarely justifiable in looking for effects
of specific exposures on infant or perinatal mortality.

4. Some exposures or conditions may compromise foetuses without causing pre-
term delivery or impaired foetal growth.

It is, however, difficult to propose another indicator than LBW that is easy to
obtain and subject to a small degree of error, especially if we want such an indicator
to be applicable in less affluent countries. The best alternative for a single indicator
is probably preterm birth, although that may be subject to a higher degree of
misclassification.

Optimal Birth Weight5.7.1

The concept of an ‘optimal birth weight’ has been used in the literature mainly to
indicate the birth weight with the lowest perinatal mortality in specific populations.
We do not recommend the concept to be used broadly since an optimal birth weight
depends upon what the birth weight has to ‘optimise’; mortality, immune defence,
cognitive development, etc. Studies on ‘optional birth weight’ in the context of
mortality have, nonetheless, shown interesting results. The ‘optimal birth weight’
is higher than the average birth weight, which may reflect a trade-off between the
mother’s and the child’s interests (Haig 1993). The foetus will try to take as much
of the nutritional supply as possible, while the mother needs to reserve some for
herself to continue her (reproductive) life. According to Haig, during the course
of evolution genes have been shaped to balance these two aims. Data furthermore
show that the ‘optimal birth weight’ is population specific but is correlated with the
average birth weight in the specific population (Graafmans et al. 2002). According
to the evolutionary theories, it is to be expected that the ‘optimal birth weight’ is,
in fact, a given birth weight for a given individual.

Gestational Age:
Pre- and Post Term Delivery5.8

A pregnancy of course starts at conception but, since the time of conception is
usually unknown, the starting point is often taken from the first day of the last
menstrual period (LMP), which is usually around 2 weeks prior to conception.
A pregnancy is expected to last 40 weeks or 280 days, according to this calculation.

In most countries, Naegele’s rule is still applied to estimate gestational age from
using LMP data. The expected day of birth is calculated starting from the first day
of LMP, then 3 months are subtracted and one week is added.

This rule works well for women who remember their menstrual periods and
whose periods are regular (and close to 28 days of duration). The Naegele rule also
works best in non-leap years at the population level (Basso et al. 2000a). With
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the easy access to electronic calendars, one would expect to see more electronic
devices that simply add 280 days to LMP, taking leap years into account.

In affluent societies, ultrasounds (US) are more and more often used as a way of
estimating gestational age, even in normal pregnancies with a certain LMP date.
The idea behind the estimate is that certain structures, like the biparietal diameter
(BPD), grows linearly and similarly for all in the beginning of the pregnancy.

A given diameter is compared with a growth standard and the gestational week
is based upon the measure read from the standard growth curve – 16 weeks in the
example above (cf. Fig. 5.1).

Figure 5.1. BPD according to time since conception

Experience has shown that ultrasound estimates are more precise than LMP
measures and for this reason they are more precise in clinical predictions of the
date of delivery. They need not always be better for research, however. If you study
exposures that impair early foetal growth, then an ultrasound measure may cause
bias. The bias is probably too small to be of relevance for clinical practice, but
it may be of concern in research. There may be research projects that are better
off with an unbiased estimate with a low precision (like LMP) than with a biased
estimate with a high precision. It has been shown that smoking, for example, may
impair even early foetal growth (Henriksen et al. 1995) and, if this is the case, then

Figure 5.2. Actual and standard BPD growth curves
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smokers would systematically be misclassified with an earlier gestation than their
actual one because the growth function will be lower than the standard, as shown
in Fig. 5.2. Assume that the difference between the actual and estimated GA is two
days. If the woman gives birth shortly after 37 weeks of gestation, she would – in
error – be defined as giving birth preterm.

If an inappropriate standard is used at the population level indicating a more
rapid growth than for the population, gestational age will then be biased towards
a low value, which will lead to a higher frequency of preterm birth. Using an
inappropriate standard for the population under study will thus have impact on
the estimated proportions of preterm and post-term birth for the population.

Gestational age is counted in days or in completed weeks. Preterm birth is a birth
occurring before the woman has reached week 37, while post-term birth is defined
as a birth taking place after completion of the 42nd week. The term prematurity was
sometimes used in the past for newborns with a birth weight of less than 2500 g.
This term should be avoided, because we do not know if newborns with a birth
weight of less than 2500 g are premature; some will not be. Preterm is a better
factual description, and sometimes it will be useful to study very preterm as well.
Very preterm has been defined as birth before 34, 33, or 32 weeks (Berkowitz and
Papiernik 1993). We prefer not to have a fixed definition for very preterm but to
let it be defined in the study. The best definition may depend not only on the
hypothesis you want to examine, but also on the available sample size.

The frequency of preterm and post-term births depends upon precision and
validity of the estimates of gestational age. If the central tendency of two measures
(ultrasound and LMP) are the same, but one is measured with larger measurement
errors (like LMP), then the imprecise measure will lead to more pre- and post-term
births, provided that the central tendency is the same. In a study of pre- or post-
term delivery it is therefore important that gestational age is at least measured
using the same methods in the groups to be compared. If studies are based upon
routine registrations of gestational age, it may not be known how it was measured.
If the exposure under study correlates with early foetal growth, LMP should be
applied. If the exposure correlates with menstrual irregularities, then ultrasound
is preferable. In order to detect a given difference in gestational age between
two compared groups, a larger sample size is usually needed if gestational age is
estimated by LMP compared with ultrasound estimates.

An example of the latter case may occur when studying whether a long time to
pregnancy leads to preterm delivery. If only LMP measures are available, one may
find that women with irregular or long menstrual periods have a longer TTP, as
many women with subfecundity may have irregular cycles. The measure of time
to pregnancy itself will be affected by this irregularity, since time to pregnancy,
although sometimes reported in months, should – however – reflect the number of
cycles that a couple takes to achieve a clinically detectable pregnancy. In such cases,
not only imprecision but also bias can affect the effect measures, and the burden
to estimate how much the observed effect can be ascribed to these problems falls
on the researcher. If ultrasound measurements are not available, one way to assess
whether the association may be due to bias caused by differential misclassification
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of gestational age could be to use birth weight as a support measure to corroborate
the finding. Since birth weight is less subject to error and its accuracy is less, if at
all, dependent on correlates of the exposure, this may provide reassurance for the
finding – or grounds for rejecting it. If there is no difference in the birth weight
distribution according to time to pregnancy before adjustment for gestational
age, this suggests that most of, or all, the observed effect is due to differential
measurement error of gestational age. If, on the other hand, the birth weight of
children born to women with a long time to pregnancy is lower than that of women
with a short time to pregnancy, this is an indication that there is at least some effect
of time to pregnancy on gestational duration, if there are no residual confounders
that can reduce birth weight that are more common in women with long time to
pregnancy. (This would be a problem if, for instance, short women – who have
lighter babies –alsohada longer time topregnancy than tallwomen, but a gestation
of the same duration). A long time to pregnancy may have an effect on foetal
growth as well as on gestational age, and one could thus estimate this by adjusting
for gestational age when examining birth weight as a function of time to pregnancy.

Another example of a factor affecting the accuracy of gestational age selectively
in exposed and non-exposed women may occur when examining the effect of short
interpregnancy intervals (the time between the previous birth and the next concep-
tion) on the gestational age of the subsequent pregnancy. Women who have short
intervals are likely to have less accurate estimate of gestational age, because cycles
resume some time after a pregnancy, and they may be irregular at first. Therefore,
women with very short intervals may have systematically inaccurate measures of
gestational age. Again, by checking with birth weight one can try to assess whether
there is evidence of this phenomenon. Although short interpregnancy intervals
have been associated with both preterm delivery and low birth weight, in a study
among Danish women (Basso et al. 1998b) only the association with preterm de-
livery was observed, while the one with low birth weight disappeared entirely after
adjustment for preterm delivery.

As stated previously, being born pre- or post-term may have stronger health
impacts than deviates from a ‘normal’ birth weight. Using e.g. the proportion of
preterm births as an indicator in a monitoring programme is therefore of interest.
In the past, such a measure was based upon LMP data. Now it would often be partly
LMP and partly ultrasound based, or based upon ultrasound measures only. From
a monitoring point of view this raises issues of concern related to comparability
over time. The standard used to estimate gestational age based upon BPD should
be appropriate and that means both time- and population-specific. It should be
a standard for the population it is applied to, and it should be changed over time if
foetal growth in the population changes over time. Many countries face increasing
obesity problems, which may influence not only birth weights but also early foetal
growth. If so, BPD standards need frequent adjustments for an ultrasound-based
monitoring system of preterm births to be unbiased.

No matter how gestational ages are calculated, you will sometimes find implau-
sible gestational ages based upon the newborn children’s birth weight or maturity.
We prefer to code such data as missing rather than use some of the methods that
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have been proposed to clean gestation age data (Parker and Schoendorf 2002). For
estimating gestational age at abortion, the LMP method is to be recommended in
most cases, even if ultrasound was used. A foetus that does not survive might have
been severely growth-retarded.

The pregnancy period is, in many countries, under intense monitoring by health
care personnel. The effects of any exposure under study reflect only the effect
remaining after health care intervention. This limitation is always true, but it is
especially important tokeep inmindwhenstudyingpregnancyduration, especially
post-term birth. A birth may be induced when the clinicians believe the child is
better off outside the uterus, or perhaps just because they believe the child is
sufficiently mature to be born, or if the mother’s health is at risk if the pregnancy
is continued. A pregnancy may then be terminated by a caesarean section, by
medically induced labour, or by other means. In any case, a substantial number of
pregnancies are not carried to a ‘natural’ end, and these observations are censored
in the life table terminology. Since the censoring, in many cases, will be associated
with the risk of pregnancy or birth complications, we cannot study e.g. the risk
associated with post-term birth per se. The only option is to study what remains of
riskafterhealthcare intervention. In likemanner,onecannot studydeterminantsof
post-term delivery, only determinants for pregnancies that are allowed to continue
after 42 weeks of gestation. Although these limitations are self-evident, they are
often not mentioned in scientific reports – perhaps because they are self-evident.
In our experience they may be self-evident but are often ‘forgotten’, even among
experienced epidemiologists. In any case, the necessary precautionary warnings
are often omitted from the discussion, and the results could thus mislead the public.

The risk associated with being born at an early or late gestational age may reflect
a risk associated with gestational time itself or the underlying conditions leading
to early or late birth. Only occasionally will it be possible to distinguish between
these two possibilities.

Preterm birth is a frequent and strong risk factor for child health. Our ability
to prevent preterm birth is limited by our sparse knowledge of avoidable causes
of the condition. A number of social, environmental and dietary factors may play
a role. Much of the present research effort is devoted to determining the role of
infections, but it remains true that preterm birth is one of the important hazards
where our preventive efforts have had limited success. In many countries, preterm
birth remains a frequent determinant of perinatal morbidity and mortality. It is
furthermore a frequent problem affecting 4%–6% of all births or even more. The
best-known predictor of preterm birth is having had a previous preterm birth. Low
social status and smoking, which are well recognized in predicting a poor birth
weight outcome, are not strong determinants of preterm delivery.

There are, however, many types of preterm delivery, since births can be induced
early in mothers at risk (pre-eclampsia is the most frequent cause of iatrogenic
preterm birth, for example), so some authors prefer to consider only rupture of
the membranes and disregard other types of preterm births, such as induced
deliveries. This approach will provide a ‘purer’ set of cases, which might share
a more homogeneous aetiology than the totality of preterm births.
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Congenital Malformations 5.9

Congenital malformations have been subject to numerous epidemiologic studies
and monitoring systems because they are very serious for the affected children,
their families, and society in general. Researchers dealing with studies of terato-
genic or fetotoxic effects prefer to include a wider range of abnormalities than
structural malformations. Some prefer to use the broader term congenital anoma-
lies (CA) that will include genetic disorders and some functional impairment as
well. CA will be present in 2%–7% of all newborn children, depending upon the
definition and upon the level of diagnostic procedures that have been applied.
Many anomalies will not be diagnosed until childhood or even later, and a num-
ber of defects (such as some heart malformations) may go undetected for many
years. Effectiveness of prenatal screening followed by induced abortion of affected
foetuses also plays a role for the prevalence of congenital anomalies at birth.

If congenital anomalies are taken to be all structural or functional defects or
deviations that are present at birth (whether or not they are detected at the time),
their frequency could be defined to cover many more. Many functional defects may
be present at birth in a form that is not yet detectable with the diagnostic means we
have at present, like cognitive defects, other brain defects, mutations of importance
for cancers like childhood leukaemia, or testis cancer. Foetal organ programming
of organ functioning could, in principle, also be seen as congenital anomalies in the
sense that programming may increase susceptibility to many diseases, like insulin
resistance and all the diseases it may lead to. Clearly, using such a broad approach
makes congenital abnormalities an impracticable or even impossible endpoint
for studies or monitoring. Most studies and monitoring systems will restrict the
endpoint to what is described in official disease classifications, such as Chap. 17 in
the International Classification of Diseases (ICD10).

Monitoring systems of congenital malformations have been, and are still being,
used in order to detect changes in the prevalence of malformations over time.
Many of these systems have their root in the Thalidomide disaster. Thalidomide
was released on the market in the 1950s to treat nausea and insomnia and was regu-
larly used by pregnant women. The drug was teratogenic, as reported by Lenz and
MacBride in 1961 (Diggle 2001), in about 40% of the pregnant women who used the
drug during organogenesis (mainly in the 2nd and 3rd gestational months), and
the most common defect produced at birth was phocomelia, a syndrome where
the extremities were severely underdeveloped. The drug is not teratogenic in all
experimental animals and, since pregnant women are never included in premar-
keting randomised trials, pregnant women in the population are often the first to
experience potential side effects of new drugs. It is therefore important to set up
programmes that fully utilise the information generated by pregnant women using
new drugs. At present, we are short of such information systems (Olsen et al. 2002).

It is currently hoped, somewhat näıvely, that the monitoring systems will pick up
newteratogenicdrugs, evenat anearlyphaseand that suchaneffectwill bedetected
by the reporting of side effects. Most drugs, especially new ones, are, however, only
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used by few pregnant women, and should they cause only one (or a few) specific
congenital malformations they will not be detectable in a general monitoring
system or in a side effect register, since the person who prescribes the drug is
usually not the same as the person who diagnoses a congenital malformation.
A monitoring system of congenital malformations would, on the other hand, be of
importance for setting up specific studies, because good quality data on congenital
malformations are often lacking in routine medical records.

The technology available to detect congenital malformations at an early stage
in gestation is continuously improving with the use of ultrasound or biochemical
and genetic methods. Clearly, measuring prevalence at birth may become a ques-
tionable endpoint if prenatal diagnosis is not used in exactly the same way in the
groups to be compared.

Since specific malformations are rare, most studies on determinants of con-
genital malformations will be based upon large routinely collected data sources
covering many thousands, possibly hundreds of thousands, of pregnant women, or
by using a case-control approach. The main advantage with the case-control is hav-
ing the possibility to collect valid exposure information concerning the pregnancy
(often very early pregnancy) by means of interviews. These data may, however, be
difficult or even impossible to obtain for exposures that are difficult to recall. The
recall easily leads to bias related to a lack in symmetry of the information obtained
from a woman who had a child with a severe handicap when compared to the
information provided by a woman who had a healthy child. Using another set of
patient controls (e.g. another type of congenital malformation than the one under
study) may be a possible solution, although it is not without problems. When using
patient controls as a surrogate for representative source population samples, the
“control” disease should neither be caused nor prevented by the exposure under
study, and, since we know so little about the causes of most malformations, this
might be a hazardous decision to make. However, interviewing women who all had
a child with congenital malformations should render the quality of information
more comparable, thus reducing the potential for bias (Swan et al. 1992). There
is indication of a more accurate recall of medicine intake in mothers who had
a child with a congenital malformation than in mothers, who had a healthy child
(Rockenbauer et al. 2001). Furthermore, it has been shown that the way questions
on medicine intake are phrased plays an important role (Mitchell et al. 1986).

Using a case-crossover design (Maclure 1991) might be an option to overcome bi-
asedreporting (andconfoundingbypersonal characteristics). Sinceonlyexposures
atagiventimeperiodmaybeofrelevanceforthemalformationsunderstudy,another
time interval during gestation before or after the index exposure may be selected as
a reference.Therelativeprevalence ratio for thecase inquestioncanbeestimatedby
dividingmotherswhowereexposed in theexposurewindowbutnot in thereference
windowandviceversa, given that thesewindowshave thesameduration.Therestof
the exposure combinations do not provide any information to the study concerning
the associations between drug intake and the specific malformations.

A case-control approach will allow specific diagnostic classification of the cases.
By setting up specific diagnostic standards it is possible to make sure that only
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the individuals with the malformation in question enter as cases (high specificity)
although some with the disease may not meet the criteria (sensitivity < 1). As long
as specificity is high, however, a relative effect measure will not be biased by a low
sensitivity, but the study power will be reduced. The following example illustrates
why this is the case.

Imagine that the underlying source population has the following structure:

Exp Cases All births

+ 2000 100,000

− 1000 100,000

RP =
2000|100,000

1000|100,000
= 2.0

Now assume that only half of the time cases will be diagnosed. The display of
data would then be:

Exp Cases All births

+ 1000 100,000

− 500 100,000

RP =
1000|100,000

500|100,000
= 2.0

The relative prevalence ratio (RP) is still 2, simply because there are still twice
as many diagnosed children with malformations among the exposed compared
with the non-exposed. The low diagnostic sensitivity did not change this. It is easy
to design a case-control study to replicate these results. It is just a matter of proper
sampling from the source population.

A case-control sampling using all cases and a sample from the base from any
of the two above situations would produce an unbiased estimate of the RP. A 1 : 5
case-control sampling would, in the first case, give:

Exp Cases Controls

+ 2000 7500

− 1000 7500

All 3000 15,000

OR =
2000|1000

7500|7500
= 2.0
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and in the second case:

Exp Cases Controls

+ 1000 3750

− 500 3750

All 1500 7500

OR =
1000|500

37,500|3750
= 2.0

The power would be less in the second example, as is reflected by a larger
variance. The variance of the OR is 0.0018 and 0.0035 in the first and second study,
respectively.

Pregnancy Complications5.10

Operational Definition5.10.1

Duringpregnancy almost allmaternal physiological systemsare subjected tomajor
changes. Cardiac output increases by 30%–50% and thus the kidneys have to filter
a much higher amount of blood. The space taken up by the enlarging uterus
changes the way the lungs and digestive systems work. The major changes are,
however, hormonal, and the placenta produces a large amount of hormones that
help maintain the pregnancy. The immune system is also affected, as pregnancy
is a mildly immuno-depressed state. Also, there are indications that pregnancy
requires a shift in the type of immune response from Th1 (pro-inflammatory) to
Th2 (antibody-mediated), modifying the maternal type of immune response as
well.

Because of these major changes, there are a number of pre-existing diseases
(such as diabetes, kidney disease, affections of the thyroid, heart failure, autoim-
mune diseases) that may be exacerbated by pregnancy and harm the woman or
the foetus. Some autoimmune diseases improve in pregnancy; others relapse or
worsen, or present a cluster of onsets immediately following a pregnancy.

Pregnancy complications are defined in the Medical Subject Headings as the
co-occurrence of pregnancy and a disease. The disease may have started before
conception or after. This definition is rather general and not in line with what most
people would think of as being a pregnancy complication. A puerperal depression
is considered as triggered by the birth and not just a depression that happens to
occur shortly after delivery, although it may be difficult to distinguish a depression
triggered by birth from a depression that would have occurred in any case. In these
paragraphs we will, therefore, deal with some aspects of complications that are only
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seen during pregnancy, or which are only defined as such during a pregnancy. We
will brieflydealwith somecommonpregnancy complications (suchashyperemesis
and placenta previa), reserving a particular emphasis to gestational diabetes and
pre-eclampsia, the former because it is a clear example of some of the problems
facing epidemiologists who deal with pregnancy complications. Pre-eclampsia is
relatively common and a serious complication of pregnancy, and it is also one of
the most fascinating mysteries of reproduction.

Other chronic diseases pose a risk to the mother and to the foetus. It is likely that
most of them will be seen among pregnant women, but with a lower prevalence
than in the general population, especially if they are severely debilitating for the
woman in her reproductive years. The ‘healthy pregnancy effect’ is analogous to
the better known ‘healthy worker effect’ and is due to the fact that a reasonably
good health is required to conceive and carry a pregnancy to term. This “effect”
need not cause bias if properly addressed in the design of the study. The ‘healthy
pregnancy effect’ only underlines the fact that many diseases will be less frequent
among parous women if these diseases interfere with actual fertility.

Methodological Challenges 5.10.2

Defining a Disease: Choosing a Cut-Point
A general problem in studying pregnancy complications is due to the fact that
many such conditions are defined as an extreme of events that occur in the course
of a normal pregnancy. Thus, a disease that represents an extreme value of the
distribution of a given trait rather than a qualitatively different entity will be more
problematic to study. In this case, the distinction between normal and pathological
becomes relatively blurred, and very often the challenge faced by clinicians is that
of defining a cut-point beyond which a condition is declared a disease (as in obesity,
diabetes, hypertension, and pre-eclampsia) and below which the same condition is
considered within the norm. It is immediately evident that definitions of this type
are susceptible to many problems, as is the case with all diseases defined this way,
because any arbitrary threshold will introduce some degree of misclassification,
especially since pregnancy is a condition under intensive medical surveillance,
which will then make pregnant women a population in which virtually the entirety
of its members will be screened for severe diseases one way or the other and,
in most cases, more than once in the course of pregnancy. It is well-known that
even a test with a high specificity will produce a large number of false positives
in a population with a low prevalence of a disease, and this leads to women being
unnecessarily treated and subjected to the stress of being diagnosed with a disease
they may not have. On the other hand, missing women with a given disease by
moving the cut-point towards more extreme values will result in a low sensitivity
that will lead to missing cases with consequences that may be very serious for the
mother and the baby. The extent of these problems depends not only on the criteria
for defining a disease but also on the approach adopted by the care providers,
the access to prenatal care, and the frequency with which pregnant women are
monitored. The more frequently women are seen and their blood glucose, blood
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pressure, or proteinuria are measured, the more likely it will be that they can be
wrongly classified as having a given disorder, especially if these measures fluctuate
over time. Conversely, women that are not screened often or do not comply with
prenatal care may be under-diagnosed in these circumstances. Factors related to
monitoring, such as insurance coverage, distance from antenatal care centres, etc.,
can thus produce bias, especially – but not only – if risk factors for the disease are
also part of the reasons why women comply less with prenatal care (smoking may,
in some circumstances, fulfil these criteria). In some cases, modelling the number
of ANC visits or other factors affecting the access to ANC (distance, social class,
insurance plan when applicable) might provide a clue about whether a problem of
this type has occurred, but this will not necessarily be sufficient to correct for the
bias.

Even if women comply equally with prenatal care, problems may arise if the
exposures under study correlate to some degree with the probability of being
diagnosed, as health care personnel may differentially screen women according to
their risk profiles.

Furthermore, the consensus on the cut-points usually changes in time and is
often not even geographically homogeneous at the same point in time. Compar-
isons over time and between different areas thus become difficult to perform and
of questionable value depending on the level of prenatal care and definition of the
disorder. Often researchers do not have the crude values of what is actually mea-
sured but only the clinical diagnosis, which makes virtually every study susceptible
to well founded criticism because the uncertainty and potential inaccuracy of the
diagnosis may well depend on the putative risk factors under study. Random errors
will also tend to dilute associations, often conspiring towards this end with the
number of false positives that will be included in most case series. We are thus
left with studying the phenotype that clinicians in that particular region and at
a given point in time call a disease, which may not be the best classification from
an etiological point of view.

ROC curves
Most readers will be familiar with the concepts of sensitivity and specificity. In the
presence of a ‘gold standard’ diagnosis that is the ‘truth’ about whether a patient
has a disease or not, the sensitivity of a given test is calculated as the number
of subjects who test positive among the diseased divided by the total number
of diseased. A test has a sensitivity of 1 when all with the disease are identified
by the test. The specificity of a test, on the other hand, is calculated as the total
number of subjects who test negative among the non-diseased divided by the
total number of all non-diseased (cf. Chap. III.10 of this handbook). A test with
a specificity of 1 will correctly identify as negatives all truly negative (no disease).
There is probably no single test that will have both a sensitivity and a specificity
of 1, so researchers have to live with a margin of error, even when several tests
are used in a sequence or in parallel. The use of the concepts of sensitivity and
specificity relies on a rather strong and often forgotten assumption: that the process
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in question (the disease) is inherently dichotomous (that is, of the yes|no type).
Although we often think of a disease as either present or absent and, for practical
purposes, that is the way clinicians often treat them, this concept is a construct
that depends on the definition of the disease, its severity and on the stage of the
disease and does not necessarily reflect the underlying physiology – especially
when we use a single marker to determine presence or absence of the disease.
However, with this caveat in mind, the concepts of sensitivity and specificity
can be useful. Associated with these are the concepts of positive and negative
predictive values, which are the fractions that will be truly positive (or negative)
given that they had tested positive (or negative). A test performed in a population
with a high prevalence will, in general, perform fairly well in terms of negative
and positive predictive values as long as sensitivity and specificity are high. In
a large population with a low prevalence (say 1|1000), however, even a test with
unrealistically high values of sensitivity and specificity for a clinical test (say,
a sensitivity of 0.99 and a specificity of 0.98) will yield a large fraction of false
positives among all those who test positive (with the above values, of the 21 that
would be classified as positive in a population of 1000, 20 would be false positives).
This misclassification will pose a serious problem to any epidemiologic study by
diluting the case series.

In a situation where a given marker is distributed differently between diseased
and non diseased subjects and where a cut-point is chosen to screen the population,
a situation analogous to the one depicted in Fig. 5.3 will appear.

In the fictitious example given in Fig. 5.3, the population represented by the
distribution on the left represents people without the disease under study, and
the blood marker that is measured has a Gaussian distribution with a mean of
1.25 and a standard deviation of 0.12. The population on the right has the disease,
and the same marker has a mean value of 1.55, with a standard deviation of
0.13. The two populations do not need to have the same absolute size, as what
is represented in the figure are the relative proportions (in %) of each category
of values. It appears from the figure that a large fraction of the diseased and
of the non-diseased overlap as far as the marker value is concerned. A test that
uses such a marker to discriminate between healthy and diseased subjects will
either miss a large number of the diseased or include many false positives. In
other situations there will be less (or more) overlap, but the same argument
holds.

To establish a cut-point for a test (serological, or a blood pressure measurement)
in order to define diseased and non-diseased subjects, ‘Receiver Operating Curves’
(ROC) has been used as a method to evaluate a test (Metz 1978). Each chosen cut-
point would result in a certain proportion of subjects, who fail to be classified as
diseased, being diseased (false negatives) and in a certain proportion of subjects,
who would test positive, being in truth negative (false positives). To build a ROC
curve the test is performed by progressively moving the cut-point from a lax one
(in which a great number of false positives would be included) to a strict one (in
which a high proportion of false negatives would be included; see also Chap. III.10
of this handbook). In the figure, a cut-off point of about 1.19 would produce
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Figure 5.3. Hypothetical distribution of a blood marker in two populations, with (left) and without

(right) a given illness. The area of overlap reflects the misclassification encountered when a given

threshold is used to determine the disease status

a sensitivity close to 1, and a cut-off at 1.67 a specificity close to 1. When the
measurement is not quantitative but is based – for instance – on radiographic
results, the observer is asked to classify several times the same subject using
a different rating for classifying disease: very likely positive|likely positive|unlikely
positive|very unlikely positive. Of course, the ‘true status’ of the subjects has to
be known with a degree of ‘certainty’ from a different source when building
ROC curves. ROC curves are used to find the cut-point that maximizes benefits
and minimizes side effects (taking into consideration the cost of missing a true
positive and that of having a number of false positives).

The curve is built by plotting on the x-axis the proportion of FP (False Positives;
1-specificity) and on the y-axis the fraction of TP (True Positives; sensitivity).

When selecting the subjects for the experiment conducted in order to build
a ROC curve, an adequate spectrum of the manifestations of the disease should be
selected for the test to be applicable to the target population.

If prevalence is low, then the FP fraction must be kept low, unless it is of vital
importance that all positives are identified. A combination of two tests could then
be used (one very sensitive on all subjects, followed by a very specific test on the
positive ones: this is applied, for example, in screening for HIV, where an Elisa test
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(very sensitive) is followed by a Western Blot (highly specific)). The higher and the
more to the left a curve is, the better is, in general, its performance.

In case there is no overlapping between diseased and non-diseased for the
studied variable, the area underneath the curve is 1 and the curve passes through
y = 1 and is parallel to the x-axis. When the assessment is totally random, the
curve is the diagonal for the first quadrant, and the area is 0.5. An area of 0.8
means that a random diseased subject has a higher value of the test than a random
non-diseased subject 80% of the time (Zweig and Campbell 1993).

Design Strategies
In general, i.e. if the exposure prevalence is low, relative effect measures, such as
the relative risk or the odds ratio, are more profoundly affected by low specificity
than by low sensitivity. A possible strategy when dealing with diseases that have
been classified on the basis of a definition determined by exceeding a given cut-
point is to limit the number of false positives by restricting the study to the more
severe cases (which will, most likely, be identified with a lesser degree of error),
if the possibility to do so exists. However, this will often have the consequence of
substantially reducing the power of the study when dealing with disorders that, in
general, are quite rare to start with.

Ad hoc studies (made for the specific purpose of investigating a given disease
in a defined population) with access to medical records are an important option,
which, however, will be more costly than studies based on routine information and
will, once again, raise the issue of how many cases will be available for the study.

In some cases, combining the clinical diagnosis of the disease of interest with
a feature that should be concomitantly present if the disease is actually present
may increase the quality of the data for the study.

For example, placenta previa is a relatively rare pregnancy complication, where
the placenta is wrongly positioned to partly cover the opening to the birth canal. In
early pregnancy, however, the placenta will relatively often appear to be wrongly
positioned but will in many cases spontaneously reposition itself during the course
of pregnancy (Dashe et al. 2002). If a study is based on all diagnoses, even those
made in early pregnancy, cases may include a number of these early cases, which
represent a rather harmless condition. However, if placenta previa persists, the
common practice is that of performing a caesarean section to deliver the baby
and thus, by including only the women diagnosed with placenta previa who were
later delivered by caesarean, one will probably be limiting the analysis to the more
severe or, at least, the more persistent cases. This has been done, for example, in
studies investigating whether pregnancies with placenta previa presented a higher
male to female ratio (Wen et al. 2000; Ananth et al. 2001). Whether this type of
approach should be used or not has to be evaluated depending on the specific aim
of the study.

The significance of the same symptom may also change across the duration
of pregnancy, and it may be a cause or a consequence of another condition also
depending on the timing. This is probably the case, for example, of bleeding during



1088 Jørn Olsen, Olga Basso

pregnancy, which, in the last trimester, is probably a consequence of placenta
previa or placental abruption, while it may be an entirely different entity in the
first two trimesters (such as threatened abortion). Hyperemesis, severe vomiting
in pregnancy, is another example of a normal condition becoming pathological
when presenting itself in an extreme fashion. Several studies investigated foetal
outcome among women who had hyperemesis, with conflicting results (Depue
et al. 1987; Kallen 1987; Godsey and Newman 1991; Hallak et al. 1996; Gross et al.
1989). Yet, a recent review states that severe vomiting does not have a negative effect
on perinatal outcome (Eliakim et al. 2000). However, if the definition of the case
series is based on a hospital diagnosis without taking severity into consideration,
then the cases may include a number of women with a relatively mild disease that is
not really distinct from the ‘normal’ nausea and vomiting of pregnancy. Restricting
cases to those where some objective biomarkers, such as severe ketosis or serum
electrolyte disturbance, can be measured may then provide a more purely defined
case series, which might be one of the reasons for the inconsistent findings.

Timing of the disease may also be of relevance, as in two studies investigating
the association between hyperemesis and female sex of the baby it was noted that
the association was strong only for hospitalised cases of hyperemesis occurring in
the first trimester of pregnancy (Askling et al. 1999; Basso et al. 2001). Hyperemesis
occurs more frequently in women carrying multiple foetuses, as well as in women
(carrying singletons) who will later be diagnosed with pre-eclampsia (Zhang and
Cai 1991). These observations suggest that there might be multiple causal paths
leading to hyperemesis and that, in some women, a large placenta (with a high
hormone production) may be the cause of the disease, while in others hyperemesis
may be a sign of some other pathological process under way. In any circumstance,
whenever etiologic heterogeneity exists in a process, and signs and symptoms
are the same as that of another process (so that they are considered the same
disorder), it is always very difficult to disentangle what is being studied. If only
a small fraction of the case population represents a different etiologic entity, even
a moderately strong predictor will likely appear not to be associated with the mixed
entity and it will be repeatedly missed. If the fraction is large, then a predictor will
be called a risk factor for both entities, and perhaps this uncertainty contributes
to some of the failures of epidemiology to encourage changes in people’s habits
and in policies. When these conditions occur in pregnancy, it may, in some cases,
be possible to discriminate to some extent between different entities by paying
particular attention to the timing in which events occur.

Gestational Diabetes5.10.3

As many other metabolic functions, the metabolism of carbohydrates is altered in
normal pregnancies. The fasting blood glucose level decreases early in pregnancy
until the 12th week, and it usually remains at this lower level until the end of preg-
nancy. Insulin, by contrast, remains stable during the 1st and 2nd trimesters, but
increases during the 3rd. Outside pregnancy, on the other hand, the blood glucose
level returns rapidly to fasting levels after a meal, and in pregnancy both glucose
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and insulin levels reach higher peaks than they would after a similar meal in the
non-pregnant state. This level is furthermore maintained for a longer time. Human
placental lactogen (hPL) is the hormone that is believed to be responsible for these
changes in the metabolism (Haig 1993). In general, pregnancy is a state of mild
insulin resistance, and some women develop gestational diabetes. As an adapta-
tion, insulin production is increased at the same time that the mother is becoming
insulin-resistant. Haig (1993) proposes an interesting hypothesis about why this
change may occur within his evolutionary theory about the genetic conflicts of
pregnancy. Glucose is an important nutrient for the growing foetus, but it is also
important for the mother’s survival that not too many of her resources are depleted
by the foetus, which may happen if foetal demands went unopposed: the decline in
blood glucose early in pregnancy could thus represent a maternal attempt to limit
foetal uptake. In addition, after every meal there will be a competition between
the mother and the foetus over the respective share. The longer it takes the mother
to reduce her blood sugar, the higher the share taken by the foetus, hence the in-
sulin resistance, according to Haig. At the beginning of pregnancy, the foetus has
limited growing demands and limited ‘power’, which is why the mother succeeds
in ‘hiding’ her blood glucose. During the third trimester, however, the foetus has
very high growing demands and it is strong enough to take the upper hand in the
competition with the mother. When seen in the light of how to optimise survival
probabilities, this is an attractive hypothesis, although hard to test.

Barker (1995, 1998) has a different hypothesis, suggesting that insulin resistance
is a consequence of limited nutrient supply. Clearly, however, glucose metabolism
is crucial in pregnancy, and a mechanism has evolved that creates a delicate balance
between the maternal and foetal needs. Diabetes during pregnancy is a complex
problem and requires a very careful management to prevent damages to the foe-
tus and to the mother. The consequences of gestational diabetes may be dire for
the foetus; as with gestational diabetes there is an increased risk of stillbirth and
macrosomia (Schmidt et al. 2001; Johnstone et al. 1990). Macrosomia is the most
frequent outcome in diabetic mothers, and this can complicate delivery to the point
that a caesarean section is required. Women who have had gestational diabetes are
at increased risk of having it again in a subsequent pregnancy and are also at risk
of developing diabetes (Dornhorst and Beard 1993), especially type 2, later in life.
Gestational diabetes, as well as other types of diabetes, is also a risk factor for
pre-eclampsia (Schmidt et al. 2001), another potentially severe pregnancy com-
plication. Obesity is a predisposing factor (with insulin resistance the underlying
condition), as is advanced maternal age or having a family history of diabetes.

The definition of gestational diabetes is problematic and the subject of many
a controversy (Dornhorst and Beard 1993; Martin et al. 1995; Gabbe 1998; Bonomo
et al. 1998; Schmidt et al. 2000). The discussion extends to whether there should
be universal screening for all pregnant women. In 1996, the American Diabetes
Association concluded that universal screening should be done, but these recom-
mendations were then revised in 1997 and 1998 to selective screening of women
satisfying at least one criterion among (1) age above 25, (2) age below 25 and a body
mass index above 27, (3) a family history of diabetes, and (4) belonging to ethnic
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to above normal values. A modest degree of hypertension is thus a rather common
condition of pregnancy and has not been consistently associated with unfavourable
outcomes.

Pre-eclampsia is, on the other hand, one of the most common and potentially
severe complications of pregnancy. In pre-eclampsia, the maternal blood pressure
can increase dramatically and heart, brain, and kidneys may be severely damaged.
If the mother survives, the affected organs usually return to normality shortly
after delivery, but pre-eclampsia can also be fatal. If seizures occur, the disease
is called eclampsia (a very rare occurrence in countries with well-functioning
health care systems) and the risk for both the mother and the foetus is then
much higher. While eclampsia is a dramatic event that is probably rarely mis-
classified, pre-eclampsia is, by definition, much more elusive. In most countries,
it is currently defined as the concurrent presence of hypertension and protein-
uria. Gestational hypertension is defined as either a persistent rise of 25 mm Hg
in systolic blood pressure during pregnancy compared to pre-pregnant values (if
the pre-pregnant values are not known, a systolic blood pressure of 140 mm Hg
or higher), or as a rise of 15 in diastolic blood pressure (DBP) (or as a DBP
above 90). The definitions of gestational hypertension do, however, vary geo-
graphically. For the disorder to be called pre-eclampsia hypertension must be
accompanied by a certain minimum level of proteinuria. The degree of sever-
ity depends on the values of blood pressure and the amount of protein loss, as
well as additional signs and symptoms, often including oedema. Previously, pre-
eclampsia was defined by the concomitant presence of two out of three symptoms
(hypertension, proteinuria, and oedema), but the definition has changed to be
restricted to cases where both hypertension and proteinuria are present at the
same time, as oedema appeared to be too unspecific. The problem with this def-
inition is, however, that a mild state of hypertension is common in pregnancy
and, often, the pre-pregnant values are not known. What is termed moderate pre-
eclampsia may thus, in some cases, be nothing more than a change in values of
blood pressure and proteinuria within the norm. Sometimes, changes in these
values may be severe enough to qualify for the diagnosis, but they will escape
detection. Furthermore, some women become nervous when their blood pressure
is taken in a clinical setting, and thus they would be classified as hypertensive
while they are not (‘white coat’ hypertension). On the other hand, a number of
cases may be missed by applying this definition, either because of ignorance of
the baseline pre-pregnancy values, or because the women do not have their blood
pressure measured at the moment of the increase and, if there are no severe
symptoms, the diagnosis will never be made. In severe cases, women become
very sick and there is little doubt about the diagnosis, but these cases are the
minority.

The reported incidence of pre-eclampsia appears to vary widely across places,
from an estimated 2% to approximately 8%. This variation may reflect real varia-
tions in susceptibility and determinants across populations, but it almost certainly
also depends on the sources of information for the diagnosis as well as on the
access to prenatal care and the problems mentioned above.
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The only known ‘cure’ for pre-eclampsia is to end the pregnancy, as the placenta
appears to be the organ that causes the disease, and pre-eclampsia is therefore the
major cause of iatrogenic preterm delivery.

Pathophysiology of Pre-Eclampsia
In normal pregnancy, the maternal spiral arteries are modified and penetrate
deeply into the decidua (first trophoblastic invasion) and, around the 16th to
18th week, into the myometrium (second trophoblastic invasion). The invasive
trophoblast enlarges the vessels from within, and a fibrin substance that renders
them flaccid and unresponsive to maternal vasoconstriction replaces the vessels’
internal lining. In pre-eclampsia often, but not always, the second trophoblastic in-
vasion does not occur, or occurs only to a very modest degree (Salas 1999; Roberts
and Lain 2002), resulting in placental perfusion being severely compromised be-
cause the arteries are narrow and with a high resistance instead of being wide,
low-resistance vessels, as they would be if the invasion had proceeded normally.

Haig (1993) expresses the view that hypertension in pregnancy is a foetal adap-
tive mechanism. Because of the structure of the spiral arteries and the fact that
sympathetic nerves disappear from the placental site during pregnancy, the ma-
ternal control of the blood flow to the placenta is limited and the placental site is
characterized by low resistance to blood flow. Due to these characteristics, for any
given resistance of the placental unit, a compensatory rise in the maternal periph-
eral blood pressure will increase the blood flow to the placenta. According to Haig,
this may be a sign of a feto-maternal conflict, where the growing foetus is able – by
some unknown mechanism – to increase maternal blood pressure and thus in-
crease the placental blood flow. Drug-induced reduction of mean arterial pressure
may be associated with a reduction in foetal growth (von Dadelszen et al. 2000)

Pre-eclampsia is not, however, always accompanied by defective placentation,
and is, most likely, a common syndrome resulting from heterogeneous causes
(Ness and Roberts 1996). It is believed that large placental mass (as seen in multiple
pregnancies) and endothelial disease (as seen in diabetics) are mechanisms that
can also produce placental hypoperfusion and start the cascade of events that leads
to pre-eclampsia (Salas 1999).

Known Predictors of Pre-Eclampsia
The aetiology of pre-eclampsia is mostly unknown, and this disorder is one of
the most tantalizing mysteries of reproductive epidemiology. The best-known
predictors are nulliparity, obesity, and multi-foetal pregnancies, while smoking
is protective for reasons unknown, although several hypotheses have been raised
to explain this association (Condé-Agudelo et al. 1999). Africans and African-
Americans appear to be at a higher risk, possibly because susceptibility to pre-
eclampsia is related to susceptibility to cardiovascular disease (Roberts and Lain
2002). Recent evidence suggests that only women giving birth with pre-eclampsia
preterm are at a higher risk of later death for cardiovascular disease, while women
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giving birth with pre-eclampsia at term have no increased risk compared to non
pre-eclamptic women (Irgens et al. 2001).

Several trials have addressed the association between pre-eclampsia and dietary
factors, mostly calcium, magnesium, antioxidants, and fish oil. Unfortunately, no
clear answer has emerged from these studies, except for the finding that calcium
appears to be protective among women with a very low baseline intake or for
women with a very high risk of pre-eclampsia (Villar and Belizan 2000). In general,
however, the attempts to prevent pre-eclampsia through dietary supplements or
aspirin have been overall disappointing (Sibai 1998; Dekker and Sibai 2001).

It is well accepted that a genetic component to pre-eclampsia exists, since chil-
dren born of pre-eclamptic pregnancies are themselves at a higher risk of having
children born of pregnancies with pre-eclampsia (Esplin et al. 2001). Also, males
whose partner had pre-eclampsia have almost twice the risk of having their sub-
sequent partner developing pre-eclampsia compared to males whose partner had
not developed it (Lie et al. 1998).

A large number of biomarkers and genetic factors have also been explored
as predisposing to pre-eclampsia (Broughton Pipkin 1999; Roberts and Cooper
2001). Genetic studies on pre-eclampsia have not consistently revealed a specific
genotype associated with pre-eclampsia, although women with pre-eclampsia are
more likely to have a heterozygous factor V Leiden mutation and other throm-
bophiliac mutations (Alfirevic et al. 2002). Not all researchers agree on the role of
thrombophiliac mutations (Livingston et al. 2001), however.

Methodological Challenges in Studies of Pre-Eclampsia
Although pre-eclampsia is probably the most studied among all pregnancy com-
plications and keeps fascinating researchers from many areas of medicine, several
difficulties face the investigators, mainly because of the difficulty of accurately
identifying cases in sufficient numbers, without incurring selection problems. Re-
search based upon nationwide hospital registries can provide population-based
data that may, however, be of limited quality if the only available information is the
code according to the International Classification of Diseases. The advantages of
these studies are that women are most likely unselected and that the numbers will
be large enough to allow studying even relatively rare predictors or outcomes. In
some cases, these studies might be the only viable option. If, to improve the quality
of the data, researchers restrict their case series to severe pre-eclampsia only, then
the numbers will be dramatically reduced but, possibly, fewer false positives will
be included.

On the other hand, studies of the case-control type where medical charts are
available would provide a much better case series if proper diagnostic procedures
can be applied to document the disease, whereas problems may exist in recruiting
a sufficient number of controls retaining a sufficient confidence that self-selection
will not bias the study. If the women who accept to enter the study as controls do
so according to the exposure under study, this will produce biased estimates to an
extent that is often impossible to judge. Since pregnant women are invited to lead



1094 Jørn Olsen, Olga Basso

a healthy lifestyle for the sake of the baby if not their own, it is likely that some
women whose pregnancy went well but whose habits were not beyond reproach
would be relatively unwilling to take part in a study where such habits would be
questioned. On the other hand, women who had a negative experience may be
less reluctant to having their behaviour under scrutiny, because they want to know
what went wrong. However, problems in studying pre-eclampsia go well beyond
the objective difficulties of appropriately defining cases or of finding unselected
study populations.

Pre-eclampsia is a cause of preterm delivery, mostly iatrogenic. This fact compli-
cates the interpretation of studies attempting to evaluate whether pre-eclampsia is
associated with conditions that are more common in babies that are born preterm,
such as e.g. cerebral palsy. Some studies have reported that babies of pre-eclamptic
pregnancies were protected from cerebral palsy when the risk was examined by
gestational week at birth (Gray et al. 1998; Murphy et al. 1995). Is this a protection
conferred by pre-eclampsia, or is it an artefact due to the fact that the causes of
preterm delivery in pre-eclamptic pregnancies differ from those of other preterm
deliveries, where the causal factors may include those of cerebral palsy? Because
babies born preterm for causes other than pre-eclampsia have other pathological
mechanisms that advanced birth, disentangling the effects of preterm birth from
its causes is a major challenge, and so is examining the various causal paths lead-
ing to preterm birth that may very well be implicated in the diseases ‘associated’
with preterm birth. Also, many cases of pre-eclampsia are delivered by emergency
caesarean section, and the delivery complications due to caesarean section are
generally different from those arising from vaginal deliveries, as many preterm de-
liveries will be. If complications that can arise from vaginal delivery are associated
with cerebral palsy (e.g. anoxia), then comparing pre-eclamptic women with non
pre-eclamptic will result in a biased comparison.

Another problem is that of studying pre-eclampsia in connection with other
conditions or factors that are associated with preterm delivery. If a given factor
causes preterm delivery, it may also appear to be protective of pre-eclampsia simply
because women with a shortened pregnancy have had less opportunity of devel-
oping it, since pre-eclampsia often occurs after the 36th week of gestation, but
being pregnant (or just delivered) is a necessary condition for being diagnosed.
If the date when pre-eclampsia was first diagnosed is known, data may be anal-
ysed through Cox regression or survival methods to overcome this problem (for
a general introduction to survival analysis see Chap. II.4 of this handbook).

If an important confounder is systematically omitted when studying a given
disease, this will lead to the potential establishment of a wrong conclusion (cf.
Chap. I.9 of this handbook). For example, a currently accepted hypothesis about
the aetiology of pre-eclampsia proposes that a maternal immune reaction to pater-
nal antigens may be a cause of the failed trophoblastic invasion. This hypothesis
was mainly based on the observation that pre-eclampsia is more frequent in first
pregnancies. Among multiparous, women who had changed their partner from
the previous pregnancy had an increased risk (Dekker et al. 1998; Dekker 1999;
Trupin et al. 1996; Lie et al. 1998; Li and Wi 2000). Also, women with a long
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period of sexual cohabitation prior to a pregnancy and women using oral contra-
ceptives appeared to be at a lower risk of the disease than women with a short
cohabitation period or those using barrier contraceptive methods (Robillard et
al. 1994; Dekker et al. 1998). This suggested that a prolonged exposure to the
partner’s sperm may have constituted a protection that would reduce the risk of
pre-eclampsia, thus leading to the expression that ‘primipaternity’ was a risk
factor for pre-eclampsia. For some researchers (including the authors of this
chapter), however, this hypothesis has lost some attraction since three studies
(two based on the Norwegian Birth Registry (Skjaerven et al. 2002; Trogstad
et al. 2001), and one based on a sample from the Danish Birth Registry (Basso
et al. 2001)) independently reported that this increased risk with change of part-
ner disappeared if the interval between births was adjusted for. Women who
change partner have, on average, a much longer interval between births: if any
factor correlated with time has an impact on the risk of pre-eclampsia, then
women waiting a longer time will have an increased risk, regardless of whether
they change partner. This was found to be true in the above-mentioned stud-
ies, even after maternal age was controlled for. This finding prompted a fur-
ther study where time to pregnancy was investigated in association with pre-
eclampsia, as a fraction of the women waiting a long time between pregnancies
may be subfecund. Time to pregnancy, as previously mentioned, is a proxy for
the couple’s fecundity and thus a relatively crude marker, since it reflects a mul-
titude of disorders. It is, however, interesting that an association between long
time to pregnancy and pre-eclampsia could be found despite these limitations
(Basso et al. 2003), and this evidence may lead to further research for identify-
ing a subgroup of infertile women with a specific disorder that relates to pre-
eclampsia.

Pre-eclampsia is most likely the result of an interaction between the maternal
and the foetal systems, but its diagnosis relies exclusively on symptoms that are
observed in the mother. It is perhaps for this reason that, so far, pre-eclampsia has
eluded most attempts to clarify its aetiology.

Delivery Complications 5.11

Delivery complications may arise before or during delivery and present a risk for
the mother and|or the baby. Some have to do with the foetus’s presentation or its
inability to pass through the birth canal. Until less than a century ago impacted
births were the major cause of foetal and maternal morbidity and mortality. Be-
cause of malnutrition, many women had under-developed pelvises and the baby’s
head would remain trapped in the birth canal. Nowadays, foetal or maternal death
because of this is a very rare event in industrialized countries but still a major
problem in developing countries, where most babies are delivered at home and
hospitals are far away and are perhaps lacking adequate resources. The three major
causes of maternal mortality in developing countries are haemorrhage and sepsis,
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as well as hypertensive disorders, and the first two usually result from delivery
complications.

Beyond foetal presentation (and position), and foeto-pelvic disproportion, de-
livery complications also include weak contractions, prolonged labour (of any of
the three stages), prolapse of the umbilical cord, perineal or vaginal tears, foetal
asphyxia, retention of the placenta, haemorrhage, etc. Caesarean sections, which
account for between 15% and 30% of all births, depending on countries, constitute
perhaps the major difficulties when studying delivery complications. Caesarean
sections can be planned or acute, and the latter could be started before delivery or
during delivery. Emergency caesarean sections, themselves considered a ‘delivery
complication’, are triggered by complications arising in the mother or the foetus.

In the case of delivery complications even more than in other cases, researchers
have to study what is left after physicians have acted. Therefore, only babies being
born vaginally will be at risk of getting the umbilical cord wrapped around their
neck, or of having any other accident during their descent through the birth canal
that may affect the supply of oxygen to the brain. This would not be a problem
if the decision of delivering a woman by caesarean section were independent of
any factors that may put the baby at higher risk of encountering such mishaps,
but – usually – this is not the case. Since the relative size of the mother and the baby
or signs of foetal distress may well trigger the decision of performing a caesarean
section, it is likely that babies born vaginally and those born by caesarean are not
comparable before delivery, which will complicate any interpretation of findings
associated with a given delivery complication. This will also complicate any study
trying to evaluate the ‘effects’ of any given intervention during delivery, as it will be
difficult to separate the effects of the intervention from the causes that provoked it,
which may also be the causes of the outcome of interest. Even restricting to planned
caesareans may not be sufficient to solve the problem, as caesareans are planned
for a reason, and one likely reason is that a complication is foreseen and a caesarean
section may prevent it from occurring. Experience in previous pregnancies will
also affect the mode of delivery. A woman who has previously had a caesarean
section will, in many cases, have one also for her next delivery, especially if the two
pregnancies are close in time. Since many events tend to repeat themselves in one
woman’s reproductive life, it will be hard to decide what to do with such a woman,
especially if the cause for her previous caesarean is not known.

A caesarean section is the preferred choice of delivery mode for an increasing
number of women and immediate risks appear to be few. Only little is, however,
known about long-term effects and recent results suggest that the risk of asthma
may be increased (Kero et al. 2002), although these findings have to be examined
cautiously.

Obstetric complications have been associated with schizophrenia (Geddes and
Lawrie 1995; Verdoux et al. 1997), and hypoxia correlates with cerebral palsy (Blair
and Stanley 1993). Anoxia or hypoxia will most likely cause cerebral damage and
it is reasonable to assume a causal link. But it may also be argued that a baby who
had brain damage (which will later cause cerebral palsy) prior to birth will be more
likely to have a complicated delivery and suffer from anoxia.
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In general, if one wishes to study a delivery complication that may, in some
cases, lead to a caesarean section (or to induction of delivery), it will be necessary
to have information on why the caesarean section was performed. Practice of
caesarean section, induction of delivery, instrumental birth, etc., change between
geographical areas and in time, and dealing with these variations may prove
a daunting and perhaps impossible task. Usually, many elements are used in the
decision to treat, and it may just be impossible to identify all these elements and
control for them in the analysis. Confounding by indication is one of the strongest
arguments for evaluating treatments in randomised trials, which, however, will
often be difficult to carry out in this context.

Since the practice of inducing birth (also by other means than a caesarean
section) is now widespread, with criteria for induction that often differ from one
hospital to the other, it will always be complicated to study either the induction
itself or phenomena such as post-term delivery or macrosomia, even when good
information about the causes of the induction are present.

If preterm babies are at a higher risk of incurring delivery complications, it
may be this latter fact rather than the timing of birth that makes them at higher
risk of several diseases. On the other hand, if some babies who are born preterm
are born preterm because of some damage that will later cause the disease and
makes them at higher risk of delivery complications, then delivery complications
will spuriously appear to cause the disease.

Foetal Origins of Adult Diseases 5.12

Most reproductive epidemiology has been related to the time period from preg-
nancy planning to the early time period of a new life. In the future, many diseases
will be seen as trajectories that start at the time of conception during pregnancy or
in early childhood. Obviously, studying exposures with an induction and latency
time of causation spanning several decades raises severe problems of being able to
control for intervening factors. Without longitudinal readings of the occurrence of
possible confounding factors, such studies may often provide confounded results.

It is not unexpected (or not even questionable) news that exposures during
foetal life may have lasting effects. What is new is that prenatal exposures may
cause diseases that manifest themselves long after birth, perhaps even as late as
in following generations. Foetal programming is the name that has been used to
describe what could happen if a stimulus or insult at a critical period of organ
development interferes with cell division and thus with the function of the affected
organ. Permanent changes of organ function could, in principle, lead to many
diseases (Olsen 2000), but best documented are the associations between origins
of disproportional foetal growth and cardiovascular diseases, perhaps through
insulin resistance (Barker 1994, 1995, 1998).

Although the brain growth seems to be less vulnerable to undernutrition, spe-
cific nutritional factors, stress, medicine, etc., may influence brain function. Study-



1098 Jørn Olsen, Olga Basso

ing determinants of brain function and brain pathology in foetal life should be
a high priority research area.

Hormonal factors during foetal life may not only affect the reproductive organs
but could also be associated with other diseases, such as cancer of the breast,
prostate, and testis. As early as 1990, Trichopoulus suggested that breast cancer
might originate in utero. It was suggested that oestrogen could play a role and,
since oestrogen correlates with foetal growth, it is expected that rapid foetal growth
could be associated with a higher risk of breast cancer five or more decades later.
The hypothesis has, to some extent, been corroborated (McCormack et al. 2003).

Sources of Data5.13

As in other subgroups of epidemiology, the data come from different sources; sec-
ondary routine data or ad hoc data based upon self-reported information, infor-
mation from clinical measures, or information extracted from biological samples;
blood, urine, placenta tissue, etc. (Longnecker et al. 2001).

More secondary data are available in reproductive health than in most other
epidemiologic areas. Most pregnant women and most newborn children are care-
fully monitored and data are stored in medical records or even in computerized
birth registers that may include not only birth data, but also exposure data such as
smoking, medical treatment, etc. (Ericson et al. 1999).

The data that usually have to be collected for research are data that describe
putative causes of reproductive failures. Many of these exposures have to be col-
lected prospectively, since they are often forgotten and cannot be reconstructed
in an unbiased way back in time, once the outcome of the pregnancy is known.
This is often true for dietary factors, medical treatments, occupational exposures,
etc. Data on infections, occupational exposures, life-style factors, dietary factors
etc., cannot be recalled for more than a few weeks or perhaps months. Usually, the
mother is, not unexpectedly, a better source for data on pregnancy and birth than
the father (Coughlin et al. 1998).

For these and other reasons, it seems justified to set up large cohort studies,
starting shortly after conception and with the aim of collecting exposure informa-
tion during pregnancy. It is also necessary to establish cohorts that can be followed
over long time periods, the best case scenario being from conception to death, in-
cluding information on their offspring. These cohorts need to be large to provide
sufficient information for rare outcomes. Large cohorts of this type were set up
in the past, and the best known is probably the National Collaborative Perinatal
Project from the USA, started in the late 1950s, where more than 50,000 pregnant
women were enrolled. The cohort aimed at studying obstetrical complications and
the risk of cerebral palsy and other neurological disorders, although the cohort
has served many other research purposes since then.

The Danish National Birth Cohort (DNBC) enrolled 100,000 pregnant women
from 1996 to 2002 (Olsen et al. 2001) and included data from interviews, registers,
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and self-administered questionnaires together with blood from the mother and
child stored inabiobank(www.bsmb.dk). Similar studies are inprogress inNorway,
the USA, and several other countries.

Conclusions 5.14

In this chapter we have tried to highlight some of the main features of reproductive
epidemiology as we see them. In particular, the fact that reproduction, even in our
medicalised world, is a direct result of selective processes, which are still active.
In addition, most of the events that we study in this area are what is left after
main selection has taken place: selection of couples where a conception takes
place, and further selection of those conceptions that will progress to clinical
recognition and medical intervention, which may lead to anticipated delivery
or a termination of pregnancy, or to treatment of a disorder. For this reason,
denominators are usually unknown. Furthermore, the processes that occur during
a pregnancy that ends in a birth are usually also hidden, and therefore we do not
really know what has happened to the foetus during the most delicate phases of
development.

Any event in reproduction generally concerns three individuals rather than one.
In many instances pregnancies are voluntary events and many women have several,
although the decision to have further pregnancies (and their outcomes) often
depends to some extent on the outcome of the previous ones. Time is also of crucial
importance when dealing with reproductive epidemiology, but its dimension is
generally different from the time involved in the development of, say, cancer after
exposure to a given mutagenic substance. The types of bias that can occur in this
area are, in many cases, peculiar to this discipline, and they have to be taken into
consideration.

We expect genetic and functional genetic studies to be important in future
research. Although we may not be able to answer the big questions like how the
entire process of organ development is coordinated, finding answers to less broad
questions will also be of interest. We need to know much more about genetic and
gene-environment interaction, not only in the development of congenital malfor-
mations and childhood cancers, but also for long-term organ programming (for
an introduction to genetic epidemiology see Chap. III.7 of this handbook). Using
information on genetic factors in e.g. metabolism of environmental exposures, like
alcohol, may even be of help in examining confounding. How much of the associ-
ation between e.g. alcohol and reproductive failures is due to confounding cannot
be examined in a randomized trial, but the genetic factors that modify alcohol
metabolism may follow ‘Mendelian randomization’ and thus provide a design for
comparison that bypasses some of the problems associated with the intercorrela-
tion between lifestyle factors (Smith and Ebrahim 2003).

The peculiarities of reproductive epidemiology offer a number of opportunities
to researchers willing to exploit them. We have tried to introduce readers to
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a number of the features that make this area of epidemiology exciting, vibrating,
and fairly unique.
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Introduction6.1

Molecular epidemiology can be defined simply as the application of the techniques
of molecular biology to the study of populations, with a particular focus on the
investigation of disease. Molecular investigations, as we will see, have several aims
and can contribute to the elucidation of disease causation.

The most critical issues in molecular epidemiology include an appropriate study
design, careful attention to sources of bias and confounding, and the development
of markers that can be applied on a population scale. The study design is particu-
larly important, because past research that applied laboratory methods to human
populations was often based on “convenience samples” – i.e. groups of patients re-
cruited in the most comfortable way without a proper design – that were frequently
affected by bias.

This chapter mainly refers to chronic diseases, and more specifically to cancer,
but the methodological considerations have a general relevance.

Markers used in the molecular epidemiology of cancer are usually divided
into the three categories: markers of internal dose, markers of early response and
markers of susceptibility (Bartsch 2000; Schulte and Perera 1998; Toniolo et al.
1997). The underlying concept is that there is continuity between exposure to
a toxic (carcinogenic) agent, metabolism (activation or deactivation), adduction
to proteins or deoxyribonucleic acid (DNA) (i.e. formation of links by the active
metabolite), DNA alterations like mutations or chromosome damage, and finally
cancer onset. These concepts are schematically represented in Fig. 6.1.

In fact each category includes sub-categories. For example, protein adducts and
DNA adducts are both markers of internal dose, but their biological meaning is
different. Adduct is a word that refers to the binding of an external compound
to a molecule such as a protein or DNA. While protein adducts are not repaired,
i.e. they reflect external exposure more faithfully, DNA adducts are influenced
by individual repair ability; in fact, if they are not eliminated by the DNA repair
machinery, they may induce a mutation. Markers of early response are a het-
erogeneous category, that encompasses DNA mutations and gross chromosomal
damage. The main advantage of early response markers is that they are more fre-
quent than cancer itself and can be recognized earlier, thus allowing researchers
to identify effects of potentially carcinogenic exposures earlier. Finally, markers
of susceptibility include multiple sub-categories, in particular a type of genetic
susceptibility that is related to the metabolism of carcinogenic substances (Vineis
et al. 1999), and another type that is related to the repair of DNA (Berwick and
Vineis 2000; Berwick et al. 2002) (see below).

Technical advances such as high-throughput technologies for the analysis of
SNPs (single nucleotide polymorphisms) will make molecular epidemiology more
powerful in the future, but will also bring new scientific and ethical challenges.

The purpose of this chapter is to give an overview of a rapidly develop-
ing field of epidemiological research, molecular epidemiology. The structure of
the chapter includes an introduction on the meaning and the main features
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Figure 6.1. Many genes and environmental exposures contribute to the carcinogenic process. The

effects can be additive or multiplicative, which are modifiable by interindividual variation in genetic

function. We propose to include carcinogen metabolic activity and detoxification genes as caretaker

genes involved in maintaining genomic integrity. (Reprinted with permission from the American

Society of Clinical Oncology from Shields and Harris (2000))

of molecular epidemiology; a section aimed at training the reader to a critical
analysis of molecular epidemiology papers; and three examples we have cho-
sen from field research to illustrate the main metholodological problems that
are encountered in the conduct and interpretation of a molecular epidemiology
study.

Critical Analysis
of Molecular Epidemiology Studies 6.2

The design of a study of molecular epidemiology does not differ substantially
from other epidemiological study designs, and requires the same critical approach
regarding selection or information bias, the comparability of groups that are re-
cruited (cases and controls, exposed and unexposed), the presence of potential
confounding and the issue of statistical power. However, there are also areas pecu-
liar tomolecular epidemiology, thatwewill describe througha fewexamples.While
for bias in epidemiology in general we refer to other chapters in Part I of this hand-
book, the following are the most frequently encountered specific methodological
issues (see also Box 1).
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Box 1. Methodological problems that need to be addressed in molecular
epidemiology studies

Transitional studies

Choice of design

Case-control

Cohort

Case-control nested in a cohort or case-cohort

Case only

Other

Half-life of biomarker

Collection and storage of samples

Reproducibility and repeatability of laboratory tests

Heterogeneity of results and their sources

Confounding, e.g. population admixture

Publication bias

Biological interpretation of the test

Transitional Studies. Transitional studies can be compared to Phase II studies
in the development of new treatments. They do not have a “formal” design (for
example Phase II studies are not necessarily randomized), and often have a small
size. The main purpose is to validate biomarkers and to produce findings that
assess the relevance of the marker for a certain disease. For example, transitional
studies on bladder cancer consisted of case series in which p53 mutations or 4-ABP
(4-aminobiphenyl)-DNA adducts were related to tobacco smoking without a case-
control design. Smokers tended to have p53 mutations and 4-ABP adducts more
frequently than non-smokers, thus suggesting the relevance of these markers for
the etiologic pathways of bladder cancer.

Choice of the Design and Half-Life of Biomarkers. In “traditional” epidemiology
the case-control design is particularly valid when the disease is rare and exposure is
frequent and easily identifiable. In molecular epidemiology of chronic diseases, in
which a biomarker is measured, the case-control approach has serious limitations
if the marker has a short half-life, i.e. it refers to exposures that took place a short
time before the disease onset. In fact, in the study of cancer and other chronic
diseases we are usually interested in events that took place many years before
the disease onset. DNA adducts in white-blood cells have a half-life of months,
and hemoglobin adducts have a half-life of weeks (Box 2). From this point of
view, prospective studies are more meaningful, although they have the limitation
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of being usually based on a “one time” biological sample that is not necessarily
representative of the usual exposure (thus introducing random misclassification).

Box 2. Half life of different markers: examples

Phenol (metabolite of benzene) in urine: 6 hours

Carbon monoxide in blood: 5 hours

Hemoglobin aromatic adducts: 120 days

DNA aromatic adducts in lymphocytes: several months

Similar considerations apply to most early response markers, such as mutations
in plasma DNA: in this case the case-control approach is clearly limited because the
mutation is likely to express a marker of cancer itself rather than an intermediate
event between exposure and disease. Concerning studies on genetic susceptibility,
single nucleotide gene polymorphisms (SNP) are inherited and stable in time, so
that they should not be affected by the elapsed time and thus either design, case-
control or cohort, will be adequate. Unfortunately, this is not totally true since some
SNPs affect survival so that surviving cases in a case-control design can represent
a distorted subset as far as the role of SNPs in etiology is concerned. This problem
can be avoided by restricting studies to incident cases. In general, it is believed
that the most promising design for future studies of molecular epidemiology is the
case-control study nested in a cohort.

Practical Issues (Collection and Storage of Samples). Several types of samples
can be collected in molecular epidemiology studies (see Box 3). Urines can be
collected to measure metabolites (e.g. NNAL for NNK in smokers) or centrifuged
to collect exfoliated bladder cells (to measure e.g. DNA adducts). Blood can be
stored as such or centrifuged to collect red blood cells (RBC), plasma, serum or
buffy coat (i.e. white blood cells, WBC). RBC are a source of hemoglobin which can
be used for the measurement of adducts. The use of WBC for the measurement of
adducts will be described later in an example. WBC are in general a source of DNA
that can be used, for example, for the genotyping of subjects. Another important
source is represented by buccal washes or buccal swabs that are relatively easy to
obtain in epidemiological studies.

Box 3. Measures used in molecular epidemiologic studies for specific bio-
logical materials. It should be noted that this list will change over time

Biological Material: Measures
1. DNA

a. Genomic DNA
Single nucleotide polymorphisms (SNPs) (> 1% prevalence)

box to be continued
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b. Tumor DNA
Mutations (< 1% prevalence)

c. Mitochondrial DNA
Insertions, deletions

2. RNA
RT-PCR (reverse transcriptase polymerase chain reaction (PCR))
Microarray chips for expression of RNA

3. WHOLE CELLS
a. Lymphocytes

Incorporationofdamagedplasmid(host cell reactivationassay (HCRA))
Comet assay

b. Chromosomes (cytogenetic assays to assess mutagen sensitivity)
Chromosome breaks and deletions
Sister chromatid exchanges (SCEs)

c. Shed cells
(1) Exfoliated bladder cells

Measures of damage and repair (Comet assay)
(2) Oral buccal cells

Measures of DNA adducts
(3) Broncholavage
(4) Micronuclei

d. Adducts (i.e. exogenous chemicals bound to DNA)

4. PLASMA|SERUM
Measurement of biochemicals, i.e. Vitamin E
Tumor and genomic DNA in plasma and serum

5. RED BLOOD CELLS
Hemoglobin, hemoglobin adducts, biochemical content, i.e. folate

6. URINE
a. Urinary metabolites

Biochemical assays
b. Exfoliated bladder cells

See above

7. HAIR
Chemicals, i.e. arsenic

8. FINGERNAILS, TOENAILS
Chemicals, i.e. mercury
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The main problems with the collection of biosamples are (1) the information
given to the subjects and the type of informed consent collected (see below, ethical
issues); (b) how the samples are collected and stored, in relation to the stability of
different components; (c) the amount that needs to be collected, depending on the
test that we wish to perform.

Stability should be carefully considered. At −20 ◦C urine is stable; at −70 ◦C
cell viability (if not cryopreserved) is limited although DNA is stable, serum is
stable, most hormones are stable, most vitamins are stable; at −120 ◦C hormones,
carotenoids and other nutients are stable.

In general, the goals of collection and storage procedures are:
to ensure standardized procedures for all phases
to ensure collection of biological material in ways that are acceptable to
volunteers|patients
to avoid loss of material (e.g. malfunctioning of freezers)
to ensure optimal preservation of material for study purposes
to ensure blinding in all phases
to ensure easy access to the material when needed
to ensure easy matching of biological material with individual identity
to ensure respect for confidentiality
to be prepared for emergencies.

Reproducibility and Repeatability of Laboratory Tests, and Other Technical Is-
sues. In spite of the large number of papers published using a certain laboratory
test (like DNA adducts or a cytogenetic test), the reproducibility of some assays has
not been carefully assessed. The experimental error in such assays may be larger
than many epidemiologists would expect. For example, for DNA adducts measured
by P32-postlabelling the coefficient of variation is at least 30% (Phillips and Casteg-
naro 1999).
Technical sensitivity is also matter of concern. It refers to the ability of detecting
the relevant marker, e.g. DNA adducts, also in extremely low amounts. Box 4
reports several kinds of techniques for the measurement of DNA adducts and their
main features. Box 5 gives examples of how different markers have been used in
epidemiological studies.

Technical sensitivity is different from sensitivity in the usual epidemiologi-
cal meaning, i.e. the proportion of correct positive results (although the two are
clearly related). Box 6 gives sensitivity and specificity estimates for different geno-
typing methods, compared with a “consensus” panel. A BRCA1 polymorphism was
initially typed by allele-specific oligonucleotide (ASO) hybridisation using radio-
labelled oligos. Then it was evaluated with the PE Biosytems TaqMan technology,
with the RsaI forced digest and with the Invader Cleavase technology (Third wave
Inc). It can be seen that there is a noticeable variation among them that makes
a decision on which one to use crucial.
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Box 4. Different techniques for the measurement of DNA adducts

P32-postlabeling Very sensitive, small amounts of DNA
required; laborious, not very reproducible

Immunoassay Sensitive, easy to perform (specificity?)
GC-MS Specific, quantitative; high cost
For certain adducts:
Electrochemical methods Easy, sensitive (specificity?)
Fluorescence Easy, specific, large amounts of DNA required
Atomic absorption Specific and sensitive

Box 5. Examples of markers of carcinogenic exposure

Type of marker organ or tissue meaning

Aflatoxin B1-DNA adducts urine, liver genetic damage
from aflatoxin

PAH-DNA adducts blood, lung, placenta genetic damage from
polycyclic aromatic hydro-
carbons

4-aminobiphenyl-hemoglobin blood active or passive exposure
adducts to tobacco smoke

Mutations in p53 gene lung, liver, skin pattern of mutation may reveal
the type of carcinogenic
exposure

Box 6. Sensitivity and specificity of different genotyping methods applied to
genotyping of a BRCA1 polymorphism; nominators represent actual test re-
sults, denominators thoseof a “consensus”panel (fromADunning, personal
communication)

Method Sensitivity % Specificity %

ASO 836|864 97 753|836 90

TaqMan 826|864 96 812|826 98

RsaI digest 125|173 72 103|125 82

Invader 62|92 67 45|62 73

Finally, Box 7 describes several laboratory methods to screen for mutations or
SNPs, to genotype, or to measure effects on whole cells. Advantages and disadvan-
tages of such methods are described.
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Box 7. Several laboratory methods for measuring susceptibility

Screening Genotyping Whole cells assays
Methods used to de-
termine IF there is
a mutation or SNP.

Methods used to de-
termine WHAT the
SNP is.

Methods used to
measure effects on
whole cells.

Method (1) SSCP (1) RFLP (1) Chromosomal
aberrations (muta-
gen sensitvity)

(2) DHPLC (2) Hybridization (2) HCRA(lympho-
cyte incorporation
of damaged plas-
mid)

(3) OLA (3) Comet assay
(damage and repair)

(4) Primer exten-
sion
(5) Nuclease cleav-
age

Description (1) Single-stranded
DNAs are generated
by denaturation of
PCR products and
separated on
a nondenaturing
polyacrylamide gel.

(1) PCR products
are digested with
restriction
endonucleases
specifically chosen
for the base change
at the SNP, leaving
a “restriction cut”
for one allele, but
not the other.

(1) Chromosomal
breaks and gaps
are counted in
mutagen-exposed
lymphoctes from
cases and controls
for comparison.

(2) Similar to SSCP,
but the output is
based on the melting
characteristics of the
DNA strand which is
defined by the
sequence, so that
a SNP will look
different from
wildtype.

(2) Complementary
oligonucleotide
sequences are
hybridized.

(2) The rate of re-
pair of a damaged
plasmid introduced
into lymphocytes is
measured.

box to be continued
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Screening Genotyping Whole cells assays
Methods used to de-
termine IF there is
a mutation or SNP.

Methods used to de-
termine WHAT the
SNP is.

Methods used to
measure effects on
whole cells.

(3) Two
oligonucleotides
adjacent to each
other are ligated
enzymatically by
a DNA ligase when
the bases next to the
ligation position are
complementary to
the template.

(3) Cells are
subjected to
a damaging agent.
The response minus
the baseline damage
is measured to
calculate “damage”.
Repair is measured
after a time for
repair has elapsed.
The measurement
is based on the “tail
moment” (length of
the migrating DNA)
and the density of
DNA in the “head”.

(4) An
oligonucleotide is
hybridized NEXT to
a SNP.
(5) Plain
hybridization with
the probe
enzymatically
degraded.
A fluorescent dye
and a florescent
quencher are carried
on the nucleotide
probe.

Advantages| Disad-
vantages

(1) SSCP: Simple,
inexpensive,
intermediate
throughput. Only
short sequences
(< 200 bp), no
information on the
position of the
change.

(1) Simple, time
consuming, low
throughput and
relatively expensive
per SNP.

(1) Not automated.
Time consuming.
Gives a “whole”
picture of specific
individual’s lym-
phocytes’ response
to DNA damage and
ability to repair.

(2) DHPLC: Simple,
relatively inexpen-
sive with relatively
high throughput.
Similar limitations
as SSCP.

(2) Not as robust as
methods that use hy-
bridization PLUS en-
zymatic steps.

(2) Not automated
although can be
batched better than
above assay. Has the
advantage that the
lymphocyte itself is
not damaged.

box to be continued
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Screening Genotyping Whole cells assays
Methods used to de-
termine IF there is
a mutation or SNP.

Methods used to de-
termine WHAT the
SNP is.

Methods used to
measure effects on
whole cells.

(3) Can genotype
large panels of in-
formative markers.
Difficult to opti-
mize and multiplex
highly GC-rich DNA
regions.

(3) This assay is
still in development.
Critical that results
present repro-
ducibility of specific
laboratory. Poten-
tial for automation
in the future.
Can measure both
response to damage
and repair kinetics.

(4) Many versions.
(5) Many versions.

Heterogeneity of Results. For several reasons, mostly unexplored, results of
molecular epidemiology tend to be heterogeneous. For example, many studies
on genetic polymorphisms and cancer give conflicting results. This may be due
to the sum of several different problems, including measurement error, genuine
inter-population and intra-population variability in response, and unpredictable
interactions between environmental exposures and genetic susceptibility.

Confounding. Confunding can arise in unusual or unpredictable ways, since
pathways can be extremely complex; for example, cruciferous vegetables both
protect from lung cancer and induce Phase I or Phase II enzymes, i.e. markers
of individual susceptibility. Phase I enzymes are those involved in activation of
procarcinogens, Phase II enzymes are involved in detoxification. Therefore, the
association between the phenotype for such an enzyme and lung cancer can simply
reflect an indirect (i.e. confounded) relationship.

PopulationStratification. The fact that a genetic variant is associated with ethnic-
ity, which, in turn, can be an important determinant of several diseases, has been
called the phenomenon of “population admixture” in studies of gene-environment
interactions. This is nothing new for epidemiologists, being another example of
confounding. However, this is a particularly important type of confounding in the
era of the Genome project (i.e. the systematic sequencing of the human genome)
and of extensive studies on genes and disease. In fact, if we do not stratify by
ethnicity we risk attributing to genes a causal responsibility that is in fact related
to other characteristics associated with ethnicity, such as other genetic traits or
environmental exposures. For example, African-Americans tend to smoke more,
to have a higher prevalence of hypertension, and also have a different distribution
of many genetic polymorphisms in comparison with Caucasians. Therefore, in an
unstratified study, in which “population admixture” occurs, one could find a spu-
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rious association between smoking-related diseases or hypertension and some
polymorphisms. The association could disappear after stratification by ethnicity.
In a pooled analysis of the studies on CYP1A1 polymorphisms and the risk of lung
cancer (Vineis et al. 2003) we have observed the odds ratios for the CYP1A1∗2
polymorphism shown in Table 6.1.

Table 6.1. Odds ratios (OR) and corresponding 95% confidence intervals (CI) for CYP1A1∗2

polymorphism according to ethnicity and risk of lung cancer

Heterozygotes Homozygotes

All Ethnicities
OR 0.88 0.88

95% CI 0.77–1.01 0.68–1.14

Caucasians
OR 1.02 2.36

95% CI 0.84–1.24 1.16–4.81

Asians
OR 1.06 1.14

95% CI 0.81–1.41 0.78–1.69

While mixing ethnicity conceals any relationship (odds ratios are lower than 1
and not statistically significant), it is clear that, when we consider Caucasians and
Asians separately, there is a clear associationat leastwith thehomozygousgenotype
in Caucasians. This phenomenon is an example of confounding since Asians have
a much higher frequency of the variant genotype in comparison with Caucasians
and smoke less, thus fulfilling the criteria for confounding (in this case negative
confounding since the association disappears when mixing the populations).

There is currently a debate whether bias from population stratification (the
mixture of individuals from heterogeneous genetic backgrounds) undermines the
credibility of epidemiologic studies designed to estimate the association between
genotype and risk of disease. However, Wacholder et al. (2000) found only a small
bias from stratification in a well-designed case-control study of genetic factors
that ignored ethnicity among non-Hispanic, U.S. Caucasians of European origin.
In general, there are good reasons to argue that population admixture only rarely
can distort the estimates. First, in the example above, it is very unlikely that the
investigators would have ignored the simple Caucasian|Asian stratification. Sec-
ond, the greater the degree of admixture within a population, and the smaller the
difference in allele frequency or baseline disease risk, the less likely that population
stratification leads to confounding (Wacholder et al. 2000). Third, when important
confounding caused by population stratification does occur, it should be control-
lable by the usual design and analytical features employed by epidemiologists.

Finally, genetic studies are becoming more and more sophisticated, and the
genetic background of populations can be investigated in several ways, for example
by stratifyingby microsatellite polymorphismsasmarkersof genetic heterogeneity
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within a population. For further details on studies in genetic epidemiology see
Chap. III.7 of this handbook.

Publication Bias. It can be particularly important in molecular epidemiology,
since many assays are time-consuming and expensive, with the consequence that
most studies are small. Positive results may arise by chance – due to small size – but
have greater probability of being published than negative results.
SNPs are relatively cheap to analyze on a large scale (in large samples) compared
to other biomarkers, but to date little information is available as to the function of
many SNPs. This means that the interpretation of findings is not straightforward,
and many findings could be easily due to chance. Again, positive findings on SNPs
will tend to be published more easily than negative findings, thus distorting the
overall picture in the literature.

Biological Interpretation of the Test. The fact that, for example, micronuclei
in buccal cells are found in excess among smokers does not necessarily express
a direct link between disease and chromosomal damage – as an intermediate event
in the carcinogenic process –, since micronucleated cells are not viable.

Examples 6.3

Molecular epidemiology is not distinct from traditional epidemiology, but rep-
resents a development that aims at achieving specific scientific goals. To better
illustrate how molecular epidemiology tries to achieve such goals, we have chosen
a few examples that show: (1) a better characterization of exposures, particularly
when levels of exposure are low (in one example, by the means of adduct mea-
surement); (2) the study of gene-environment interactions (through the example
of DNA repair polymorphisms); (3) the use of markers of early response (such as
p53 mutations) in order to overcome the main limitations of chronic disease epi-
demiology, i.e. the relatively low frequency of specific forms of disease and the long
latency period between exposure and the onset of disease. Through the examples
we also want to stress the limitations of molecular epidemiology: the complexity
of many laboratory methods with partially unknown levels of measurement error
or inter-laboratory variability; the scanty knowledge of the sources of bias and
confounding; and the uncertain biological meaning of markers, like in the case of
some types of adducts or some early response markers.

The examples given below are not meant to be exhaustive of issues surrounding
molecular epidemiologic studies, but should be representative.

Example 1: Reliability of p53 measurement 6.3.1

The measurement of any biomarker is subject to inter- and intra-individual vari-
ability. The extent of variability in measurements can be measured itself in several



1124 Paolo Vineis, Giuseppe Matullo, Marianne Berwick

ways (Carmines and Zeller 1979; Fletcher et al. 1988). A general measure of the
extent of variation for continuous measurements is the Coefficient of Variation
(CV = standard deviation|mean, expressed as a percentage). A more useful mea-
sure is the ratio between CVb and CVw : CVw measures the extent of laboratory
variation within the same sample in the same assay, CVb measures the between-
subject variation, and the CVb|CVw ratio indicates the extent of the between-
subject variation relative to the laboratory error. Large degrees of laboratory error
can be tolerated if between-person differences in the parameter to be measured
are large.

A frequently used measure of reliability for continuous measurements is the
intraclass correlation coefficient (ICC), i.e. the between person variance divided
by the total (between plus within-subject) variance. The intraclass coefficient is
equal to 1.0 if there is exact agreement between the two measures on each subject
(thus differing from the Pearson correlation coefficient that takes the value 1.0
when one measure is a linear combination of the other, not only when the two
exactly agree). A coefficient of 1.0 occurs when within-subject variation is null, i.e.
laboratory measurements are totally reliable.

The intraclass correlation coefficient can be used to estimate the extent of
between-subject variability in relation to total variability. The latter includes vari-
ation due to different sources (reproducibility, repeatability, and sampling vari-
ation). To measure reproducibility, i.e. the ability of two laboratories to agree
when measuring the same marker in the same sample, the mean difference
between observers (and the corresponding confidence interval) has been pro-
posed (Brennan and Silman 1992). Let us consider the example in Table 6.2:
two pathologists interpreted the slides of 40 subjects with bladder cancer, in
order to quantify p53 overexpression as measured by immunohistochemistry.
Table 6.2 gives the percentage of positive staining cells according to each patholo-
gist and the difference between the two observers for each patient. The proposed
measure of inter-observer agreement is the mean difference (in this case 0.9)
and the corresponding 95% confidence interval, which is comprised between
−20.9 and +22.7. What we can conclude is that there is good average agree-
ment between the two pathologists (mean difference = 0.9), but a large confi-
dence interval indicating large overall variability. In the case of immunohisto-
chemistry, a very important source of variation is due to sampling since pathol-
ogists usually do not read the same fields, i.e. the same cells, at the micro-
scope.

We have considered reliability as a property of the assay in the hands of different
readers (reproducibility) or at repeat measurements (repeatability). Let us consider
now validity of assessment, i.e. correspondence with a standard. It is essential to
bear in mind that two readers may show very high levels of agreement, as measured
e.g. by Pearson correlation coefficient (i.e. r = 0.9), even if the first consistently
records twice the value of the second observer. Or, alternatively (for example, when
using the intraclass correlation coefficient), two readers could show high levels of
agreement (e.g. ICC = 0.9) but poor validity if the same errors repeat themselves
for both raters.
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Table 6.2. Measurement of inter-observer variation: immunohistochemistry for the expression of the

p53 gene (percentage of positive cells) as measured by two different pathologists in the same samples

(data kindly provided by Professor Renato Coda) (n = 40)

Pathologist
First Second Difference

1 16.00 20.00 −4.00
2 83.00 60.00 23.00
3 18.50 28.00 −9.50
4 19.40 19.40 0.00
5 96.40 72.80 23.60
6 4.90 4.50 0.40
7 – 3.20 –
8 21.00 16.20 4.80
9 11.40 5.40 6.00

10 13.00 26.00 −13.00
11 9.40 6.00 3.40
12 4.60 1.70 2.90
13 9.70 1.80 7.90
14 20.80 32.10 −11.30
15 43.50 49.00 −5.50
16 5.60 12.50 −6.90
17 40.10 28.00 12.10
18 11.50 7.00 4.50
19 14.60 13.50 1.10
20 – 27.00 –
21 7.50 2.80 4.70
22 7.40 21.00 −13.60
23 16.30 4.40 11.90
24 21.00 46.50 −25.50
25 2.90 0.90 2.00
26 29.80 34.00 −4.20
27 82.00 69.50 12.50
28 75.00 75.20 −0.20
29 7.00 24.00 −17.00
30 7.20 8.40 −1.20
31 5.70 0.50 5.20
32 15.00 6.10 8.90
33 0.50 1.00 −0.50
34 18.00 7.50 10.50
35 9.80 11.00 −1.20
36 4.20 10.50 −6.30
37 15.20 18.00 −2.80
38 9.30 22.00 −12.70
39 – – –
40 52.60 29.30 23.30

table to be continued
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Table 6.2. (continued)

Difference parameters:
N Mean Std Dev Minimum Maximum

37 0.9 10.907 −25.5 23.6

(3 missing values)
95% range for agreement: mean ±2× std dev (diff) = 0.9 ± 2 × 10.9 = [−20.9; +22.7]

According to the definition of validity, we are interested in the correspondence
of the measurement with a conceptual entity, i.e. accumulation of the p53 pro-
tein as a consequence of gene mutation (in fact, without a mutation the protein
has a very short half-life and rapidly disappears from the cells). Table 6.3 shows
data on the correspondence between immunohistochemistry and p53 mutations.
Sensitivity of immunohistochemistry is estimated as 85%, i.e. false negatives are
15% of all samples containing mutations; specificity is estimated as 71%, i.e.
29% of samples not containing mutations are falsely positive at immunohisto-
chemistry. A combined estimate of sensitivity and specificity is the area under
the Receiver-Operating-Curve (ROC), i.e. a curve which represents graphically
the relationship between sensitivity and (1-specificity) (Fig. 6.2). In the example
shown in Fig. 6.2, the area under the ROC curve is 90.3% (Cordon-Carlo et al.
1994).

It is usually believed (Fletcher at al. 1988) that sensitivity and specificity indicate
properties of a test irrespectively of the frequency of the condition to be detected.
In the example of Table 6.3, the proportion of samples showing a mutation is high
(32|73 = 44%); it would be much lower for example in patients with benign bladder
conditions or in healthy subjects. A useful measure to predict how many subjects,
among those testing positive, are really affected by the condition, we aim to detect is
the positive predictive value. In the example, among 39 patients testing positive at
immuno-histochemistry, 27 actually have mutations, i.e. immuno-histochemistry
correctly predicts mutations in 69% of the positive cases. Let us suppose, however,
that the prevalence of mutations is not 44%, but 4.4% (32|730). With the same sen-
sitivity and specificity values (85% and 71%, respectively) we would have a positive
predictive value of 11.8%, i.e. much lower. The predictive value is a very useful
measure, because it indicates how many true positive cases we will obtain within
a population of subjects who test positive with the assay we are applying. However,
we must bear in our minds that the predictive value is strongly influenced by the
prevalence of the condition: a very low predictive value may simply indicate that
we are studying a population in which very few subjects actually have the condition
we want to identify.

Table6.4 showsanother setof estimatesofvalidity,basedontheclinicaloutcome.
In this case, the aim is to understand how useful p53 immunohistochemistry
may be to predict the risk of metastases. While in the previous example the
conceptual entity to predict by immunohistochemistry were p53 gene mutations,
here the conceptual entity is the aggressiveness of malignancy, as expressed by the
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Figure 6.2. Receiver-operating-curve (ROC) statistical analysis of the sensitivity and specificity of

immunohistochemistry as it relates to PCR-SSCP and sequencing results, representing identification

of p53 mutations. The area under the curve as a measure of diagnostic accuracy was estimated to be

90.3%. (Reprinted by permission of Wiley-Liss, Inc. from Cordon-Cardo et al. (1994))

occurrence of lymphnode invasion in the follow-up of patients who were tested for
p53 at diagnosis. In this case we are obviously interested in the positive predictive
value, which, for example, is 60% at stage 1. However, we also want to establish
whether immunohistochemistry is worth measuring, i.e. it adds something to what
we know already from other clinical examinations. The best predictor of outcome
is usually the clinical stage, based on the tumour size at diagnosis. We see that
among stage 1 tumours, 7 out of 25 (28%) manifest lymph node metastases in the
follow-up. The question is: does p53 immunohistochemistry add any information
to simple knowledge of the stage at diagnosis? A way to answer is to estimate the
a posteriori probability of metastases after measurement of p53 and compare it
to the a priori probability (i.e. in the absence of p53 measurement), which in this
case is 28%. The a posteriori probability is computed by using the relationship:
a posteriori odds = a priori odds × likelihood ratio. Table 6.4 shows that in stage 1
the measurement of p53 allows the probability of metastases to increase from 28%
(a priori) to 63% (a posteriori), while in stages 2 and 3 the contribution of p53
measurement is totally insignificant.
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Table 6.3. Validity of p53 immunohistochemistry as compared to mutations in the p53 gene (bladder

cancer patients) (data from Esrig et al. 1994)

A∗ p53 nuclear reactivity
(immunohistochemistry)

p53 mutations by SSCP − + ++ Total

No mutation 29 7 5 41

All mutations 5 8 19 32

Total 34 15 24 73

B∗∗ Theoretical distribution with prevalence of mutations = 4.4%
Mutations Immunohistochemistry

− +| + + Total

Yes 5 27 32

No 496 202 698

Total 501 229 730

∗ sensitivity of immunohistochemistry (+ and ++) = 27|32 = 85%
∗ specificity = 29|41 = 71%
∗ positive predictive value = (8 + 19)|(15 + 24) = 27|39 = 69%
∗∗ sensitivity = 27|32 = 85%
∗∗ specificity = 496|698 = 71%
∗∗ positive predictive value = 27|229 = 11.7%

Table 6.4. Validity of p53 immunohistochemistry as compared to clinical outcome (occurrence of

lymphnode metastases during the follow-up) (data kindly provided by Professor A. Fontana)

Stage 1
p53 immunohistochemistry
− + Total

Lymphnode invasion
No 14 4 18

Yes 1 6 7

Total 15 10 25

positive predictive value = 6|10 = 60%
likelihood ratio = (6|7)|(4|18) = 3.9
a priori probability = 7|25 = 28%
a priori odds = a priori probability|(1− a priori probability) = 39%
a posteriori odds = a priori odds × likelihood ratio = 39% × 3.9 = 1.5

A priori probability A posteriori probability
(when p53 is positive)

Stage 1 28% 63%
Stage 2 73% 80%
Stage 3 100% –
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Example 2: Sources of Heterogeneity
for DNA Repair Polymorphisms 6.3.2

This example aims at illustrating the issue of heterogeneity of results, often inter-
pretable in the light of the different study designs used.

Enzymes encoded by DNA repair genes constantly monitor the genome to
repair damagednucleotide residues resulting fromenvironmental andendogenous
exposures. Our example addresses issues related to the design of studies based on
genotyping for polymorphisms in DNA repair genes and to the epidemiologic
factors that affect the integrity and the generalizability of these studies. We will
consider the following aspects of heterogeneity to explain variation in results:

epidemiologic design
laboratory methods
strength of association
consistency
internal coherence
time sequence
confounding
statistical considerations
interactions
biological sources of heterogeneity.

More details have been reported in an extensive review we have published
(Berwick and Vineis 2000). More extensive and updated information can be found
on the website http://perseus.isi.it/HuGe-Repair/HuGe-Repair.htm (ISI Founda-
tion 2004).

Epidemiologic Design. Most studies on DNA repair genotypes are case-control
studies, and more specifically hospital-based studies. As described in Chap. I.6 of
this handbook, such studies have several limitations. In particular, hospital-based
studies often do not include all incident cases of a certain geographical area, so
that selection bias can occur. Controls are chosen among patients with pathologies
other than the one included in the case category. Such diseases can be related to the
exposure|trait of interest. For example, we know rather little on the role of DNA
repair enzymes in several different diseases, like atherosclerosis, to be sure that
their inclusion in the control group will not alter the comparison with cases.

In the review we have published – see Berwick and Vineis (2000) – fourteen
studies were hospital-based, seven were population-based case-control studies,
one was a cohort study (nested case-control), one was a case-case study and five
had a still different design. Concerning the choice of controls, they were extremely
heterogeneous. It is noteworthy that one study compared Chinese cases living in
the United States with Chinese controls living in China. One study used cadaveric
transplant donors as controls, and one used friends of the cases. All these choices
are debatable and may imply distortions in the results.
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Several studies matched cases and controls for exposure because genes were the
only variable of interest (typically, studies on lung cancer matched on smoking).
However, in this way they prevented the study of gene-environment interactions.
The response proportion was usually not reported by the published studies, al-
though it may be used as an indicator of the degree of selection bias.

Laboratory Methods. Few studies used a relatively high-throughput genetic tech-
nology (TaqMan or others), i.e. a highly automatized technique that allows large
numbers of analyses. PCR-RFLP (a basic but robust method based on the iden-
tification of the length of DNA fragments after enzyme digestion) was the most
frequently used method. Genotype-phenotype correlation and cancer status was
sought in one study, with a comparison between HCRA (host cell reactivation as-
say) and genotyping for XPD – a specific DNA repair gene – in lung cancer patients.
HCRA is a phenotypic test to evaluate the proficiency of DNA repair capacity in
cells in culture, and it is expected to correlate with genetic polymorphisms of
repair genes. Both cases and controls with the wild genotype had the most pro-
ficient DNA repair capacity as measured by the host cell reactivation assay. One
study compared different genotyping techniques, namely PCR-RFLP and DHPLC
(Denaturing High-Pressure Liquid Chromatography). The comparison of different
techniques is extremely important to test the reliability of each.

Strength of Association. Odds ratios (OR) tended to be moderately low (on the
order of two or less), with the exception of oligoastrocytoma and ERCC1, with an
OR of 4.6. Low OR are to be expected for low-penetrance genetic variants.

Consistency by Site and Genotype. Twelve studies considered XRCC1 polymor-
phisms in ten different cancer sites (head and neck, colon-rectum, melanoma,
breast, lung(threestudies),bladder (twostudies), stomach, esophagus, leukaemia).
Forbladdercancer,findingsare inconsistentandbasedonrelatively smallnumbers.
Therefore, it was impossible to draw inferences on consistency of the findings. (For
an update see the website http://perseus.isi.it/HuGe-Repair/HuGe-Repair.htm, ISI
Foundation 2004.)

Internal Coherence. One study compared two control groups (one population-
based and one hospital-based) with very similar results. In general, large variation
was found among ethnic groups, but this can be a genuine finding rather than
an artifact. Also variation with age was noted. Auckley et al.’s results (Auckley et
al. 2001) comparing DNA-PK activity (double-strand break repair) in peripheral
lymphocytes with DNA-PK activity in lung tissue showed a strong correlation
between the measurements. Whenever possible, a comparison between the proxy
tissue, usually lymphocytes, with the target tissue should be made.

Time Sequence. In studies on genotypes, the criterion of time sequence applies
only ifwesuspect that thegenotype influences survival. In this case, the recruitment
of prevalent (not newly diagnosed) cases would lead to a bias in favor of the
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genotypes associated with longer survival. Apparently only one study included
prevalent cases.
Genotype does not change with time, so that case-control studies using SNPs are
not affected by the usual forms of bias that characterize the retrospective collection
of information on exposures, unless, of course, survival is not affected by genotype,
and gene-environment interactions are the focus of interest. In the latter instance,
environmental data need to face the same rigorous scrutiny as in any epidemiologic
study.

Bias

Confounding. Most studies have considered at least some potential confounders
(e.g., age). The concept of confounding is related to the existence of a variable
that is a risk factor for the disease and is associated with the genotype. If the
prevalence of a certain genotype changes with age because of a survival effect,
age is a confounder (since it is strongly predictive of cancer onset). Very often it
is difficult to hypothesize which relevant confounders could exist in genotyping
studies, other than population admixture. We found no evidence that population
admixture could represent a problem in studies of DNA repair. For a more detailed
description on confounding see Chap. I.9 of this handbook.

A Special Problem: Publication Bias. We mention here publication bias because it
is a kind of bias, but not necessarily a source of heterogeneity, rather of homogene-
ity. Publication bias occurs when positive studies are preferentially published by
scientific journals compared to negative studies, and particularly to small negative
studies. In the genotyping studies we examined, all results (except one) were based
on small or moderately small numbers. With the increasing recognition of this
problem, more negative studies are being published.

StatisticalConsiderations(SampleSize,Power,MultipleComparisons). Thesam-
ple size is always a problem in this type of investigations. However, relatively com-
mon genotypes have been considered to date, so that statistical power is usually
moderate. An important methodological problem is multiple comparisons: split-
ting the data into several subgroups increases the probability of finding statistically
significant results.

Interactions. Most of the reported interactions in studies of DNA repair cannot be
evaluated because of multiple comparisons and lack of formal statistical analyses
for interaction. Interestingly, a few studies find an association between cancer
and the relevant genotypes only among non-drinkers. Other examples are found
in association between Helicobacter pylori-negative subjects and stomach cancer,
andgenotype influenceson thebasal-cell carcinomarisk among thosewitha family
history of basal cell carcinoma. None of the studies, however, had a sufficient power
to detect weak interactions. These studies are thus not possible to evaluate for true
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interaction effects. For a more detailed description on interaction see Chap. I.9 of
this handbook.

BiologicalSourcesofHeterogeneity. Finally, apossible explanation for thehetero-
geneity of results could be that not only amino acid variants in different domains of
a gene may affect different protein interactions, resulting in the expression of dif-
ferent phenotypes, but also the same allele could have divergent effects in different
DNA repair pathways and on different types of DNA damage. Moreover, a certain
variant could be in linkage with another responsible variant; in this case it is possi-
ble that different populations have different alleles in linkage disequilibrium with
the responsible variant.

Perspectives. Researchers are genotyping large samples of subjects as fast as
new repair gene polymorphisms are discovered in order to conduct “association
studies”. However, information on the function and mechanistic interactions of
these alterations is urgently needed. New technologies are being developed rapidly
and they may be harnessed to answer the major question as to whether a small
decrement in DNA repair capacity predisposes to cancer.

Example 3. Bulky DNA Adducts in Epidemiological
Studies: Principles of Meta-Analysis6.3.3

This example again concerns heterogeneity of results, which, in this case, can be
tentatively attributed to measurement error or to genuine differences among the
populations that have been studied. The test itself, in fact (“bulky” adducts) is
affected by large coefficients of variation (at least 30%). In addition, through the
example we will introduce some of the principles of meta-analysis.

“Bulky” DNA adducts represent an integrated marker of exposure to aromatic
compounds. The level of bulky adducts in white blood cells (WBC) has been shown
to correlate with external exposure to polycyclic aromatic hydrocarbons in a few
investigations, while the association with tobacco smoke tended to be inconsistent.
Their biological meaning for carcinogenesis has been illustrated in a few elegant
experiments. For example, Denissenko and colleagues (Denissenko et al. 1998)
have shown that the main metabolite of benzo(a)pyrene forms adducts in the
same codon of the p53 gene where characteristic mutations are found in the lungs
of smokers.

Meta-Analysis. Meta-analysis is a way to summarize the results from several
different studies in order to provide a single summary estimate of association
and to increase the overall power of the comparison (see also Chap. II.7 of this
handbook). The following are the main methodological issues that should be
addressed in preparing a meta-analysis, taken from a methodological paper (Egger
et al. 1997):
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“Meta-analysis shouldbeas carefullyplannedas anyother researchproject,with
a detailed written protocol being prepared in advance. The a priori definition
of eligibility criteria for studies to be included and comprehensive search for
such studies are central to high quality meta-analysis. The graphical display of
results from individual studies on a common scale is an important intermediate
step, which allows a visual examination of the degree of heterogeneity between
studies. Different statistical methods exist for combining the data, but there is
no single ‘correct’ method. A thorough sensitivity analysis is essential to assess
the robustness of combined estimates to different assumptions and inclusion
criteria.”

In general, a meta-analysis is extremely useful in identifying the main method-
ological problems in the studies that have been conducted on a certain scientific
issue.

We have performed a meta-analysis to test the hypothesis that the presence of
a high level of bulky DNA adducts in tissues is associated with an increased risk of
cancer in humans (Veglia et al. 2003). The Medline database was searched for the

Figure 6.3. Meta-analysis of studies on bulky DNA adducts and cancer. Random effect model. Current

smokers only. WMD is the weighed mean difference between adducts in cases and adducts in

controls (weight is given by study size); 95% confidence interval computed by the random effect

model

Figure 6.4. Meta-analysis of studies on bulky DNA adducts and cancer. Random effect model. Former

smokers only. WMD is the weighed mean difference between adducts in cases and adducts in

controls (weight is given by study size); 95% confidence interval computed by the random effect

model
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Figure 6.5. Meta-analysis of studies on bulky DNA adducts and cancer. Random effect model. Never

smokers only. WMD is the weighed mean difference between adducts in cases and adducts in

controls (weight is given by study size); 95% confidence interval computed by the random effect

model

period between 1990 and March 2002, supplemented with manual bibliography
review. We collected all the studies conforming to the following criteria:
1. case-control or cohort studies comparing bulky DNA adduct levels in cancer

patients and control subjects;
2. separate comparisons for current, former and never-smokers.

We excluded specific adducts such as those formed by aflatoxin or cytostatic drugs.
The results of the meta-analysis are reported in Figs. 6.3–6.5 and in more detail

elsewhere (Veglia et al. 2003). We will describe here some methodological issues
we have considered.

Adduct Variability and Heterogeneity of Results
Average adduct levels differed markedly among studies, both in cases and controls,
ranging from 0.4 ×10−8 to 7.9 ×10−8 in the WBC of controls. This may be due
partially to inter-laboratory variability, partially to the different methods of blood
collection and storing.

More standardized measurements are warranted in future investigations; an
effort to compare and standardize laboratory procedures has been undertaken
and published by a group of European researchers (Phillips and Castegnaro 1999).

To address heterogeneity, the results were standardized in the meta-analysis
by dividing within each study all means and standard deviations by the average
of the control groups. Therefore standardized control means were set to one in
all studies. Studies were tested with Breslow-Day’s test of heterogeneity (Breslow
and Day 1980), and a random effect model was employed in the meta-analysis
to account for inter-study variability (DerSimonian and Laird 1986). We have
computed standardized, weighed mean differences (WMD) between cases and
controls in each study, and the overall WMD. For each WMD we computed 95%
confidence intervals.

As Figs. 6.3–6.5 show, the results vary according to smoking habits (current,
former, never smoker). Current smokers (Fig. 6.3) show a statistically significant
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difference between cases and controls, with cases having 83% higher levels of
adducts than controls. No association between adduct levels and the case status is
observed in former smokers (Fig. 6.4), with complete consistency among investi-
gations. Results on non-smokers (Fig. 6.5) are inconsistent; only two studies show
a statistically significant positive difference between cases and controls. These
observations are in accordance with the findings of the only prospective study
available (Tang et al. 2001), which also found that DNA adduct levels measured in
WBC were predictive of lung cancer occurrence only in current smokers.

Sensitivity Analysis. Sensitivity analysis is a way to assess the impact of method-
ologicalflawson the resultsof ameta-analysis.Asensitivity analysis simplyconsists
of examining whether the results (expressed as odds ratio or WMD) changes after
exclusion of studies with methodological deficiencies. We assigned a qualitative
score (from 0 to 3) to each study in the meta-analysis. If we exclude the papers
with a quality score lower than 2, we still have in Fig. 6.3 three positive results
out of 4. Another type of sensitivity analysis consists in including only studies on
lung cancer and excluding an investigation that measured adducts in lung tissue.
In this case the standardized difference for the Relative Adduct Level (RAL) is 0.79
(95% CI: 0.34–1.24) for current smokers, 0.10 (−0.29–0.49) for former smokers
and −0.21 (−0.58–0.15) for non-smokers, a result similar to that obtained in the
overall analysis.
In conclusion, the heterogeneity of results emerging from the meta-analysis in this
case suggests three possible explanations: measurement error, which is high; dif-
ferences related to the study design; or genuine biological differences, for example
between smokers and non-smokers.

It should also be noted that WBC are not the target tissue (lung or bladder
cancer), and that in case-control studies one could argue that the disease pro-
cess itself may influence the adduct levels. Hence the superiority of prospective
investigations becomes obvious.

Ethical Issues in Biomarker Research 6.4

In addition to the usual requirements for epidemiologic research, the recent de-
velopments of molecular – and in particular genetic – tests have induced more
specific ethical considerations and led to the development of specific guidelines.
To create a database of molecular epidemiology the following requirements should
be met (Lowrance 2001):
1. follow respectful protocols in eliciting information (also on relatives)
2. secure broad and respectful informed consent
3. manage anonymisation of database interlinking
4. establish confidentiality and security safeguards
5. develop defensible responses to requests for personal data by various parties
6. devise sound data access, ownership, and intellectual property policies
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7. be clear about whether and how individuals will be informed of findings that
might be medically helpful for them

8. arrange supervision by research ethics and privacy protection bodies.

Clearly, each of these requirements would need extensive comments. In particular,
how “broad” should the consent be (Point 2)? On one side, a broad consent (e.g.
“the biological samples will be used for the identification of gene variants that may
predispose to chronic diseases”) implies a greater freedom for the researcher, who
is not obliged to collect further consent forms each time a new gene is investigated.
On the other side, such a generic informed consent form explains very little to
the recruitees and does not even mention the basic distinction between highly-
penetrant and low-penetrant genes. There is a broad agreement on the fact that
low-penetrant variants (such as those of GSTM1 or NAT2), that are common in the
general population and induce just a slight increase in the risk (interacting with
environmental exposures) should not be subject to strict rules as far as ethical
implications are concerned. In fact, knowledge of alleles involved in metabolic
pathways neither allows the carrier to modify her risk profile substantially, nor
allows the researcher to identify other members of the family, thus not violating
confidentiality. For a more general discussion of ethical aspects see Chap. IV.7 of
this handbook.

The case of highly-penetrant gene variants is different: first, the identification
of the carrier of a rare mutation allows the researchers to identify other family
members possibly affected, with potential detrimental effects (e.g. on insurance
policies). Second, researchers should have a clear view of the practical implications
of testing for the study subjects, and in particular what to do in each of these
situations: no effective treatment is possible; treatment is available with close
favourable|unfavourable effects balance; effective treatment is available with scarce
unfavourable effects.

Conclusions6.5

Conventional epidemiology, based on simple tools such as interviews and ques-
tionnaires, has achieved extremely important goals. Even a difficult issue such as
the relationship between air pollution and chronic disease has been successfully
dealt with by time-series analysis and other methods not based on the laboratory.
Therefore, the use of molecular techniques coupled with an epidemiological design
needs to be evaluated carefully.

As the examples we have provided demonstrate, molecular epidemiology is not
distinct from traditional epidemiology, but represents a development that aims
at achieving specific scientific goals: (1) a better characterization of exposures,
particularly when levels of exposure are very low or different sources of expo-
sure should be integrated in a single measure; (2) the study of gene-environment
interactions; (3) the use of markers of early response, in order to overcome the
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main limitations of chronic disease epidemiology, i.e. the relatively low frequency
of specific forms of disease and the long latency period between exposure and
the onset of disease. Also limitations of molecular epidemiology should be ac-
knowledged: the complexity of many laboratory methods, with partially unknown
levels of measurement error or inter-laboratory variability; the scanty knowledge
of the sources of bias and confounding; in some circumstances, the lower degree
of accuracy (for example urinary nicotine compared to questionnaires on smok-
ing habits); and the uncertain biological meaning of markers, like in the case
of some types of adducts or some early response markers (typically, mutation
spectra).
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Introduction7.1

Genetic epidemiology both emanates from and combines the scientific disci-
plines of human genetics and epidemiology as well as biometry. Strong inter-
disciplinary relationships exist among others with the fields of molecular genetics
and medicine|medical care. Some overlap exists with molecular epidemiology (see
Chap. III.6 of this handbook).

Genetic epidemiology is essential in the field of human genetics as it aims to
detect the genetic origin of phenotypic variability in humans (Vogel 2000). In
particular, genetic epidemiological studies unravel the genetic components that
contribute to the development or the course of a disease, or in general terms to
a phenotype, i.e. the observed trait.

Genetic epidemiology is the subdiscipline of epidemiology devoted to diseases|
phenotypes with genetic components and to their respective genetic risk factors.
The aims are (1) the description of genetically influenced phenotypes or diseases
in populations and families, (2) the identification of genetic risk factors associated
with the frequencies of phenotypes in the population and|or leading to familial
aggregation, and (3) the modelling of the role of these genetic risk factors in
populations and families (Khoury et al. 1993). Thus, both population-based and
family designs are complementary and play a central role in genetic epidemio-
logical studies. In contrast to classic epidemiology, the three main complications
in genetic epidemiology are dependencies, use of indirect evidence and complex
data sets: Genetic epidemiology is highly dependent on the direct incorpora-
tion of family structure and biology. The structure of families and chromosomes
leads to major dependencies between the data and thus to customized models
and tests. In many studies only indirect evidence can be used, since the disease-
related gene, or more precisely the functionally relevant DNA variant of a gene,
is not directly observable. In addition, the data sets to be analyzed can be very
complex.

Genetic epidemiology is also a highly specialised subdiscipline of biometry
and mathematical population genetics. The field has made major biometrical
contributions to human genetics or, relying on earlier biometrical work (since
the field was only recently endowed with the name) such as the description of
the central Hardy–Weinberg equilibrium (HWE) (Hardy 1908; Weinberg 1908)
and the development of statistical methods including segregation analysis, linkage
analysis, association analysis, simulation methods and computer algorithms for
all major study designs implemented.

The International Society of Genetic Epidemiology describes the field as a mar-
riage between the disciplines of genetics and epidemiology (IGES 2003). It empha-
sises the need to join the fields. Genetics tends to focus on the genotype-phenotype
correlation neglecting the environment. Epidemiology tends to focus on environ-
mental risk factors as well as demographic factors (e.g. age, sex, ethnicity) and
familial aggregation as a first step towards genetic risk factors. However, a full un-
derstanding of the etiology of complex traits may only be achieved by considering
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both, genetics and environment, and thereby explaining how genes are expressed
in the presence of different environmental contexts. This chapter is solely devoted
to methods dissecting the genotype-phenotype correlation with a binary pheno-
type (affected|unaffected). It is not covering the important subjects of quantitative
phenotypes and gene-environment interaction.

Section 7.2 presents an overview of major study designs and types of analysis.
Section 7.3 introduces the most important genetic models. Sections 7.4–7.6 will
cover the three major types of analysis, i.e. segregation, linkage and association
analysis.

Study Types 7.2

Genetic epidemiological investigations are usually triggered by epidemiological
studies that demonstrate a positive family history as a risk factor for disease indi-
cating putative genetic or shared environmental factors. Often the goal of initial
studies is to estimate the relative risk for relatives of affected individuals in relation
to the general population in order to support the genetic hypothesis.

To further investigate familial aggregation, a segregation analysis may be car-
ried out in pedigrees. The aim of such an analysis is to determine whether
a major gene is influencing a given phenotype in these families and if so to es-
timate the parameters of the underlying genetic model. All methods for segre-
gation analysis are based on probability calculations for observed phenotypes
conditional on hypothetical genetic model parameters and on family structure,
i.e. genealogies. Parameter estimation is often based on likelihood-ratio tests in
order to select the most plausible model nested within a hypothetical general
model.

The primary cause of a so-called monogenic disease such as cystic fibrosis is
a mutation within a single gene that segregates according to Mendelian laws (see
below). The predisposing variants, i.e. the alleles carrying the risk, of this major
gene are usually rare in the population. For complex or multifactorial diseases,
Mendelian subforms such as the subform of breast cancer caused by the major
gene BRCA1, genetic and non-genetic susceptibility factors, or risk modifying
genes can exist. For rare monogenic diseases and rare Mendelian subforms of
complex diseases, segregation analysis and subsequent further analyses perform
well. However, complex diseases in general require more sophisticated methods of
analysis than monogenic diseases. For example in Alzheimer’s disease at least three
major genes and several susceptibility genes confering moderate risk (oligogenes)
exist. Oligogenes as genetic risk factors can be frequent in the population.Polygenic
effects at many loci across the whole genome may contribute to disease, each with
a minor effect.

If there is sufficient evidence for the existence of genetic factors contributing to
a (complex) disease, the next step will be to locate or to identify susceptibility genes
in order to quantify the genetic influence and to understand the underlying genetic
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model and pathway to the phenotype. For this purpose, measures of correlation
between a genetic marker and the (unknown) disease locus are used. A genetic
marker is a DNA segment with multiple alleles for which the localisation on the
chromosome is known and the alleles can be determined. In general, methods
assume Mendelian segregation of the marker (see Sect. 7.3.2). The most frequently
used markers are multiallelic restriction fragment length polymorphisms (RFLPs)
or microsatellites and biallelic single nucleotide polymorphisms (SNPs). Usually the
frequency of the most common variant must be less than 99% before a marker is
termed a polymorphism.

For the analysis of complex diseases with genetic marker data we can distinguish
two major approaches. Both investigate the genotype-phenotype correlation. De-
pending on the context, either the first or the second approach is more efficient
(Clerget-Darpoux and Bonaïti-Pellié 1992). The first approach is a genome scan, i.e.
the systematic coarse grid search of the whole genome with a map of genetic mark-
ers, with the objective to locate a region harbouring a susceptibility gene. A typical
study would investigate approximately 350 markers with an average distance of
10cM (centiMorgan, see Sect. 7.3.3.) along the genome in families. The other ap-
proach is to investigate candidate genes (or candidate gene regions). Thereby, the
focus is set on genes for which their function on the pathway to the phenotype can
evidently be assumed. The most prominent example of a candidate gene system is
the HLA (human leucocyte antigen) complex on chromosome 6. HLA is involved in
immune resistance and is thus a natural candidate gene region for all autoimmune
diseases.

The aims of a candidate gene investigation are to find evidence of any contribu-
tion of the candidate gene to the disease and to model its influence on the disease.
The genotypes of the relevant functional component of the candidate genes are
not always observed. We therefore need to use the information on genetic markers
that lie in close proximity to the candidate gene in question. In general, nonpara-
metric approaches are to be preferred, since they need fewer assumptions about
the underlying genetic model.

There are two types of information that describe the correlation between a ge-
netic marker and the susceptibility locus of a disease. (The correlation is maxi-
mized, when the genetic marker is identical to the functional variant for suscepti-
bility):

Linkage (cosegregation at the family level): The common segregation of a mar-
ker and a disease is investigated. Inheritance is characterised by the transmis-
sions of DNA segments from parents to offspring. If the transmissions at the
marker locus and at the disease locus from one parent to a child are not inde-
pendent, then this is denoted as linkage. Under linkage relatives with a similar
disease status (e.g. both affected) are more similar at the marker locus than to
be expected under independence.
Linkage disequilibrium (association at the population level): Linkage disequi-
librium (LD) is present, if the probability for the existence of a specific marker
allele together with a specific disease allele in a population gamete differs from
the product of individual probabilities. Certain marker alleles of affected in-
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dividuals will be more frequent or less frequent than in a randomly selected
individual from the population.

Linkage analysis in families uses the concept of linkage. Association analysis in
populations or families uses the concept of linkage disequilibrium. Some designs
and corresponding statistical methods are capable of integrating both types of
information into the analysis.

Detailed information on diseases used as examples in this chapter may be
found in the standard reference of human genetics of McKusick (1998) or its online
version, Online Mendelian Inheritance in Man (OMIM 2000).

Genetic Models 7.3

Fundamental to all investigations regarding genetic hypotheses is the assumption
or the development of the genetic model. In the context of the parametrization
of genetic models, some necessary genetic terminology (Thompson 1986) will be
introduced. Only binary phenotypes are considered here. Quantitative phenotypes
including threshold models creating a binary phenotype from a latent quantitative
phenotype will not be considered.

Terminology 7.3.1

The genome is the complete collection of an individual’s genetic material present
in every cell. This material consists of chromosomes, i.e. long strands of DNA.
A gene is a piece of a chromosome coding for a function that can be seen as the
inheritable unit. The locus is the position of a piece of a chromosome along the
chromosome. Thus, the locus might denote the position of e.g. a gene, a gene
complex or a marker. The different variants of a gene are called alleles. Often the
term gene is also used for each single variant of a gene.

The human genome is diploid, i.e. chromosomes are all paired (homologous
chromosomes) with the exception of the sex-linked chromosome in males. Each
human somatic cell contains 22 autosomal chromosome pairs and 1 pair of sex
chromosomes. The autosomal chromosomes of a pair contain the same gene with
possibly different alleles at the same gene location. During meiosis, a diploid set of
chromosomes is reduced to a haploid chromosome set of a germ cell, the gamete.
In this chapter we will exclusively consider the analysis of autosomes.

A pair of alleles of an individual at a locus is called genotype. If the two alleles are
identical, the individual is called homozygous at the locus, otherwise heterozygous.
Twocopiesof a geneare called identical by descent (IBD) if both copies are the same
allele and they are copies of the same gene in a common ancestor. An individual
is homozygous by descent (HBD) when its gene pair is IBD. When considering
several loci simultaneously, the multilocus alleles which are inherited from the
same parent are called haplotype.
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Mendelian Single Locus Model7.3.2

Mendelian segregation (Mendel 1865) is the simplest and most applied model for
the mode of inheritance. It applies to a single locus. An individual randomly and
independently inherits one allele from father and mother respectively. Each parent
randomly and independently passes on a copy of one of two alleles to each of his|her
offspring (binomial distribution with probability 0.5). All segregation events from
parents to offspring are independent. The segregation process implies that copies
of some alleles are frequently present in offspring and other alleles are lost in
subsequent generations (genetic drift).
Consider the phenotype affected|unaffected of a certain disease. Let S denote a sus-
ceptibility gene with n alleles S1, S2, … , Sn. The distribution of allele frequencies
P(Sr) in the population is denoted by:

pr = P(Sr) , r = 1, … , n .

For ordered genotypes the origin of inheritance (father or mother) is distinguished,
for unordered genotypes not. There are four possible ordered genotypes and
three unordered genotypes. Usually unordered genotypes are used. Under Hardy–
Weinberg equilibrium (HWE), the (unordered) genotype frequencies are given by

P
(
SrSs

)
= 2prps = p2

r for r = s

P
(
SrSs

)
= 2prps for r ≠ s .

HWE assumes random mating. Thus the frequencies are yielded by independence
of the corresponding allele frequencies, while combining two ordered genotypes
for heterozygotes. The maintenance of HWE in a population can be derived by
applying Mendelian segregation to each possible parental mating type (see e.g.
Khoury et al. 1993).

The penetrance describes the relation between genotype and phenotype. It is the
conditional probability that an individual with a given genotype will be affected:

frs = P(affected|SrSs) , r, s = 1, … , n .

For classical monogenic diseases, the disease is caused by a single major gene. The
penetrances of the different genotypes will only take on the values 0 or 1. Often
a locus S is assumed to be biallelic, i.e. to have only two different alleles. Let S1

denote the ‘susceptibility’ allele (mutation) and S2 the ‘normal’ allele (wild type).
For a classical dominant disease all carriers of the susceptibility allele will become
affected such that f11 = f12 = f21 = 1 and f22 = 0. For a classical recessive disease
only homozygous carriers of the susceptibility allele will become affected such that
f11 = 1 and f12 = f21 = f22 = 0.

Many classical hereditary diseases follow a Mendelian mode of inheritance. Of-
ten the prevalence of classical Mendelian diseases is below 1 in 1000 live births.
Prominent examples are Chorea Huntington (autosomal dominant gene, CFTR,
on chromosome 4) and cystic fibrosis (autosomal recessive gene, Huntingtin, on
chromosome 7). Many different mutations of the gene CFTR (cystic fibrosis trans-
membrane regulator) cause cystic fibrosis. The gene Huntingtin causing Chorea



Genetic Epidemiology 1145

Huntington contains a variable number of CAG trinucleotide repeats. This number
is low for unaffected individuals and high for those affected. Thus both genes are
characterized by allelic heterogeneity. However, the assumption of a biallelic locus
with two groups of alleles (susceptibility, normal) worked well in identifying these
two genes as causes of a Mendelian hereditary disease, even though it is clear that
the true inheritance is much more complicated. The aim in statistical genetics is
not to specify a completely correct model in the first place, but to address the
scientific question adequately with a parsimoneous mathematical model. If this
model is too simple then extended or new biologically motivated models need to
be implemented.

The relation of genotype to phenotype is not straightforward for many dis-
eases. Individuals with a susceptibility genotype can stay unaffected (incomplete
penetrance) and individuals with a non susceptibility genotype can become af-
fected (phenocopies). In general terms, given different genotypes, penetrances at
a specific gene locus may all be different. It may often be assumed, that the ori-
gin (father or mother) of an allele has no influence on a disease, i.e. f12 = f21.
For the general single locus mode of inheritance with susceptibility allele S1 we
assume 1 ≥ f11 ≥ f12 = f21 ≥ f22 ≥ 0. For a recessive mode of inheritance
we assume f12 = f21 = f22, and for a dominant mode of inheritance we assume
f11 = f12 = f21.

Linkage 7.3.3

For the joint inheritance at two loci, it may not generally be assumed that there is in-
dependent Mendelian segregation, owing to crossover events and recombinations.
Gametes are formed during meiosis. In this process, homologous chromosomes
are arranged next to each other and partly overlap. A chromosome breakage and
a crossover (or crossing over), i.e. an exchange between homologous chromosome
segments, can occur. A recombination between loci A and B occurs when a ga-
mete will have a haplotype other than the combination genes that occurred in the
parents, due to crossovers between the loci.

Consider the formation of gametes during meiosis displayed in Fig. 7.1. Between
very distant loci A and B (see Fig. 7.1a) a crossover is likely to result in a recombina-
tion of the haplotypes A1B1 and A2B2 to give the new haplotypes A1B2 and A2B1. If
the two loci A and B are very close (see Fig. 7.1b) this is very unlikely. In fact, the map
distance is defined as the expected number of crossovers between two loci (Haldane
1919). Since the map distance is an expectation, this distance measure is additive.
Thus, for three (ordered) loci A, B and C the map distance between A and C is
given by the sum of the map distances between A and B and between B and C. The
map unit is Morgan, M, named after T.H. Morgan, 1866–1945. Often centiMorgan,
cM, are given. The total length of the human autosomal genome is approximately
35 M. Single chromosome lengths are between 0.5 M and 3 M. As a very rough
guide 1 cM corresponds to 1 Million base pairs in the physical map.

By genotyping it is possible to observe recombinations between two loci, but not
crossovers. Figure 7.1a shows recombination due to a single crossover. For a double
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Figure 7.1. Formation of gametes during meiosis from one parental pair of chromosomes with

a single crossover. Left: parental chromosome pair, middle: crossover event (crossover point denoted

by the circle), right: gametes for offspring formation. At the two loci A and B the parent is double

heterozygous A1A2 and B1B2. (a) The crossover occurred between locus A and B. The two middle

gametes show recombination. (b) The crossover occurred above locus A and B, so that the gametes

do not show recombination

crossover, i.e. two chromosomal exchanges between the loci A and B, no recombi-
nation would be observed. In mathematical terms a recombination between loci A
and B can be defined as an uneven number of crossovers between them.

The recombination rate θ, i.e. the ratio of the number of recombinant gametes
to the total number of gametes formed, is used as a measure of genetic distance
between two loci. If loci are on different chromosomes or far away on the same
chromosome they segregate independently during the formation of gametes. This
results in θ = 0.5, and the loci are designated unlinked. By definition there is
linkage between the loci if 0 ≤ θ < 0.5 and no linkage if θ = 0.5. If loci are
closer to each other, recombination is less likely. Complete linkage, i.e. complete
co-segregation, implies no recombination and thus θ = 0.

In Fig. 7.2 a double heterozygous parent with haplotypes A1B1 and A2B2, and
a double homozygous parent with haplotype A3B3 are considered. For the double
heterozygous parent a meiosis can create the non-recombinant haplotypes A1B1

and A2B2 or the recombinant haplotypes A1B2 and A2B1. In order to determine
recombination a parent homozygous even at one locus is not informative. Given
that recombination is present, each of the two recombinant haplotypes occurs
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Figure 7.2. Formation of recombinant and non-recombinant haplotypes by meiosis

with probability 0.5. Given that no recombination is present, each of the two
non-recombinant haplotypes occurs with probability 0.5. For θ = 0.5 there is
independent segregation so that all four possible haplotypes are equally likely.

If the distance between loci is small, i.e. θ ≤ 0.1, a recombination corresponds
to a crossover. If three ordered close loci A, B and C are considered, θAC ≈
θAB + θBC. In contrary to the map distance in Morgan, recombination distances
are not additive. A recombination between A and B and one between B and C
corresponds to an even number of crossovers for the interval A to C and thus will
not result in a recombination between A and C. With the help of so-called mapping
functions, recombination distances can be translated into Morgans. In the majority
of chromosomal regions recombination rates for women are higher than for men,
which is most often neglected in genetic epidemiological studies.

To fully describe the segregation process in a (chromosomal) pedigree along
a complete chromosome, it is sufficient to denote the paternal or maternal origin
by 0 or 1 respectively for each meiosis in a pedigree along the whole chromosome
(see Fig. 7.3). A crossover event is present at a particular position when the parental
origin switches at a particular meiosis.

The potential informativity of a single marker chosen from an existing marker
map (without consideration of the disease locus) is determined by its genetic
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Figure 7.3. Three-generation chromosomal pedigree. The pedigree describes the grandparental

inheritance of the haplotypes of three grandchildren which they inherited from the left grandparent.

Consider the ‘left’ grandparent with its two chromosomes denoted by P (white) for paternal and M

(black) for maternal. The segregation of these two chromosomes from the grandparent to its

offspring (with a double crossover) and to its three grandchildren can be followed. For each meiosis

the chromosomal segments are yielded by the crossover process. Chromosomal segments in the

grandchildren are in part inherited from the chromosomes O (dashed) of the other grandparent. At

each position along the chromosome and for each offspring chromosome, the paternal or maternal

inheritance can be denoted by 0 or 1. This is true in the parent generation and in the child

generation. Thus, the inheritance can be completely described by a vector of 0’s and 1’s with

dimension equal to the number of meioses considered

variability, i.e. allele distribution, and by the relation of the marker’s (laboratory)
phenotype to its corresponding genotype. In this laboratory context, phenotype
denotes the observed measure of the marker’s true underlying genotype. An exam-
ple of such an observed measure for a genotype is the length determined by a gel
electrophoresis for an RFLP marker instead of the exact base sequence. Two mea-
sures of marker informativity are heterozygosity H and polymorphism information
content PIC (Botstein et al. 1980). For a locus with n alleles, these are defined as
follows:

H =
n∑

r≠s

prps ,

PIC = 1 −
n∑

r=1

p2
r −

n−1∑
r=1

n∑
s=r+1

2p2
r p2

s = 2
∑∑

prps(1 − prps) .
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In HWE, the heterozygosity H equals the probability that a random individual
is heterozygous. PIC denotes the probability that one of two randomly mating
individuals is heterozygous and the other has a different genotype (Weiss 1993; Ott
1999).

Linkage Disequilibrium 7.3.4

Linkage and linkage disequilibrium (LD) are concepts that need to be distin-
guished. Linkage describes the co-inheritance at two loci and can only be observed
in families. Linkage is independent of the specific alleles. LD describes the relation
between alleles at two loci in a population.

Consider the frequencies of specific alleles at two loci S and M in a popula-
tion. They can be in linkage disequilibrium (or gametic disequilibrium, LD). LD is
present if the probability for the presence of specific S and M alleles in one gamete
is not equal to the product of the individual probabilities at the single loci.

Let S denote the locus with n alleles S1, S2, … , Sn and allele frequencies

pr = P(Sr) , r = 1, … , n ,

and M a locus with m alleles M1, M2, … , Mm and allele frequencies

qi = P(Mi) , i = 1, … , m .

A common measure of LD is the difference of the haplotype probability from
its expectation under no association. For two biallelic loci it is denoted by D
or δ. For multiallelic markers the parameter δir is often used to define the linkage
disequilibrium between Mi and Sr as

δir = P(MiSr) − P(Sr)P(Mi) , i = 1, … , m ; r = 1, … , n .

Linkage disequilibrium or LD is present if δir ≠ 0 for at least one pair of alle-
les Mi, Sr.

Linkage equilibrium is present if

δir = 0 for all i = 1, … , m ; r = 1, … , n .

Under linkage equilibrium the allele distribution at locus M is independent of the
specific S allele present.

Linkage disequilibrium can also be described by the coupling frequencies cir

defined as

cir = P(Mi|Sr) , r = 1, … , n ; i = 1, … , m ,

i.e. by the conditional probabilities that a gamete with Sr also has allele Mi. Other
parametrizations of LD are also commonly used.

LD may also be considered between multiple loci. Of course the parametrization
is more complicated in this case.
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Linkage disequilibrium can have different origins (Suarez and Hampe 1994).
At linked loci complete LD can be caused by a recent mutation at one locus.
However, LD is also possible without linkage between the loci. In extreme cases
the loci can even lie on different chromosomes. One important mechanism for the
development of LD at unlinked loci is population stratification. This is often a result
of the admixture of subpopulations (e.g. through immigration) with different allele
distributions in the subpopulations. Non-random mating (e.g. by religion or social
status) can also be such a cause.

The following formula describes a population genetics model for the degra-
dation in generation time of an existing LD at generation time 0, δ0, during g
generations caused by recombination|linkage (Maynard Smith 1989):

δg = (1 − θ)gδ0 .

An LD may not necessarily be caused by linkage (possible mechanisms given
above), but in the presence of tight linkage it can stay strong during many gener-
ations. Without tight linkage LD will degrade rapidly. Thus LD provides indirect
evidence for linkage.

As a conlusion of this section two additional widely used measures of LD for
fine-scale mapping with biallelic marker data will be introduced (Devlin and Risch
1995).

Considermarkers A and B, eachwith twoalleles A1 , A2 and B1, B2. In ahaplotype,
let the first position denote the allele at marker A, the second position the allele
at marker B. The haplotype probabilities are listed in Table 7.1. Rows and columns
portray the marginal probabilities. The LD as the difference of the haplotype
probability from its expectation under no association can be calculated by

D = π11 − π1+π+1 = π22 − π2+π+2 = π11π22 − π21π12 .

D is an absolute measure of LD. Its value is 0 if marker A and marker B are not
associated.

Table 7.1. Haplotype probabilities for two biallelic markers A and B

Marker B
Marker A Allele B1 Allele B2

Allele A1 π11 π12 π1+

Allele A2 π21 π22 π2+

π+1 π+2

Maximum and minimum possible values of D depend on the allele frequencies
in the population. Thus, define Dmax and Dmin by

Dmax = min(π1+π+2, π+1π2+)

Dmin = min(π1+π+1, π+2π2+) .
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Rescaling D relative to its maximum and minimum results in the relative measure
D′ (Lewontin’s D′, Lewontin 1964):

D′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D

Dmax
=

π11π22 − π21π12

min
(
π1+π+2, π+1π2+

) D > 0

D

Dmin
=

π11π22 − π21π12

min
(
π1+π+1, π+2π2+

) D < 0 .

Since in essence LD is a correlation between the marker and the susceptibility gene
in populations, the correlation coefficient can also be used as an LD measure (Hill
and Robertson 1968), denoted by ∆:

∆ =
π11π22 − π21π12√
(π1+π2+π+1π+2)

=
D√

(π1+π2+π+1π+2)
.

Another LD measure based on odds ratios and motivated by the epidemiological
measure ‘attributable risk’ (cf. Chap. I.2 of this handbook) is

δ =
π11|π21 − π12|π22

π11|π21 + 1
=

π11π22 − π12π21

π+1π22
=

D

π+1π22
.

Segregation Analysis 7.4

The aim of segregation analysis is to find evidence for the existence of a major gene
for the phenotype under investigation and to estimate the corresponding mode of
inheritance. Therefore, if possible, the pattern of inheritance over several genera-
tions within the structure of larger families is investigated. Sometimes segregation
analysis has to be carried out on the basis of many small families.

Consider a Mendelian single locus model for a major gene with the suscepti-
bility allele S1 and the normal allele S2. For classical Mendelian diseases the pene-
trances P(affected|genotype) take on only the values 0 and 1. For such diseases, the
genotype-phenotype relation is so obvious that the discrete genotype translates
into a discrete disease phenotype. Thus, families in which such a Mendelian di-
sease gene segregates display very characteristic disease patterns. For example, in
the case of autosomal dominant diseases generations should not be skipped by the
disease, an affected individual married to an unaffected individual should produce
an approximate 1 : 1 ratio of affected to unaffected offspring and the distribution
of the trait among sexes should be almost equal (Tamarin 1986). Ratios like the
above mentioned are called segregation ratios.

The simplest types of segregation analyses are based on tests for segregation
ratios hypothesising a particular mode of inheritance. To illustrate the princi-
ple, consider first a rare autosomal dominant disease and a random sample of
matings. Matings between an affected and an unaffected individual will usu-
ally be of the S1S2 × S2S2 mating type. Since the susceptibility allele is rare,
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S1S1 × S2S2 matings for affected-unaffected couples can be neglected as a first
approximation. Thus, for the moment consider only S1S2 × S2S2 families and
suppose that r of n offspring are affected. In the offspring generation the ex-
pected segregation ratio between affected and unaffected is 0.5. A test can be
built on the binomial distribution, considering n as the number of trials, q as
the probability for a single child to be affected, and r as the observed number
of affected children. If the null hypothesis of q = 0.5 is not rejected, it may be
concluded that the data are compatible (more precisely not inconsistent) with an
autosomal dominant disease pattern. For further test procedures see e.g. Sham
(1998).

More generally, the probability distribution of the six possible mating types
(S1S1 × S1S1; S1S1 × S1S2; S1S1 × S2S2; S1S2 × S1S2; S1S2 × S2S2; S2S2 × S2S2) can
be formed according to the parental genotypes. For each given mating type, the
distribution of genotypes and phenotypes in the offspring may be determined, on
which tests can then be built. However, families are most often sampled according
to recruitment criteria and not randomly, yielding an oversampling of families
enriched for disease. Therefore, for a test procedure to be valid the probability
distributions need to be corrected for ascertainment bias. Consider again the bi-
nomial distribution for the number of affected offspring in a sibship of a particular
mating type. We assume ascertainment for families with ‘at least one affected off-
spring’. The binomial distribution for the number of affected offspring could be
corrected for ascertainment by considering a truncated binomial distribution as-
suming at least one affected offspring per family. Unfortunately, the ascertainment
process could imply that families with more affected children have a higher chance
of being part of the sample. Proper ascertainment correction maybe complicated
and the ascertainment criteria should be known as precisely as possible. More-
over, mathematical assumptions must be made about the ascertainment sampling
process in order to estimate genetic parameters or to test genetic models. In gen-
eral, misspecification of the ascertainment process might cause serious bias in the
estimation of genetic parameters (see e.g. Shute and Ewens 1988).

The ascertainment process is often parametrized by the ascertainment proba-
bility

π = P(proband|affected) ,

i.e. the probability that an individual will be part of the family data set given that
the individual is affected. The following types of selection have been defined by
the parameter π: If π = 1, this is called truncate selection. For truncate selection an
individual will be recruited if he|she is affected. Families without affected members
are not recruited. If π → 0, we speak of single selection. In single selection families
with r affected children are recruited with probability rπ and almost all families
have only one affected child. Multiple selection is defined by 0 < π < 1.

For extended pedigrees with many individuals and several generations a numer-
ical procedure is needed for all probability calculations. Let L denote the likelihood
for the observed phenotypes Y , given a genetic model M and the pedigree struc-
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ture. L can be calculated by summing over all possible genotypic constellations
gi, i = 1, … , N, where N denotes the number of individuals in the pedigree:

L(Y) =
∑

g1

∑
g2

· · ·
∑
gN

P(Y |g1g2 · · · gN )P(g1g2 · · · gN ) .

It is assumed that the phenotype of an individual is independent of the other
pedigree members given its genotype.

Widely used in segregation analysis is the Elston–Stuart algorithm (Elston and
Stuart 1971), a recursive formula for the computation of the likelihood L given as

L =
∑

g1

∑
g2

· · ·
∑
gN

N∏
j=1

f (gj)
N1∏
k=1

P(gk)
N2∏

m=1

τ(gm|gm1gm2) .

The notation for the formula is as follows: N denotes the number of individuals
in the pedigree. N1 denotes the number of founder individuals in the pedigree.
Founders are individuals without specified parents in the pedigree. In general,
these are the members of the oldest generation and married-in spouses. N2 denotes
the number of non-founder individuals in the pedigree, such that N = N1 + N2.
gi, i = 1, … , N, denote the genotype of the ith individual of the pedigree. The
parameters of the genetic model M fall into three groups: (1) The genotype dis-
tribution P(gk), k = 1, … , N1, for the founders is determined by population para-
meters and often Hardy–Weinberg equilibrium is assumed. (2) The transmission
probabilities for the transmission from parents to offspring τ(gm|gm1, gm2), where
m1 and m2 are the parents of m, are needed for all non-founders in the pedi-
gree. It is assumed that transmissions to different offspring are independent given
the parental genotypes and that transmissions of one parent to an offspring are
independent of the transmission of the other parent. Thus, transmission probabil-
ities can be parametrized by the product of the individual transmissions. Under
Mendelian segregation the transmissionprobabilities for parental transmissionare
τ(S1|S1S1) = 1; τ(S1|S1S2) = 0.5 and τ(S1|S2S2) = 0. (3) The penetrances f (gi), i =
1, … , N, parametrise the genotype-phenotype correlation for each individual i.

This recursive formula works well on simple pedigrees of arbitrary size. Com-
putations on complex pedigrees, i.e. pedigrees with marriage and inbreeding loops
(such as consanguineous marriages) are often only possible with approximation
methods.

Segregation analysis is a successful tool for monogenic diseases. Major problems
in segregation analysis for complex diseases result in essence from the fact that the
relationship of genotype to phenotype is not a straightforward 1 to 1 function or n
to 1 function, i.e. the genotype does not unambiguously determine the phenotype.
This unclear relationship is such a critical issue that some use this as a definition of
complex diseases. Further, several genetic factors are assumed to have an influence
on complex diseases. The penetrance can be incomplete and phenocopies can exist.
In addition the penetrance can depend on other non-genetic factors such as age,
gender and exposure factors for example.
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For the definition of the phenotype, problems arise when specifying and apply-
ing diagnostic criteria. In addition, many complex diseases show a large pheno-
typic variation, which might be characterised by severity, by different diseases or
by different co-occurrence of diseases.

Genetic heterogeneity is a further problem (Evans and Harris 1992). The same
phenotype can be caused by different genes (locus heterogeneity). Different phe-
notypes can be caused by different alleles at the same locus (allelic heterogeneity).
Owing to modifying factors different phenotypes can segregate within a family
(intra-family heterogeneity). When different phenotypes segregate in different
families, but the phenotype is constant within one family, this might indicate that
a gene segregates in one family and not in the other (inter-family heterogeneity). In
addition, there are further types of genetic heterogeneity such as genomic imprint-
ing, where the penetrance of a heterozygous genotype depends on the (paternal
oder maternal) origin of the susceptibility allele.

In the presence of heterogeneity the formation of homogeneous subgroups is
a means to arrive at a clearer genotype-phenotype relation und thus, to identify
a possible Mendelian subform of the disease. Homogeneous subgroups can be
defined by e.g. clinical phenotypes, severity of the disease, age of onset of the
disease, family history or ethnicity.

An example of a highly successful segregation analysis for a complex disease
is breast cancer (Newman et al. 1988). The families were ascertained through
a population-based large epidemiological programme in San Francisco and De-
troit. The ascertainment criteria for index cases were women with breast cancer,
Caucasian, diagnosis before the age of 55, histologically confirmed primary tu-
mour, becoming incident in a specified period. No selection on positive family
history was taken. The personal interview of the index case on her nuclear family,
i.e. mothers and sisters, regarding breast cancer was considered sufficiently reli-
able. 1579 nuclear families were recruited and one large extended pedigree. This
sample also included some rare cases of male breast cancer.

Complex segregation analysis was applied to these breast cancer families using
the programme POINTER which is based on the so-called ‘unified’ model (Lalouel
et al. 1984). This model is called ‘unified’, since it unifies the so-called ‘mixed’
model (Morton and MacLean 1974) and the concept of transmission probabilities
mentioned above. The Mendelian ‘mixed’ model assumes an underlying normal
distribution for each of the three genotypes S1S1, S1S2, S2S2, of the major factor
which differ in their means. The disease status for breast cancer is considered as
resulting from an underlying quantitative trait (as a mixture of the three normal
distributions) by exceeding a certain threshold. In this threshold model, individ-
uals affected with breast cancer have exceeded the threshold deterministic for
disease, individuals not affected by breast cancer have a value for the quantitative
trait below the threshold. Thus, for a predisposing genotype the mean is shifted
in comparison to the distribution for the wildtype heterozygotes such that more
individuals will exceed the threshold. In addition, this model assumes an additive
effect of the major factor, a polygenic component and an environmental compo-
nent. The following parameters have to be estimated for the mixed model: the allele
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frequency p of the susceptibility allele S1, the displacement between the means for
S1S1 and S2S2, the dominance parameter defined as the difference in the means
for S2S2 and S1S2 and the heritability H, defined as the proportion of variance
due to the polygenic component (see Sect. 7.2). Further parameters for the uni-
fied model are the transmission probabilities. In this case, the values 1, 0.5 and 0
for a Mendelian major gene as major factor should not be rejected. Evaluation of
models with direct modelling (and estimation) of the transmission probabilities
allows the identification of the major factor as a major Mendelian gene. In the above
mentioned breast cancer study transmission probabilites were estimated close to
the values required by Mendelian segregation and a model without a Mendelian
inheritance factor could be rejected.

Several parameters need to be prespecified (as input parameters) for complex
segregation analysis. For the breast cancer families the ascertainment probability
was assumed within the bounds π = 0.01–0.27, the lower bound corresponding
to almost single ascertainment and the upper bound corresponding to the mean
proportion of breast cancer cases in the families. Liability classes for the popu-
lation based liabilities were estimated from cumulative incidences in the general
population of the regions under investigation. These are 0.0010 for women until
age 15 and all men regardless of age, 0.0045 for women aged 16–40 years, 0.0283
for women aged 41–55 years and 0.0819 for women older than 55 years. These
necessary parameters could be well estimated, since a large epidemiological study
had been carried out in the region.

Complex segregation analysis requires many likelihood ratio comparisons be-
tween different assumed models for the estimation of parameters and the ac-
ceptance of a most parsimonious model. In the breast cancer study example the
autosomal dominant major gene was postulated, since the general single locus
model with three penetrance parameters and the dominant single locus model
with only two penetrance parameters resulted in a comparable fit. In a first step
we investigate whether the data are consistent with a major gene model and in
a second step we consider with which mode of inheritance for the major gene
the data are consistent. Important for the avoidance of false-positive results is the
investigation into whether an identified major factor is really Mendelian by the
use of transmission probabilities. In the breast cancer family data evidence for an
autosomal dominant transmission was given both in the 1579 nuclear families and
the one large extended family. These results were supported by the same qualita-
tive results even under sensitivity analysis for the ascertainment probability and
by the well-defined liability parameters based on prior studies. Thus, segregation
analysis may be successful even for complex diseases. In the breast cancer example
an autosomal dominant rare gene with high penetrance could be postulated for
early onset breast cancer as a result of the segregation analysis.

If there are no major genes with high penetrances, but only a few genes with
a moderate effect on the disease, segregation analysis will not be a valuable tool.
It should be mentioned that many diseases are studied nowadays by linkage and
association analyses without segregation analyses which normally would have
been carried out prior to this.
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Linkage Analysis7.5

In linkage analysis the co-segregation between marker and disease is investigated
in related individuals. The aim is to find evidence for linkage and often to estimate
the recombination rate. Sometimes exclusion of linkage is possible.

The classical linkage analysis method is the lod score method (Morton 1955).
This is a test for linkage between a susceptibility gene locus and a marker locus
(null hypothesis H0 : θ = 0.5 versus alternative H1 : θ < 0.5) in combination with
the estimation of the recombination rate. For a detailed description see Ott (1999).

For the lodscoremethod, themodeof inheritance M0, that is theparameterof the
genetic model at the susceptibility locus, and the marker allele distribution, have
to be known. The mode of inheritance may be estimated by segregation analysis.
Let L(θ, M0) denote the likelihood for the observed phenotypes at a particular
value for θ conditional on M0, on the marker allele distribution and on the given
pedigrees. As in the usual notation, the underlying conditioning is sometimes left
out. The lod score function (‘log odds’) is the log likelihood ratio

Z(θ) = LOD(θ) = log10

L(θ, M0)

L(0.5, M0)

as a function of θ. Z(θ) compares the likelihood under linkage with recombination
rate θ with the likelihood under no linkage, i.e. θ = 0.5. Z(θ) will be maximized
over all possible values for θ, i.e. 0 ≤ θ ≤ 0.5. If Zmax > 3 then evidence for linkage
exists. The recombination rate will be estimated by θmax , the θ-value corresponding
to Zmax. If Zmax < −2 linkage can be excluded. The limits 3 and −2 are based on
a sequential Wald test, such that the a posteriori probability for linkage when
rejecting the null hypothesis is 95% for a single alternative θ (Morton 1955). As
logarithms of base 10 are used, the limits correspond to stopping limits of 1000
and 0.01 in the sequential testing procedure yielded by setting α = 0.001, β = 0.01.

Let us determine the likelihood L(θ) for linkage between two loci A and B
for a sibship of size n. The genotypes are observed directly. Thus, no underlying
genetic model needs to be considered. The genotypes of the mother are A1A2

and B1B2 and the genotypes of the father are A1A1 and B1B1. Only the double
heterozygous mother is informative for linkage. In general, it is not known which
allele combinations of the mother are the result of the grandpaternal and the
grandmaternal meiosis, i.e. which allele combinations form the haplotypes in
the grandparental gametes. The so-called phase for the mother could be either
composed of the haplotypes A1B1 and A2B2 (phase I with probability PI) or by the
haplotypes A1B2 and A2B1 (phase II with probability PII).

Assume that the phase is known to be phase I, for example when the grandpar-
ents pass on this information. Let nx and ny denote the number of meioses from
the mother to the n children, which are non-recombinants nx or recombinants ny,
respectively. Then the likelihood L(θ) is

L(θ) =

(
nx + ny

nx

)
(1 − θ)nx θny .
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For an unknown phase, phase I and phase II both have to be considered. If PII is
the true phase, then nx children show recombination and ny children show non-
recombination. Under the assumption of linkage equilibrium phase I and phase II
are both equally likely. Thus

L(θ) =

(
nx + ny

nx

)
[PI(1 − θ)nx θny + PIIθnx (1 − θ)ny ]

=

(
nx + ny

nx

)[
1

2
(1 − θ)nx θny +

1

2
θnx (1 − θ)ny

]
.

For the sibship in Fig. 7.4 let us now determine the likelihood L(θ), the lod score
function Z(θ), Zmax and θmax. The notation in this pedigree is motivated by an
autosomomal dominant susceptibility gene S with a rare susceptibility allele S1

and a normal allele S2. Thus, the affected father and all affected siblings have
genotypeS1S2. In thepedigree themarker M is segregatingwith threeallelesM1, M2

and M3. The mother of the sibship of size 6 is homozygous and thus uninformative
for linkage. She will not be considered further.

Figure 7.4. Pedigree with a sibship of size 6 with marker information and with genotype information

concerning the susceptibility locus, owing to the clear-cut rare autosomal dominant mode of

inheritance

As a result of the genotyped grandparents, the father’s haplotypes are known:
S1M1 and S2M2. Thus the phase is known and the likelihood is

L(θ) =

(
6

0

)
(1 − θ)6θ0 = (1 − θ)6 .
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The lod score function is

Z(θ) = LOD(θ) = log10

L(θ)

L(0.5)
= log10

(1 − θ)6

(0.5)6

= 6 log10(1 − θ) + 6 log10 2

= 6 log10(1 − θ) + C ,

where C denotes a constant independent of θ. The maximum of the lod score
function is Zmax = 1.8 for θmax = 0. This corresponds to complete linkage as
supported by no observed recombinations.

Missing information on grandparental genotypes in Fig. 7.4 results in an un-
known phase. Then the lod score function would be

Z(θ) = LOD(θ) = log10

L(θ)

L(0.5)
= log10

0.5θ6 + 0.5(1 − θ)6

(0.5)6

= log10

(
θ6 + (1 − θ)6

)
+ 5 log10 2 .

In this case, the maximum of the lod score function is Zmax = 1.5 for θmax = 0. Due
to the uncertain phase, the maximum lod score is reduced. However, the estimate
for the recombination rate stays at θ = 0.

In Fig. 7.4, assume now that the second affected child has the genotype M2M3

(and the genotype S1S2). With the phase as indicated in the figure, one recombi-
nation needs to be taken into account now. Thus

Z(θ) = LOD(θ) = log10

L(θ)

L(0.5)
= log10

6θ(1 − θ)5

6(0.5)6

= log10 θ + 5 log10(1 − θ) + 6 log10 2 .

With one recombination the maximum of the lod score function is Zmax = 0.63 for
θmax = 1|6 = 0.17. Now linkage is estimated as not complete and Zmax is markedly
reduced.

If in Fig. 7.4 the genotypes of the father and his parents are unknown, the father’s
genotype can be inferred as either M1M1 or M1M2. If HWE can be assumed, the
likelihood of the recombination rate L(θ) can be calculated as a function of the
marker allele frequencies in offspring. A detailed calculation will show that in this
case, a rare marker allele M1 will result in a high lod score, a more common marker
allele M1 will result in a lower lod score.

The likelihood L(θ) can be computed for more complex pedigrees with the help
of the Elston–Stuart algorithm (Elston and Stuart 1971):

L =
∑

g1

∑
g2

· · ·
∑
gN

N∏
j=1

f (gj)
N1∏
k=1

P(gk)
N2∏

m=1

τ(gm|gm1gm2θ) .

The notation is provided in the previous section with the extension that gj, j =
1, … , N, now refers to the haplo-genotypes, i.e. to the genotypes formed by the
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haplotypes of the underlying susceptibility locus S and the marker M. The re-
combination rate θ is now part of the transmission probabilities of the haplo-
genotypes, since they describe the formation of gametes as recombinants or non-
recombinants.

Consider now a set of K families. Since the segregation process is independent
in different families, the total likelihood is given by the product of the individual
likelihoods. Thus, the logarithm of the total likelihood, l(θ), is given by the sum of
the individual logarithms of the likelihood li(θ):

l(θ) =
K∑

i=1

li(θ) .

The lod score method and its extensions have been very successful in localizing
major susceptibility genes, especially for rare monogenic diseases (e.g. cystic fi-
brosis). However, the analysis of complex diseases poses many difficulties (Lander
and Schork 1994). Often the mode of inheritance is unclear. Hence, the preas-
sumption of parameters for the mode of inheritance in the lod score analysis is
very critical. Often several modes of inheritance are ‘tried out’ (Terwilliger and
Ott 1994). A false model can lead to false negative tests, and thus the erroneous
exclusion of chromosomal regions, which indeed harbour susceptibility loci. The
use of LOD scores for exclusion mapping should be considered with caution. Max-
imizing LOD scores over several models or the whole range of recombination rates
increases the a posteriori false positive rate (Risch 1991), i.e. linkage is inferred
erroneously. False assumptions of marker allele frequencies can also lead to false
positive results (Ott 1999). Where possible, marker allele frequencies should be
estimated for a given study or population, since allele frequencies are often not
well known and may differ from population to population. The estimation of the
recombination fraction itself after concluding for linkage can be biased, i.e. the
true location of the susceptibility gene might be many centi Morgans apart from
the estimated location. Even a combined segregation and linkage analyses with
parallel estimation of the necessary parameters does not lead to meaningful and
significant results, owing to the flatness of the likelihood function.

The localization of the BRCA1 gene for breast cancer is an example of a successful
lod score analysis (Hall et al. 1990), which was based on the segregation analysis
described in the previous section (Newman et al. 1988). In this analysis, cumulative
LOD scores were calculated by ascending average age-of-onset for breast cancer
cases in the families. By this procedure, linkage could be demonstrated for early-
onset families.

The difficulties in employing a parametric linkage analysis become more and
more important with the degree of complexity of a disease. In order to avoid
the necessity of critical assumptions about the underlying genetic model, so-
called non-parametric methods or model-free methods have been developed. The
aim of model-free methods is to provide evidence for linkage without specifying
parameters of the underlying mode of inheritance and without estimating the
recombination rate (Elston 1998; Lander and Schork 1994).
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Many of these methods are based on the identity-by-descent (IBD) status. For
example consider a patient and one of his|her siblings (Penrose 1953). Their IBD
status can take on the values 0, 1 or 2, according to the number of marker al-
leles that have been transmitted to both siblings from exactly the same (grand-
paternal or grandmaternal) copy of a parent’s gene and are thus identical (see
Fig. 7.5).

Allele sharing methods are based on the fact, that in the presence of linkage
relatives with a similar disease status (e.g. both affected) are more frequently
similar at the marker locus – in the sense of IBD – than to be expected under
independent segregation. Relatives with a different disease status (e.g. discordant
sibs: affected, unaffected) are less frequently similar at the marker than under no
linkage. The aim of these methods is to provide evidence for linkage and not to
estimate the recombination rate.

In the affected-sib-pair (ASP) method (Day and Simons 1976), affected sib pairs
are classified according to the IBD status. The classical χ2-test compares the ob-
served number of (independent) sibling pairs with 0, 1 or 2 marker alleles IBD with
the expected number assuming independent segregation. If marker and disease
locus are unlinked, the probability for 0, 1, or 2 marker alleles IBD is 0.25, 0.5
or 0.25, respectively. If the observed IBD distribution significantly differs from the
expected distribution, this indicates linkage. It is possible to use the χ2-goodness-
of-fit-test to test for a hypothesised genetic model, taking the derived numbers
under the model as expected.

When considering only affected individuals, the method is robust towards in-
complete penetrance. Other allele sharing methods also incorporate unaffected
individuals in the analyses as well as different pairs of relatives other than sib-
lings. The literature is extensive and more powerful methods than the original ASP
method have been developed (e.g. Holmans 1993; Whittemore and Tu 1998).

The determination of the IBD status assumes that the marker is sufficiently
polymorphic and that the parents are genotyped for the marker (or neighbouring
loci and other relatives yield the missing information). If it is not possible to
determine IBD unambiguously (see Fig. 7.5) it needs to be estimated. Sometimes
the IBS status is used instead. IBS is the number of marker alleles that are identical
in the pair of individuals (“identity by state”) without considering ancestry, taking

Figure 7.5. An affected sib-pair with parents. Marker genotypes are given. The IBS status is 2. The

IBD status cannot be unambiguously determined, P(IBD = 1) = P(IBD = 2) = 0.5, since the mother

transmits the grandpaternal allele M1 or the grandmaternal allele M1 with equal probability
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on the values 0, 1, or 2. However, such methods are not robust towards imprecisions
in the marker allele frequencies.

Association Analysis 7.6

The aim of association studies is to show evidence for association or linkage dis-
equilibrium in a population. Linkage disequilibrium results in an association be-
tween marker alleles and alleles of a susceptibility gene, such that certain marker
alleles will be present more often in affected individuals than in a random sample
of individuals from the population.

In classic case-control studies marker allele frequencies or genotype frequencies
in a group of unrelated affected individuals are compared to those in a group
of unrelated unaffected individuals. Numerous associations have been identified
with case-control studies, e.g. associations of autoimmune diseases (e.g. diabetes,
multiple sclerosis) with the HLA system. A further example is the association of
apolipoprotein E (APOE) allele ε4 with Alzheimer’s disease (Corder et al. 1993).
The APOE ε4 allele frequency is approximately 35% in Alzheimer’s patients, but
only approximately 15% in the older population not suffering from dementia. If
a positively associated marker allele is frequent in a population, such as APOE ε4,
then it is by itself not a good predictor for disease status and the proportion of
homozygotes for the allele is high. Linkage analysis methods are in general not
very powerful in this situation.

Besides the usual limitations of classical case-control studies in epidemiology
(cf. Chap. I.6 of this handbook), case-control studies to investigate linkage dise-
quilibrium in genetic epidemiology must take a particular form of confounding
into account, i.e. population stratification: cases and controls must originate from
the same homogeneous (including ethnically homogeneous) source population.
This is especially difficult to achieve, to assess or test for in genetic epidemiology. If
individuals stem from subpopulations with different allele frequencies, and this is
not taken into account, then linkage disequilibrium can be simulated. This means
that stratified populations can evoke linkage disequilibrium without linkage. The
detection of such linkage disequilibrium detracts from the identification of sus-
ceptibility genes. It must be considered as an annoyance to this aim and as such
be evaluated as false positive. The technical term for such false positive results is
spurious association.

If an association is found that is not considered spurious, this may have two
causes (Lander and Schork 1994):

The positively (or negatively) associated allele is the susceptibility allele itself. If
so, this association is expected to occur in all populations harbouring this allele.
The positively (or negatively) associated allele is in linkage disequilibrium
with the susceptibility allele at the disease locus. If this is the case, then differ-
ent associations can occur in different populations due to different haplotype
frequencies of the allele combinations of both marker and susceptibility locus.
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In the first case, both marker and disease locus are identical. Thus, θ = 0 and
linkage disequilibrium is complete. In the second case marker and disease locus
are in general very close to each other. For this reason association studies are
highly valuable for the investigation of candidate genes.

When an association is identified, it can be quantified with the help of odds
ratios (Woolf 1955) (see also Chap. I.2 of this handbook). With rare diseases the
odds ratio approximates the relative risk. In addition, parameters of the underlying
genetic model may be estimated e.g. with the likelihood ratio method (Thomson
1983; Risch 1983).

As mentioned above, uncontrolled stratification of populations may result in
spurious associations. For case-control studies, there are essentially two methods
for taking the existence of subpopulations into account during statistical testing.
Both methods require a set of additional markers along the genome to be geno-
typed. In the genomic control method (Devlin and Roeder 1999) a variance inflation
factor is used to adjust the test statistic, taking into account correlations between
individuals in subpopulations. The structured association method (Pritchard et al.
2000) initially aims at directly identifying the population structure and assign-
ing individuals to a subgroup. Association is subsequently investigated by testing
against the null hypothesis of independent association within subgroups.

Association studies with internal controls, or so-called family based association
studies, are intended by design to avoid possible bias through inadequate controls
and population stratification. The concept of internal controls was developed by
Falk and Rubinstein (1987). For the original design nuclear families with at least
one affected child have to be recruited. The two parental alleles not transmitted to
the affected child are used as internal controls (Fig. 7.6).

This design has the important property that information is used on both, linkage
and association between a marker and the susceptibility gene.

For a biallelic marker, the data resulting from this study design may be presented
in different ways in a 2×2 contingency table (Table 7.2) and analysed with statistical
tests (Terwilliger and Ott 1992; Schaid and Sommer 1994). All test procedures test
for association (H0 : δ = 0 vs. H1 : δ ≠ 0) and most for linkage as well. In principal,
the tests investigate whether certain alleles are transmitted from the parents to an
affected child more often than not.

Figure 7.6. Nuclear family with one affected child. Alleles transmitted from the parents to the affected

children are denoted in white. Alleles not transmitted from the parents to the affected child are

denoted in black
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The test procedures can be classified according to several criteria. Tests can
be separated on the basis of whether genotypes or haplotypes are analysed.
Haplotype-basedanalyses compare the transmittedallelewith thenon-transmitted
allele. Genotype-based analyses compare the genotype transmitted to the affected
child with the artifical genotype constructed from the two non-transmitted al-
leles. Another criterion is whether the tests are procedures for matched samples
or not. The samples are indeed matched since one transmitted and one non-
transmitted allele together describe the segregation from a single parent to an
offspring.

Let M denote a biallelic marker with alleles M1 and M2; let M1 be positively
associated with the disease. Let genotypes, which are homozygous or heterozygous
for M1, be denoted with M1 positive. Then, N families with an affected child can be
presented in a 2 × 2 table as in Table 7.2. The traditional χ2-test for independence
can be applied to unmatched samples (Tables 7.2b and 7.2d) and the McNemar-test
can be applied to matched samples (Tables 7.2a and 7.2c). The table for unmatched
samples uses the marginal table of the corresponding table for matched samples.

The original Haplotype Relative Risk (HRR) method (Falk and Rubinstein 1987)
is a genotype-based analysis for unmatched samples. The odds ratio in Table 7.2b,
also called Haplotype Relative Risk (HRR), is a measure of association that is never
more extreme, i.e. farther away from 1, than the estimator RR for the relative risk
in a classic non-family based approach (Knapp et al. 1993). For θ = 0, HRR = RR.

The most commonly used test is the Transmission|Disequilibrium Test (TDT)
(Spielman et al. 1993). The TDT is a haplotype-based analysis of the matched
sample (Table 7.2c). The test statistic is

TDT = (b − c)2|(b + c) .

The TDT compares whether the M1 allele is more often transmitted to an affected
child (b) than the M2 allele (c) from heterozygous parents, or visa versa. The test
only considers M1M2 parents, since homozygous parents are not informative for
preferential transmission of either allele. This separation can be made due to the
matched analysis. In addition matching reduces the variance of the test statistic,
thereby yielding a higher power.

The literatureon family-basedassociationanalysis is vast (seee.g.Whittakerand
Morris 2001). Important extensions of the above methods allow the application to
multiallelic markers, to tightly linked loci and to quantitative traits. In addition, the
design also allows for other types of nuclear families, such as sibships with affected
and unaffected individuals (Spielmann and Ewens 1998). If a particular mode of
inheritance is suspected specialized versions of the TDT or related likelihood
methods may yield higher power (Schaid 1999).

If a candidate gene is to be investigated in detail, then a haplotype analysis
will be carried out considering several biallelic polymorphisms (SNPs) in the
same gene. The first step in a haplotype analysis is the estimation of the hap-
lotype frequency in a population or the estimation of the most probable haplo-
genotype (haplotype pair) in an individual. For cases and controls see Excoffier
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Table 7.2. 2 × 2 contingency table for family-based association methods based on N families with one

affected child and both parents. Consider a biallelic marker with alleles M1, M2 and let M1 be

positively associated with the disease. Genotypes, which are homozygous or heterozygous for M1,

are denoted with M1 positive. Capital letters denote genotype counts, small letters denote allele

counts. A, B, C and D are defined as in Table 2a. a, b, c and d are defined as in Table 2c. N and 2N

denote the total number of transmitted genotypes and alleles, respectively, to the affected child from

the 4N parental alleles

(a) Genotype-based analysis for matched samples
Non-transmitted genotype

Transmitted genotype M1 positive M1 negative Total

M1 positive A B A + B

M1 negative C D C + D

Total A + C B + D N

(b) Genotype-based analysis for unmatched samples (HRR method)
M1 positive M1 negative Total

Transmitted genotype A + B C + D N

Non-transmitted genotype A + C B + D N

Total 2A + B + C 2D + C + B 2N

(c) Haplotype-based analysis for matched samples (TDT)
Non-transmitted allele

Transmitted allele M1 M2 Total

M1 a b a + b

M2 c d c + d

Total a + c b + d 2N

(d) Haplotype-based analysis for unmatched samples
M1 M2 Total

Transmitted allele a + b c + d 2N

Non-transmitted allele a + c b + d 2N

Total 2a + b + c 2d + c + b 4N

and Slatkin (1995), for family samples see Rhode and Fürst (2001) and Qian and
Beckmann (2002). In the second step linkage disequilibrium is investigated on
the basis of the estimated haplotypes or haplotype frequencies. Some of the im-
plemented LD measures have already been described above (Devlin and Risch
1995).



Genetic Epidemiology 1165

Conclusions 7.7

This chapter could only introduce the basic methods of genetic epidemiological
studies. Important topics had to be completely left out, such as quantitative phe-
notypes or gene-environment and gene-gene interaction. Others could only be
mentioned, such as genome-wide linkage analysis. Some topics of general epi-
demiology interest are also not covered in this chapter, such as study designs
appropriate for the discussed study types (cf. Chap. I.7 of this handbook), power,
multiple testing and (genotyping) errors.

In addition, the area of genetic epidemiology is rapidly evolving. At the mo-
ment, most developments are made in the area of association analysis where the
current technological need is highest. Initial progress has been made considering
haplotype tagging SNPs as being representative for the genetic information in a LD
block across a chromosomal region. Progress is needed in the area of genome wide
scans using SNP chips in case-control samples as the corresponding technology is
available and will be used.
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Introduction8.1

This chapter will begin with providing a brief overview of the history of clinical
epidemiology and describe its relation with evidence based medicine. Clinical epi-
demiology differs from classical epidemiology in that clinical epidemiology sup-
ports other basic medical sciences such as biochemistry, anatomy and physiology
because it facilitates their application in research through formulation of sound
clinical research methods and, thus, puts these disciplines into clinical context.
Therefore, clinical epidemiology goes beyond clinical trials. We will describe this
concept in the following paragraphs (see Sect. 8.1.1 through 8.1.3). The following
sections include case scenarios that facilitate the introduction of the key concepts
about developing clinical questions, using diagnostic tests, evaluating therapy, ap-
praising systematic reviews, developing guidelines and making clinical decisions.

Brief History of Clinical Epidemiology8.1.1

Sackett provides an astute historical summary of the development of clinical epi-
demiology in his recent tribute in memory of Alvan Feinstein (Sackett 2002).
Sackett’s account gives John Paul credit for introducing the term clinical epidemi-
ology describing it as the “new basic science for preventive medicine” (Paul 1938;
Sackett 2002). Over the past 40 years, both Feinstein and Sackett himself made
major contributions to the field of clinical epidemiology. Sackett founded, in 1966,
the first clinical epidemiology research unit at the University at Buffalo, New York,
USA, and in 1967 a department of clinical epidemiology and biostatistics at McMas-
ter University in Hamilton, Canada, which he served as chair. The latter institution
has trained numerous clinical epidemiologists, some of whom have taken on chair
positions themselves. Today there are departments and units of clinical epidemi-
ology throughout the world, though the development in some jurisdictions has
been slower than in others. For example, it was in this millennium that the first
department of clinical epidemiology was founded in the German speaking coun-
tries of Europe (Basel, Switzerland, H. Bucher, personal communication), although
professorships of clinical epidemiology existed in these countries for some time.

A Definition of Clinical Epidemiology8.1.2

Although seminal, Paul’s simple description of clinical epidemiology was per-
haps not sufficient in helping investigators and clinicians understand the prin-
ciples underlying the term clinical epidemiology. Articles and textbooks have
provided further definitions. Feinstein portrayed clinical epidemiology as inves-
tigating “the occurrence rates and geographic distribution of disease; the pattern
of natural and post-therapeutic events that constitute varying clinical courses
in the diverse spectrum of disease; and the clinical appraisal of therapy. The
contemplation and investigation of these or allied topics constitute a medical
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domain that can be called clinical epidemiology” (Feinstein 1968; Sackett et al.
1991). Sackett defined clinical epidemiology as “the application, by a physician
who provides direct patient care, of epidemiologic and biostatistical methods
to the study of diagnostic and therapeutic processes in order to effect an im-
provement of health” (Sackett 1969, 2002; Sackett and Winkelstein 1967). Fletcher
et al. (1996) described clinical epidemiology as the science of making predic-
tions about individual patients by counting clinical events in similar patients,
using strong scientific methods for studies of groups of patients to ensure that
the predictions are accurate. Weiss (1996) defined clinical epidemiology as the
study of variation in the outcome of illness and of the reasons for that varia-
tion. Despite the numerous definitions, one might argue that by providing the
subheading “a basic science for Clinical Medicine” to their textbook “Clini-
cal Epidemiology” Sackett and colleagues provided a pithy definition that not
only turned the wheel back to John Paul, but widened it to all areas of clinical
medicine by replacing preventive medicine with clinical medicine (Sackett et al.
2000).

Definitions are inevitably limited, and in depth understanding requires a more
comprehensive discussion. We characterize clinical epidemiology by focusing on
its purpose: to ensure that clinicians’ practice and decision making is evidence-
based. Clinical decision making requires answering questions about diagnosis,
therapy, prevention and harm, providing estimates of prognosis and obtaining
unbiased and precise estimates of intervention effects. Clinical epidemiology sup-
ports other basic medical sciences such as biochemistry, anatomy and physiology
because it facilitates their application in research through formulation of sound
clinical research methods and, thus, puts these disciplines into clinical context.
Thus, clinical epidemiology provides the integrative force of medical science and
medical practice.

Clinical Epidemiology and Evidence-based Medicine 8.1.3

When working optimally, clinical epidemiologists communicate results of investi-
gations in ways that clinicians can readily apply in practice. Clinical epidemiology
provides the evidence for management decisions resulting in more good than
harm. Clinicians should use best evidence for clinical decision making. Thus,
clinical epidemiology and evidence-based practice are closely linked. Clinical epi-
demiology grounds health care research in the mission to deliver optimal care
to individual patients. As it turns out, clinicians optimally applying the evidence
to their patient care must understand the basic concepts of clinical epidemiol-
ogy (Guyatt et al. 2000). At the same time, while clinical epidemiology grounds
the clinical investigators’ viewpoint, evidence-based medicine (EBM) provides the
framework for application of research findings in clinical practice. In the next
sections of this discussion, we will describe the basics of clinical epidemiology
methods and how insights from clinical practice may enlighten clinical epidemi-
ologists.
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The History and Philosophy of Evidence-based Medicine

When we first introduced the term evidence-based medicine (EBM) in an in-
formal residency training program document, we described it as “an attitude
of enlightened skepticism toward the application of diagnostic, therapeutic, and
prognostic technologies in their day-to-day management of patients” (Guyatt 1991,
2002a, b). Through a series of articles published by the evidence-based medicine
working group the term as well as the philosophy of EBM became well-known
(Evidence-Based-Medicine-Working-Group 1992; Oxman et al. 1993). A Medline
search revealed 7 citations including the term “Evidence Based Medicine” in 1993
and 2169 citations in 2002.

EBM evolved out of the efforts of clinicians with methodology training – that
is, clinical epidemiologists – to apply their particular insights and approaches
to solving clinical problems. In contrast to the traditional paradigm of clinical
practice, EBM acknowledges that intuition, unsystematic clinical experience, and
pathophysiologic rationale are not sufficient for making the best clinical decisions.
Although it acknowledges the importance of clinical experience, EBM postulates
that optimal clinical decision-making requires the integration of evidence from
clinical research.

EBM places a lower value on authority than the traditional medical paradigm,
and explicitly includes patients’ and society’s values in the clinical decision-making
process. Patients or their proxies must always trade the benefits, harm, and costs
associated with alternative treatment strategies, and in doing so must consider
values and preferences.

To achieve the integration of research results in clinical practice, EBM pro-
poses a formal set of rules to help clinicians interpret and apply evidence. Clinical
epidemiologists have, by and large, developed these rules. These rules are char-
acterized by a hierarchy of evidence (Fig. 8.1): confidence in research results is
greatest if systematic error (bias) is lowest and increases if bias is more likely to
play a role.

Figure 8.1. Depicts the hierarchy of quality of evidence. As the research design becomes more

rigorous (moving from bottom to top) the quality of evidence increases and the likelihood of bias

decreases
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Although randomized and controlled study designs provide the highest quality
of evidence, EBM is not a science of randomized controlled trials. Rather, because
higher quality evidence often is not available, EBM acknowledges that a large body
of highly relevant evidence comes from observational studies. That is, to answer
clinical questions clinicians will often depend on observational studies in their
evidence-based practice. Therefore, the practice and application of EBM requires
anunderstandingandcritical evaluationof all studydesigns.Clinical epidemiology
provides the necessary toolbox for this evaluation. For example, clinical epidemi-
ologists of the Cochrane Collaboration, an international organization dedicated
to making up-to-date and accurate information about the effects of healthcare
readily available worldwide, have provided important insights into the conduct of
systematic reviews and meta-analysis that inform clinicians and patients choices.
It produces and disseminates systematic reviews of healthcare interventions and
promotes the search for evidence. It can be accessed at www.cochrane.org.

Case Scenario 8.2

Example 1. Imagine you are the attending physician on ward rounds with your
team. The senior resident presents the case of a 64 year old woman

who came to the emergency room one early morning with left sided chest pain
lasting for 15 minutes. The pain was severe enough to awaken her. She also had
to sit up in her bed because of difficulties with getting her breath. Finally, her
symptoms became so severe that she called an ambulance.

You immediately think that this woman has had an acute myocardial infarction.
However, other diagnoses such as pulmonary embolism, pneumonia, pericarditis,
asthma and a severe case of gastro-esophageal reflux disease also come to mind.

The resident continues with her presentation and tells you that the pain radiated
to her left arm and you further hear that she had another episode of similar pain
in the ambulance which was relieved within a few minutes by 0.4 mg nitroglycerin
given under her tongue.

You feel that this information confirms your early intuition and that it makes
a diagnosis of myocardial infarction more likely.

An EKG in the emergency room was unremarkable and cardiac enzymes drawn
at arrival to the emergency room were borderline elevated (troponin I, a marker
for myocardial injury, was 1.0 g/ml). Her chest X-ray was normal.

You now think that the diagnosis might be one of acute coronary syndrome,
perhaps unstable angina or a myocardial infarction without EKG changes, and
you continue to entertain pulmonary embolism, pneumonia and pericarditis as
alternative – although less likely – diagnosis. The key decision you face is whether
to admit the patient to hospital, possibly to a cardiac care unit, or to send her home
with provision for subsequent investigation, perhaps an exercise test.

The patient’s past medical history includes diabetes mellitus type 2. Her lipid
profile is within the limits set by the National Cholesterol Education Program
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Guidelines (NCEP 2001) and there is no significant family history of cardiovascular
disease. She takes an oral hypoglycemic agent and 325 mg of aspirin daily as
recommended by her physician. She has had similar chest pain over the past year
when vacuuming her home. However, she did not mention these complaints to her
physician because the discomfort always resolved after a few minutes of rest. The
patient has no history of cough, wheezing, indigestion, heartburn or changes in
her bowel habits. Physical examination shows an anxious patient, but there are no
abnormal findings on physical examination.

Your team concludes that the probability that the presentation represents acute
coronary syndrome is at least 50%. While you are discussing the patient and her
further management, a second set of laboratory results shows that the troponin I
is elevated at 4.1 g/l.

At this point you feel that a myocardial infarction without ST segment elevation
on the EKG (a NSTEMI) is the most likely diagnosis and together with your team
you consider further management. �

Formulating a Clinical Question8.3

Using research evidence to guide clinical practice requires formulating sensible
clinical questions (McKibbon et al. 2002; Oxman et al. 1993; Richardson et al.
1995). For most questions the key components are the patients, the interven-
tion or exposure, comparison interventions (or exposure) and the outcomes (Ta-
ble 8.1).

Table 8.1. Formulating the clinical question

Component Explanation

Population Who are the relevant patients?

Interventions or exposures What are the management strategies clinicians
are interested in? For example: Diagnostic test,
drugs, toxins, nutrients, surgical procedures, etc.

Comparison (or control) intervention or
exposures

What is the comparison, control or alternative
intervention clinicians are interested in? For
questions about therapy or harm there will al-
ways be a comparison or control (including do-
ing nothing, placebo, alternative active treat-
ment or routine care). For questions about di-
agnosis there may be a comparison diagnostic
strategy (for example troponin I compared to
creatine kinase MB in the diagnosis of myocar-
dial infarction).

Outcome What are the patient-important consequences of
the exposure clinicians are interested in?
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The clinical scenario of an older diabetic women presenting with chest pain
potentially generates several clinical questions (about her diagnosis, appropri-
ate therapy, prevention of future events, prognosis). We will use some of these
questions to demonstrate how clinical epidemiology helps solve clinical problems.

Diagnosis 8.4

Based on the framework for developing a clinical question, we will start with
a question about diagnosis:

Population: In women with chest pain typical for angina pectoris
Intervention|exposure: What is the test performance of troponin I serum levels
Outcome: To predict myocardial infarction and associated adverse

outcomes (congestive heart failure, death, serious
arrhythmia or severe ischemic pain) in the next 72 hours.

The process of diagnosis is a complex cognitive task. There are different ap-
proaches to making a diagnosis, but pattern recognition, which is also known
as the gestalt method, and logical reasoning play an important role (Glass 1996;
Sackett et al. 1991; Sox et al. 1988). Clinicians always look for clues that help them
establish a diagnosis, although with increasing clinical experience this process
becomes increasingly subconscious. Some clues make a diagnosis more likely,
other clues or the absence of certain clues make a diagnosis less likely (Laden-
heim et al. 1987). In the scenario described at the beginning of this chapter,
the first clue was the presence of left sided chest pain awaking the patient at
night. This clue suggested that the patient might suffer from a cardiac problem.
The presence of shortness of breath strengthened this suspicion, but brought
other possible diagnosis into consideration (asthma, pneumonia and pulmonary
embolus).

When clinicians use clues offered by clinical history, symptoms, signs or test
results, they routinely, if often subconsciously, apply probabilities associated with
these clues. For example, the presence of chest pain makes a heart attack more
likely than no chest pain. Thus, a first step in making a diagnosis is to assign
probabilities to the contemplated diagnoses. Clinicians then group the findings
into coherent clusters, such as left sided (location) chest (heart or lungs) pain
(symptom). These clusters inform the differential diagnoses. The differential di-
agnoses in the case scenario included acute myocardial infarction, pulmonary
embolism, pneumonia, asthma or gastro-esophageal reflux disease. In the next
step of making a diagnosis, the clinician incorporates new information, which
lowers or increases the relative likelihood of the differential diagnoses. The pro-
cess is therefore sequential. The presence of pain radiating to the left arm in-
creased the probability of coronary heart disease and the absence of cough and
gastrointestinal symptoms lowered the likelihood of pneumonia and gastrointesti-
nal disease.
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Establish the Framework
for Bayesian Thinking for Diagnosis8.4.1

As described above, the process of diagnosis can take place on a subconscious level
where the clinician guesses the associated probabilities and relative likelihoods
or it can employ explicit probabilities and relative likelihoods. For some clinical
problems, such as diagnosing pulmonary embolism, clinicians intuition is good.
The prospective investigation of pulmonary embolism diagnosis (PIOPED) study
has shown this (PIOPED-Investigators 1990). Even when intuition is reasonably
accurate, use of exact numbers generated by empirical studies can improve clinical
decisions (Diamond and Forrester 1979; Diamond et al. 1980, 1981; Dolan et al.
1986). The latter approach of using explicit information is based on epidemiologic
and biostatistical concepts, but both the intuitive and the explicit approaches are
founded in Bayesian theory, because both approaches depend on probabilites that
are altered by subsequent information (Bernardo and Adrian 1994; Berry 1996;
Diamond 1999; Ledley and Lusted 1959; cf. Chap. I.1 of this handbook). Using the
Bayesian approach in the diagnostic process the clinician starts with a certain
probability (often called the pre-test probability) of a disease being present. Then,
based on clues from the history, physical exam or test results, the clinician modifies
this probability into another probability (often called the posttest probability).

Choosing the Right Test8.4.2

The best test would be one that excludes or confirms a diagnosis beyond doubt.
Using an ideal test, no patient would have the disease if the test is negative and
all patients with a positive test would have the disease. For our example, were
troponin I perfect, one could assume that a troponin I level ≥ 2 g/l proves beyond
doubt that the patient has an acute myocardial infarction or will suffer a serious
clinical event associated with acute coronary syndrome in the next 72 hours, and
a level < 2 g/l establishes that the patient does not have an acute myocardial
infarction and will not suffer a serious event. Unfortunately, most information
that clinicians obtain in clinical practice comes with uncertainty, and tests that
definitively distinguish between disease and no disease are few and far between.

The typical cut-off value for troponin I in clinical practice is 2.0 g/l (Meier et al.
2002). However, astute clinicians would not dismiss a diagnosis of myocardial
infarction in our scenario after the first troponin I level was < 2.0 g/l, because both
EKG and biomarkers may be what is typically defined as normal even when disease
is present. Furthermore, they are aware that the troponin I may be normal early,
and may rise subsequently. What clinicians expect of a good test is, that results
change the probability sufficient to confirm or exclude a diagnosis. If a test result
moves the probability below a threshold at which the disease is very unlikely and
downsides associated with the treatment outweigh any anticipated benefit, then
no further testing and no treatment are indicated. We call this probability the test
threshold. If, on the other hand, the test result moves the probability of disease
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above a threshold at which one would not further test because disease is highly
probable and one would start treatment we have found the treatment threshold.
This scenario shows how a clinician can estimate the probability of disease and
then compare disease probability to these two thresholds (Fig. 8.2).

In a clinical context in which the pre-test probability of a particular diagnosis is
above the treatment threshold, further confirmatory testing that raises the prob-
ability further would not be helpful. On the other end of the scale, for a disease
with a pre-test probability below the test threshold, further exclusionary testing
lowering the probability would not be useful. When the probability is between the
test and treatment thresholds testing will be diagnostically useful. Test results are
of greatest value when they shift the probability across either threshold.

What determines our treatment thresholds? If adverse effects of treatment are
frequent and severe, clinicians choose a higher treatment threshold. For example,
because a diagnosis of pulmonary embolism involves long-term anticoagulation
with appreciable bleeding risk, clinicians are very concerned about falsely labeling
patients. The invasiveness of the next test will also impact on the threshold. If re-
sults from the next test (such as a ventilation-perfusion scan) are benign, clinicians
are ready to choose a high treatment threshold. Clinicians are more reluctant to
institute an invasive test associated with risks to the patient, such as a pulmonary
angiogram, and this will drive their treatment threshold downward. That is, clini-
cians aremore inclined toaccept a riskof a false-positivediagnosisbecauseahigher
treatment threshold necessitates putting more patients through the risky test.

Accordingly, the more serious a missed diagnosis, the lower we will set our
test threshold. Since a missed diagnosis of a pulmonary embolus could be fatal,
clinicians are inclined to set their diagnostic threshold low. At the same time, the
risks associated with the next test we are considering have an influence on where

Figure 8.2. Test and treatment thresholds
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to set the test threshold. If the risks are low, clinicians will be comfortable with
a very low diagnostic threshold. The higher the risks, the more the threshold rises.

Likelihood Ratios8.4.3

The center of any diagnostic process is a patient presenting with a constellation of
symptoms and signs. Consider two patients with chest pain and shortness of breath
in whom the clinician suspects a myocardial infarction without findings suggestive
of pneumonia, airflow obstruction, pulmonary embolism or heart failure or other
conditions. One patient is the 64-year-old woman described in the clinical scenario
and the other is a 24-year-old man with a history of anxiety disorder. Clinicians
would agree that the probability of myocardial infarction for these two patients –
that is, their pre-test probabilities – are very different. In the woman described in
the scenario, the probability is high; in the young man, it is low. Consequently, even
if both patients had borderline elevated troponin I levels of 1.0 g/l at presentation,
management is likely to differ between the two. An informed clinician might well
treat the elderly woman immediately with aspirin and heparin but order further
investigations in the young man.

One can draw two conclusions from these considerations. First, regardless of
the results of the troponin I test, they do not definitively establish whether myo-
cardial infarction is in fact the underlying disease, or whether the patient will
suffer a serious event associated with an acute coronary syndrome. What they
do accomplish is to alter the pre-test probability of the condition, yielding a new
post-test probability. The direction and magnitude of this change from pre-test to
post-test probability are determined by the test’s properties. The test property of
greatest value is the likelihood ratio.

Hill and colleagues (2003) investigated the diagnostic properties of troponin I as
an early marker of acute myorcardial infarction or acute coronary syndrome with
serious sequellae in the next 72 hours in patients who did not have definitively
diagnostic EKG changes. The investigators found 20 individuals with a serious
cardiac outcome by the reference standard and 332 individuals people who did not
(Table 8.2). For all patients, troponin I tests were classified into four levels: < 0.5 g/l,
0.5 to < 2.0 g/l, 2.0 to < 10.0 g/l and ≥ 10.0 g/l). Several questions arise.

How likely is a substantially elevated (≥ 10 g/l) troponin I among people who
suffered adverse outcomes? Table 8.2 illustrates that 3 of 20 (or approximately 15%)
people with adverse outcomes had troponin I levels ≥ 10 g/l. How often is the same
test result, a positive troponin I, found among patients in whom high risk acute
coronary syndrome was suspected but ruled out? The answer is 4 out of 332 (or
approximately 1.2%). The ratio of these two likelihoods is the likelihood ratio (LR);
for a highly elevated troponin I test, it equals 0.15|0.012 (or 12.5). In other words,
a highly elevated troponin I is 12.5 times as likely to occur in a patient with – in
contrast to without – an ultimate adverse outcome.

In a similar fashion, one can calculate the likelihood ratios for troponin I values
of≤ 0.5 g/l, 0.5 to≤ 2.0 g/l and 2.0 to≤ 10.0 g/l. This calculation involves answering
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Table 8.2. Test properties of early troponin I testing in myocardial infarction or ischemia-associated

adverse outcomes (CI = confidence interval)

Myocardial infarction or other adverse outcomes
Present|proportion Absent|proportion Likelihood ratio

(95% CI)
Test results

≥ 10.0 g/l 3 3|20 = 0.15 4 4|332 = 0.012 12.5 (3.0, 51.9)

2.0– < 10.0 g/l 2 2|20 = 0.10 5 5|332 = 0.015 6.6 (1.4, 32.1)

0.5– < 2.0 g/l 3 3|20 = 0.15 20 20|332 = 0.06 2.5 (0.8, 7.7)

< 0.5 g/l 12 12|20 = 0.60 303 303|332 = 0.910 0.7 (0.5, 0.9)

Total 20 332

two questions: First, how likely it is to obtain a given test result (e.g., a troponin I <
0.5 g/l) among people with the target disorder (myocardial infarction)? Second,
how likely it is to obtain the same test result (again, a troponin I < 0.5 g/l) among
people without the target disorder? For this troponin I test result, the likelihoods
are 12|20 (0.60) and 303|332 (0.91), respectively, and their ratio (the likelihood
ratio) is 0.7.

Thus, the likelihood ratios indicate by how much a given diagnostic test result
will raise or lower the pre-test probability of the target disorder. A likelihood ratio
of 1 indicates that the post-test probability is identical to the pre-test probability.
Likelihood ratios above 1.0 increase the probability that the target disorder is
present, and the higher the likelihood ratio, the greater is this increase. Likelihood
ratios below 1.0 decrease the probability of the target disorder, and the smaller
the likelihood ratio, the greater is the decrease in probability and the smaller is its
final value.

Users of likelihood ratios often ask “What are good likelihood ratios for a test?”.
The answer is that day-to-day clinical practice lets clinicians gain understanding
and their own sense of interpretation, but one can consider the following as a guide:

Likelihood ratios of > 10 or < 0.1 generate large and often conclusive changes
from pre- to post-test probability
Likelihood ratios of 5–10 and 0.1–0.2 generate moderate shifts in pre- to post-
test probability
Likelihood ratios of 2–5 and 0.5–0.2 generate small (but sometimes important)
changes in probability
Likelihood ratios of 1–2 and 0.5–1 alter probability to a small (and rarely
important) degree.

How can clinicians use likelihood ratios to move from pre-test to post-test
probability? Unfortunately, one cannot combine likelihoods directly, such as one
can combine probabilities or percentages. Their formal use requires converting
pre-test probability to odds, multiplying the result by the likelihood ratio, and then
converting the post-test odds into a post-test probability. Although this calculation
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is relatively straightforward for an experienced user, it can be time consuming and,
fortunately, there is an easier way.

Figure 8.3 shows a nomogram proposed by Fagan that performs the conver-
sions and allows simple transition from pre- to post-test probability (Fagan 1975).
The line on the left-hand side represents the pre-test probability, the middle line
represents the likelihood ratio, and the line on the right-hand side depicts the re-
sulting post-test probability. One can obtain the post-test probability by anchoring
a straight line at the pre-test probability and rotating it until it lines up with the
likelihood ratio of the relevant test result.

If we assumed a pre-test probability of 50% (see below) for the elderly woman
with multiple risk factors and we applied the LR associated with a troponin I of 1.0
to the nomogram (connecting 0.5 or 50% on the left with a LR of approximately
2.5 on the middle line and extending it through the right line) we would obtain
a post-test probability of approximately 70% (or 0.7). If we assumed a pre-test
probability of 1 in 1000 or 0.1% for the young man and applied the same LR, the
post-test probability remains very low at between 0.2 and 0.3%.

To further explain the application of LRs, let us assume the two patients had
troponin levels of 0.3 g/l. Applying the associatedLR(0.7) to thepre-test probability
of 50%of the elderlywomenwould result in apost-test probabilityof approximately

Figure 8.3. Likelihood ratio (Fagan) nomogram (Copyright 1975 Massachusetts Medical Society. All

rights reserved. Reproduced with permission from the Massachusetts Medical Society)
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45% (or 0.45). Applying this LR (0.7) to the pre-test probability of 0.1% of the young
man results in a post-test probability of < 0.1%. It becomes evident from these
latter two hypothetical examples that the test result has not altered the post-test
probabilities to a large extent and further testing is necessary or that the clinician
needs to make a decision on the basis of post-test probabilities that are similar
to the pre-test probabilities. These strategies will differ between the two patients.
Most clinicians would remain worried about the elderly women, but would safely
discharge the young man.

Readers who are interested in the formula for converting pre-test probabilities
to post-test probabilities, will note that it is based on Bayes theorem:

Post-test odds = Pre-test odds × Likelihood ratio

Mathematically we can write this formula as:

O(D|R) =
(
O(D) × P(R|D)

)
|P(R|D) ,

where P is the probability of a specific test result R given the status of disease D =
disease present, D = disease absent, O(D) is the odds of disease to be calculated as
P(D)|[1 − P(D)].

Example 1. (continued)
Returning to our examples, for our elderly female patient with a test

result of 1.0 µg/l and pre-test odds = 0.5|(1 − 0.5) = 1 this formula translates to:

post-test odds of myocardial infarction = 1 × 0.15|0.06 = 2.5 .

Post-test odds can be converted into post-test probabilities using the following
formula:

post-test probability = post-test odds|(post-test odds + 1) = 2.5|(2.5 + 1)

= 71.4% . �

This estimate is similar to the estimate on the Fagan Nomogram. In fact, had
we been able to use the Nomogram as accurately as the calculator we would have
obtained identical numbers. This probability moves us into the range of probability
where most clinicians would treat patients without further testing because of the
morbidity and mortality associated with myocardial infarction.

Example 1. (continued)
For the young male with a troponin of 1.0 this formula translates to:

post-test odds of myocardial infarction = pre-test odds × 2.5 .

Wecanderive thepre-test odds fromthepre-testprobabilityof 0.1% = 0.001|(1−
0.001) which is about 0.001.
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Thus, it follows that the post-test odds can be calculated as

post-test odds = 0.001 × 2.5 = 0.0025

and the post-test probability as

post-test probability = 0.0025|(0.0025 + 1)

which is approximately 0.25%. �

Again, the estimate of 0.25% corresponds to the estimate using the Fagan Nomo-
gram, but is the exact result of the application of Bayes theorem. Even a troponin I
test associated with a LR greater than 1 and commonly considered elevated in the
young man does not alter the probability for a myocardial infarction to a great
extent.

How to Obtain Pre-Test Probabilities8.4.4

We guessed at the pre-test probability of the two patients with chest discomfort.
How do clinicians obtain valid pre-test probabilities? Intuitively, clinicians use
their experience based on previous patients with similar presentations. However,
the probabilities clinicians and in particular learners assume are prone to bias and
error (Richardson 2002; Richardson et al. 2003).

Richardson has suggested that there are two different forms of clinical research
that can guide clinicians estimates of pre-test probabilities (Richardson 2002).
The first type are studies that yield disease probability based on representative
patient cohorts with a defined clinical problem that carry out careful diagnostic
evaluations and apply explicit diagnostic criteria. Examples include studies on
causes of syncope (Soteriades et al. 2002) and cancer in involuntary weight loss
(Hernandez et al. 2003). Control groups of randomized trials may serve for ques-
tions of prognosis. The study by Hill et al. (2003) that provided the estimates for
the test properties of troponin I to obtain pre-test probabilities could also serve
as example. The second type of studies are clinical decision rules. These studies
assemble cohorts suspected of having the target disorder, apply standard reference
tests and report the frequency of diagnoses in subgroups with identifying clinical
features (McGinn et al. 2003). High quality studies that provide valid estimates of
frequency are applicable to our patients and can provide precise estimates of pre-
test probability. For example, Richardson et al. (2003) estimated in a consecutive
patient series that for 78% (95% CI: (66%, 96%)) of clinical problems evidence of
pre-test probabilities existed in the literature.

Sensitivity and Specificity8.4.5

Likelihood ratios help users understand diagnostic tests. However, clinicians use
two other descriptive terms for diagnostic tests. It is, therefore, helpful for those
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with interest in clinical epidemiology to understand these two other terms: sensi-
tivity and specificity.

We could have described the test properties of the study by Hill and colleagues
using the concepts of sensitivity and specificity defining normal and abnormal test
results. We presented the four different interpretations of troponin I levels, each
with the associated likelihood ratios. That classification allowed us to omit the
terms normal and abnormal or positive and negative. However, this is not the way
most investigators present their result. Investigators also often rely on concepts of
sensitivity and specificity.

Sensitivity expresses the proportion of people with the target disorder in whom
the test result is positive and specificity expresses the proportion of people without
the target disorder in whom a test result is negative. Table 8.3 shows the general
concept of sensitivity and specificity in a 2 × 2 table. We could transform the 4 × 2
table described above (Table 8.2) into three 2 × 2 tables, depending on what we
call positive or negative. Let us assume that only troponin I values ≥ 10.0 g/l are
positive (or abnormal).

To calculate sensitivity from the data in Table 8.2 for positive troponin I levels,
we look at the number of people with proven myocardial infarction (n = 20) who
were diagnosed as having the target disorder on troponin testing (n = 3) showing
a sensitivity of 3|20, or approximately 15% (a|(a + c)). To calculate specificity, we
use the number of people without the target disorder (332) whose troponin test
results were classified as normal or < 0.5 g/l (303), yielding a specificity of 303|332,
or 91% (d|(b + d)).

As indicatedabove,onecaneasily calculateLRs fordifferent levelsofquantitative
test results while sensitivity and specificity require a definition of normal and

Table 8.3. Sensitivity and specificity of diagnostic tests (a + b + c + d = 100%)

Disease or reference standard (proportion)
Present (positive) Absent (negative)

Test results

Disease present (positive) True Positive (a) False Positive (b)
Disease absent (negative) False Negative (c) True Negative (d)
Sensitivity = True positive|

positive reference standard
a|(a + c)

Specificity = True negative|negative
reference standard
d|(b + d)

Likelihood ratio for
positive test (LR+) = Sensitivity|(1 − Specificity) = (a|(a + c))|(1 − d|(b + d))

Likelihood ratio for
negative test (LR-) = (1 − Sensitivity)|Specificity = (1 − (a|(a + c))|(d|(b + d)))
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abnormal that is often arbitrary. In using sensitivity and specificity one has to
either discard important information or recalculate sensitivity and specificity for
every cut-point. Therefore, the likelihood ratio is much simpler and much more
efficient when tests have more than two possible results, which is very often the
case (Guyatt et al. 1990, 1992; Guyatt and Rennie 2002).

Therapy/Prevention8.5

Example 1. (continued)
Returning to the clinical scenario and having treated the elderly

woman with aspirin and heparin, the team questions what other therapeutic or
preventive interventions may be of benefit. The resident points you to a study that
aimed at maximizing platelet inhibition in patients with acute coronary syndrome,
the Clopidogrel in Unstable Angina to Prevent Recurrent Events Trial (CURE) trial
(CURE-Investigators 2001). You vaguely remember this study and that it is the only
one you are aware of addressing this question in patients with acute coronary syn-
drome. You know that neurologists and cardiologists in your institution often use
two antiplatelet agents to maximize platelet inhibition, but you wonder about the
quality of the evidence supporting this conclusion and the magnitude of benefits
and downsides. An electronic database search confirms that there is no additional
evidence addressing this specific question in a randomized trial in patients with
acute coronary syndrome. The CURE investigators addressed the question “In
patients with acute coronary syndromes without ST-segment elevation, does early
and long-term use of clopidogrel plus aspirin versus aspirin alone prevent cardio-
vascular events and is the combination safe?” You find that this question would be
highly relevant to your patient in whom you want to prevent further cardiovascular
events.

You decide to critically appraise this study together with your team. The resident
retrieves the article through your library’s online full text journal subscription and
you evaluate the article with your team over lunch break. �

The concepts of clinical epidemiology help clinicians appraise clinical research. We
list the three commonly agreed on steps of critical appraisal for studies on therapy
or prevention in Table 8.4 and describe how clinical epidemiology facilitates inter-
pretation and evaluation of clinical research. This form addresses critical appraisal
for most clinicians. Other important issues for experienced readers concern the
appropriateness of the statistical methods.

The first factor that can influence confidence in research results is system-
atic error or bias. Bias is directly linked to the design and execution of a study.
Therefore, the first step is an appraisal of whether results are valid and to what
extend bias is present (Table 8.4 – Are the results valid?). The next step in the
evaluation of research is the review of the results. Because clinicians often are
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unfamiliar with applying the magnitude of effects to patient care and because
classical epidemiology applies research results in different contexts using different
terminology, clinical epidemiologists can bring quantitative outcome measures
closer to the clinician. This helps address the question “How large is the effect of
an intervention and how large is the role of random error or chance (What are
the results?)?”. Finally, clinicians need to know whether the results are applicable
to their patients. Therefore, clinicians need to appraise whether the results help
with decision-making in individual practice circumstances (How can I apply the
results to my patient care?). Clinicians must decide whether their patients are sim-
ilar to those included in the studies from which they obtain the relevant evidence,
but clinical epidemiologists can help them in the decision making process (see
Sect. 8.8).

Critical appraisal (Table8.4)of theCUREtrial reveals thatpatientswere random-
ized using a 24-hour computerized randomization service to conceal randomiza-
tion. Control patients received placebos and investigators and outcome assessors
were blinded to treatment assignment. While blinding refers to not being aware
of treatment allocation when treatment has been assigned, concealment refers to
avoiding biased allocation of patients because of prior knowledge of forthcom-
ing treatment allocation. Investigators can achieve concealment through measures
such as central (telephone) randomization and sealed envelopes. The more strin-
gent the method for concealment the less likely are those allocating patients to
temper with this important aspect of randomized controlled trials. Fulfilling these

Table 8.4. Critical appraisal of studies about therapy

Question Therapy or prevention

Study design and
execution – evaluation
of bias

I. Are the results of the study valid?
1. Were patients randomized?
2. Was randomization concealed?
3. Werepatients analyzed in thegroups towhich theywere

randomized?
4. Were patients in the treatment and control groups sim-

ilar with respect to known prognostic factors?
5. Were patients aware of group allocation?
6. Were clinicians aware of group allocation?
7. Were outcome assessors aware of group allocation?
8. Was follow up complete?

Results and random error II. What are the results?
1. How large was the treatment effect?
2. How precise was the estimate of the treatment effect?

Application and uptake III. How can I apply the results to my patient care?
1. Were the study patients similar to my patients?
2. Were all clinically important outcomes considered?
3. Are the likely treatment benefits worth the potential

harms and costs?
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validity criteria protects against bias, because systematic reviews suggest that lack
of blinding and concealment (see Table 8.4) may lead to systematic overestimation
of treatment effects although the effects may differ by clinical specialty only (Balk
et al. 2002; Moher et al. 1998).

The CURE investigators achieved a follow-up of greater than 99.9% (only 13 out
of 12,562 patients were lost) and analyzed patients in the group they were assigned
according to the intention to treat principle. The intention to treat principle refers
to analysis of patient outcomes based on which group they were randomized
regardless of whether they actually received the planned intervention. This analysis
preserves the power of randomization, thus maintaining that important unknown
factors that influence outcome are likely equally distributed in each comparison
group.

Theevaluationof clinical researchresults requiresanunderstandingofmeasures
of associationor effect.Asnotedabove clinical epidemiologists oftenuse terms that
are different from those of classical epidemiologists (see relative risk reduction and
number needed to treat below in this section). Table 8.5 summarizes the measures
we will now describe in more detail (cf. Chapter I.2 of this handbook).

Absolute Risk
The easiest measure of risk to understand in clinical epidemiology is the absolute
risk. In the CURE trial, the main outcomes were a composite of death from cardio-
vascular causes, nonfatal myocardial infarction (MI), or stroke and a composite
of death from cardiovascular causes, nonfatal MI, stroke, or refractory ischemia.
Safety outcomes included major and minor bleeding. We will focus on the latter
composite endpoint. The absolute risk for this combined primary endpoint was
16.5%, and the absolute risk for this outcome in the control group was 18.8% (Ta-
ble 8.5). As described above, other terminology for the risk of an adverse outcome
in the control group are baseline risk, absolute risk, or control event rate.

Absolute Risk Reduction
One can express treatment effects as the difference between the absolute risks in
the experimental and control groups, the absolute risk reduction or the risk dif-
ference. This effect measure represents the proportion of patients spared from the
unfavorable outcome if they receive the experimental therapy (clopidogrel), rather
than the control therapy (placebo). In our example, the absolute risk reduction is
18.8% − 16.5% = 2.3 percentage points.

Relative Risk
The relative risk or risk ratio presents the proportion of the baseline risk in the
control group that still is present when patients receive the experimental treatment
(clopidogrel). The relative riskof the combinedoutcomeafter receiving clopidogrel
is 1035|(1035 + 5224) divided by 1187|(1187 + 5116) (the risk in the control group),
or 0.87. One could also say the risk of experiencing the combined outcome with
clopidogrel and aspirin is approximately 87% of that with aspirin alone.
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Table 8.5. Measures of association and effect

General 2 × 2 Table

Outcome Absolute risk of outcome:
+ −

Intervention (Y) a b Intervention = a|(a + b) = Y

Control (X) c d Control = c|(c + d) = X

2 × 2 Table for the Example from CURE et al. (CURE-Investigators 2001)

Combined primary outcome Absolute risk of outcome
+ −

Clopidogrel 1035 5224 Clopidogrel = 1035|(1035 + 5224)

= 16.5%
Placebo 1187 5116 Placebo = 1187|(1187 + 5116)

= 18.8%

Absolute risk reduction (ARR)
Definition: The difference in risk between the control group and the intervention group
ARR = c|(c + d) − a|(a + b) = X − Y

Example:
ARR = 1035|(1035 + 5224) − 1187|(1187 + 5116) = 2.3%

Relative risk or risk ratio (RR)
Definition: The ratio of risk in the intervention (Y) to the risk in the control group (X)
RR = Y |X
Example:
RR = (1035|(1035 + 5224))|(1187|(1187 + 5116)) = 0.87

Relative Risk Reduction (RRR)
Definition: The percent reduction in risk in the intervention compared to the control group
RRR = 1 − RR = (1 − X|Y) × 100% or
RRR = [(X − Y)|X] × 100%
Example:
RRR = (1 − 0.87) × 100% = 13%

Number Needed to Treat (NNT)
Definition: Inverse of the ARR
NNT = 1|ARR = 1|(X − Y)

Example:
NNT = 1|2.3% = 44
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Relative Risk Reduction
The most commonly reported measure of dichotomous treatment effects is the
complement of this relative risk, the relative risk reduction. One can obtain the
relative risk reduction easily from the relative risk because it is the proportion
of baseline risk that is removed by the experimental therapy and it is equivalent
to 1.0 − relative risk. It can be expressed as a percent: (1 − relative risk) × 100 =
(1 − 0.87) × 100 = 13% or 100% − 87% = 13% for this example. Alternatively, one
may obtain the relative risk reduction by dividing the absolute risk reduction by the
absolute risk in the control group. Therefore, the result is the same if it is calculated
from 2.3% (the absolute risk reduction) divided by 18.8% (the risk in the control
group) = 0.13 (13%). A relative risk reduction of 13% means that clopidogrel
reduced the risk of combined outcome by 13% relative to that occurring among
control patients. The greater the relative risk reduction, the more efficacious is the
therapy. Investigators may compute the relative risk over a period of time, as in
a survival analysis, and call it a hazard ratio, the weighted relative risk over the
entire study (see Chap. II.4 of this handbook).

In fact, the CURE investigators calculated the hazard ratio which was slightly
more in favor of clopidogrel (0.86). For practical purposes we use the relative
risk for the CURE trial in our example. If we had used the hazard ratio for the
calculation of the RR the RRR would have been 14%.

Odds Ratio
Instead of evaluating the risk of an event, one can estimate the odds of having
an event compared with not having an event. Most individuals are familiar with
odds in the context of sporting events, when sport reporters describe the odds of
a team or player winning a particular event. When odds are used in the medical
sciences it stands for the proportion of patients with the target outcome divided
by the proportion without the target outcome. The odds in the control group of
the example trial described are 1187 of 6303 divided by 5116 of 6303. Because
the denominator is the same in both the numerator and the denominator, it is
canceled out, leaving the number of patients with the event (1187) divided by the
number of patients without the event (5116). The odds are 1187|5116 or 0.232. To
convert from odds to risk, one divides the odds by 1 plus the odds. As the odds of
the combined endpoint are 0.232, the risk is 0.232|(1 + 0.232), or 0.188 (18.8%),
identical to the baseline risk reported in the CURE trial. Table 8.6 presents the link
between risk and odds. The greater the risk, the greater is the divergence between
the risk and odds. Odds and risk are about equal if the absolute risk is small.

In the CURE trial, the odds of the combined endpoint in the clopidgrel group are
1035 (those with the outcome) compared with 5224 (those without the outcome),
or 1035|5224 = 0.198, and the odds of the combined endpoint in the placebo group
are 0.232. Therefore, the ratio of these odds is (1035|5224)|(1187|5116), or 0.854.
If one used a terminology parallel to risk (note, that epidemiologists call a ratio
of risks in most instances a relative risk), one would call the ratio of odds relative
odds. The commonly used term, however, is odds ratio (OR). Until recently the
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in both groups in the CURE trial. This could have happened if the investigators
had conducted a study in patients at greater risk for the endpoint, for example
by restricting the study population to older patients. In the clopidogrel group,
the absolute risk would become 33% compared with 37.6% in the control group.
Therefore, the absolute risk reduction would increase from 2.3% to 4.6% whereas
the relative risk (and therefore the relative risk reduction)would remain identical at
33% divided by 37.6% = 0.87 (the relative risk reduction remains 13%). Therefore,
the increase in the proportion of those experiencing the endpoint in both groups
by a factor of 2 leaves the relative risk (and the relative risk reduction) unchanged,
but increases the absolute risk reduction by a factor of 2.

A 13% reduction in the relative risk of the combined endpoint may not sound
very impressive, however, its impact on patient groups and practice may be large.
This notion is shown using the concept of the number needed to treat, the number
of patients who must receive an intervention during a specific period to prevent
one additional adverse outcome or produce one positive outcome (Laupacis et al.
1988). When discussing the number needed to treat, it is important to specify the
treatment, its duration, and the outcome being prevented. The number needed
to treat is the inverse of the absolute risk reduction, calculated as 1|absolute risk
reduction. Therefore, in the example above with an absolute risk reduction of 4.6%,
the number needed to treat would be 22 (1|4.6%) and it would be 44 (1|2.3%) in
the CURE trial. Finally, imagine young patients with no additional risk factors for
adverse outcomes. Such patients may carry a baseline risk of 4% for experiencing
the endpoint and, therefore, the number needed to treat could increase to 192
[1|(0.13 × 4%)]. Given the duration, potential harms and cost of treatment with
clopidogrel and the increased risk for bleeding, it could be reasonable to withhold
therapy in that latter patient. Unfortunately, we do not know how best to present
risk information to patients. Presenting the relative risk reduction alone is more
persuasive for making actual or hypothetical medical decisions, because the actual
benefit appears larger (Bucher et al. 1994; Edwards and Elwyn 1999; Edwards et al.
1999). Thus, direct to patient advertising and pharmaceutical industry detailing
uses relative risk reduction as measure of effect to persuade clinicians and patients
to use drug interventions. However, omitting the presentation of baseline risk or
not informing those who receive this information that the baseline risk drives the
absolute benefit is misleading.

How Clinicians Can Use Confidence Intervals
Untilnowwepresentedtheresultsof theCUREtrialas if theyrepresentedthetrueef-
fect. The results of any experiment, however, represent only anestimateof the truth.
The true effect of treatment actually may be somewhat smaller, or larger, than what
researchers found. The confidence interval (CI) tells, within the bounds of plausi-
bility, howmuch smaller or greater the true effect is likely tobe. For eachof the mea-
sures described, one can use statistical programs to calculate confidence intervals.

The point estimate within the confidence interval and the confidence interval
itself help with two questions. First, what is the one value most likely to represent
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the true difference between treatment and control; and second, given the difference
between treatment and control, what is the plausible range of differences within
which the true effect might actually lie? The smaller the sample size or the number
of events in an experiment, the wider the confidence interval. As the sample
size gets very large and the number of events increases, investigators become
increasingly certain that the truth is not far from the point estimate and, therefore,
the confidence interval is narrower.

One can interpret the 95% confidence interval as “what is the range of values of
probabilities within which, 95% of the time, the truth would lie?”. If investigators
or clinicians would not need to be so certain, one could ask about the range within
which the true value would lie 90% of the time. This 90% confidence interval would
be somewhat narrower.

How does the confidence interval facilitate interpretation of the results from
the CURE trial? As described above, the confidence interval represents the range
of values within the truth plausibly lies. Accordingly, one way to use confidence
intervals is to look at the boundary of the interval that represents the lowest
plausible treatment effect anddecidewhether theactionor recommendationwould
change compared with when one assumes the point estimate represents the truth.
Based on the numbers provided in the CURE trial, one can calculate a confidence
interval around the point estimate of the relative risk reduction of 13% ranging
from approximately 6 to 21%. Values progressively farther from 13% will be less
and less likely. One can conclude that patients receiving clopidogrel are less likely
to experience the combined endpoint – but the magnitude of the difference may
be either quite small (and not outweigh the increased risk of bleeding) or quite
large. This way of understanding the results avoids the yes|no dichotomy of testing
a hypothesis. Because the lower limit of the CI is associated with a benefit, certainty
about beneficial treatment effects from clopidogrel on the combined endpoint is
relatively high. However, toxicity and expense will bear on the final treatment
decision.

The chief toxicitiy of clopidogrel the authors of the CURE trial were concerned
about was bleeding. They found that the absolute risk increase (ARI – conceptually
similar to the absolute risk reduction but indicating an increase in risk from the
investigational therapy) for major bleeding was 1 percentage point (an increase
from 2.7% in the placebo group to 3.7% in the clopidogrel group). The investigators
defined major bleeding as substantially disabling bleeding, intraocular bleeding
or the loss of vision, or bleeding necessitating the transfusion of at least 2 units
of blood. Similarly to the number needed to treat we can calculate the number
of patients who must receive an intervention during a specific period to cause
one additional harmful outcome. The number needed to harm (NNH) for major
bleeding in the CURE trial is equal to 1|ARI or 1|0.01 = 100. The authors also
provided the information for minor bleeding which they defined as hemorrhages
that led to interruption of the study medication but did not qualify as major
bleeding. The risk for minor bleeding was 5.1% in the clopidogrel group compared
to 2.4% in the placebo group. Thus, the NNH for minor bleeding was 1|0.027 = 37.
Clinicians should keep in mind that estimates of harm also come with uncertainty
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and, therefore, authors usually present confidence intervals around these harmful
effects.

Use of Composite Endpoints
Investigators often use a composition of endpoints when they compare inter-
ventions. For example, the CURE trial investigators used a composite endpoint
of death from cardiovascular causes, nonfatal MI, stroke, or refractory ischemia.
Safety outcomes included major and minor bleeding with the definitions described
in the foregoing paragraph. There are a number of reasons for combining several
endpoints. First, investigators may believe that distinguishing between outcomes
is unnecessary because the endpoints have the same consequences. For example,
many investigators combine the outcome ischemic stroke with hemorrhagic stroke
because they believe they may be similarly disabling (Lubsen and Kirwan 2002).
Second, investigators may chose composite endpoints to avoid misleading conclu-
sion when an intervention reduced an endpoint (usually less severe) by increasing
another endpoint (usually more severe) that precludes patients from suffering the
less severe endpoint. For example, surgery for cerebrovascular disease could re-
duce strokes by directly killing those at highest risk for stroke (those who die at
surgery are no longer at risk for strokes) (van Walraven et al. 2002). Thus, the
use of stroke alone as the endpoint would be misleading. To avoid an erroneous
conclusion, an investigator facing this situation must combine the more and less
serious outcomes, creating an endpoint such as “stroke or death”. Third, investi-
gators chose to combine endpoints because of the reduced sample size when event
rates increase, as one would expect for a combined endpoint. The latter is the
probably reason why the CURE investigators used a combined efficacy endpoint.

Using composite endpoints has a number of implications. The most obvious
implication is that if these endpoints have different importance to patient (that
is, patients have different underlying values and preferences for these outcomes)
treating them as equally important is an oversimplification.

Using combined endpoints does not always support reaching conclusive results
in clinical trials. Freemantle et al. (2003) reported on the use of composite end-
points in 167 trials published between 1997 and 2001 in 9 leading medical journals.
The authors found that in 69 of these trials the difference between treatment arms
in the CEP was not statistically significant. Investigators sometimes included com-
ponent endpoints that reduced trial efficiency by diluting the treatment effect. For
example, Freemantle and colleagues described that the CAPRICORN [CArvedilol
Post-infaRct survIval COntRol in LV dysfunctioN] trial investigated the effects of
carvedilol, a β-blocker, in 1959 patients with left ventricular dysfunction follow-
ing myocardial infarction (The CAPRICORN Investigators 2001). Originally, the
CAPRICORN investigators identified all-cause mortality as primary outcome in
the trial protocol. However, while the study was ongoing, the data and safety mon-
itoring board (whose assignment is to protect the patients in a trial) noted that the
overall rate of mortality was lower than that predicted for the power analysis and
sample size calculation. The board informed the CAPRICORN steering committee
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of the trial’s insufficient power to identify the primary end point as significant
(a preset level of significance α of 0.05). Taking the uncommon measure of altering
the primary outcome, the steering committee defined a new composite outcome
(all-cause mortality or cardiovascular hospital admissions). The steering commit-
tee assigned a critical level of significance of α = 0.045 to this new composite
outcome that they introduced while the trial was ongoing and reduced the signif-
icance level of the original primary outcome to achieve statistical significance to
α = 0.005. They reduced the level of α of the original primary outcome to penalize
their retrospective action, but the board decided that if the p-value for either pri-
mary outcome achieved statistical significance at the new critical level, the study
would be deemed positive.

At the end of the study, the original primary end point (all-cause mortality)
achieved a p-value of 0.03 (ie, substantially larger than the new 0.005 allocated
after consultation from the data safety and monitoring board, but smaller than the
original critical level of significance), but the alternative primary outcome achieved
a p-value of 0.30. Thus, the original primary outcome did not reach statistical
significance at the new and more stringent level and neither did the new composite
outcome. Although 12% of patients died in the carvedilol group, compared with
15% in the placebo group, 23% of patients in the carvedilol group and 22% of
patients in the placebo group qualified for the composite outcome on the basis of
hospitalizations alone, a result that undermined the relatively small reduction in
mortality in the carvedilol group. Thus, CAPRICORN provides a neutral result,
although the study would have been modestly statistically significant had the
original primary outcome of all-cause mortality been maintained.

In summary, evaluating trials that use composite outcome requires scrutiny in
regards to the underlying reasons for combining endpoints and its implications
and has impact on medical decision making (see below in Sect. 8.8).

Systematic Reviews 8.6

The patient in our scenario took aspirin at a dose of 325 mg on admission. Aspirin
use is associated with gastrointestinal bleeding and the risk for bleeding increases
with the aspirin dose used (Garćıa Rodŕıguez et al. 2001; Weil et al. 1995). On
the other hand, the beneficial effects of lower doses of aspirin on cardiovascular
events likely does not differ from those of higher doses (Antithrombotic Trialists’
Collaboration 2002). Taken together, studies comparing higher and lower doses of
aspirin show similar effects. However, a clinician would ask the question “Which
of the available studies should I trust and consider for decision making?”. Even
for clinicians trained in critical appraisal, evaluating all available studies would be
a time-intensive solution.

Traditionally, clinicians – when they did not invest the time and resources to
review individual studies – have relied on review articles by authorities in the
field. However, experts may be unsystematic in their approach to summarizing the
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evidence. Unsystematic approaches to identification and collection of evidence
risks biased ascertainment. That is, treatment effects may be underestimated or,
more commonly, overestimated, and side effects may be exaggerated or ignored.
Even if the evidence has been identified and collected in a systematic fashion, if
reviewers are then unsystematic in the way they summarize the collected evidence,
they run similar risks of bias. In one study, self-rated expertise was inversely re-
lated to the methodologic rigor of the review (Oxman and Guyatt 1993). One result
of unsystematic approaches may be recommendations advocating harmful treat-
ment; in other cases, there may be a failure to encourage effective therapy. For
example, experts supported routine use of lidocaine for patients with acute my-
ocardial infarction when available data suggested the intervention was ineffective
and possibly even harmful, and they failed to recommend thrombolytic agents
for the treatment of acute myocardial infarction when data showed patient benefit
(Antman et al. 1992).

Systematic reviews deal with this problem by explicitly stating inclusion and ex-
clusion criteria for evidence to be considered, conducting a comprehensive search
for the evidence, and summarizing the results according to explicit rules that
include examining how effects may vary in different patient subgroups. When
a systematic review pools data across studies to provide a quantitative estimate of
overall treatment effect, we call this summary a meta-analysis (cf. Chap. II.7 of this
handbook). Systematic reviews provide strong evidence when the quality of the
primary study design is high and sample sizes are large; they provide weaker evi-
dence when study designs are poor and sample sizes are small. Because judgment is
involved in many steps in a systematic review (including specifying inclusion and
exclusion criteria, applying these criteria to potentially eligible studies, evaluating
the methodologic quality of the primary studies, and selecting an approach to data
analysis), systematic reviews are not immune to bias, for example publication bias.

Nevertheless, in their rigorous approach to identifying and summarizing data,
systematic reviews reduce the likelihood of bias in estimating the causal links
between management options and patient outcomes.

Over the past 10 to 15 years, the literature describing the methods used in
systematic reviews, including studies that provide an empiric basis for guiding
decisions about the methods used in summarizing evidence has rapidly expanded.
Clinical epidemiologists have contributed significantly to this development (Egger
et al. 2000).

Table 8.7 demonstrates the process of conducting systematic reviews.
As we described above for answering questions in clinical practice (see also

Table 8.1), investigators who conduct a systematic review should begin by for-
mulating a clinical question. This question formulation constitutes the essential
specific selection criteria for deciding which studies to include in a review. These
criteria define the population, the exposures or interventions, the comparison in-
tervention, and the outcomes of interest. A systematic review will also restrict the
included studies to those that meet minimal methodologic standards. For exam-
ple, systematic reviews that address a question of therapy will often include only
randomized controlled trials.



Clinical Epidemiology 1195

Table 8.7. The process of conducting systematic reviews

Define the question

Specify inclusion and exclusion criteria
Population
Intervention or exposure (and comparison)
Outcome
Methodology

Establish a priori hypotheses to explain heterogeneity

Conduct literature search

Decide on information resources: databases, experts, funding agencies, pharmaceutical
companies, hand-searching, personal files, registries, citation lists or retrieved articles
Determine restrictions: time frame, unpublished data, language
Identify titles and abstracts

Apply inclusion and exclusion criteria

Apply inclusion and exclusion criteria to titles and abstracts
Obtain full articles for eligible titles and abstracts
Apply inclusion and exclusion criteria to full articles
Select final eligible articles
Assess agreement on study selection

Create data abstraction

Data abstraction: participants, interventions, comparison interventions, study design
Results
Methodologic quality
Assess agreement on validity assessment between data abstractors

Conduct analysis

Determine method for pooling results
Pool results (if appropriate)
Decide on handling of missing data

Having evaluated the potential eligibility of titles and abstracts, and obtained
the full text of potentially eligible studies, reviewers apply the selection crite-
ria to the complete reports. Having completed the data collection process, they
assess the methodologic quality of the eligible articles and abstract data from
each study. Finally, they summarize the data, including, if appropriate, a quan-
titative synthesis or meta-analysis. The analysis includes an examination of dif-
ferences among the included studies, an attempt to explain differences in results
(exploring heterogeneity), a summary of the overall results, and an assessment
of their precision and validity. Guidelines for assessing the validity of reviews
and using the results correspond to this process and are available (Oxman et al.
2002).
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Returning to our example, the question you want to address could be formulated
as: “In patients with coronary artery disease does low dose aspirin (75 mg daily
or less) compared with high dose aspirin (325 mg daily or more) confer similar
mortality benefits”. Keep in mind that gastrointestinal side effects are more likely
with higher doses of aspirin.

A prudent clinician will look for a systematic review to answer this question.
A recent systematic review by the Antithrombotic Trialists’ Collaboration provides
useful information to answer this question (Antithrombotic Trialists’ Collabora-
tion 2002). The investigators carefully evaluated 448 trials for inclusion and finally
performed a meta-analysis of 195 trials of antiplatelet effects in cardiovascular
disease. Overall they observed that aspirin markedly reduced the risk of recurrent
events in patients with acute myocardial infarction (odds ratio 0.7) and patients
with previous myocardial infarction (odds ratio 0.75). They identified three trials
in patients at high risk for cardiovascular events that compared doses of aspirin
of ≤ 75 mg daily to higher doses. Higher doses of aspirin conferred no additional
benefit in preventing cardiovascular events when compared with lower doses. In
fact the point estimate indicated a benefit of lower doses of aspirin (relative odds
reduction 8%). However, these results were not statistically significant (95% CI
ranging from approximately −12% indicating a slight benefit with higher doses to
28% indicating a benefit with lower doses). When the investigators compared the
effects of low dose aspirin versus placebo and higher dose aspirin versus placebo
the effects were similar. Although the evidence from direct comparisons is limited
and the investigators included additional patient populations, such as patients
with stroke, the systematic review and meta-analysis of all available trials pro-
vides additional indirect evidence for comparable effects of higher and low dose
aspirin. Most clinicians would judge the biology for the role of aspirin in coronary
artery disease and other cardiovascular disease to be sufficiently similar to have
confidence in this extrapolation. Combining the available evidence in a properly
conducted systematic review helps the clinician to obtain answers that are valid and
based on methodological evaluation of the literature. Chapter II.7 of this handbook
addresses methodological issues related to meta-analysis.

Having explained some of the benefits of systematic reviews we will explain
how systematic reviews can be used to guide patient care. Available guidance
on therapeutic or prevention goes beyond systematic reviews, because factors
in addition to the quality of the evidence and treatment effects are important
to make recommendations about treatment (Freemantle et al. 1999). However,
systematic reviews should be conducted in the process of generating evidence-
based guidelines that provide treatment recommendations.

Guidelines8.7

Guidelines are systematically developed syntheses to support practitioners and
patients in decision making about specific clinical circumstances. The key elements
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of eachsynthesis include the scopeof theguidelines, the interventionsandpractices
considered, the major recommendations and the and strength of the evidence
and recommendations, and the underlying values and preferences (Guyatt et al.
2002a, 2004b; Schünemann et al. 2004). A list of guidelines maintained by the US
Agency for Healthcare Research and Quality is available at the National Guidelines
Clearinghouse (National-Guideline-Clearing-House 2004).

Organizations such as professional societies or governing boards, government
agencies, academic or private institutions, typically develop guidelines by conven-
ing expert panels. Usually, guideline developers will define the topic of a guideline
before evaluating the evidence for clinical sensible questions. Dialogue among
clinicians, patients, and the prospective users of the guideline contribute to its
refinement. Although it is possible to develop guidelines that are broad in scope,
it requires considerable time and resources.

One method of defining and focusing the clinical questions of interest and also
identifying the processes for which evidence needs to be collected and assessed is
the construction of models or causal pathways (Woolf 1994). The causal pathway
is a diagram showing the relation of the population, intervention(s) of interest and
the intermediate, surrogate or definitive health outcomes (Shekelle et al. 1999).
Whendesigning thepathway, guidelinedevelopers shoulddescribeexplicitlywhich
outcomes (benefits and harms) they consider important and the associated values.
This process reveals specific questions that the evidence must address and where
high quality evidence is lacking, identifying areas for additional research.

While investigators have not tested alternative approaches to guideline devel-
opment, one suggestion is to include all groups whose activities would be covered
by the guidelines and any others with legitimate reasons for having input (Shekelle
et al. 1999). A group size of six to 15 individuals with clearly identified roles, in-
cluding group leader and members, specialist resource, technical support, and
administrative support may be advisable (Shekelle et al. 1999). The group should
comprise members proficient in the following areas: literature searching and re-
trieval, epidemiology, biostatistics, health services research, clinical area of interest
(generalists and specialists), group process, writing, and editing.

A high-quality clinical practice guideline produced by such groups should con-
sider the following steps (Schünemann et al. 2004):
1. Define explicit criteria to search for evidence. Similar to the clinical sensible

questions identified above for searching the evidence and conducting system-
atic reviews, this step should include a clear definition of the population, the
intervention and comparison intervention and the outcome of interest. The
development of a clinical pathway helps in identifying the components of the
clinical question and in identifying gaps.

2. Define explicit eligibility criteria for the identified evidence. Guideline devel-
opment groups should define eligibility criteria for the evidence that they wish
to include. Examples include restricting evidence to randomized controlled
trials or studies that have used validated instruments for functional outcomes
or assessed mortality.
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3. Conduct or use comprehensive searches for evidence. Aguideline development
group should ensure that they conduct a complete evaluation of the evidence.
The group may either use a high quality systematic review developed by others
or conduct their own systematic review for each recommendation they make
in their guideline.

4. Perform a standard consideration of study quality. If a systematic review
is identified that answers the group’s clinical question and may suffice for
developing the guideline, the group should still consider an evaluation of the
individual study quality. Should the group conduct a systematic review or
update an existing review, the evaluation of study quality becomes an essential
step in conducting a systematic review. Quality evaluation includes looking
at the basic study design, the detailed study design and execution, and the
directness of evidence. The directness of the evidence refers to reporting of
surrogate outcomes, for example deep venous thrombosis by ultrasonography
as risk factor for fatal events, versus outcomes such as mortality.

5. Summarize the evidence. Guideline development groups who use high quality
systematic reviews often will find meta-analysis of studies included in the
systematic review. The summaries help in obtaining estimates of intervention
effects. It is important to note that summary estimates should be available
for all important outcomes, both beneficial and harmful. Ideally the summary
estimates also would be available for cost.

6. Acknowledge values and preferences underlying the group’s recommenda-
tions. Many guideline reports take for granted that guideline developers ade-
quately represent patients’ interests. The latter is not necessarily correct and
there is a risk that, for example, a specialty society may recommend procedures
where the benefits may not outweigh the risks or costs (Woolf et al. 1999). For
example, the American Urologic Society and the American Cancer Society
recommend prostate cancer screening with prostate specific antigen (PSA) for
men older then 50 while the American College of Preventive Medicine and the
US Preventive Task Force Services (USPSTF) do not make this recommenda-
tion (American Urological Association 2000; Ferrini and Woolf 1998; Smith
et al. 2003; USPSTF 2002). Thus, there should be clear statements about which
principles, such as patient autonomy, nonmaleficence, or distributive justice,
were given priority in guiding decisions about the value of alternative inter-
ventions to inform users of the guidelines (Shekelle et al. 1999). Guidelines
should report whether it is intended to optimize values for individual patients,
reimbursement agencies, or society as a whole. Groups that ensure representa-
tion by experts in research methodology, practicing generalists and specialists,
and public representatives are more likely to have considered diverse views in
their discussions than groups limited to content area experts.

7. Grade the strength of recommendations. Because clinicians are interested in
the strength of a recommendation and the balance of benefits and risks, the
next section is devoted to recommendations and the grading of the strength
of recommendations.



Clinical Epidemiology 1199

Recommendations
Treatment decisions involve balancing likely benefits against harms and costs.
Evidence-based guidelines and treatment recommendations are systematic syn-
theses of the best available evidence that provide clinicians with guidance for
treating average patients in clinical practice. To integrate recommendations with
their own clinical judgment, clinicians need to understand the basis for the clini-
cal recommendations that experts offer them. A common systematic approach to
grading the strength of treatment recommendations can minimize bias and aid
interpretation.

As part of the first American College of Chest Physician (ACCP) Consensus
Conference on Antithrombotic Treatment in 1986, Sackett suggested a formal
rating scheme, derived from the Canadian Task Force on the Periodic Health
Examination, for assessing levels of evidence (Canadian 1979; Sackett 1986). During
the past 15 years, clinical epidemiologists from McMaster University have lead the
evolution of these “rules of evidence” (Cook et al. 1992; Guyatt et al. 1995, 2001,
2002a, b), which experts have applied to generate grades of recommendations.

The strength of any recommendation depends on two factors: the trade-off
between benefits and downsides and the quality of the methodology that leads
to estimates of the treatment effect. The ACCP approach to grading of recom-
mendations captures the magnitude of random error in the decision about the
confidence in the tradeoff between benefits, harms and cost. The uncertainty as-
sociated with this tradeoff will determine the strength of recommendations. The
grades that experts generate using the ACCP approach are 1A, 1C+, 1B, 1C, 2A,
2C+, 2B and 2C (Table 8.8). If experts are very certain that benefits do, or do
not, outweigh harms and cost, they will make a strong recommendation – in the
ACCP formulation, Grade 1. If they are less certain of the magnitude of the bene-
fits and harms, and thus their relative impact, they must make a weaker Grade 2
recommendation. Grade 2 recommendations are those in which variation in pa-
tient values or individual physician values often will mandate different treatment
choices, even among average or typical patients. The ACCP approach expresses the
primacy of the benefit versus downxside judgment by placing it first in the grade
of recommendation.

However, today a number of organizations other than the ACCP, including
the US Preventive Services Task Force (Harris et al. 2001), the US Task Force
on Community Preventive Services (Briss et al. 2000), Scottish Intercollegiate
Guidelines Network (SIGN) (Harbour and Miller 2001), the National Institute for
Clinical Excellence (NICE), and more than 100 other groups use various systems
of codes to communicate grades of evidence and recommendations. All these
organizationshavedefinitionsofvarying lengthanddetail for each letterornumber
code and a few use single words, such as “Strong” or “Weak”, in addition to or in
place of a code.

Health care practitioners, in particular learners, are often puzzled by the mes-
sage the grade of these systems convey. For example, the administration of oral
anticoagulation in patients with atrial fibrillation and rheumatic mitral valve dis-
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Table 8.8. ACCP approach to grades of recommendations

Grade of
recom-
menda-
tion

Clarity of risk|
benefit

Methodologic strength of
supporting evidence

Implications

1 A Risk|benefit
clear

RCTs without important
limitations

Strong recommendation,
can apply to most patients
in most circumstances
without reservation

1 C+ Risk|benefit
clear

No RCTs but strong RCT
results can be unequivo-
cally extrapolated, or over-
whelming evidence from
observational studies

Strong recommendation,
can apply to most patients
in most circumstances

1 B Risk|benefit
clear

RCTs with important limi-
tations (inconsistent results,
methodological flaws)∗

Strong recommendations,
likely to apply to most pa-
tients

1 C Risk|benefit
clear

Observational studies Intermediate strength rec-
ommendation; may change
when stronger evidence
available

2 A Risk|benefit
unclear

RCTs without important
limitations

Intermediate strength rec-
ommendation, best action
maydifferdependingoncir-
cumstances or patients’ or
societal values

2 C+ Risk|benefit
unclear

No RCTs but strong RCT
results can be unequivo-
cally extrapolated, or over-
whelming evidence from
observational studies

Weak recommendation,
best action may differ de-
pending on circumstances
or patients’ or societal
values

2 B Risk|benefit
unclear

RCTs with important limi-
tations (inconsistent results,
methodological flaws)∗

Weak recommendation, al-
ternative approaches likely
to be better for some pa-
tients under some circum-
stances

2 C Risk|benefit
unclear

Observational studies Very weak recommenda-
tions; other alternatives
may be equally reasonable

∗ These situations include RCTs (randomized clinical trials) with both lack of blinding and
subjective outcomes, where the risk of bias in measurement of outcomes is high, or RCTs with
large loss to follow up.
Note: Since studies in categories B and C are flawed, it is likely that most recommendations in
these classes will be level 2.
The following considerations will bear on whether the recommendation is Grade 1 or 2: the
magnitude and precision of the treatment effect, patients’ risk of the target event being
prevented, the nature of the benefit, and the magnitude of the risk associated with treatment,
variability in patient preferences, variability in regional resource availability and health care
delivery practices, and cost considerations (see Table 8.2). Inevitably, weighing these
considerations involves subjective judgment (reproduced with permission from Guyatt et al.
(2004a).)
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ease receives various grades of recommendation from different organizations.
Oral anticoagulation in these patients is recommended as Class I based on level B
evidence by the American Heart Association (ACC 2001), as a grade C recommen-
dation based on level IV evidence by SIGN (http:||www.guidelines.gov|) and as
grade 1C+, where the 1 indicates the balance between benefit and downsides and
C+themethodological qualityof theunderlyingevidence, by theAmericanCollege
of Chest Physicians (Albers et al. 2001). It is therefore possible that the different
grading systems do not fulfill their intended function: to quickly and concisely
communicate a clear message. In particular, if the same code, used by different
systems, represents different meanings, bewilderment and incomprehension may
result.

A group of guideline developers and clinical epidemiologists formed the Grades
or Recommendation Assessment, Development and Evaluation (GRADE) Work-
ing Group with the hope of reaching agreement on a common, sensible approach
to grading the quality of evidence and strength of recommendations (Atkins et
al. 2004; Schünemann et al. 2003). The group has defined grade of evidence as
indicating the extent to which one can be confident that an estimate of effect is
correct and grades of recommendations as indicating the extent to which one
can be confident that adherence to a recommendation will do more good than
harm. The Grade group suggests that those developing recommendations should
make sequential judgments about the quality of evidence for each important out-
come, the overall quality of evidence across outcomes, and the recommendations.
Judgments about the quality of evidence require consideration of study design,
study quality, consistency and directness of the evidence. Additional considera-
tions include reporting bias, sparse data and strength of associations. Judgments
about recommendations require consideration of the balance between benefits
and harms, the quality of the evidence, translation of the evidence into specific
circumstances, and the certainty of the baseline risk. Recommendations should
consider costs (resource utilization) as well as benefits and harms. The GRADE
group further concludes that inconsistencies among systems for grading evidence
and formulating recommendations reduce their potential to facilitate critical ap-
praisal and improve communication of these judgments, and suggests a system
that is new (though bears many similarities to the ACCP approach) that they hope
will receive wide adoption.

Returning to our clinical scenario and applying the ACCP approach to grading
of recommendation (ideally one will apply the GRADE approach when available),
the use of clopidogrel in addition to aspirin would generate a 2A recommendation
where the 2 indicates that the individual preferences and values influence the treat-
ment decision and the A denomination indicates that evidence stems from one or
more high-quality randomized controlled trials.

In the next section we will describe the importance of health related quality
of life (HRQL) outcomes followed by a section on integrating patient preferences
in decision making and how clinical epidemiology is key in obtaining patients’
preferences and values.
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Health Related Quality of Life Instruments
and Their Application in Clinical Studies8.8

Clinical journals have published trials in which HRQL instruments are the primary
outcome measures. With the expanding importance of HRQL in evaluating new
therapeutic interventions, investigators (and readers) are faced with a large array
of instruments. Researchers have proposed different ways of categorizing these
instruments, according to the purpose of their use, into instruments designed for
screening, providing health profiles, measuring preference, and making clinical
decisions (Osoba et al. 1991), or into discriminative and evaluative instruments.

We have also suggested a taxonomy based on the domains of HRQL which an
instrument attempts to cover (Guyatt et al. 1989). According to this taxonomy,
a HRQL instrument may be categorized, in a broad sense, as generic or specific.
Generic instruments cover (or at least aim to cover) the complete spectrum of
function, disability, and distress of the patient, and are applicable to a variety
of populations. Within the framework of generic instruments, health profiles and
utility measures provide two distinct approaches to measurement of global quality-
of-life. Specific instruments are focused on disease or treatment issues specifically
relevant to the question at hand.

Generic Instruments8.8.1

Health Profiles
Health profiles are single instruments that measure multiple different aspects of
quality-of-life. They usually provide a scoring system that allows aggregation of
the results into a small number of scores and sometimes into a single score (in
which case, it may be referred to as an index). As generic measures, their design
allows their use in a wide variety of conditions. For example, one health profile, the
Sickness Impact Profile (SIP) contains 12 “categories” which can be aggregated into
two dimensions and five independent categories, and also into a single overall score
(Bergner et al. 1981). The SIP has been used in studies of cardiac rehabilitation (Ott
et al. 1983), total hip joint arthroplasty (Liang et al. 1985), and treatment of back pain
(Deyo et al. 1986). In addition to the SIP, there are a number of other health profiles
available: the Nottingham Health Profile (Hunt et al. 1980), the Duke-UNC Health
Profile (Parkerson et al. 1981), and the McMaster Health Index Questionnaire
(Sackett et al. 1977). Increasingly, a collection of related instruments from the
Medical Outcomes Study (Tarlov et al. 1989), has become the most popular and
widely-used generic instruments. Particularly popular is one version that includes
36 items, the SF-36 (Brook et al. 1979; Ware et al. 1995; Ware and Sherbourne
1992). The SF-36 is available in over 40 languages and normal values for the general
population in many countries are available.

While each health profile attempts to measure all important aspects of HRQL,
they may slice the HRQL pie quite differently. For example, the McMaster Health
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Index Questionnaire follows the World Health Organization approach and iden-
tifies three dimensions: physical, emotional, and social. The Sickness Impact
Profile includes a physical dimension (with categories of ambulation, mobility,
body care, and movement), a psychosocial dimension (with categories includ-
ing social interaction and emotional behavior), and five independent categories
including eating, work, home management, sleep and rest, and recreations and
pastimes.

General health profiles offer a number of advantages clinical investigators. Their
reproducibility and validity have been established, often in a variety of populations.
When using them for discriminative purposes, one can examine and establish ar-
eas of dysfunction affecting a particular population. Identification of these areas of
dysfunction may guide investigators who are constructing disease-specific instru-
ments to target areas of potentially greatest impact on the quality-of-life. Health
Profiles, used as evaluative instruments, allow determination of the effects of an
intervention on different aspects of quality-of-life, without necessitating the use
of multiple instruments (and thus saving both the investigator’s and the patient’s
time). Because health profiles are designed for a wide variety of conditions, one
can potentially compare the effects on HRQL of different interventions in different
diseases. Profiles that provide a single score can be used in a cost-effectiveness
analysis, in which the cost of an intervention in dollars is related to its outcome in
natural units.

The main limitation of health profiles is that they may not focus adequately on
the aspects of quality-of-life specifically influenced by a particular intervention.
This may result in an inability of the instrument to detect a real effect in the area of
importance (i.e., lack of responsiveness). In fact, disease specific instrument offer
greater responsiveness compared with generic instruments (Guyatt et al. 1999;
Wiebe et al. 2003). We will return to this issue when we discuss the alternative
approach, specific instruments.

Specific Instruments 8.8.2

An alternative approach to HRQL measurement is to focus on aspects of health
status that are specific to the area of primary interest. The rationale for this
approach lies in the increased responsiveness that may result from including
only those aspects of HRQL that are relevant and important in a particular
disease process or even in a particular patient situation. One could also focus
an instrument only on the areas that are likely to be affected by a particular
drug.

In other situations, the instrument may be specific to the disease (instru-
ments for chronic lung disease, for rheumatoid arthritis, for cardiovascular dis-
eases, for endocrine problems, etc.); specific to a population of patients (in-
struments designed to measure the HRQL of the frail elderly, who are afflicted
with a wide variety of different diseases); specific to a certain function (ques-
tionnaires which examine emotional or sexual function); or specific to a given
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condition or problem (such as pain) which can be caused by a variety of un-
derlying pathologies. Within a single condition, the instrument may differ de-
pending on the intervention. For example, while success of a disease-modifying
agent in rheumatoid arthritis should result in improved HRQL by enabling a pa-
tient to increase performance of physically stressful activities of daily living, oc-
cupational therapy may achieve improved HRQL by encouraging family mem-
bers to take over activities formerly accomplished with difficulty by the pa-
tient. Appropriate disease-specific HRQL outcome measures should reflect this
difference.

Specific instruments can be constructed to reflect the “single state” (how tired
have you been: very tired, somewhat tired, full of energy) or a “transition” (how
has your tiredness been: better, the same, worse) (MacKenzie and Charlson 1986).
Theoretically, the same could be said of generic instruments, although none of the
available generic instruments has used the transition approach. Specific measures
can integrate aspects of morbidity, including events such as recurrent myocardial
infarction (Olsson et al. 1986).

The disease-specific instruments may be used for discriminative purposes. They
may aid, for example, in evaluating the extent to which a primary symptom (for
example dyspnea) is related to the magnitude of physiological abnormality (for
example exercise capacity) (Mahler et al. 1987). Disease-specific instruments can
be applied for evaluative purposes to establish the impact of an intervention on
a specific area of dysfunction, and hence aid in elucidating the mechanisms of
drug action (Jaeschke et al. 1991). Guidelines provide structured approaches for
constructing specific measures (Guyatt et al. 1986). Whatever approaches one
takes to the construction of disease-specific measures, a number of head-to-
head comparisons between generic and specific instruments suggests that the
latter approach will fulfill its promise of enhancing an instrument’s responsive-
ness, the ability to detect change in HRQL (Chang et al. 1991; Goldstein et al.
1994; Laupacis et al. 1991; Smith et al. 1993; Tandon et al. 1989; Tugwell et al.
1990).

In addition to the improved responsiveness, specific measures have the advan-
tage of relating closely to areas routinely explored by the physician. For example,
a disease-specific measure of quality-of-life in chronic lung disease focuses on
dyspnea during day-to-day activities, fatigue, and areas of emotional dysfunction,
including frustration and impatience (Guyatt et al. 1987). Specific measures may
therefore appear clinically sensible to the clinician.

The disadvantages of specific measures are that they are (deliberately) not
comprehensive, and cannot be used to compare across conditions or, at times,
even across programs. This suggests that there is no one group of instruments that
will achieve all the potential goals of HRQL measurement. Thus, investigators may
choose to use multiple instruments. Some of these instruments are preferences or
value instruments that can also be used for clinical decision making described in
the next section.
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Integrating Patient Preferences
in the Decision Making Process
and Resolution of the Clinical Scenario 8.9

In reviewing the data from the CURE trial, you conclude that if the patient before
you remains untreated, the best estimate of the risk for recurrent myocardial in-
farction or any of the other endpoints summarized in the composite endpoint in
the trial during the next year is 16.5%, and, further, that clopidogrel is likely to
decrease this risk by approximately 13%, corresponding to absolute risk reduc-
tions (ARR) of 2.3% over a one-year period. As described above, this translates
into a number needed to treat (NNT) for 1 year to prevent one of the endpoints
summarized in the composite endpoint of approximately 44 for treatment with
clopidogrel (Table 8.5).

Examining the likelihood of major bleeding, the CURE trial suggests an absolute
risk increase of 1.0%. This estimate translates into a NNH of 100. In light of
your knowledge that the patient before you is intelligent, conscientious, and very
concerned about his health, you anticipate a high rate of adherence; in addition,
you anticipate that the bleeding risk rate of 1% (or the NNT of 100) represents
a good estimate for risk of the patient in front of you.

Considering these numbers, you are aware that the treatment decision may
depend on the relative value the patient places on avoiding a recurrent my-
ocardial infarction or any of the other endpoints summarized in the compos-
ite endpoint in the CURE trial and avoiding a major bleeding including those
leading to vision loss. We have pointed out that since there are always advan-
tages and disadvantages to an intervention, evidence alone cannot determine the
best course of action. Patients, their proxies, or if a parental approach to de-
cision making is desirable, the clinician as decision-maker, must always trade
the benefits, harm, and costs associated with alternative treatment strategies,
and values and preferences always bear on those trade-offs. Findings that pa-
tients vary greatly in the value they place on different outcomes will come as
no surprise. Given this variability in patient’s values, clinicians should proceed
with great care; it is easy to assume that the patient’s values are similar to one’s
own, yet this may be incorrect. For example, facing a decision concerning an-
ticoagulation in atrial fibrillation, clinicians are more concerned about bleed-
ing risk, and place less weight on the associated stroke reduction, than patients
(Devereaux et al. 2001). Thus, a fundamental principle of EBM is the explicit
inclusion of patients and society’s values and clinical circumstances in the clin-
ical decision-making process (Fig. 8.4) (Haynes et al. 2002). Clinical epidemi-
ology can help identifying and applying the key issues in the decision making
process.

Considering the model by Haynes et al. (2002) you are now faced with the
problem of how to best incorporate the patient’s values into the decision. Before
resolving the scenario we will describe different ways to optimize decision making.
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For many – perhaps most – of our clinical decisions, the tradeoff is sufficiently
clear that clinicians need not concern themselves with variability in patient values.
Previously healthy patients will all want antibiotics to treat their pneumonia or
their urinary tract infection, anticoagulation to treat their pulmonary embolus,
or aspirin to treat their myocardial infarction. Under such circumstances, a brief
explanation of the rationale for treatment and the expected benefits and side effects
will suffice.

When benefits and risks are balanced more delicately and the best choice may
differ across patients, clinicians must attend to the variability in patients values
(such as in a Grade 2A recommendation in the McMaster approach to grad-
ing recommendations). One fundamental strategy for integrating evidence with
preferences involves communicating the benefits and risks to patients, thus per-
mitting them to incorporate their own values and preferences in the decision.
One advantage of this approach is that it avoids the vexing problem of mea-
suring patients’ values. Unfortunately, the problem of communicating the evi-
dence to patients in a way that allows patients to clearly and unequivocally un-
derstand their choices is almost as vexing as the direct measurement of patient
values.

A second basic strategy is to ascertain the relative value patients place on the
key outcomes associated with the management options. One can then consider the
likely outcomes of alternative courses of action and use the patient’s values as the
basis of trading off benefits and risks. When done in a fully quantitative way, this
approach becomes a decision analysis using individual patient preferences (Guyatt
et al. 2002a,b). A number of texts provide information on decision analysis and
decision analyses are available for a number of topics, such as the prevention of

Figure 8.4. Model for Evidence-Based Decision Making. Reproduced with permission from Haynes

et al. (2002)
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ischemic stroke with warfarin in atrial fibrillation (Guyatt et al. 2002a,b; Petitti
1994; Thomson et al. 2000).

In addition, patients often have preferences not only about the outcomes, but
about the decision-making process itself. These preferences can vary, and the pa-
tient’s desired level of involvement should determine which approach the clinician
takes (Degner et al. 1997; Stiggelbout and Kiebert 1997; Strull et al. 1984). Ethicists
have characterized the alternative strategies (Emanuel and Emanuel 1992). At one
end of the spectrum, the physician acts as a technician, providing the patient with
information and taking no active part in the decision-making process. This cor-
responds to the first strategy for incorporating patient values, presenting patients
with the likely benefits, risks, inconvenience and cost and then letting patients de-
cide. At the opposite extreme, corresponding to the second strategy, ascertaining
the patient’s values and then making a recommendation in light of the likely ad-
vantages and disadvantages of alternative management approaches, the clinician
takes a “paternalistic” approach and decides what is best for the patient in light of
that patient’s preferences.

However, intermediate approaches of shared decision making are generally
more popular than those at either extreme. Shared decision making uses both of
the two fundamental approaches todecisionmakingpresentedabove:Theclinician
typically shares the evidence, in some form, with the patient, while simultaneously
attempting to understand the patient’s values. Evidence that more active patient in-
volvement in theprocessofhealthcaredeliverycan improveoutcomesandreported
quality of life – and, possibly, reduce health care expenditures – provides empirical
evidence in support of secular trends toward patient autonomy and away from
paternalistic approaches (Greenfield et al. 1988; Stewart 1995; Szabo et al. 1997).

Clinicians should temper their enthusiasm for active patient involvement in
decision making with an awareness that many patients prefer paternalistic ap-
proaches. For example, the results of a survey of 2472 patients suffering from
chronic disease (hypertension, diabetes, heart failure, myocardial infarction, or
depression) completed between 1986 and 1990 supported this approach (Arora
and McHorney 2000). In response to the statement: “I prefer to leave decisions
about my medical care up to my doctor”, 17.1% strongly agreed, 45.5% agreed,
11.1% were uncertain, 22.5% disagreed, and only 4.8% strongly disagreed. In
a more recent study of node-negative breast cancer patients considering adju-
vant chemotherapy, 84% of 171 women preferred an independent or shared role
in decision-making (Whelan et al. 2003). Increasing general levels of education,
the advent of the Internet and the resulting access to medical information, and
an increasingly litigious and consumerist environment have all contributed to
patients wishing to play a more active role in decision-making and may explain
a shift in patient preferences for decision making. Shared decision-making and
patient-centeredness have become attractive approaches to resolving the profu-
sion of challenging choices facing patients and clinicians (Charles et al. 1999a, b;
Edwards and Elwyn 2001; Guyatt et al. 2004a).

Regardless of the decision-making approach chosen by the patient and clinician,
integrating values and preferences and communicating options injects challenges
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into the process by insisting that clinicians consider quantitative estimates of ben-
efits and risks, rather than just whether a treatment works or whether toxicity
occurs. If clinicians leave the decisions to patients, they must effectively commu-
nicate the probabilities associated with the alternative outcomes to them. If they
opt for taking responsibility for combining patient values with the evidence, they
must quantify those values. A vague sense of the patient’s preferences cannot fully
satisfy the rigor of the optimal decision making approach.

Wewillnowdescribesomeof thespecific strategiesassociatedwith twodecision-
making models: one in which the clinician presents the patient with the likely
consequences of alternative management strategies and leaves the choice to the
patient, and the other in which the clinician ascertains the patient’s values and
provides a recommendation.

Patient as Decision-Maker: Decision Aids
If the patient wishes to play the primary role in decision making, clinicians may
use intuitive approaches to communicating concepts of risk and risk reduction that
they have developed through clinical experience. They will answer the patient’s
questions and ultimately act on the patient’s decision. Alternatively, if available for
a particular decision, clinicians can use a decision aid that presents descriptive
and probabilistic information about the disease, treatment options, and potential
outcomes in a patient-friendly manner (Barry 2002; Holmes-Rovner et al. 2001;
Levine et al. 1992; O’Connor 2001).

A well-constructed decision aid has two advantages. One is that someone has
reviewed the literature and produced a rigorous summary of the probabilities.
Clinicians who doubt that the summary of probabilities is rigorous can go back
to the original literature on which those probabilities are based and determine
their accuracy. A second advantage of a well-constructed decision aid is that it will
offer a pre-tested and effective way of communicating the information to patients
who may have little background in quantitative decision making. Most commonly,
decisionaidsusevisualprops topresent theoutcomedata in termsof thepercentage
of people with a certain condition who do well without intervention, compared to
the percentage who do well with intervention. Decision aids will summarize the
data regarding all outcomes of importance to patients.

Theoretically, decision aids present an attractive strategy for ensuring that pa-
tient values guide clinical decision making. What impact do decision aids actually
have on clinical practice? O’Connor and colleagues conducted a systematic review,
finding 17 randomized trials that used 11 different decision aids, for example the
decision for or against hormone replacement therapy in women after menopause
or decisions related to breast surgery in breast cancer (O’Connor et al. 2003, 2004).
Of these 17 trials, decision aid impact on knowledge was evaluated in four. All four
found greater knowledge in the decision aid group, with a pooled difference of 19
on a 100-point scale (95% CI: (14, 25)). Decision aids reduced decisional conflict
using a validated decisional conflict scale in three of four trials in which investiga-
tors addressed this issue (mean effect: 0.3; 95% CI: (0.1; 0.4) on the 5-point scale
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decisional conflict scale). Three studies failed to show a difference in satisfaction
with the decision made, although one of these three showed increased satisfaction
with the decision-making process.

In summary, decision aids markedly increase patient knowledge and decrease
discomfort with decision making as reflected in decisional conflict scores. The im-
portance of the reduction in decisional conflict remains uncertain. Simple decision
aids that clinicians can integrate into regular patient care could increase the extent
to which patient values truly determine health care decisions.

Patient as Provider of Values
The second set of approaches all begin with, at minimum, establishing the relative
value the patient places on the target outcomes. Doing so requires that the patient
understand the nature of those outcomes. How, for instance, would a patient with
atrial fibrillation facing a decision about using oral anticoagulation to prevent
strokes imagine living with a stroke, or the experience of having a gastrointestinal
bleeding episode as a side effect of the oral anticoagulation? Patients may find
a written description of the health states (Table 8.9) useful in the process of
describing their preferences (Devereaux et al. 2001).

Having made their best effort to ensure that patients understand the outcomes,
clinicians can choose from among a number of ways of obtaining their values
for those outcomes. They can gain a qualitative sense of their patients’ prefer-
ences from a discussion without a formal structure. Alternatively, a direct com-
parison between outcomes may prove useful. For instance, with only two out-
comes, the patient can make a direct comparative rating. The question may be:
“How much worse would it be to have a stroke versus a gastrointestinal bleeding

Table 8.9. Sample descriptions of major stroke and gastrointestinal bleed

Major Stroke Bleeding

You suddenly are dizzy and blackout
You are unable to move one arm and one leg
You cannot swallow or control bladder and
bowel
You are unable to understand what is being
said
You are unable to talk
You feel no physical pain
You are admitted to hospital
You cannot dress
The nurse feeds you
You cannot walk
After 1 month with physiotherapy, you are
able to wiggle your toes and lift your arm
off the bed
You remain this way for the rest of your life
Another illness will likely cause your death

You feel unwell for two days then suddenly
you vomit blood
You are admitted to hospital
You stop taking warfarin
A doctor puts a tube down your throat to
see where you are bleeding from
You receive sedation to ease the discomfort
of the test
You do not need an operation
You receive blood transfusions to replace
the blood you lost
You stay in hospital one week
You feel well at the end of your hospital stay
You need to takepills for thenext sixmonths
to prevent further bleeding
You do not take warfarin any more
After that you are back to normal
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episode? Would it be equally bad? Twice as bad to have a stroke? Three times as
bad?”

Using a somewhat more complex strategy, the clinician can ask the patient to
place a mark on a visual analogue scale or “feeling thermometer”, in which the
extremes are anchored at dead and full health, to represent how the patient feels
about the health states in question (Fig. 8.5).

Figure 8.5. The feeling thermometer
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When, as in the case of a gastrointestinal bleeding and a stroke, some health
states are temporary and others are permanent, the clinician must ensure that
patients incorporate the duration of the health state in their rating.

More sophisticated approaches include the time tradeoff and the standard gam-
ble (Torrance 1986). In completing the time tradeoff, patients choose between
a longer period in a state of impaired health (such as recovery from severe stroke)
and a shorter period in a state of full health. With the standard gamble, by con-
trast, patients are asked to choose between living in a state of impaired health
versus taking a gamble in which they may return to full health or die immediately.
These latter approaches may come much closer to meeting assumptions that health
economists argue are necessary for accurate ratings of the relative value of health
states in the context of choice with uncertain outcomes.

Regardless of the strategy clinicians use to obtain patient values, they must
somehow integrate these values with the likely outcomes of the alternative man-
agement strategies. Formal decision analysis provides the most rigorous method
for making this integration. Practical software for plugging in the patients’ values
and conducting a patient-specific decision analysis for common clinical problems
is being developed, although not yet available for routine use in daily clinical prac-
tice. Investigators have shown that, when patients’ values are used in individualized
decision analyses, their decisions about anticoagulation in atrial fibrillation differ
from those suggested by existing guidelines (Protheroe et al. 2000). Whether the
decisions would have differed had the patients been provided with the probabili-
ties and asked to choose their preferred management strategy – as with a decision
aid – remains unknown.

Even if the tools for individual decision analysis were widely available, appli-
cation of the approach would depend on the availability of clinicians who could
devote time to eliciting patient values. Such a process may be resource intensive,
and issuesof howmuch gain there is fromthe investment, or the intervention’s cost-
effectiveness, may become very important. Exactly the same considerations apply
to the use of decision aids, in which the improvement of knowledge is clear but the
impact on anxiety, or on the choices patients actually make, is not as obvious.

Another method of expressing information to patients that incorporates their
values is the likelihood of being helped versus harmed (Sackett et al. 2000). Clin-
icians can apply the likelihood of being helped versus harmed to any clinical
decision, and preliminary evidence suggests the approach may be useful on busy
clinical services. The clinician begins by calculating the NNT and NNH for the aver-
age patients in a study or studies from which the data about treatment effectiveness
and harm come. The clinician then adjusts the average NNT and NNH for the in-
dividual patient according to that patient’s likelihood of suffering the target event
that treatment is intended to prevent, and the risks it may precipitate, relative to the
average patient. Having established the relative likelihood of help versus harm, the
clinicianexplores thepatient’s valuesabout the severityof adverseevents thatmight
be caused by the treatment relative to the severity of the target event that treatment
helps prevent. The final adjustment of the likelihood of being helped versus harmed
incorporates the patient’s values without providing formal help by a decision aid.
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Likelihood of Help Versus Harm
For sake of simplicity, we will assume that the patient in our scenario places
a mean value on the composite endpoints cardiovascular disease (defined by the
CURE investigators as death from cardiovascular causes, nonfatal MI, stroke, or
refractory ischemia), major bleeding (substantially disabling bleeding, intraocular
bleeding or the loss of vision, or bleeding necessitating the transfusion of at least
2 units of blood) and minor bleeding (any other bleeding leading to interruption
of study medication), respectively. We will ignore other factors bearing on the
decision, such as taking an additional pill daily.

During your discussion with the patient about the consequences of further
cardiovascular disease and major bleeding you asked her to use the “feeling ther-
mometer” (see Fig. 8.5) to estimate how she feels about each of the two combined
outcomes. We will ignore minor bleeding episodes in this example, because your
patient is not concerned at all about the risk and consequences of minor bleeding.
However, she places a mean value of suffering additional consequences of cardio-
vascular disease at 0.2 and of living with a major bleed at 0.7. You use these on your
handheld personal digital assistant to calculate her likelihood of being helped or
harmed (LHH) from clopidogrel therapy versus placebo therapy.

Using the NNTs calculated in the scenario, the LHH for clopidogrel versus
placebo becomes (Table 8.5):

LHH = (1|NNT) : (1|NNH) = (1|44) : (1|100) = 100|44 = 2.3 .

Note: we could also use (1|absolute risk reduction) : (1|absolute risk increase) but
this uses decimal fractions and may increase the likelihood of arithmetic errors.

Therefore, you can tell the patient that clopidogrel is approximately twice as
likely to help her as to harm her, when compared with placebo.

Incorporating her values that you elicited, the LHH becomes:

LHH = (1|NNT) × (1 − Uevent) : (1|NNH) × (1 − Utoxicity)

= (1|44) × (1 − 0.2) : (1|100) × (1 − 0.7) = 6.1 ,

where Uevent is the value of the outcome prevented (composite endpoint of death
from cardiovascular causes, nonfatal MI, stroke, or refractory ischemia) and Utox-
icity (Major bleeding) is the value of the side effect.

You can now inform the patient that clopidogrel is approximately six times
as valuable to help her as to harm her. Including additional outcomes would
increase the number of terms in the numerator (benefits) or denominator (adverse
consequences).

Alternatively, a quicker way of incorporating the patient’s values is to ask the
patient to rate one event against another. For example, is the adverse effect about
as severe as the event the treatment prevents – or 10 times as bad or only half as
severe? This rating (“s”) can then be used to adjust the LHH as:

LHH = (1|NNT) × s : (1|NNH) .
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Having ascertained the likely outcomes of the alternate courses of action, the
clinician must either present patients with the options and outcomes and leave it
for them to choose, try to discover the patient’s values and having done so suggest
a course of action to the patient (the paternalistic approach), or choose the middle
course of shared decision making. The patient’s preferred decision-making style
will guide the clinician in this regard. However, communicating the nature of the
outcomes and their probabilities in a way the patient will understand, or accurately
ascertaining the patient’s values regarding the outcomes, remains problematic.

The challenges of optimal clinical decision making should not obscure the
realization that clinicians face these challenges in helping patients with every
management decision. For each choice, clinicians guide patients with their best
estimate of the likely outcomes. They then help patients balance these outcomes in
making their ultimate decision. Finding better strategies to carry out these tasks
remains a frontier for clinical epidemiology.

Semistructured Conversation and Resolution

Example 2. You discuss the option of clopidogrel therapy with your patient who
is feeling better now and appears to have a good understanding of the

information you are providing. You explain that – based on your assessment and
the patients’ values and preferences – benefit and harm of clopidogrel are finely
balanced: for every 44 patients treated for one year in the CURE trial there was one
less occurrence of the combined endpoint. However, for every 100 patients treated
with clopidogrel for one year one additional patient suffered a major bleeding
episode and for every 37 patients treated for one year there was one additional
minor bleeding episode. You also explain that, because these are only estimates,
the true effect might be somewhat smaller or larger for both the benefit and harms.
Your patient states she would like to use clopidogrel.

Because the decision regarding taking clopidogrel depends on the patient’s val-
ues and preferences regarding preventing the combined endpoint versus incurring
additional risk of bleeding and you have the results of the calculation of the like-
lihood of being helped or harmed. You explain that the results of your calculation
using the software on your personal digital assistant support her preference for
taking clopidogrel. In termsof expense, youareuncertain about the cost of clopido-
grel. Because you feel that this question will come up with additional patients and
that you had wanted to address it for some time, you call the hospital pharmacist.
She informs you that the cost for clopidogrel is approximately $90 per month and
that at least one analysis has suggested the drug is not cost-effective (Gaspoz et al.
2002). The patient tells you that she has minimal co-pay for most medications and
remains interested in taking the medication. Together, you decide that beginning
clopidogrel treatment ultimately is in her best interest and you start the patient on a
300 mg loading dose of clopidogrel and continue with 75 mg daily. You also suggest
reducing the dose of aspirin as lower doses of aspirin confer similar benefits and
doses of 75 mg to 325 mg were given in the CURE trial together with Clopidogrel.�
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Conclusions8.10

We have presented several concepts of clinical epidemiology. Working through
the clinical problems has implicitly highlighted some of clinical epidemiology’s
research challenges. The following makes explicit some of these challenges that
clinical epidemiologists and other investigators need to tackle in future research.
A number of important areas have been identified and we will list them here
briefly. It is not clear what are the best ways to educate clinicians and students in
the methodology of clinical epidemiology and educational researchers will have
to focus on this aspect. The Cochrane Collaboration, other organizations and re-
searchers will further elaborate the methodology of systematic reviews (e.g., of
diagnostic studies, observational studies and health related quality of life out-
comes). Obtaining further information about the most valid and informative ways
of presenting statistical information and education of patients and clinicians about
these issues is an important task for clinical epidemiologists. Research should also
focus on improving the development of clinical practice guidelines and integrating
cost information in guidelines and recommendations (Schünemann et al. 2004).
Furthermore, research on implementing guidelines into clinical practice is an area
of intensive research. It is clear that studies of guideline implementation should
follow the same methodological rigor as other studies, but they are presented with
different challenges, suchas theneed for large cluster randomizedclinical trials.We
described the integration of preferences and values in medical decision making as
well as bedside decision making in particular above. Tools that facilitated this diffi-
cult task are in development. Health decision aids, in particular electronic decision
aids promise to advance this science. Along with health decision aids, the integra-
tion of HRQL information into clinical practice and guidelines presents challenges
that investigators need to resolve (Frost et al. 2003). Finally, conducting additional
research of integrating electronic health (eHealth) (including multimedia decision
aids) into clinical practice presents a fascinating but challenging outlook.
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Introduction9.1

In the last two decades we have witnessed a tremendous progress in the medi-
cal sciences that has led to the development of a great number of new powerful
pharmaceuticals. These new medicines enable us to provide much better medical
care, but occasionally they will cause harm and give rise to serious adverse reac-
tions that were unexpected from preclinical studies or premarketing clinical trials.
Against this background, pharmacoepidemiology has developed as a scientific dis-
cipline at the interface between clinical pharmacology and clinical epidemiology
(cf. Chap. III.8 of this handbook). Pharmacoepidemiology can be defined as the
application of epidemiologic knowledge, methods, and reasoning to the study of
the effects and uses of drugs in human populations (Porta-Serra and Hartzema
1997). The application of epidemiological methods – i.e. the use of nonexperimen-
tal observational techniques – , the epidemiological perspective with an emphasis
on investigations in large unselected populations and long-term studies, the public
health approach and the philosophy of epidemiology are all extended to the scope
of clinical pharmacology, i.e. the study of the effects of pharmaceuticals in humans.

Pharmacoepidemiology investigates both beneficial and adverse drug effects.
Its focus and the one that receives the greatest attention is the assessment of the
risk of uncommon, at times latent, and often unexpected adverse reactions that
present for the first time after a drug has been marketed. The greatest challenge of
pharmacoepidemiology is then to quantify the risk of a drug accurately, relative to
one or several alternatives.

The study of adverse drug effects poses a number of methodological difficulties
that must be addressed by pharmacoepidemiological research designs: first, drug
exposure is not a stable phenomenon. Drug prescription habits may change due to
the development of new pharmaceuticals, better knowledge on already available
medications or other reasons. Second, drug exposure can be sensitive to a great
number of factors that may also be related to the outcome of interest, such as
the indication for prescribing, potential contraindications for drug use, the nat-
ural course of the disease or disease severity and compliance. Third, the risk of
an adverse drug reaction (ADR) is often not constant, but it may change over
time which may have important implications for the design and interpretation of
pharmacoepidemiology studies.

In this chapter, we will first discuss limitations of premarketing clinical trials;
we will then describe the characteristics of spontaneous reporting systems which
have been implemented by regulatory agencies and the pharmaceutical industry
for postmarketing surveillance. Another issue will be the use of multipurpose co-
horts and large administrative healthcare databases for drug effect studies, which
have found widespread application in pharmacoepidemiology. We will further dis-
cuss several methodological aspects that are unique to pharmacoepidemiological
research: as e.g. the phenomenon of “depletion of susceptibles” which is a form
of selection bias; or “confounding by indication” which is also referred to as “con-
founding by disease severity” or “channelling bias”. We will present the use of
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propensity scores, as a tool to reduce confounding particularly in studies of in-
tended drug effects, and will discuss newer approaches of studying drug effects,
such as the case-crossover and case-time-control designs. Characteristics of drug
utilization studies and their units of measurement will be discussed.

Limitations of Premarketing Clinical Trials 9.2

Prior to marketing, new drugs are subjected to preclinical animal studies followed
by three phases of clinical trials in humans. These phases are divisions of con-
venience in what is a continuous process of acquiring knowledge on the effects
of a new drug in humans. In phase I studies humans are exposed to a new drug
for the first time. These studies are often conducted in small numbers of healthy
volunteers and are intended to explore the tolerability, pharmacokinetic and phar-
macodynamic properties of a new drug in humans. In phase II studies the optimal
dose range of the new drug is investigated and its efficacy and safety are explored
in the intended patient population. These studies usually include several hundreds
of patients. Phase III studies are aimed to prove the efficacy and safety of the new
drug under strictly controlled experimental conditions in a larger patient popu-
lation. They are mostly conducted as randomised controlled clinical trials (RCT)
and often include several thousand patients altogether. In spite of the size of phase
III studies, these studies have still limited ability to identify rare ADRs, since this
would require an even larger number of study participants.

Table 9.1 displays sample size calculations for prospective studies. It shows the
number of patients needed to detect a relative risk of a given magnitude in relation
to the incidence of the event in the reference group. We can see that for the detection
of very rare ADRs with sufficient statistical power, prohibitively large sample sizes
in premarketing clinical studies would be needed. It is thus inherent in the drug
development process – taking into account the already high cost for development
of new pharmaceuticals – that serious rare ADRs will usually only be detected after
drug marketing when the drug has been used in large patient populations.

An investigation by the Food and Drug Administration (FDA) into the with-
drawal of five pharmaceuticals from the US market between 1997 and 1998 illus-
trates this point (Friedman et al. 1999). All five drugs were removed from the US
market because of the discovery of unexpected serious adverse drug reactions
(ADR) in the postmarketing period. The FDA investigated whether this unexpect-
edly high number of drug removals in only a 12-month-period was related to the
expedited drug review and approval process that had been implemented. They
calculated the number of patients exposed in the clinical trials before marketing
and the approximate number of patients exposed before drug withdrawal (Ta-
ble 9.2). The figures demonstrate that usually huge numbers of patients need to
be exposed before sufficient knowledge on a rare ADR has been accumulated. For
example, serious hepatotoxic effects of bromfenac occurred in approximately 1 in
20,000 patients who took the drug for longer than 10 days (Friedman et al. 1999).
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Table 9.1. Sample sizes for detection of a given drug risk in a RCT or cohort study (size per study

arm)

Incidence of outcome in the control group
Relative risk 1|50,000 1|10,000 1|5000 1|1000

2.0 1,177,295 235,430 117,697 23,511

2.5 610,446 122,072 61,025 12,187

3 392,427 78,472 39,228 7832

5 147,157 29,424 14,707 2934

7.5 78,946 15,783 7888 1572

10 53,288 10,652 5323 1059

Calculations are based upon a two-sided significance level α of 0.05, a power of 80% (β = 0.2),
and one control subject per exposed subject

Table 9.2. Drug removals from the US Market between 1997 and 1998. Number of patients exposed to

withdrawn drugs in clinical trials compared to actual use after marketing

Removed drug Number of patients Approximate exposure
exposed before marketing1 prior to withdrawals

Terfenadine 5000 7,500,000

Fenfluramine 340 6,900,000

Dexfenfluramine 1200 2,300,000

Mibefradil 3400 600,000

Bromfenac 2400 2,500,000

1 number of patients included in the US premarketing studies

To reliably detect this toxic effect, some 100,000 patients would need to be included
in the premarketing clinical studies.

In addition, premarketing clinical studies differ from routine clinical care for
a number of other reasons:
1. These studies mostly include a selected study population, defined by strict

inclusion and exclusion criteria, which is often not fully representative of
subsequent users of the drug. It is well known that premarketing studies tend
to under-represent the elderly, patients with comorbid conditions, pregnant
women and children. Patients in premarketing trials may even be considered
a selected group of patients just because they are willing or able to participate.

2. Premarketing clinical trials are performed at selected sites which are typically
better equipped than routine care facilities. They are conducted by specialists
in their field and all participating persons have been specially informed and
trained. Surveillance of patients is almost by definition more intensive than in
routine clinical treatment, if only one considers the frequency and spectrum
of laboratory tests or the assessment of therapeutic and unwanted effects.
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3. Treatment regimens in premarketing clinical trials are largely fixed and allow
almost no individual treatment variations. In contrast, adjustments are con-
stantly made in routine care, depending on the progress of therapy and on the
interaction between doctor and patient.

4. Premarketing clinical trials are usually of short duration. This renders it im-
possible to detect ADRs that only develop after a long induction period or
after cumulative drug intake.

For all these reasons, crucial answers to questions of drug safety cannot be
provided even by the most valid and complex phase III study.

Characteristics
of Spontaneous Reporting Systems 9.3

Description 9.3.1

In the early 1960s, systems evolved in most Western countries that collected spon-
taneous reports on ADRs from doctors. Establishment of these spontaneous re-
porting systems was largely a consequence of the “thalidomide disaster”, in which
children exposed to the hypnotic thalidomide in utero were born with phocomelia,
a congenital deformity of the limbs resulting from prenatal interference of the drug
with the development of the fetal limbs (Wiholm et al. 2000). Worldwide, several
thousand cases of limb malformations in newborns observed in the 1950s and
1960s were attributed to the use of thalidomide during pregnancy (Lenz 1987).
Based on this experience, spontaneous reporting systems were set up to mon-
itor drug safety in the postmarketing period. In these systems, physicians – in
some countries also pharmacists, other health care professionals or patients –
report the suspicion of an ADR to the country’s drug regulatory agency or to
the pharmaceutical company that is marketing the drug. Drug regulatory agen-
cies exchange the ADR reports with the concerned pharmaceutical companies
and vice versa. The reports are locally assessed, the reported adverse event terms
are coded using a standardized international terminology as e.g. MedDRA (the
Medical Dictionary for Regulatory Activities) and are entered in a computer-
ized database. More than 60 countries also forward their ADR reports to the
World Health Organization (WHO) Collaborating Centre for International Drug
Monitoring in Uppsala (Bate et al. 2002). Through membership in the WHO Pro-
gramme, one country can know whether similar ADR reports are being made
elsewhere.

An ADR report usually contains the patient’s demographic information includ-
ing age and gender; the patient’s weight and height; adverse event (AE) information
including date and outcome of the event, description of the event, evidence and
existing medical history; information of suspect and concomitant medicine(s),
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including drug name, dose, application and indication for use; whether the event
abated after drug use was stopped (“dechallenge”); and whether the event reap-
peared after the drug was reintroduced (“rechallenge”); and the reporter’s name
and address.

Each report is assessed for its causality with drug intake by trained reviewers.
Causality assessment is usually based on a set of criteria which includes the time
interval between drug administration and the onset of the ADR; the course of the
reaction when the drug was stopped; the results of re-administration of the drug;
the existence of other causes that could also account for the observed reaction
such as patient comorbidity or concomitant drug treatment; the pattern of the
adverse effect; and the existence of reliable and specific laboratory test results.
Causality assessment is not based on the single case report, but will also take into
account other available information on the drug(s). In France, causality assess-
ment criteria have been built into an algorithm (the “official method of causality
assessment”) that is used throughout the country (Benichou 1994). The French
method distinguishes “intrinsic imputability” which takes into account only the
single case report information from “extrinsic imputability” which is based on all
published data on all drugs. Overall, causality assessment from individual case
reports is a complex task and often associated with a high degree of uncertainty,
since confounding by concomitant drug therapy or the underlying disease can
frequently not be ruled out. Rare exceptions are a positive rechallenge to the drug
(which is mostly accidental and involuntary, since this is rarely without risks) or
positive results of specific laboratory tests such as the detection of drug-dependent
antibodies.

Spontaneous reporting systems have several important advantages. They are
relatively inexpensive to operate with respect to staff and basic technical equip-
ment. They have the potential to cover the whole patient population and are
not restricted to either hospitalised patients or outpatients. Surveillance starts as
soon as a drug is marketed and monitoring of drug safety continues through-
out the whole postmarketing life cycle of a drug. The suspicion of an ADR is,
in theory, based on the experience of all treating physicians and pharmacists.
Spontaneous ADR reporting systems can provide an alert to very rare, but never-
theless potentially important drug toxicity. Spontaneous reporting systems have
identified many new, i.e. previously unrecognised drug hazards as e.g. clozapine-
induced granulocytopenia, captopril-induced cough and amiodarone-induced
hepatotoxicity. Further examples can be found in the article by Rawlins et al.
(1989).

Limitations9.3.2

Many of the successes of spontaneous reporting systems have been in the recog-
nition of ADRs occurring shortly after starting therapy. Spontaneous reporting
schemes are much less effective in identifying reactions with a long induction
period. An example is the oculomucocutaneous syndrome associated with expo-
sure to practolol which was undetected by the yellow card spontaneous reporting
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scheme in the UK (Venning 1983). For the same reason, spontaneous reporting
schemes are not well suited to identify drug-induced cancerogenicity.

ADR reports often do not provide sufficient information to confirm that a drug
caused an event. For example, the ADR report may not give enough details on
comorbidity or other medications to rule out other possible causes for the event
in a remote expert assessment. It may be impossible to exclude confounding by
indication, i.e. that the cause for the reported adverse event is rather related to
the indication for the drug than to the drug itself. As an example, depression has
been reported with the anti-acne medication roaccutane (Wysowski et al. 2001).
Depression could, however, also be related to psychological disturbances over
severe acne in sensitive teenagers rather than to roaccutane itself.

Recognition of an ADR depends on the level of diagnostic suspicion of the
treating physician and may be related to the nature of the adverse event. Some
ADRs are more likely to be diagnosed and reported than others because of their
known association with drug therapy. For example, acute agranulocytosis is at-
tributable to drug treatment in about 60–70% of cases (Kaufman et al. 1996). It
may therefore be more likely to be attributed to drug therapy than a disorder
as e.g. acute myocardial infarction that is usually not related to drug treatment
(Faich 1986).

Spontaneous reporting systems suffer fromseriousunderreportingofADRsand
various biases that affect reporting. Even in the UK, a country with a relatively high
reporting rate in relation to its population size, rarely more than 10% of serious
ADRs are notified to the regulatory agency (Rawlins et al. 1989). In France, a recent
comparison of ADR reports with data about drug-induced hospitalizations in three
pharmacoepidemiology field studies indicates that only 5% of ADRs leading to
hospitalisations are actually reported in the spontaneous reporting system(Begaud
et al. 2002). Lack of knowledge how to report an ADR and misconceptions about
the type of ADR that should be reported are important reasons contributing to
underreporting (Eland et al. 1999). On the other hand, it has to be taken into
account that spontaneous reporting and published case reports may also lead to
numerous false alarms.

Medical or mass media attention can stimulate reporting in a distorted manner
and give rise to differential reporting in a dramatic way (Griffin 1986). An example
of such “media bias” is that of central nervous side effects following treatment
with the benzodiazepine triazolam. After van der Kroef published a case series of
these ADR in 1979 (van der Kroef 1979), these side effects received extensive media
coverage on Dutch television. As a consequence, the Netherlands received 999 ADR
reports related to triazolam in 1979 out of a total of 1912 annual reports in 1979
overall (Griffin 1986). Reporting can also be affected by the market share of the
drug; the quality of the manufacturer’s surveillance system; reporting regulations
and the length of time a drug is on the market (Griffin 1986; Lindquist and Edwards
1993). It has been shown that reporting rates do not remain stable over time, but
usually peak during the first or second year after a drug has been introduced into
the market and then progressively decline over the following years (Haramburu
et al. 1992, 1997).
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Statistical Approaches:
Reporting Rates and Proportional Reporting Ratio9.3.3

An ideal early warning system should not only recognize new hazards but also
provideanestimateof their incidence. Spontaneous reporting systemsmayprovide
alerts of drug hazards, but they cannot be used to calculate incidence rates of
adverse events related to a specific drug. Calculation of an incidence rate requires
accurate numerator and denominator information, both of which are not available
from the spontaneous reporting systems. First, the extent of underreporting for an
individual drug is very difficult to assess and may even differ between drugs of the
same pharmacological class. Second, the population exposed to the drug (i.e. the
population at risk) is unknown and cannot be determined from drug sales data,
since the duration of drug use, the dose regimen and compliance in individual
patients are unknown.

Instead of the calculation of incidence rates, reporting rates (number of AE
reports per market share) based on sales data are sometimes computed as an
alternative approach (Pierfitte et al. 2000; Moore et al. 2003). Calculation of re-
porting rates is based on the assumption that the magnitude of under-reporting
is reasonably similar for similar drugs that share the same indication, country
and period of marketing (Pierfitte et al. 1999). The comparison of ADR report-
ing rates should therefore be restricted to drugs of the same category used for
the same indication. Factors that may bias the comparison of reporting rates
include differences in the length of time the drugs are on the market; differ-
ences in exposure populations; secular reporting trends; reporting variations;
diagnosis and prescription variation; and the publicity of an ADR. Statistical
corrections for year of marketing, secular trends of all-drug-all-adverse event re-
porting, and drug usage have been proposed (Tsong 1995). These adjustments
do not, however, cover all possible sources of bias. In particular do they not
erase concerns about differences in the magnitude of under-reporting for dif-
ferent drugs. Interpretation of reporting rates should therefore be conducted
with an understanding of their limitations. Differences in reporting rates do
not establish differences in incidence rates. They may, however, provide alerts
of drug hazards to be investigated by more rigorous pharmacoepidemiological
study designs.

The proportional reporting ratio (PRR) has been proposed as another statistical
approach for signal generation (Evans et al. 2001). Signals of drug hazards are
usually not based on one single ADR report, but on a series of similar suspected
reports. The ADR databases maintained by the regulatory authorities and the
WHO contain a large number of reports suitable for aggregation, as e.g. 2.5 million
reports in theWHOdatabase (Bate et al. 2002), over 2 million reports in theAdverse
Event Reporting System (AERS) database maintained by the FDA (Szarfman et al.
2002), andover 350,000 reports in theAdverseDrugReactionsOn-line Information
Tracking (ADROIT) database of the UK regulatory agency (Evans et al. 2001). The
PRR involves calculation of the proportions of specified reactions or groups of
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reactions for drugs of interest where the comparator is all other drugs in the
database. The PRR is the quotient of a|(a + c) divided by b|(b + d) derived from the
reported frequencies of all drug-event pairs in the database arranged in a two-by-
two table (Table 9.3).

Table 9.3. Calculation of the proportional reporting ratio (PRR) (a, b, c, d are absolute frequencies of

the according combination)

Drug of All other drugs
interest in the database

Event of interest a b

All other events c d

The PRR behaves in a similar fashion as the relative risk, i.e. the higher the
PRR, the greater the strength of the signal. Statistical association is tested using
a chi-squared test on 1 degree of freedom for the null hypothesis of independence.
Signals can then be identified based on the PRR, the value of the chi-squared test,
and the absolute number of reports. In a proof-of-concept study, Evans et al. (2001)
definedasignal asaPRRvalueofat least2, a valueof chi-squared testof at least 4 and
aminimumof3cases.Using thesecriteriaon theUKADROITdatabase for 15newly
marketed drugs, they identified 481 potential signals, 339 (70%) of which were
recognised ADR, 62 (13%) were considered to be related to the underlying disease
and 80 (17%) were signals requiring further evaluation. Statistical approaches
such as calculation of PRRs are not a substitute for a detailed ADR review, but
they may aid in the decision on which series of cases should be investigated
next. Similarly, as already mentioned for reporting rates, the PRR may be affected
by differential ADR reporting related to notoriety, surveillance and market size
effects. A PRR above 1 may therefore just indicate a higher reporting of a possible
reaction under a drug, but not necessarily a differential occurrence (Moore et al.
2003). Recently, some modified statistical approaches to ADR data have been
proposed for signal generation (Bate et al. 1998; Szarfman et al. 2002). These
more complex statistical approaches are, like the PRR, based on a comparison
of observed versus expected frequencies of adverse events under a particular
drug, but they differ in the way they relate all drug-event combinations in the
database to each other and in the use of Bayesian versus frequentist statistical
models.

Sources of Data
in Pharmacoepidemiological Research 9.4

A great number of pharmacoepidemiology studies are being conducted as field
studies, with data being collected for the specific hypothesis under study. These
studies are sometimes conducted in an international setting to increase the number
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of cases and to provide more timely results (Spitzer et al. 1996; Abenhaim et al.
1996; Anonymous 1995b, 1986). Increasingly, already existing data sources are
being used for pharmacoepidemiological research. Existing data sources include
multipurpose cohort studies or large health databases. Studies utilizing such data
can be conducted more quickly and are less expensive than field studies, since the
data have already been collected.

Multipurpose Cohorts9.4.1

Multipurpose cohorts are designed to investigate many different research hypothe-
ses. Their study population usually consists of a subset of a defined population
that has not been assembled by a specific exposure, but by other factors. For
example, in the US Nurses’ Health Studies, study participants were defined by
age, female gender and profession (Nurses’ Health Study I: 121,700 female nurses
aged 30 to 55 years at baseline in 1976; Nurses’ Health Study II: 116,671 female
nurses aged 25 to 42 years at baseline in 1989). If a multipurpose cohort is used
to investigate an association between a specific drug exposure and a disease, its
cohort members will usually have sufficient variability in their exposure status for
the drug to be investigated: they may currently be exposed or non-exposed, they
may be exposed to different doses of the drug, they may have been exposed in the
past or they may be exposed in the future. If, in addition, disease occurrence and
relevant confounder information has been ascertained, the multipurpose cohort
data may be used to investigate a specific pharmacoepidemiological hypothesis.
The US Nurses’ Health Studies have been extensively used for pharmacoepidemi-
ology research questions. Examples include the association between nonsteroidal
anti-inflammatory drugs and risk of Parkinson’s disease (Chen et al. 2003), use
of estrogens and progestins and risk of breast cancer in postmenopausal women
(Colditz et al. 1995), postmenopausal estrogen and progestin use and risk of cardio-
vascular disease (Grodstein et al. 1996), oral contraceptives and the risk of multiple
sclerosis (Hernan et al. 2000), aspirin, other nonsteroidal drugs and risk of ovarian
cancer (Fairfield et al. 2002), calcium intake and risk of colon cancer (Wu et al.
2002) and many more associations (Grodstein et al. 1998; Hee and Grodstein 2003;
Hernandez-Avila et al. 1990; Weintraub et al. 2002). Other multipurpose cohorts
that have been less frequently used for pharmacoepidemiological research include
the Health Professionals Follow-up Study (Giovannucci et al. 1994; Chen et al.
2003; Wu et al. 2002); the National Health and Nutrition Examination Survey I
(NHANES) epidemiologic follow-up study (Lando et al. 1999; Funkhouser and
Sharp 1995); the Framingham cohort study (Worzala et al. 2001; Abascal et al. 1998;
Kiel et al. 1987; Felson et al. 1991); and the Rotterdam Study (Schoofs et al. 2003;
Beiderbeck-Noll et al. 2003; Feenstra et al. 2002).

Record Linkage Studies9.4.2

Largehealthdatabaseshave emergedas another importantdata source forpharma-
coepidemiology research. In the United States and Canada, administrative health
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databases have been set up for the administration of reimbursement payments to
health care providers in nationally funded health care systems or managed care
organizations. In the United Kingdom, Scotland and some other countries, large
health databases consist of data entered by general practitioners (GP) into their
practice computers.

Administrative Databases in the US and Canada
These databases usually consist of patient-level information from two or more
separate files which can be linked via a unique patient identifier contained in each
file. The unique patient identifier often consists of the social security number of the
patient which is “scrambled” to ensure patient confidentiality. Information con-
tained in the different files usually consists of demographic patient information;
information on drug dispensations from pharmacies; information on hospitalisa-
tions; and information on ambulatory physician visits (Fig. 9.1). Through record
linkage, person-based longitudinal files can be created for particular research
questions. In some databases, record linkage is possible with cancer registries or
birth malformation registries to investigate hypotheses of drug carcinogenicity or
teratogenicity. Researchers usually have to submit a study protocol for review by
an ethics committee and they only receive subsets of the files which are extracted to
investigate the particular research hypothesis. Fees are charged for the time needed
to extract the necessary data from the entire database. All statistical analyses are
done on the anonymized data.

Figure 9.1. Record linkage in administrative health databases

A considerable number of administrative databases in the US and Canada are
now available for pharmacoepidemiology research. A brief overview of some of
these databases is given in Table 9.4. More detailed information on these databases
can be found in the textbook “Pharmacoepidemiology” by Strom (2000).

Saskatchewan’s Health Databases have been used extensively for pharmacoepi-
demiological studies. These databases will be used to illustrate which information
may be expected in an administrative healthcare database (Table 9.5, adapted
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Table 9.4. Examples of administrative health databases in the US and Canada

Database Characteristics Eligible Drug
population dispensations

since

Saskatchewan’s Health Databases, Provincial health 1 million 1975
Saskatchewan, Canada plan

RAMQ database, Provincial health 750,000

Quebec, Canada plan for the elderly

Group Health Cooperative, HMO 460,000 1977
Washington, US

Kaiser Permanente, HMO 2.8 million 1994
Northern California, US (from all

pharmacies)

Kaiser Permanente HMO 430,000 1986
Northwest Division, US

Harvard Pilgrim Health Care, HMO 1.1 million
New England, US

Tennessee Medicaid database, US Health insurance 1.4 million 1977
for recipients

of social welfare

New Jersey Medicaid Database Health insurance 700,000 1980
for recipients

of social welfare

HMO = Health Maintenance Organizations

from http:||www.health.gov.sk.ca/mc_dp_phb_infodoc.pdf). Health Databases in
Saskatchewan are based on the universal health insurance programme in this
Canadian Province. Differently from the Medicaid program, there is no eligibil-
ity distinction based on socio-economic status. Record linkage is possible with
the province’s cancer registry. Medical records in hospitals are accessible upon
approval from individual district health boards and affiliated facilities. Physician
records may also be accessed for specific studies. A wide range of conditions has
been validated by hospital chart review, including rheumatoid arthritis (Tennis
et al. 1993), hip fractures (Ray et al. 1989), gastrointestinal bleeding (Raiford et al.
1996), asthma-related conditions (Spitzer et al. 1992) and others.

Physician-based Databases
The General Practice Research Database (GPRD) is a large physician-based com-
puterized database of anonymized longitudinal patient records from hundreds of
general practices in the UK, containing more than 35 million patient years of data.
Currently, information is collected on approximately 3 million patients, equiva-
lent to approximately 5% of the UK population. The database was created in June
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Table 9.5. Information contained in different files of Health Databases in Saskatchewan

Population registry Prescription drug Hospital separation1 Physician services
database database database

• Name Patient information Patient information Patient information
• HSN2 • HSN2 • HSN2 • HSN2

• Sex • Sex • Sex • Age
• Marital status • Year of birth • Month and year • Sex
• Date of birth • Designation of special of birth • Location of
• Date of death status3 Diagnostic and residence

(if applicable) Drug information treatment information • Indicator for
• Mailing address • Pharmacologic- • Up to 3 discharge registered Indian
• Location code therapeutic diagnoses (4-digit status
• If recipient of classification ICD-9) Physician information

Saskatchewan • Drug identification • Up to 3 procedures • Physician specialty
welfare plan number (4-digit CCP4) • Referring physician

• Dates of • Active ingredient • Accident code (ICD-9 • Clinic
coverage number of drug external cause code) • Age
initiation and • Generic and brand • Other • Sex
termination names • Admission date • Place and year

• Strength and dosage • Discharge date of graduation
forms • Level of care codes • Practice type5

• Manufacturer of drug • Length of stay • Diagnostic and
• Date dispensed • Admission and service information
• Quantity dispensed separation types • Date of service
• “No substitution” • Case mix group • Type of service

indicator, if applicable • Resource intensity • Primary diagnosis
Prescriber information weight (3-digit ICD-9 code)
• Prescriber identification • Attending physician • Location of service

number • Attending surgeon (e.g., office,
Dispensing pharmacy (if applicable) inpatient,
information • Hospital identification outpatient, home,
• Pharmacy identification number other)

number • Billing information
Cost information (amount paid, date
• Unit cost of drug of payment)

materials
• Dispensing fee
• Markup
• Consumer share

of total cost
• Drug plan share

of total cost
• Total cost

1 separation defined as discharge, transfer, or death of an inpatient
2 health services number 3 e.g. welfare recipient, palliative care registrant, long-term care home resident
4 CCP: Canadian Classification of Diagnostic, Therapeutic, and Surgical Procedures
5 solo, association, rural, urban

1987 as the Value Added Medical Products (VAMP) research databank. VAMP pro-
vided practice computers and general practice software to general practitioners
(GPs) and, in return, GPs consented to undertake data quality training and to con-
tribute anonymized data to a central database for subsequent use in public health
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research. During the 1990s, VAMP research databank underwent several organi-
sational and management changes. The database was renamed General Practice
Research Database (GPRD) in 1994 when it was donated to the UK Department of
Health. In 1999, management responsibility for the database was transferred to the
UK Medicines Control Agency which became part of the newly created Medicines
and Healthcare Products Regulatory Agency (MHRA). The database has been used
extensively for pharmacoepidemiology and clinical epidemiology research. A bib-
liography of studies using GPRD data can be found on the webpage of the GPRD
under www.gprd.com.

The database includes the following information: Demographics, including age
and gender of patient (information on race is not collected); medical diagnosis,
including comments; all prescriptions; events leading to withdrawal of a drug or
treatment; referrals to hospitals; treatment outcomes, including hospital discharge
reports where patients are referred to hospital for treatment; and miscellaneous
patient information e.g. smoking status, height, weight, immunisations, and for
a growing number of patients also lab results. Validation studies of the GPRD have
shown that the recording of medical data into GPs’ computers is almost complete
(Garcia Rodriguez and Perez 1998).

Besides the GPRD, other physician-based databases are the MediPlus databases
from IMS Health. The MediPlus databases are available in different countries and,
like the GPRD, contain anonymized longitudinal patient records. Depending on the
particularities of the respective health care system, different data are available for
research. A description of the German IMS Disease Analyzer-MediPlus database
can be found in an article by Dietlein and Schroder-Bernhardi (2002). The IMS
databases have not been used extensively for pharmacoepidemiology research.
Studies which examine data validity and comprehensiveness are mostly lacking.
The German IMS Disease Analyzer-MediPlus database does not contain patient
hospitalisation data. It also lacks diagnostic or treatment information from all
physician specialists, since it is usually based on one panel of doctors only, e.g.
on a panel of GPs and internists, or gynecologists, or urologists etc. The database
derived from the panel of gynecologists would therefore not include information
on ambulatory physician contacts in GPs’ or internists’ offices and vice versa.
The German IMS Disease Analyzer-Mediplus database has been used for several
drug utilization studies, e.g. on the dosing of cava-cava extracts (Dietlein and
Schroder-Bernhardi 2003); whether hospitals influence the prescribing behavior
of general practitioners (Schroder-Bernhardi and Dietlein 2002); or how doctors
treat Helicobacter pylori infections (Perez et al. 2002) etc. In the UK, the MediPlus
database contains similar patient information as the GPRD database.

Advantages and Limitations9.4.3

Large health databases offer several important advantages:
1. They are usually large, with patient numbers ranging from several hundred

thousand to well over several millions. This makes it possible to study rare
adverse events of pharmaceuticals in large populations.
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2. Medication information is usually more accurate than self-recorded exposure
information. Drug histories obtained from patients have limited reliability
particularly for drugs that are used only intermittently and not on a regular
basis (Kelly et al. 1990). Database information probably represents the most
accurate information on drug utilization that can be obtained in elderly pa-
tients (Tamblyn et al. 1995). In drug dispensation databases, fairly accurate
information can be obtained on drug intake that occurred a long time ago.
Exposure information is available also for patients who are deceased or too
ill to answer questions, without having to rely on proxy information. There
is no potential for recall or interviewer bias which is always of concern with
primary data collection.

3. Because the data are collected in an ongoing manner as a by-product of health
care delivery, epidemiological studies can be undertaken in reasonable time
and at relatively low cost. The study variables are already available in com-
puterized form and need not be obtained in time-consuming and expensive
processes of data collection.

4. Some databases provide population-based data which cover the entire popula-
tionofageographical regionandare thus fully representativeof thepopulation.
Database studies do not require an informed patient consent and are therefore
less prone to selection bias which may be a consequence of a low response rate
in the study population.

Use of computerized databases for pharmacoepidemiology research is, however,
not undisputed (Shapiro 1989) and there are a number of important limitations.
A major concern is related to the validity of the diagnostic information contained
in the database. In administrative health databases, diseases are primarily coded
for billing and not for research purposes. There is no incentive for the health
care provider to use specific codes as e.g. “duodenal ulcer with bleeding” in-
stead of “upper gastrointestinal bleeding otherwise not specified”. Diseases are
often coded according to the International Classification of Diseases (ICD-9 or
ICD-10 coding schemes) and many different ICD-codes may be compatible with
the same disease process. A combination of several diagnostic codes into a sin-
gle “broader” code may therefore be necessary (Garbe et al. 1997, 1998a). Strom
and Carson (1990) have described this problem by stating that researchers us-
ing diagnostic codes in a computerized database must be “lumpers” rather than
“splitters”.

The validity of diagnostic coding also depends on the ability of a diagnostic code
to rather selectively represent the condition in question and therefore varies with
the condition. Strom conducted a validation study of ICD-9 coding of Stevens-
Johnson Syndrome in the COMPASS Medicaid database in the US (Strom et al.
1991). Records of 3.8 million patients in five US states were searched for ICD9-CM
code 695.1 which codes for Stevens-Johnson syndrome, but also for several other,
less serious conditions. In an expert medical record review, only 14.8% of patients
with ICD9-CM code 695.1 whose medical records could be reviewed were judged to
have Stevens-Johnson syndrome. Thus, studies of Stevens-Johnson-Syndrome in
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databases with ICD9-coding cannot be conducted without additional validation of
the diagnosis. Whenever possible, validity of disease coding should be quantified
for each condition studied.

Validation studies usually use the paper medical or pharmacy record as the
“gold standard”. Access to patient charts for validation purposes is often obtained
via the scrambled social security (patient identification) number. All personal-
identifying information is removed before copies of the charts are made available.
The validation study by Strom also illustrates another problem: Only 51% of the
medical records that were sought for in the study could actually be obtained (Strom
et al. 1991). The authors state several reasons why they did not obtain access to the
medical records: refusal of hospitals (30%); transcription errors (27%); translation
of ID-number not possible (17%), no location of medical record possible (22%);
other reasons (4%).

Administrative databases usually contain information on large numbers of pa-
tients, however, the amount of information per patient is limited:
1. Information about disease severity is mostly lacking and it may not be possible

to exclude confounding by disease severity. In some instances, it is possible to
construct an index of disease severity based on the patient’s pharmacotherapy
(Spitzer et al. 1992).

2. Relevant other confounder information for the association under study may
not be contained in the database, creating a potential for bias. For example,
most administrative databases do not contain information on smoking or
alcohol use (Friedman et al. 2000) or age at menopause and reproductive
history in women.

3. Administrative databases usually do not contain data on laboratory values or
clinical measurements, although, in some databases, linkage with laboratory
files has now become possible.

4. If relevant confounder information ismissingandadditionaldata collectionre-
quired, it will make a study considerably more expensive and time-consuming,
thereby diminishing some of the advantages connected with database research.
It has to be decided on a case-by-case basis whether the information contained
in a database is sufficient for the investigation of an association of interest
and how much time and cost would be incurred if additional data have to be
collected.

Although the medication information in databases is one of their major
strengths, it also has some limitations: Information on drugs bought over-the-
counter (OTC) and not prescribed by a physician is not available in the database;
the patient’s compliance with the prescription is unknown; in-hospital medi-
cation is usually not contained in the database; the prescribed daily dose is
not documented in most databases and the average daily dose has to be cal-
culated instead based on the duration of drug use and the quantity of drug
prescribed; the prescription file does not contain the indication for drug pre-
scribing, however, in many instances, this information may be deduced from
diagnostic coding in the ambulatory physician file; medication data will be trun-
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cated, if the database does not exist long enough or the database only includes
elderly subjects. Truncation will limit the study of cumulative drug toxicity.
Confounding by previous drug use may be avoided if a prior period of follow-
up in the database is defined and the risk is only investigated in new users
of the drug (Garbe et al. 1998b); many of the newest and|or most expensive
drugs may not be available for study, if they are not included on the drug
formulary.

Other important issues include whether the population contained in a database
is representative of the source population and stable over time. For example,
Saskatchewan Health Databases, which cover the population of the whole province
of Saskatchewan, consist of a representative and fairly stable database population
(Downey et al. 2003). In contrast, Medicaid Databases in the US are not repre-
sentative of the US population, since they only include social welfare recipients
and thereby over-represent children, females and non-whites in comparison with
the total US population (Strom and Carson 1990). The skewedness of Medicaid
Databases may not compromise the internal validity of a pharmacoepidemiol-
ogy study conducted with these databases, but it may be a serious threat to its
external validity, particularly when the data are being used for drug utilization
research. In Medicaid Databases, turnover of the database population is high due
to changing eligibility for Medicaid. Over a five-year time period, only 35% of
Michigan and 38% of Tennessee Medicaid enrollees were still in the system, with
loss of eligibility being greatest in children and young adults (Ray and Griffin
1989). High patient turnover may also make it difficult to locate patient files for
validation studies as has been reported in the study by Strom (Strom et al. 1991).
Data from health maintenance databases are also not fully representative of the
US population. Members of these organizations tend to be less frequently black
or poor and have higher educational achievements. Turnover in membership at
HMOs is usually less than in Medicaid databases (Saunders et al. 2000; Friedman
et al. 2000).

Methodological Approaches
for Pharmacoepidemiology Studies 9.5

The strategies employed to verify hypotheses on drug risks or benefits are sim-
ilar to those used in other fields of epidemiology. The case-control design is the
design of choice for the investigation of rare drug risks, particularly if multiple
countries are necessary to attain sufficient power, while the cohort approach is
preferably used to assess the risk of more frequent events or if more than one
outcome has to be considered simultaneously. The special nature of drug expo-
sure and the availability of existing databases in pharmacoepidemiology have
given rise to specific challenges and preferred solutions to estimate risk and
benefit.
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Case-Control Studies9.5.1

Field studies that employ a case-control design (cf. Chap. I.6 of this handbook) are
not common in the evaluation of the risks and benefits of prescribed drugs. Drugs
available over-the-counter without prescription are not recorded systematically in
computerized databases can therefore not be studied with linked databases. Thus
studies of drugs such as analgesics, vitamin supplements, anorexiants etc, can only
be studied by directly obtaining exposure information from subjects. With this
design, cases with the outcome under study are identified from a given population,
usually in hospitals or specialised clinics since they mostly involve serious out-
comes. The approach to select the controls varies across studies. The International
Agranulocytosis and Aplastic Anemia Study (IAAAS) that evaluated the effect
of different analgesics on the risks of agranulocytosis and aplastic anemia used
hospital-based controls (Anonymous 1986). The International Primary Pulmonary
Hypertension Study (IPPHS) of the risk of primary pulmonary hypertension as-
sociated with anorexiant agents used patients treated by the same physician as the
source of controls (Abenhaim et al. 1996). The Yale Hemorrhagic Stroke Study as-
sessing the risk of diet and cough|cold remedies containing phenypropalonamine
used population-based controls identified by random-digit dialling (Viscoli et al.
2001) (see also Chap. I.10 of this handbook). Finally, the Transnational study on
oral contraceptive risks used both hospital and population-based controls (Spitzer
et al. 1996). Such field studies that collect information from patients, physicians
or medical charts are the exception because of the resources, expense and time
required to complete the study.

Case-control studies using existing health databases are much more common.
Besides the usual concerns with case-control studies in general, some are specific
to studies conducted from databases. For example, the General Practice Research
Database (GPRD) was used to evaluate the impact of inhaled corticosteroids on the
risk of hip fracture (Hubbard et al. 2002). The entire GPRD was used to identify
16,341 cases of hip fracture and a random sample of 29,889 subjects selected as
controls. This design is attractive because of its efficiency in using only a sample of
subjects to estimate an effect for an entire population. Such an approach, however,
can be deceiving for specific diseases such as asthma because of the illusion of
large sample sizes. Indeed, all cases of hip fracture selected within a population
such as the GPRD suggests a very large sample size for the study, along with
the very large number of controls. However, in assessing the effect of inhaled
corticosteroids, a drug pertinent exclusively to the population of asthma or chronic
obstructive pulmonary disease (COPD) patients, a large proportion of the cases
and the controls are in fact irrelevant to the question at hand. Thus, for example,
for the GPRD case-control study of hip fracture risk, only 878 of the 16,341cases
and 1335 of the 29,889 controls were subjects with asthma or COPD (Hubbard
et al. 2002). With its 16,341 cases and 29,889 controls, the study appears at first
more powerful than the Quebec study, based on 3326 cases of hip fracture and
66,237 controls selected from the asthma|COPD population (Suissa et al. 2004).
In fact, the inference on the effect of inhaled corticosteroids is actually based on
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many fewer subjects than believed. This point is particularly relevant for studies
that find no significantly increased risk since, despite appearances, conclusions
are based on fewer numbers of cases and controls with respiratory disease and
thus lower power than expected. Furthermore, the estimate of effect may be biased
if the outcome of interest, in this instance fractures, is also associated with the
disease itself (asthma or COPD) and not only with the medications used to treat
these conditions. In this case, the bias due to the association with the disease can
only be eliminated by restricting the analyses to the population of patients who
have the disease (Suissa et al. 2004).

Another issue in such database case-control studies is the manner by which
controls are selected and particularly the index date for controls. In the GPRD
study of the impact of inhaled corticosteroids on the risk of hip fracture, con-
trols were matched to cases on age, sex, general practice and date of entry into
the database (Hubbard et al. 2002). While the index date from which exposure
was assessed was the fracture date for the cases, the index date for the con-
trols was the same date as the matched case. To allocate such a date, one must
be assured that the control is at risk on that date. Indeed, there could be con-
trol subjects with the same age, sex, general practice and date of entry, but
who are dead or not in the practice at the time of the matched case’s fracture.
These will be necessarily currently “unexposed”, which could bias upward the rate
ratio.

Cohort Studies 9.5.2

Observational database studies that use a cohort design (cf. Chap. I.5 of this
handbook) differ primarily with respect to their definition of cohort entry or time
zero. The Saskatchewan asthma cohorts have defined asthma as well as its onset,
by the dispensing of medications used to treat the condition, without the use of
diagnostic codes from physicians (Blais et al. 1998b; Suissa et al. 2002). Patients
were considered to have asthma as of the first time they received three prescriptions
for an asthma medication, including bronchodilators, inhaled steroids and other
asthma drugs, on at least two different dates within a one-year period. The date of
the third prescription defined the onset and diagnosis of asthma and patients were
then followed from that point on for the occurrence of asthma outcomes. Such
a definition is not entirely accurate for two reasons: subjects with asthma may be
hospitalized at their initial presentation and medications for asthma are used for
other conditions such as COPD. In an attempt to exclude patients with COPD, age
criteria were used, including only patients to the age of 44, and also excluding oral
corticosteroids as one of the defining drugs for asthma.

Alternatively, cohort entry may be defined by calendar time. For example, a co-
hort formed from a health maintenance organization in eastern Massachusetts
defined cohort entry as October 1, 1991 (Donahue et al. 1997; Adams et al. 2002).
This cohort of 16,941 asthma patients was followed from this date or registration
in the insurance plan to September 30th 1994. Such calendar time based defini-
tions of cohort entry will inherently define cohorts with patients who have varying
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durations of disease at time zero (cohort entry). Such a “prevalent” cohort, to be
distinguished from an “incident” cohort defined by patients with new onset of
asthma, can be subject to serious biases when evaluating the association between
drug use and asthma outcomes. Indeed, if the risk of the asthma outcome and of
being dispensed the drug under study are both associated with the duration of
asthma, such prevalent cohorts will produce biased estimates of this association
unless the duration of the condition can somehow be adjusted for. A source of
selection bias for such prevalent cohorts is that the treatment itself may change
because of prior events that are not included in the period of observation. For
example, if a patient was hospitalized for asthma in the past and, as a result,
was prescribed inhaled corticosteroids, such a patient may be at increased risk
of a further hospitalization and of being dispensed inhaled corticosteroids subse-
quently. For such studies to be valid, information on the history of asthma prior
to cohort entry, which includes the duration of the disease and prior outcomes
such as asthma hospitalizations as well as prior drug exposures, are required for
purpose of adjustment or for testing for effect-modification. A frequent problem
with computerized database studies is that these historical data on the duration
and history of the disease before cohort entry are rarely available.

The third type of cohort defines cohort entry by a specific clinical event, such
as hospitalization, emergency room visit or a physician visit. Here again, these
cohorts can be incident or prevalent if these cohort defining events are either the
first one ever or rather the first to occur after a certain date. An example of this
approach is a study fromtheSaskatchewandatabasesof asthmapatients,with entry
defined by the first time they received three prescriptions for an asthma medication
within a one-year period, after a two-year span with no asthma medications. The
study cohort consisted of all subjects hospitalized for asthma for the first time after
cohort entry and followed until readmission. The use of inhaled corticosteroids
subsequent to the first hospitalization was evaluated with respect to the rate of
readmission (Blais et al. 1998a). A similar cohort definition was used with the
Ontario database, although this cohort was based on elderly COPD patients and
the COPD hospitalisation defining cohort entry was not necessarily the first one to
occur in their disease (Sin and Tu 2001a).

Nested Case-Control Studies9.5.3

The complexity in data analysis is greater in the field of database studies because
of the technical challenges presented by their large size. Indeed, the asthma co-
hort formed from the health maintenance organization in eastern Massachusetts
included 742 asthma hospitalisations occurring during the three year follow-up
period (Donahue et al. 1997). With over 16,000 patients in the cohort, an analysis
based on the Cox proportional hazards model with time-dependent exposure (cf.
Chap. II.4 of this handbook) would require 742 risk sets (all patients in the cohort
on the day of hospitalization) each containing approximately 16,000 observations
with information on exposure and confounding factors measured at the point in
time when the case occurred. Such an analysis would therefore require to generate
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close to 12 million observations (742 × 16,000), each with dozens of variables.
Another example is the cohort study that included over 22,000 elderly patients
hospitalised for COPD in Ontario, Canada, of whom around 8000 either died or
were re-admitted for COPD (Sin and Tu 2001a). A proper time-dependent analysis
could include up to 140 million observations, creating a serious technical chal-
lenge in statistical computing. As a result of this complexity, the temptation to
analyse these cohorts with exposures that are assumed not to change over time
is attractive but, as described below, can cause severe immortal time bias (see
Sect. 9.6.1).

Rather than analyzing such cohort studies with proper but complex time-
dependent techniques, methods based on sampling can produce practically the
same results at greater efficiency. The nested case-control design (cf. Chap. I.7
of this handbook), nested within the cohort, is precisely such an approach (Su-
issa 2000; Essebag et al. 2003). It is based on using data on all the cases with
the study outcome that occur during cohort follow-up. These represent the case-
series. A random sample of person-moments, namely time points during the
subjects’ follow-up, is then selected from all person-moments in the cohort to
provide the control group for the nested case-control approach. For the cases, the
index date, on which the timing of the exposure to the drug of interest is based,
is simply the time at which the outcome occurred. For controls, the index date is
the random person-moment(s) selected for that subject during follow-up, or the
same point in time of the corresponding case (Suissa 2000). Because of the highly
variable nature of drug exposure over time, it is important that person-moments
are selected properly from all person-moments of follow-up for all members of
the cohort. Thus, a subject may be selected more than once at different moments
of their follow-up, and particularly person-moments preceding the index date of
a case are valid control person-moments. For practical reasons and to conform to
the Cox proportional hazards model, person-moments are usually selected from
the risk set of each case. This approach involves identifying, for each case, all
subjects who are at risk of the event at the time that the case occurred (the risk
set) and controls are selected from this risk set (incidence density sampling, cf.
Chaps. I.6 and I.7 of this handbook). Part of the simplicity of this approach is
that all subjects in a risk set are allocated the same index date as the set-defining
case.

The advantage of this approach is the direct relationship between the Cox
proportional hazard model with time-dependent exposure and the conditional
logistic regression analysis (cf. Chap. II.3 of this handbook) that is used to analyse
such nested case-control data. Thus, instead of using exposure data on all members
of the risk set, as the Cox model would require, data on only a few subjects (usually 4
or 10 controls per case) are sufficient to provide a very efficient estimator of
the rate ratio. Such ease of data analysis with the large size databases that are
used in pharmacoepidemiology is crucial. As an example, with the asthma cohort
study of Donahue, if 10 controls per case were used for each of the 742 cases, the
analysiswouldbebasedon 7420 observations insteadof the12 millionobservations
necessary with the Cox model analysis.



1246 Edeltraut Garbe, Samy Suissa

In studying the effectiveness of drug treatment, one of the major problems
is confounding by indication. The nested case-control approach becomes more
useful, as it allows cases and controls to be matched on several measures of disease
severity. Thus, the effect of a drug can be isolated, independently of the effects
of the severity markers. Such a matched nested case-control study was used to
evaluate the effectiveness of inhaled corticosteroids on asthma death (Suissa et al.
2000a). In that study, cases were identified from a cohort of over 30,000 asthma
patients, from which 66 died of asthma. The Cox analysis would have required
almost 2 million observations to be processed. For each case, however, the only
members of the risk sets that were identified as controls were those with the
same disease severity characteristics as the case, namely: prior hospitalization
for asthma, oral corticosteroid use, number of canisters of beta-agonists, use of
theophylline and nebulized beta-agonists. Thus, cases and controls were similar
on all these severity markers, expect with respect to inhaled corticosteroids. As
a result, the effect of inhaled corticosteroids could be assessed independently of
these potential confounding factors.

Case-Crossover Design9.5.4

Pharmacoepidemiology is frequently faced with the assessment of the risk of
rare acute adverse events resulting from transient drug effects. Although the
case-control approach can be used, the acuteness of the adverse event and the
length of the drug’s effect, as well as difficulties in determining the timing of drug
exposure, induce uncertainty about the proper selection of controls. Moreover,
confounding by indication may often be a problematic issue in such a design.
In this situation, within-subject approaches have been proposed, including the
case-crossover design and its extension the case-time-control design which was
devised to counter time trend biases. The principle is that, when studying tran-
sient drug effects and acute outcome events, the best representatives of the source
population that produced the cases are the cases themselves (cf. Chap. I.7 of this
handbook).

To carry out a case-crossover study, three critical points must be considered.
First, the study must necessarily be dealing with an acute adverse event which is
alleged to be the result of a transient drug effect. Thus, drugs with regular patterns
of use which vary only minimally between and within individuals are not easily
amenable to this design. Nor are latent adverse events which only occur long after
exposure. Second, since a transient effect is under study, the effect period (or time
window of effect) must be precisely determined. An incorrect specification of this
time window can have important repercussions on the risk estimate. Third, one
must obtain reliable data on the usual pattern of drug exposure for each case, over
a sufficiently long period of time.

The case-crossover study is simply a crossover study in the cases only. The
subjects alternate at varying frequencies between exposure and non-exposure to
the drug of interest, until the adverse event occurs, which happens for all subjects in
the study, since all are cases by definition. With respect to the timing of the adverse
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event, each case is investigated to determine whether exposure occurred within the
predetermined effect period. In the VACCIMUS study of hepatitis B vaccination
and the risk of a multiple sclerosis relapse, spontaneous reports indicated that
such an effect could occur within two months of the vaccination (Confavreux et al.
2001). Thus, the case-crossover design used as the risk-period the 2-month period
prior to the onset of the relapse and any vaccination in this period to determine
exposure status. To obtain control exposure, data on the average drug use pattern
are necessary to determine the typical probability of exposure to the time window
of effect. This is done by obtaining data for a sufficiently stable period of time
prior to time of the event occurrence and its exposure period. For the VACCIMUS
study, there were four control periods consisting of the four 2-month periods
prior to the 2-month risk period. The estimation of the odds ratio is based on any
appropriate technique for matched data (4 controls per case), such as conditional
logistic regression.

This design has been used in pharmacoepidemiology (Fagot et al. 2001; Neutel
et al. 2002; Etienney et al. 2003; Ki et al. 2003; Confavreux et al. 2001; Barbone et al.
1998; Sturkenboom et al. 1995).

Case-Time-Control Designs 9.5.5

One of the limitations of the case-crossover design, particularly in the context of
drug exposures, is that the exposure pattern may have changed over time, and
particularly between the control and risk periods. For example, a rapid increase
in vaccination rates over time during the span of the case ascertainment for the
VACCIMUS study, particularly if this span had been short, would have biased
the estimate of the odds ratio. Indeed, this estimate would also include the effect
of the natural time trend in exposure. If control subjects are available, the case-
time-control design can be used to separate the time effect from the drug effect
(Suissa 1995). In simple terms, the time effect is estimated from the case-crossover
odds ratio of exposure among the control subjects. The net effect of exposure on
event occurrence is then computed by dividing the combined time and drug effect
estimated from the case-crossover odds ratio of exposure among the case subjects
by the time effect (cf. Chap. I.7 of this handbook).

The approach is illustrated with data from the Saskatchewan Asthma Epidemi-
ologic Project, a study conducted to investigate the risks associated with the use of
inhaledβ-agonists in the treatmentof asthma.Usingdatabases fromSaskatchewan,
Canada, a cohort of 12,301 asthmatics was followed during 1980–87. All 129 cases of
fatal or near-fatal asthma and 655 controls were selected. The amount of β-agonist
used in the year prior to the index date, namely high (more than 12 canisters
per year) compared with low (12 or less canisters), was found to be associated
to the adverse event. Of the 129 cases, 93 (72%) were high users of β-agonists,
compared with 241 (37%) of the 655 controls. The resulting crude odds ratio for
high β-agonist use is 4.4 (95% confidence interval (CI): 2.9–6.7). Adjustment for all
available markers of severity, such as oral corticosteroids and prior asthma hospi-
talizations as confounding factors, lowers the odds-ratio to 3.1 (95% CI: 1.8–5.4),
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the “best” estimate one can derive from these case-control data using conventional
tools.

The use of inhaled β-agonists, however, is known to increase with asthma
severity which also increases the risk of fatal or near-fatal asthma. It is therefore not
possible to separate the effects of the drug to the risk from that of disease severity,
so that a within-subject design may be preferable. To apply the case-time-control
design, exposure to β-agonists was obtained for the one-year current-period and
theone-year reference-period.Among the 129 cases, 29 werecurrentlyhighusersof
β-agonists and were low users in the reference period, while 9 cases were currently
low users of β-agonists and were high users previously. The case-crossover estimate
of the odds ratio is thus 29|9 (OR 3.2; 95% CI:1.5–6.8). However, the high use of
β-agonists may have increased naturally over time, so that the control subjects were
used to estimate this effect. Among the 655 controls, 65 were currently high users
of β-agonists and were low users in the reference period, while 25 were currently
low users of β-agonists and were high users previously, for an odds ratio of the
time trend of 65|25 (OR 2.6; 95% CI:1.6–4.1) . The case-time-control odds ratio,
using these discordant pair frequencies for a paired-matched analysis, is given by
(29|9)|(65|25) = 1.2 (95% CI: 0.5–3.0). This estimate, which excludes the effect of
unmeasured confounding by disease severity, indicates a minimal risk for these
drugs.

The case-time-control approach provides a useful complement to the case-
crossover design when the probability of drug exposure is not stable over time,
particularly between the control and risk periods (Donnan and Wang 2001; Her-
nandez-Diaz et al. 2003). However, its validity is subject to several assumptions,
including the homogeneity of the odds-ratio across subjects (Greenland 1996;
Suissa 1998).

Some Methodological Challenges9.6

Immortal Time Bias in Cohort Studies9.6.1

A challenge of cohort studies is in their data analysis. Since drug therapy, the
exposureof interest, oftenchangesover time,dataanalysismust take thisvariability
into account. However, such variability in exposure over time is not simple to
incorporate in the analysis. Due to the complexity of such analyses, several of
the studies mentioned above employed a time-fixed definition of exposure, by
invoking the principle of intention-to-treat analysis. This principle, borrowed from
randomised controlled trials, is based on the premise that subjects are exposed to
the drug under study immediately at the start of follow-up. This information is
unknown in database studies.

To emulate randomized controlled studies in the context of cohort studies, some
authors have looked forward after cohort entry for the first prescription of the drug
under study. In this way, a subject who was dispensed a prescription for such drug
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was considered exposed and a subject who did not was considered unexposed.
Different time periods of exposure assessment were used. For instance, in the
context of COPD, a prescription for inhaled corticosteroids during the period of
90 days after cohort entry was used to define exposure (Sin and Tu 2001b). In other
studies, periods of one year and three years were used to consider subjects exposed
to inhaled corticosteroids in assessing their impact on mortality (Sin and Tu 2001a;
Sin and Man 2002). This approach, however, leads to immortal time bias, a major
source of distortion in the rate ratio estimate (Suissa 2003).

Immortal time bias arises from the introduction of immortal time in defining
exposure by looking forward after cohort entry. Indeed, if exposed subjects were
classified as such because they were observed to have been dispensed their first
prescription for an inhaled corticosteroid 80 days after cohort entry, they neces-
sarily had to be alive on day 80. Therefore, this 80-day period is immortal. While
some exposed subjects will have very short immortal time periods (a day or two),
others can have very long immortal periods. On the other hand, unexposed sub-
jects do not have any immortal time, and in particular the subjects who die soon
after cohort entry, with too little time to receive the drug under study. Therefore,
the exposed subjects will have a major survival advantage over their unexposed
counterparts because they are guaranteed to survive at least until their drug was
dispensed.

This generation of immortal time in exposed subjects, but not in the unexposed
subjects, causes an underestimation of the rate of the outcome among the exposed
subjects. This underestimation results from the fact that the outcome rate in the
exposed is actually composed of two rates. The first is the true rate, based on the
person-time cumulated after the date of drug dispensing that defines exposure
(post-Rx), while the second is that based on the person-time cumulated from
cohort entry until the date of drug dispensing that defines exposure (pre-Rx). The
first rate will therefore be computed by dividing all outcome events in that group
by the first rate person-time, while the second rate will by definition divide zero
events by the second rate person-time. For example, the rate in the exposed

rate = deaths|total person-years

consists in fact of two rates:

rate pre-Rx = 0|person-years pre-Rx

and

rate post-RX = deaths|person-years post-Rx .

The zero component of the rate will necessarily bring down the exposed rate. Since
there is no such phenomenon in the unexposed group, the computation of the
rate ratio will systematically produce a value lower than the true value because of
the underestimation of the exposed rate. In particular, if the drug under study is
altogether unrelated to the outcome, so that the true rate ratio is 1, this approach
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will produce rate ratios lower than 1, thus creating an appearance of effectiveness
for the drug.

The immortal time in exposed subjects also causes an overestimation of the rate
of the outcome among the unexposed subjects. This is because the zero component
of the rate in the exposed group should in fact be classified in the unexposed group.
Indeed, subjects are in fact unexposed to the drug under study between cohort
entry until the date of drug dispensing that defines exposure. They only start to be
exposed after the drug is dispensed. Thus, the zero rate should in fact be combined
with the unexposed rate.

Immortal time bias is thus the result of simplistic yet improper exposure defi-
nitions and analyses that cause serious misclassification of exposure and outcome
events. This situation is created by using an emulation of the randomised con-
trolled trial to simplify the analysis of complex time-varying drug exposure data.
However, such studies do not lend themselves to such simple paradigms. Instead,
time-dependent methods for analysing risks, such as the Cox proportional hazard
models with time-dependent exposures or nested case-control designs, must be
used to account for complex changes in drug exposure and confounders over time
(Suissa 2003, 2004; Samet 2003).

Confounding by Indication9.6.2

The indication for which a medication is given may act as a confounder in ob-
servational studies, particularly when assessing the effectiveness of a drug (Slone
et al. 1979; Horwitz and Feinstein 1981; Strom et al. 1983). Such confounding by
indication will be present if the indication for the prescription of the medica-
tion under study is also a determinant of the outcome of interest. Generally,
a drug is more likely to be prescribed to a patient with more severe disease who,
in turn, is more likely to incur an adverse outcome of the disease. Thus, pa-
tients prescribed the drug under study will have higher rates of outcome than
the subjects not prescribed the drug. Such an appearance of lack of effective-
ness could simply be a reflection of the effect of indication, in this case disease
severity.

Confounding by indication is often difficult to control, primarily because the
precise reason for prescribing is rarely measured. This may preclude the study of
drug effectiveness with observational designs (Miettinen 1983). Yet, a clinical trial
to answer this question would require the follow-up of thousands of patients over
a long time, which may simply be unfeasible. Observational studies become the
tool of choice as long as validity of the study is not compromised by intractable
confounding by indication (Miettinen 1983). If such an observational study pro-
duces lower rates of outcome for the drug under study, one may conclude that
these medications are effective. On the other hand, if users of the drug are found
to be at equal or increased risk of the outcome relative to nonusers, it would not
be possible to conclude on the absence of a protective effect of these medications.

This problem of confounding by indication is compounded with the use of
computerized databases, because of their lack of information on important con-
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founders (Shapiro 1989). The absence of information on drug indication precludes
the control of confounding by adjustment in the analysis. Thus, control for con-
founding by indication must be tackled at the design level. One approach is to
restrict the study to a group of patients homogeneous with respect to disease
severity. For example, in a study of the effectiveness of inhaled corticosteroids
in asthma, Blais et al. (1998a) identified a point in time at which users and
nonusers of inhaled corticosteroids would have a similar level of asthma sever-
ity. The study was thus restricted to patients who had just been hospitalized
for asthma, with the discharge date taken as time zero, which would greatly re-
duce heterogeneity in disease severity. The rate of a readmission for asthma was
then assessed according to the use of inhaled corticosteroids after this initial
hospitalization.

Another approach is to compare two medications prescribed for the same in-
dication (Strom et al. 1983, 1984). In this case, relative effectiveness as opposed to
absolute effectiveness will be evaluated. An example of this approach was also used
in a study of the effectiveness of early use of inhaled corticosteroids in asthma. Blais
et al. (1998b) identified a cohort of newly treated asthma patients and compared
regular users of inhaled corticosteroids with regular users of either anti-allergic
agents or theophylline and matched for the duration of asthma at the initiation of
therapy.

Depletion of Susceptibles 9.6.3

In general, the risk of an ADR associated with drug use does not remain constant
over time, and can change in different ways from the start of its use. The risk may
increase with cumulative drug exposure (e.g. the risk of cardiomyopathy associated
with cumulative anthracycline exposure or the risk of cataract associated with
continued glucocorticoid use), but it may also decrease after an initial period of
sharp increased risk. Therefore, in using a case-control study that evaluates the
effect of current use of a drug, past history of use of a drug or a class of drugs must
be accounted for as it may modify the risk of an ADR associated with current use
of the drug.

A decreasing risk after an initial period of increased risk is probably more im-
portant than cumulative drug toxicity and may, at the population level, lead to
a phenomenon which has been described as “depletion of susceptibles”: patients
who remain on the drug are those who can tolerate it while those who are suscep-
tible to adverse drug reactions will stop the drug and thereby select themselves
out of the exposed cohort (Moride and Abenhaim 1994). Such a pattern has been
demonstrated for the gastrointestinal toxicity of nonsteroidal antiinflammatory
drugs (NSAIDS). It has been shown that the risk of upper gastrointestinal bleeding
(UGIB) was highest after the third NSAID prescription and thereafter decreasing
(Carson et al. 1987). Moride and Abenhaim (1994) empirically showed a depletion
of susceptibles effect in a hospital-based case-control study of NSAIDS and the
risk of UGIB. They investigated the risk of UGIB associated with recent NSAID use
stratified by past or no past NSAID use. The risk of UGIB was significantly greater



1252 Edeltraut Garbe, Samy Suissa

for those patients who used NSAIDS for the first time in 3 years (OR = 22.7) than
for those who had used these drugs before (OR = 3.0) (Yola and Lucien 1994).

The enormous importance of accounting for changes in drug risk over time in
thedesignand|or analysis ofpharmacoepidemiology studieswashighlighted in the
debateabout the riskof venous thromboembolism(VTE)associatedwith secondor
third generation oral contraceptives (OC). Several pharmacoepidemiology studies
published in 1995|1996 reported an increased risk of VTE among users of newer
OC preparations compared with those of older OC preparations (Bloemenkamp
et al. 1995; Anonymous 1995a; Spitzer et al. 1996; Jick et al. 1995). Additional
analyses suggested that the magnitude of the risk estimates for individual OC
were closely linked with the time of market introduction of the respective OC,
with increasing risk for the newer preparations (Lewis et al. 1996). Since a larger
proportion of users of older OC preparations were long-term users compared with
those using newer OC, a depletion of susceptibles effect was postulated to be active
within these studies. It was hypothesized that individuals with good tolerance
were preferentially long term users of older OC preparations, whereas groups with
shorter duration of use might be more frequently using the newer OC preparations
and thereby constitute a different subpopulation.

The phenomenon of depletion of susceptibles can lead, if not accounted for
properly, to a comparison of OC medications with different years of entry into
the market and result in an overestimation of the risk associated with the most
recently introduced medications. To properly account for depletion of susceptibles,
the approach to statistical analysis must take account of the duration and patterns
of OC use, and of course have the available data to do so. In this example, the
pattern and duration of OC use are not confounders, but effect modifiers of the
risk of VTE associated with recent OC use. OC pattern and duration can therefore
not be simply “adjusted for” in the statistical analysis, but a stratified analysis has
to be conducted which compares the risk of VTE for the different OC preparations
for the different durations and patterns of use. When the analysis was restricted
to the same pattern of OC use, distinguishing between first time users, repeaters
and switchers, the risk of VTE as a function of the duration of oral contraceptive
use was essentially the same for second and third generation pills relative to never
users (Suissa et al. 1997, 2000b) .

Use of Propensity Scores in Pharmacoepidemiology9.6.4

In a randomized trial, randomization of study subjects to different treatment
regimens aims to assure the absence of systematic differences between the patients
in terms of measured and unmeasured confounders. In observational studies,
direct comparisons of the outcomes of treated and untreated patients may be
misleading because of systematic differences between those patients who have
and have not received treatment. The propensity score has been proposed as
a method of adjusting for covariate imbalances in an observational study and
has recently been proposed also for pharmacoepidemiology research (Perkins
et al. 2000; Wang and Donnan 2001; Wang et al. 2001). The propensity score
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π(X) = Prob(exposed|X) is defined as the conditional probability of receiving
a particular treatment (i.e. being exposed) given the set of observed covariates X.
The propensity score thus represents a summary of the covariates X that are
associated with treatment allocation in the form of a single variable.

The propensity score approach is a two-stage approach. At the first stage, the
propensity score is estimated for each study subject based on the values of the
observedcovariates. Themost commonlyusedapproach is toobtain thepropensity
score estimates in a logistic regression model, where treatment allocation is used
as the dependent (response) variable and observed potential confounders X are
used as explanatory variables: log(π(X)|(1 − π(X))) = Xβ, where the regression
coefficients β are fitted by maximum likelihood.

Having obtained the estimated propensity score, it can be used by a number
of approaches at the second stage: study subjects may be matched or stratified
based on their propensity scores or the propensity scores may be adjusted for in
a regression model (Wang and Donnan 2001).

Many published applications use stratification by the propensity score. A com-
mon approach is to stratify by quintiles of the distribution of the estimated propen-
sity scores and to test the balance of each confounder between the treatment groups
in each stratum (Wang and Donnan 2001). Having patients with similar propen-
sity scores in each stratum, it may be assumed that the covariate distributions
in the two treatment groups are equally similar within each stratum, so that the
treatment assignment within the strata can be functionally regarded as random.
If unbalanced confounders are still found, the propensity score model may be
re-estimated with modifications until balance is achieved.

Stratification by the propensity score cannot control confounder effects within
a single stratum. The somewhat arbitrary choice of five strata can be viewed as
acompromisebetweenreductionofbiasandrobustnessof theresults: an increasing
number of strata will reduce the bias in the stratification estimate, but it will at the
same time decrease the robustness of the results when the sample size of the smaller
arm in a stratum becomes too small. Control of bias through use of propensity
scores is based on the following assumptions:

All subjects must have some non-zero probability of receiving each treatment
(referred to as the “strongly ignorable assumption”). This ensures indepen-
dence of treatment assignment and response variable within propensity score
strata.
Treatment assignment depends solely on the observed covariates, i.e. all con-
founders are included in the propensity score model.

If all confounders were not ascertained or confounder measurement was associ-
ated with bias, the use of propensity scores will not eliminate bias. In fact, the study
will be subject to the same bias as an observational study that did not measure
all confounders and could only incompletely adjust for known confounders. The
use of propensity scores may, however, help to detect incomparability between
treatment groups (i.e. lack of overlap in covariate values) that may remain unde-
tected in a standard regression model. It also provides an additional tool to assess
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the performance of the traditional regression model (Wang and Donnan 2001).
Propensity scores have more often been used in cohort studies of drug effective-
ness (Seeger et al. 2003; Mojtabai and Zivin 2003; Schroder et al. 2003; Young-Xu
et al. 2003), but they have also been applied to studies of drug safety (MacDon-
ald et al. 2003). Nevertheless, the use of propensity scores may be a particular
challenge in the common situation in pharmacoepidemiology of time-dependent
exposures and covariates. Moreover, with the very large sizes of databases used
in pharmacoepidemiology, the need to reduce the number of covariates to a sin-
gle score is not crucial and thus, the advantage of propensity scores compared
to including the confounders directly in the model of data analysis becomes less
evident.

Drug Utilization Studies9.7

Drug utilization studies are an important tool in improving rational drug use and
providing data for cost|benefit considerations. Drug utilization has been defined
as the “prescribing, dispensing, administering, and ingesting of drugs.” (Serradell
et al. 1991). This definition implies that several steps are involved in drug utilization
and that, consequently, in each of these steps problems in drug use can arise. The
World Health Organization defines drug utilization in a broader sense as the
“marketing, distribution, prescription and use of drugs in a society, with special
emphasis on the resulting medical, social and economic consequences” (World
Health Organization 1977), thereby including also the effects of drug use on the
population. Apart from examining drug use, goals of drug utilization studies
include the identification of problems of drug utilization with respect to their
importance, causes and consequences; the establishment of a scientific basis for
decisions on problem solving and the assessment of the effects of actions taken.
Some examples for studies that illustrate these goals are the following: What is the
prevalence, pattern and risk factors of use for benzodiazepines in Italy? What is
the quality of NSAID prescribing in Croatia and Sweden (Vlahovic-Palcevski et al.
2002)? Are labelled contraindications to the use of cisapride adhered to (Weatherby
et al. 2001)? What is the impact of safety alerts on the prescribing of a drug (de la
Porte et al. 2002; Weatherby et al. 2001)? After a drug has been withdrawn from
the market, in which way does drug utilization of related drugs change (Glessner
and Heller 2002)? What are characteristics of physicians and practices that make
early use of new prescription drugs (Tamblyn et al. 2003)?

Drug utilization studies can be qualitative and quantitative. Quantitative drug
utilization studies are conducted for a number of purposes: to ascertain the quan-
tities of drugs consumed in a specific period and in a specific geographical area; to
investigate the development of drug utilization over time; to compare and contrast
the use of a drug between different geographical areas; to identify possible over-
or underutilization of drugs; to determine trends in drug use according to popula-
tion demographics; to estimate the prevalence of illness based on the consumption
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of drugs utilised in its treatment and to compare the prevalence of an illness in
different areas.

The main aim of qualitative drug utilization studies is to determine the appro-
priateness of drug prescribing. They require the a priori establishment of quality
indicators against which drug utilization is compared. National or international
expert panels are sometimes used to help defining quality indicators in a consen-
sus process (McLeod et al. 1997). Quality indicators may be based on the following
parameters: the medical necessity for drug treatment; adherence to labelling with
respect to labelled indications, contraindications or interactions; duration and
dose of treatment; use of fixed drug combinations when only one of its com-
ponents would be justified; availability of treatment alternatives which are more
effective or less hazardous; availability of an equivalent less costly drug on the
market; etc. In North America, these studies are known as drug utilization review
(DUR) studies. DUR studies are aimed at detecting and quantifying problems of
drug prescribing. They should be distinguished from DUR programs which are
interventions in the form of an authorized, structured and ongoing system to
improve the quality of drug prescribing (Lee and Bergman 2000). In contrast to
DUR studies which provide only minimal feedback to the involved prescribers and
are not interventional by their design, DUR programs include efforts to correct
inappropriate patterns of drug use, and include a mechanism for measuring the
effectiveness of corrective actions taken to normalize undesirable patterns of drug
use (Hennessy and Strom 2000).

For quantitative and qualitative studies, it would be ideal to have a count of the
number of patients who either ingest a drug of interest during a certain time frame
or who use a drug inappropriately in relation to all patients who received the drug
during a given time frame. The available data are often only approximations of
the number of patients and may be based on cost or unit cost, weight, number of
prescriptions written or dispensed and number of tablets, capsules, doses etc sold
(Lee and Bergman 2000). Drug cost data have a number of limitations, since the
price of a drug is not the same within and across countries. Drug pricing may be
affected by different drug distribution channels, the quantities of drugs purchased,
exchange rate fluctuations, different import duties and regulatory policies that
affect pricing (Serradell et al. 1991). Studies based on the overall weight of a drug
sold are similarly limited, since tablet sizes vary which makes it difficult to translate
weight even into the number of tablets sold (Lee and Bergman 2000). The number
ofprescriptionswrittenordispensed for aparticulardrugproduct is ameasure that
is frequently used in drug utilization studies. However, the number of prescriptions
for different patients in a given time interval varies and also the supply of drugs
prescribed. To estimate the number of patients, one must divide by the average
number of prescriptions per patient. The number of tablets, capsules etc. sold is
often used in conjunction with the defined daily dose (DDD) measurement unit
for drug use.

The DDD is the assumed average maintenance dose per day for a drug used for
its main indication in adults. Use of the DDD underlies two basic assumptions:
that patients are compliant and that the doses used for the major indication are



1256 Edeltraut Garbe, Samy Suissa

the average maintenance doses (Serradell et al. 1991). The DDD dosing levels are
assigned per ATC 5th level by the WHO Collaborating Centre for Drug Statistics
Methodology in Norway based on recommendations in the medical literature.
The DDD provides a fixed unit of measurement independent of the price and
formulation of a drug. It can be used to examine changes in drug consumption
over time and permits international comparisons. The DDD is a technical unit
of measurement and does not necessarily reflect the recommended or prescribed
daily dose (PDD). Doses for individual patients and patient groups will often differ
from the DDD based on individual patient characteristics such as age, weight, and
pharmacokinetic considerations. DDDs may be used to obtain crude estimates
of the number of persons exposed to a particular drug or class of drugs and are
sometimes used as denominator data for crude estimation of ADR rates (Kromann-
Andersen and Pedersen 1988; Leone et al. 2003). This use of the DDD methodology
is rather limited in drugs with more than one indication, particularly when the
drug dose differs for each indication. It is also limited, when the duration of drug
treatment varies greatly between patients. The DDD does not take into account
pediatric use of a drug. DDDs are not established for topical preparations, sera,
vaccines, antineoplastic agents, allergen extracts, general and local anesthetics and
contrast media.

The Defined Daily Dose (DDD) is usually used in conjunction with the Anatom-
ical Therapeutic Chemical (ATC) coding system. Coding for the ATC system at
the WHO Collaborating Centre for Drug Statistics Methodology in Norway is
based on requests from users including manufacturers, regulatory agencies and
researchers. In the ATC system, drugs are classified in groups at five hierarchi-
cal levels. The drugs are divided into fourteen main groups (1st level), with one
pharmacological|therapeutic subgroup (2nd level). The 3rd and 4th levels are
pharmacological|therapeutic andchemical subgroupsand the 5th level is the chem-
ical substance. Table 9.6 illustrates the structure of the ATC coding system using
metformin as an example. In the ATC system all plain metformin preparations are
thus given the code A10B A02.

Table 9.6. The structure of the ATC coding system for metformin

A Alimentary tract and metabolism (1st level, anatomical main group)
A10 Drugs used in diabetes (2nd level, therapeutic subgroup)
A10B Oral blood glucose lowering drugs (3rd level, pharmacological subgroup)
A10B A Biguanides (4th level, chemical subgroup)
A10B A02 Metformin (5th level, chemical substance)

Coverage of the ATC system is not comprehensive: complementary and tradi-
tional medicinal products are generally not included in the ATC system; ATC codes
for fixed combination drugs are assigned only to a limited extent; some drugs may
not be included in the system since no request for coding has been received by
the WHO Collaborating Centre; a medicinal product that is used for two or more
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equally important indications, will usually be given only one code based on its
main indication which is decided from the available literature. On the other hand,
a medicinal product can have more than one ATC code if it is available in two or
more strengths or formulations with clearly different therapeutic uses.

Use of computerized databases has greatly facilitated drug utilization research.
Databases can be distinguished into those which include both drug and diagnostic
data (examples have been given in Sect. 9.4) and into those which include only
drug data (e.g. Denmark’s Odense Pharmacoepidemiologic Database, Denmark’s
Pharmacoepidemiologic Prescription Database of the County of North Jutland,
Spain’s Drug Data Bank, Sweden’s County of Jämtland Project, etc.). Some more
databases used in drug utilization research and a description of these databases
can be found in references (Lee and Bergman 2000; Serradell et al. 1991).

Interpretation of drug utilization data needs appropriate care. Observed geo-
graphic or time differences in drug utilization may be caused by many factors
different from prescribing behaviour as e.g. differences in the age and sex distribu-
tion, different patterns of morbidity, change in diagnostic criteria, differences in
theaccess tohealthcare etc. If usedappropriately, drugutilization researchprovides
a powerful scientific tool to identify factors that influence drug prescribing and
to develop strategies to modify prescribing behaviour. Further research is needed
to determine which characteristics of inappropriate prescribing are susceptible to
modification and what are the most efficient intervention strategies.

Conclusions 9.8

Pharmacoepidemiology is still a relatively young scientific discipline. Over the last
20–30 years there has been enormous progress in the improvement of its methods
and development of new approaches to studies of drug safety and effectiveness.
Pharmacoepidemiology has taken advantage of the rapidly expanding methods
in epidemiology and has developed sophisticated methods to cope with problems
that are specific to the field. New statistical approaches have been developed for
signal generation based on data from the spontaneous reporting systems. Large
computerized health databases are now widely used for research into beneficial
and harmful drug effects, their use being facilitated by the development of more
and more powerful computer technologies. With the experience gained through
the use of these data and a careful understanding of the underlying health care
system in which the data were generated, computerized databases provide a highly
useful data source for pharmacoepidemiology studies. There has been a progres-
sive refinement of case-control and cohort studies and efficient sampling strategies
within a cohort are now often employed. The case-crossover and case-time-control
designs are being used for the study of acute transient drug effects to eliminate
control selection bias and confounding by indication or other factors. Propensity
scores are increasingly used as a method to minimize confounding in the study
of intended drug effects. Other new methodologies are likely to become of more
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importance in pharmacoepidemiology over the coming years as e.g. neural net-
works, sensitivity analysis, etc. Drug utilization review programs are now required
in all US hospitals and have been implemented voluntarily in many other health
care programs which will lead to further refinement of drug utilization research.
A great challenge ahead is linkage of pharmacoepidemiology studies with the lat-
est techniques of genetics, biochemistry, immunology and molecular biology. It is
of particular interest to understand why individuals respond differently to drug
therapy, both in terms of beneficial and adverse effects. Investigation of the genetic
make-up of study patients on a population level will be greatly facilitated through
the enormous progress in pharmacogenomics and molecular biology. New study
designs may emerge as a consequence of these developments. It remains to be ex-
plored to which extent database studies may be used to include moleculargenetic
or immunologic investigations.

References
Abascal VM, Larson MG, Evans JC, Blohm AT, Poli K, Levy D (1998) Calcium

antagonists and mortality risk in men and women with hypertension in the
Framingham Heart Study. Arch Intern Med 158:1882–1886

Abenhaim L, Moride Y, Brenot F, Rich S, Benichou J, Kurz X, Higenbottam T,
Oakley C, Wouters E, Aubier M, Simonneau G, Begaud B (1996) Appetite-
suppressant drugs and the risk of primary pulmonary hypertension. Interna-
tional Primary Pulmonary Hypertension Study Group. N Engl J Med 335:609–
616

Adams RJ, Fuhlbrigge AL, Finkelstein JA, Weiss ST (2002) Intranasal steroids and
the risk of emergency department visits for asthma. J Allergy Clin Immunol
109:636–642

Anonymous (1986) Risks of agranulocytosis and aplastic anemia. A first report of
their relation to drug use with special reference to analgesics. The International
Agranulocytosis and Aplastic Anemia Study. JAMA 256:1749–1757

Anonymous (1995a) Effect of different progestagens in low oestrogen oral con-
traceptives on venous thromboembolic disease. World Health Organization
Collaborative Study of Cardiovascular Disease and Steroid Hormone Contra-
ception. Lancet 346:1582–1588

Anonymous (1995b) Venous thromboembolic disease and combined oral contra-
ceptives: results of international multicentre case-control study. World Health
Organization Collaborative Study of Cardiovascular Disease and Steroid Hor-
mone Contraception. Lancet 346:1575–1582

Barbone F, McMahon AD, Davey PG, Morris AD, Reid IC, McDevitt DG, MacDon-
ald TM (1998) Association of road-traffic accidents with benzodiazepine use.
The Lancet 352:1331–1336

Bate A, Lindquist M, Edwards IR, Olsson S, Orre R, Lansner A, De Freitas RM
(1998) A Bayesian neural network method for adverse drug reaction signal
generation. Eur J Clin Pharmacol 54:315–321



Pharmacoepidemiology 1259

Bate A, Lindquist M, Orre R, Edwards IR, Meyboom RH (2002) Data-mining
analyses of pharmacovigilance signals in relation to relevant comparison drugs.
Eur J Clin Pharmacol 58:483–490

Begaud B, Martin K, Haramburu F, Moore N (2002) Rates of spontaneous reporting
of adverse drug reactions in France. JAMA 288:1588

Beiderbeck-Noll AB, Sturkenboom MC, van der Linden PD, Herings RM, Hof-
man A, Coebergh JW, Leufkens HG, Stricker BH (2003) Verapamil is associated
with an increased risk of cancer in the elderly: the Rotterdam study. Eur J
Cancer 39:98–105

Benichou C (1994) Imputability of unexpected or toxic drug reactions. The official
French method of causality assessment. In: Benichou C (ed) Adverse drug
reactions. A practical guide to diagnosis and management. Wiley, Chichester,
pp 271–275

Blais L, Ernst P, Boivin JF, Suissa S (1998a) Inhaled corticosteroids and the pre-
vention of readmission to hospital for asthma. Am J Respir Crit Care Med
158:126–132

Blais L, Suissa S, Boivin JF, Ernst P (1998b) First treatment with inhaled corticos-
teroidsand thepreventionofadmissions tohospital for asthma[seecomments].
Thorax 53:1025–1029

Bloemenkamp KW, Rosendaal FR, Helmerhorst FM, Buller HR, Vandenbroucke JP
(1995) Enhancement by factor V Leiden mutation of risk of deep-vein thrombo-
sis associated with oral contraceptives containing a third-generation progesta-
gen. Lancet 346:1593–1596

Carson JL, Strom BL, Soper KA, West SL, Morse ML (1987) The association of non-
steroidal anti-inflammatory drugs with upper gastrointestinal tract bleeding.
Arch Intern Med 147:85–88

Chen H, Zhang SM, Hernan MA, Schwarzschild MA, Willett WC, Colditz GA,
Speizer FE, Ascherio A (2003) Nonsteroidal anti-inflammatory drugs and the
risk of Parkinson disease. Arch Neurol 60:1059–1064

Colditz GA, Hankinson SE, Hunter DJ, Willett WC, Manson JE, Stampfer MJ,
Hennekens C, Rosner B, Speizer FE (1995) The use of estrogens and progestins
and the risk of breast cancer in postmenopausal women. N Engl J Med 332:1589–
1593

Confavreux C, Suissa S, Saddier P, Bourdes V, Vukusic S (2001) Vaccinations and
the risk of relapse in multiple sclerosis. Vaccines in Multiple Sclerosis Study
Group. N Engl J Med 344:319–326

de la Porte M, Reith D, Tilyard M (2002) Impact of safety alerts upon prescribing
of cisapride to children in New Zealand. N Z Med J 115:U24

Dietlein G, Schroder-Bernhardi D (2002) Use of the mediplus patient database in
healthcare research. Int J Clin Pharmacol Ther 40:130–133

Dietlein G, Schroder-Bernhardi D (2003) Doctors’ prescription behaviour regard-
ing dosage recommendations for preparations of kava extracts. Pharmacoepi-
demiol Drug Saf 12:417–421

Donahue JG, Weiss ST, Livingston JM, Goetsch MA, Greineder DK, Platt R (1997)
Inhaled steroids and the risk of hospitalization for asthma. JAMA 277:887–891



1260 Edeltraut Garbe, Samy Suissa

Donnan PT, Wang J (2001) The case-crossover and case-time-control designs in
pharmacoepidemiology. Pharmacoepidemiol Drug Saf 10:259–262

Downey W, Beck P, McNutt M, Stang M, Osei W, Nichol J (2003) Health databases
in Saskatchewan. In: Strom BL (ed) 3rd edition, Pharmacoepidemiology. John
Wiley & Sons, Chichester, pp 325–345

Eland IA, Belton KJ, van Grootheest AC, Meiners AP, Rawlins MD, Stricker BH
(1999) Attitudinal survey of voluntary reporting of adverse drug reactions. Br J
Clin Pharmacol 48:623–627

Essebag V, Genest J, Jr., Suissa S, Pilote L (2003) The nested case-control study in
cardiology. Am Heart J 146:581–590

Etienney I, Beaugerie L, Viboud C, Flahault A (2003) Non-steroidal anti-
inflammatory drugs as a risk factor for acute diarrhoea: a case crossover study.
Gut 52:260–263

Evans SJ, Waller PC, Davis S (2001) Use of proportional reporting ratios (PRRs)
for signal generation from spontaneous adverse drug reaction reports. Phar-
macoepidemiol Drug Saf 10:483–486

Fagot JP, Mockenhaupt M, Bouwes-Bavinck JN, Naldi L, Viboud C, Roujeau JC
(2001) Nevirapine and the risk of Stevens-Johnson syndrome or toxic epidermal
necrolysis. AIDS 15:1843–1848

Faich GA (1986) Adverse-drug-reaction monitoring. N Engl J Med 314:1589–1592
Fairfield KM, Hunter DJ, Fuchs CS, Colditz GA, Hankinson SE (2002) Aspirin,

other NSAIDs, and ovarian cancer risk (United States). Cancer Causes Control
13:535–542

Feenstra J, Heerdink ER, Grobbee DE, Stricker BH (2002) Association of non-
steroidal anti-inflammatory drugs with first occurrence of heart failure and
with relapsing heart failure: the Rotterdam Study. Arch Intern Med 162:265–270

Felson DT, Sloutskis D, Anderson JJ, Anthony JM, Kiel DP (1991) Thiazide diuretics
and the riskofhip fracture.Results fromtheFraminghamStudy. JAMA265:370–
373

Friedman MA, Woodcock J, Lumpkin MM, Shuren JE, Hass AE, Thompson LJ
(1999) The safety of newly approved medicines: do recent market removals
mean there is a problem? JAMA 281:1728–1734

Friedman DE, Habel LA, Boles M, McFarland BH (2000) Kaiser Permanente Med-
ical Care Program: Division of Research, Northern California, and Center for
Health Research, Northwest Division. In: Strom BL (ed) Pharmacoepidemiol-
ogy. Wiley & Sons, Chichester, pp 263–283

Funkhouser EM, Sharp GB (1995) Aspirin and reduced risk of esophageal carci-
noma. Cancer 76:1116–1119

Garbe E, LeLorier J, Boivin JF, Suissa S (1997) Inhaled and nasal glucocorticoids and
the risks of ocular hypertension or open-angle glaucoma. JAMA 277:722–727

Garbe E, Boivin JF, LeLorier J, Suissa S (1998a) Selection of controls in database
case-control studies: glucocorticoids and the risk of glaucoma. J Clin Epidemiol
51:129–135

Garbe E, Suissa S, LeLorier J (1998b) Association of inhaled corticosteroid use with
cataract extraction in elderly patients. JAMA 280:539–543



1262 Edeltraut Garbe, Samy Suissa

Kelly JP, Rosenberg L, Kaufman DW, Shapiro S (1990) Reliability of personal in-
terview data in a hospital-based case-control study. Am J Epidemiol 131:79–
90

Ki M, Park T, Yi SG, Oh JK, Choi B (2003) Risk analysis of aseptic meningitis
after measles-mumps-rubella vaccination in Korean children by using a case-
crossover design. Am J Epidemiol 157:158–165

Kiel DP, Felson DT, Anderson JJ, Wilson PW, Moskowitz MA (1987) Hip fracture
and the use of estrogens in postmenopausal women. The Framingham Study.
N Engl J Med 317:1169–1174

Kromann-Andersen H, Pedersen A (1988) Reported adverse reactions to and con-
sumption of nonsteroidal anti-inflammatory drugs in Denmark over a 17-year
period. Dan Med Bull 35:187–192

Lando JF, Heck KE, Brett KM (1999) Hormone replacement therapy and breast
cancer risk in a nationality representative cohort. Am J Prev Med 17:176–
180

Lee D, Bergman U (2000) Studies of drug utilization. In: Strom BL (ed) Pharma-
coepidemiology. John Wiley & Sons, Chichester, pp 463–481

Lenz W (1987) The Thalidomide hypothesis: How it was found and tested. In:
Kewitz H, Roots I, Voigt K (eds) Epidemiological Concepts in Clinical Pharma-
cology. Springer Verlag, Heidelberg, pp 3–10

Leone R, Venegoni M, Motola D, Moretti U, Piazzetta V, Cocci A, Resi D, Mozzo F,
Velo G, Burzilleri L, Montanaro N, Conforti A (2003) Adverse drug reactions
related to the use of fluoroquinolone antimicrobials: an analysis of spontaneous
reports and fluoroquinolone consumption data from three italian regions. Drug
Saf 26:109–120

Lewis MA, Heinemann LA, MacRae KD, Bruppacher R, Spitzer WO (1996) The
increased risk of venous thromboembolism and the use of third generation
progestagens: roleofbias inobservational research.TheTransnationalResearch
Group on Oral Contraceptives and the Health of Young Women. Contraception
54:5–13

Lindquist M, Edwards IR (1993) Adverse drug reaction reporting in Europe: some
problems of comparisons. International Journal of Risk & Safety in Medicine
4:35–46

MacDonald TM, Morant SV, Goldstein JL, Burke TA, Pettitt D (2003) Channelling
bias and the incidence of gastrointestinal haemorrhage in users of meloxicam,
coxibs, and older, non-specific non-steroidal anti-inflammatory drugs. Gut
52:1265–1270

McLeod PJ, Huang AR, Tamblyn RM, Gayton DC (1997) Defining inappropriate
practices in prescribing for elderly people: a national consensus panel. CMAJ
156:385–391

Miettinen OS (1983) The need for randomization in the study of intended effects.
Statist Med 2:267–271

Mojtabai R, Zivin JG (2003) Effectiveness and cost-effectiveness of four treatment
modalities for substance disorders: a propensity score analysis. Health Serv Res
38:233–259



Pharmacoepidemiology 1263

Moore N, Hall G, Sturkenboom M, Mann R, Lagnaoui R, Begaud B (2003) Biases
affecting the proportional reporting ratio (PPR) in spontaneous reports phar-
macovigilance databases: the example of sertindole. Pharmacoepidemiol Drug
Saf 12:271–281

MorideY,AbenhaimL(1994)Evidenceof thedepletionof susceptibleseffect innon-
experimental pharmacoepidemiologic research. J Clin Epidemiol 47:731–737

Neutel CI, Perry S, Maxwell C (2002) Medication use and risk of falls. Pharma-
coepidemiol Drug Saf 11:97–104

Perez E, Schroder-Bernhardi D, Dietlein G (2002) Treatment behavior of doctors
regarding Helicobacter pylori infections. Int J Clin Pharmacol Ther 40:126–129

Perkins SM, Wanzhu T, Underhill MG, Zhou XH, Murray MD (2000) The use
of propensity scores in pharmacoepidemiologic research. Pharmacoepidemiol
Drug Saf 9:93–101

Pierfitte C, Begaud B, Lagnaoui R, Moore ND (1999) Is reporting rate a good
predictor of risks associated with drugs? Br J Clin Pharmacol 47:329–331

Pierfitte C, Royer RJ, Moore N, Begaud B (2000) The link between sunshine and
phototoxicity of sparfloxacin. Br J Clin Pharmacol 49:609–612

Porta-Serra M, Hartzema AG (1997) The contribution of epidemiology to the study
of drug effects. In: Hartzema AG, Porta-Serra M, Tilson HH (eds) Pharma-
coepidemiology. The fundamentals. Harvey Whitney, Cincinnati

Raiford DS, Perez GS, Garcia Rodriguez LA (1996) Positive predictive value of
ICD-9 codes in the identification of cases of complicated peptic ulcer disease
in the Saskatchewan hospital automated database. Epidemiology 7:101–104

Rawlins MD, Breckenridge AM, Wood SM (1989) National adverse drug reaction
reporting – a silver jubilee. Adverse Drug Reaction Bulletin 138:516–519

Ray WA, Griffin MR (1989) Use of Medicaid data for pharmacoepidemiology. Am J
Epidemiol 129:837–849

Ray WA, Griffin MR, Downey W, Melton LJ, III (1989) Long-term use of thiazide
diuretics and risk of hip fracture. Lancet 1:687–690

Samet JM (2003) Measuring the effectiveness of inhaled corticosteroids for COPD
is not easy! Am J Respir Crit Care Med 168:1–2

Saskatchwewan Health (2004) (http:||www.health.gov.sk.ca/mc_dp_phb_infodoc.
pdf) Accessed June 03, 2004

Saunders KW, Davis RL, Stergachis A (2000) Group Health Cooperative of Puget
Sound. In: Strom BL (ed) Pharmacoepidemiology. John Wiley& Sons, Chich-
ester, pp 247–262

Schoofs MW, van der KM, Hofman A, de Laet CE, Herings RM, Stijnen T, Pols HA,
Stricker BH (2003) Thiazide diuretics and the risk for hip fracture. Ann Intern
Med 139:476–482

Schroder D, Weiser M, Klein P (2003) Efficacy of a homeopathic Crataegus prepa-
ration compared with usual therapy for mild (NYHA II) cardiac insufficiency:
results of an observational cohort study. Eur J Heart Fail 5:319–326

Schroder-Bernhardi D, Dietlein G (2002) Lipid-lowering therapy: do hospitals
influence theprescribingbehaviorofgeneralpractitioners? Int JClinPharmacol
Ther 40:317–321



1264 Edeltraut Garbe, Samy Suissa

Seeger JD, Walker AM, Williams PL, Saperia GM, Sacks FM (2003) A propensity
score-matched cohort study of the effect of statins, mainly fluvastatin, on the
occurrence of acute myocardial infarction. Am J Cardiol 92:1447–1451

Serradell J, Bjornson DC, Hartzema AG (1991) Drug utilization studies: Sources
and methods. In: Hartzema AG, Porta MS, Tilson HM (eds) Pharmacoepidemi-
ology: An Introduction. Harvey Whitney Books, Cincinnati Ohio, pp 101–119

Shapiro S (1989) The role of automated record linkage in the postmarketing surveil-
lance of drug safety: a critique. Clin Pharmacol Ther 46:371–386

Sin DD, Man SF (2002) Low-dose inhaled corticosteroid therapy and risk of emer-
gency department visits for asthma. Arch Intern Med 162:1591–1595

Sin DD, Tu JV (2001a) Inhaled corticosteroid therapy reduces the risk of rehospi-
talization and all-cause mortality in elderly asthmatics. European Respiratory
Journal 17:380–385

Sin DD, Tu JV (2001b) Inhaled corticosteroids and the risk of mortality and read-
mission in elderly patients with chronic obstructive pulmonary disease. Am J
Respir Crit Care Med 164:580–584

Slone D, Shapiro S, Miettinen OS, Finkle WD, Stolley PD (1979) Drug evaluation
after marketing. Ann Intern Med 90:257–261

Spitzer WO, Suissa S, Ernst P, Horwitz RI, Habbick B, Cockcroft D, Boivin JF,
McNutt M, Buist AS, Rebuck AS (1992) The use of beta-agonists and the risk of
death and near death from asthma. N Engl J Med 326:501–506

Spitzer WO, Lewis MA, Heinemann LA, Thorogood M, MacRae KD (1996)
Third generation oral contraceptives and risk of venous thromboembolic dis-
orders: an international case-control study. Transnational Research Group
on Oral Contraceptives and the Health of Young Women. BMJ 312:83–
88

Strom BL (ed) (2000) Pharmacoepidemiology. John Wiley & Sons, Chichester
StromBL,Carson JL (1990)Useof automateddatabases forpharmacoepidemiology

research. Epidemiol Rev 12:87–107
Strom BL, Miettinen OS, Melmon KL (1983) Postmarketing studies of drug efficacy:

when must they be randomized? Clinical Pharmacology & Therapeutics 34:1–7
Strom BL, Miettinen OS, Melmon KL (1984) Post-marketing studies of drug effi-

cacy: how? Am J Med 77:703–708
Strom BL, Carson JL, Halpern AC, Schinnar R, Snyder ES, Stolley PD, Shaw M,

Tilson HH, Joseph M, Dai WS (1991) Using a claims database to investigate
drug-induced Stevens-Johnson syndrome. Stat Med 10:565–576

Sturkenboom MC, Middelbeek A, de Jong van den Berg LT, van den Berg PB,
Stricker BH, Wesseling H (1995) Vulvo-vaginal candidiasis associated with
acitretin. J Clin Epidemiol 48:991–997

Suissa S (1995) The case-time-control design. Epidemiology 6:248–253
Suissa S (1998) The case-time-control design: further assumptions and conditions

[comment]. Epidemiology 9:441–445
Suissa S (2000) Novel approaches to pharmacoepidemiology study design and

statistical analysis. In: Strom BL (ed) Pharmacoepidemiology. John Wiley &
Sons, Chichester, pp 785–805



Pharmacoepidemiology 1265

Suissa S (2003) Effectiveness of inhaled corticosteroids in COPD: immortal time
bias in observational studies. Am J Respir Crit Care Med 168:49–53

Suissa S (2004) Inhaled steroids and mortality in COPD: bias from unaccounted
immortal time. European Respiratory Journal 23:391–395

Suissa S, Blais L, Spitzer WO, Cusson J, Lewis M, Heinemann L (1997) First-time
use of newer oral contraceptives and the risk of venous thromboembolism.
Contraception 56:141–146

Suissa S, Ernst P, Benayoun B, Baltzan M, Cai B (2000a) Low-dose inhaled corti-
costeroids and the prevention of death from asthma. N Engl J Med 343:332–336

Suissa S, Spitzer WO, Rainville B, Cusson J, Lewis M, Heinemann L (2000b) Recur-
rent use of newer oral contraceptives and the risk of venous thromboembolism.
Hum Reprod 15:817–821

Suissa S, Ernst P, Kezouh A (2002) Regular use of inhaled corticosteroids and the
long term prevention of hospitalisation for asthma. Thorax 57:880–884

Suissa S, Baltzan M, Kremer R, Ernst P (2004) Inhaled and nasal corticosteroid use
and the risk of fracture. Am J Respir Crit Care Med 169:83–88

Szarfman A, Machado SG, O’Neill RT (2002) Use of screening algorithms and
computer systems to efficiently signal higher-than-expected combinations of
drugs and events in the US FDA’s spontaneous reports database. Drug Saf
25:381–392

Tamblyn R, Lavoie G, Petrella L, Monette J (1995) The use of prescription claims
databases in pharmacoepidemiological research: the accuracy and compre-
hensiveness of the prescription claims database in Quebec. J Clin Epidemiol
48:999–1009

Tamblyn R, McLeod P, Hanley JA, Girard N, Hurley J (2003) Physician and practice
characteristics associated with the early utilization of new prescription drugs.
Med Care 41:895–908

Tennis P, Bombardier C, Malcolm E, Downey W (1993) Validity of rheumatoid
arthritis diagnoses listed in the Saskatchewan Hospital Separations Database.
J Clin Epidemiol 46:675–683

Tsong Y (1995) Comparing reporting rates of adverse events between drugs with
adjustment for year of marketing and secular trends in total reporting. J Bio-
pharm Stat 5:95–114

van der Kroef KC (1979) Reactions to triazolam. Lancet 2:526
Venning GR (1983) Identification of adverse reactions to new drugs. III: Alerting

processes and early warning systems. BMJ 286:458–460
Viscoli CM, Brass LM, Kernan WN, Sarrel PM, Suissa S, Horwitz RI (2001) A clinical

trial of estrogen-replacement therapy after ischemic stroke. N Engl J Med
345:1243–1249

Vlahovic-Palcevski V, Wettermark B, Bergman U (2002) Quality of non-steroidal
anti-inflammatory drug prescribing in Croatia (Rijeka) and Sweden (Stock-
holm). Eur J Clin Pharmacol 58:209–214

Wang J, Donnan PT (2001) Propensity score methods in drug safety stud-
ies: practice, strengths and limitations. Pharmacoepidemiol Drug Saf 10:341–
344



1266 Edeltraut Garbe, Samy Suissa

Wang J, Donnan PT, Steinke D, MacDonald TM (2001) The multiple propensity
score for analysis of dose-response relationships in drug safety studies. Phar-
macoepidemiol Drug Saf 10:105–111

Weatherby LB, Walker AM, Fife D, Vervaet P, Klausner MA (2001) Contraindi-
cated medications dispensed with cisapride: temporal trends in relation to the
sending of ‘Dear Doctor’ letters. Pharmacoepidemiol Drug Saf 10:211–218

Weintraub JM, Taylor A, Jacques P, Willett WC, Rosner B, Colditz GA, Chylack LT,
Hankinson SE (2002) Postmenopausal hormone use and lens opacities. Oph-
thalmic Epidemiol 9:179–190

Wiholm B, Olsson S, Moore N, Waller P (2000) Spontaneous reporting systems
outside the US. In: Strom BL (ed) Pharmacoepidemiology. John Wiley & Sons,
Chichester, pp 175–192

World Health Organization (1977) The selection of essential drugs. Report of
a WHO expert committee. Ser. no. 615. World Health Organization, Geneva

Worzala K, Hiller R, Sperduto RD, Mutalik K, Murabito JM, Moskowitz M,
D’Agostino RB, Wilson PW (2001) Postmenopausal estrogen use, type of
menopause, and lens opacities: the Framingham studies. Arch Intern Med
161:1448–1454

Wu K, Willett WC, Fuchs CS, Colditz GA, Giovannucci EL (2002) Calcium intake
and risk of colon cancer in women and men. J Natl Cancer Inst 94:437–446

Wysowski DK, Pitts M, Beitz J (2001) An analysis of reports of depression and
suicide in patients treated with isotretinoin. J Am Acad Dermatol 45:515–519

Young-Xu Y, Chan KA, Liao JK, Ravid S, Blatt CM (2003) Long-term statin use and
psychological well-being. J Am Coll Cardiol 42:690–697



III.10Screening
Anthony B. Miller

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1268

General Principles of Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1268
Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1268

10.2 General Principles Governing the Introduction of Screening . . . . . . . . . 1269

The Validity of a Screening Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1273
The Acceptability of the Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1279

10.3 The Ethics of Screening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1280

10.4 The Population to be Included in Screening Programmes. . . . . . . . . . . . . . 1281

10.5 Diagnosis and Treatment of the Discovered Lesions . . . . . . . . . . . . . . . . . . . . . . 1283

10.6 Evaluation of the Efficacy of Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1284

10.7 Organised Screening Programmes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1289

10.8 Health Related Quality of Life and Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1290

10.9 Economics of Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1291

10.10 Genetic Susceptibility Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1292

10.11 Surveillance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1292

10.12 Responsibility for Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1294

10.13 Evaluation of the Effectiveness of Screening Programmes. . . . . . . . . . . . . 1294

10.14 Information Systems for Screening Programmes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1296

Goals and Objectives of Information Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1297
Information System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1298
Policy Issues and Data Use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1298
Components of Information Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1299
Conclusion on Information Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1299

10.15 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1299

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1300



1268 Anthony B. Miller

Introduction10.1

General Principles of Screening10.1.1

Screening, sometimes termed secondary prevention, is one of the major compo-
nents of disease control, the others comprising primary prevention, diagnosis,
treatment, rehabilitation after treatment or disability and palliative care. Ideally,
the control of a disease should be achievable, either by preventing the disease
from occurring or, if it does occur, by curing those who develop it by appropri-
ate treatment. Complete success from prevention would make treatment obsolete.
Complete success from treatment, however, would not make prevention obsolete,
as there are costs and undesirable sequelae from the disease and treatment that pa-
tients and society would like to avoid if at all possible, especially from diseases such
as cancer, diabetes and hypertension. At present, neither is completely successful
for most diseases; they will continue to complement each other for a number of
conditions, while screening can be regarded as complementary to one or both of
the other approaches.

Because of the deep-rooted belief among physicians that “early diagnosis” of
disease is beneficial, many regard screening as bound to be effective. However,
for a number of reasons discussed below this is not necessarily so, as shown by
the failure of screening for lung cancer using sputum cytology or chest X-rays
to reduce mortality from the disease, for example (Prorok et al. 1984). It is the
purpose of this chapter to attempt to define some of the fundamental issues that
are relevant to the consideration of screening in disease control. The approach
taken will be from the epidemiology, or public health viewpoint, rather from the
clinical standpoint.

Although it is often assumed that screening tests must involve some sort of
technological procedure, such as an X-ray or laboratory test, screening can involve
simple clinical examinations, such as assessment of blood pressure, or a clinical
breast examination. However, it is the advent of expensive technologically-based
screening tests in the last few decades which has focused attention on the need
for critical evaluation of screening and the importance of soundly based screening
programmes.

Definition10.1.2

Screening was defined by the United States Commission on Chronic Illness (1957)
as: “the presumptive identification of unrecognised disease or defect by the ap-
plication of tests, examinations or other procedures that can be applied rapidly.”
A screening test is not intended to be diagnostic. Rather a positive finding will
have to be confirmed by special diagnostic procedures.

By definition, screening is offered to those who do not suspect that they may
have a disease. This is subtly different from being asymptomatic. Symptoms may
be revealed by careful questioning related to the organ of interest, not regarded
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by the individual attending for screening as being related to a possible disease.
Further, in a public health programme, open to all comers, it may not be possible
to determine that all subjects who enrol are truly asymptomatic. Indeed, many may
enrol because they have a suspicion that they have the disease of interest, in the
hope that their suspicion will not be confirmed. Thus although it is usual to make
the assumption that participants in screening programmes are asymptomatic, this
is not a necessary nor an absolute prerequisite for participation in public health
based screening programmes.

General Principles Governing
the Introduction of Screening 10.2

The principles that should govern the introduction of screening programmes were
first enunciated by Wilson and Junger (1968) and refined since (e.g. by Miller 1978,
1996; Cuckle and Wald 1984). These will now be considered.
1. The disease should be an important health problem. In practical terms this

means that the disease prevalence should be high and the disease should be
the cause of substantial mortality and|or morbidity. However, it is important
to recognise that the life expectancy of a screened population may be changed
little even if the programme is successful. In most technically advanced coun-
tries, for example, even if all cancer were to be eradicated, the effect of other
competing causes of death is such that life expectancy would be increased only
by about 2 1|2 years. The benefits of cholesterol screening to prevent heart
disease are measured, at the population level, in days. It is not possible to pro-
vide a precise estimate for the level of burden necessary to mount a screening
programme. The level of morbidity and mortality considered to be important
will depend on a combination of factors such as the age distribution of the
population affected, or the severity of the illness. There may be certain circum-
stances when the major benefit from screening follows, not from reduction in
mortality, but from reduction of morbidity consequent upon the diagnosis of
the disease in a more treatable phase in its natural history. This could mean
that the extent of treatment required and the possibility that treatment may
be debilitating or mutilating would be much less. Such advantages may be
difficult to quantify; however, as they may be considerable in psychological
terms to individuals, and to communities in the lowering in the requirements
for extensive rehabilitation services, they should not be overlooked.

2. The disease should have a detectable preclinical phase (DPCP). It is important
to recognise that this principle is not “The natural history of the disease should
include a phase with a detectable precursor”. For example for many cancers,
including breast and prostate cancer, the DPCP is largely asymptomatic inva-
sive cancer (Fig. 10.1). For cervix cancer, on the other hand, the DPCP probably
includes the whole range from dysplasia (CIN 1 or LSIL) through to occult inva-
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Figure 10.2. The natural history of cancer of the cervix

(Miller 2004). Such conclusions have substantial implications with regard to
the optimum frequency of screening examinations. Designing a programme
directed to those lesions that, in the absence of screening will progress and
more rapidly escape curability, if they can be identified, will be the appropriate
approach. Designing a programme which maximises the detection of all cases,
the majority with a good prognosis but which in the absence of screening may
be unlikely to progress, will waste resources. Such knowledge can be applied to
the population in planning screening programmes, but unfortunately it seems
unlikely that knowledge will be accumulated to make it possible to determine
the natural history of disease in individuals within the population sufficiently
precisely. It is recognised that the rate of progression of clinically detected
disease from the point of diagnosis to cure or to death varies substantially in
different individuals. The distribution of rates of progression of preclinically
detectable disease that might be identified by screening is likely to be equally
wide. Thus, although an objective for research on screening has to be to de-
termine the extent of the distribution of the sojourn times of the DPCP, in
considering the introduction of screening programmes and the scheduling of
tests within programmes it is necessary to balance benefits with costs. This
means that the schedule will have to be determined that will enable the detec-
tion of the maximal number of still curable cases compatible with the longest
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interval between tests, principles which unfortunately are often anathema to
clinicians.

4. The disease should be treatable, and there should be a recognized treatment
for lesions identified following screening. This principle can be elaborated as
follows:
There should be evidence of the effectiveness of treatment of lesions dis-
covered as a result of screening in reducing disease incidence and|or mortality
and the level of improvement expected should be stated,
and secondly,
There should be a reasonable expectation that recommendations for the ap-
propriate management of the lesions discovered from a screening programme
will be complied with both by the individual with the lesion and by the physi-
cian responsible for his (or her) health care.
Screening programmes should only be set up when there are adequate facil-
ities for treating lesions discovered as a result of screening and functioning
referral systems for securing such treatment. There is obviously no point in
establishing a screening programme and identifying lesions that should be
treated if the facilities, or the infrastructure, are not available for referral,
confirmation of diagnosis, and treatment. In general this is not a problem for
technically advanced countries, but it can be for developing countries. Unfor-
tunately problems allied to these have occurred. Thus on occasions it has not
been certain whether or not lesions identified as a result of screening should
be regarded as true disease precursors. When lesions are first identified in
a screening programme, information may not be available as to their appro-
priate treatment, and special studies may be required. Otherwise, errors in
terms of observation rather than treatment on the one hand or too extensive
treatment on the other are possible. In prostate cancer screening, for example,
if too radical treatment is applied in the elderly to the latent or good prognosis
prostate cancers that may be identified in a screening programme, the mor-
bidity in terms of incontinence and impotence, and even the mortality from
treatment, could offset any benefit from the earlier detection of lesions with
truly malignant potential (Chodak and Schoenberg 1989; Miller 1991; Krahn
et al. 1994).
A different sort of difficulty could arise when, as a result of screening, lesions
are diagnosed earlier in their natural history, but in spite of this, death is still
inevitable. For example, if the available screening methods will not succeed
in diagnosing disease before it is outside the range of current therapy, then
screening to detect such disease is not worthwhile. The early studies of screen-
ing for lung cancer suggested this was not a condition amenable to screening,
probably for this reason (Prorok et al. 1984). Recently, evidence has accrued
from uncontrolled studies that low dose helical (spiral) computerised tomo-
graphy of the lung is capable of detecting approximately four times as many
small stage 1 lung cancers as chest X-rays, and that these appear likely to have
a good prognosis (e.g. Henschke et al. 1999). However, these are peripheral
cancers, and are largely adenocarcinomas or related cancers, so that the tech-
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nique may not be capable of detecting early either the majority of squamous
cell or of small cell cancers, and thus may be selectively detecting only those
cancers with a good prognosis. If, after spiral CT scanning, the majority of the
lung cancers with a poor prognosis continue to occur at about the same time in
their natural history as at the present, there could be little overall effect upon
lung cancer mortality in the spiral CT screened group. Yet considerable costs
will be incurred in treating the peripheral lesions not destined to progress. It
is for this reason that large scale trials of this approach are now being initiated
in the United States and Europe.

5. The screening test to be used should be acceptable and safe.
In general this implies a non invasive test with high validity. Other criteria
of a good screening test include ease of use and relatively low cost. These
principles and approaches to assessing validity will now be discussed.

The Validity of a Screening Test 10.2.1

Two measures suffice to describe the validity of screening tests: sensitivity and
specificity.

Sensitivity is defined as the ability of a test to detect all those with the disease
in the screened population. This is expressed as the proportion of those with the
disease in whom a screening test gives a positive result.

Specificity is defined as the ability of a test to correctly identify those free of the
disease in the screened population. This is expressed as the proportion of people
free of the disease in whom the screening test gives a negative result.

These two terms may be further expressed in terms of test results as follows:
sensitivity is calculated as the true positives divided by the sum of the true positives
and falsenegativesandmaybeexpressedasaproportionorapercentage; specificity
is calculated as the true negatives divided by the sum of the true negatives and the
false positives and may be expressed as a proportion or a percentage (Fig. 10.3). In
practice, difficulties with these measures arise over defining a positive result from
the test as well as distinguishing the true positives from the false positives among
those who test positive, and the true negatives from the false negatives among
those who test negative. A relatively imperfect test of a quantitative, continuously
distributed measurement can be artificially given a very high sensitivity by setting
the boundary between negative and positive to incorporate a high proportion of
those who are eventually found to have the disease in the positive category, but
at a substantial cost in terms of low specificity. Conversely the same test can be
made to appear highly specific, but will then become insensitive, if the boundary
between positive and negative is shifted in the opposite direction.

If the test result is expressed in a quantitative form so that the boundaries be-
tween what is defined as positive and negative can be varied at will, it is possible to
plot a receiver operating characteristic (ROC) curve (Swets 1979). What is plotted
is the sensitivity in the vertical axis and 1-specificity (the false positive rate) in the
horizontal axis (Fig. 10.4). The point on the curve that is chosen as optimal is often
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Disease status
Test result Present Absent

Positive True positive False positive
(TP) (FP)

Negative False negative True negative
(FN) (TN)

Then:

Sensitivity =
TP

TP + FN
× 100%

Specificity =
TN

TN + FP
× 100%

Predictive value positive =
TP

TP + FP
× 100%

Predictive value negative =
TN

TN + FN
× 100%

Figure 10.3. The relationship between Sensitivity, Specificity, and Predictive Value Positive and

Negative

that furthest from the 45◦ diagonal, labelled “Chance” in Fig. 10.4, as this represents
a test with no better sensitivity or specificity than could be expected by chance.
In Fig. 10.4, this point is between 70% and 80% sensitivity, the corresponding
1-specificity being 25%, i.e. a specificity of 75%. This is about the level expected
with cervical cytology, and represents rather a poor test. We would hope that even
at greater sensitivity, the specificity would be at least 90%, to avoid too many
health care costs investigating the false positives. ROC curves are most easily
derived for blood tests, but have also been applied to mammography, by vary-
ing the extent to which different mammographic abnormalities were regarded
as an indication of suspicion of malignancy (Goin and Haberman 1982). Such
curves cannot be applied to a test with a dichotomous outcome if the bound-
aries defining positive and negative are invariant. Further they imply a simi-
lar weight to sensitivity and specificity, which as discussed below may not be
ideal.

The position of the boundaries that are set between what is regarded as disease
and non-(or benign) disease can also considerably influence the numerical values
placed on sensitivity and specificity. This arises because of uncertainty as to what
truly constitutes an abnormality in the context of a screening programme. In order
to come to such a decision it is essential that the conditions identified as a result
of screening should have a known natural history. However, as has already been
pointed out, such knowledge may not be available at the initiation of a screening
programme and may only be obtained as a result of careful study of findings from
screening programmes.
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Figure 10.4. Example of an ROC curve

Nevertheless, the definition as to what constitutes disease is crucial in order to
determine sensitivity and specificity. Most people have a clear idea as to what they
regard as disease in terms of that which surfaces in standard medical practice.
By definition, screening is conducted on asymptomatic individuals, so that many
conditions that are identified through screening are likely to be at an early stage
and may not have the generally recognised clinical characteristics of relatively ad-
vanced disease. This difficulty should theoretically be overcome by having clearly
defined definitions of disease. However, for cancer, diagnosis is usually made on
histology, and histology only imperfectly characterises behaviour, especially for
lesions within the DPCP. For cancer one hope for the future is that some of the
markers for prognosis currently being evaluated such as markers of oncogene ex-
pression or other markers of DNA change may serve to identify those precancerous
or in situ components of the DPCP that are likely to progress.

A common error in evaluating potential screening tests is to determine the
sensitivity by utilizing the experience of the test in relation to people who have
clinical disease. A test that may appear to be highly sensitive under these circum-
stances may later be found to be much less sensitive when its ability to detect
the DPCP is evaluated. A similar error is substituting an intermediate marker as
the gold standard for calculating sensitivity and specificity. For example, the test
characteristics for a thyroid assay may be compared to a more accurate assay,
rather than the presence of the condition in the individual tested. In the screen-
ing context, therefore, sensitivity and specificity may vary according to whether
they are estimated for early disease or preclinical lesions, and sensitivity for both
should be determined in active screening programmes. To do so for specificity is
very much easier than for sensitivity. This is because the diagnostic process put
in train by a positive screening test generally fairly rapidly identifies those who
have the disease and thus distinguishes the true from the false positives. As under
most circumstances the proportion of those who have the disease in relation to
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the total population screened is low, a very good approximation to specificity is
obtained by calculating the proportion of all those who tested negative of the sum
of the test negatives and false positives. Including the unidentified false negatives
in the numerator and denominator of this expression will in practice introduce
little error.

Sensitivity, is however a difficult measure to determine initially in a screening
programme. The reason for this is that the false negatives are not immediately
apparent, as there is no justification to retest all the test negatives just to identify
a few false negatives. Only by following the total population who screened negative
is it eventually possible to identify those who had the disease at the time the test was
administered but were not so identified at the time of screening. This is facilitated if
testmaterials are retained, for example cervical smears or mammogramsoriginally
classed negative can be reassessed for those who are found to have disease at
the next scheduled screen, or who develop disease during the interval between
screens. Such reassessments should preferably be made blind to avoid bias. Such
an approach was used in the assessment of the sensitivity of the “reader error”
for cervical cancer screening (Boyes et al. 1982) and in the assessment of the
sensitivity of mammography in a trial of breast cancer screening (Baines et al.
1988).

When test materials cannot be retained, however, such as in the assessment of
the sensitivity of physical examination as a screening test for breast cancer, and
for what we have called the “taker error and the biological component” of false
negatives in cervical cytology, i.e. disease that was indeed present but was not
incorporated in the smear or for some reason did not exfoliate (Boyes et al. 1982),
a direct identification of false negatives will not be possible. A usual approach
is to assume that disease occurring within a certain period are false negatives,
an approach we used in estimating the sensitivity of physical examination of the
breasts (Baines et al. 1989). However a possibly more satisfactory approach is to
assess the expected detection rate of disease on screening after repeated screens,
assuming that most of the false negatives had by then been identified, and to regard
the excess disease above this level at the second screen as a measure of the false
negatives at the first screen. As a result of such an approach it was determined that
the taker and biological component of false negatives was approximately equal
to the directly measured reader error, so that the level of sensitivity for cervical
cytology approximated to 78% (Miller 1981).

It is generally accepted that:
The sensitivity and specificity of the screening test to be used should have
been evaluated and their expected values stated,
There should be an acceptable programme of quality control to ensure that
the stated levels of sensitivity and specificity are attained and maintained.

Quality control involves issues that concern not only the validity of the screen-
ing test but also its safety. There is, for example, the need to ensure that ra-
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diation exposure does not drift upwards in a mammography screening pro-
gramme. Quality control encumbers the training of those who will actually ad-
minister and read screening tests, their supervision and the introduction of pro-
cedures to check actively on the extent to which those positive or negative are
misclassified.

Quality may suffer because of overwork and boredom. One of the reasons
why a recommendation was made to change the frequency of examination for
most women in cervical cytology screening programmes in Canada was to avoid
repetitive rescreening of normal women, with the flooding of laboratories with
unnecessary and unrewarding work (Task Force 1976). The Task Force described
the mechanisms for ensuring appropriate quality control. It is relevant that these
requirements had to be re-emphasized more than a decade later (Miller et al.
1991b).

That such issues are not simple was underlined by consideration of observer
variation in mammography reading (Boyd et al. 1982). Relevant to all screening
programmes is not only the accuracy with which abnormalities are identified,
but if identified, the extent to which appropriate recommendations are made
on their management. Our experience suggested that including a category of
“probably benign” in a screening mammography report increases the extent of
observer variation. Readers differ substantially in the extent they use this cat-
egory, the extent to which they recommend special observation of individuals
placed in this category, and the extent to which they recommend biopsy. Dual
reading helps to increase specificity, without much, if any, loss of sensitivity.
This permits the simplification of recommendations into two groups, “suspi-
cious of malignancy” and “satisfactory (normal)” examination, and results in
far greater consistency. Further, it is compatible with the appropriate separation
of findings from screening tests into the probably abnormal (test positive) and
probably normal (test negative) dichotomy. The probably abnormal group is sub-
jected to diagnostic tests in the normal way. This approach to use of screening
mammography was accepted with difficulty in North America, due to an initial
tendency for most radiologists to regard mammography as a diagnostic rather
than a screening test. This resulted in greater use of biopsy as a diagnostic test
in North America than that reported from Europe (McLelland and Pisano 1992),
where more use was made of diagnostic mammography subsequent to screening
mammography (often called by European radiologists “complete” mammography)
with a consequent reduction in biopsies and a much lower benign to malignant
ratio.

Most commentators in the past, when considering the relative weight to be
placed on sensitivity and specificity, tended to encourage high sensitivity at the
cost of relatively low specificity, as it was felt important to attempt to avoid missing
individuals who truly had disease. One vigorous exponent of this view for breast
cancer screening was Moskowitz, who coined the term “aggressive screening”, as
only by such an approach did he feel that the “minimal” breast cancers with an
excellent prognosis would be identified (Moskowitz et al. 1976). However, there
continues to be little evidence that such cancers are really responsible for the mor-
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tality reduction following breast cancer screening. Rather, there is much evidence
that the early diagnosis of more advanced disease results in the benefit (Miller
1987, 1994; Miller et al. 2000b, 2002). A disadvantage of aggressive screening was
a high benign to malignant ratio, and low specificity of the screen. Although the
objective of screening is to identify disease in the DPCP before it gets to the stage
of escaping from curability, if a test is made so sensitive that it picks up lesions
that would never have progressed in that individuals lifetime, there will be sub-
stantial additional costs for diagnosis and treatment (this is one consequence of
the “overdiagnosis” bias, which is more fully discussed in relation to survival of
cases following screen detection in a later section of this chapter). There is no
point in identifying through screening disease which would never have presented
clinically, and little point (other than less radical therapy) in identifying early
disease that would have been cured anyway if it had presented clinically. Simi-
larly, identifying disease that results in death, even following screen identification
and subsequent treatment, only results in greater observation time and no benefit
to the screenee. It is only disease that results in death in the absence of screen-
ing, but which is cured following treatment after screen detection, from which
the real benefit of a screening programme derives. Hence, if high “sensitivity”
is largely based on finding more good prognosis disease, but results in lowering
specificity, the programme will incur much greater costs without corresponding
benefit.

The process measure, as distinct from a measure of validity, that most clearly
expresses this difficulty is the predictive value of a positive screen. This is defined
as the proportion of those who test positive who truly have the disease (Fig. 10.3).
This measure is influenced not only by the sensitivity and specificity of the test,
especially the latter, but by the prevalence of disease in the population, whereas
sensitivity and specificity are invariant with regard to disease prevalence. If tests
are administered under circumstances that incur a low predictive value positive,
then not only may costs be high in terms of correctly identifying those who
are falsely positive, but also the potential hazard may be high, as an individual
classified as positive falsely derives no benefit and potentially a substantial risk
from the associated diagnostic procedures. A test with a low positive predictive
value rapidly enters into disrepute.

Tocompletediscussionofprocessmeasures, thepredictivevaluenegative should
be defined. This is the proportion of those who test negative who are truly free
of the disease. This measure, like sensitivity, is dependent on identifying the false
negatives, and therefore is rarely determined while being of little operational value.
In practice, however, it is usually high.

As Day (1985) has pointed out, because of the difficulty in identifying false
negatives, and because of the overdiagnosis bias, the usual approach to defining
sensitivity is not ideal, nor particularly biologically meaningful. He suggested
an alternative measure of sensitivity which can be derived if the expected in-
cidence of disease in the absence of screening can be determined, ideally from
the control group in a randomised trial, but sometimes in population based pro-
grammes from historical data or data from comparable unscreened populations.
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The method basically computes the extent a programme is successful in reduc-
ing the expected incidence of disease in the absence of screening. The lower
the proportion of expected incidence occurring after screening the greater the
sensitivity.

The Acceptability of the Test 10.2.2

Oneof thedesirable attributesof a good screening test is that it shouldbe acceptable
to the population to which screening is offered and acceptable to those who will
administer the test. In general, cervical cytology screening programmes have
found acceptance with women and their physicians. Although those who tend to
be at highest risk of the disease do not comply as well as those with lower risk,
this is not strictly related to acceptability of the test, but rather the fact that such
individuals tend to have so many pressing health and social problems, that taking
action to reduce an uncertain risk in the future does not have priority with them.
Nevertheless, this results in lower effectiveness of programmes than would be the
case if all women were to be included. This lack of acceptance is largely related
to lower socio-economic status, accompanied by high parity, and often multiple
sexual partners.

Breast cancer screening has encountered different problems over acceptability,
though this varies substantially in different countries, ranging from the 90% accep-
tance with screening invitations in the Swedish Two-County trial (Tabar et al. 1985)
to the difficulties with both physician and women compliance in the early stages of
mammography utilization for breast screening in the United States (Howard 1987).
In Europe, a median uptake of 74% has been reported for mammography offered in
the population (European Society for Mastology 1993). Perhaps fortunately, those
who tend to comply with invitations to attend breast screening programmes tend
to be those at higher risk. An exception relates to the misperception of many older
women that they are not at risk for the disease, whereas the older they become the
greater is their risk.

Another example is screening for colorectal cancer, because of the inevitable
distaste of individuals for a procedure that involves manipulation of faeces. In
a number of pilot programmes, therefore, the return rates for hemoccult slides have
been low, though they have been better in well organised studies (Chamberlain
and Miller 1988), and achieved approximately 75% in the Minnesota Colon Cancer
Screening Trial (Mandel et al. 1999).

A screening test, therefore, has to be acceptable to the population in its widest
sense. The test should be simple and as far as possible easily administered. It
should involve procedures that are not unacceptable, and its use should not have
unpleasant or potentially hazardous implications. There are also economic ad-
vantages in a test being administered or read by allied health professionals, such
as use of technologists in screening cervical cytology slides (Anderson 1985),
or the use of nurses to perform breast examinations (Bassett 1985; Miller et al.
1991a).
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The Ethics of Screening10.3

In general medical practice the special nature of the relationship between a pa-
tient and his physician has dictated the need to build up a core of ethical prin-
ciples that govern this relationship. Further, it is generally accepted that addi-
tional issues arise when a patient becomes the subject of a research investiga-
tion that is superimposed upon his or her search for and receipt of appropriate
medical care. It was not initially appreciated, however, that screening opened up
a completely new spectrum of issues, possibly requiring more restrictive bound-
aries of ethical behaviour than those applied in usual medical care. For exam-
ple, when a patient goes to see a physician for relief of a symptom or treat-
ment of an established condition, the physician is required to exercise his or
her skills only to the extent that knowledge is currently available, while do-
ing what is possible with available expertise and appropriate assistance to help
the patient. Treatment may be offered without any implied guarantee that it is
necessarily efficacious or will do more than just temporarily relieve the symp-
toms of which the patient complains. Thus the physician promises to do his or
her best for the patient; there is no implied promise that the patient will be
cured.

In screening, however, those who are approached to participate are not patients
and most of them do not become patients. The screener believes that as a result
of screening the health of the community will be better. He or she does not
necessarily intend to imply that the condition of every individual will be better.
However, screening is often promoted as if it implies a benefit to everyone who
is screened. In fact, in some circumstances individuals included in a screening
programme may be placed at a disadvantage, as discussed above. Furthermore,
the harm from a screening test is not only related to the risk of being false positive
or negative. Those that are screened may also incur psychological consequences,
sometimes merely from being labelled as being at risk of disease. At the very
least, therefore, those planning to introduce a screening programme should be
in a position to guarantee overall benefit to the community and a minimum of
risk that certain individuals may be disadvantaged by the programme. It was the
inability to guarantee overall benefit and lack of disadvantage for those screened
that led to the proscription of mammography in women under the age of 50 in the
Breast Cancer Detection Demonstration Projects in the United States (Beahrs et al.
1979).

A second ethical issue, which is directed more to the obligations for appro-
priate care in the community than towards individuals, concerns how limited
resources are equitably distributed across the whole community to obtain maxi-
mum benefit. Under certain circumstances the offer of screening could diminish
the total level of health in a community. This may be a particular problem for
developing countries by diverting resources intended for routine health care into
screening. Thus, resources diverted to a screening project, which might be re-
garded as prestigious, especially if involving high technology, could lower the



Screening 1281

resources available for other more pressing but also more mundane health prob-
lems. Although several screening programmes have been proposed for developing
countries, there is a particular need for caution and care in order to ensure that
they do not overbalance the health care system in the area in which they are
introduced.

A final ethical dilemma for screening programmes is how to implement in-
formed consent. Information about risks and benefits of tests and treatments
are expected to be provided in usual clinical practice. For screening, providing
information about the test alone is not sufficient. Information about the con-
sequences of the test, the diagnostic assessment process and the diseases to be
detected and their treatments should also be presented, if a truly informed deci-
sion is to be made. Presenting such a large amount of information is obviously
difficult, particularly in a primary care setting where several screening tests may
be done at the same time. Furthermore, presenting such information becomes
even more cumbersome when the evidence base for a screening test is limited,
such as is the case with prostate screening with the prostate specific antigen (PSA)
test.

Those in charge of screening programmes, therefore, carry an ethical responsi-
bility as least as great as that for medical practice in that approaches to participate
are made to ostensibly healthy people. Indeed, the burden of proof for efficacy of
the procedures and the necessity to avoid harm are greater than may be required
for diagnostic or therapeutic procedures carried out when a patient presents with
symptoms to a physician. In screening the physician or public health worker ini-
tiates the process and he or she bears the onus of responsibility to be certain that
benefit will follow.

The Population to be Included
in Screening Programmes 10.4

For a screening programme to be successful, the population to be included should
be one in which it is known that the disease has a high prevalence. This will
not only encourage a high predictive value for a positive test; it will tend to
promote higher quality of performance and assessment of results of screening
tests, and will result in lower costs per case detected. Thus in all screening pro-
grammes it is desirable to attempt to include only those who are at risk of the
disease and to concentrate particularly on those who are at high risk of the
disease. This approach was recognized by the Canadian Task Force on Cervi-
cal Cytology Screening Programs (Task Force 1976) who carefully defined those
whom it believed were at such low risk for the disease that they need not be
included in cervical cytology screening programmes, thus defining the remain-
ing “at risk” population on whom major efforts should be concentrated to bring
them into screening. In the case of cardiovascular disease, family history and
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factors such as smoking have been used by some to define populations to be
screened.

For other diseases, however, the known risk factors, apart from age, may
not suffice to adequately distinguish between those who should be considered
for inclusion in screening programmes compared to those who should not. For
breast screening, for example, although some discrimination using risk factors
has been achieved (Schechter et al. 1986) this has not been sufficient to justify
selection on this basis alone. However, age is an important predictor of risk,
and for breast cancer in technically advanced countries, all women in the ap-
propriate age group can be regarded as at high risk. Thus for breast cancer cur-
rently, it seems unlikely that any programme could justify routine screening of
women under the age of 40, while several trials only found a delayed effect of
screening women in this age group, and our trial in Canada, the only so far
specifically designed to evaluate breast screening at these ages, could not find evi-
dence that screening women age 40–49 with mammography is effective (Miller
et al. 2002). As a result, the organised programmes in most European coun-
tries and in Canada do not attempt to recruit women under the age of 50 into
screening.

One possible approach to concentrating on the relevant segment of the pop-
ulation for screening might be to administer a pre-screening test, especially for
a marker for a factor necessary in the causation of the disease. The test for Human
Papilloma Virus infection could be used as a pre-screen for cancer of the cervix
(Miller et al. 2000a) though a difficulty here is the high proportion of infections
that are self-limiting without the development of high grade cervical intraepithe-
lial neoplasia. This means that the test is too non-specific if used among women
under the age of 35. However, in older women if found to be negative to a test
for oncogenic HPV strains, they can be deemed at low risk for the disease and
screened far less frequently than women who are HPV positive.

The development of genetic susceptibility testing opens up the possibility in
the future of pre-screening for a range of diseases. Unfortunately the tests that
indicate high risks so far only identify individuals in the population responsible
for a low proportion of disease. It seems possible that it will be necessary to
screen for a combination of genetic polymorphisms each responsible for relatively
low relative risks in the population, but with high attributable risk, in order to
adequately discriminate at risk from low risk individuals. This will increase the
complexity, and costs, of the process considerably.

Nevertheless, in programmes that attempt to select for screening on the basis
of risk factors, there will almost invariably be cases occurring in the unscreened
group. A consequence of such programmes, however, will be reduced numbers
of false positives (in absolute terms) which with the increased prevalence of the
disease will result in a higher positive predictive value of the screen. Hakama (1984)
coined the terms programme sensitivity and programme specificity which help in
understanding the effects of screening concentrating on high risk subjects. The
more a programme concentrates on “high risk” groups, the lower the programme
sensitivity, as more and more cases will occur in unscreened people. Conversely,
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however, the programme specificity will increase because of the increase in healthy
people unscreened with a reduction in the costs of screening. However, because
the reduction in programme sensitivity will result in a reduction in the overall
effectiveness of the programme, the overall result of such an approach could be
unacceptable.

One other approach to using risk factors is to help determine the optimal
periodicity of re-screening. Those judged at high risk could be screened more
frequently, as in the example of HPV tests for cervix screening given above. Once
again, however, much of the necessary research is incomplete, and we do not
know how appropriate such an approach may be. It will probably be necessary to
calculate the marginal cost effectiveness of extending screening from high to low
risk groups (i.e. the additional cost for such an extension of screening related to
the increase in effectiveness of the screening) in order to make the necessary policy
decisions.

Diagnosis and Treatment
of the Discovered Lesions 10.5

As a screening test is not diagnostic, inevitably the success of the programme will
ultimately depend upon the extent those identified as having a positive test accept
the procedures offered to them for further evaluation, and the effectiveness of the
therapy offered.

A number of difficulties may arise. For example, in the initial phases of many
breast cancer screening programmes, it was necessary to demonstrate to the gen-
eral community of medical practitioners that the abnormalities identified were
indeed of importance and that they required care and expertise to biopsy. Indeed
in the absence of skills in diagnosis and management, there can be unnecessary
biopsy (potentially reducible by the use of diagnostic mammography and fine
needle aspiration biopsies) as well as failure to excise the lesion when biopsy is
performed. This is part of the spectrum of problems that arise over the fact that le-
sions may be identified in screening programmes whose biologic features, natural
history and other characteristics may be in doubt. The screening participants may
require special education programs so that they understand the diagnostic process
to reduce as far as possible one of the major adverse consequences of screening,
the anxiety accompanying the identification of an abnormality, as well as ensuring
that they comply with the recommendations for management. There may even
be major disagreements over the histological interpretation of the excised lesions,
with uncertainties over the borderline between benign and malignant. Thus the
public and the professionals at all levels in a screening programme may require
education and|or retraining dependant on their responsibilities. One mechanism
to reduce difficulties in the professional area that should be encouraged is the
provision of special diagnostic and treatment centres where the necessary exper-
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tise in diagnosis and management can be concentrated and where the necessary
facilities are available (Miller and Tsechovski 1987). Such diagnosis centres could
be regionally based, serving a number of screening centres.

Evaluation of the Efficacy of Screening10.6

A number of issues have to be noted when evaluating the efficacy of screening.
Almost invariably individuals with disease identified as a result of screening will
have a longer survival time than those diagnosed in the normal way. Four biases
associated with screening explain this (see Box 1). The first is “lead time”, defined
as the interval between the time of detection by screening and the time at which
the disease would have been diagnosed in the absence of screening (depicted in
Fig. 10.1). In other words, it is the period by which screening advances the diagnosis
of the disease. For example, if as a result of screening, the average point of diagnosis
is advanced by one year, then inevitably cases diagnosed by screening will survive
one year longer even if there is no long term benefit. It is important to recognise
that the lead time for different cases will vary, depending in part on the timing
of the screening test in relation to the duration of the DPCP in that case, as well
as the rapidity of progression of the DPCP in that individual. Thus there will be
a distribution of lead times (Morrison 1985). The lead time for fatal cases will
be fairly short, but in one study some fatal cases have been identified as having
a lead time of one or more years following mammography screening (Miller et al.
1992).

Box 1. The biases associated with survival

Lead time: the period by which screening advances the diagnosis of the
disease.

Length bias: less rapidly progressive cases are likely to be detected by screen-
ing.

Selection bias: volunteers for screening are likely to have a better outcome
from their disease than those who decline screening.

Overdiagnosis bias: lesions identified by screening which would not have
progressed to clinical disease in the absence of screening.

The determination of lead time is complex, but models have been developed that
do so providing there are control data that permit comparison of screen detection
with that expected (Walter and Day 1983).

Differential lead time can be an important factor in comparing the outcome
among cases detected by different screening modalities, making it almost impos-
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Figure 10.5. The impact of a screening test when the detectable preclinical phase varies in duration –

length bias

sible to make a comparison based on survival, unless it is possible to estimate and
correct for differential lead time (Walter and Stitt 1987).

The second bias that accounts for improved survival of screen detected cases is
“length-biased sampling”, or more simply, length bias. This relates to the fact that
individuals who have rapidly progressive disease will tend to develop symptoms
that cause them to consult physicians directly. Thus only less rapidly progressive
cases are likely to remain to be detected by screening. Yet the former have a poorer
and the latter a better prognosis, hence the improved survival of screen-detected
cases, over and above lead time. An attempt to depict this bias is shown in Fig. 10.5.
It is obvious that if the screening test were to be administered just before clinical
symptoms occur, nearly all cases would be detected, but by them, some of them
would probably have a poorer prognosis. So it is important to try and detect
cases earlier in the DPCP, but if one is successful, many of the rapidly progressive
cases will be missed. What is more, what is depicted is just at one point in time,
rapidly progressive cases that were present at the time the slowly progressive cases
become detectable, would have presented with symptoms before the screening
test was administered. This bias is most obvious at the initiation of a screening
programme, at the first or prevalent screen. However, length-bias will also affect
the type of cases detected at rescreening, with the more rapidly progressive cancers
diagnosed in the intervals between screens. Hence in evaluating the total impact
of programmes, the interval cases must be identified and taken into consideration
as well as the screen-detected cases.
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The third bias which can artifactually improve survival is selection bias. Those
whoenter screeningprogrammesarevolunteers, andalmost invariablymorehealth
conscious than those who decline to enter. This means that they are likely, even
in the absence of screening, to have a better outcome from their disease than the
overall rates in the general population.

The fourth bias is overdiagnosis bias. Simply it means that some lesions identi-
fied and counted as disease would not have progressed to present clinically in those
individuals during their lifetimes in the absence of screening. It is, in practice, an
extreme example of length bias. It is difficult to obtain absolute confirmation of the
existence of this bias, though it seems likely that it is at least in part an explanation
for the substantial excess of cancers detected by PSA screening for prostate can-
cer, and it has also been strongly suspected for breast cancer (Miller et al. 2000b,
2002).

The only design that effectively eliminates the effect of all these biases is the
randomised controlled trial (Prorok et al. 1984), but only if mortality from the
disease (i.e. deaths related to the person-years of observation) is used as the
endpoint, rather than survival. Survival could be used in a randomised controlled
screening trial only under special circumstances. These are that there is good
evidence because of the equivalence in cumulative numbers of cases during the
relevant period of observation that there is no overdiagnosis bias; and providing
that the start of the period of observation of the cases is taken as the date of
randomisation, as that will eliminate differential lead time. This is the approach
that will be used in a study of breast self examination in Russia, where it will not
be possible to follow all entrants to determine their alive and dead status at the end
of the trial (Semiglazov et al. 1993). Length bias and selection bias are not issues,
the latter having been equally distributed by the randomisation, and the former
by having started at the same point in time, and by including all cases that occur
during follow-up in the evaluation.

Outside a randomised trial, if the screening test detects a precursor, reduction
in incidence of the clinically detected disease can be expected and evaluated. This
effect has been well demonstrated in the Nordic countries in relation to screening
for cancer of the cervix (Hakama 1982). It is also anticipated from endoscopy
screening for colorectal cancer, with the detection and removal of adenomas. If the
screening test does not detect a precursor, or even if it does but the main yield is
invasive cancer, then incidence can be expected to increase initially following the
introduction of screening, and remain elevated while screening continues, though
there may be some reduction towards the baseline after continued screening, if
the application of the test results in most at risk subjects being included, and
the subsequent screening tests are largely used for rescreening. This seems to have
happened with the major rise and then fall, but not to the original levels, of prostate
cancer incidence following the opportunistic introduction of the PSA test in North
America. Under such circumstances, when further reduction in incidence can not
be anticipated, and improvement in survival can not be relied upon because of
the biases already discussed, the only valid outcome for assessment of results of
a screening programme is mortality from the disease in the total population offered
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screening in comparison with the mortality that would be expected in the same
population if screening had not been offered.

As already emphasized the design of choice for evaluation of changes in mor-
tality is the randomised controlled trial. This can either be an efficacy trial, or
an effectiveness trial. Efficacy trials are based on randomisation of the screening
test, which answers the biologically relevant question as to whether mortality is
reduced in those screened. An effectiveness trial is based on the randomisation of
invitations to attend for screening, and more nearly replicates the circumstances
that may eventually pertain in practice in a population. Both those who accept the
invitation as well as those who refuse will have to be included in the assessment of
outcome. Thus it tests the impact of introducing screening in a population. Some
trials of this type involve randomisation by cluster. However, cluster randomisation
can lead to difficulties in determining whether the trial results are valid, especially
if it cannot be confirmed that the randomised groups were balanced, or if there is
evidence that they were not. Such problems led to difficulties in determining the
validity of some cluster randomised trials of breast screening (IARC 2002).

If for some reason randomisation is believed inappropriate, a second-best
method is the quasi-experimental study in which screening is offered in some
areas, and unscreened areas as comparable as possible are used for comparison
purposes. However, this design is not a cheap and easy way out but demands
the same methodological accuracy as required for randomised trials. Further, in
view of the substantially larger populations that may have to be studied than in
randomised trials, it may prove to be more expensive than the preferred design.
Critically, difficulties in analysis may ensue if the baseline mortality in the com-
parison areas differ (UK Trial of Early Detection of Breast Cancer Group 1988).

Nevertheless, ethical issues may preclude the utilization of randomised trials,
particularly for programmes that were introduced before the necessity of utilising
trials as far as possible for evaluation was appreciated. This has been the case
for screening for cancer of the cervix for example. One approach under these
circumstances is to compare the mortality in defined populations before and after
the introduction of screening programmes, preferably with data available on the
trends in acceptance of screening so that changes in mortality can be correlated
with the mortality trends. Such a correlation study will be strengthened if other
data that could be related to changes in the outcome variable are entered into
a multivariate analysis (Miller et al. 1976).

A case-control study of screening is another approach that can be used to
evaluateprogrammes thatwere introducedsufficiently longbefore the study that an
effect can be expected to have occurred. Case-control studies depend on comparing
the screen histories of the cases with the histories of comparable controls drawn
fromthepopulation fromwhich thecasesarose. Individualswithearly stagedisease
if sampled would be eligible as a control, providing the date of diagnosis was not
earlier than that of the case, as diagnosis of disease truncates the screening history.
However, a bias would arise if advanced disease is compared only with early stage
disease, as the latter is likely to be screen detected, though this is just a function
of the screening process, not its efficacy (Weiss 1983). Cases have to reflect the
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1987). In practice, a cohort study of screening suffers from the same problem of
selection bias as for case-control studies, so the results have to be interpreted with
caution.

Indirect indicators of effectiveness are often desired in evaluating screening
programmes, especially one that would predict subsequent mortality. Compliance
with screening, and rate of screen-detection, as well as the ratio of prevalence and
incidence can be indicators of potentially effective screens (Day et al. 1989). The
cumulative prevalence (not the percentage distribution) of advanced disease is
one such measure (Prorok et al. 1984). For example, reduction in advanced disease
predicted subsequent breast cancer mortality reduction in a trial of mammography
screeningversusnoscreening inSweden(Tabaret al. 1989).However, casedetection
frequency, numbers of small tumours, and stage shift in percentages of the total
should not be used as indicators of effectiveness as they potentially reflect all four
screening biases.

In evaluating whether screening programmes are effective in a population,
different methods have generally to be used. They are considered in the section on
Surveillance, later in this chapter.

Organised Screening Programmes 10.7

There are a number of features of effective screening programmes that are largely
related to good organization. Indeed there is good evidence, at least for cancer
of the cervix, that unorganised or opportunistic screening programmes, which
depend on the willingness of individuals to volunteer for screening, and the extent
to which their physicians offer screening, often to low risk women, are far less
successful (Hakama et al. 1985).

Hakama et al. (1985) defined certain essential elements of organised pro-
grammes. These are:

the target population has been identified;
the individual women are identifiable;
measures are available to guarantee high coverage and attendance such as
a personal letter of invitation;
there are adequate field facilities for performing the screening tests;
there is an organised quality control programme on performing and reading
the tests;
adequate facilities exist for diagnosis and for appropriate treatment of con-
firmed abnormalities;
there is a carefully designed and agreed referral system, an agreed link between
the participant, the screening centre and the clinical facility for diagnosis of an
abnormal screening test, for management of any abnormalities found and for
providing information about normal screening tests;
evaluation and monitoring of the total programme is organised in terms of inci-
dence and mortality rates among those attending, among those not attending,
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at the level of the total target population. Quality control of the epidemiological
data should be established.

Although these elements are present in many European cancer screening pro-
grammes, especially in theNordic countries, andcontribute greatly to their success,
several elements are missing from programmes elsewhere, especially those largely
based on the private medical care system in North America. In Canada, there are
opportunities for introducing some of them, such as the first three, and these
were recommended by the two Canadian Task Forces on cervical cancer screening
(Task Force 1976, 1982). Unfortunately, only three of the provincial health care
authorities (Ontario, Manitoba and British Columbia (the latter having accepted
from the beginning the need for centralised laboratory services)) have taken the
initiative to establish such programmes. All provinces in Canada that introduced
breast screening programmes, however, accepted from the outset the necessity
for them to be organised, (Workshop Group 1989), thus attempting to replicate
the organisation of breast cancer screening in some of the Nordic countries, the
Netherlands and in the United Kingdom.

There has been some debate as to whether organised as distinct from oppor-
tunistic screening is most efficacious in reducing the incidence of cancer of the
cervix. Nieminen et al. (1999) produced evidence that in Finland, the organised
programme is far more effective than opportunistic screening.

Health Related Quality
of Life and Screening10.8

An important evaluation measure for screening is the extent overall quality of life
is improved or impaired by screening compared to usual care. Decision making for
health care policy is only possible if information is available on quality of life as well
as health costs of screened and unscreened participants as well as mortality reduc-
tion from screening. For example, it requires an “optimistic” estimate of screening
effectiveness to derive an overall benefit from screening for prostate cancer (Krahn
et al. 1994). Issues concerning health related quality of life (HRQL) may well vary
with different cultural value systems, and different health care systems.

Because of lead time, HRQL events will tend to occur earlier in life than similar
events associated with usual care. Given that the adverse quality of life associated
with false positive screening tests, and those associated with treatment will tend
to occur relatively early, it could be easy to convince oneself (as it has convinced
some commentators for prostate cancer screening already) that the HRQL issues
are overwhelming and that screening should not be conducted. It will require
prolonged follow up, probably more than 10 years, for the detriments associated
with advanced disease late in life that may be prevented from occurring in the
screened group to appear in the non-screened group (Miller et al. 2001).
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If the outcome of screening were to be a major benefit in terms of mortality
reduction, the issues related to HRQL would be overwhelmed. It is only if the
outcome is a moderate to small mortality reduction that these issues become
critical, and paradoxically then it would be necessary for them to have been
measured with as much precision as was possible during screening, as, particularly
for HRQL, the decrements could not be measured retrospectively with precision.
For this reason, in screening trials where adverse HRQL can be anticipated, it is
important for such events to be identified and quantified.

Economics of Screening 10.9

Space does not permit a detailed evaluation of the various principles that have
to be considered in assessing the economics of screening. In brief, it is neces-
sary to determine the costs of the test and the subsequent diagnostic tests. Also
should be included are the costs associated with any hazard of the test as well
as the costs of overtreatment. Balancing these costs may be reduced costs of
therapy of the primary condition, reduced costs associated with less expendi-
ture on the treatment of advanced disease, and the economic value of the ad-
ditional years of life gained. This can become quite complex when the value
of treatment of disease in years of life gained, transfers such as pensions, and
economic productivity are considered. The latter is often disputed, if not re-
garded with some distaste, so that often what is computed is the cost per year
of life saved. Critical may be the marginal costs of additional tests in relation
to the benefit, especially when considerations of the frequency of re-screening
arise.

Part of the difficulty in economic assessment is that costs are often incurred
early, while benefits flow later, so that for proper comparisons of such costs they
have to be discounted to the present day. Additional complexity ensues if attempts
are made to assess quality of life in economic terms, while the calculations rarely
attempt an economic assessment of the fact that if a death is prevented by screening,
the relevant individual will inevitably die of some other condition, and that death
could be more costly.

It is likely that economic assessments will increasingly guide policy decisions in
the future, so it behoves those interested in evaluation of screening to collect the
necessary data. Although some economic assessments have suggested that cost-
effective programmes are achievable, for example programmes of breast cancer
screening using single-view mammography in Sweden (Jonsson et al. 1988), others
have suggested that programmes may not be cost-effective, for example breast
cancer screening programmes for younger women in the US (Eddy et al. 1988).
Economic analysis is particularly important for making decisions within screening
programmes, for example around screening intervals or method of follow-up.
Economic analyses have also facilitated the planning of national breast screening
programmes (IARC 2002).
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Genetic Susceptibility Testing10.10

The completion of mapping of the human genome holds great promise for disease
control. This presages the advent of genetic susceptibility testing. However, the
availability of a range of markers for disease susceptibility will lead to increas-
ing controversies about the use of screening tests. While the general principles of
screening outlined above will still apply, they will need to be modified. Genetic
screening will identify individuals at risk of disease, rather than those with pre-
cursors or early stage disease. Although this could lead to focussed application of
screening tests on those at higher risk, ideally, primary prevention strategies will
be available. Nevertheless, for many conditions, the preventive strategies will be
the application of other screening tests implying that diagnostic assessment and
treatment strategies will still be required.

Surveillance10.11

Surveillance of a programme is performed to assess its performance, to ensure
that it is being as effective as possible. This requires adopting the principles of
programme evaluation.

Programme evaluation is “the systematic assessment of the operation and|or
outcomes of a programme or policy compared to a set of explicit or implicit
standards, as a means of contributing to the improvement of the programme
or policy” (Weiss 1998). Continuous evaluation of processes and outcomes of
a screening programme is an essential tool for assessing its organisational progress
and enhancing its effectiveness.

Monitoring is the process of ongoing evaluation to determine whether a pro-
gramme is achieving its intermediate objectives. Monitoring uses “process mea-
sures”, that are designed to indicate whether the programme is on course to achieve
its objectives. Of themselves these process measures are not indicators of the suc-
cess of the programme. Rather they indicate whether or not the programme is on
the route to ultimate success, as unless they are achieved, the programme is unlikely
to be successful. These process measures cover a number of different aspects of
the programme. If the targets, as outlined below, are not met, it should be obvious
which aspects of the programme require urgent attention by the programme man-
agers to rectify the situation. Monitoring should be an ongoing activity, carried
out as an integral part of the programme, by the programme’s own staff.

Evaluation is a process whereby the success of the programme in reaching
the targets set for the intermediate outcome, and outcome measures is care-
fully reviewed and analysed. When carried out during the early phases of the
programme it will indicate whether the programme is likely to be successful.
When carried out at certain defined time points after the initiation of the pro-
gramme, it will indicate whether the programme has been successful, and whether
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in the light of the degree of that success, it should be continued. Evaluation is
an intermittent activity. It can be carried out by the programme staff, but it
can also be performed by an external consultant to the programme, providing
the information system is fully functional and successful in obtaining the data
required.

Surveillance and evaluation are essential for all programmes, to ensure that the
resources used achieve the benefit expected. Process measures such as the num-
bers of screens performed, the numbers of positive tests reported, the number (and
proportion) of those screened referred for diagnosis and therapy, the numbers of
cases of disease diagnosed and the numbers of precursor and benign lesions de-
tected, should be derivable providing the data are collected from the screening
centres and the treating institutions and collated. Such data must be analysed by
age to confirm that those in the target age group are being screened, and receive
appropriate subsequent management. However, such data cannot evaluate the ef-
fectiveness in terms of the likely prevention of occurrence of disease or of deaths
from the disease, unless the data can be related to that derived from the total
population on an ongoing basis, which requires linkage to a pre-existing disease
register or vital statistics system, or to a register of cases of the relevant disease
established for this purpose.

Depending on the endpoint that should be affected by screening, e.g. deaths
from the cancer of interest for cancer screening programmes, the simplest form
of surveillance and evaluation that will provide measures of the effectiveness of
the programme in the population is to be able to demonstrate a change in the
slope of the trend in mortality from the disease in the population. More de-
tailed evaluation requires the identification of all who develop the disease and
die from it in the target population and documentation of their screening his-
tory. Such documentation could be done by comparing incident cases of disease
in the target population with a register of those from the same population who
have been screened. This will permit an estimate of the risk in those who have
been screened and in those who failed to attend screening and the combined ef-
fect can then be compared with the prescreening period. Where such registers
have not been established, a screening history should be obtained from subjects
with the disease, though this may not be reliable as many are unable to recall
whether a screening test has been taken in the past. Efficient surveillance re-
quires a system of linked records. A population register (or available substitute)
allows periodic call-back for rescreening at appropriate intervals. The screen-
ing programme register, when linked with a disease register, permits the active
surveillance of those detected with abnormalities, to ensure recall for diagnosis
and therapy. Evaluation of the programme can then be performed with regard to
assessment of:

Management of those screened with positive tests
Disease diagnosed between the screening interval
Groups missed in the target population.



1294 Anthony B. Miller

Responsibility for Screening10.12

Responsibility for the efficient management of screening in a country (or region)
should preferably be placed on a designated official within a relevant organiza-
tion. If disease control has been designated to a special agency in a country, this
official should have an appointment within that agency. Alternatively, it would be
appropriate to designate an official within the Ministry of Health.

In general, it is not appropriate for the Director of the department or laboratory
performing the tests to be given responsibility for the overall direction of the whole
programme. This is because the responsibilities for direction of the programme
are far wider than reading the screening test, but cover aspects from the identifi-
cation of the target group, through their recruitment, screening, management of
abnormalities found to evaluation of the impact of the programme.

The Director should recognise that successful screening programmes:
Are organised as public-health disease control programmes, and not simply as
services for providing clinical investigation,
Target the age groups at greatest and most immediate risk, concentrating on
those who have never had a test,
Use population registers,
Have someone in charge who is named, has a telephone number, and can be
held to account.

The skills necessary to encompass the responsibility for running a successful
programme include epidemiology, public health and management.

Evaluation of the Effectiveness
of Screening Programmes10.13

The principles that underlie the evaluation of screening programmes are that they
should be compatible with the programme objectives; there should be standard-
ization of nomenclature, procedures and measurements to facilitate evaluation;
and that the programmes should facilitate relevant research.

The general objectives of screening programmes are:
to reduce the incidence of the disease (if a disease precursor is detected); and
to reduce mortality from the disease.

The specific objectives to achieve the general objectives are:
provision of accessible and acceptable screening services;
the recruitmentofeligible subjects, ensuring that thoseathighriskarescreened;
ensure adherence to recommended screening schedules;
quality in taking the test and reading it;
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effective communication of results;
appropriate follow-up if there is an abnormal test;
provision of efficient and effective treatment services.

The components of programme evaluation should be designed to be compatible
with these objectives. They should include:

population-based information systems;
quality control systems, both internal and external.

In the absence of population-based information systems specific surveys may
provide some of the needed information. They could include surveys of awareness
of the need for screening in eligible and especially high risk subjects, and of
the practice of screening by the target group and the advice rendered by their
physicians.

Specially designed epidemiological studies, most economically of the case-
control type, can also be used for programme evaluation, but should in general be
part of a specific research project and subject to peer review.

The data requirements for efficient programme evaluation include data on the
targetpopulation, andaregisterof all screening testsperformed,with identification
as tofirst or repeat (these recordsmustbe capableofbeing linked toprovidea longi-
tudinal screening history of each screenee. This requires capturing information on
all changes of name, and preferably using unique personal identifying numbers).

Other requirements include:
a separate register of all abnormal tests, with data on follow-up, management
and outcome;
data on all preclinical lesions diagnosed, classified by the recommended ter-
minology;
data on all cases of the disease diagnosed;
data on all deaths from the disease;
information on cost|manpower items, relevant to every aspect of screening.

For evaluation and monitoring purposes, the data in information systems must
be maintained in individually identifiable and linkable form, and the system should
be so designed that it is accessible for evaluation and monitoring purposes and
research, as well as for the requirements of routine functioning of the programme.
The information on the target population should be provided by age, geographical
area, and if possible the family physician of those eligible for screening. This will
permit the identification of those in the population who are not being screened,
who are likely to include those at highest risk, for whom special efforts will be
needed to bring them into the programme. Such linkages will enable the success
of the measures taken to recruit eligible subjects to be determined.

The criteria for success or failure of screening programmes relate to the objec-
tives of the programme. These include:

increase in awareness of the need for screening in the at risk population;
increase in participation rates for screening;
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reach members of the target group who have never been screened;
improve the performance of test centres or laboratories;
reduce the utilisation of unnecessary medical procedures;
reduce the incidence of and mortality from the disease.

Thus evaluation should include not only outcome measures, most importantly
incidence and mortality from the disease, but also process measures, so that if
a programme is not effective the corrective actions needed can be taken.

There has to be some designated authority who will accept responsibility for
programme evaluation, assess the success in achieving the programme objectives
and ensure corrective action is taken as necessary. Although this may vary by
programme and country, the primary responsibility should usually be assumed
by government, though government may seek the assistance of non-government
organizations in reaching the objectives. It would be desirable for government to
appoint a broadly-based advisory committee, with expert members drawn from
a variety of disciplines. Acting on the advice of this committee, government may
be able to delegate to various organizations responsible for different programme
components the responsibility for any corrective action necessary.

Information Systems
for Screening Programmes10.14

A population-based information system is the basic building block of organised
screening programmes. Such information systems must be capable of supporting
a diversity of goals and objectives (see below) including individual information
retrieval and sophisticated aggregate and comparative data analyses.

The range of goals and objectives to which information systems can contribute
attest to their importance in assisting screening programmes to achieve posi-
tive health outcomes. Information systems for screening programmes should be
designed to:
a) identify the target population;
b) identify individuals in the target population;
c) permit the individuals in the target population to be sent letters to:

1. remind her|him to attend for screening once she reaches the recommended
age;

2. remind her|him to reattend for screening at the recommended intervals;
3. remind her|him to attend the local diagnosis centre if an abnormality is

discovered on self-examination or physician examination;

d) monitor that action has been taken following the discovery of an abnormality;
e) provide long-termfollow-up forpatientswhohave received treatment following

the diagnosis of disease;
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f) permit linkage of individual screens at the individual level;
g) permit evaluation and monitoring of the total system.

Development of information systems will be facilitated by the introduction of
permanent individual health care identifiers. However, establishment of data bases
to support screening programmes need not be dependent upon unique individual
identifiers and should not be delayed where such identifiers are not yet in use.

Goals and Objectives of Information Systems 10.14.1

The goals of an information system are:
to facilitate enrolling the at risk population;
For a screening programme it is essential that the data base incorporate data
on the entire target population.
to maintain information;
Information on the screening history of each screenee must be maintained on
the data base; in addition, information must be organised and the data elements
defined to facilitate analysis and planning.
to provide the means for follow-up;
The information system must support communication with individuals con-
cerning test results, the need for screening, rescreening or medical follow-up.
to support evaluation of quality assurance;
Design of the information system must incorporate the capacity for qualitative
assessment of the programme as a whole.
to track utilisation of screening by the target population;
A critical measure of the value of the programme’s information system will be
its utility to follow patterns of use to determine levels of utilization.
to monitor compliance.
Compliance with recommended screening and appropriate follow-up must be
monitored by the information system to assist in evaluating the success of the
overall programme.

The information system developed to support the screening programme must be
designed to meet the following objectives (action list):

to locate the unscreened and underscreened;
to provide data to aid programmes to reach special targeted groups such as the
elderly;
to record detected abnormalities;
to assist in follow-up and treatment;
to assist in follow-up communications to the target population;
to support a schedule of testing;
to evaluate compliance;
to define high risk groups;
to facilitate evaluation and planning;
to determine the cost-effectiveness of the screening programme.
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Components of Information Systems 10.14.4

Information systems developed in support of health programmes usually contain
a number of common elements and frequently include: the target population file,
a registration file, data linkage capabilities (e.g. for linkage to disease registries,
vital statistics systems), and mechanisms for monitoring and evaluation. Despite
the likelihood of a substantial commonality of data elements when similar pro-
grammes are developed in different jurisdictions, opportunities to improve pro-
gramme evaluation and delivery may be lost if efforts are not made to coordinate
data definitions and standards.

To obtain maximum benefit from the introduction of a screening programme,
it is important that common definition of data elements be achieved, through
appropriate consultation.

Conclusion on Information Systems 10.14.5

As part of the process of consultation needed to set up information systems for
screening, a range of information management issues will have to be addressed.
It is anticipated that the consultative policy and planning process advocated will
provide the mechanism for addressing them.

Implementation of well-designed and monitored information systems can en-
hance the benefits of an organised nation-wide screening programme. They can
help to ensure quality control by linking testing and treatment with outcomes,
increase efficiency, identify under-screening of some risk groups (e.g. the elderly),
support programme evaluation, and help in answering research questions. These
and other results can be fed back to yield further programme improvement.

Conclusions 10.15

There are a number of fundamental issues that have to be resolved when consider-
ing disease control by screening. The general principles that govern the introduc-
tion of screening programmes include:

the disease should be an important health problem;
the disease should have a detectable preclinical phase;
the natural history of the lesions identified by screening should be known;
there should be an effective treatment for such lesions; and
the screening test should be acceptable and safe.

The other issues range from ethics to economics. Critical issues include the
population to be included in screening programmes and whether or not it is pos-
sible to introduce an organised screening programme. It cannot necessarily be
assumed that a screening programme will benefit the population to which it is
applied. Not only do ethics demand that only programmes with proven effective-
ness be widely disseminated, it is also necessary to ensure that the programme
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is continually monitored to confirm that effectiveness is maintained. Further, the
benefits derived from the programme must be clearly shown to exceed the costs,
both in terms of ill health induced by the test and accompanying procedures, and
in economic terms. This requires that all programmes are evaluated to ensure that
they do meet their objectives.

In spite of these caveats, screening carries the potential for a fairly rapid and im-
portant impact on mortality from the disease, often exceeding what can currently
be anticipated from other approaches to disease control. Hence the continuing
interest in and expectation from existing, and potential programmes.
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Introduction11.1

This chapter describes theories and methods underlying successful comprehensive
community-based health promotion, and provides four examples. These studies
represent well the field of experimental epidemiology, involving defined popula-
tions and often done following insights derived from observational epidemiology.
Three of these were designed to reduce risk factors for cardiovascular disease
(CVD), and relied heavily on locally available channels of mass communication
in addition to community organizing and other education methods, relatively
low-cost approaches with the potential to reach and change lifestyle behaviors of
entire populations, in contrast to traditional individual or group counseling. One
example, studying alcohol-involved trauma, used only community organizing to
promote adherence to existing laws, rather than public education for behavior
change. By community organizing we mean the process of enlisting community
leaders in support of project goals, and also in insuring their continued support.
The Stanford Prevention Research Center (SPRC), beginning in 1972, pioneered de-
velopment of the intervention methods of comprehensive community-based CVD
prevention and other methods of health promotion and chronic disease preven-
tion. SPRC was connected to all four examples, either as initiator (for two studies)
or collaborator (for two studies). This review also describes the theoretical back-
ground, methods of intervention, the past history of such studies, the cultural basis
for barriers to change and lessons learned for the future.

A community-based program is defined as one organized locally, and pro-
moted through the community’s institutions and communication channels. The
traditional definition of a “community” is used in this review (a residential area
with legally defined geographic boundaries, where a local governmental system
regulates many aspects of schools, businesses, transportation, law enforcement,
and recreational activities). A community is ordinarily last in a nation’s regulatory
chain, where education must ultimately occur, although for rural areas (in the
United States) the county becomes the governing agent for education.

This chapter will address the following issues:
(1) The advantages are presented for community-wide interventions rather than

for more limited locales, such as clinics, hospitals, work sites, or schools.
(2) The theories underlying successful community-based projects are described,

including:
a. community organizing theory, and its relationship to community self-

development and diffusion of innovation theories, and
b. the health communication-behavior change theory, and its relationship to

social cognitive theory, social marketing, and to other determinants of
successful use of mass media for health promotion.

(3) The methods needed for success are presented, including:
a. message design through formative research;
b. process analysis for comprehension of causes for change; and
c. the role of community activism, advocacy, laws and regulations.
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(4) The history of three recent decades of comprehensive community-based health
promotion for cardiovascular disease prevention is described.

(5) The cultural basis for barriers to success is outlined.
(6) Lastly, a Master Plan for achieving success in this type of health promotion is

presented.

Advantages
of a Total Community Approach 11.2

Health promotion in schools, work sites, and clinics has a long history of individual
success, but synergistic interactive effects can occur when they are imbedded in
a total community campaign that adds inherently cost-effective mass media and
environmental change (Schooler et al. 1997). Evidence for synergism was given
by Rogers (1983), who found that diffusion of innovations within a community
accelerates when adoption of the innovation reaches about 20% of the popula-
tion – thus only comprehensive total community education programs have the
capacity to achieve such effects. Lifestyles, such as tobacco use, dietary habits and
exercise patterns, so strongly influenced by custom and by the media in devel-
oped countries, cannot be countered through simple means. Community-wide
approaches fit the public health model because the usual medical model can nei-
ther prevent most chronic disease nor reach the entire population in need. By the
“medical model” we mean the aspects of a nation’s health care system, focused
on the individual, that rely primarily on clinic outpatient and hospital services
provided by physicians. The community provides influence through locally pro-
duced electronic and print mass media and through work sites, recreation sites,
libraries, schools, medical, hospital and pharmacy settings, and social gatherings
of many sorts. It offers opportunities for health-promoting regulations, such as
providing opportunities for physical activity for all, school fitness classes, healthful
school lunches, alcohol sales limits, and preventing tobacco product marketing to
children.

Studies at the SPRC have shown that only multiple and persistent influences
produce meaningful changes in the dietary, exercise, or tobacco-use behavior
of adults, adolescents, and children. For adolescents, always resistant to health
behavior change, the following influenced success: parents and teachers whose
personal habits allow them to be supportive role models; amount and quality
of school-based education on tobacco, fitness, and nutrition; peer influence; and
amount, duration and quality of community-wide health education. Also, certain
personal characteristics were influential – for example, the presence before the
education’s onset of self-efficacy toward one’s behavior-change abilities (Fortmann
et al. 1995).
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Underlying Theories11.3

Community-based health education carried out by SPRC and by some analogous
projects have been guided by two major theories (community organizing and
healthcommunication-behavior change) ,with successdependentupona judicious
blending of the two (Flora et al. 1989; Farquhar et al. 1991).

Community Organizing Theory11.3.1

Community organizing theory describes methods of identifying the health prob-
lem (and resources needed or available), mobilizing the community’s opinion lead-
ersandorganizations, gainingpopulace support, formingcoalitions, launchingand
maintaining education programs, achieving regulatory changes, and empowering
communities to reach and maintain their goals. Community organizing for health
requires continued attention similar to the accepted role of political leaders – to
assess periodically the needs of both governmental and nongovernmental organi-
zations, and, in the case of health promotion, to aid in planning and coordinating
health promotion campaigns. Community organizing as defined here has analo-
gies to “community self-development” as described by Green and Kreuter (1991)
and it also relies on elements of diffusion theory (Rogers 1983) – which has shown
how innovations are adopted through natural social networks, aided by a commu-
nity’s opinion leaders. Rogers’ account of “failure of water-boiling in a Peruvian
village” provided an excellent example of the need to identify and work with a com-
munity’s opinion leaders as a prerequisite for the success of a health innovation
initiated solely by self-appointed “experts” who are not seen as trustworthy by the
community’s residents.

The Health Communication-Behavior Change Theory11.3.2

The health communication-behavior change theory provides the basis for de-
signing, sequencing and distributing messages for the total population and its
subgroups based on their health needs, cultural attributes, social networks, media
habits, attitudes, motivation, knowledge and self-management skills. It describes
theories underlying educational content, such as social cognitive theory (Bandura
1986), which is primarily based on an individual’s capacity for self-directed change.
Bandura’s research confirms that “learning by doing” is more effective than “learn-
ing from observing” (modeling a behavior), and both are more effective than an
“information-only” approach that changes knowledge alone. These principles are
contained in his social cognitive theory, which posits that guided practice in a new
behavior can lead to increased self-efficacy and to greater behavior change (Ban-
dura 1986). Thus, “knowledge-only” campaigns have been found less effective than
those that apply Bandura’s recommendations.

The health communication-behavior change theory also incorporates methods
of reaching the total population using principles described as “social marketing”
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(Kotler 1975; Lefebvre and Flora 1988). These marketing principles described first
by Kotler as “product, price and promotion” lead to insuring the relevance of the
“product” (health messages), and to the low material and psychological cost of
attending to the health message. Additionally, successful social marketing occurs
only when the health messages are promoted and distributed efficiently to a large
proportion of the populace.

Anotherbehavior changemethod includedwithin the communication-behavior
change theory is the method of teaching counter-arguing skills, as described by
Roberts and Maccoby (1973). This method, also called “inoculation”, can be pre-
sented either through the media or face-to-face, and teaches the learner how to best
argue against a deleterious message, such as an advertisement promoting cigarette
use. This “inoculation” method was found to be very effective in prevention of
adolescent substance abuse when used in a manner that can be incorporated into
comprehensive community-based health promotion (Robinson et al. 1987).

Lastly, Carwright’s (1949) pioneering work on mass persuasion principles is
also quite germaine to the health communication-behavior change theory. He
described the need to change not only a person’s knowledge and motivation,
but that changes in “action structure” were also needed. These principles, when
combined with Bandura’s methods for self-management skills training and with
certain elements of Rogers’ diffusion theory, leads to a logical sequence of steps
recommended for both the delivery and behavioral objectives, as derived from the
health communication-behavior change theory (Table 11.1).

Table 11.1. The health communication-behavior change components (adapted from Farquhar et al.

1991)

Communication inputs Communication functions Behavior objectives
(for the sender) (for the receiver)

Face-to-face messages Determine receiver’s needs Become aware

Mediated messages Gain attention (set the agenda) Increase knowledge

Community events Provide information Increase motivation and interest

Environmental cues Provide incentives Take action, assess outcomes

Provide training Maintain action, practice
self-management skills

Provide cues to action, Become an opinion leader
including environmental change (exert peer group influence)

Methods 11.4

Initial Steps 11.4.1

ProblemIdentification. The initiatingagency, grouporpersoncanemanate either
from within or outside of the community. The first task is to identify the problem.
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Local (community) interventions should ideally coexist with and interact with
national programs and must be linked to scientific support from the national or
international level, which has indicated that both CVD prevention (WHO 1986)
and alcohol sales control (Holder and Wallack 1986) are problems requiring local
action. Other than the initial steps of problem identification and formation of
a coalition, most of the methods to be described are relevant only to the three CVD
prevention examples described in this chapter. However, any chronic disease that
requires widespread education designed to change “lifestyle” behaviors (such as
exercise, diet and cigarette use) will require analogous methods.

Coalition Formation. Key political and opinion leaders as well as relevant orga-
nizations must form a coalition. This coalition must create a resource inventory,
obtain populace support, and plan the intervention. Relevant organizations are
listed below under Sect. 11.4.3 and include the following: the County Medical Soci-
ety, municipal hospital community affairs departments, city parks and recreation
departments and voluntary health agencies (i.e. the local branches of national
heart, lung, cancer and diabetes organizations, as well as the Red Cross). Any or-
ganization that will act as a conduit (or “channel”) for the distribution of mediated
instruction or classes must also be represented (i.e. television and radio stations,
local newspapers, schools, churches, libraries, pharmacies, clinics and physicians
and dentists offices). As the coalition grows in size, a “steering committee” made
up of about 6 members needs to be formed to carry out more detailed planning,
including formation of expert groups in education and evaluation and “task forces”
assigned to particular topics (Flora et al. 1989; Farquhar et al. 1991).

Planning11.4.2

Formative Evaluation. As the term “formative” indicates, these activities form
(create) the education effort and can be divided into categories of audience needs
analysis, message design, pre-testing of education programs and evaluation of
education programs. The needs analysis, message design and pre-testing phases
are part of the social marketing aspect of health communication-behavior change
theory. Also, the evaluation of education programs, although properly labeled as
“formative” is also often termed “process” evaluation since it determines the con-
tributions to success of different components of each education program (Farquhar
et al. 1991). Process analysis is also done at the completion of the total program as
part of “summative evaluation”, although the distinction between formative and
summative is sometimes quite arbitrary, depending on the intent of the evaluator
(Farquhar et al. 1991).

Implementation11.4.3

Need for a Comprehensive Approach. Interventions must go beyond attempt-
ing to change knowledge, the usual goal of an educational system, by providing
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training in behavior-change skills. They must also go well beyond the individual,
enlisting multiple community organizations in campaigns for change and seeking
changes in the social environment and in regulations that promote access to the
facilities and resources needed for healthful practices. Multiple communication
channels (such as radio, television, newspapers, mass-distributed print products,
schools and the internet) are needed to reach different subgroups, recognizing
differing media usages, knowledge, and desire for change. A comprehensive inter-
vention should involve schools,work sites, senior citizens’ centers, voluntary health
agencies (such as the local branches of any national organization that deals with
cardiovascular disease, diabetes and cancer), churches, and facilities for sport,
recreation, and health. These organizations and others can serve as education
conduits, with the community’s electronic and print mass media organizations
assisting in message design, content and delivery. The Internet provides a new
channel, whose community education role is now becoming better defined (Baker
et al. 2003). Interactive computer learning, now becoming common in classrooms,
can be designed for large groups – an emerging variant of mass media.

Comprehensiveness requires variety. For example, in tobacco control programs
of SPRC’s community campaigns, local medical clinics, dental offices, pharma-
cies, and libraries distributed a low-cost skills-training Quit Kit; a local smoking
cessation class was shown on television; many newspaper articles and columns
appeared; a local business supported costs of a smoking cessation contest; and all
newspapers and electronic media “cross-advertised” activities designed for mass
audiences (Altmanet al. 1987). Formative evaluationmustbe continued throughout
the entire implementation period of any planned intervention campaign. Success
requires a well designed mix and sequence of programs delivered through varied
channels. This integration, with goals set in advance and goal changes based on
early results, is analogous to a commercial marketing campaign, hence the term
“social marketing”. The distinction from commercial marketing is that social
marketing uses marketing methods for social betterment without a commercial
or profit-making intent. As described above, social marketing is the explanatory
term for the needs analysis, message design and pre-testing phases of formative
evaluation. These phases require message tailoring to fit any subgroup’s needs and
preferences, respecting cultural differences, learning styles, and preferred learning
sites. A message sequence should increase awareness, then, increase knowledge,
and last, increase motivation and provide training in the skills needed for adoption
and maintenance of a new behavior (Bandura 1986). Electronic media can carry
out the first two parts of this sequence and stimulate use of the more information-
dense print media of newspapers and booklets, which are inherently more effective
in skills training than are electronic media (Flora et al. 1997).

Message Characteristics. Messages must be clear, focused, and salient. Salience
requiresbroadreachingmedia, arousing interest andawareness– topicsmustbreak
through passive indifference engendered by the information overload of many so-
cieties and become “on the public agenda”. Given the large advertising budgets
of today’s mass media, health agencies’ messages must be of sufficient production
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quality to compete for the public’s attention. The competition for the public’s atten-
tion is great indeed since the average adult in the United States is exposed annually
to 35,000 television advertisements, equaling 292 hours of exposure (Fortmann
et al. 1995). Formative evaluation must continue during a campaign and alter mes-
sage content in accordance to the state of readiness of the population. Thus, early
in a campaign, messages should increase knowledge and awareness, followed by
those that increase motivation and provide skills training – with resultant behavior
change (Schooler et al. 1997).

The Amount of Intervention Needed11.4.4

The amount of intervention (the “dose” of intervention) needed depends on many
factors: lesser amounts are needed in smaller communities, at earlier stages in
a country’s adoption of a “health innovation”, and when the advocated behavior
change is reasonably simple (such as mammography, hypertension screening and
immunization campaigns). Clearly, more complex changes are needed in individ-
uals and in society’s norms to alter eating or exercise patterns or to control tobacco
use. Complexity in respect to nutrition arises from many sources, including long-
standing cultural beliefs and practices; entrenched methods in agriculture, food
production, and retailing; advertising of “unhealthful” foods; and the advent of
widespread fast-food chains that are dominated by commercial interests unre-
sponsive to local demands and needs. Few projects have measured intervention
dose, except in very general terms that do not allow accurate estimates of the
amount of exposure. One excellent method records the total number and duration
of messages distributed over a defined time period, albeit with a defect due to
lack of message quality measures (Farquhar et al. 1990). This method’s use in-
creased evaluation costs (which comprised almost two-thirds of total expenses) in
the Stanford Five-City Project (FCP – see below). This expense may explain why
others have not used it nearly to the same degree of completeness. However, it is
clear that public health education would be served if more campaigns were ana-
lyzed this thoroughly. The following describes this method’s use in the Stanford
Five-City Project (see Sect. 11.5.3). The number of adults aged 18–74 were known
in the communities receiving the education programs, and they were used for
the analysis. The number and duration of messages from TV|radio, newspaper,
other print messages and face-to-face messages (largely classes) were enumerated
each year for five years. The number of messages from newspaper, other print and
face-to-face encounters were obtained from the education group’s records. The TV
broadcast hours were obtained from the Neilsen (A.C. Neilsen Co, Chicago IL)
monitoring system, which records the proportion of households viewing a partic-
ular TV station for all hours for each major community area in the United States.
Radio hours were obtained from the local radio station survey data. Calculations
are then made for the number of messages for each education channel and their
duration for the average adult in the community (Flora et al. 1989; Farquhar et al.
1990).
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Evaluation 11.4.5

Comprehensive community-based campaigns aiming for widespread behavior
change in the community’s population need the following types of evaluation:
(1) Formative evaluation to plan and test messages (as described in Sect. 11.4.2);
(2) Summative evaluation to determine the effects of the campaign at different
levels (the individual, in organizations, and in community’s social or physical
environment); and (3) Process evaluation to study the effects of each individual
educational activity. Formative evaluation determines the likelihood that a mes-
sage, class or group activity will reach the intended audience. Process evaluation
examines the success or failure of a program component, and also allows insight
into why it succeeded (or failed). As mentioned in Sect. 11.4.2, process analysis
may be classified under either “formative” or “summative”, depending on tim-
ing and purpose. (Flora et al. 1989; Farquhar et al. 1991). Summative evaluation
methods are generally more rigorous than formative evaluation methods, and, in
the case of chronic disease prevention interventions, often will entail measures of
physiological states (such as blood pressure), as well as attitudes, knowledge or
behavior (such as cigarette use) (Farquhar et al. 1977, 1990). The unit of analysis
is commonly the individual, although both the Stanford Three Community Study
(Williams et al. 1981) and the Five-City Project (Farquhar et al. 1990) also analyzed
risk factor change by the more conservative method, with the community as the
unit of analysis.

Additional Methods Needed 11.4.6

Successful community-based health promotion requires effective leaders, commu-
nity activists with the courage and charisma to advocate health innovations. Advo-
cacy campaigns derived from international, national, state, or provincial sources
can provide a local activist leader with the popular support to fight entrenched
bureaucrats who defend the status quo. Tobacco control in Australia and the United
States provide examples. National and state advocacy groups with access to mass
media created a strong mass movement for change, allowing advocates to enlist
popular support for local tobacco control measures. In both California and Aus-
tralia’s State of Victoria this popular support led to statewide increases in tobacco
taxes, with some retained for education against tobacco, a measure that had been
resisted by state legislators who had long been influenced by tobacco lobbyists –
an example of community activism moving up the “ladder” of bureaucracy to
a higher political level (Victorian Health Promotion Foundation 1994; Pierce et al.
1994; Catalonia Declaration 1996).

Changes in policies, laws and regulations (PLR) are needed for success, espe-
cially for long-term success. Local PLR can affect alcohol and tobacco sales, and
create environments that improve nutrition and enhance physical activity. How-
ever, national, state, or provincial actions can magnify local PLR and education
efforts on topics such as tobacco taxation, automobile seat-belt laws, food and
drug safety, school nutrition, school physical activity policies, and (in the United
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States) laws on firearms. As described above, widespread popular attitude changes
in numerous communities can also affect the political process at the state, province
or federal level.

History of Comprehensive Community
Health Promotion11.5

The history of the past three decades described in this chapter is restricted largely
to 13 formal research projects designed to affect cardiovascular disease (CVD)
risk factors. They involved entire populations of at least one education community,
compared to at least one control community. Three of the four examples to follow
are drawn from these 13 projects. Dissemination worldwide into practical appli-
cations of community organizing and mass communication technologies, derived
in part from these research projects, occurred throughout these three decades.

The First Two Examples: the First Decade11.5.1

The first and second example, the Stanford Three-Community Study (TCS), in
three small agricultural marketing towns in California (total population 45,000),
and the North Karelia Study (NKS), in two adjoining predominately rural Finnish
counties (North Karelia population about 180,000), each began in 1972.

TCS, the first Stanford project, was carried out from 1972–1975 in both English
and Spanish, comparing effects of mass media alone in one community and mass
media plus 10-session risk reduction classes for some high-risk adults in a sec-
ond, with a third as a control (Farquhar et al. 1977; Schooler et al. 1997). Groups
exposed to varied education amounts showed a dose-response change in smok-
ing, blood pressure, and blood cholesterol, with a proportionately larger effect in
the Spanish-speaking residents than in the Anglo majority. This minority popu-
lation outcome required intervention resources in Spanish to be proportionately
larger than those provided in English to the Anglo majority. A composite CVD
risk reduction of about 23% and 30% occurred in the mass media|only and mass
media|plus classroom conditions, respectively. The risk score (a probability) was
derived from each adult’s “before-after” risk levels (age, gender, systolic blood
pressure, blood total cholesterol level, cigarette use and relative weight). These
risk parameters were entered into a multiple logistic regression model to pre-
dict the 12-year future probability of a coronary heart disease event (myocardial
infarction, sudden death or angina pectoris). The scoring system was based on
coronary events experienced by adults in the long-term prospective Framingham
Heart Study (Truett et al. 1967). Thus, a relatively modest amount of mass media
(about 30 television and radio “spots”, weekly newspaper columns on heart health,
and four separate mass mailings of booklets) was sufficient to change the popula-
tion’s body weight, cholesterol and blood pressure levels, and smoking prevalence.
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The education followed the principles outlined in Sect. 11.3 for the community
organizing and health communication-behavior change theories. As an example
of community organizing, close cooperative relationships were created with two
influential opinion leaders (a local Anglo physician, and the Hispanic program
director of the local Spanish language radio station). As an example of the social
marketing aspect of the health communication-behavior change theory, message
design for the smoking cessation print materials were different in the English and
Spanish languages, as dictated by formative evaluation. Both the eight session
classes held for a high-risk subset of the population and the print products mailed
to households incorporated some of Bandura’s self-management principles, such
as building awareness, making a clear commitment (i.e. a written “contract”) and
adopting gradual, stepwise changes in behavior designed to increase confidence
in one’s ability to achieve the desired behavior change.

NKS evaluated two matched, rural Finnish counties that contained many villages
with farmingand lumberingas themainoccupations.NorthKarelia (about 180,000
population) received an education campaign that began in 1972, continuing to the
present. After ten years, CVD risk factor changes comparable to the TCS occurred,
and significant net reductions in CVD events occurred (Puska et al. 1985; Schooler
et al. 1997). This study was marked by extensive community organizing, resulting
in strong partnerships with residents and their organizations. The NKS influence
on its country’s policies was unparalleled among the CVD projects, providing its
most important lesson – that a well done project led by respected scientists can
move an entire country. As examples, Finland’s food and agricultural industries
made large changes: Fertilizers were supplemented with selenium (a substance low
in Finland’s soil that is needed for health), milk pricing was changed (based on
protein instead of fat content), programs were created to replace dairy farms with
berry farms, a new canola industry replaced jobs lost in dairying, and increased
production of low-saturated fat foods occurred (Puska et al. 1985; Puska 1995;
Catalonia Declaration 1996).

In 1972 population-wide nutrition change and smoking cessation interventions
were an innovation internationally, which may partly explain the success of these
two pioneering programs (TCS and NKS).

Early International Diffusion, 1977–1983 11.5.2

Studies similar to the TCS were done in Italy (The Martignacco Project, 1977–1983,
one treatment, mass media and screening, one control – CHD risk fell in men only);
Australia (The North Coast Project, 1978–1980, similar to TCS, one mass media,
one mass media plus classes – effects on smoking, greater in the mass media
“plus” community); Switzerland (two treatment, two control pairs, German and
French speaking, mass media, classes, environment changes – effects on smoking,
blood pressure and obesity); and South Africa (similar to TCS, one mass media,
one mass media plus classes plus community events – decreased CHD risk, blood
pressure, smoking; both treatments were equivalent). All four studies, reviewed in
Schooler et al. (1997), reported significant risk factor changes, adding evidence for
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the effectiveness of the TCS model, namely that a predominately community-wide
mass media campaign is effective, but that supplemental face-to-face instruction
usually adds some extra effects (Farquhar et al. 1991). It is noteworthy that all of
these studies were done in rather small communities (population sizes of about
12,000 to 15,000 residents), thus these effects may be more difficult to achieve in
larger and more complex communities.

The Second and Third Decades:
Projects Begun in the 1980s and 1990s11.5.3

The third example is the Stanford Five-City Project (FCP) (USA). Its intervention
phase from 1980–1986 extended TCS methods to larger populations (total popula-
tion of about 360,000) with multifactor CVD prevention directed at two northern
California cities. There were three control cities (Farquhar et al. 1990). It differed
from TCS in the larger size of the communities, in greater use of community or-
ganizing and in greater collaboration with the communities’ health, media, and
education organizations in planning and implementing programs. It was similar
in generous use of mass media, both print and electronic. The number of messages
received by the average adult over 5 years of education was as follows: television
and radio 67%, newspaper 28%, other print (such as booklets and “tip” sheets) 4%
and face-to-face 1%. Duration of exposure over 5 years was as follows: television
and radio 35%, newspaper 18%, other print 41% and face-to-face 5%. It was unique
in measuring total dose of education (about 5 hours|year and about 100 episodes
of exposure|year to all forms of media and classroom education) (Flora et al. 1989;
Farquhar et al. 1990). This means that an “average adult” who has followed the
whole program on mass media and in classrooms would have experienced 100 sin-
gle episodes (including TV, radio, newspaper or other print, workshop training,
or community sponsored exercise sessions) which add up to 5 hours duration in
total in each year.

FCP’s initial year of television messages (defined as “high reach|low involve-
ment”) stimulated the public’s use of print media, which supplied more effective
training than from television in the skills needed for smoking cessation, healthful
food purchasing or preparation, learning appropriate exercise habits or ways to
lose or control body weight (Flora et al. 1997). However, television can be quite
effective in skills training. For example, the FCP presented an 8 week “live” TV
broadcast of a local smoking cessation class, which contained considerable mod-
eling of the smoking cessation skills being learned by the class attendees (such as
behavioral problem solving, self monitoring, tapering, goal setting, deep muscle
relaxation and group social support) (Altman et al. 1987). Results were compara-
ble to the TCS (about a 15% fall in Framingham composite risk of CVD) (Truett
et al. 1967), with a major impact on blood pressure (4–5%) and smoking (13%)
(Farquhar et al. 1990). Health bureaucracies, usually timid, should gain courage
from the FCP’s “David and Goliath” demonstration that only 3 hours|year of high
quality television health education can counteract the public’s exposure to about
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100 hours|year of television advertising devoted to unhealthy nutrition. The ex-
posure of the US population is estimated as 292 hours of TV advertisement based
on the Neilsen monitoring system (cf. Sect. 11.4.4). Michael Jacobson of the Center
for Science in the Public Interest estimated that about one third of these are for
“unhealthy” nutrition (personal communication). Almost all TV nutrition adver-
tising is “unhealthy” since the food industry is so inclined. For example, after the
nutritionists and preventive medicine scientists succeeded, through education, in
decreasing egg and butter intake, the counterattack began to bring the US popula-
tion back to their previous unhealthy consumption. Although all preceding CVD
studies showed effects in small towns and|or rural districts, FCP showed benefit in
cities (with populations as high as 100,000). Also, these effects occurred despite the
advent (at least in the state of California) in the 1980s of dual working families and
increasing public use of fast food, factors that made achieving nutrition-behavior
change more difficult.

FCP’s modest resources and greater effects, as compared to similar projects,
support the benefits of the mass media presentation components of the health
communication-behavior change theory, including its adaptation of the skills
training aspects of Bandura’s social cognitive theory. Perhaps the most practi-
cal lesson to policymakers is that adult residents saved 30 times more money from
their decreased cigarette purchases ($120|adult|year) than the cost of the cam-
paign ($4|adult|year) – savings retained by the individuals of the community, not
counting savings in long-term health costs and short-term decrease in absenteeism
from the individual’s employment. Lastly, the communities expanded the health
promotion activities of the county’s Department of Health and adopted FCP’s tech-
nologies, later applying them to seat-belt promotion and violence and adolescent
pregnancy prevention.

Other successful CVD projects, both large and small, occurred in these decades
in the United States, Sweden, Denmark, Canada, Germany, the Czech Republic,
and China. Also, World Health Organization-sponsored projects began in about
23 other countries (Schooler et al. 1997) and have expanded beyond that since
1997. In all instances, they borrowed heavily from the experiences of the three
exemplars and in many instances received training from either the Stanford or
the North Karelia groups. In some of these projects, changes seen were less than
was the case in the Stanford and North Karelia projects. Although it is difficult to
know the reasons for a relative lack of success (for example, the magnitude of the
interventions was incompletely described), in some instances the cause appeared
to be related to inadequate use of mass media.

Community Projects in Other Health Topics 11.5.4

Interventions on alcohol, mammography, tobacco control, immunization, motor
vehicle injuries and HIV|AIDS are prominent examples of other community-based
projects done in developed countries, but with fewer well-controlled studies than
in CVD. Also, many community studies have been done in developing countries,
where effective recruiting methods and effective mass media use (often using
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radio messages) have been reported, but a review of these is beyond the scope of
this chapter. One well-controlled U.S. study, Preventing Alcohol Trauma (PAT)1, is
the fourth example. This five-year study of three U.S. communities showed a 10%
decrease in alcohol-related traffic injuries and a 50% decrease in adolescent alcohol
use (Holder et al. 1997). The traffic injuries were analyzed for three years prior to
the study, and were compared to police and hospital records for the five year study
duration. The alcohol use data were compiled from various records, prior to and
during the study. These records included: (1) arrest records of adolescents under
the age of 18 for drinking while driving, and, (2) sales records from retail liquor
stores and bars or taverns, using under-age adolescents as attempted purchasers
(to test the system). Coalition building and organizational behavior change among
the police, alcohol sales outlets, and alcohol servers (such as bar tenders and
restaurant personnel) were the main interventions. The public responded to a fear,
instilled through publicity, of the penalties of greater enforcement of existing laws
on underage alcohol purchases or drinking and driving. Therefore, in contrast to
the three CVD exemplars, PAT showed that major public education is not needed
for large public behavior changes. PAT estimated a cost saving of $2.88 for every
dollar invested, a number close to that found in many work-site health promotion
studies, where the “return on investment” was $3 to $6 for each dollar invested,
measured in two to five years of the program (Aldana 2001). The cost savings came
from decreased medical costs secondary to the reduced rate of alcohol-related
automobile injuries. PAT found their communities had the required infrastructure
for the campaigns, requiring only training provided by one indigenous community
coordinator, a part-time clerk, an imaginative plan, and the will to proceed.

TCS, the first, and PAT, the fourth example, are opposites: TCS had a maximum
of mass media education and a minimum of organizing, whereas PAT had the
opposite. Thus, either model works, but to change complex behaviors, community
educators must use sophisticated behavior-change methods, such as those of the
health communication-behavior change theory described above. If fear of arrest
for breaking existing laws on alcohol use suffices to change personal drinking-and
driving-habits, then the education process is simpler.

Past Experience Leads to a “Master Plan”11.6

A five-step approach emerges from these studies:
(a) Define the problem. Does the community need a health promotion campaign?

A decision can be made from national or local survey data.
(b) Organize the community, creating a campaign that includes education, con-

tinued organizing, training of community organizations, empowerment of the
public and the community’s organizations, and future maintenance of pro-
grams developed during an initial phase of about two years.

1 The Stanford Prevention Research Center collaborated with the investigators of this study.
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(c) Implement an intervention, delivering 3–5 hours of education exposure per
year for two years, using in year one, about 70% television|radio to arouse
interest and provide knowledge, about 15% from more specific and instructive
print media (emphasizing newspapers, if available) and 15% from community
events and programs (such as health fairs, contests, and classes). In the second
year, decrease TV|radio to about 40% and increase print to 30% and community
events and programs to 30%.

(d) Evaluate the intervention, using the process and summative methods described
above. Insure that adequate tracking of exposure to the intervention (the in-
dependent variable) is done, with calculations of both the amount and type of
intervention.

(e) Institutionalize programs. The community becomes a demonstration project,
with its “empowered” organizations functioning as health promotion resource
centers for a wider region.

(f) Use the new community resources and its residents’ potential power to advocate
for local, regional, and national governmental regulations and laws that will
increase local intervention effects and extend them beyond the community.

Any individualororganization thatwishes toengage incommunity-basedhealth
education should gain courage from the words of the now deceased anthropologist,
Margaret Mead, as quoted in the closing passage of the Catalonia Declaration (1996,
p 75), “Never doubt the capacity of a few dedicated individuals to change the world,
in fact, it is the only way it ever has.”

The Cultural Basis for Barriers to Success 11.7

A healthy city has been defined by the absence of crime, crowding, and poverty and
by the presence of educated residents and enlightened (and trained) organizations.
Together these lead to a community empowered to solve its social problems (i.e.,
to increase its social capital) (Travers 1997).

Considering barriers, MacIntyre (2000) found Glasgow’s environmental factors
to be major barriers to healthful exercise behavior. Certain macroeconomic factors
inherent in globalization, such as capital flight and increased wealth and income
gaps, have been described as barriers to planned change (Cahill 1983; Bezruchka
2000). All such barriers threaten community stability, inhibiting greatly the success
of health promotion attempts. However, wise compensatory resource allocation
can overcome many barriers, as was shown in the Hispanic minority of the TCS.
Therefore, the challenge for the future is: Responsibility for success in community-
based health interventions lies with the interventionist, not with the community’s
residents! Secondly, it is clear that successful community-based health promotion
requires attention to the cultural, environmental and social determinants of health
that underlie the modern epidemics of chronic disease. Colditz (2001) reminds us
of Rudolph LK Virchow’s words, to paraphrase, that: “The history of epidemics is
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therefore the history of disturbances of human culture.” Certainly the increasing
worldwide prevalence of obesity, the spread of tobacco use and the urban barriers
to physical activity fit Virchow’s definition of “disturbances of human culture”. As
Colditz points out, many scientific endeavors put false hope in the search for new
risk factors, rather than in applying the now well-established means and economic
benefits of reducing the culturally determined risk factors for chronic disease. For
example, Aldana (2001) cites evidence for cost savings of from 3 to 6 times the cost
of health promotion for life-style change in large worksites. Despite this and other
extensive evidence for thebenefitsofprimaryprevention (TheVictoriaDeclaration
1992; The Catalonia Declaration 1996), many countries, including the U.S., spend
less than 5% of total health care expenditures on prevention activities of all kinds
(including immunizations, mammography and health promotion) (Medical News
and Perspective 1994; World Health Report 1997). Although the reasons for the
unreasonable diversion of a nation’s resources from disease prevention to disease
treatment are many, it certainly includes pressure exerted by the pharmaceutical
and medical device industries. Also, the tobacco industry is still a prosperous
growth industry worldwide, especially in middle and low income countries (The
Osaka Declaration 2001). Therefore, from a political economy perspective, success
in chronic disease prevention requires vigorous governmental policy changes (i.e.,
on taxation, advertising, promotion of tobacco use to minors, etc.), not only more
economic resources (The Osaka Declaration 2001).

Conclusions11.8

Three decades of the “total community” health promotion approach in devel-
oped countries strongly support the feasibility, at relatively low cost, of achieving
transfer of public education technologies to a community’s infrastructure (public
health, media, schools, etc.), resulting in significant changes in health habits of
populations. Although most studies derive from small communities, recent suc-
cesses in Tianjin (China), a city of 400,000 (two exemplars examined populations of
> 100,000), suggest that the model also works in large populations (Schooler et al.
1997). Organizing and educating communities requires advocacy, activism, coali-
tion building, and leadership; success is enhanced by regulatory change. Theory
matters: When the population gains self-efficacy through education, the result –
community efficacy–enhances capacity to change institutionalpolicy andpractice,
thus maintaining community change.

Science cannot serve society if its evidence for educational benefit is ignored.
This is not a new concept. As written over 2000 years ago in the Chinese Book of
Lessons, “If a virtuous and learned scholar aims to influence the people as a whole,
one must first educate the people”.
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Introduction 1.1

The following chapter intends to give the reader an overview of the current field
of applied infectious disease epidemiology. Prevention of disease by breaking the
chain of transmission has traditionally been the main purpose of infectious disease
epidemiology. While this goal remains the same, the picture of infectious diseases
is changing. New pathogens are identified and already known disease agents are
changing their behavior. The world population is aging; more people develop un-
derlying disease conditions and are therefore more susceptible to certain infectious
diseases or have long term sequelae after being infected.

Infectious diseases are not restricted to certain geographic areas anymore be-
cause of the increasing numbers of world travelers and a worldwide food distribu-
tion. The fear of a bioterrorist attack adds a new dimension in infectious disease
epidemiology, and health departments enhance their surveillance systems for early
detection of suspicious disease clusters and for agents used as weapons of mass
destruction.

Improvements in laboratory techniques and mapping tools help to expand the
knowledge of transmission of disease agents and enhanced surveillance techniques
are feasible as a result of software progress and reporting of diseases via secure
internet sites.

Surveillance and outbreak investigations remain the major responsibilities in
public health departments. Epidemiologic methods and principles are still the
basis for these tasks but surveillance techniques and outbreak investigation are
changing and adapting to improvements and the expanded knowledge.

Conducting surveys is a useful way to gather information on diseases where
surveillance data or other data sources are not available, especially when dealing
with emerging or re-emerging pathogens. Program evaluation is an important tool
to systematically evaluate the effectiveness of intervention or prevention programs
for infectious diseases.

The Global Burden of Infectious Diseases 1.1.1

Infectious diseases are a major cause of human suffering in terms of both mor-
bidity and mortality. In 1995, out of an estimated total of 52 million deaths, 17
million were due to infectious diseases (WHO 2000a,b). The most common cause
of infectious disease deaths were pneumonia (5 million), diarrhea (3 million) fol-
lowed by tuberculosis, malaria, AIDS and hepatitis B. Not surprisingly, there is
a large imbalance in diseases between developing and industrialized countries
(see Table 1.1).

Morbidity due to infectious diseases is very common in spite of the progress
accomplished in recent decades. Even in industrialized countries, the prevalence
of infection is very high for some infectious agents. Serologic surveys found that
by young adulthood the prevalence of antibodies was 80% against herpes sim-
plex virus type 1, 15–20% against type 2, 95% against human herpes virus, 33%
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Table 1.1. Proportion of principal causes of deaths

Developing countries Industrialized countries

Infectious diseases 43% 1%
Cardiovascular diseases 24% 46%
Cancer 10% 21%
Respiratory diseases 10% 8%

Source: WHO, World Health Report 2000

against Hepatitis A, 2% against Hepatitis C, 5–8% against Hepatitis B, and 50%
against Chlamydia pneumoniae (American Academy of Pediatrics 2003; Mandell
et al. 2000). Annually, approximately 267,000,000 episodes of diarrhea leading to
612,000 hospitalizations and 3000 deaths occur among adults in the United States
(Mounts et al. 1999). The Center for Disease Control and Prevention (CDC) es-
timates that each year 76 million people in the US get sick, more than 300,000
are hospitalized and 5000 die as a result of foodborne illnesses (CDC 2004). Ev-
ery year influenza circulates widely, infecting from 10% to 40% of the world
population.

The Importance of Infectious Disease Epidemiology
for Prevention1.1.2

It is often said that epidemiology is the basic science of preventive medicine. To
prevent diseases it is important to understand the causative agents, risk factors
and circumstances that lead to a specific disease. This is even more important for
infectious disease prevention, since simple interventions may break the chain of
transmission. Preventing cardiovascular diseases or cancer is much more difficult
because it usually requires multiple long term interventions requiring lifestyle
changes and behavior modification, which are difficult to achieve.

In 1900, the American Commission of Yellow Fever, headed by Walter Reed, was
sent to Cuba. The commission showed that the infective agent was transmitted
by the mosquito Aedes aegypti. This information was used by the then Surgeon
General of the US Army William Gorgas, to clean up the 200 year old focus of
yellow fever in Havana by using mosquito proofing or oiling of the larval habitat,
dusting houses with pyrethrum powder and isolating suspects under a mosquito
net. This rapidly reduced the number of cases in Havana from 310 in 1900 to 18 in
1902 (Goodwin 1996).

A complete understanding of the causative agent and transmission is always
useful but not absolutely necessary. The most famous example is that of John Snow
who was able to link cholera transmission to water contamination during the
London cholera epidemic of 1854 by comparing the deaths from those households
served by the Southwark & Vauxhall Company versus those served by another
water company. John Snow further confirmed his hypothesis by the experiment of
removing the Broad street pump handle (Wills 1996a).
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The Changing Picture
of Infectious Disease Epidemiology 1.1.3

Over the past three decades, more than 40 new pathogens have been identi-
fied, some of them with global importance: Bartonella henselae, Borrelia burgdor-
feri, Campylobacter, Cryptosporidium, Cyclospora, Ebola virus, Escherichia coli
0157:H7, Ehrlichia, Hantaan virus, Helicobacter, Hendra virus, Hepatitis C and E,
HIV, HTLV-I & II, Human herpesvirus 6 and 8, Human metapneumovirus, Legio-
nella, new variant Creutzfeldt-Jakob disease agent, Nipah virus, Parvovirus B19,
Rotavirus, severe acute respiratory syndrome (SARS) etc..

While there are specific causative agents for infectiousdiseases, these agentsmay
undergo some changes over time. The last major outbreak of pneumonic plague
in the world occurred in Manchuria in 1921. This scourge, which had decimated
humans for centuries, is no longer a major threat. The plague bacillus cannot
survive long outside its animal host (humans, rodents, fleas) because it lost the
ability to complete the Krebs cycle on its own. While it can only survive in its hosts,
the plague bacillus also destroys its hosts rapidly. As long as susceptible hosts
were abundant, plague did prosper. When environmental conditions became less
favorable (lesser opportunities to sustain the host to host cycles), less virulent
strains had a selective advantage (Wills 1996b).

Changes in Etiologic Agent
The influenza virus is the best example of an agent able to undergo changes leading
to renewedability to infectpopulations thathadbeenalready infectedand immune.
The influenza virus is a single stranded RNA virus with a lipophilic envelope.
Two important glycoproteins from the envelope are the hemagglutinin (HA) and
neuraminidase (NA). The HA protein is able to agglutinate red blood cells (hence
its name). This protein is important as it is a major antigen for eliciting neutralizing
antibodies. Antigenic drift is a minor change in surface antigens that result from
point mutations in a gene segment. Antigenic drift may result in epidemics, since
incomplete protection remains from past exposures to similar viruses. Antigenic
shift is a major change in one or both surface antigens (H and|or N) that occurs at
varying intervals. Antigenic shifts are probably due to genetic recombination (an
exchange of a gene segment) between influenza A viruses, usually those that affect
humans and birds. An antigenic shift may result in a worldwide pandemic if the
virus can be efficiently transmitted from person to person.

Changes in Populations at Risk
In the past three decades throughout the world, there has been a shift towards an
increase in the population of individuals at high risk for infectious diseases.

In industrialized nations, the increase in longevity leads to higher proportion
of the elderly population who are more prone to acquiring infectious diseases and
developing life threatening complications. For example, a West Nile Virus (WNV)
infection is usually asymptomatic or causes a mild illness (West Nile fever); rarely



1332 Susanne Straif-Bourgeois and Raoult Ratard

does it cause a severe neuro-invasive disease. In the 2002 epidemic of West Nile
in Louisiana, the incidence of neuro-invasive disease increased progressively from
0.3 per 100,000 in the 0 to 14 age group to 9 per 100,000 in the 60 to 75 year old
age group and jumped to 32 per 100,000 in the age group 75 and older. Mortality
rates showed the same pattern, a gradual increase to 0.7 per 100,000 in the 60 to 75
age group with a sudden jump to 11 per 100,000 for the oldest age group of 75 and
older.

Improvement in health care in industrialized nations has caused an increase
in the number of immune-deficient individuals, be it cancer survivors, transplant
patients or people on immuno-suppressive drugs for long term auto-immune
diseases. Some of the conditions that may increase susceptibility to infectious
diseases are: cancers, particularly patients on chemo or radiotherapy, leukemia,
lymphoma, Hodgkin’s disease, immune suppression (HIV infection), long term
steroid use, liver disease, hemochromatosis, diabetes, alcoholism, chronic kidney
disease and dialysis patients. For example persons with liver disease are 80 times
more likely to develop Vibrio vulnificus infections than are persons without liver
disease. Some of these infections may be severe, leading to death.

In developing countries a major shift in population susceptibility is associated
with the high prevalence of immune deficiencies due to HIV infections and AIDS.
In Botswana which has a high prevalence of HIV (sentinel surveillance revealed
HIV seroprevalence rates of 36% among women presenting for routine antenatal
care), tuberculosis rates increased from 202 per 100,000 in 1989 to 537 per 100,000
in 1999 (Lockman et al. 2001) while before the HIV|AIDS epidemics, rates above
100 were very rare.

Changes in lifestyles have increased opportunities for the transmission of in-
fectious disease agents in populations previously at low risk. Intravascular drug
injections have increased the transmission of agents present in blood and body
fluids (e.g. HIV, hepatitis B and C). Consumption of raw fish, shell fish and eth-
nic food expanded the area of distribution of some parasitic diseases. Air travel
allows people to be infected in a country and be half-way around the globe before
becoming contagious.

By the same token, insects and other vectors have become opportunistic global
travelers. Aedes albopictus, the Asian Tiger mosquito, was thus imported in 1985
to Houston, Texas inside Japanese tires. Subsequently, it has invaded 22 US states.

Changes in Knowledge About Transmission of Disease Agents
With the advent of nucleic acid tests, it has become possible to detect the presence
of infectious disease agents in the air and environmental surfaces. For example,
the use of air samplers and polymerase chain reaction analysis has shown that
Bordetella pertussis DNA can be found in the air surrounding patients with B.
pertussis infection, providing further evidence of airborne spread (Aintablian
et al. 1998) and thus leading to re-evaluate the precautions to be taken. However
the presence of nucleic acids in an environmental medium does not automatically
mean that transmission will occur. Further studies are necessary to determine the
significance of such findings.
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Bioterrorism Adds a New Dimension
Infectious disease agents, when used in bioterrorism events, have often been re-
engineered to have different physical properties and are used in quantities not
usually experienced in natural events. There is little experience and knowledge
about the human body’s response to large doses of an infectious agent inhaled in
aerosol particles that are able to be inhaled deep into lung alveolae. During the 2001
anthrax letter event, there was considerable discussion about incubation period,
recommended duration of prophylaxis, and minimum infectious dose. This lack
of knowledge base has led to confusion in recommendations being made.

New Approaches
in Infectious Disease Epidemiology 1.2

Although the basics of infectious disease epidemiology have not changed and
the discipline remains strongly anchored on some basic principles, technolog-
ical developments such as improved laboratory methods and enhanced use of
informatics (such as advanced mapping tools, web based reporting systems and
statistical analytical software) have greatly expanded the field of infectious disease
epidemiology.

Improved Laboratory Methods 1.2.1

Molecular techniques are being used more and more as a means to analyze epi-
demiological relationships between microorganisms. Hence the term molecular
epidemiology refers to epidemiologic research studies made at the molecular level.

The main microbial techniques used, target plasmids and chromosomes. More
specifically, plasmid fingerprinting and plasmid restriction endonuclease (REA)
digestion, chromosomal analysis including pulse field gel electrophoresis (PFGE),
restriction fragment length polymorphism (RFLP), multi-locus sequence type
(MLST) and spa typing to name a few of these techniques. Polymerase chain
reaction (PCR) is used to amplify the quantity of genomic material present in the
specimen. Real-time PCR detection of infectious agents is now possible in a few
hours. These techniques are becoming more widely used, even in public health
laboratories for routine investigations.

It is beyond the scope of this text to describe these methods in more detail.
Applications of molecular epidemiology methods have completely changed the

knowledge about infectious disease transmission for many microorganisms.
The main application is within outbreak investigations. Being able to character-

ize the nucleic acid of the microorganisms permits an understanding of how the
different cases relate to each other.

Molecular epidemiology methods have clarified the controversy about the ori-
gin of tuberculosis cases: is it an endogenous (reactivation) or exogenous (re-
infection) origin? Endogenous origin postulates that Mycobacterium tuberculosis
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can remain alive in the human host for a lifetime and can start multiplying and
producing lesions. On the other hand exogenous origin theory postulates that
reinfection plays a role in the development of tuberculosis. The immunity pro-
vided by the initial infection is not strong enough to prevent another exposure
to Mycobacterium tuberculosis and a new infection leads to disease. In countries
with low tuberculosis transmission, for example the Netherlands, most strains
have unique RFLP fingerprints. Each infection is unique and there are hardly
any clusters of infections resulting from a common source. Most cases are the
result of reactivation. This is in contrast with areas of high endemicity where long
chains of transmission can be identified with few RFLP fingerprinting patterns
(Alland et al. 1994). In some areas, up to 50% of tuberculosis cases are the result
of reinfection.

Numerousnewimmunoassayshavebeendeveloped.Theydependonanantigen-
antibody reaction, either using a test antibody to detect an antigen in the patient’s
specimen or using a test antigen to detect an antibody in the patient’s speci-
men.

An indicator system is used to show that the reaction has taken place and
to quantify the amount of patient antigen or antibody. The indicator can be a ra-
dioactivemolecule (radioimmunoassay [RIA]), afluorescentmolecule (fluorescent
immunoassay [FIA]), a molecule with an attached enzyme that catalyzes a color
reaction (enzyme-linked immunoassay [ELISA or EIA]), or a particle coated with
antigen or antibody that produces an agglutination (latex particle agglutination
[LA]).

The reaction can be a simple antigen|antibody reaction or a “sandwich” im-
munoassay where the antigen is “captured” and a second “read out” antibody
attaches to the captured antigen. The antibody used may be polyclonal (i.e. a mix-
ture of immunoglobulin molecules secreted against a specific antigen, each rec-
ognizing a different epitope) or monoclonal (i.e. immunoglobulin molecules of
single-epitope specificity that are secreted by a clone of B cells). It may be directed
against an antigen on an epitope (i.e. a particular site within a macromolecule to
which a specific antibody binds).

Mapping as an Epidemiological Tool1.2.2

Plotting diseases on a map is one of the very basic methods epidemiologists do
routinely. As early as 1854 John Snow, suspecting water as a cause of cholera, plotted
the cases of cholera in the districts of Golden Square, St. James and Berwick, in
London. The cases seemed to be centered around the Broad Street pump and less
dense around other pumps. The map supplemented by other observations led to
the experiment of removing the handle on the Broad Street pump and subsequent
confirmation of his hypothesis (Snow 1936).

Geographical information systems (GIS) have been a very useful tool in infec-
tious disease research. GIS are software programs allowing for integration of a data
bank with spatial information. The mapping component includes physical layout
of the land, towns, buildings, roads, administrative boundaries, zip codes etc. Data
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may be linked to specific locations in the physical maps or to specific aggregates.
A GIS system includes tools for spatial analysis. Climate, vegetation and other data
may be obtained through remote sensing and combined with epidemiologic data
to predict vector occurrence.

However, these tools should be used with caution. They can be useful to generate
hypotheses and identify possible associations between risk of disease and environ-
mental exposures. Because of potential bias, mapping should never be considered
as more than an initial step in the investigation of an association. “The bright
color palettes tend to silence a statistical conscience about fortuitous differences
in the raw data” (Boelaert et al. 1998). For statistical methods in geographical
epidemiology see Chap. II.8 of this handbook.

Computer Reporting and Software Progress 1.2.3

Webbased reporting,useof computerprogramsanddevelopmentsof sophisticated
reporting and analytical software have revolutionized epidemiologic data collec-
tion and analysis. These tools have provided the ability to collect large amounts
of data and handle large databases. However this has not been without risks. It
remains crucial to understand the intricacies of data collected to avoid misinterpre-
tation. For example, one should be aware that diseases and syndromes are initially
coded by a person who may not be very software proficient, using shortcuts and
otherwise could enter data of poor quality.

What Are the Questions to Be Answered? 1.3

Too often one sees epidemiologists and statisticians preparing questionnaires,
carrying out surveys, gathering surveillance information, processing data and
producing reports, tables, charts and graphs in a routine fashion. Epidemiology
describes the distribution of health outcomes and determinants for a purpose. It is
important to question the goals and objectives of all epidemiologic activities and
tailor these activities to meet these objectives.

Thedescriptionofdiseasepatterns includes analysis of demographic, geograph-
ical, social, seasonal and other risk factors.

Age groups to be used differ depending on the disease e.g. diseases affecting
young children should have numerous age groups among children; sexually trans-
mitteddiseases requiredetailedagegroups in late adolescenceandearly adulthood.
Younger age groups may be lumped together for diseases affecting mainly the el-
derly. Gender categorization, while important for sexually transmitted diseases
and other diseases with a large gender gap (such as tuberculosis), may not be
important for numerous other diseases.

Geographical distribution is important to describe diseases linked to environ-
mental conditions but may not be so useful for other diseases.
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Surveillance Issues1.4

Surveillance, both active and passive, is the systematic collection of data pertaining
to the occurrence of specific diseases, the analysis and interpretation of these data,
and the dissemination of consolidated and processed information to contributors
to the program and other interested persons (CDC 2001b).

Passive Surveillance1.4.1

In a passive surveillance system the surveillance agency has devised and put a sys-
tem in place. After the placement, the recipient waits for the provider of care to
report.

Passive case detection has been used for mortality and morbidity data for
decades. It is almost universal. Most countries have an epidemiology section in the
health department that is charged with centralizing the data in a national disease
surveillance system collecting mortality and morbidity data.

In theory, a passive surveillance system provides a thorough coverage through
space and time and gives a thorough representation of the situation. Practically,
compliance with reporting is often irregular and incomplete. In fact, the main
flaws in passive case detection are incomplete reporting and inconsistencies in
case definitions.

The main advantages are the low cost of such a program and the sustained
collection of data over decades. The purpose is to produce routine descriptive
data on communicable diseases, generate hypotheses and prompt more elaborate
epidemiologic studies designed to evaluate prevention activities.

Some conditions must be met to maximize compliance with reporting:
1. Make reporting easy: Provide easy to consult lists of reportable diseases, pro-

vide pre-stamped cards for reporting, provide telephone or fax reporting
facilities.

2. Do not require extensive information: Name, age, sex, residence, diagnosis.
Some diseases may include data on exposure, symptoms, method of diagnosis
etc.

3. Maintain confidentiality and assure reporters that confidentiality will be re-
spected.

4. Convince reporters that reporting is essential: provide feedback; show how the
data are used for better prevention.

Confidentiality of data is essential, particularly for those reporting health care
providerswhoare subject tovery strict confidentiality laws.Any suspicionof failure
of maintaining secure data would rapidly ruin a passive surveillance program.

Active Surveillance1.4.2

In an active surveillance system, the recipient will actually take some action to
identify the cases.
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In an active surveillance program, the public health agency organizes a system
by searching for cases or maintaining a periodic contact with providers. Regular
contacting boosts the compliance of the providers. Providers are health agencies
but also as in passive case detection, there may be day care centers, schools, long
term care facilities, summer camps, resorts, and even public involvement. The
agency takes the step to contact the health providers (all of them or a carefully
selected sample) and requests reports from them at regular intervals. Thus no
reports are missing.

Active surveillance has several advantages:
It allows the collection of more information. A provider sees that the recipient
agency is more committed to surveillance and is therefore more willing to
invest more time her|himself.
It allows direct communication and opportunities to clarify definitions or any
other problems that may have arisen.

Active surveillance provides much better, more uniform data than passive case
detection but active case detection is much more expensive (see Tables 1.2 and 1.3).

Table 1.2. Reports per 100 physicians of cases of hepatitis, salmonellosis, measles, and rubella by

active and passive reporting, Monroe County (NY), 1980–1981

Disease Active Passive Ratio

Hepatitis 78 27 2.9

Measles 11 8 1.4

Rubella 7 3 2.3

Salmonellosis 44 9 4.9

Total 140 48 2.9

Table 1.3. Comparison of Health Department estimated costs for active and passive surveillance

systems, Vermont 1981

Type of surveillance system

Active ($) Passive ($)

Paper 114 80

Mailing 185 48

Telephone 1947 175

Personnel

Secretary 3000 2000

Public health nurses 14,025 0

State laboratory 700 500

Post exposure prophylaxis 10,890 8250

Total 30,861 11,053
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Active Surveillance Through Active Case Detection
Active surveillance systems are usually designed when a passive system is deemed
insufficient to accomplish the goals of disease monitoring. This type of surveil-
lance is reserved for special programs, usually when it is important to identify
every single case of a disease. Active surveillance is implemented in the final
phases of an eradication program: smallpox eradication, poliomyelitis eradica-
tion, Guinea worm eradication and malaria eradication in some countries. Active
surveillance is also the best approach in epidemic or outbreak investigations to
elicit all cases.

In the smallpox eradication program, survey agents visited providers, asking
about suspected cases and actually investigating each suspected case. In polio
eradication programs, all cases of acute flaccid paralysis are investigated.

In malaria eradication programs and some malaria control programs, malaria
control agents go from house to house asking who has fever or had fever recently
(in the past week or month for example). A blood smear is collected from those
with fever.

Case Register1.4.3

A case register is a complete list of all the cases of a particular disease in a definite
area over a certain time period. Registers are used to collect data on infections over
long periods of time. Registers should be population based, detailed and complete.
A register will show an unduplicated count of cases. They are especially useful for
long term diseases, diseases that may relapse or recur and diseases for which the
same cases will consult several providers and therefore would be reported on more
than one occasion.

Case registers contain identifiers, locating information, disease, treatment, out-
come and follow-up information as well as contact management information. They
are an excellent source of information for epidemiologic studies. In disease control,
case registers are indispensable tools for follow up of chronic infections disease
such as tuberculosis and leprosy.

The contents and quality of a case register determine its usefulness. It should
contain

Patient identifiers with names (all names), age, sex, place and date of birth,
complete address with directions on how to reach the patient,
Name and address of a “stable” relative that knows the patient’s whereabouts,
Diagnosis information with disease classification, brief clinical description
(short categories are better than detailed descriptions),
Degree of infectiousness (bacteriological, serological results),
Circumstances of detection,
Initial treatment and response with specific dose, notes on compliance, side
effects, clinical response,
Follow-up information with clinical response, treatment regimen, compliance,
side effects,
Locating information; for some diseases contact information is also useful.
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Updating a register is a difficult task. It requires cooperation from numerous per-
sons. Care must be taken to maintain the quality of data. It is important to only
request pertinent information for program evaluation or information that would
remind users to collect data or to perform an exam. For example, if compliance
is often a neglected issue, include a question on compliance. Further details con-
cerning the use of registries in general are given in Chap. I.4 of this handbook.

Sentinel Disease Surveillance 1.4.4

For sentinel disease surveillance, only a sample of health providers is used.
The sample is selected according to the objectives of the surveillance program.
Providers most likely to serve the population affected by the infection are se-
lected, for example child health clinics and pediatricians should be selected for
surveillance of childhood diseases. A sentinel system allows cost reduction and is
combined with active surveillance.

A typical surveillance program for influenza infections includes a selected num-
bers of general practitioners who are called every week to obtain the number of
cases presented to them. This program may include the collection of samples for
viral cultures or other diagnostic techniques. Such a level of surveillance would be
impossible to maintain on the national level.

Evaluation of a Surveillance System 1.4.5

Surveillance systems are evaluated on the following considerations (CDC 2001b):
Usefulness: Some surveillance systems are routine programs that collect data
and publish results; however it appears that they have no useful purpose – no
conclusions are reached, no recommendations are made. A successful surveil-
lance system would provide information used for preventive purposes.
Sensitivity or the ability to identify every single case of disease is particularly
important for outbreak investigations and eradication programs.
Predictive value positive (PVP) is the proportion of reported cases that actually
have the health-related event under surveillance. Low PVP values mean that
non-cases might be investigated, outbreaks may be exaggerated or pseudo
outbreaks may even be investigated. Misclassification of cases may corrupt
the etiologic investigations and lead to erroneous conclusions. Unnecessary
interventions and undue concern in the population under surveillance may
result.
Representativeness ensures that the occurrence and distribution of cases accu-
rately represent the real situation in the population.
Simplicity is essential to gain acceptance, particularly when relying on outside
sources for reporting.
Flexibility is necessary to adapt to changes in epidemiologic patterns, labora-
tory methodology, operating conditions, funding or reporting sources.
Data quality is evaluated by the data completeness (blank or unknown variable
values) and validity of data recorded (cf. Chap. I.13 of this handbook).
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Acceptability is shown in the participation of providers in the system.
Timeliness is more important in surveillance of epidemics.
Stability refers to the reliability (i.e., the ability to collect, manage and provide
data properly without failure) and availability (the ability to be operational
when it is needed) of the public health surveillance system.

Elements of a Surveillance System1.4.6

The major elements of a surveillance system as summarized by WHO are: Mortality
registration, morbidity reporting, epidemic reporting, laboratory investigations,
individual case investigations, epidemic field investigations, surveys, animal reser-
voir and vector distribution studies, biologics and drug utilization, knowledge of
the population and the environment. Traditional surveillance methods rely on
counting deaths and cases of diseases. However, these data represent only a small
part of the global picture of infectious disease problems.

Mortality Registration
Mortality registration was one of the first elements of surveillance implemented.
The earliest quantitative data available on infectious disease is about mortality.
The evolution of tuberculosis in the US for example, can only be traced through
its mortality. Mortality data are influenced by the occurrence of disease but also
by the availability and efficacy of treatment. Thus mortality cannot always be used
to evaluate the trend of disease occurrence.

Morbidity Reporting
Reporting of infectious diseases is one of the most common requirements around
the world. A list of notifiable diseases is established on a national or regional level.
The numbers of conditions vary; it ranges usually from 40 to 60 conditions. In
general, a law requires that health facility staff, particularly physicians and labo-
ratories, report these conditions with guaranteed confidentiality. It is also useful
to have other non-health related entities report suspected communicable diseases
such as day care centers, schools, restaurants, long term care facilities, summer
camps and resorts. Regulations on mandatory reporting are often difficult to en-
force. Voluntary compliance by the institution’s personnel is necessary. Reporting
may be done in writing, by phone or electronically in the most advanced system.
Since most infectious diseases are confirmed by a laboratory test, reporting by
the laboratory may be more reliable. The advantage of laboratory reporting is the
ability to computerize the reporting system. Computer programs may be set up to
automatically report a defined set of tests and results.

For some infectiousdiseases, only clinicaldiagnoses aremade.These syndromes
may be the consequences of a large number of different microorganisms for which
laboratory confirmation is impractical.

When public or physician attention is directed at a specific disease, reporting
may be biased. When there is an epidemic or when the press focuses on a particular
disease, patients are more prone to look for medical care and physicians are more
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likely to report. Reporting rates were evaluated in several studies. In the US,
studies show report rates of 10% for viral hepatitis, Hemophilus influenzae 32%,
meningococcal meningitis 50% and shigellosis 62%.

Morbidity Case Definition
It is important to have a standardized set of definitions available to providers.
Without standardized definitions, a surveillance system may be counting differ-
ent entities from one provider to another. The variability may be such that the
epidemiologic information obtained is meaningless.

Most case definitions in infectious disease epidemiology are based on laboratory
tests, however some clinical syndromes such as toxic shock syndrome do not
have confirmatory laboratory tests. Most case definitions include a brief clinical
descriptionuseful todifferentiate activedisease fromcolonizationor asymptomatic
infection. Some diseases are diagnosed based on epidemiologic data. As a result
many case definitions for childhood vaccine preventable diseases and foodborne
diseases include epidemiologic criteria (e.g., exposure to probable or confirmed
cases of disease or to a point source of infection). In some instances, the anatomic
site of infection may be important; for example, respiratory diphtheria is notifiable,
whereas cutaneous diphtheria is not (CDC 1997).

Cases are classified as a confirmed case, a probable or a suspected case. An epi-
demiologically linked case is a case in which 1) the patient has had contact with one
or more persons who either have|had the disease or have been exposed to a point
source of infection (including confirmed cases) and 2) transmission of the agent by
the usual modes is plausible. A case may be considered epidemiologically linked
to a laboratory-confirmed case if at least one case in the chain of transmission
is laboratory confirmed. Probable cases have specified laboratory results that are
consistent with the diagnosis yet do not meet the criteria for laboratory confir-
mation. Suspected cases are usually cases missing some important information in
order to be classified as a probable or confirmed case.

Case definitions are not diagnoses. The usefulness of public health surveillance
data depends on its uniformity, simplicity and timeliness. Case definitions es-
tablish uniform criteria for disease reporting and should not be used as the sole
criteria for establishing clinical diagnoses, determining the standard of care neces-
sary for a particular patient, setting guidelines for quality assurance, or providing
standards for reimbursement. Use of additional clinical, epidemiological and lab-
oratory data may enable a physician to diagnose a disease even though the formal
surveillance case definition may not be met.

Which Stage of Disease Should Be Collected?
The Morbidity Iceberg
Surveillance programs collect data on the overt cases diagnosed by the health care
system. However these cases may not be the most important links in the chain of
transmission. Cases reported are only the tip of the iceberg. They may not at all be
representative of the true endemicity of an infectious disease.
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There is a continuous process leading to an infectious disease: exposed, colo-
nized, incubating, sick, clinical form, convalescing, cured. Even among those who
have overt disease there are several disease stages that may not be included in
a surveillance system:

some have symptoms but do not seek medical attention
some do get medical attention but do not get diagnosed or get misdiagnosed
some get diagnosed but do not get reported

Cases reported
Cases diagnosed but not reported
Cases who seek medical attention but were not diagnosed
Cases who were symptomatic but did not seek medical attention
Cases who were not symptomatic

Infectious disease cases play different roles in the epidemiology of an infectious
disease; some individuals are the indicators (most symptomatic), some are the
reservoir of microorganisms (usually asymptomatic, not very sick), some are
amplifiers (responsible for most of the transmission), some are the victims (those
who develop severe long term complications). Depending on the specific disease
and the purpose of the surveillance program, different disease stages should be
reported. For example

In a program to prevent rabies in humans exposure to a suspect rabid animal
(usually a bite) needs to be reported. At the stage where the case is a suspect,
prevention will no longer be effective.
For bioterrorism events, reporting of suspects is of paramount importance to
minimize consequences. Waiting for confirmation causes too long of a delay.
In the time necessary to confirm cases, opportunities to prevent co-infections
may be lost and secondary cases may already be incubating, depending on the
transmissibility of the disease.
Surveillance for West Nile viral infections best rests on the reporting of neuro-
invasive disease. Case reports of neuro invasive diseases are a better indicator
than West Nile infection or West Nile fever cases that are often benign, go
undiagnosed and are reported haphazardly.
For Gonorrhea, young males are the indicators because of the intensity of
symptoms.Young females are themain reservoir becauseof thehighproportion
ofasymptomatic infections.Femalesof reproductiveageare thevictimsbecause
of pelvic invasive disease (PID) and sterility.
A surveillance program for hepatitis B that only would include symptomatic
cases of hepatitis B could be misleading. A country with high transmission of
hepatitis B from mother to children would have a large proportion of infected
newborn becoming asymptomatic carriers and a major source of infection
during their lifetime.Typically in countrieswithpoor reportingof symptomatic
hepatitis, the reporting of acute cases of hepatitis B would be extremely low in
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spite of high endemicity which would result in high rates of chronic hepatitis
and hepatic carcinoma.

Individual Cases or Aggregate Data?
Most morbidity reporting collects data about individual cases. Reporting of in-
dividual cases includes demographic and risk factor data which are analyzed for
descriptive epidemiology and for implementation of preventive actions. For ex-
ample, any investigation leading to contact identification and prophylaxis requires
a start from individual cases.

However, identification of individuals may be unnecessary and aggregate data
sufficient for some specific epidemiologic purposes. Monitoring an influenza epi-
demic for example, can be done with aggregate data. Obtaining individual case
information would be impractical since it would be too time consuming to col-
lect detailed demographics on such a large number of cases. Aggregate data from
sentinel sites consists of a number of influenza-like illnesses by age group and the
total number of consultants or the total number of ‘participants’ to be used as
denominators. Such data is useful to identify trends and determine the extent of
the epidemic and geographic distribution.

Collection of aggregate data of the proportion of school children by age group
and sex is a useful predictive tool to identify urinary schistosomiasis endemic areas
(Lengeler et al. 2002) without having to collect data on individual school children.

Investigations of Cases, Outbreaks, Epidemics and Surveys
Epidemics of severe diseases are almost always reported. This is not the case for
epidemics of milder diseases such as rashes or diarrheal diseases. Many countries
do not want to report an outbreak of disease that would cast a negative light on the
countries. For example, many countries that are tourism dependent do not report
cholera or plague cases. Some countries did not report AIDS cases for a long time.

Case investigations are usually not undertaken for individual cases unless the
disease is of major importance such as hemorrhagic fever, polio, rabies, yellow
fever, any disease that has been eradicated and any disease that is usually not
endemic in the area.

Outbreaks or changes in the distribution pattern of infectious diseases should
be investigated and these investigations should be compiled in a comprehensive
system to detect trends. While the total number of infectious diseases may remain
the same, changes may occur in the distribution of cases from sporadic to focal
outbreaks. For example the distribution of WNV cases in Louisiana shifted from
mostly focal outbreaks the first year the West Nile Virus arrived in the state in
2002, to mostly sporadic cases the following year in 2003 (see Fig. 1.1).

Surveys are a very commonly used tool in public health, particularly in de-
veloping countries where routine surveillance is often inadequate (cf. Chap. IV.6
of this handbook). Survey data needs to be part of a comprehensive surveillance
database. One will acquire a better picture from one or a series of well constructed
surveys than from poorly collected surveillance data. Surveys are used in control
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Figure 1.1. Human West Nile Virus Cases Louisiana 2003

programs designed to control major endemic diseases: spleen and parasite surveys
for malaria, parasite in urine and stools for schistosomiasis, clinical surveys for
leprosy or guinea-worm disease and skin test surveys for tuberculosis.

Surveillance of Microbial Strains
Surveillance of microbial strains is designed to monitor, through active labora-
tory based surveillance, the bacterial and viral strains isolated. Examples of these
systems are:

In the US, the PulseNet program is a network of public health laboratories that
performs DNA fingerprinting of bacteria causing foodborne illnesses (Swami-
nathan et al. 2001). Molecular sub-typing methods must be standardized to
allow comparisons of strains and the building of a meaningful data bank.
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The method used in PulseNet is pulse field gel electrophoresis. The use of
standardized subtyping methods has allowed isolates to be compared from
different parts of the country, enabling recognition of nationwide outbreaks
attributable to a common source of infection, particularly those in which cases
are geographically separated.
The US National Antimicrobial Resistance Monitoring System (NARMS) for
enteric bacteria is a collaboration between CDC, participating state and local
health departments and the US Food and Drug Administration (FDA) to mon-
itor antimicrobial resistance among foodborne enteric bacteria isolated from
humans. NARMS data are also used to provide platforms for additional studies
including field investigations and molecular characterization of resistance de-
terminantsand toguideefforts tomitigateantimicrobial resistance (CDC2003).
Monitoring of antimicrobial resistance is routinely done by requiring labora-
tories to either submit all, or a sample of their bacterial isolates.

Surveillance of Animal Diseases
Surveillance for zoonotic diseases should start at the animal level, thus providing
early warning for impending increases of diseases in the animal population.

Rabies surveillance aims at identifying the main species of animals infected
in an area, the incidence of disease in the wild animals and the prevalence
of infection in the asymptomatic reservoir (bats). This information will guide
preventive decisions made when human exposures do occur.
Malaria control entomologic activities must be guided by surveillance of
Anopheles population, biting activities,Plasmodium infection to biting acivities
and Plasmodium infection rates in the Anopheles population.
Surveillance for dead birds, infection rates in wild birds, infection in sentinel
chickens and horse encephalitis are all part of West Nile encephalitis surveil-
lance. These methods provide an early warning system for human infections.
The worldwide surveillance for influenza is the best example of the usefulness
of monitoring animals prior to spread of infection in the human population.
Influenza surveillance programs aim to rapidly obtain new circulating strains
to make timely recommendations about the composition of the next vaccine.
The worldwide surveillance priority is given to the establishment of regular
surveillance and investigation of outbreaks of influenza in the most densely
populated cities in key locations, particularly in tropical or other regions where
urban markets provide opportunities for contacts between humans and live
animals (Snacken et al. 1999).

Rationale of Selecting Diseases for Surveillance Purposes
The rationale for selecting infectious diseases and an appropriate surveillance
method is based on the goal of the preventive program. Table 1.4 shows a few
examples of different surveillance methods based on the disease and the objectives
of the surveillance.
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ogists. In 2001, a total of 1238 foodborne outbreaks with 25,035 cases involved were
reported in the US (CDC 2004) with Norovirus being the most common confirmed
etiologic agent associated with these outbreaks (see Table 1.5).

Table 1.5. Confirmed etiologic agents of foodborne outbreaks in the US in 2001

Etiology Number of Outbreaks
Bacillus cereus 5
Brucella spp. 1
Campylobacter spp. 16
Clostridium botulinum 3
Clostridium perfringens 30
Enterohemorrhagic Escherichia coli 4
Enterohemorrhagic Escherichia coli O157:H7 16
Enterotoxigenic Escherichia coli 2
Listeria monocytogenes 1
Salmonella spp. 112
Shigella spp. 15
Staphylococcus aureus 23
Vibrio spp. 4
Yersinia enterocolitica 3

Total Bacteria 235
Ciguatera 23
Histamin 10
Other Chemical 1
Scrombroid 18

Total Chemical 52
Cyclospora cayetanensis 2
Giardia lamblia 1
Trichinella spp 2

Total Parasitic 5
Hepatitis A 6
Norovirus 150

Total Viral 156

Source: CDC Foodborne Outbreak Response and Surveillance Unit, 2004

Outbreaks or epidemics are defined as the number of disease cases above what
is normally expected in the area for a given time period. Depending on the disease,
it is not always known if the case numbers are really higher than expected and
some outbreak investigations can reveal that the reported case numbers did not
actually increase.

The nature of a disease outbreak depends on a variety of circumstances, most
importantly the suspected etiologic agent involved, the disease severity or case
fatality rate, population groups affected, media pressure, political inference and
investigative progress. There are certain common steps for outbreak investiga-
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tions as shown in Table 1.6. However, the chronology and priorities assigned to
each phase of the investigation have to be decided individually, based on the
circumstances of the suspected outbreak and information available at the time.

Table 1.6. Common steps in outbreak investigations

1. “Outbreak” detected based on initial report or analysis of surveillance data
2. Collect basic numbers and biologic specimens
3. Investigate or not?
4. Think prevention first
5. Get information on the disease or condition
6. Sometimes numbers do not count
7. Is the increase real or artificial?
8. Verify the diagnosis
9. Prepare a case definition

10. Put the information in a database
11. Find additional cases
12. Basic descriptive epidemiology (time, place and person)
13. Hypothesis testing and measures of association
14. Final report and communications

For example, in 2002, 21 outbreaks of acute gastroenteritis on cruise ships with
travel destinations outside the US were reported to the CDC (CDC 2002). In only
five of these outbreaks about 1400 persons, with an average 280 cases per cruise,
had symptoms of viral acute gastroenteritis. Norovirus outbreaks begin usually
as a food or water borne disease but often continue because of the easy person to
person transmission in a closed environment and low infectious dose (100 viral
particles can be infectious) (CDC 2001a).

Basic Steps in Outbreak Investigations1.5.1

1. The initial report can originate from very different sources. Examples are:
A physician is calling the local or state health department about an increase
of number of patients seen and diagnosed with a specific disease,
A high number of patients with similar signs and symptoms are showing
up in the emergency room,
A school principal or daycare owner is reporting a high number of absent
students,
A nursing home health care professional is seeing a lot of residents with
gastrointestinal illnesses,
A person is complaining to the health department that she|he got sick after
eating at a certain restaurant.

Another way to detect an increase of cases is if the surveillance system of
reportable infectious diseases reveals an unusually high number of people
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with the same diagnosis over a certain time period at different health care
facilities.
Outbreaks of benign diseases like self-limited diarrhea are often not detected
because people are not seeking medical attention and therefore medical ser-
vices are not aware of them. Furthermore, early stages of a disease outbreak
are often undetected because single cases are diagnosed sporadically. It is not
until a certain threshold is passed, that it becomes clear that these cases are
related to each other through a common exposure or secondary transmission.
Depending on the infectious disease agent, there can be a sharp or a gradual
increase of number of cases. It is sometimes difficult to differentiate between
sporadic cases and the early phase of an outbreak. In the 2001 St. Louis En-
cephalitis (SLE) outbreak in Louisiana, the number of SLE cases increased from
9 to 18 between week one and two and then the numbers gradually decreased
over the next 9 weeks to a total of 63 cases (Jones et al. 2002).

2. After the initial report is received, it is important to collect and document
basic information: Contact information of persons affected, a good and thor-
ough event description, names and diagnosis of hospitalized persons (and de-
pending on the presumptive diagnosis their underlying conditions and travel
history), laboratory test results and other useful information to get a complete
picture and to confirm the initial story of the suspected outbreak. It also might
be necessary to collect more biological specimens such as food items and stool
samples for further laboratory testing.

3. Based on the collected information the decision to investigate must be made.
It may not be worthwhile to start an investigation if there are only a few
people who fully recovered after a couple of episodes of a self-limited, benign
diarrhea. Other reasons not to investigate might be that this type of outbreak
occurs regularly every summer or that it is only an increase in number of
reported cases which are not related to each other.
On the other hand, however, there should be no time delay in starting an
investigation if there is an opportunity to prevent more cases or the potential
to identify a system failure which can be caused, for example, by poor food
preparation in a restaurant or poor infection control practices in a hospital or
to prevent future outbreaks by acquiring more knowledge of the epidemiology
of the agent involved. Additional reasons to investigate include the interest of
the media, politicians and the public in the disease cluster and the pressure
to provide media updates on a regularly basis. Another fact to consider is
that outbreak investigations are good training opportunities for newly hired
epidemiologists.
Sometimes lack of data and lack of sufficient background information make
it difficult to decide early on if there is an outbreak or not. The best approach
then is to assume that it is an outbreak until proven otherwise.

4. Prevention of more cases is the most important goal in outbreak investiga-
tions and therefore a rapid evaluation of the situation is necessary. If there
are precautionary measures to be recommended to minimize the impact of
the outbreak and the spread to more persons, they should be implemented
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before a thorough investigation is completed. Most likely control measures
implemented by public health professionals in foodborne outbreaks are:

Recall or destruction of contaminated food items,
Restriction of infected food handlers from food preparation,
Correction of any deficiency in food preparation or conservation.

5. After taking immediate control measures, the next step is to know more about
the epidemiology of the suspected agent. The most popular books for public
health professionals include the “Red Book” (American Academy of Pediatrics
2003), the “Control of Communicable Diseases Manual” from the American
Public Health Association (APHA 2000) or other infectious disease epidemiol-
ogy books as well as the CDC website (www.cdc.gov). If the disease of interest is
a reportable disease or a disease where surveillance data are available, baseline
incidence rates can be calculated. Then a comparison is made to determine
if the reported numbers constitute a real increase or not. Furthermore, the
seasonal and geographical distribution of the disease is important as well as
the knowledge of risk factors. Many infectious diseases show a seasonal pat-
tern such as Rotavirus or Neisseria meningitides. For example in suspected
outbreaks where cases are associated with raw oyster consumption, the in-
vestigator should know that in the US Gulf states Vibrio cases increase in the
summer months because the water conditions are optimal for the growth of
the bacteria in water and in seafood. This kind of information will help to
determine if the case numbers show a true increase and if it seems likely to be
a real outbreak.

6. For certain diseases, numbers are not important. Depending on the severity
of the disease, its transmissibility and its natural occurrence, certain diseases
should raise a red flag for every health care professional and even a single case
should warrant a thorough public health investigation. For example a single
confirmedcaseofa rabiddog inacity (potentialdog todog transmissionwithin
a highly populated area), a case of dengue hemorrhagic fever or a presumptive
case of smallpox would immediately trigger an outbreak investigation.

7. Sometimes an increase of case numbers is artificial and not due to a real
outbreak. In order to differentiate between an artificial and a natural increase
in numbers, the following changes have to be taken into consideration:

Alterations in the surveillance system,
A new physician who is interested in the disease and therefore more likely
to diagnose or report the disease,
A new health officer strengthening the importance of reporting,
New procedures in reporting (from paper to web based reporting),
Enhanced awareness or publicity of a certain disease that might lead to
increased laboratory testing,
New diagnostic tests,
A new laboratory,
An increase in susceptible population such as a new summer camp.
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8. It is important to be sure that reported cases of a disease actually have the
correctdiagnosis andarenotmisdiagnosed. Is thereassurance that all the cases
have the same diagnosis? Is the diagnosis verified and were other differential
diagnoses excluded? In order to be correct, epidemiologists have to know the
basis for the diagnosis. Are laboratory samples sufficient? If not, what kind of
specimens should be collected to ascertain the diagnosis? What are the clinical
signs and symptoms of the patient?
In an outbreak of restaurant associated botulism in Canada only the 26th case
was correctly diagnosed. The slow progression of symptoms and misdiagnosis
of the dispersed cases made it very difficult to link these cases and identify the
source of the outbreak (CDC 1985, 1987).

9. The purpose of a case definition is to standardize the identification and count-
ing of the number of cases. The case definition is a standard set of criteria and
is not a clinical diagnosis. In most outbreaks the case definition has compo-
nents of person, place and time, such as the following: Persons with symptoms
of X and Y after eating at the restaurant Z between Date1 and Date2. The case
definition should be broad enough to get most of the true cases but not too
narrow so that true cases will not be misclassified as controls. A good method
is to analyze the data, identify the frequency of symptoms and include symp-
toms that are more reliable than others. For example, diarrhea and vomiting
are more specific than nausea and headache in the case definition of a food
related illness.

10. What kind of information is necessary to be collected? It is sufficient to have
a simple database with basic demographic information such as name, age, sex
and information for contacting the patient. More often, date of reporting and
date of onset of symptoms are also important. Depending on the outbreak and
the potential exposure or transmission of the agent involved further variables
such as school, grade of student or occupation in adults might be interesting
and valuable.

11. During an outbreak investigation it is important to identify additional cases
that may not have been known or were not reported. There are several ap-
proaches:

Interview known cases and ask them if they know of any other friends or
family members with the same signs or symptoms,
Obtain a mailing list of frequent customers in an event where a restaurant
is involved,
Set up an active surveillance with physicians or emergency departments,
Call laboratories and ask for reports of suspected and confirmed cases.

Another possibility is to review surveillance databases or to establish enhanced
surveillance for prospective cases. Occasionally it might be worthwhile to
include the media for finding additional cases through press releases. However
the utility of that technique depends on the outbreak and the etiologic agent;
the investigator should always do a benefit risk analysis before involving the
media.
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12. After finding additional cases, entering them in the database and organizing
them, the investigator should try to get a better understanding of the situation
byperforming somebasicdescriptive epidemiology techniques suchas sorting
the data by time, place and person. For a better visualization of the data, an
epidemic or “epi” curve should be graphed. The curve shows the number of
cases by date or time of onset of symptoms. This helps to understand the nature
and dynamic of the outbreak as well as to get a better understanding of the
incubation period if the time of exposure is known. It also helps to determine
whether the outbreak had a single exposure and no secondary transmission
(single peak) or if there is a continuous source and ongoing transmission.
Figures 1.2 and 1.3 show “epi” curves of two different outbreaks: a foodborne
outbreak in a school in Louisiana, and the number of WNV human cases in
Louisiana in the 2002 outbreak, respectively.
Sometimes it is useful to plot the cases on a map to get a better idea of the
nature and the source of an outbreak. Mapping may be useful to track the
spread by water (see John Snow’s cholera map) or by air or even a person
to person transmission. If a contaminated food item was the culprit, food
distribution routes with new cases identified may be helpful. Maps, however,
should be taken with caution and carefully interpreted. For example, WNV
cases are normally mapped by residency but do not take into account that
people might have been exposed or bitten by an infective mosquito far away
from where they live. For outbreak investigations, spot maps are usually more
useful than rate maps or maps of aggregate data.
Depending on the outbreak it might be useful to characterize the outbreak
by persons’ demographics such as age, sex, address and occupation or health
status. Are the cases at increased susceptibility or at high risk of infection?

Cases by date and time of onset (N=87)
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These kinds of variables might give the investigator a good idea if the exposure
is not yet known. For typical foodborne outbreaks however, demographic
information is not very useful because the attack rates will be independent of
age and sex. More details on methods used in descriptive epidemiology are
given in Chap. I.3 of this handbook.

13. Based on the results of basic descriptive epidemiology and the preliminary
investigation, some hypotheses should be formulated in order to identify the
cause of the outbreak. A hypothesis will be most likely formulated such as
“those who attended the luncheon and ate the chicken salad are at greater risk
than those who attended and did not eat the chicken salad”. It is always easier
to find something after knowing what to look for and therefore a hypothesis
shouldbeusedas a tool.However, the epidemiologist shouldbeflexible enough
to change the hypothesis if the data do not support it. If data clues are leading
in another direction, the hypothesis should be reformulated such as “those
who attended the luncheon and ate the baked chicken are at greater risk than
those who attended and did not eat the baked chicken”.
To verify or deny hypotheses, measures of risk association such as the rela-
tive risk (RR) or the odds ratio (OR) have to be calculated (as described in
Chaps. I.2, I.5, and I.6 of this handbook). The CDC has developed the software
program ‘EpiInfo’ which is easy to use in outbreak investigations, and, even
more importantly, free of charge. It can be downloaded from the CDC web-
site (http:||www.cdc.gov|epiinfo|). Measures of association, however, should
be carefully interpreted; even a highly significant measure of association can
not give enough evidence of the real culprit or the contaminated food item.
The measure of association is only as good and valid as the data. Most people
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have recall problems when asked what they ate, when they ate and when their
symptoms started. Even more biases or misclassifications of cases and con-
trols can hide an association. A more confident answer comes usually from
the laboratory samples from both human samples and food items served at
time of exposure. Agents isolated from both food and human samples that
are identified as the same subtype, in addition to data results supporting the
laboratory findings, are the best evidence beyond reasonable doubt.

14. As the last step in an outbreak investigation, the epidemiologist writes a final
report on the outbreak and communicates the results and recommendations
to the public health agency and facilities involved. In the US, public health de-
partments also report foodborne outbreaks electronically to CDC via a secure
web based reporting system, the Electronic Foodborne Outbreak Reporting
System (EFORS).

Types of Outbreaks1.5.2

The “Traditional” Foodborne Outbreak
The “traditional” foodborne outbreak is usually a small local event such as family
picnic, wedding reception, or other social event and occurs often in a local restau-
rant or school cafeteria. This type of outbreak is highly local with a high attack
rate in the group exposed to the source. Because it is immediately apparent to
those in the local group such as the group of friends who ate at the restaurant or
the students’ parents, public health authorities are normally notified early in the
outbreak while most of the cases are still symptomatic. Epidemiologists can start
early on with their investigation and therefore have a much better chance to collect
food eaten and stool samples of cases with gastroenteritis for testing and also to
detect the etiologic agent in both of them.

In a 2001 school outbreak in Louisiana, eighty-seven persons (sixty-seven stu-
dents and twenty faculty members) experienced abdominal cramps after eating
at the school’s annual “Turkey Day” the day before. Stool specimens and the
turkey with the gravy were both positive for Clostridium perfringens with the same
pulse field gel electrophoresis (PFGE) pattern (Merlos 2002). The inspection of the
school cafeteria revealed several food handling violations such as storing, cooling
and reheating of the food items served. Other than illnesses among food handlers,
these types of improper food handling or storage are the most common causes of
foodborne outbreaks.

New Types of Outbreaks
A different type of outbreak is emerging as the world is getting smaller. In other
words persons and food can travel more easily and faster from continent to con-
tinent and so do infectious diseases with them. Foodborne outbreaks related to
imported contaminated food itemsarenormallywidespread, involvingmany states
and countries and therefore are frequently identified. In 1996, a large outbreak of
Cyclospora cayetanensis occurred in 10 US states and Ontario, Canada and was
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linked to contaminated raspberries imported from South America. Several hun-
dred laboratoryconfirmedcaseswerereported,mostof themin immunocompetent
persons (CDC 1996).

A very useful molecular tool to identify same isolates from different geographic
areas is sub-typing enteric bacteria with PFGE. In the US, the PulseNet database
allows state health department to compare their isolates with other states and
therefore increase the recognition of nationwide outbreaks linked to the same
food item (Swaminathan et al. 2001).

In a different scenario, a widely distributed food item with low-level contam-
ination might result in an increase of cases within a large geographic area and
therefore might be not get detected on a local level. This kind of outbreak might
only be detected by chance if the number of cases increased in one location and
the local health department alerts other states to be on the lookout for a certain
isolate.

Another type of outbreak is the introduction of a new pathogen into a new
geographic area as it happened in 1991 when Vibrio cholerae was inadvertently
introduced in the waters off the Gulf Coast of the United States. In the U.S.,
however, most cases are usually traced back to people who traveled to areas with
a high cholera risk or to people who ate food imported from cholera-risk countries
and only sporadic Vibrio cholerae cases are associated with the consumption of
raw or undercooked shellfish from the Gulf of Mexico (CDC 1999b).

Food can not only be contaminated by the end of the food handling process i.e.
by infected food handlers but also can be contaminated by any event earlier in the
chain of food production. In 1996, an ice cream outbreak of Salmonella enteritidis
in a national brand of ice cream resulted in 250,000 illnesses. The outbreak was
detected by routine surveillance because of a dramatic increase of Salmonella
enteritidis in South Minnesota. The cause of the outbreak was a basic failure on
an industrial scale to separate raw products from cooked products. The ice cream
premix was pasteurized and then transported to the ice cream factory in tanker
trucks which had been used to haul raw eggs. This resulted in the contamination
of the ice cream and subsequent salmonella cases (Hennessey et al. 1996).

Surveys 1.6

Surveys are useful to provide information for which there is no data source or
no reliable data source. Surveys are time consuming and are often seen as a last
choice to obtain information. However, too often unreliable information is used
because it is easily available. For example, any assessment of the Legionella prob-
lem using passive case detection will be unreliable due to under-diagnosis and
under-reporting. Most cases of legionellosis are treated empirically as community
acquired pneumonias and are never formally diagnosed.

In developing countries, surveys are often necessary to evaluate health problems
since data collected routinely (disease surveillance, hospital records, case registers)
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are often incomplete and of poor quality. In industrialized nations, although many
sources of data are available, there are some circumstances where surveys may be
necessary.

Prior to carrying out surveys involving human subjects, special procedures need
to be followed. In industrialized countries, a human subject investigation review
board has to evaluate the project’s value and ethics. In developing countries, how-
ever, such boards may not be formalized but it is important to obtain permission
from medical, national and local political authorities before proceeding.

Survey Methods1.6.1

Surveys of human subjects are carried out by mail, telephone, personal inter-
views, and behavioral observations. In infectious diseases, the collection of bio-
logical specimens in humans (i.e. blood for serologic surveys) or the collection
of environmental samples (food, water, environmental surfaces) is very common.
Personal interviews and specimen collection require face to face interaction with
the individual surveyed. These are carried out in offices or by house to house
surveys.

Non-respondents are an important problem for infectious disease surveys.
Those with an infection may be absent from school, may not answer the door
or may be unwilling to donate blood for a serologic survey, thus introducing
a systematic bias into the survey results.

Since surveys are expensive, they cannot be easily repeated. All field procedures,
questionnaires, biological sample collection methods and laboratory tests should
be testedprior to launching the survey itself. Feasibility, acceptability and reliability
can be tested in a small scale pilot study. More details on survey methods are to be
found in Chap. I.10 of this handbook.

Sampling1.6.2

Since surveys are labor intensive, they are rarely carried out on an entire population
but rather on a sample. To do a correct sampling, it is necessary to have a sampling
base (data elements for the entire population) from which to draw the sample.
Examples of sampling bases are population census, telephone directory (for the
phonesubscriberpopulation), school rosterora school list. Indevelopingcountries
such lists are not often available and may have to be prepared before sampling can
start. More information on sampling designs can be found in Chap. IV.5 of this
handbook.

Community Surveys (House to House Surveys)1.6.3

Most community surveys are carried out in developing countries because reliable
data sources are rare. The sampling base often ends up to the physical layout of
the population. A trip and geographical reconnaissance of the area are necessary.
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The most common types of surveys undertaken in developing countries are done
at the village level; they are based on maps and a census of the village.

In small communities, it is important to obtain the participation of the pop-
ulation. Villagers are often wary of government officials counting people and
going from door to door. To avoid misinterpretations and rumors, influential
people in the community should be told about the survey. Their agreement is
indispensable and their help is needed to explain the objectives of the survey
and particularly its potential benefits. Increasing the knowledge about disease,
disease prevention and advancing science are abstract notions that are usu-
ally poorly understood or valued by villagers who are, in general, very prac-
tical people. If a more immediate benefit can be built into the survey, there
will be an increase in cooperation of the population. Incentives such as of-
fering to diagnose and treat an infection or drugs for the treatment of com-
mon ailments such as headaches or malaria enhance the acceptance of the sur-
vey.

In practically all societies the household is a primary economic and social unit.
It can be defined as the smallest social unit of people who have the same res-
idency and maintain a collective organization. The usual method for collecting
data is to visit each household and collect samples or administer a question-
naire.

Medical staff may feel left out or even threatened whenever a medical interven-
tion (such as a survey) is done in their area. A common concern is that people
will go to their medical care provider and ask questions about the survey or about
specimen collection and results. It is therefore important to involve and inform
local medical providers as much as practical.

A rare example of a house to house survey in an industrialized nation was
carried out in Slidell, Louisiana for the primary purpose of determining the preva-
lence of West Nile infection in a southern US focus. Since the goal was to obtain
a random sample of serum from humans living in the focus, the only method was
a survey of this type. A cluster sampling design was used to obtain a representative
number of households. The area was not stratified because of its homogeneity.
Census blocks were grouped so that each cluster contained a minimum of 50
households. The probability of including an individual cluster was determined
by the proportion of houses selected in that cluster and the number of persons
participating given the number of adults in the household. A quota sampling
technique was used, with a goal of enlisting 10 participating households in each
cluster.

Inclusion criteria included age (at least 12 years of age) and length of residence
(at least 2 years). The household would be included only if an adult household
resident was present. A standardized questionnaire was used to interview each
participant. Information was collected on demographics, any recent febrile illness,
knowledge, attitudes, and behaviors to prevent WNV infection and potential ex-
posures to mosquitoes. A serum sample for WNV antibody testing was drawn. In
addition, a second questionnaire regarding selected household characteristics and
peridomestic mosquito reduction measures was completed. Informed consent was
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obtained from each participant, and all participants were advised that they could
receive notification of their blood test results if they wished. Institutional Review
Board approvals were obtained.

Logistics for specimen collection, preservation and transportation to the lab-
oratory were arranged. Interpretation of serologic tests and necessary follow up
were determined prior to the survey and incorporated in the methods submitted
to the ethics committee.

Sampling weights, consisting of components for block selection, household-
within-block selection, and individual-within-household participation, were used
to estimate population parameters and 95% confidence intervals (CI). Statisti-
cal tests were performed incorporating these weights and the stratified cluster
sampling design.

In this survey, 578 households were surveyed (a 54% response rate), including
1226 participants. There were 23 IgM seropositive persons, for a weighted sero-
prevalence of 1.8% (with a 95% confidence interval of 0.9%–2.7%) (Vicari et al.
2003).

Program Evaluation1.7

Program evaluation is a systematic way to determine if prevention or intervention
programs for the infectious disease of interest are effective and to see how they can
be improved. It is beyond the scope of this chapter to explain program evaluation in
detail however there is abundant information available i.e. the CDC’s Framework
for Program Evaluation in Public Health (CDC 1999a) as well as text books on
program evaluation (Fink 1993).

Most importantly, evaluators have to understand the program such as the epi-
demiology of the disease of interest, the program’s target population and their risk
factors, program activities and resources. They have to identify the main objectives
of the control actions and determine the most important steps. Indicators define
the program attributes and translate general concepts into measurable variables.
Data are then collected and analyzed so that conclusions and recommendations
for the program are evidence based.

Evaluating an infectious disease control program requires a clear understanding
of the microorganism, its mode of transmission, the susceptible population and
the risk factors. The following example of evaluation of tuberculosis control shows
the need to clearly understand the priorities.

Most of tuberculosis transmission comes from active pulmonary tuberculosis
cases who have positive sputum smear (confirmed as tuberculosis Mycobacteria
on culture). To a lesser extent, smear negative culture positive pulmonary cases are
also transmitting the infection. Therefore priority must be given to find sputum
positive pulmonary cases. The incidence of smear positive tuberculosis cases is
the most important incidence indicator. Incidences of active pulmonary cases and
of all active cases (pulmonary and extra-pulmonary) are also calculated but are
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of lesser interest. The following proportions are used to detect anomalies in case
finding or case ascertainment:

all tuberculosis cases who are pulmonary versus extra-pulmonary,
smear positive, culture positive, pulmonary cases versus smear negative, cul-
ture positive, pulmonary cases,
culture positive, pulmonary cases versus culture negative, pulmonary cases.

Poor laboratory techniques or low interest in obtaining sputa for smears or cul-
tures may result in underestimating bacteriological confirmed cases. Excessive
diagnosis of tuberculosis with reliance on chest X-rays on the other hand may
overestimate unconfirmed tuberculosis cases.

Once identified, tuberculosis cases are placed under treatment. Treatment of
infectious cases is an importantpreventivemeasure.Treatment efficacy is evaluated
by sputum conversion (both on smear and culture) of the active pulmonary cases.
After 2 months of an effective regimen, 85% of active pulmonary cases should have
converted their sputum from positive to negative. Therefore the rate of sputum
conversion at 2 months becomes an important indicator of program effectiveness.
This indicator must be calculated for those who are smear positive and with a lesser
importance for the other active pulmonary cases.

To ensure adequate treatment and prevent the development of acquired resis-
tance, tuberculosis cases are placed under directly observed therapy (DOT). This
measure is quite labor intensive. Priority must therefore be given to those at high-
est risk of relapse. These are the smear positive culture proven active pulmonary
cases. DOT on extra-pulmonary cases is much less important from a public health
standpoint.

Thesameconsiderationsapply tocontact investigationandpreventive treatment
in countries that can afford a tuberculosis contact program. A recently infected
contact is at the highest risk of developing tuberculosis the first year after infection;
hence the best preventive return is to identify contacts of infectious cases. Those
contacts are likely to have been recently infected. Systematic screening of large
population groups would also identify infected individuals but most would be ‘old’
infectionsat lower riskofdevelopingdisease. Individuals infectedwith tuberculosis
and HIV are at extremely high risk of developing active tuberculosis. Therefore
the tuberculosis control program should focus on the population at high risk of
HIV infection.

Often, program evaluation is performed by epidemiologists who have not taken
the time to understand the dynamics of a disease in the community. Rates or
proportions are calculated, no priorities are established and precious resources
are wasted on activities with little preventive value. For example, attempting to
treat all tuberculosis cases, whether pulmonary or not with DOT, investigating
all contacts regardless of the bacteriologic status of the index case, would be
wasteful.
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Conclusions1.8

Today the world is smaller than ever before, international travel and a worldwide
food market make us all potentially vulnerable to infectious diseases no matter
where we live.

New pathogens are emerging such as the SARS or spreading through new
territories such as WNV. WNV introduced in the US in 1999, became endemic
in the US over the next years. Hospital-associated and community-associated
Methicillin Resistant Staphylococcus Aureus (MRSA) and resistant tuberculosis
cases and outbreaks are on the rise. Public health professionals are concerned that
a novel recombinant strain of influenza will cause a new pandemic.

But not only the world and the etiologic agents are changing, the world popula-
tion is changingaswell. In industrializedcountries, the life expectancy is increasing
and the elderly are more likely to acquire a chronic disease, cancer or diabetes in
their lifetime. Because of underlying conditions or the treatment of these diseases,
older populations also have an increased susceptibility for infectious diseases and
are more likely to develop life-threatening complications.

Knowledge in the field of infectious disease epidemiology is expanding. While
basic epidemiological methods and principles still apply today, improved labo-
ratory diagnoses and techniques help to confirm cases faster, see how cases are
related to each other and therefore can support the prevention of spread of the spe-
cific disease. Better computers can improve the data analysis and internet allows
access to in depth disease specific information. Computer connectivity improves
disease reporting for surveillance purposes and the epidemiologist can implement
faster preventive measures if necessary and is also able to identify disease clusters
and outbreaks on a timelier basis.

The global threat of bioterrorism adds a new dimension. The intentional release
of anthrax spores, and the infection and death of persons who contracted the
disease created a scare of contaminated letters in the US population.

With all these changes, there is renewed emphasis on infectious disease epi-
demiology and makes it a challenging field to work in.
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Introduction2.1

Coronary heart disease (CHD) and stroke are the first and second leading causes of
death and are major contributors to disability worldwide (Murray and Lopez 1996).
Accordingly, they represent the foremost cardiovascular disease (CVD) challenges
of our time. They are prominent in public health and clinical importance and have
been under extensive epidemiologic investigation over the past half-century. As
a result, with parallel clinical and laboratory research, understanding of the causes
of and means to prevent CHD and stroke have become well established, and their
present and immediate future global impact is becoming recognized (Labarthe
1998).

This chapter begins with a discussion of the scope and basic concepts of CVD
epidemiology. As the focus of the chapter, the atherosclerotic and hypertensive
diseases are defined, several aspects of their epidemiology are highlighted, and
applications of the main types of epidemiologic methods in CVD are briefly illus-
trated. Against this backdrop, the sections that followaddress four broad questions,
with illustrative examples from classic studies in the field: How can we describe
the occurrence of CVD from a population perspective? What factors account for
differences in CVD incidence and mortality among populations and for differences
in risk among individuals within a given population? What do we understand to
be the causes of these differences, and what preventive strategies follow from this
understanding? And, what are the foremost issues for the immediate future in CVD
epidemiology?

Scope and Basic Concepts2.2

Atherosclerotic and Hypertensive Diseases2.2.1

CHD and stroke are the main consequences of atherosclerosis and hypertension.
Also termed ischemic heart disease, CHD is a manifestation of reduced blood
supply – and hence reduced oxygen supply – via the coronary arteries to the my-
ocardium (muscle of the heart). Sudden loss of oxygen supply may result in injury
or death to the muscle cells, constituting a myocardial infarction (heart attack).
Disturbance of normal rhythmic contraction of the heart may occur, and this
arrhythmia often causes sudden death unless effective emergency aid is admin-
istered promptly. A less severe – but also ominous, perhaps equally painful, and
recurring – condition is unstable angina, which represents transient impairment
of blood flow. The typical culprit lesion in the artery wall common to these varied
circumstances is the atherosclerotic plaque, which may itself grow gradually over
years to narrow or occlude the artery or may suddenly rupture and trigger the rapid
formation of an occlusive thrombus (blood clot) within the artery. Survival from
an acute coronary event may be accompanied by disability from residual cardiac
impairment and entails a high risk of recurrent events or progressive heart failure.
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Stroke results from injury to the brain in a manner sometimes analogous to
myocardial infarction: interruption of the arterial blood supply by a thrombotic
occlusion. But other mechanisms may also cause stroke, chiefly occlusion by lodg-
ing of an embolus (a blood clot that has arisen, for example, in a damaged heart
and carried through the circulation to the brain) or by hemorrhage (when a blood
vessel within the brain ruptures). Regardless of the mechanism, interruption of
blood flow may produce injury and death of brain cells. The event may be rapidly
fatal or may be followed by survival, with a high risk of recurrence and often
with significant disability. The main underlying condition leading to thrombosis
is atherosclerosis, whereas hemorrhage is especially attributable to hypertension.

Chronic heart failure may develop as a consequence of either CHD or hyper-
tension, greatly increases the risk of stroke, and causes disability due to impaired
circulatory function. It may also result from several other cardiac disorders, but in
populations where CHD is a frequent condition, heart failure as a late consequence
of CHD has become increasingly common, especially among older adults.

These five interrelated conditions – atherosclerosis, hypertension, CHD, stroke,
and heart failure – comprise the greater part of ‘cardiovascular diseases’, or ‘CVD’,
as used throughout this chapter. Other important cardiovascular conditions, such
as atherosclerotic peripheral arterial disease, aortic aneurysm, cardiomyopathies,
rheumatic heart disease, Chagas’ disease, congenital heart disease, deep vein
thrombosis, and pulmonary embolism, while important vascular conditions, are
beyond the scope of this review.

Cardiovascular Diseases in Epidemiologic Perspective 2.2.2

Measures of CVD in the population are fundamental to epidemiologic investiga-
tion and understanding. Terms such as mortality, incidence, or prevalence intro-
duced e.g. in Chaps. I.1, I.2 and I.3 of this handbook have their particular use and
importance in CVD epidemiology. CVD mortality can be studied insofar as deaths
are registered and classified in accordance with reliable and standardized proce-
dures and the current censusof theunderlyingpopulation is known. Such datahave
been collected for several decades in many countries but have yet to be recorded
at all in many others. The most informative data are those presented for specific
age and sex groups within a population, and for other subgroups as appropriate.
Adherence to practices for the International Statistical Classification of Diseases
and Related Health Problems, Tenth Revision (World Health Organization (WHO)
1992) is now required for national death registration systems. For epidemiologic
research, case validation can be conducted through well-standardized procedures
such as those of the WHO MONICA Project (WHO MONICA Project Principal
Investigators 1988). Case validation is especially important for unobserved and
out-of-hospital deaths in which CHD or stroke is suspected but documentation
regarding diagnostic criteria is unavoidably incomplete.
The CVD burden of a population may be estimated, and comparisons among pop-
ulations made, by surveys to determine the proportion of the population affected,
or CVD prevalence. Prevalence of CVD is influenced by both the rate at which new
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cases occur and the duration of their survival in the population. Sampling meth-
ods and selective factors in survey participation, such as disease-related disability,
must be taken into account in evaluating findings. Standard cardiovascular survey
methods have been published since the 1960s (Blackburn et al. 1960; Rose and
Blackburn 1968) and updated subsequently. The prevalence of CVD and related
conditions such as high blood pressure, high blood cholesterol concentration, and
smoking history can be assessed with reasonable efficiency, although a low CHD
or stroke prevalence in some populations may make this approach impractical.

The frequency with which newly detected cases of CVD occur in a population,
or CVD incidence, is measured by long-term (several years) follow-up among
persons found at the baseline survey to be disease free and for whom first events
can be ascertained by periodic re-examination, surveillance of hospitalizations or
deaths, or a combination of these approaches. Issues in evaluation of findings relate
especially to chances for missed or misdiagnosed cases, and losses to follow-up.
Detection of new cases also allows assessment of the proportion of events leading
to death in the short term (case-fatality; usually within 28 days of symptom onset)
and long-term survival (for any specified period beyond 28 days post-event).

Other concepts basic to CVD epidemiology relate to the progression from car-
diovascular health todisease and the correspondingarray of intervention strategies
and approaches that apply across this continuum. These concepts provide a frame-
work for public health action to prevent heart disease and stroke (Fig. 2.1). They
are addressed briefly here as background for the more detailed discussions of the
sections that follow.

The lower panel of Fig. 2.1 represents as “the present reality” a well-established
series of connections characterizing the progression from unfavorable social and
environmental conditions, through the adversebehavioral patterns that they foster,
to theemergenceof themajorCVDrisk factors.Not shownare the typical long-term
development of subclinical (undetected) disease and the immediate precipitating
factors that link the major risk factors to the first event – whether heart attack,
stroke, or episode of heart failure. Sudden death may rapidly end the course, or
survival may extend it, often with significant disability and high risk of recurrent
CVD events. Paralleling this progression is the dimension of the life course of
CVD, from possible maternal and fetal influences where earliest environmental
factors may operate; to childhood and adolescence where behavioral patterns often
become established and risk factors begin to emerge; and on to early, middle, and
late adulthood with the acute events and their consequences. The counter to this
present reality is a vision of the future (upper panel), in which the opposite of each
of these states has been achieved.

The means of change toward this vision are the intervention approaches iden-
tified in the center panel of Fig. 2.1. Each approach has potential application from
its first point of intervention throughout the further progression of CVD. For ex-
ample, policy and environmental change can be applied to health care settings,
work sites, and schools as well as to society at large (Association of State and
Territorial Directors of Health Promotion and Public Health Education 2001). Risk
factor detection and control applies not only before any clinical events but also,
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Figure 2.1. Action framework for a comprehensive public health strategy to prevent heart disease and

stroke (adapted from US Department of Health and Human Services (2003))

for persons who survive, to lifelong care to prevent recurrent CVD events. These
and the more familiar concepts of secondary, primary, and primordial prevention
and of high-risk and population-wide strategies are discussed further below.
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Epidemiologic Methods in Cardiovascular Diseases2.2.3

CVD exemplifies the chronic or non-communicable diseases (NCDs), whose pub-
lic health importance and epidemiologic investigation gained increasing attention
in the mid-twentieth century. Population-based studies were conducted in many
places throughout the world, stimulating development and widespread applica-
tion of standardized research methods. The now-commonplace epidemiologic
approaches to studying chronic diseases were devised or greatly refined in sub-
sequent decades, very often as a means of investigating CVD. The knowledge
summarized here represents the cumulative results of this research and illustrates
the approaches whose principles and methods are presented in Part I of this hand-
book (see Chaps. I.5–I.8):

Analysis of vital statistics, specifically comparison of death rates (mortality)
from cardiovascular causes, was an early strategy in CVD epidemiology and
continues to be of value in demonstrating differences between population
groups or trends over time in national or other geopolitical areas. A classic
example was the work of Gordon (1957) in recognizing that men of Japanese
ancestry living in Japan, Hawaii, and California experienced strikingly dif-
ferent patterns of mortality from CHD and stroke (CHD being low in Japan,
intermediate in Hawaii, and high in California, and the opposite gradient for
stroke). A major strength of this approach is ready availability of vital data over
decades or longer for many countries and their subdivisions. Serious limita-
tions include the lack of data especially for low- and middle-income countries
and the need to take into account changes in classification of causes of death
over time and variable data quality.
Population surveys (cross-sectional surveys, conducted in principle at a point
in time and typically in a defined geographic area) in their simplest design pro-
vide essential background information about the proportion of a population
affected by a particular disease (disease prevalence) and related factors. But
such surveys can extend to multiple-population comparisons or be repeated
periodically, thereby addressing population differences or secular trends, in-
cluding testing of hypotheses about predicted findings. In this way, for example,
the INTERSALT Study demonstrated an association between the slope of in-
creasing blood pressure with age and urinary electrolyte excretion in adults
among 52 study centers in 32 countries (INTERSALT Co-operative Research
Group 1986); rapid change was shown in blood pressure among Luo tribesmen
migrating from rural to urban Kenya (Poulter et al. 1990); favorable trends
were seen in the distribution of systolic blood pressure over 40 years in the
U.S. population (Goff et al. 2001); and comparison of the prevalence of hy-
pertension in six European countries, Canada, and the United States revealed
apreviouslyunrecognizedhigherprevalence inEurope (Wolf-Maier et al. 2003).
Strengths of the population survey include versatility of design, e.g. permit-
ting geographic or temporal comparisons, and fundamental simplicity and
relative expediency of execution. Limitations include the cross-sectional prop-
erty that necessarily restricts observation to prevalent cases and constrains
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collection of historical data on exposures that may have preceded onset of
disease.
Cohort studies to determine the rate of occurrence of new cases among persons
free of disease at first (baseline) observation (measuring disease incidence
in relation to baseline characteristics of interest) were initiated in the 1950s
to yield early insights into causes of CHD and stroke. Three leading exam-
ples of cohort studies conducted within a single population or for compar-
ison of multiple populations to assess risk factors for cardiovascular events
are the Framingham Study, with nearly 50 years of multigenerational ob-
servation of CVD in one U.S. community (Dawber et al. 1951); the White-
hall Study of British civil servants, which also provided long-term follow-
up and insight to individual risks (Rose and Shipley 1986); and the Seven
Countries Study of factors accounting for differences in CHD rates between
European, Japanese, and North American populations (Keys 1980). Cohort
studies are unique among observational designs in permitting direct assess-
ment of disease incidence in relation to baseline or interim risk characteristics
(relative risk). They require large populations, long-term follow-up, or both
to generate sufficient person-years of experience to afford reliable estimates
of incidence and risk and are correspondingly demanding of resources and
skill.
The case-control study is used to identify already affected persons (the case
group) and assess characteristics of interest among them, with comparable
assessment among a suitable non-affected group (the control group) to judge
whether exposures among cases may be linked in a meaningful way with the
presence of disease. In recent years, for example, the case-control approach
has been applied in a large-scale multinational collaborative study of the asso-
ciation between the presence of stroke and other vascular conditions among
women by their history of oral contraceptive use (WHO Collaborative Study
of Cardiovascular Disease and Steroid Hormone Contraception 1996). This ap-
proach is widely used to study conditions of relatively low incidence, a situation
in which demands of cohort studies noted above are difficult to satisfy. The
fundamental issue in design, conduct and interpretation of case-control studies
is evaluation of possible bias or confounding in the comparison of cases and
controls.
Combinations of approaches have also been used to monitor CHD and stroke
in populations, as illustrated by the especially comprehensive WHO MON-
ICA (Monitoring Trends and Determinants in Cardiovascular Disease) Project
(WHO MONICA Project Principal Investigators 1988; Tunstall-Pedoe 2003).
In this major collaboration among 38 populations in 21 countries, repeated
cross-sectional surveys were used to assess trends in risk factors and treat-
ment of cases, continuous community-wide and hospital-based surveillance
identified new and recurring cases and case-fatality, and death rates based
on validated cause of death in accordance with the MONICA Project surveil-
lance protocol were used to evaluate the corresponding vital statistics systems.
In some centers, cohort designs were incorporated as well. Composite study
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designs combine both advantages and limitations of each approach that is
included.
The many “clues to causation” generated from the kinds of studies described
above (collectively the “observational study” approaches) have ultimately led
to a very large body of experimental research, such as the intervention trials
also addressed in Chap. I.8 of this handbook. In CVD epidemiology, this re-
search has ranged from clinical trials among selected individuals to evaluate
the efficacy of treatments among patients (secondary prevention trials) or of
measures to reduce risk of first events (primary prevention trials), to long-term
community-based trials and demonstration projects to test the effectiveness of
interventions for the population at large (cf. Chap. III.11 of this handbook). One
example of early clinical trials that stimulated subsequent population-based
trials and strongly influenced policy and practice is the U.S. Veterans Adminis-
tration Trial of the Treatment of Hypertension (Freis 1990). Community trials
and demonstrations are well illustrated by the North Karelia Project (Puska
et al. 1998) and by examples in the United States and elsewhere (Blackburn
1992; Labarthe 1998).

The Major Atherosclerotic
and Hypertensive Diseases:
an Epidemiologic Description2.3

Overview2.3.1

A half-century of CVD epidemiology, developing and applying the methods high-
lighted above, has provided a comprehensive understanding of the natural history
of these conditions (see, e.g. Marmot and Elliott 1992; Labarthe 1998). Several
broad features of this extensive body of work can be described.

CVD is pervasive throughout the world. In the mid-twentieth century CVD,
and especially CHD, came to be regarded as a public health problem of the
Western industrialized nations. Before the end of the century, CVD (principally
expressedasCHDor stroke)was recognizedas apublichealthproblemofglobal
importance and a significant deterrent to social and economic development in
low- and middle-income countries.
Change in population burdens of CVD, as reflected in the crude, late measure
of cause-specific mortality, can occur rapidly and with abrupt and unpredicted
change indirectionormaybe sustainedover several decades andresult in a two-
fold or greater change in rates. Such rapid change is unequivocal evidence of
powerful environmental factors whose influence is highly variable over time
and place. In addition, migration of population subgroups has demonstrated
change in CVD rates such that rates for migrants come to resemble those of the
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new population setting in contrast to rates for the non-migrating members of
the source population. Such observations suggest that environmental factors
are potentially subject to interventions to establish or maintain social and
environmental conditions protective against CVD.
Epidemiologic investigation of the pathology of atherosclerosis strongly sup-
ports the view of early-life onset and life long progression of this vascular
disorder, which underlies CHD and many strokes. Studies of military ca-
sualties dying of non-CVD causes have shown that unrecognized coronary
atherosclerosis may be extensive even in early adulthood. Thus true prevention
of atherosclerosis and its complications requires effective intervention as early
as childhood and adolescence.
National vital statistics systems that provide reliable data on cause-specific
mortality are sometimes adequate for gauging the population burden of CVD,
but these data are incomplete or lacking for many countries. Additional infor-
mation is needed to fully characterize a population’s CVD profile, and efforts
to compile such data on a worldwide basis have revealed serious shortcom-
ings even in high-income countries, such as the United States, where data on
disease incidence are typically lacking except in specific localities with spe-
cial epidemiologic studies. Characterizing the global burden thus faces serious
obstacles.
Notwithstanding these limitations, serious efforts to project the global burden
of CVD and other major causes of death and disability, and the potential impact
of selected interventions against these conditions, have provided a view of the
world’s health two decades hence. The results indicate that CHD and stroke
have been the first and second leading causes of death worldwide since 1990
and would remain so through 2020, barring greatly intensified public health
efforts in prevention.

Classic studies in the field of CVD epidemiology are reviewed below to illustrate
a twentieth-century historical perspective, studies of pathology, the present global
burden, and projections for the decades ahead.

Illustrations 2.3.2

Historical Perspective
Studying long-term CVD mortality trends in one or more countries can provide
valuable epidemiologic insight. A leading example of this approach is the work
of Omran (1971), who studied mortality from multiple causes in the United States
and elsewhere from 1900 through 1970. On the basis of these observations, he
presented the concept of “epidemiologic transition” to describe the relative shift in
frequencybetween infectious andcirculatorydiseases as causesofdeath (Table 2.1).
According to this concept, the proportion of deaths from circulatory disease can be
expected to increase from only 5–10 percent to 35–55 percent of deaths as a society
progresses from the “age of pestilence and famine” to the “age of degenerative
and man-made diseases.” Following Omran, two further phases of transition were



1372 Darwin R. Labarthe

added by others. The first was a declining proportional circulatory mortality in an
“age of delayed degenerative diseases,” explained by improvement in risk factors
due to education and resulting behavioral changes (Olshansky and Ault 1986).
These contributions are combined in the representation of the concept in Table 2.1
(Pearson et al. 1993). Next was a second wave of rising proportional mortality
attributable to disruption of supports for CVD prevention and health promotion
due to social and political upheavals (not shown in Table 2.1) (Yusuf et al. 2001).

Table 2.1. The epidemiologic transition (from Pearson et al. (1993))

Phase of Deaths from Circulatory Risk
Epidemiologic Circulatory Problems Factors
Transition Disease (%)

Age of ∼ 5–10 Rheumatic heart Uncontrolled
pestilence disease; infectious infection; deficiency
and famine and deficiency-induced conditions

cardiomyopathies

Age of 10–35 As above, plus High-salt diet
receding hypertensive heart leading to
pandemics disease and hypertension;

hemorrhagic stroke increased smoking

Age of 35–55 All forms of stroke; Atherosclerosis from
degenerative and ischemic heart fatty diets; sedentary
man-made diseases disease lifestyle; smoking

Age of delayed Probably Stroke and ischemic Education and
degenerative under 50 heart diseasea behavioral changes
diseases leading to lower

levels of risk factors

a At older ages. Represents a smaller proportion of deaths

In its simplest form, the concept of epidemiologic transition is useful in calling
attention to the massive shifts in causes of death that can accompany social and
economic change. Yet these shifts do not necessarily represent replacement of
one burden with another but may result in the “double burden” of continued
occurrence of infectious diseases with superimposed NCDs, of which circulatory
conditions are a major part. Further, the shifts resulting from the latter conditions
may change direction as underlying social conditions change. The question is the
extent to which the rise in frequency of CHD and stroke can be slowed or reversed
to reduce, to the greatest possible degree, the burden they pose for countries
throughout the world, especially the low- and middle-income countries which can
least afford this burden.

In general, it has been considered that Western industrial nations have under-
gone such a transition within the twentieth century, whereas developing coun-
tries have yet to do so. The concept of epidemiologic transition implies that
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Figure 2.2. Coronary heart disease mortality in 27 countries, 1950–1987 (from Thom et al. (1992))

circulatory conditions therefore are less important in developing than industri-
alized countries. But 1985 estimates of death rates from ischemic heart disease
and stroke by geopolitical or economic regions of the world, presented by the
World Bank, point to a different interpretation (Pearson et al. 1993). Proportional
mortality from circulatory conditions remained low (20 percent or less) in non-
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Figure 2.3. Stroke mortality in 27 countries, 1950–1987 (from Thom et al. (1992))

industrialized regions of the world, but estimated absolute death rates for these
conditions were nearly as high (or for stroke, even higher than) in all but the
industrial non-market economies. Thus among most regions of the world CVDs
present a similar burden that is masked by attention to proportional mortality
alone.
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Analysis of national secular trends in cardiovascular mortality over the lat-
ter half of the twentieth century demonstrates several important aspects of the
epidemiology of CHD and stroke over this period (Thom et al. 1992). The data
illustrated in Fig. 2.2 represent CHD mortality among persons aged 45–64 years in
27 countries for consecutive time periods from 1950–54 to 1984–871. These coun-
tries were included because they had reported reliable annual mortality data to the
WHO over the entire 38 years.

This figure shows a universal excess in rates for men relative to those for women;
a wide range of rates among countries – as much as 6-fold; marked changes in rates
within countries over successive 5-year intervals; and generally similar trends
for women and men in the same country. These observations indicate strong
time-dependent and regionally or nationally distinct environmental influences
that commonly, though not invariably, affected women and men in similar ways.
Becausepopulationgeneticsdonot change so rapidly, suchchangesareattributable
to environmental factors.

Ananalogousfigure for stroke (Fig. 2.3) showsnotable epidemiologicdifferences
from CHD. Here the age range is 65–74 years, because the rates of stroke death are
lower and generally less reliably estimated at earlier ages. The following features are
most striking: the same 27 countries appear in quite different order (for example,
Japan is first, in contrast to its position next to last for CHD); rates for men
and women were generally similar within each country; and overall rates and
trends were quite homogeneous among countries with few exceptions (JA, POR,
HUN, CZE, YU, POL). Stroke does not closely match CHD epidemiologically. It
does, however, share the aspect of marked change in mortality in a rather short
historical period that indicates strong environmental influences, here operating in
a generally similar way between sexes and among countries.

Epidemiologic Studies of Pathology
Epidemiologic study of atherosclerosis has included a substantial body of work by
pathologists that is well represented by two studies, the International Atheroscle-
rosis Project and the Pathobiological Determinants of Atherosclerosis in Youth
(PDAY) Study. The International Atherosclerosis Project was essentially a cross-
sectional multinational survey of coronary and aortic atherosclerosis (Tejada et al.
1968). Sections of coronary arteries and aortas were obtained from more than
23,000 autopsies for non-CVD deaths at ages 10–69 years in 14 countries, includ-
ing Latin America as well as the United States and South Africa. Wide variation
among the populations was found in the average extent of coronary atherosclero-
sis at any given age, and this measure and the CHD mortality rates corresponded

1 USA, United States; FIN, Finland; CAN, Canada; SCO, Scotland; AUL, Australia; NZE, New
Zealand; NIR, Northern Ireland; ISR, Israel; EW, England and Wales; IRE, Ireland; CZE,
Czechoslovakia; AUS, Austria; SWI, Switzerland; SWE, Sweden; FRG, Federal Republic of
Germany; DEN, Denmark; HUN, Hungary; BEL, Belgium; ITA, Italy; NET, Netherlands;
NOR, Norway; YU, Yugoslavia; POL, Poland; POR, Portugal; SPA, Spain; JA, Japan; FRA,
France. Each point represents the sex-specific average annual mortality for one period.
Countries are arrayed in descending order of mortality for men in the first interval.
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closely within the respective countries. Where the extent of coronary atheroscle-
rosis was greatest, males had more extensive lesions than females did, but little
difference by sex was evident in populations were coronary involvement was least.
No sex differences in the extent of aortic disease were observed.

A strong age gradient in degree of atherosclerosis at death was also observed
in six of the countries studied: from a range of 0–25 percent of intimal surface
involvement with fibrous plaques at age 20, the percentage approximately doubled
by age 30 in each population and continued to increase, although less steeply, to
later ages at death. These findings confirmed marked population differences in the
extent of coronary atherosclerosis, especially at early ages. They also supported
earlier observations indicating that onset of atherosclerosis was common before
age 20 and that males exhibited more extensive coronary atherosclerosis than
females did.

The PDAY Study conducted standardized postmortem examinations of coro-
nary and aortic specimens among black or white decedents aged 15–34 years
from non-CVD causes at eight centers in the United States (Pathobiological De-
terminants of Atherosclerosis in Youth (PDAY) Research Group 1990). Beyond
pathology alone, this study introduced assessment of CVD risk factors based
on blood samples and other materials obtained at death. This study demon-
strated that the extent and severity of atherosclerosis at these early ages was
strongly related to adverse blood lipid profiles and to smoking (as assessed by
serum thiocyanate concentration). Earlier, the Bogalusa Heart Study had be-
gun conducting postmortem studies of atherosclerosis in participants in their
school-based surveys who died years later from non-CVD causes (Berenson et al.
1992). Risk factor measurements in school, including blood lipids, blood pressure,
smoking and obesity, were associated with the extent and severity of coronary
atherosclerosis at death. The findings from these two studies established a crit-
ical link between risk factors and pathology at ages well before clinical CVD
typically appears. This link is important for strategies of CVD prevention and
strengthened evidence for the progressive development of atherosclerosis in early
life, as conceptualized decades earlier by Holman and colleagues (Holman et al.
1958).

Present Burden
The present burden of CVD can be described in considerable detail in many
countries, although limitations of data in even some of the most economically
advanced countries, including the United States, remain to be overcome. The
World Heart Federation (WHF) has assessed the global situation in a recent re-
port, Impending Global Pandemic of Cardiovascular Diseases: Challenges and Op-
portunities for the Prevention and Control of Cardiovascular Diseases in Develop-
ing Countries and Economies in Transition (Chockalingam and Balaguer-Vintró
1999) (see also www.worldheart.org). This report addressed the need for inter-
national cooperation, the role of the WHF, the profile and magnitude of the global
CVD burden, current activities and resources, and strategies for global action.
It compiled results of surveys from member WHF countries concerning existing
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policies, programs, and guidelines for CVD prevention, resource requirements and
funding sources, human resources, and cardiology infrastructure and practices.
Several indicators of the CVD burden as of 1990 are provided in Table 2.2.

Table 2.2. Proportionate contributions to selected CVD conditions by geopolitical region (adapted

from Chockalingam and Balaguer-Vintró (1999))

Geopolitical Region

Established Economies Developing
Market in Transitiona Countries

Economies

CVD mortality (%) 22.0 15.0 63.0
Coronary mortality (%) 30.3 21.7 48.0
Cerebrovascular mortality (%) 17.0 14.3 68.7
CVD-related disability life years lost (%) 14.9 11.5 73.6

a Chiefly the countries of the former USSR and others in Eastern Europe

The World Health Report 2002: Reducing Risks, Promoting Healthy Life (World
Health Organization 2002) provides a further development of such estimates for
the year 2001 (see also www.who.int) (Table 2.3). This table presents estimated
numbers of deaths and numbers of disability-adjusted life years (DALYs) lost2, by
cause, overall and for each of the six WHO Regions (AFR = Africa, AMR = the
Americas, EMR = Eastern Mediterranean, EUR = Europe, SEAR = South-East Asia,
and WPR = Western Pacific). Although each region is subclassified by mortality
pattern in the source tables, data are summarized here for entire WHO Regions,
for ischemic heart disease and cerebrovascular disease.

Table 2.3. Estimated numbers of deaths and numbers of DALYs lost due to ischemic heart disease and

cerebrovascular disease by WHO Region, 2001 (from World Health Organization (2002))

WHO Region

Measure of burden AFR AMR EMR EUR SEAR WPR Total
Deaths (×1000)

Ischemic heart disease 333 967 523 2423 1972 963 7181

Cerebrovascular disease 307 454 218 1480 1070 1926 5455

DALYs lost (×1000)

Ischemic heart disease 3258 6506 5353 16,000 20,236 7373 58,726

Cerebrovascular disease 3318 4057 2364 10,443 9952 15,736 45,870

Of all deaths worldwide, 22.3 percent were estimated to be due to these two
conditions, aswere7.1percentofallDALYs lost.Eachregioncontributes substantial
numbers to these measures of the CVD burden, without including rheumatic,
hypertensive, or inflammatory heart disease. Relative contributions to ischemic

2 1 DALY lost = 1 full year of healthy life expectancy lost, 2 years lived with 50% disability,
etc.
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heart disease and stroke vary strikingly among regions, being about equal in
Africa, with clear predominance of cerebrovascular disease in the Western Pacific
and of ischemic heart disease in all other regions. The relative frequencies of these
two conditions as contributors to the CVD burden are about equivalent for both
deaths and DALYs lost. Beyond these estimates of current burden, the WHO report
provides an extensive analysis of the major risks to health, strategies to reduce
these risks, how to strengthen risk prevention policies, and how to take action to
prevent risks.

Projections
While communicabledisease epidemiologists commonlyusemathematicalmodels
to project the course of epidemics, such efforts have only rarely been described in
connection with NCDs. However, through a joint undertaking of WHO, the World
Bank, and the Harvard University School of Public Health, the Global Burden of
Disease Study was conducted to estimate incidence, prevalence, mortality, and
disability related to more than 100 diseases and causes of injury as of the year 1990
and to project the global disease burden to the year 2020 (Murray and Lopez 1996).
The Global Burden of Disease Study identified ischemic heart disease and stroke as
leading causes of death and disability worldwide in both 1990 and 2020. Among the
many findings of importance in the CVD projections are the following, for change
in total CVD death rates from 1990 to 2020: world, +16.2%; established market
economies, +1.8%; economies in transition, +19.4%; and developing countries,
+28.2%.

These forecasts remain the best available data from which to anticipate the
near-term course of CVD in the world population. They suggest that even in the
established market economies the death rates will increase. The impact in the two
other major geopolitical regions will be substantially greater unless measures can
be taken to reverse these projected trends.

Risk Factors and Determinants2.4

Overview2.4.1

Many factors contribute to development of CVD. They may be as remote as con-
ditions of fetal development or as immediate as precipitators of plaque rupture in
a coronary artery. They may be as distal in their influences as community-level
poverty and lack of education or as proximate as an individual’s blood concentra-
tion of low density lipoprotein (LDL)-cholesterol. “Risk factors”, “determinants”,
and other related terms are commonly used interchangeably. Here, “determinants”
is generally used for the whole array of these influences, including social deter-
minants (such as income or relative poverty, education, and housing quality) and
risk factors (such as personal, behavioral, metabolic, physiologic characteristics).
All influences can be viewed as either population based or individual based. For
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example, the social determinants (whicharepopulationcharacteristics) affect indi-
viduals, and the risk factors (which are individual traits) have their corresponding
distributions and trends in populations. The major established risk factors for CVD
are highlighted briefly here; details of their epidemiology are addressed elsewhere
(Stamler 1992; Labarthe 1998).

In broad terms, these many factors are considered to relate to the progressive
development of CVD as represented in Fig. 2.1, bottom row. That is, social and
environmental conditions such as level of literacy contribute importantly to health-
related behavior, in part through establishing the range of societal or individual
choices available; behavioral patterns such as dietary habits reflect in part policies
affecting food production, distribution, and pricing and produce specific risk
factors such as adverse blood lipid profile or high blood pressure; and major risk
factors (discussed below) account for the greater part of population differences
in CVD rates as well as individual differences in risks within a population. These
factors in combination influence the probability of surviving a first acute event,
experiencing and surviving recurrences, and ultimately dying from CVD. Several
aspects of the determinants of CVD can be summarized as follows (Labarthe 1998):

Age, sex, race or ethnicity, and heredity intersect with all other determinants.
The risksof atherosclerotic andhypertensivediseases are strongly related to age
and often differ by sex and by race or ethnicity. Heredity, whether considered in
terms of family history (which reflects sharing of both genes and environment
among related persons) or individual genetic traits, is also related in some
respects to CVD risk.
Age, sex, race or ethnicity, and heredity are often considered as unmodifiable
risk factors in that they are fixed characteristics of individuals. In contrast,
modifiable risk factors are behavioral, metabolic, or physiologic characteris-
tics that can in principle be changed through intervention. It is important to
consider the extent to which the risks attributed to the unmodifiable factors
may actually reflect variation in modifiable risk factors associated with these
traits.
Dietary imbalance can be considered in three senses – unfavorable macronu-
trient composition of the diet, excessive sodium intake relative to physiologic
requirements, and excessive energy intake relative to energy expenditure. It
represents in each of these forms a fundamental behavioral pattern in the pro-
gressive development of CVD. Its critical role has been established by decades
of epidemiologic, clinical and laboratory research that has addressed numer-
ous aspects of diet (for example, types and amounts of animal fats – especially
saturated fats –, relative to fruits, vegetables, and legumes, and the amount of
salt and total energy intake).
Physical inactivity, as a concomitant of the typical social and economic charac-
teristics of contemporary industrial societies, contributes to CVD risk through
the failure of matching energy expenditure with energy intake and potentially
through numerous biological mechanisms related to cardiac metabolism and
physiology. As a consequence of reduced physical work for personal locomo-
tion and physical exertion in most occupations, research attention turned to
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leisure-time physical activity. But leisure time has increasingly become devoted
to sedentary pursuits (such as watching television), so that average population
levels of physical activity have become very low in many countries.
Both the dietary imbalance and physical inactivity common to contemporary
industrial societies represent vast changes from human evolutionary norms
and earlier post-agricultural nutritional patterns that can be inferred from an-
thropological research and other sources (WHO Study Group 1990; Blackburn
1983; President’s Council on Physical Fitness and Sports 1996). From this per-
spective, there is considerable room for progression toward more natural and
health-promoting dietary habits, with due regard to modern understanding of
human nutritional requirements for optimum growth and function.
Dietary imbalance contributes directly to the development of adverse blood
lipid profiles (high concentration of low-density lipoprotein [LDL-] cholesterol
is the most essential factor in atherogenesis) and to high blood pressure. Along
with physical inactivity, dietary imbalance produces overweight or obesity,
whichcontributes further to these risk factorsand to impairedglucose tolerance
anddiabetes. Themajormetabolic andphysiologic risk factors forCVDare thus
dependent on these two adverse behavioral patterns, and extensive evidence
from trials demonstrates that these risk factors can be prevented or controlled
by appropriate interventions.
Smoking of tobacco has long been recognized as an established major risk
factor for CVD and for other common chronic diseases. Targeting of youth
and the populations of developing countries by tobacco marketers has been
a mounting concern of national and international health organizations. The
projected excess mortality attributable to smoking throughout the world in the
coming decades contributed to the adoption of the Framework Convention for
Tobacco Control, a landmark international treaty that supports governments
combating the tobacco epidemic (WHO 2003).
Both adverse psychosocial patterns at the level of the individual and broad
societal conditions or social determinants of health have been studied with
great interest in relation to CVD. These aspects are implicit in Fig. 2.1 where, in
“the present reality”, they are reflected in the adverse social and environmental
conditions and resulting adverse behavioral patterns that contribute to devel-
opment of the major CVD risk factors. Alternatively, “a vision of the future” in
the figure contemplates social and environmental conditions favorable to health
and behavioral patterns that promote health, with consequently reduced risk
and rates and severity of CVD events in the population (US Department of
Health and Human Services 2003). These determinants of health are addressed
in some detail under social epidemiology in Chap. III.1 in this handbook.

Illustrations2.4.2

Important contributions of epidemiologic research to understanding CVD deter-
minants include both studies of between-population differences in rates of disease
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and studies of between-individual differences in risk within selected populations.
Classic studies of both types are illustrated below.

Population Differences
The role of nutrition in causing atherosclerosis and hypertension – and therefore
CHD, stroke, and related conditions – has been a dominant theme throughout
the past half-century of epidemiologic investigation. The profound influence of
nutrition on population differences in CHD occurrence has been central to this
field and was demonstrated most effectively by Keys and colleagues through their
decades-long Seven Countries Study (Keys 1980). As a backdrop to this work, Keys
highlighted anecdotal evidence from China and Indonesia suggesting that adop-
tionof aWestern-styledietarypattern, in contrast to traditional ones, accompanied
the development of atherosclerosis, which was otherwise rare or absent from these
populations (Keys 1983). Keys also reviewed the observations of Malmros and oth-
ers on marked short-term fluctuations in mortality attributable to atherosclerosis
associated with changes in food supply in Northern Europe during and immedi-
ately after the Second World War (Malmros 1950). These changes appeared to be
closely synchronous and supported the idea that dietary composition, especially
with respect to animal fats, was an essential underlying factor in determining
population rates of CHD.

Changes in many conditions of life affect the health of populations, both within
the Western world and in the developing world as urbanization, industrialization,
and globalization take place. Changes in dietary patterns, transition to an increas-
ingly sedentary lifestyle, and multinational marketing of tobacco products are only
a few of these changes, important in the present context for their direct relevance to
risk of CVD (Labarthe 1998). The extensive evidence for a necessary role of dietary
composition that is disproportionately high in saturated fats includes a large body
of animal laboratory, pathological, and clinical research that cannot be reviewed
here but is summarized and documented elsewhere (e.g., Stamler 1992; Committee
on Diet and Health 1989).

Building further on his prior work on the postulated link between diet, blood
cholesterol concentration, and atherosclerosis, Keys undertook development of his
monumental Seven Countries Study (Keys 1980). The organization and implemen-
tation of this unique and seminal program are presented in detail by Blackburn
and others who provide exceptional accounts of this formative work in CVD epi-
demiology (Blackburn 1995; Kromhout et al. 1993). This program was designed
to test the hypothesis that population differences in CHD incidence were largely
determined by differences in dietary saturated fat intake, with blood cholesterol
concentration as the principal intermediate factor.

Men aged 40–59 years were examined in 16 cohorts in the seven countries they
represented (12,763 men in all). Baseline examinations took advantage of stan-
dardized methods whose development was in part stimulated by the requirements
for this study. To assess dietary intake, repeated weighed diet samples were ob-
tained for men in 12 of the 16 cohorts, and questionnaire methods were used in
the remaining 4. Baseline examinations began in four cohorts in 1958 and were
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completed in 1964. Follow-up was accomplished by re-examination at 10 years in
14 of the cohorts. A major report of findings, based on this 10-year follow-up,
addressed each of the main exposure variables and CHD outcomes (Keys 1980).
Many additional reports, including 25-year and still later follow-ups, have provided
further evidence on the central hypothesis and other questions.

The 25-year findings relating intake of saturated fatty acids (as a percentage of
calories or energy intake per day, or “En%”) – to CHD mortality in the 16 cohorts
is illustrated in Fig. 2.4 (Kromhout et al. 1995). Intake of saturated fatty acids varied
from less than 5% to nearly 25% of calories, and 25-year CHD mortality ranged
from less than 5% to nearly 30% percent; the correlation coefficient r was 0.88.
Clearly lowest in both saturated fat intake and CHD mortality were Tanushimaru
(T) and Ushibuka (U), Japan; Corfu (G) and Crete (K), Greece; and Dalmatia (D),
former Yugoslavia. Intermediate cohorts were those in Rome railroad workers
(R), Montegiorgio (M), and Crevalcore (C), Italy; and Velika Krsna (V), Zrenjanin
(Z), Slavonia (S), and Belgrade (B) in former Yugoslavia. Highest in intake and
mortality were East (E) and West (W) Finland; Zutphen (N), the Netherlands; and
U.S. railroad workers (A).

Figure 2.4. Association between average intake of total saturated fatty acids and 25-year coronary

heart disease mortality, Seven Countries Study (r = 0.88, correlation coefficient; see text for key to

alphabetic characters) (from Kromhout et al. (1995))

Similarly based on the 25-year mortality follow-up, the relationship between
serum total cholesterol concentration and CHD mortality was present for the co-
horts within groups defined by geographic area (Verschuren et al. 1995). Within
each of six geographic areas, the multiple cohorts were pooled where applicable
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(Fig. 2.5). Cholesterol distributions overlapped between Northern Europe and the
United States, between the Mediterranean and inland Southern Europe, and be-
tween Serbia and Japan. In all areas except Japan, where cholesterol concentration
was only rarely greater than 200 mg/dl, an upward gradient of mortality was evi-
dent in relation to cholesterol concentration. But within each of these three pairs
of areas having similar ranges of cholesterol concentration, the first-mentioned
had somewhat greater mortality. Overall, a three- to four-fold range of mortality
was found at any given level of cholesterol concentration. In general, the higher
the range of values in the cholesterol distribution, the steeper was the mortality
gradient. These observations support the role of serum total cholesterol in ex-
plaining population differences in CHD mortality. They also indicate that, at any
given cholesterol level in a population, additional factors are needed to explain the
observed mortality.

From the 10-year report, two other factors were clearly related to population
differences in CHD mortality (Keys 1980). Median systolic blood pressure ranged
from approximately 128 to 146 mmHg, and mortality varied from 0 to nearly 70
per 1000 men in 10 years (Fig. 2.6). The regression analysis supported the investi-
gators’ prediction that systolic blood pressure would be an important influence on
differences in coronary mortality between populations.

Figure 2.5. Twenty-five year coronary death and quartiles of serum cholesterol concentration,

adjusted for age, cigarette smoking, and systolic blood pressure, Seven Countries Study (from

Verschuren et al. (1995))
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Figure 2.6. Ten-year mortality in relation to median levels of systolic blood pressure, Seven Countries

Study (r = 0.64, correlation coefficient; y = −259 + 2.1x, regression equation for mortality on systolic

blood pressure; see text following Fig. 2.4 for key to alphabetic characters) (from Keys (1980))

“Cigarette habit” (smoking) was examined in a manner analogous to that
for cholesterol concentration, after grouping cohorts by three geographic areas
(Fig. 2.7). Smoking appeared related to mortality differences both within and
among these designated regions. That is (as for the other factors), event rates dif-
fered both among cohorts within a region, by level of smoking, and among regions
at any given level of smoking. Smoking was quantitatively related to event rates in
every region and was most strongly related in the region with the highest rates,
Northern Europe.

In addition to the landmark Seven Countries Study, two other studies on pop-
ulation differences in CVD rates added especially to this research. First was the
Ni-Hon-San Study (NI-Nippon, HON-Honolulu, SAN-San Francisco), a compari-
son of men of Japanese ancestry among three population settings: migrants to the
mainland United States living in the San Francisco Bay Area, migrants to Hon-
olulu, Hawaii, and non-migrants still living in Hiroshima, Japan (Worth et al. 1975;
Kagan and Yano 1996). Stimulated by the differences in CHD and stroke mortality
among these three groups that were reported by Gordon (1957), the Ni-Hon-San
Study sought to determine whether these differences were reflected in variation in
disease prevalence in the three areas and could be accounted for by differences in
risk factors.

The most extensive comparisons were made on the basis of long-term follow-
up of the Hawaii cohort (through the Honolulu Heart Program) and the Japan
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Figure 2.7. Ten-year incidence of “hard” coronary heart disease by smoking class, Seven Countries

Study (regression lines and their corresponding equations are given for each of three regions based

on combined cohorts within the respective geographic areas) (from Keys (1980))

cohort (through the Radiation Effects Research Foundation). In general, predicted
differences among the three populations in relative frequency of CHD (lowest in
Japan and higher in Hawaii and California) and stroke (highest in Japan and lower
in Hawaii and California) were confirmed. Risk factor differences partly explained
these differences. Among the most important findings of the Ni-Hon-San Study
was confirmation that these three groupsdiffered inCVDoccurrence in association
with the broad environmental changes attendant on migration – differences not
attributable to change in population genetics.

The second further example is that of the WHO MONICA Project (World Health
Organization MONICA Project 1988; Tunstall-Pedoe 2003). This extensive study
was undertaken in 38 geographically defined populations in 21 countries. Study
areas were predominantly in Europe but also included Australia, New Zealand,
China, and the United States. The study aim was to investigate the separate asso-
ciations between 10-year trends in survival and in coronary event rates to changes
in CHD mortality and the contributions to these associations from changes in risk
factors and coronary care from the mid-1980s to the mid-1990s. Through develop-
ment and implementation of detailed protocols for all aspects of data collection,
centralized data management, and quality control procedures, the study aim was
accomplished and the main results were reported in 1999 and 2000.
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First, decreases in both incidence and case fatality contributed to observed de-
clines in CHD mortality. The contribution of decreased incidence was twice that
of decreased case fatality (Tunstall-Pedoe et al. 1999). Second, the relationship
of trends in population-level risk factors to corresponding CHD event rates ap-
peared weaker than anticipated, possibly because of difficulties of measurement
and analytic issues, including the appropriate time lag to be used between trends
in risk factors and events (Kuulasmaa et al. 2000). Were this study the only basis
for identifying major CVD risk factors, it would have failed in this respect; but in
view of the limitations of the design for such a purpose (recalling the combined
limitations of a composite study design discussed above) these results do not lead
to a conclusion that other, unmeasured factors must be invoked to explain the
disease event trends. Third, changes in both acute and post-event coronary care
contributed strongly to decreased rates of coronary end-points (Tunstall-Pedoe
et al. 2000).

Taken together, these three observations indicate that measurable changes in
CHD incidence, case fatality, and mortality can occur within a decade in widely
diverse populations; the most readily demonstrable impact on decreasing event
rates is treatment of cases; and risk factor improvements, while associated with
benefit in these populations, were more difficult to evaluate partly because of in-
herent limitations of the study. Reduced mortality was dependent foremost on
reduced incidence of events. Also deserving mention are the further contributions
of the WHO MONICA Project to development of current standardized methods
for population-base surveillance for CHD and stroke events, risk factors, and
treatment and in training local teams for the needed work.

Individual Differences
In contrast to between-population differences, addressing differences in CVD risk
at the individual level required long-term studies in which large numbers of in-
dividual study participants could be examined at a common starting point in
time and observed over several years to determine whether and when each per-
son might develop detectable CVD. Which baseline characteristics were predic-
tive of CVD events could then be assessed through appropriate statistical anal-
ysis. Among the earliest and best-known examples of this type of epidemio-
logic approach is the Framingham Study, whose purpose and design were re-
ported more than 50 years ago (Dawber et al. 1951). That report is instructive
about the limited knowledge at the time for planning the study design with
respect to sample size, follow-up time, and many other aspects. The impact
of the study belies its restriction to one small community in the northeastern
United States, with only 5200 participants drawn both from a probability sam-
ple of residents and additional volunteers. Nonetheless, the intensive biennial
examination schedule, long-term continuity of follow-up and investigator involve-
ment, and incorporation of new design components over its decades-long his-
tory have made this a uniquely rich source of data on individual risks of CVD
events.
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A landmark report of the Framingham Study, based on the first 6 years of
follow-up, identified serum cholesterol concentration, blood pressure, and elec-
trocardiographic evidence of left ventricular hypertrophy as predictors of CHD
development, as assessed through records of death or hospitalization or changes
in electrocardiographic findings at biennial follow-up examinations (Kannel et al.
1961). It was in this report that the Framingham Study investigators introduced the
term “risk factor” to describe such predictive characteristics.

Concurrent U.S. studies in CVD epidemiology included several community- or
work-site-based cohort studies with designs and methods similar to those of the
Framingham Study. These similarities allowed combining the studies in order to
estimate more precisely, based on much larger numbers of events, the relation-
ships between selected baseline characteristics and incident CHD events. Thus the
U.S. National Cooperative Pooling Project was conceived, combining into a single
data set the experience of five studies (Albany Civil Servants, Chicago Gas Com-
pany, Chicago Western Electric Company, Framingham, and Tecumseh, Michigan)
(Pooling Project Research Group 1978). Altogether 8422 men aged 40–64 years and
free of CHD at entry were followed for an average of 8.6 years, providing 72,011
person-years of observation and 658 first major coronary events. New statistical
methods, the multivariate regression analysis of Truett et al. (1967), were devised
to examine multiple baseline characteristics in relation to outcomes. This analysis
demonstrated the joint predictive relationship of serum cholesterol concentration,
diastolic blood pressure, and cigarette smoking to incidence of CHD and, in the
conclusions of the 1978 report, established that these were unequivocal causal fac-
tors. According to the derived multivariate model, the highest risk quintile group
experienced more than a six-fold risk relative to that of the lowest-risk quintile
group.

Concurrent community- or work-site-based population studies were under-
taken in the United States, the United Kingdom, Europe, and Japan (where the
primary interest was in stroke). Often these studies laid the foundation for long-
term follow-up, even to the present, by re-examination of surviving participants
or through death notification or other indirect procedures. Some cohorts of the
Seven Countries Study continue to be followed today.

This review of risk factors and determinants is of course not exhaustive of all
factors that could be discussed. Also to be noted are glucose intolerance, insulin
resistance and diabetes, obesity, alcohol consumption, antioxidants, hemostatic
factors, hyperhomocysteinemia, vascular and endothelial factors, genetic factors,
and others. Sex, race|ethnicity, income and education are further dimensions of
variation in CVD experience (Labarthe 1998). This review has emphasized those
factors that have the longest history of investigation, most extensive body of sup-
porting evidence, and most immediate applicability for prevention, to which we
turn in the section that follows.
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Causation and Prevention2.5

Overview2.5.1

Together with countless other studies, observational epidemiologic research has
identified a plethora of factors possibly associated with the development of CVD.
Some of the findings were first identified decades ago and were replicated in
multiple subsequent studies, and others were only recently reported or were iso-
lated findings. The former are generally regarded as ‘established’ (or sometimes
‘traditional’) and the latter as ‘emerging’ risk factors. As early as 1981, it was
reported that 246 CVD risk factors had been described in the literature, each
meeting the criterion of a reported p-value of < 0.05 in at least one study (Hop-
kins and Williams 1981). With all the research conducted since then, including
many epidemiologic studies addressing pathogenetic mechanisms and elements
of physiologic or metabolic regulatory systems, the number of qualifying factors
has surely increased several-fold. Which of these are causal factors, and which offer
practical means of prevention?

Several points may be useful in thinking about these questions before con-
sidering examples of causal models in CVD epidemiology or concepts of CVD
prevention (see also Chap. III.11 of this handbook) and the role of trials:

Identifying causes on the basis of associations found in observational epidemi-
ologic studies generally rests on the outcome of what might be termed a ‘dif-
ferential diagnosis of causation’: (1) critical assessment identifies flaws, bias, or
confounding that may underlie a spurious association (cf. Chaps. I.9 and I.13 of
this handbook); (2) statistical assessment addresses the potential role of ran-
dom variation that may produce a chance association; and (3) consideration
of several properties of the evidence (for example, greater strength of associa-
tion, consistency of the finding across multiple studies, and specificity, among
other considerations) may increase confidence that an association is causal.
Application of these considerations is illustrated by the Pooling Project report
with respect to serum cholesterol concentration, diastolic blood pressure, and
smoking (Pooling Project Research Group 1978).
Such differential diagnosis of causation is not always applied, however, and
how many of the 246 factors listed by Hopkins and Williams might have passed
this more stringent procedure, then or now, is unknown. Even the first reported
use of the term “risk factor” noted that evidence was insufficient to conclude
that the associations described were causal and that further study was needed
(Kannel et al. 1961). Thus it would be inappropriate to interpret references to
“risk factors” throughout the literature of CVD epidemiology as necessarily
meaning “causal factors” in the strict sense suggested above.
Experimental evidence is sometimes regarded as indispensable in establishing
a causal role for a risk factor, but recent experience with hormonal replacement
therapy (found protective against CHD in women in observational studies but
ineffective or harmful in prevention trials) heightens caution in this regard.
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The contribution of experimental studies of intervention in humans to un-
derstanding causation is indirect, however, because rather than introducing
exposure to a suspected causal factor, such experiments test interventions to
remove or reduce that exposure. Further, because exposure has been present
for some time and its reduction or removal requires a new exposure (that of
the intervention), the outcome is not necessarily equivalent to absence of the
exposure of interest in the first place.

Illustrations 2.5.2

Variations on Causal Models
Beyond differences in procedures for reaching conclusions about causation, dif-
ferences in concepts or models of causation must also be recognized. These can
be appreciated, and causation of CVD can be better understood, by considering
several contrasts: One cause, or many? One outcome, or many? Immediate causes,
or “fundamental causes”? All causes, or only a few? Causes of cases, or causes of
incidence? Each of these contrasts can be illustrated briefly as follows:

One Cause or Many? Conditions such as CHD and stroke are generally accepted
to be consequences of multiple factors acting in concert (“multifactorial causa-
tion”). Admitting multiple risk factors, however, may deny credibility to any one of
them (McCormick and Skrbanek 1988; Stehbens 1992). This view stems from the
ancient concept of one “necessary and sufficient cause” as the whole explanation
of a phenomenon. This concept was generally abandoned for the chronic diseases
during the 1950s and 1960s in the effort to explain the consistently incomplete
conjunction of any one exposure and disease. That is, exposure and disease over-
lap when they are causally related, but neither does every case result from the
same exposure nor does exposure uniformly produce the same disease. Models
of CVD causation have advanced by taking into account the multivariate setting,
in which single causal factors operating together tend to multiply risk above that
attributable to the sum of effects of the individual factors. As a result, multivariate
risk scores have been calculated for use both as the outcome variable in interven-
tion studies and as a tool for assessing risk of a future CVD event as a basis for
deciding whether treatment is warranted (Farquhar et al. 1990; De Backer et al.
2003). Currently the multifactorial view strongly prevails.

One Outcome or Many? A theme of CVD epidemiology in its early years, redis-
covered only recently, was that increased susceptibility resulting from any social
factor should be expected to be non-specific in its disease expression. Therefore
factors increasing the risk of CHD should be studied as factors in illness generally
and not for CHD alone. In this view, causes could have quite varied outcomes,
so that a causal model specific to one disease outcome must be inherently incom-
plete and therefore subject to misinterpretation or misunderstanding. Echoing this
theme, Stallones (1980) argued that models of causation that converge on a single
disease outcome should be superseded by considering “the interdependence of
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a number of diseases, characteristics of individuals, and environmental and social
variables as elements in a constellation which is n-dimensional” (p 76). The ten-
dency to focus on single diseases, even specific ones within the array of CVD, tends
to predominate in current epidemiological thinking. However, wider appreciation
of the “n-dimensional” constellation of elements in a causal framework may fol-
low from the recent resurgence of concepts of “social determinants of health” and
“population health”.

Immediate Causes or “Fundamental Causes”? Here the argument is that a focus
on immediate or proximal causes of disease, and interventions to mitigate their
effects, is inherently flawed. For example, high blood pressure may be causally
associated with rates and risks of stroke, but to concentrate public health efforts
on detection and control of high blood pressure is to miss the greater public health
need. This need is to address population characteristics such as poverty, illiteracy,
unemployment, and other social ills that would diminish health and well-being
by countless other mechanisms, even if high blood pressure were completely re-
moved as a public health problem. The differential diagnosis of causation includes
specificity of an association as one consideration, in the sense that an association
which uniquely links a particular exposure with a particular disease may more
reasonably be thought causal than one in which both the exposure and the disease
are related to multiple other conditions. The “fundamental causes” are in principle
non-specific and partly for that reason fail to satisfy narrower, more immediate,
and disease-specific concepts of “cause”.

All Causes or Only a Few? The all-inclusive view of CVD causes recognizes
that innumerable factors influence risk, some in adverse and others in protective
ways. This view finds excitement in the “emerging risk factors” whose novelty and
interest reinforce confidence in the advances of science and the sense of being
at the leading edge. In this view, CVD epidemiology may be at the threshold of
an era of unprecedented discovery with the advent of population genomics. One
causal model for CHD portrays, in one tier, simply “genes”; an indefinitely large
array of individual genes is linked through multiple connections from the first to
the second tier, a “network of intermediate traits” (hemostasis, lipid metabolism,
carbohydrate metabolism, and blood pressure regulation); and these four traits
converge to act on the third tier, the “probability of CHD”, which is represented
graphically as a surface that represents age and environment (Sing et al. 1992). The
biological complexity depicted by this scheme represents a rich body of knowledge
whose growth is almost inevitable as science advances at all three levels and the
connections between them are continually elaborated. And this represents only the
convergence of factors on one outcome, not the “n-dimensional array” conceived
by Stallones (1980).

The“only a few”pointof view focusesononly those factors regardedasuseful for
widespread intervention to arrest and reverse the CVD epidemic around the world.
Those few factors, variously termed the major or established or traditional risk
factors, consistently include blood lipids, blood pressure, and smoking. Stamler
(1992) identifies four factors: “… ‘rich’ diet, diet-related above-optimal levels of
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serum total cholesterol (TC) and blood pressure (BP), and cigarette smoking”. He
explains (p 36):

All four of these risk factors are designated established because substantial
amounts of data from many disciplines have demonstrated their significant role
in the aetiology of epidemic CHD. They are designated major for three reasons:
their high prevalence in populations, particularly in Western industrialized
countries, their strong impact on coronary risk, and their preventability and
reversibility, primarily by safe improvements in population life-styles, from
early childhood on. (Age and male gender are known risk factors, but are not
amenable to influence and hence are not designated major; diabetes is a known
risk factor, but of lower prevalence than cigarette smoking and elevated TC and
BP in most populations, and hence is not designated major.) … ‘Rich’ diet is
pivotal among these four – the primary and essential cause of the coronary
epidemic.

These two views, all versus few, are commonly seen as conflicting. From the “all”
point of view, the “few” perspective ignores evidence for many new and emerg-
ing factors and fails to see the potential of genetic epidemiology, for example, to
provide invaluable and perhaps radically new insights about causation and pre-
vention of CVD. On the other hand, from the “few” perspective, preoccupation
with these factors is a significant and unwelcome distraction from the needed
focus on applying knowledge of the major risk factors and research to make that
application as effective as possible for prevention. Perhaps from the perspective
of “fundamental causes” this polarity of views is irrelevant, as the main issues are
the broadest social determinants of health and quality of life, of which CVD is only
one aspect.

A resolution of these seemingly conflicting views is found in the point made by
Stallones (1980), who suggested that models of causation depend for their value
on their utility, and that utility depends in turn on the purpose for which a model
is used. If the dual purposes of intellectual pursuit and public health practice are
accepted as complementary in CVD epidemiology and prevention, the views of
“all” and “few” can both be embraced. “Epidemiology and public health have the
luxury as well as the necessity of entertaining both views of causation in pursuit
of the complementary purposes of advancing knowledge and serving the health of
the public” (Labarthe 1998, p 463).

Causes of Cases or Causes of Incidence? This last contrast addresses a distinction
between two kinds of causal questions posed by Rose (1985) (p 33):

The first seeks the causes of cases, and the second seeks the causes of incidence.
“Why do some individuals have hypertension?” is a quite different question
from “Why do some populations have much hypertension, whilst in others it
is rare?” The questions require different kinds of study, and they have different
answers.
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The distinction emphasizes that what appear to be causal factors (from studies of
individual risks within populations) may instead be only markers of susceptibility
to true causal factors to which exposure is very common throughout the popula-
tion, and that detection of true causal factors requires comparison of populations
with different incidence rates to identify the determinants of those differences.
As with each of the preceding contrasts, this distinction relates closely to con-
cepts of prevention and has direct implications for thinking about individual and
population-wide levels of intervention.

Concepts of CVD Prevention and the Role of Trials
As the foundation of epidemiologic knowledge about CVD expanded, recom-
mended approaches to CVD prevention evolved correspondingly. For example,
under the aegis of the former WHO Cardiovascular Disease Unit, expert meet-
ings were convened on many occasions from the 1960s through the mid-1990s
to address CHD prevention, primary prevention of hypertension, prevention in
childhood and youth of adult CVD, and other topics. Official recommendations
and intervention guidelines have been developed by such national organizations as
the American Heart Association and American College of Cardiology, and the U.S.
National Heart, Lung, and Blood Institute and at a regional level by such joint ef-
forts as those of the European Society of Cardiology, the European Atherosclerosis
Society, and the European Society of Hypertension.

Concepts of prevention reflected in these many recommendations and guide-
lines often embrace two broad approaches articulated in the early 1980s by Rose
(1981) – the individual (or high-risk) approach and the population-wide approach.
The first approach addresses reduction of risk for cardiovascular events among
persons with already manifest CVD or risk factors, and the second addresses risk
factor reduction across the whole population. These two approaches are comple-
mentary. “The ‘high-risk’ strategy of prevention is an interim expedient, needed
in order to protect susceptible individuals, but only for so long as the underlying
causes of incidence remain unknown or uncontrollable; if causes can be removed,
susceptibility ceases to matter” (Rose 1981, p 38).

The high-risk approach has been considerably refined so as to identify, on the
basis of multiple factors (such as sex, current smoking, age, systolic blood pressure,
and total cholesterol concentration) persons whose combined risk characteristics
predict a specified probability of a major cardiovascular event within the ensu-
ing 10 years (De Backer et al. 2003). Based on such scoring, policy decisions are
made regarding which intervention will be recommended and perhaps financed
for which risk levels. The population-wide approach has evolved to include not
only interventions to shift unfavorable distributions of the major risk factors across
the whole population, but also prevention of adverse levels and distributions of
these risk factors in the first place, wherever this might be possible. This latter con-
cept of “primordial prevention” contemplates prevention of risk factor epidemics
themselves as an essential approach to CVD prevention, especially in developing
countries (Strasser 1978).
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The high-risk approach to risk reduction as conceived by Rose (1981) would
today encompass both secondary prevention (applied to individuals already man-
ifesting CHD or stroke) and primary prevention (applied to individuals at high
risk but without manifest CVD). The population-wide approach to risk reduction
would consist of that part of primary prevention applied to the population as
a whole; it may be complemented by prevention of risk factors in the first place
(primordial prevention). In relation to the intervention approaches represented
in Fig. 2.1, the high-risk approach extends from risk factor detection and control
through end-of-life care, all at the individual level. The population-wide approach
extends, in turn, from policy and environmental change through behavior change,
at the population level. For completeness, “health promotion” can be regarded
generally as coextensive with the population-wide approach, in contrast to the
high-risk approach to individuals.

Epidemiologic evidence for causation of CVD has come primarily from obser-
vational studies and has sometimes been supported indirectly by experimental
studies in which exposure to suspected factors has been reduced by interven-
tion. The balance of evidence for causation is heavily weighted toward obser-
vational studies. How is evidence for CVD prevention obtained? Evidence from
observational studies may be considered sufficient to establish causation, but
different requirements are often, perhaps typically, applied to prevention – pri-
marily experimental evidence of the efficacy and safety of a proposed interven-
tion.

This question thus calls attention to the role of trials or, more broadly, interven-
tion studies.These studies encompass awidevarietyof studyquestions anddesigns
and include clinical trials of secondary or primary prevention, population-based
trials of primary prevention or health promotion, and community demonstrations
of intervention that may include combinations of health promotion, primary pre-
vention, and secondary prevention. It is beyond the scope of this review to detail
the evidence for prevention; such commentaries are available elsewhere (Black-
burn 1992; Labarthe 1998). For a general discussion we also refer to Chap. III.11
of this handbook. It is useful, however, to summarize briefly the general types of
intervention studies on which CVD prevention is based:

The great preponderance of experimental studies in CVD prevention have been
clinical trials in secondary prevention. These are designed to test the efficacy
and safety of individual-level interventions to prevent recurrent CVD events or
relatedoutcomesamong survivorsoffirst events orpersonsotherwiseknown to
have pre-existing CVD. The typical multicenter organization of such trials, the
recruitment and enrollment of hundreds or thousands of participants, and the
multi-year periods of follow-up combine to make these studies epidemiologic
in scale, even though they may be altogether clinically based and not referable
to any definable population beyond the participating institutions.
Primary prevention trials are designed to test the efficacy and safety of individ-
ual-level interventions, but the participants are initially free of known CVD.
The outcome is usually the first qualifying CVD event, be it an acute coro-
nary event, stroke, or other defined outcome, depending on the question
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under study. For example, in studies of primary prevention of high blood
pressure, progression of blood pressure levels may be the outcome of inter-
est. Study participants may be identified in clinical settings or drawn from
defined communities, as volunteers or through systematic sampling, such as
from work sites or geographic residential areas. Eligible participants must be
apparently well, so only interventions relatively free of known adverse effects
or other impediments to long-term adherence to study treatment guidelines
are good candidates for evaluation. Because participants’ average risk of CVD
outcomes is relatively lower in primary than in secondary prevention trials,
thousands of participants and follow-up periods of several years are typically
needed to observe a sufficient number of outcomes for satisfactory analy-
sis.
Community trials in CVD prevention are used to study intervention in whole
populations defined by geographical area of residence, place of work, or oth-
erwise. If insufficient numbers of study units such as schools or factories are
involved to permit true random allocation, as is usually the case, the term
“quasi-experimental study” is sometimes used. Systematic comparison among
similar communities with and without intervention is still implied, even if
the number of intervention and comparison units is small. Fatal or non-fatal
CVD events could be the primary end point in such trials, but these studies
are often designed to address risk factor or behavioral outcomes instead. The
choice of interventions shares the same considerations as described for primary
prevention trials.
A community demonstration of intervention represents a distinct shade of
meaning from “community trials” in that intervention may be implemented
in a single community, with or without a control community for compari-
son. Community demonstrations may combine multiple intervention strate-
gies into a secondary and primary prevention program to influence individ-
uals’ practices as well as community-wide aspects whose target is the pop-
ulation as a whole. Evaluating the impact of such an intervention may be
based on CVD events, but practical constraints often arise. Evaluation may
therefore be limited to the procedures by which the intervention was de-
livered and such proximate outcomes as changes in behavior or risk factor
levels.

Analogous to the question of causation in epidemiologic studies is the question of
whether a given intervention actually produces the intended outcome. The most
convincing evidence comes from well-designed and properly conducted random-
ized trials; however, population-wide public health interventions may only rarely
be amenable to evaluation through trials of this kind. This circumstance leads
to the seeming dilemma of holding population-wide interventions to a standard
of evidence that can rarely, if ever, be attained in practice and therefore giv-
ing rise to the perception that population-wide interventions are only rarely, if
ever, scientifically justified. However, the essence of the question for a proposed
public health intervention is whether it is better supported by all the relevant
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scientific evidence than is the status quo, as represented by current conditions
or policies. If so, intervention would be appropriate if other due considerations
were met, and rigorous evaluation of the intervention’s effect once implemented
could provide further evidence as to its benefit, cost-effectiveness, and long-term
feasibility.

Among a great many potential examples of intervention studies, one with broad
implications for prevention policy is especially convenient for illustration. The
North Karelia Project provides a classic example; detailed published accounts of
its organization, design, implementation, and evaluation are provided elsewhere
(Vartiainen et al. 1994; Puska et al. 1998; Puska 2002).

As shown in Fig. 2.2, Finnish men experienced exceptionally high CHD mor-
tality that had increased sharply in the 1950s. Since 1959, studies in East and
West Finland as part of the Seven Countries Study had documented the problem
in some detail and confirmed the highest CHD rates to be in Eastern Finland.
Concern about this led to implementation in 1972 of a multifaceted community-
based prevention project in which North Karelia (population 210,000) and Kuopio
(population 250,000), both in Eastern Finland, would be intervention and control
communities, respectively. Among the many components of the project were pro-
grams targeting high blood cholesterol concentration, high blood pressure, and
smoking. Extensive community involvement and engagement with health services
were major aspects of these programs. Risk factor distributions and other charac-
teristics in both communities were assessed by sample surveys among adults aged
30–59 years in 1972 and every five years until 1992, and mortality was monitored
from 1969 through 1992.

Twenty-year changes in risk factors for women included reductions in choles-
terol concentration by 18% and in diastolic blood pressure by 13%, while smoking
increased from 11 to 25%. Corresponding changes for men were reductions of 13%
and 9%, and a decrease in smoking from 53 to 37%. Changes in dietary habits and
physical activity underlying the change in risk factor distributions have also been
described.

Changes in CHD mortality were predicted from the actual risk factor distribu-
tions observed in the serial cross-sectional surveys. These results are displayed in
Fig. 2.8 for women and Fig. 2.9 for men. The predicted mortality effects of change
in each risk factor separately and together are shown in each figure, as well as
the observed decrease in mortality (by 68% for women and 55% for men) which
closely paralleled but actually exceeded the cumulative predicted changes.

What was the contribution of intervention to these changes? Changes in risk fac-
tors were greater in the intervention area, North Karelia, than in the control area,
Kuopio, only in the first five years; thereafter they were similar. Change in mortality
was not limited to the study areas: overall, in the whole of Finland, CHD mortality
declined by 50% from 1970 to 1992 and stroke mortality declined markedly. Inter-
pretation of the effect of intervention in North Karelia is conditioned by the study
design (comparison of two selected communities and not a randomized trial in
a large number of communities), but the investigators addressed these issues and
supported the conclusion that the mortality decline was a direct consequence of
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Figure 2.8. Observed and predicted decline in mortality from ischemic heart disease in women aged

35–64 in Finland (from Vartiainen et al. (1994))

the risk factor changes (Vartianinen et al. 1994; Puska et al. 1998). That the project
began to influence policy nationwide after its first five years probably accounts for
the broader evidence of risk factor and mortality change in Finland as a whole
that has continued to the present and makes it difficult to isolate the intervention
effects to North Karelia alone. It was recognized that improvements in treatment
of coronary events could also have contributed, a factor that would be evaluated
further with Finland’s participation in the WHO MONICA Project.

From the perspective advanced by Rose (1981), the Finnish experience sup-
ports the view that the major determinants of incidence have been identified, and
population-wide efforts to modify these determinants have made it possible to
prevent the mass occurrence of CVD in whole populations. At the broadest level
of community change and population-wide intervention, coupled with health care
system interventions to improve services for risk factor detection and control, the
NorthKareliaProject is apowerful demonstrationof thepotential for an integrated,
coordinated, and sustained public health effort to affect the major cardiovascular
conditions of our time, CHD and stroke.
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Figure 2.9. Observed and predicted decline in mortality from ischemic heart disease in men aged

35–64 in Finland (from Vartiainen et al. (1994))

Conclusions 2.6

Several of the topics introduced in this chapter in a historical context can be
revisited from a current perspective and with a view to the future.

Childhood and Adolescence|Maternal and Fetal Influences. Atherosclerosis be-
gins in childhood and youth and the major risk factors – high cholesterol concen-
tration,highbloodpressureandsmoking– contributebeginning fromadolescence
or earlier (Berenson 1986; Mahoney et al. 1991). Yet this knowledge has failed to
stimulate the needed programs on a sufficient scale to avert development of risk
factors and subclinical disease in the whole population. Guidelines to address CVD
risk factors in early life have been published repeatedly, but few large-scale pro-
grams have been mounted to assess the impact of the recommended interventions.
The need for such programs to advance policy development in CVD prevention
seems clear, and research in this area – beginning with implementation and eval-
uation of currently available approaches – is a high priority. The question of how
important maternal and fetal influences are on development of CVD, from risk
factors levels in childhood to overt CVD in adults, continues to be debated (Barker
1992, 1998). In view of the potential impact on health generally as well as CVD
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in particular, resolving this question by conducting trials of optimum nutritional
and other supportive maternal care, coupled with postnatal nutrition to evaluate
benefits on metabolic and physiologic mechanisms involved in later risk factor
development, is important.

Genomics|Population Genetics. The current level of investment in research on
genomics and CVD is partly based on expectations of findings that will revolution-
ize CVD prevention and treatment. It is important to appreciate the contemplated
results of this research and to anticipate the need for epidemiologic assessment
of its findings as they pertain to public health applications. At the same time,
balance among CVD research priorities is needed. Real progress in applying what
is already known about means of CVD prevention will require a major increase
in support for prevention research, including especially systematic evaluation of
programs implemented in other countries today on a scale proportionate to the
North Karelia Project in the 1970s.

Research Capacity. The need for applied research in CVD epidemiology far ex-
ceeds current capacity. This is due in part to the persistence of CVD as leading
cause of death throughout the world and forecasts for its continuation in this posi-
tion at least through the next two decades. Training and engagement in substantial
epidemiologic research projects and programs, as well as ongoing and expanding
activities in monitoring and surveillance, are essential for building this capacity.
A model program for such training is illustrated by the International Ten-Day
Teaching Seminars on Epidemiology and Prevention of Cardiovascular Diseases,
a program now in its 37th year and sponsored principally by the WHF (Labarthe
et al. 1998). Other international training programs (such as that conducted in de-
veloping countries under the auspices of the Department of Social and Preventive
Medicine, University of Lausanne) offer additional models, all of which should
be replicated many times over to reach much-increased numbers of health profes-
sionals. It is of course also necessary to develop funded research to provide settings
where trained epidemiologists and others in CVD prevention can do the needed
work, extend their skills, and provide mentorship and training to others.

Organizational Arrangements. The role of supporting organizations and agen-
cies in CVD epidemiology and prevention has been critical in the past and may
be even more so in the immediate future. WHO, WHF, the World Bank, the Global
Forum for Health Research, and other agencies with global reach are essential
partners for the kind of network cited by WHO Director-General Brundtland in
her proposed global strategy for NCD prevention and control (WHO 1999). Na-
tional organizations in many countries are also important. In the United States,
for example, the National Center for Chronic Disease Prevention and Health Pro-
motion of the Centers for Disease Control and Prevention, Department of Health
and Human Services, is committed to global health efforts. This interest is an inte-
gral part of A Public Health Action Plan to Prevent Heart Disease and Stroke (US
Department of Health and Human Services 2003), which provides for regional and
global partnerships in cardiovascular health in pursuit of common aims and in the
expectation of mutual gain from sharing information and experience.
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Developing Countries. The so-called “impending epidemic” of CVD in develop-
ing countries is already present and well-established, resulting in many countries
in a “double burden” in the presence of the continuing health problems of an earlier
era. The world has been slow to awaken to this reality, although for two decades
or more WHO and, more recently the World Bank and other organizations, have
been calling attention to the need for action. The economies in transition must be
included in this call if the adverse trends in mortality in these countries are to be
addressed. Efforts of the Global Forum for Health Research and its Initiative for
Cardiovascular Health Research in Developing Countries require support if these
activities will achieve their goals and contribute in meeting the global challenge of
CVD.

Global Strategies. CVD shares with other “non-communicable diseases” the
paradoxical aspect of being strongly influenced from communication of culture,
lifestyles and behavior that contribute to the development of risk as a population-
wide phenomenon. Global concern about tobacco control and success in adoption
by the World Health Assembly of the Framework Convention on Tobacco Control
in April 2003 illustrated recognition of this circumstance (WHO 2003). Through
a series of conferences and published declarations, the International Heart Health
Society has been a consistent advocate for global efforts to prevent CVD and to pro-
mote cardiovascular health (WHF et al. 2004). WHO has convened expert groups
who have recommended that all countries develop policies and programs for CVD
prevention and has proposed a global strategy for NCD prevention and control,
including the launching of integrated efforts to address tobacco use, unhealthy
diet, and physical inactivity (WHO Expert Committee 1990; WHO 1999). The call
by WHO to strengthen a global network for NCD prevention and control as a ma-
jor part of the global strategy gives national and multinational organizations and
agencies a clear opportunity to collaborate. Understanding the global forces that
influence the course of the CVD epidemic, monitoring their impact, and learning
how to put their influence to work in the interest of cardiovascular health are
pressing needs.

Societal Change. CVD epidemiology over the past half-century has established
understanding of the causes of epidemic CHD and stroke as well as strategies to
prevent these diseases. The challenge that lies immediately ahead is to apply this
knowledge effectively to the benefit of the world’s population. Societal change is
needed to achieve the goals of longer, healthier life free of significant disability
due to CVD and other major chronic conditions, and free of disparities in the
occurrence of these conditions within and among countries. Societal change will
occur regardlesswhether epidemiologyandpublichealthare considered, as change
is a continuing – albeit sometimes fitful and unpredictable – process with its own
powerful impetus from many sources. But change that is best will be informed
and influenced by knowledge of consequences for CVD, and for health generally.
Positive change can be accomplished best to the extent that epidemiologists and
others who hold that knowledge contribute to the direction of this change.
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Introduction3.1

Cancer encompasses a family of several hundreds of diseases which are distin-
guished in humans by site, morphology, clinical behaviour and response to ther-
apy. Whether considered from a biological, a clinical or a public health point of
view, it is the malignant and invasive nature of many of these diseases that is of
dominant importance.

Although the words ‘cancer’ and ‘carcinoma’ refer to malignant tumours arising
from epithelial tissues, they are often used to include all malignant neoplasms.
Thesearecharacterizedbyprogressiveandvariablegrowthof tissuewith structural
and functional changes with respect to the normal tissue. In many cases, the
alterations can be so important that it becomes difficult to identify the tissue of
origin.

Knowledge about the causes of and the possible preventive strategies for malig-
nant neoplasms has greatly advanced during the last century. This was largely due
to the findings from cancer epidemiology. In parallel to the identification of the
causes of cancer, primary preventive strategies have been developed. Secondary
preventive approaches have also been proposed and, in some cases, they have
been shown to be effective. A careful consideration of the achievements of cancer
research, however, suggests that the advancements in knowledge about the causes
of cancer have not been followed by an equally important reduction in the burden
of cancer. Part of this paradox is explained by the long latency occurring between
exposure to carcinogens and development of the clinical disease. Changes in expo-
sure to risk factors are therefore not followed immediately by changes in disease
occurrence. The main reason for the gap between knowledge and public health
action, however, rests with the cultural, societal and economic aspects of exposure
to most carcinogens.

Scope and Approaches
in Cancer Epidemiology3.2

Cancer epidemiology investigates the distribution and determinants of the inci-
dence, mortality and prevalence of cancer in human populations (Adami and Tri-
chopoulos 2002). Many approaches have been used in cancer epidemiology which
can be classified according to different dimensions, as shown in Table 3.1. Although
most studies in cancer epidemiology are observational in nature, intervention (ex-
perimental) studies are conducted to evaluate the efficacy of prevention strategies,
such as screening programmes and chemoprevention trials (clinical trials are usu-
ally considered to be outside the scope of cancer epidemiology). Observational
studies are traditionally classified in descriptive, analytical (or etiological) and
ecological studies (for a detailed description of the different types of epidemiolog-
ical studies see Chaps. I.3–I.8 of this handbook).
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Table 3.1. Approaches used in cancer epidemiology

Dimension Approaches Examples

Nature of observation Experimental Chemoprevention trial
Observational Cohort study

Purpose of Description Time-trend analysis
investigation Etiological research Case-control study

Evaluation Community trial
of screening modalities

Unit of observation Grouped data Ecological study of
environmental exposure

Individual data Case-control study
with questionnaire data

Sampling strategy∗ Census-based Cohort study
Sample-based Case-control study

Source of information Routine collection Record-linkage study
on exposure Ad-hoc collection Questionnaire-based study

∗ In studies based on individual data

Descriptive cancer epidemiology is a particularly flourishing branch of the
discipline, thanks to the availability of high-quality population-based cancer reg-
istries in many areas of the world and to the possibility to use mortality data to
estimate the incidence of highly lethal cancers. As an illustration, Fig. 3.1 shows
the estimated incidence of cancer among women in all countries of the world:
these estimates are derived mainly from data from cancer registries and mortality
statistics. Although subject to various sources of error, such estimates are more
precise than those available for any other chronic disease. An additional useful dis-
tinction of etiological studies concerns the nature of the information on exposure:
while some studies use data routinely collected for other purposes, such as census
records and hospital files, in other circumstances ad-hoc information on exposure
is collected following a variety of approaches, including record abstraction, ques-
tionnaires, pedigree reconstruction, environmental monitoring and measurement
of biological markers.

Given the importance of cancer in developed countries and the efforts to pre-
vent it, cancer epidemiology has acquired a recognized status in medicine and has
developed into a separate profession. For this reason, and thanks to the availabil-
ity of high-quality data on the outcomes of interest, it has played an important
role in the development of modern epidemiology. The criteria for causal infer-
ence in observational research (with the corollary of methodological studies on
bias, confounding and statistical power) have been largely shaped following the
discovery of the important role of tobacco smoking as a human carcinogen (Doll
1998); modern statistical approaches such as multivariable logistic and Poisson
regressions have originally been proposed for use in cancer studies (Breslow and
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Figure 3.1. Estimated incidence rate of cancer in women, by country (year 2000). From (Ferlay et al.

2001)

Day 1980, 1987; see also Chap. II.3 of this handbook); molecular epidemiology has
developed as a discipline bridging different areas of cancer research (Perera 2000;
see also Chap. III.6 of this handbook); and methodological advances in genetic
epidemiology have stemmed from familial studies of cancer (Thomas 2000; see
also Chap. III.7 of this handbook).

The Global Burden of Cancer3.3

The number of new cases of cancer that occurred worldwide in 2000 has been
estimated at about 10 million (Table 3.2) (Ferlay et al. 2001), including 5.3 million
in men and 4.7 million in women. About 4.7 million cases occurred in developed
countries (North America, Japan, Europe including Russia, Australia and New
Zealand) and 5.3 million in developing countries. Among men, lung, stomach,
colorectal, prostate and liver cancers are the most common malignant neoplasms
(Fig. 3.2), while breast, cervical, colorectal, lung and ovarian cancers are the most
common neoplasms among women (Fig. 3.3).

Such global statistics are of limited interest, given the complexity of the factors
affecting the risk of each neoplasm and the reader is referred to specialized pub-
lications for a more detailed review (Ferlay et al. 2001; Parkin et al. 1997). Some
general trends can however be identified:

A decrease in stomach cancer incidence in most countries;
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Table 3.2. Estimated number of new cases of cancer (incidence) and of cancer deaths (mortality) in

2000, by gender and geographical area (Ferlay et al. 2001)

Men Women Total

Incidence:
Developed countries 2,503,700 2,176,000 4,679,700

Developing countries 2,814,100 2,561,700 5,375,800

Total 5,317,800 4,737,700 10,055,500

Mortality:
Developed countries 1,488,200 1,157,600 2,645,800

Developing countries 2,034,200 1,528,700 3,562,900

Total 3,522,400 2,686,300 6,208,700

500

Mouth,pharynx

Oesophagus

Stomach

Colon,rectum
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Larynx
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Developing countries Developed countries
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Figure 3.2. Estimated number of new cancer cases (×1000) in men, (year 2000). From Ferlay et al.

(2001)

a plateau or decrease in the incidence of lung cancer and, to some extent, other
tobacco-related cancers among men from developed countries, and a corre-
sponding increase among men in developing countries and women in devel-
oped countries;
a very modest improvement in survival, in particular for highly lethal cancers.

The number of deaths from cancer was estimated at about 6.2 million in 2000
(Table 3.2) (Ferlay et al. 2001). No global estimates of survival from cancer are
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Figure 3.3. Estimated number of new cancer cases (×1000) in women, (year 2000). From Ferlay et al.

(2001)

available: data from selected registries suggest wide disparities between developed
and developing countries for neoplasms with effective but expensive treatment,
such as leukaemia, while the gap is narrow for neoplasms without an effective ther-
apy, such as lung cancer (Berrino et al. 1999; Kosary et al. 1995; Sankaranarayanan
et al. 1998) (Fig. 3.4). The overall five-year survival of cases diagnosed during
1985–1989 in European Union countries was 41% (Berrino et al. 1999).

Causes and Prevention of Human Cancer3.4

In the following sections, the current knowledge about the risk factors and the
strategies for primary and secondary prevention of cancer is summarized. For
more details, the reader is referred to systematic reviews (Adami et al. 2002;
Boffetta et al. 2002; Peto 2001).

Table 3.3 shows the results of reviews of the contribution of known causes of
cancer in developed countries (Doll and Peto 1981; HCCP 1996; Peto 2001). Such
estimates are subject to assumptions and uncertainties and should be interpreted
as approximations. However, it is worth noting that the estimate of the relative
importanceof themajor causesof cancer is fairly consistent.Nosystematic estimate
has been proposed for developing countries, where the contribution of infectious
agents is likely to be very important.
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Figure 3.4. Five-year relative survival from cancer in selected populations. From Berrino et al. (1999)

and Sankaranarayanan et al. (1998)

Table 3.3. Quantifications of contribution of major causes to human cancer burden (attributable

fractions in percent)

Cause Peto 2001∗ HCCP 1996 Doll and
Smokers Non-smokers Peto 1981

Tobacco 60 0 30 30

Dietary factors 4–12? 10–30? 30 35

Obesity 4 10 30 N|A∗∗
Sedentary life 0.4 1 5 N|A
Biological agents 2 5 5 10?
Occupation 0.4 1 5 4

Alcohol 0.4 1 3 3

Environmental factors 0.4 1 2 2

UV|ionizing radiation 0.4 1 2 3∗∗∗
Reproductive factors N|A N|A 3 7

Medical factors N|A N|A 1 1

Food additives N|A N|A 1 < 1

Perinatal factors N|A N|A 5 N|A
Socio-economic factors N|A N|A 3 N|A
Genetic factors N|A N|A 5 N|A

∗ Avoidable causes
∗∗ Not available ∗∗∗ Geophysical factors
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Tobacco Smoking3.4.1

Tobacco smoking is the main single cause of human cancer worldwide. It is a cause
of cancers of the oral cavity, pharynx, oesophagus, stomach, liver, pancreas, nasal
cavity, larynx, lung, cervix, kidney and bladder, and of myeloid leukaemia (IARC
2004). It is commonly considered that tobacco smoking causes up to one third of
human cancers (Table 3.3); a detailed review of the number of cancers attributable
to tobacco smoking in 1985, which was based on very strict criteria for attribution
of cases, resulted in the estimate of at least 15% (Parkin et al. 1994), corresponding
to about 1.5 million new cases per year. The estimates were 25% in men and
4% in women and, in both genders, they were 16% in developed countries and
10% in developing countries. The low attributable risk in women (and, to a lesser
extent, in developing countries) is due to the low consumption of tobacco in past
decades: the recent upward trend that has taken place among women and in many
developing countries will obviously result in a much greater number of cancers in
the future.

The risk of tobacco-related cancers among smokers relative to non-smokers
depends on the different characteristics of the habit; in Table 3.4 are reported

Table 3.4. Relative risk of ever smoking and proportion of cancer attributable to tobacco smoking

Cancer Relative risk for ever smoking∗ Attributable risk∗∗
Men Women

Oral cavity, pharynx 2–3 41% 11%

Oesophagus 2-5 (squamous cell carcinoma) 45% 11%
< 2 (adenocarcinoma)

Stomach 1.5 13%∗∗∗ 7%∗∗∗

Liver 2 N|A∗∗∗∗ N|A

Pancreas 2–4 27% 11%

Nasal cavity and sinuses 2 (squamous cell carcinoma) N|A N|A

Larynx 10–15 67% 28%

Lung 10–15 (small cell and 85% 46%
squamous cell carcinoma)

3–5 (adenocarcinoma)

Cervix 2 N|A N|A

Kidney 2 (renal cell carcinoma) 38% 4%
3 (cancer of the renal pelvis)

Bladder 3 37% 14%

Leukaemia 1.2 (myeloid) N|A N|A

∗ Derived from IARC (2004) and Kuper et al. (2002)
∗∗ Derived from Parkin et al. (1994) unless stated otherwise
∗∗∗ Derived from Tredaniel et al. (1997) ∗∗∗∗ Not available
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relative risks found for ever-smokers in Europe and North America. In different
populations, risk estimates have been produced for increasing levels of duration
and amount of tobacco smoking: in general, a separate effect has been shown for
both dimensions of smoking, with a stronger role of the former (IARC 2004). The
effect of duration of smoking on the risk of smoking-related cancers, and of lung
cancer in particular, is so strong that it is difficult to determine whether there is an
independent contribution of other factors, such as age and age at starting smoking.
Smoking of filtered cigarettes and cigarettes with reduced tar content results in
a lower risk of lung and other cancers than smoking of cigarettes without filter and
with high tar content, although by no means the former products should be seen
as ‘risk-free’ (IARC 2004). Smoking of black tobacco cigarettes entails a higher risk
of most smoking-related cancers than smoking of blond tobacco cigarettes (IARC
2004). A carcinogenic effect of cigar and pipe smoking has been demonstrated
for cancers of the oral cavity, pharynx, larynx, lung and bladder (IARC 2004).
Similarly, smoking of local tobacco products, such as papirossi in Russia, bidis in
India and yaa muan in Thailand, entails an increased risk of cancer of the lung and
other organs.

A benefit of quitting tobacco smoking in adulthood has been shown for most
cancers causally associated with the habit (Table 3.5). This result emphasizes the
need to devise anti-smoking strategies that address avoidance of the habit among
the young as well as reduction of smoking and quitting among adults. There is
strong evidence of a protective effect of quitting smoking at any age (Peto et al.
2000). The decline in tobacco consumption that has taken place during the last
20 years among men in North America and several European countries, and which
has resulted in decreased incidence of and mortality from lung cancer, has resulted
primarily from the increase in the number of smokers quitting at middle age.

With the identification of tobacco as a carcinogen for the lung, the causal
nature of an association between a chronic disease and a risk factor was for
the first time established beyond doubt, representing an important contribution
to the development of epidemiology. The association was replicated in various
populations, using different approaches, namely cohort and case-control stud-
ies. This discovery was facilitated by several aspects of tobacco smoking: firstly,
it is a potent carcinogen, containing – at high concentrations – several agents

Table 3.5. Effect of quitting tobacco smoking on risk of selected cancers (Kuper et al. 2002)

Cancer Effect of quitting

Oral cavity, pharynx Long-term quitters have risk close to that of never-smokers
Oesophagus Risk decreases, but significant increase persists
Pancreas Up to 50% risk reduction in long-term quitters
Larynx Long-term quitters have risk close to that of never-smokers
Lung Sharp decline in risk, some excess risk persists
Kidney Up to 25% risk reduction in long-term quitters
Bladder Up to 60% risk reduction in long-term quitters
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acting on different stages of the carcinogenic process; secondly, a sizable group
in most populations is composed of heavy smokers, exposing themselves to high
doses; and thirdly, exposure is easier to quantify compared to most other agents,
since smokers can report with a good degree of precision their present and past
consumption.

Use of Smokeless Tobacco Products3.4.2

There is conclusive epidemiological evidence that use of smokeless tobacco prod-
ucts is associated with an increased risk of head and neck cancer (IARC 1985).
Chewing of tobacco-containing products is particularly prevalent in southern Asia,
where it represents a major cause of cancer of the oral cavity, pharynx, oesophagus
and larynx, either alone or in combination with smoking.

Dietary Factors3.4.3

Despite considerable research efforts in cancer epidemiology, the exact role of
dietary factors in causing human cancer remains largely obscure. The World
Cancer Research Fund (WCRF 1997) has published a systematic review of the
evidence of an association between intake of foods, food groups and nutri-
ents and different cancers. Their evaluations are summarized in Table 3.6 and,
with one exception, are valid today. The evidence of a protective role of veg-
etable and, to a lesser degree, fruit intake has been evaluated as convincing
for a number of important human tumours. However, a formal IARC evalu-
ation which has taken place in March 2003 concluded that there is no defi-
nite evidence for a cancer protective effect of high intake of fruits and vegeta-
bles, although such an effect is probable for cancer of the esophagus, stomach,
colon|rectum and lung (IARC 2003). For the remaining dietary factors, few eval-
uations of convincing or probable associations have been made by WCRF, and
in most cases the conclusion was a possible increase or decrease in risk. This
is namely the case for high intake of total and saturated fat, and of micronu-
trients such as carotenoids, vitamin E and selenium. In addition, the Interna-
tional Agency for Research on Cancer (IARC) has concluded that there is ev-
idence suggesting lack of cancer-preventive activity for preformed vitamin A
(IARC 1998a) and for β-carotene when used at high doses (IARC 1998b). In re-
cent years the evidence has grown for a carcinogenic role of excess caloric in-
take, disregarding the source of calories, resulting in overweight and obesity (see
Sect. 3.4.4).

The mechanisms of dietary-related carcinogenesis are not well understood. Di-
etary factors are likely to play a role in most if not all steps of the process, including
genotoxicity, interference in the metabolism of other carcinogens, methylation of
cancer genes, alteration of DNA repair and apoptotic mechanisms, alteration of
DNA and cell replication, and cell proliferation (for a review see WCRF 1997). In
particular, it is plausible that fresh fruits and vegetables act at least in part via
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control of endogenously formed radical oxygen species. In addition, insulin and
insulin-like Growth Factor-I (IGF-I), which are produced as a result of caloric
intake, stimulate anabolic processes resulting in inhibition of apoptosis, and cell
proliferation (see Sect. 3.4.4).

Several suspected dietary carcinogens have been widely studied in cancer epi-
demiology. Grilled and barbecued meat and fish contain carcinogenic polycyclic
aromatic hydrocarbons and heterocyclic amines: high intake of these foods has
been suggested to increase the risk of stomach and colorectal cancer. Similarly,
high intake of cured and processed meat is a probable cause of digestive tract
cancer: nitrosamines might be among the relevant carcinogens. High intake of salt
probably increases the risk of stomach cancer (WCRF 1997). Intake of Chinese-style
salted fish increases the risk of cancer of the nasopharynx (IARC 1993) and con-
sumption of other types of salted fish might represent a risk factor in South-East
Asia and the Arctic. Other preserved foods used as weaning food in different areas
of China have also been associated to nasopharyngeal cancer: chung choi (a salted
root), salted shrimp paste, salted eggs and preserved fruits. The high rates of this
tumour in Northern Africa might be due to consumption of dried mutton, touklia
(a spiced mixture of peppers) or harissa (a hot sauce).

In several areas of Asia and Africa, high incidence of liver cancer is due to
food contamination by mycotoxins, including aflatoxins (Stuver and Trichopou-
los 2002). A role of another group of mycotoxins – fumonisins – in oesophageal
cancer risk is suspected (IARC 2002a). The application of exposure biomarkers to
the study of aflatoxin-related liver cancer represented a major success of molec-
ular cancer epidemiology and has allowed to elucidate the role of this important
group of carcinogens (Ross et al. 1992). In Japan, eating bracken fern has been
associated with an elevated oesophageal cancer risk (Alonso-Amelot and Aven-
dano 2002). In Central Europe, a chronic renal disease called Balkan Endemic
Nephropathy has been described, which is associated with an increased risk of
kidney cancer and is likely to be due to ochratoxin contamination of foodstuff
(IARC 1993).

Intake of large amounts (more than one litre per day) of hot maté, a herbal tea,
is a risk factor for oesophageal cancer in Southern Brazil, Uruguay and Northern
Argentina (Castellsague et al. 2000). It is unclear, however, whether the effect is
due to components of maté or to the high temperature: studies from other regions
suggest that intake of hot beverages (e.g., hot tea in Iran, Singapore and Japan, hot
coffee in Puerto Rico, and hot drinks or soups in Hong Kong) increases the risk of
oesophagitis and oesophageal cancer, although the evidence is less consistent than
in the case of maté (Nyren and Adami 2002a).

The investigation of dietary carcinogens presents major challenges because of
the difficulties to assess precisely the relevant carcinogenic (or preventive) fac-
tors. In most populations, diet varies greatly during the life of an individual,
because of changes in personal choices and in societal aspects (availability of
different food items, modification of eating patterns, etc.). Furthermore, many
nutritional factors are strongly correlated, making it difficult to disentangle the
effect of each factor, and variability in exposure within relatively homogeneous
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Table 3.6. Assessment of associations between dietary factors and human cancer (WCRF 1997)

Factor Oral Oeso- Sto- Colon and Liver Pan- Lung Breast Cervix Endo- Ovary Pros- Kidney Bladder

(high intake) cavity and phagus mach rectum creas metrium tate

pharynx

Starch [−] [+]

Fibres {−} [−] [−] [−]

Sugar [+] {+}

Total fat [+] [+] [+] {+} {+} [+] {+}

Saturated fat [+] [+] [+] [+] {+} [+]

Cholesterol [+] [+] (=) {+}

Animal protein {+}

Carotenoids [−] [−] [−] (−) [−] [−] {−} {−} {−}

Vitamin C [−] [−] (−) {−} [−] [−] {−} [−] [=] {−}

Retinol [=] [=] [=] [=] {−}

Vitamin E [=] {−} [−] [=] [−]

Folate {−} [=]

Selenium {−} [=] {−} [−]

Iron {+} {+}

Vitamin D {−}

Calcium [=]

Allium [−]
compounds

table to be continued
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Table 3.6. (continued)

Factor Oral Oeso- Sto- Colon and Liver Pan- Lung Breast Cervix Endo- Ovary Pros- Kidney Bladder

(high intake) cavity and phagus mach rectum creas metrium tate

pharynx

Cereals {−}

Whole grain [−]
cereals

Refined cereals [+]

Vegetables − − − − [−] (−) − (−) [−] [−] [−] [−] [−] (−)

Fruits − − − (−) − (−) [−] [−] [−] (−)

Meat (+) [+] [+] [+] [+]

Eggs [+] {+} {+} [=] [=]

Fish [=] {−} {−}

Milk & dairy [+] [+]
products

Coffee (+) {−} (=) = [=] (=) [+]

Maté [+] [+]

Black tea (=) [=] (=) (=)

Green tea [−]

Direction of the effect: + increased risk; − decreased risk; = no relationship
Strength of the evidence: no brackets: convincing evidence of an association

round brackets: probable association
squared brackets: possible association
curly brackets: insufficient evidence to fully assess the association
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populations might not be large enough to allow the detection of carcinogenic
effects. Dietary retrospective exposure assessment is complicated by recall bias
and unavailability of valid biomarkers, making the case-control approach par-
ticularly unsuitable. Even the evidence derived from prospective (e.g., cohort)
studies, however, is far from being unequivocal: as an example, the fairly estab-
lished notion that high intake of fat, mainly of saturated fat from animal foods,
might be a risk factor for breast cancer was recently challenged by the results
of prospective studies based on detailed dietary assessment (Holmes et al. 1999).
The equivocal evidence, however, might depend on a different effect of fat in-
take on the risk of premenopausal and postmenopausal breast cancer (Cho et al.
2003). For a general discussion of nutritional epidemiology see Chap. III.4 of this
handbook.

Overweight and Obesity3.4.4

Overweight, defined as body mass index (BMI) over 25 kg/m2, increases the risk
of colon, breast (post-menopausal), endometrial and kidney cancer and of adeno-
carcinoma of the oesophagus (IARC 2002b). The risk of these cancers is linearly
related to severity of overweight and obesity, where obesity is defined as BMI over
30 kg/m2; adult weight gain is a strong and consistent predictor of risk. In the case
of colon cancer, body fat distribution expressed as waist to hip circumference ratio,
might have an effect independent from that of body mass. It is likely that obesity
exerts a carcinogenic effect via alteration of endogenous hormone metabolism,
involving in particular insulin resistance and chronic hyperinsulinaemia, mod-
ulation of adrenal cortical hormones, and increased bioavailability of estrogens.
Other possible mechanisms include interference with carcinogen metabolism, ac-
cumulation of reactive oxygen species and alteration of mechanisms regulating
cell proliferation, resulting in enhanced proliferation and reduced apoptosis, as
well as induction of angiogenesis in tissues other than the fat. The magnitude
of the excess risk is not very high (for most cancers the relative risk ranges be-
tween 1.1 and 1.5 for overweight and between 1.3 and 2 for obesity), however,
the attributable risk in industrialized countries is large because of the high preva-
lence of overweight people: estimates for Europe suggest that about 6% of all
cancers in women and 3% in men are attributable to overweight and obesity
(Table 3.7).

Physical Activity3.4.5

Regular sustained workplace or recreational physical activity (e.g., at least 30 min-
utes|day) decrease the risk of colon and breast cancer; a protective effect is also
likely for endometrial and prostate cancer (IARC 2002b). The magnitude of risk
reduction for colon and breast cancer is in the order of 40%, and a dose-response
relationship has been shown for both neoplasms. Up to 13% of cases of colon
cancer in the USA can be attributed to physical inactivity (Slattery 1997). Although
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Table 3.7. Cancer risk attributable to overweight and obesity in European Union countries (Bergström

et al. 2001)

Cancer Relative risk Attributable fraction (%) Attributable
Overweight Obesity Women Men cases

Breast 1.12 1.25 8.5 – 12,870

Colon 1.15 1.33 10.7 11.1 21,610

Endometrium 1.59 2.52 39.2 – 14,230

Prostate∗ 1.06 1.12 – 4.4 4990

Kidney 1.36 1.84 24.5 25.5 10,380

Gallbladder∗ 1.34 1.78 23.7 24.8 6460

Total – – 6.4 3.4 70,540

∗ Evidence of a causal role of overweight considered less than conclusive by IARC (2002b)

regular physical activity contributes to weight control, the epidemiological evi-
dence suggests that two factors also act independently. The mechanisms through
which physical activity contributes to cancer prevention are not fully understood,
but they may include enhancement of immune function, interference with sex
steroids, and insulin and IGF-I pathways (IARC 2002b).

Alcohol Drinking 3.4.6

There is convincing epidemiological evidence that the consumption of alcoholic
beverages increases the risk of cancers of the oral cavity and pharynx, oesophagus,
and larynx. The risks tend to increase with the amount of ethanol drunk, in
the absence of any clearly defined threshold below which no effect is evident;
an interaction has been shown between alcohol drinking and tobacco smoking
(Fig. 3.5). The evidence of differences in carcinogenicity among alcoholic beverages
is inconclusive. Alcohol might act as co-carcinogen, enhancing the effect of tobacco
and dietary carcinogens; in addition, a direct carcinogenic effect of acetaldehyde,
the main metabolite of ethanol cannot be excluded. An increased risk has also
been reported for colorectal cancer and liver cancer, although the effect on the
latter might be mediated by development of liver cirrhosis. Breast cancer risk is
also increased among drinkers (CGHFBC 2002a): although weak (relative risk in
the order of 1.07 for each 10 g/day increase in alcohol intake), the association is
of importance because of the apparent lack of a threshold, the large number of
women drinking large amounts of alcohol, and the high incidence of the disease.

The carcinogenic effect of alcohol should be considered in the light of other
health effects, notably the increased mortality from chronic digestive diseases and
accidents and the reduced mortality from cardiovascular diseases among moderate
drinkers (Vogel 2002). Inmiddle-agedandoldpeople, thebenefitoncardiovascular
disease is likely to offset the increased cancer risk, up to a level of approximately
20 g/day among men and 10 g/day among women.
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Figure 3.5. Risk of oral cancer, tobacco smoking and alcohol drinking. From Blot et al. (1988)

Infectious Agents3.4.7

There is growing epidemiological evidence that chronic infection with some
viruses, bacteria and parasites represents a major cause of human cancer, in
particular in developing countries. A number of infectious agents have been eval-
uated within the IARC Monograph Programme (Table 3.8), and the evidence of
a causal association has been classified as sufficient for several of them. Hu-
man Papilloma virus (HPV) is detected in almost all cases of cervical cancer:
several oncogenic HPV types have been identified, with HPV 16 and 18 being
the most prevalent ones (Munoz et al. 2003). Chronic infection with Hepatitis B
virus (HBV) or Hepatitis C virus (HCV) is a major cause of liver cancer world-
wide; an interaction has been shown between HBV infection and other causes
of liver cancer such as aflatoxin exposure. Additional carcinogenic viruses in-
clude Epstein-Barr virus, a major cause of Hodgkin’s disease and of some types of
non-Hodgkin lymphoma, Human Herpes virus 8 (HHV8), which causes Kaposi
sarcoma, Human Immunodeficiency virus I, which causes various types of non-
Hodgkin lymphoma, and Human T-cell leukaemia|lymphoma virus I. In addition,
childhood leukaemia is likely linked to one or more viruses that have not yet been
identified.

Infection with Helicobacter pylori is associated with an approximately six-fold
increased risk of non-cardia gastric cancer, after controlling for other risk factors
of the disease (Nyren and Adami 2002a). Unplanned control of Helicobacter in-
fection via widespread antibiotic use and improved living conditions is likely to
be an important component of the decline in stomach cancer incidence, which
occurred in many countries during recent decades. Infestation with several para-
sites has been linked with occurrence of human cancer in tropical countries: the
evidence is particularly strong for Schistosoma haematobium, causing bladder
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Table 3.8. Assessment of associations between infections and human cancer (IARC 1994a,b, 1995,

1996a, 1997a)

Evidence∗ Target organs∗∗

Viruses:
Hepatitis B virus S Liver
Hepatitis C virus S Liver, (lymphoma)
Hepatitis D virus I Liver
Human papilloma virus types 16, 18 S Cervix, anus, penis, (oral cavity)
Human papilloma virus types 31, 33 L∗∗∗ (Cervix)
Human papilloma virus, other types I∗∗∗
Human immunodeficiency virus 1 S Kaposi’s sarcoma, non-Hodgkin’s

lymphoma
Human immunodeficiency virus 2 I
Human T-cell lymphotrophic virus I S Adult T-cell leukaemia|lymphoma
Human T-cell lymphotrophic virus II I
Epstein-Barr virus S Burkitt’s lymphoma, Hodgkin’s

disease, nasopharynx
Human herpes virus 8 L∗∗∗ (Kaposi’s sarcoma)

Bacterium:
Helicobacter pylori S Stomach cancer, gastric lymphoma

Parasites:
Schistosoma haematobium S Bladder
Schistosoma japonicum L (Liver, stomach)
Schistosoma mansoni I
Opistorchis viverrini S Liver
Opistorchis felineus I
Clonorchis sinensis L Liver

∗ I, inadequate; L, limited; S, sufficient
∗∗ Established target organs without brackets; suspected target organs in brackets
∗∗∗ The evidence of a causal role of these agents has become stronger since the IARC evaluation

cancer in North Africa and the Middle East, and Chlonorchis siniensis, causing
cholangiocarcinoma in South East Asia (IARC 1994a,b).

Global estimates of the number of cases of cancer attributable to biological
agents suggest that at least 16% of all neoplasms worldwide are due to infection
(Table 3.9) (Pisani et al. 1997). HBV- and HCV-related liver cancer, HPV-related
cervical cancer and Helicobacter-related stomach cancer each account for approxi-
mately 30% of the total. Because of the high prevalence of most carcinogenic agents
in developing countries, the estimate of the attributable risk is higher in this part
of the world.

More than for other causes of cancer, a carcinogenic role of infectious agents
is strongly suggested by extreme variability in cancer risk observed among pop-
ulations in descriptive epidemiological studies. Thus, an infectious agent had
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Table 3.9. Cancer risk attributable to infectious agents (Pisani et al. 1997)

Cancer Agent Developing countries Developed countries
AF% N cases AF% N cases

Liver HBV, HCV 91 352,644∗ 51 46,762

Stomach H. pylori 54 299,636 60 205,292

Cervix HPV 91 335,946 82 80,420

Female genital HPV 91 20,816 82 10,219

Lymphoma∗∗ HIV, EBV 33 57,987 27 32,316

Leukaemia HTLV-I 1.4 2200 0.5 500

Bladder S. haematobium 7.7 10,249 0 0

Total 21 1,079,443 9.1 375,509

AF attributable fraction
∗ Including 808 cases of cholangiocarcinoma attributable to infestation with 0. viverrini
∗∗ Including Kaposi sarcoma (no cases attributed to HHV8)

been suspected for a long time for a number of human neoplasms (e.g., Ka-
posi sarcoma), before sensitive and specific assays became available for the iden-
tification of the responsible agent. In addition, the investigation of infectious
causes of cancer poses special problems of reverse causality: the detection of an
agent in a tumour, as compared to the normal tissue of the patients or con-
trols, does not imply an etiological role, since the altered environment resulting
from the neoplasm might favour the growth of the micro-organism above de-
tection levels. Cohort studies with repeated samples of the target tissue or sur-
rogate material (typically serum) represent the strongest approach to establish
causality.

Occupational Exposures3.4.8

Twenty-nine occupational agents, groups of agents and mixtures, as well as 12
exposure circumstances, are classified as carcinogenic by IARC (Table 3.10) (IARC
1972–2004). An additional 31 compounds and 3 exposure circumstances are classi-
fied as probable carcinogens (Table 3.11). While some (e.g., mustard gas) are mainly
of historical interest, exposure is still widespread for important carcinogens such
as asbestos, coal tar and other mixtures of polycyclic aromatic hydrocarbons, heavy
metals and silica. Although the overall burden of occupational cancer is relatively
small, these cancers concentrate among exposed subjects (mainly male blue-collar
workers), among whom they may represent a sizeable proportion of total cancers
(Boffetta et al. 1995). Furthermore, unlike lifestyle factors, exposure is involuntary
and can be, to a large extent, avoided. In fact, reduction of exposure to occupational
and environmental carcinogens has taken place in industrialized countries during
recent decades and represents one of the successes of cancer epidemiology.

The epidemiological approach to study occupational causes of cancer was tra-
ditionally based on the historical cohort design. Groups of workers were identified
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Table 3.10. Occupational agents, classified by the IARC Monographs programme as carcinogenic to

humans

Agents, mixture, circumstance Main industry, use

Agents, groups of agents:
4-Aminobiphenyl Pigment
Arsenic and arsenic compounds Glass, metal, pesticide
Asbestos Insulation, filter, textile
Benzene Chemical, solvent
Benzidine Pigment
Beryllium and beryllium compounds Aerospace
Bis(chloromethyl)ether and chloromethyl methyl ether∗ Chemical intermediate
Cadmium and cadmium compounds Dye|pigment
Chromium[VI] compounds Metal plating, dye|pigment
Dioxin Chemical
Ethylene oxide Sterilant
Mustard gas∗ War gas
2-Naphthylamine Pigment
Nickel compounds Metallurgy, alloy, catalyst
Plutonium-239 and its decay products Nuclear industry
Radium-226 and its decay products∗ Luminizing industry
Radium-228 and its decay products∗ Luminizing industry
Radon-222 and its decay products Mining
Silica, crystalline Stone cutting, mining, glass
Solar radiation Agriculture
Talc containing asbestiform fibres Paper, paints
Vinyl chloride Plastics
X- and γ-radiation Medical

Mixtures:
Coal-tar pitches Construction, electrode
Coal-tars Fuel, construction, chemical
Mineral oils, untreated Metal
Shale-oils Fuel
Soots Pigment
Wood dust Wood

Exposure circumstances:
Aluminium production
Auramine, manufacture of∗ Pigment
Boot and shoe manufacture and repair
Coal gasification
Coke production

∗ Agent mainly of historical interest
table to be continued



1424 Paolo Boffetta

Table 3.10. (continued)

Agents, mixture, circumstance Main industry, use

Furniture and cabinet making
Haematite mining (underground) with exposure to radon
Iron and steel founding
Magenta, manufacture of ∗ Pigment
Painter (occupational exposure as a)
Rubber industry
Strong inorganic-acid mists containing sulphuric acid Metallurgy

∗ Agent mainly of historical interest

via company or union records, and their cancer mortality or incidence was com-
pared with that of a reference population, most commonly that of the country or the
region, leading to the estimate of indirectly standardized mortality (or incidence)
ratios. In recent decades, alternative approaches gained popularity, including:
(1) community-based case-control studies, leading to the simultaneous estimate of
the risk from exposure to a large number of agents (see for example the multi-site
study conducted in Montreal by Siemiatycki (1995)); and (2) comparisons within
subgroups of cohort members, based on reconstructed (often model-based) esti-
mates of exposure to one or more agents of interest. Occupational cancer research
has also been a field of successful application of biomarkers of exposure, as in
the case of the identification of ethylene oxide as a human carcinogen following
the detection of protein adducts in exposed workers and in animals showing an
increased incidence of neoplasms (IARC 1994c).

The main reasons for the success of the application of epidemiology to the field
of occupational cancer are the possibility to identify clearly defined groups of
exposed individuals and the availability of historical measures of exposure. For
more details on occupational epidemiology see Chap. III.2 of this handbook.

Environmental Agents3.4.9

Exposure tomanyoccupational carcinogens listed inTables 3.10 and3.11 alsooccurs
in the general environment; for two additional agents, the naturally-occurring fibre
erionite and short-lived radioiodine isotopes, the main source of exposure is the
general environment. Overall, the available evidence suggests, in most populations,
a small role of purely environmental sources of exposure to carcinogens (air, water,
soil pollution): global estimates are in the order of 1% or less of total cancers.
This is in contrast with public perception, which often identifies environmental
pollution as a major cause of human cancer. It should be stressed, however, that
in selected areas (e.g., residence near asbestos processing plants or in areas with
drinking water contaminated by arsenic) environmental exposure to carcinogens
may represent an important cancer hazard (Armstrong and Boffetta 1998).
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Table 3.11. Occupational agents, classified by the IARC Monographs programme as probably

carcinogenic to humans

Agents, mixture, circumstance Main industry, use

Agents, groups of agents:
Acrylamide Chemical, construction
Benz[a]anthracene Combustion fumes
Benzidine-based dyes Paper, leather, textile dyes
Benzo[a]pyrene Combustion fumes
1,3-Butadiene Plastics, rubber
Captafol Fungicide
α-Chlorinated toluenes Chemical intermediate
4-Chloro-ortho-toluidine Dye|pigment manufacture, textiles
Dibenz[a,h]anthracene Combustion fumes
Diethyl sulfate Chemical intermediate
Dimethylcarbamoyl chloride Chemical intermediate
Dimethyl sulfate Chemical intermediate
Epichlorohydrin Plastics/resins monomer
Ethylene dibromide Chemical intermediate, fumigant
Formaldehyde Plastics, textiles, laboratory agent
Glycidol Chemical intermediate
4,4′-Methylene bis(2-chloroaniline) (MOCA)∗ Rubber manufacture
N-Nitrosodimethylamine∗ Chemical intermediate
Styrene-7,8-oxide Plastics, chemical intermediate
Tetrachloroethylene Solvent, dry cleaning
ortho-Toluidine Dyestuff, rubber
Trichloroethylene Solvent, dry cleaning, metal
1,2,3-Trichloropropane Solvent, chemical intermediate
Tris(2,3-dibromopropyl)phosphate Plastics, textiles, flame retardant
Vinyl bromide Plastics, textiles, monomer
Vinyl fluoride Chemical intermediate

Mixtures:
Creosotes Wood preservation
Diesel engine exhaust Transport
Non-arsenical insecticides Agriculture

(spraying and application)
Polychlorinated biphenyls Electrical components

Exposure circumstances:
Art glass, glass container and pressed ware

(manufacturing of)
Hairdresser and barber
Petroleum refining

∗ Agent mainly of historical interest
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The search for environmental causes of cancer has been particularly elusive to
the epidemiological approach. The main reason for such relative lack of success
lies in several biases affecting the assessment of exposure to most environmen-
tal carcinogens and leading to false negative results: low-level exposure is often
widespread and the range of dose is limited; exposure levels vary with time and
most available measurements refer to the present or recent past; individuals are
unable to validly and precisely reconstruct their past exposure. For more details
on these problems please refer to Chap. III.3 of this handbook.

Reproductive Factors3.4.10

The epidemiological evidence of a carcinogenic effect of reproductive factors is
strongest for breast cancer: early age at menarche, low parity, late age at first
pregnancy and late age at menopause are all associated with an increased risk,
while spontaneous and induced abortions are not (Hankinson and Hunter 2002).
In addition, breastfeeding protects from breast cancer. A large pooled analysis
resulted in an estimated 4.3% (95% confidence interval (CI) 2.9–5.8) decrease in
risk for every 12 months of breastfeeding, in addition to a decrease of 7.0% (95% CI
5.0–9.0) for each birth (CGHFBC 2002b). The same reproductive factors seem to
exert an effect on endometrial cancer risk similar to that played on breast cancer,
while the evidence of an effect on other cancers is inadequate, although there is
limited evidence that nulliparity increases the risk of ovarian cancer. No detailed
estimates are available on the contribution of reproductive factors to the global
burden of cancer. Some authors have, however, proposed figures in the order of 3%
(HCCP 1996). An extensive discussion of methodological problems in reproductive
epidemiology can be found in Chap. III.5 of this handbook.

Other Lifestyle Factors3.4.11

A number of other lifestyle factors have been shown or suggested in epidemiolog-
ical studies to cause cancer in humans. Poor oral hygiene and ill-fitting dentures
are likely to represent additional risk factors for oral cancer. The use of mouth-
wash with high alcohol content has also been associated with oral cancer (Mucci
and Adami 2002). Herbs of the Aristolochia genus, used in traditional Chinese
medicine as anti-rheumatics and diuretics and included in weight-loss regimens,
cause a rapidly progressive renal disease called Chinese Herb Nephropathy, as well
as cancer of the urinary tract (IARC 2002a).

Hormones3.4.12

Increased levels of endogenous estrogens are associated with an increased risk
of breast and endometrial cancers, and a similar effect is likely to be played by
endogenous androgens (Hankinson and Hunter 2002; Persson and Adami 2002).
The role of other hormones, such as progesterone and prolactin, in these can-
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cers is not clearly known, nor is the role of endogenous androgens in prostate
cancer.

There is growing evidence that growth hormones, in particular IGF-I, have
a strong effect on the risk of breast, colon, prostate and possibly other cancers
(Furstenberg and Senn 2002), and that chronic hyperinsulinaemia is a cause of
cancers of the colon, pancreas, breast and endometrium (Kaaks et al. 2002).

There is a large body of epidemiological studies on cancer risk following ex-
posure to exogenous hormones. Current and recent (up to 10 years) use of oral
contraceptives entails a small increase in breast cancer risk, but no excess risk is
apparent 10 or more years after cessation of use (CGHFBC 1996). Long-term use
of oral contraceptives is associated with an increased risk of liver cancer, while the
risk of endometrial and ovarian cancer is decreased following oral contraceptive
use (IARC 1999a).

Post-menopausal hormonal therapy increases the riskofbreast andendometrial
cancer (CGHFBC 1997; IARC 1999a). In the case of breast cancer, the effect is
stronger for combined estrogen-progestagen combinations than for other types of
hormonal therapy (Beral et al. 2003). The evidence for other organs is inconclusive.

Tamoxifen is widely used for treatment of breast cancer: beyond its therapeutic
effects, it decreases the risk of contralateral breast cancer but it increases the risk
of endometrial cancer (IARC 1996b).

Perinatal Factors 3.4.13

Excess energy intake early in life is possibly associated with breast and colon cancer
(IARC 2002b). The role of attained height, growth factors, and other factors such
as insulin resistance or sensitivity in this association is unclear. In addition, high
birth weight is possibly linked with an increased risk of breast cancer. Perinatal
factors have been proposed to cause up to 5% of human cancers, but this estimate is
subject to uncertainty. The implications of these findings for preventive strategies
will be clarified by a more detailed understanding of the underlying carcinogenic
mechanisms (HCCP 1996).

Ionizing and Non-ionizing Radiation 3.4.14

The available epidemiological studies of populations exposed to ionizing radi-
ation following military actions, accidents, occupational exposure and medical
treatments represent a very comprehensive database, which has been used be-
yond the assessment of radiation carcinogenicity, notably to elaborate models of
carcinogenesis in humans and of quantitative risk assessment (Moolgavkar et al.
1999). Ionizing radiation causes acute lymphoblastic leukaemia, acute myeloid
leukaemia, chronic myeloid leukaemia and breast, lung and thyroid cancers (IARC
2000). Bone, rectal and brain cancers may develop following prolonged thera-
peutic exposure. There is evidence of a linear dose-response relationship between
radiation dose and cancer risk. However, levels at which people are commonly
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exposed to man-made radiation in most countries carry little risk and the main
exposure comes from natural radiation, including indoor radon (IARC 2000). The
estimates of the global contribution of ionizing radiation to human cancer range
from 1% to 3% (Table 3.3).

The study of cancer risk following exposure to ionizing radiation represented
one of the main paradigms of chronic disease epidemiology. In most exposure
circumstances, doses– including those in thepast – areknownwith great precision.
In addition, they are characterized by different intensity and dose rates, allowing
the separate investigation of different components of the carcinogenic effect.

Solar (ultraviolet) radiation is carcinogenic to the skin and the lip, and it might
increase the risk of other neoplasms such as non-Hodgkin lymphoma (IARC 1992).
Over90%ofskinneoplasmsareattributable tosunlight;however,becauseof the low
fatality of non-melanocytic skin cancer, solar radiation is responsible for only 1%
to 2% of total cancer deaths (Table 3.3). Epidemiological studies have contributed to
elucidate the contribution of dose rate and time of exposure in ultraviolet-related
carcinogenesis. The evidence of a carcinogenic effect of other types of non-ionizing
radiation, in particular electric and magnetic fields, is inconclusive (IARC 2002c).

Medical Procedures and Drugs3.4.15

In addition to post-menopausal hormonal therapy, oral contraceptives and tam-
oxifen, other drugs may cause cancer. Many cancer chemotherapy drugs are active
on the DNA, in order to block the replication of cancer cells. This, however, might
result in damage to normal cells, including cancer transformation. The main
neoplasm associated with chemotherapy treatment is leukaemia, although the risk
of solid tumours is also increased (Boffetta and Kaldor 1994). A second group of
carcinogenic drugs includes immunosuppressive agents, which have been studied
in particular in transplanted patients (Kinlen 1996). Non-Hodgkin lymphoma
is the main neoplasm caused by these drugs. Phenacetin-containing analgesics
increase the risk of cancer of the renal pelvis (Lindblad and Adami 2002).

There is strong evidence from observational studies that aspirin reduces the risk
of colorectal cancer (IARC 1997b), an effect probably shared by other non-steroidal
anti-inflammatory drugs.

No precise estimates are available for the global contribution of drug use to
human cancer. It is unlikely, however, that drugs represent more than 1% in
developed countries (Table 3.3). Furthermore, the benefits of such therapies are
usually much greater than the potential cancer risk.

Use of ionizing radiation for diagnostic purposes is likely to carry a small risk
of cancer, which has been demonstrated only for childhood leukaemia following
intrauterine exposure (IARC2000).Radiotherapy increases the riskof cancer in the
irradiated organs. There is no clear evidence of an increased cancer risk following
other medical procedures, including surgical implants (IARC 1999b).

The epidemiological investigation of the carcinogenicity of drugs and medical
procedures shares several characteristics of occupational cancer research: well-
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defined groups of exposed individuals and valid records of exposure, often in
the form of prescription or hospital discharge databases, in addition to the strong
potency of several medical agents. These factors explain the relatively large number
of drugs identified as human carcinogens.

Medical Conditions 3.4.16

Changes in immunological function are likely to play an important role in human
cancer, but epidemiological studies have been largely unable to identify specific
factors determining an increased or a decreased risk. Both severe immunosup-
pression and immunostimulation are associated with an elevated risk of cancer
(Kinlen 1996). On the one hand, individuals infected with the Human Immuno-
deficiency Virus (HIV) and patients undergoing immunosuppressive treatments,
such as transplant recipients, are at increased risk of lymphoma and skin cancer
(Kinlen 1996). On the other hand, patients suffering from systemic autoimmune
diseases are also at increased risk of lymphoma and possibly other neoplasms
(Kinlen 1996). The significance of less severe disturbances of the immunological
competence is poorly known.

Several chronic inflammatory conditions represent a risk factor for cancer: the
epidemiological evidence is particularly strong in the case of colorectal cancer fol-
lowing inflammatory bowel disease and of lymphoma following chronic infectious
diseases such as tuberculosis, malaria and herpes zoster (Melbye and Trichopoulos
2002; Potter and Hunter 2002).

Recent epidemiological studies have clearly shown that gastro-oesophageal re-
flux is an important cause of adenocarcinoma of the lower oesophagus, a neoplasm
whose incidence is increasing in developed countries (Nyren and Adami 2002b).

Genetic Factors 3.4.17

The notion that genetic susceptibility plays an important role in human cancer is
well-established, and early studies have demonstrated an increased risk of several
types of cancer in individuals with a familial history of the same or related cancers.
Several familial conditions entailing a very high risk of cancer have been identified,
such as the Li-Fraumeni syndrome and familial polyposis of the colon (Haiman
and Hunter 2002). It is only recently that, thanks to the development of molecular
tools in human genetics, specific high-risk cancer genes have been identified.
Inherited mutations of such high-penetrance cancer genes increase dramatically
the risk of some neoplasms (Table 3.12). However, these are rare conditions in most
populations and the number of cases globally attributable to them is rather small.

A familial aggregation has been shown for most types of cancers, in non-
carriers of known high-penetrance genes. This is notably the case for cancers of
the breast, colon, prostate and lung. The relative risk is in the order of 2 to 4,
and is higher for cases diagnosed at young age. Although some of the aggregation
can be explained by shared risk factors among family members, it is plausible
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Table 3.12. High penetrance cancer predisposition genes (Haiman and Hunter 2002)

Gene Syndrome Main targets

RET Multiple endocrine neoplasia 2 Medullary thyroid carcinoma, pheochromocytoma, parathyroid adenoma
MET Familial papillary renal cancer syndrome Papillary renal cancer
APC Familial adenomatous polyposis Colorectal cancer
VHL von Hippel-Lindau syndrome Clear-cell renal carcinoma, hemangioblastoma, retinal angioma,

pheochromocytoma
WT1 Wilms’ tumour syndrome Bilateral Wilms’ tumour
RB1 Hereditary retinoblastoma Retinoblastoma
NF1 Neurofibromatosis 1 Neurofibroma, neurofibrosarcoma, optic glioma
NF2 Neurofibromatosis 2 Vestibular schwannoma, meningioma
p53 Li-Fraumeni syndrome Sarcoma, leukaemia, breast, brain, lung, pancreas and skin cancers, others
p16|DCK4 Hereditary melanoma syndrome Melanoma
PTCH Nevoid basal cell carcinoma syndrome Basal cell carcinoma
MEN1 Multiple endocrine syndrome 1 Tumours of parathyroids, gastrointestinal endocrine tissues and

anterior pituitary
BRCA1 Hereditary breast-ovarian cancer syndrome Breast, ovary, prostate and colon cancer
BRCA2 Hereditary breast-ovarian cancer syndrome Breast (also male) and ovary cancer
PTEN Cowden syndrome Hamartoma, breast and thyroid cancer

hMSH2, hMLH1, Hereditary nonpolyposis colon Colon, endometrium, ovary, stomach cancers, others
hPMS1, hPMS2
ATM Ataxia-telangiectasia Leukaemia, lymphoma, breast cancer
XP(A-G) Xeroderma pigmentosum Skin cancer
BLM Bloom syndrome Leukaemia, lymphoma, most cancers
FAC, FAA Fancomi anaemia Acute myeloid leukaemia, others
WRN Werner syndrome Sarcoma, melanoma, thyroid carcinoma
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that a true genetic component exists for most human cancers. This takes the
form of an increased susceptibility to exogenous carcinogens. The knowledge
of low-penetrance genes responsible for such susceptibility is still very limited,
although research has currently focused on genes encoding for metabolic enzymes,
DNA repair, cell cycle control and hormone receptors (Haiman and Hunter 2002).
Current estimates of the global contribution of genetic factors to human cancer are
in the range of 5% to 10%, of which less than 1% is attributable to high-penetrance
genes.

The investigation of high- and medium-penetrance genetic cancer risk factors
reliesmostly on specificmethodological approacheswhosediscussiongoesbeyond
the scope of this chapter (please refer to Chap. III.7 of this handbook for more
details). In the case of low-penetrance genes, however, association studies have
been successful in identifying genetic susceptibility factors. Given the lack of
dependence of genetic markers of time and disease development, the case-control
approach is particularly suitable for this type of investigation.

Screening for Cancer 3.5

Screening is considered to be an effective approach to reduce cancer mortality,
because human neoplasms go through several pre-neoplastic stages before they
become biologically relevant and clinically detectable. For most cancers, this pro-
cess takes years or even decades. The possibility to detect preclinical lesions with
the potential to develop to a full cancer is highly appealing and is an area of very
active research. The slow evolution of cancer, however, is a strong argument to
avoid intervention on lesions that do not have the potential to develop to a full
cancer during the lifespan of the individual, in order to avoid undue medical pro-
cedures such as surgery or chemotherapy. Furthermore, any screening technique
has to be carefully evaluated in terms of efficacy to reduce mortality, compliance
and costs. Carefully conducted trials with mortality as main outcome are needed
to demonstrate the effectiveness of screening. In practice, however, the available
evidence is often restricted to observational data.

Oral inspection aimed at identifying pre-neoplastic lesions might be an effective
approach for secondarypreventionoforal cancer.The inspectioncanbeperformed
by medically certified professionals, but also, in particular in high-risk areas in
developing countries such as India, by specifically trained health workers. Large-
scale preventive trials are on-going, which should provide evidence in favour or
against this approach (Sankaranarayanan et al. 2000).

Surveillanceviaflexible sigmoidoscopy, involving removal of adenomas, is a rec-
ommended measure for secondary prevention of colorectal cancer. An additional
approach consists of the detection of occult blood in the faeces. The method suf-
fers from low specificity and, to a lesser extent, low sensitivity, in particular in
the ability to detect adenomas. However, trials have shown a reduced mortality
from colorectal cancer after annual tests, although this is achieved at a high cost
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due to an elevated number of false positive cases. Current recommendations for
individuals aged 50 and over include either annual faecal occult blood testing or
flexible sigmoidoscopy every five years (Cuzick 1999).

The most suitable approach for secondary prevention of breast cancer is mam-
mography. The effectiveness of screening by mammography in women older than
50 years has been demonstrated, and programmes have been established in various
countries (IARC 2002d). The effectiveness of mammography in women younger
than 50 is not demonstrated. The benefit of other screening approaches, such as
physical examination and self-examination, is not known (Moss 1999).

Cytological examination of exfoliated cervical cells (the Papanicolaou smear
test) is effective in identifying precursor lesions, resulting in a decrease in inci-
dence of and mortality from invasive cervical cancer. The benefit is in the order
of a two- to four-fold decreased incidence. There is no conclusive evidence, how-
ever, regarding the optimal timing of the test (Miller 1999). Cytological smears are
not applicable, however, in countries with limited availability of cytologists and
pathologists, and alternative approaches for secondary prevention have therefore
been proposed, including visual inspection of the cervix with possible enhance-
ment of precursor lesions by acetic acid (Sankaranarayanan et al. 1999). Use of
HPV testing as a screening method, either as a first choice for general application
or as the triage method of inconclusive cytological diagnoses, is also under trial
(Kulasingam et al. 2002).

Secondary prevention has been proposed for prostate cancer, based on digital
rectal examination and measurement of prostate-specific antigen. There is no
evidence from controlled trials that either procedure decreases the mortality from
prostate cancer (Schröder 1999). Despite this lack of evidence, these procedures,
in particular the prostate-specific antigen testing, have gained popularity in many
countries.

Despite a large body of research since the 1970s, no effective screening method
has yet been identified for lung cancer (Black 1999). Spiral computerized tomo-
graphy scanning has been shown to be able to identify small, subclinical lesions
in the lung of high-risk individuals (Henschke et al. 1999), and the effectiveness
of this method to reduce mortality is currently under investigation. For a general
discussion of the methodological problems of screening see Chap. III.10 of this
handbook.

Conclusions3.6

The application of principles of modern epidemiology to cancer research leads to
some methodological considerations of a more general nature. Cancer epidemi-
ology is relatively young, yet it has gained an important status in medicine and
is practiced by many professionals around the world. In many respects, cancer
epidemiology exemplifies the strengths and the weaknesses of the discipline at
large.
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On the one hand, cancer epidemiology has the privilege of complete and good-
quality disease registries in many populations, covering a broad spectrum of rates
and exposures. The network of cancer registries not only provides important
clues in terms of etiological and clinical research, for example via the analysis of
geographical and temporal differences in incidence, mortality and prevalence of
different neoplasms, but also allows in many countries the conduct of large-scale,
high-quality (and relatively low-cost) record linkage studies (cf. Chap. I.4 of this
handbook). Examplesof such studies include the analysis of cancer risk inmigrants
by regionoforiginand lengthof stay in thehost country, the linkagebetweencensus
and cancer registry data to assess risk from employment in specific occupations,
the analysis of second primary neoplasms in cancer patients, and the risk of cancer
following diagnosis of (or hospitalization for) non-neoplastic conditions.

On several occasions, cancer epidemiology has been the key tool to demonstrate
the causal role of important cancer risk factors. The best example is the associa-
tion between tobacco smoking and lung cancer, which led in the early 1960s to the
establishment of criteria for causality in observational research (Doll 1998). Other
contributions of epidemiology to the elucidation of important causes of human
cancer include the demonstration of the role of HPV in cervical cancer, the role
of Helicobacter pylori in stomach cancer, and that of solar radiation exposure
in skin cancer, as well as the growing body of evidence for a major role of over-
weight and obesity in the aetiology of several important neoplasms. These findings
have brought important regulatory and public health initiatives as well as lifestyle
changes in many countries of the world. For example, Box 1 shows the European
Code Against Cancer, which adequately summarizes the current evidence for can-
cer prevention: these recommendations are mainly based on evidence accumulated
via epidemiological studies.

These epidemiological ‘discoveries’ share two important characteristics: they
involve potent carcinogens, and methods are available to reduce misclassification
of exposure to the risk factor of interest and to major possible confounders. It
has therefore been possible to consistently demonstrate an association in different
human populations. It should be noted that it is not necessary for the prevalence
of exposure to be high (although this obviously has an impact on the population
attributable risk): examples are the many occupational exposures and medical
treatments for which conclusive evidence of carcinogenicity has been established
on the basis of epidemiological studies conducted in small populations of individ-
uals with well-characterized high exposure.

On the other hand, when these conditions are not met, the evidence accu-
mulated from epidemiological studies is typically inconsistent and difficult to
interpret (Taubes 1995). The history of cancer epidemiology presents many ex-
amples of premature conclusions, which have not been confirmed by subsequent
investigations and have damaged the reputation of the discipline. Misclassification
of the relevant exposure (cf. Chap. I.11 of this handbook), uncontrolled confound-
ing (cf. Chaps. I.1 and I.9) and inadequate statistical power (cf. Chap. II.1) are
the most common limitations encountered in cancer epidemiology. Two solutions
have been proposed to overcome these problems. First, epidemiological studies
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Box 1. European Code Against Cancer (Boyle et al. 2003)

Many aspects of general health can be improved, and many cancer deaths
prevented, if we adopt healthier lifestyles:
1. Do not smoke; if you smoke, stop doing so. If you fail to stop, do not smoke

in the presence of non-smokers.
2. Avoid obesity.
3. Undertake some brisk, physical activity every day.
4. Increase your daily intake and variety of vegetables and fruits: eat at least

five servings daily. Limit your intake of foods containing fats from animal
sources.

5. If you drink alcohol, whether beer, wine or spirits, moderate your consump-
tion to two drinks per day if you are a man or one drink per day if you are
a woman.

6. Care must be taken to avoid excessive sun exposure. It is specifically im-
portant to protect children and adolescents. For individuals who have a
tendency to burn in the sun active protective measures must be taken
throughout life.

7. Apply strictly regulations aimed at preventing any exposure to known
cancer-causing substances. Follow all health and safety instructions on
substances which may cause cancer. Follow advice of National Radiation
Protection Offices.

There are public health programmes that could prevent cancers developing
or increase the probability that a cancer may be cured:
8. Women from 25 years of age should participate in cervical screening. This

should be within programmes with quality control procedures in com-
pliancewithEuropean Guidelines for Quality Assurance in Cervical Screen-
ing.

9. Women from 50 years of age should participate in breast screening. This
should be within programmes with quality control procedures in com-
pliance with European Guidelines for Quality Assurance in Mammography
Screening.

10. Men and women from 50 years of age should participate in colorectal
screening. This should be within programmes with built-in quality assur-
ance procedures.

11. Participate in vaccination programmes against hepatitis B virus infection.

should be very large in size. This is achieved either by conducting multicentre
studies including thousands of cases of cancer (see for example the analysis of
pure cigar and pipe smokers in a study based on 5621 cases of lung cancer and
7255 controls (Boffetta et al. 1999)) or by performing pooled and meta-analyses of
independent investigations (see the pooled analyses of risk factors for breast can-
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Table 3.13. Examples of important contributions of molecular epidemiology

Class of biomarkers Agent, exposure Reference

Dose marker Aflatoxin Ross et al. 1992
Viral infection HPV Munoz et al. 1992
Adducts Ethylene oxide Schulte et al. 1992
Acquired p53 mutations Tobacco Hernandez-Boussard

and Hainaut 1998
Chromosomal aberrations Individual susceptibility Hagmar et al. 1998
Metabolic polymorphisms NAT2∗ Marcus et al. 2000

∗ N-acetyltransferase 2

cer including more than 50,000 cases (CGHFBC 1996, 1997, 2002a,b)). Second, the
use of biological markers of exposure and early effect has been proposed to reduce
exposure misclassification, increase the prevalence of the relevant outcomes, and
shed light on the mechanism of action of the carcinogen under study (Boffetta and
Trichopoulos 2002). In a few cases, biomarker-based studies have led to important
advances in cancer epidemiology (Table 3.13). Assessment of exposure to afla-
toxins, enhanced sensitivity and specificity of assessment of past viral infection,
detection of protein and DNA adducts in workers exposed to reactive chemicals
such as ethylene oxide, are among the examples in which molecular epidemiology
has greatly contributed to the understanding of human cancer (cf. Chap. III.6 ).
In many other cases, however, initial, promising results have not been confirmed
by subsequent, usually methodologically sounder, investigations. They include in
particular the search for susceptibility to environmental carcinogens by looking at
polymorphism for metabolic enzymes (Vineis et al. 1999). If biomarkers offer new
opportunities to overcome some of the limitations of epidemiology, their added
value over traditional approaches should be systematically assessed. Biomarkers
should be validated; consideration of sources of bias and confounding in molecular
epidemiology studies should be no less stringent than in other types of epidemio-
logical studies. Similarly, other aspects of the study (e.g., determination of required
sample size, statistical analysis, reporting and interpretation of results) should be
approached with the same rigour used in other areas of cancer epidemiology.
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Introduction4.1

Musculoskeletal disorders are a significant public health problem in industrialised
countries. They are one of the leading causes of short- and long-term disability
and cause high costs due to loss of productivity, burden on health care services
and social security systems. It has been estimated that the cost of back pain only is
1–2% of the gross national product. About 10% is due to direct health care costs
and 90% due to indirect costs (Norlund and Waddell 2000). In this chapter
the focus is in morbidity and aetiology of musculoskeletal disorders. The so-
cial consequences, such as disability are not discussed, because disability-related
issues depend on the societal context, such as cultural factors and social secu-
rity regulations, to the extent that cross-national comparisons cannot be made.
Firstly, an overview is given of the occurrence and risk factors of the most com-
mon musculoskeletal disorders, back and neck disorders, osteoarthritis, upper
limb disorders, and osteoporosis. Secondly, some methodological problems in
epidemiological research, characteristic for musculoskeletal disorders, are dis-
cussed including general study design, and assessment of both health outcome
and exposure.

Occurrence and Risk Factors4.2

Back Disorders4.2.1

Dorsopathies or back disorders are classified in the International Classification
of Diseases 10 (ICD-10) (World Health Organisation, WHO, 1992) into deforming
dorsopathies (kyphosis and lordosis, scoliosis, spinal osteochondrosis and oth-
ers), spondylopathies (ankylosing spondylitis, other inflammatory spondyloses,
spondylosis, others), and other dorsopathies (intervertebral disc disorders, other
dorsopathies not classified elsewhere, and dorsalgia with several subcategories).
This classification is not very useful from the point of view of epidemiological
research. For acute back pain it has been estimated that for 70% of the cases a spe-
cific diagnosis cannot be determined, i.e. most of the cases fall into the category
dorsalgia in the ICD-10. A large proportion of the societal burden due to back
disorders is attributable to non-specific back pain. An underlying mechanism in
back pain is disc degeneration, but the relationship between low back pain and
disc degeneration continues to be controversial.

Occurrence
The prevalence estimates of low back pain (LBP) vary widely from one study to
another depending on the population characteristics and assessment methods. In
a systematic literature review (Walker 2000), the point prevalence in the general
population varied from 12–33%, one-year prevalence from 22–65% (Table 4.1),
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and life-time prevalence from 30–84% in studies with acceptable quality. The
crude prevalence of LBP increases with increasing age reaching its peak around
55–64 years and declining after that towards older age groups (Deyo and Tsui-
Wu 1987; Heliövaara et al. 1993). In a national sample of the U.S. population aged
25 years or more the lifetime prevalence of low back pain on most days for at least
two weeks was 14%, the lifetime prevalence of sciatica was 2%, and also 2% of
the subjects had been told that they had a ruptured disc in the low back (Deyo
and Tsui-Wu 1987). In very few studies clinically verified low back syndromes
have been studied. One example is the Mini-Finland Health Survey, in which
a representative sample of 3322 Finnish men and 3895 women aged 30 years or
more were examined. The point prevalence of clinically verified low back pain
syndrome was 17.5% in men and 16.3% in women (age-adjusted estimates). For
sciatica or herniated disc the estimates were 5.1 and 3.7%, respectively (Heliövaara
et al. 1991, 1993).

Table 4.1. One-year prevalence of low back pain in community-based good-quality studies (data from

Walker 2000)

Author Country Sample size Age (years) Prevalence (%)

Harreby et al. (1996) Denmark 481 38 60|65∗
Rafnsson et al. (1989) Iceland 672 16–65 55

Leboeuf-Yde et al. (1996) Denmark 1370 30–50 54

Biering-Sorensen (1982) Denmark 928 30, 40, 50, 60 45

Hillman et al. (1996) England 3184 25–64 39

Mason (1994) England 6000 16+ 37

Walsh et al. (1992) England 2667 20–59 36

Lau et al. (1995) Hong Kong 652 18+ 22

∗ men|women

Very little data are available on the incidence of low back disorders. Biering-
Sorensen (1982) reported 6% one-year cumulative incidence in a Danish commu-
nity sample aged 20, 30, 40 and 50 years and Hillman et al. (1996) observed 4.7%
annual incidence in an English community sample aged 25–64 years. In an occupa-
tional cohort the three-year cumulative incidence of LBP was 26.6% (Hoogendoorn
et al. 2000a). Most prospective studies among adults have not shown marked in-
fluence of age on the incidence of LPB.

An increasing interest in low back disorders among children and adolescents
has emerged. A large study of Danish twins, representative of the population aged
12–41 years, showed that the prevalence of LBP increases sharply from 12–20 years
of age (Leboeuf-Yde and Kyvik 1998). In different countries the prevalence of back
pain varies from 1 to 8% among the 11-year-olds, from 1 to 14% among the 13-year-
olds, and from 2 to 22% among the 15-year-olds. The prevalence is little higher
among girls than boys (Waddell and Waddell 2000). There is an increasing trend
from lower to upper social classes.
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Time trends in the prevalence of low back pain have been reported in Finland
from 1978 to 1992, based on questionnaires sent annually to a random sample
of 5000 Finns 15–64 years of age (Leino et al. 1994). On average, the one year
prevalence of back disease verified or treated by a doctor was about 15%, and there
was no significant change over time. Likewise, the one-month prevalence of back
pain was about 36% in women and 34% in men, again without any significant time
trend. These results support the view that there have been no major changes in the
occurrence of back pain during the past 20 years.

The prevalence rates of radiographically detectable degenerative changes of
the lumbar spine in a community sample over 34 years of age were described by
Lawrence in 1969. The prevalence of disc degeneration (grades 1–4) was 51% in
men aged 35–44, increasing to 91% at 65 or older. In women the prevalence rates
were 40% and 78%, respectively. The corresponding rates for more severe disc de-
generation (grades 3 and 4) were 5% and 38% in men and 3% and 24% in women.
The most probable explanation for the gender difference is men’s higher expo-
sure to physical load; the prevalence was highest in men in physically strenuous
occupations. A more sensitive method of detection, magnetic resonance imaging
(MRI), has revealed high prevalence of disc degeneration even in symptom-free
subjects, 6% in women 20 years of age or younger and 79% in those 60 years or
older (Powel et al. 1986).

The relationshipbetweendegenerative changes in the lumbar spineand lowback
pain is controversial. Van Tulder et al. (1997) found in their systematic review that
radiographically detected degeneration of the lumbar spine was associated with
non-specific LBP with odds ratios ranging from 1.2 to 3.3. No association was found
between spinal deformities (spondylolysis and -olisthesis, spina bifida, transitional
vertebra, etc.) and low back pain. A recent MRI study of 115 monozygotic male twin
pairs found that disc height and annular tears were associated with low back pain,
but the within pair differences of these findings accounted for only 6–12% of the
total variance of LBP when genetic and other familial influences were controlled
for (Videman et al. 2003).

Risk Factors
Several comprehensive reviews on risk factors of low back disorders have been
published. In Table 4.2 the evidence of risk factors of back pain is given based on
the review by Hoogendoorn et al. (1999). There is strong evidence that manual
materials handling, frequent bending and twisting of the trunk and whole-body
vibration at work are risk factors of back pain. Moderate evidence exists for heavy
physical work in general, but there is no evidence for sitting, walking or standing.
Other reviews have reported similar results with some deviations in the grading of
the evidence level. The National Research Council (NRC) (2001) reported estimates
of attributable fractions (AF among the exposed) for the physical work-related risk
factors. The AF ranged from 11 to 66% for manual materials handling, from 19
to 57% for frequent bending and twisting, and from 18 to 80% for whole-body
vibration. Recently published case-control and cohort studies (Norman et al. 1998;
Hoogendoorn et al. 2000a; Vingård et al. 2000) have provided further support for
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Table 4.3. Psychosocial risk factors of low back and neck pain. Level of evidence according to two

systematised reviews

Back pain Neck pain
Hoogendoorn Ariëns
et al. (2000b) et al. (2001c)

Work-related

Work pace, high quantititavie demands insufficient some
High qualitative demandsa insufficient
Poor job contentb insufficient
Low job controlc or low decision latituded insufficient some
Low social support strong some
Low job satisfaction strong some
High or low skill discretion some
High job strain inconclusive
Low job security inconclusive
Conflicts inconclusive
Lack of break opportunities inconclusive

Private life insufficient
Low social support inconclusive
Conflicts inconclusive

a conflicting demands, interruption, intense concentration for long periods
b monotonous; few possibilities to learn new things, to develop knowledge and skills
c autonomy, influence
d poor content and control

reported AF estimates ranging from 28 to 48% for low social support and from 17
to 69% for low job satisfaction.

Some studies have shown that leisure time physical activities, such as total
physical activity, exercise, sports, or athletics training increase the risk of back
pain, but recent systematised reviews did not find the evidence to be convincing
(Table 4.2). Likewise, the evidence of a possible protective effect of physical activity
is sparse. People who contract a low back disorder may either increase or decrease
physical activity, which makes it difficult to study their relationship. Also for the
psychosocial factors in private life the evidence is insufficient (Tables 4.2 and 4.3).
According to a review by Nachemson and Vingård (2000), there is some evidence
for smoking as a risk factor of low back pain, but not of sciatica. They also found
some evidence that tall men have an increased risk of sciatica, but moderate
obesity was not found to be a risk factor. The epidemiologic evidence of individial
risk factors is, however, contradictory; Burdorf and Sorock (1997) did not find
convincing evidence for any of these factors in occupational studies.

Low back disorders are complex and the aetiology is multifactorial: there is
an interplay between mechanical load, psychosocial factors and also individual
host factors. From the point of view of primary prevention, the evidence base
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Table 4.4. Prevalence of neck pain in the general population (data from Nachemson et al. (2000))

Authors Country Age Lifetime 12-month Point
prevalence prevalence prevalence

Coté et al. (1998) Canada 20–69 67 22

van der Donk et al. (1991) Netherlands 20–65 13

Palmer et al. (2001) Great Britain 16–65 34 20

Mäkelä et al. (1991) Finland 30+ 71 men 15∗
women 13∗

Westerling and Jonsson (1980) Sweden 18–65 men 16
women 20

Hasvold and Johnsen (1993) Norway 20–56 men 15
women 25

Bovim et al. (1994) Norway 18–67 men 29
women 40

∗ chronic neck pain syndrome

evidence that neck flexion (more than 20 degrees more than 70% of work time)
and prolonged sitting (more than 90% of work time) increase the risk of neck
pain. Another prospective study among workers in repetitive monotonous jobs
with one-year follow-up found a relative risk (RR) of 1.8 for high repetitiveness,
2.0 for high force and 2.3 for the combination of high repetitiveness and high
force (Andersen et al. 2002). In a prospective industrial cohort study on neck pain
radiating to the upper limb, female gender, high body mass index, smoking, work
with hand above shoulder level, mental stress and other musculoskeletal pains
were associated with an increased risk (Viikari-Juntura et al. 2001).

The evidence of psychosocial factors as risk factors of neck pain is presented
in Table 4.3 according to Ariëns et al. (2001c). Some evidence exists for high
quantitative job demands, low social support, low job control, high or low skill
discretion and for low job satisfaction. The prospective cohort study by Ariëns
et al. (2001b) provided further evidence for high quantitative job demands (RR
2.1), lowco-worker support (RR2.4), and lowdecisionauthority (RR1.6).Andersen
et al. (2002) found in their prospective study a RR of 1.8 for female gender, and 1.6
for low pressure pain threshold (Andersen et al. 2002).

Less epidemiologic studies have been conducted on neck than back disorders,
but it seems that they share similar multi-factorial aetiology, in which both physical
load and psychosocial factors have a role. Even though the evidence base for neck
disorders is weaker, it suggests that workplace interventions aiming at reduction
of harmful physical load on the neck region and improving psychosocial aspects
of work carry potential for the prevention of neck disorders.

Osteoarthritis4.2.3

Osteoarthritis (OA) is a degenerative process in the joints, in which loss of cartilage
is seen as joint space narrowing on radiography. Bony changes include sclerosis
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in the subchondral bone, osteophyte formation, and bone cysts. Clinical signs of
osteoarthritis includepainandrestricted rangeofmotion in the joint. Inparticular,
osteoarthritis of the two large weight bearing joints, the hip and knee, is common
in elderly people and it causes pain, limits daily activities, and worsens many
people’s quality of life.

Occurrence
The prevalence estimates of hip OA vary considerably (Table 4.5). In 55–64-year-
olds the prevalence varied from 7 to 19% in men and from 3 to 12% in women
in radiographic studies. In the Mini-Finland Health Survey osteoarthritis was
defined based on symptoms and clinical findings (Heliövaara et al. 1993). The age-
specific prevalence rates accorded with those based on radiographic examination
in a Dutch population sample (van Saase et al. 1989). The prevalence increased
with increasing age.

The prevalence of knee OA also increases with age. It is much more common in
women than in men (Table 4.5). In various studies knee OA was detected radio-
graphically in 5–28% of men and in 8–40% of women of age 55 to 64 years. In the
Framingham Study repeated radiographs were taken in 1983–1985 (baseline) and
1992–1993 (Felson et al. 1997). The mean age of the subjects without radiographi-
cally detectable knee OA at baseline was 70.5 years. During the follow-up 11.1% of
the men and 18.1% of the women developed moderate or severe knee OA.

The prevalence of OA of the hand joints increases with increasing age and it
is more common in women than in men (Table 4.6). It occurs most frequently in
the proximal interphalangeal joints. In the Framingham study the prevalence of
symptomatic hand OA (symptoms and radiological findings) was 26.2% in women
and 13.4% in men aged at least 71 years (Zhang et al. 2002).

Risk Factors
Mechanical load seems to be important in the inception and development of OA.
Systemic factors, such as obesity, bone density, nutrients, oestrogen use, and ge-
netics influence the process (Sowers 2001; Felson et al. 2000). Furthermore, local
factors play a role. Extrinsic local factors include physical activity and injury and
the intrinsic factors include alignment (varus, valgus), muscle strength (quadri-
ceps), joint laxity, and proprioception (Sharma 2001).

Lievense et al. (2001) and Vingård (2001c) have reviewed the evidence concern-
ing the influence of work on hip OA. Moderate evidence was detected for a positive
association between previous heavy physical workload and hip OA, moderate to
strong evidence for farming for 10 years or more, or lifting heavy weights (≥ 25 kg).
There is also evidence for a positive association between knee OA and heavy phys-
ical work, and squatting and kneeling at work (Maetzel et al. 1997; Vingård 2001d).
Several studies have indicated that occupational factors such as repetitive work
with hands increase also the risk of hand OA (Hadler et al. 1978; Lehto et al. 1990;
Felson et al. 2000).

Lievense et al. (2002) found in their systematic review moderate evidence for
a positive association between obesity and hip OA, with an odds ratio of ap-
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Table 4.5. Prevalence of hip and knee osteoarthritis in general population (%)

Mini-Finland Health Northern England The Netherlands HANES-Id

Surveya (Leigh)b (Zoetermeer)c

Age Men Women Men Women Men Women
(n = 3322) (n = 3895) (n = 1359) (n = 1598)

Hip Both sexes
(n = 173) (n = 207) (n = 2358)

30–44 0.3 0.7

45–54 1.9 2.8 2.5 2.3

55–64 6.6 7.9 18.6 12.0 7.8 3.1 2.3

65–74 11.9 11.7 8.5 12.5 3.9

75– 16.4 21.2 10.5 19.1

Total 4.6 5.5

(age-adjusted)

Knee Men Women
(n = 550) (n = 566) (n = 2498) (n = 2765)

30|35–44 0.3 1.6 5.5 4.0 1.2 1.2

45–54 4.0 9.7 8.2 13.1 9.3 14.2 2.2 3.6

55–64 9.0 24.2 28.1 40.0 16.8 18.6 5.1 7.5

65–74 12.8 33.0 26.4 49.1 20.9 36.1 9.0 20.3

75– 15.7 38.4 22.1 45.9

Total 5.5 14.5

(age-adjusted)

a Heliövaara et al. (1993), symptom history and clinical examination; b Lawrence et al. (1966);
c van Saase et al. (1989) (right hip and knee); d Anderson and Felson (1988)
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Table 4.6. Prevalence of hand osteoarthritis (Kellgren grade ≥ 2) by age in two populations

Men Women
Joint 30–44 45–54 55–64 65–74 75+ 30–44 45–54 55–64 65–74 75+

Distal interphalangeal
Finlanda 0.4–2.3 3.7–10.9 11.4–26.7 21.3–36.4 24.0–51.0 0.2–1.2 5.7–11.8 24.2–40.0 40.3–62.1 48.2–68.9

Zoetermeerb 4.2 18.7 44.3 54.3 59.3 4.6 30.5 61.5 75.5 73.1

Proximal interphalangeal
Finland 0–0.6 0–1.3 2.3–6.5 5.1–11.1 12.5–22.9 0–0.4 0.8–2.1 5.5–9.5 15.1–27.1 21.8–36.3

Zeotermeer 0.8 4.1 12.1 18.9 27.9 0.9 6.3 24.6 32.7 45.9

Metacarpophalangeal
Finland 0–1.5 0–3.5 0.6–11.7 1.6–21.0 1.0–30.2 0–0.4 0.2–2.2 0–6.1 3.2–15.1 2.6–20.7

Zoetermeer 6.1 12.9 34.2 44.8 43.0 5.2 18.5 36.6 55.4 60.3

Carpometacarpal
Finland 0.4 1.3–1.6 4.3–7.7 7.5–9.9 17.7–18.6 0.2 3.1–3.7 8.7–12.5 20.1–24.5 27.5–31.6

Zoetermeer 1.9 7.7 17.8 20.4 37.2 2.6 13.3 29.0 43.9 54.6

a Haara et al. (2003) Range of joint-specific prevalence rates. General Finnish population
b van Saase et al. (1989) Overall prevalence rate. General population of Zoetermeer, The Netherlands
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proximately 2. The associations were stronger in studies in which the diagno-
sis was based on both radiological criteria and clinical symptoms. For knee os-
teoarthritis obesity is a well-established risk factor (Felson et al. 2000; Riihimäki
and Viikari-Juntura 2000). Obesity is more strongly related with bilateral OA
in the knee than in the hip (Stürmer et al. 2000). Overweight is associated
also with hand OA which indicates that the influence may be due to systemic
effects.

In a large prospective study with 25-year follow-up, high levels of physical
activity increased the risk of hip OA (self-report of OA diagnosed by a doctor)
among men younger that 50 years but not among women or older men (Cheng
et al. 2000). In a cross-sectional study with retrospective history of recreational
physical activity as teenager, at age 30, andat age 50, itwas found that amongelderly
women the risk of moderate to severe radiographic hip OA was modestly increased
in those who had had highest physical activity as a teenager (odds ratio, OR, 1.7),
at age 50 (OR 1.4), and weight bearing activities at age 30 (OR 1.4) (Lane et al.
1999). For symptomatic hip OA the respective ORs were a little higher (2.0–1.6).
The authors concluded that recreational physical activities before menopause may
increase the risk of radiographic and symptomatic hip OA. Physical exercise has
beneficial effect on bone density, but on the other hand, there is evidence that high
bone density is associated with an increased risk of osteoarthritis.

Hip injuries have been linked to hip OA in several cross-sectional and case-
control studies but prospective cohort studies are rare (Riihimäki and Viikari-
Juntura 2000). Gelber et al. (2000) followed 1321 former medical students, initially
22 years of age, for a median duration of 36 years. Hip and knee injury at cohort
entry or during the follow-up increased the risk of OA in the corresponding
joint.

Several studies are available on genetic influences on knee OA. Twin and family
studies have shown a large familial and genetic component of OA heritability rang-
ing from 39–65% (Felson et al. 2000; Loughlin 2001). One twin pair study has sug-
gested that genetic influence may be stronger in females than males (Kaprio et al.
1996). Association studies of candidate genes suggest that genes for type II collagen
(COL2A1) and the vitamin D receptor gene (VDR) may encode for OA susceptibil-
ity (Loughlin 2001). Uitterlinden et al. (2000) reported from a population-based
study that COL2A1 gene and vitamin D receptor gene are involved in radiographic
knee OA, but in separate features. The COL2A1 gene was associated with a two-
fold increased risk of joint space narrowing and the VDR gene was associated
with osteophytes. Carriers of COL2A1 4B allele did not show an increased risk of
radiographic knee OA, the risk was 1.8-fold among carriers of VDR 1 allele and
2.7-fold among carriers of the combination, as compared with non-carriers. The
involvement of these two genes in the aetiology of clinically relevant OA remains,
however, to be established.

Based of the epidemiological evidence, weight control, avoidance of excessive
physical load, and prevention of joint injuries should be the targets in preventive
programs of OA. Moderate-level physical activity and exercise may have a protec-
tive effect.
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Upper Limb Disorders 4.2.4

Upper limb disorders rank high among compensated occupational diseases or in-
juries and they are also one of the leading causes of sick leaves. Over the years,
many “umbrella” concepts have been used for these disorders, such as occupational
overuse syndrome, repetitive strain injury, and cumulative trauma disorder, indi-
cating work-related aetiology. Several specific disorders can be diagnosed: rotator
cuff syndrome, epicondylitis, neural impingement syndromes (cubital tunnel syn-
drome, radial tunnel syndrome, carpal tunnel syndrome, Guyon canal syndrome)
and tenosynovitis or peritendinitis of the wrist-forearm region – including de
Quervain’s disease. Yet a great proportion of the problem manifests only as non-
specific symptoms. In this sectiononly themost commonsyndromesarediscussed.

Occurrence
Little data are available on the occurrence of hand-wrist tendon syndromes (ten-
dinitis, tenosynovitis, peritendinitis) in the general population. In occupational
studies the point prevalence has varied from 0 to 13.5% in the non-exposed refer-
encegroupsand from 0.9 to 56%in theexposedgroups (Bernard 1997). Leclerc et al.
(2001) studied wrist tendinitis in jobs with repetitive work (assembly line work,
work in clothing, shoe and food industry, packaging, and supermarket cashiering).
The prevalence of proved or suspected wrist tendinitis was 11.2%, 19.1% among
men and 7.9% among women. The three-year cumulative incidence was 5.7%. Age
did not influence the prevalence or incidence (Table 4.7). In Finland Kurppa et al.
(1991) obtained the incidence rates ranging from less than 1 to 25|100 workers|year
depending on gender and hand strain at work.

The prevalence of epicondylitis in the Swedish general population was estimated
1–3%, but it reached 10% in 40–45-year old women (Allander 1974). In the study by
Leclerc et al. (2001) the prevalence of lateral epicondylitis was 12.2%, 9.6% among
men and 13.3% among women. The three-year cumulative incidence was 12.2%.
Both the prevalence and incidence increased with increasing age (Table 4.7).

For carpal tunnel syndrome the prevalence estimates in the general population
range from 0.5% in the U.S.A. (Tanaka et al. 2001) to 9% in women and 1% in men
in The Netherlands (de Krom et al. 1992). Among French workers in repetitive work
the prevalence was 21.9% (Leclerc et al. 2001, Table 4.7). Nordstrom et al. (1998)
reported the incidence rate of 3.5|1000 person-years in a US general population
(selected zip code areas in Wisconsin) and Leclerc et al. (2001) found three-year
cumulative incidence of 12.2% in the French workers in hand-strenuous jobs.
The incidence increased with increasing age in the U.S. general population but
not among the French workers. In the former study the incidence rate varied by
occupation from 1.5 cases per 1000 person-years among sales workers to 9.9 cases
per 1000 person-years among handlers and labourers.

Risk Factors
All the upper limb disorders discussed above have been associated with repetitive
movements of the hand, use of hand force, non-neutral wrist postures and hand-
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Table 4.7. Prevalence and three-year incidence of upper limb disorders (proven or possible) by age in

workers exposed to repetitive work (Leclerc et al. 2001)

Age (years) Wrist tendinitis Lateral epicondylitis Carpal tunnel
syndrome

Prevelence (%)
≤ 29 17.9 4.3 13.7

30–39 11.1 8.4 23.1

40–49 6.9 17.2 25.1

≥ 50 13.2 26.4 22.6

Total 11.2 12.2 21.9

NS P = 0.01 NS

Three-year incidence (%)
≤ 29 6.2 4.5 11.9

30–39 7.5 11.2 15.6

40–49 3.2 17.9 10.5

≥ 50 6.5 15.4 4.9

Total 5.7 12.2 12.2

NS P = 0.01 NS

arm vibration. The evidence of repetition and combination of these risk factors
is strong for carpal tunnel syndrome but limited for the other risk factors. For
epicondylitis and wrist-hand tendon disorders the evidence is moderate to lim-
ited for all these risk factors and their combinations (Vingård 2001a,b; Bernard
1997). In the National Research Council’s review (2001) the AF estimates ranged
from 44 (vibration) to 93% (repetition + force). The role of psychosocial factors is
controversial (NRC 2001). Carpal tunnel syndrome has been related to hormonal
factors in older women, obesity and previous history of other musculoskeletal
complaints.

Criteria for the upper limb disorders are not standardised and varying criteria
have been used in different studies, which contributes partly to the obtained differ-
ences in the occurrence estimates. The occurrence rates are rather high particularly
among workers in hand strenuous jobs which indicates that preventive action is
needed. The gradient across occupational groups seems to be most prominent for
carpal tunnel syndrome.

Osteoporosis4.2.5

Osteoporosis has been defined as a systemic skeletal disorder characterised by
low bone mass and microarchitectural deterioration of bone tissue, with a conse-
quent increase in bone fragility and susceptibility to fracture (Anonymous 1993).
Osteoporosis is often identified by the occurrence of characteristic low trauma
fractures (fragility fractures), the most serious of which are fractures of the hip
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and vertebrae. One of the strongest risk factors of fractures is low bone mineral
density (BMD). High-precision methods to identify BMD are dual energy X-ray
absorptiometry (DEXA) and quantitative computed tomography. DEXA is widely
accepted as the reference method (Pafumi et al. 2002), but its use in large-scale
population studies is restricted by the availability of the equipment. For screen-
ing purposes quantitative ultrasonometry (QUS) of the calcaneal bone can be
used.

The World Health Organisation (1994) has recommended four categories to
classify osteoporosis: normal: BMD not more than 1 standard deviation (SD) below
the mean of young adults; osteopenia: BMD between 1 and 2.5 SD below the mean
of young adults; osteoporosis: BMD more than 2.5 SD below the mean of young
adults; severe osteoporosis: BMD more than 2.5 SD below the mean of young adults
and one or more fragility fractures. The criteria are useful in population-based
surveys but less useful in assessing individual risks (Jordan and Cooper 2002).

Occurrence
In Table 4.8 the prevalence of osteoporosis is presented by age for men and women
50 years or older in a sample of the general population, Rochester, Minnesota.
A clear increase with increasing age is seen, but it is less steep for the lumbar spine
than for other sites. This may be due to age-related artifacts that mask bone loss
from the vertebral body (Melton 2003). The total prevalence of osteoporosis in the
lumbar spine, wrist, and all sites combined was higher in women as compared to
men, but the genders had similar prevalences for the hip. In some other studies, in
which the same absolute bone density cut-off level for men and women has been
used, lower prevalence rates have been obtained for men (Melton 2003).

Risk Factors
Bone mass is generally lower in Caucasians and Asians than among other races,
but the underlying factors explaining the difference are largely unknown (Melton
2003). The Study of Osteoporotic Fractures Research Group found higher age,
mother’s fracture history, current smoking, gastric surgery, and lifetime caffeine
intake to be risk factors of low BMD among elderly white women. Higher weight
and height, oestrogen use, muscle strength, thiazide use, dietary calcium intake,
noninsulin-dependent diabetes and recent or past physical activity proved to be
protective of bone loss. These determinants, however, explained only 20–34% of
the variance in bone density at various sites (Orwoll et al. 1996). Twin studies have
confirmed genetic influence on bone mass and some candidate genes involved have
been identified (Walker-Bone et al. 2002). Also early developmental factors such
as tall maternal height and low rate of childhood growth seem to have an influence
(Cooper et al. 2001).

With the expected demographic shift towards older age groups in the industri-
alised countries the number of affected people, women in particular, will increase
substantially. Prevention of osteoporosis is an important public health issue. Opti-
mising maternal nutrition and fetal growth, improving calcium intake and general
nutrition in growing children, and increasing the level of physical exercise through-
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Table 4.8. Prevalence of osteoporosis among an age-stratified sample of residents of Rochester,

Minnesota. World Health Organisation criteria (2.5 SD or more below sex-specific young normal

mean). (Adapted from Melton 2003)

Hip Lumbar Wrist Hip or spine
Age (years) n (%) spine (%) (%) or wrist (%)

Postmenopausal women
50–59 50 4.0 2.0 6.0 8.0

60–69 50 10.0 8.0 28.0 30.0

70–79 51 19.6 17.6 56.9 56.9

> 80 50 40.0 4.0 78.0 82.0

Total 201 13.6a 7.7a 32.9a 34.7a

Men
50–59 49 12.2 2.0 4.1 12.2

60–69 50 16.0 0 4.0 18.0

70–79 51 15.7 2.0 11.8 21.6

> 80 50 26.0 2.0 30.0 40.0

Total 200 15.8a 1.4a 8.8a 19.4a

a Prevalence per 100, age-adjusted to the 1990 U.S. white population ≥ 50 years old

out the population have been suggested to be included in the preventive strategies
(Walker-Bone et al. 2002).

Methodological Problems
in Epidemiological Research4.3

Aspects of Study Design4.3.1

Most epidemiologic studies have used a cross-sectional study design. These studies
serve well administrative purposes providing descriptive information of the mag-
nitude of the problem in different populations, but they are not good for etiological
considerations due to well-known inherent biases (cf. Chap. I.3 of this handbook).
A wide range of potential determinants have been explored in cross-sectional set-
tings, but to advance the knowledge of risk factors of musculoskeletal disorders
more rigorous study designs are required in the future.

Case-control studies of musculoskeletal disorders are rare because of the dif-
ficulties in case definition and catchment (cf. Chap. I.6 of this handbook). The
majority of people with musculoskeletal problems is treated in primary health
care. Generally accepted diagnostic criteria are not available and the use of diag-
nostic labels varies remarkably among practitioners. In some studies cases have
been identified from health care providers (e.g. Vingård et al. 2000) or from regis-
ters (e.g. Heliövaara et al. 1987). In such studies one needs to be aware of potential
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bias in etiological considerations due to differential proneness across exposure
groups to file a claim or seek care or to get treatment. This bias can be minimized
by restricting the cases to only severe cases, which will be treated in a similar way
irrespectiveof e.g. social class ordemandsonphysical performance (e.g.Manninen
et al. 2002).

Another question to consider in case-control studies is the validity and relevance
of exposure assessment (cf. Chap. I.11 of this handbook). Often the only feasible
option for data collection is to use retrospective questionnaires or interviews pro-
viding data susceptible to recall error. This error can be differential between the
cases and referents. Due attention should be paid to the relevant time windows
for exposure assessment in reference to the inception of the disease of interest
and induction period. In very few studies this matter has been considered, but
some examples can be found (Vingård et al. 1991a). In cases where the inception
and induction periods are not known, assumptions can be made and tested. For
studying the triggering factors of musculoskeletal disorders a case-crossover de-
sign may be the approach of choice (cf. Chap. I.7 of this handbook). This approach
is appropriate, for instance, for sudden-onset overexertion injuries. Even though
the degenerative process of the spine, chronic in nature, may be the underlying
cause for back and neck disorders, these disorders characteristically manifest as
painful episodes. Little is known of the possible triggering causes of such spells.

During the past ten years an increasing number of cohort studies on mus-
culoskeletal disorders have been published (cf. Chap. I.5 of this handbook). The
exposures of interest and other determinants have been measured at baseline
and used as predictors of new-onset musculoskeletal pain or incident cases of
musculoskeletal disorders. According to the general principles of etiological co-
hort studies, persons already afflicted by the index disorder should be excluded.
This simple principle turns out to be quite difficult to follow for disorders with
a chronic underlying process, such as disc or cartilage degeneration, which man-
ifest as intermittent pain episodes. The date of inception for such disorders is
not easy to define and operational definitions, preferably based on assumed or
known pathomechanisms, should be employed. For example, for osteoarthritis
a natural proxy is the time of the first occurrence of “arthritic” pain in the afflicted
joint.

In prospective cohort studies health outcome can be assessed using repeated
surveys including symptom questionnaires or interviews, imaging or functional
performance tests, or clinical tests allowing exact diagnostics, if appropriate. When
available, register data are useful particularly in large scale epidemiological studies
(e.g. Heliövaara et al. 1987) (cf. Chap. I.4 of this handbook).

Health Outcome Assessment 4.3.2

Questionnaire Surveys
The occurrence of pain has been the most common outcome measure in epidemi-
ologic studies on musculoskeletal disorders. The occurrence parameter has been
one-, three-, or 12-month, or lifetime period prevalence or cumulative incidence
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in follow-up studies. One of the major drawbacks of symptom data is its non-
specificity; pain due to minor sprains may not be differentiated from more chronic
and severe conditions although this would be important in both etiologic and
prognostic studies. Pain perception is person-dependent and it can be modified
by several factors such as prior experience, culture, coping mechanisms, etc. Pain
experience may also depend on physical activity at work and leisure, because phys-
ical activity provokes musculoskeletal pain. This can lead to spurious associations
in studies on physical risk factors.

No generally agreed symptoms questionnaires are available. One of the most
commonly employed forms is the Nordic questionnaire (Kuorinka et al. 1987).
Lack of consensus in defining such fundamental concepts as new onset cases,
acute, recurrent and chronic cases and an episode hampers the development of
epidemiologic research focussing on pain and other symptoms. A scoring system
for pain intensity proposed by von Korff et al. (1990) is gaining acceptance among
research scientists in the field.

Better characterization of the temporal aspects of musculoskeletal disorders is
needed. Von Korff (1994) proposed definitions for transient, recurrent, chronic,
acute, first-onset and flare-up back pain. Nachemson (2000) proposed time lim-
its to define acute (0 to 3 weeks’ duration of pain or disability), subacute (4 to
12 weeks’ duration of pain or disability) and chronic back or neck pain (more than
12 weeks’ duration of pain or disability) and recurrent problems (patients seek-
ing help after at least 1 month of not seeking care or not being on sick leave
after at least 1 month of working). These definitions serve mainly prognostic epi-
demiology. De Vet et al. (2002) made a proposal to define episodes of low back
pain. Croft and Raspe (1995) have written an overview of the classification of back
pain.

Table 4.9 summarizes the characteristic of pain and indicates the most com-
monly used measuring methods (for references see the original article).

Clinical Tests
Clinical examination, laboratory tests and functional performance tests usually do
not provide very useful information for the case definition of back and neck disor-
ders. For the back a comprehensive review of the repeatability of different function
measurements concluded that recommendations for tests to be used in epidemio-
logical studies can not be made (Essendrop et al. 2002). For upper limb disorders
a criteria document has been published proposing diagnostic criteria based on
symptoms and clinical findings (Sluiter et al. 2001). For osteoarthritis, clinical ex-
amination has been used for classification, e.g., the American College of Rheuma-
tology has presented criteria (www.rheumatology.org|publications|classification).

Imaging
Radiological site-specific definition of osteoarhtritis is recognised as the method
of choice in epidemiologic studies of osteoarthritis (Hart and Spector 1995, 2000).
Exposure to radiation is a matter of concern especially when taking radiographs of
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Table 4.9. Characteristics of back pain and their measurement (adapted from Croft and Raspe 1995)

Characteristic Measurements

Back pain Location Pain drawing
Intensity Visual Analogue Scale

Numerical rating
Verbal rating

Quality McGill Short Form
Temporality Duration of current episode

Number of days of back pain in defined
period (6 or 12 months)

Bodily symptoms Other pains Pain drawing
Other complaints Area checklist

MSPQ∗
Symptom-Checklist 90R

Psychological features Emotions General Health Questionnaire
Zung Depression Index
Hospital Anxiety Depression Scale

Cognitions Pain-related control scale
Fear Avoidance Beliefs

Behaviour Inappropriate symptoms
Psychiatric disorders DSM-III#

Signs Systemic Fever, ESR, weight loss
Local back Tender points
Local other SLR§: active, passive to reproduce leg pain

Femoral stretch
Schober’s test
Lateral flexion
Inappropriate signs

∗ MSPQ = Modified Somatic Perceptions Questionnaire
# DSM III = Diagnostic and Statistical Manual of the American Psychiatric Association (American Psychiatric
Association 1980).
§ SLR = Straight leg raise

the hip, pelvic or lumbar spine area. Kellgren and Lawrence presented already in
1957 (Kellgren and Lawrence 1957; Kellgren 1963) classification criteria, which have
been widely used. In this system osteoarthritis is classified using grades from 0
to 4. The grading is based on a presumption of sequential appearance of osteo-
phytes, loss of joint space, subchondral sclerosis, and cyst formation, but it relies
heavily on the presence of osteophytes. Criticism has been presented against this
classification and there is growing consensus that semi-quantitative grading of os-
teophytes and joint space narrowing, using validated atlases, should be separately
recorded. Based on these data also aggregate measures can be constructed (Hart
and Spector 1995, 2000).

For the imaging of the spine, magnetic resonance imaging (MRI) has provided
a sensitive method to study the degenerative process of the spinal tissues, the
intervertebral disc, in particular. No known adverse health effects are involved,
but high costs and availability of the equipment limit the use of MRI in large-scale
epidemiologic studies. No generally agreed classification criteria exist, but for disc
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degeneration a system based on the morphology of the disc (inhomogeneity of disc
structure, clarity of the distinction between the annulus and nucleus, and collapse
of the disc space) has been proposed (Pfirrmann et al. 2001). Instead of using
aggregate grading systems combining different features of disc degeneration, it
seems advisable to record different features (morphology, signal intensity, bulging)
separately in epidemiologic studies.

Bone Mineral Density Measurements
Bone mineral density (BMD) can be measured with high-precision using dual-
energy X-ray absorptiometry (DEXA). It is based on the attenuation of X-rays
passing through the bone. With this technique it is possible to detect bone mass
reduction that carries increased risk of fracture. DEXA is widely accepted as the
reference method to diagnose osteoporosis and fracture risk (Pafumi et al. 2002).
The use of DEXA in large epidemiological studies is limited by the availability
of the equipment that is usually located in specialized centres. Another method,
quantitative ultrasonometry (QUS) of the calcaneal bone, has several advantages.
The equipment is cheaper, it is transportable and the execution of the measurement
is rapid. However, QUS is more suitable to assess bone density in younger (up to
55 years) than old people (Pafumi et al. 2002).

Registers
Register data of occupational injuries, users of social security benefits such as sick
leave and disability pension, or of users of health care services (hospital discharge
registers, registers from health care providers) can be used for descriptive epi-
demiology to find gradients across different population groups (e.g. Leino-Arjas
et al. 2002; Vingård et al. 1991b). Register-based case assessment of musculoskeletal
disorders in etiological studies carries a potential for bias due to differential prone-
ness across population groups to file a workers compensation claim, seek or get
treatment, to go on sick leave or pension. Another weakness is non-uniform use of
diagnostic labels among medical doctors. In some countries a national register of
arthroplasties is being kept making it easy to identify severe cases of osteoarthritis
(Manninen et al. 2002).

Exposure Assessment4.3.3

Assessment of exposure to mechanical load is a challenging task in epidemio-
logic studies. For many other risk factors, such as anthropometric measures and
life-style factors standardized and validated methods are available. Also for psy-
chosocial factors validated questionnaires are available, as an example the Job
Content Questionnaire to assess psychosocial job characteristics (Karasek et al.
1998).

Exposure to physical or mechanical load as a risk factor is conceptually problem-
atic. Everybody is “exposed” to materials handling, awkward postures, repetitive
movements and most also to vibration, the known risk factors of musculoskeletal
disorders. Sedentary life-style is becoming more common and has raised concern
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of too low “exposure” levels to mechanical load leading to deterioration of peo-
ple’s physical condition. A crucial question is, at what level mechanical load starts
having adverse effects on musculoskeletal system.

Mechanical exposure involves exertion, motion and posture. Each of these can
be characterized by level (amplitude), frequency (repetitiveness) and duration.
Dynamic movement characteristics, velocity and acceleration, may also be impor-
tant. Furthermore, for different musculoskeletal disorders the relative importance
of peak and cumulative exposures varies. This makes mechanical exposure very
complex to assess and for the planning of the assessment strategy one should have
prior knowledge or hypotheses of the pathomechanisms of the disorders. Using
biomechanical modelling, the internal exposure can be estimated and even a com-
mon metrics has been proposed for the assessment of physical workload (Wells
et al. 1997)

In epidemiologic studies mechanical exposure can be assessed using self-
reports, observation methods or direct measurement. Winkel and Mathiassen
(1994) have described the feasibility of different assessment methods. Capacity,
versatility, and generality decrease whereas exactness and cost increase from self-
reports to observations to direct measurements. With modern sophisticated mea-
suring technology it is possible to get accurate measures for current exposure to
various dimensions of physical load at work. Direct measurements may not be fea-
sible for large studies and the accuracy of measurements is of value only if current
exposure is relevant with regard to study objective. Also, if current exposure can be
considered as a proxy of past exposure direct measurements are warranted. How-
ever, often this may not be the case, and other means of past exposure assessment,
such as interview or expert assessment based on occupational history, must be
utilized. Several validation studies of self-assessment of physical exposures have
shown that the accuracy is not always very good but for some exposures such data
are usable in epidemiologic studies. As an example, Mortimer et al. (1999) studied
the validity of self-reported duration of work postures in a population based study.
The validation was done against observations and technical measurements. They
concluded that time spent in sitting, standing or walking with hands above shoul-
der level and standing or walking with hands below knuckle level may be accurate
enough tobeused in epidemiological studies. Likewise,Viikari-Juntura et al. (1996)
studied the validity of self-reported physical work load by questionnaire and log-
book against task analysis and observations among industrial workers. They found
the validity to be acceptable for frequency of manual handling, duration of trunk
flexion, neck rotation, hands above shoulder level, and squatting and kneeling.
The duration of some postures was overestimated in the questionnaires and less
so in the logbooks.

Different techniques to assess posture, including observational methods, video-
taping and computer-aided observational methods, direct measurements, as well
as self-reports, have been reviewed and discussed by Li and Buckle (1999). Preci-
sion, cost and feasibility of different techniques to assess postural load, mechanical
load, psychophysical load, and physiological load in epidemiologic studies has
been compared by Burdorf et al. (1997). Also van deer Beek and Frings-Dreesen
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(1998) have reviewed mechanical exposure assessment methods and strategies in
epidemiologic studies. Direct measurements, such as electromyography, can be
used for more accurate assessment. Methods for data reduction have been devel-
oped, such as exposure variation analysis (EVA, Mathiassen and Winkel 1991) or
its modification, clustered EVA (Anton et al. 2003).

Conclusions4.4

In epidemiology of musculoskeletal disorders steady progress has been made dur-
ing the past decades. Even though longitudinal and case-control studies are still
sparse, their number is increasing. Systematized reviews have collected the avail-
able evidence of the risk factors of musculoskeletal disorders. Major risk factors
have been identified qualitatively but little is known of exposure-effect relation-
ships. More studies with rigorous study designs are needed with valid methods to
assess both exposures and health outcomes.

The lack of knowledge on exposure-effect relationships makes it difficult to
plan preventative programs and agree on standards and guidelines to reduce
the risk of musculoskeletal disorders. The knowledge base is, however, sufficient
to plan interventions aiming at prevention. In workplace interventions a good
starting point is to reduce exposure to highest loads. Reviews of intervention
studies have revealed that high-quality studies are rare and all the reviews conclude
that randomized controlled studies are needed to provide convincing evidence of
the effectiveness of the interventions.

For low back and neck pain it has been shown that both physical load and
psychosocial factors play a role. When subjective perception of non-specific pain
is the health outcome, the question remains, how much physical load acts as
a symptom provoking or aggravating factor and how much it is a causal factor
for back morbidity. Likewise it can be questioned to what extent psychosocial
factors modify the pain perception of the subjects. This question is relevant, be-
cause in experimental studies it has been shown that pain perception of individ-
uals varies very much when exposed to a standardized pain-inducing stimulus.
For the future development of epidemiology of back and neck disorders it is
important that effort is put to identifying more specific and also clinically rel-
evant entities of low back and neck disorders. For upper limb disorders better
diagnostic criteria are available but the specific diagnoses cover only a part of
all upper limb complaints. It is equally important to develop exposure assess-
ment methods that are valid and feasible also for large-scale population-based
studies.

Recent studies have revealed that the prevalence of low back and neck dis-
orders starts to increase already in the adolescence. There also seems to be an
association between the development of disc degeneration and low back pain
among the young (Salminen et al. 1999). These results suggest that follow-up stud-
ies of young cohorts are needed to learn more about the temporal relationships
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between low back and neck pain and the degenerative process of the interver-
tebral disc. Another question of interest is the inception and natural course of
low back and neck disorders from the adolescence through adulthood to older
age.

Genetic epidemiology is emerging also in the field of musculoskeletal disorders.
Twin studies have provided information of the familial and genetic influences on
musculoskeletal disorders of the back and joints, in particular. Some candidate
genes have been identified, but much remains to be done in unraveling the genes
involved and their influences. A future challenge is to learn about the interactions
between genetic susceptibility and environmental factors.
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Introduction 5.1

After a brief introduction into the general field of health services research, a large
section deals with the specific issues arising when epidemiological or statistical
methods are used to study health services. This is followed by sections describing
the main fields of investigation which are usually thought of as pertaining to the
wider realm of health services research. These are studies of demand, need, utilisa-
tion and access to health services which have the interface between the patient and
health services in common. The next section describes the importance of financial
resources, structure, and organisation for the delivery of effective and efficient
health care. This is followed by a description of the processes and outcomes of
health care, including concepts such as effectiveness and appropriateness of care
and their use, e.g. in physician profiling or in hospital rankings. In the section on
outcomes, special emphasis is put on health status measurement and the evalua-
tion of health systems in international comparisons. Important health economic
concepts, such as cost-effectiveness and efficiency, are covered in various sections.
The chapter concludes with describing common pitfalls and caveats in interpreting
health services research.

Health Services Research Defined 5.1.1

Health services research (HSR)attempts toanswerquestionsabout thebestmedical
treatment or preventive course of action, the quality of care provided by a hospital
or a physician, the efficient delivery of services to all populations, and their costs.
The Institute of Medicine (1994) defines HSR as “A multi-disciplinary field of
inquiry, both basic and applied, that examines access to, and the use, costs, quality,
delivery, organisation, financing, and outcomes of health care services to produce
new knowledge about the structure, processes, and effects of health services for
individuals and populations”. The three basic dimensions of care studied are:
(1) the process of deciding what care to provide, (2) the process of providing care
in the best possible manner, and (3) the outcomes that result from care. Many
HSR projects study aspects of care that span all three dimensions under the rubric
“quality of care” (Brook and Lohr 1985). As Scott and Campbell (2002) pointed out,
this frequentlyusedbut rarelydefinedphraseencompassesnotionsofeffectiveness,
efficiency, safety, access, and consumer satisfaction and is thus not a very precise
title for scientific investigation. HSR challenges the dominant biomedical model
in which disease occurs, leading to illness, which is then treated (Black 1997). In
contrast to the clinical view focussing on individual patients, it adopts a population
perspective and considers other determinants of the use of health care (Black 1997),
such as socioeconomic status, local availability or acceptability of health services.
HSR thus often challenges medical claims about the value of specific interventions.

HSR cannot be defined as a methodological discipline. It draws upon and
uses multiple methodologies and is multidisciplinary in nature. The majority
of quantitative research in the field is done using epidemiological methods and
epidemiologists increasingly work in this field of research.



1476 Thomas Schäfer, Christian A. Gericke, Reinhard Busse

This multidisciplinary approach is seen by many authors as characteristic of
this field of investigation, which is reflected in Last’s definition of HSR as “The
integration of epidemiologic, sociologic, economic, and other analytic sciences in
the study of health services. HSR is usually concerned with relationships between
need, demand, supply, use, and outcome of health services. The aim is evaluation,
particularly in terms of structure, process, output, and outcome” (Last 2001).

The ultimate goal of HSR however is to provide unbiased, scientific evidence
to influence health services policy at all levels so as to improve the health of the
public (Black 1997).

The Input–Output Model of Health Care5.1.2

Different models have been proposed for the study of health services. These in-
clude operational models, e.g. the patient-flow model or the social sciences model.
The patient-flow model starts with the assumption of a healthy population, where
a patient’s way through the different health care institutions is followed once
a disease manifests itself (Bennett 1978). The social sciences model attempts to
consider the main social and political influences, causal relationships, and envi-
ronmental conditions on the process of service delivery in a health care system.
Social experiences, values, priorities, importance of societal resources and struc-
tures are the focus of the analysis (Weinermann 1971). A causal or epidemiological
model is also possible, which analyses care along known or supposed hypothet-
ical causal biosocial links (de Miguel 1971). The drawback of such a model is its
complexity.

For many analyses simpler models are more adequate. We prefer a model
adapted from engineering sciences in which some components of the other models
have been integrated – the input–output model – which takes structure, processes,
outputs and outcomes into account (Schwartz and Busse 2003).

Figure 5.1. The input–output model (Busse and Wismar 2002)
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In this model, statistical data can be structured in an easy and transparent
manner. Political debates on health services also often follow this structure.

The input of the health care system is divided into (Schwartz and Busse 2003):
Patient-side input, i.e. the health status of the population as well as its access to
care.
Resource-orientated input, i.e. the input in terms of financial and non-financial
resources, such as human resources and infrastructure, as well as organisa-
tional structures, responsibilities and interdependencies between actors and
organisations.

Throughput forms the centre of the model – encompassing all processes of care in
a health care system.

The output of the health care system is divided into two sequential elements
(Schwartz and Busse 2003):

Direct results of the processes, i.e. output measures in the classical sense, also
termed intermediary outcomes, e.g. the number of cardiac catheterisations
performed.
Outcomes in terms of changes in health status, which are often only measurable
in the long-term, e.g. the mortality avoided by a specific intervention.

Common to all models deployed is the problem of causal inference. Although some
problems are also encountered by epidemiological research, like the establishment
of precedence in time in case-control studies or in historical cohorts (Hill 1965),
these problems are much more important in health services research and thus
make the latter more prone to biased or confounded results. The main problem is
the complexity of the system with multiple interdependencies which result in the
dilemma of “before the intervention is after the intervention”. A good example is
theevaluationofhealth care reforms,whichoftencome inapiece-meal fashion, and
which are only half-way executed before the next reform measures start. Assigning
observed changes in an evaluation study to one particular reform package then
becomes difficult and, as with all uncontrolled before-and-after studies, the results
of such studies have to be interpreted with great caution (Grimshaw et al. 2001).
However, in particular for the evaluation of health reforms such before-and-after
studies are often the only possible research method, as conducting controlled
studies is often not feasible.

Level of Analysis 5.1.3

A complementary approach to the one described is the analysis of the level at which
processes of care take place (Schwartz and Busse 2003):

The macro level – consisting of the health system as a whole and national health
policy.
The meso level – research focussing on inter-organisational structures and
processes, e.g. between health care payers and providers, or the relationships
between providers in a specific region.
The micro level – analysis of individual care services and technologies.
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Aday et al. (1998) attempted to match research methods to the level of analysis,
illustrated in Table 5.1. In their model, the macro level refers to a population per-
spective on the determinants of the health of communities as a whole (“health of
population” in the model), and the micro level represents a clinical perspective
on the factors that contribute to the health of individuals at the system, institu-
tion, or patient level (Aday et al. 1998). Their intermediary system level encom-
passes both the macro and meso level in our model. It refers to the resources
(money, people, physical infrastructure, and technology) and the organisational
configurations used to transform these resources into health care services ei-
ther for the country as a whole (macro level) or within a specific region (meso
level).

Table 5.1. Levels of analysis in health services research. Adapted from Aday et al. (1998)

Level of analysis
Data sources Population System Institution Patient

Census ×
Public Health ×
Surveillance Systems
Vital statistics ×
Surveys

Population ×
Organisations × ×
Providers × ×
Patients × × ×

Insurance records|
administrative data

Enrolment × × × ×
Encounters × × ×
Claims × × ×
Medical records × × ×

Qualitative studies
Participant observation × × × ×
Case studies × × ×
Focus groups × × ×
Ethnographic interviews × ×

Methodological Considerations5.2

Generally all types of data can be analysed for the purposes of HSR. We find
experimental data from randomised controlled trials as well as observational data
from case-control or cohort studies, registers or surveys. But many analyses in
HSR make use of data from large administrative databases that are abstracted
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from medical or hospital discharge records, prescriptions and bills of payments
for delivered health services.

Study Designs 5.2.1

Randomised Controlled Trials
When alternative approaches to the delivery of health care have to be evalu-
ated, a randomised controlled trial (RCT) is considered the gold standard, i.e.
the most rigorous method available. RCTs are performed in order to avoid bias
and confounding. It is the effect of randomisation that provides equality of study
and control group in all relevant characteristics except the intervention being
tested.

Regardless of this advantage one has to keep in mind some critical issues when
considering the RCT methodology. First the recruitment of participants (or other
experimental units like communities or schools etc.), who meet all eligibility
criteria, may be difficult and expensive. Furthermore a randomised assignment of
treatments to patients may not be feasible because of ethical reasons (for instance if
you want to compare a treatment that is widely believed to be efficacious with “no
treatment”orwithaplacebo).Thestudypopulation is frequentlynot representative
of the target population. Thus, it is true that a RCT has a high level of “internal”
validity, as study group and control group are really comparable, but this tends
to be connected with a low level of “external” validity which is an important
consideration in HSR as it aims to examine effects under actual conditions and
not under trial conditions. The results of a RCT refer solely to efficacy (a treatment
is called efficacious if the desired effect is obtained under optimal conditions) but
not necessarily to effectiveness (a treatment is called effective if the desired effect
is obtained under everyday conditions).

Accordingly, the role of RCTs in HSR is more limited than in other areas of health
research, and RCTs have only been carried out in certain areas of HSR. For example
the efficacy of cholesterol-lowering treatment in the prevention of coronary heart
disease in men with high cholesterol was demonstrated by a multi-centre, ran-
domised, double-blind clinical trial, the Lipid Research Clinics Coronary Primary
Prevention Trial (Lipid Research Clinics Program 1984). As Kelsey et al. (1998)
report, the most expensive research study ever sponsored by the US-National In-
stitutes of Health – the Women’s Health Initiative (Buring and Hennekens 1992) –
consists of a series of RCTs to test the hypotheses, whether a low-fat dietary pattern
protects against breast cancer and colon cancer, whether hormone replacement
therapy reduces risk for coronary heart disease, and whether calcium and Vi-
tamin D supplementation protects against hip fractures. Even in the context of
evaluating organisational change RCTs had been carried out. The so called Health
Insurance Experiment (Newhouse 1974) was designed as an RCT to evaluate the
effect of different levels of cost sharing in health insurance on utilisation, expen-
ditures and health status (for more details see Sect. 5.3.2). But regardless of such
examples the majority of RCTs are designed to evaluate a new (drug) therapy and
are performed in clinical settings (randomised clinical trials).
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Observational Studies
An overwhelming part of HSR is based on observational studies. In a pure epi-
demiological setting case-control and cohort studies are used to estimate and
evaluate the association between a specific exposure and a specific disease. In ad-
dition exposure and outcome are frequently mapped into binary variables. In HSR
exposures and outcomes have a higher degree of variety than in chronic disease
epidemiology.

Typical exposures are:
Conditions that may lead to inequalities in access to care, e.g. low income status,
rural area of residence
Health states that define certain needs for care, e.g. mental illness
Medical interventions, e.g. stent implants vs. bypass surgery to prevent heart
attacks
Different health care delivery systems, e.g. Health Maintenance Organisations
(HMO) vs. capitated Preferred Provider Organisations (PPO) vs. a traditional
indemnity plan with fee for service (FFS) payments,
Programmes that aim to improve the quality of care, e.g. disease management
programmes
Programmes to contain the costs of care, e.g. drug formularies.

Typical study outcomes are:
Access to care, e.g. preventive services (e.g. vaccination), therapeutics
Health status, e.g. incidence of pre-specified (tracer) diagnoses
Life years gained, i.e. reduction of mortality
Patient reported outcomes, e.g. health related quality of life
Quality of care scores, e.g. measures of the Health Plan Employer Data and
Information Set (HEDIS)
Appropriateness of care measures, e.g. an appropriateness evaluation protocol
(AEP)
Cost of care, e.g. increases (additional costs or losses) or decreases (savings).

The general limitations of observational studies are dealt with among others in
Chaps. I.5, I.6, I.7, I.9, and I.12 of this handbook. The absence of randomisation
gives reason for special concerns, i.e. a special type of selection bias, when the
goal of the study is to evaluate interventions. Persons who choose a particular
intervention – or are advised by a physician to undergo it – are often on a different
level of risk for the outcome of interest compared with persons who are not
assigned to or did not choose to use this intervention (Selby 1994). Particularly
in the case of an open intervention programme persons who pay attention to
their health may be more likely to participate and comply with a recommendation
(e.g. to undergo a screening examination) than persons who do not (Kelsey et al.
1998).
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Case-Control Studies. The methodology of case-control studies is treated in great
detail in Chap. I.6 of this handbook. Because of its obvious merits (a case-control
study can be carried out at relatively low cost and comparably quickly) it is used
with increasing frequency in HSR, especially in order to asses the adverse effects of
drugs and other therapies and to evaluate the efficacy of preventive interventions
(Kelsey et al. 1998).
Examples for the application of the case-control approach in HSR are numerous.
This includes evaluations of vaccine efficacy and vaccination effectiveness, assess-
ments of medical therapies, of screening programmes for cervical, breast and colon
cancers and of a number of programmatic activities in the community (Armenian
1998).

CohortStudies. Primary data collection for classical epidemiological cohort stud-
ies (cf. Chap. I.5 of this handbook) is relatively rare in HSR compared to chronic
disease epidemiology. One reason might be that health systems change fast in small
scales, i.e. in trends in coding diagnoses, and in large scales as e.g. completely new
reimbursement structures like Diagnosis Related Groups (DRGs), so that informa-
tion from long lasting follow-up studies may often be outdated and not worth the
expense.

The majority of cohort studies in HSR is based on administrative data collected
for purposes other than research and is focused on the outcomes of a medical
treatment or a preventive intervention. The outcomes vary and may include mor-
tality, morbidity, functional status, quality of life, costs, and satisfaction with care.
The studies frequently use historical cohorts. For example the investigation of
short-term (30-day) and long-term (5-year) mortality in a cohort of members of
a large HMO with hip fractures was a historical study that used computer-stored
hospital discharge data linked with computer-stored data from death certificates
(Petitti and Sidney 1989). A different type of cohort analysis in HSR focuses on the
description of changes in symptoms, functional status, or quality of life in patients
who undergo a treatment or are the subject of a preventive intervention (Petitti
1998a).

Cross-sectional Studies. If the goal of data analysis is related to health planning
or the assessment of needs for services, prevalence rates are often more useful than
incidence rates. Cross-sectional studies therefore represent an important tool for
health planning and evaluation. In outcome research the common methodological
approach of variance in practice (e.g. to assess the quality of medical care or the
outcome of the health system of a county) is tightly connected to a cross-sectional
design, mostly based on administrative data, with organisations (e.g. hospitals),
providers (e.g. surgeons), counties, states or even countries as the units of analysis.

Cross-sectional studies are also used to establish research priorities based on
consideration of the burden of disease (Kelsey et al. 1998). In a study on the
prevalence of chronic gynaecologic conditions among US women of reproductive
age, for example, it was found that the most common conditions were menstrual
disorders, adnexal conditions, and uterine fibroids. The results stressed the need
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for more effective treatments for these disorders, and moreover, suggested that
more research on their aetiology would be highly desirable (Kjerulff et al. 1996).

Cross-sectional studies are of course less useful to examine hypotheses on causal
effects. Mainly because of the lack of knowledge on the temporal sequence of
hypothetical causes and potential effects, but also because cross-sectional studies
include both, new and old cases. This results in a case group which has more than
its fair share of individuals with disease of long duration, because those who die
or recover quickly will be underrepresented (Kelsey et al. 1998).

Complex Models for Data Analysis5.2.2

In several health systems, available claims data are characterised by a longitudinal
structure with long strings of repeated measures of health services for individual
patients. Such data structures demand appropriate analytical designs. To make full
useof them,complex longitudinaldataanalysis techniquesmustbeapplied that can
handle time-varying exposures, repeated outcomes and intra-person correlations.

The lack of detailed information on the severity of disease in claims data some-
times is a reason to use case-based study designs as for instance case-crossover
studies to allow cases to be their own controls (cf. Chap. I.8 of this handbook).

Another complicating factor is that observations in health care delivery systems
are often not independent. For many observational studies, the level of observation
is a patient (characterised by a vector of patient attributes). A cluster of patients will
be seen by the same physician (characterised by a vector of physician attributes)
and will therefore experience similar treatment patterns so that their outcomes
cannot be expected to be completely independent. Physicians often practice in
groups sharing similar practice styles. These groups may practice in a larger
health care delivery system that imposes constraints to treatment choices, e.g. drug
formularies or payment by capitation (a lump sum per patient or per enrollee),
which will make practice styles of groups within a health plan more similar than
groups outside the plan. This clustering of observations on multiple levels has led
to the adoption of multi-level regression models as standard tools of HSR.

Data Sources5.2.3

Primary data collection in a randomised controlled trial, a case-control or a cohort
study, is certainly an important, although unusual data source of HSR. Primary
data, when used in HSR, are more frequently collected from the general population
(or subgroups) by questionnaire. The majority of data that are analysed in HSR
stem from large administrative databases, as pointed out before.

Surveys
Survey research is frequent in HSR. For a detailed description of survey methods
seeChap. I.10of thishandbook.On theonehand it canbeused toprovide snapshots
of the current state of a health care system. On the other hand survey subjects often
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become re-interviewed in regular intervals to form a longitudinal data structure
or a panel. Further possibilities to classify surveys are given by the

unit of observation (patients, patient-provider contacts or providers),
target population (total population or subgroups),
type of data collected (interview data, data of medical examination or both)
and
access to information (personal interview, mail survey or telephone interview).

A well-known German survey – the EVaS-Study (Study among office-based ambu-
latory care physicians in the Federal Republic of Germany, Schwartz and Schach
1989) – was a cross-sectional survey with patient-physician (or patient-office) con-
tacts as units of observation. The concept followed the US-National Ambulatory
Medical Care Survey (NAMCS, Tenney et al. 1974) to some extent. The target pop-
ulation was defined by a number of selected regions in Germany, a fixed study
period and the exclusion of a few medical specialties concerning the involved
physicians. The data were collected by mail using an induction interview ques-
tionnaire, a reporting form and a final questionnaire. The final data record covers
data of the patient as well as data provided by the physician’s office (including
e.g. the diagnosis corresponding to the patient’s major reason for encounter, the
assessment of the severity of the problem, the services delivered and the duration
of the encounter).

The recent German National Health Interview and Examination Survey how-
ever (carried out from October 1997 to March 1999) targeted the general popula-
tion aged between 18 and 79 years (Bellach et al. 1998).1 The units of observation
had been residents who were interviewed and medically examined. The data are
available for research as a public use file. One of the results of this survey for
example concerned the utilisation of medical services available in Germany in
statutory sickness fund facilities. About 90% of all Germans had seen their doctor
at least once a year. Half of the population had consulted a doctor during the past
four weeks and, on average, a medical practitioner was consulted 11 times a year
(Bergmann and Kamtsiuris 1999).

Another frequently cited German survey is based on a representative, region-
ally stratified sample of 0.4% of all prescription forms, which are completed by
office-based physicians for members of statutory sickness funds. This survey is
supported in cooperation by the federal associations of the office-based physi-
cians, the statutory sickness funds and the free-standing pharmacies. It is carried
out each year. The annually published results include an analysis of the sales in-
crease with respect to its components referring to prices, volumes and structural
composition (Schwabe and Paffrath 2002).

1 This survey had three predecessors in the years 1984–1986, 1987–1989 and 1990–1991 and
will be supplemented by The German National Health Interview and Examination Survey
for Children and Adolescents that started in May 2003 and is scheduled to run for three
years. The target population are children and adolescents aged between 0 and 18 and living
in Germany (Kurth et al. 2002).
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The US-Medicare Current Beneficiary Survey (MCBS) is an example of a survey
that is designed as a panel. MCBS began in 1991 as a continuous panel in order
to provide a more complete picture of the use of health services, expenditures,
and sources of payment for the Medicare population. It is an ongoing computer-
assisted personal survey of Medicare beneficiaries residing in the United States
and Puerto Rico. Each person is interviewed three times per year over four years
(regardless of whether he or she resides in the community or a long-term care
facility), following a four-year rotating panel design. The MCBS thus contains four
overlapping panels of Medicare beneficiaries. Each year one panel is dropped from
the survey and a new one is added. This design produces three calendar years
of medical utilisation data for each sample person. The data are collected over
a four-year period in which sample persons are interviewed twelve times. The first
interview collects baseline information on the beneficiary. The next 11 interviews
are used to collect three complete years of utilisation data. Included are medical
expenditure data as well as detailed data on health conditions, health status, use
of medical care services, charges and payments, access to care, satisfaction with
care, health insurance coverage, income, and employment (Adler 1994). The data
are used to produce calendar year public use files on access to care, cost and use.
The nation wide MCBS data are released – as usual for public use files – only under
a data use agreement. In addition, requests for regional or supplementary data
must include a study protocol with specific justification for the additional data
required, along with an identifiable data use agreement (see http:||cms.gov|mcbs).

Another excellent population-based US-panel, created by the (former) Agency
for Health Care Policy and Research and the National Center for Health Statistics,
is the Medical Expenditures Panel Survey (MEPS) which collects data from several
sources to provide a complete picture of the health status and health care utilisation
of a random sample of citizens (Cohen 1997).

In addition to other sampling methods, computer-assisted telephone interviews
have become more frequently used in HSR. This method has comparatively low
costs and guarantees an approximate full coverage of the general resident pop-
ulation in developed countries which have high rates of telephone access. Even
unlisted households can be covered by means of random digit dialling. The in-
creasing use of cellular phones will probably jeopardise this approach in the future.
Data are checked for correctness, completeness and plausibility and stored contin-
uously in the course of the interview. Separate steps for data input and examination
are not necessary. Germany started the first National Telephone Health Survey in
September 2002. About 8000 German speaking residents aged 18 years and older
had been questioned on diseases, health-related behaviour and utilisation of the
health care system (Ziese et al. 2003). This survey was supplemented by a regional
one in Bavaria (Meyer et al. 2002).

Official Statistics
Official mortality and other health or demographic statistics, especially vital statis-
tics (births, marriages, deaths, etc.) have been extensively used in HSR. An early
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well-known and frequently cited example in the context of equity research is the
study on differential mortality in the United States (Kitagawa and Hauser 1973).
The comparison of mortality rates and the proportions of money from the national
accounts that are spent on health is a popular starting point for health economists
in analysing the efficiency of a particular health system. But official statistics –
mostly based on law – resemble routine registries and share their limitations (cf.
Chap. I.4 of this handbook and Sörensen 2001). The validity of mortality statis-
tics in particular is strongly dependent on the rate of autopsies in a country. In
a German survey of institutes of pathology within universities and in community
hospitals in the year 2000 a median value of 23.3% and 13.3% of autopsies among
hospital deaths was found, respectively. This was considered clearly below the
recommended value of 30% (Schwarze and Pawlitschko 2003).

Administrative Databases
Administrative data are abstracted from medical or hospital discharge records,
prescriptions and bills of payments. Thus they have several advantages. They are
routinely collected data representing the reality of health care delivery. They need
no additional time and money to gain access to large patient populations over long
periods of time with repeated recordings of most health care encounters of each
subject. But the advantage of quick and easy access to large and representative
populations is counterbalanced by data that may be incomplete and suffer from
voluntary and involuntary miscoding. Although the quality of these data appears
to improve over time it has to be kept in mind that the primary reason for creating
themwas todocumentmedicaldiagnoses and interventionsobtained frommedical
records and manage the flow of payments for delivered health services obtained
from claims data.

Since the advantages, particularly of electronic claims data, are so obvious,
researchers try to better understand the consequences of the data limitations and
develop analytical methods to adjust for them. See for example the approach of
Newhouse and McClellan (1998) used to overcome the typical selection problem
they were confronted with in analysing the data of catheterisation of patients with
acute myocardial infarction. As data limitations are unique to each administrative
database, a very good understanding of how data were generated is crucial for
interpreting analytical findings.

Examples of administrative databases in the USA include the national Medi-
care and Medicaid databases as well as claims files for privately insured patients
or members of a particular health facility. Data from the Medicare programme,
run by the Centers for Medicare & Medicaid Services (CMS), are confidentiality-
protected, longitudinally linked, person-level records that track virtually all elderly
US citizens from their 65th birthday onwards until death, through geographical
moves and changes in providers.2 The data sets include the types and amounts of
health services used (e.g. hospitalisations, office visits, home health care, surgeries,

2 About 10% of Medicare enrollees are younger, disabled persons, who are tracked from
their time of certification.
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and diagnostic tests), the medical problems being treated (diagnoses), provider
characteristics (site of service and physician training), and charges. Information
on long-term care services and outpatient prescription drugs, not covered by CMS,
is not included (Diehr et al. 1999).

In Germany, administrative databases which do not find their ways into an
official statistic or a survey are scattered across the statutory sickness funds or
other agencies of social security. Due to comparably strict data protection rules
they are generally case-based and allow no longitudinal analysis of health status
or services delivered for one patient. Moreover record linkage is not a common
practice in Germany because of data protection issues.

The abundance of information in claims databases in various states is often over-
whelming. Many redundant measures are recorded and researchers must identify
the underlying variables that represent the concepts they want to evaluate. Since
researchers on the other side hate to discard already recorded information, data
reduction techniques including co-morbidity scores or propensity scores are in-
creasingly applied to condense data while preserving information. For a detailed
discussion of pharmacoepidemiological databases we refer to Chap. III.9 of this
handbook.

Measurement Error (Misclassification)5.2.4

In HSR measurement errors (nondifferential and differential as well; cf. Chap. II.5
of this handbook) for all variables of interest are considered to be higher than in
a traditional epidemiological setting for several reasons:

Some data that are collected and stored but are not directly used for reimburse-
ment or other administrative purposes (e.g. job or social status of an enrolled
person) are likely to be not up to date.
Diagnostic information on claims is documented to justify reimbursement;
a bill for tests to rule out cancer e.g. may contain a diagnostic code for “cancer”
even if the tests were negative.
The information on clinical conditions in administrative data is in the form of
diagnoses coded using the International Classification of Diseases (ICD) which
is revised from time to time. Currently ICD-10 (the tenth revision) is in use.
Several countries (e.g. the USA) prefer ICD-10-CM, a clinical modification of
the ICD. Some diseases such as arthritic or psychiatric disorders are difficult
to classify because of lack of clearly defined diagnostic criteria. Less serious or
vague conditions have a high probability of inconsistent coding. Regional and
temporal variations of coding patterns may additionally reduce the reliability
of coded diagnostic information.
Especially the reliability of ambulatory diagnoses is a major concern. An anal-
ysis by the Medicare Payment Advisory Commission – MedPAC (1998) demon-
strated the inaccuracy of outpatient diagnosis coding. For the purposes of the
study, MedPAC selected beneficiaries whose Medicare Part B claims in 1994
showed a diagnosis of one of 11 serious diseases, then checked for claims for
the same diagnosis in 1995. As shown in Table 5.2, the likelihood of a claim in
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1995 was only about 50–60% for each of the 11 diagnoses (cf. Newhouse et al.
1999). Part B Medicare covers the costs for medical service by general practi-
tioners, for a small selection of pharmaceuticals, for ambulatory treatments in
hospitals and other therapeutic and care services that are not covered by Part
A Medicare.
Moreover, administrative data used to reimburse hospitals or physicians are
subject to some problems that are not familiar to epidemiologists, called “up-
coding”, “coding proliferation” and “gaming”. Upcoding of diagnoses to more
serious conditions is the process of assigning a diagnosis code or codes to
a patient that may maximise the provider’s reimbursement (e.g. ischaemia to
myocardial infarction) as it has occurred with some DRG payment systems
(Dunn et al. 1996). Coding proliferation means the increase in the coding of
all related conditions affecting treatment. Both types of distortion are relevant
sources of measurement errors in HSR. Gaming is a serious problem that is
dealt with in Sect. 5.5.2 because it cannot be subsumed under the term “mis-
classification” seamlessly.

In summary, the quality of claims data may be adequate for some purposes, but
it is important to remember that claims are generated to justify reimbursement
rather than to facilitate research.

Table 5.2. Persistence in Diagnostic Coding of Those Identified in 1994

Diagnosis on 1994 Part B Claim Percent with Part B Claim in 1995

Hypertension 59

Coronary Artery Disease 53

COPD 62

Congestive Heart Failure 61

Stroke 51

Dementia 59

Rheumatoid Arthritis 55

High Cost Diabetes 58

Renal Failure 56

Quadriplegia|Paraplegia 52

Dialysis 59

Source: Medicare Payment Advisory Commission 1998, p 17. Note:
Excludes those who died in 1994 or 1995.

Sampling Issues 5.2.5

A considerable part of data analysed in HSR is based on samples from the pop-
ulation of interest (this is called the “target population” or the “population being
sampled”). Sampling can help to save time and money. Sampling may also result
in an increase of accuracy of measurement, since more effort can be spent on this
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issue if only a manageable number of units of observation is included. Scientifically
sound sampling methods are indispensable tools for designing an efficient sample,
and to provide consistent and unbiased projections from complex samples. Scien-
tific sampling means probability sampling, i.e. the probabilities of selection must
be under control. Non-random samples based on volunteers or on the judgement
of the sampler are not covered by this concept and are not recommended for use
in HSR.

The sampling procedure is called simple random sampling if each of the possible
samples of a given size has an equal chance to be selected. It follows that every
one of the sampling units in the population has the same chance of being included
in the sample. This is occasionally offered as the definition of simple random
sampling (e.g. Kelsey et al. 1998) without realising that there are other sampling
procedures (e.g. systematic sampling, see below), which also have this property
(Sukhatme and Sukhatme 1970). Simple random sampling is simple in theory
but less so in practice because one needs a complete list of the population to
draw the sample.3 In many instances it may not be the most efficient method of
sampling. Therefore – apart from telephone sampling – it is not much used in
practice.

Systematic sampling is a common type of sampling based on selecting every
k-th individual from a list or a file after choosing a random number from 1 to k
as starting point. It is based on a fixed rule and is not limited to selection from an
actual file. Thus, selection of all those born on the (randomly chosen) third day
of any month or of everyone whose social security number ends in (the randomly
chosen digits) 17, 48 or 76 is similar to systematic sampling procedures yielding
approximately 3% samples.4 Because of these properties systematic sampling is
often simpler to administer under field conditions than simple random sampling.
But systematic sampling has a severe handicap: differently from other sample
designs it is impossible to estimate the variance from one single sample. For an
unbiased estimate you need repeated sampling. Several (biased) approximations
are used in practice to estimate the variance. One of these consists in treating
the systematic sample as if it were a random sample of n units (Sukhatme and
Sukhatme 1970).

When the population can be divided into strata in such a way that each stratum
is more homogenous than the population as a whole, one can reduce the sampling
error compared to a simple random error. Examples of variables that are often used
for stratificationare region, age, gender, race, andsocio-economic status.Following
a stratified sampling design, a separate sample is drawn from each stratum and the
results are then appropriately combined in the analysis. If much of the measured
total variance is between the strata, but we sample within them, the combined
resultsarecompletely freeof thevariabilitybetweenstrata.Anadditionaladvantage

3 Random digit dialling in order to sample for computer assisted telephone interviews is
considered as a way to handle this problem if no such complete list exists.
4 Of course, the choice of the sampling scheme has to be relevant to the population being
sampled. A population that is not completely covered by social security would be unsuitable
for sampling by means of social security number.
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of stratified sampling is that one can be sure that members of each stratum are
represented in the overall sample. Finally, the strata can be constructed so that
those who are least expensive to include or who provide the highest amount of
variability, can be sampled with the highest weight, simultaneously reducing cost
and increasing precision.

Cluster sampling has contrasting properties compared to stratified sampling.
It is a simple random sample applied to groups of population members (clus-
ters) that usually leads to a substantial loss of precision. But because of oper-
ational improvements of access to the units to be selected one often achieves
a heavy decrease of collecting-costs and thereby an increase in precision per unit
of cost. Examples of clusters that could be sampled are hospital wards, villages,
schools, families etc. If clusters are positively correlated within themselves, i.e.
they have a high positive intraclass-correlation coefficient (ICC), indicating more
homogeneity than would result from chance alone, cluster sampling variance will
be larger than simple random sampling variance. This is a situation frequently
observed in real life. Only when the ICC is negative (a rare event in practice)
the investigator benefits from cluster sampling both by reduced variance for fixed
sample size and by reduced costs. As ICCs are positive in most cases, simple
sampling variance can grossly underestimate the true cluster sampling variance.
The ratio of the latter to the first-mentioned variance is called the cluster ef-
fect.

In a multistage sampling design stratification and clustering may be combined
on several stages of the sampling procedure forming a complex random sample.
Stratified sampling for example may be used to ensure that schools are represented
in the sample according to different socio-economic areas in a large city, and clus-
ter sampling of classrooms within the selected schools might then be employed
for efficiency. The above mentioned EvaS-Study also was designed as a two-stage
sample: In the first stage, a stratified sample of office-based physicians was drawn
with their specialities defining the strata. In the second stage, a systematic sam-
pling approach was used to sample patient-physician encounters of the selected
physicians (Schach 1989).

The analysis of data from a complex sample procedure that includes cluster
sampling requires a sound knowledge of sampling theory or statistical advice.
There are a series of textbooks on sampling theory (e.g. Hansen et al. 1953; Kish
1965; Stuart 1968; Sukhatme and Sukhatme 1970; Cochran 1968, 1972; Stenger 1986;
Levy and Lemesshow 1991) and many handbooks or textbooks on statistics contain
at least a chapter on sampling theory (e.g. Kendall and Stuart 1958; Kahn and
Sempos 1989; Krishnaiah and Rao 1994; Voß 2003). The use of a special software
(e.g. Sudaan), or a special module of one of the common large statistical pack-
ages (e.g. SAS, Stata or SPSS) is inevitable. They allow for variance weighting in
the statistical procedures to adjust for the specific sampling design. Otherwise,
as cluster sampling variance may be many times larger than the variance cal-
culated by assuming a simple random sample (Abraham 1986), and the analysis
can result in severely misleading conclusions about the significance of the study
findings.
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Confounding and Risk Adjustment5.2.6

For general principles of control for confounding see Chap. I.9 of this handbook.
Health services researchers tend to summarise methods to adjust for confounding
under the term “risk adjustment”. With respect to the large databases analysed,
standardisation and multivariate modelling are more frequently used to control
for confounding than the traditional approach of stratification.

Any level of comparison can be affected by confounding. This includes the map-
ping of health care needs, the evaluation of clinical strategies and programmes,
studies of the effectiveness of quality improvement initiatives, or the evaluation
of cost containment measures. Typical confounders are age, gender, ethnicity, in-
come, smoking, or other risk variables. In outcome studies confounding is a major
concern because of differences in severity of illness and co-morbidity.

The most frequent approach to control for confounding in HSR is to include the
potential set of confounders as predictors in the regression model (cf. Chap. II.3 of
this handbook) to predict the outcome of interest:

Ordinary least squares (OLS) regression when the outcome has a continuous
distribution (ideally a normal distribution) as e.g. the logarithm of costs.
Poisson (or negative binomial) regression when the outcome is described by
counts (as for example the number of hospital admissions in a specified year).
Binomial (logistic) regression when the outcome variable is binary, indicating
e.g. the occurrence of disease or death.

When a large database is used for the analysis, co-morbidity is often taken into
account by including a lot of so-called “dummy”, i.e. binary 0|1 variables in the
regression model that indicate the presence (or absence respectively) of each out
of a list of classified co-morbidities. When using samples of small or moderate size
this approach may not be possible. In this case a pre-modelled aggregated index
of co-morbidity can be included in the analysis (Schneeweiss et al. 2001).

Including a potential confounder variable in the analysis requires its storage in
the database. This is crucial whenever “second hand” data are analysed. Especially
in a country like Germany where record linkage is not a common practice one can-
not expect to have full control over all relevant confounders (ambulatory diagnoses
for example are not stored in routine data sets, and even many socio-economic
characteristics are available only in survey research).

Omission of one or several confounders usually leads to a violation of the
assumptions underlying the estimation procedure in the OLS regression model

Yi = β1xi1 + β1xi2 + … + βkxik + εi , i = 1, … , n ,

as the k predictors xij, j = 1, … , k, and the random errors εi, i = 1, … , n, are
no longer uncorrelated where n denotes the number of subjects, Yi the response
variables, and βj the regression coefficients.

In this situation the introduction of one or more of so-called instrumental
variables can help to establish a consistent estimation of the interesting effects
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(i.e. βj). This has been a well known technique of econometric analysis (IV-
technique) for over half a century which is described in almost every econo-
metric textbook (e.g. Greene 2003). But it is very rarely applied to HSR problems
because a sound econometrical or statistical background is needed. Instrumen-
tal variables should be correlated with the predictor variable as much as possi-
ble, and at the same time they should be (at least asymptotically) uncorrelated
with the random errors. The skill of the technique consists in finding such vari-
ables which are already in the database or could be added to it at a tolerable
cost.

An illuminating example of the usefulness of IV-technique is presented by New-
house and McClellan (1998) who explain the instrumental variable convincingly
as a device that achieves a pseudo-randomisation. The authors analysed the effect
of catheterisation and associated revascularisation of acute myocardial infarction
on mortality in the years following treatment. For IV-estimation of this effect
they used the differential distances of the patients’ place of residence to the near-
est catheterisation, revascularisation, and high-volume hospital as instrumental
variables.

Demand, Need, Utilisation,
and Access to Health Care 5.3

A main focus of HSR is the assessment of demand, need, utilisation and access
to health services, which represent closely related but distinct fields of investi-
gation. In the input–output model they represent the endogenous, risk-related
input, which is, among others, determined by population health – representing the
exogenous risk-related input in the model.

Demand is a general economic concept, which can be defined as the “quan-
tity of a good buyers wish to buy at a conceivable price” (Begg et al. 1997a).
Demand for health and health care is in many respects different from demand
for other goods and services. The demand for health care is a derived demand
as health care is not sought in itself but as a means to improve one’s health or
to prevent its deterioration. Health care itself is indeed often rather unpleasant
(McPake et al. 2002). Health is not something that can be traded and both health
and health care are surrounded by uncertainty. What people want in essence
from health care, is to buy access to care in case they need it, i.e. insurance (Mc-
Pake et al. 2002). Another aspect is that health is both a consumption good and
a capital good (McPake et al. 2002). Especially politicians and health care fun-
ders often focus on the consumption side and neglect the potential of investing
in health as a durable good which is an important prerequisite for economic
growth.

The notions of need, utilisation, access, and the relationships between them will
be discussed in more detail in the following sections.
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Assessing Health Needs5.3.1

The concept of “need” for health and health care links directly to population
health. Initially it appears simple and is often used by politicians in health policy
discussions, but quickly becomes complicated and is therefore avoided by many
analysts (Kindig 1997). Instead many policy analysts, in particular in the United
States, prefer to use the economic demand and supply framework, where it is
assumed that if someone “needs” something, he or she will express this desire by
purchasing the item that is needed in the marketplaces, and as a consequence,
supply will increase (Kindig 1997).

An alternative concept of need as the “capacity to benefit” has been proposed by
Williams (1974) and Culyer (1993). Their concept also goes beyond the perspective
of an initial baseline level of health, because unhealthy individuals and popula-
tions cannot be said to need more health care without regard to their potential
for improving their health status (Kindig 1997). Capacity to benefit also rules out
health services which might be desired by individuals or providers but which do
not make a positive contribution to health adjusted life expectancy (Kindig 1997).
It also goes beyond a mere epidemiological description of health needs in terms of
ill-health or shortcomings in care in a specified population as it incorporates the
notion of effectiveness of the intervention. Some authors use the terms “felt need”,
“normative need” and “expressed need”. The “felt need” reported by patients is
often substantially different from the “normative need” as judged by health pro-
fessionals. “Expressed need” represents the need expressed by action, e.g. visiting
a doctor (Wright 2001).

Three main approaches to health needs assessment exist (Wright 2001):
Epidemiologically-based needs assessment – combining epidemiological ap-
proaches, such as specific health status assessments, with assessment of the
effectiveness and possibly cost-effectiveness of interventions.
Comparative needs assessment – comparing levels of service receipt between
different populations.
Corporate needs assessment – canvassing the demands and wishes of profes-
sionals, patients, politicians, and other stakeholders.

In practice, comprehensive health needs assessments often combine all three ap-
proaches. Practical applications are manifold, such as to highlight areas of unmet
need and to provide a clear set of objectives to meet these needs, to decide how
to use resources to improve the local population’s health, and to influence policy,
interagency collaboration, or research and development priority setting (Wright
2001).

A good example for a health needs assessment is a study contrasting the epi-
demiological need for carotid endarterectomy with actual service provision in an
English region (Ferris et al. 1998). The authors estimated the need for a carotid
endarterectomy on the basis of demographic and epidemiological data, assuming
that the rate of endarterectomies in their region should match the rate of patients
with symptomatic carotid disease – the patient group for whom carotid endarterec-
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tomy is proven to prevent strokes. Based on estimates of the incidence of transient
ischaemic attacks (77|106 population|year) and minor strokes (76|106|year) they
calculated that the need for endarterectomy was 153|106|year, which contrasted
with operation rates of 35|106|year in 1991–92 and 89|106|year in 1995–96. The ratio
of use to need was 0.47 (95% confidence interval (CI) from 0.4 to 0.54), which was
far from being satisfactory. Furthermore, they noted a disconcerting variation in
the use to need ratios between districts, ranging from 0.28 (95% CI: 0.19 to 0.38)
to 0.81 (95% CI: 0.62 to 1.06), and lower use to need ratios in elderly and female
patients – indicative of inequity in access in relation to need. The epidemiological
needs assessment was supplemented with a corporate needs assessment compris-
ing interviews with vascular surgeons and a joint purchaser-provider workshop.
These indicated that the low operation rates were primarily due to low rates of
referral for diagnostic assessment by general practitioners. The variation between
districts partly reflected the concentration of services – districts with a high use
to need ratio tended to have one of the main provider sites. This study clearly
demonstrates the usefulness of such research in identifying the main levers for
improvement of current service provision – in this case raising awareness for the
clinical indications for carotid endarterectomy in general practitioners, in partic-
ular those located in rural areas without access to a local vascular surgical service.

Assessing Utilisation and Access to Services 5.3.2

Studies assessing the utilisation of services attempt to improve our understanding
of who uses health care services and why (Black 1997). In the previous sections it
has already become clear that many factors determine whether a patient utilises
a health care service, amongst them whether the patient suffers from a condition
for which an effective intervention is available, and whether he or she demands that
service. Three other common determinants of utilisation have become apparent
in the example of the health needs assessment for carotid endarterectomy in
England – clinician’s judgement, distance from facilities, and gender. If a general
practitioner does not consider that referral to a specialist is necessary, it is unlikely
that the patient will end up having the procedure nonetheless – resulting in unmet
need and underutilisation of health services. Other important factors influencing
utilisation and access are patients’ knowledge and the cost of services to the patient.

A well recognised example for the influence of gender on utilisation are higher
rates of appendectomy in women than in men (Black 1997). After the primary
assertion that appendicitis is more frequent in women was not supported by
evidence, themore likely explanationswere as follows:Appendicitis-like symptoms
are more common in women, probably arising from ovarian dysfunction; in some
cultures young women prove their independence by undergoing an operation;
operation rates are dependent on the availability of services – the more surgical
services are available, the higher the gender difference in operation rates (Black
1997).

The influence of clinicians’ judgement on health service delivery has been
investigated ina series of studies comparinghospital care and related costs between
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Boston and New Haven in the United States – two cities with similar demographics
where most hospital care is provided by university hospitals (Wennberg et al. 1987,
1989). However, in 1982 expenditures per head for inpatient care in Boston were
about twice as high as in New Haven ($889 vs. $451) (Wennberg et al. 1987). The
excess utilisation in Boston compared to New Haven totalled $300 million and 739
hospital beds per year. In a subsequent study in 1985, Wennberg and colleagues
showed that the variation in operation rates between the two areas did not result in
statistically significant differences in mortality between the two cities (Wennberg
et al. 1989). The authors concluded that the lower rate of hospital use in New
Haven was not associated with a higher overall mortality rate in the populations
concerned and consequently that hospital care was overutilised in Boston and not
underutilised in New Haven.

The influence of geographical and financial barriers to access is also well docu-
mented. Black and colleagues (Black et al. 1995) attempted to identify the reasons
for geographical variation in the use of coronary revascularisation in the United
Kingdom in a cross-sectional study. They found considerable variation in revascu-
larisation rates between districts, which arose from differences in supply factors,
notably the distance to a regional revascularisation centre and the existence of
a local cardiologist. The level of coronary heart disease mortality in the population
and the lack of use of alternative treatments not only failed to explain the observed
variation but was inversely associated with the rate of revascularisation (Black
et al. 1995). This inverse relationship between need and provision of care has been
observed in many settings and has been termed the “inverse care law” by Julian
Tudor-Hart (Tudor-Hart 1971, 2000). It has to be kept in mind that in measuring
the utilisation of health care facilities only those patients are counted, who have
surmounted barriers to access – be it long distances, fear of an operation, lack of
public transport, waiting lists – and are thus biased (Schwartz and Busse 2003).
These barriers to access also exist in countries which grant a legal right to health
care to every citizen, in particular among socially disadvantaged groups in society.
These differences in access to care are even more pronounced in countries without
such a right to health care and where direct financial barriers to care exist on top
of other barriers to access.

The effect of financial barriers to accessing health services has been studied in
many countries at different levels of development. The most famous study is the
RAND Health Insurance Study (see also Sect. 5.2.1) on the effect of cost-sharing
measures on utilisation (Newhouse 1974; Newhouse et al. 1981; Brook et al. 1983).
Between 1974 and 1977, about 2000 non-elderly families were randomly assigned
to different insurance plans. Participants were assigned to either pre-paid group
practices or to one of 14 fee-for-service insurance plans, which varied in their co-
insurance rates and in maximum spending per family and year (Newhouse 1993).
The authors found that the more families had to pay out of pocket, the fewer health
care services they used. Families on the plan with the highest co-insurance (95%)
up to a $1000 limit on annual family expenditure reduced expenditure by 25–30%
compared to a plan which was free to the family (Newhouse 1993). Interestingly, the
use of all types of services, whether physicians, hospitals, pharmaceuticals, dental,
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or mental health services fell with cost-sharing to a similar degree, except hospital
admissions of children which did not respond to plan (Newhouse 1993). While
the reduced utilisation had no negative effect on the health for the average person,
health among the “sick poor” – the most disadvantaged 6% of the population – was
adversely affected (Newhouse 1993). Especially the poor who began the experiment
with elevated blood pressure had their blood pressures lowered more on the free
care plan than on the cost-sharing plans, and mortality rates predicted on the
presence of major risk factors were 10% lower among those insured on the free
plan (Newhouse 1993). Free care at the point of delivery also improved both near
and far corrected vision, increased the likelihood that a decayed tooth would be
filled, and the prevalence of anaemia among poor children was lower (Newhouse
1993). All observed adverse health effects of cost-sharing hit the poor and less
educated disproportionately more.

A number of other factors can limit access to services, in particular gender, age,
professional status, race, and religion (Schwartz and Busse 2003). The discrepancy
between need in terms of ill-health and capacity to benefit from intervention and
utilisation is a commonly used measure of equity.

Financial Resources, Structure,
and Organisation of Health Services 5.4

Health care financing can be described from different perspectives:
The first one looks for the ultimate sources of funding. Here, intermediary
sources of financing (government, social security funds, private social insur-
ance and private households above all) have to be tracked back to their origin.
The second one, commonly used in National Health Accounts, aims at a break-
down of expenditure on health into the complex network of third-party-
payments plus the direct payments by households or direct funders (OECD
2000).
The third one focuses on the allocation of the available resources. Health
planning and management of health care among others includes the continuous
task of distributing the financial resources, e.g. to distinct segments in the
natural history of disease (as reflected in prevention, cure, rehabilitation, and
care), to alternative treatments for a specific disease, to different regions, to
various groups of providers, or simultaneously with respect to some of these
categories.

When comparing the developed countries with respect to financing from the first
perspective we can find two marked types of health services systems: systems that
are funded by taxes and typically have a National Health Service (NHS) – so-
called NHS-type or Beveridge-type systems – and systems that are predominantly
financed by contributions of employees and employers (so-called Bismarck-type
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Table 5.3. International Classification for Health Accounts (ICHA) – one- and (partly) two-digit level

(from OECD 2000)

HP Classification of Health Care Provider (HP)
Code Description

1 Hospitals∗
2 Nursing and residential care facilities∗
3 Providers of ambulatory health care

31 Offices of physicians
32 Offices of dentists
33 Offices of other health practitioners
34 Out-patient care centers
35 Medical and diagnostic laboratories
36 Providers of home health care services
39 Other providers of ambulatory health care

4 Retail sale and other providers of medical goods
41 Dispensing chemists
42 Retail sale and other suppliers of optical glasses
43 Retail sale and other suppliers of hearing aids
44 Retail sale and other suppliers of other medical appliances
49 All other miscellaneous suppliers of medical goods

5 Provision and administration of public health programmes
6 General health administration and insurance

61 Government administration of health
62 Social security funds
63 Other social insurance
64 Other (private) insurance
69 All other providers of health administration

7 Other industries (rest of the economy)
71 Establishments as providers of occupational health care
72 Private households as providers of home care
79 All other industries as secondary producers of health care

9 Rest of the world

∗ two digit level omitted
table to be continued

systems). In the real world we find, of course, mixed systems including all the
common forms of public and private financing. The UK is generally considered to
be the classic example of a NHS-type health service system and the German health
system, as established by Bismarck in the late nineteenth century, naturally acts as
the model of all Bismarck-type systems.

Health services systems also vary considerably in the overall health insurance
coverage rates. In all EUMemberStates, nearly 100%of thepopulationhas coverage
of some type of public or private health insurance, whereas in the USA 43.6 million
persons (corresponding to 15.2% of the population) had no coverage at all during
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Table 5.3. (continued)

HF Classification of Health Care Financing (HF)
Code Description

1 General Government
11 Gen. Gov. excluding social security funds
12 Social security funds

2 Private sector
21 Private social insurance
22 Private insurance (other than social insurance)
23 Private households
24 Non-profit institutions serving households
25 Corporations (other than health insurance)

HC Functional Classification (HC)∗
Code Description

Personal Health Care Services and goods
1 Services of curative care
2 Services of rehabilitative care
3 Services of long-term nursing care
4 Ancillary services to health care
5 Medical goods dispensed to out-patients

Collective health care services
6 Prevention and public health services
7 Health administration and health insurance
HCR Health-related functions
1 Capital formation of health care provider institutions
2 Education and training of health personnel
3 Research and development in health
4 Food, hygiene and drinking water control
5 Environmental health
6 Administration and provision of social services in kind

to assist living with disease and impairment
7 Administration and provision of health-related

cash-benefits

∗ two digit level omitted

the entire year 2002 (U.S. Census Bureau 2003), which constitutes an important
barrier to access as seen above.

International comparisons of health care spending is hampered by a variety of
definitions and classifications, used by the national statistical agencies, resembling
the different organisational structures of health care delivery (van Mossefeld 2003).
To improve comparability of health accounting data Eurostat, the statistical office
of the European Union (EU), and the Organisation for Economic Co-operation and
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Development (OECD) jointly developed a conceptual basis of rules for the statis-
tical reporting of health accounts together with EU Member States (OECD 2000).
This so-called System of Health Accounts (SHA) corresponds to the new German
health expenditure data system which was developed simultaneously (Brückner
1997; Statistisches Bundesamt 2000a,b). The SHA includes expenditures of private
households, is consistent with the System of National Accounts (SNA) methodol-
ogy (OECD 1993), and covers three dimensions: functions of health care, providers
of health care and sources of funding (Table 5.3). Core of the SHA is a newly de-
veloped International Classification for Health Accounts (ICHA) that is based on
a three digit code (in Table 5.3 the three digit level is completely omitted).

The ICHA gives a first impression of the potential variations among health
systems in structure and organisation of health care and the share of work between
thevariousproviders.Oneremarkabledistinctionbetweenhealth services systems,
when looking at the organisation, refers to outpatient care. In many countries
patient-physician contacts take place only in offices of general practice. Contacts
with medical specialists are limited to hospital visits no matter whether the patient
has been admitted to the hospital or not. But there are other countries, among them
Germany and France, where outpatient specialised curative care is predominantly
provided by office-based specialists.

Therearemanyadditionaldifferences in the structureandorganisationofhealth
services systems in spite of the fact that in all developed countries patients with
a specific health condition receive more or less the same treatment, provided that
quality standards are observed. The package of activities in health care seems to
be stable over the health systems, while the providers are different. This statement
was the starting point of another important study, sponsored by the European
Commission, to improve comparability of data on health services in Europe. The
project, Towards Comparable Health Care Data in the European Union (Eucomp),
among others, produced a refinement of the functional classification of the ICHA
in establishing activities of the providers (actors) and introduced an additional
dimension of classification, the so-called Mode of Production (inpatient care|day
care|outpatient care|home care) to sub-categorise both functions and activities
in order to allow for the identification of provider differences. The core of the
Eucomp-project was to establish a metadata-base5 on the European health ser-
vices systems that should provide efficient retrieval modes as well as conceptual
clarity (clear definitions, well-determined units, references to broadly recognised
classifications), concise insight in data collection and processing, measuring in-
struments, availability of data, etc. In this metadata-base the total number of actors
and their activities in the field of health care for all European countries will be
described in all European languages. The ultimate goal of the ongoing Eucomp-
project is the establishment of an internet-based information retrieval system,
covering the metadata-base as well as glossaries in the national languages together
with country profiles of national health care systems as provided by the Euro-

5 A particular example of such a metadata system is provided by the Australian Institute of
Health and Welfare (1998).
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pean Observatory on Health Systems and Policies (2004) (European Commission
2000).

International studies of health care systems based on comparable data sets, as
called for by Eucomp, are rare. One of the outstanding examples is the WHO|Inter-
national Collaborative Study of Medical Care Utilisation – WHO|ICS-MCU (Kohn
andWhite 1976).Thedata collectionprocessof this carefullydesignedandmethod-
ically ambitious study included a cross-national multilingual household survey (by
personal interviews), and standardised forms relating to health services resources
and organisational factors. The study included almost 48,000 respondents repre-
senting over 15 million persons in twelve study areas scattered over Europe and
America. One of the striking results of the WHO|ICS-MCU study was that study
areas with the highest estimates of societal interest in health were also the areas
with the lowest totals for per capita health expenditure and for health expenditure
as a percentage of national income.

Allocation of Resources 5.4.1

Health related decision makers in government, regional authorities, insurance
companies or other institutions are faced with the task of allocating resources.
Examples are allocating research funds to different areas of HSR, Medicaid funds
to treatments, Medicare funds to HMOs, or global funds to local authorities.
Regional allocation is a main concern of all NHS-type health care systems. Risk-
adjusted capitation payments to insurers or to providers is a related topic that has
been discussed extensively in several non NHS-type countries (e.g. the USA, the
Netherlands, and Germany).

There is no unique method for resource allocation analysis. Different levels and
variable purposes of resource allocation analysis require different methods:

For economic evaluation, e.g. of drugs, surgical procedures, other types of
clinical interventions or of community intervention programmes, limits on
health-care resources mandates resource-allocation decisions guided by con-
siderations of cost in relation to expected benefits (Weinstein and Stason 1977).
The UK-approach of weighted capitation has become the principal method of
allocating health care finance to regions (Rice and Smith 1999).
Risk-adjusted capitation, whereby capitated payments are adjusted to reflect
the expected cost of individual enrolees, is commonly based on multivariate re-
gression models to predict health care expenditure (Van de Ven and Newhouse
2000).

While economic evaluation are mostly based on RCTs and observational studies
(mainlyoneffectivenessandcosts), risk-adjustedcapitatedpaymentsand formulas
of weighted capitation are generally based on official statistics (e.g. census or
mortality statistics) or on large samples from administrative databases. For an
example see Sect. 5.4.1.
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Economic Evaluation, Especially Cost-Effectiveness Analysis
Economic evaluation can be defined as the comparative analysis of alternative
courses of action in terms of both their costs and consequences (Drummond
et al. 1997). There are four main types of economic evaluation (see Table 5.4). But
in practice most of the health economic evaluations apply the cost-effectiveness
methodology. Cost-benefit analysis is rarely used in public health and health care
settings, because of methodological difficulties to measure the value of human life
and low acceptability of its results on the side of health policy decision-makers and
health professionals. Cost-utility analysis (CUA) is considered by many to be a sub-
type of cost-effectiveness analysis (CEA) where the effectiveness measure includes
societal or individual preferences for the outcomes – a customary effectiveness
measure in CUA is the quality-adjusted life year (QALY) (cf. Sect. 5.6.1; Chap. I.3
of this handbook) – compared to natural units as effectiveness measure in CEA,
e.g. life years gained or mmHg blood pressure reduction. Most of the important
methods and concepts applicable to cost-effectiveness studies are also applica-
ble to cost-utility and cost-minimisation studies. Cost-of-illness studies may be
identified as a fifth type of economic study in HSR. Their goal is to estimate the
total societal costs of caring for persons with a specific illness compared to persons
without this illness, irrespective of any intervention. Such studies are carried out to
demonstrate the (relative) burden of illness. They are not full economic evaluations
because alternatives are not compared (Drummond et al. 1997).

Table 5.4. Types of Health Economic Evaluations

Type of Analysis Assumption|Question Addressed

Cost-minimisation The effectiveness (or outcome) of two or more interventions is the
same. Which intervention is the least costly?

Cost-effectiveness The effectiveness of two or more interventions differs. What is the
comparative cost per unit of outcome for the intervention?

Cost-utility The question is the same as for cost-effectiveness analysis. The
outcome is a preference measure that reflects the value patients or
society places on the outcome

Cost-benefit The effectiveness (or outcome) of two or more interventions differs.
What is the economic trade-off between interventions when all of the
costs and benefits of the intervention and its outcome are measured
in monetary terms?

Source: Epstein and Sherwood (1996)

One limitation that is common to all types of economic evaluation arises from
the difficulty in obtaining a true estimate of costs, particularly in a health care or
public health setting where high proportions of fixed costs and little flexibility in
changing the labour pool are typically found (Petitti 1998b).

A common understanding of cost-effectiveness claims that one of three criteria
has to be met (Doubilet et al. 1986). First, an intervention is cost-effective when
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it is less costly and at least as effective as its alternative. Second, an intervention
is cost-effective when it is more effective and more costly, but the added benefit
is “worth” the added cost. Third, an intervention is cost-effective when it is less
effective and less costly, and the added benefit of the alternative is not “worth” the
added cost.

Cost-effectiveness is measured as a ratio of cost to effectiveness. Two concepts
to calculate this ratio should be distinguished (Detsky and Naglie 1990): An av-
erage cost-effectiveness ratio is estimated by dividing the cost of the intervention
by a measure of effectiveness. An incremental cost-effectiveness ratio is an es-
timate of the cost per unit of effectiveness of switching from one intervention
to another. In estimating an incremental cost-effectiveness ratio, both the nu-
merator and denominator of the ratio represent differences between alternative
interventions (Weinstein and Stason 1977). Often the terms “marginal” and “in-
cremental” are used interchangeably in the literature, although marginal costs are
strictly speaking the costs of producing one extra unit of output, whereas incre-
mental costs usually refer to the difference, in cost or effect, between the two or
more programmes being compared in the economic evaluation (Drummond et al.
1997).

Estimating average cost-effectiveness ratios can be useful for service planning
and for resource allocation decisions between very different health programmes,
e.g. an influenza vaccination programme and liver transplantations. However, for
resource allocation decisions between interventions for the same disease, e.g. two
different antihypertensive drugs, incremental cost-effectiveness ratios should be
used. The importance of using incremental cost-effectiveness ratios for decision
making in some settings, is best illustrated with the example of the sixth Guaiac
stool test to screen for colorectal cancer, which had been endorsed by the American
Cancer Society, and which has later been shown to have an incremental cost of $47
million per case detected compared to an average cost of $2451 per case detected
(Neuhauser and Lewicki 1975).

The unspecified implicit alternative to an intervention is usually doing noth-
ing. But doing nothing has costs and effects that should be taken into account
in the analysis (Detsky and Naglie 1990). Furthermore, explicit declaration of
“doing nothing” as the alternative intervention helps to frame discussions of the
desirability of the intervention (Petitti 1998b).

Costs seem to be a straightforward notion, well understood by everybody. But
actually it is a rather complex termthat consistsofvariouscomponents:direct costs,
indirect costs and intangible costs. Costs that are directly related to an intervention
(and to side effects and other consequences) are summed up to the total of direct
costs. By indirect costs health economists understand the monetary value of lost
wages and productivity due to morbidity and death of a person affected. Intangible
costs refer to consequences that are difficult to measure and value, such as the value
of improved health or the pain and suffering associated with illness or treatment
(Drummond et al. 1997). The rationale of economic evaluation is based on the
concept of opportunity cost, i.e. the benefits forgone by not deploying resources
for the next best alternative use.
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As costs are seen differently from different perspectives (e.g., perspectives of
health insurers, corporations, hospitals, physicians, and patients), it is also im-
portant to define a cost perspective in CEA and state it explicitly (Petitti 1998b).
A common goal in CEA is the societal perspective, so that the total costs of the
intervention to all payers for all persons are included in the analysis.

Costs and benefits, after all, must be discounted before comparing them by
calculating the ratio of cost to effectiveness. Discounting is the usual procedure in
economics used to determine the present value of future money. This analysis gives
a greater weight to costs and benefits the earlier they occur. High positive discount
rates favour alternatives with costs that occur later or benefits that occur earlier.
This clearly favours curative vs. preventive health programmes. In the business
world there is no fixed rate of return on investment and the use of a private sector
return rate for public sector program cost may not be correct (Sudgen and Williams
1990). Most published CEA in developed countries use discount rates between 3
and 5%. An expert panel commissioned by the US Public Health Service, based
on the “shadow price of capital”, recommended using a discount rate of 3% for
economic evaluation in the public health sector (Gold et al. 1996). Whether benefits
should also be discounted, and if so at what rate, is highly controversial.

Estimatesofbenefits andcosts inaCEAmaybeuncertainbecauseof imprecision
in both underlying data and modelling assumptions. Therefore major assumptions
should be varied and the net present value and other outcomes computed repeat-
edly to determine how sensitive outcomes are to changes in the assumptions. This
so-called sensitivity analysis is typically the last step in a CEA. A sensitivity analy-
sis varying the discount rate from 0% up to 7% should always be done (Gold et al.
1996).

As illustrated by Oregon’s Medicaid reform efforts in 1990|91, CEA or other
types of economic evaluation cannot be used as sole basis for allocating scarce
resources because the question of equity and ethical issues are not addressed by
this method. In Oregon, CEA was only one of 13 factors used to prioritise funding
of services for the poor (Petitti 1998b).

Since Sir William Petty found out in 1667 that public health expenditures to com-
bat the plague would achieve a benefit-cost ratio of 84 to 1 (Fein 1971), numerous
studies of economic evaluation have been carried out, most of them using ratios
of cost to effectiveness. The list of interventions that were economically evaluated
within the last ten year spans from influenza vaccination of healthy school-aged
children (White et al. 1999) to colonoscopy in screening for colorectal cancer (Son-
nenberg and Delco 2002), and preoperative autologous blood donation (Etchason
et al. 1995) to reducing the population’s intake of salt (Selmer et al. 2000).

Weighted Capitation in NHS-Type Health Systems
The central aim of weighted capitation is to distribute a global health budget
between geographical areas in accordance with population needs and thus pro-
vide equal opportunity of access for equal needs. Currently used formulas of
weighted capitation can be described as a modified age standardisation of health
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care expenditure. The UK Resource Allocation Working Party (RAWP) originally
recommended in 1976 that the resources for the hospital and community health
services (HCHS) be distributed on the basis of population size, weighted by age
and sex, the need for health care and the costs of providing services (Carr-Hill 1989;
ACRA 1999). Standardised mortality ratios (SMRs) were used as a proxy measure
for relative needs. However, this had been criticised for failing to fully reflect the
demand for health care resources related to chronic disease and deprivation.

In 1995 a new weighted capitation formula for HCHS was introduced. This
comprises anage index (basedonestimatesofnational resources spentper capita in
eight age groups) and an “additional needs” index (additional to that accounted for
by demographic variables). The need weighting index takes the form of four indices
for acute, psychiatric, non-psychiatric community, and community psychiatric
services, which are based on 1991 small-area census socio-economic variables. It
is derived from an empirical model that identified its needs indicators as those
census-derived health status and socio-economic variables which, having been
adjusted for the independent effects of supply, were most closely correlated with
the national average pattern of hospitalisation (Carr-Hill et al. 1994).

For all its merits, however, this formula, also called English formula, and the
models on which it is empirically based have been criticised. The fundamental
criticism relates to the use of utilisation-based models to assess need for health
care, which implies that historical patterns of service uptake between different care
groups (as revealed by utilisation) are appropriate (Mays 1995).

Against this background, some scientists pleaded for a radically new approach
to health resource allocation, one that distributes NHS resources on the basis of
direct measures of morbidity rather than indirect proxies such as health service
utilisationordeprivation.TheWelshsteeringgrouponAllocation(Townsend2001)
for example recommended the use of a morbidity-based budgeting approach. In
a recent study of target allocations for the inpatient treatment of coronary heart
disease in a sample of 34 primary care trusts in different areas in England, it was
shown that a morbidity-based model would result in a significant shift in hospital
resources away from deprived areas, towards areas with older demographic profiles
and towards rural areas (Asthana et al. 2004). In the discussion of their findings,
the authors concluded by calling for greater clarity between the goals of health care
equity and health equity.

Risk-adjusted Capitation
When competition is an essential component of a health care system, it is a wide-
spread belief that capitated payments create incentives to contain costs and to
compete on quality. But they also create undesirable incentives for risk selection
(“cream skimming” or “cherry picking”), i.e. to attract profitable patients (or
enrolees) and to avoid unprofitable ones, and to decrease service intensity.

Risk adjustment is an important tool to reduce creamskimmingwhile encourag-
ing desirable cost and quality competition. This method controls for confounding
(co-morbidity above all) by calculating the expected health care costs (or some
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othermeasureof anoutcome) formembersofhealthplansor insurance companies.
This control is realised either by stratification (cell-based approach) or by multi-
variate modelling (regression approach). In many developed countries around the
world, health care organisations have established some sort of risk adjustment
procedure for resource allocation. Examples exist for the following countries: Aus-
tria, Brazil, Canada, Chile, Germany, Hong Kong, Israel, the Netherlands, Spain,
Switzerland, Taiwan, and the USA. Most of the risk adjustment procedures are
based on a regression model to predict future health expenditure. Models differ
with respect to the set of included predictors, the procedure of grouping diagnostic
information, and the populations used for calibration.

The exclusive reliance on risk-adjusted capitated payments has been criticised,
e.g., by Newhouse et al. (1999), who pointed out that the common risk adjusters
(predictors of cost) are not likely to reduce risk selection problems to negligible
levels. This concern was confirmed by a study of Shen and Ellis (2001) who exam-
ined the maximum potential profit that plans could hypothetically gain by using
their own private information to select low-cost enrolees when payments are made
using one of four commonly-used risk adjustment models. Their findings – based
on simulations using a privately-insured sample – suggested that risk selection
profits remain substantial (Shen and Ellis 2001).

Against this background it was recommended to move the financing of health
services to partial capitation payments. Partial capitation for an individual enrolee
combines capitation methods and some reflection of that person’s actual use of
services, i.e. a fee for service payment. Partial capitation would reduce plans’
incentives to select good risks – the intent of risk adjustment – and also reduce the
financial incentive to under-serve or stint on care (Newhouse et al. 1999).

The General Form of Regression-based Risk Adjustment Model. Frequently used
are regression models with untransformed costs as the dependent variable, es-
timated by ordinary least square (OLS). The standard assumptions of that type
of statistical model (namely a normal distribution, homoscedasticity, and inde-
pendent observations) are not satisfied sufficiently by utilisation data, but for
predicting of future costs the model has shown to work about as well as more
complex models in real situations (Diehr et al. 1999).
Occasionally a two-part model is applied: One equation predicts the probability
that a person has any use and a second equation predicts (on a log scale) the
level of use for users only. In a two-part model the regression coefficients of the
first equation are estimated by logistic regression analysis and those of the second
equation by OLS regression. Two-part models tend to meet the assumptions better
than one-part models and provide insight into the utilisation process, but they are
not recommended when the goal is to predict future costs, because transformations
cause complications in this context (Diehr et al. 1999).

The list of possible predictors of a model for risk-adjusted capitation includes
age, gender and other demographic or socio-economic variables as well as bi-
nary variables to indicate that a person has been assigned to a diagnosis be-
longing to a special group from a system of diagnostic groups or has received
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a drug prescription belonging to a special group from a system of drug cate-
gories. To incorporate information on morbidity, some models use hospital di-
agnoses alone, while others use both inpatient and outpatient diagnoses. It has,
however, to be noted, that previous utilisation is a strong predictor of future
utilisation (for chronically ill patients the costs in one year heavily depend on
utilisation in the year before). Thus, as in any regression analysis, it is impor-
tant not to control for this variable lying on the causal pathway (Diehr et al.
1999).

The estimated regression coefficients (“regression weights”) refer to the so-
called calibration population. For diagnosis-based models generally this is also the
population used to establish the diagnostic classification system, the “grouper”.
Recalibration of a model without a refinement of the grouper therefore may lead
to biased estimation. Generally the models are calibrated prospectively (i.e., the
data of the predictor set refers to the previous year, while the cost data refer
to the actual year), but in order to evaluate the predictive power current cal-
ibration (both types of data refer to the same year) has been performed as
well.

The standard summary measure of model performance in prediction is R2, the
percentage of the total variance of the dependent variable that is explained by the
model. Usually the values of R2 in prospectively calibrated models do not exceed
20%. Newhouse et al. (1989) used theoretical and empirical arguments to estimate
that the maximum possible R2 in the context of utilisation data is about 15% for
total expenditure (prospectively modelling).

In addition to the grouper and the regression module any risk adjustment
methodologyfinally requiresamodule that links theestimatedcosts to thepayment
system or the resource allocation procedure respectively, i.e. a mechanism that
controls the way payments or the allocation of resources are based on the predicted
health care expenditure.

Risk Adjustment in the US Setting. Up to 1999, Medicare paid the HMO’s 95%
of the adjusted average per capita cost (AAPCC), an estimate of the expected cost
of treating Medicare beneficiaries in the fee-for-service sector in each local area.
The AAPCC methodology adjusted for differences between the HMO’s enrolees
and fee-for-service users with respect to age, gender, welfare status, and whether
or not they were in a nursing home (Ellis et al. 1996).
Since its implementation in 1985 the AAPCC had prompted concern about its fair-
ness and accuracy and it was shown that only about one percent of total variance
of the cost of treatment was explained by this concept (Newhouse 1986; Ash et al.
1989). Against this background the Health Care Financing Agency (HCFA) spon-
sored the development of alternative approaches that include diagnostic informa-
tion as predictors in the regression-based risk adjustment model, among them
the Diagnostic Cost Groups (DCG) family and the Adjusted Clinical Group (ACG)
methodology (Ingber 1998). In the years 2000 to 2003, AAPCC has been stepwise
replaced by thePrincipal Inpatient Diagnostic Cost Group model (PIP-DCG) which
uses socio-demographic variables and hospital diagnoses to predict next years cost
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(Pope et al. 2000). In 2004, a 100 percent comprehensive risk adjustment scheme
(using full encounter diagnostic data) should be established (Ingber 2000). In view
of the widespread concern about the quality of ambulatory diagnoses, the DCG
family was supplemented in 2001 by a model that uses outpatient pharmacy data,
grouped into 127 mutually exclusive categories, instead of ambulatory diagnoses
(Zhao et al. 2001).

Medicaid supported the development of the Chronic Illness and Disability Pay-
ment System (CPDS) which groups the Medicaid beneficiaries according to a hi-
erarchical diagnostic classification system (Kronick et al. 1996). CPDS, which was
reconstructed and recalibrated later on to predict expenditures also for Medicare
beneficiaries, has now been established in several US states (Kronick et al. 2002).

Risk Adjustment in a Bismarck-Type European Setting. In European countries
with a predominating Bismarck-type organisation of health services we find com-
petition among all insurance companies and even among the statutory sickness
funds. The main goal of risk-adjustment in these settings is to reduce risk se-
lection by the sickness funds and to establish a fair system of income-related
contributions. HSR has played a major role in designing and reforming these
systems.
Like in the USA, the starting point of risk-adjustment in Europe has been set
by models based on age, gender and other socio-demographic variables. The
Netherlands for example started in 1992 with a prospectively used age and gender
based model. In 1995 region and disability were included as predictors, and a “high
risk pool” was established in addition. Since 2002, dummy variables were added to
the model that indicate prescriptions of drugs falling into one out of 13 mutually
exclusive categories, the Pharmacy-based Cost Groups (PCGs), each of them closely
related to a serious chronic disease (Lamers 1999). From 2004 onwards, the Dutch
risk-adjustment methodology will be further supplemented by an inpatient DCG
module that uses hospital diagnoses only.

In 1994, Germany introduced a retrospective risk-adjustment procedure among
statutory sickness funds which was based on the following variables: age, gender,
and two dummy variables indicating invalidity or disability pension and the en-
titlement for sickness allowance. The procedure was also designed to adjust for
different incomes because the beneficiaries pay income-related contributions. The
largest share of the risk-adjusted financial transfers between sickness funds (up
to 60%) results from differences in per capita income of the beneficiaries. From
2002 on, the German risk-adjustment methodology has been extended. First, a ret-
rospective “high cost pool”6 was established, and second, a dummy variable was
added to the set of risk adjusters indicating that a beneficiary is registered in
an accredited disease management programme. In a long term perspective it is
planned to introduce a morbidity-based risk adjusted formula and a high risk pool
(Buchner and Wasem 2003).

6 The high cost pool consists of insured with high cost in the past year (above a fixed
threshold) which are shared by all statutory sickness funds.



Health Services Research 1507

Evaluating Effects
of Organisational Characteristics and Change 5.4.2

Ashealth services systems in thedevelopedcountries tend togo throughonereform
after another and are more or less continuously exposed to change, evaluation is
a permanent task of HSR. But the preconditions do not favour the establishment of
scientifically sound research designs. Experimental designs are extremely rare. The
above-cited RAND Health Insurance Study on the effect of cost-sharing measures
on utilisation is one of the most famous exceptions. In some circumstances it
is even difficult to implement a quasi-experimental design including a control
group. Particularly in countries like Germany, where benefits and programmes
are uniform but the organisational responsibilities are widely scattered over local
authorities and institutions, evaluation research is very complex.

Suggested by the structure of available data, perhaps the most frequently used
quasi-experimental design for analysing aggregated annual data in the context of
programme evaluation is the time-series experiment. It can be characterised by
a periodic measurement process on some group and the introduction of an exper-
imental change X into this time series of measurements Oi. Adapting a diagram
by Campbell and Stanley (1966) the time series design can be outlined as follows
(whereby the number of observations before or after X, occurring here in year five,
may be smaller or larger as in a real problems):

O1, O2, O3, O4, X, O6, O7, O8, O9 .

The main problem of (internal) validity inherent in a time series design is revealed
by seeking likely alternative explanations of the shift in the time series other
than the effect of X. This problem, of course, could be settled to a great extent by
establishinga suitable control group (comparison series) that shares all intervening
factors except X with the study group.

A natural approach for analysing data from a time series design is segmented or
piecemeal regression (e.g. Neter and Wasserman 1974). This method is appropriate
when the considered response variable has a linear trend over the range before X
(segment one) followed by another linear trend over the range after X (segment
two). The year which divides the segments (year five in the above diagram) is
known as the join point (or break point). When the hypothetical change of trend
line refers only to the slope and not to the intercepts (that means no discontinuity
between the both lines), the regression equation for analysing data from a design
as diagrammed above can be specified as follows:

E(Y) = β0 + β1x1 + β2x1x2 ,

where Y is the response variable, x1 is the year (x1 = 1, 2, 3, 4, 6, 7, 8, 9) and x2

is a dummy variable indicating that the year is greater than 5. The parameter β2

measures the difference in slopes between the lines. If the same trend continues
from the first segment to the second segment, then β2 = 0. The βj are estimated,
and the hypothesis β2 = 0 is tested, using standard procedures in regression. It is
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easy to expand segmented regression to more than two segments and even to allow
for discontinuities between segmented regression lines. Autocorrelated errors or
heteroskedasticity can be handled by using standard techniques (e.g. Greene 2003).

A good example for applying this type of analysis to evaluate the impact of a pro-
gramme on the basis of aggregated data is the study of the effect of a regionalised
perinatal care programme in North Carolina (established in 1965) on perinatal and
postneonatal mortality (Gillings et al. 1981). A similar – but due to autocorrelation
more complex – analysis was carried out to evaluate the effects of patient-level
payment restrictions for prescription drugs under Medicaid in the years 1981–83.
By this analysis, supplemented by survival analysis to measure the rate of admis-
sions to hospital and nursing homes, it could be shown that the decline in the use
of drugs after the cap (a limit of three paid prescriptions per month) had been
associated with an increase in rates of admission to nursing homes (Soumerai et al.
1987, 1991).

Regardless of these examples there is only limited use of OLS-regression models
for evaluation because of several restrictions. First, costs or the logarithm of costs
or other continuously distributed responses are only one type of outcome measure
used for evaluation. Counts of specific events, e.g. contacts, prescriptions, hospital
admissions etc. and binary response variables like death, accident or first occur-
rence of a specific disease are equally important - in some situations even more
important measures. Second, if individual longitudinal data are available, to make
full use of the data structure, the model used should be able to handle clustered
(correlated) response data, arising from repeated measurements and time-varying
covariates. Generalised linear models (Nelder and Wedderburn 1972; McCullagh
and Nelder 1983) and the related generalised estimating equations (GEEs) (Liang
and Zeger 1986) form the methodological framework of an advanced approach
of statistical modelling for evaluation. Consistent parameter estimates in these
models are achieved by maximising likelihood- or quasi-likelihood functions us-
ing some sort of Gauss–Newton algorithm. Several of the common packages of
statistical software, among them SAS, provide corresponding procedures.

The standard model to analyse count data, for example, is the Poisson regression
model, which is a non-linear regression model that can be formulated as a gener-
alised linear model. Poisson regression is robust insofar as consistent estimation
of the regression coefficients does not require that the dependent variable is Pois-
son distributed. Only a correct specification of the conditional mean is required
(Cameron and Trivedi 1998). But Poisson regression is prone to overdispersion.
Therefore the condition that the variance equals the mean has to be relaxed by
introducing a dispersion parameter that must be estimated as well. Otherwise
testing hypotheses on the regression coefficients could yield misleading rejections
of null hypotheses (Cameron and Trivedi 1998).

Poisson regression can also be used to analyse correlated counts from repeated
measurements. The within-patients correlation is then estimated in the framework
of GEEs, whereas the effects of the covariates can be modelled as a generalised
linear model. For example, the introduction of reference pricing for angiotensin-
converting-enzyme (ACE) inhibitors for patients of 65 years of age or older in
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British Columbia, Canada, in January 1997, was evaluated by using such a type of
analysis (Schneeweiss et al. 2002). Several covariates were included in the model,
among them age, gender, the household adjusted income and a chronic disease
score computed from prescription medications for every quarter and treated as
a time-varying covariate. This ambitious study was based on computerised admin-
istrative health databases covering a large proportion of the population, including
all types of claims, hospital admissions, admissions for long-term care, diagnoses,
and the medications, dose, and dispensed quantity of all prescriptions. Even the
deaths within the study cohort were included.

A similar analysis has never been done in Germany, though reference-based
prices (RBP) for the beneficiaries of the statutory sickness funds were established
in 1992|93. For reasons of privacy and data protection, cross-institutional linkage
of existing scattered administrative databases on drug utilisation, ambulatory
diagnoses and medical services, and hospital data on an individual level need
extensive data protection procedures in Germany or even the informed consent
by each patient. Thus the effects of RBP can be only evaluated on the basis of
aggregated data. But any conclusions on the overall economic and public health
impact, if obtained solely on the basis of aggregated data, are distorted because
of the introduction of fixed drug budgets and the effects of the reunification of
Germany (among other confounders) that both took place in the beginning of the
1990s, more or less simultaneously with RBP (Schneeweiss et al. 1998).

Sometimes one has to balance the advantage of using individual longitudinal
data – without having a control group – against the advantage of having a control
group at the price of rather limited capacities of analysis based on aggregated data.
For example, in a study of the effect of premium rebate to reward low utilisation
of services for beneficiaries of one statutory sickness fund in Germany, the effect
on expenditure mainly was analysed using a long time series of aggregated data
together with a control series. In a second step this analysis was combined with
an examination of the effects on non-monetary measures of utilisation based on
short time series of beneficiary-related data that were primary collected by the
sickness fund in order to support administration of premium rebates (Schäfer and
Nolde-Gallasch 1999).

Process of Health Care:
Effectiveness, Appropriateness
and Quality 5.5

Research on the process of health care considers questions like: Which services
are provided in which quantity, by whom, where, and how (Schwartz and Busse
2003)? The production of health care is a complex result of financing arrangements
and of demand and supply-side factors. The interaction of these different factors
is not well understood. An interest in investigating these questions arouse after
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substantial and unexplained variation in procedures and hospital admissions was
observed between similar hospitals. Some examples for these variations have al-
ready been presented in Sect. 5.3.2, e.g. the Boston-New Haven Study (Wennberg
et al. 1987, 1989). These studies demonstrated the importance of supply-side fac-
tors on utilisation patterns and frequency, if patient-related factors are controlled
for, such as age, gender, case mix, and socio-economic status. The supply-side of
a region is primarily described by the density of physicians, hospital beds, and
the availability of medical technologies. However, most studies do not analyse the
effects of these provider or supply-side characteristics on the health status of the
populations concerned (Brook and Lohr 1985).

More refined supply-side characteristics determining the use of services com-
prise provider payment mechanisms, experience and gender of health profession-
als, organisation and equipment of physicians’ practices, size and type of hospital,
as well as referral patterns between different providers (Schwartz and Busse 2003).
“Self-referral” of patients has been identified as an important determinant of
small area variation in the use of medical technologies (Childs and Hunter 1972).
Self-referral describes the phenomenon of providing expensive medical technol-
ogy, e.g. X-ray examinations, for patients in general practitioners’, physicians’, or
orthopaedic surgeons’ practices without referring the patient to a radiologist. In
comparisonsbetweencountrieswith a comparable standardofhealth care, thepos-
sibility of self-referral for X-ray examinations compared to countries with X-ray ex-
aminations exclusively provided by a radiologist increases the overall rate of X-rays
bya factorof 4 (Busse 1995).Withinacountry, differences inexamination frequency
between doctors with the possibility of self-referral compared to doctors who have
to refer patients to a radiologist yield comparable results. In Germany, the rates for
X-ray examination for patients with chronic pain was increased by a factor of 2.7,
the rates for abdominal ultrasound for patients presenting with gastrointestinal
symptoms by a factor of 3.0 in practices with a possibility of self-referral compared
topracticeswhohad to refer their patients toother practices (Busse 1995).Of course
this observation is linked to the method of physician remuneration. It is a phe-
nomenon which is primarily observed in countries with fee-for-service remunera-
tion such as the United States and Germany. The effects of the structure of financial
incentive systemsandresultingoverutilisationona system level tend tobeunderes-
timated. In Germany, fee-for-service remuneration combined with the possibility
of self-referral and the widespread practice of non-radiologists to provide X-ray
examinations in their practices resulted in 1655 X-ray examinations being per-
formed per 1000 inhabitants in 1997 (Deutsche Röntgengesellschaft 2002) – about
twice the rate observed in other European countries. It is estimated that unneces-
sary X-ray examinations during the last decades now cause around 2000 incident
cases of cancer in the country annually (Berrington de Gonzalez 2004).

The extreme variation in health service provision raises the question whether
diagnostic and therapeuticproceduresareappropriatelyused in theprocessof care.
To judge whether a procedure is appropriate, knowledge about the effectiveness of
the procedure for certain indications or clinical presentations is required. However,
this is not the case for the majority of indication-procedure pairs.
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Assessing Effectiveness and Appropriateness of Care 5.5.1

In general, the effectiveness of a health care professional or service is the degree
to which the desired outcomes are achieved (Gray 1997). However, the proposition
that an intervention is effective implies that there is only one outcome of care
and only one objective in the design of that intervention – which is rarely the
case (Gray 1997). In addition to a number of beneficial outcomes of care, such as
lower mortality and morbidity, the possibility of harmful effects of care has to be
considered. Effectiveness research attempts to answer questions, such as “What is
the right thing to do?” or “What care confers significant health benefit for a given
clinical situation?” (Scott and Campbell 2002).

Another frequently used concept is that of efficacy, which is the impact of an
intervention in the best possible circumstances (Gray 1997). These can be achieved
in randomised clinical trials (RCTs). However, the reverse conclusion that RCTs
always produce efficacy results is not true, as not all RCTs satisfy high quality
standards. The distinction between efficacy and effectiveness is important, as the
latter represents the impact of an intervention under routine care conditions.
The difference between the two concepts in terms of health status outcomes is
illustrated in Fig. 5.2 using the example of complications of radical prostatectomy.
Data on effectiveness in the example are derived from a meta-analysis of Medicare
routine data, efficacy data are taken from a meta-analysis of RCTs.

Figure 5.2. Comparison of effectiveness and efficacy using the example of radical prostatectomy

(adapted from Fowler et al. 1993)

An important aspect of both efficacy and effectiveness is that they apply to
groups of patients. However, the impact of an intervention on the health status
of an individual depends to a large extent on individual factors. To answer the
question of whether the most appropriate care was provided given the clinical
circumstances is the realm of appropriateness research. An intervention can be
consideredappropriate, if theexpectedhealthbenefitexceeds theexpectednegative
consequences by a large enough margin to justify performing the procedure rather
than other alternatives (Herrin et al. 1997).

Appropriateness research also addresses the questions of overuse, underuse or
misuse of interventions (Scott and Campbell 2002). We have already discussed the
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versus drug therapy), the condition being treated (e.g., diabetes, hypertension,
acute myocardial infarction, or mental disorders), the case-mix of the patients,
the role of the comparative information, and a variety of other context variables
(Shojania et al. 2001).

The type of assessment of clinical practice performance heavily depends on the
perspective on quality. Blumenthal (1996) distinguishes four main perspectives on
quality: thehealthcareprofessionalperspective, theperspectiveofhealthcareplans
and organisations, the purchaser perspective, and the patient perspective. Health
care professionals tend to emphasise technical excellence and the characteristics
of interaction between patient and professional (Donabedian 1988). Health care
plansandorganisationsplacegreater emphasison thegeneralhealthof theenrolled
population and on the function of the organisation (Leape 1994). Purchasers, of
course, additionally incorporate the price and the effectiveness of the delivery of
care. Taking into account the preferences and values of patients leads to a definition
ofquality that emphasisesoutcomes suchas functional status,morbidity,mortality,
or quality of life, and encompasses satisfaction with care (Petitti and Amster
1998).

Indicators of Structural Quality
Structural measures characterise the resources in the health system. They describe
the setting in which care occurs and the capacity of that setting to produce quality
(Donabedian 1980, Brook et al. 1996). Quality assurance programmes and organi-
sations such as the Joint Commission on the Accreditation of Health Care Organi-
sations (JCAHO) and the National Committee on Quality Assurance (NCQA) in the
USA or the associations of statutory health insurance physicians in Germany, rely
on structural measures (as listed below) to infer quality and confer accreditation
on this basis.

For providers, structural measures include professional characteristics like spe-
ciality or board certifications etc. For hospitals, they include ownership, number
of beds, teaching status, licensure status, availability of sophisticated technologies,
qualification of personnel and other organisational factors for inpatient care (e.g.,
staff-to-patient ratio, closed intensive care units, dedicated stroke units, or the
presence of a clinical information system). One frequently used structural mea-
sure of quality is patient volume (Shojania et al. 2001). The growing use of this
indicator reflects an extensive literature, which documents superior outcome for
hospitals and physicians with higher patient volumes for certain indications and
procedures (e.g., Luft et al. 1979; Hannan et al. 1989; Phibbs et al. 1996; Thiemann
et al. 1999).

When using structural indicators to measure quality of care, the implicit as-
sumption is that structure affects outcome. This is certainly true for the compliance
with minimum standards of structure (e.g., rules for hygiene in operating rooms).
But on higher levels of structural quality the link between structure and outcome
is less clear (Shojania et al. 2001). For example, specialist care as a quality measure
not always results in better outcomes. This is demonstrated by the findings that
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even cardiologists fail to provide proven therapies to many eligible patients with
acute myocardial infarction (Brand et al. 1995). These findings promote the case to
measure the processes of health care delivery directly instead.

Indicators of Process Quality
Process indicators permit a glimpse into the inside of the care-delivering units,
allowing measurement of the care patients actually receive. They measure the net
effect of physicians’ clinical decision-making. Clinical choices about the use of
surgery, medication or diagnostic tests, admission to a hospital, and length of stay
account for a large proportion of the costs of services and of outcomes experienced
by the patients. Sometimes generic process measures are used (e.g., number of
prescriptions, average length of stay, or day case surgery rate). But mostly they
are specific to specialities and certain conditions (e.g., antibiotics within eight
hours for patients with community-acquired pneumonia, prophylaxis for venous
thromboembolism,orbeta-blockers forpatientswithacutemyocardial infarction).

Process measures can be reported for individual physicians, groups of practi-
tioners, for hospitals, hospital units, or hospital trusts, or for the entire system of
care. They are favoured by providers to indicate quality because they are directly
related to what providers do. Frequently they are derived from evidence-based clin-
ical guidelines and facilitate individual physician quality improvement. If proven
diagnostic and therapeutic strategies are monitored, quality problems can be de-
tected long before demonstrable outcome differences occur (Brook et al. 1996).

Even so there are some arguments against process-based measurement of the
quality of care. First, process measures are not necessarily good predictors of
outcome, and allocating resources to processes which do not affect outcomes
may increase cost without producing any improvement in health (Ellwood 1988).
Moreover, collecting process data may be a comparatively elaborate procedure.
Finally, it may not be possible to achieve consensus on the recommended process
for many clinical problems (Petitti and Amster 1998).

Indicators of Outcome Quality and Adjustment for Case-Mix
The quality-relevant health outcomes have been described as the “five Ds” – death,
disease, disability, discomfort, and dissatisfaction (Elinson 1987), or, more pos-
itively turned, when measuring quality of care, health outcomes could be sum-
marised as survival, states of physiologic, physical and emotional health, and
patient satisfaction (Lohr et al. 1988). Broader definitions of outcomes include psy-
chosocial functioning, quality of life, resource utilisation and costs of care (Iezzoni
1994).

The use of outcome measures to assess the quality of clinical performance has
been criticised for several reasons. First, even for common conditions, it may take
years to detect differences in outcomes between groups of patients (Palmer 1997).
Moreover, such differences may not be under the control of providers but reflect,
among others, patient factors, variations in admission practices, or chance rather
than differences in quality of care (Shojania et al. 2001). Many outcomes (e.g.,
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mortality) are rare and comparisons of quality based on such outcomes often have
low statistical power (Brook et al. 1996).

Considerable concern is related to perverse incentives for “upcoding” and “gam-
ing” (McGlynn 1998), whereby gaming means a change of treatment to more ex-
pensive forms which are frequently more stressful for the patient and result in
a reduced quality of care (e.g. a surgical procedure instead of a drug prescrip-
tion, an inappropriate hospitalisation or a short hospital admission for a marginal
diagnosis).

Incentives for gaming may arise from the criteria used to define target patient
populations. For example, restricting inpatient mortality to deaths that literally
occur in the hospital allows hospitals to lower their mortality rates simply by
discharging patients to die at home or in other institutions (Jencks et al. 1988).
Additionally, the incentive for physicians or hospitals to avoid caring for sicker
patients remains a substantial concern for outcome-based performance measure-
ment (Hofer et al. 1999). Proliferation of diagnoses related to co-morbidity or
coding of diagnoses related to severity of illness (upcoding) were observed after
the introduction of the prospective payment system for HMO-enrolled beneficia-
ries of Medicare (Keeler et al. 1990).

The most important concern of research related to outcome-based quality mea-
sures focused on the development of case-mix adjustment models for hospital
mortality rates. Case-mix adjustment and risk adjustment are based on simi-
lar methods, but they use different data sources: Case-mix indices are based on
medical records from hospitals or physicians, while risk adjustment is based on
administrative data, e.g. from health insurances. Models that have originally been
designed to predict financial rather than clinical outcomes (see Sect. 5.4.1) did
not perform sufficiently well in this context. Progress has been made in adopting
models to identify the case-mix of a group of patients by focusing on specific sub-
groups of patients instead of overall hospital mortality and using clinical rather
than administrative data (Iezzoni 1994).

Examples for Performance Assessment 5.5.3

Comparison of HMOs Based on a Performance Indicator System
The federal Centers for Medicare and Medicaid Services (CMS), formerly known
as the Health Care Financing Administration (HCFA), and the private sector in the
USA have supported the development of several performance indicator systems
in order to compare the quality of care delivered by HMOs. Perhaps the most
popular system, the Health Employer Data and Information Set (HEDIS), was
introduced in 1993 and was revised in 1995 and again in 1997. It can be considered
as the model for many other performance measurement efforts (Petitti and Amster
1998).

HEDIS was designed by the National Committee for Quality Assurance (NCQA)
to evaluate several aspects of health plan performance including clinical quality of
care, access to care, satisfaction with care, utilisation of services, and the financial
performanceof theHMO.Theclinical quality-of-care indicators included inHEDIS
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were chosen to address aspects of the care process for which there was strong
evidence in the literature to support the relationship between medical care process
and desired outcomes (Petitti and Amster 1998). These included indicators for low
birth-weight babies, childhood immunisation status, breast cancer screening, eye
exams for people with diabetes, and beta-blocker treatment after heart attack.

Hospital Ranking
InNHS-typecountries theassessmentof thequalityof clinicalperformance focuses
on the health of the general population and the function of the health care system
with a special concern on inpatient care. For example, in the United Kingdom,
in order to rank hospitals, the publication of clinical indicators in the form of
so-called league tables has a long history. As far back as 1983, a set of performance
indicators was published covering five areas, one of which was clinical activity.
Since then the set of indicators has been revised several times (British Medical
Association 2000).

Currently the published UK league tables are compiled by the Dr Foster or-
ganisation (separately for England, Wales, Scotland and Northern Ireland). They
are based on the Department of Health’s Episode Statistics (HES) and data col-
lected through questionnaires. The indicators fall into five broad categories: stan-
dardised mortality rates, waiting times and volumes, staff to bed ratios, and –
for England only – patient and staff satisfaction and other rating based scales
(clean hospital, good food etc.). The mortality rates are standardised for age,
sex, length of stay, and type of admission (elective or emergency admission).
SMRs are calculated for each of 80 ICD9 three-digit primary diagnoses (account-
ing for 80 per cent of all in-hospital deaths) cited in the final episode of care.
The expected deaths for each hospital7 (the denominator of the SMRs) are cal-
culated by multiplying the number of hospital admissions in each stratum or
cell by the national death rates for that stratum and adding across all strata.
Hospitals are classified as high or low with respect to a SMR if their 95% con-
fidence intervals do not include unity. A supplementary indicator based on HES
is the diagnosis-specific standardised admission ratio (SAR) for each Primary
Care Trust (PCT) area. The SAR is calculated like a SMR where the denomina-
tor is built up by the number of admissions expected for the PCT population
assuming it had the same admission rate as the national average, taking into
account age, sex and the different diagnoses (Dr Foster 2004a,b). The league
tables are criticised for several reasons. The first concern refers to an insuffi-
cient control for case-mix relating to severity, co-morbidity, deprivation, and
the availability of places for people to be discharged to nursing homes or hos-
pices. The second refers to the use of HES, which are based on finished consul-
tant episodes (the NHS’s measure of hospital activity), whereas no conversion
to hospital spells is provided (HES are not designed to collect detailed clinical
data). Third, the primary diagnosis has been questioned, as diagnostic criteria
change. Finally the focus on inpatient mortality is considered a shortfall because

7 The SMRs for England are calculated at trust level only.
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an increasing proportion of deaths occur outside the hospital (Jacobson et al.
2003).

In the United States an annual index of hospital quality (“America’s Best”) is
published by U.S. News & World Report. This hospital ranking methodology was
devised in 1993 by the statistics and methodology department of the National
Organization for Research (NORC) at the University of Chicago, which carries
out the analysis and refines it as needed. The index is designed to be used by
patients who are looking for the best hospital to treat their health problems.
The 2003 hospital ranking is broken down into 17 specialities. It is based on
reputation, mortality and other factors. The reputational scores of a hospital in
each of the 17 specialities are based on a survey. 150 randomly selected board-
certified physicians were asked to list up to five hospitals they believed to be tops
in their speciality, without considering cost or location. The mortality score is
adjusted for case-severity. The severity adjustments were derived using the All
Patient Refined Diagnosis Related Group (APR-DRG) method designed by 3M
Health Information Systems. The APR-DRG adjusts expected deaths for severity
of illness by means of principle diagnosis and categories of secondary diagnoses.
Most of the data that are summed up to the “other factors” (e.g., data on nursing
care and technology availability) came from the 2001 annual survey of hospitals
by the American Hospital Association (O’Muircheartaigh et al. 2003).

The ranking of hospitals on behalf of the U.S. News & World Report is not the
only one published in the United States. The Hospital Association of Southern
California (HASC) states that an “incredible proliferation of hospital record cards
byall sortsoforganizations isbombarding thepublic and themembership” (Barber
2003). HASC has established a Hospital Quality Committee that, among others,
has the task to analyse hospital ranking report cards, including source data, data
aggregation, weighting, risk adjustment, sample thresholds and presentation style
(Qureshi 2003).

In Germany, there is no published ranking of hospitals except for some studies of
limited impact, e.g., of theUniversityofBayreuth (Institut fürMedizinmanagement
und Gesundheitswesen 2004), that are connected to credit rating required by the
new guidelines of the banks of the Group of Ten countries (Basel Committee on
Banking Supervision 2003).

Physician Profiling
The Physician Payment Review Commission of the American Medical Association
(AMA) defines physician profiling as “an analytical tool that uses epidemiological
methods to compare practice patterns of providers on the dimensions of cost,
service use, or quality (process and outcome) of care.” Profiles can be developed
for an individual physician, a group of physicians, or physicians within a hospital
or managed care plan. They can be broken down by geographic area, speciality,
type of practice or other characteristics. Profiling can focus on many different
types of outcome or resource measures. Those resources may be defined globally
(e.g., overall charges|costs for the care of a person or group of persons) or they
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may represent certain subcategories of services (e.g., laboratory, X-ray, physician
services, or pharmaceuticals). Profiling is usually applied to compare resources
used by cohorts of patients to get a sense of whether their providers do or do not
practice efficiently. Even when profiles are not used to modify payment, they may
be used to select or reject providers or to determine appropriate patient caseloads
for salaried practitioners (Tucker et al. 2002).

The core element of any profiling methodology is risk adjustment by calculating
an SMR-like figure, i.e., a ratio of observed to expected values of the considered
measure. The expected value is adjusted with respect to age, sex of the patients and
to the diagnostic groups that were assigned by the used grouper. Most of the sellers
of common models of diagnosis based risk adjustment (e.g., ACG and DCG) offer
the use of their predictive models for profiling.

Profiling may serve as a tool to feed information on care back to the physicians.
Also, managed care organisations as a whole have had considerable experience
with profiling in order to monitor plan activity. For example, profiling reports,
adjusted for case-mix, can be used to distribute bonus or set-aside funds that are
marked to recognise how well resource management goals are achieved among
managed care providers (Tucker et al. 2002). A review of profiling in practice is
given by Sutton (2001).

Concerns about physician profiling encompass the following issues (Zastrow
2001): Although managed care organisations and hospitals overtly justify profiling
as a means to improve quality or conduct utilisation review, they may act without
any concern for cost-effectiveness. Profiling is thus mainly based on billing|claim
data that are considered not only to be limited in nature, but also to be grossly
incorrect. Profiling methods are frequently flawed as they do not take into account
sample size, and regional or physician speciality variation. The underlying as-
sumption that the “average” standard of care is the best, is questionable. Although
profiling saves money, it adds cost back into the system. There has also been con-
troversy surrounding who has access to profile information. For physician groups
who profile their own members, feedback to individual physicians is routinely
given as an educational measure. However, this is not always the case for health
plans (Zastrow 2001). Against the background of these concerns the American
Medical Association (AMA) compiled a position paper describing principles to
guide the collection, release and use of physician-specific health care data (AMA
2000).

In 1996, the Commonwealth of Massachusetts became one of the first states to
implementacomprehensivephysicianprofilingprogrammeavailable toconsumers
over the Internet. Many other states have adopted similar systems since. In the
beginning of the year 2001, physician profiles were available in 30 states, with
legislation pending in eight others (Sutton 2001).

In Germany, profiling of physicians has been based on crude measures. Up to
now they have been compared with the average of the regional group of physicians
belonging to the same speciality, but a medium-term change to the risk adjusted
profiling system, mandated by law, is scheduled.
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Outcomes of Health Care 5.6

Assessing Output and Outcomes of Care 5.6.1

A frequently cited definition of outcomes was given by Donabedian (1985): “Out-
comes are those changes, either favourable or adverse, in the actual or potential
health status of persons, groups or communities that can be attributed to prior or
concurrent care.”

The most conventional method of measuring the health status of populations is
by means of vital statistics, including statistics of birth and death. Disease-specific
incidence rates, cause-specific mortality rates or other population-based indicators
are extensively used to assess the health status of communities, counties, or health
systems in general (see Sect. 5.6.3). For example, the Centers for Disease Control
(CDC) established a set of 18 population-based health status indicators in 1991 for
use at all administrative levels in the United States (Freedman et al. 1991).

Vital statistics may be considered as the key feature of outcomes research to
study health care and the effect of intervention on a broad range of outcomes, both
humanistic andclinical (Petitti 1998a).Aspopulation-basedmeasuresofhealth and
methods of adjustment are dealt with in Chaps. I.2 and I.9 of this handbook and
in several sections of this chapter, in the following we focus on further approaches
to measure health status used in outcomes research, including patient-based out-
comes measurement, adjusted life expectancy, and patient satisfaction. A common
feature of most of these outcomes measures is that data are collected by ques-
tionnaires directly from patients, residents, employees, insured, or HMO-enrolled
beneficiaries.

Patient-based Measures of Health Status
Clinicians can make use of a variety of measures which are disease-specific, sys-
tem or organ-specific, function-specific (such as instruments that examine sleep
or sexual function), or problem-specific (such as back pain) to explore the full
range of patients’ experience. Disease-specific health status measures have been
developed for nearly all chronic conditions, including, for example, asthma, can-
cer sites, cardiovascular diseases, diabetes, rheumatoid arthritis, prostate dis-
ease, epilepsy, hypertension, pneumonia, and migraine (Guyatt et al. 1995). But
if there is interest to go beyond the specific illness and to compare the impact of
treatments on health-related quality of life (HRQL) across diseases or conditions,
one will require a more comprehensive assessment. None of the disease-specific,
system or organ-specific, function-specific or problem-specific measures are ad-
equate for comparisons across conditions. These comparisons require generic
measures designed for administration to people with any underlying health prob-
lem (or no problem at all) that cover all relevant areas of HRQL (Guyatt et al.
1995).

Generic health-status questionnaires are usually designed to establish separate
scales including physical, mental and social health, as suggested by the well known
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definition of health by the WHO (1947). There are numerous generic health-status
measures – for a review and description see, e.g., Spilker (1995) or McDowell and
Newell (1996). Three of these are very popular and have become standard in the
health status field: The 36-Item Short Form Questionnaire (SF-36) (Ware and Sher-
bourne 1992), the Sickness Impact Profile (SIP) (Bergner et al. 1981) and the Quality
of Well-Being Scale (QWB) (Kaplan and Anderson 1988). The psychometric prop-
erties of these instruments are sufficiently tested and the reliability is considered
high (Petitti 1998a).

In particular the SF-36 (a shortened version of a battery of 149 health status
questions) is one of the most widely accepted, extensively translated and tested
instruments around the world (Tseng et al. 2003). It satisfies rigorous psychometric
criteria for validity and internal consistency. Clinical validity was shown by the
distinctive profiles generated for each condition, each of which differed from that
in the general population in a predictable manner. Furthermore, SF-36 scores were
lower in referred patients than in patients not referred and were closely related to
general practitioners’ perceptions of severity (Garratt et al. 1993).

The SF-36 was designed for use in clinical practice and research, health policy
evaluations, and general population surveys. It includes one multi-item scale that
assesses eight health concepts:
1. limitations in physical activities because of health problems;
2. limitations in social activities because of physical or emotional problems;
3. limitations in usual role activities because of physical health problems;
4. bodily pain;
5. general mental health (psychological distress and well-being);
6. limitations in usual role activities because of emotional problems;
7. vitality (energy and fatigue); and
8. general health perceptions.

See also the measurement concept in Fig. 5.3 and an excerpt of the questionnaire
in Fig. 5.4. The survey was constructed for self-administration by persons 14 years
of age and older, and for administration by a trained interviewer in person or by
telephone (Ware and Sherbourne 1992).

In the late 1980s a European group of researchers started to develop a generic
health-status measure – the European Quality of Life Scale (EQ-5D) – simul-
taneously in several European languages (EuroQol Group 1990; Brooks 1996).
The EuroQol Group consisted originally of a network of international multidisci-
plinary researchers from Europe, but nowadays includes members from Canada,
Japan, New Zealand, Singapore, South Africa and the USA. The EQ-5D self-report
questionnaire comprises five dimensions of health (mobility, self-care, usual ac-
tivities, pain|discomfort anxiety|depression) rated on three levels (no problems,
some|moderate problems|extreme problems). A unique EQ-5D health state is de-
fined by combination of these dimensions. EQ-5D is a public domain instrument
(http:||www.euroqol.org|index.htm).
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Figure 5.3. The SF-36 measurement concept (adapted from SF-36 Psychometric Considerations;

http:||www.sf-36.org|tools|sf36.shtml)

Adjusted Life Expectancy
Life expectancy, even without any adjustments, is already a rather complex mea-
sure. It is defined as the average future lifetime of a person at birth and is calculated
from a current life table (the key tool of actuaries for some 200 years). Consider
a large group, or “cohort”, of persons, who were born on the same day. If an
actuary could follow the cohort from birth until death, he or she could record
the number of individuals alive at each birthday – age x, say – and the number
dying during the following year. The ratio of these is the probability of dying at
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Figure 5.4. Excerpt from the SF-36 questionnaire: Item 9 (from SF-36 Health Survey Scoring

Demonstration; http:||www.sf-36.org|demos|SF-36.html)

age x, usually denoted by q(x). It turns out that once the q(x)’s are all known, the
life table is completely determined. In practice such “cohort life tables” are rarely
used, in part because individuals would have to be followed for up to 100 years,
and the resulting life table would reflect historical conditions that may no longer
have relevance. Instead, one generally works with a period, or current, life table.
This summarises the mortality experience of persons of all ages in a short period,
typically one year or three years. More precisely, the death probabilities q(x) for
every age x are computed for that short period, often using census information
gathered at regular intervals (for example, every ten years in the U.S.). These q(x)’s
are then applied to a hypothetical cohort of 100,000 people over their life span to
create a current life table (Strauss and Shavelle 2000).

Several approaches have been developed to adjust life expectancy for aspects of
health-related quality of life (Drummond et al. 1997). Most often used are the con-
cepts of quality-adjusted life years (QALY) on the one hand and the concept of dis-
ability-adjusted life years (DALY) on the other hand (cf. Chap. I.3 of this handbook).

A quality-adjusted life year is a measure that assigns a (utility) value, often
called Q, between 0 and 1 to each health state of a year with 0 representing death
and 1 representing perfect health. The Q factors are then multiplied with the
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time spent in the corresponding health states and these weighted times finally are
summed up to achieve the QALY.

Three methods are used alternatively to establish a set of consistent Q values,
all derived from consumer choice theory, which describes how consumers decide
what to buy on the basis of two fundamental elements: their budget constraints
and their preferences. Consumer preferences for different consumables are of-
ten represented by the concept of “utility” (Torrance et al. 1972, 1987; Mankiv
1998). The techniques proposed to measure the utility of specific health states on
a linear scale were the von Neumann-Morgenstern “standard gamble”, the “time
trade-off” method, and direct scaling techniques (e.g. category rating). These were
claimed to produce equivalent and reliable results, but the time trade-off is easier
to administer than each of the other two techniques (O’Connor 1993). The results
of a simultaneous test of all three methods were that subjects found the time
trade-off task the easiest, the standard gamble slightly more difficult (but probably
impossible without some props), and the direct scaling task the most difficult.
Only the time trade-off task was considered to be capable of being executed with-
out a well trained interviewer (Torrance 1976; O’Connor 1993). Nevertheless direct
scaling methods are commonly used to derive preferences (Petitti 1998a), probably
without observing the necessary methodological diligence.

In a standard gamble the rater (i.e. the person to establish the utilities) must
choose between two alternatives. One alternative has a certain outcome (that is the
health state toberated)and theother involvesagamblewith twopossibleoutcomes:
the best health state (usually complete health), which is described as occurring
with a probability, p, or an alternative state, the worst state (usually death) which is
described as occurring with probability 1 − p. The probability p is varied until the
rater is indifferent to the alternative which is certain and the gamble that may bring
the better health state. The time trade-off task also entails a choice between two
alternatives, but neither is a gamble. Each is a different health state, but for differing
periods of time. The rater is asked to value a choice of being in a less desirable health
state for a longer time followed by death compared with being in a more desirable
state for shorter period of time followed by death. The time in the less desirable
health state then is decreased to the point of indifference. In category rating, raters
sort the health states into a specified number of categories, and equal changes in
preference between adjacent categories are assumed to exist (Petitti 1998a).

QALYs have been widely criticised on ethical, conceptual, operational and
methodological grounds. To begin with the last ones: Prieto and Sacristán (2003)
have recently pointed to a considerable problem, which results from the numerical
natureof its constituentparts.Theappropriatenessof theQALYarithmeticalopera-
tion is compromisedby theessenceof theutility scale:while life-years are expressed
in a ratio scale with a true zero, the utility is an interval scale where 0 is an arbitrary
value fordeath. Inorder tobeable toobtain coherent results, both scaleswouldhave
to be expressed in the same units of measurement. The different nature of these two
factors jeopardises the meaning and interpretation of QALYs. By a simple general
linear transformation of the utility scale the authors demonstrate that the results
of the multiplication are not invariant, and offer a mathematically solution to these
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limitations through an alternative calculation of QALYs by means of operations
with complex numbers, so that the new QALYs have a real part (length of life) and
an imaginary part (utility). The revisited formulation of the QALYs provides a less
dramatic adjustment of years of life than that implied by the multiplicative model.
The maximum penalization represented by living in a sub-optimal state of health is
capped at 30% of the total time lived in that state, in contrast to the case of the multi-
plicativemodel,where thepenalizationcanreach 100%(PrietoandSacristán2003).

Ethical concerns arise when QALYs are used in cost-effectiveness or cost-utility
analysis for evaluation of alternative health policies, treatment programmes, or set-
ting of priorities. A simple ratio cost|QALY is commonly calculated in this type of
analysis inorder to compare cost-effectivenessof treatments, interventionandpro-
grammes etc. But is has been pointed out, among other arguments, that investing in
the interventions that have the lowest cost per QALY ignores the principle of equity
(Drummond1987). In addition,QALYs share aproblemof life-expectancyas amea-
sure of outcome: they discriminate against the aged and the disabled, because these
groups of persons have fewer life years to gain from an intervention (Harris 1987).

The main other type of commonly used summary measure which combines in-
formation on mortality and morbidity is the disability-adjusted life year. The DALY
is thebestknownexampleofa“healthgap”summarymeasure,whichquantifies the
gapbetweenapopulation’sactualhealthandadefinedgoalused toquantify thebur-
den of disease in a country, region, or on the global level (Murray and Lopez 1996).
However, DALYs share most of the methodological and ethical difficulties with
QALYs, such as utility-weighting and discounting health benefits. The discrimina-
tion of elderly people is even more pronounced than with QALYs as an additional
age-weighting is performed when constructing DALYs, whereby years lost during
the productive phase of life get a higher weight than years lost in childhood or at
a more advanced age (Gericke and Busse 2003). Related concepts are Disability Free
Life Years (Sullivan 1971) and Healthy Life Expectancy (Robine and Ritchie 1991)
which may be based on surveys. DALYs can be calculated exclusively based on life
tables from census data and cross-sectional data from official disability statistics (if
necessaryona samplebase).The so-calledSullivanmethod toadjust the conventio-
nal life table fordisability consists of applyingdisability rates calculated fromcross-
sectional data to the person-years of the conventional life table. This calculation re-
sults into new estimates of the person-years lived in disability, and the complement
of the later, the person-years lived free of disability, the DALYs (Guend et al. 2002).

A related measure is disability-adjusted life expectancy (DALE) used by WHO in
a controversial report to display the burden of disease by cause, sex and mortality
stratum in WHO regions (WHO 2000). The disability rates used in the WHO
calculations relied on subjective and expert assessment and not on empirical data,
due to data limitations in many nations.

Patient Satisfaction
Interest in measuring satisfaction with healthcare has grown considerably in re-
cent years around the world and there is a large and expanding literature in this
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field. Patient satisfaction and its measurement are undoubtedly important issues
for public policy analysts, healthcare managers, practitioners, and users. Never-
theless measurement of satisfaction often lacks a clear definition. In particular,
it is not always well understood by the people who measure it that satisfaction is
a relative concept which can be measured only against individuals’ expectations,
needs or desires (Wüthrich-Schneider 2000; Crow et al. 2003). Despite problems
with establishing a tangible definition of “satisfaction” and difficulties with its mea-
surement (among other things those which are predicted by the well-known theory
of cognitive dissonance, cf. Festinger 1957) the concept continues to be widely used.
However, in many instances when investigators claim to be measuring satisfaction,
more general evaluations of healthcare services are being undertaken that tend to
result in high levels of satisfaction being recorded (Crow et al. 2003).

Historically patient satisfaction surveys have focused on inpatient health care
services but in recent years investigations of patient satisfaction have been carried
out in outpatient settings as well. In Germany, for example, a recently developed
questionnaire to measure patient satisfaction in generalist and specialist ambu-
latory medical care comprises 27 single items divided into the four dimensions:
“professional competence”, “physician-patient interaction”, “information”, and
“organisation of the practice”. This concept has been tested in a survey of 3487 pa-
tients in 123 physician practices (Gericke et al. 2004). A former international study
of patients’ priorities with respect to general practice care collected data by postal
surveys in UK, Norway, Sweden, Denmark, the Netherlands, Germany, Portugal
and Israel. The study results show that patients in different cultures and health
care systems have many views in common, particularly concerning doctor-patient
communication and accessibility of services (Grol et al. 1999).

Assessing Efficiency of Care 5.6.2

In addition to measuring the output of health care in terms of healthy life gained,
efficiency is another important dimension in assessing health services output.
Unfortunately, the word efficiency is often used inappropriately to describe pro-
ductivity, i.e. relating episodes of care or number of procedures to the inputs or
costs (Gray 1997). Efficiency refers to the health system’s ability to use whatever
resources it has to maximum effect (Le Grand 1998). Efficiency has three levels:
technical, productive and allocative efficiency. Technical efficiency answers the
narrow question of whether the same or a better outcome could be obtained by
using less of one type of input (Palmer and Torgerson 1999). It is based on effec-
tiveness. Productive or internal efficiency is achieved when the maximum possible
improvement in outcome is obtained from a given level of resource inputs or when
costs are minimised to obtain a given level of output (Donaldson and Gerard 1993;
Palmer and Torgerson 1999). Prerequisite for productive efficiency is technical
efficiency.

Allocative or external efficiency refers to the way resources are divided between
alternativeuseswithin thehealth sector (Barr 1998). It impliesproductive efficiency
(Donaldson and Gerard 1993). The theoretical foundation of allocative efficiency
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rests on the Pareto criterion: a resource allocation is efficient if it is impossible
to move to an alternative allocation which would make some people better off
and nobody worse off (Begg et al. 1997b). Among other conceptual difficulties,
strict adherence to this principle would preclude changes that would make many
people much better off at the expense of a few made slightly worse off (Palmer and
Torgerson 1999). Therefore, an operational utilitarian decision rule is often used
instead: allocative efficiency is achieved when resource allocation maximises social
welfare (Palmer and Torgerson 1999). Cost-effectiveness studies as a tool to put
the concept of operational efficiency in health care into practice have already been
summarised in Sect. 5.4.1. Cost-benefit studies can address questions of allocative
efficiency comparing interventions between different sectors, as output of care is
measured in monetary units. As this is politically and ethically difficult to accept
for many non-economists, cost-benefit analyses of health interventions are seldom
performed.

Assessing the Outcome of Health Systems5.6.3

In principle the same methods are used to assess the outcome of health systems
which are used to assess the outcome of health services within a country. However,
problems with data quality, definitions and comparability across different cultures
make comparisons between different health systems more difficult than health
services research limited to a particular country (Schwartz and Busse 2003). As
decision-makers in countries of all levels of development are faced with common
problems as they struggle to make appropriate choices to improve the performance
of their health systems, the interest of politicians and scientists in comparative
health systems research has grown rapidly during the last two decades. A common
goal of researchers is to provide policy decision-makers and managers with the
best available evidence in order to inform policy decision making. In analogy to
evidence-based medicine this movement has been termed evidence-based health
policy or evidence-based health care (Gray 1997). However, the evidence-base on
how to improve the performance of health systems is still weak (Murray and Evans
2003).

Cross-sectional Comparisons
Two methodological approaches are commonly used in comparative health sys-
tems research. A cross-sectional approach comparing a number of parameters at
a particular point in time, and a longitudinal approach comparing the develop-
ment of parameters over a defined time period. To illustrate the advantages and
disadvantages of both approaches we will focus here on two examples. The first
is a summary of the approach taken by the World Health Organization (WHO)
to assess health systems performance on a global scale. In 1998 WHO embarked
on a project to assess the health system performance of its member states, culmi-
nating in the World Health Report 2000, in which countries’ health systems were
ranked according to their performance. Health system performance was measured
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according to the level and distribution of population health, responsiveness, and
fairness in financing (World Health Organization 2000; Murray and Evans 2003).
Although the provision of comparative data on health system characteristics is
recognised as important in improving health care systems, the report has elicited
heavy criticism, summarised by Gravelle et al. (2003). These included the purpose
of the exercise (Williams 2001), the definition of some of the performance measures
(Braveman et al. 2001), the quality of data (McKee 2001; Williams 2001), and mixed
messages (Navarro 2000). Gravelle et al. (2003) furthermore demonstrated that
the efficiency rankings and estimates of the magnitude of inefficiency in countries
were not robust when compared with other, no less reasonable, methodological
choices concerning the econometric methods used. The final rankings for a num-
ber of EU countries and ranking results concerning patient satisfaction with health
systems are illustrated in Table 5.5, and compared to a number of other parameters
which are commonly used to measure the input, process, and outcome of a health
system.

It can be noted that parameters differ widely between countries at a similar level
of national income and development. Some factors show a close correlation, e.g.
the health score with patient satisfaction or hospital bed provision with hospital
utilisation.On theotherhand, satisfactionwith thehealth systemdoesnot correlate
at all with the overall WHO ranking of the health system performance. This results
in contradictory results for countries like Denmark and Finland on the one hand,
and Spain on the other (Schwartz and Busse 2003). Table 5.5 illustrates some of the
issues surrounding the interpretationof cross-sectionaldata.Differentdata sources
can vary substantially on the same measure. Such discrepancies – if detected at
all – demand a thorough investigation of possible causes. A common cause are
differences in the numerator, e.g. differences between licensed and practising
doctors or beds in acute care hospitals or in all hospitals. Differences in the
denominator are also important. For instance for the measurement of neonatal
mortality it makes a difference whether all births on the territory of a country are
counted or all births of nationals of that country (Schwartz and Busse 2003).

The most important difficulty with cross-sectional comparisons of health sys-
tems from a policy perspective is probably that health output measured in terms
of reduced mortality and health systems performance are correlated in a contra-
dictory way. If a country reacts in an appropriate way to high mortality rates and
invests in health system infrastructure, mortality would fall as a result assuming
effectiveness of the measures taken. This longitudinal result cannot be measured
in cross-sectional studies. Therefore cross-sectional comparisons cannot indicate
whether a high level of inputs in a particular country has obviated even higher
mortality rates and we only see average mortality in this country or whether there
truly exists an inefficient input–output relation.

Longitudinal Comparisons
The other approach consists in comparing the development of input, process and
output parameters in different health systems in a longitudinal perspective. The
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Table 5.5. Selected input, process and outcome parameters for some European countries, around 1997. Data from the OECD Health Dataset 2001, the WHO Health

for All database 2003, and the World Health Report 2000 (World Health Organization 2000). Adapted from Schwartz and Busse (2003)

Financial Structure: Structure: Process: Process: Process: Outcome: Outcome: Outcome:
input: % Hospital Doctors| Hospital Hospital ambulatory Neonatal Satisfaction Overall
of GDP beds|1000 1000 cases|100 days| doctor-patient mortality| with health ranking
(1998) population population pop.|year capita contacts|year 1000 system in % of health

(1997) (1997) (1996) (1996) (1996) (1998) [Ranking system
within EU] within EU
(1998) (1999)

Austria 8.0 9.1 2.9 25.1 2.6 6.3 4.9 72.7 [3] 4
Belgium 8.6 7.3 3.7 20.0 2.2 8.0 5.6 62.8 [7] 11
Denmark 8.3 4.6 3.3 19.8 1.4 5.7 4.7 90.6 [1] 15

(6.6)∗
Finland 6.9 7.9 3.0 26.9 3.2 4.3 4.1 81.3 [2] 14
France 9.4 8.6 3.0 22.5 2.6 6.5 4.6 65.0 [6] 1
Germany 10.3 9.4 3.4 19.7 2.8 6.5 4.7 57.5 [9] 13
Greece 8.4 5.0 4.1 – 1.2 – 5.7 15.5 [15] 6

(6.7)∗
Ireland 6.8 – 2.1 15.1 1.1 – 6.2 57.9 [8] 10
Italy 8.2 5.8 5.8 18.5 1.7 – 5.3 20.1 [13] 2
Luxembourg 6.0 8.1 3.0 – 2.8 2.9 5.0 66.6 [5] 7

(2.4)∗
Netherlands 8.7 11.3 – 11.1 3.6 5.4 5.0 69.8 [4] 8

(5.3)∗
Portugal 7.7 4.1 3.1 11.4 1.1 3.2 5.9 16.4 [14] 5
Spain 7.0 – 2.9 11.4 1.1 – 5.7 (4.9)∗ 43.1 [12] 3

(10.0)∗
Sweden 7.9 4.0 3.1 18.1 1.3 2.9 3.5 57.5 [9] 12

(5.2)∗
United 6.8 4.4 1.7 15.0 1.3 6.1 5.7 57.0 [11] 9
Kingdom (23.1)∗

∗ More than 10 per cent difference between OECD and WHO datasets.
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1980s time series analyses on “avoidable mortality” marked the first attempts at
international longitudinal comparisons (Bunker et al. 1994; Charlton and Velez
1986). A common measure for comparing health systems in a longitudinal way is
life expectancy. In Fig. 5.5, the development of life expectancy at birth is depicted
for a number of selected European countries compared to the EU average for the
time period 1970 to 2000.

Figure 5.5. Life expectancy at birth in selected member countries of the European Union 1970 to

2000. Calculated with data from WHO Health for All Database 2003

This is often done although it is well known that life expectancy is influenced by
many variables outside the scope of the health system, such as the level of socio-
economic development. However, in general, mortality (on which the calculation
of life expectancy is based) is an output measure which is relatively insensitive to
common health services endeavours (Schwartz and Busse 2003):

The overwhelming part of mortality is not amenable to health services activity
(“avoidable mortality”) but natural mortality.
In particular for men a substantial proportion of deaths is due to traffic acci-
dents.
The commonplace argument that mortality figures do not respond quickly to
changes had to be revised after the experience in Russia after the breakdown of
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the Soviet Union, where life expectancy at birth for males fell by approximately
6 years between 1990 and 1994. On the other hand, life expectancy in the Eastern
part of Germany increased substantially in the 1990s.

Relative changes over time are of particular importance for evaluation and policy
decision-making.This is illustrated in thedevelopmentof life expectancyatbirth in
Denmark and Portugal. Whereas both countries had an average life expectancy at
birth of 76 years in the year 2000, Portugal has massively improved on this measure
since 1970, up from 67 years. Although life expectancy in Denmark has nominally
also increased since 1970, up from 74 years, it has had the smallest relative increase
in Western Europe – which is in fact a rather negative development and not an
improvement.

Conclusions5.7

As demonstrated in the examples discussed above, the combination of simple in-
puts and outputs can be of particular political importance, despite all the method-
ological difficulties and caveats. The fact, that even if life expectancy were a good
indicator of health production in the health care system, the question of why a good
result has occurred, i.e. examining structure and process, would not have been an-
swered. There is little consensus on how international comparisons of structures
and processes should be performed. How inappropriate simplification of health
system comparisons can be misleading is demonstrated by the “state versus free
market” debate in Germany. Financing of German hospital care on the basis of
per diem payments has been coined as inefficient, as this payment mechanisms
creates an incentive for longer hospital stays. Some economists have compared
the German system with the US system, where hospital stays are usually shorter,
claiming that this was due to payments according to diagnostic-related groups
(DRGs). However, they did not consider that at that time only hospital services
for 15% of the population covered under the Medicare scheme were remunerated
according to DRGs and that hospital costs per case in the USA were about twice as
high as in Germany, “despite” the DRGs. Likewise, the expected rise in ambulatory
care costs to compensate for early hospital discharge was not considered (Schwartz
and Busse 2003). International comparisons of health system outcomes along one-
dimensional hypotheses have thus to be treated with great caution, in particular
because they are easily misunderstood by policy decision-makers (Schwartz and
Busse 2003).
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Introduction
Modern epidemiology can boast of a precise definition, clearly formulated basic
concepts, and well elaborated methods, all of them described elsewhere in this
handbook. These are in principle the same in developing and in developed coun-
tries. What is different is the framework, the choice of topics and of applications
to be treated given local necessities, but also the battery of tools adapted to typ-
ical tasks and available under local conditions and the type of difficulties that
epidemiologic work is facing.

This chapter attempts to outline these differences. Still, both developing and
developed countries vary enormously also between themselves. Moreover, many
countries belong to one of the two categories when applying certain criteria like
income but to the other one regarding other aspects like education. We will there-
fore not adhere throughout to a fixed definition of a developing or a developed
country. Nevertheless, many common features exist in each of the two groups of
countries regardless how they are defined.

In Sect. A, after a short description of essential features that are specific to health
systems in developing countries, we review the main needs of these countries in
the realm of epidemiology. The last four sections are devoted to the methods of
acquiring and applying epidemiologic knowledge. Of these, global health informa-
tion systems are a particularly striking specific component of the health structures
in developing countries because they practically exist only there. Sample surveys
also play a more important role than in developed countries, whereas the opposite
is true for more advanced epidemiologic studies.

The context for epidemiological investigations in India has to be placed against
the background of some ground realities. India is the second most populous
country in the world with a population of over 1 billion in 2001 and an annual
birth cohort of approximately 25 million (Census of India 2001). This gigantic
population is distributed through diverse geographical terrains and show a wide
spectrum of socio-economic development, cultural heterogeneity, and linguistic
diversity. The phenomenon of developmental planning including health plan-
ning is relatively recent, initiated after Independence, less than sixty years ago.
The historic evolution of the health sector has witnessed the development of
both public and private health sectors. The latter is poorly regulated, and cur-
rently there is no information on the number of active practitioners in the pri-
vate sector. Adding to this complexity is the fact that India has plural systems of
medicine, namely, Indian systems of medicine such as ayurveda, unani, siddha,
naturopathy as well as allopathy and homeopathy. These diverse factors enhance
the challenge of collecting accurate, reliable and up-to-date morbidity and mor-
tality data.

In Sect. B, we will address two aspects of epidemiology in India. In the first
part, we comment on the availability of demographic and health statistics in the
country. Data on age specific mortality is available in the country, although reli-
able information on overall morbidity is unavailable. We illustrate the challenge of
establishing and maintaining disease registers, by presenting the intricate organi-
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zational structure of the health sector in India that imposes enormous complexity
in data management.

In the second part, we use tuberculosis epidemiology as a case study, to illustrate
the trajectory between epidemiological investigations and their role in shaping
national tuberculosis control strategies. Tuberculosis accounts for the largest cause
of infectious morbidity and mortality in the country. Globally, India is ranked
first amongst the twenty-two high burden countries listed by the World Health
Organization. We discuss the issues of estimating disease incidence and prevalence
in the absence of complete and accurate morbidity data. We conclude with the
obvious statement that in a resource starved country like India, an accurate, reliable
and timely disease reporting system is an urgent requirement to ensure evidence-
based rather than ad hoc health policies.

General (by K. Krickeberg) A

The Framework:
Health in Developing Countries 6.1

The specific form of epidemiologic research and applications in a given country is
conditioned to a large extent by the way health care is organized and functioning.
There we encounter many differences on principle between developed and devel-
oping countries. The former are generally richer and can spend more money on
health in absolute terms, but usually also in relative terms as measured in relation
to national income.

More specifically, thewaycurative care isorganizeddiffers substantiallybetween
the two groups. This is especially true for primary health care in the classical sense
of health care that begins at the time of the first encounter between a patient
and a provider of health service. In developed countries it rests essentially with the
generalpractitionerwho isa trainedphysician, and toa lesser extentwithdoctors in
hospitals and policlinics. In developing countries it is mostly offered by communal
health centres (CHCs) or comparable health facilities that are mainly staffed with
health workers like nurses and midwives who are less trained but sometimes more
efficient than physicians. Regarding secondary health care, hospitals in the least
developed countries tend to be concentrated in large cities, especially in the capital,
to the detriment of the rest of the country.

General hygiene and specific preventive measures in developing countries suffer
particularly from the lack of material means and knowledge. Bureaucratic weak
administrative structures and lack of management training and experience also
have much bearing on Public Health and so do insufficient civil registries and other
records, especially demographic ones. It is in this environment that, for instance,
the burden of AIDS has been incommensurably heavier than in developed regions
of the world.
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The main reason next to poverty for which the health system in developing
countries has taken such a different path from that of developed ones is founded
in their historical evolution and in particular in the role of contributions from
outside. These were twofold.

Firstly, health care in colonies was initially built up to a large extent by mis-
sionaries and then by the colonial masters, the latter adapting it mainly to their
own needs, sometimes to the detriment of indigenous medicine. This building
up continued later in the form of bilateral cooperation with developed countries,
especially training, and also embraced developing countries that had never been
colonies like Thailand or Turkey, often in synergy with national efforts. In general,
it emphasized individual health care and often suffered from the concentration of
hospitals in urban centres. Again, there were exceptions, some developing coun-
tries like Vietnam succeeding in making substantial progress in Public Health,
too, and in creating networks of CHCs and small hospitals that covered the entire
country.

Secondly, international programmes have been a very important source of con-
tributions from outside. They were mostly designed by WHO but implemented
by organizations like UNICEF, international or national non-governmental orga-
nizations, and national health authorities or institutes like ministries of health or
national hygiene institutes. They are installed and run vertically, from their respec-
tive top administrations down to the basic providers of health care. They tend to
strengthen Public Health and are sometimes curative, sometimes preventive, and
sometimes both. They have shaped large sectors of the health system of developing
countries. Since they usually involve a lot of epidemiologic work, we will list some
of them here. For details, see the relevant publications of WHO.

The first major international programmes after World War II concerned tu-
berculosis and malaria. Other programmes directed against particular diseases
followed, e.g. against smallpox which lead to its eradication, poliomyelitis, goi-
ter, cataract, and finally HIV. There were some programmes of more regional
importance like leprosy, schistosomiasis, onchocerciasis (river blindness), menin-
gitis, and arthropod-borne virus diseases, especially yellow fever and dengue
fever.

In addition, WHO-programmes of a different type appeared which were not
meant to prevent or cure a specific disease but to prevent death caused by certain
unspecific manifestations of any of a whole group of acute ailments: CDD and ARI.
The core of CDD (Control of Diarrhoeal Diseases) consisted in preventing death
from dehydration of children under the age of 5 who suffered from acute diarrhoea.
The main method was oral rehydration regardless of the cause of the diarrhoea.
Hygienic measures to prevent diarrhoeas were included but not the main objective.
The philosophy of ARI (Acute Respiratory Infections) was similar, namely to
prevent the death of children under 5 who had caught an acute respiratory infection
like pneumonia by a non-specific antibiotic standard treatment. Preventive action
against the infections themselves was a side issue.

Essential Drugs is a WHO-programme of still a different nature, and so is
Reproductive Health, which often boils down to plain family planning.



Epidemiology in Developing Countries 1549

The most beneficial WHO-programme is probably EPI (Extended Programme
on Immunization) by which a high number of cases of severe diseases and deaths
have been prevented. Its objective is the systematic vaccination of all children un-
der one or two years of age against measles, poliomyelitis, diphteria, tetanus, and
pertussis (whooping cough), plus a dose of BCG that is, however, controversial and
no longer generally recommended. Moreover, the programme includes a vaccina-
tion of all women in childbearing age against neonatal tetanus. The vaccination of
children against hepatitis B was added later.

Many other international programmes of varying importance exist or have
existed, above all MCH (Mother and Child Health), but also Nutrition, Vitamin
A Deficiency, Rehabilitation of War Victims, etc. All the vertical programmes have
unfortunately been very little coordinated with each other. Moreover, EPI was often
overly stressed and drew many of the resources of the health system to itself to
the detriment of other activities, detracting in particular from the normal routine.
The conceptual and operational bases of an integration of the various aspects of
primary health care have been expounded long ago (Krickeberg 1989), but it is
only recently that a programme “Integrated Management for Childhood Diseases”
was launched by WHO.

We are now going to outline the role that epidemiologic work plays and, more
importantly, ought to play within this framework.

Epidemiologic Needs
of Developing Countries 6.2

In the area of descriptive epidemiology in the classical sense, i.e. health statistics,
the needs of developing countries are in principle hardly different from those
of developed ones: incidence or prevalence of major diseases by sex, age, time,
and place of residence plus disease specific mortality, infant mortality, maternal
mortality, etc. (cf. Chap. I.3 of this handbook). These statistics are one of the pillars
of the management of the health system, especially yearly budgeting. They ought
to be used also for rational planning and implementing global health strategies
but this aspect still leaves much to be desired apart from international vertical
programmes. They are often presented in official health statistics publications, e.g.
health yearbooks that sometimes appear to be their main justification.

The actual differences between the needs for descriptive epidemiology within
the two groups of countries result from the different weight that the various
categories of disease have or that health authorities attribute to them. Infectious
diseases certainly weigh much more in developing countries than in developed
ones in spite of their resurgence in the latter (cf. Chap. IV.1 of this handbook).
Incidence figures should be available regularly, and classical epidemic surveillance
is of course of utmost importance.

Health authorities in developing countries often tend to neglect non-infectious
ailments like cancer, cardio-vascular diseases, and osteoarthritis, and hence few
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reliable statistics are available about them. There is reason to believe that their
incidence, prevalence, and mortality is in some of these countries of the same
order of magnitude as that of the main infectious diseases. Very few indicators are
known on nicotine addiction, one of the most menacing epidemics in developing
countries.

The most specific requirements regarding incidence or prevalence usually em-
anate from the managers of special programmes, mainly international vertical
ones, who need them for planning, running, monitoring, and evaluating their
programmes.

In the domain of observational epidemiology, i.e. the study of risk factors, the
needs of developing countries have been less pronounced than in that of health
statistics. There has been a tendency to rely on results obtained in developed coun-
tries or by teams from there who found interesting study objects in a developing
country but often contributed little to furthering the epidemiologic capacities of
their hosts.

Moreover, for infectious diseases, the principal risk factor being the infective
agent itself, there has been less motivation to investigate contributing factors like
genetic, social, and environmental ones. Studies have mainly centred on the path-
ways of the pathogen and their effect on infections including mathematical mod-
elling. Their practical conclusions regarding e.g. hygiene are more or less known.
For concrete illustrations it suffices to think of diarrhoea and AIDS. However,
studies of general risk factors of the type mentioned above in view of preventive
measures are direly needed in developing countries. For example, in the realm of
the programme ARI, what is the effect of smoke in dwellings on acute respiratory
diseases? Which factors influence the malaria cycle, and how?

Regarding observational epidemiology of non-infectious diseases, specific to
developing countries, there is obviously an urgent need regarding, above all, the
investigation of nutritional risk factors and of environmental exposures in large
cities, but also of infections, e.g. viral infections as causes of cancer.

The epidemiologic needs described up to here are global in the sense that they
concern a whole country. They are mainly recognised by health authorities at the
top of the hierarchy. In addition, there is what WHO once called “epidemiology
at the basis”. This is local epidemiology which is tied to a smaller geographic
or administrative entity, usually a commune. For example, knowing the relative
frequencies of the various diseases including traumata which appear at a CHC
not only has a practical value for managing the centre but also an educative one;
it may be a motivation for the health worker as well. The same holds for other
simple activities in local observational epidemiology like linking an incidence
to a social factor or a geographic one, e.g. stagnant waters to shigellosis. While
nurses often design ingenious charts, maps, and other devices to monitor certain
epidemiologic features of their community including rules how to apply them,
a general and systematic approach is wanting.

In experimental epidemiology including intervention activities, the needs of
developing countries are manifold. They arise in all branches of that area. There
is clinical epidemiology both in the form of studies in diagnostics and of clinical
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trials of curative treatments, and there are trials to evaluate preventive actions. All
of them play a particular role in vertical programmes. Let us elaborate a bit and
look at a few examples.

As said above, diagnostics and curative treatment in developing countries are
often very different from what is customary in the developed world. To a large
extent they take place in CHCs and are performed by only partly trained health
workers under poor material conditions, in particular in the absence of labo-
ratory equipment. Therefore, simplified and standardized decision rules for case
management have been designed.

For example, diagnoses have usually to be made on the basis of only some
clinical symptoms without any laboratory analysis. In regions of Cambodia where
malaria is endemic, the symptoms “fever” and “headache” will normally entail the
preliminary diagnosis “malaria”. Similarly, a differential diagnosis of amoebic and
bacterial dysentery (shigellosis) must often be founded on the clinical symptoms
“headache”, “fever”, “blood in the stool”, and “mucus in the stool”. In both cases,
a more reliable diagnosis may take time because a blood or stool analysis can only
be done in a laboratory that is far away, or it may not be possible at all. However,
it is usually both necessary and common to treat the patient at once, having only
a preliminary diagnosis at one’s disposal. If one wants to judge the merits or
dangers of this strategy, one needs to know the epidemiologic characteristics of
the underlying preliminary diagnostic decision rule, i.e. its sensitivity, specificity,
and prognostic values. One may also wish to compare this clinical decision rule
with alternatives of the same type in order to select the best one.

The programme CDD is another example. Here, the result of the diagnosis is
not expressed in the form of a particular disease but as a degree of dehydration,
either 0, I, II, or III, determined as a simple function of a few easily recognizable
clinical symptoms. The treatment, too, has a standardized form and depends only
on this degree, in particular oral rehydration in case II. Again, the epidemiologic
characteristics of the diagnostic rule need to be known in order to evaluate the
usefulness of the entire strategy. ARI works analogously.

The preceding discussion of diagnosis applies in a similar way to simple stan-
dardized curative treatments that are largely being used in developing countries.
Their efficacy ought to be estimated by appropriate clinical trials.

Traditional medicine, too, is an area where the epidemiologic necessities of
developing and developed countries obviously differ. In order to bridge the gap
between traditional curative treatments and those taught in medical schools at
universities and to integrate the useful part of the former into the health system of
developing countries, clinical trials including meta-analyses are required. There
is in principle no difference between the two curative systems. After all, much of
the “Western” pharmacopoeia had its origin in traditional medicinal plants, e.g.
quinine and aspirin and, more recently, viagra. Unfortunately, until not long ago,
medical herbs and animals that were known for centuries if not millennia have
been studied only from a purely pharmacologic and chemical point of view, to
extract the “active principle”, without raising the question of their actual efficacy.
It is only recently that traditional cures of any kind have been subjected to epi-
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demiologic scrutiny, first in India and China, and then in developed countries,
too.

Let us conclude this section by looking at epidemiologic needs that arise when
taking preventive measures. The principal measures in developing countries are
on the one hand person-based interventions of the type treated in Chap. I.8 of
this handbook, especially immunizations in the framework of EPI, and, on the
other hand, community-based health promotion as described both in Chaps. I.8
and III.11, often connected with vertical programmes. As examples we can quote
classical hygiene, treating bednets against anopheles, and urging the community
to cooperate in a given programme. Campaigns for healthier nutrition or against
smoking are still in their infancy and so are screening programmes along the lines
of those presented in Chap. III.10 for developed countries. The problem at hand is
to evaluate the effect of such activities.

Regarding immunizations, there is a tendency to make do with the results about
their efficacy obtained in developed countries. Sometimes, however, the situation
maybedifferent.Acase inpoint is theproblemof theoptimalperiod forvaccinating
against measles, the so-called “window”. In developed countries, this vaccination
can wait until the maternal antibodies still present in the infant’s blood can no
longer interfere with its immunizing action. In developing countries, however, the
infectious potential around a child is often very high from the beginning. The
child’s maternal antibodies do not protect it sufficiently, hence early vaccination
is called for. To overcome this dilemma, WHO decided to advocate the use of
a higher-titre vaccine of the “Edmonston-Zagreb” type in spite of the existence of
epidemiologic studies which gave rise to the fear that this might lead to a higher
overall-mortality among vaccinated female children. This was indeed observed
in later studies, and the vaccine had to be withdrawn (Das Gupta et al. 1997; in
particular the article Aaby 1997).

The epidemiologic judgment of community-based interventions in developing
countries does not in principle differ from those in developed ones. Like the
actions themselves, their evaluations are often much more poorly designed and
executed, though. Similarly, rigorous person-based intervention trials are largely
lacking.

We now turn to the question of how and to which extent the epidemiologic
needs of developing countries can be satisfied in theory and practice. We will first
describe the most important tool, health information systems, and then, in the
remaining three sections, examine the contributions of this tool and of the two
other ones, i.e. health surveys and epidemiologic studies.

Health Information Systems
in Developing Countries6.3

A health information system (HIS) links different institutions that are concerned
with health between each other. It consists of mechanisms to collect, transmit,
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analyze, and exploit information on health in the widest sense. This is mostly
done regularly, in a routine fashion, but may be supplemented by an ad hoc
exchange of information. For example, most hospitals have their own, sometimes
computerized, system by which information flows between its various wards and
administrative units.

Here, we will be dealing only with HISs which go beyond a single institution, and
where information is transmitted between CHCs, policlinics, hospitals, and public
health institutions and administrations. For instance, a central disease register as
described in Chap. I.4 of this handbook amounts to a HIS where reports from
physicians, hospitals, and laboratories are directed to the office where the data are
stored and handled.

We are going to restrict our scope further by focussing on much larger HISs that
may deal with many sorts of information and link institutions of very different
nature. In the extreme case, such a system may be founded on regular reports
on all major events and activities from all health institutions of a whole country
to higher health authorities, culminating in the Ministry of Health. The bulk of
information emanates from the basic health institutions that are in direct contact
with the population for curative or preventive activities: private practitioners,
health centres, policlinics, small hospitals, individual wards of large hospitals,
hygiene teams etc.

Developing countries have, as a rule, started very early to build HISs, some-
times rudimentary, sometimes quite elaborate. They were motivated by the need
to manage scarce resources efficiently, including traditional budgeting, and to
control the functioning of the various components of the health system. Epi-
demiologic information for planning and implementing health strategies played
originally a secondary role apart from simple health statistics based on statistics of
treatments, but over the years HISs have become an essential, and often the main
source of epidemiologic knowledge.

In spite of the necessity felt by health planners to be equipped with a reliable
HIS, the systems actually constructed have almost consistently been suffering from
serious deficiencies. In some countries, e.g. in Africa and Central America, they
did not reach far enough into the countryside nor did they cover the essential
subject matter sufficiently well. In others, on the contrary, especially in socialist
countries, they were usually too heavy and bureaucratic, attempting to cover ev-
erything and containing many redundant or superfluous elements that impeded
their functioning. Neither the former nor the latter were designed following clear
ideas and guidelines including a rational logical structure.

In the beginning HISs were installed by the central health authorities, usu-
ally the Ministry of Health. They tried to build a more or less centralized HIS
under which basic health institutions had to send reports on their general ac-
tivities routinely following a hierarchical path, e.g. from CHCs to district health
administrations, from there to provincial health authorities, and ending up in
the Ministry. Unfortunately, given the deficiencies of such systems mentioned
above, in some countries other central institutions had to build their own HIS
that ran parallel to that of the Ministry. For example, a national hygiene institute
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would set up a separate reporting system on infectious diseases including epidemic
surveillance. Similar systems were needed by a central tuberculosis or malaria
institute. All of this caused a lot of extra work in basic institutions, especially in
CHSs.

The worst confusion, however, resulted from the management of international
programmes. As said above, managers usually felt the need for a centralized and
vertical approach, working from the top to the bottom. This involved specific
systems for providing the required information in the form of basic demographic,
epidemiologic, sociologic, and economic indicators, and of indicators to be up-
dated all the time, for instance on the logistics of drugs or on vaccination coverage.
Thus a plethora of information systems emerged for the various programmes. As
a rule these manifold HISs were coordinated neither with each other nor with
the system of the Ministry and other existing systems. The burden of writing
and filing all the required reports rested mainly with the local health workers
who were naturally more interested in their purely medical activities. It became
frequently unbearable. The situation in Vietnam as described in a recent report
(Krickeberg 1999) is a good example though there are great differences between
countries.

The question of how to design a single information system that could be handled
efficiently and at the same time serve all the essential needs of health care, i.e.
a so-called integrated HIS, has therefore been discussed occasionally. Although
some developing countries have in fact set up reasonable HISs, e.g. Cuba, the
principles on which such systems should rest have been investigated only recently
in a systematic way (Krickeberg 1994, 2003; Lippeveld et al. 2000). The remaining
part of this section will be devoted to a short presentation of these principles,
starting with the functions of HISs, passing on to the properties which they should
have in order to do what we want them to do, and finally looking at their structure.
More details can be found in the three references just quoted.

Regarding functions, budgeting and all health management that go beyond the
smallest entities of the health system, require a good HIS. This holds for the
general standing health system as well as for special vertical programmes that
rely, for instance, on an efficient logistics for drugs or vaccines. Health insurance
could in principle get from an integrated HIS all the information it needs for
planning and running. An important specific application would be to estimate
from it the average cost caused by a case of a particular disease. In the context of
this handbook, though, we are only dealing with the epidemiologic functions of
a HIS, to be described in the following section.

Regarding desirable properties, they are largely dictated by experience. The
system should be integrated, i.e. cover all health institutions and all kind of nu-
merical information. Inparticular, themedical andepidemiologic aspectsmustnot
be separated from the economic and managerial components. So-called “Health
Management Information Systems” usually cover some clinical and epidemiologic
information but not enough; in most cases, the term is misleading.

The HIS ought to have a transparent, logical structure. This is not only indis-
pensable for designing and running the system efficiently, but also constitutes, as
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again many experiences have shown, a powerful motivation for the health workers
who handle it. Moreover, only a well-structured HIS can be computerized although
there have been quite a few, always futile, attempts at saving a bad system by using
computers.

Thesystemneeds tobeshaped inviewofwell-defined objectives, and incorporate
rules how to analyze and exploit the information obtained in order to reach these
objectives.

Given its objectives, it has to be minimal, free of superfluous elements and
in particular of redundancies, and has to function at minimal cost. This has, in
particular, an implication regarding the flow of information between institutions:
routine reports must be filed only from and to institutions as really needed, and
following operational priorities.

The system should be flexible so it can be adapted to changes of all kind,
in particular to varying epidemiologic situations, but also to alterations of the
structure of the health system or of health strategies and medical knowledge and
techniques, economic and social changes of the country, and new information
technology.

The information obtained must be as reliable as one can realistically hope for.
There have to be clearly defined rules indicating what to do about wrong or

missing information, and there have to exist error-correcting procedures.
Moving on to the underlying structural and technical principles we have to

recall first a few elementary definitions because there is no general agreement
about them. As always in statistics when talking about information in a con-
crete context, we need to specify first a population (set) of units (elements), e.g.
all children under 5 living at a given moment in a given village, or all con-
sultations done during a certain month in a certain health centre. Information
has either the form of data or of indicators. Data are the values of a variable,
which is a function defined on a population, like the function age which as-
signs, to each of these children, his or her age, or the function diagnosis that
attributes to every consultation the diagnosis made, properly coded. A register
is a concrete, explicit representation of the data of one or several variables as
described in Chap. I.4 of this handbook, usually on paper or on a computer
disk. We will not enter into technical details like sub-registers or linked regis-
ters.

An indicator, in contrast to data, concerns a population as a whole, but not indi-
vidual units. It depends on one or several variables defined on the same population.
Two examples, concerning our first and second example of a variable, respectively:
the mean age of these children, and the number of “diarrhoea” cases recorded. In
practice, an indicator is computed from all the values of the underlying variables
as given in a register. Let us note in passing that WHO has given a completely
different definition of an indicator.

Registers are the fundamental, and often neglected, components of a HIS. They
need to obey the following “golden” rule: in any basic institution, there is only
one register for a given population, i.e. for a given type of unit. For example, it is
compulsory that there exists, in a health centre or a ward of a hospital, only one
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register of consultations, not a “general” one for the Ministry, and one more for
each vertical programme and for other special purposes.

Well-designed registers are in particular the main tool for the local use of the
HIS, both clinical and epidemiologic, to be sketched in the following section. Their
multiple functions demand a clear definition of the variables involved.

The second function of a register, namely to serve as the basis for the routine
reports to be filed, should also follow rigorous structural rules. This applies both
to paper-based and computer-based HISs. We note first that most information
contained in routine reports is in the form of indicators, be they epidemiologic,
economic, or others. The transmission of data on individual units, e.g. on cases,
is indeed rare and mainly restricted to epidemic surveillance and registers of
special diseases. For indicators resulting from clinical activities which are the most
prominent ones, the structural rule in question looks like this: the clinical act
giving rise to the data, the immediate use of these data in the act, the filling in
of the relevant register, and the drawing up of the reports based on these data,
have to be integrated conceptually and technically. In particular, the layout of the
register and that of the reporting forms need to be closely coordinated so as to
allow calculating the indicators and writing the report in a single, transparent, and
almost automatic operation.

In this way, many indicators of quite a different nature can be easily computed
and transmitted to various institutions and according to needs that may change,
all based on the same registers and on the same variables. However, on no ac-
count should there exist a register that is not tied operationally to some function
within the health system and whose only purpose is to calculate and report indi-
cators.

There have been attempts, e.g. by WHO, at designing HISs by starting with
a list of the indicators to be covered in view of the goals of the system. This idea
may be tempting at first sight but is in fact naïve. Such lists have always been long
and subject to debate, they leave no room for flexibility, and they are at variance
with the basic structural principles as outlined above. What we have to fix in the
beginning are the variables needed; to do this well is crucial. The second step will
then be the design of the registers.

Reliability of the information is a particularly difficult problem in the context
of a developing country. Standard procedures to assure quality as those described
in the Chaps. I.10 and I.13 of this handbook can only be applied to a rather
limited extent. Motivation of the health worker is a somewhat more efficient mea-
sure but gaps and errors will remain. The topic of what to do when confronted
with them has many facets. The Chaps. II.5 and II.6 concern errors and miss-
ing data in a single epidemiologic study. In the realm of HISs, however, we have
to handle them routinely, e.g. for every monthly report of a district health ad-
ministration to its superiors. To this end, simple rules and algorithms need to
be developed which can function under the specific conditions (Krickeberg 1994,
2003).

Let us now try to elucidate to which extent, and how, HISs can serve the epi-
demiologic functions enumerated in Sect. 6.2.
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Epidemiologic Insights
from Health Information Systems 6.4

It is a truism that, potentially, epidemiologic needs can be satisfied via a HIS to
the extent, and only to the extent, that the necessary data or combinations of data
are recorded in the system. The practice is a bit different but let us look at the
mechanisms anyway.

Existing HISs have usually been built in view of establishing various health
statistics and of managing health activities albeit in a rudimentary fashion, e.g.
yearly budgeting. In addition, we have sketched the principles for reforming older
HISs or building new ones. In any case, we are facing the following questions: What
kind of registers are there? Which variables are being recorded and how? How is
information extracted from the registers and transmitted to its destinations?

As stated in thepreceding section, a register is tied inanaturalway toaparticular
operation that is routinely executed in the health system, above all a clinical one.
Thus the main register in a CHC is the register of consultations. Next to the date of
the consultation and data to identify the patient it features variables like symptoms
or syndrome, sometimes a tentative diagnosis, and treatment. Recording of the
relevant data serves, in the first place, the clinical act “consultation” itself. Clearly
defined variables may indeed help the health worker to decide about his diagnosis
and treatment as explained in Sect. 6.2 for CDD and ARI cases.

The main epidemiologic function of the register of consultations is to allow
calculating the incidence of symptoms like injury, stomach-ache, diarrhoea or
acute respiratory infection, but also of tentative diagnoses that can be regarded
as more or less satisfactory surrogates for a correct diagnosis of certain ailments,
especially of frequent infectious diseases like measles. This is obviously conditional
on the training of the health worker whom the patient is consulting.

As said in the preceding section, these calculations and the filing of the cor-
responding reports ought to be integrated with the data entry into the registers.
The details depend of course on whether the register is on paper or on a computer
disk. In any case, the report should display the epidemiologic situation reported
also immediately to the health worker himself in a vivid fashion in the spirit of the
“epidemiology at the basis”. In fact, “local mastership” over information is one of
the main roles of a good HIS, in contrast to the old bureaucratic idea that such
a system exists mainly to produce indicators for higher-up administrations. This
local mastership must not be taken away from the basic health institutions. The
often advocated “feedback” is useful but after all a poor substitute for local use of
information.

Incidences calculated and reported may sometimes be corrected later, i.e. re-
placed by estimates that will generally be closer to the true incidences and should
therefore be used in health statistics and for health planning (Krickeberg 1994).
A very rough procedure actually in use is the multiplication of every indicator ob-
tained from the records by a constant “correcting factor” that had been estimated
beforehand; an interesting application concerns maternal mortality (Ministerio de
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Salud Pública y Asistencia Social 2002) where the factor 1.58 is being used. Slightly
more elaborate but still elementary estimations could use simple extrapolations
or Bayesian methods (Krickeberg 2003).

When well organized, the register of consultations in a CHC can serve the
epidemiologic surveillance of infectious diseases as well. Moreover, by defining the
values of the variable “symptoms” or “syndrome” appropriately so as to identify the
consultations that belong to a programme like CDD, ARI, malaria or tuberculosis,
a separate register of consultations for these programmes becomes superfluous at
the level of the commune without making the general register of consultations any
more complicated. The latter will furnish all the incidences required.

The register of consultations of a CHC may also allow some rough but illuminat-
ing experimental epidemiology. In some CHCs this register contains an additional
variable “outcome” which can take the value “cured” or “deceased” among others.
Strictly speaking, this variable concerns the larger unit “case” and not a “con-
sultation” but in the absence of a register of cases, it can easily be recorded in
a paper-based register of consultations by going back to the first consultation for
a case, provided that the outcome becomes known not too late, e.g. for acute dis-
eases. When using computers, recording an outcome which may occur much later,
or even deriving a register of cases from that of consultations, is fairly easy. The
variables “treatment” and “outcome” now permit both the local health workers
and health administrators, in particular those of vertical programmes, to monitor
standard treatments. To this end, they can peruse the complete register during
a certain period or, usually more efficiently, employ sampling from records, i.e.
random sampling from the units of a register, an unfortunately fairly neglected
method although classical in hospitals of developed countries.

Sampling from records in CHCs also enables health authorities to estimate
some of the epidemiologic characteristics of the preliminary clinical diagnoses
described in Sect. 6.2. If the true diagnosis will eventually be known for most cases
as it happens with malaria, it suffices to retrieve this diagnosis for the subjects
included in the sample from the relevant records of district or provincial malaria
stations, hospitals etc. In the opposite case, e.g. for dysentery, a laboratory-based
diagnosis for the sampled subjects needs to be done.

In addition to the register of consultations, CHCs frequently have a register
for the programme MCH whose underlying unit is not always well-defined. In
principle, it should serve the needs of EPI, too, making an EPI-register superfluous.
It can fulfil some epidemiologic functions analogously to the one of consultations.

Some CHCs have also set up a register of all families or households of the
commune which can furnish certain epidemiologic insights, e.g. on infectious
diseases or the role of socio-economic factors in health.

Registers in policlinics, hospitals, specialized malaria or tuberculosis stations,
and the like concern mainly the units “out-patient consultation”, “hospitalization”,
“discharge”, and various “laboratory tests”. Rare are the hospitals in developing
countries that have a so-called Central Register whose unit is a “patient”. Most of
the more elaborate incidence and prevalence statistics which appear for example in
health yearbooks originate from hospitals where diagnoses are on the whole more
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precise. Many of the health problems handled only in CHCs are lost in this way,
though. The old problem of linking records in primary, secondary, and eventually
tertiary health care usually does not get sufficient attention.

However, when remaining within the secondary and tertiary health system the
issues are not basically different in developing and in developed countries. In
particular, the part of the HIS based on consultations and treatments in hospitals
may still be quite incomplete. For instance, in Vietnam the cancer incidences
reported within that system and published in the Health Yearbook are much lower
than the figures obtained from the Central Cancer Registry that has been operating
for some time in a few regions (Krickeberg 1999).

Epidemiologic Sample Surveys 6.5

Let us start again with a truism that does not have much weight in practice
either: sample surveys should be done and only be done if the results are not
readily available from registers. For example, in developing countries many cases
of measles do not lead to a contact of the patient with the health system, and
are therefore registered nowhere, not even with a tentative diagnosis. This is the
so-called iceberg problem. In such a situation, to get an idea of measles incidence,
sample surveys are required. We will also discuss situations where they are not
required.

In the present section we will restrict ourselves to sample surveys whose purpose
is to estimate indicators that depend on a single variable, e.g. the incidence or
prevalence of a disease, or mortality. Epidemiologic studies to investigate the
association between several variables like those between a risk factor and a disease,
or between a treatment and the outcome, will be taken up in the last section,
although the borderline is not everywhere well-traced. Cross-sectional studies, in
particular, usually have outwardly the form of a classical sample survey.

The most frequent units of a sample survey, i.e. elements of the “target pop-
ulation”, are a person, a family (household), or a community, e.g. a hamlet or
a commune, but a unit like a CHC may also occur if one wishes to evaluate the
performance of such centres.

It is customary that for every new vertical programme a sample survey is
launched in order to estimate the so-called “baseline indicators”, and often this
survey is repeated later to monitor changes that may reflect the impact of the
programme. Such indicators are for instance incidences or prevalences of the
relevant diseases; case fatalities; infant, child or maternal mortalities; indicators
describing the nutritional status of children; vaccination coverages; or sometimes
plain demographic indicators.

Surveys outside of any vertical programme that include an epidemiologic com-
ponent have mostly been organized in the form of a large international project.
An early model was the World Fertility Survey of the International Statistical In-
stitute (Cleland and Scott 1987) that had been conducted between 1974 and 1982
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in 42 developing and a few developed countries. Its methods including software
were subsequently incorporated into the baseline surveys of some family planning
programmes. UNFPA (United Nations Fund for Population Activities) organized
demographic health surveys in many countries, often repeatedly, and these were
later also conducted by private firms. Household surveys done by the United Na-
tions have been a similar global venture (United Nations 1984).

Unfortunately, in a given developing country, these multitudinous surveys have
practically never been coordinated with each other regarding their purpose, choice
and definition of variables and indicators, methodology, and availability of the
results. Therefore they cannot be compared with each other and exploited only
with difficulty or not at all. Often, they duplicate existing knowledge, or the results
are buried in the files of the relevant programme office, or both. By contrast, the
World Fertility Survey is an early model of good quality and availability of its
results, usually published locally.

Moreover, the definition of variables and indicators employed by most sample
surveys is usually not compatible with that of existing HISs. The fundamental
question to which extent an information system could have furnished the same
result is rarely asked. For example, in a country like Vietnam that, although eco-
nomically poor, provides well-structured primary health care, most cases of severe
diarrhoea lead to a consultation of a basic health care institution where the syn-
drome is recorded. Hence a large if not the largest part of the CDD-surveys that
have been conducted were actually superfluous and could have been replaced by
“register-based” studies, i.e. sampling from records. The opportunity to compare
indicators obtained from a survey with those extracted from the HIS is mostly
lost although recently there have been notable exceptions, e.g. the survey from
Guatemala on maternal mortality already quoted (Ministerio de Salud Pública y
Asistencia Social 2002).

The sample surveys we are discussing are simple cross-sectional studies that
concern in principle only the state of affairs at the moment the data are recorded. If,
for instance, we are interested in the incidence of an acute disease or the mortality
by it as it happens in the framework of EPI, the diagnosis for a case or the cause
of a death has to be recorded for a period of the past, and can therefore only be
determined by asking questions about the past, i.e. by an a posteriori diagnosis or
an oral autopsy, respectively. Sometimes, this may not be very reliable. In any case,
the survey should be confronted with the HIS if there is one. In particular, the
questionnaire of the survey ought to contain a question about whether the patient
had consulted his or her CHC or another health facility or not. Comparing the
answers with the entries in the relevant register of consultations would then tell us
a lot about the functioning of the HIS and the health system itself.

There is a relatedproblemin thecaseof indicatorsdefinedwith respect to cohorts
that start at birth like infant mortality, child mortality, or vaccination coverage.
In their definition, a cohort of children is to be followed from birth on to the age
of 1, 5, or 2 years, respectively. They can be estimated directly by a register-based
study. By contrast, a sample survey is done at a fixed moment. It either estimates
a different indicator that concerns the state of a group of children at this moment



Epidemiology in Developing Countries 1561

as it happens with the usual EPI-coverage surveys, or needs to resort to questions
about the past. If the latter strategy is adopted as it is for instance being done
within the Demographic Health Surveys (DHSs) when estimating child mortality,
care must be taken to analyse possible bias resulting from censuring the 5-year
period of the past within which a child was to be followed.

To lookat the interplaybetweensample surveysandregister-basedstudies is also
most illuminating when dealing with chronic diseases, especially non-infectious
ones. Sample surveys done in Vietnam by an association of cardiologists have
shown a recent dramatic increase of the prevalence of hypertension, most of it
hitherto hidden. Linking such surveys to the HIS could have provided much useful
knowledge.

Sample surveys, like HISs, can play an educative and training role, too, as it
happened with the World Fertility Survey that largely relied on local staff. The
organizers of a survey who often come from an international organization should
always take great care to explain to the local health personnel involved its rationale
including both the objectives and the methodology. They do not do it every time,
partlybecausenot all of themunderstand theunderlyingprinciplesof themethods.
They also tend to apply ready-made recipes that do not take into account the local
administrative structures. Worse, existing know-how is often not exploited; in
some countries certain local personnel is in fact better qualified than the “experts”
directing a survey.

For instance, the so-called “30-cluster sampling plan” has been widely used in
developing countries (Henderson and Sundaresan 1982). Its first stage is a Madow
sampling design (Cochran 1977, p 265). Its second stage is tailor-made for countries
that may not have lists of all households nor suitable maps of hamlets or villages.
It has been very useful in many situations because it provides a standard method.
Although it isnot always self-weighting ithasbeen treatedas if itwerewhich implies
a simple form of the estimators. However, it has also been much applied in contexts
where other sampling plans would have been easier and cheaper to implement and
also would have been more efficient. This author has seen the Madow design used
by a foreign CDD-specialist to select a sample of 30 administrative units from a list
of only 32 or 33 such units. The local staff would simply have taken all of these
units! Nowadays suitable maps of houses can be cheaply and rapidly drawn by the
Geographic Positioning System even for very remote and poor villages.

Another example: in a developing country that operates a high-level research
institute for demography and family planning, a baseline survey for a reproductive
health programme was conducted by a person from abroad using the above-
mentioned World Fertility Survey software although surveys providing a large part
of the results had already been done by that institute, and although the institute
could very well have done the entire survey itself in a much cheaper and more
imaginative manner, profiting at the same time from the training and insights
(and money) that go with it.

As said above, baseline surveys of vertical programmes and other surveys are
sometimes repeated to monitor changes. To this end, samples are taken repeatedly
in an independent fashion. There always exists a splendid opportunity to retain
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part of the sample and to use it for longitudinal studies that are most informative,
e.g. household-based ones, but this opportunity is usually missed as it happened
in the survey just mentioned.

The need for longitudinal studies was also one of the motivations for creating the
concept of a sentinel network. This is a hybrid between a HIS and a sample survey.
Since basic health facilities are all too often ill-equipped for making reliable diag-
noses, do not have sufficient staff to keep registers and file reports, and cannot rely
on good postal or other services to transmit information, the idea arose to select
a fixed sample of such institutions, e.g. CHCs. Their capabilities were to be en-
hanced substantially by furnishing some laboratory equipment, paying additional
trained staff, and ensuring better communications. These fixed “sentinels” were
to monitor demographic and epidemiologic indicators over time including the
impact of interventions. Sentinel networks may, however, give biased information
because the measures taken to upgrade the selected sites alter the health situation
there. More people might be attracted to use these facilities, better treatment can
influence the dynamics of the transmission of infectious diseases, and better health
education will reduce the incidence of many ailments including injuries.

Originally, sentinel networks were discussed mainly in the context of single ver-
tical programmes but occasionally also for larger components of primary health
care. There was no general scheme and no coordination. More recently, Demo-
graphic Surveillance Systems (DDSs) have been installed in various “field sites”,
i.e. geographically defined populations, in order to monitor their health and de-
mographic status. Let us look at two examples. The first one is the DSS established
in the early eighties by an already existing institution, namely the Nouna Health
Research Centre in the North-West of Burkina Faso. It covers about 55,000 people
(Yé et al. 2002). The second one is a DSS created during the years 1997–1999 in the
context of a Vietnamese-Swedish collaborate research project in the district of Ba
Vi of the province of Ha Tay in the North of Vietnam which counts around 235,000
inhabitants. It is combined with a field laboratory for epidemiologic research.
First results concern among others mortality, death reporting, theory and prac-
tice of oral autopsies, knowledge of people about tuberculosis, and cardiovascular
diseases (Nguyen et al. 2003).

Starting in 1998, an “International Network of field sites with continuous De-
mographic Evaluation of Populations and Their Health in developing countries”
(INDEPTH) has been built up in order to link existing field sites, and in particular
to strengthen them and to enhance their visibility and use (INDEPTH 2002). In
2003 it comprised 31 field sites from 17 countries, among them the DSSs at Nouna
and Ba Vi.

Epidemiologic Studies6.6

We will now take a quick look at how epidemiologic studies, other than register-
based studies or straight sample surveys, can satisfy the specific epidemiologic
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needs of developing countries. We will thus be dealing with studies of the kind
treated in the Chaps. I.3, I.5–I.8, and I.12 of this handbook.

The practical problems that a research team might face are summarized in
Wawer (2001). Let us look at an example that illustrates one of the worst obstacles,
namely loss to follow-up. This study, the Bloemfontein Vitamin A Trial (Chikobvu
and Joubert 2003) had in fact a dual purpose: firstly, to investigate the effect of
vitamin A on the transmission of HIV from mother to child; secondly, to assess
the extent of loss to follow-up in the presence of AIDS with a view to planning and
analysis of other cohort studies on HIV|AIDS including clinical trials. A total of
303 HIV positive pregnant women were recruited with 152 randomly allotted to
the vitamin A group and 151 to the placebo group, to be followed until their baby
was 18 months old. The tracing procedure of these women was precisely defined,
the observed loss to follow-up was analyzed in detail, and the kind of bias that may
have resulted was discussed. This trial and ten other cohort studies on HIV|AIDS
quoted for comparison had losses to follow-up in the order of 10 to 48%. One of the
main conclusions was that published studies must adequately discuss the tracing
methods used.

Many sample surveys, especially largeones like theWorldFertility Surveysor the
Demographic Health Surveys, collect data both on risk factors, e.g. social ones, and
onoutcomevariables, for instancemorbidity.They can thereforebe exploited in the
form of cross-sectional studies on the influence of these factors on such outcomes.
A good example is the study from Guatemala already quoted (Ministerio de Salud
Pública y Asistencia Social 2002). This involves the shortcomings of cross-sectional
studies in general which arise from the fact that many variables concern the past
or a cohort and not the moment of the survey; we have sketched these problems
in the preceding section.

Pure case-control or cohort studies, to be conducted in accordance with a rigid
protocol fixed in advance, are relatively rare in developing countries. These coun-
tries have been a fertile ground for research in genetic epidemiology, though.
For instance studies on thalassemia have a long history in South East Asia. Ge-
netic susceptibility to infectious diseases has been studied intensively. An early
example was the evidence for genetic susceptibility to leprosy obtained by a link-
age analysis in a closed population, namely on a Caribbean island (Abel et al.
1989). In the realm of parasitic diseases, the role of genetic factors in resistance
to malaria had already been established in 1982 (Mims 1982). Recent work done
in Sudan concerns schistosomiasis (Dessein et al. 1999) and visceral leishmaniasis
(kala-azar) (Bucheton et al. 2003). There have also been clinical trials, centring
in particular around HIV, e.g. on the prevention of mother-to-child transmis-
sion.

Much epidemiologic work in developing countries has the form of ecological
studies, that are treated in Chap. I.3 of this handbook. Section 4.2.1 of Chap. I.3
gives an example of a large descriptive ecological study in China (Chen et al. 1991).
Acommunity-based intervention trial, theGambiaHepatitis Study, ismentioned in
Chap. I.8, and a few other intervention studies of various sorts are quoted in Wawer
(2001). Community-based intervention studies are often a useful and feasible type
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of investigation given the needs and conditions of developing countries, especially
in the context of infectious diseases.

However, the most typical, illuminating, and useful type of study looks different
in practice. It is more informal, and prospective, usually lasting for many years or
even decades. Often it starts small, and expands later regarding objectives, study
type, and basic population. It may concern anything connected with health: general
or reproductive health of a community as time proceeds; nutrition; etiological
factors, especially from the environment or social ones; the results of person-
based or community-based interventions; and often several of these together. The
diseases involved are those already mentioned in the present chapter, but rarely
non-infectious ones.

An excellent summary of 34 such surveys plus a detailed presentation of 12
among them was published a few years ago (Das Gupta et al. 1997). It starts with
pioneer studies done in China in the early thirties, it is organized by continents:
Asia, Latin America, and Africa, and it provides fascinating reading. A good ex-
ample is the malaria study in the Garki district in Nigeria, a savannah region. It
took place from 1969 to 1976, involved 22 villages with a total population of 7423,
and has also been the subject of a separate monograph (Molineaux and Gramiccia
1980). The topics studied were manifold: demographic and epidemiologic, in par-
ticular intervention evaluation. The epidemiology of malaria included all aspects:
immunology, serology, parasitology, entomology, clinical manifestations, and the
influence of various factors like weather and nutrition. The interventions con-
sisted in pesticide spraying and mass prophylaxis. Let us quote some of the many
results. No significant difference in mortality between mass-treated and untreated
villages was found except for infant mortality. Malaria antibodies existed in people
in sprayed as well as in unsprayed environments and their level was uncorrelated
with that of parasitemia except in infants. The intervention reduced, but did not
eliminate, the prevalence of the plasmodia involved, and malaria transmission and
vector capacity, which had existed on a high level, persisted.

Conclusions6.7

Summarizing finally the respective roles of the three sources of epidemiologic
knowledge in developing countries we may say that, roughly, HISs have their roots
in the daily work of the health workers, especially in their clinical activities; sample
surveys are mostly tied to particular projects or programmes and concern mainly
the stateof affairs at aparticularmoment; analytic andexperimental epidemiologic
studies provide the deeper knowledge that is indispensable for all useful planning
of health strategies.
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The Example India (by A. Kar, A.K. Chakraborty) B

The Situation in India 6.8

In India, planned intervention in public health is less than sixty years old. In 1947
when the country achieved Independence, health infrastructure was non-existent
and infectious diseases periodically swept through the population traumatized by
food deprivation. The Report of the Health Survey and Development Committee
(1946) stated that the death rate in the year 1937 was 22.4 per 100,000|year while
expectancy of life at birth was 27 years (Table 6.1A). Mortality records of British
India estimated a maternal mortality rate of 20|1000 live births. Table 6.1B presents
a comparison of mortality in infants and children in British India as compared
to the United Kingdom and Wales. Cholera, smallpox, and plague accounted for
2.4%, 1.1% and 0.5% of all deaths in the year 1932. Tuberculosis mortality rates in
cities ranged between 200–450 per 100,000 population. Only 2% of the population
had access to potable water, whilst sanitary facilities were available for only 4.5%

Table 6.1A. Health indicators India

Indicator 19371 19512 19812 20002

Demographic indicators

LE at birth 26.9(M) 36.7 54 64.6
26.5(F)

Crude birth rate 40.8 33.9 26.1
(SRS) (1999, SRS)

Crude death rate 22.4|1000 25 12.5 8.7
(SRS) (1999, SRS)

IMR 162|1000 146 110 70
live births

Epidemiological shifts

Malaria 100 75 2.7 2.2
(cases in million)
Leprosy cases 38.1 57.3 3.74
per 10,000

population
Smallpox 69,474 > 44,887 Eradicated

(1.1%)
Guineaworm > 39,792 Eradicated
(No. of cases)
Polio 29,709 265

(table to be continued)
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Table 6.1A. (continued)

Indicator 19371 19512 19812 20002

Infrastructure

SC|PHC|CHC 725 57,363 163,181

Dispensaries & 9209 23,555 43,322

hospitals (all) (1995–96,
CBHI)

Beds (private 111,198 569,495 870,161

and public) (1995–96,
CBHI)

Doctors (Allopathy) 61,800 268,700 503,900

(1995–96,
MCI)

Nursing personnel 18,054 143,887 737,000

(1999, INC)

1Report of Health Survey and Development Committee (1946). In Compendium of Recommen-
dations of Various Committees on Health and Development 1943–1975. Central Bureau of Health
Intelligence, Directorate General of Health Services, Ministry of Health and Family Welfare,
Government of India. New Delhi
2National Health Policy (2002)
SRS = Sample Registration System, CBHI = Central Bureau of Health Intelligence
MCI = Medical Council of India, INC = Indian Nursing Council
LE = Life Expectancy, IMR = Infant Mortality Rate
SC = Subcentre, PHC = Primary Health Centre, CHC = Community Health Centre

Table 6.1B. Deaths at specific age-periods shown as percentages of the total deaths at all ages1

Under one year 1–5 years 5–10 years Total under
10 years

British India 24.3 18.7 5.5 48.5
(1935–1939)
England and Wales 6.8 2.1 1.1 10.0
(1938)

1Report of Health Survey and Development Committee (1946). In Compendium of Recommen-
dations of Various Committees on Health and Development 1943–1975. Central Bureau of Health
Intelligence, Directorate General of Health Services, Ministry of Health and Family Welfare,
Government of India. New Delhi

of the populace. Trained health personnel and infrastructure were practically non-
existent. This was more pronounced in the rural population, where for example,
one institution was available for the 105,626 inhabitants of 224 villages (Report of
Health Survey and Development Committee 1946).

After Independence, the country has demonstrated an impressive improvement
in health indicators (Table 6.1A|B). Smallpox and guinea worm have been eradi-
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Level of care Institution and
population

Actual
number

Personnel

Tertiary
– Government colleges
– Super speciality hospital

Secondary
– CHC, DH

– Speciality hospital

CHC: 1/214,000
Recommended:
1 CHC for 4 PHC

2000,
2935

1 surgeon, physician,
gynaecologist and
paediatrician,
paramedical and other
staff

Primary
– PHC

– Subcentre

PHC: 1/27,364
Recommended:
1/30,000
1 PHC for 6 subcentres

Subcentre: 1/4579
Recommended:
1/5,000

22,975

137,271

1 medical officer,
paramedical and
other supporting staff

Paramedical workers
ANM, MPW,
supervised by health
assistant

Under ISM&H Other services

Dispensaries 23,028 Urban health services provided by municipalities

Hospital 2991 Central Government Health Scheme (CGHS) for central government employees
Hospital services for railway and defence sectors

Family welfare services Medical infrastructures of public sector units (PSUs)

Rural family welfare centres 5435 Employees State Insurance Scheme

Urban health posts 871
Urban family welfare centres 1083
District post-partum centres 550
Sub-district post-partum centres 1012

Abbreviations

CHG = Community Health Centre
PHC = Primary Health Centre
ANM = Auxiliary Nurse-Midwife
MPW = Multipurpose Worker
ISM&H = Indian Systems of Medicine and Homeopathy

Figure
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cated and polio is on the verge of extinction (National Polio Surveillance Project;
http:||www.npspindia.org). There has been a substantial drop in the total fertility
rate and infant mortality rate (National Health Policy 2002). Through planned
health interventions, India has developed a vast health infrastructure and health
manpower (Table 6.1A|B,Fig. 6.1).Unfortunately, theprocessof expansion ofhealth
infrastructure has bypassed the development of systems to manage and document
health data. The country does not have a reliable Health Management Informa-
tion System (HMIS), or a credible disease surveillance system. Demographic data
for epidemiological studies are however available. In the first part of this section,
we present the sources of population data followed by the sources of health data,
as well as the structural organization of the health sector that contributes to the
complexity of data management.

In the absence of complete and accurate disease registers, estimating disease
incidence and prevalence becomes a major challenge. We illustrate this using the
example of tuberculosis, which is the largest cause of infectious morbidity and
mortality in the country.

Sources of Data6.9

Demographic and health statistics in India are collected, compiled and dissemi-
nated by the concerned ministries.

Demographic Statistics6.9.1

Census
The census forms one of the more authentic sources of demographic data in India.
The first population census was initiated in various parts of the country between
1865 and 1872, and has subsequently been undertaken uninterruptedly once every
ten years. The Census 2001 represents the 14th census of the country.

Detailed description of the methodology for the 2001 Census of India and the
checks to ensure data quality are given (Census of India 2001). The task of ensur-
ing data quality becomes apparent from the enormity of the population covered
for enumeration (593 districts, 5564 community blocks (talukas), 5161 towns and
around 640,000 villages). Data collection is supervised by the Union Home Min-
istry, headed by the Registrar General and Census Commissioner, India. Field
offices in thirty States and union territories were responsible for overseeing census
work for the Census 2001. The questionnaire for data collection for the 2001 Cen-
sus was evolved after a data user’s conference, followed by a technical review. The
census had two questionnaires, the Household List and the Household Schedule
(Annex III and IV, Census of India 2001). Table 6.2 lists some of the variables col-
lected in the household schedule of the Census 2001. Enumerators and supervisors
were drawn from local school teachers and employees of the Central and State
Government. Field work was carried out in two phases after rigorous training of
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Table 6.2. Variables of household schedule; Census of India (2001)

A. General and socio-cultural characteristics:
Number of individuals in the household
Relationship to head of household
Age
Marital status
Age at marriage
Religion
Caste|tribe
Mother tongue
Other languages known
Literacy
Highest education level
Disability

B. Characteristics of workers and non-workers
Employment
Duration of employment
Occupation
Distance from residence to place of work
Mode of travel to place of work

C. Migration characteristics
Birth place
Place of last residence
Reason for migration
Duration of stay at place of residence

D. Fertility particulars
For ever married women

Number of surviving children
Total number of children ever born alive

For currently married women only
Number of children born alive during last one year

enumerators. In the first phase of field work, house numbering operations were
undertaken, followed by the second phase of field work which involved population
enumeration through personal interview.

From 1951, post enumeration surveys (PES) form an integral part of the census
operation. The objective of PES is to estimate coverage and content error. Error
tables for under-coverage of census houses and population are available through
periodic publications from the Office of the Registrar General and Census Commis-
sioner. Content error is estimated from a 10% sample of households enumerated in
the census, and re-verifying certain specific data in the questionnaire. As is routine
for all censuses conducted in the country, enumeration of the houseless population
was undertaken for the 2001 Census on the mid-night of the 28th February, 2001.
The collection of data at night ensures that the population can be found sleeping
on pavements or under trees and thus can be accurately recorded.
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The 14th Census introduced a new strategy to ensure long term tracing of
a municipal ward or a village. In India, state boundaries are subjected to fre-
quent administrative changes at the district and sub-district level during the
inter-censal period. In fact, three months prior to the decadal census, three new
States were carved out of three existing States. The 14th Census has assigned an
eight digit coding system (termed the permanent location code number, PLCN)
that should allow the unique identification of a village or municipality ward ir-
respective of jurisdictional changes in administrative boundaries. Another much
needed innovation of the 2001 Census has been the acknowledgement of the
rapid growth of urban slums. For the first time, slum enumeration blocks have
been defined, providing a starting point for long-term studies on this popula-
tion.

The Census Act of 1948 forms the legal basis for conduct of censuses, and it
is a legal obligation on the part of the public to cooperate and provide correct
information. However, despite quality checks, there remain lacunae in datasets of
suchmagnitude.Themostobvious sourceof error comes fromnon-samplingerror,
such as incomplete listing of houses, despite the institution of PES. Illiteracy of the
population creates difficulties in terms of ensuring accuracy of social information.
For example, data on age, birth intervals, income etc. have to be collected with
extreme care due to the illiteracy of the respondents. Long-term utility of the data
is also threatened by changing concepts and definitions.

Civil Registration System
The civil registration system for continuous recording of births, deaths and mar-
riages leaves much to be desired in matters of coverage, quality and timeliness
of the data. Compulsory registration of births and deaths is required under the
Central Births and Deaths Registration Act in 1970. Despite the legislation, there
is significant under-registration of vital events, especially in the rural areas. Vital
data are collected from the urban and rural registration units and forwarded by
the tenth of each month to the data processing unit of each State. In the State of
Maharashtra, for example, vital statistics data are obtained from 40,448 villages,
230 municipal councils, 15 corporations, 7 cantonment boards and 4 ordnance
factories. It is estimated that in Maharashtra about 80% of births and about 62%
of deaths are registered under the civil registration system (Health Status Report
Maharashtra 2003).

A number of factors contribute to the poor functioning of the civil registration
system in the country. Registration of vital events is an additional responsibility
for functionaries, who remain unaware of the importance of registration of vital
events. It is worth remembering that many of the functionaries at the grass-root
level in rural areas may be barely literate. There is a lack of public awareness about
the statutory requirement of registration of vital events, reflecting a lack of demand
for birth and death certification in the country. The issue of accessibility to vital
registration centres also remains a problem, which is especially true for rural areas.
Computerization of vital events is present in only a handful of municipalities in the
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country. In urban areas, death certificate is compulsory for obtaining permission
for cremation or burial. This rule is rendered ineffective in rural areas where
regulated cremation areas are often not used.

Sample Registration System
Various attempts have been made to improve the registration of vital events in
the country. One of the most reliable estimates of vital rates is obtained from the
sample registration system (SRS). The objective of the SRS is to provide reliable
annual birth and death rates at the State and national level for urban and rural
areas. The SRS is a dual system of registration involving continuous enumeration
of births|deaths in sample villages|urban blocks and matching these data with
that of a six-monthly retrospective survey. The data obtained through these two
sources are verified by matching. Unmatched data are re-verified. This method not
only results in unduplicated reporting of events but also has an inbuilt system of
quantifying the disparity between the two data sets. Information for vital events is
collected from various sources and individuals most likely to be involved in rituals
of birth or death, such as the village priest, barber, midwives, socially important
persons like the village headman, from nursing homes, maternity homes and from
cremation and burial grounds. The half-yearly survey is done by specially trained
permanent staff who undertakes house-to-house visit and data collection.

The sample design adopted for SRS uses a simple uni-stage stratified random
sample. In rural areas each district within a State has been divided into two strata
based on population per village. Villages with a population of greater than 1500 are
divided into two segments. Simple random samples of villages and segments have
been selected. Urban areas are categorized into five classes based on population
size. The sampling unit is a census enumeration block. A simple random sample
has been selected from these enumeration blocks from all five classes. The SRS
currently has 6671 (4436 rural and 2235 urban) sample blocks covering 6182
million population (4821 million rural and 1361 million urban population) (SRS
2001).

Various studies have been undertaken by the Registrar General and Census
Commissioner to evaluate the completeness of the SRS data. The studies have
shown that birth registration had improved dramatically over the years. For ex-
ample, whilst there was a 8% under-registration of births in 1972, the figure had
decreased to 1.8% in 1985 (Narasimhan et al. 1997).

Population and Health Data from Surveys
Most recent and accurate scientifically collected baseline data that can be used
for epidemiological studies comes from the National Family Health Surveys. The
first and second National Family Health Survey (NFHS-1 and 2) were conducted in
1992–1993 and 1998–1999 respectively. The primary purpose of these surveys was
to collect data on key indicators for assisting in policy decisions pertaining to the
national population policy. In addition to serving as an important demographic
database the NFHS provides data on fertility, the practice of family planning,
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infant and child mortality, maternal and child health and utilization of health
services provided to mothers and children. The exhaustive list of variables for
which data has been collected is available from periodic publications and from
the NFHS (http:||www.nfhsindia.org|). The detailed methodology for the NHFS-
2 including sample characteristics for States and estimates of sampling errors
is available (National Family Health Survey, India 2001). The NFHS-2 sample
covered more than 99 percent of India’s population living in all 26 States. Over
90,000 women were interviewed. Information has been collected using bilingual
questionnaires (English and the regional language of the State). The household
questionnaires provide a rich source of demographic data and serve as a source
from which eligible respondents for the women’s questionnaire were selected.
Data on family planning, reproductive health and status of women are available
from this questionnaire. A third village questionnaire makes available reliable and
accurate baseline data for villages covered under the survey. A post-survey check
confirmed the high quality of the data (Singh 1999). The NFHS data is available to
researchers for analysis.

Health Data6.9.2

The Central Bureau of Health Intelligence (CBHI) of the Ministry of Health and
Family Welfare and the National Institute of Communicable Diseases are the agen-
cies responsible for the compilation of health information of the country. CBHI
is also the nodal agency for implementation of the Health Management Informa-
tion System (HMIS). Communicable disease data are available from the various
national disease control programmes (Table 6.3). The Ministry of Family Welfare
collects data on reproductive and child health (RCH), such as immunization and
population control measures. Rural health statistics provide data on government
health infrastructure and manpower deployment in rural areas. These data have
variable accuracy. The biggest lacunae in all these data are that they do not include
disease data from the private sector. The country does not have any programmes
for non-communicable disease prevention and control. Whilst programmes for
prevention and control of diabetes, coronary heart diseases, cancer and mental
health are available on paper (Table 6.3), there are no Government services for
these ailments and conditions. Thus data are not available with the only exception
of cancer, for which data from six population based registries are available (Indian
Council of Medical Research 2001).

The Complexity of the Health Sector in India
The health sector in India consists of both public and private health services.
The public health sector has a definite organizational structure and is responsi-
ble for health promotion, disease prevention and for providing curative services,
at no or minimum cost to the Indian population. The private sector consists of
individual and corporate private practitioners, and those working from privately
owned hospitals and nursing homes. The role of the private sector is to provide



Epidemiology in Developing Countries 1573

Table 6.3. Major schemes for health and disease control of the Government of India

(http:||mohfw.nic.in|MSP-1.pdf)

National AIDS Control Programme
National Leprosy Eradication Programme
Vector Borne Disease Control Programme (malaria, filarial, kala-azar, dengue)
National Tuberculosis Control Programme
National Programme for Control of Blindness
National Cancer Control Programme
Vitamin A Deficiency Programme
Diarrhoeal Disease Control Programme
National Iodine Deficiency Disorders Control Programme
National Surveillance Programme for Communicable Diseases
National Mental Health Programme
Drug-Deaddiction Programme
National Diabetes Control Programme
National Cardiovascular Disease Control Programme
Medical Care for Remote and Marginalized Tribal and Nomadic Communities

curative services for a fee. There are multiple systems of medical practice in In-
dia. In addition to allopathic practitioners, licensed practitioners of traditional
Indian systems of medicine (e.g. ayurveda, unani, siddha) and homeopathy are
widely used by people in all parts of the country. This enormous diversity cre-
ates a tremendous complexity, making information management an extremely
intimidating task. The public health sector is under bureaucratic control of the
government and undergoes periodic review. The private sector, however, is largely
unregulated with little control over the quality of services. The number of licensed
private practitioners in the country is known from the lists of practitioners grad-
uating from the various medical colleges in the Indian Systems of Medicine and
Homeopathy. Updated lists of active practitioners from all systems of medicine are
unavailable.

Public Health: Organizational Framework
The blueprint of the public health delivery system originated in 1943 (Report of
Health Survey and Development Committee 1946), and was created primarily to
serve theunder-privilegedmajority in the country.Theutilizationof these services,
and thus, morbidity data from the public health institutions, is restricted to the
under-privileged groups in the Indian society and would not necessarily reflect
the health situation of the Indian population in general.

Morbidity data and data on RCH are collected from the rural and urban health
infrastructure of the public health system (Fig. 6.1) and forwarded through a series
of functionaries to the State level for compilation. The rural infrastructure consists
of the primary health care infrastructure, which provides the first level of contact
between the population and health care providers. The most peripheral health
institution available to the rural population is the subcentre, which is manned by
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one auxiliary nurse-midwife (ANM) and one multipurpose worker (MPW). These
para-medical workers, supervised by a health assistant, have the responsibility
to provide basic health care services to the people. These include treatment for
minor ailments and injuries, collection of blood smears from all fever (suspected
malaria) cases and sending them to the primary health centre (PHC), and to
deliver the governmental health developmental programmes to the people. These
functionaries are also responsible for referring cases to the PHC. One sub-centre
is available to a population of 5000. The PHC is the referral unit for six-subcentres
and represent the next level of the health care system. All PHCs have at least one
qualified medical officer in charge. A majority of PHCs has four to six in-patient
beds. One PHC is available for every 30,000 population. The community health
centre (CHC, also termed the First Referral Unit) is a 30 bed hospital that is the first
referral unit for four PHCs. One CHC is available for every 200,000 population. The
secondary health care infrastructure consists of the district hospitals and other
specialty hospitals, while the tertiary health care infrastructure consists of the
government medical colleges and super-specialty hospitals. Starting from the sub-
centre level, morbidity and health data are collated and forwarded from one level
to the next, and ultimately through the district health officers to the Directorate of
Health Services of each State.

Unlike rural health services, urban health services do not have the planned and
organized primary, secondary, and tertiary services in geographically delineated
urban areas. Usually, private practitioners, municipal dispensaries and tertiary
care institutions cater to an enormous patient population from both the urban and
rural areas. Morbidity data from these institutions are also forwarded through the
district health officers to the Directorate of Health Services of each State.

Private and Voluntary Sectors
Although the private health sector is the largest provider of health and medical care
to thepopulation,very little information isavailableon thenumberofpractitioners,
available infrastructure or utilization of this sector (Duggal 2000; Report of the
Steering Committee on Health for the Xth Five Year Plan, 2002–2007, 2002). Private
sectorhealth services range fromtheservicesprovidedby largecorporatehospitals,
smaller hospitals and nursing homes to dispensaries run by qualified personnel
and services provided by unqualified practitioners. The majority of the private
sector institutions are single doctor dispensaries with very little infrastructure or
paramedical support. Specialty and super-specialty care account for only 1 to 2% of
the total number of institutions, while corporate hospitals (i.e. hospitals funded by
large business organizations) constitute less than 1% of this infrastructure (Report
of the Steering Committee on Health for the Xth Five Year Plan, 2002–2007, 2002).
There are no mechanisms for obtaining and analyzing information on disease,
infrastructure or manpower from this sector. It is estimated that there are more
than 7000 voluntary agencies involved in health related activities, mostly in the
rural areas (Report of the Steering Committee on Health for the Xth Five Year Plan,
2002–2007, 2002).
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Indian Systems of Medicine and Homeopathy (ISM&H)
There is a vast network of governmental ISM&H institutions. There are 3004
hospitals with 60,666 beds and over 23,000 dispensaries providing primary health
care (Report of the Steering Committee on Health for the Xth Five Year Plan, 2002–
2007, 2002). Over 16,000 practitioners from 405 colleges qualify every year. There
is no estimate of the utilization of this sector, although ISM&H practitioners are
extremely popular throughout the country. Inclusion of morbidity data from these
practitioners into a disease database would be greatly limited since the rationale
for diagnosis and disease classification is entirely different from the allopathic
system of medicine.

Utilization of Private and Public Sector Services
The information presented in the preceding sections illustrate the extent of incom-
pleteness of morbidity data in the country. Various surveys have shown that people
from all socio-economic strata access the private sector for outpatient services. For
inpatient services, 60% of individuals living below the poverty line (26% of the
Indian population fall into this category) utilize the public health sector facilities.
An equal number of people above the poverty line access the private health sector
(National Sample Survey Organization, 1995–1996, 52nd Round 1998). Other sur-
veys have shown that 65% of households go to private hospitals|clinics or doctors
for treatment when a family member is ill. Only 29% usually approach the public
medical sector. Even among poor households only 34% normally use the public
medical sector during illness (NFHS-2 2000). Data of the National Sample Survey
Organization (National Sample Survey Organization, 1995–96, 52nd Round 1998)
suggest that the majority of physicians in both the modern system of medicine and
the ISM&H works in the private sector. There are significant inter-state differences
in the distribution of private sector hospitals and beds. Private sector hospitals are
present in more prosperous districts and States, while in the poorer districts where
health infrastructure is most needed, health services are provided by the public
health sector.

Morbidity Statistics
National disease control programmes provide data on reported morbidity for those
patients who utilize the public health system. Table 6.3 lists the major disease con-
trol programmes and health schemes of the government which were launched at
various times after Independence, in order to control and eradicate communicable
disease, improve environmental sanitation, raise the standard of nutrition and
to implement population control. Under each disease control programme, data
are collected from both rural and urban health institutions. For example, in the
tuberculosis control programme (termed the Revised National Tuberculosis Con-
trol Programme, RNTCP) in the State of Maharashtra data is collected from 29
district tuberculosis centres and 1995 peripheral health institutions in the State.
In addition, there are seven tuberculosis hospitals and sanatoria (Health Status
Report Maharashtra 2003). The role of each centre is in case finding, treatment,
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case holding, management, recording and reporting of data. These data represent
an obvious under-representation of morbidity, since they do not include data from
the private sector.

Epidemiologic Surveillance System6.9.3

Epidemiologic disease surveillance is an essential prerequisite for the effective
control and prevention of communicable diseases, especially in India where en-
vironmental conditions are extremely poor. The major national programmes for
control of various diseases like malaria, tuberculosis, trachoma, leprosy, cholera,
filaria etc. (Table 6.3) have their own vertical surveillance system. Organized efforts
to integrate all the ongoing surveillance into a single comprehensive programme
for disease surveillance are lacking. Although the private sector provides over 75%
of curative care for common illnesses, no attempt has been made to include the
data from private health providers into a disease surveillance system. There is
a recent endeavour suggested by the Planning Commission of India to compile
information pertaining to common epidemic prone diseases or conditions like
measles, diarrhoea, diphtheria etc., which are prevalent throughout the country
as well as region specific problems such as malaria, filaria and leptospirosis from
the endemic areas (Report of the Steering Committee on Health for the Xth Five
Year Plan, 2002–2007, 2002). However, since many such programmes have been
initiated to no avail, the success of this effort remains to be seen.

Notification System
Usually diseases which are considered to be serious menaces to public health,
like measles, whooping cough, diptheria etc. are included in the list of notifiable
diseases. In India, there is a conspicuous lack of uniformity in the lists of diseases
which are notifiable in different States. Cholera, yellow fever and plague which
are internationally quarantinable diseases are notifiable throughout the country as
required under international health regulation. Notification of the specific commu-
nicable disease is compulsory and non-compliance is punishable by law. However,
this provision of the law is very poorly implemented. Moreover, other than the
three diseases listed above, most of the important conditions are not uniformly
notifiable, resulting in an incomplete picture of morbidity and mortality pattern
in India as a whole.

In urban areas, the responsibility for disease notification rests with the munici-
pal health authorities who forward the reports to the district health officer. Private
practitioners are by and large not involved in these activities. In rural areas,
notification and registration is done traditionally through the village chowkidar
(watchman), who is often minimally literate, or through the village panchayat
(village governing body). These functionaries notify the local police station, from
where the information is forwarded to the PHC and finally the District Health
Officer. It is not surprising therefore, that such a disease reporting system lacks in
reliability, promptness and completeness.



Epidemiology in Developing Countries 1577

Health Information System
Despite several attempts, a Health Management Information System (HMIS) is not
in operation in India. Information is collected and compiled in the traditional man-
ner described above. This information is not timely or complete. Thus, decision
making is most often ad hoc and not information based.

Tuberculosis Epidemiology 6.10

India is listed first amongst the twenty-two high burden countries that account
for 80% of new tuberculosis cases in the world (World Health Organization 2002)
The contributions of Indian tuberculosis research to disease control policies have
been succinctly reviewed (Chakraborty 1997, Appendix vi; Narayanan et al. 2003).
Tuberculosis is a long standing, chronic epidemic which has existed for centuries
in the country as seen from descriptions of this disease in ancient ayurvedic texts.
The first attempt at estimating disease burden was undertaken shortly after In-
dependence when a national sample survey for tuberculosis was conducted in
the country (Indian Council of Medical Research 1959). This survey revealed the
prevalence of tuberculosis and identified the requirement of increasing the infras-
tructure and treatment facilities for tuberculosis. In 1956 the so-called “Madras
Study” demonstrated the effectiveness of ambulatory, domiciliary treatment and
the fact that such treatment did not increase the risk of tuberculosis amongst
family contacts (Tuberculosis Chemotherapy Centre Madras 1959). In 1963 it was
demonstrated that most tuberculosis cases approached treatment facilities due
to persistence of symptoms, eliminating the need for active case finding for tu-
berculosis (Bannerji and Andersen 1963). The feasibility of passive case finding
using sputum smear microscopy for presence of acid-fast bacilli (AFB) opened
the way for establishing tuberculosis diagnosis and treatment facilities in primary
health centres throughout the country (Baily et al. 1967). These seminal studies
led to the establishment of the National Tuberculosis Programme (NTP) in 1962,
having as its core, case detection through sputum microscopy of chest symptomat-
ics attending government health facilities on their own, supplemented by X-ray
when needed, and ambulatory treatment of 12 to 18 months duration. The NTP
was reviewed in the 1990’s and the Revised National Tuberculosis Control Pro-
gramme (RNTCP) was launched from 1992, having as its guiding principle the
DOTS, i.e. directly observed treatment, short course (World Health Organization
1994). Research conducted in 1958 and in the 1980’s in India has shown the impact
of treatment supervision on improving cure rates, and that intermittent treat-
ment was as efficacious as a daily treatment regimen (Tuberculosis Chemotherapy
Centre Madras 1959; Tuberculosis Research Centre Madras and National Tuber-
culosis Institute Bangalore 1986). Both these findings are integral components of
the DOTS strategy. Currently, 50% of the country is covered under the RNTCP
(Granich and Chauhan 2003) whilst the NTP is in operation in the rest of the
country.
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In this part, we restrict the discussion to two major areas viz., estimation of
disease burden and investigations to determine the time trends of the tuberculosis
epidemic in the country. A more in-depth review is available (Chakraborty 1997;
Dye et al. 1999).

Survey Tools for Tuberculosis Infection and Disease6.10.1

Tuberculin as a Tool for Measuring Tuberculosis Infection
Prevalence of tuberculosis infection in the community is based on the interpreta-
tion of tuberculin test results of persons without BCG scar. Tuberculin test results
in an induration which is measured between 48 and 96 hours. Size of the indura-
tion is plotted in a histogram. It is possible to identify tuberculin reactors from
non-reactors, since the induration measures cluster around two modes, separated
by an antimode. Four key variables are known to influence comparability be-
tween surveys. These are the use of different antigens (i.e. 1TU PPD-RT23 versus
2TU-PPD-RT23) of varying dosages of tuberculin, testing and reading variations,
non-specific reactions to tuberculin and BCG immunization (Kumari Indira 2003).
The widespread BCG vaccination in the country has been a major confounder in
infection measurement since tuberculin reactors are found to be higher in BCG
vaccinated populations than in populations that are not vaccinated. However, the
problem of BCG induced tuberculin reactions can be eliminated since studies re-
port that the waning pattern of the induration of BCG vaccinated subjects follows
a pattern different from true tuberculin reactions (Chanabasavaiah et al. 1993).
Another variable influencing infection studies in India is the non-specific reac-
tions due to atypical mycobacteria. Chakraborty et al. (1976) have shown that
non-specific infection increases with age, so that the majority of the population
above the age group of 15 years is tuberculin positive. Infection surveys are usually
carried out in children in the age group of 0–9 years, without BCG scar. Beyond 14
years of age tuberculin testing in India is of no value.

Survey Tools for Determining Disease
Examination of sputum smears for AFB and radiography have been the standard
epidemiological survey tools. The specificity of microscopy is high, ranging be-
tween 98% and 99%. However, the sensitivity is relatively poor ranging between
50% and 70% or even lower. Repeated sputum examinations are known to improve
the sensitivity of microscopy (Nair et al. 1976). For example, when two speci-
mens are studied, case detection improved from 58% to 72%. Only 6% additional
cases were detected if eight specimens are examined. However, under field condi-
tions the lack of sensitivity of sputum microscopy becomes a major limitation in
identifying cases of tuberculosis. Culture of concentrated bacilli from processed
sputum on standard culture medium is more sensitive than microscopy, since cul-
ture detects approximately 100 bacilli per millilitre of sample. Expense has been
a major limitation in the use of sputum culture in epidemiological studies in India.
Transportation of samples from remote areas to the laboratory is another major
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problem to be addressed during surveys. Radiography has been one of the major
tools in epidemiologic investigations. However, X-ray is a non-specific tool since
considerable subjectivity exists in the reading of X-radiographs (Gothi et al. 1974).
It is generally used in surveys for prior screening of general population groups,
selecting eligibles for sputum test, but cost of X-ray is a limitation during a survey.

Survey Strategies
A list of major surveys and their outcomes have been summarized in Chakraborty
(1997). Two major methodologies have been used in prevalence studies. In the “X-
ray screening” approach, mass miniature radiography (MMR) of the entire pop-
ulation is used to identify individuals with abnormal chest shadows for sputum
tests. In the “symptom-screening” method, chest symptomatics in the commu-
nity have been identified through questioning individuals for the cardinal signs of
tuberculosis (i.e. persistent cough, chest pain, low grade fever and hemoptysis).
Individuals screened positive by this method are offered sputum examination and
chest radiography. Chakraborty et al. (1994) established that estimates of preva-
lence of disease made by the use of either MMR followed by sputum examination
or surveys based on symptom screening yielded identical data. It was subsequently
pointed out that the symptom screening method resulted in a significantly higher
yield of culture positive cases (Krishnamurthy 2001). One explanation of the higher
yield of culture positive cases could be due to improvement in laboratory methods
since it is more often found in recent studies.

Defining Disease
Comparability between surveys undertaken at various times in the country have
been hampered by lack of a consensus definition of what constitutes a case of
tuberculosis. A bacteriological case of tuberculosis is defined as a culture posi-
tive individual with or without a radiological abnormality. A second category of
tuberculosis case is one that is radiologically positive (i.e. has chest shadows sug-
gestive of pulmonary tuberculosis) but is bacteriologically negative. Survey results
that have diagnosed cases on the basis of chest radiography have to be accepted
with caution since reader variations in the interpretation of chest abnormalities is
a well-known phenomenon. For example, in one study, of the initial 385 persons
classified as having sputum negative X-ray active tuberculosis at the first survey,
only 22% were subsequently classified as having active tuberculosis, following re-
evaluation of the tuberculosis activity status in each through a five-year period of
follow-up (Gothi et al. 1974).

Calculating Tuberculosis Burden 6.10.2

As explained in the earlier sections, case notifications from the public health pro-
grammes (RNTCP and NTP) cannot be used as a source of data on tuberculosis
prevalence and incidence. The extent of incompleteness of the data can be illus-
trated with the following example. With the implementation of the DOTS strategy,
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record keeping has improved substantially so that it is possible to get a reliable
estimate on case detection and cure rates under the public health programme.
However, the discrepancy in the data reported to the World Health Organiza-
tion is evident from the following data. Detection rates of smear positive cases
computed for the period 1993-2000, ranged annually between 25–35 per 100,000
(Chakraborty 2004) as against an expectation of 84 per 100,000 per year, estimated
by the World Health Organization for India based on the consensus statement of
global rates (Dye et al. 1999). These figures indicate that either these patients are
being misdiagnosed or more likely, do not present themselves to the public health
system. The tuberculosis control programme has initiated strategies to include
private clinicians in tuberculosis control and reporting.

Prevalence estimates of pulmonary tuberculosis have been computed from
different surveys that have been conducted from time to time in the country
(Chakraborty 1997). The surveys lack in uniformity since the objectives and
methodologies have varied. Moreover, the surveys have been conducted in certain
specified and restricted areas of the country covering different populations. Thus,
the available information is neither uniform in its content nor representative of
the country as a whole. The methodology employed for computing prevalence and
incidence estimates from different survey results has been extensively discussed
(Chakraborty 1997).

A global exercise has been conducted by Dye et al. (1999) directed towards
providing an average estimate for the country. The average rates of disease and
infection (both prevalence and incidence) as well as death were computed. The
sources of data used for estimating prevalence and incidence included survey
results, incidence of cases calculated out of the Annual Risk of Infection (ARI,
explained below) and the likely disease rates computed from notification of cases
made to the World Health Organization. The average rates for countries represent
the most up to date statement of the burden (Table 6.4). Table 6.5 summarizes the
tuberculosis situation in the country.

Disease burden is expressed as an average (including a range) and is used to
work out control strategies and estimate the resources that will be required for the
control programme. However, such average calculations cannot be used to evaluate
changes in the tuberculosis epidemic in the country, for which precise rates, such
as those obtained through ARI surveys described below are necessary.

The ARI gives the proportion of the population which will be primarily infected
or re-infected with tubercle bacilli in the course of one year (Styblo et al. 1969). It
is usually expressed as a percentage or cumulative rate. ARI is estimated through
the following formula (Cauthen et al. 1988):

ÂRI = 1 − (1 − P)1|A ,

where A = average age studied and P = prevalence of infection. The method of
calculating average age (A) is described in Cauthen et al. (1988). The estimated ARI
is actually demonstrated to be the same as the incidence of infection, worked out by
repeat testing of the same population under Indian conditions, and represents the
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Table 6.4. Annual risk of tuberculosis infection in various areas in India (modified from Chakraborty

2004)

Region Year of survey ARI (%)

I South India

Kerala
Trivandrum 1991–1992 0.75

Karnataka
Tumkur Dist 1960–1972 1.66–1.08
Bangalore rural 1962 1.1
Bangalore rural 1985 0.61
Bangalore urban 1996–1999 1.67
Chingleput rural 1969–1984 1.8–1.9
Chingleput rural 1991–1996 2.9–3.2

II North India

N. India rural 2000–2001 1.62
N. India urban 2.6

Uttar Pradesh
Rae Bareilly 2000–2001 2.3
Hardoi 1.9
Jaunpur 1.5

III West India

Rural 2000–2002 1.5 (5.9–9.7)∗
Urban 2.4 (8.3–17.0)∗

Rajasthan 1995 1.44
Gujarat

Junagadh 2000–2002 0.73
Maharashtra 2000–2002

Nagpur rural 1.2 (6.34–6.38)∗
Nagpur urban 1.6 (8.44–8.50)∗
Thane rural 1.6 (8.07–8.10)∗
Thane urban 3.3 (15.75–15.80)∗

IV East India

Orissa 2000–2002 1.72 ( 7.5–11.3)∗
Rural 1.62 (7.2–10.3)∗
Urban 2.48 (7.7–19.8)∗

Andaman and Nicobar Island 1986 1.53
Andaman and Nicobar Island 2002 3.8

∗ represents 95% confidence interval of prevalence of infection

only observational evidence ever reported (Chakraborty et al. 1992). ARI studies
from different parts of India have demonstrated the differences in the tuberculosis
situation in different areas in India (Table 6.4). This was also true for prevalence
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Table 6.5. Rates and prevalences of tuberculosis in India (average for the country)

Prevalence of infection 38% all ages∗
44% all ages#

Prevalence of radiologically active abacillary 16.0 per thousand∗
pulmonary tuberculosis (3.0; 2.6–4.7)§

Prevalence of culture positive cases 4.0 per thousand∗
(6.0; 3.0–11.0)§

Prevalence of total pulmonary tuberculosis cases 20.0 per thousand∗
(9.0; 5.6–15.7)§

New culture positive arising annually 1.3 per thousand∗
Mortality rate (annual) 50–80|100,000∗
Case fatality rate (annual)

of untreated culture positive cases∗ 14%
of all tuberculosis cases# 24%

Prevalence of all forms of tuberculous disease 5.05 per thousand#

Prevalence of smear positive cases 2.27 per thousand#

New smear positive arising annually 0.84 per thousand#

Total Indian population: 1000 million (850 million older than 5 years of age)
∗ Extrapolating observed rates from population surveys conducted in some areas of India
(Chakraborty 1997, 2004).
§ Numbers in parentheses give mean and range of corrected numbers as per results of
correctional surveys carried out in India (Chakraborty 1997)
# As per Global Consensus Statement (Dye et al. 1999)

of tuberculosis. Prevalence and incidence of tuberculosis increased by age. Other
variables influencing prevalence rates were literacy, economic status, occupation
and living standards (Chakraborty 1997, Table 6.5)

Evaluation of Epidemiological Changes Through Time6.10.3

Longitudinal studies, conducted in a few areas of the country, give an insight into
tuberculosis trends. One of the first longitudinal studies was initiated in a rural
population residing in 119 randomly selected villages of Bangalore district. Tuber-
culin surveys were undertaken at intervals of 1.5, 1.5 and 2 years. All persons above
5 years of age were X-rayed, and those with radiological abnormality were bacteri-
ologically investigated. At this time, the tuberculosis control programme was not
in operation in this area, and no intervention was available to the population. After
a fourth survey, intervention was implemented. A fifth survey was undertaken
in a subset of the population after eleven years from the fourth survey (Gothi et
al. 1979). A sixth survey was undertaken in the area after 16 years. Twenty-three
years after the first survey was initiated, a seventh survey was undertaken in 40 of
the original 119 villages (Chakraborty et al. 1982). The results of this study gave
one of the first opportunities to observe the time trend of tuberculosis in a rural
community in India. The first five years of the study represented the natural his-
tory of the disease since there was no intervention. Prevalence and incidence of
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culture positive and radiologic cases revealed no change during the period of 12
years for which information was available. The mean age of cases was higher at
later surveys. ARI had declined from 1.1% to 0.65% in 23 years. Incidence of smear
positive cases had declined for the area from about 65 to 23 per 100,000 in the same
period, parallel to the falling ARI. The above data was used to estimate future case
rates with the help of a mathematical model (Balasangameshwara et al. 1992) which
projected that even in 50 years, tuberculosis case rates expressed in terms of preva-
lence of culture positive cases would come down minimally. It also showed that
more energetic and efficient tuberculosis control measures as defined in the model
could, however, result in a verifiable change in case rates. Very large population
sizes would be required to be surveyed repeatedly to appreciate a change if any.

The epidemic situation in India is probably on a slow downward curve as
indicated by the following evidences: declining mortality and case fatality rates due
to tuberculosis, decline in meningeal and miliary forms of the disease, relatively
high prevalence of cases in higher age with a low rate of positive cases in children,
relative concentration of cases in higher ages, higher prevalence of cases in males,
especially adult males, and equal prevalence rates across the urban-rural divide.
However, even if on a downward trend, the decline could be minimal, as witnessed
from high ARI of 1% to 2% and an annual decline of around 0% to 3% reported
from the Bangalore rural and Chennai areas (Chakraborty 2004).

Drug Resistance and HIV-TB Co-infection Studies 6.10.4

Two issues that need to be mentioned concern the estimation of drug resistant
tuberculosis and HIV-TB co-morbidity in India. Monitoring drug resistance is of
utmost importance, not only because drug resistant tuberculosis is more expen-
sive to treat, but also because drug resistance is usually man-made (due to in-
complete treatment) and thus indicates a poorly functioning tuberculosis control
programme. Drug resistance is of concern in India, where immuno-compromised
individuals living in crowded conditions such as those of urban slums would be
a potent risk in furthering the transmission of drug resistant disease to the general
population. With the exception of few studies, estimates of drug resistance in India
have to be viewed with caution (Paramasivan 1998). At the clinical level, reports
of drug resistance are often based on lack of improvement in the patient following
chemotherapy or a relapse of the symptoms, unconfirmed by laboratory testing of
cultures. On the other hand, reports of high incidence of drug resistance in various
other studies, are often due to the very small number of patients studied. Primary
drug resistance in children was found to range between 5% to 10% for strepto-
mycin and 2% to 11% for isoniazid with nil resistance to rifampicin, suggesting
that primary drug resistance is not a cause for alarm in this country. However, ac-
quired drug resistance (i.e. drug resistance in a previously treated case) was much
higher, though these data are available from limited studies (Venkataraman and
Paramasivan 2003). Studies to verify these observations are ongoing in five cities
in the country. Drug-resistance studies are limited by expense and by the absence
of qualified laboratories capable of undertaking drug-resistance assays.
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The greatest threat to tuberculosis control worldwide comes from the HIV epi-
demic, since tuberculosis is the only AIDS-related opportunistic infection that can
significantly affect the general population. HIV surveillance in India is done by
the National AIDS Control Organization (NACO) through 77 sentinel surveillance
sites distributed throughout the country (National AIDS Prevention and Control
Policy 2002). HIV|AIDS estimates of the country have been fraught with contro-
versy which falls out of the scope of the current discussions (Rao 2003). There
is no accurate baseline data for estimating the impact of HIV on the tuberculo-
sis epidemic. Isolated studies have documented increasing HIV seropositivity in
tuberculosis patients (Paranjape et al. 1997; Tripathy et al. 2002). Studies on the
burden of HIV-TB co-morbidity are urgently required in order to determine the
impact on tuberculosis control.

Conclusions6.11

In this section, we have addressed the issue of availability of denominator and
numerator data in India. The key conclusion is that systems to ensure timely,
complete and accurate collection of health data have not been a priority in this
country. Evidence-based data are of utmost importance in developing countries
where interventions have to be implemented on the background of resource limi-
tation. Currently, public health planning in India is based primarily on mortality
statistics, supplemented by morbidity data obtained from infrequent surveys for
major communicable diseases, nutritional deficiencies or morbidity in women
and children. The Planning Commission, the highest authority framing develop-
mental plans for the country, points out the dangers of this approach (Report of
the Steering Committee on Health for the Xth Five Year Plan, 2002–2007, 2002).
Epidemiological and demographic transition is well under way in the country, and
non-communicable diseases will emerge as major public health problems in the
near future. Thus, in addition to the emphasis on morbidity data on communicable
diseases and health of women and children, systems to document data on chronic
illnesses and disabilities need to be put in place. Furthermore, there are wide in-
terstate differences in epidemiological transition (National Human Development
Report 2001). Under these conditions it is imperative to develop a system to obtain
non-aggregated and reliable data on morbidity and mortality in different States
or districts in order to determine appropriate interventions required for health
development and reduction in morbidity and mortality. Since in a population
of more than a billion, the interventions to ensure healthy living will be many
and resources will be limited as compared to the needs, disease surveillance and
systems to ensure accurate and reliable morbidity data are urgently required for
prioritization of interventions.

We have utilized tuberculosis epidemiology as a case study to illustrate the chal-
lenges faced by epidemiologists in deriving prevalence and incidence estimates in
the absence of a complete disease reporting system. In lieu of data reporting sys-
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tems, disease surveys are routinely used for obtaining denominator data. Disease
surveys in a populous country like India are extremely expensive, and till now,
selecting a sample that is sensitive enough to reflect the characteristics of the
billion-plus population have eluded epidemiologists. Whilst discussing tubercu-
losis case detection, Dye et al. (2003) suggest that infrequent and isolated surveys
are not the long-term solution to acquiring denominator data. Rather, the ultimate
solution would be the same approach currently used in low incidence countries,
namely comprehensive routine disease surveillance. Daunting as the task may ap-
pear, it is obvious that strengthening disease surveillance and HMIS systems need
to be given a high priority in the country.
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Introduction7.1

Every UK citizen has the right to medical care, but those rights also involve
responsibilities. Better treatments that save more lives come from research into
previous patients’ experience.
Peto (2001)

I think you need to give conscious consent to having any data, any personal
data used, whether you are identified or not. That’s certainly a right. That’s your
information, it’s your medical history. Whether it’s identified or not, you should
control it.
Patient 14, in Willison et al. (2003)

These two quotes are about values and expectations, about perceived respon-
sibilities, about community benefits and individual rights in medical care and
research, and reflect thereby compellingly the tensions, the paradoxes, the differ-
ent views and ethical aspects concerning biomedical research (Coughlin 2000).
Epidemiology is part of the arena of biomedical research and is particularly
focussed on determinants of disease occurrences in populations. Ethics is the
systematic analysis of values and norms (Weed and Coughlin 1999; Weed and
McKeown 2001). Usually ethical reasoning and conduct are not issues that are
at the top of a epidemiologist’s menu chart (Beauchamp et al. 1991). In previous
chapters of this handbook we have seen that most epidemiological methods are
non-interventional, e.g. observational bydesign,meaning that conventional ethical
aspects of experiments with human beings (e.g. protocol review, randomisation,
placebos, informed consent, etc.) are not applicable as such. Many ethical com-
mittees have been struggling with the review of protocols of non-interventional
studies because of the rationale and design of the study being directed at not
influencing the ‘natural’ disease course of patients, but at determining statistical
inferences between various exposures (e.g. environment, drug treatment, medical
practice) and effects in the population in a non-experimental fashion. Observa-
tional epidemiology possesses the attractiveness, but also the practical paradox,
of scientific investigation with a priori objective of not intervening in the normal
course of the study object.

There have been several drivers within and outside the field of epidemiology that
have changed the picture of ethical aspects significantly over the last decades. First
of all, since the mid-eighties of the last century the development and availability
of automated record linkage databases, capturing both exposure and outcome
data on an individual level, have raised questions about confidentiality of patient’s
medical records, authorizing access to person-specific information, and misuse of
such databases (Knox 1992). A second driver has been the debate about integrity
and conflict of interests related to epidemiological research, in particular in cases
of sponsored epidemiological studies and|or when the results of such studies
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were contradictory and subject of controversy and discourse. Finally, the growing
interest of epidemiologists to include molecular variables in their studies (e.g.
laboratory data, biomarkers, genetic factors) has fuelled ethical questions and
debate about the design, conduct and what to do with the study results of such
epidemiological research.

As a consequence, the last decades have shown that concern about the ethical
aspects of their research activities has become engaging epidemiologists as much
as others who deal with public health, clinical decision making, prioritising and
policy making in health care. Ethics guidelines have been prepared and accepted by
several epidemiological organizations (Bankowski et al. 1991; IEA 1998) in response
to a growing awareness among epidemiologists that ethical conduct is essential
to epidemiology. Basic principles of integrity, honesty, truthfulness, fairness and
equity, respect for people’s autonomy, distributive justice, doing good and not
harming have been made explicit. Essentially, the appreciation of these values
have their origins in the follow-up of the Nuremberg trials, the UN Declaration on
Human Rights, the Declaration of Helsinki, and many later declarations, guidelines
and codes of conduct. Basically, these declarations and guidelines reflect a major
shift in current society from less priority to collective interests and benefits towards
the primacy and protection of the individual (World Medical Association 2000;
Coughlin 2000).

Drivers of Awareness
of Ethical Aspects in Epidemiology 7.2

Surge of Automated Databases 7.2.1

One of the visionary founders of medical registries has been William Farr who un-
derstood already in the nineteenth’ century clearly the importance and potential of
keeping person-specific records on diagnoses, medical treatments, environmental
factors and disease course (Farr 1875). Later various approaches of building and
linkingdatasets for evaluatingmedical treatmentsandotherdeterminantsofhealth
have been developed. In the early sixties and seventies of the twentieth century,
consistent and protocol based medical record keeping became also recognized as
an essential tool for clinical practice, and worldwide famous centres of clinical and
epidemiological excellence like the Mayo Clinics or the Oxford Radcliff Infirmary
earned their appreciation mainly because they were champions in collecting and
managing clinically relevant person-specific information in an era when paper
charts, pencils and several primitive collecting and retrieving machineries where
state of the art technologies (Gostin 1997). The introduction of advanced computer
and information technologies changed that picture dramatically in the mid and
late eighties of the twentieth century. Storing, assembling and linking clinical infor-
mation became ‘push button’ actions and fascinating avenues for epidemiological
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research capturing data of hundreds of thousands, even millions, of individuals
became feasible (Quantin et al. 1998). However, the ‘push button’ nature and the
big numbers involved of these developments gave rise to various ethical questions,
in the beginning still vaguely phrased but later in very pronounced way on the
table.

The overwhelmingness of the potentials of new information technologies and
the speed of the developments have driven the need for a comprehensive bal-
ance sheet of all the social, political and ethical aspects involved. Moreover, the
owners and stake holders of these automated databases are usually not health
care providers or professionals but third party payers, e.g. health insurers, Health
Maintenance Organisations, or governmental bodies. These organisations have
mostly not their origins in the professional and ethical environment of Hippo-
cratic medicine, and have invested in these data systems with other purposes (e.g.
reimbursement ofhealth careproviders, cost-containment, risk management) than
supporting medical practice (Gostin 1997).

The surgeof automateddatabaseshasbeenstirredby theprogress in record link-
age techniques. Record linkage is the process by which pairs of correctly matched
records of person-specific information are brought together in such a fashion that
they may be treated as a single record for one individual (Herings et al. 1992).
Record linkage provides a powerful tool in epidemiology in order to stratify expo-
sures according to patient outcomes, e.g. bringing data together on food intake and
cancer events, or exposure to sleeping pills and hospitalisations for hip fracture.
Record linkage has driven the expansion of automated databases and from an eth-
ical point of view there has been at least two major concerns (Herings et al. 1992;
Kelman et al. 2002). First of all the operational process of linkage of individual data
from a number of sources using a unique person-specific ID (identification) re-
quires patient identification. Researchers in epidemiology have developed for that
reason probabilistic approaches of record linkage, using sets of in itself not unique
identifiers. However, it is believed by some opponents that this approach of record
linkage may also violate data confidentiality rules i.e. each pseudonymised method
needs to be validated and then the use of person-specific data (e.g. name or other
ID) is essential (Tondel and Axelson 1999). A second concern related to record
linkage has always been the fear that (non)medical data (e.g. insurance status,
life style, sexual behaviour, socio-economic position) are built-in epidemiological
data frames enhancing the feasibility of making unintended and|or undesirable
statistical inferences that could cause damage or distress to individuals (Kmieto-
wicz 2001). As a consequence, in the advent of a surge in automated databases,
many countries both in North America and Europe have taken comprehensive
legal action to assure the protection of personal privacy (Vandenbroucke 1992; UK
Parliament Acts 1998; US DHHS 2001; de Vet et al. 2003).

Today’s balance sheet of the role of automated databases in epidemiological
research looks very positive. Cancer epidemiology, cardiovascular epidemiology,
pharmacoepidemiology are branches in epidemiology where such databases are
key resources. They all have in common complex multivariate and time-dependent
exposure-disease occurrences. Confidentiality of person-specific information is
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one of the most imperative ethical aspects to consider. We will come back to this
later on in this chapter.

Integrity and Conflict of Interest
in Epidemiological Research 7.2.2

In the ‘ideal’ world, basic values of integrity, objectivity, respect and indepen-
dence should be key to every field of science. Committed to the discovering of the
truth, researchers design, conduct and report on study results (Levinski 2002).
This notion gives the impression of science being a logical and unbiased human
activity. Current society has long relied on scientists’ professional commitment to
truth and honesty. However, disclosure of for instance a case of fraud by a Dutch
neurologist participating in the ‘European stroke prevention study 2’ (ESPS-2),
a multicentre stroke study, scandalized both the medical research community
and the public (Hoeksema et al. 2003). The neurologist had committed fraud, in
the sense that he had used names and fingered data of existing patients with-
out these patients actually being enrolled in the study. Recently, the University of
Connecticut in the US announced clear misconduct by a vaccine expert who had
falsified preliminary data in two grant applications (Malakoff 2003). The univer-
sity removed the expert as head of the research centre and a series of lawsuits
between the university and the vaccine researchers took place. We notice here
two obvious cases of serious misconduct in biomedical science, e.g. doctoring of
data. Other examples of questionable and unethical scientific behaviour include
apparent study sponsor induced bias, as well known from research sponsored
by the tobacco industry into the association between smoking and lung cancer
(Barnes and Bero 1998), and at the very end of the spectrum, fraud and falsi-
fication of data. We will come back to industry sponsoring of epidemiological
research into drug effects. But there are other more subtle constraints to scientific
integrity.

In 2002 Levinski gave a very personal and historical account on how he started
as a medical researcher, and reflecting visibly on major ethical questions, e.g.
the protection and reimbursement of human research subjects, informed consent,
disclosure of financial interests, prestige of the academic institution and personal
career building. The account also shows that ethical weighing can vary strongly
over time. What we believed as being ethically acceptable in the past, might not be
today or vice versa:

In 1963, before the advent of institutional review boards (IRBs), I was a young
academic physician studying the regulation of sodium excretion by the kidneys.
I paid medical students approximately $50 to serve as subjects for experiments
involving only saline infusions and the collection of blood and spontaneously
voided urine samples. I do not remember exactly what I told the students about
the risks of the experiments but am quite certain that I characterized them as
nominal. In one subject, severe phlebitis developed at the site of an intravenous
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infusion and required extensive therapy. The research project was funded by
the National Institutes of Health. I had no possibility of financial gain from it.
My primary motive was academic – the desire to advance knowledge about an
important physiological mechanism with a bearing on clinical conditions such
as edema. A potent secondary motive was to advance my career by publishing
the results of the research and maintaining grant support – academic currency
that buys prestige and promotion.
(Levinski 2002).

For epidemiology, conflicts of interest related to research sponsoring are a very
contemporary and controversial issue. Thompson has defined conflicts of interests
as

a set of conditions inwhich professional judgment concerningaprimary interest
(such as a patient’s welfare or the validity of research) tends to be unduly
influenced by a secondary interest (such as financial gain)
(Thompson 1993).

Financial interests related to the tobacco industry have been subject of intense
controversy since decades. This industry has been always active in engaging re-
searchers (aswell aspublicmedia) forpromotingmessages contrary to theavailable
epidemiological evidence on health risks of both active and passive smoking. In the
field of epidemiology of drug effects two archetypal cases have paved the pathway
of debate and controversy on the ethics of research sponsoring, conflict of interest
and scientific (mis)conduct:

Cardiovascular Risks of Calcium-Channel Blockers
In 1995 Psaty et al. reported in the JAMA about a population-based case-control
study among hypertensive patients in order to assess the association between first
myocardial infarction and the use of antihypertensive agents (i.e., beta-blockers,
calcium-channel blockers, angiotensin-converting-enzyme inhibitors, diuretics).
Themain result of the studywas that theuseof short-actingcalcium-channelblock-
ers, especially in high doses, was associated with an increased risk of myocardial
infarction (Psaty et al. 1995). An intense controversy on the scientific validity of
the study, the consequences for treatment of patients with hypertension, and the
financial implications for the companies marketing calcium-channel blockers fol-
lowed in both the medical literature and the lay press. A surge of commentaries,
reviews and additional papers on the topic emerged in the literature. Stelfox et al.
(1998) evaluated the obviously visible signatures of the debate in the medical lit-
erature and demonstrated a strong association between authors’ opinions about
the safety of calcium-channel blockers and their financial relationships with those
industries having an apparent interest in the hypertension market. Supportive au-
thors had more financial ties with manufacturers of calcium-channel antagonists,
while critical authors were much less likely to be involved in industry sponsoring
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and other financial connections with manufacturers. Although the paper of Stelfox
et al. could be criticized for methodological reasons (lack of adjustment for dy-
namics of actions-reactions of time in the aftermath of the Psaty et al. paper) the
overall message remains valid: there is and has been an association between ties
with sponsors, choice of study questions and, possibly, study results.

Venous Thrombosis Risk of Oral Contraceptives
In the same year as the calcium-channel blocker controversy emerged 1995, several
case-control studies reported on a two-fold increased risk of deep vein thrombosis
and pulmonary embolism in females using the so-called third generation oral con-
traceptives relative to second-generation oral contraceptives (Skegg 2001). These
findings engendered a surge of further (for the most part case-control) studies
primarily driven by questions on possible confounding by indication (e.g. health
user effect meaning preferential prescribing of third generation oral contraceptives
to females with more risk factors of cardiovascular disease) and biases related to
the method of exposure ascertainment to oral contraceptives.

Many of these studies were sponsored by the pharmaceutical industry and Van-
denbroucke observed a contrast between the industry sponsored studies reporting
a relative risk of 1.5 or less and the non-funded studies consistently showing an
increased risk of about 2.0 (Vandenbroucke 1998) (see also Fig. 7.1).
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Figure 7.1. Risk of venous thrombosis with third-generation contraceptives stratified for industry

sponsoring. From Vandenbroucke (1998)

Answering the question whether this contrast is real, implicating that industry
sponsorship is followed by biased research, is much more difficult to answer and is
still subject of an ongoing debate. To illustrate the bewildering impression fuelled
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by the array of conflicting studies captured in Fig. 7.1, Vandenbroucke quotes
a pharmacologist involved in early-phase studies for the industry:

… this might very well mean that industry-sponsored studies are the better
ones
(Vandenbroucke 1998).

Like in case of the calcium-channel blockers controversy, a surge of commen-
taries and additional papers on the topic emerged in the literature and the public
press. Moreover, as the topic was also subject for several court cases, the legal
press covered the issue as well. This controversy has been one of the most striking
examples in the last decade of how to find the truth in studying drug exposure-
outcome associations, to unravel possible biases and confounding factors, dealing
with study sponsor’s interests, and at the same time to protect scientific integrity.
Researchers are exposed to myriad pressures (e.g. balancing individual and insti-
tutional needs, search for professional recognition, and sometimes, even rivalry).
The science arena operates as a function of all the influences and pressures. Most
progress to untangle the individual impact of all these factors has been made
in demanding at least disclosure of all financial interests of the researcher by
virtually all scientific journals and scientific communities (Levinski 2002). Epi-
demiologists need to continue to improve scientific and ethical conduct, to prevent
unwanted conflicts of interest and to be aware of the great financial interests of
the parties involved (Beauchamp et al. 1991; Coughlin 2000). Various avenues
to achieve this goal are either proposed or already in place: (1) codes of ethical
conduct are adopted by virtually all professional and scientific societies, (2) the
same holds for guidelines for disclosure of possible conflict of interests by au-
thors submitting papers to medical-scientific journals, (3) there is a surge both
at the medical and other life science faculties, to include ethics classes in their
standard curricula. In addition we think that researchers should submit a decla-
ration of any potential conflicts of interest affecting the study to an institutional
review board. These boards should evaluate each study in light of any declared
conflicts and ensure that adequate means of mitigation are provided. When ap-
propriate, the board may also require that a potentially conflicting interest be part
of the information provided to the respondents. If a potentially serious conflict
of interest cannot be adequately mitigated, the committee should not approve the
project.

Molecular Epidemiology and Genetics7.2.3

Molecular epidemiology is a rapidly emerging field and in Chaps. III.6 and III.7
of this handbook we have seen up-to-date accounts on scientific achievements
and progress. A growing number of population based molecular epidemiology
studies have been set up to explore the roles of molecular factors (e.g. immune
response profiling, blood clotting factors, enzymes) and gene mutations and poly-
morphisms in disease occurrences (Maitland-van der Zee et al. 2000; Nuffield
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Council on Bioethics 2003). Issues about participants’ consent, confidentiality of
information, and the feedback of findings, have been widely addressed. Growing
knowledge about molecular pathway-disease associations have led to new op-
portunities for testing, increasingly important as a guide to prevention, clinical
management, and pharmacotherapy. Tests are likely to vary in their predictive
value, analytic and clinical validity, clinical utility, and social implications, e.g.
access to and affordability of testing, insurance or employment discrimination,
stigmatisation, and long-term psychological harms from testing. Molecular epi-
demiology applying these tests is distinct from most other types of epidemiological
research in that such biomarkers or genetic data obtained about an individual also
may provide signatures of health about his or her relatives and person-specific
future events. For example, concerning the latter, the implications of a positive
test for the breast cancer genes BRCA1 or BRCA2 mutation differ considerably for
a woman who has not yet had children compared with one who has daughters who
might be susceptible as well (Burke et al. 1997).

A pivotal and informative case in identifying and understanding the ethical
aspects of these developments is the area of pharmacogenetics (Bolt et al. 2002).
The increasing knowledge on the genome has resulted on unprecedented advances
in understanding why individuals respond differently to drug therapy (Venter et al.
2001; Roses 2000). Pharmacogenetics focuses on the question of the extent to which
genetic variants are responsible for inter-individual variability in drug response
among recipients of a specific drug therapy. Few drug therapies are effective for
everyone. The ultimate goal of pharmacogenetics is to shape therapy with avail-
able medicines in an individualised fashion, e.g. ‘tailor-made pharmacotherapy’.
Pharmacogenetics integrates epidemiology, pharmacology and genetics and is fo-
cussed on an understanding of the genetic determinants of individual variability
in drug therapy (Maitland-van der Zee et al. 2000). This research parallels the
surge in discoveries of genes and protein expression patterns affecting the suscep-
tibility to disease. There is evidence that certain disease susceptibility genes are
also determining drug action, and thereby therapy response.

The Nuffield Council on Bioethics (2003) has identified a number of ethical
issues specifically raised by pharmacogenetics: (1) consent, privacy and confi-
dentiality (2) management of information about response to therapy likelihood
(3) implications of differentiating individuals into groups based on response to
therapy likelihood. The key question in pharmacogenetics is unravelling the ge-
netic traits of efficacy and|or safety of medicines. When that information is avail-
able it can guide prescribers to select specific drugs or dosage schemes. Recently,
it has been shown that on the one hand male carriers of the Apolipoprotein-E 44
variant are more prone to discontinue therapy with anticholesterol lowering agents
(Maitland-van der Zee et al. 2003). Although the precise mechanism underlying
this association is still not known, prescribers, pharmacists, and patients can
improve therapy knowing this risk-factor of non persistence by enhancing com-
pliance with the regimen, tailor-made counselling and the like. On the other hand,
we know that Apolipoprotein-E is also associated with various cardiovascular and
neurological risks (e.g. Alzheimer disease). The level of evidence of the mentioned



1600 Hubert G. Leufkens, Johannes J.M. van Delden

Apolipoprotein-E associations is still subject of ongoing research and all the three
ethical issues mentioned by the Nuffield Council on Bioethics are visibly present in
this case. This is particularly true in an area where we don’t know today what kind
of new genetic traits are discovered tomorrow and what kind of implications that
has for already collected biological material (e.g. DNA samples). We see a surge in
post-hoc genotyping in both clinical and epidemiological research. This is feasible
as individual genetics do not change over time and when biological samples (blood,
urine or buccal cells) are still available, a major ethical question is whether the
informed consent (maybe completed decades ago!) still holds for the current new
situation. And what about the ethical questions provoked by genotyping cases and
controls in for instance a case-control study revealing that certain study subjects
carry serious susceptibility genes (e.g. BRCA1 or BRCA2 mutations)? Genotyping
of the cases may be well covered by informed consent in the protocol, but this
may be not valid for the controls sampled from the study base anonymously. And
what about the ‘right not to know’ of both the study subjects and their inherited
relatives?

The application of pharmacogenetics information to drug development also
fuels ethical questions. Preferential inclusion of tested full responders into clinical
trials increases the efficiency of such programs. However, such an approach would
hide important information about the actions of the drug in other patients. In
case the group of responders would be (too) small to develop the compound to
an economically feasible medicine, the industry might decide to discontinue the
project. The latter picture has led to the illustrious quote ‘Will all drugs become
orphans?’ (Maitland-van der Zee et al. 2000)

Ethical Principles:
Weighing Ethical ‘Benefits’ and ‘Costs’7.3

On the background of all the developments addressed so far, ethical principles are
highly prevalent, but in many cases badly defined, virtually invisible or denied.
Weighing of ethical ‘benefits’ and ‘costs’ is becoming an essential, additional per-
spective in designing and conducting sound epidemiological research (Nilstun and
Westrin 1994). In the late eighties of the last century the Americans Beauchamp
and Childress proposed four ethical principles in order to provide a more or less
neutral, analytical framework to help doctors, researchers and all others who are
engaged in medical decision and policy making, when reflecting on moral issues
that arise at work: respect for autonomy, beneficence, non-maleficence, and justice
(Beauchamp and Childress 1989). Despite rapid and thought-provoking changes
in medical technology and the practice of medicine, we believe that these four
principles, plus attention to their scope of application, may encompass most of the
moral issues that arise in today’s health care and public health arena (Gillon 1994,
2003).
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Autonomy 7.3.1

Autonomy is a widely discussed principle in bioethics and the word has several
meanings. By and large, however, two focusses can be discerned: on the one hand
autonomy can be perceived as a right to self-determination, and on the other as an
ideal of deliberated self rule. The first is about sovereignty, the second about au-
thenticity. With respect to research ethics, autonomy is most visible in the practice
of informed consent. Autonomy may be infringed if individuals are denied the right
to choose whether or not to be enrolled in clinical or epidemiological research.
Respecting people’s autonomy requires consulting patients or other study subjects
and obtaining their agreement before inclusion in a study. Medical confidentiality
is an instrument to protect privacy, which in itself is based on the respect for
a patient’s autonomy.

Privacy refers to freedom of the person to choose for himself or herself the time
and circumstances under which and, most importantly, the extent to which, his or
her attitudes, beliefs, behaviour, and opinions are to be shared with or withheld
from others. Confidentiality refers to managing private information; when a sub-
ject shares private information with (confides in) an investigator, the investigator is
expected to refrain from sharing this information with others without the subject’s
authorisation or some other justification. Without confidentiality patients will be
also far less open about all their personal concerns, symptoms and other pieces of
highly private information. Such information is very often critical to assign diag-
noses and treatment scenarios to individual patients. This will have implications
for clinical practice, but also for research. Study subjects should have more than
enough reasons to trust researchers. Respecting autonomy also means not abusing
this trust.

Beneficence and Non-maleficence 7.3.2

The principle of beneficence means that health-care professionals and investiga-
tors have a responsibility to do good for those whom they treat. The traditional
Hippocratic moral obligation of medicine is to provide net medical benefit to pa-
tients with minimal harm. Therefore, beneficence and non-maleficence are viewed
as basic components of a balance sheet aiming at producing net benefit over harm.
For epidemiology this means that a research project should add to the existing
knowledge base on exposure-disease occurrences in order to treat populations of
patients effectively and to prevent health hazards or even mortality in the com-
munity. In epidemiology the interests, and thereby the benefits, for the individual
patient are less obvious, since often no treatment is offered. However, part of the
benefit that communities, groups and individuals may reasonably expect from par-
ticipating in studies is that they will be told of findings that pertain to their health.
Where findings could be applied in public health measures to improve community
health, they should be communicated to the health authorities. In informing in-
dividuals of the findings and their pertinence to health, their level of literacy and
comprehension must be considered. Research protocols should include provision
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for communicating such information to communities and individuals (Bankowski
et al. 1991).

The principle of non-maleficence applied to epidemiology reflects the moral
obligation not to do harm to study subjects. In many cases of research it is still
uncertain what the benefits are of a specific intervention (as this is part of the study
question). The principle of non-maleficence teaches that at least participating in
the study should do no harm and should involve only minimal risks. Likewise,
epidemiological investigators studying activities that pose risks to the well-being
of subjects are ethically obligated to propose to subjects with whom they interact
any feasible steps that canbe taken tominimise their exposure to risk. Furthermore,
harm may occur, for instance, when scarce health personnel are diverted from their
routine duties to serve the needs of a study, or when, unknown to a community, its
health-care priorities are changed. It is wrong to regard members of communities
as only impersonal material for study, even if they are not harmed. Ethical review
mustalwaysassess theriskof subjectsorgroupssufferingstigmatization,prejudice,
loss of prestige or self-esteem, or economic loss as a result of taking part in
a study.

Justice7.3.3

This principle underpins the moral obligation of a fair distribution of burdens
and benefits between people. One way of looking at justice is treating those with
equal need equally. Justice can also be described as the requirement to act on the
basis of fair settlement between competing claims or demands. Equity is at the
heart of justice, and since centuries people have argued about the morally relevant
criteria for regarding and treating people as equals and those for regarding and
treating them as unequals. This principle has become prominent in an era of cost-
containment and rationing of health care resources. Allocation of resources may
conflict between several common moral concerns (e.g. individual access to and
affordability of resources, fair distribution of scarcity, autonomy of professionals
to make the best decisions for their patients). All concerns may be morally justified
but not all can be fully met simultaneously. Epidemiology is the science of land-
scaping and explaining differences (in health, socio-economic status, resources,
risk factors) within populations and is thereby a critical ‘monitor’ of (in)equity
(Weed and McKeown 2001).

Balancing the Four Principles7.3.4

Although, all the four principles together are seen as a comprehensive frame for
moral reflection in medicine and epidemiology, we can observe a shift in emphasis
and a greater prominence of autonomy as the leading manual for ethical conduct.
This shift of putting the individual first is welcomed with mixed feelings and has
made balancing individual rights with those of the whole society to become a key
issue in contemporary Western society:
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Autonomy is, then, de facto given a place of honour because the trust of indi-
vidualism, whether from the egalitarian left or the market oriented right, is to
give people maximum liberty in devising their own lives and values.
(Callahan 2003).

Nilstun and Westrin have proposed a model to cross the four ethical principles
with the perspectives of each of the parties involved, and then to assess and weigh
the ethical ‘benefits’ and ‘costs’ for each individual party in the event the study
is or is not conducted (Nilstun and Westrin 1994). Earlier in this chapter we have
addressed the scientific and political debate about the risk of deep vein thrombosis
and pulmonary embolism in females using the so-called third generation oral con-
traceptives relative to second-generation agents. In 1999 Herings et al. published
a follow-up study on this topic using anonymous exposure data related to fe-
males using one of these oral contraceptives and anonymous, but person-specific,
outcomes data on hospitalizations for either deep vein thrombosis or pulmonary
embolism (Herings et al. 1999). The study confirmed the differential risk between
the two categories of oral contraceptives and showed that the highest risk was in
young females, newly starting with this contraceptive method. We use the study
accessible through this paper to illustrate the model of Nilstun and Westrin.

The analysis starts with identifying the relevant parties (females using OC, soci-
ety at large, industry, prescribers). In Table 7.1 possible outcomes of an analysis of
the most relevant ‘benefits’ and ‘costs’ are listed concerning the two dimensions of
ethical principles and parties involved in the event that the study will be conducted.
If the study is done, there are possible ‘benefits’ for society at large, for prescribers,
for (other) women using oral contraceptives. For the industry the conduct of the
study results in an ambiguous picture. Manufactures of the second generation oral
contraceptives considered the study as ‘good news’, for manufactures of the third
generation the results of the study were less favourable. For industry as a whole one
may argue that every piece of science that contributes to the benefit-risk balance is
advantageous, although this is not perceived like this in real life. Although this is
reasonably understandable, it marks also the complexity and paradoxal nature of
such multi-interest cases. Because the study confirmed earlier findings that most
of the risk is concentrated in the very young users, the paper provided important
guidance to decision makers and young females in choosing the most suitable oral
contraceptive.

With respect to the potential ‘costs’, respect for autonomy (violating privacy,
absence of individual informed consent) of the females and (possibly) the pre-
scribers involved in the study is critical. Data used in the study were anonymous
but person-specific, meaning that the investigator could not link the research
data to any individual women. The linkage procedure of the Dutch Pharmaco-
Morbidity (PHARMO) record linkage database has been internationally acknow-
ledged (PHARMO data have been used in more than 100 studies) and brings
community pharmacy and hospital data within established hospital catchments
regions, together on the basis of patients’ birth date, gender, and general practi-
tioner (GP) code (yielding a sensitivity and specificity of linking person-specific
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data from two separate databases of over 98% each, which means that 98% are cor-
rectly linked) (Herings et al. 1992). PHARMO has been linked also to primary care
data, population surveys, laboratory data, cancer and accident registries, and other
outcomes data using the same linkage model. Individual informed consent from
all females involved in this study was not obtained and there are certain autonomy
advocates who argue that this should be accomplished. Practical and methodolog-
ical (those who refuse are mostly most relevant to the research) constraints would
make individual informed consent virtually unfeasible. Instead, general informed
consent in order to use the data for research purposes is obtained at the time
a person enters the PHARMO area. The same holds for the participating physi-
cians. PHARMO assures to them that all analyses are doctor-anonymous in order
to prevent personalized auditing or other ways of influencing prescribing practice.
Looking at the principle of ‘beneficence’, participating females have contributed
(although not in conscious fashion) to the research and have taken their share in
the solidarity of bringing together relevant data for solving an important public
health problem.

Table 7.1. Most important possible ‘benefits’ and ‘costs’ when the study is done

Autonomy Beneficence Justice
non-maleficence

Study subjects Costs Benefit Mixed
Physicians Costs Benefit
Industry Mixed
Society at large Benefit Benefit

Whatever the outcomes of such an exercise are they provide a systematic frame
for reflection and identification ‘where things can go wrong’. The latter is a pivotal
role of ethics in epidemiology (Coughlin 2000). Each preliminary idea of a study
protocol should be accompanied with such an ‘ethical scan’. Not only for the
purpose of moral justification of the research but also for reasons of improving
the quality of the research. Experiences in coping with requirements to assure
data privacy have been dominated mainly by technical (e.g. probabilistic linking,
de-identification, introduction of random error on an individual level, but not
on a population level, etc.) or procedural (e.g. standard operating procedures,
good practice standards, security, etc.) dimensions (Roos and Nicol 1999). From
a pragmatic view these dimensions may fully satisfy. However, ethical weighing of
‘benefits’ and ‘costs’ also includes critical reflection of the aims, deliverables and
consequences for the stakeholders (e.g. patients, physicians, etc.) involved. The
latter goes beyond finding ‘smart tricks’ to deal with privacy regulations or clinical
trial directives.

As stated before, the ability to link person-specific clinical, exposure and dis-
ease course data is a critical objective of epidemiology. Of all ethical issues and
considerations, respecting autonomy by protecting privacy and confidentiality are
the most crucial ones. Virtually all current legal systems in the Western world
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acknowledge the basic right of the patient to be assured that all his medical and
personal data are confidential. Only in case of few well-defined exceptions disclo-
sure of person-specific information is allowed, e.g. prevention of serious risk to
public health, order by a court of law in a crime case, and under certain safeguards,
scientific research. The tension between assuring personal privacy and access to
medical data for epidemiological research has drawn ample attention from vari-
ous stakeholders (individual patients, the public, politicians, health professionals,
and the research community). In Table 7.1 possible violations of personal privacy
related to either study subjects or physicians are classified as ‘costs’.

The scientific community of epidemiologists struggles with these two concepts
and tries to convince politicians and policy-makers of the importance of collective
benefit to society from research with medical data and that we cannot rule out
significant adverse effects to public health when epidemiological research has been
made virtually impossible. Others take the pragmatic route using methodology
that includes contemporary computer and statistical technology in order to build,
within the framework of existing privacy legislation, aggregated, de-identified but
person-specific, information.Court cases in several parts ofEuropehave concluded
that the use of fully anonymous, de-identified patient data for the purpose of
scientific epidemiological or clinical research is permissible under current law. In
cases where it is not feasible to use primary data (collected directly from clinical
practice for a specific, well-defined, purpose) in an anonymous fashion, informed
consent should always be obtained. Epidemiological researchers may rely on access
to non-anonymous medical records but access to patient records for a research
purpose requires individual patient informed consent.

The effect on research quality will be determined by the proportion of indi-
viduals who refuse consent, or in the case of large automated databases, who are
simply not contactable. Researchers, cautioned by privacy advocates, very often
overestimate participation rates in consent procedures. There is growing evidence
available that patients are willing to allow personal information to be used for
research purposes. Several studies have shown that refusal to comply with consent
procedures are most often not higher than in about one out of ten. A recent study
form Canada suggests however, that study subjects want to be actively consulted
before the start of an epidemiological study where personal information is col-
lected, whenever this is practically feasible (Willison et al. 2003). Secondary use
of data (use of existing data for purposes other than those for which they were
originally obtained) remains controversial as some interpreters of the law feel that
secondary data use is prohibited because of the requirement for data to be used only
for purposes compatible with those for which it was originally collected. In prac-
tice we see that this requirement is solved by obtaining general informed consent,
although many researchers have sought exemption from the consent requirements
in order to minimise selection bias, logistical obstacles, time consumption and
costs. Record linkage provides a powerful tool for the study of the natural history
of diseases, the aetiology of rare diseases, or the study of drug-effect associations
with a (long) induction period between exposure and outcome (Herings et al.
1992). The process of linkage of individual data from a number of sources, such
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as primary care records, secondary care records, prescribing and mortality data,
requires patient identification and in many countries is not permitted because this
is believed to breach data protection laws. In order to comply with confidentiality
rules, researchers very often rely on medical staff providing them with a list of pa-
tients’ names and addresses to be used as a sampling frame. Although no medical
details are given, the provision of names and addresses is clearly not anonymous
and this is likely to be in breach of European and US legislation (UK Parliament
Acts 1998; US DHHS 2001). Experiences so far in record linkage represent a patch-
work of various approaches to link individual sets of drug exposure and clinical
data. In absence of a (national) unique identifier, researchers have to rely on other
approaches for bringing separate datasets together to a patient-specific linked set.

Ethical Issues Specific to Epidemiology7.4

Unethical Quality of Research7.4.1

This brings us to another ethical angle of epidemiological research, namely poorly
conducted research. That kind of research will for sure not benefit patients or
society, but may cause harm when it leads to unsubstantiated and wrong decision
making in clinical practice or policy making in public health. Taubes (1995) has
addressed this issue in his thoughtful paper on the limits of epidemiology where
he accuses the field for producing repeatedly exposure-outcome associations that
do not hold very long because subsequent studies either contradict the findings or
are unable to reproduce the main study results. Although scientific controversies
are essential to progress and evolution in science, conflicting data and secondary
turmoil in epidemiology do most often more harm than good (Vandenbroucke
1998; Skegg 2001). This means the ‘Good Epidemiology Practices’ with the purpose
to prevent or adjust a priori poorly designed studies, are as important for quality
assurance as for ethical reasons (IEA 1998).

Global Bioethics and Inequity7.4.2

A remaining, but not less important ethical challenge for future epidemiological re-
search is the gigantic inequity in global health. Large differences in disease burden,
variable access to efficacious and safe medical technology, gaps in pharmaceuti-
cals and health services are an enormous concern (World Medical Association
2000). Fighting against inequity in global health as a feature of modern med-
ical and epidemiological ethics goes beyond the application of the Hippocratic
oath. It is about prioritising, about creating affordability and access, and epi-
demiology is and will be the pivotal science of fuelling policy making and strate-
gic action with quantitative evidence for managing this global problem (Reich
2000; World Health Organization 2003). The triangle global inequity, epidemiol-
ogy and ethics contrasts extremely with the ethics of individual ‘autonomy’ of for
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instance a patient objecting against participating in a database study in the US
or Europe. So far, ethicists have been struggling with ‘prioritising’ ethical issues.
Questions whether a disease burden of an orphan disease with a prevalence of
less than 1 : 10,000 in the EU is, or should be, as equally important as the burden
of a tropical disease affecting millions and millions of people are still difficult to
address. The future will teach us how far we can go with the ‘equal’ approach.
We will face important challenges for epidemiologists and ethicists involved in
these ‘contrasting’ areas. Some criteria, however, have been developed already.
Both the declaration of Helsinki in its fifth amendment (2000) and the CIOMS
guidelines for biomedical research state that research undertaken in populations
with limited resources should be responsive to the health needs of the population.
Moreover sponsors and investigators must ensure that products or knowledge
generated by the research will be made reasonably available for the benefit of the
population.

Epidemiological Determinism and Preventive Medicine 7.4.3

In the late nineties of the last century, James Le Fanu, a UK based general prac-
titioner, wrote a reflecting and alluring book titled the ‘Rise and fall of modern
medicine’ (Le Fanu 1999). In his book, the author is very critical about numerous
features of contemporary medicine and health care, in particular about the role
of epidemiology in medical education, knowledge building and clinical practice.
Many of his arguments are close to the ethical questions arising from the de-
terminism of epidemiology resulting in stratifying populations in categories of
disease susceptibility, consequently leading to screening, ‘healthy’ behaviour and
preventive medicine. The promise of genomics and other molecular strategies for
improving the practice of medicine must be pursued taking into account the funda-
mental ethical principles of autonomy, beneficence, non-maleficence and justice.
Because genetics are linked to family ties the ‘right of not to know’ for instance goes
beyond the individual judgement and decision making of the persons involved in
the study themselves.

Precautionary Principle and Scientific Evidence 7.4.4

Closely related to the former issue of epidemiological determinism is the question
how strong the evidence of the relationship between a hypothesised cause (i.e.
environmental factor, medical intervention, drug treatment) and the effect should
be before implementation and public health action is justified (Rogers 2003). This
is at the heart of the science of epidemiology, as we have seen in previous chapters,
and there are many cases of ‘established’ exposure-outcome associations which
had to be revoked afterwards because new studies and data became available, e.g.
reserpine and breast cancer or fenoterol and asthma death (Fraser 1996; Spitzer
et al. 1992). According to the precautionary principle, a principle widely embraced
nowadays by politicians and consumer advocates, particularly in the area of as-
sessing environmental risks, it is uncertainty that justifies and requires pro-active
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measures and regulations, and a reversal of the burden of proof. A manufacturer
intending the marketing of a new product or a government planning to build a new
power plant have the obligation to provide solid evidence on efficacy and safety of
the innovation before authorisation is granted. The pharmaceutical market knows
this system already since the early sixties of the last century, but also other areas
of medical technology anticipate more pro-active assessment of the benefits and
risks. The application of the precautionary principle is controversial because, ac-
cording to its opponents, it drives behaviour of counterproductive risk-avoidance
and defensive strategies in balancing risks and benefits of innovation. Assessment
and prediction of health effects of any intervention depend on a synthesis of all
available epidemiological and mechanistic evidence to produce a valid estimate
of the likely effect. Epidemiology is an important scientific resource to fuel the
precautionary principle. From that perspective the adverse effects of this principle
in terms of, for instance, exclusion of susceptible patients from certain medical
technologies because proof of safety is still lacking (e.g. pregnant women, chil-
dren), or neglecting and discontinuing research and development in specific risky
areas, call for ethical reasoning.

Medical Ethics and Epidemiology7.4.5

Singer and colleagues (2001) have identified a number of important drivers in
medical ethics:

New ethical challenges posed by advances in biotechnology
Maturation of clinical ethics by strengthening the research base and developing
graduate programmes and fellowships
Emphasising the intersection between clinical ethics and health policy, includ-
ing a focus on ethics of health care institutions and health systems
Increasing public education and involvement
Developing the conceptual foundations of bioethics
Changes in the doctor-patient relationship.

Epidemiology is very close to clinical medicine, as epidemiologists provide sci-
entific underpinnings of (1) the diagnosis, (2) aetiology of the disease, and (3) the
prognosis (and determinants of disease) in populations, both healthy and dis-
eased. We anticipate that all major developments in medical genetics will have
consequences for epidemiology ethics as well, directly or indirectly. But because
epidemiology is frequently directed at the healthy part of the population, mean-
ing those who are not (yet) ill, the field carries specific ethical responsibilities
with respect to predictive competences, e.g. identifying risk factors and preventive
medicine. Moreover, as stated before, there are not many scenarios in epidemiolog-
ical research where study subjects individually can benefit directly from the study
and|or the research results. Partly this is a consequence of the historical nature of
for instance retrospective case-control or many cohort studies, the anonymity of
the data, and the large numbers involved, making person-specific implementation
of the study results to study subjects hardly feasible. These features contrast with
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clinical research with more options for direct patient benefit. Direct patient benefit
(or harm) is also an important driver of the discussion on the ethics of placebo-
controlled clinical trials in case there is an efficacious therapy available and not
treating might harm the patient for sure, e.g. by severe worsening of the disease or
mortality in oncology research, or suicide risk in evaluating antidepressive thera-
pies (Storosum et al. 2001; Michels and Rothman 2003). In general it is accepted
that placebo controlled trials are only morally acceptable in the absence of proven
effective therapy.

Conclusions 7.5

Among many other factors, innovation in automated databases, the surge in molec-
ular and genetic knowledge, and controversies about scientific integrity, conflict
of interest and related issues, have increased apprehension of the importance of
ethical aspects in epidemiology. In the beginning, concern about loss of privacy
has been a key driver of ethical questioning in epidemiology and various tech-
niques have been developed to cope with the confidentiality issue. The creation of
unbiased person-specific histories (including both data on various exposure and
outcomes) is a crucial requirement in epidemiology. Ethical weighing of ‘benefits’
and ‘costs’ can play an additional and relevant role as a vehicle for thoughtful
reasoning (Beauchamp et al. 1991). Indeed, there have been expressed concerns
about the various ways of misusing such data. In particular in the era of genetics
and the increased interests of health insurers to reduce their business risks, there
is a great need for prudence, protection and careful weighing (Bolt et al. 2002;
Nuffield Council on Bioethics 2003). Discovery of genes determining the response
to drugs is an emerging area of genomic research as well and will produce new and
intriguing ethical questions.

When considering the four ethical principles of beneficence, non-maleficence,
autonomyand justiceonascaleof individual versus societyasawhole, it is apparent
that most of the ‘benefits’ of epidemiological research can be attributed to the
collective level (community, society), and that most of the ‘costs’ fall down on the
individual level. That makes epidemiology vulnerable for controversies where the
individual-collective dimension is sensitive. The two examples of calcium-channel
blockers and the users of oral contraceptives exemplified that participating study
subjects themselves are virtually not benefiting from the study results. Current or
future users of both drug categories however are in a much better position after
the research has been done than before.

It is not a rare occurrence that epidemiological researchers perceive ethics as
cumbersome, conservative and anti-scientific. Although these feelings may be
justifiable in some cases, the ultimate balance sheet of more ethical weighing and
reasoning will be positive. Ethical reasoning helps also to be concise in defining
the research question, the design and conduct of the study. Ethics and the linked
formal and legal frameworks (e.g. scientific conduct guidelines, privacy protocols,
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ethical review board, etc.) undoubtedly have delivered in terms of quality push,
critical reflection and scientific enlightenment, and will continue to do so in the
future. The research community, clinical medicine and patients, all are major
stakeholders in searching for and achieving mutual benefit from integrating ethics
into epidemiological science (Gillon 2003).
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